Ease : A Real-Time Multitasking Executive

David Doyle, B.Sc. Eng.
for the Degree of

Master of Engineering
at

Dublin City University
for

Dr.Barry Mc Mullin, B.Eng., Ph.D.
School of Electronic Engineering
Dublin City University

April 1996

I hereby certify that this material, which I now submit for assessment
on the program of study leading to the award of Master of Engineering 1s
entirely my own work and has not been taken from the work of others save
and to the extent that such work has been cited and acknowledged within

the text of my work

Signed:.ﬁdw '/77/& ID No.: /002 700833

Date:__lé_‘f_l ___ijé___

Contents

1 Real Time Concepts
11 What Constitutes Real Time
12 Hardware Issues
121 Real Time CPU
122 Memory
13 Language Issues
131 Modularty
132 Recursion
133 Re-entrant Procedures
134 Data Typing
1341 Abstract Data Typing
135 Assembly Languages
136 Object Oriented languages
14 Strategies for Real Time Scheduling
141 Busy Waiting
142 Coroutines
143 Interrupt Driven Systems
1431 Context switching
1432 Context switching using the stack
1433 Round Robin Systems
1434 Preemptive Prionty Systems
1435 Hybnd Interrupt Systems
144 Foreground Background Systems
145 Task Control Block Model
1451 Task Management

© o 0 W~ = O O Ut R e NN

T e
S O O U R W WY = o O

15

16

Inter Task Communication and Synchronisation
151 Data Sharing
1511 Double Buffering
1512 Ring Buffers
152 Message Passing
153 Semaphores

Conclusion

2 Executive Features

21

22
23

Desirable Features
211 Fundamental Features
2111 Concurrent Processing
2112 Hardware/Event Interface
2113 Interprocess communication and Synchroni-
sation
212 Quality Attributes
2121 Dependability
2122 Reconfigurability
2123 Usability
2124 Certafyability
2125 Constraints
2126 Evolution Capability
System Specification
System Design
231 Scheduling Scheme
2311 Task Control Structure
232 Inter-task Communication and Synchronisation

2321 Communication Channel Information Structure
2322 The Send Call
2323 The Receive Call
233 Imtialisation
2331 Task Creation

2332 Timer Imtialisation
234 Services

17
17
18
18
18
19
20

21
21
21
21
22

22
22
23
23
23
23
23
23
24
25
26
27
28
29
30
31
31
31
32
32

24

2341 Timer Services
2342 Fvent Services
2343 FError Services

Conclusion

Ease Software Design

31

32
33

34

35

36
37

Coding conventions of Ease
311 Identifiers
312 Source Modules
313 Assembler Source Code
Target Platform Of £ase Prototype
Ease Kernel Module
331 Task Control Structure
332 Functions of the Kernel Module
333 Ease On line Task Management
Ease Communication Module
341 EaseChannelCtrl Structure
342 Comm Module Imtialisation
343 Sending
3431 Choosing Between Multiple Receivers
344 Receiving
3441 Choosing Between Multiple Senders
Ease Timer Module
Generic Event Handling Modules

Conclusion

Implementing Applications with the Executive

41

The Target System
411 TMS320C30
412 Hardware description
4121 Performance
4122 Features
4123 Software Tools
413 The TMS320C30 Optimising C Compiler

32
33
33
33

35
33
36
37
38
39
39
40
40
42
44
44
45
45
46
47
48
48
49
30

51
51
51
52
52
32
53
54

414 The LST TMS320C30 Card
4141 Analog Interface
4 2 Executive Implementation
421 Coding
422 Validation
423 Platform Timing Information
43 Executive Applications
431 Analog Signal Display
4311 The Database Task
4312 The Hardware Interface Task
4313 PC Interface
4314 PC Program
432 Motor Control
4321 Target Application System Modelling
4322 Simulation and Implementation

44 Conclusion

Conclusions and Recommendations
51 Summary
52 Salient Points
53 Negative Features

531 Real Time Stack Integrity
54 The Future

Ease User’s Guide
A1 Introducing ase
A 2 Features of Ease
A 21 Scheduling with Ease
A 22 Synchromsation and Communication with £ase
A 3 Working with Ease
A 31 Naming Conventions used with Ease
A 32 Task generation with Ease
A 33 Services of Ease
A 4 Current platform of Ease

54
54
o4
59
o7
a7
99
59
60
61
61
61
62
63
65
65

68
68
68
69
70
70

- Ot R W W NN NN~ o O

A 41 TMS320C30 Command files
A 42 Platform specific PC interface
A 43 Platform timing Information
A 5 Mechanisms of Ease
A 51 Ease error handling
A 6 Ease Timers
A 7 Directory Organisation of Ease
A 71 Source Files of £ase
A 72 Include files
A 8 Prototypes of Easemnit h
A 81 EaseCreate()
A 82 EaseSystemTimerInit()
A 83 EaseApphcationTimerInit()
A 9 Prototypes of Ease h
A 91 EaseReceive()
A 92 EaseSend()
A 93 EaseSystemTimerSet()
A 94 EaseApplhcationTimerSet()
A 95 EaseSamplerSet()
A 96 EaselntOImt()
A 10 Interface with External Computer System
A 10 1 EaseDspWordOut()
A 10 2 EaseDspWordIn()
A 10 3 EaseDspFloatOut()
A 10 4 EaseGetDspPtr()
A 11 Prototypes of UI-LIB
A 11 1 readword()
A 11 2 writeword()
A 11 3 tmstolEEE()
A 12 Installing £ase 1n an IBM PC
A 12 1 Obtaining ase
A 12 2 Setting up Ease
A 12 3 Running an £ase Application
A 12 4 Platform Specific Considerations

6

© 00 00 0 ~J =~

10
10
11
12
13
15
16
17
18
21
24
27
29
31
32
32
34
35
36
37
37
38
39
39
39
40
40
40

A 1241 Configuration for a different TMS320C30 Sys-

tem 41

A 124 2 Configuration for a Different Microprocessor
System 41
B Code Listings 0
B 1 Ease Source Code Listings 0
B11 Kernelh 0
B12 Kernel ¢ 2
B13 Commh 8
B14 Comm c 9
B15 Timh 13
B16 Timc 14
B17 Int0Oh 17
B18 Int0c 18
B19 Kextrah 20
B 110 Kextra asm 21
B 111 Tmsaf asm 36
B 2 Application Programming Interface to Ease 39
B21 Easelmth 39
B22 Easeh 40
B23 Dspafh 42

List of Figures

11
12

31
32
33

41
42
43
44
45

Time shicing under Round Robin

Preemptive Scheduling

The Kernel Module
Ease Task Control Structures
The Timer Module

Analog Signal Display Application

Analog Signal Display Screen Dump

Mechanical Shock Absorber Transfer Function Model
Block Diagram of Closed Loop Controlled Plant
Tasks 1n Motor Application

14
15

41
43
49

60
62
64
64
66

Abstract

Ease the real time multitasking executive described 1n this thesis 1s de-
signed for embedded systems with particular emphasis on DSP motor control
applications

Ease provides an application software interface to the underlying hard-
ware and encourages an object oriented programming approach which inher-
ently enhances software integrity, maintainability and dependability in the
potentially chaotic real time environment Its focus 1s to tackle the undesir-
able aspects of real time programming and device dependent 1ssues thereby
allowing the application programmer to concentrate more on the apphcation

The multitasking aspect of the executive means application tasks can
be generated with ease which aids development, evolution or enhancement
of an apphcation The multitasking aspect also facilitates tasks dedicated
to on-line reconfiguration, error handhing and fault correction or shutdown
procedures

The software quality of a real time application running on the ase plat-
form 1s paid for by a small percentage of CPU processing power and a larger
response time to external events than an unstructured monolithic interrupt
driven system

During the course of research, development and prototyping of Ease ,
a number of suitable sample applications have been explored to test and
optimise 1ts functionality The most notable of these 1s the control system
for the motor simulation of a shock absorber with an active disturbance
load This was implemented as seven concurrent tasks in a uniprocessor

DSP system, running Ease

Acknowledgements

I wish to express my gratitude to my supervisor Dr Barry Mc Mullin for his

professional advice, guidance and encouragement throughout this project

A special acknowledgement must be given to my famuily for their support

and encouragement during the course of my further education

Further thanks are due to my fellow postgrads whom I had the good

fortune of working with

Finally I would like to thank Power Electronics Ireland a division of For-

bairt whose financial backing made this project possible

Chapter 1

Real Time Concepts

This chapter 1s a study of the existing body of knowledge through references

on real time systems

1.1 What Constitutes Real Time

It can be argued that all practical systems are real time A real time system
1s characterised by the system responding to occurrences in a dynamic real
world environment, within a certain time frame Time 1s of the essence If
the real time system 1s to be effective then 1t must respond within given time
constraints

In real time systems the integrity of the system’s output depends not
only on the accuracy of the logical computations carried out but also upon
the time the output results are dehivered to the external interface This
external interface indicates that real time software operates within a highly
specialised hardware environment This hardware environment highlights
the embedded nature of real time systems The embedded computer system
exercises control over a system which 1s reacting with the real world The
computer 18 essentially within the control loop

A real time application demands from 1ts embedded system not only
significant computation and control processing but also, and even more 1m-
portantly, a guarantee of predictable, rehiable and timely operation To be
useful the computer system must be deterministic

A defimition for real time systems based on the mathematical description

of a system can be found 1n [9]

A real time system 1s a system that must satisfy exphcit (bounded)

response times or risk severe consequences, including failure
It continues to describe a failed system

A failed system 1s a system which can not satisfy one or more of

the requirements laid out 1n the formal system specification

The defimition of a failed system means that the system requirements
should be known a prior1 and system operating criteria specified precisely
This 1s particularly true for software as software 1s often the most volatile and
flexible element of a real time computer system Depending on the nature of
the critical timing constraints imposed by the external environment real time
systems are classified as hard or soft If failure to meet timing constraints
means that the system’s performance 1s degraded but not destroyed then the
system 1s classified as soft If failure to meet timing constraints leads to total
system failure then the real time system 1s classified as hard A firm real
time system 1s a system 1n which a low probability of failing to meet timing
constraints can be tolerated

A more formal definition of real time operation 1s given 1n [2] quoting

18]

Real time operation 1s the operating mode of a computing system,
in which programs for the processing of data arriving from the
outside are permanently ready 1n such a way that the processing

results become available within a prior1 given time frames

It should be noted that there 1s no time information given on the events
stimulating responses from real time systems The events triggering responses
i the first definition, and the arrival of data in the second definition, may
be at randomly distributed instants or predetermined points 1n time It 1s
the nature of real time environments to be potentially chaotic Taming and
controlling these environments through on going interaction over time 1s the
goal of real time systems To achieve this, prediction, measurement and

reduction of event response times 1s paramount

1.2 Hardware Issues

Embedded real time systems have by definition very specialised hardware
platforms = The most notable aspect of this specialisation 1s the interface
devices which interact with sensors, the controlled process, user interface and
possibly an overall integrated computer system governing many embedded
systems

To successfully implement a practical real time system requires a sound
understanding of the underlying hardware Issues such as CPU performance,
mterrupt facilities, memory space, language support and development tools
all have to be considered

Embedded platforms tend to make efficient use of hardware resulting in
minimal standalone hardware systems There 1s a minimal (or non existent)
amount of peripheral devices such as disk drives and printers Embedded
platforms are dedicated, therefore human interface 1s generally handled by an
external computer system KEmbedded systems are autonomous and therefore
must contain substantial code and system parameters in read only memory

Rehability 1s also a very important issue with real time hardware The
hardware must be fault tolerant The need for reliability sometimes necessi-
tates the need for employing identical redundant systems which can continue

operation 1if one or more of the systems fail {19] [20]

1.2.1 Real Time CPU

The choice of microprocessor for an embedded systems 1s important both
from a performance and functional point of view

The following are some real time concerns for the CPU

o Performance Processing Power of the Microprocessor

e Instruction Set A rich instruction set allows compilers to make effi-

cient use of code, for example floating point provision
e Language Support High level/Real time language support

o Interrupt Mechanisms Support for interrupt events

e On Chip Hardware Facilities Some processors have on chip timers

and memory

The real time CPU must have the appropriate processing power to per-
form the necessary computations within the system’s real time timing con-
straints Efficient coding of real time programs greatly enhances the ability
of a system to satisfy timing constraints Efficient code makes the best use
of the available CPU power The ability to generate efficient code 1s greatly
enhanced by the richness of the instruction set and addressing modes

There are two different schools of thought on processor instruction sets
In a complex wnstruction set computer or CISC there are many instructions
some of which may be implemented by microcode within the micro proces-
sors hardware In this way complex functions are performed in hardware
and memory use 1s reduced The decode and execution time for every in-
struction increases however for CISC The advocates of reduced instruction
set computers or RISC machines argue that by simplifying the instruction
set, instruction execution speed can be increased Most compilers gener-
ate code with heavy use of a small number of mstructions such as LOAD,
STORE, ADD, SUB and branch instructions RISC machines eliminate the
CISC dispanty that the execution times for all instructions are increased
for the benefit of a few seldom used instructions RISC machines rely on
the compiler to generate efficient code whereas CISC relies on the speed of
hardware microcode to compensate for increased instruction times In real
time systems RISC machines have the advantage that the longest and aver-
age 1nstruction execution time 1s reduced A discussion on the application

of RISC processors to real time systems 1s given in [12] while [13] presents a

more theoretical treatment

1.2.2 Memory

Memory 1ssues have an impact on all measures of systems performance The
most 1mportant memory issue for real time systems 1s access time Memory
access that 1s slower than a CPU clock cycle forces the CPU to wait a num-
ber of clock cycles to access the code or data This significantly increases

mstruction fetch and/or data load and store operations Time critical data.

