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Hope

Hope is the thing with feathers 
That perches in the soul,
And sings the tune without the words, 
And never stops at all,

And sweetest in the gale is heard,
And sore must be the storm 
That could abash the little bird 
That kept so many warm.

I’ve heard it m the chillest land,
And on the strangest sea,
Yet, never in extremity,
It asked a crumb of me.

Emiliy Dickinson
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MeOH Methanol

MES 2-[N-Morpholino]ethanesulphonic aad

MM Micbaehs-Menten

M/Z Mass/charge ratio
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PEG Polyethylene glycol
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Ve Elution volume

Vo Void volume

v/v Volume per volume

w/v Weight per volume

Xaa- Any amino acid
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ZTTA Z-Thiopro-thioprolmal
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Amino Acid Abbreviations
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GIu/E Glutamate Thr/T Threonine
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Abstract

Cytosolic bovine brain prolyl oligopeptidase was purified from whole brain using ammonium suphate 

precipitation and chnitnjtography with DEAE sepharose, S200 gel filtration, chromatofocusmg and 

phenyl sepharose An overall recovery of 23% and purification factor of 253 was achieved

The relative molecular mass of the brain PO, determined by gel filtration chromatography, was found 

to be 69 5 kDa This was confirmed by SDS PAGE The purified enzyme was relatively unstable 

under assay conditions However the presence of 0 5% w/v BSA improved its stability and the assay 

linearity Activity was also inhibited strongly by solvents with DMF being the most inhibitory DMSO 

was found to be the optimal solvent in terms of enzyme activity and substrate solubility Optimal 

enzyme activity was observed at 37°C with complete inactivation occurring at temperatures of 50°C 

or more A pH optimum of 7 4 and a preference for phosphate buffer was found for the enzyme with 

complete inactivation of activity below pH 4 5 and above pH 10

The brain PO was confirmed to be a serine protease based on its sensitivity to AEBSF The enzyme 

was also inhibited strongly by some cysteine protease inhibitors such as NEM and DTNB and was 

activated by DTT Sensitivity to these agents would suggest the presence of a cysteme residue in close 

proximity to the active site Some divalent metal salts also exerted some inhibitory effects on activity 

with Hg2+, Cu2+, Cd2+, Co2+ and Ni2+ being the most potent
(

Substrate spcUilcity studies performed on the purified bovine brain, partially purified bovine serum 

and recombinant Flavobacterium meningosepticum PO activity revealed that this oligopeptidase 

could hydrolyse a range of proline containing peptides including TRH, LHRH, ADNF-14, substance 

P, neurotensin, CLIP, a 45 amino acid residue Gly-Pro-Ala polymer and the APP fragment 708-715 

N-blocked prolme containing dipeptides, including Z-Pro-Pro-OH were not hydrolysed by any of the 

enzyme The smallest synthetic sequences hydrolysed were an N-blocked tripeptide and a 

tetrapeptide

The brain, serum and bacterial activities hydrolysed Z-Gly-Pro-MCA, with Km values of 62 5, 14 6 

and 38 5(iM respectively The TRH analog pGlu-His-Pro-MCA was also hydrolysed by all three 

activities with higher Km values of 99 8, 52 1 and 73 5(xM for the brain serum and recombinant 

Flavobacterium meningosepticum enzyme respectively

A number of prolme-containing peptides were also found to competitively inhibit all three activities 

Of these angiotensins I, II and II were the most potent The TRH analogs, Glu2TRH and Phe1TRH 

exhibiting the lowest inhibitory potency
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Inhibition studies performed using a range of PO-specific inhibitors revealed a-ketobenzothiazole to 

be the most potent inhibitor of bovine brain PO with an IC50 value of 63pM The classical PO 

inhibitor Z-Pro-prolinal inhibited all three activities with IC50 values of 7-10nM With regard to the 

majority of inhibitors tested, the brain, serum and bacterial enzymes were similar m their sensitivity 

However the brain and serum activities were approximately 4000 times less sensitive than the 

bacterial enzyme to inhibition by the N-blocked dipeptide analog, Z-Phe-Pro-methylketone An 

investigation into the time course inhibition of bram and bacterial activities by Z-Phe-Ala- 

chloromethylketone found that while the bacterial enzyme was completely inhibited by lxlO'5 M of 

this inhibitor alter 60 minutes, the bram enzyme was completely insensitive to inhibition

t
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1. INTRODUCTION



1.1. Proline

Amongst the twenty amino acids coded for in protein synthesis proline occupies a unique position A 

highly conserved residue, and the only mammalian lmrno acid, proline’s unique cyclic structure 

influences not only the conformation of peptide chains but restricts their susceptibility to proteases 

(Yaron and Naider, 1993, MacArthur and Thorton, 1991)

1.1.1. Structural Characteristics

Ammo acids are constructed around a single carbon atom (the a  carbon) Forming the centre of the 

tetrahedral array, the a  carbon is bonded to an amino group (NH3), a carboxyl group (COOH), a 

hydrogen atom (H) and a distinctive side chain or R-group (see figure 1 1 la) Proline’s uniqueness 

arises because the end of its side chain (CH3CH2CH2) is covalently bonded to the a-nitrogen resulting 

in a rigid cyclic structure (see figure 1 1 lb) Therefore the presence of a proline residue in a peptide 

chain can confer important conformational and biologically significant characteristics on that peptide 

Proline’s bulky rmg structure limits the angle of rotation about the a  carbon and nitrogen within a 

peptide bond, which is normally only reliant upon steric hindrance or electrostatic repulsion between 

R-groups of adjacent residues As a result of this, proline normally introduces a fixed bend m a 

peptide chain changing its direction, a causative factor m the spherical or globular shape of proteins 

(MacArthur and Thornton, 1991)

As the amide proton is replaced by the CH2 group, proline is unable to act as a hydrogen bond donor 

This along with the bulkiness of the side chain, places restrictions on the residue preceding proline, 

disfavouring the a  helix conformation Inside an a  helix, the possibility of making hydrogen bonds 

with the preceding turn is lost thus introducing a kink (helix breaker effect) It is not surprising 

therefore that proline is often found one or two residues after the end of an a  helix (or (3 sheet) There 

is also a tendency to find proline at the beginning of a helix This can be explained both by the benefit 

of not needing a hydrogen bond partner and by the fact that proline’s angle of rotation <() is 

permanently constrained to the angle typically found m a helix (Barlow and Thorton, 1988), (see 

figure 1 1 2 )

Virtually all peptide bonds found in proteins are in the trans-configuration However proline residues 

have a relatively high probability of having the a s  rather than the trans isomer of the preceding 

peptide bond, when compared to other amino acids (Brandts et a l , 1975) The greater angle length of 

the X-pro peptide bond which results in redistribution of charge and lack of resonance stabilisation is 

caused by loss of the lmide hydrogen (see figure 1 1 2  and 1 1 3 )  It has been suggested that proline 

may be actively involved in the regulation of transmembrane protein systems such as the sodium 

pump, by having cis/trans isomerization synchronous with ion translocation (Williams and Deber,

1991)
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0 0 0 COO

NHb+ C  H HjN C  H

R

Figure 1.1.1a. General Amino Acid Structure. Figure 1.1.1b. Structure ofthe Imino Acid,

Figure 1.1.2. Peptide bond structure

The a  carbon of each amino acid are designated C’ and C” Angle of rotation \y,co and <j> are 

indicated. In general the angle of rotation co is normally fixed at 180° resulting m a fixed planar 

bond However in proline the angle of rotation co may be 180° (trans) or 0° (cis) and is not fixed (may 

rotate by -20° or +10°) The angle of rotation <|) in a peptide bond involving proline is constrained, 

and it is this constraint that is responsible for introducing a fixed bend into peptide chains

Carboxyl, amino and R group are attached to a 

chiral carbon (C’)

Prohne The bonded amino and R group create a 

cyclic structure
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CO P2> >N N

Pi V Pi

CO P2

Fig 1.1.3. Cis and Trans-Conformation o f  the X-Pro Peptide Bond with a Rotation o f  180° 

Around the C-N Imide Bond

This reaction is catalysed by peptidyl-proly cis-trans isomerase (Galat, 1993)

1.1.2. Physiological Implications of Proline in Peptides

A key physiological role played by proline is the protection of biologically active peptides from 

enzymatic degradation. As prolrne constitutes 5% of amino acid residue of total brain protein (Lajtha 

and Toth, 1974) and is indeed present in many neuropeptides/neurohormones and vasoactive peptides 

(VanHoof et a l , 1995, Meintlein, 1988), (see table 1 1 1), prolme-speafic or selective peptidases 

should play an important role in the nervous system The presence of prolme may not only determine 

the properties of secondary structures necessary for a peptide’s biological activity but may also hinder 

any nonspecific proteolytic degradation (Yaron and Naider, 1993)
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Protein/Peptide

-■>  ̂  ̂ ^

Amino Acid Sequence

Angiotensin II Asp-Arg-Val-Tyr-Ile-His-Pro-Phe

Oxytocin Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NHî

Vasopressin Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly-NH2

Bradykinin Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg

Substance P Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met

Neuropeptide Y (1-14) Tyr-Pro-Ser-Lys-Pro-Asp-Asn-Pro-Gly-Glu-Asp-Ala-Pro-Ala

Pancreatic polypeptide (1-14) , Ala-Pro-Leu-Glu-Pro-Val-Tyr-Pro-Gly-Asp-Asn-Ala-Thr-Pro

Luteinizing hormone-releasing hormone pGlu-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-Gly-NH2

Thyrotropin-releasing hormone pGlu-His-Pro-NH2

Gastrin releasing peptide (1-10) Val-Pro-Leu-Pro-Ala-Gly-Gly-Gly-Thr-Val-

Corticotropin-releasing hormone (1-10) Ser-Glu-Glu-Pro-Pro-Ile-Ser-leu-Asp-Leu-

Calcitoriin (20-32) His-Thr-Phe-Pro-Gln-Thr-Ala-Ile-Gly-Val-Gly-Ala-Pro-NH2

Bradykmm-potentiating peptide pGlu-Gly-Gly-Trp-Pro-Arg-Pro-Gly-Pro-Glu-De-Pro-Pro

Tuftsm Thr-Lys-Pro-Arg

Melanotropin Ser-Tyr-Ser-Met-Glu-His-Phe-Arg-Trp-Gly-Lys-Pro-Val-NH2

Neurotensin pGIu-Leu-Tyr-GIu-Asn-Lys-Pro-Arg-Arg-Pro-Tyr-IIe-Leu

Table 1.1.1. Prohne Containing Neuro- and Vasoactive Peptides in Human 

1.13. Proline-Specific Peptidases

Given the unique structural characteristics of proline, it is not unexpected that the presence of proline 

m peptide bonds generally makes them resistant to hydrolysis by peptidases, even those of broad 

specificity (Yaron and Naider, 1993) However there is now known to exist, a group of proline- 

specific peptidases, which have evolved to recognize the pyrrolidine ring of proline. The specificity of 

these peptidases is even further limited by both the size of the peptide and the position of the proline 

residue. For instance Dipeptidyl ammopeptidase II can only act on peptides of three or four amino 

acid residues (Fukasawa et a l , 1983) Ammopeptidase P requires proline to be situated at the N- 

termmal penultimate position, but carboxypeptidase P has a requirement for a C-terminal penultimate 

prolme residue (Hedeager-Sorenson and Kenny, 1985; Yaron and Berger, 1970)
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To date eight exopeptidases and one endopeptidase have been identified in mammals as being proline 

specific in their action (Cunningham and O’Connor, 1997a), (see table 1.1.2). It is the 

endopeptidase,prolyl oligopeptidase that will be the focus of this review.

Proline-Specific
Peptidase

Specificity Reference

Prolyl Oligopeptidase oop«boo 1

Dipeptidyl Peptidase IV o«ooooo1
2

Dipeptidyl Peptidase II 0900 3

Aminopeptidase P ckxxxx) 4

Prolidase db1 5

Proline Iminopeptidase •oo 6

Prolinase 7

Prolyl Carboxypeptidase 00000*0 8

Carboxypeptidase P oooooib 9

Table 1.1.2 : Mammmalian Proline-Specific Peptidases 

Proline= Q  , Amino acid= Q , 4^=Site of hydrolysis

1. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and 

Molecular Biology, 1992., 2. McDonald et al., 1971; 3. Fukasawa et al., 1983; 4. Yaron and Berger, 

1970; 5. Yoshimoto et al., 1983a; 6. Yoshimoto et al., 1983b; 7. Mayer and Nordwig, 1973; 8. Dehm 

and Nordwig, 1970; 9. Hedeager-Sorenson and Kenny, 1985.

1.2. The Discovery of Prolyl Oligopeptidase

Enzymatic hydrolysis of proline-containing peptides at either the carboxyl or amino terminus of a 

peptide has been known since the 1950s (Davis et al., 1957 and 1953). However the enzymatic 

degradation of peptidyl-prolyl-peptide bonds was not observed until much later. In 1971, in a study of
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the products of uterine oxytocin degradation, an enzyme capable of cleaving the prolyl-leucyl bond of 

oxytocin resulting in the release of the dipeptide leucylglycinamide was identified and purified 

(Walter et a l , 1971) Further studies on this oxytocin degrading enzyme found that this peptidase, 

rather than having a specificity for oxytoan was m fact specific for the ammo acid residue, prolme, 

and could mediate cleavage at the carboxyl side of this residue (Walter, 1976, Koida and Walter, 

1976). This enzyme has since been termed post-prohne cleaving endopeptidase (PPCE), prolyl or 

prolme endopeptidase (PE), (Orlowski el al., 1979, Walter, 1976) Since its initial discovery, several 

peptidases isolated and named on the basis of their specificity for a particular bioactive peptide, were 

found to be identical to this proline-speafic endopeptidase For instance, TRH deamidase isolated 

from rat brain (Rupnow et a l , 1979) and bovine anterior pituitary (Knisatschek and Bauer, 1979), 

kinmase B from rabbit brain, which was found to cleave bradykimn (Oliveira et a l , 1976), and endo- 

oligopeptidase B, which hydrolysed bradykimn, angiotensin I and II, neurotensin and LHRH 

(Camargo et a l , 1984, 1983, Greene et a l , 1982), were all found to be identical to PPCE It is now 

accepted that the more correct term for PE/PPCE is prolyl oligopeptidase, a term reccomended due to 

the substrate-size limitation of its specificity (Camargo et a l , 1984, Barrett and Rawlings, 1992) 

The existance of a new family of senne-type peptidases related to prolyl ohgopeptidase, known as the 

S9 or prolyl oligopeptidase family, is now recognized (Barrett and Rawlmgs, 1992)

1.3. Biochemical and Biophysical Characteristics of Prolyl Oligopeptidase

13.1. Molecular Weight
Preliminary studies on the molecular weight of PO reported that this peptidase had a dimenc 

structure with a molecular weight of 115-140kDa (Mizutam et al., 1984, Koida and Walter, 1976) 

However it is now known that mammalian, plant and microbial forms are monomeric with a 

molecular weight ranging from 62-77kDa (Kanatani et a l , 1993, Yoshimoto et a l , 1981), (see table 

13 1) With the cDNA cloning of porcine brain PO, the reported ammo acid sequence (710 amino 

acids) allowed the deduction of a molecular weight for the enzyme of 80 75kDa This was in conflict 

with the lower value obtain experimentally, m the same study, of 74 5kDa (Rennex et al., 1991) 

Another cDNA cloning study on the human T cell form revealed again a sequence of 710 amino 

acids with a deduced molecular weight of 80.75kDa (Shirasawa et a l , 1994). Investigations into the 

ammo acid sequence of the Flavobacterum memngosepticum enzyme revealed a complete ammo acid 

sequence of 705 ammo acids However this sequence was found to contain a signal peptide of 20 

amino acids preceding the mature enzyme. It was confirmed that loss of this signal peptide leads to 

the mature form of PO with an estimated molecular mass of 76 782kDa, which correlated well with 

previously reported experimental values (Chevallier et a l , 1992)
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1.3.2. Isoelectric point. pH and Temperature Optima

In general mammalian and plant forms of PO have reported to be acidic with isoelectric points of 

between 4 5 and 4 9 (Goossens et a l , 1995, Kalwant and Porter, 1991, Yoshunoto et a l , 1983c) The 

Flavobacterial memngosepticum form of this peptidase however has a much higher PI of around 9.6 

(Yoshimoto et a l , 1980) This is indicative of a difference in the ionizable ammo acid content which 

results in a predominantly basic protein Another bacterial form of PO from Aeromonas hydrophiha 

was found to have a pi of 5.5, which is again quite high, relative to mammalian forms (Kanatani et 

a l , 1993), (see table 1 3 1 )

Generally mammalian, bacterial and plant forms of PO have a broadly neutral pH optima with 

reported values ranging from 6.8 to 8 3 (see table 1 3 1 )  Optimal temperatures reported for activity 

are generally between 37 and 40°C (Kanatani et a l , 1993, Yoshimoto et a l , 1983c) There has been a 

report of a PO from Pyrococcus junosis with a temperature optimum of between 85-90°C (Harwood 

et a l , 1997)
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PO Source Molecular

Weight

Isoelectric

Point

pH

Optima

Temper atue 

Optlma(°C)

Reference

Lamb Kidney 115kDa* 4 8 7 5-8 0 47 Koida and Walter, 1976

Lamb Brain 74-77kDa 4 9 7 0 45 Yoshimoto et a l , 1981

Bovine Brain 62-65kDa 4 8 7 0-7.5 40 Yoshimoto et a l , 1983c

Bovine Anterior 76kDa __ 7 4-7 6 Kmsatschek and Bauer,

Pituitary 1979

Rabbit Brain 66kDa 8 3 Orlowski et a l , 1979

68kDa 4 9 _ Oliveira et a l , 1976

Human Brain 76 9kDa 4 75 6 8 Kalwant and Porter, 1991

Human Placenta 140kDa* 4 75 - Mizutam et al, 1984

Human Lymphocytes 76kDa 4 8 _ - Goossens et al, 1995

Human T Cells 80 75kDa** _ Shirasawa et a l , 1994

Porcine Brain 80 75kDa** Rennex et a l , 1991

74 5kDa

LyophyUum cmerascens 76kDa ' 5 2 6 8 37 Yoshimoto et a l , 1988

Daucus carota 75kDa 4 8 7 3 37 Yoshimoto et a l , 1987a

F. meningosepticum 74kDa 9 6 7 0 40 Yoshimoto et a l , 1980

78.78kDa** Chevallier et a l , 1992

Aeromonas hydrophilia 76 4kDa** 5 5 8 0 30 Kanatani et a l , 1993
Pyrococcus furiosos 70kDa** 85-90 Harwood et a l ,1997

Table 1.3.1. Physical Characteristics o f  Prolyl Oligopeptidase from a Variety o f  Mammalian, 

Plant and Microbial Sources

• * molecular weight accounts for a dimeric structure

• ** molecular weight deduced from an ammo acid sequence and includes the N-terminal signal

peptide (see section 13 1)
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1 3 3 .  Catalytic Classification of Prolyl Oligopeptidase

1 3 3 .1 . Sensitivity to Protease Inhibitors

One of PO’s distinguishing characteristics is its sensitivity to both serine and cysteine protease 

inhibitor reagents. PO has been classified as a serine peptidase based on its sensitivity to DFP, Z-Gly- 

Pro-CH2Cl, Ac-Ala-Ala-Pro-CHN2 and to a lesser extent PMSF (Stone et al., 1992; Kalwant and 

Porter 1991; Yoshimoto et al., 1987a; Orlowski et al., 1979., Yoshimoto et al., 1977). DFP is a 

reagent with a very high specificity for activated catalytically relevant serine residues and the 

stoichiometric inhibition of PO by this residue was definitive evidence for the presence of a 

catalytically competent active site serine. Mammalian and plant forms of the peptidase have also been 

found to be sensitive to cysteine protease inhibitors but at relatively high inhibitor enzyme ratios 

which is in contrast to the stoichiometric inhibition observed with DFP (Yoshimoto et al., 1977). It is 

plausible that bulky reagents could react with non-catalytically competent cysteine residues at or near 

the active site causing a level of steric hindrance which may interfere with catalytic activity. This 

hypothesis was confirmed in a series of experiments involving the cysteine protease inhibitors, NEM 

and the smaller molecule, iodoacetamide. When PO was treated with these reagents separately 85% 

and 50% inhibition was observed with NEM and iodoacetamide respectively. When PO, which had 

been treated with iodoacetamide, was exposed to NEM, the peptidase was not further inhibited. This 

would seem to indicate the presence of a cysteine residue that is close enough to the active site, to 

cause total exclusion of a substrate, when it is complexed to a bulky residue. A smaller reagent such 

as iodoacetamide would therefore be able to exert incomplete steric hindrance (Polgar, 1991). There 

does seem to be quite a variation in the sensitivity of PO to functional reagents depending on its 

source. PO from Flavobacterium meningosepticum and Aeromonas hydrophilia was found to be 

resistant to the cysteine protease inhibitor PCMB indicating that no cysteine residue was in close 

enough proximity to the active site so as to adversely influence catalytic activity (Kanatani et al., 

1993; Yoshimoto et al., 1980).

1.33.2 Cloning and sequencing of Prolyl Oligopeptidase Gene

Confirmation of PO’s status as a serine protease was obtained through the eventual cloning of the PO 

gene and the deduction of its amino acid sequence The amino acid sequence of PO from porcine brain 

was reported in 1991. As well as containing 16 half-cystinyl residues, an active site serine, confirmed 

on the basis of its inactivation by DFP was identified (Rennex et al., 1991). Essential catalytic 

residues have been identified as Ser554 and His680 by reaction with active site-directed reagents 

(Rennex et al., 1991; Stone et al., 1991). The amino acid sequence surrounding this active site serine 

of PO was found to be Gly-GIy-Ser-Asn-GIy-Gly, distinguishing it from other well characterised 

families of serine proteases (Shirasawa et al., 1994; Rennex et al., 1991). The amino acid residues 

that surround the active site serine are conserved in each family and are Gly-Asp-fcr-Gly-Gly for the
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trypsin family, Gly-Thr-Ser-Met-Ala, for the subtilisin family and Gly-Glu-Ser-Tyr-Ala for the 

carboxypeptidase Y family (Barrett and Rawlings, 1992; Brenner, 1988). Therefore PO was thought 

to represent a new class of serine protease. The order of the triad residues in PO is also distinct from 

the other more commonly known serine protease families ie. His57-Aspl02-Serl95 in chymotrypsin, 

Asp32-His64-Ser221 in subtilmn and Asp529-Ser554-His680 for PO (Barrett and Rawlings, 1992). 

PO has also now been eloned and sequenced from porcine and bovine brain, human T cells, 

Flavobacterium meningosepticum and Aeromonas hydrophilia all of which (their primary structures 

deduced from nucleotide sequences) show significant sequence homology to each other (Yoshimoto et 

al., 1997; Shirasawa et al., 1994; Kanatani et al., 1993., Chevallier et al., 1992; Yoshimoto et al., 

1991; Rennex et al., 1991). This would suggest that the PO protein is highly conserved and is likely 

to play an important role in vivo.

While there was initially no significant resemblance between the sequence as a whole or segments 

containing the catalytic residues to other known peptidases, it now appears that PO can be placed 

amongst a new evolutionary family of serine proteases, known as the S9 family (Recommendations of 

the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology,

1992), (see table 1.3.1). The PO sequence shows moderate similarity to DPP IV and an even greater 

similarity to the acylaminoacyl-peptidases and protease II previously known as oligopeptidase B. The 

greatest similarities between the amino acid sequences of members of this prolyl oligopeptidase 

family are seen in the C-terminal third of the sequence which contains the catalytic triad (see figure

1.3.1). The consensus sequence GXSXGGZZ (X is any amino acid and Z is a hydrophobic amino 

acid) may be useful in identifying other members of this family. It was only with the discovery of this 

family of related peptidases that the Asp residue of the catalytic triad was deduced to be Asp529. Two 

aspartic acid residues were found to be conserved between family members, Asp529 and Asp642 (or 

Asp641 in slightly shifted alignment). While the environment surrounding the Asp642 varied, the 

Asp529 residue was found in a uniformly neutral to mildly hydrophilic segment in all members of the 

family allowing the conclusion that Asp529 is most likely a member of the catalytic triad (Barrett and 

Rawlings, 1992; Rawlings et al., 1991). While members of the S9 family of serine peptidases display 

some sequence homology, with respect to catalytic activity, specificity and subcellular distribution 

they are one of the most disparate families of peptidases recognized to date. For instance PO’s action 

is confined to oligopeptides (Barrett and Rawlings., 1992), DPP IV, an exopeptidase, cleaves 

dipeptides from the N-termini of polypeptides, only when the N-terminus is free (McDonald et al., 

1971), and acyl-aminoacylpeptidase, an omega peptidase preferentially cleaves N-terminal acetyl- 

aminoacyl residues from polypeptides (acyl-aminoacyl-peptidase), (Mitta et al., 1989). Protease II an 

oligopeptidase cleaves peptide bonds, specifically lysine and arginine residues at the carboxyl end of 

amino acids (Kanatani et al., 1991). PO and acyl-aminoacyl peptidase are soluble/cytosolic (Mitta et 

al., 1989; Torres et al., 1986) but DPP IV is heavily glycosylated and membrane associated (Misumi 

et al., 1992). DPP IV and PO show specificity for prolyl bonds but no such specificity has been
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observed for acyl-ammoacyl peptidase (Mitta et a l , 1989, Koida and Walter, 1976, McDonald et a l , 

1971)

Structural similarities have also been noted between lipases and members of the prolyl ohgopeptidase 

family, more specifically similarities between the short segments comprising the catalytic triad 

residues. These similarities include sequence homology, topology and the not entirely open active 

site This similarity has provided a possible explanation for the physical rate-limiting catalytic step 

likely to be a conformational change In the case of lipases the catalytic triad is covered by a surface 

loop or flap and the repositioning of this flap is necessary to render the catalytic site accessible to the 

substrate This flap may be conserved in the peptidases of the prolyl oligopeptidase, S9 family 

(Polgar, 1992c)

1 N C F D D F Q c A A N G G S N G G L D T K A G H G

2 N C F D D F Q c A A N G G S N G G L D T K A G H G

3 N V F N D F I A A G S G R S N G G L E T N A G H G

4 N T F N D Y L D A C M G G S A G G M D M D S G H G

5 Q D V K D V Q F A V M G G S H G G F Y P K S T H A

6 Q D V K D V Q F A V M G G S H G G F Y P K S N H A

7 L E V E D Q I E A A W G W S Y G G Y Y T D E D H G

8 F E V E D Q I S A A W G W S Y G G Y Y T D E D H G

9 Y E A R D
*

Q I S A A F G W S
*

Y G G Y F P D S D H S
*

ASP 529 SER 554 HIS 680

Figure 13.1. An Alignment o f  the Catalytic Triad (Asp-Ser-His) Sequences o f  Members o f the 

Prolyl Oligopeptidase Family (S9) o f  proteases.

* Location of catalytically competent triad residues

1 Human prolyl oligopeptidase (Shirasawa et a l , 1994)

2 Pig prolyl ohgopeptidase (Rennex et a l , 1991)

3 Flavobacterium, meningosepticum prolyl oligopeptidase (Chevallier et al., 1992)

4 Eschericha coli protease II (Kanatam et a l , 1991)

5 Pig acylammoacyl-peptidase (Mitta et a l , 1989)

6 Rat acylammoacyl-peptidase (Kobayashi et a l , 1989).

7 Rat dipeptidyl peptidase IV (Ogata et a l , 1989)

8 Human dipeptidyl peptidase IV (Abbot et a l , 1994).

9. Yeast dipeptidyl aminopeptidase B (Roberts et a l , 1989)

11



♦Subfamily Peptidase Reference

Subfamily A. Oligopeptidase B/Prrtcase II 

Prolyl Oligopeptidase

Kanatani et al., 1997 

Shirasawa et al., 1994

Subfamily B. Dipeptidyl aminopeptidase A 

Dipeptidyl aminopeptidase B 

Dipeptidyl peptidase IV 

Dipeptidyl peptidase V 

Fibroblast activation protein subunit 

Seprase

Anna-Arriola and Herskowitz, 1994

Roberts et al., 1989

Abbot et al., 1994

Beauvais et al., 1997

Goldstein et al., 1997

Goldstein et al., 1997

Subfamily C Acyl-aminoacyl peptidase Kobayashi et al., 1989

Table 1.3.1. The S9 or Prolyl Oligopeptidase Family o f  Serine Proteases

*This family of peptidases contains deeply divergent groups and is therefore divided in subfamilies

(Rawlings and Barrett, 1993).