structures and code should reside in fast memory Real time programs should
utilise internal registers and immediate addressing modes where possible to
minimise memory access Embedded computer systems must also contain

volatile and non volatile memory to be autonomous

1.3 Language Issues

The following section 1s an exploration of the programming language features
that are desirable in real time applications Some of the features are desirable
not only 1n real time systems, but in all well structured, reliable, maintainable
and eflicient software systems Real time software systems are a special
high performance subset of all software systems where software quality 1s

extremely important

1.3.1 Modularity

A language that facilitates modular programming 1s highly desirable in real
time systems Modularity promotes data encapsulation[7] If each module
has 1ts own local data and has a well defined interface then there 1s less
chance of unpredictable data corruption by other functions There 1s also
the benefits of applying a structured approach to software analysis, design,
coding and unit testing The internal workings of the module are invisible
to the function calling it This aids maintainability as modifications can be
localised to particular modules All these factors are highly desirable for real
time systems

Parameter passing between modules can be achieved by several methods
mcluding the use of global variables!, call by value or call by reference

Parameter passing through call by value or call by reference typically
involves the parameters or pointers being passed on to the stack which can
have a significant execution time impact for real time programs Global
variables do not have the same execution time penalty but do have an 1impact
on software quality Parameter passing can sometimes increase interrupt

latency as many compilers disable interrupts during parameter passing

1Global vanables are external parameters directly accessible to a number of modules

The call by value mechanism copies the actual value of the data to the
called function It works well when there 1s a test being performed on the data
or when the data 1s the input to a mathematical function The mechanism 1s
designed to ensure that the input data 1s not changed by calling the function

The mput data of the call by reference mechanism 1s a pomnter to the
data which the called function must access This mechanism 1s designed
to allow the input data to be changed by the called function Each access
to the input data by the called function requires at least one level of data
indirection which has a performance impact When the input data structures
are sufficiently large the call by reference mechanism has the advantage over
call by value 1n that only a ponter to the input data structure needs to be

placed on the stack rather than the entire structure as in call by reference

1.3.2 Recursion

Recursion 1s a mechanism provided by many programming languages whereby
a function can call itself This mechanism allows the programmer to write
elegant and concise code but in general has an adverse effect on real time
performance

The execution time for allocation and de-allocation of parameters and
local variables 1s costly to real time programs which should be as efficient
as possible to meet timing constraints The use of recursive functions makes

the run time memory requirements very difficult to analyse

1.3.3 Re-entrant Procedures

A re-entrant function 1s one which can be called by a number of concurrently
runming tasks Functions of this type are necessary if concurrent tasks need
to share the same code Re-entrant functions may not use any data that
1s 1n a fixed location but must use memory which 1s dynamically allocated
for each call This allocation 1s either on the stack or through a memory
allocation scheme such as the malloc() procedure in C[11]

Awkward schemes must be employed if code 1s non re-entrant and needs
to be shared by two or more concurrent tasks For example if two or more

tasks need to use a particular non re-entrant function they may avoid the

problem by each having an exclusive copy of the same function The problem
with non re-entrant functions 1s that they contain data at a fixed location

which may be overwnitten each time the call 1s invoked

1.3.4 Data Typing

Strongly typed languages force the application programmer to be precise
about the way data 1s handled which is beneficial to real time programs
Typed languages require that each variable and constant be declared as being

of a specific type and that this declaration 1s made at compile time

1.3.4.1 Abstract Data Typing

It 1s important be able to represent abstract ideas concisely in computer
languages as well as in human ones Languages that allow abstract repre-
sentation of entities which comprise of different data types makes program
design easier and aids program comprehension When moving from the anal-
ysis and design stage to coding, effective mapping of information models 1s
made much easier by provision of abstract data typing Finally parameter
passing to functions 1s made clearer An example of an abstract data type 1s
the struct specifier in the C programming language[11] C also allows user
defined types through the typedef declaration

Real time performance may be degraded by using abstract data types,
however 1ts benefits to software quality and maintainability are sigmficant
For example the C struct specifier 1s used to logically group data elements
Accessing a data element 1n a structure requires knowledge of the address of
the structure and the displacement of i1ts element If the data element was
not 1n a structure then only the address of that element would need to be

known and there would not need to be a displacement calculation

1.3.5 Assembly Languages

Assembly languages lack most of the desirable features of high level lan-
guages Assembly languages are tedious, unstructured and vary for different

machines They do have the advantage however of possessing a more di-

rect control of hardware and possibly being more efficient than a high level
equivalent

Assembler programming should therefore be limited to use 1n extremely
time critical applications or for controlling hardware features not supported
by the compiler In real time systems assembly programming 1s often nec-
essary to access elements of the highly specialised embedded hardware en-
vironment In general assembly language should be avoided where possible
but typically embedded real time systems will contain some mevitable mix

of high level and assembly language

1.3.6 Object Oriented languages

Languages which are designed to encourage a high degree of data abstraction
and information hiding are called object oriented languages Object oriented
programming techniques show significant advantages in improving overall
system quality at all stages from mapping the problem domain to a robust,
quality specification, through design and over the hife of a particular software
application[7][8]

Object oriented languages provide many features necessary to encourage
good software engineering technique Function polymorphism for example
allows the programmer to create a single function which operates on different
objects depending on the object involved Object inheritance allows the
programmer to create new objects in terms of existing objects

The 1ncrease 1n software quality 1s paid for by a sigmificant time penalty
which may be too severe for many real time systems For example in one
study, code written 1n objective C, (an object oriented variant of C) was
found to be 43% slower than the same application written 1n conventional
C or programs written in the object oriented language Smalltalk are known
to be approximately 5 to 10 times slower than those written 1n conventional
C[9]

In many cases, particularly in real time systems where software quality
1s paramount the benefits of object oriented techmiques may make 1t worth
employing more powerful processors to overcome the time penalty associated

with object oriented systems

1.4 Strategies for Real Time Scheduling

An operating system 1s a collection of specialised system programs The
Kernel or Nucleus holds the minimum functionality required for an operating
system The Kernel must perform three core services task scheduling, task
dispatching and inter-task communication The scheduler module determines
which task is to be run at a given time 1n the system The dispatcher does
the necessary bookkeeping to activate the next task to be run and stores the
context of the last task The inter-task communication module handles data

mmterchange and synchronisation between the tasks within a system

1.4.1 Busy Waiting

A busy waiting scheme 1s not strictly speaking a real time kernel but 1t
warrants mention as 1t 1s the simplest way in which a real time computer
system can respond to an event It comprises simply of a repetitive test to
establish whether or not an event has occurred If the event has occurred
then a process 1s invoked to deal with 1t, if 1t has not then the same test 1s
repeated

Busy waiting or polled loop systems have a number of features desirable

for real time systems namely
1 They allow for very fast response times (for single devices)
2 They are easy to write and debug

3 The response time 1s easy to calculate making the system event deter-

ministic

However polled loop systems also have a number of general disadvantages

which are unacceptable in many applications They are as follows
1 They require the processor to be dedicated to monitoring a single event

2 They can’t operate in a multitasking environment as only a single task

15 allowed

3 The polled loop 1s a waste of CPU processing power

10

1.4.2 Coroutines

Coroutine or co-operative multitasking systems are used widely 1n soft real
time systems? A coroutine scheme allows applications to be written in a
multitasking environment but requires disciplined programming and an ap-
propriate application Coroutines are implemented by breaking processes
up mnto discrete code segments or phases The phases are organised 1n a
way that allows each process to be temporarly suspended before completion
without the loss of critical data At the end of each phase there 1s a call to
a central dispatcher which decides which process to run and keeps a record
of which phase the process 1s at Any data that needs to be preserved be-
tween dispatches must be stored 1n global vanables Commumnication between
processes 1s also via global variables

If the process phases have a known execution time then response times
can be determined Another point of note 1s that coroutines operate without
hardware interrupts The main disadvantages with coroutines are that not all
processes can be easily broken down into phases, communication via global
variables 1s not desirable and finally coroutines places great demands on the

programmer to use the scheme correctly

1.4.3 Interrupt Driven Systems

In interrupt driven systems, scheduling 1s achieved through hardware or soft-
ware interrupts The interrupt informs the real time system of the occurrence
of an event Dispatching the appropriate task 1s conducted by the interrupt
service routine 1n a single interrupt system or directly via hardware 1n a mul-
tiple interrupt scheme There must be an 1dling program for the system to
revert to when all events have been serviced

The events which drive the tasks of an interrupt driven system can be
sporadic, periodic or some combination of both Systems in which only
periodic events occur are called fixed rate systems Systems which must

respond to both sporadic and periodic events are called hybrid systems

?For example, in Microsoft Windows programming

11

1.4.3.1 Context switching

The most fundamental mechanism in mnterrupt driven systems 1s context
switching Concurrency 1s achieved through a principle called
pseudo-parallehsm[4] A number of separate concurrent tasks can be run on
the same processor 1f all the information relating to the state of any particular
task can be stored so the task can be resumed after being interrupted The
context 1s essentially the image of a virtual processor on which each task
exists The real time kernel makes the context switching invisible to the
apphcation task

The price of concurrency 1s the context switching overhead which 1s a
major contributor to event response times Context switching times must
be minimised because any cycle wasted in the kernel 1s of double loss to
the application as no useful work 1s being done As a general rule only the
mimmum amount of information required to safely restore task context 1s
saved

The following information 1s generally what 1s saved as part of a context

switch
o The contents of the program counter

e The contents of the processor’s registers

The contents of coprocessors registers (if any)

The contents of memory page registers

Memory mapped I/O location mirror images

Special variables

Normally interrupts are disabled during the critical context-switching pe-
riod Sometimes however after sufficient context has been saved, interrupts
may be re-enabled after a partial context switch in order to handle a burst

of interrupts, to detect spurious interrupts, or to handle a time overloaded

condition

1.4.3.2 Context switching using the stack

A typical method for saving and restoring context in a mult: tasking system
1s by using the stack The TMS320C30 compiler for example generates code
to push all the processor registers used by an interrupt function on to the
stack upon entry to the function Conversely 1t pops these registers off the
stack to restore the original context upon function exit

The stack 1s a resource with a limited memory allocation The amount of
stack space that a program consumes and releases swells and recedes at run
time The storage of task context also places an extra strain on the stack
There 1s a danger of the stack memory being exhausted by the combined
stack usage of a number of tasks particularly if interrupts are not disabled
during interrupt routines If interrupts are not disabled during interrupt
routines then a number of interrupts occurring or even a burst of the same
mterrupt will cause a number of contexts to be stored and may lead to stack
overrun

The dynamic nature of the stack usage makes 1t very difficult to determine
how much stack space a program will consume before an event and how much
stack space the event handler will consume after the event The real time
system must take into account the combined worst case stack usage in order

to maintain system integrity at all times

1.4.3.3 Round Robin Systems

The Round Robin Scheme 1s characterised by having several tasks which
are executed sequentially to completion often 1n conjunction with a cyclical
executive The fundamental 1dea behind round robin 1s that each task 1s
assigned a fixed quantum of processor time called a time slice A fixed rate
clock generates an interrupt corresponding to the end of a time shce If the
task does not complete within 1ts time slice then the context 1s switched and
the task 1s placed at the end of an executable list It 1s assumed that all tasks
have an equal priority The round robin scheme 1s the fairest way to allocate
processor power between tasks of equal priority It must be noted however
that round robin systems do not respond to external interrupts but only

the system clock interrupt Real time response times are hard to calculate

13

Time Slicing under Round Robin

Task3 | Task3

Task2 Task2

| Task1 | Task1

I] I I I I .

Processor time allotted to tasks

Figure 1 1 Time shcing under Round Robin

as they are a function of the length of the time slice and of the number of

executable processes on the executable list

1.4.3.4 Preemptive Priority Systems

In preemptive priority systems scheduling 1s achieved through assigning real
time events with a particular priority This allows the tasks which need
processor attention to meet their deadline to interrupt tasks of lower priority
The priorities of these tasks may be fized or dynamuc

The scheduling priority of a task may not necessarily reflect how critical
the task 1s to the system For example in rate monotonic systems priority 1s
assigned based on the execution frequency of tasks A task driven by an event
with a short period 1s assigned a high priority, however this task may not
be the most important task to the system This 1s a phenomenon known as
priority mverston This distinction 1s of no concern when all the tasks must
meet their deadlines, however in many real time systems transient overloads
may occur and 1t may not be possible to meet all deadlines When such an
overload occurs then it 1s vital that critical tasks meet their deadline even
at the expense of less critical deadlines In this way system integrity has a
better chance of being upheld even after transient overloads When a lower
priority task 1s demied resources in this way through a higher prionity task

preempting, the lower priority task is said to be facing a problem known as

14

Preemptive Scheduling

Task3 preempts

. :Task2 Task3 completes

Task2 preempts .

Task1 rTa SK3 J » Task2 completes
T Task2 . _Task2 |
5 . ;
O \ ' ', . Task1
o | (s | . Taski_| _
— , , ‘

Processor time allotted to tasks
Figure 1 2 Preemptive Scheduling
starvation

1.4.3.5 Hybrid Interrupt Systems

There are many versions of interrupt only systems Hybrid systems incor-
porate both the fixed rate and the sporadic interrupts which typically are
present 1n an embedded application

A special type of hybrid system uses a combination of round robin and
preemptive systems In such a system tasks of equal priority may run con-
currently 1n round robin fashion while a higher prionity task can preempt a
lower priority one

Interrupt only systems have the advantages that they are easy to write
and code efficient They have typically very fast response times as scheduling
1s achieved via hardware

The disadvantages of interrupt only systems 1s the processing power
wasted 1n the 1dling task and the difficulty in providing advanced services
These advanced services include interfaces to devices and multi-layered net-

works Another weakness 1s the system’s vulnerability to timing varations

15

and unanticipated race conditions

1.4.4 Foreground Background Systems

The foreground background model of real time scheduling systems sums up all
the systems discussed so far The foreground of the model comprises a num-
ber of interrupt driven tasks The background 1s used by non time-critical
tasks The background tasks can always be preempted by any foreground
task The background processing power can be used to perform low priority

self testing or performance testing

1.4.5 Task Control Block Model

The task control block model 1s a technique for representing and controlhng
a mult1 tasking system It 1s quite popular in commercial, full featured,
real time operating systems It has the advantage that 1t can cater for a
variable number of tasks and that tasks can be created dynamically The
main disadvantage of the task control block model 1s that when the number
of tasks created 1s large then the kernel overhead becomes significant making
the system unwieldy

The task control block technique hinges on assigning each task with an
1dentification string or number, a status, a priority and space to store the
task’s context These items are stored 1n a structure called the task control
block Each task control block would typically be grouped 1n a larger data

structure such as a hnked hist

1.4.5.1 Task Management

The operating system manages tasks in the system on the basis of the infor-
mation stored 1n the task control block The task control block 1s updated
upon any scheduling event In a uniprocessor system there can be only one
task executing at any one time There are three different states that the
status field of the task control block can be

They are

® running

16

o ready
o blocked

The running task 1s the one which 1s currently allocated the CPU A
ready task 1s one temporarily blocked to let another task run A task’s status
would be set to ready 1f 1t was preempted or if its time slice had expired

Blocked tasks are ones which are not selected as ready Tasks are made
ready by the operating system upon a certain event An event 1s either a
hardware interrupt or a software trap Certain systems also have a dormant
task state The dormant state 1s used by systems in which the number of
tasks 1s fixed and where the task control block 1s allocated for all possible
tasks A dormant task 1s one which 1s not yet created or available to the
operating system

Every event or system level call 1s made via the operating system The
operating system decides the next eligible task to run after a scheduling event,
releases the CPU from tasks when their time slice has expired, arbitrates
on the allocation of resources and facilitates inter task communication and

synchromsation

1.5 Inter Task Communication and Synchro-
nisation

The 1ntegrity of data transfer between tasks and the synchronisation of tasks
both internally and externally poses a problem in any multitasking system
The system must guarantee not only that data 1s transferred correctly but

also that certain sequences of events must never occur

1.5.1 Data Sharing

The simplest and fastest way to pass data between tasks 1s via shared mem-
ory Compilers can generate very efficient code for accessing data 1n this way
as 1t only requires knowledge of an address in memory The disadvantages
of using shared memory between a number of tasks 1s that the shared data

1s prone to corruption This can occur for example through a task operating

17

with shared data which 1s preempted by a higher priority task which updates
the same data The preemption could occur while the former task 1s mid way
through a calculation using the data, yielding unpredictable results The use
of shared memory for intertask communication requires the system to have
some other synchronisation mechanism such as semaphores built into the

code to guarantee system integrity

1.5.1.1 Double Buffering

Double buffering 1s used when time relative data needs to be transferred and
the producer generates data at a slower rate than the consumer processes
1t It 1s commonly used 1n systems such as telemetry The basic 1dea 1s that
there 1s shared memory divided 1nto two blocks At any time there will be
one block updated by the producer and the other can be accessed by the
consumer A hardware or software switch 1s used to alternate between the
two buffers Double buffering 1s also commonly known as ping pong buffering
The consumer must consume data faster than 1t 1s produced for this system

to work

1.5.1.2 Ring Buffers

Ring buffers are an extension of the above double buffering scheme where
there 1s more than two buffers for the producer to fill The system operates
on a FIFO queue scheme The FIFO system allows the consumer to have
more time before servicing the queue This system 1s commonly used 1n a
system such as a data logger where the time afforded by the FIFO depth

allows the system to write to disk

1.5.2 Message Passing

Message passing 1s a scheme 1n which tasks can transfer data via the oper-
ating system through calls to send and receive The data 1s transferred to a
mutually agreed upon memory location which 1s generally cleared after the
operation Synchromisation 1s achieved through task rendezvous A sending

task 1s blocked until there 1s a receiver present to take i1ts message Con-

18

versely a receiving task 1s blocked until there 1s a sending task present to
generate a message

If there are multiple readers and writers then the 1dentities of the blocked
tasks are recorded by the operating system The operating system chooses
which of the blocked tasks will rendezvous 1f there are a number of tasks
blocked pending on a rendezvous partner Null messages may be passed for
pure synchronisation purposes

Some executives may convert external events into messages which the

tasks may synchronise with

1.5.3 Semaphores

Critical regions are 1dentified as being the sections of code 1n tasks which ac-
cess resources which can only be used by one task at a time These resources
include shared memory, certain peripherals and the CPU 1itself One of the
mam thrusts of task synchronisation i1s ensuring that certain sequences of
events don’t occur such as two tasks entering their critical regions and ac-
cessing the same resource Distra[l] put forward a scheme for protecting
critical regions 1n multitiasking systems which make use of a special variable
called a semaphore

The semaphore 1s basically an unsigned counter and there are two op-
erations which can be performed on 1t up and down An up action on a
semaphore will increment the value of that semaphore A down operation
will decrement the value of a semaphore or block the process which made the
call 1f the semaphore 1s zero

The up and down operations on semaphores are atomic which means that
no other process can access the semaphore until the semaphore operation 1s
complete This 1s essential to avoid race conditions and solve synchronisation
problems

A process will never be blocked if 1t does an up operation If there are
any tasks blocked on an unsuccessful down operation the up operation will
free one of these tasks

Semaphores are a very versatile synchromsation mechamsm They do

require an effort on the application programmer’s part to identify critical

19

regions, choose and maintain appropriate semaphores and embed semaphore

operations 1n the application’s code

1.6 Conclusion

A real time system interacts with, or reacts to, a dynamic real world envi-
ronment The system’s integrity depends not only upon the systems logical
correctness but also upon a timely response to external events Real time
systems must be predictable, reliable and timely to be useful Precise system
specification 1s especially important for real time systems

Real time software systems operate 1n specialised hardware environments
These hardware environments would typically have connections to sensors
and actuators to interact with or monitor a real process It 1s important that
the application programmer has a sound understanding of the underlying
hardware as CPU performance, interrupt facihities and memory 1ssues all
have a direct impact on real time performance

Real time software systems are a high performance subset of all software
systems The software for real time systems should be well structured, reli-
able, deterministic, maintainable and efficient The concurrent nature of real
time systems means that there 1s some degree of multitasking in the software
Software quality 1s particularly important for real time systems

If there are a number of concurrent processes 1n a real time system the
software system will benefit from a real time operating system The real
time operating system facilitates the structuring of the processes and ac-
tivities of an application into dedicated tasks This has the advantage of
making the solution to the application modular The second advantage of a
real time executive 1s that 1t structures interactions between application tasks
by handling intertask communication and synchronisation in a safe manner
(mimimsing the chances of unanticipated race conditions) The third advan-
tage of an executive 1s that 1t provides an application software interface to
the underlying hardware This API provides an event interface mechanism

for tasks

20

Chapter 2

Executive Features

2.1 Desirable Features

The computer n a real time embedded system 1s essentially within the control
loop and 1ts responsibilities in that role are 1ts primary functions Synchroni-
sation, scheduling and communication between the different components of
real-time software 1n a reliable, timely and predictable fashion places great
demands on the software The real time environment requires a number of

features from the software, many of which fall in the domain of the executive

2.1.1 Fundamental Features

There are three fundamental features which reflect what 1s essential 1n real-

time systems[5][9][2][10] They can be 1temised as follows

o Concurrent Processing
o Hardware/Event Interface

¢ Interprocess Communication and Synchromsation

21.1.1 Concurrent Processing

All real time systems must facilitate concurrent processing The level of
concurrent processing 1s a function of the number of external events that

must be handled by the system and the natural parallelism of processing

21

within 1t The executive must ensure that the multi-tasking scheme 1s flexible

and efficient It should be deterministic for critical tasks

2.1.1.2 Hardware/Event Interface

All real time embedded systems must have a significant interface to the un-
derlying hardware The real time embedded system may be defined as being
1n permanent contact with an active environment If the executive 1s designed
1n a modular fashion then very specific hardware interface modules could be
added, modified or removed without affecting the core of the executive The
real time system must be able to respond to events and the executive must

support an event interface to the tasks that make up 1ts application

2.1.1.3 Interprocess communication and Synchronisation

The real time system must facilitate inter task communication and synchro-
nisation It must do this in a way that avoids data corruption and race

conditions to maintain software quality

2.1.2 Quality Attributes

The quality attributes tend to influence the way 1 which systems should
be developed They also influence the design but are independent of the

required functionality[5]

e Dependability

Reconfigurability

Usability

Certifyability

Constraints

Evolution Capability

22

2.1.2.1 Dependability

Dependability 1s a measure of how much reliance can be place on the qual-
ity of service that a system can deliver It 1s a function of rehability and

maintainability

2.1.2.2 Reconfigurability

This 1s a property of a system which expresses the possibility of being able
to influence the structure and/or functions during system operation If a
system 1s capable of changing its properties without degradation of its ser-
vices then 1t can be qualified as reconfigurable on-line If modifications of 1ts
properties necessitates temporary interruption of 1ts services then the system

1s reconfigurable offline

2.1.2.3 Usability

This system feature 1s related to ease of use of a system by 1ts end user

2.1.2.4 Certifyability

Certifiability of a system expresses the possibility of obtaining a formal state-
ment of compliance of system operation with respect to 1ts specified require-

ments

2.1.2.5 Constraints

This 1s a system property which measures the ability of a system to comply
with non-functional or physical constraints These may be characteristics
such as size, power consumption, price, colour and temperature range for

example

2.1.2.6 Evolution Capability

This 1s a measure of how much a system 1s designed to evolve over 1ts life

cycle

23

2.2 System Specification

The thesis so far has been a study of what 1s essential, desirable and reason-
able 1n real fime systems However the application domain ultimately defines
the specification of the executive The target application considered in this
thesis 1s that of DSP servo motor control The ultimate application to which
the executive provided a software platform was a research servo motor test

bed This application required the following features

e Control frequencies of up to 4 kHz

e Real time user interface and display

e On line reconfigurability of system parameters
e Control of an active load

o Intensive mathematical computation 1n control algorithm

It 1s clear from above that the executive must facihitate multiple concur-
rent application tasks These tasks must interact with other and the external
environment The executive must be structured in a way that guarantees re-
sponse deadlines for time critical tasks in the system The core features to

be provided are as follows

e Preemptive event driven scheduling

e Synchronisation and communication facilities for application tasks

e Handling of device interrupts

Each task in the application should be a separate programming entity
with 1ts own exclusive data code and stack The executive must provide for
communication between these exclusive memory areas

The executive must also provide a means of synchronisation internally
between tasks and externally with the real time environment To guarantee
response deadlines of time critical tasks requires a priority scheme where

critical tasks can preempt tasks of lower priority The scheduler 1s therefore

24

activated on a scheduling event which may be internal or external Finally
the executive overhead must not be too great for the application and the

hardware platform

2.3 System Design

The executive considered 1n this thesis 1s essentially a software platform facil-
itating concurrent application tasks and providing application services The
executive 1s designed for an embedded hardware platform, therefore the main
thrust of the design 1s to make 1t a minimal kernel This design strives to
make the kernel fast and efficient 1n order to reduce overhead and to meet
timing constraints Simplicity 1s chosen as a fundamental design principle as
1t inherently makes the executive more predictable, dependable and optimal
by not allowing unwieldy complexity to creep in It 1s important that the
internal workings of the executive are understood by the application pro-
grammer The executive was christened Ease

Unlike commercial operating systems the embedded environment typi-
cally does not have to handle device drivers for devices such as disk drives
and complex user interface devices The embedded system can however have
many varied and application specific device interfaces For this reason a de-
sign decision was made that hardware interface would be carried out directly
by the application tasks and not via system calls Ease still provides an
event interface for application tasks This approach makes Ease smaller, less
complex and provides more flexibility for the application programmer

An embedded system typically would have a known number of tasks and
these would each be assigned a priorty Static process priority was chosen
over dynamic process priority as dynamic process priority may obscure ap-
plication bugs For the embedded system there 1s also no need for dynamic
process creation and destruction

To make Ease as platform independent as possible it was written 1n C
where possible and assembly where necessary All executive components
were coded 1n a modular fashion to aid evolution, development, addition or
enhancement of 1ts services All executive services are accessed through C

callable functions

25

The message passing scheme was adopted for inter-task communication
and synchronisation Message passing inherently incorporates communica-
tion and synchromisation i one mechanmism It was decided that external
events should be converted to messages by Ease

The design goals may be summed up as follows

o Optimise speed and efficiency but not at the expense of design com-

prehension
o Keep executive functions small and fast

e Allow all program components to co-operate with each other with min-

mmum overhead

e Choose to spend memory to gam speed

2.3.1 Scheduling Scheme

The fundamental uniprocessor method for introducing concurrency involves
pseudo-parallelism This 1s achieved by the executive switching processor
context between mdependent task objects These tasks have one of three
states ready, running or blocked Tasks are not created dynamically The
executive keeps track of task states in a task control structure

Task scheduling under £ase 1s conducted on a priority basis with a time
shcing scheme for tasks of equal priority The scheduler 1s run upon a schedul-
g event which 1s an event which changes the state of an application task
The scheduler 1s triggered by one of three conditions The scheduhng event
may originate from an external source such as an interrupt The scheduling
event may originate from the £ase system clock which indicates that a task
has expended 1ts time shce Finally the scheduler may be invoked from a
task seeking to send or recerve a message The call to send /recerve will result
mn an apphcation task changing state either through rendezvous, which will
make another task ready or by blocking the task making the call if there 1s
no rendezvous partner Scheduling 1s guaranteed at a mimimal level by the
Ease system clock The actual scheduling mechanism 1s designed to be as
fair as possible without excessive overhead