13.3.3. Prolyl Oligopeptidase Catalytic Mechanism Studies

Investigations into the mechansitic features of PO catabolism have revealed further distinctions from 

the extensively characterised serine protease, trypsin/chymotrypsin and subtilisin, families. Until the 

the confirmation of PO’s status as a serine petpidase, it was assumed that serine proteases shared the 

same simple pH rate profile controlled by a single ionizing group (histidine) of pKa 7 (Polgar, 1989; 

Blow, 1969). Briefly a classical serine protease (chymotrypsin) catalytic reaction has been predicted to 

proceed as follows: Acylation: The nucleophilic hydroxyl group of the catalytic serine attacks the 

substrate carbonyl group and this reaction is stabilised by general base catalysis, a contribution by the 

catalytic histidine side chain, which removes the proton from the attacking oxygen. Deacylation:The 

resulting tetrahedral intermediate (covalent enzyme-substrate interaction) then decomposes by general 

acid catalysis afforded by the protonated histidine. This results in the return of free enzyme (see figure

1.3.2). It is the catalytically competent histidine residue that facilitates both the formation and 

decomposition of the intermediate acyl-enzyme and it is the ionization of this residue that determines 

the pH dependence of catalysis (Blow, 1969). These general base/acid reactions are said to be rate 

limiting in the case of the chymotrypsin/ subtilisin families and ionic strength has little or no effect 

on these proteases. In contrast PO displays a double sigmoidal pH/rate profile indicative of two
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enzyme forms existing between pH 5 and 9, and its catalysis is sensitive to ionic strength (Polgar, 

1992a, Polgar 1992b)

One of the methods routinely used in the studies on the mechanism of senne protease reactions is 

the investigation of kinetic deuterium isotqpic effects It was discovered that the acylation /deacylation 

steps for a chymotrypsin catalysed reaction, proceeded slower in deuterium oxide by a factor of 

around 2-3, indicating that base/ acid catalysis i e a chemical step, is rate limiting for the overall 

reaction (Polgar, 1992b) Similar experiments involving PO showed that while the low pH form 

displayed a significant deuterium isotope effect, the high, physiologically competent pH form showed 

none. This would indicate an isotopically silent step at physiological pH (Polgar, 1991) This 

precluded the possibility of a rate limiting conformational change m PO catalysis Further evidence 

involved an investigation of the effects of substrates with different chemical leaving groups on PO 

reaction rates A substrate with a better leaving group is known to react with a peptidase at a higher 

rate provided-the rate limiting step is chemical This was proved to be the case for chymotrypsin with 

nitrophenyl ester substrates displaying a much higher reactivity relative to amide substrate 

derivatives In the case of PO there appeared to be no significant difference between rate constants 

using various derivatives of the substrate, Z-Glv-Pro-Leavmg Groun. on PO catalysis which would 

indicate a rate-limiting physical rather than chemical step (Polgar 1992b) Thus some 

conformational change m PO can be associated with the catalytic process

Investigations on another member of the prolyl ohgopeptidase family of serine peptidases, 

oligopeptidase B (formerly known as protease II), isolated from E Coll, (Pacaud and Richaud, 1975), 

have found that this protease has mechanistic features similar to PO While this peptidase is trypsin- 

like m its hydrolysis of oligopetides at the carboxy-side of paired basic residues, no kinetic deuterium 

isotopic effect was observed for this peptidase indicative of a rate-limiting conformational change 

(Polgar, 1997)
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Figure 13.2. Chemical Mechanism fo r  Chymotrypsin-mediated Cleavage:

Asp residue pulls a proton from the neighbouring His, which in turn pulls a proton from the nearby 

Ser, forming an anion This form of Set is more nucleophihc enabling it to attack the carbonyl of the 

appropriate amide bond. Mechanisms m which protons are transferred during catalysis are examples 

of acid/base catalysis Following the attack by senne and formation of the transition state, a portion of 

the peptide containing the new amino terminus is released. A second portion of the peptide remains 

bound to senne via an ester linkage, which is hydrolysed to form the second half of the new peptide 

with a new carboxy-terminus Protons are then transferred to regenerate chymotrypsin in its original 

form, completing the cycle (Menger and Brock, 1968)

1.4. Prolyl Oligopeptidase Specificity

1.4.1. Specificity for Proline Residues

Prolyl oligopeptidase’s ability to hydrolyse peptides is dictated not only by the presence of a particular 

residue (proline) but also the position of that residue and the size of the peptide. While PO was 

originally identified as an oxytocin degrading enzyme (Walter et a l , 1971), it was soon discovered 

that rather than having a unique specificity for oxytocin, this peptidase had a specificity for Pro-Xaa
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bonds An exception to this was found to be an inability to act on the Pro-Pro bond (Walter, 1976, 

Koida and Walter, 1976) The rate of cleavage of the Pro-Xaa bond was found to be fastest when Xaa 

was a hydrophobic residue However the catalytic rate decreased progressively when Xaa was 

replaced with basic and acidic residues (Koida and Walter, 1976) An example of this selectivity for 

PI’ residues (see figure 14.1.), was observed in the hydrolysis of bradykinin potentiating peptide. PO 

hydrolyses BPP, in vitro, at the Pro-Phe, Pro-Gly and Pro-Glu bonds However hydrolysis of the Pro- 

Phe bond occurs more rapidly than the Pro-Gly, while the Pro-Glu bond is very slowly hydrolysed . 

This action on BPP highlights PO’s preference for hydrophobic residues BPP also possesses a Pro- 

Pro bond which was not hydrolysed (Koida and Walter, 1976) PO was found to be unable to cleave a 

Pro-Xaa bond when the prolme residue was at the ammo terminus of a peptide, but could hydrolyse 

the bonds when Xaa was the carboxyl terminal residue The introduction of a blocking group at the 

amino terminus to give Z-Pro-Xaa sequence did not result m hydrolysis Replacement of PI or P2 

residues with D-amino acids was found to result in substrates that were resistant to hydrolysis but 

replacement of the P3 residue had minor effects In contrast D-amino acid substitution in the PI* and 

P2’ positions decreased catalytic activity, but replacement of the P3’ residue elicited no change From 

these observations it has been suggested that PO has an extended binding site region of three subsites 

• on the ammo side of the scissile bond and two on the carboxyl side (see figure 1 4 1 ) ,  (Walter and 

Yoshimoto, 1978) PO also has an ability to act on alanyl bonds (Ala-Xaa) but at a rate 1/100-1/1000 

that of Pro-Xaa bonds, In contrast to this peptidases inability to hydrolyse oligoprolme, it was found 

to act on oligoalanine residues (Walter and Yoshimoto, 1978) Replacement of the PI residue with N- 

methylalamne and sarcosine resulted m relatively good substrates It can be concluded from these 

studies that the SI subsite of PO was designed specifically to fit proline and only accommodated 

residues that did not exceed prolines pyrrolidine ring (Nomura et a l , 1986) With respect to the PI’ 

residue it was found that the phosphorylation of a serine residue in this position increased the rate of 

hydrolysis (Rosen et a l, 1991), and the replacement of an Asp residue with Asu (a result of 

spontaneous rearrangement of Asp and Asn residues) also resulted m a ten-fold increase m 

hydrolysis This could suggest a possible role for PO in the disposal of non-functional proteins from a 

cell (Momand and Clarke, 1987)
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SUBSTRATE

ENZYME

Figure 1.4.1. Substrate and Complementary Prolyl Oligopeptidase Subsite

Prolyl oligopeptidase has 3 subsites for the amino acid residues at the amino side of the scissile bond 

(Pi, P2, and P3) and two at the carboxyl side (Pi’ and P2’) The complementary enzyme subsites are 

also illustrated (S4-S2’) Diagram is an illustration of the standard nomenclature used to refer to 

substrates and their complementary enzyme subsites (Schecter and Berger, 1967)

1.4.2. Substrate- Size Limitation

As well as its selectivity for proline residues PO also displays a certain selectivity m the size of the 

peptides it will act on Preliminary studies have shown that while this peptidase was capable of 

cleaving a wide variety of proline containing peptides, it had a tendancy to cleave low molecular 

weight peptides much faster than larger molecules, the smallest peptide hydrolysed being a 

tetrapeptide PO was unable to act on larger proteins such as albumin, collagen, myoglobin, insulin or 

glucagon and m general could not act on proteins/peptides greater than 25 ammo acid residues long 

(Monyama et a l , 1988, Walter et a l , 1980, Koida and Walter, 1976) PO was first termed an endo- 

oligopeptidase based on its inability to hydrolyse Gly-Gly-Arg-bradykimn bound to succmylated 

polylysme or Affigel 10 (Camargo et a l , 1979) An oligopeptidase or endo-actmg oligopeptide 

hydrolase is a peptidase limited to the hydrolysis of peptide bonds m smaller polypeptides and is 

unable to act on proteins It was only reccently that the oligopeptidases received a separate 

classification distinguising them from endopeptidases (Recommendations of the Nomenclature 

Committee of the International Union of Biochemistry and Molecular Biology, 1992) Some of the 

known oligopeptidases known to date are listed in table 1 4 1  The mechanism of the substrate-size 

limitation of oligopeptidases is not well understood but must in some way be intrinsically linked to
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the molecular structure of these peptidases and the high degree of conformational freedom of 

oligopeptides Possibly the binding sites of these peptidases could be analogous to receptor binding 

sites. Barrett likened the action of oligopeptidases on their peptide substrates to a receptor interacting 

with a specific biologically active ligand, for instance the receptor mediated biological activity 

mediated by bradykinm is not shown by kininogen (Barrett and Rawlings, 1992)

Peptidase ♦Peptidase Type Reference

Prolyl Ohgopeptidase Senne Monyama et a l , 1988 

Oliveira et a l , 1976

Thimet Ohgopeptidase Thimet Barrett and Brown 1990

Nepnlysm Thimet Damelsen et al , 1980

Pitnlysin Metallo Anastasi et a l , 1993

Neurolysm Thimet Senzawa et a l , 1995

Ohgopeptidase M Metallo Krause et a l , 1997

Streptococcal PepB ohgopeptidase Thimet Lm et a l , 1996

Lactococcus lactus PepF ohgopeptidase Metallo Monnet et a l , 1994

Lactococcus cremoris endopeptidase I Metallo Yan et a l , 1987

Lactococcus cremons endopeptidase n Metallo Yan et a l , 1987

E coli Protease II (Ohgopeptidase B) Senne Paucaud et a l , 1975

Table 1.4.1. Oligopeptidases

*With the exception of prolyl ohgopeptidase and E coli protease n , the known oligopeptidases are 

metallo/thiol proteases

1.4.3. Prolyl Oligopeptidase Hydrolysis of Neuro/Vasoactive peptides

In vitro PO has been found to hydrolyse a wide variety of prohne containing neuroactive peptides 

including TRH, LHRH bradykinm and neurotensin Table 1.4 2 illustrates a range of neuro- and 

vasoactive peptides hydrolysed in vitro by PO and their sites of hydrolysis
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Peptide Sequence Reference

Angiotensin I Asp-Arg-Val-Tyr-Ile-His-Pro-Phe-His-Leu Moriyama et al., 1988

Angiotensin II Asp-Arg-Val-Tyr-Ile-His-Pro-Phe Tate, 1981

BPP pGlu-Gly-Gly-Tip-Pro-Arg-Pro-Gly-Pro-Glu-Ile-Pro-Pro Koida and Walter., 1976

Bradykinin Arg-Pro-Pro-GIy-Phe-Ser-Pro-Phe-Arg Tate, 1981

LHRH pGIu-His-Trp-Ser-Tyr-Gly-Phe-Ser-Pro-Phe-Arg Mendez et al., 1990

TRH pGlu-His-Pro-NH2 Tate, 1981

Neurotensin pGlu-Leu-Tyr-GIu-Asn-Cys-Pro-Leu-Gly-NH2 Tate, 1981

Oxytocin Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2 Walter, 1976

Substance P Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met Moriyama et al., 1988

AVP Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-Gly Walter, 1976

Melanotropin Ser-Tyr-Ser-Met-Glu-Asn-Lys-Pro-Leu-Gly-NH2 Tate, 1981

Tuftsin Thr-Lys-Pro-Arg Tate, 1981

Table 1.4.2. Physiological Neuro-/Vasoactive peptides Hydrolysed by Prolyl Oligopeptidase in vitro. 

Scissile bonds are indicated in bold.

It is still unclear however, what precise role this peptidase plays in the turnover of these peptides in 

vivo but the recent development of potent and specific PO inhibitors has contributed to numerous 

studies attempting to elucidate the role of PO in neuropeptide turnover.

In the case of TRH degradation in vivo several studies have shown that PO had in fact no influence on 

physiological TRH levels. Several studies using Z-Pro-prolinal have shown that in vitro and in vivo 

treatment with this inhibitor did not alter TRH levels. There have been similar observations made in 

the case of LHRH (Salers et al., 1992; Mendez et al., 1990; Friedman and Wilk, 1989). Ontogenic 

studies revealed a poor correlation between TRH, TRH-OH and PO activity (Salers et al., 1992). In 

conflict with the conclusion, drawn from these results, that PO had no involvement in the degradation 

of TRH in vivo, was the report that the potent PO inhibitor, Y29794, potentiatied the effect of TRH 

on release of acetylcholine in rat hippocampus (Nakajima et al., 1992). PO has also been implicated 

in the biotransformation of angiotensin I and II to form angiotensin 1-7, a peptide that mimicks the 

vasopressin-releasing and cardiovascular effects of angiotensin II (Schiavone et al., 1988). The 

production of angiotensin 1-7 in canine brain homogenates was found to be inhibited by Z-Pro- 

prolinal (Welches et al., 1991). The portal plasma of sheep was discovered to contain a significantly 

higher level of angiotensin 1-7, than in jugular plasma. It has been speculated that a high level of PO, 

found in the median eminence, could contribute to the metabolism of angiotensin I delivered by
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arterial blood (Lawrence et a l , 1992) Administration of the PO specific inhibitor, JTP-4819 to aged 

rats was found to increase substance P immunoreactivity However there was found to be no 

significant change in AVP immunoreactivity, suggesting that it had no involvement in the hydrolysis 

of this peptide (Toide et a l , 1995)

1.4.4. Prolvl OIigopeptida.se Specific Assays

Since POs initial discovery in human uterine extracts, radiometric, spectrophotometnc and 

spectrofiuorimetnc assays have been developed and used in this peptidase’s detection Following its 

discovery, known substrates of PO oxytocin and arginine-vasopressin were used in native or 

radiolabelled forms to detect PO activity (Walter et a l , 1971, Walter, 1976) Today the vast majority 

of PO assays are based on the synthetic substrate N-blocked-Gly-Pro linked to a colounmetric or 

fluorimetric label In 1979 Yoshimoto et a l , reported on the synthesis and use of Z-Gly-Pro-MCA (7- 

ammo-4-methylcoumarin) a fluorescent substrate which had a Km of 20|iM for PO purified from 

lamb kidney, while Orlowski et a l , synthesised Z-Gly-Pro-SM (sulphamethoxazole) a colounmetric 

substrate. This basic structure (N-blocked-Gly-Pro-colounmetnc/fluonmetnc label) has changed little 

over tune even though the solvents needed to solubilise these substrates were known to adversely 

effect POs activity (Knisatschek et a l , 1980) In an investigation, that examined a range of 

fluonmetnc substrates, it was reported that glycine was in fact a poor choice of amino acid for the P2 

position as PO could accommodate bulky residues and had a preference for positively charged groups 

(Noula et a l , 1997) This confirms the suggestion that there,are one or more negative charges at or 

near the active site which are responsible for electrostatic attraction or repulsion between PO and 

charged substrates (Polgar, 1992a) Other high affinity substrates developed by Noula et al., include 

Z-Lys-Pro-NH-Meq, Z-Lys(Boc)-Pro-NH-Meq and Z-Glu-Pro-NH-Meq with Km values of 2.1, 2 9 

and 5 OftM respectively for the porcine kidney enzyme Another potential reason why further 

substrate development studies are required, was the discovery of a second distinctive Z-Gly-Pro-MCA 

hydrolysing activity in bovine serum (Cunningham and O’Connor, 1997b) As this peptidase is 

insensitive to Z-Pro-prolinal (hence its name Z-Pro-prolinal insensitive peptidase or ZIP), this 

specific PO inhibitor can be incorporated into the assay as a method of distinguishing these two 

activities It is however imperative that further substrate specificity studies on this new peptidase be 

completed in order to develop specific, high affinity substrates for both peptidases
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1.5. Specific Inhibitors of Prolyl Oligopeptidase

It is still not clear, what physiological role, if any is played by PO in the metabolism of 

neuropeptides. In order to investigate the potential function of PO , the availability of powerful and 

selective inhibitors for this peptidase, for use in vitro and in vivo is a prerequisite. There has boca a 

particular emphasis on the development of inhibitors that effectively inhibit the enzyme in vivo, and 

can readily traverse the blood brain barrier where they produce long lasting inhibition of brain PO. 

Inhibitors of PO to date are described in section 1.5.1. to 1.5.3. (Table 1.5.1. lists some of these 

inhibitors and their Ki and/or IC50 values. Figures 1.5.1. and 1.5.2. illustrates some of the structures 

of these inhibitors).

1.5.1. Synthetic Inhibitors

Peptide aldehydes are known to be potent inhibitors of some proteolytic enzymes. For example N- 

blocked argininals strongly inhibit cysteine proteases and trypsin. N-blocked lysinal derivatives have 

been shown to be specific for lysyl endopeptidases and leupeptin, a transition state aldehyde, has also 

been shown to inhibit trypsin (Vinitsky et al., 1992). In 1983 Wilk and Orlowski reported on the 

synthesis of N-benzvIoxvcarbonvl-L-prolvl-L-prolinal (Z-Pro-ProlinaD. (1). This N-blocked peptidyl 

aldehyde was reported to be a non-competitive, transition state inhibitor with a reported Ki of 14nM 

for the rabbit brain enzyme. This inhibitor was found to be quite potent in-vivo and its lipophilic 

nature allowed it to readily traverse the blood brain barrier to the brain where it seems to be very 

slowly eliminated. Both the alcohol(2) and acid derivatives of Z-Pro-prolinal were found to be 3000 

times less inhibitory than the aldehyde (Friedman et al., 1984, Wilk and Orlowski, 1983). In 1990 it 

was proposed that Z-Pro-prolinal was in fact a competitive slow binding inhibitor of mouse and 

human brain PO with Ki values of 0.35nm and 0.5nm respectively. PO a serine protease should be 

capable of a nucleophilic attack on the aldehyde carbonyl group resulting in a hemiacetal adducL The 

absence of any apparent slow tight binding in the case of Z-Pro-nrolinol (2) highlights the importance 

of the aldehyde group in this slow-tight binding inhibition (Bakker et al., 1990). Since the initial 

synthesis of Z-Pro-prolinal, a large number of potentially potent ZPP analogs have been investigated 

as possible PO inhibitors. In 1984 Yokosawa et al substituted the P2 prolyl residue with a range of 

amino acids. Of these Z-Val-prolinal was found to be the most potent with a reported Ki of 2.4nM for 

PO derived from sperm of the ascidian, H. roretzi. It has also been reported that replacement of the L- 

proly residue with a thioprolyl residue and the conversion of the prolinal group to thioprolinal, 

increased inhibitory potency with a reported IC50 and Ki of 0.035nm and O.Olnm respectively using 

bovine brain PO (Z-Thiopro-thioprolinal (3)). When the thioprolinal was replaced with a thiazolidine 

group this inhibitor remained very potent with slightly lower IC50 and Ki values of 0.14nM and 

0.36nM respectively (Z-Thiop^o-Thiazolidine(4,)). (Tsuru et al., 1988). This is interesting as this 

compound lacks an aldehyde group but is yet comparable to Z-Pro-prolinal in its inhibitory activity.
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In studies using Z-pro-proknal and derivatives it was found that a main chain length of the inhibitor 

corresponding to 3 subsites, SI, S2 and S3 is nost suitable for inhibitory activity. This is a good 

reflection of the fact that PO is very active towards low molecular weight peptides but inert towards 

high molecular mass peptides For a potent inhibitor specific for PO, a restricted chain length in the 

main chain interacting with the SI, S2, S3 subsites of the enzyme was critical, with a hydrophobic 

pocket in the S3 subsite of the enzyme which seemed to interact hydrophobically with a certain N- 

blocked group of the inhibitor, such as the benzyloxycarbonyl group How the introduction of sulphur 

atom affects the enzyme-inhibitor interaction is unknown', but somehow it either induces stenc fitness 

in the enzyme-inhibitor interaction or it introduces an electron attracting or donating force which 

results in a firm interaction between the enzyme and the inhibitor (Tsuru et al., 1988)

Prodrugs based on Z-Pro-prolmal and its derivatives have also been synthesised Because the 

aldehyde group of this inhibitor is very reactive, it was disguised with an acetal group which could be 

converted in the stomach to the aldehyde moiety Interestingly these acetals were also potent in their 

inhibition of PO in vitro with a reported IC50 for Z-Pro-prolmal dimethyl acetate of 0 13|iM 

(Goossens et a l , 1997) Many other potent PO inhibitors many of which are variations of the N- 

blocked dipeptide chain have been developed. The most potent of these include SUAM 1221 (5). a 

phenyl butanoyl prolyl-pyrrolidine derivative with a reported IC50 of 190nM and a derivative of this, 

(replacement of proline to thioproline) which had an IC50 67nM (6), (Saito et al 1991). The 

conversion of the pyrrolidine group of Z-Pro-pyrrolidine, to a fluoropyrrolidine to give Z-Pro- 

fluoropvrrolidme. resulted in a compound with a Ki of 0 8nM (Goossens et a l , 1997) 

Fmoc-aminoacvlnvrrolidine-2-nitriles have also been found to possess potent inhibitory activity 

against PO. Both Fmoc-Ala-Pro-PvrrCN and Fmoc-Pro-PvrrCN had Ki values of 5nM for PO and 

were found to be very stable, cell permeable and crossed the blood brain barrier (Li et a l , 1996) 

Natural substrates of PO, oxytocin and vasopressin, are already inhibitors of this peptidase These 

peptide hormones have intramolecular disulphide bridges between cysteine residues and it has been 

suggested that a thiol-disulphide exchange between the substrate and a thiol group in or near the 

active site PO could be a mechanism for inhibition Inhibitors mimicking these natural substrates, 

which incorporated an NH-O-acyl moiety (N-peptidyl-O-acyl hydroxylamines are known inhibitors of 

thiol enzymes (Bromme et a l , 1989)) have been prepared, the most potent of them being Boc- 

Glu(NHO-Bz)Pvr (9). (Demuth et a l , 1993)

A wide variety of dipentidvl-a keto heterocvcles (10). both one-rmg and two-ring types, have also 

proved themselves to be potent PO inhibitors It was suggested that the potency of these compounds 

was dependent on the presence of an sp2 nitrogen atom which is able to form a hydrogen bond at a p- 

position from the ketone moiety (Tsutsumi et a l , 1994)

A reversible and competitive non-peptide PO inhibitor Y-29794. was reported by Nakajima et a l , m 

1992 This inhibitor was found to be potent (Ki=0 95nM) highly specific and easily penetrated the 

blood-brain barrier
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Pentidvldiazomethanes and neotidvlchloromethanes have also been repeated to have inhibitory 

activity against PO. These agents have contributed tremendously use in the study of the active site of 

PO, confirming its status as a serine protese POs position as a serine protease was clarified by its 

inhibition with DFP and Z-Gly-Pro-CH2Cl (Yoshimoto et a l, 1977) Active site directed 

chloromethanes are thought to alkylate active site histidines of serine proteses and also cysteine 

residues m various enzymes The competitive PO inhibitor Ac-Ala-Ala-Ala-CILCl was found, out of 

23 histidine residues, to selectively alkylate His-680, providing evidence that this residue is mdeed 

the catalytic histidine. This agent also alkylated some PO cysteine residues 

(Stone et al., 1991) Modification of at least one of these cysteine residues may be at least partly 

responsible for inactivation of the enzyme. In this respect PO could be similar to certain members of 

the subtilism serine protease family that are inactivated by modification of a non-essential cysteine 

residue within the active site

Peptidyl diazomethanes have been useful in confirming POs status as a senne protease It was 

initially thought that peptidyl diazomethanes were reagents that specifically inhibited cysteine 

proteases by alkylation of the active site cysteine residues (Shaw, 1990). Some senne protesases 

however are now known (members of the subtilism family) to be inhibited by these diazomethane 

derivatives through the formation of a covalent bond with the active site histidine (Ermer et a l , 

1990) Peptidyl diazomethanes such as Ac-Ala-Ala-Pro-CHN7 have been found to be reversible slow 

tight binders of PO with the formation of a covalent complex between the active site senne and the 

diazomethane (Stone et a l , 1992)

1.5.2. Inhibitors of Bacterial Origin.

A number of compounds which are bacterial in origin ware found to possess quite potent PO 

inhibitory activity (see table 1.5 1) These include bacitracin. staurosnonnedl). (Kimura et a l , 

1990), nostatin (13). (Tsuda et a l , 1996), eurvstatms A and B (12). (Toda et al., 1992), propeptm 

(Kimura et a l , 1997a), purpurogallin (Inamon et a l , 1997), lipohexm (Heinze et al 1997) and SNA- 

80736 (Kimura et a l , 1997b), a stereoisomer of the antibiotic fugianmycin B A variety of denvatives 

of postatin have been chemically synthesised in an attempt to obtain a greater inhibitory potency and 

selectivity Two postatin analogs containing its charactenstic (S)-3-amino-2-oxovaleryl moiety were 

found to have IC50s of 5 8ng/mL and 8 2ng/mL (in contrast to postatin’s 0 030|xg/mL) and unlike 

postatin had no inhibitory effect on cathepsin B activity(Tsuda et a l , 1996)

1.5.3. Endogenous Inhibitors

Since POs initial discovery, a number of naturally occurring inhibitors have been purified from a 

variety of mammalian tissues including porcine pancreas (Yoshimoto et a l , 1982), neonatal rat
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pancreatic islet cell extracts (Salers, 1994), rat brain (Soeda et a l , 1985) and bovine brain (Ohmori et 

a l , 1994) Distribution studies performed using porcine and rat tissues found this inhibitor to be 

uniformly distributed with highest levels in the pancreas (Yoshimoto et a l, 1982) The molecular 

weight of inhibitors purified from various tissues ranged from 6 5 to 7.0 kDa. Ammo acid analysis on 

the purified inhibitor from bovine brain revealed it to be identical to segment 38-55 of glial fibrillary 

acidic protein and had a Ki of 8 6fiM (Ohmori et a l , 1994, Maruyama et a l , 1996) It is known that 

some protease inhibitors released from glial cells (nexms) are involved m neunte growth regulation 

This coupled with the observation that staurosporine another PO inhibitor was found to stimulate 

neunte growth in a rat cell line suggests a possible role for PO in cell growth (Kimura et a l , 1990) 

This will be dicussed further in section 17  1

Other endogenous inhibitors of PO from rat liver cytosol include coenzyme A, its acyl denvatives 

and acyl carnitine (Yamakawa et a l , 1990)
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Inhibitor Ki IC50 Reference

Z-Pro-prohnol (2) 105nM

Z-Pro-prolinal dimethylacetate 0 13|0.M 

Z-Thiopro-thioprolmal (3) 0 Olnm 0 35nm

Z-Thiopro-thiazolidine (4) 0 36nm 0 14nm

SUAM 1221 (5) 190nm

Fmoc-Ala-PyrrCN 5nM

Fmoc-Pro-PyrrCN 5nM

O NO 1603 57nm

Y-29794 0 95nM

Boc-Glu(NHO-Bz-Pyr) (9) 0 03|jM

Z-Phe-Pro-methylketone 1 8nM

Z-Cyclohexyl-prolmal (7) 3  OnM

Z-Indolinyl-prolinal (8) 2 4nM

JTP-4819 0  83nm

a-Ketobenzothiazole (10) 5 OnM

Postatin (13) 0 030|ig/mL

Staurosponne (11) 0 70^M 77|iM

Eurystatm A (12) 0 004p.g/mL

Eurystatm B (12) 0 002p.g/mL

Propeptin 0  70(iM

Purpurogalhn ! 6x10'5M

SNA-8073-B 8|iM 8 9|J.M

Z-Pro-prolinal (1) 0 5nm/14nm* *Wilk & Orlowski 1983 

Bakker et a l , 1990 

Tsuru et a l , 1988 

Goossens et a l , 1997 

Tsuru et a l , 1988 

Tsuru et a l , 1988 

Saito et a l , 1991 

Lin et a l , 1996 

Lin et a l , 1996 

Toda et a l , 1989 

Yoshunoto et a l , 1992 

Demuth et a l , 1993 

Stemmetzer et a l , 1993 

Bakkeret a l , 1991 

Bakker et a l , 1991 

Toide et a l , 1995 

Tsutsumi et a l , 1994 

Nagai et a l , 1990 

Kimuraei a l , 1990 

Kamei et a l , 1992 

Kamei et a l , 1992 

Kimura et a l , 1997a 

Inamon et a l , 1997 

Kimura et a l , 1997b

Table 1.5.1. PO Specific Inhibitors 

Numbers m brackets refer to figures ! 5 1 and 15 2
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Z-Pro-Prolinal (1). Z-Pro-Prolinol (2).

Z-Thiopro-Thioprolmal (3). Z-Thiopro-Thiazolidine (4).oCH2CH2CH2CO — N

CO— N

SUAM 1221 (5).

H2CH2CH2CO— N

CO-N

SUAM 1221 (thiapro derivative), (6).

Z-IndoIinyI-ProIinaI(8).

BOC-GIu(NHO-Bz-Pyr),(9). a-Ketobenzothiazole (10).

Figure 1.5.1. Prolyl Oligopephdase Specific Synthetic Inhibitors
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Hi n ' ^CO—  N H ^ ^ CO— N H ^  CO—  N H ^ \) 0 — CO- N H ^ C O —  NH/ \x )O H

Postatili (13).

Figure 1.5.2. Prolyl Oligopeptidase Inhibitors o f  Bacterial Origin.

26



1.6. Distribution
Since its discovery in human uterine homogenates (Walter et a l , 1971), prolyl oligopeptidase has 

been identified in a wide variety of organisms; mammalian, plant and microbial Distribution studies 

performed in human (Kato et a l , 1980), rat (Yoshimoto et a l , 1979), rabbit (Orlowski et a l , 1979) 

and mouse tissue sources (Dauch et a l , 1993) have revealed a ubiquitous tissue distribution with 

uniformly high levels in the brain Significant differences in peripheral tissues levels reflect a 

substantive species to species variation (see table 1 6 1 )  With respect to peripheral organs, highest 

levels of PO m humans were observed m skeletal muscle, testis and kidney, with low levels m aorta, 

heart tissue and serum (Kato et a l , 1980) In contrast, rabbit levels were lowest in skeletal muscle 

and highest in the intestine, lung and spleen (Orlowski et a l , 1979) In rat highest PO activity was 

found in kidney and liver while the pancreas and small intestine had little or no activity (Yoshimoto 

et a l , 1979)

Consistently high levels were detected in the brain of all species examined, with some variation in 

regionalization of activity (see table 1 6  2 )  Cortical levels in all species examined were high In 

human bram the frontal cortex had highest levels with the thalamus showing lowest levels It is 

important to note that the thalamus levels were less than 10-fold lower than cortical levels, not as 

great a difference in comparison to the trend m levels in peripheral tissues (Kato et a l , 1980) In 

rabbit bram highest levels were found in the endorhinal cortex, hippocampus and striatum, with the 

frontal and parietal cortex also having relatively high levels Lowest levels were observed m rabbit 

medulla and pons (Orlowski et a l , 1979) In bovme brain high PO levels were detected m the caudate 

nucleus and thalamus with low levels m the anterior pituitary ( Tate, 1981)

Such uniform tissue distribution of a peptidase activity is highly supportive of a role in peptide 

metabolism in a particular organism This coupled with PO’s unique specificity for internal proline 

bonds makes it an ideal candidate for further study

The majority of subcellular localization sudies performed to date on PO have found it to be primarily 

cytosolic in nature in a variety of sources including rabbit, rat and bovme bram, hamster 

hypothalamus and murine macrophages, PO having been either co-localized with LDH and ChAT, 

two cytoplasmic marker enzymes or having stayed in soluble fraction under conditions that would 

sediment membrane fraction, lysosomes and other subcellular granules (Torres et a l , 1986, Greene 

and Shaw, 1983, Dresdner et a l , 1982, Tate, 1981) In a Sarcophagia peregrina embryonic cell line 

PO was found to be entirely localised in the nucleus using lmmunofluorescent staining (Ohtsuki et 

a l , 1997) In a follow up study on mouse Swiss 3T3 cells activity was detected m the cytoplasm and 

nuclei (Ishmo et a l , 1998) There have been reports however of a particulate form of this peptidase 

(Camargo et a l , 1984, Dalmaz et a l , 1986) and m 1996, O’Leary et a l , reported on the purification 

of a particulate prolyl endopeptidase type peptidase from the synaptosomal membranes of bovine 

bram As well as its membrane location this PO type activity displayed some unique characteristics, 

such as an insensitivity to serine protease inhibitors and sensitivity to the metal chelator 1,10-
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phenanthrohne. Because of POs cytosolic location its role in neuropeptide metabolism and 

physiological significance is obscured It is generally assumed that the action of neuropeptides is 

catalysed by membrane bound ectoenzymes and very little is known about the internalisation of these 

peptides for degradation. The brain cytosol is a rich source of peptide degrading enzymes Resident 

exo- and oligopeptidases are thought likely to participate in the terminal stages of intracellular 

protein degradation However their physiological significance and their role in neuropeptide 

metabolism is unknown There is the possibility that cytosolic peptidases may control the intracellular 

generation of biologically active peptides They may function to degrade peptides delivered to the cell 

by receptor mediated endocytosis or possibly degrade peptides which have been released 

mtracellularly from damaged vesicles Alternatively they may control levels of peptides targeted for 

the nucleus for signalling Whatever the role of this cytosolic prolyl oligopeptidase, its ability to act 

on a number of physiologically relevant proline-contammg neuropeptides, warrants that this 

peptidase be subject to further study.
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Tissue Human1 Rabbit2

Skeletal Muscle 1 1

Testis 0 82

Kidney 0 57 170

Submandibular Gland 0.55

Pancreas 045 2.04

Liver 0 36 2 9

Tonsil Gland 028

Thyroid 0 27

Stomach 0 26

Small Intestine 0 25 413

Urinary Bladder 0 23

Thymus 0 20

Adrenal Gland 018

Lung 0 17 3 75

Spleen 015 3 08

Diaphragm 015 24 2

Uterus 0 12 2 42

Heart 009 2 29

Serum 0 0001

Table 1.6.1. Comparison ofPO Distribution in Human and Rabbit Peripheral Organs.