The scheduling mechamism does the following on a scheduling event

26

o Make a limited context switch so the scheduler can run

e Run scheduler to decide which ready task to select on the basis of the

relevant states of tasks within the application

e Update the task control structure on the basis of the scheduler’s deci-

sion
o If the same task 1s to be run restore 1t

e If another task is to be run do a full context switch

2.3.1.1 Task Control Structure

Ease keeps track of task states through a task control structure An ele-
ment corresponding to a single application task of this task control structure

contains the following information

e Blocked status running ready or blocked

e Quantum tick the amount of time slices that the task has run for

Stack pointer pointer to task’s exclusive stack
e Task Id An integer to identify application task
e Root Function pointer to root function of the task
e Next member pointer to next task of same priority

Ease maintains closed linked lists of tasks of equal priority Ease keeps
an array of ponters to the current task at each prionity level A scheduling
event which may cause a task of any prionty level to be unblocked causes
the £ase scheduler to scan through all of these linked hsts starting at the
list corresponding to the highest priority tasks The time shcing clock will
cause a scheduling event which will not change the current priority level In
this case Ease will advance the quantum tick of the task and check to see if
1t has expended 1ts share of CPU time If the task has expended 1ts quota of
quantum ticks then the executive will run the next ready task on the list of

tasks at that priority level

27

2.3.2 Inter-task Communication and Synchronisation

As message passing inherently incorporates communication and synchroni-
sation 1n the same mechanism Ease employs message passing for inter-task
communication and synchronisation This approach slightly penalises tasks
that only want a synchronisation service but has the advantage of making the
mechamsm generic without the need for another service for communication
If tasks require only synchronisation then a null message 1s passed

The Ease message passing scheme 1s designed to transfer data between
the application tasks’ exclusive memory areas This service may be ignored
in lieu of another method such as the use of global variables but this forsakes
the advantages that message passing gives The message passing scheme
copies the message data from the sender task’s exclusive memory area to
the receiver’s Message passing ensures that there 1s no data corruption
and structures the application in a way that improves software quality and
maintainability

Ease also links event handling into the message passing scheme by con-
verting external events into messages which application tasks can respond to
This approach makes the mechanism of interface to external events invisible
to application tasks It also makes synchronisation to internal and external
events generic to application tasks

Ease keeps track of tasks sending and receiving messages through a com-
munication channel structure These communication channel structures are
basically queues of tasks which are seeking rendezvous partners The queue
can be either empty, be a queue of senders or a queue of receivers A task
that calls send/receive will be put on the channel queue until a rendezvous
partner makes the converse call Application tasks nominate which channel
they wish to conduct message passing over in their calls to send and receive
Tasks which seek a rendezvous partner are 1n a blocked state

From the above 1t 1s clear that an unbuffered message passing scheme
was chosen over a buffered scheme The reason for this design decision 1s
firstly that the buffered scheme makes the executive unwieldy and secondly
that 1t does not make sense to buffer most if not all real time events that

an application task may wish to respond to For example there 1s no sense

28

m buffering interrupts that must be serviced within a specified time 1if the
interrupts are not serviced each time, that indicates a system failure Adding
buffering would increase the executive’s complexity and overhead for only
minimal extra advantage

Another consideration regarding message passing i1s whether the message
data has fixed or variable size The fixed sized message buffers have the
advantage of not needing size information in message calls Variable sized
message buffers have the overhead of size checking to ensure that the sender’s
message 1s not too large for the receiver The fixed s1ze message scheme makes
the entire real time system more predictable as each message package takes
a fixed length of time to transfer The variable size message passing scheme
increases the maximum interrupt latency as the amount of time to trans-
fer a message varies and interrupts are disabled during the critical sections
of message passing The worst case interrupt latency in the variable sized
scheme 1s the time taken for the largest message to be passed The variable
s1zed scheme has the advantage of decreasing average interrupt latency if the
message size varies over a range of sizes Fixed size message passing has less
overhead, more predictability and less flexibility than variable sized message
passing The variable size message passing scheme was chosen for £ase for
the flexibility aspect of 1t

All tasks at all priority levels have access to communication channels All
external events can each be attached to a specified communication channel
When the event occurs Ease will send a predefined message on that channel
The £ase communication channels support multiple senders and receivers
Ease does not guarantee which task on the channel’s queue will rendezvous

first 1f there 1s a number of tasks on that queue

2.3.2.1 Communication Channel Information Structure

Ease uses the communication channel information structure to keep track
of message passing in the system The structure 1s ssmply a queue of three
elements task identification, a pointer to memory and a size The three ele-
ments have different meanings depending on whether the channel 1s currently

maintaining a queue of senders or receivers

29

If the channel has a queue of senders then the task identification 1s a
unique nteger to 1dentify the task which 1s blocked on send The pointer to
memory 1s a pomnter to the task’s private memory where 1t has prepared a
message The size element 1s the size 1n 32-bit words of the message that 1t
wishes to send on that channel

If the channel has a queue of receivers then the task identification 1s a
unique nteger to 1dentify the task blocked on receive The memory ponter 1s
a pointer to the receiver’s private memory area where 1t wishes the incoming
message to be placed The size element 1s the maximum size of message 1n
32-bit words that the receiver wishes to take

In the case of rendezvous Ease will know which task to unblock Ease
will also have to make a decision based on the sender’s and receiver’s size
arguments There can be two occurrences which would result in a message
not being passed The first 1s 1f a sender 1s queued and the receiver 1t 1s about
to rendezvous with has a maximum message size smaller than the sender’s
message size The second 1s 1if a receiver 1s queued and the sender’s message
size 1s greater than the receiver’s maximum message size Both conditions
will result m the call to send or receive failling and £ase indicating that
the sender’s message size 1s too large for the receiver Passing a message
of incompatible size generally indicates an application error However the
system may recover from the situation gracefully as follows If the receiver
1s queued the sending task can reduce the size of 1ts message until the call
succeeds If the sender 1s queued then the receiver could increase 1ts buffer
size until the sender’s message fits Alternatively one could just let the call

fail until another task with the appropriate size seeks to rendezvous

2.3.2 2 The Send Call

The send call 1s the application task’s interface to the Ease message passing
mechamsm The task nominates the channel 1t wishes to send the message
over with this call It also passes a pointer to the memory where the message
resides and the size of the message The call returns the standard success
or failure code depending on the success of the call A failure can be an

mvahd channel or that the message size 1s too great for the receiver The call

30

also returns a pointer to the rendezvous task’s root function to i1dentify the

rendezvous partner The root function will be discussed in section 23 3 1

2.323 The Receive Call

The receive call 1s the converse call to send The receiving task nominates
the channel 1t wishes to receive over with this call It passes a message
pomter and maximum message size to £ase via this call Receive returns
whether the operation was a success the actual size of the message received
and a pointer to identify the rendezvous task The call will fail if an 1nvahd
channel argument 1s passed to 1t or if the sender’s message size 1s too great

As event generators are virtual tasks £ase returns a NULL task pointer

if the sender 1s an event converted to a message by Ease

2.3.3 Initialisation

Ease requires a number of application specific details which 1t must have
access to upon system initialisation For example, the number of tasks the
executive must deal with 1s application specific Ease needs access to n-
formation provided by the application programmer on the number of tasks,
their prionties, their stack allocations and a way to umiquely 1dentify each
task This information will be placed in the executive’s task control struc-
ture There may also be a number of other hardware specific imtialisation
procedures such as the imtiahsation of the system clock for time slicing In
essence Ease requires both private and application specific imitialisation

To provide application specific setup n a flexible way, Ease requires the
application programmer to write an applcation specific C function which
generates tasks and sets system timers This approach also provides a frame-
work for adding of any future imitialisation processes which may be needed

The 1mplied target platform specific imtialisation 1s handled 1n this function

also

2.3.31 Task Creation

The application specific imitiahisation function will consist of calls to create

tasks The application programmer passes three arguments 1n the create task

31

call These are the name of the root function of the task, 1ts priority and the
stack space the task must be allocated The root function of a task 1s the C
function which represents that task The root function typically consists of
an endless loop

The application programmer must be careful in choosing the stack allo-
cation If the stack allocated 1s too small then the task stack may overrun
and corrupt data, on the other hand if the sum of the stack allocations are
too great then there may not be enough physical memory The stack must be
able to accommodate all the local variables of the task’s root function plus
those of any functions which are subsequently called to the deepest nested

level and must cater for memory taken by the actual parameters passed on
the stack

2.3.3.2 Timer Initialisation

In this same imtiahisation function a call to set all timers used by the apph-
cation must be called The application programmer passes one argument n
the timer imitialisation call This argument 1s simply the frequency

A particular timer on the target system has the special function of gen-
erating time shice ticks for application tasks and must be called regardless of
whether application tasks wish to avail of system timer services or not The
period time slicing tick must also be set to an appropriate value which 1s

generally recommended to be ten times the time 1t takes to switch context

2.3.4 Services

The executive services are made through C calls The most fundamental
calls are send and receive, discussed above The other calls are calls to set
timers and cause events to generate messages

2.3 4.1 Timer Services

All timer service functions are called directly by the application tasks They

consist of three arguments

o Ticks

32

e Channel
e Mode

With the channel argument, the task nominates the channel on which a
message will be sent when the timer has expired

The ticks argument 1s the number of timer events that the executive
must wait before sending the message The tick period 1s set by a timer
imtialisation call in the application specific initialisation routine

The mode argument informs Ease of the mode of the timer The mode

may be monostable or astable

2.3.4.2 Event Services

The mmitialisation functions of event services are ssmpler than the timer ser-
vices 1n that they have only one argument This argument 1s simply the
channel which the executive will send a message over when the event occurs
Each event to which £ase provides event services has 1t’s own 1nitialisation

function defined 1n ease h

2.3 4.3 Error Services

Ease mdicates errors through leaving an error message string at a specific
global location 1n memory This location can also be accessed by application
tasks An application task detecting a serious error can copy its error message
string to this global location

The executive also gives application tasks access to special variables
through the include file which gives information on interrupts which are lost

through no task being ready to respond to them

2.4 Conclusion

Ease , the executive of this project, 1s specified for DSP motor control ap-
plications This application domain demands certain features and quality
attributes from the executive Ease 1s speafied to support multiple con-

current application tasks and facilitate preemptive event driven scheduling

33

Ease 1s designed to be small, fast and efficient as 1t 1s to be used in an
embedded environment

Task scheduling under £ase 1s conducted on a priority basis with a time
shicing scheme for tasks of equal priority Ease employs message passing as a
means of intertask communication and task synchronisation as message pass-
ing mncorporates both in the same mechamism Ease also links event handling
into the message passing scheme by converting external events into messages
which application tasks can respond to This approach makes the mechanism
of interface to external events invisible to application tasks It also makes

synchronisation to internal and external events generic to application tasks

34

Chapter 3

Ease Software Design

As the application domain of £ase 1s the embedded environment £ase 1s
designed to be fast and efficient to reduce overhead and meet the timing
constraints imposed on 1t It 1s designed to be compact so as not to take
up too much memory, as memory 1s quite a scarce resource in embedded
systems These optimisations are not however made at the expense of design
comprehension and software quality

Ease 15 designed 1n a modular fashion to aid evolution, development,
addition or enhancement of 1ts services Executive services can be made ap-
plication specific or target platform specific by adding or modifying modules
Simplicity 1s chosen as a fundamental design principle as 1t inherently makes
Ease more predictable, dependable, robust and optimal Refer to the Ease
User’s Guide Appendix A for further details

3.1 Coding conventions of fase

Ease 1s coded 1 a mix of ANSI C and assembler The assembler source code
15 used only where necessary 1 € for certain kernel operations not facilitated
by C and for platform specific hardware interface

All source files are compiled or assembled and their object files archived
into the library file ease 1ib This library 1s then simply linked into an
application to utilise the £ase software platform

The interface to this library 1s defined in the API header files ease hand

easeinit h These header files declare all the £ase functions and variables

35

which the application may need
Ease 1s however made up from a range of interdependent modules The
following sections detail the particular conventions and the software practice

used 1n coding Ease

3.1.1 Identifiers

All Ease functions and global® variables are prefixed by Ease For example

the following declarations are made 1n the file kernel h

extern int EaseClockTick,
extern void EaseScheduleAfterInt(void),

This scheme 1s used to avoid clashes with user applications which may
accidentally have variables of the same name as an £ase variable Ease uses
global variables to share certain data between modules

The following defimitions are made 1 kernel h to qualify variables de-

clared outside functions

#define public
#define private static

These defimtions are used to limit the scope of identifiers within the
source code of £ase It 1s good software practice for a number of reasons to
himit the scope of 1dentifiers because only functions which need the identifiers
should have access to them The scope of an 1dentifier can be hmited 1n C by
using or omitting the static qualhfier The additional symbolic constants
private and public were added to make the scope of the identifiers clear in
coding It would be preferable if the the default scope for C 1dentifiers was
pravate but however this 1s not the case and the source code of Ease replaces
the omission with the explicit qualifier public to clearly indicate that the
particular i1dentifier 1s being consciously and deliberately made public The
word static has no mnemonic value in the context of limiting scope of

1dentifiers therefore 1t 1s replaced in the source code of £ase with private

private int idle_priority,
public int EaseCurrentPrioraity,

!Global in this sense meaning vanables visible to any part of the entire program

36

The variable 1dle_priority is used only by the source module kernel c
and 1s therefore declared as private The varable EaseCurrentPriority
needs to be accessed by other £ase modules and 1s therefore declared as
public

The 1dentifiers used in ase are intended to be as descriptive as possible
without being too lengthy If they comprise of more than one word each word
15 separated either by underscores or by modulating capitalisation between

the first and subsequent letters of each word

3.1.2 Source Modules

All £ase C source modules comprise of a C source file and a header file The
source file contains all the functions and data possessed by the module The
header file defines the interface to that module The source module will at
least include 1ts own header and the headers of other modules with which 1t
interacts

The modules comprise of the following elements

Definitions specific to the module

Public data accessible to other modules

e Functions callable from outside the module

e Private data exclusively used by the module

Functions exclusively used by the module

There 1s also another layer from an API (Application Programming In-
terface) perspective These are the functions and data accessible to the ap-
plication These are defined in the API header files ease h and easeinit h
and are not dealt with i this section

All definitions specific to a module should appear 1n only one place and
may need to be visible to other modules, therefore £ase places these defini-
tions 1n the module’s header file These definitions may be made with for
example, the #define preprocessor directive or the typedef declaration

The following section of kernel h illustrates this

37

#define MAX_TASKS 15
#define PRIORITY_LEVELS 8
#define QUANTUM 2

#define TIMERO_INTVEC 0x9

typedef void (*EaseTaskId_t)(void),

All data which needs to be accessible to other modules appears 1n the
module’s header file Ease header files always use the extern storage class
specifier to declare the data which the module allows external access This
data 1s also declared (without the extern) as public m the C source file

The module’s functions callable from outside the module are also declared
i the module’s header file using the extern storage class specifier Any
module which requires to use these functions simply includes the header file
of the appropriate module

Variables and functions which are used exclusively by the module are
present only 1n the module’s source file and do not appear in the module’s

header The variables are expliaitly declared as private in the module’s source

file

3.1.3 Assembler Source Code

The assembler source code 1s used for operations not facihitated by C The
assembler 1s used 1n conjunction with ANSI C code and therefore must not
violate the C environment from the application’s perspective This means
that 1t must respect the C register conventions[16]

The assembler functions of £ase are also C callable This means that
they have the same stack calling convention as the TMS320C30 C compiler
and that all function names are prefixed by an underscore Their function
prototypes are declared in a header file of the same name Ease currently
has two assembler files kextra asmand tms_1f asm kextra asmis used for
Ease specific operations such as context saving and restoring and tms_1f asm

1s used for hardware specific peripheral mnterface

33

3.2 Target Platform Of £ase Prototype

Ease 1s developed using the TMS320C30 C compiler and support tools on an
MSDOS platform[16][15]

Some of the design of Ease 1s specific to the TMS320C0 microprocessor
and to the specific hardware configuration of the particular card used to
prototype 1t The target system 1s described in chapter 41

One of the most basic constraints of a target system 1s the microprocessor
The CPU clock speed 1s an important factor for the system to meet timing
constraints Instruction sets, addressing modes and language support all
contribute to have an impact on the software design E£ase must use assembler
routines 1n conjunction with C to handle features which the C language does
not facilitate such as context switching and interrupt enabling and disabling

The hardware elements specific to the TMS320C30 microprocessor which
have a direct impact on Ease are 1ts two on chip 32-bit timers One of these
1s used as a system clock for £ase to generate 1ts time slicing tick Ease
employs assembler routines to deal with timer setup

The specific card that was used to prototype £ase 1s the Loughborugh
Sound Images TMS320C30 card[17] The hardware elements of this which
affect Ease are the dual port memory access space (which 1s used for interface
to a PC) and the analog interface The analog interface comprised of two
16-bit digital to analog converters and two 16-bit analog to digital converters
One of the TMS320C30 timers 1s used to trigger conversions for both of the
analog to digital converters This constrained £ase to use the other timer as

a system timer

3.3 Ease Kernel Module

This module 1s the core module of £ase It contains the main function of the
entire program It calls a number of assembler functions from kextra asm

It deals with the following three activities

e System Imitialhisation

e Scheduling

39

e System Timer Services

3.3.1 Task Control Structure

The Scheduling mechanmism of ase 1s based on the way 1t groups elements of
1ts task control structure The task control structure 1s defined in kernel h

and reads as follows

typedef void (*EaseTaskId_t)(void),

typedef struct EaseTaskCtrl_s

{
int blocked_status, /* FALSE 1f not blocked else TRUE */
int quantum_tick,
int task_sp,
int task_1d, /* Integer to 1dentify task */
EaseTaskId_t root, /* address of root function of task */

struct EaseTaskCtrl_s *next_member, /* pointer to next member */
} EaseTaskCtrl ,

There are five data fields in the above structure The blocked status
field indicates 1f the task 1s blocked or ready to run

The task’s quantum tick 1s incremented every time there 1s a system timer
interrupt and the task represented by that structure 1s currently runming If
the quantum_tick exceeds QUANTUM which 1s defined 1n the file kernel h the
quantum tick 1s reset and the scheduler 1s called

The task_1d field 1s a umque mteger to 1dentify the task and 1s also an
index 1nto an array (the kernel’s array of tasks) The root 1s a ponter to the
root function of the task represented by the structure The root function of
a task 1s ssmilar to the main function of standard C program to that task

The task_sp 1s the address of the last location of the task’s stack pointer

after a context switch Ease uses this to restore the task’s context

3.3.2 TFunctions of the Kernel Module

The kernel module performs the mitialisation of 1ts task control structure

It gets the essential task information from calling the user defined function

40

Kernel Module

/Schedullng \
Local to Module
/In/t/allsat/on w EaseScanLevelAfterint()
Local to Module Callable Externally
main() EaseScanlLevel()
Easelnit() 9 EaseScheduleAfterint()
EaseGroup()

Callable Externally
EaseCreate()
EaseSystemTimerinit() j

System Timer Services
Local to Module
EaseSystemTimerMsg()
Callable Externally
EaseSystemTimerSet()

o _/

Figure 31 The Kernel Module

EaseForge() which in turn calls the kernel function EaseCreate() for
each task in the system The function EaseCreate() imtialises a data
structure for each task These data structures are then grouped into the
Ease internal management scheme by calling the function EaseGroup()
The kernel’s imitialisation function also calls the intertask communication
module’s immitialisation routine EaseChannelInit() which will be discussed
mn the following section Finally wath all the task structures imitialised and
grouped the variables EaseCurrentTask and EaseCurrentPriority are set
The imitialisation 1s completed with £ase enabling the interrupt for the
system timer and running the first task The first task to run will be a task on
the highest priority level The user defined function EaseForge() will also
make a call to the kernel module’s function EaseSystemTimerInit() The
system timer generates the clock ticks for the £ase round robin scheduler
The kernel module handles all scheduling after events There are two
scheduling functions in the kernel module The simple scheduling case oc-
curs when a task’s quantum 1s expended and 1s handled by the function

EaseScanlevel() In this case the task’s context will switch to a task on

41

the same priority level The more general scheduler 1s invoked after an event
which could make a task of any priority level ready The function to handle
this 1s EaseScheduleAfterInt()

The functions EaseSystemTimerSet() and EaseSystemTimerMsg() han-
dle the kernel’s system timer services These functions were added to the
kernel after the timer handling module was stabilised and provide timer ser-
vices from the system timer They will be dealt with in the timer module

section

3.3.3 £ase On line Task Management

Each task in the system 1s represented by an EaseTaskCtrl structure As
the number of tasks 1s generally fixed in an embedded real time system 1t
was decided that there should be a fixed number of task control structures
which could be used by an £ase apphcation The kernel module possesses
an array of MAX_TASKS task control structures This scheme precludes the
need for dynamic memory allocation in the kernel module The array also
allows quick access to a task structure through knowing the task’s task_Id
field which 1s an index into this array

Ease manages tasks through grouping its task control structures into
closed Linked lists of tasks of the same priority It maintains an array of
current task pointers to record the current task at each priority level This
mitialisation 1s handled in the functions EaseInit and EaseGroup in the

kernel module
Ease also has the following two data arrays to aid real time performance

int EaseTaskPr[MAX_TASKS]
int EaseNTasks[PRIORITY_LEVELS],
The EaseTaskPr 1s an array storing the task priority for each task The task
priority can be accessed knowing the task_.1d The EaseNTasks array 1s used
to store the number of tasks at each priority level
The kernel’s time shcing scheduler uses these closed hinked hsts to quickly
select the next task to run when a task has expended its quantum This
switching 1s handled by the £ase kernel function EaseScanLevel
A more general scheduler 1s required for an event other than a system

timer mterrupt The 1s because the event could potentially cause any task in

42

Current Tasks

Close Linked Lists Of Apphication Tasks At Each Priority Level

alanles

Yanlenjen

| I

0T

Figure 32 Ease Task Control Structures

43

the system to be unblocked including a task at a higher priority than the task
currently running The general scheduler must scan through all the tasks of

the system starting at the highest priority working down to the lowest

3.4 Ease Communication Module

The Ease message passing scheme which 1s used for intertask communication
1s defined 1n the comm module of £ase This 1s an important module as 1t
not only handles communication but also defines the event interface for later
modules which will also use the comm module to convert events to messages

which are compatible with this scheme

The £ase message passing scheme 1s unbuffered? All interrupts are dis-
abled while in the comm module as 1t transfers data between tasks (or rather
memory belonging to different tasks) The module consists of three functions

void EaseChannelInit()
int EaseSend(int dest_Ch,void msg(],

int msg_size,

EaseTaskId_t * rendezvous_tsk),
int EaseReceive(int src_ch,

void msgl],

int max_msg_size,

int *msg_size

EaseTaskId_t * rendezvous_tsk),

Ease tasks send to and seek messages from £ase communication channels
Though the scheme 1s unbuffered there may be a number of tasks blocked

waiting on a certain channel These all have to be queued

3.4.1 EaseChannelCtrl Structure

The EaseChannelCtrl structure 1s central to the message passing scheme
Each EaseChannelCtrl structure represents a single £ase communication
channel £ase maintains an array of these The structure reads as follows

struct EaseChanCtrl_s

{
int source_flag,
int 1d_q[MAX_MESSAGES],
int *msg_q[MAX_MESSAGES],

?If buffering 15 required then a task may be created to provide 1t using this scheme

44

int size_q[MAX_MESSAGES],
int head_q,
int tail_q,

} EaseChanCtrl,

The source flag field indicates whether the channel 1s currently a queue
of senders or receivers

The 1dq[] 1s the queue of task_1ds from tasks blocked pending on
rendezvous

The msg_ql] 1s an array of pointers to the sender’s message or the re-
cewver’s message buffer corresponding to the tasks queued at 1d_q[]

The s1ze_q[] 1s an array of sender message sizes or receiver message
buffer sizes corresponding to the tasks queued at 1d_q[]

The head q and tail_q are indexes 1nto the queue arrays imndicating the

head and tail of the channel’s queue

3.4.2 Comm Module Initialisation

The function EaseChannelInit sumply sets the head_q equal to the tail q
for each communication channel This indicates that each channel 1s empty

and has no tasks blocked pending rendezvous

3.4.3 Sending

When a task makes a call to EaseSend specifying a channel, there can be

one of three outcomes
1 Rendezvous with a receiving task on that channel
2 No rendezvous, task blocked and queued on that channel
3 Call fails through error

If there 1s a rendezvous, there 1s a receiving task, with a suitably sized

message buffer, blocked and queued on that channel The following happens
e The message 1s transferred

e The receiver 1s unblocked

45

o The receiver 1s informed of the sender

e The receiver 1s informed of the actual message size
o The tail of the channel queue 1s advanced

o The £ase general scheduler 1s called

The sender 1s allowed to continue and 1s not blocked The general sched-
uler will decide whether the receiver or the sender runs next depending on
their priorities The reciever 1s informed of the sender task and actual sender’s
message size through locations referenced by arguments passed to the receive
call

If there 1s no rendezvous then the sending task has no receiving task to

rendezvous with on that channel The following happens

o The channel source flag 1s set to TRUE

The sender task_1d 1s stored on the channel’s 1d_q

The sender message size and pointer 1s stored on queue

The sender task 1s blocked

e The head of the queue 1s advanced
o The Ease general scheduler 1s called

An error 1s returned if there are receiving tasks blocked on that channel,

but none has a large enough message buffer to take the sender’s message

3.4.31 Choosing Between Multiple Receivers

The order 1n which receiver tasks request senders can not be predicted Like-
wise if a number of tasks are queued up pending rendezvous 1t can not be
predicted which one will rendezvous first The comm module of £ase will
choose the task that has been the longest time 1n the receiver queue for ren-
dezvous 1f a sender task becomes available If this sender task has a greater

message size than the size argument passed by the receiver task the comm

46

module will scan through the list of pending receivers until 1t finds a receiver
with a suitably sized message buffer If there 1s not one available it returns
an error

3.4.4 Receiving

When a task makes a call to EaseRecieve specifying a channel there can be

one of three outcomes
1 Rendezvous with a sending task on that channel
2 No Rendezvous, task blocked and queued on that channel
3 Call fails through error

If there 1s a rendezvous, there 1s a sending task with a suitably sized

message, blocked and queued on that channel The following happens

o The message 1s transferred

The sender 1s unblocked

The sender 1s informed of the receiver

s

The tail of the channel queue 1s advanced
e The £ase general scheduler 1s called

The receiver 1s allowed to continue as normal upon the return from the
receive call The general scheduler will decide whether the reciever or the
sender runs next depending on their priorities The sender 1s informed of the
recerver task through locations referenced by arguments passed to the send

call
If there 1s no rendezvous then the receiving task has no sending task to

rendezvous with on that channel The following happens

e The channel source flag 1s set to FALSE
o The receiver task_1d is stored on the channels 1d.q

o The receiver message buffer size and pomnter 1s stored on queue

47

e The receiver task 1s blocked
e The head of the queue 1s advanced
o The Ease general scheduler 1s called

An error 1s returned if there are sending tasks blocked on that channel,

but all of them seek to send messages larger than the receiver’s message
buffer

3.4.4.1 Choosing Between Multiple Senders

The order 1n which sender tasks request receivers can not be predicted Like-
wise if a number of tasks are queued up pending rendezvous 1t can not be
predicted which one will rendezvous first The comm module of Ease will
choose the task that has been the longest time in the sender queue for ren-
dezvous 1if a receiver task becomes available If this sender task has a greater
message size than the size argument passed by the receiver task the comm
module will scan through the list of pending senders until 1t finds a sender

with a suitably sized message If there 1s not one available 1t returns an error

3.5 Ease Timer Module

The Ease timer module provides timer services in the hardware system’s
application timer which also triggers the A/D converters The module has
three functions They are initialisation of the application timer, task interface
to the timer or sampler and event handling when an application timer event
occurs