Activities expressed as a factor of levels m skeletal muscle 1 Assayed with Suc-Gly-Pro-MCA, Kato 

et al., 1980,2 Assayed with Z-Gly-Pro-SM, Orlowski et a l , 1979
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Hum an B rain Region1 Activity R abbit B rain Region Activity2

Frontal cortex 1 Frontal cortex 1

Nucleus caudatus 0 4 6 Parietal cortex 0 94

Pallidum interior 0 19 Entorhmal cortex 13

Pallidum ex tenor 0 20 Occipital cortex 0 77

Thalamus antenores 0 008 Stratum 11

medialis 0 1 4 Hippocampus 116

laterales 0 20 Cerebellum 084

Pulvinar 0 26 Midbram 065

Hypothalamus 0 19 Medulla 0 51

Locus coeruleus 0 26 Pons 049

Hypothalamus 0 86

Table 1.6.2. Distribution o f  Prolyl Oligopeptidase in Human Brain 

Activities expressed as a factor of levels in frontal cortex

1 Assayed with Suc-Gly-pro-MCA, Kato et a l , 1980,2 Assayed with Z-Gly-Pro-SM, Orlowski et a l , 

1979

1.7. Physiological Relevance of Prolyl Oligopeptidase

Because of its ubiquitous distribution and ability to act on a large number of biologically relevant 

peptides (Wilk, 1983, Kato et a l , 1980), it is generally believed that prolyl oligopeptidase could 

contribute to a number of important biological functions Studies involving the physiological 

relevance of prolyl oligopeptidase m vivo usually involve an observation of abnormal levels of activity 

pertinent to some particular disease state or the induction of some physiological change after the 

administration of specific prolyl oligopeptidase inhibitors

1.7.1. Prolyl Oligopeptidase Ontogenic Studies-Evidence for a Possible Role in Cell Growth

Since the first ontogenic studies were completed on prolyl oligopeptidase evidence has accumulated 

implicating this peptidase in a possible role in cell growth and proliferation 

Various ontogenic studies performed in relation to PO in a variety of mammalian tissues have 

revealed a common pattern in its expression during mammalian development and suggest that it is a
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developmentally regulated peptidase Corresponding to the first couple of weeks of life, a period of 

cell growth and development, is a dramatic increase in PO levels This is followed by a slow decline 

to normal adult levels In rat brain, lung, kidney and liver and mouse brain. PO levels increased 

dramatically during the first two weeks of life followed by a gradual decrease to adulthood levels 

(Dauch et a l , 1993, Fuse et a l , 1990). A similar trend was noted in a separate study on rat pancreas 

when it was found that PO levels increased during the first 2-3 weeks of life before dropping to adult 

levels (Salers et a l , 1992) In prenatal investigations performed using primary cultures of rat cerebral 

cortex, PO activity was seen to augment dramatically during the first week of growth, corresponding 

to a period of rapid neuronal differentiation and development. After the second week of growth, levels 

dropped to adult levels (Szappanos et al., 1994) In an investigation of regenerating rat liver cells an 

increased PO activity was noted corresponding to the early stage of regeneration Accompanied by 

this increased activity was a decrease in an endogenous PO inhibitor Treatment of cells with Z-Gly- 

Pro-CH2 resulted in inactivation of intracellular PO which was accompanied by a suppression of the 

regeneration process (Yamakawa et a l , 1994) Using cultured embryonic cells and imagmal discs of 

Sacrphaga peregnna (flesh fly) it was found that the specific PO inhibitor ZTTA inhibited DNA 

synthesis and thus cell/disc differentiation and proliferation Furthermore PO was found to be 

exclusively located m the nucleus suggesting an endogenous nuclear substrate (Ohtsuki et a l , 1997 

and 1994) . In a follow up study using mouse Swiss 3T3 cells findings regarding ZTTA mediated 

inhibition of cell proliferation were confirmed (Ishino et al 1998)

Perhaps the most striking case of cell growth and tissue proliferation is the growth of cancer cells It 

is now widely believed that peptidases do have an important role to play in tumour development and 

progression (Gottesman, 1990), and studies have established a link between elevated PO levels and 

cancerous tumours Increased PO levels have to date been found in lung tumours, prostate, breast and 

sigmoid malignancies (Goossens et al 1996a, Sedo et a l , 1991) Further evidence connecting PO to 

cancer PO was found to be localised on chromosome 6q22 (Goosens et a l , 1996b) It is a well 

established fact that a region on chromosome 6 containing this locus is susceptible to rearrangements 

resulting in loss of tumour suppressor genes (Trent and Ziegler, 1992), which could by some 

mechanism lead to elevated PO activity

What is evident from all of the investigations on PO levels during development and cell growth, is 

the possibility that the peptidase may be intrinsically linked to cell growth, development and 

specifically DNA synthesis To further clarify PO’s role in cell growth, possible endogenous 

substrates and specifically nuclear substrates of this peptidase must be identified.

31



1.7.2. Involvement of Prolvl Oligopeptidase tn The Pathogenesis of Neurological and

Psychiatric Disorders.

Over the last three decades over forty small peptides have been identified in the mammalian central 

nervous system (Krieger, 1984; Donlon, 1995). As the distribution, neurochemical, 

electrophysiological and pharmacological effects of this group of neuromodulators have been studied 

it has become increasingly evident that these peptide containing neural circuits may be pathologically 

altered in neuropsychiatric disorders such as major depression, Alzheimer’s disease and 

schizophrenia (Nemeroff and Bissette, 1985). Perturbations in certain peptidase activities could be 

linked to abnormal levels of these bioactive peptides and in turn lead to neuroendocrine and 

neurochemical disturbances.

To date a lot of interest has been generated in prolyl oligopeptidases possible role in certain 

neurological and psychiatric disorders because of its distribution in the brain (Tate, 1981; Kato e t  a l . ,  

1980), and its broad specificity of action on proline-containing bioactive peptides i n  v i t r o  (Wilk, 

1983; Kato e t  a l . ,  1980; Koida and Walter, 1976).

1.7.2.1. Prolyl Oligopeptidase and M ajor Depression

Major depression is characterized by numerous neuroendocrine and immunological disturbances that 

theoretically could be linked to prolyl oligopeptidase activity. The following are just some of the 

neuroendocrine/ immunological hallmarks o f major depression.

•  Increased concentrations of certain neuropeptides such as TRH (Kirkegaard et al., 1979), and 

Substance P (Rimon e t  a l . ,  1984), in cerebrospinal fluid.

•  Hypothalmic-Pituitary-Adrenal axis hyperactivity leading to increased secretion of certain 

neuropeptides such as arginine vasopressin, corticotropin releasing hormone, P-endorphin and 

adrenocorticotrophic hormone (ACTH), (Maes e t  a l . ,  1993a, 1991; VonBardeleben e t  a l . ,  1985).

•  Systemic immune activation characterised by T cell activation, B cell proliferation and increased 

levels o f phagocytic cells in peripheral blood ( Maes, e t  a l . ,  1995a, 1994, 1993a).

•  An increased production of inflammatory cytokines such as interleukin-ip, inteleukin-6 and 

interferon y  which may underlie both immune activation and an acute phase response (Maes e t  

a l . ,  1993a).

•  Moderate autoimmune response (Maes e t  a l . ,  1993b, Gastpar and Muller, 1981).

A possible role for PO in the pathophysiology of major depression stems from not only its ability to 

act on neuropeptides such as TRH and substance P i n  v i t r o  but also suggestions of its possible 

involvement in the pathogenic mechanisms of inflammatory and autoimmune responses (Aoyagi e t
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a l , 1984, Shoji et al 1989) and its possible involvement m the modification of Tcell function Several 

studies have already shown that bidirectional communication exists between the immune and 

neuroendocrine systems due to shared signal molecules A number of neuropeptide receptors have 

been identified on cells of the immune system and the functions of these cell* can be effected by 

neuropeptides For instance substance P receptors have been found on lymphocytes and are believed 

to regulate the functions of these cells (Li et a l , 1998) These possible characteristics of PO in vivo 

prompted studies on a possible link between prolyl oligopeptidase and depression In 1994 decreased 

PO levels were observed in serum of major depressed patients in comparison to normal controls 

(Maes et a l , 1994) In fact PO activity was found to be inversely related to the seventy of depression 

Further studies attempting to establish a possible role for prolyl oligopeptidase m the 

pathophysiology of major depression established that treatment of major depressed patients with 

antidepressants resulted in a significant increase m PO activity Furthermore one of these 

antidepressants fluoxetine was found, in vitro, to enhance PO isolated from human platelets (Maes et 

a l , 1995b)

It is still uncertain if diminished PO activity m major depression is involved m the neuroendocrine 

and immune pathophysiology of this disorder or whether prolyl oligopeptidase levels are simply a 

marker for this condition However the possibility of POs involvement m the modulation of 

neuroactive peptides in vivo, its role in immune response generation and the significant enhancement 

of its activityj following antidepressant therapy warrants further investigations into the role of PO in 

major depression

1.7.2.2. Prolyl Oligopeptidase and Schizophrenia

Studies on neuropeptide concentrations m patients with schizophrenia have found significant 

alterations in levels of these neurally active peptides in companson to normal controls Of these 

neuropeptides, possible PO substrates in vivo, substance P, neurotensin, TRH, p-endorphin and 

arginine vasopressin were all found to be significantly altered (Nemeroff et a l , 1987) It has been 

speculated that disorders m peptide metabolizing enzymes may be present in schizophrenia (Wiegant 

et a l , 1988, Beckmann et a l , 1984) Low molecular weight hyperpeptiduria is a characteristic in 

schizophrenia and may be associated with diminished peptidase activity (Reichelt et a l , 1981) It has 

also been shown that certain antipsychotic drugs can induce the activity of some peptidases in vivo 

therefore increasing peptide metabolism (Traficante and Tumball, 1982)

An increased level PO activity was observed in serum samples from schizophrenic patients in 

companson to normal controls (Maes et a l , 1995b) While this might seem to contradict the 

observation of low molecular weight hyperpeptiduria in schizophrenia, it has been speculated that a 

selective reduction of some peptidases together with an increase in the activity of other peptidases 

such as PO may be a characteristic of this disorder In addition it was found that treatment with the
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antipsychotic drug valproate reduced PO activity (Maes e t  a l . ,  1995b). Further evidence for a possible 

role for PO in schizophrenia includes observed decreases in cerebrospinal fluid arginine vasopressin 

and neurotensin and postmortem brain TRH. However there has been conflicting reports of an 

increase in neurotensin and substance P in postmortem brain of schizophrenic patients (Nemeroff e t  

a l ,  1987).

The evidence for a possible role for PO in psychotic disorders such as schizophrenia and mania is still 

unclear. However the results suggest that PO could be used as a marker in these conditions.

1.7.2J . Prolyl Oligopeptldase and Neurodegenerative Disorders

Many studies have been completed on the possible role of PO in neurodegenerative disorders such 

Huntington’s, Parkinson’s and Alzheimer’s disease. In 1984 Pittaway e t  a l  observed a decreased PO 

activity in post-mortem brain of subjects with Huntington’s disease. At the time it was speculated 

that decreased PO activity could be reflective of neuronal cell damage particularly with the evidence 

that loss of PO activity took place where degeneration was most pronounced (basal ganglia, frontal 

cortex and subtantia nigra). In a complementary study (Hagihara and Nagatsu., 1987) a decrease in 

PO activity was observed in CSF fluid of Parkinsonian patients. Extensive work has been done in the 

past decade on the possible role o f PO in the pathogenesis o f Alzheimer’s disease. In 1990 Guiroy 

found that the highly potent and PO specific inhibitor, Z-Pro-prolinal induced neuronal degeneration 

in primary rat hippocampus neurons i n  v i v o ,  specifically causing an accumulation of phosphorylated 

neurofilaments. This observation coupled with evidence that PO has a preference for substrates with a 

phosphoserine in the PI position and thus may act on phosphorylated peptides in vivo (Rosen e t  a l . ,  

1991), implies a possible contribution by PO to the pathogenesis of neurodegenerative disorders such 

as Alzheimer’s disease. Several studies involving the measurement of PO levels in post-mortem 

brain, serum and CSF from AD subjects are in agreement with this data, all reporting a decrease in 

PO level (Mantle e t  a l . ,  1996; Yoshida e t  a l . ,  1996). The question still remains however as to whether 

PO levels are simply reflective of neuronal cell damage or whether PO can be implicated in the 

disease process through its degradation of neuropeptides i n  v i v o  or in its possible role in cell stress 

response. It seems unlikely however that PO is simply a “marker” for cell damage as it was observed 

that PO activity uniformly decreased in both grey and white matter of post-mortem brains of AD  

subjects (Mantle e t  a l . ,  1996). Results of studies completed on serum however must be treated with 

caution due to the discovery of a second Z-Gly-Pro-MCA hydrolysing, Z-Pro-prolinal insensitive 

peptidase (Cunningham and O ’Connor, 1997b).

Other studies on the link between PO and Alzheimer’s disease have attempted to establish a 

connection between PO activity and the generation of amyloid A4 protein. Amyloid A4 protein has 

been found in the deposits in senile plaques characteristic of Alzheimer’s disease. This 42 amino acid 

peptide has a tendency to self aggregate and induce neuronal apotosis (Yamaguchi e t  a l . ,  1988;
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Glenner and Wong, 1984). Amyloid A4 is derived from a larger transmembrane amyloid precursor 

protein (Haass e t  a l . ,  1992). It is thought proteolytic processing of this precursor protein at residues 

672 and 714 could lead to the formation of the pathogenic amyloid A4 protein (Checler e t  a l . ,  1995). 

Using a model synthetic substrate, Suc-Ile-Ala-MCA, which is homologous to the C-terminal portion 

of the A4 peptide, a peptidase identified as prolyl oligopeptidase was isolated from rat brain (Ishiura 

e t  a l . ,  1990). Additional evidence involved the effect o f PO specific inhibitors on amyloid A4 protein 

in cell culture. The specific and potent PO inhibitor ONO-1603 was found to have neuroprotecrtive 

effects on rat cerebellar granule cells as well as increasing levels o f muscarinic cholinergic neurons 

which are thought to induce normal secretion and processing of amyloid precursor protein (secreted 

APP is thought to have neuroprotective and neurotrophic functions). It is conceivable that induction 

of muscarinic cholinergic neurons could normalise the processing and secretion of APP and suppress 

the production of neurotoxic amyloid A4 peptides (Katsube e t  a l . ,  1996). Another inhibitor study 

using the highly specific PO inhibitor, JTP-4819, found that cleavage of the model substrate Suc-Ile- 

Ala-MCA was inhibited on treatment of N-6108-15 neuronal cell line with this inhibitor. Induced 

amyloid A4 formation in these cultures was retarded upon addition of this inhibitor to cultures 

(Shinoda e t  a l . ,  1997).

Another study that reinforces the link between PO and amyloidgenesis in the brain found that 

amyloid A4-like immunoreactivity in hippocampus of senscence accelerated mouse matched PO-like 

immunoreactivity (Funkunari e t  a l . ,  1994).

While all the evidence accumulated appears to suggest that PO plays some role in the 

neuropathogenesis of Alzheimer’s disease, specifically through its role in the processing of amyloid 

precursor protein current evidence suggests that this peptidase is an oligopeptidase incapable of 

cleaving peptides greater than 25 amino acid residues. There is also the question of PE’s cytosolic 

location. It is possible that internalised APP could be initially processed by an unknown “B-secretase” 

at the N-terminal portion of amyloid A4 protein. This fragment could then be acted upon by PE to 

give the final neurotoxic, amyloidogenic amyloid A4 peptide (Ishiura e t  a l . ,  1990).

1.7.2.3. Prolyl Oligopeptidase and Cerebral Ischemia, Memory and Learning

Ever since the development of potent and specific PO inhibitors, several studies have established a 

possible link between PO and cerebral ischemia effects, memory and learning. A number of PO 

substrates i n  v i t r o ,  including TRH, Substance P and AVP are known to exert a neuroprotective effect 

through their ability to potentiate ACh release, thus improving a cholinergic imbalance, and have 

been shown to improve the performance of animals in memory and learning tasks (Tanaka e t  a l . ,  

1996; Shibata e t  a l . ,  1992; Griffiths, 1987; DeWied, 1984; Schlesinger e t  a l . ,  1983). TRH has also 

been known to prevent excessive release of the neurotoxic glutamate, a characteristic of ischemic 

episodes (Renaud e t  a l . ,  1979).
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Several specific PO inhibitors have been found to prevent the induction of scopolamine or lesionmg 

induced ischemia, including Z-Pro-prolmal, Z-Val-prohnal, Z-Gly-Pro-CIfcQ and ZTTA (Shishido 

et al., 1996, Yoshimoto et a l , 1987b). The inhibitor JTP-4819 has been found to enhance the 

acquisition and retrieval of memory processes, and enhance ACh release in aged rats (Toide et a l , 

1995). This inhibitor also reversed an age-related decrease of cortical and hippocampal substance P 

and TRH levels, possibly through the prevention of their inactivation (Shinoda et al., 1995)

It is evident from all of the studies on PO’s possible involvement in neuropsychlatnc and 

neurodegenerative disorders, whether its role is simply as a “marker” for cell injury or whether it is 

directly involved, that further studies are needed to finally clarify its function in the brain
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2. MATERIALS AND METHODS



2.1. Materials

Sigma Chemical Company (Poole. Dorset, England):

2-Iodoacetamide

2-Mercaptoethanol

8-Hydroxyqumoline

1 ,10-Phenanthroline

Ala-MCA

Ammonim persulphate

Aprotinin

Arg-MCA

Bacitracin

Benzamidine

Bisacrylamide

Blue Dextran

Bovine Serum Albumin

Cadmium Sulphate

Calcium Sulphate

CTDA

Cellulose type 50

Chymotrypsin Inhibitor

Cobalt Sulphate

Dithiothreitol

DTNB

EDTA

EGT A

Glycme

Imidazole

Iodoacetate

Leupeptin

Magnesium Sulphate 

Manganese Sulphate 

MCA

Mercuric Sulphate 

MES

MW-GF-200 Marker Kit 

N-Acetylimidazole 

N-Decanoyl Co-A 

N-Ethylmaleimide 

Nickel Sulphate 

PCMB

pGlu-His-Pro

Phenylmethylsuphonylfluonde

Potassium Phosphate (dibasic)

PotassiumPhosphate (monobasic)

Pro-MCA

Puromycm

SDS

Silver Stam High MW Standard Kit

Silver Stam Kit

Sodium Chlonde

TEMED

TRH-OH

Tnzma Base

Trypsin Inhibitor from Soybean 

Zinc Sulphate

Bachem Feinchemikalein AG (Bubendorf. Switzerland): 

Activity-Dependent Neurotrophic Factor-14 Substance P

Bradykinin TRH

(G1u2)-TRH TRH-OH

Gly-Gly-Pro-Ala Z-Gly-Pro-MCA
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(Gly-Pro-Ala)n Polymer Z-Gly-Pro-Ala

Gly-Pro-MCA Z-Pro-Ala

Leu-Gly Z-Pro-Gly

LHRH Z-Pro-Leu-Gly

Lys-Ala-MCA Z-Pro-Pro

(PheJ)-TRH Z-Pro-prolinal-dimethylacetate

pGlu-His-Pro-MCA

BDH Chemicals Ltd. (Poole. Dorset. England):

Acetone 

Acetomtnle 

Acrylamide 

Ammonia Solution 

Bromophenol Blue 

Calcium Chloride 

Citric Acid 

Copper Sulphate 

Dimethylformamide

Dimethylsulphoxide

Dioxane

Glacial Acetic Acid 

Glycerol

Hydrochloric Acid 

Methanol

Polyethylene Glycol 6000 

Urea

Zinc Chloride

Merck Chemical Company (Frankfurt Germany):

Ammonium Sulphate Sodium Hydroxide

Sodium Hydrogen Phosphate

Pharmacia Fine Chemical Company (Uppsala. Sweden):

Activated Thiol Sepharose CL-4B Phenyl Sepharose CL-4B

Blue Sepharose Fast Flow Polybuffer Exchanger 94

Chelating Sepharose Fast Flow Polybuffer 74

DEAE-Sepharose Fast Flow Sephacryl S200

Bio-Rad Laboratories (Hercules. California. USA):

Biogel HT Hydroxylapatite

Bio-Rad Protein Assay Dye Reagent Concentrate
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Kevpak Meats (Clonee. Co. Meath. Ireland):

Bovine whole brain 

Bovine whole blood

Aldrich Chemical Company (Poole. Dorset. England):

1 .7-Phenanthroline

4 .7-Phenanthroline 

Tnfluoroacetic acid

Calbiochem-Novabiochem (UK) Ltd. (Nottingham. England):

AEBSF Angiotensin III

Angiotensin I Neurotensin

Angiotensin II Pepstatin

Pierce Chemical Company (Illinois. USA):

BCA Reagent

Mount Sinai School of Medicine (New York. Courtesy of Dr. S. Wilk):

Fmoc-Ala-Pro-Nitnle

Fmoc-Pro-Pro-Nitnle

Z-Pro-Prolmal

University College Galway (Courtesy of Dr. G. O’Cuinn):

Gly-Ala-Phe

Gly-Pro-Ala

University Renes Descartes (Paris. France. Courtesy of Prof. B. Roques):

Kelatorphan
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Institute of Microbial Chemistry fTokvo. Japan. Courtesy of Dr. M. Nagai): 
Postatin

Pfizer (Groton. CT. USA. Courtesy of Dr. S. FaracO:
Z-Indohnyl Prolinal 

Z-Cyclohexyl Prolinal

Meiii Seika Kaisha. LTD (Yokohama. Japan. Courtesy of Dr. S. TsutsumI):

oc-Ketobenzothiazole

Z-Pro-Prolmal

Hans-Knoell Institue of Natural Product Research (Halle. Germany. Courtesy of Dr. H.U. 

Demuth):
Amyloid Precursor Protein 37-44 Z-Phe-Ala-Chloromethylketone

Boc-Glu(NHO-Bz)-Pyrr

ACTH 18-35

Z-Phe-Pro-Melhylketone

Recombinant Flavobactenummenigosepticum PO

Nagasaki University (Japan. Courtesy of Prof. T. Yoshimoto):
Z-Thiopropyl Prolinal
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2.2. Fluorescence Spectrophotometry using 7-Amino-4-Methyl-Coumarin 

(MCA)

22 .1 . MCA Standard Curves

250nM stock MCA solution in 8% DMSO was prepared in lOOmM potassium phosphate pH 7.4 at 

37°C. This stock solution was stored at 4°C for up to one month. Lower MCA concentrations were 

prepared using lOOmM potassium phosphate pH 7.4 as diluent MCA standard curves were prepared 

by combining 100|iL of lOOmM potassium phosphate pH 7.4, 400(xL of appropriate MCA 

concentration and lmL of 1.5M acetic acid. Standard curves between the ranges 0-10|iM and 0- 

100nM MCA were prepared in triplicate. Fluorimetric analysis of these samples was achieved using a 

Perkin Elmer LS50 Fluorescence Spectrophotometer at excitation and emission wavelengths of 

370nm and 440nm respectively. Excitation slit widths were maintained at lOnm while emission slit 

widths were adjusted to produce fluorimetric intensities appropriate for the range being analysed.

22.2. Inner Filter Effect

The inner filter or ‘quenching’ effect of enzyme samples was determined by combining lOO îL of 

enzyme sample, 400|jL  of appropriate MCA dilution and lm L 1.5M acetic acid. These samples were 

prepared in triplicate and assayed as outlined in section 2.2.1.

2.3. Protein Determination

2.3.1. Absorbance at 280nm

The absorbance of proteins based on the Xmax of tryptophan residues at 280nm was used as a

qualitative method of determining protein levels in post-column chromatography fractions during 

purification procedures. A Shimadzu UV 160A Spectrophotometer was used to determine this 

absorbance.

23 2 .  Standard BCA Assay

The standard BCA protocol was used to quantify protein concentrations of samples between the range 

of 0-2mg/mL. Samples were dialysed for 12 hours against lOmM potassium phosphate pH 7.4 to 

remove any interfering substances. Samples with a protein concentration above 2mg/mL were diluted 

to a suitable protein concentration with lOmM potassium phosphate pH 7.4. 200(JL of BCA reagent 

was added to lOpL of sample in triplicate in 96 well microplate and incubated for 30min at 37°C. 0-
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2mg/mL BSA standard curves were prepared in triplicate The absorbance of each well was 

determined at 560nm using a Titertek Multiscan PLUS plate reader

233 . Enhanced BCA Assay
The enhanced BCA assay protocol was used to quantify protein concentrations of am ple» that could 

not be determined by the less sensitive standard BCA assay protocol. This assay was performed as 

described in section 2.3.2 using a sample/standard volume of 20|iL and an incubation temperature 

of 60°C. 0-500jxg/mL BSA standard curves were prepared m triplicate

23.4. Biorad Protein Microassav

The Biorad protein microassay was used to quantify protein concentrations that could not be 

determined by the less sensitive enhanced BCA assay protocol Samples were dialysed for 12 hours 

against lOmM potassium phosphate pH 7 4 to remove any interfering substances 200nL of Biorad 

reagent was added to 800pL of sample in triplicate and incubated for 5 minutes at room temperature 

BSA standard curves m the range 0-25fj.g/mL were also prepared in triplicate The absorbance of each 

sample was determined at 595nm using a Shimadzu UV 160A Spectrophotometer

2.4. Enzyme Assays

2.4.1. Quantitative Measurement of Prolvl Oligopeptidase Activity
Z-Gly-Pro-MCA degrading activity was determined according to a modification of the original 

procedure of Yoshimoto et a l , (1979) lOmM Z-Gly-Pro-MCA substrate stock was prepared in 100% 

DMSO lOOmM potassium phosphate with 5mM DTT and 0 5mM EDTA, pH 7 4 at 37°C was added 

slowly to 600|iL DMSO and 200nL substrate stock to a final volume of lOmL This gave a final 

substrate concentration of 200pM in 8% DMSO (v/v) 400nL of substrate solution was added to 

lOOjiL of sample in triplicate This reaction mixture was incubated for 30 minutes at 37°C Both 

samples and substrate were premcubated at 37°C to allow them to reach thermal equilibrium The 

reaction was terminated by the addition of lmL of 1 5M acetic acid. Negative controls were prepared 

by the addition of lmL of acetic acid to the sample pries' to the addition of substrate These controls 

were also incubated at 37°C for 30 minutes MCA released from the substrate was determined 

fluorimetrically as described in section 2 21  Fluorimetric intensities obtained for each sample were 

converted to picomoles MCA releaesd per mm per mL using standard curves prepared as outlined in 

section 2 21 Enzyme units were defined as pmoles of MCA released per mm at 37°C
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2.4.2. Quantitative Measurement of Z-Pro-ProHnal-Insensitive Z-Glv-Pro-MCA Hvdrolvsing 

Activity

Z-Gly-ProMCA substrate was prepared as outlined in section 2 4 1 . 400|iL of substrate solution was 

added to 80uL of sample which had been preincubated for 15 minutes at 37°C with 20uL of 5x1 Ô M 

Z-Pro-prolinal (10% v/v methanol) This reaction mixture was terminated by the addition of lmL of 

1.5M acetic acid. Negative controls were prepared as in section 2.4 1 incorporating Z-Pro-prolinal 

MCA released was determined fluonmetncally as described m section 2 2.1. Fluonmetric mtensities 

obtained for each sample were converted to picomoles MCA released per mm per mL usmg standard 

curves (incorporating Z-Pro-prolinal), prepared as outlined m section 2 2.1 Enzyme units were 

defined as picomoles MCA released per mm at 37°C

2.43. Non-Ouantitative Microplate Procedure for Measurement of Prolyl Oligopeptidase 
Activity
This assay was developed to assist m the identification of post column chromatography PO containing 

fractions Substrate was prepared as outlined m section 2 4 1  lOOpL of substrate solution was added 

to 100(iL of sample m each well and the microplate was incubated at 37°C for 30 minutes The 

reaction was terminated by the addition of 100|jL of 1 5M acetic aad and MCA liberated was 

measured usmg a Perkin Elmer LS50 Fluorescence Spectrophotometer with a plate reader 

attachment

2.4.4. Non-Ouantitative Microplate Procedure for Measurement of Z-Pro-Prolinal Insensitive 
Z-Glv-Pro-MCA Hvdrolvsing Activity

As outlined m section 2 4  3 , except 100(iL of substrate was added to 20|iL of SxlO^M Z-Pro-prolmal 

and IOOjjL of sample.

2.5. Partial Purification of Prolyl Oligopeptidase from Bovine Serum

2.5.1. Bovine serum production

Bovine whole blood was collected from a freshly slaughtered animal This was then stored at 4°C for 

24 hours to allow clot formation The remaining unclotted whole blood was decanted and centrifuged 

at 60OOrpm (4000g) for 1 hour at 4°C using a Beckman J2-MC centrifuge fitted with a pre-cooled 

JA21 rotor The supernatant/serum was removed, pooled and divided into 20mL aliquots for storage 

at -17°C.
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2.5.2. Phenvl Sepharo.se CL-4B Hydrophobic Interactions Chromatography I

A 40mL Phenyl Sepharose CL-4B hydrophobic interactions column (2.5x6cm) was equilibrated with 

200mL (5 bed volumes) of 200mM ammonium sulphate in lOOmM potassium phosphate, SmM DTT, 

0.5mM EDTA, pH 7.4. Solid ammonium sulphate was dissolved in 20mL of bovine serum lo give a 

final concentration of 200mM. This sample was applied to the column which was then washed with 

150 mL of equilibration buffer. Bound protein was eluted with a distilled water wash. 5mL fractions 

were collected throughout the procedure at a flow rate of lmL/min. The entire procedure was carried 

out at 4°C. Fractions were assayed for PO and ZIP activity using the fluorimetric assays as outlined in 

sections 2.4.3 and 2.4.4. respectively. Protein levels in each fraction were determined by measuring 

their absorbance at 280nm. Fractions containing PO activity were pooled and enzyme activity and 

protein levels were quantified using the fluorimetric assay as outlined in section 2.4.1 and the 

standard BCA assay as outlined in section 2.3.2. Samples were dialysed against lOmM potassium 

phosphate buffer pH 7.4, (section 2.3.2) prior to protein analysis.

2.5.3. Phenvl Sepharose CL-4B Hydrophobic Interactions Chromatography H

A 20mL Phenyl Sepharose CL-4B hydrophobic interactions column (2.5x3cm) was equilibrated with 

lOOmL of 1M ammonium sulphate in lOOmM potassium phosphate, 5mM DTT, 0.5mM EDTA, pH

7.4. Solid ammonium sulphate was dissolved in the post phenyl sepharose pool I ( pH was maintained 

at 7.4 using 1M NaOH), to give a final concentration of 1M. This sample was centrifuged for 30 

minutes at 15,000rpm at 4°C using a Beckman J2-MC centrifuge fitted with a pre-cooled JA20 rotor. 

The resulting supernatant was applied to the column which was then washed with lOOmL of 

equilibration buffer. Bound protein was eluted with a lOOmL linear gradient of 1-OM ammonium 

sulphate, lOO-lOmM potassium phosphate and 0-15% v/v glycerol, pH 7.4. The column was then 

washed with 60mL of lOmM potassium phosphate with 15% (v/v) glycerol, 5mM DTT, 0.5mM 

EDTA, pH 7.4. Fractions were collected, assayed and pooled as outlined in section 2.5.2.

2.6. P urifica tion  o f P ro ly l O ligopeptidase from  Bovine B ra in

All steps were performed at 4°C unless otherwise stated.

2.6.1. Bovine Brain Preparation

Bovine whole brain was obtained from a freshly slaughtered animal. This brain was divided into 50g 

slices for storage at -80°C. A 50g brain slice was defrosted and homogenised, using a Sorvall Omni 

Mixer in 200mLs of ice-cold lOOmM potassium phosphate buffer with 5mM DTT, 0.5mM EDTA, pH

7.4. The resulting homogenate was centrifuged for 45 minutes at 15,000rpm using a Beckman J2-MC
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refridgerated centrifuge fitted with a JA-20 rotor. The supernatant (SI) was retained. The remaining 

pellets were resuspended in lOOmLs ice-cold distilled water (osmotic shock step to remove any 

occluded prolyl oligopeptidase) and centrifuged as before. The supernatant (S2) was combined with 

the first supernatant (SI). The combined supernatants were then ultracentriluged at 38,OOOrpm 

(100,000g) using a Beckman L8-M Ultracentrifuge fitted with a 70Ti rotor. The resulting 

supernatants were pooled and divided into 40mL aliquots for storage at -80°C

2.62. Ammonium Sulphate Precipitation

Solid ammonium sulphate was added to 40mLs of post ultracentrifugation aliquot with constant 

stirring to give 45% saturation (pH was adjusted with 1M NaOH). After 1 hour of constant stirring 

this aliquot was centrifuged for 45 minutes at 15,000rpm (see section 2.6.1). The resulting 

supernatants (SI) were pooled and solid ammonium sulphate was added as before to give 75% 

saturation. After 1 hour of constant stirring the aliquot was centrifuged as before. The pellets (P2) 

were resuspended in a total volume of 5mL Tris-HCl with 5mM DTT, 0.5mM EDTA, pH 8.0 at

2.63. DEAE Sepharose Fast Flow Anion Exchange Chromatography

The post ammonium sulphate PO aliquot was dialysed for 12 hours against 3L of 50mM Tris-HCI 

buffer with 5mM DTT and 0.5mM EDTA pH 8.0 at 4°C. A 20ml DEAE sepharose column 

(2.5x3cm) was equilibrated with lOOmL of 50mM Tris/HCl with 5mM DTT, 0.5mM EDTA pH 8.0. 

The dialysed sample was applied to the column which was washed with lOOmLs of equilibration 

buffer. Bound activity was eluted with a lOOmL linear 0-350mM NaCl gradient in Tris-HCl buffer, 

5mM DTT, 0.5mM EDTA pH 8.0 followed by a 60mL 350mM NaCl wash in 50mM Tris-HCl, 5mM 

DTT, 0.5mM EDTA pH 8.0. 5mL fractions were collected and assayed for PO activity using the 

qualitative microplate assay procedure as outlined in section 2.4.1. Protein determinations for each 

fraction were made qualitatively by measuring their absorbance at 280nm. Protein levels in post 

DEAE pool were determined quantitatively using the BCA standard microplate assay protocol as 

outlined in section 2.3.2 after overnight dialysis against 5L of 25mM potassium phosphate pH 7.4. 

All equilibration, loading, washing and elution steps were carried out at lmL/min.

2.6.4. Sephacrvl S-200 Sepharose Gel Filtration Chromatography

Post DEAE sepharose pool was concentrated to 2mL by reverse osmosis using polyethylene glycol. 

Glycerol was added to reverse dialysed sample to give a 10% v/v final concentration. A 230mL 

Sephacryl S200 column (2.5cmx47cm) was equilibrated with 500mL of 25mM imidazole-HCl with
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5mM DTT and 0.5mM EDTA, pH 6 3. The reverse dialysed sample was applied, using a synnge to 

the top of the resin and the column was washed with 300mL of equilibration buffer 5mL fractions 

were collected and assayed for PO activity using the microplate procedure as outlined in section 2.4.3 

Samples of fractions were dialysed overnight against lOmM potassium phosphate buffer pH 7 4 for 

protein determinations using the BCA enhanced microplate assay as outlined m section 2.3 3 PO 

activity containing fractions ware pooled. Equilibration and elution steps were earned out at 

lmL/min.

2.6.5. PBE94 Chromatofocusing
Post sephacryl S200 HR pool was dialysed for 3 hours against 2L of 25mM imidazole/HCl with 5mM 

DTT, 0 5mM EDTA, pH 6 3. Buffer was changed after 1 and 2 hours A 35mL PBE 94 column 

(1 5cmx20cm) was equilibrated with 1L of 25mM mudazole/HCl with 5mM DTT, 0 5mM EDTA, 

pH 6 3, followed by a 20mL wash with 1 8 dilution of polybuffer 74, with 5mM DTT, 0 5mM EDTA, 

pH 4 5 The buffer head of the column was allowed to fall to just above the top of the resin and 

dialysed post sephacryl S200 HR pool was applied The column was then washed with 250mL of 1 8 

diluted polybuffer 74, 5mM DTT 0 5mM EDTA, pH 4 5 5mL fractions were collected and assayed 

for PO activity using the microplate procedure as outlined in section 2 4  3. Samples of fractions were 

dialysed against lOmM potassium phosphate buffer, pH 7 4 and protein was determined using the 

Biorad microassay procedure as outlined in section 2 3.4 PO containing fractions were pooled 

Equilibration, loading and elution steps were earned out at lmL/min

2.6.6. Phenvl Sepharose CL-4B Hydrophobic Interactions Chromatography.

A 20mL phenyl sepharose CL-4B Hydrophobic Interactions column (2 5x3cm) was equilibrated with 

lOOmL of 50mM potassium phosphate buffer with 5mM DTT, 0 5mM EDTA and 1M ammonium 

sulphate, pH 7 4. Solid ammonium sulphate was added to the post chromatofocusing pool to bring it 

to a final concentration of 1M Sample was applied to column which was then washed with 50mL of 

equilibration buffer Bound activity was eluted with a 5QmL linear of 1-OM ammonium sulphate, 50- 

lOmM potasium phosphate, 0-15% v/v glycerol gradient, followed by a 60mL wash of lOmM 

potassium phosphate buffer with 5mM DTT, 0 5mM EDTA and 15% v/v glycerol, pH 7 4 5mL 

fractions were collected and assayed for PO activity using the microplate procedure as outlined in 

section 2 3 3 Samples of fractions were dialysed against lOmM potassium phosphate buffer pH 7 4 

for protein measurements using the Biorad microassay procedure as outlined in section 2 3 4 PO 

containing fractions were pooled and stored with 0 5% w/v protease-free BSA at -80°C until further 

use Equilibration step was carried out at 2mL/mm while loading washing and elution steps were 

earned out at lmL/min
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2.7. Determination of Purity of Purified Bovine Brain Prolyl Oligopeptidase

2.7.1. Polyacrylamide Gel Electrophoresis
SDS polyacrylamide gel electrophoresis was used to determine the purity of the post phenyl sepharose 

PO pool. Electrophoresis was also used to determine the molecular weight of this enzyme.

2.7.1.1. Sample Preparation
Samples generated over the duration of the bovine brain PO purification (crude brain homogenate to 

post phenyl sepharose pool) were used in electrophoresis These samples were dialysed for 24 hours 

against 1L of 62 5mM Tns/HCl, pH 6 8 with buffer changes at 3, 6 and 12 hours Dialysed samples 

were then diluted with an equal volume of solubilisation buffer (62.5mM Tns/HCl, pH6 8, 20% v/v 

glycerol, 8% w/v SDS, 10% v/v 2-mercaptoethanol and 0 01% w/v bromophenol blue Silverstam 

high molecular weight standards were also prepared These standards consisted of . Carbonic 

Anhydrase (29,000Da), Fumarase (48,500Da), Bovine Serum Albumin (66,000Da), Phosphorylase B 

(97,000Da) and p-Galactosidase (116,000Da) Both samples and markers were boiled for 60 seconds 

and kept on ice until use

2.7.1.2. Preparation of SDS gels

10% resolving gel and 3.75% stacking gel were prepared according to table 2 71  using the following 

stock solutions which were prepared m deionised water.

Solution Composition

Resolving Gel Buffer 3M Tns/HCl, pH 8.8

A 16Qmmxl60mmxlmm 10% stacking gel overlayed with a 3 75% stacking gel was cast m an Atto 

vertical electrophoresis system. 20pL of sample or standard was loaded into the wells and gels were 

electrophonsed for 4 hours at a constant current of 25mA/gel

Stacking Gel Buffer 

Acryl/Bisacryl Stock 

Ammonium Persulphate 

SDS

Running Buffer

0 5M Tns/HCl, pH 6 8

30% w/v Acrylamide, 0 8% Bisacryl

1 5% Ammonium Persulphate

10% w/v SDS

0 025M Tns/HCl, 0 192M Glycine, 0 1% SDS, pH 8 3
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Solution Volume Required for 

10% Resolving Gel

Volume Required for 

3.75% Stacking Gel

Acryl/Bisacryl Stock lOmL 2 5mL

Resolving Gel Buffer 3 75mL —

Stacking Gel Buffer _ 5mL

SDS 300(iL 200nL

Deionised Water 14 45mL 11 3mL

Ammonium Persulphate 1 5mL lmL

TEMED 15pL 15pL

Table 2.7.1. SDS Gel Electrophoresis Gel Preparation

2.7.13 .  Visualising Proteins in Polyacrylamide Gel-Silver Staining

Polyacrylamide gels were stained using a Sigma (AG-25) Silver Stam kit, which was based on the 

method of Heukeshoven and Demick (1985) Table 2.7 2 outlines the steps involved It should be 

noted that a number of steps m the original silver staining procedure including a reducing step after 

development were found to be unnecessary An image of the stained gel was obtained using a UVP 

ImageStore 7500 with a UVP white/UV translummator camera unit driven by ImageStore 7500 

software

Step Reagent Volume Time

Fixing 30% v/v Ethanol,

10% v/v Glacial Acetic Acid

3x300mL 3x20 mm

Rmsmg Deionised water 3x300mL 3x10 min

Silver Staining Silver Nitrate 300mL 30 mm

Rinsing Deionised Water 300mL 10 sec

Developing Sodium carbonate/Formaldehyde 150mLx2 8mmx2

Development Stop 1% v/v Glacial Acetic Acid 300mL

Table 2.7.2. Silver Staining Procedure
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2 7.2. Fluorimetric Assays

Purified bovine brain PO activity was assayed for various pepudase activities as outlined in section 

2.4 1, replacing 200nM Z-Gly-Pro-MCA substrate with various quenched fluorimetric substrates 

These substrates, with details of their preparation are listed m table 2 7 3 All assays were performed 

in triplicate and suitable negative controls were included

Substrate Activity Detected Preparation

Ala-MCA* Alanine Ammopeptidase Buffer

Arg-MCA2 Arginine Ammopeptidase Buffer

Gly-Arg-MCA3 Dipeptidyl Ammopeptidase I Buffer

Gly-Pro-MCA4 Dipeptidyl Ammopeptidase IV Buffer

Leu-MCA5 Leucine Ammopeptidase Buffer

Lys-Ala-MCA6 Dipeptidyl Ammopeptidase II Buffer

pGlu-MCA7 Pyroglutamyl Ammopeptidase I 4% v/v DMSO

*pGlu-His-Pro-MCA8 Pyroglutamyl Ammopeptidase II 4% v/v DMSO

Z-Arg-MCA9 Trypsin 8% v/v DMSO

*Z-Gly-Pro-MCA10 Z-Pro-Prohnal Insensitive Prolyl 8% v/v DMSO

OligopepUdase

Table 2.7.3. Fluorimetric substrates used to determine the presence or absence of

contaminating peptidase activity.

The buffer used m all preparations was lOOmM potassium phosphate, pH 7 4 This was heated to 

37°C prior to dissolution of substrate Where required, DMSO was used to dissolve substrate prior to 

addition of buffer

* Assay was performed in the presence and absence of Z-Pro-prolinal, which was incorporated m 

order to inhibit PO activity and thus eliminate the possibility of interference (see section 2 4 2 )

1 Mantle et a l , (1983) 10 Cunningham and O’Connor (1998)

2 Barrett and Kirschke, (1981)

3 Chan et a l , (1985)

4 Checler et a l , (1985)

5 Kagga et a l , (1998)

6 Nagatsu et a l , (1985)

7 Cummins and O’Connor (1996)

8 O’Leary and O’Connor, (1995)

9 Nishikata et a l , (1985)
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2.8. Purified Prolyl Oligopeptidase Assay Developement

2.8.1. Solvent Effects on Purified Prolvl Oligopeptidase Activity and Assay Sensitivity
The effect of different concentrations of various solvents on PO activity, and substrate solubility in 

these solvents was investigated. lOmM stock of Z-Gly-Pro-MCA was prepared in 100* DMSO, 
DMF, dioxane, methanol and ethanol This stock substrate solution was diluted with lOOmM 
potassium phosphate buffer with 5mM DTT and 0 5mM EDTA, pH 7 4 and appropriate solvent to 

give a final concentration of 200jiM substrate with 5-10% v/v solvent. Purified PO was assayed m 

triplicate with these substrates as outlined in section 2 41

2.8.2. Linearity of Purified Prolvl Oligopeptidase Activity Assay with Respect to Time

2.8.2.1. Discontinuous Assay

Purified PO activity which had been stored in the presence and absence of 0 5% w/v BSA, was 

assayed as outlined m section 2 4 1  Reactions were stopped with lmL of 1 5M acetic acid after 10, 

20, 30,40,50 and 60 mm Plots of fluorescent intensity versus tune were prepared

2.8.2.2. Continuous Assay
Purified PO activity (with 0 5% v/v BSA) was diluted 1/5 with lOOmM potassium phosphate buffer 

with 0 5% v/v BSA, pH 7 4 and was premcubated for 15 mm at 37°C 100|iM and 200jtM Z-Gly- 

Pro-MCA in 4 and 8% v/v DMSO respectively was also premcubated until it reached thermal 

equilibrium 300nL of enzyme was added to 1 2mL of substrate in a cuvette holder which was kept at 

37°C Enzyme activity/MCA liberated was continuously monitored over 40 minutes, with readings 

taken every 2 seconds Plots of fluorescent intensity versus time were prepared

2 8.3. Linearity of Purified Prolvl Oligopeptidase Assay with Respect to Enzyme 
Concentration

A range of dilutions of purified PO were prepared in 50mM potassium phosphate buffer with 5mM 

DTT, 0 5mM EDTA, pH 7 4 Enzyme dilutions were assayed in triplicate as outlined in section 

2 4  1
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2.8.4. Effect of DTT on Prolvl Olieopeptidase Activity Assay Sensitivity
2mL aliquots of 200(iM Z-Gly-Pro-MCA , 8% v/v DMSO were prepared incorporating O-lOOmM 

DTT. Purified PO activity was assayed in triplicate as outlined in section 2.4.1

2.8.5. Effect of EDTA on Prolvl Olieopeptidase Activity Assay Sensitivity

2mL aliquots of 200jiM Z-Gly-Pro-MCA, 8% v/v DMSO, were prepared incorporating 0-15QmM 

EDTA and purified PO activity was assayed in triplicate as outlined in section 241.

2.8.6. Effect of NaCl on Prolvl Ollgopeptidase Activity Assay Sensitivity

2mL aliquots of 200jiM Z-Gly-Pro-MCA, 8% v/v DMSO were prepared incorporating 0-1 5M NaCL 

and PO activity was assayed in triplicate as outlined in section 241

2.9. Characterisation of Purified Prolyl Oligopeptidase Activity

2.9.1. Relative Molecular Mass Determination
The relative molecular mass of prolyl oligopeptidase was determined using gel filtration 

chromatography and polyacrylamide gel electrophoresis

2.9.1.1. Sephacryl S-200 HR Gel Filtration Chromatography
A 230mL (2 5cm x 47cm) Sephacryl S-200 HR gel filtration column was used for this procedure 

Column was run at 4°C at a flow rate of lmL/min for the entire experiment

2 9111.  Void Volume Determination

Sephacryl S200 column was equilibrated with 300mL of 50mM potassium phosphate buffer with 
150mM NaCl, pH 7 4. 2mL of a 2mg/mL blue dextran solution containing 10% v/v glycerol was 
applied directly onto the column resin, under buffer, using a syringe Column was washed with 
equilibration buffer until blue dextran had visibly eluted 2 5mL fractions were collected throughout 
the procedure The absorbance of each fraction was measured at 620nm and the volume at which this 
absorbance reached a maximum was taken to be the void volume (Vo)

2 9112.  Column Calibration using Molecular Mass Standards

Sephacryl S-200 column was prepared and equilibrated as outlined in section 2 9 1 1 1  2mL of each
standard containing 10% v/v glycerol was applied onto column which was then washed with

!
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equilibration buffer 2.5mL fractions were collected and assayed for protein using the standard BCA 

assay as outiined in section 2 3 2 The elution volume (Ve) for each standard was taken as the wlume 

in which the absorbance at 595nm reached a maximum. A calibration curve of Log molecular mass 

versus Ve/Wo was prepared. Protein standards used in this procedure were as follows Cytochrome C 

(12,400Da), Carbonic Anhydrase (29,000Da), Bovine Serum Albumin (66,000Da), Alcohol 

Dehydrogenase (150,000 Da) and p-Amylase (200,000Da)

2 9.11 3. Determination of Relative Molecular Mass of Purified Enzyme

Sephacryl S-200 column was prepared and equilibrated as outlined in section 2 9 111.  2mL of 

purified prolyl oligopeptidase sample with 10% v/v glycerol was applied onto column which was then 

washed with equilibration buffer 2.5mL fractions were collected and assayed for PO activity using 

the fluonmetric assay outlined in section 2.4 1 The elution volume (Ve) for the enzyme was taken as 

the volume at which maximum PO activity was observed The molecular mass of the enzyme was 

determined using the calibration curve constructed m section 2 9 1 1 2

2.9.1.2. SDS Polyacrylamide Gel Electrophoresis

The SDS polyacrylamide gel electrophoresis of samples and standards has already been outlined in 

section 2 7.1 In order to determine the molecular mass of the purified enzyme a calibration curve of 

the Log molecular mass versus the Relative Mobility (Rf) of each standard was constructed The Rf 

value was determined by dividing the distance migrated by each standard, by the distance migrated by 

the bromophenol blue dye front It was then possible, from this calibration curve to estimate the 

molecular mass of the punfed enzyme, using its calculated Rf value.

2.9.2. pH Effects

2.9.2.I. pH Activity Profile

lOmL of post phenyl sepharose PO pool was dialysed overnight against distdled water 50pL of 

dialysate was premcubated at 37°C for 15 minutes with 50fiL of appropriate 50mM buffer at various 

pHs 200(jM Z-Gly-Pro-MCA was prepared in a range of 50mM buffer systems at various pH values 

outlined m table 2 9 1 Enzyme activities were determined in triplicate as outlined m section 2 4 1 ,  

using substrate prepared m a pH range of 2 5-10 5

2 9 2 2 .  pH Inactivation Profile.

lOmL of post phenyl sepharose PO pool was dialysed overnight against distilled water 50fiL of 

dialysate was preincubated at 37°C for 15 minutes with 50(jL of 50mM buffer at various pHs (2 5- 

10 5) 200fiM Z-Gly-Pro-MCA was prepared as outlined in section 2 4 1 using 50mM potassium
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phosphate buffer pH 7 4. Enzyme activities were determined m triplicate as outlined in section 2 4 1  

The various buffer systems used are outlined in table 29  1.

Buffer pH Range

Citric Acid / Dibasic Potassium Phosphate 2 5-6.0

Potassium Phosphate 6 0-8 0

Tns/HCl 8 0-9.0

Glycine / NaOH 9.0-100

Table 2.9.1. Buffer Species and Ranges used in pH Activity and Inactivation Profiles

2.93. Thermostability Studies on Purified Prolvl Oligopeptidase Activity

2.93.1. Effect of Assay Temperature on Purified Prolyl Oligopeptidase Activity

Purified PO activity was assayed at 4, 20, 37, 45, 50 and 60°C, by a modification of the assay 

described in section 24 1 .  Both the enzyme sample and the substrate used were premcubated at the 

appropriate temperature for 15 minutes prior to the assay

2.93.2. Effect of Preincubation of Purified Prolyl Oligopeptidase Activity at Various 

Temperatures for Different Tunes

Purified PO activity was premcubated fa- 0, 15, 30, and 45 min. at 20, 37, 40, 50 and 60°C and 

assayed as outlined in section 241 .

2.9.4. Effect of Divalent Metal Salts on Purified Prolvl Oligopeptidase Activity 

Purified PO activity was dialysed for 18hours against 1 5L of either 20mM potassium phosphate 

buffer, pH 7.4 or 20mM Tris/HCl pH 7.4 (see table 2 9.2 ), with a buffer change after 12 hours 2mM 

stocks of divalent metal salts were prepared as outlined m table 2.9 2. pH of stock solutions were 

adjusted to 7.4 using 20mM monobasic or dibasic potassium phosphate where appropriate or 1 5M 

HC1 when Tns buffer was used 50|iL of dialysate was premcubated for 15 minutes with 50pL of
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metal salt and assayed as outlined m section 2 4 1 with the exception that DTT and EDTA were 

omitted from substrate. Suitable negative and positive controls were prepared and standard curves 

incorporating each divalent metal salt were prepared to allow for any quenchmg effects

Metal Salt Concentration (mM) Preparation and Dialysis Buffer

CaS04 2 20mM Tris/HCl

CdS04 2 20mM Tns/HCl

C0SO4* 2 20mM Tns/HCl

CuS04 2 20mM Potassium Phosphate buffer

FeCl3 2 20mM Potassium Phosphate buffer

HgS04** 2 20mM Tns/HCl

MgS04 2 20mM Potassium Phosphate buffer

MnS04 2 20mM Tns/HCl

N1SO4 2 20mM Tns/HCl

ZnS04 2 20mM Tns/HCl

Table 2.9.2. Preparation o f Divalent Meted Salts 

*Metal salt dissolution assisted by boiling water bath

**Metal salt initially dissolved m 1 5M HC1 and then diluted to appropriate concentration with Tns 

buffer

2.9.5. Effect of Functional Reagents on Purified Prolvl Oligppentidase Activity 

40mL of purified PO activity was dialysed for 18 hours against 2 5L of lOQmM potassium phosphate 

buffer, pH 7 4 Dialysis buffer was changed after 6 and 12 hours 50|iL of dialysed enzyme sample 

was preincubated at 37°C for 15 minutes with 50jiL of appropriate functional reagent Functional 

reagents were prepared as outlined in table 2 9 3 After the incubation period, enzyme assays were 

carried out in triplicate as outlined m section 2.4 1 Suitable negative and positive controls were also 

prepared Positive controls incorporated 50(xL of relevant diluent without functional reagent, for 

example 5% v/v acetone, to replace the functional reagent Quenched standard curves incorporating 

each relevant functional reagents were also prepared Results were converted into enzyme units/mL 

and expressed as a percentage of positive control activity (100%)
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Compound Class Compound Name Concentration Preparation1

Cysteine Protease Iodoacetamide 20mM Buffer

Inhibitors Iodoacetate 20mM Buffer

N-Ethylmalemide (NEM) 20mM Buffer

Dithiobisnitrobenzoic acid (DTNB) 20mM Buffer

Cvsteine Protease Dithiothreitol (DTT) 20mM Buffer

Activators 2-Mercaptoethanol 20mM Buffer

Serine Protease Aminoethyl-Benzenesulfonylfluoride 20mM Buffer

Inhibitors (AEBSF)

Phenylmethanesulfonylfluoride (PMSF) 2mM 5% v/v Acetone

Metallo Protease EDTA 20mM Buffer

Inhibitors EGTA 20mM Buffer

CDTA 20mM Buffer

8-Hydroxyquinoline 20mM 5% v/v Acetone2

Imidazole 20mM Buffer

1 , 10-Phenanthroline 20mM 5% v/v Acetone

1 ,7-Phenanthroline 20mM 5% v/v Acetone

4, 7-Phenanthroline 20mM 5% v/v Acetone2

Miscellaneous Aprotinin lmg/mL Buffer

Bacitracin 2mg/mL Buffer

Benzamidine 20mM Buffer

Carnitine 20mM Buffer

N-Decanoyl Coenzyme A 2mg/mL Buffer

Pepstatin lmg/mL 5% v/v Acetone

Soyabean Trypsin Inhibitor 2mg/mL Buffer

Table 2.9.3. Preparation o f Functional Reagents

\A11 functional reagents were prepared in 50mM potassium phosphate buffer with or without 5% v/v 

acetone. Reagents prepared in acetone were initially dissolved in 100% acetone and adjusted to stock 

concentration upon addition of 50mM potassium phosphate buffer. Adjustment of pH to 7.4 was 

achieved through use of 50mM monobasic and dibasic potassium phosphate buffer which were added, 

where appropriate during preparation o f stock solutions.

2 Complete dissolution was achieved by heating in a boiling water bath.
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2.9.6. Substrate Specificity Studies on Purified Prolyl Oligopeptidase Activity

The substrate specificity of purified bovine brain PO activity for a range of both natural and synthetic

proline containing peptides was determined using reverse phase HPLC, MALDI-TOF mass

spectrometry and fluonmetry Some comparative studies wore earned out using the purified bovine

brain, F memngosepticum, porcine kidney and partially purified bovine serum prolyl oligopeptidase

activities

2.9.6.1. Substrate Specificity Studies Using Reverse Phase HPLC

The HPLC system used consisted of a Beckman System Gold Programmable Dual Pump Module 126, 

Photodiode Array Detector Module 128 and Autosampler 507 The column used was a Beckman 

Ultrasphere C-8 reverse phase column (4 6mmx200mm) and a Beckman Ultrasphere C18 reverse 

phase guard column (4 6mmx45mm) All solvents and buffers used in sample preparation and 

chromatography were filtered and degassed Ultrapure water was used in buffer preparation

2 9 6 1  1 Preparation of Stock Substrates and Standards

3mL of 1.3mM substrate/standard was prepared as outlined m table 2 9 4 Bnefly samples were 

initially dissolved m 300(iL of appropnate solvent (when required), and diluted to 3mL with lOOmM 

potassium phosphate buffer pH 7 4

2 9 61  2. Reaction of Substrates With Prolvl Oligopeptidase Enzyme Activities 

50pL of enzyme sample was added to 200ijL of substrate The reaction was allowed to proceed at 

37°C for 24 hours Reactions were then terminated by the addition of 25pL of 5% (v/v) TFA. Suitable 

negative controls and blanks were prepared.

2 9 6 1  3 Reverse Phase HPLC of Samples

Mobile phases for the HPLC consisted of solvent A, 98 8% MeOHLO 2% (v/v) TFA and solvent B, 

98 8% Ultrapure water 0 2% (v/v)TFA The reverse phase C8 column was equilibrated with 8mL of 

15% solvent A/85% solvent B 20|iL of sample was injected onto the column followed by a 15mL 

15%-70% linear gradient of solvent A This was followed by a lOmL wash of 70% solvent A/30% 

solvent B A flow rate of lmL/mm was used throughout the procedure The absorbance of the eluent 

was continuously monitored at 214nm
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Substrate/Fragment Concentration (mM) Solubility

LHRH 1 3 10% MeOH1

TRH 1 3 10% MeOH1

TRH-OH 1 3 10% MeOH1

G1u2TRH 1 3 10% MeOH1

Phe2TRH 1 3 10% MeOH1

TRH-Gly 13 10% MeOH1

Bradykmin 13 10% MeOH1

Substance P 1 3 10%v/v 1 5M Acetic Acid'

tADNF-14 13 Buffet3

Angiotensin I 13 Buffer3*

Angiotensin II 13 Buffer3*

Angiotensin HI 13 Buffer3*

Arg8-Vasopressm 13 Buffer3

H-Gly-Pro-OH 13 10% MeOH1

H-Gly-Gly-Pro-Ala-OH 13 10% MeOH1

H-Gly-Ala-Phe-OH 1 3 10% MeOH1

Z-Pro-Pro-OH 1.3 10% MeOH1

Z-Pro-Gly-OH 13 10% MeOH1

Z-Pro-Ala-OH 13 10% MeOH1

Z-Pro-Leu-Gly-OH 13 10% MeOH1

H-Leu-Gly-OH 1 3 10% MeOH1

Z-Gly-Pro-Ala-OH 13 10% MeOH1

Table 2.9.4. Preparation OfHPLC Substrate Solutwns:

1 Substrate/fragment was initially dissolved m 300[iL of methanol and was diluted to 1 3mM by the 

addition of lOOmM potassium phosphate buffer pH 7.4

2 Substrate/fragment was initially dissolved m 1 5M acetic acid and diluted to 1 3M by the addition of 

lOOmM potassium phosphate buffer pH 7.4.