The itialisation of the application timer 1s done at startup by the user
defined function EaseForge and sets the rate of the application timer and en-
ables 1ts interrupt This 1s done 1n the function EaseApplicationTimerInit

The functions EaseApplicationTimerSet and EaseSamplerSet are called
by tasks so that the application can avail of application timer services They
attach a channel to the timer event, indicate the amount of events before
the message 1s sent and set the mode of the timer service interface as being
ASTABLE or MONOSTABLE

48

(Timmer Module

g) -
Intalisation Application Timer Services
Local to Module Local to Module
none EaseTimer1IntHandler()
Callable Externally Callable Externally
EaseApplicationTimerlnit() EaseSamplerSet()
EaseApplicationTimerSet()
_ J

N

/

Figure 33 The Timer Module

The function EaseTimeriIntHandler s called upon an application timer
event and effectively emulates a task calling the EaseSend function

The Kernel module also has similar services for the system timer As
the system timer 1s needed for scheduling 1t has the limitation that 1ts base

frequency must be chosen to be suitable for £ase and not an arbitary value

3.6 Generic Event Handling Modules

Generic events like the £ase Int0 module basically have two functions, one
to attach a channel to the interrupt and enable 1t and another to emulate the
EaseSend function The function which attaches the channel to the event
takes one argument, the channel number This function does the interrupt
mitiahisation and enables the interrupt The function which emulates the
EaseSend function 1s at a basic level an interrupt service routine The target
platform specific interrupt handler 1s placed n the file kextra asm This
then calls the C routine of Int0 module

49

3.7 Conclusion

Ease 1s designed and coded 1n a modular fashion using ANSI C and assem-
bler This modularity 1s designed to localise modifications to aid evolution,
development, addition or enhancement of 1ts services The assembler code 1s
used only where necessary for operations not supported by C and to perform
certain platform specific hardware interface

The software design of Ease encourages a structured approach from apph-
cation programmers The application 1s divided into a number of dedicated
tasks which co-operate with each other in a timely and orderly fashion co-
ordinated by £ase There 1s scope for tasks of different priorities and time
shicing between tasks of the same priority

Ease employs message passing as a means of intertask communication
and synchronisation as both are encapsulated in the same mechanism The
message passing 1s designed in a flexible way over a number of communi-
cating channels which are independent of tasks and facilitate variable sized
messages The message passing scheme 1s expanded to handle external events

(interrupts) in a generic way by Ease converting them 1nto messages

a0

Chapter 4

Implementing Applications
with the Executive

This chapter describes the target platform and the software tools used for
prototyping Ease It goes on to describe the implementation of £ase from
the software design and how the code was prototyped and validated Once
the code of £ase was stable, platform timing information was obtained and 1s
shown 1n section 4 23 This chapter concludes describing actual applications
which were run with £ase , the most notable being the motor modelling
of a shock absorber which involved seven concurrent tasks controlling two
motors[32]

4.1 The Target System

The target platform for this project uses the TMS320C30 microprocessor
The executive shields the application programmer from excessive knowledge
of the hardware through providing its executive services The following sec-
tion describes the TMS320C30 as described from the Texas Instruments users

guide [14] %

4.1.1 TMS320C30

The TMS320C30 1s a high performance CMOS 32-bit floating point device in
the TMS320 family of digital signal processors It achieves this performance

by implementing many functions 1n hardware which other microprocessors

ol

implement 1n software or microcode

Thus single chip computer system can perform parallel multiply and ALU
operations on nteger or floating point data within a single cycle The pro-
cessor also possesses a general purpose register file, program cache, dedicated
auxihary register arithmetic, internal dual access memories, one DMA chan-
nel supporting concurrent 1/0, and a 60ns single cycle execution time

General purpose applications are greatly enhanced by 258K of RAM,
multiprocessor interface, internally and externally generated wait states, two
external interface ports, two timers, two serial ports, and multiple interrupt
structure

The register based architecture lends itself well to implementing high
level languages The processor has an associated C compiler and there are

numerous software tools for program development

4.1.2 Hardware description
4.1.2.1 Performance

e 60 ns execution time

e 333 MFLOPS

e 16 7 MIPS

4.1.2.2 Features

e 4K word single cycle access on chip ROM

2K word single cycle access on chip RAM

8 extended precision registers

On chip DMA controller

Parallel ALU and multiplier operations 1n single cycle

Block repeat capability

Zero overhead loops with single cycle branches

52

o Interlocked instructions for multiprocessing
e Two on chip seral ports 8/16/24/32 it transfer
e Two on chip 32-bit timers

e 4 external interrupts

Refer to [14] for further detail on the target microprocessor

4.1.2.3 Software Tools

Texas Instruments have a number of software tools for program development
on the C30 The TMS320C30 linker generates object files in a Common Ob-
ject File Format (abbreviated to COFF) The TMS320C30 linker employs a
command file for information on memory configuration of the target hard-
ware platform This command file also allocates sections to particular places
in the target memory map The linker places code and data from output
obj files in these sections thereby populating absolute memory without the
need for embedding absolute addresses into source files In this way source
files can be written independently of the target platform because the cmd
file 1s application platform specific For embedded applications the code, re-
set vector and data constants sections would be placed in ROM through the
cmd file
The TMS320C30 linker creates executable modules by hinking COFF ob-
ject files The linker allocates sections into the target system’s memory, 1t
relocates symbols and sections to assign them to absolute addresses and 1t
resolves undefined external references between input files The hinker has a

command file associated with 1t which 1s used to do the following

o Define a memory model which conforms to the target system memory
e Combine object sections

¢ To define or redefine global symbols at hink time

33

4.1.3 The TMS320C30 Optimising C Compiler

The processor’s C compiler 1s a full-featured optimising compiler which trans-
lates ANSI Standard C to TMS320C30 assembly language The TMS pro-
cessor uses 32-bit data sizes for floating pont and integer values The C

compiler also supports large and small memory models[15][16]

4.1.4 The L.S.I. TMS320C30 Card

The specific target platform for prototyping this executive is a development
card developed by Loughborough Sound Images Ltd[17] The system con-
sists of a TMS320C30 target system which has a resident monitor program
There 1s a dual port memory interface to a host development PC It has
software support for two monitor programs and facilitates assembly and C

programming

4.1.4.1 Analog Interface

The card’s analog interface consists of two 16-bit analog to digital input
channels and two digital to analog output channels The analog interface
can operate at sampling rates of up to 200 kHz The input channels include
sample and hold amplifiers and both input and output channels are buffered
by 5th order Sallen-Key anti-ahasing filters All converters in the interface
are triggered by an on board timer or a software trigger Therefore they are
not independently triggered channels

The analog mput and output channels are accessed by a single 32-bit
serial, shift register The input signal 1s latched to the output upon next
interrupt unless the user program intervenes The 32-bit on chip timer has a

resolution of 120ns hence conversions can take place at very precise intervals

4.2 Executive Implementation

The system specification of chapter 2 describes the executive’s requirements
and the system design describes how these requirements will be met Once

the system specification and design are finalised the next stage of the software

94

development cycle 1s the programming phase This phase puts the design 1n

to practice and establishes whether the design can be implemented

4.2.1 Coding

The executive was coded 1n a modular fashion The main thrust of the coding
effort was to develop the executive by incrementally adding features to the
code starting with a base line functionality The base line feature of the
executive 1s 1ts ability to multitask by switching processor context between
tasks Before any of this work was started time was spent becoming famihar
with the target platform and development tools

The code development cycle was as follows

1 Scheduler

Context switching

Allocation of task stack and data

Task control block manipulation

Time slicing mechanism
2 Inter-task communication

o Message passing mechanism

o Task interface to communication scheme
3 Event Interface

e Event handling mechanism
e Conversion of events to messages

e Task interface to event services
4 System imitialisation

e Structured generation of tasks

¢ Application interface to system nitialisation

5 External interface

39

o Interface specific to target platform

e Structured task interface to service

Each unmit of code was developed and tested individually The high level
C code was first prototyped on Borland Turbo C++ V1 01 interactive de-
bugging environment before being integrated into the target system This
availed of the C debugging tools to thoroughly test the logical correctness of
the programs at a high level before cross compiling them The target devel-
opment degbugging tools only facilitated assembler debugging The assembly
routines were tested directly on the target platform through the target plat-
forms monitor program|[17] The system design must be clear and precise in
order to define the exact speafications for each code unit

The coding of each module involved the following stages

1 Prototype code on PC interactive environment

2 Ensure prototyped code meets design requirements

3 Specify assembly routines necessary or specific to target platforms
4 Develop and test assembly modules (1f any) 1n 1solation

5 Integrate high level and assembly code

6 Cross compile to target platform

7 Test feature on target platform

Prototyping the platform independent aspects of a module facilitates rig-
orous testing of the code with comprehensive debugging tools When one 1s
confident that the code 1s robust and meets 1ts requirements then the code
can be cross compiled to the target platform The prototyped code almost
invariably requires simulation code to act as scaffolding to substitute for
software or hardware modules not present

The design and the coding experiments 1solate the platform specific as-
sembly routines which must be incorporated into the executive These rou-
tines can be tested 1n 1solation with the target platform’s debugging tool
When one 1s confident that these perform correctly for all inputs then one

can 1ntegrate them into the module and the module 1nto the executive

96

4.2.2 Validation

Reliable software 1s a direct result of a good design process, good software
engineering practice and rigorous system testing When each module was
finished and passed 1ts unit test 1t was ready for integration into the executive
and validation The goal of testing 1s to ensure that the software meets 1t’s
requirements In real time software there 1s a large emphasis on the temporal
qualities as well as the logical correctness of the system

The code of £ase was tested for logical correctness by 1solating each func-
tion and providing inputs which exercise all flow of control paths within that
function This approach mimimises the chance that latent errors will pass
through the testing stage This technique was adopted for testing Ease code
as 1t comprehensively tests the software without being excessive The exercis-
ing of all flow of control paths 1s greatly aided by keeping executive functions
concise and clearly defined As interrupts are disabled during kernel opera-
tion the validation of logical correctness 1s free from temporal considerations

An important tool in validation 1s embedding software tests within func-
tional code for diagnostic purposes These may be added purely for develop-
ment purposes or as general system 1ntegrity tests in the final product

With the executive validated for logical correctness then a test application
must be derived to test the executive in a specialised application and to obtain
timing information

For example, to test the time slicing module of the executive a number of
tasks were created with equal priority These tasks all comprised of a routine
which takes a known time to execute and has a counter A break point 1s
placed at the end of the routine of one of the tasks It can be verified that
the scheduler was run by the counters of all tasks advancing and through
software check points within the scheduler’s code The executive’s overhead
can be calculated through calculating how much longer the tasks took to

execute their routine than their stand alone execution times

4.2.3 Platform Timing Information

The amount of op-codes executed by the processor 1s directly proportional

to the amount of time a particular piece of code takes The best case for

57

this 1s 1f each op-code takes one processor clock cycle to execute The clock
cycle for the TMS320C30 1s 60 nano seconds The source files of Ease (both
assembler and C) generated code with the following op-codes (counting all

branch codes as 4 op-codes)

e Context Switching and scheduling

— Context Save 40 op-codes
— Scan Task Control Structure 34 + (14 n) op-codes

— Context Restore 41 op-codes
e Message Passing

— Send (with rendezvous) 131+4(2n) op-codes (worst case path)
— Send (no rendezvous) 78 op-codes (worst case path)
— Recerve (with rendezvous) 121+(2n) op-codes (worst case path)

— Recerve (no rendezvous) 81 op-codes (worst case path)

The n for scanning the task control structure 1s the amount of tasks the
scheduler must scan through to find next task to run If the task to run 1s at
the highest priority level for example the worst case for this number 1s the
amount of tasks at that priority level minus one The amount of time spent
i a call to send or receive depends on whether rendezvous 1s achieved
If rendezvous 1s achieved erther call may be responsible for transferring the
message The n for send or receive or send 1s the amount of 32-bit words to
be transferred by the executive As the size of messages 1s vanable this can
take a variable amount of time to execute

The above data translates into the following times when an op code takes

60 nano seconds

e Context Save, Schedule and Restore 6 900 + (0 840n) us
e Send (no rendezvous) 7860 + (0120n) ps

o Send (with rendezvous) 4 680 us

38

o Receive (with rendezvous) 7260 + (0 120n) ps
e Receive (no rendezvous) 4 86 us

It was discovered during the testing of £ase that these figures are de-
pended on a op-code taking 60 nano seconds This 1s not the case when
memory access has a wait state of a number of clock cycles The above
figures were found to be of the order of 60 percent greater if the critical
executive data structures were placed in SRAM general memory These fig-
ures only held if the critical data structures of €ase were stored in the on
chip RAM which has a zero wait state The context switching routine also
involved PUSH and POP operations on the stack which required the stacks of
the apphcation tasks to be in this zero wait state on chip RAM for the above

figures to hold for context storing and saving

4.3 Executive Applications

4.3.1 Analog Signal Display

A primary application was chosen to display two analog input channels on
a PC n real time The analog input channels each have a gain applied to
them and the modified signal 1s output to one of two analog output channels
The gain and samphng rate for the application 1s configurable from the PC
Although this application 1s straightforward 1t incorporates a number of real

time 1ssues
e Hardware interface in real time
e Internal co-ordination of data
e On lLine reconfigurability

e Communication with external computer system

The application 1s decomposed 1nto four dedicated tasks to perform the
various functions These tasks all communicate and synchronise with each
other through the £ase message passing mechamism The tasks also synchro-

nise with the hardware via £ase

29

Database ¢

Analog
110
interface

Memory

@ PC Dual

Figure 41 Analog Signal Display Application

4.3.1.1 The Database Task

The internal data of the embedded system 1s managed by the task repre-
sented by database c data base task which stores the latest parameters
and variables Any task that needs information in this task’s memory will
send a message requesting the information As any task could potentially
become blocked waiting for information contained 1n this task, this task has
the highest priority
The core loop of database c continuously momitors the DATA_CH for a
message If the message 1s a request then it sends the information to the
appropriate task from 1its data, if the message 1s an update 1t updates 1ts
data accordingly
while(TRUE)
¢ rece1ve(DATA_CH, (void *)&msg,sizeof(msg),&msgSize,&Rendezvous),

switch(msg com)