3Substrate/fragment was dissolved in 100% lOOmM potassium phosphate buffer pH 7 4 *Sonication

was required to get complete dissolution.

tADNF 14. Activity Dependent Neurotrophic Factor 14
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2.9.6J2. Substrate Specificity Using MALDI-TOF Mass Spectrometry

Matnx-assisted laser desorptionViomzation time of flight mass spectrometry was earned out using a 

Hewlett Packard G2025 mass spectrometer with a linear time of flight analyser The instrument was 

equipped with a 337nm nitrogen laser, a high-potential acceleration source (5kV), and a 1 0-m flight 

tube. Detector operation was m the positive ion mode and signals were recorded and filtered using a 

LeCroy 9350M digital storage oscilloscope interfaced to a computo' The spectrometer was internally 

calibrated using Hewlett-Packard low molecular weight standards

2 9 6.2.1. Preparation of Stock Substrates

lmL of each substrate was prepared as outlined in table 2 9.5. Buffer used m all preparations was 

lOOmM Tns-HCl, lOmM DTT, ImM EDTA, pH 7 6

Substrate Concentration (mg/mL) Preparation

CLIP (ACTH 18.39) 2mg/mL Buffer

Amyloid A4 Precursor Protein 708-715 lmg/mL Buffer

(Gly-Pro-Ala) polymer 2mg/mL Buffer

Table 2.9.5. Preparation o f Stock Substrates for Mass Spectrometry

2 9 6 2 2  Reactions of Substrates with Punfled Prolvl Oligppeptidase Activity 

50pL of substrate was added to 50pL of punfied brain PO activity which had been concentrated 10- 

fold (volume) using Amicon 15mL Centnplus centrifugal concentrators (50) Negative controls were 

prepared by adding 50|iL of water to 50(iL of peptide Positive and negative controls were incubated 

m a water bath at 37°C At various time intervals lOjiL of incubated sample was taken and added to 

an equal volume of 2’,6’-dihydroxyacetophenone (matnx solution).

2 9 6 2 3 MALDI-TOF Mass Spectrometry of Samples

A small volume (>l|iL) of sample matrix solution mix was transferred to a probe tip and evaporated 

in vaccum chamber (Hewlett-Packard G2024A sample preparation accessory) ensuring a homogenous 

sample crystallisation Spectra were collected by accumulating data generated by a number of single 

laser shots with a laser power of between 5 7-8 3|iJ
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2.9.63. Kinetic Studies
Substrate specificity studies, on bovine brain, serum and F meningosepticum PO activities, based on 

kinetic analysis were performed.

2.9 6.3.1. Km 1>tprmm»non for Z-Glv-Pro-MCA

The Michaelis Mental Constant (Km) was determined for the reaction of purified bovine brain, 

bovine serum and F meningosepticum. PO activity, with the substrate Z-Gly-Pro-MCA A range of 

concentrations (0-200jiM) of Z-Gly-Pro-MCA were prepared from a 200nM stock solution, 8% v/v 

DMSO, lOOmM potassium phosphate buffer, SmM DTT, 0 SmM EDTA, pH 7.4 Stock was prepared 

as described in section 2.4.1. Enzyme activities were determined in triplicate and suitable negative 

controls were prepared, (section 2 4 1 )  The Km and Vmax values for this substrate were determined 

using Michaelis- Menten, Eadie-Hoftsee, Lineweaver-Burk, Hanes-Woolf and Direct Linear Plot 

analysis

2 9  63  2 Km Determination for pGlu-His-Pro-MCA

The Michaelis-Menten Constant (Km) was determined for the reaction of of bovine brain, bovine 

serum and F. meningosepticum PO activity, with the fluorimetnc substrate pGlu-His-Pro-MCA A 

range of concentrations of pGlu-His-Pro-MCA (0-200|iM) were prepared usmg lOOmM potassium 

phosphate buffo:, 5mM DTT, 0.5mM EDTA, pH 7.4 as diluent Enzyme activities w oe determined m 

triplicate m a similar method as outlined m section 2 4.1 Suitable negative controls were included 

The Km and Vmax values for this substrate were determined usmg Michaelis-Menten, Eadie-Hoftsee, 

Lineweaver-Burk, Hanes-Woolf and Direct Linear Plot analysis

2 9 6 3 3  Ki Determination for Proline-Contaimng Peptides

The effects of a variety of prolme-containing peptides on Km values obtained for purified brain, 

serum and recombinant PO activities for the substrate Z-Gly-pro-MCA was determined The peptides 

and their preparation is outlined m table 2.9.6. A 400jiM stock solution of Z-Gly-Pro-MCA, 16% v/v 

DMSO, was prepared as outlined m section 2.4 1 From this stock solution a range of dilutions were 

prepared (0-400pM) using lOOmM potassium phosphate buffer, 5mM DTT, 0 5mM EDTA, pH 7 4 as 

diluent 2mL of appropriate peptide was added to an equal volume of substrate dilution PO activity 

was assayed m triplicate using these substrate mixtures as outlined m section 2 4 1  The Km and 

apparent Km values were determined usmg the Lineweaver-Burk analysis model
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Peptide Stock

Concentration

Assay

Concentration

Preparation

LHRH ImM 400|XM 5% MeOH1

TRH 500[iM 200fiM 5% MeOH1

GIu2-TRH 400nM 160jxM 5% MeOH1

Phe -̂TRH 500pM 200nM 5% MeOH1

Bradykmm 400fjM 160JIM 5% MeOH1

Substance P 400pM 160(iM 5% v/v 1 5M acetic acid1

Angiotensin I 250jiM 100(iM Buffer2*

Angiotensin II 250pM 100nM Buffer2*

Angiotensin III 250jiM IOOjjM Buffer3*

Arga-Vasopressin 250|iM 100pM Buffer2*

Neurotensin 250pM 100nM 5% MeOH1

Table 2.9.6. Preparation o f Peptides For Kinetic Studies , >

1Substrate/fragment was initially dissolved in methanol and was diluted to appropriate concentration 

by the addition of lOOmM potassium phosphate buffer, 5mM DTT, 0 5mM EDTA pH 7 4 (final 

methanol concentration of 5% v/v) 2 Substrate/fragment was dissolved in 100% lOOmM potassium 

phosphate buffer, 5mM DTT, 0 5mM EDTA, pH 7 4 3 Substrate/fragment was initially dissolved m 

1 5M acetic acid and diluted to 1 3M by the addition of lOOmM potassium phosphate buffer pH 7 4 

*Sonication was required to achieve complete dissolution.

2.9.7. Effect of Specific Prolyl Oligopeptidase Inhibitors on Purified Prolvl Oligopeptidase 

Activity

2.9.7.1. Determination of IC50 Values for Specific Prolyl Oligopepeptidase Inhibitors

A range of dilutions of specific PO inhibitors was prepared as outlined in Table 2 9 7 A stock 

substrate of 400(iM Z-Gly-Pro-MCA, 16% v/v DMSO m lOOmM potassium phosphate buffer pH 7 4 

with lOmM DTT and ImM EDTA was prepared and preincubated at 37°C until completely dissolved 

and thermal equilibrium was reached 2mL of substrate stock was added to 2mL of appropriate 

inhibitor giving a final substrate concentration of 200jxM with 8% DMSO v/v PO activity (Bacterial
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brain and serum), using substrate: inhibitor mixtures was assayed in triplicate as outlined in section

2.4.1. Suitable negative and positive controls were prepared.

Inhibitor Stock Concentration
(M)

Preparation Assay Concentration 
(M)

Z-Pro-Prolinal 5xl0 '2 100% v/v MeOH Ixl0 '5- lx l0 '13

Z-Pro-Prolinal-
Dimethylacetate

lxlO'2 100% v/v MeOH lxlO 'M xlO '13

Cyclohexyl-Prolinal 2.008xl0‘2 50% v/v Dioxane Ix l0 '3- l x l 0 14

Z-Indolinyl-Prolinal 8.6xl0'3 50% v/v Dioxane Ix l0 '4- lx l0 '14

Fmoc-Ala-Pyrr-Nitrile 5xl0 '3 20% v/v DMSO I—
*

X >—
i O H-
‘ X H-
* O ïo

Fmoc-Pro-Pyrr-Nitrile 2.6xl0'5 100% v/v Dioxane Ix l0 ‘3- lx l0 '12

Z-Phe-Pro-Methylketone 1.6xl0'2 Buffer Ix l0 '3x lx l0 ‘14

Postatin 8.1xl0'3 20% v/v Dioxane Ix l0 '4- lx l0 '13

a-Ketobenzothiazole 6 .9xl0'5 50% v/v Dioxane Ix l0 -5x lx l0 '15

Table 2.9.7. Preparation o f Prolyl Oligopeptidase Specific Inhibitors.

Stock concentrations of inhibitors were prepared in appropriate solvents before dilution with lOOmM 

potassium phosphate buffer, pH 7.4 to give appropriate dilutions. Dilutions were prepared two-fold 

concentrated and then diluted with 400pM Z-Gly-Pro-MCA, 16% v/v DMSO, prepared as outlined 

in section 2.4.1. Purified PO activity was assayed in triplicate using substrate/inhibitor mixture as 

outlined in section 2.4.1., incorporating suitable negative and positive controls.

2.9.7.2. Effect of Z-Phe-Ala-Chloromethylketone on Purified Bovine Brain and Recombinant 

Prolyl Oligopeptidase Activity With Time

A lxlO^M  solution of Z-Phe-Ala-CMK was prepared in 50%v/v acetonitrile. Using this as the 

inhibitor mixture the following reaction mixtures were prepared: 122^L of bovine brain/recombinant 

PO activity, 24|iL of inhibitor mixture and 94pL of 50mM hepes buffer with ImM DTT, ImM  

EDTA, 150mM NaCl, pH 7.6. Positive controls with 24p.L of 50%v/v acetonitrile instead of inhibitor 

mixture were also prepared. These reactions mixtures were left at room temperature (20°C) and at
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appropriate time intervals up to 470 minutes 12jiL of this reaction mixture was taken and assayed 

fluorimetncally as follows 6|xL of SOjtM Z-Gly-Pro-MCA was added to reaction mixture with 102(iL 

of 50mM hepes buffer with ImM DTT, ImM EDTA and 150mM NaCl, pH 7 6 After 1 hour at 37°C 

100(iL of this solution was added to 500nL of 1M sodium acetate/HCl, 5% v/v DMSO, pH 4 4 and 

fluorescent intensities were measured at excitation and emission wavelengths of 370nm and 440nm 

respectively Results were expressed as a percentage of activity of samples taken at a time of 0 

minutes
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3. RESULTS



3. Results

3.1. MCA Standard Curves-Quenched and Unquenched
MCA standard curves were prepared as outlined in section 2 21  and 2 2 2 Plots of fluorimetric 

in tensity versus MCA concentration are presented in figures 3.1.1. to 3.1.3. Figures 3 1.1. and 3 1.2 

illustrate the quenching effect of undiluted and diluted soluble bovine brain supernatant on 

fluorescence. Figure 3.1 3 illustrates the quenching effect of undiluted serum Table 31 is a 

summary of the slopes obtained from each curve.

3.2. Protein Standard Curves
Protein standard curves incorporating BSA were prepared as outlined m sections 2 3 2, 2.3 3 and 

2 3 4 Figures 3 2 1 and 3 2 2 , plots of absorbance at 560nm versus BSA concentration, represent 

BCA standard and enhanced microplate procedure Figure 3 2 3 , absorbance at 595nm versus BSA 

concentration, represents the Biorad microassay procedure

3.3. Measurement of Prolyl Oligopeptidase and Z-Pro-Prolinal Insensitive Z- 

Gly-Pro-MCA Hydrolysing Activity

Figures 3 3.1 and 3 3 2 represent PO and ZIP activity in bovine serum and bo vine brain supernatant 

which were measured as outlined in section 2 4.1 and 2 4  2 Bovine serum was found to contain 277 

units of PO activity and 51 units of ZIP activity per mL of serum (5542 and 1020 units of PO and 

ZIP activity respectively in 20mL of serum) Brain supernatant was found to contain 45882 units of 

PO activity per mL (1835292 units in 40mL of supernatant) but no ZIP activity was detectable. Units 

of activity are picomoles of MCA released per minute at 37°C
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Concentration MCA (jiM)

Figure 3.1.1. MCA Standard Curves. Plots of fluorimetrie intensity versus MCA concentration. 

lOOjiL of buffer (•) or lOOpL of brain supernatant (o> was combined with 400jiL of standard 

concentration of MCA and lmL of acid was added before measurement of fluorescent intensity as 

outlined in section 2.2.1 The mission slit width was set at 2 5nm Error bars represent the SEM of

Concentration MCA (jiM)

Figure 3.1.2 MCA Standard Curves. Plots of fluorimetrie intensity versus MCA concentration 

lOOpL of buffer (•) or 100|iL of a one in twenty dilution of brain supernatant (o) was combined with 

400pL of standard concentration of MCA and lmL of acid was added before measurement of 

fluorescent intensity as outlined in section 2.2.1. The emission slit width was set at 2.5nm. Error bars 

represent the SEM of readings in triplicate.
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Concentration MCA (|iM)

Figure 3.1.3. MCA Standard Curves. Plots of fluorimetrie intensity versus MCA concentration 

lOOpL of buffer (•) or lOOpL of a serum (o) was combined with 400|iL of standard concentration of 

MCA and lmL of acid was added before measurement of fluorescent intensity as outlined m section 

The emission slit width was set at 10 Onm Error bars represent the SEM of readings in triplicate

Figure Unquenched Quenched

3 1 1 7 662 5.968

3 12 7 570 7 570

3 1 3 68 207 46 924

Table 3.1. Slope Determinations for Quenched and Unquenched Standard Curves
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Concentration BSA (mg /ml)

Figure 3.2.1. BSA Standard Curve Plot of absorbance at 560nm versus BSA concentration obtained 

usmg the BCA assay proccedure as outlined m section 2 3 2 Error bars represent the SEM of 

triplicate readings

Concentration BSA (mg /ml)

Figure 3.2.2. BSA Standard Curve Plot of absorbance at 560nm versus BSA concentration obtained 

using the BCA enhanced assay procedure as outlined in section 2 3 3 Error bars represent the SEM 

of triplicate readings
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Concentration BSA (jig /ml)

Figure 3.2.3. BSA Standard Curve. Plot of absorbance at 595nm versus BSA concentration obtained 

using the Biorad microassay procedure as outlined in section 2 3 4 Error bars represent the SEM of 

triplicate readings
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Figure 3 3.1. and 3.3.2. Measurement of PO and ZIP Activity in Serum and Bram 

Supernatant. Enzyme activities of samples were measured as outlined in section 2 4 1  and 2 4 2 

respectively Total Activity* refers to activity expressed in terms of total enzyme units 1 e Units or 

pmoles MCA released per mmute at 37°C ZPP represents 5xlO-4M Z-Pro-Prolmal This inhibitor 

was incorporated into the assay as outlined in section 2 4 2
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3.4. Partial Purification of Prolyl Oligopeptidase From Bovine Serum

3.4.1. Serum Preparation

2L of serum was collected from 10L of whole blood

3.4.2. Phcnvl Seoharose Hydrophobic Interactions Column Chromatography I

Figure 3 4.1. illustrates the elution of PO activity, ZIP activity and protein from a phenyl sepharose 

column which was prepared and run as outlined in section 2 5 2. While two peaks of Z-Gly-Pro-MCA 

activity, measured as m section 2.4.3., were evident, the first run through peak was found to be 

completely sensitive to inhibition by Z-Pro-prolinal using the assay described in section 2 4 4  The 

second activity peak which was eluted in distilled water was totally insensitive to Z-pro-prolmal 

Fractions 4-10 were combined to give a 35mL post phenyl sepharose chromatography I pool lmL of 

this pool was retained for quantitative PO activity (section 2 41 )  and protein (section 2.3 2) 

measurements

3.4.3. Phenvl Sepharose Hydrophobic Interactions Column Chromatography H

Post phenyl sepharose chromatography I PO pool was salted and applied to second phenyl sepharose 

column as outlined in section 2 5.3. Figure 3 4 2 illustrates the elution of PO activity and protein, 

measured as outlined in sections 2 4  3 and 2 31 respectively Fractions 38-45 were combined to give 

post phenyl sepharose chromatography II PO pool (40mL) lmL of this pool was retained for 

quantitative PO activity (section 2 4 1 )  and protein measurements (section 2 3 2 )  The remainder was 

aliquoted and stored at -80°C for future use The effectiveness of bovine serum PO partial purification 

is outlined in table 3 41
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Figure 3.4.1 Elution Profile of Z-Gly-Pro-MCA Degrading Activity from Phenyl Sepharose 

Hydrophobic Interaction Chromatography I. 20mL of bovine serum, containing 200mM 

ammonium sulphate, was applied to column as outlined m section 2 5 2 The column was eluted 

isocratically with distilled water containing no ammonium sulphate Fractions were assayed for 

protem ( ) using the absorbance at 280nm as outlined m section 2 3 1 ,  PO activity (•) and ZIP

activity was assayed as outlined in sections 2 4 3 and 2 4  4 respectively
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Figure 3.4.2. Elution Profile of Prolyl Oligopeptidase Activity From Phenyl Sepharose 

Hydrophobic Interaction Column H. 20mL of post phenyl sepharose I PO pool, containing 1M 

ammonium sulphate was applied to column as outlined m section 2 5 3 The column was eluted with

a linear 1-0M ammonium sulphate gradient (-----) and 0-15% glycerol gradient Fractions were

assayed for protein (.. ..) using the absorbance at 280nm as outlined m section 2 3 1 ,  PO activity 

was assayed as outlined in section 24  3
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Sample Total Protein (mg) Total activity (units) Specific Activity (Umts/mg) Purification factor Recovery (%)

Serum 1,210 4 5,542 4 57 1 100

Phenyl Sepbarose I 344,9 3,002 8.70 190 54

Ammonium Sulphate 305 6 2,873 9 40 2 06 52

Phenyl Sepharose II 45 9 2,059 449 9 82 37

Table 3.4.1. Partial Purification ofPO from Bovine Serum. Units are expressed as pmoles MCA released per minute at 37°C Pools were assayed 

for PO activity as outlined in section 2 4 1  Protein was estimated using the BCA standard microplate assay as outlined m section 2 3 2
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3.5. Purification of Prolyl Oligopeptiadase Activity from the Cytosolic 

Fraction of Bovine Brain

3.5.1. Bovine Brain Preparation

50g brain slice yielded 240mL of post ultracentrifugation cytosolic brain supernatant

3.4.2. Ammonium Sulphate Precipitation

45% and 75% ammonium sulphate precipitation steps were performed as outlined m section 2 6 2 

PO activity remained in the supernatant (38mL) following the 45% step and centrifugation PO 

activity was precipitated after the 75% step

3.53. DEAE Sepharose Fast Flow Anion Exchange Chromatography

Following dialysis 7mL of post ammonium sulphate precipitate PO pool was applied to DEAE 

sepharose column as outlined in section 2 6 3 Figure 3 5 1 shows the elution profile of PO activity in 

a linear 0-350mM NaCl gradient Fractions 32-36 were combined to give the post DEAE sepharose 

chromatography pool (30mL). lmL of this pool was retained for activity (section 2 4 1 )  and protein 

measurements (2 3.2.).

3.5.4. SephacrvI S200 Sepharose Gel Filtration Chromatography

Following concentration by reverse osmosis 2mL of the post DEAE sepharose chromatography pool 

was applied to a sephacryl S200 gel filtration column as outlined in section 2 6 4 Figure 3 5 2 shows 

the elution of PO activity and protein from the column, qualitatively measured as m sections 2 4 3 

and 2.3 3. respectively. Fractions 31-37 were combined to give the post sephacryl S200 gel filtration 

chromatography pool lmL of this pool was retained for quantitative PO activity and protein 

measurements as outlined in sections 2 4 1  and 2 3 3 respectively

3.5.5. PBE 94 Chromatofocusing

Post sephacryl S200 gel filtration chromatography pool was dialysed and applied to chromatofocusing 

column as outlined in section 2.6 5 PO activity was eluted m a decreasing, linear, 6-4 pH gradient 

PO activity eluted approximately at pH 4 8 (see figure 3 5 3). Fractions 37-43 were combined to give 

the post chromatofocusing pool (35mL) lmL of this pool was retained for quantitative PO activity 

and protein measurements (see sections 2 4 1  and 2 3.4 respectively)

3.5.6. Phenvl Sepharose Hydrophobic Interactions Column Chromatography

Post chromatofocusing pool was salted and applied to phenyl sepharose column as outlined in section 

2 6 6 Figure 3 5 4 shows the elution of PO activity during a lOmM potassium phosphate buffer with 

15% v/v glycerol wash Fractions 25-38 were combined to give the post phenyl sepharose
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chromatography pool (25mL) lmL of this pool was retained for quantitative protein and activity 

measurements as outlined in sections 2 4.1 and 2 3 4 respectively The effectiveness of the 

purification is shown m table 3 5 1
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Figure 3.5.1. Elution profile of Prolyl Oligopeptidase from DEAE Sepharose Anion Exchange 

Cromatography. 7 5mL of post ammonium sulphate precipitation dialysate was applied to column at 

pH 8 0 as outlined in section 2 6 3 The column was eluted with a linear 0-350mM sodium chloride (-

 ) gradient Fractions were assayed for PO activity (•) as outlined m section 2 4  3. and protein

using the BCA standard microplate assay procedure as described in section 2 3 2
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Figure 3.5.2. Elution Profile of Prolyl Oligopeptidase Activity From Sephacryl S200 Sepharose 

Gel Filtration Chromatography. 2mL of reverse dialysed post DEAE sepharose pool with 10% (v/v) 

glycerol was applied to column as outlined m section 2.6 4 The column was eluted with 25mM 

imidazole-HCl with 150mM NaCl, pH 6 3 Fractions were assayed for PO activity (•) as outlined m 

section 2 4  3 Protein was determined using the BCA enhanced microassay procedure as outlined in 

section 2 3 3 Vo represents the void volume (105mL).
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Figure 3.5.3. Elution Profile of Prolyl Oligopeptidase Activity from PBE 94 Chromatofocusmg 

Column. 35mL of post sephacryl S200 aliquot was applied to column at pH 6 0 Column was then 

eluted with a linear 6 0-4 0 pH gradient Fractions were assayed for PO activity (•) as outlined m 

section 2 4  3 Protein ( ... ) was measured as outlined in section 2.3 4 The pH of each fraction was 

also monitored
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Figure 3.5.4. Elution Profile of Prolyl Oligopeptidase Activity From Phenyl Sepharose 

Hydrophobic Interactions Column. Post chromatofocusing pool was applied to column m 1M 

ammonium sulphate Prolyl oligopeptidase activity was eluted with a linear 1-0M ammonium

sulphate (---- ) gradient, followed by a lOOmL wash with lOmM potassium phosphate buffer with

5mM DTT, 0 5mM EDTA and 15% (v/v) glycerol Fractions were assayed for PO activity ( • )  and

protein (----- ) according to sections 2 4 3 and 23  4 respectively
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Sample Total Protein (mg) Total Activity (units) Specific Activity (Units/mg) Purification Factor Recovery (%)

’Brain Cytosol 122 26 1835292 15011 1 100

’Ammonium sulphate 24 95 1578408 63263 4 2 86

’DEAE Anion Exchange 10 69 927209 - 86736 5 8 51

2Sephacryl S200 6 57 534215 81311 5 4 29

3PBE94 0 19 433978 2319498 154.5 24

3Phenyl Sepharose O il 419227 3811155 253 9 23

Table 3.5.1. Purification of Prolyl Oligopeptidase from Bovine Brain Units are expressed as pmoles MCA released per minute at 37°C 

Pools were assayed for PO activity as described in section 2 41 Protein was estimated using1 BCA Standard microplate assay 

(section 2 3 2) ,2 BCA Enhanced microplate assay (section 2 3 3 ) and 3Biorad protein microassay (section 2 3 4 )
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3.5.7. Determination of Purity of Bovine Brain Prolvl Oligppeptidase

3.5.7.1. Polyacrylamide Gel Electrophoresis

SDS polyacrylamide electrophoresis was performed as outlined in section 2 7 1 Figure 3 5 5 

represents the silver stained gel image showing the various steps in bovine brain PO purification and 

molecular weight markers

Lane Number Sample

1 DE AE Sepharose

2 S200

3 PBE94

4 Phenyl Sepharose

5 Markers

A B-Galactosidase (116kDa)
B Fumarase (48 5kDa)
C Carbomc Anhydrase (29kDa)

B

Figure 3.5.5 SDS-Polyacrylamide Gel Electrophoresis For Bovine Brain PO Purification 

Silver stained polyacrylamide gel prepared as outlined in section 2 7 1 , illustrates the purification 

process with a major and minor band m the post phenyl sepharose pool Location of the major band 

relative to the molecular weight bands indicates a molecular weight of 66,000 Daltons
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3.5.72,. Fluorimetnc Assays for Interfering Peptidase Activity

The presence of contaminating peptidase activity was determined by monitoring for hydrolysis of a 

range of fluorimetnc substrates which were prepared and tested as outlined in sections 2 7 2 and 

2 4 1 .  respectively. Table 3 5 2 illustrates that none of the substrates were cleaved by the purified PO 

enzyme with the exception of Z-Gly-Pro-MCA and pGtu-His-Pro-MCA in the absence of Z-pro- 

prohnal (see section 2.7 2 )

Substrate Hydrolysis

Ala-MCA No
Arg-MCA No
Gly-Arg-MCA No
Gly-Pro-MCA No
Leu-MCA No
Lys-Ala-MCA No
pGlu-MCA No
pGlu-His-Pro-MCA No*
Z-Arg-MCA No
Z-Gly-Pro-MCA No*

Table 3.5.2. Cleavage o f Quenched Fluorimetnc Substrates by Contaminating Peptidases.

* Cleavage due to PO activity was obtained m the absence of Z-Pro-prolinal

3.6. Purified Prolyl Oligopeptidase Activity Assay Development

3.6.1. Solvent Effects on Purified Prolvl Oligopeptidase Activity and Assay Sensitivity

The effect of solvents such as DMSO, DMF, dioxane, methanol and ethanol on PO activity and 

their effectiveness in solubilising PO fluorimetnc assay substrate was investigated as outlined in 

section 2 81 Figure 3 61 illustrates the effects of these solvents on PO activity DMF, while the 

most effective substrate solubilisation solvent, was most inhibitory of enzyme activity with only 20% 

residual PO activity at 10% v/v Methanol was least inhibitory of PO activity but in contrast to DMF 

was least effective m solubilising substrate DMSO, dioxan and ethanol displayed similar trends in 

inhibition of enzyme but DMSO was found to be the optimal solvent in terms of both substrate 

solubility and enzyme activity
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3.6.2. Linearity of Purified Prolvl Qiigopeptidase Activity Assay With Respect to Time
The linearity of the purified PO activity assay as a function of time was examined as outlined m 

section 2 8 21 and 2 8 2 2 Firstly the linearity of the PO activity assay in the presence and absence 

of 0 5% w/v BSA (included m sample before storage), as a function of time was examined 

discontinuously over 60 minutes using 200jiM substrate Figure 3 6 2a illustrates that m the 

presence of BSA the assay was found to be linear over 60 minutes In the absence of BSA the assay 

stopped being linear in less than 10 minutes Figure 3 7 2b shows the linearity of PO activity assay as 

a function of tune using 100[xM and 200}iM Z-Gly-Pro-MCA with 4% v/v and 8% v/v DMSO 

respectively Over 40 minutes the assay is quite clearly linear using 200nM substrate

3.6.3. Linearity of Purified Prolvl Qiigopeptidase Activity Assay With Respect to Enzvme 

Concentration

A range of dilutions of purified PO activity were prepared and assayed as outlined m section 2 8 3 in 

order to examine the linearity of purified PO activity assay as a function of enzyme concentration 

Figure 3 6 3 illustrates that over a 40 minute time period the purified PO activity assay is linear with 

respect to enzyme concentration.

3.6.4. Effect of DTT on Purified Prolvl Qiigopeptidase Activity Assay Sensitivity
The effect of a range of DTT concentrations on purified PO activity assay sensitivity was investigated 

as outlined in section 2 8 4 From Figure 3 6.4 it was observed that 5mM DTT included in the assay 

substrate resulted in just over 2 5 times more activity than that of a control with no DTT. Triplicate 

readings were also found to be more reproducible in the presence of DTT

3.6.5. Effect of EDTA on Purified Prolvl Qiigopeptidase Activity Assay Sensitivity

The effect of various EDTA concentrations in PO assay substrate, on purified PO activity assay 

sensitivity was investigated as outlined m section 2 8 5 As illustrated m Figure 3.6 5 a slight 

increase in activity was observed in PO activity in the presence of 5mM EDTA, followed by a steady 

decline in activity

3.6.6. Effect of NaCl on Prolvl Qiigopeptidase Activity Assay Sensitivity

The effect of various NaCl concentrations on purified PO activity assay was studied as outlined in 

section 2 8 6 Figure 3 8 6 illustrates that PO activity was optimal m the presence of 400mM NaCL, 

with activity of 118% of the control sample (contained no NaCl)
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% solvent

Figure 3.6.1. Effect of Solvents on PO Activity Assay Sensitivity

This investigation was performed as outlined in section 2 81 Plot shows the effect of 3-10% v/v 

DMF (O), 5-10% v/v DMSO (•) , dioxane (■), ethanol (A) and methanol (T) on assay 

sensitivity/enzyme activity DMF appears to be most inhibitory of PO activity with 6% resulting m 

60% inhibition of PO activity. Methanol gave the highest sensitivity m comparison to ethanol, 

dioxane and DMSO Enzyme activity* expressed as a % of the activity obtained using 6% v/v 

DMSO
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Figures 3.6.2a. and 3.6.2b. Linearity of Purified PO Assay With Respect To Time.

Figure 3 6 2a. shows linearity of purified PO enzyme assay with ( • )  and without (O) 0 5% w/v BSA 

over 60 minutes Figure 3 6 2b shows linearity of purified PO assay with 100nM and 200|iM 

substrate
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undiluted sample
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DTT concentration (mM)

Figure 3.6.4. Effect of DTT on Prolyl Oligopeptidase Assay Sensitivity.

Plot shows effect of O-lOOmM DTT on PO activity Investigation was earned out as outlined m 

section 2 64  Enzyme activity* expressed as % of activity m the absence of DTT
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EDTA concentration (mM)

Figure 3.6.5. Effect of EDTA on PO Assay Sensitivity

Plot shows the effect of EDTA on PO assay sensitivity/activity Experiment was performed as outlined 

m section 2 6 5 Enzyme activity* expressed as % of activity in the absence of EDTA
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NaCl concentration (mM)

Figure 3.6.6. Effect of NaCl on PO Assay Sensitivity

Plot show the effect of NaCl on the sensitivity of PO assay. Experiment was performed as outlined m 

section 2.8 6 PO activity/ assay sensitivity increases at NaCl concentrations up to 400mM and 

declines at higher NaCl concentrations Enzyme activity* is an expression of the % of activity in the 

absence of NaCl
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3.7. Characterisation of Purified Prolyl Oligopeptidase Activity

3.7.1. Relative Molecular Mass Determination

3.7.1.1. Sephacryl S200 HR Gel Filtration Chromatography

The relative molecular mass of the purified PO activity was determined using a calibrated Sephacryl 

S200 gel filtration column which was prepared and run as described m section 2 9 1 1  Using a plot of 

Log(molecular mass) versus elution volume (molecular mass standards)/void volume as illustrated m 

Figure 3 7.11 the molecular mass of PO was found to be 69 440 kDa.

3.7.1.2. Polyacrylamide gel Electrophoresis

Using electrophoresis the relative molecular mass of the purified PO activity was determined as 

described m section 2 9 1 2  From a plot of Log (molecular mass) vs Rf value (distance travelled by 

mass standard or unknown/distance travelled by bromophenol blue dye front), illustrated in figure 

3 7 1 2  the relative molecular mass of purified PO activity was found to be 69 501 kDa The gel used 

in the molecular mass determination is shown in figure 3 5 5

3.7.2. pH Effects

The effects of assaying PO activity at a range of pHs and premcubating the enzyme at a range of pHs, 

prior to assaying for activity at pH 7 4 was investigated as described in sections 2 9.2 1 and 2 9.2 2 

respectively It can be concluded from figure 3 7.2a. that the optimum pH for assay of PO activity is 

7 4 using potassium phosphate buffer When PO activity was preincubated at a range of different pHs, 

using different buffer systems, and then assayed at pH 7 4 (potassium phosphate) it was found that the 

enzyme was almost completely inactivated at pHs of 4 5 or less and 10 0 or greater Premcubation of 

the enzyme at pHs between 5 and 9 prior to assay at pH 7 4 resulted in no loss of activity This is 

illustrated in figure 3.7 2b
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Figure 3.7.I.I. Sephacryl S-200 Molecular Mass Calibration Curve. Plot of Log molecular mass 

versus Ve/Vo where Ve is the elution volume of the molecular mass standard ( • )  or unknown (PO 

activity), (o) and Vo is the void volume (105mL) Ve and Vo were determined as outlined in sections

2.9 1.11 and 2 91  1.2. Linear regression analysis of the data obtained from the molecular mass 

standards produced the following calibration equation'

Log(molecular mass) = -2 6(Ve/Vo) + 9 86 

From this equation the molecular weight of PO was found to be 69 44kDa
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Rf value

Figure 3.7.I.2. SDS PAGE Molecular Mass Calibration Curve. Plot of Log molecular mass versus 

Rf value where the Rf value is the distance travelled by mass standard(*) or unknown (PO), (0), 

divided by the distance travelled by bromphenol blue dye front Linear regression analysis of the data 

obtained from the molecular mass standards produced the following calibration equation 

Log (molecular mass) = -1 017(Rf) + 5 2  

From this equation the molecular weight of PO was found to be 69,501 Daltons
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pH

pH

Figures 3.7.2a. and 3.7.2b. Effect of pH on Prolyl Oligopeptidase Activity. Plots show the effect of 

pH on PO activity Investigations were carried out as in sections 2 9.2 1 and 2 9 2 2 Figure 3 7 2a 

represents the activity of PO when assayed at different pHs It is evident that PO activity has a broad 

pH/activity range with a pH optima of 7 4 in potassium phosphate Figure 3 7 2b represents the 

inactivation profile of PO (pH at which PO activity is completely inactivated even when assay 

performed at pH 7 4) PO activity is completely inactivated below pH 4 5 and 10 0 Buffer systems 

used were citrate/phosphate ( • ) ,  phosphate (O), tris/HCl (A) and glycine/NaOH (♦ ) Enzyme 

activity* expressed as % of activity obtained in potassium phosphate, pH 7 4
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3.73 .  Temperature Effects

The effect of assaying PO activity at different temperatures and preincubating the enzyme at a range 

of temperatures, for different times, prior to to assaying at 37°C was investigated as outlined m 

sections 2 9 3 1 and 2.9 3 2 respectively The optimal temperatue for tfae assay of PO activity was 

determined to be 37°C. This is illustrated in figure 3 7.3a Figure 3 7.3b. illustrates that PO activity 

was completely inactivated by preincubation at 50°C and 60°C, for 15 minutes or more, prior to assay 

at 37°C. Preincubation of PO samples at 37°C and 40°C at various times up to 45 minutes, bad little 

effect on activity but samples left at room temperature (20°C) for more than 30 minutes lost greater 

than 30% of activity upon assay at 37°C
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Figures 3.7.3a. and 3.73b. Effect of Temperature on PO Activity.

Plots show the effect of assay temperature on PO activity (3 7 3 a ) and the effect of premcubation at 

different temperatures for different times on PO activity under normal assay conditions (3 7 3b) 

Experiments were performed as outlined m section 2 9 3 1 and 2.9 3 2 respectively Plots illustrate 

that PO has a narrow optimal assay temperature range being most active at 37°C In figure 3 9 3a 

enzyme activity is expressed as a % of activity at 37°C In figure 3 9 3b enzyme activity* is expressed 

as a % of activity obtained when preincubated for 15mm at 37°C.
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3.7.4. Effect of Divalent Metal Salts on Purified Prolyl Oligopeotidase Activity

The effect of divalent salts on purified prolyl oligopeptidase activity was investigated by incorporating 

the appropriate metal salt in fluorimetrie PO activity assay as outlined in section 2 9 4  Results 

presented in table 3 7 1 show that PO activity was inhibited by almost 100* by ImM HgS04 and 

CuS04 PO activity was also very strongly inhibited (greater than 50 % iahitnuoo) by CdSO«, C0 SO4 

and N1SO4 , and to a lesser extent, by ZnS04

Metal Salt % Residual Activity

CaS04 102 4 1 1 5

CdS04 11 4 ± 0  4

C0 SO4 24 7 ± 0 05

CuS04 0 32 ±  0 02

FeCl3 96 34 ± 0 29

HgS04 0 25 ± 0 05

MgS04 94 9 ± 0  37

N1SO4 377  + 0 04

ZnS04 59 7 ± 1 2

Table 3.7.1. Effect o f Divalent Metal Salts on Purified PO Activity

Actual concentration of metal salts during premcubation was ImM and during assay was 200jiM 

Residual activity is an expression of the percentage of activity remaining (pmoles/mm) following 

incubation with metal salt Positive controls were taken as enzyme activity following incubation with 

appropriate diluent buffer
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3 7.5. Effect of Functional Reagents on Purified Prolvl Oligopeptidase Activity

The effect of various functional reagents on purified PO activity was investigated as outlined in 

section 2 9 5 Table 3 7 2. illustrates the percentage residual activity after premcubation with 

appropriate functional reagent The percentage residual activity is an expression of enzyme activity 

(units/mL) as a percentage of positive control activity (100%) In table 3 7 2 concentrations of 

functional reagents are the actual concentrations during the incubations Of the reagents tested the 

cysteine protease inhibitors, DTNB (10, 5mM and 0 05mM) NEM (lOmM) and senne protease 

inhibitor, AEBSF (lOmM) were found to be the most potent inhibitors of PO activity, resulting in 

complete inhibition PO activity was also significantly inhibited by the cysteine protease inhibitors 

iodoacetamide(10mM) and to a lesser extent lodoacetate (lOmM) with only 14 84% and 40 40% 

activity remaining respectively Activity was also inhibited by over 50% by lOmM 1,10 

phenanthroline, bacitracin and N-Decanoyl CoA and to a lesser extent by 1,7 and 4,7 phenanthroline 

(lOmM) A two-fold increase in PO activity following incubation with lOmM DTT was observed
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Functional Reagent % Residual Activity

lOinM 5mM ImM O.lmM 0.05mM

Iodoacetamide 14.84 26.11 63.40

Iodoacetate 40.40 59.67 98.98

N-Ethylmalemide (NEM) 0.36 1.16

Dithiomtrobenzoicacid (DTNB) 0 0 0.46

Dithiothreitol 2013 106 83

2-Mercaptoethanol 85.09 81.43

AEBSF 0 1736

PMSF 89.27 95.11

EDTA 112 65 111.77

EGTA 95 81 9845

CDTA 94 38 10014

8-Hydroxyqumohne 89 71 107 99

Imidazole 89 05 98.73

1 ,10-Phenanthrohne 43 08 56 27

1, 7-Phenanthrolme 74 35 87 38 96 10

4 , 7-Phenanthroline 70 90 82 42 87 17

Benzamidme 93 12 94.41

Camitme 101 88 10098

lmg/mL 0.5mg/mL 0.1mg/mL 0.05mg/mL

Bacitracin 21.59 30.19

Pepstatm 89 15 103 47

Soybean Trypsin Inhibitor 77 75 89 57

Aprotmm 86 00 93 42

Puromycm 92 71 98 17

N-Decanoyl CoA 46.05 81 54 83.84

Table 3.7.2. Effect of Functional Reagents on Prolyl Oligopeptidase Activity 

Functional reagents were prepared according to section 2 9 5 % Residual activity is an expression of 

the remaining activity relative to positive controls Concentrations given were the actual 

concentrations during the 15 minute pre-mcubation



3.7.6. Substrate Specificity Studies on Purified Prolvl Oligonentidase Activity 

Substrate specificity studies on purified bovine brain prolyl oligopeptidase activity were performed as 

described m section 2 9 6 Using reverse phase HPLC and MALDI-TOF mass spectrometry, the 

cleavage of some proline containing peptides was monitored qualitatively Fluoresence spectrometry 

was used to determine kinetic parameter for fluorescent substrates and prolme containing peptides 

Some comparative investigations were earned out using partially punfied bovine serum PO activity 

and purified recombinant Flavobacterium memngosepticum PO activity

3.7.6.I. Substrate Specificity Studies using Reverse Phase HPLC

Reverse phase HPLC was used to determine whether brain, serum and F memngosepticum PO 

activities cleaved a variety of prohne containing peptides, listed in table 2 9 6 1 Reactions of peptides 

with enzyme samples and reverse phase HPLC was carried out as outlined m sections 2 9 6 1 2  and 

2 9 6 1 3 respectively The optimal wavelength for detection of peptides and cleavage products was 

found to be 214nm Table 3 7 3 illustrates the peptides tested and whether or not they were cleaved 

by the various PO activities Figures 3 7 6 1 1  to 3 8 6 1  10 represent chromatograms of absorbance 

at 214nm versus retention time (minutes) for ADNF-14, angiotensin I, angiotensin II, angiotensin III, 

Arg8-vasopressin, bradykmm, Glu2-TRH, Gly-Gly-Pro-Ala, TRH and TRH-Gly respectively for brain 

and F memngosepticum activities
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Peptide Cleavge Detected

Brain PO Serum PO F. memngosepticum

PO

ADNF-14 Yes N D N D

Angiotensin I Yes Yes Yes

Angiotensin II Yes Yes Yes

Angiotensin III Yes Yes Yes

Arg8-Vasopressm No N D Yes

Bradykmm Yes Yes Yes

H-Gly-AIa-Phe-OH No No No

H-Gly-Gly-Pro-Ala-OH No No Yes

H-Gly-Pro-OH No No No

G1u2TRH Yes Yes Yes

Phe2TRH Yes N D Yes

TRH-Gly Yes Yes Yes

TRH Yes Yes Yes

LHRH Yes Yes Yes

Substance P Yes Yes Yes

Z-Gly-Pro-Ala-OH Yes Yes Yes

Z-Pro-Ala-OH No No No

Z-Pro-Gly-OH No No No

Z-Pro-Leu-Gly-OH No No No

Z-Pro-Pro-OH No No No

Table 3.7.3. Substrate Specificity studies-Reverse Phase HPLC ofProhne Containing Peptides 

Reverse Phase HPLC was earned out on peptides which had been incubated with brain, serum and 

bacterial PO activities as oudined m section 2 9 6.1 Table states whether or not cleavage was 

obtained N D -not determined
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Figure 3.7.6.I.I. Chromatogram of absorbance at 214nm versus retention time in minutes for ADNF- 

14 Substrate specificity studies performed as outlined in section 2 9 6 1  l i e  presence of ADNF-14 

before (-—) and after (—) incubation with purified bovine brain PO, is illustrated Cleavage product 

*, although not well resolved from ADNF-14 peak, is also shown
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Figures 3.7.6.1.2a and 3.7.6.1.2b. Chromatograms of absorbance at 214nm versus retention time in 

minutes for Angiotensin I Substrate specificity studies performed as outlined m section 2 9  6 1  The 

presence of Angiotensin I before (— ) and after (—) incubation with purified bovme bram PO 

(3 7 6 1 2a ) bacterial PO (3 7 6 1 2b ) is illustrated Cleavage products * , are also shown
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Figures 3.7.6.1.3a. and 3.7.6.1.3b. Chromatograms of absorbance at 214nm versus retention time in 

minutes for Angiotensin n  Substrate specificity studies performed as outlined in section 2 9 6 1  The 

presence of Angiotensin II before (— ) and after (—) incubation with purified bovine brain PO 

(3 7 6 1 3a ) and bacterial PO (3 7 6 1 3b ) is illustrated Cleavage products * , are also shown
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Figures 3.7.6.1.4a. and 3.7.6.1.4b. Chromatograms of absorbance at 214nm versus retention tune m 

minutes for Angiotensin III Substrate specificity studies performed as outlined m section 2 9 6 1 The 

presence of Angiotensin III before (— ) and after (—) incubation with purified bovine brain PO 

(3 7 6 1 4a ) and bacterial PO (3 7 6 1 4b ) is illustrated Cleavage products * , are also shown
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Figures 3.7.6.1.6a. and 3.7.6.1.6b. Chromatograms of absorbance at 214nm versus retention time in 

minutes for Bradykinin Substrate specificity studies performed as outlined in section 2 9 6 1  The 

presence of Bradykinin before (— ) and after (—) incubation with purified bovine brain PO 

(3 7 6 1 6a ) and bacterial PO (3 7 6 1 6b ) is illustrated Cleavage products * , are also shown
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Figures 3.7.6.1.7a and 3.7.6.1.7b. Chromatograms of absorbance at 214nm versus retention time in 

minutes for Glu2-TRH Substrate specificity studies performed as outlined m section 2 9 6 1  The 

presence of GIu2-TRH before (— ) and after (—) incubation with purified bovine brain PO 

(3 7 6 1 7a ) and bacterial PO (3 7 6 1 7b ) is illustrated
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Figures 3.7.6.1.8a and 3.7.6.1.8b. Chromatograms of absorbance at 214nm versus retention time m 

minutes for Gly-Gly-Pro-Ala Substrate specificity studies performed as outlined in section 2 9 6 1 

The presence of Gly-Gly-Pro-Ala before (— ) and after (—) incubation with purified bovine brain 

PO (3 7.6 1 8a ) bacterial PO (3 7 6 1 8b ) is illustrated The major cleavage product * , Gly-Gly-Pro, 

is also shown
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Figures 3.7.6.1.9a. and 3.7.6.1.9b. Chromatograms of absorbance at 214nm versus retention time m 

minutes for TRH Substrate specificity studies performed as outlined m section 2 9 6 1  The presence 

of TRH before (— ) and after (—) incubation with purified bovine bram PO (3 7 6 1 9a ) and 

bacterial PO (3 7 6 1 9b ) is illustrated The major cleavage product * , TRH-OH, is also shown
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Figures 3.7.6.1.10a. and 3.7.6.1.10b. Chromatograms of absorbance at 214nm versus retention time 

in minutes for TRH-Gly Substrate specificity studies performed as outlined m section 2 9 6 1  The 

presence of TRH-Gly before (— ) and after (—) incubation with purified bovine bram PO 

( 3 7 6 1  10a ) and bacterial PO (3 7 6 1 10b ) is illustrated The major cleavage product * , TRH-OH, 

is also shown
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3.7 6.2. Substrate Specificity With MALDI-TOF Mass Spectrometry

MALDI-TOF Mass Spectrometry was used to determine whether purified brain PO cleaved ACTH ]8_ 

3 9 , (Gly-Pro-Ala) polymer and amyloid precursor protein fragment 7 0 8 -7 15 It was also intended to 

confirm if bovine brain PO behaved m a similar manner to the bacterial and the porcine kidney 

forms of the enzyme Mass spectrometry was performed as outlined in section 2 9 6  3 Brain PO was 

found to cleave ACTHi8. 39 at 2 positions to give ACTH18.24, ACTH2 5 .3 9  and ACTH2 5 .3 6  Cleavage 

sites were marked by the presence of prolme PO was also found to cleave the (Gly-Pro-Ala) polymer 

over time Amyloid fragment was cleaved to give APP7 0 8 -713 Table 3 7 4 summarises the cleavage 

sites deduced for these peptides and figures 3 7 6 2 1 - 3 7 6 2 3  represent the mass spectra (relative 

intensity versus mass/charge ratio) obtained Comparisons with the bacterial and porcine enzymes are 

discussed m section 4 7  6  2

Peptide Cleavage

I
APP708-715 Gly-Gly-Val-Val-Ile-Ala-Thr-Val

I
CLIP (ACTH18.39) Ar|-Pro-Val-Lys-Val-Tyr-Pro-Asn-Gly-Ala-Glu-Asp-Glu-Ser-Ala-Glu-Ala-Phe-

Pro-Leu-Glu-Phe

(Gly-Pro-Ala)i5 (Gly-Pro-Ala-Gly-Pro-Ala-Gly-Pn>Ala)5

Table 3.7.4. Prolyl Ohgopeptidase Cleavage Sites as Determined by MALDI-TOF Mass 

Spectrometry

APP Amyloid A4 Precursor Protein

CLIP Corticotropin Like Lobe Intermediate Peptide

1 1 0



Figure 3 7.6.2.1a.

Figures 3.7.6.2.1a. and 3.7.6.2.1b. MALDI-TOF MS Analysis of CLIP Cleavage by Prolyl 

Oligopeptidase with Time

Figures 3.7.6.2 la. and 3 7.6.2.1b represent spectra obtained after incubation of enzyme with CLIP 

for times of 0  and 60 minutes respectively as outlined in section 2.9 6 .2 . M2505.40, M1665.8 and 

M858.2 represent ACTH 18-39, 2 5 -3 9 and ig.2 4  respectively.
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Figure 3.7.6.2.1c. MALDI-TOF MS Analysis of CLIP Cleavage by Prolyl Oligopeptidase with 

Time. Figure 3.7 6 2 lc . represents the spectrum obtained after incubation of enzyme with CLIP for 

120 minutes as outlined in section 2 9.6 2 M2505.40, M1665 8, M1277.1 and M858.2 represent 

ACTH i8-39> 2 5-39,2 5 -3 6  and 18 -2 4 respectively
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m/s
Figure 3.7.6.2.2b

n /z

Figure 3.7.6.2.2a and 3.7.6.2.2b. MALDI-TOF MS Analysis of APP 708.7 x5  Cleavage by Prolyl 

Oligopeptidase with Time. Figures 3 7.6 2.2a and 3 7.6.2.2b. represents the spectra obtained after 

incubation of enzyme with APP for 0 and 120 minutes respectively as outlined in section 2.9 6.2 

M715.8 and M515.7 represent APP7 0 8 -7 1 5  and 7 0 8 -7 13  respectively.
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Figure 3.7.6.2.3a.
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Figure 3.7.6.2.3a and 3.7.6.2.3b. MALDI-TOF MS Analysis of (Gly-Pro-Ala)polymerCleavage 

by Prolyl Oligopeptidase with Time. Figures 3.7.6.2.3a and 3.7.6.2.3b. represents the spectra 

obtained after incubation of enzyme with (Gly-Pro-Ala)polymer for 0 and 200 minutes respectively as 

outlined in section 2.9.6.2. Peaks 1-12 represent (Gly-Pro-Ala)^ (fig 3.7.6.2.3a.) and peaks 6-11 

represent (Gly-Pro-Ala),«.,, (figure 3.7.6.2.3b).
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Figure 3.7.6.2 3c

n/z

Figure 3.7.6.2.3c. MALDI-TOF MS Analysis of (Gly-Pro-Ala)poIymerCleavage by Prolyl 

Oligopeptidase with Time.

Figure 3 7.6.2.3c and represents the spectrum obtained after incubation of enzyme with (Gly-Pro- 

Ala)polymer for 300 minutes as outlined in section 2  9.6 2. Peaks 4-8 represent (Gly-Pro-Ala)14-19
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3 7 6 3 1 Km Determination for Z-Glv-Pro-MCA

Michaelis Menten Constants were determined for the reactions of purified bovine bram, bovine serum 

and recombinant bacterial PO activities using the substrate Z-Gly-Pro-MCA as outlined m section

2 9 6 3 1 Km values were determined using Michaelis Menten, Lineweaver-Burk, Eadie Hoftsee and 

Hanes-Wolf analysis Figures 3 7 6 3 1 1  to 3 7 6 3 1 3  represent data obtained experimentally as 

Lmeweaver-Burk plots for bram, serum and bacterial PO respectively Table 3 7 5 illustrates the Km 

results

3 7 6 3 2 Km Determination for nGlu-His-Pro-MCA

Michaelis Menten Constants were determined for the reactions of purified bovine brain, bovine serum 

and recombinant bacterial PO activities using the substrate pGlu-His-Pro-MCA as outlined in section 

2 9 6 3 1 Km values were determined using Michaelis Menten, Lmeweaver-Burk, Eadie Hoftsee and 

Hanes-Wolf analysis Figures 3 7 6 3 2 1  to 3 7 6 3 2 3  represent data obtained experimentally as 

Lmeweaver-Burk plots for bram, serum and bacterial PO respectively Table 3 7 6 3 1 illustrates the 

Km results

3.7.6.3. Kinetic Studies

Substrate Brain PO

MM LB HW EH

Serum PO

MM LB HW EH

Recombinant PO

MM LB HW EH

Z-Gly-Pro-MCA

pGlu-His-Pro-MCA

39 5 62 5 48 5 59 1 

82 3 99 8 91 3 92 3

10 6 14 6 11 5 13 5 

42 3 52 1 48 6 47 8

21 2 38 5 17 5 24 7 

52 9 73 5 64 3 66 3

Table 3.7 5. Km values (¡lM) obtained for Fluonmetnc Substrates Z-Gly-Pro-MCA and pGlu- 

His-Pro-MCA

Km values were obtained for brain, serum and recombinant bacterial PO activities MM-Michaelis- 

Menten, LB-Lineweaver-Burk, EH-Eadie-Hoftstee, HW-Hanes-Wolf
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3 7 6 3 3 Ki Determination for Prolme-Containing Peptides

Ki values were determined using brain serum and recombinant PO for a range of prolme-contaimng 

peptides as outlined in section 2 9 6 3 3 ,  using the fluorimetric substrate Z-Gly-Pro-MCA Inhibitor 

constants (Ki values) were determined using Lmeweaver-Burk analysis and are outlined m table 

3 7 6 Figures 3 7 6 3 3 1  to 3 7 6 3 3 5  represent Lineweaver-Burk reciprocal plots for angiotensin II, 

AVP, TRH, LHRH and neurotensin using bpvme brain activity

Inhibitor ♦Concentration

(|iM)

Brain

(1)

KifuM )

Serum

(2)

Recombmant

(3)

TRH 200 90 91 83 3 642

LHRH 400 30 02 - -

Bradykmin 160 33 3 12 0 133 5

Neurotensin 100 212 3 8 155 3

Arg8-Vasopressm 100 77 8 33 333 3

Angiotensin I 100 14 3 3 0 -

Angiotensin II 100 12 7 1 8 19 56

Angiotensin III 100 23 1 2 7 17 8

Glu2TRH 160 2797 2 221.4 1285 4

Phe2TRH 200 493 2 128 80 63191

Table 3.7.6. Ki Values Determined for a Range o f Prolme-Containing Peptides 

Ki values were determined using Z-Gly-Pro-MCA as substrate All peptides were found to be 

competitive inhibitors of PO and Ki values were estimated from Km and apparent Km values (Km in 

the presence of (inhibitor/substrate)

* Actual concentration of peptide during assay
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Figures 3.7.6.3.1.1 to 3.7.6.3.I.3. Kinetic Analysis of brain, serum and bacterial PO respectively 

using Z-Gly-Pro-MCA

Lmeweaver-Burk reciprocal plots of reaction velocity versus Z-Gly-Pro-MCA concentration Km 

results illustrated in table 3.7 6.3 1
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1/substrate concentration (fiM"1)

1/substrate concentration ((jM1)

1/substrate concentration (¡oMT1)

Figures 3.7.6.3.2.1 to 3.7.6.3.2.3. Kinetic Analysis o f brain, serum and bacterial PO respectively 

using pGlu-HiS'Pro-MCA

Lmeweaver-Burk reciprocal plots of reaction velocity versus Z-Gly-Pro-MCA concentration. Km 

results illustrated in table 3 7 6 3 1
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1/Substrate concentration ((iMT1)

Figure 3.7.6.3.3.I. Kinetic analysis of the effect of Angiotensin II (O) on bovine brain PO 

activity towards Z-GIy-Pro-MCA ( • ) .  Figure illustrates Lineweaver-Burk reciprocal plots of 

reaction rate versus substrate concentration Procedure was performed as outlined in section 2 9 6 3 3. 

Rates* were an expression of fluorescent intensities
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Figure 3.7.6.3.3.2. Kinetic analysis of the effect of Arg*-Vasopressin (O) on bovine brain PO 

activity towards Z-Gly-Pro-MCA ( • ) .  Figure illustrates Lineweaver-Burk reciprocal plots of 

reaction rate versus substrate concentration Procedure was performed as outlined in section 2 9 6 3 3 

Rates* were an expression of fluorescent intensities
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Figure 3.7.6.3.3.3. Kinetic analysis of the effect of TRH (O) on bovine brain PO activity towards 

Z-GIy-Pro-MCA ( • ) .  Figure illustrates Lmeweaver-Burk reciprocal plots of reaction rate versus 

substrate concentration Procedure was performed as outlined in section 2 9 6 3 3 Rates* were an 

expression of fluorescent intensities

1/Substrate concentration ( j jM '1)

Figure 3.7.6.3.3.4. Kinetic analysis of the effect of LHRH(O) on bovine brain PO activity 

towards Z-Gly-Pro-MCA ( • ) .  Figure illustrates Lmeweaver-Burk reciprocal plots of reaction rate 

versus substrate concentration Procedure was performed as outlined in section 2 9 6 3 3 Rates* were 

an expression of fluorescent intensities
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Figure 3.7.6.3.3.5. Kinetic analysis of the effect of Neurotensin(O) on bovine brain PO activity 

towards Z-Gly-Pro-MCA ( • ) .  Figure illustrates Lineweaver-Burk reciprocal plots of reaction rate 

versus substrate concentration Procedure was performed as outlined in section 2 9 6 3 3 Rates* were 

an expression of fluorescent intensities
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3.7.7. Effect of Specific Inhibitors on Purified Prolyl Oligopeptidase Activity

3.7.7.1. Determination of IC50 Values For a Range of Specific Prolyl Oligopeptidase Inhibitors

The effect of various dilutions of specific inhibitors on purified bovine brain, bovine serum and 

recombinant flavobactenal PO activities was investigated as outlined m section 2 9.7 1 Figures 

3.7.7.1.1 to 3 7 7.1.9. illustrate the effect of these inhibitors on purified bovme brain PO activity 

Table 3 7 7. summarises the IC50s determined for brain, serum and recombinant activities, a- 

Ketobenothiazole displayed the most potent inhibitory activity, with an IC50 of 6 SlxlO'^M for the 

bram activity All three PO activities were strongly inhibited by Z-Pro-prolmal, Z-indolmyl prohnal, 

Fmoc-Ala-Pro-mtrile and Fmoc-Pro-Pro-mtrile However in the case of Fmoc-Pro-Pro-nitrile the 

IC50 obtained for the recombinant activity was almost 10-fold higher than the IC50s obtained for the 

mammalian activities

Inhibitor

Brain

icsonvn

Serum Bacterial

Z-Pro-prolmal lOnM lOnM 7nM

Z-Pro-prolinal-Dimethyhylacetate 44|aM 4pM 32jiM

Cyclohexyl-prolinal 649nM ND ND

Z-Indohnyl-prohnal lOnM lOnM 29nM

Fmoc-Ala-Pyrr-Nitnle lOnM lOnM 66nM

Fmoc-pro-Pyrr-Nitnle 89nM 88nM 551nM

Z-Phe-Pro-Methylketone 13(iM llpM 45nM

Postatm 17|iM 1 3pM 8pM

a-Ketobenzothiazole 63pM ND ND

Table 3.7.7. IC50 Values Determined for Proline Specific Peptidase Inhibitors 

The effect of specific inhibitors on purified bovine bram, serum and recombinant flavobactenal PO 

activities was investigated as outlined m section 2 9 7 1 Results are expressed as IC50s (M) which 

were taken as the concentration of inhibitor required to inhibit enzyme activity by 50% Enzyme 

activities* were expressed as percentages of activities without inhibitor
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Figures 3.7.7.I.I. and 3.7.7.I.2. Effect of Z-Pro-prolinal and Z-Pro-proIinal dimethylacetate on 

bovine brain prolyl oligopeptidase. Figures 3 7.7 1 1 and 3 7 7 1 2  illustrate the effect of Z-Pro- 

prolmal and Z-Pro-prolinal dimethyl acetate respectively on purified bovme brain PO IC50 values 

determined for each inhibitor are illustrated in table 3.7 7 Experiments were performed as outlined m 

section 3.7 7 1 Enzyme activity* is an expression of the % of activity obtained in the absence of 

inhibitor
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Figures 3.7.7.I.3. and 3.7.7.I.4. Effect of Fmoc-Pro-Pyrr-Nitrile and Fmoc-AIa-Pyrr-Nitrile on 

bovine brain prolyl oligopeptidase. Figures 3 7 7 1  3 and 3 7 7 1 4  illustrate the effect of Fmoc- 

Pro-Pro-Nitnle and Fmoc-Ala-Pro-Nitrile respectively on purified bovine brain PO. IC50 values 

determined for each inhibitor are illustrated in table 3 7 7 Experiments were performed as outlined in 

section 3.7.7 1 Enzyme activity* is an expression of the % of activity obtained in the absence of 

inhibitor
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Figures 3.7.7.I.5. and 3.7.7.I.6. Effect of Cyclohexyl-Prohnal and a-Ketobenzothiazole on bovine 

brain prolyl oligopeptidase. Figures 3 7 7 1 5  and 3 7 7 1 6  illustrate the effect of Cyclohexyl- 

Prolmal and a-Ketobenzothiazole respectively on purified bovine brain PO IC50 values determined 

for each inhibitor are illustrated in table 3 7 7 Experiments were performed as outlined m section 

3 7 7 1. Enzyme activity* is an expression of the % of activity obtained in the absence of inhibitor
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Figures 3.7.7.I.7. and 3.7.7.I.8. Effect of Postatin and Z-Phe-Pro-Chloromethylketone on bovine 

bram prolyl oligopeptidase. Figures 3 7 7 17. and 3 7 7.1 8 illustrate the effect of Postatin and Z- 

Phe-Pro-Chloromethylketone respectively on purified bovine brain PO IC50 values determined for 

each inhibitor aré illustrated in table 3 7 7 Experiments were performed as outlined in section 

3 7 7 1. Enzyme activity* is an expression of the % of activity obtained in the absence of inhibitor
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Figure 3.7.7.I.9. Effect of Z-Indolinyl-Prolinal on bovine brain prolyl oligopeptidase. Figure 

3 7 7 19  illustrates the effect of Z-Indolinyl-Prolinal on purified bovine brain PO IC50 values 

determined for each inhibitor are illustrated in table 3 7 7 Experiments were performed as outlined in 

section 3 7 7 1 Enzyme activity* is an expression of the % of activity obtained m the absence of 

inhibitor
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3.1.1.2. Effect of Z*Phe-AIa-ChloromethyIketone on Purified Bovine Brain and Recombinant 

Prolyl Oligopeptidase Activity with Time

The effect of Z-Phe-Ala-Chloromethylketone on purified bovine brain and recombinant 

Flavobacterium meningosepticum prolyl oligopeptidase activity was investigated as outlined in 

section 2 8 7 2 Enzyme activity, expressed as a percentage of activity in the absence of inhibitor, over 

time is illustrated m figure 3 7 7.2.1 The inhibitor which was found to completely inhibit the 

recombinant activity after 45 minutes, had no effect on the bovine brain form of the enzyme
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Time (minutes)

Figure 3.7.7.2.I. Effect of Z-Phe-Ala-CMK on purified Bovine Brain and recombinant 

Flavobacterium meningosepticum Prolyl Oligopeptidase Activity.