{
case CONTROL_PACKET_REQUEST
msg parm0=gain0,
msg parml=gainil,

60

send (INFO_CH, (void *)&msg,s1zeof (msg),&Rendezvous),
break,
case DISPLAY_PACKET_REQUEST
msg parm0=gainO,
msg parmi=gaini,
msg int_parmO=signalo,
msg int_parmi=signall,
send (DISPLAY_CH, (vo1d *)&msg,s1zeof(msg) ,&Rendezvous),
break,
case IO_UPDATE
signalO=msg int_parm0,
signall=msg int_parmi,
break,
case PARAMETER_UPDATE
gain0=msg parmO,
gainl=msg parmil,
break,

4 3.12 The Hardware Interface Task

The hardware interface of the embedded system 1s handled by the task rep-
resented by ctrl c, the hardware interface being the access to the analog
interface and changing the sample rate of conversions This task also per-
forms the signal processing between analog input and output and updates
the data base task with the latest samples This task is placed at a prionty

below the data base task as 1t 1s critical that each sample 1s stored

4.3.1 3 PC Interface

The transfer of variables to the PC 1s handled by the task represented by
display c, which continuously sends a message requesting data and polls
the data base task for the latest samples This task also checks the Ease I/0
flags 1in the dual memory space between the PC and the target system to see
if there 1s any incoming message from the PC If there 1s, 1t activates a PC

message handler represented by the task kbhit c

4.3.1.4 PC Program

The PC program 1s primarily a user interface and graphics display program

for the application It relays parameters to the target system and presents

61

. . pale s an W

ot g, o TN el N
?*1? N y@ 3, ,/ 3 %m\:\‘ W sy

5t s A

- 1% SN
L
iy s < DR S it e el

MR
WP fgarewe

i
Pk

Figure 4 2 Analog Signal Display Screen Dump

data from 1t in visual form

4.3.2 Motor Control

The motor control application 1s an extension of the previous application
The basic structure of the software 1s similar with a motor control task that
handles signal processing, a data base task that stores the latest control
parameters and variables, a display task and a task that polls the PC for
commands The application chosen for testing £ase 1s an advanced servo

motor application It’s background 1s as follows[32]

A great deal of interest has developed 1n the field of active sus-
pensions in recent years especially in the high performance auto-
motive areas[30] Currently the main research 1s in the hydraulic
and electro-hydraulic areas The application considered explores
the use of an electrical suspension as a practical alternative The
executive structures the application which uses two concurrent

motor controllers

62

4.3.2.1 Target Application System Modelling

The target application comprises of the modelling of a shock absorber using
an electro-mechanical system Therefore an analytical model of the mechan-
1cal shock 1s used as the starting block in the control design (Figure 4 3)
The reaction force response, Fy, 1s required to simulate that of a mechanical
shock absorber (equation 4 1) A linear mass, spring and damper has a ro-
tary equivalent and motor torque 1s equivalent to linear force By this means
disturbance torque, Ty, applied to a rotary motor and controller 1s treated as
being analogous to the linear force, Fy,;, applied to the mechanical shock A
motor controller combination 1s designed to model the shock absorber The
test rig used comprises of two directly coupled permanent magnet DC mo-
tors one of which 1s controlled to act as the load, Fj,, and the other ,Fj, as

described above The formulation of the shock absorber takes into account
o the mass of the shock absorber

e the spring and damper constants

X 1
Fns Ms?+Bs+ K,

(41)

Control: State space control techniques are chosen 1n this application as
they offer the ability to control all states of the system individually 1n order
to achieve the desired response A desired response 1s produced using a
reference model (Figure 4 4) The control law used 1s a simple feedback of

a hinear combination of the state variables

Estimation: In order to correctly use the above control method all ele-
ments of the state vector equation must be available for feedback purposes
To construct the entire state vector a steady state time invariant Kalman
filter 1s used [31] Tlus estimator/filter combines state estimation and sensor
filtering The filter contains a model of the motor rig and the disturbance
torque The filter 1s a stochastic filter insofar as the bandwidth of the filter

1s set by the stochastic properties of the plant and measurement models A

63

Figure 4 3 Mechanical Shock Absorber Transfer Function Model

Ty
+
Reference + . K + Plant
|_' Model _ - AB,C
Estimator
XY, ZLp

Figure 4 4 Block Diagram of Closed Loop Controlled Plant

64

steady state implementation 1s chosen as 1t 1s numerically less intensive than
the time varying one A state description of the motor model used 1n the

filter 1s as 1n equation 4 2

9] 0 1 0 0 0
O =0 =Bu/dn || O |+]|1/Jn | T (42)
T, 0 0 0 T, 0

4.3 2.2 Simulation and Implementation

The structure of the motor application 1s similar to the analog signals appli-
cation There are more processes running concurrently The motor modelling
of a shock absorber involves five independent task objects (figure 45) In
addition to the controller’s task there 1s a disturbance generation task and
an 1dhing task At the highest priority there 1s the database task which holds
within 1ts local memory the latest values of variables, system states and
parameters The database task informs the display task of new vanables,
informs the serial link handler of new system states, informs the controller
task of new parameters and accepts updates from any task that modifies or
generates data The database task 1s at the highest priority as any task could
potentially be blocked waiting for 1t to run

The controller task 1s at the next priority and responds to an end of
conversion event which indicates that data 1s ready after a sampling period
The other tasks, display, serial hink handler and PC message handler involve
sending or receiving data from external sources that ‘are not time critical

The executive was found to be sufficiently efficient to run 7 tasks con-
currently with on line user interface and concurrent serial interface The
motor sampling rate was 4kHz The application tasks stacks and the critical
data structures of £ase did have to be placed in the on chip RAM of the
TMS320C30

4.4 Conclusion

Overall £ase was found to perform as designed and the applications devel-

oped with £ase benefited from 1t Ease demonstrated that 1t has adequate

65

. e End of conversion
Priority Database event
0
Priorit Controller and Disturbarnce
rlortty Estimator generator task
1
" Serial Handler —’
PI’IOI’Ity ‘ Serial ink
2
Dual port
memory
Priority which PC
can access
3
Priority
4

Figure 4 5 Tasks in Motor Application

66

performance to deal with the motor modelling application which was a good
test of the executive

The target system 1s found to be a good one and a reasonable place
where an executive like £ase 1s smted The implementation of the executive

benefited from the software practice and a sohd design strategy

67

Chapter 5

Conclusions and
Recommendations

5.1 Summary

This thesis describes the development of a real time executive over the stages
of specification, design, coding, test and implementation It describes not
only the executive but also the software technique involved which 1s applica-
ble to the development of all systems

The executive facilitates multitasking, inter task communication and syn-
chromsation The executive has been proven to work through a number of
sample applications, the most notable being the motor simulation of a shock
absorber with an active disturbance generator[32] The mult: tasking prop-
erties allowed the application to run 7 concurrent tasks each dedicated to a
particular function The executive structured the interaction between these
tasks The executive overhead was sufficiently low to allow the motor control

task and the disturbance task to both run with sampling periods of 4kH =

5.2 Salient Points

The most 1mportant service that the executive provides 1s that 1t promotes
software quality and maintainabihity through providing a structured software
environment for applications The main thrust of this executive 1s to enhance
software integrity for real time applications

The executive provides synchronisation, scheduling and communication

68

services It essentially tackles the undesirable aspects of real time program-
ming allowing the application programmer concentrate more on the applica-
tion and each task to concentrate on the function 1t 1s dedicated to

The executive described 1n this thesis has a number of advantages which
differentiate 1t from existing executives Firstly 1t 1s a specialised executive
which 1s targeted at embedded DSP microprocessors It was designed to
offer a limited number of sufficient features which makes 1t efficient, small
and easily grasped by the application programmer Furthermore there 1s
access to the source code of the executive which means that the executive 1s

not ntrinsically opaque to the application programmer

5.3 Negative Features

The advantages of having multiple independent tasks has the drawback that
each one has to have 1ts own stack This leads to both wasteful memory
fragmentation between each stack and the potential for stack overflow if not
enough stack memory 1s allocated As each task context is pushed onto 1ts
stack by the executive during context switching each stack must be allocated
with that much extra stack space It may be argued that in embedded sys-
tems memory 1s so tight and costly that a stack architecture for applications
1s not practical given the memory constraints The stack runtime memory
requirements 1s largely a unknown quantity forcing application programmers
to err on the side of caution Allocating many stacks 1s a waste of mem-
ory because typically they would not all be at their full utilisation and the
programmer must allocate for the worst case

For the motor application 1t was found that the card’s DRAM memory
was too slow to maintain the application and that all stacks had to be placed
m the on chip RAM of the TMS320C30 This point again illustrates the
mmpact of memory 1ssues for real time systems It may be argued that such

on chip RAM 1s a resource designed to be used by an executive

69

5.3.1 Real Time Stack Integrity

One of the most prominent requirements 1dentified for the executive 1s a real
time stack watch dog This would warn the application programmer if one
the task stacks overflows It 1s very difficult to calculate the run time memory
requirements of a developing application and this would be a very useful tool
to have

This may be implemented by £ase checking the integrity of task stack
pointers when ever 1t gets control through a system call or a timer interrupt
The time shicing event for example would give a recurrent opportunity for
Ease to do this integrity test

A stack fault can not always be detected by checking the stack pointer
a particular times For example a stack may overflow into memory 1t not
allocated to 1t and have returned to its allocated memory space between
checks A cathastrophic stack fault may corrupt £ase and not allow 1t to
make the check in the first place This stack integrity feature therefore will
not catch all stack faults but would get a high percentage of them for a
mimmum of overhead Unless there 1s some hardware memory protection by
which a task may only use certain memory, stack fault detection be ensured

Such hardware facilities are rare in embedded systems

5.4 The Future

The executive was found to have adequate services for most real time ap-
plications The multitasking structure directly promotes better applications
than unstructured monolithic interrupt driven systems Its API 1s easy to
use and the executive 1s easy to link into application code

Ease 1s readily portable to any other TMS320C30 platform There need
only to be changes in the command cmd file for the particular hardware
configuration If the TMS320C30 platform has different hardware resources
modules may need to be created to service them Porting £ase to a platform
that does not use the TMS320C30 requires changes to all non-C code and to
modules which are servicing hardware specific functions The general design

of £ase can still be maintained and reused even 1if the specific details change

70

The mam thrust of the development of the executive was to develop the
executive 1n a modular fashion, adding 1n features as modules were developed
and 1ntegrated This development approach provides ample scope for system

improvement The modifications are localised to each module

71

Appendix A

Ease User’s Guide

A.1 Introducing fase

Ease 15 a real-time multitasking Embedded software Application and Systems
Executive targeted at DSP platforms The digital computer in a real-time
embedded system controls a process by receiving data, processing 1t and tak-
ing action or returning results sufficiently quickly to affect the functioning of
the environment at that time The computer 1s essentially within the control
loop and 1ts responsibilities in that role are 1ts primary functions Synchromi-
sation, scheduling and communication between the different components of
real-time software 1n a reliable, timely and predictable fashion places great
demands on the software

Ease provides an application software interface to the underlying hard-
ware and encourages a structured approach from application programmers
which enhances software integrity and maintainability in a potentially chaotic
real-time environment The confidence afforded by £ase 1s paid for by a small
percentage of CPU processing power and a larger response time to external
events than an unstructured, monolithic, interrupt driven system The fo-
cus of Ease 1s to tackle the undesirable aspects of real-time programming
and device dependent 1ssues thereby allowing the application programmer to
concentrate more on the application

Ease has a number of advantages which differentiate 1t from existing
executives Firstly 1t 1s a specialised executive which 1s targeted at DSP

microprocessors [t was designed as a low cost executive which offers a limited

number of sufficient features which makes it efficient, small and easily grasped
by the application programmer Furthermore there 1s access to the source
code of £ase which means that the executive 1s not intrinsically opaque to

the application programmer, as many commercial products are

A.2 Features of £ase

Ease 15 a software platform which facilitates programming of concurrent ap-
plication tasks Ease 1s designed for embedded systems and therefore 1s a
minimal kernel designed to be fast and eflicient to reduce overhead and meet
timing constrains but not at the expense of design comprehension Ease 1s
designed 1 a modular fashion to aid evolution, development, addition or
enhancement of 1ts services Executive services can be made applhcation spe-
cific or target platform specific by adding or modifying modules Simplicity
1s chosen as a fundamental design principle as 1t inherently makes Ease more
predictable, dependable and optimal by not allowing unwieldy complexity to
creep 1n

The following are the core services offered with £ase

Pre-emptive event driven scheduling of application tasks

Synchronisation and communication facilities between application tasks

Consistent application interface to internal and external events

Executive support for object oriented techmques

The overall user application 1s made up of a number of tasks which co-
operate with each other 1n a timely and orderly fashion coordinated by Ease
Ease facihitates and encourages object oriented techniques for design and
implementation of application programs FEach task 1s 1ts own entity with
1t’s own data, code and stack and essentially constitutes an object Each
task performs services while communication with other tasks 1s carried out
via message passing The form of each task 1s mitialisation followed by an
endless loop which typically would have some interface to an internal or

external event

A.2.1 Scheduling with fase

The fundamental uniprocessor method for introducing concurrency involves
pseudo parallelism This 1s achieved by switching processor context between
independent task objects