The effect of Z-Phe-Ala-CMK on bovine brain (•) and recombinant PO (■) activities over time was 

investigated as outlined in section 2 8 7 2 Enzyme activities* were expressed as a percentage of 

activities measured at 0 minutes Positive controls with no inhibitor for brain (o) and recombinant (□) 

samples were mcluded in the experiment
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4. DISCUSSION



4.1. Fluoresence Spectrophotometry and 7-Amino-4-Methyl Coumarin

In order to dctcct low levels of peptidases, the use of high affinity substrates is essential Early studies 

on PO made use of radiometric substrates such as radiolabelled oxytocin (Walter et a l , 1971) 

Fluonmetnc assays offer increased safety and ease of use over radiometric assays and increased 

sensitivity and selectivity over colorimetric assays (Rendell, 1987) The enzyme assays outlined in 

section 2 4 arc all based on the use of an internally quenched MCA molecule attached to an N- 

blocked dipeptide, Z-Gly-Pro This substate was first synthesised by Yoshimoto et a l , 1979, and was 

reported to have a higher affinity for PO and the greatest sensitivity over substrates such as Z-GIy- 

Pro-ONp Km and kcat values of 20nM and 557 3s'1 were reported for this substrate, by this group 

Fluoresence is a form of luminesence involving the re-emission of previously absorbed radiation In 

the assay system for PO, this peptidase mediates peptide bond cleavage at the carboxyl end of proline 

leading to the liberation of MCA Electromagnetic radiation at a wavelength of 370nm is absorbed by 

MCA elevating it to an excited state Then on returning to the ground state, radiation of 440nm is 

emitted

4.2. Quenching and the Inner Filter Effect

With regard to fluoresence a variety of forms of quenching can affect sensitivity leading to 

misleadingly low fluoresence For instance self quenching is the result of fluoresmg molecules 

colliding and losing their excitation energy by radiationless transfer Colhsional impurity quenching 

involves the formation of a complex between excited MCA and a ground state impurity again 

resulting in radiationless energy transfer This type of quenching can be usually attributed to the 

presence of dissolved oxygen or compounds containing heavy atoms such as halogens (Willard et a l , 

1988) It is a form of quenching that is the result of the presence of impurities that absorb either the 

exciting or emitted radiation, leading to a reduction of the fluorescent power that is particularly 

problematic in the case of crude biological samples such as serum and brain extracts This type of 

quenching is also known as the “inner filter” effect In order to compensate for this effect it was 

necessary in the preparation of MCA standard curves to replicate assay conditions Therefore serum 

and brain supernatant were incorporated into MCA dilutions during the preliminary assays of crude 

samples for PO and ZIP activities (for preparation see section 2 2 )  Figures 3 1 1  and 3 1 3  

illustrate the quenching effect of neat brain supernatant and serum on MCA fluoresence This 

influence is also reflected m the slopes obtained for the quenched and unquenched curves In the case 

of neat bram supernatant a 23% reduction in the slope value was observed at an emission slit width 

of 2 5nm, but in the case of serum a 31% decrease m the slope value was observed at an emission slit 

width of 5nm (see table 3 1 )  Another possibility m the minimisation of the quenching effect is 

dilution of the sample This proved successful in the case of bram supernatant as the PO activity
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present was too high to measure at the lowest emission slit width of 2.5nm. Therefore a one in twenty 

dilution was necessary to make the measurement of liberated MCA. This dilution also eliminated the 

quenching effect as identical slopes were obtained for standard curves prepared with buffer and a 

working dilution of brain supernatant (see table 3.1.). Although dilution of serum would have been 

feasible to minimise the quenching effect, it would have meant expanding the emission slit width. 

Expanding the emission slit width would consequently broaden the bandwidth over which the 

fluorimeter integrates light emitted from a particular sample. For instance for an emission wavelength 

and slit width of 440nm and 2.5nm respectively, the fluorimeter integrates light radiated from 438.75 

to 441.25nm. If the slit width is increased to lOnm, light radiated from 435-445nm is integrated. 

Although an increase in slit widths would undoubtedly lead to an increase in sensitivity this would be 

accompanied by a parallel increase in inner filter effect interference.

Although the quenching effect of bovine brain supernatant on fluoresence was eliminated by dilution, 

quenched standard curves were still prepared throughout purification and characterisation 

procedures. Many compounds other than biological samples can contribute to quenching. These 

include buffers such as Tris-HCl and imidazole-HCl. Decreasing the pH of these buffers can cause a 

corresponding decrease in slope. A variety of functional reagents and divalent metals can also 

contribute to quenching. For instance slopes obtained for standard curves prepared in the presence of 

lOmM 8-hydroxyquinoline, a metal chelator, are 57% lower than those calculated for standard curves 

prepared with buffer. As a precautionary measure quenched standard curves were prepared for all 

functional reagents and metal salts.

4.3. Measurement of Z-GIy-Pro-MCA Hydrolysing Activity in Crude Bovine 

Brain Supernatant and Serum.

Z-Gly-Pro-MCA hydrolysing activity was measured in crude bovine brain supernatant and bovine 

serum as outlined in sections 2.4.1 and 2.4.2. in a modification of procedures described previously 

(Yoshimoto et al., 1979; Cunningham and O’Connor, 1997b). Assays on both samples were 

performed in the presence and absence of SxlCT'M Z-Pro-prolinal, the classical, specific PO inhibitor 

(Wilk and Orlowski., 1983). Previously it was concluded that Z-GIy-Pro-MCA was a substrate 

specific for PO detection. Many studies, particularly clinical evaluations of PO levels in serum, have 

used this fluorimetric substrate but have failed to incorporate a specific PO inhibitor to validate that 

all Z-Gly-Pro-MCA hydrolysing activity was entirely attributable to PO (Maes et al.,1994, 1995b). 

However the existence of a second Z-Gly-Pro-MCA hydrolysing activity, which was completely 

insensitive to Z-Pro-prolinal was recently reported by this laboratory (Cunningham and O’Connor., 

1997b). PO and this ZPP insensitive peptidase were clearly distinguishable on the basis of their 

behaviour during cation exchange chromatography and sensitivity to DTT, the ZPP insensitive 

peptidase activity being unaffected by this reducing agent’s presence. Therefore in the case of serum

132



it was very important to clearly distinguish these two Z-Gly-Pro-MCA hydrolysing activities in order 

to separate them. It was also necessary to determine whether this ZIP (Z-Pro-prolinal-insensitive Z- 

Gly-Pro-MCA hydrolysing activity ) activity was present in bovine brain. Measurements made in 

serum confirmed the presence of both PO and ZIP activity, with 17% of total Z-Gly-Pro-MCA 

hydrolysing activity being Z-Pro-prolinal insensitive (ZIP), (figure 3.3.1). The assay conditions were 

however conducive to PO and not ZIP activity by the inclusion of DTT and omission of NaCl, which 

was found in this laboratory to activate ZIP. The total Z-Gly-Pro-MCA hydrolysing activity in brain 

homogenate was found to be 280% that of activity in serum (see figure 3.3.2.). Interestingly none of 

this activity was found to be insensitive to Z-Pro-prolinal. This would cast some doubt on the possible 

role of the ZIP enzyme in the hydrolysis of neuropeptides. However in attempting to assign a 

particular role for peripheral serum PE in the pathophysiology of depression, Maes et al., 1995b, 

speculated that PO could exert a central effect by either the degradation of peptides in serum 

generating bioactive products which could traverse the blood-brain barrier or by degrading smaller 

peptides, that were able to cross the blood-brain barrier, thus altering their central effects. It is clear 

that further studies are required of this ZIP enzyme before any possible function in neuropeptide 

metabolism can be confirmed.

4.4. Partial Purification of Prolyl Oligopeptidase from Bovine Serum.

PO from bovine serum was partially purified from bovine serum as outlined in section 2.5. to allow 

for comparative work to be completed in substrate specificity and inhibitor experiments. In this 

purification process it was crucial to ensure removal of all ZIP activity.

4.4.1. Phenyl Sepharose CL-4B Hydrophobic Interactions Chromatography I and II

In order to partially purify PO from bovine serum two consecutive hydrophobic interactions columns 

were used. The first column functioned in separating PO and ZIP activity. The protein and activity 

profile for this column illustrate the presence of 2 distinct peaks of Z-Gly-Pro-MCA hydrolysing 

activity. The first and larger peak appeared to run through the column with a substantial protein peak. 

The second peak was eluted isocratically with distilled water (see figure 3.4.1.). Fractions, when 

assayed in the presence and absence of Z-Pro-prolinal were found to contain both PO and ZIP. The 

first “run-through” peak was completely sensitive to Z-Pro-prolinal (PO), the second peak was 

completely insensitive to Z-Pro-prolinal (ZIP). While this column was quite efficient in the removal 

of protein there was a considerable, unexpected loss of activity (46%), (see table 3.4.1.). The higher 

ammonium sulphate concentration (1M) during the running of the second phenyl sepharose column 

allowed for binding of PO activity. This activity was eluted during a linear decreasing ammonium 

sulphate gradient (see figure 3.4.2.). An overall unexceptional purification factor of 9.82 and yield of
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37% were obtained overall for this partial purification (table 3 4 1 )  It was however evident that PO 

was quite unstable as precautions, such as the inclusion of DTT m all buffers, were taken during the 

purification procedure.

4.5. Purification of PO from the Cytosolic Fraction of Bovine Brain.

4.5.1. Preparation of the Cytosolic Fraction of Bovine Brain

Although there have been some reports of membrane forms of PO (O’Leary et a l , 1996, Dalmaz et 

a l , 1986), this peptidase is thought to be primarily cytosolic m its location (Torres et a l , 1986, 

Dresdner et a l , 1982) Preparation of the cytosolic fraction of brain involved a series of 

homogenisation and centrifugation steps An osmotic shock step was included at this stage to 

facilitate the removal of any PO that had occluded m the cell membrane (Dresdner et a l , 1982) A 

final ultracentrifugation step was performed on the combined supernatants to separate any possible 

remaining membrane material such as microsomes (see section 2 6 1 ) A report on a membrane form 

of PO from bovine brain (O’Leary et a l , 1996) found that this form of the peptidase had features 

quite distinct from the cytosolic form such as a sensitivity to thiol reagents and metal chelators which 

would classify it as a thimet peptidase Therefore it was necessary to ensure its complete removal 

Microsomes are derived primarily from endoplasmic recticulum Upon cell breakage byI
homogenisation, the endoplasmic recticulum disrupts and its fragments tend to undergo vesculation 

The resulting membranous vesicles are termed microsomes It is well known that ultracenrifugation 

for 60 minutes at 100,000g results in the sedimentation of these microsomes, ensuring their removal 

(Lambert, 1989)

4.5.2. Ammonium Sulphate Precipitation.

The ammonium sulphate precipitation step performed on the post ultracentrifugation brain 

supernatant served both as a crude clean up step and a means of concentrating the brain extract prior 

to column chromatography (see section 2 6 2 )  The optimal cut with respect to yield and the degree 

of purification was found to be 45-75% ammonium sulphate with an overall purification factor of 4 2 

and yield of 86% (table 3 5 .1 ) An ammonium sulphate step often features in PO purification 

protocols with varying degrees of success One protocol which utilised quite a narrow cut of 40-65% 

reported a 99% yield and a purification of 3 25 (Tate, 1981) In contrast to this Yoshimoto et a l , 

1983c, performed a 50-80% cut, achieving only a 47% yield and a five-fold purification factor These 

results reflect the losses made in activity in order to achieve a higher purification factor
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4 .53 . DEAE Sepharose Fast Flow Anion Exchange Chromatography

With the knowledge that mammalian PO is primarily an acidic protein with a pi of around 4 75-4 9 

(Yoshimoto et a l , 1981, Oliveira et a l , 1976, Kalwant and Porter, 1991) anion exchange 

chromatography was choosen as a suitable step (see section 2 6.3.) Cation exchange chromatography 

would have required a pH below 4 5, which would have been quite detrimental to activity As can be 

seen m the activity-protem profile in figure 3 5 1 A significant portion of protein ran through the 

column with another substantial portion removed during the linear increasing NaCl gradient used to 

remove bound PO activity. However an unremarkable purification factor of 1 4  was achieved for the 

individual step with an overall yield of 58 7 (table 3 5 1 ) This is a fairly dramatic loss considering 

that the peptidase was not exposed to any substantial pH extremes or particularly high NaCl 

concentrations

4.5.4. Sephacrvl S-200 Gel Filtration Chromatography

Following ion-exchange chromatography the PO pool was concentrated and applied to a sephacryl 

S200 column (see section 2 6 4) Although this column was not a very effective step with regard to 

purification, assessed from its actmty-protem profile (figure 3 5 2), the decreased purification factor 

and yield of 57% (see table 3 5 1), it eliminated the need for an overnight dialysis step into 

unidazole-HCl, pH 6 3, which was found to be extremely harsh on PO activity

4.5.5. PBE94 Chromatofocusing

Because of the difficulties faced in finding a suitable and specific chromatographic procedure (see 

section 4 5 7 ) ,  chromatofocusing was chosen due to its wide applicability, potentially very high 

resolution and its suitability for the late stages of purification (Roe, 1989) In fact chromatofocusing 

has been used successfully in previous purification protocols involving PO (Rennex et al., 1991, 

Browne and O’Cumn 1983) Binding of PO was achieved at pH 6 3 and was eluted during a pH 

gradient between pH 4 7-4 9 (see section 2 6 5 for procedure) This roughly confirms the pi value of 

PO to be between this pH range Fairly good resolution of protein was obtained with this step (figure 

3 5 3 ), and supnsmgly activity was not adversely effected by the pH extremes with a recovery and 

purification factor of 83% and 28 5 for the step itself and an overall recovery and purification factor 

of 24% and 155 (see table 3 5 1 )
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Phenyl sepharose was chosen as a final column firstly for its ability to separate PO from the 

potentially harmful effects of the poly- or amphoteric buffer used u» the elution of the 

chromatofocusing column and secondly as a strategy to stabilise and prepare PO for storage (see 

section 2.6 6 for procedure) These factors and its value as a purification step made it ideal for a final 

step As can be seen from the actraty-protem profile (see figure 3.5.4) a significant protein peak ran 

through the column Attempts to resolve the bound PO peak from other bound protein through the use 

of a combined ammonium sulphate, potassium phosphate (decreasing) and glycerol (increasing) 

gradient were unsuccessful as can be seen in the activity-protem profile PO and all other protein 

eluted in lOmM potassium phosphate, pH 7 4 with 15% v/v glycerol, an ideal media for freezing A 

purification factor and recovery of 1 64 and 95% was obtained for this particular step (see table 

3 5 1 )

4.5.6. Phenvl Sepharose CL-4B Hydrophobic Interactions Chromatography

4.5.7. Assessment of Purification Process of Prolyl Qligppeptidase from Bovine Brain.

Overall the purification of PO from bovine brain proved to be a very difficult procedure to develop 

due to the difficulty m resolving PO from other contaminating protem and secondly the difficulty in 

maintaining PO activity during steps such as gel filtration The overall purification factor for the 

purification was 253 9 with a recovery of 23% which was quite acceptable considering the losses 

sustained during the initial chromatographic steps All the usual precautions were taken during this 

purification scheme with all columns run at 4°C and the inclusion of DTT m all buffers All columns 

were run consecutively with minimum time lapses between steps The SDS-PAGE silverstamed gel 

illustrated m figure 3 5 5 illustrates the presence of a major band corresponding to the molecular 

mass protein standard BSA which has a molecular weight of 66,000Da This mass was confirmed 

using a calibrated S200 column (see section 3 7 1 ) A faint band was also observed, with a molecular 

weight of around 50kDa. A range of fluonmetnc assays designed for the detection of other peptidases, 

for example ZIP, PAP I and DAP IV, did not detect any of these peptidases (see table 3 5 2)

A variety of purification regimes were attempted in addition to the procedures oudined in sections 

2 6 2-2 6 6 including hydroxylapatite (both commercial and synthesised in our laboratory), a variety 

of gel filtration resins and dye-hgand resms, metal chelate chromatography and activated thiol 

sepharose. This latter resin was used in an attempt to exploit PO’s dependence on DTT Although not 

an absolute requirement for activity, DTT activated PO activity indicating the presence of thiol 

groups. There have also been a variety of reports relating to mammalian PO’s sensitivity to cysteine 

peptidase inhibitors (Kalwant and Porter, 1991, Tate, 1981, Yoshimoto et a l , 1977). Usually the

136



difficulty with thiol sepharose is the removal of the reducing agent, DTT, in a short time period The 

enzyme thiol groups must be reduced, with all the disulphide groups converted to thiols. The 

reducing agent must be removed quickly in order to minimise reversion of thiol groups to disulphide 

groups prior to chromatography Using a method previously developed m our laboratory (Cummins 

and O’Connor, 1996) for DTT removal it was found that the resin had a very poor affinity for PO and 

its resolution from contaminating protein was impossible. Another group (Yoshimoto et a l , 1983) 

reported on the successful use of another thiol group affinity resin m the purification of bovine brain 

PO, PCMB-T sepharose

Metal chelating chromatography was used to again exploit the presence of cysteine residues m PO 

Protein adsorption occurs by the binding of the thiol groups of surface amino acids to transition 

metals such as zinc (Roe, 1989) Unfortunately no binding of PO or no resolution of PO from other 

protein took place using zinc and calcium It is possible that these cysteine residues may be somewhat 

buried within the enzyme 3-dimensional structure but this would not explain PO’s sensitivity to 

cysteine peptidase inhibitors and some transition metals

Another method which has been used previously by other groups with some success is hydroxylapatite 

chromatography (Kalwant and Porter, 1991). Chromatography with this resin was found not to be 

reproducible due to its sensitivity to phosphate concentrations and the very low flow rates necessary to 

achieve binding, which were too slow to maintain enzyme activity

4.6. Prolyl Oligopeptidase Assay Development

Once PO was purified it was necessary to re-evaluate the assay procedure and determine the optimal 

conditions for PO activity and assay linearity. It was necessary therefore to investigate the effects of 

solvents and possible activators on enzyme activity and also, the effect of substrate concentration and 

enzyme concentration on linearity with respect to time For an enzyme assay to be reproducible and 

quantitative, substrate hydrolysis must be linear with respect to time and substrate concentration It is 

important to point out that all enzyme assay development studies were performed on purified PO 

When the assay was found to be optimal the purification was performed with this new assay All 

figures presented m table 3 5  1 were obtained using the optimised assay

4.6.1. The Efect of Solvents on Purified Prolyl Oligopeptidase Activity

Because of Z-Gly-Pro-MCA’s insolubility in aqueous media and the known inhibitory effects of 

solvents on this peptidase (Kmsatschek et a l , 1980), it was necessary to find a solvent optimal for
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substrate solubility and PO activity The relationship between enzymic hydration and catalytic activity 

is well known. Wat»- is involved m all noncovalent interactions, such as hydrogen bonding, ionic 

interactions, van der Waals and hydrophobic forces, that help to maintain the catalytically active 

enzyme conformation (Zaks and Klibanov, 1988) However some enzymes do function in a naturally 

hydrophobic environment such as a cell membrane and m some cases can tolerate or even be 

activated by low solvent concentations, for instance trypsin activity was found to be enhanced in the 

presence of 10% v/v acetomtnle and dioxane (Batra and Gupta, 1994). In the case of solvent-enzyme 

inhibition there is a correlation between the loss of enzyme activity and the polarity of the solvent in 

question Highly polar solvents sudi as dimethylformamide can interact with an enzyme and 

associated water molecules to drastically reduce or destroy catalytic activity (Arnold, 1990) Using the 

procedure outlined in section 2 8 1  it was set out to determine not only which solvent was least 

detrimental on enzyme activity, but also optimal for substrate solubility While DMF was found to be 

the most effective solvent with respect to substrate solubility it was most inhibitory of enzyme activity 

On the other hand, while methanol was the least inhibitory on activity, it was not very efficient for 

substrate dissolution. Ethanol, dioxane and DMSO were similar in their inhibitory effects on activity, 

but DMSO was found to be most effective for substrate solubility (see figure 3 6 1 ) The optimal 

concentration of DMSO for the working assay concentration of 200pM was 8% v/v Although the 

substrate tended to precipitate on removal from a 37°C water bath at this DMSO concentration, 10% 

DMSO would have been too detrimental to enzyme activity and stability It is worth noting that none 

of the solvents tested even slightly activated'PO at low concentrations This however may be due to 

POs naturally hydrophilic environment withm the cell cytoplasm DMSO is thought to disrupt the 

secondary structure of a protein causing it to unfold In a study of the effects of DMSO on myoglobin 

and concanavalin A, low DMSO concentrations had no effect on these protein’s gross secondary 

structure, but their thermal stability was reduced (Jackson and Mantsch, 1991) It was therefore 

necessary to minimise any possible adverse effects DMSO could have on PO during characterisation 

experiments

2.6.2. Linearity of Purified Prolyl Oligopeptidase Activity Assay with Respect to Time and 
Enzyme Concentration

In order for an enzyme activity to be quantifiable it is necessary to ensure linearity with respect to 

time and enzyme concentration The progress curves of most enzyme reactions with respect to time 

are generally of the form illustrated in figure 4 1
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Figure 4.1. Linearity of Product Formation with Respect to Time

The time course is linear to begin with but the rate of product formation declines at longer times. 

There are many reasons for such departure from linearity but in the case of PO and Z-Gly-Pro-MCA 

non-linearity was thought to be primarily due to substrate depletion and instability of the purified 

enzyme during assay. This is highlighted by figures 3.6.2a. and 3.6.2b. Firstly activity was monitored 

over time using purified PO samples which had been stored in the presence and absence of BSA. In 

the absence of BSA the PO reaction rate departed from linearity in less than ten minutes. This 

departure from linearity is indicative of PO’s instability in dilute protein solutions. The addition of 

BSA to the purified sample restores linearity, more than likely by stabilisation of the enzyme. It is 

also evident from continuous assays performed with 100(jM and 200[iM Z-GIy-Pro-MCA and 

monitored over forty minutes that the higher concentration of substrate was necessary to ensure 

linearity. At this point it was decided to decrease the assay time of one hour, used previously in this 

laboratory (O’Leary et al., 1996; Cunningham and O’Connor, 1997b) to thirty minutes. Using the 

conditions determined from these time-course experiments i.e. 200|iM substrate, 0.5% w/v BSA, the 

assay was determined to be linear over thirty minutes with respect to enzyme concentration (see figure 

3.6.3).

4.6.3. Effect of DTT on Purified Prolvl Oligopeptidase Activity

Numerous reports have shown PO to be activated by the thiol-reducing agent DTT (Kalwant and 

Porter, 1991; Orlowski et al., 1979; Walter, 1976). This is in agreement with the findings that 

mammalian and plant forms of PO were sensitive to certain thiol peptidase inhibitors such as PCMB, 

NEM, and 2-iodoacetamide (Kalwant and Porter, 1991; Yoshimoto et al., 1987; Tate, 1981). As these 

inhibitors were not as potent in eliciting inhibition in comparison to DFP it was suggested PO had a 

cysteine residue close enough to the active site to influence activity under certain conditions (Polgar,
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1991) PO activity was found to increase by over 250% in the presence of 5mM DTT However this 

peak in activity was followed by a steady decline between lOmM and lOOmM DTT (see figure 3 6 3 )  

DTT is a thiol reducing agent and can function to reduce disulphide bridges to thiol groups (see 

figure 4 .2 ) At a particular concentration DTT could serve to slightly unfold a proiem, by disruption 

of these disulphide bridges, making the active site more accessible to a substrate. If used in excess 

DTT could totally disrupt an enzyme structure and this would explain the decline in PO activity at 

high DTT concentrations (figure 3 6.3.). Alternatively DTT could activate a cysteine residue that is 

m close enough proximity to the active site, to assist nucleophilic attack upon a substrate by the 

catalytically competent cysteine residue

Another interesting characteristic afforded by the mclusion of DTT m the assay was an improvement 

in the reproducibility of triplicates and therefore was considered an essential component of the assay

system

R--------CHz------S S CH2 R’

Disuphide-lmked chains H OH

HS Ofe C C CH2 SH

OH H 

Dithiothreitol

R CH2  SH + HS CH2  R’

Separated reduced chains

Figure 4.2. Reduction o f  Disulphide bridges to Thiols by DTT

140



4.6.4. Effect of EDTA on Purified Prolyl Oligopeptidase Activity

The reasons for inclusion of EDTA into the assay system were twofold. Firstly metal cations can 

contribute to the oxidative breakdown of DTT by the formation of free radicals and the inactivation of 

sulphydryl groups. There have also been numerous reports of inhibition of PO by divalent metals such 

as Hg2* and Cu2* (Kalwant and Porter, 1991; Yoshimoto et al., 1987; Tate, 1981). Therefore the 

inclusion of EDTA minimised the effects of any metal contamination on enzyme activity. As can be 

seen in figure 3.6.5., 0.5mM EDTA slightly increased PO activity by around 4%. This increase was 

followed by a steady decline in activity at EDTA concentrations between lOmM and 150mM.

4.6.5. Effect of NaCl on Purified Prolvl Oligopeptidase Activity

NaCl has been reported to frequently stabilise protein structure by preferential hydration, water being 

involved in all noncovalent interactions that help maintain the catalytically active enzyme 

conformation (Timasheff and Arakawa, 1989). Prolyl oligopeptidase unlike the members of other 

serine protease families is very sensitive to ionic strength, its activity enhanced by high 

concentrations of NaCl (Polgar, 1991). This was confirmed by results obtained for bovine brain PO 

(figure 3.6.6.) with activation of the enzyme followed by a steady decline in activity at concentrations 

greater than 400mM. Although this inhibiton was also observed by Polgar, 1991, it may have been in 

part due to insolubility of the substrate observed at high salt concentrations. Because of the difficulties 

in dissolving Z-Gly-Pro-MCA in the presence of NaCl, it was not included in the assay system.

4.7. Characterisation of Purified Prolyl Oligopeptidase Activity

4.7.1. Relative Molecular Mass Determination

The Relative molecular mass of IK) was determined by Sephacryl S-200 gel filtration chromatography 

and SDS-PAGE as outlined in section 2.9.1. From molecular mass calibration curves prepared from 

these experiments the molecular weight for PO was confirmed to be 69-70kDa and monomeric 

(figures 3.7.1.1. and 3.7.1.2). This concurs very well with the majority of investigations which have 

reported a molecular weight of between 62-80kDa (table 1.3.1.). It is worth noting that some of the 

higher molecular weights quoted were deduced from an amino acid sequence and did not correct for 

the presence of an N-tenninal signal sequence which is removed to give the mature peptidase 

(Shirasawa et al., 1994; Chevallier et al., 1992). Two early studies reported molecular weights of 

115kDa and 140kDa for PO from lamb kidney and human placenta respectively and suggested that 

the enzyme was dimeric (Koida and Walter, 1976; Mizutani et al., 1984). It is now widely accepted 

however that PO is monomeric and a later study on the lamb kidney enzyme confirmed the molecular
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weight to be m fact 74-77kDa (Yoshimoto et a l , 1981). Further investigations of the human placental 

peptidase confirmed the moleclar weight to be 79kDa (Kalwant and Porter, 1991)

4.7.2. PH Effects on Purified Prolvl Oligopeptidase Activity

In order to investigate the effect of pH and different buffers on PO activity two different pH 

experiments were performed The first, described m section 2.9.2.1 served to simply determine the 

optimum pH and buffer for PO activity From figure 3 7 2a. it is evident that PO activity was 

detectable between 4 5 and 9 0 with optimal activity at pH 7 4 in potassium phosphate This is not 

surprising considering PO is found naturally at a physiological pH of 7.4 and is similar to the 

findings of other studies (table 13  1 )  However activity m Tns-HCl is 23% lower at pH 8 0 than 

that measured in phosphate, indicating a general preference for phosphate buffer The second pH 

experiment, described m section 2 9 2 2 was used to determine the pHs at which PO was irreversibly 

inactivated prior to assay at pH 7 4 From figure 3 7 2b, it is evident that PO was inactivated outside 

the pH range 5-9 5 . This was unexpected as during the purification PO was eluted m an amphoteric 

buffer of pH 4 5 with only a 5% loss m activity (table 3 5 1 )  This discrepancy may have been due to 

the protocol followed in this experiment which involved a premcubation at 37°C for 15 minutes with 

the appropriate buffer However during the purification the enzyme was kept at 4°C prior to assay 

There may also have been variations in PO’s sensitivity to the citrate/phosphate used in this 

procedure and the polybuffer used to elute the chromatofocusmg column.

4.7.3. Thermostability Studies on Purified Prolvl Oligopeptidase Activity

Similar to pH studies the effect of temperature on PO was investigated using two different strategies 

as outlined m section 2 9 3 Firstly the optimal temperature at which to perform the PO activity assay 

was determined as described m secton 2 9.3 1 , which clearly indicated that 37°C was the optimal 

temperature for activity (figure 3 7 3a). Again however this was not surprising considering 

physiological temperature is 37°C. This result was m agreement with other studies done on 

mammalian, plant and bacterial forms of the peptidase (see table 13  1) Another temperature 

experiment was performed to determine the effect of premcubation of PO at various temperatures for 

different times on activity prior assay at 37°C It was found that a premcubation at temperatures of 

50°C or more for tunes of 15 minutes or greater caused complete inactivation of the peptidase activity 

(see figure 3 7 3b)
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4.7.4. The Effect of Divalent Metal Salts on Purified Prolvl Oligopeptidase Activity

The effect of divalent metal salts on PO activity was investigated as outlined in section 2 9 4 Previous 

studies on PO have shown an inhibition of mammalian, plant and bacterial PO by a variety of metal 

ions such as Hg2+, Zn2+ and Cu2* (Kalwant and Porter, 1991, Yoshimoto et a l , 1987, Walter, 1976) 

PO activity was severely inhibited by Hg2+, Cu2+ and Cd2+. Activity was also inhibited substantially by 

Co2*, Ni2+ and Zn2*, but little or no inhibition was observed with Fe2+, Mg2+ and Ca2+, (see table 

3 7 1) In contrast to another study which investigated the effects of metal salts on PO from bovine 

brain, carrot and F meningosepticum Ni2+ was quite potent m its inhibition of bovine brain PO with 

over 60% inhibition However this study reported only a 10% inhibition of bovme brain activity 

(Yoshimoto et a l , 1987) Zn2+ was also found to be not quite as inhibitory as other reports with only 

40% inhibition This is m contrast to some studies that reported complete inactivation of PO activity 

(Yoshimoto et a l , 1987, Orlowski et al, 1979). It is worth noting at this stage that the preparation of 

these divalent salts solutions required strict monitoring of pH, otherwise any inhibition observed 

could well have been contributed to by pH extremes Also quenched standard curves incorporating all 

metal ions were prepared to allow for quenching effects

4.7.5. The Effect of Functional Reagents on Purified Prolvl Oligopeptidase Activity.

An investigation into the effects of a variety of functional reagents was investigated as outlined m 

section 2 9 5 Table 3 7 2 lists the effects of a variety of classes of functional reagents, at different 

concentrations, on PO activity The most significant results are discussed as follows

4.7.5.1. Serine Protease Inhibitors

PO has been classified in the past as a serine peptidase on the basis of its sensitivity to the classical 

serine protease inhibitor, DFP and analysis of its ammo acid sequence (Rennex et a l , 1991, Kalwant 

and Porter, 1991; Yoshimoto et al., 1987a, 1983c, Tate, 1981) In this experiment AEBSF, an 

irreversible inhibitor of serme proteases such as trypsin and chymotrypsm, was used as a safer, more 

stable and soluble alternative to the use of DFP (Markwardt et a l , 1974) ImM AEBSF completely 

inhibited PO and a ten-fold lower concentration inhibited PO by over 80% confirming the presence of 

an active site serme residue Another study completed in this laboratory on bovine serum PO reported 

a lower inhibitory potency for AEBSF, with only 80% inhibition at lOmM (Cunningham and 

O’Connor, 1998) In contrast to this PMSF only inhibited PO by 10 73 % at ImM (table 3 7 2 ) . This 

lack of sensitivity to PMSF is a peculiarity that has been found, by other investigators, with all forms

143



of PO, mammalian, plant and microbial (Cunningham and O’Connor, 1998; Yoshimoto et al., 1987; 

Orlowski et al., 1979).

Other serine protease inhibitors aprotinin and bezamidine had minor effects on activity with aprotinin 

causing maximum inhibition of 14% at 5mM and benzamidine inhibiting PO by 7% at lOmM (uNe

3.7.2.). Other studies have also found benzamidine to have litde or no effect on PO activity 

(Cunningham and O’Connor, 1998; Browne and O’Cuinn, 1983).

4.7.5.2. Cysteine Protease Inhibitors

Inhibition of mammalian and plant forms of PO by cysteine protease inhibitors has been well 

documented (Kanatani et al 1993; Yoshimoto et al., 1987; Yoshimoto et al., 1981; Orlowski et al., 

1979). However this inhibition seems to be significant only at high concentrations of a particular 

functional reagent with the size of a reagent determining its inhibitory potency. It has been speculated 

that PO may have a non-catalytically competent cysteine residue in close vicinity to the active site. 

Larger reagents were found to exert more of an inhibitory effect on PO activity possibly due to 

exclusion of a substrate from the active site due to steric hindrance (Polgar, 1991) Reagents such as 

PCMB, DTNB and NEM should therefore be more inhibitory of PO activity than the smaller 

iodoacetamide. This effect was confirmed by experiments on the bovine brain PO, with iodoacetate 

and iodoacetamide exerting moderate inhibition, 60 and 80% respectively at lOmM, considering the 

high concentrations used. NEM and DTNB were far more effective inhibitors with complete 

inhibition of PO at concentrations of lOmM (see table 3.7.2).

4.7.5.3. Thiol-reducing Agents

The effect of DTT on PO activity has been discussed previously (see section 4.6.3.) In this procedure 

DTT (lOmM) when preincubated with PO, caused just over a two-fold enhancement of activity (table 

3.7.2). This level of activation is significantly lower than that reported for bovine serum 

(Cunningham and O’Connor, 1998). This discrepancy may however be attributed to the absence of 

DTT in the substrate buffer. Upon addition of the substrate the total DTT concentration was diluted to 

2mM, and it is quite possible that a higher DTT concentration is required for the duration of the assay 

in order to be effective. The extent of the activation observed is however in accordance with results 

obtained for section 2.8.4.

4.7.5.4. Metal Chelators and Phenanthrolines

EDTA and 8-hydroxyquinoline (ImM) were both found to slightly activate PO activity, possibly 

because of their ability to chelate metal cations, such as zinc and nickel, which were previously 

found to inhibit PO (see table 3.7.1.). These metals may simply be present in an assay component as 

trace contaminants. Of the three phenanthrolines assessed only 1, 10-phenanthroline is a chelator. 

All three of these compound were, however found to inhibit PO (see table 3.7.2). Because these three
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compounds share a common aromatic ring structure, the inhibition observed may be attributable to 

non-specific hydrophobic interactions between these compounds and some hydrophobic region of PO 

A similar effect was noted with the metallo-protease, pyroglutamyl aminopeptidase II (PAP II), which 

was inhibited by all three phenanthrolines This theory was supported by PAP II’s ability to interact 

strongly with phenyl sepharose resin (Czekay and Bauer, 1993), a feature shared by bovine brain PO

4.7.5.5. Other Agents

Bacitracin was found to possess quite potent inhibitory activity against PO with almost 80% 

inhibition at lmg/mL (table 3 7.2.) There have been some conflicting reports on this antibacterial 

peptide’s ability to inhibit PO with Browne and O’Cumn, 1983, reporting no effect on guinea pig 

brain PO, and Cunningham and O’Connor, 1998, reporting almost a three-fold lower inhibitory 

potency with bovine serum PO In another study on soluble bovine brain PO, bacitracin was found to 

cause strong inhibition with a Ki of 5pM (Tate, 1981) Interestingly bacitracin has been found to 

inhibit degradation of thyroliberin by brain homogenate (McKelvy et a l , 1976) N-Decanoyl CoA 

also mibited PO by 54% at lmg/mL (table 3 7 2 )  A previous study on rat liver PO reported that 

CoA, related compounds and acyl carnitine were possible endogenous inhibitors of PO with 

inhibitory potency being dependent on chain length of the acyl group (Yamakawa et a l , 1990) N- 

Decanoyl CoA was found to only inhibit bovine brain PO by 54% at lmg/mL (see table 3 7 2)

4.7.6. Substrate Specificity

4.7.6.1. Reverse Phase HPLC

Substrate specificity studies were performed using a range of synthetic and natural peptides by HPLC 

as outlined in section 2 9 6 1 ,  using brain, serum and F memngosepticum activities Table 3 7 3 

presents the list of peptides and whether or not hydrolysis occured m the presence of PO Figures 

3 7 6 1-3 7 6 10 illustrate chromatograms obtained for peptides incubated with and without brain and 

bacterial activities and table 1 4  2 lists the ammo acid sequences of some of the peptides analysed 

and the sassile bonds elucidated from previous investigations

A range of synthetic N-blocked di and tn-ppeptides were examined No hydrolysis of peptides with 

proline at the amino terminus, was observed. The mammalian and bacterial enzymes also failed to 

hydrolyse Z-Pro-Pro-OH. but the peptide Z-Glv-Pro-Ala-OH was hydrolysed by all three enzymes Of 

three unblocked peptides tested only H-Glv-Glv-Pro-Ala-OH was hydrolysed by the bacterial enzyme, 

H-Glv-Ala-Phe-OH and H-Glv-Pro-OH were not hydrolysed by any of the activities. These properties 

of PO have all been confirmed by earlier studies on the substrate specificity of this peptidase (Walter 

and Yoshimoto, 1978; Koida and Walter, 1976). It is surprising however that the mammalian
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activities did not hydrolyse this unblocked tetra-peptide The lack of hydrolysis of this peptide is not 

in keeping with current understanding of PO specificity, particularly when this peptidase is known to 

act on tuftsin (Thr-Lvs-Pro-Arg) and TRH (pGlu-His-Pro-NHi) in vitro (Tate, 1981) It is highly 

likely that the mammalian activities were not concentrated enough to mediate detectable hydrolysis of 

this peptide

A range of bioactive peptides were also mcluded in this experiment Mammalian (brain and serum) 

and bacterial PO was found to hydrolyse angiotensin I. II and IQ. bradvkinm. substance P. TRH. 

TRH-Glv. LHRH and Glu2-TRH. Phe2-TRH was hydrolysed by brain and bacterial activities, AVP by 

bacterial and ADNF-14 by brain activities. Although these investigations were incomplete as the 

cleavage products generated were not identified, with the exception of TRH and TRH-Glv their 

hydrolysis by PO has been previously well documented

Angiotensin I. II. and III have been previously shown to be cleaved at the Pro-Phe bond common to 

all three peptides (Monyama et a l , 1988). bradvkinm at the Pro3-Gly8 and Pro7-Phes positions, 

substance P at the Pro4-Gln5 position, AVP at the Pro7-Arg8 position and LHRH at the Pro’-Gly10 

position (see table 1 4  2 ) , (Mendez et a l , 1990, Tate, 1981) TRH and its natural precursor TRH-Glv 

were hydrolysed to liberate TRH-OH and two TRH analogs GIu?-TRH and Ph&rTRH were also 

hydrolysed, more than likely at the Pro-NH2 bond Both of these analogs have been found in the 

prostate gland and have been linked to human reproductive physiology (Gkonos et a l , 1994)

AVP which has been previously shown to be hydrolysed at the Pro7-Arg8 bond (Walter, 1976), was 

hydrolysed by the bacterial but not the brain form of the enzyme This was probably due again to the 

method sensitivity rather than any inability of the mammalian peptididase to cleave this peptide Any 

differences observed in the mammalian and bacterial enzyme activity was probably due to limitations 

in method sensitivity and not enzyme specificity

Activity-dependent neurotrophic factor 14. a short fragment derived from ADNF. ADNF is a protein 

discovered reccently to have remarkable protective properties against neurotoxins m the brain 

ADNF-14, a fouteen amino acid residue fragment of ADNF has been shown to prevent neuronal cell 

death from beta amyloid peptide, and gpl20, a toxic protein shed by human immunodeficiency virus 

(Gozes et a l , 1997, Gozes and Brenneman, 1996) Cleavage of this peptide by bovine brain PO most 

likely occurs at the C-termmal Pro-Ala bond However this discovery of a possible cleavage of this 

peptide by PO warrants a more detailed future study to elucidate the fragments generated by this 

action
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4.7.6.2. MALDI-TOF-Mass Spectrometry

MALDI-TOF MS was performed to firstly determine whether or not the brain form of PO hydrolysed 

the CLIP fragment, ACTHi8.39, a Gy-Pro-Ala polymer and an amyloid A4 precursor protein fragment 

708-715. The fragments generated from this reaction were also determinable by their mass/charge 

ratio (m/z). Secondly the action of the bovine brain activity was compared to the F memngosepticum 

and porcine kidney form of the peptidase The experiments were performed as outlined m section 

2.9 6.2 Table 3 7 4. lists the PO hydrolysis sites of this these three peptides and figures 3 7.6 2.1 to

3 7 6  2 3 represent the mass spectra obtained at various times during the incubations

Bovine brain PO was found to hydrolyse the CLIP fragment at the Pro2 4-Asn2 5 and Pro^-Leu37 bonds, 

generating the fragments ACTHis-2 4, 2 5 .3 9  and 25.3« (see figure 3 7 6  2 1 ) These fragments are thought 

to be physiologically relevant in terms of paradoxical sleep. In another study the porcine kidney 

enzyme had been found to hydrolyse the same bonds (Demuth, H. U , Unpublished data), (see 

figure 4 7 2)

ACTH18 .3 9  or CLIP has been shown to exert a very selective paradoxical or REM sleep inducing 

effect The full CLIP sequence is not required for this PS inducing effect, as fragments ACTH18 .2 4  

and ACTH20-24 can increasePS to a similar extent While CLIP and A C T H i8.24 can only increase the 

number of PS incidents, the fragment A C T H  20-24 can increase both the duration and number of 

these episodes It has been proposed that the concerted action of PO and DAP IV results m the 

release of these three fragments (Wetzel et a l , 1997) Figure 4 7 2 illustrates the proposed PO and 

DAP IV sites of hydrolysis on ACTH18 -39 that leads to formation of these fragments 

The bacterial activity was found to hydrolyse the Ala27-Glu28 and the Pro24-Asn25 but not the Pro36- 

Leu37 bonds (see figure 4 7 2) This difference m specificity between bacterial and mammalian forms 

of PO has not been observed previously and is suggestive of some structural difference between the 

enzyme’s subsites However further investigation of these differences using a range of synthetic 

substrates would have to be earned out m order to determine exactly what subsites are involved

The Gly-Pro-Ala polymer, (Gly-Pro-Ala)i5  was also found to be hydrolysed over time by bovine brain 

PO Unfortunately due to time limitations complete hydrolysis was not observed However figure

4 7.3a and 4 7 3b represent the hydroysis of this polymer over time by the porcine kidney and F 

memngosepticum forms of PO Hydrolysis of this polymer by PO is in conflict with the current 

opinion that PO specificty is limited to smaller peptides of 25 amino acid residues or less (Monyama 

et a l , 1988, Camargo et a l , 1979) and its classification as an oligopeptidase (Barrett and Rawlings,

1992) as the Gly-Pro-Ala polymer has 45 amino acid residues. This unexpected result means that a 

more detailed study on PO’s ability to hydrolyse larger synthetic and natural peptides is required

POs ability to cleave this (Gly-Pro-Ala) polymer is of tremendous importance when considenng its 

ability to cleave the amyloid A4 precursor protein fragment 70 8.7 1 s It was found that the bovine brain
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PO hydrolyses this fragment at the Ala7 1 3 -Thr7 1 4  bond. This ability to cleave this fragment could be 

of physiological relevance Amyloid A4 protein, which is found in deposits in senile plaques of 

patients with Alzheimer’s disease and Down’s syndrome, is derived from the larger amyloid A4 

precursor protein This 42 amino acid peptide is believed to be intrinsically linked to the 

pathogenesis of this disease because of its ability to aggregate and induce neuronal cell death 

(Yamaguchi et a l , 1988) It is widely believed that proteolytic processing of the precursor protein 

could lead to the formation of amyloid A4 protein. Reccent studies using model synthetic substrates 

have suggested that PO and a multicatalytic proteinase (MCP) , ingensin, are responsible for 

hydrolysis of the precursor protein to generate the carboxyl and ammo terminal ends of amyloid A4^ 

42 peptide respectively This hydrolysis is represented in figure 4 7 4. It has been argued however 

that PO’s classification as an oligopeptidase would rule out any possible role in amyloid A4 

generation, even if a previous proteolytic action had occured giving rise to the N-temrunal portion of 

this peptide However this possibility must be considered with the knowledge that PO is capable of 

hydrolysing of the 45 amino acid polymer, (Gly-Pro-Ala)i5

DAPTV
E Q bo»vine Brain vine Brain

Bacterial

CLDP20.24 CLIP25.36

r

o

CUP 18-24 CLIP25-39

^  Proline 

O  Alanine

^^Bacterial

Figure 4.7.2. Proposed Prolyl Oligopeptidase Hydrolysis Sites on ACTH18-39 

Bacterial PO from F memngosepticum was found to hydrolyse the Pro2 4-Asn2 5  and Ala2 7-Glu28 

bonds and porcine kidney DAP IV the Pro19-Val2 0 bond of CLIP18-24 (Unpublished data courtesy of 

Hans Ulrich Demuth, Hans-Knoll Institute for Natural product Research, Halle, Germany) Bovine 

brain sites were determined as outlined in scction 2 9 6 3
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Figure 4.7.3a.
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Figure 4.7.4. Proposed Mechanism of Amyloid Precursor Hydrolysis Resulting in Amyloid A4 

Peptide Formation The amyloid A4 peptide is generated from the larger amyloid precursor 

protein APPi.742 MCP (multicatalytic proteinase) and PO (prolyl oligopeptidase) have been identified 

as possible enzyme candidates, responsible for APP proteolyltic processing (Yamaguchi et a l , 1988)

4.7.6.3. Kinetic Studies

4 7 6 3 1 Km Determination for Fluorimetnc Substrates

Michaelis Menton Constants were determined for brain, serum and bacterial PO activities as outlined 

in section 2 9 6 3 1  using Z-Gly-Pro-MCA and the TRH derivative pGlu-His-Pro-MCA What is 

apparent from the Km values determined (see table 3 7 5 )  is firstly the difference in affinities 

between the three PO activities for a particular substrate The bovine brain enzyme had a lower 

affinity for both fluorimetnc substrates with Km values of 62 5|iM for Z-Gly-Pro-MCA and 99.8|iM 

for pGlu-His-Pro-MCA. The Km found for Z-Gly-Pro-MCA is considerably higher than the value of 

20(iM reported when this substrate was first synthsised (Yoshimoto et a l , 1979), but is comparable to 

other reports since (Cunningham and O’Connor, 1998, O’Leary and O’Connor, 1995) PO from all 

sources had a higher affinity for this N-blocked dipeptide than the TRH deivative pGlu-His-Pro-MCA

4 7 6 3 2  Ki Determinations for Proline-Containing Peptides

The substrate specificity of the mammalian and bacterial forms of PO was investigated by examining 

the effect of a range of proline-containing peptides on the Km value determined for Z-Gly-Pro-MCA

1 5 0



Angiotensins I, II and III were found to be potent competitive inhibitors of all three enzyme activities 

(see table 3 7 6) This is m agreement with a previous study on porcine muscle PO (Monyama et a l , 

1988)

All three activities displayed a very low affinity for the TRH analogs Phe2TRH and Glu2TRH. This 

low speafiaty suggests that PO may not play an important physiological role in then- degradation 

(see table 3 7 6) In contrast to this both mammalian forms exhibited a strong specificity towards TRH 

with Ki values (91pM for brain and 83(iM for serum) approximate to their Km values for the 

fluonmetnc substrate Z-Gly-Pro-MCA (see table 3.7 6) These values are much lower than the value 

(680jiM) reported previously for the serum enzyme (Cunningham and O’Connor, 1998) and slightly 

higher than the Ki value reported for the rat brain enzyme (18 9|iM), (Hersh, 1981) The competitive 

action of TRH on the bacterial enzyme activity towards Z-Gly-pro-MCA produced a Ki of 642(iM, 

illustrating a 20 fold decrease in specificity This could be reflective of the fact that the bacterial 

activity could have no possible natural function in the degradation of TRH. This could also explain 

the bacterial enzyme’s much lower specificity for bradykinm neurotensin and AVP, when compared 

to the mammalian activities

Both the mammalian activities had high specificities for bradykinm, neurotensin and AVP with Ki 

values lower or, in the case of AVP and brain PO, approximate to their specificity towards Z-Gly-Pro- 

MCA (see table 3 7 6) The Ki values determined for the serum enzyme for all these peptides were at 

least one order of magnitude lower than values reported previously for the serum enzyme 

(Cunningham and O’Connor, 1998) It is not fully understood why the serum PO activity had a 

slightly higher specificity than the brain PO for all the substrates tested However it is unlikely that 

this difference is due to a differences in speafiaty as serum levels in vivo are much lower than the 

appreaable levels found m brain (Kato et a l , 1980) These high levels in the brain are thought to 

reflect the significance of the brain enzyme’s ability to regulate levels of prolme-contaming 

neuropeptides in vivo

In view of these results and results obtained from other substrate speaficity studies (see sections 

4 7 6 1  and 4 7 6 2 )  it is clear that PO is an enzyme with a very broad speaficity for proline- 

contaming peptides However the physiological significance of this peptidase and its ability to 

hydrolyse peptides in vivo still remains to be eluadated
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4.7.7. The Effect of Specific Inhibitors on Prolvl Oligopeptidase Activity

A range of known specific PO inhibitors were tested on bovine brain, serum and F. meningosepticum 

prolyl oligopeptidase activity as outlined in section 2.9.7. The results are presented in the form of 

IC50 values in table 3.7.7.

The most potent inhibitor tested was a-ketobenzothiazole with an IC50 walue of 63pM for the bovine 

brain enzyme. This value is in agreement with the value of 42pM, obtained for the bovine serum 

enzyme (Cunningham and O’Connor 1998). However both of these inhibitor values are considerably 

lower than that reported by Tsutsumi et al., 1994, for the porcine kidney enzyme (table 1.5.1).

The poorest inhibitor tested was Z-Pro-prolinal dimethylacetate, with IC50s ranging from 32-44pM 

for mammalian and bacterial forms of PO. This inhibitory potency was over 30 times lower than that 

reported previously (Goossens et al., 1997) and highlights the importance of the aldehyde group of Z- 

Pro-prolinal in PO inhibition. Z-Pro-prolinal while not the most potent inhibitor tested was found to 

have IC50 values of 10, 9 and 7nM for brain, serum and bacterial PO activities respectively. These 

values are higher than the value of 0.74nM quoted by Tsuru et al., 1988, using bovine brain PO. 

Cunningham and O’Connor, 1998, reported an IC50 of 16nM using the bovine serum enzyme. 

Another Z-Pro-prolinal derivative, Z-indolinyl-prolinal was found to be similar in potency to Z-pro- 

prolinal with IC50s of lOnM for both of the mammalian enzymes, with the bacterial enzyme value 

being over four-fold higher than that of Z-pro-prolinal. However these values are similar to those 

obtained by Bakker et al., 1991 (see table 1.5.1). It should be noted that a value of 45pM has been 

reported previously for the bovine serum enzyme (Cunningham and O’Connor, 1998). 

Cyclohexyl-prolinal was found to be a rather poor inhibitor of the bovine brain enzyme relative to Z- 

pro-prolinal and Z-Indolinyl-prolinal with an IC50 value (649nm) considerably higher than 

previously reported (see table 1.5.1).

N-blocked dipeptide derivatives using an Fmoc blocking group, Fmoc-Ala-Pyrr-nitrile and Fmoc- 

Pro-Pyrr-nitrile had identical IC50s for the mammalian enzymes. For both of these inhibitors 

however the bacterial enzyme was found to be just over six times less sensitive to their inhibitory 

activity (see table 3.7.7).

Postatin, an inhibitor of bacterial origin was quite poor in its inhibition of the mammalian and the 

bacterial enzymes with IC50s in the micomolar range (table 3.7.7), considerably higher than 

previously reported values of 35nM for the bovine serum enzyme (Cunningham and O’Connor, 

1998).

Z-Phe-Pro-methylketone was probably the most interesting inhibitor tested, not because of its 

inhibitory potency, but the large discrepancy in the sensitivity of mammalian and bacterial forms of 

PO observed. While both the brain and serum enzymes had IC50s of 13 and ll|iM  respectively the 

bacterial enzyme was nearly 3000 times more sensitive to inhibition by this compound.

A timecourse investigation into the effects of Z-Phe-Ala-chloromethylketone found that while the 

bacterial enzyme was completely inhibited by 1x10 5M of this inhibitor after 60 minutes, the bovine
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brain enzyme exhibited no sensitivity to this inhibitor Chloromethylketones, previously thought to 

be specific for cysteine residues, have been shown to act on PO by binding to the active site serine 

residue (Stone et a l , 1992) Inhibition of bacterial PO confirms this action on the serine residue, as 

bacterial forms of PO have been previously shown to be insensitive to cysteine protease inhibitors It 

is not understood why a compound of this class could distinguish between different forms of PO In a 

study of the comparuoo of inhibition of F meningosephcum and bovine brain by prolinal containing 

peptide inhibitors, Boc-Pro-prolinal, and Z-Pyr-prolinal were found to be 1000 times more inhibitory 

of the bacterial enzyme possibly due to sane structural difference around S2 and S3 subsites 

(Yoshimoto et al., 1985) The bactenal activity may have a higher affinity for the peptide portion of 

this inhibitor, Z-Phe-Ala, in particular the alanine rsidue at the S I’ subsite. In studies on the 

hydrolysis of CLIP the F. menmgosepticum activity, unlike the brain activity, hydrolysed the Ala-Glu 

bond (see section 4 7 6 2) Although previous studies have found that the bacterial and mammalian 

forms of PO have been shown to have quite similar substrate specificities for synthetic substrates and 

natural peptides, and have similar subsite widths (Yoshimoto et a l , 1980, 1977), it can be now 

suggested that mammalian and bacterial forms of PO could have slightly different subsite 

stereospecificities Further studies are required m order to clarify these possible differences

4.8. Summary

PO was purified from the cytosolic fraction of bovine whole brain Following preparation of this 

fraction, PO activity was purified using ammonium sulphate precipitation, DEAE sepharose, 

sephacryl S200 gel filtration, chromatofocusmg and phenyl sepharose chromatography, resulting m a 

253-fold purification and a 23% recovery of enzyme activity

Bovine serum PO was partially purified from bovine serum for comparative substrate specificity and 

inhibitor studies The purification consisted of chromatography on two separate phenyl sepharose 

columns, run under different conditions). The first column served to remove ZIP activity A 10-fold 

purification factor and 37% recovery was achieved

Prior to characterisation work the PO fluorimetnc activity assay was optimised This assay was found 

to be linear over an assay period of 30 minutes, using 200pM Z-Gly-Pro-MCA prepared in 8% v/v 

DMSO 5mM DTT and 0 5mM EDTA were also included to increase assay sensitivity The inclusion 

of 0 5% w/v BSA served to stabilise the enzyme for storage and during the assay While NaCl was 

found to activate activity and increase the sensitivity of the assay, its adverse effect on substrate 

solubility warranted its exclusion from the assay procedure
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The relative molecular mass of the brain activity, determined by gel filtration chromatography and 

SDS PAGE , was found to be 69 5kDa This activity was found to be optimal at 37°C The optimal 

pH for activity was found to be 7 4 in phoshate buffer

The brain enzyme was identified as a serine protease based on its sensitivity to AEBSF PO activity 

was strongly inhibited by the cysteine protease inhibitors DTNB and NEM While the enzyme was 

activated by DTT, this thiol reducing agent was not essential for catalytic activity This would suggest 

the presence of a non-catalytically competent cysteine residue in close proximity to the active site 

Enzyme activity was also strongly inhibited by some metal ions, including Hg2+, Cu2+, Co2+ and Ni2+

The brain, serum and Flavobacterium menmgosepticum PO activities hydrolysed the substrates Z- 

Gly-Pro-MCA (Km values of 63jjM, 15|J.M and 39|iM respectively) and pGlu-His-Pro-MCA (Km 

values of lOOpM, 52jj.M and 74|iM respectively All three activities hydrolysed a range of proline- 

containing synthetic and natural peptides, including angiotensin I, II and III, TRH, bradykimn, 

neurotensin, APP7 0 8-7 i5 , a Gly-Pro-Ala polymer and CLIP A number of these peptides also 

competitively inhibited PO activity towards Z-Gly-Pro-MCA The most potent, with respect to brain 

serum and bacterial activities, were angiotensin I, II and III which had Ki values lower than the Km 

value for Z-Gly-Pro-MCA

Brain, serum and recombinant activities were inhibited by a range of PO specific inhibitors with a- 

ketobenzothiaazole, Z-mdolmyl-prolmal and Fmoc-Ala-Pyrr-nitrile exerting the greatest inhibitory 

activity The bacterial enzyme was found to be 4000 times more sensitive to Z-Phe-Pro-methylketone 

than the brain enzyme lxlO'5 M Z-Phe-Ala-chloromethylketone completely inhibited the bacterial 

activity, but the brain enzyme was completely insensitive to this inhibitor

In conclusion the characteristics of PO purified from bovine brain are similar to those reported 

previously for other mammalian forms of this enzyme However further investigations are required to 

determine the exact specificity of this enzyme particularly with concern to peptide size With the 

development of highly potent and specific inhibitors, it should be possible to elucidate the 

physiological role of PO in peptide degradation and in the pathogenesis of certain neurological 

disease states
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