Task scheduling 1s conducted on a priority basis with a time shicing scheme
for tasks of equal priority The executive supports static process priority
This approach was adopted because the provision for dynamic process prior-
1ties may obscure application bugs The scheduler 1s run upon a scheduling
event which may be a hardware interrupt or a software trap Scheduling 1s
guaranteed at a minimal level by a special clock interrupt given by a timer
which £ase uses as a system clock The actual scheduling mechanism 1s de-
signed to be as fair as possible without excessive overhead The scheduling

mechanism does the following on a scheduling event

o Make a limited context switch so the scheduler can run

Run scheduler to decide which ready task to select on the basis of the

relevant states of tasks within the application

Update task information structure on the basis of the scheduler’s deci-

sion
o If the same task 1s to be run restore 1t

e If another task 1s to be run do a full context switch

A.2.2 Synchronisation and Communication with £ase

Ease employs message passing as a means of inter-task communication and
by definition synchromsation is achieved through a rendezvous scheme All
communication and event handling 1s conducted via £ase All messages are
passed 1n a call to either EaseSend() or EaseReceive() In that call the

task specifies which one of a number of channels the message will go to

The calls may be paraphrased as

Send a message to a potential receiver seeking a message from

the specified channel number

and

Receive a message from a potential sender sending a message on

the specified channel number

A sending task 1s blocked until a receiver 1s present to take its message If
there are multiple readers or writers then the 1dentities of the blocked tasks
are recorded until each blocked task has a rendezvous partner Ease does
not guarantee which of the blocked tasks will rendezvous first

Ease converts external events (interrupts) to messages which the tasks
can synchronise with through a block on receive mechanism If there 1s a
task waiting for the event then £ase sends a message to inform that task
that the event has occurred If there 1s no task waiting then the executive
records a lost mterrupt and continues on Lost interrupts usually indicate
a pathological error 1n the application’s timing or that the processor 1s too

slow for the application

A.3 Working with fase

Tasks access Ease services through C function calls As a result of this tasks
must be written 1n a C or a C callable assembler if they wish to avail of any

communication or synchromsation services Ease provides

A.3.1 Naming Conventions used with £ase

All Ease functions, type definitions and application wide global variable 1den-
tifiers have Ease prepended to them Ease uses this convention to keep Ease
1dentifiers distinct from user application 1dentifiers £ase can not predict the
results of an application programmer generating identifiers which start with

the characters Ease

A.3.2 Task generation with fase

Task 1s the name given to a separate concurrent process within an fase
application Each task possesses 1its own run time stack The root function
of a task operates like an autonomous concurrent main()! function and 1s
mitiated at run time by £ase The root function’s prototype must be of the
form void task_name(void) In the concurrent environment functions used
by more than one task must be re-entrant so static data 1s not corrupted
Therefore the application programmer must ensure that there 1s only one
task using any non re-entrant function at a time

Ease requires application programmers to write an application speafic
function called EaseForge() This function consists of calls to set timer
frequencies and a series of calls to EaseCreate()? to inform Ease of the
names of the root functions, the priorities and stack allocations of each task
in the application

The priority convention in Ease defines the highest prionity as zero There
may up to seven priorty levels® In the function EaseForge() there must
be at least one task created with priority zero and at least one task created

m each priority level down to the lowest priority in use

!The actual main() function is reserved for use within the £ase kernel
2Prototype 1n easeinit h
3This imit may be altered by changing the source files and recompiling

Here 1s an sample of how to use EaseForge()
/*
File Forge c
*/

#i1nclude"easeinit h"
#1nclude"motorapp h"

void EaseForge(void)

{
EaseSystemTimerInit(5000),
EaseApplicationTimerInit(4500),
EaseCreate(motor_db, 0, 0x800),
EaseCreate(control_motor, 1, 0x300),
EaseCreate(display, 2, 0x200),
EaseCreate(pc_message, 2, 0x500),

}

The first argument to EaseCreate() 1s a pomnter to the root function
of a task The second argument 1s the priority level of the task The third
argument 1s the stack space to be allocated for that task by £ase The
application programmer must be careful when choosing this number If the
stack allocated 1s too small then the task stack may overrun and corrupt
data, on the other hand 1f the sum of the stack allocations are too great
then there may not be enough physical memory The stack must be able
to accommodate all the local variables of the root task plus those of any
functions which are subsequently called to the deepest nested level and must
cater for memory taken by the actual parameters passed on the stack

The above EaseForge() function tells £ase that the application consists
of four tasks The #include file motorapp h contains among other things

the prototypes of the root functions

A.3.3 Services of £ase

The services of £ase are accessed through direct C function calls An appl-

cation compilation umt must #1nclude the file ease h to give the compiler

information on the service function prototypes

The following are prototypes of Ease functions

Called from application tasks (prototypes in ease h)

int EaseReceive(aint src_ch,
void * msg,
1nt max_msg_slze,1nt* msg_size,
EaseTaskId_t* rendezvous_tsk),

int EaseSend(int dst_ch,
void * msg,
int msg_size,
EaseTaskId_t* rendezvous_tsk),

int EaseApplicationTimerSet(int ticks,
int channel,
int mode),

int EaseSamplerSet(int ticks,
int channel,
int mode),

int EaseSystemTlmerSet(int ticks,
int channel,
int mode_c),

int EaseIntOInit(int channel),
Called 1n EaseForge() (prototypes in easeinit h)
void EaseSystemTimerInit(int freq),
void EaseApplicationTimerInit(int freq),
voi1d EaseCreate(EaseTaskId_t function,
int priority,

int stack_alloc),

The most fundamental functions are EaseSend() and EaseReceive()
as they are central to task communication and synchronisation The above

functions are described in detail in Section A 8 and Section A 9

A.4 Current platform of £ase

Ease 1s designed 1n a modular fashion using C where possible and assembly
language where necessary so as to make 1t as portable as possible Although
1t 15 desirable that an executive would be portable, 1t has inherent machine
dependent modules and has to be developed on a physical hardware platform

The target platform chosen for the first prototype of £ase 1s one using the
TMS320C30 DSP microprocessor This was chosen for 1ts performance, func-
tionality and the readily available C compiler made by Texas Instruments
More specifically the physical platform 1s a TMS320C30 micro-controller de-
veloped by Loughborough Sound Images Ltd The software platform 1s the

Texas Instruments TMS320C30 microprocessor development system

A.4.1 TMS320C30 Command files

The TMS320C30 linker employs a command file for information on memory
configuration of the target hardware platform This command file also al-
locates sections to particular places in the target memory map The linker
places code and data from output obj files in these sections thereby popu-
lating absolute memory without the need for embedding absolute addresses
mto source files In this way source files can be written independently of the
target platform because the cmd file 1s application platform specific For
embedded applications the code, reset vector and data constants sections

would be placed in ROM through the cmd file

A.4.2 Platform specific PC interface

The LSI board used for prototyping £ase shares a dual port memory area
with an IBM PC thereby facilitating two way on-line commumnication PC to
DSP interface requires programs running on both the PC and the DSP The
PC program was designed and tested as an MSDos application using Bor-
land Turbo C++ version 1 01 Ease provides prototypes for special functions
and information for this platform specific mmterface 1n an #1nclude file called
dsp_1f h which 1s included by both the PC resident and DSP resident pro-

grams This platform specific interface 1s described 1n detail 1n section A 10

A.4.3 Platform timing Information

On the LSI card the executive switches context in 10us while time-shcing,
1t passes messages 1n 38us and responds to interrupts in 8us Only tasks on

the highest priority level can have that response guaranteed

A.5 Mechanisms of £ase

A.5.1 CEase error handling

Ease mdicates errors through leaving an error message string at a specific
location in memory This location can also be accessed by application tasks
through the pointer EaseErrorMessage which 1s declared in the ase include
file ease h An application task detecting a serious error can copy its er-
ror message string to EaseErrorMessage Ease also gives application tasks
access to special variables through the include file ease h which gives infor-
mation on interrupts which are lost through no task being ready to respond
to them

The memory location which EaseErrorMessage points to 1s chosen to
be a location which an external computer system can access The obvious
choice for this location on the particular platform which the prototype Ease
was developed was 1 the dual port memory space

The following are the Ease error messages

e Too Many Tasks created in EaseForge This error message indi-
cates that there are too many tasks created for the particular Ease

compilation

e Number of task priority levels exceeds max in EaseForge This
error message 1ndicates that there are too many priority levels for the

particular £ase compilation

e Ease System timer not initialised This error message indicates

that the Ease system timer 1s not set and Ease cannot function

e Priority Rules not Respected in EaseForge This error message

indicates that there 1s a gap 1n the prionty levels of the created tasks

There should be at least one task 1n each prionty level

e Illegal Exit form root task task number This error message 1n-
dicates that there 1s a return from a root task function indicated by
task number Task number 1s derived from the order in which tasks
are created 1n the £ase intiahisation function EaseForge() The first

task created in EaseForge() 1s numbered one

The first two messages indicate that the hmits set in the Ease hbrary
ease 1lib are exceeded If the application programmer wishes to extend
these himits the £ase source module kernel c must be recompiled with the
appropriate changes made to the symbolic constants defined in the £ase 1n-
clude file kernel h Ease will not initiate any tasks or enable any interrupts

if any of the first four conditions arise and will sit 1n a tight loop

A.6 Ease Timers

Ease timers generate events at a rate set in the £ase application specific ini-
tialisation function EaseForge() through calls to EaseSystemTimerInat()
and EaseApplicationTimerInit() The prototypes of these functions are
declared 1n the £ase include file Easeinit h The periods set by these calls
are the smallest time divisions with which £ase can provide timer services
Apphcation tasks can avail of timer services at discrete submultiples of these
events

The timers are only set once and are only set before task imitiation because
timers being reset on-line will affect the realtime software integnity

An apphication task requests £ase to send a message on a specific inter-
task communication channel to mark the occurrence of a specific number of
timer events Ease provides these timer services 1n an astable or monostable
mode The prototypes to set timers are declared in the £ase include file
ease h

Application timers which generate triggers for analogue samplers consti-
tute a special case of £ase timer services Ease sends a message on the
conclusion of each samphing period which 1s marked by an end of conversion

event

A.7 Directory Organisation of ase

The release version of Ease has files 1in six directories, they are as follows
e Src Ease source modules and hbrary file ease 1l1b

Include €Ease include files

Bin PC batch and executable files to aid Ease

e Skeleton Skeletal Ease files upon which applications can be built

Apps Sample £ase application

Motor Sample motor application with Ease

Doc User documentation

A.7.1 Source Files of £ase

The source files of £ase are compiled, linked and archived into a hbrary file
called ease 11b which the £ase apphcation tasks may access through the
Ease include file ease h The Ease hbrary file ease 1ib s target platform
specific and the source files of £ase may have to be recompiled and archived
for each particular target platform system In this way the Ease application
tasks are target platform independent The only application specific function
required by Ease 1s the iitialisation function EaseForge() The following

figure shows the £ase modules which constitute the initial version of £ase

|Kernel 0bJ| Igomm olj LTlm ob; ”Kextra ob _]] | Int0 ob; ”Ims_lf 0@

NV

Fase lib

The above modules have the following purposes

e Kernel obj This module handles task scheduling, initiahisation and

system timer services

10

e Kextra obj This module contains services for the £ase source mod-

ules which have to be written in written 1n assembly language
e Comm obj This module handles inter-task communication
e Tim ob] This module handles application timer services

e Int0 obj This module deals with interrupts on the external interrupt

line 0

e Tms_1f obj This module deals with data exchange via a dual port

memory system

The most target platform specific file on a TMS320C30 system 1s the Ease
linker command file ease cmd This directs the TMS320C30 hinker to place

the components of object files in appropriate sections of physical memory

A.7.2 Include files

The £ase 1nclude directory has files which are to be included by application
tasks compiled under £ase and by the compilation unit which contains the

Ease mitialisation function EaseForge() It contains three files as follows

e Easeinit h This file 1s included for use by the £ase 1mitialisation

function EaseForge() It declares the prototypes for task creation

and timer mmitialisation

e Ease h This s included directly by an application task’s compilation
units It defines €ase symbolic constants, declares function prototypes

for €ase services and declares application wide Ease global variables

o Dsp_.1f h This include file 1s the most basic include file for PC to DSP
data interchange This contains symbolic constants referencing specific
locations 1n the dual port memory interface which will be different for
each applications interface The file 1s therefore usually included as a

local 1nclude file

11

A.8 Prototypes of Easeinit.h

Thus file 1s used to declare the task creation and timer imtialisation function
prototypes and should only be called from the compilation unit containing the
Ease application specific imtialisation function EaseForge() The following

prototypes are declared by Easeinit h

e EaseCreate()
e EaseSystemTimerInit()

e EaseApplicationTimerInit()

The object files which contain these functions are archived into the £ase
library file Ease 11b

12

A.8.1 EaseCreate()

Prototype

voi1d EaseCreate(EaseTaskId_t function,
int prioraty,

int stack_alloc),

Arguments

e EaseTaskId t function This indicates to Ease the function which

1s to be made a root function of an £ase task

e 1nt priority This s the prionty level that the created task 1s to be
placed at

e 1nt stack.alloc This 1s the stack allocation for the created task m
32-bit words

Description This function 1s used to register and imtiate a specific Ease
task The call informs Ease of the details of the task’s prionty, stack al-
location and the task’s root function identification It 1s called from the

application specific £ase imtialisation routine EaseForge()

13

Constraints

e EaseTaskIdt function This can be any C function whose prototype

18 void function_name(void)

e 1nt priority If the prionty level argument 1s not valid then an error

message will be generated and £ase will not initiate any tasks

e 1nt stack.alloc Ease does not conduct on-line stack monitoring
stack_alloc must be large enough to accommodate all the local vari-
ables of the root task plus those of any functions which are subsequently
called to the deepest nested level and must cater for memory taken by
the actual parameters passed on the stack If the sum of task stack
allocations within an application 1s too large then there may not be

enough physical memory to accommodate them

e The onus 1s on the application developer to ensure that this function 1s
only called from the £ase application specific function EaseForge()

Ease will behave unpredictably if this 1s not adhered to

14

A.8.2 EaseSystemTimerlInit()

Prototype

void EaseSystemTimerInit(int freq),

Arguments

e 1nt freq This number 1s the frequency at which system clock 1s to

be set at in hertz

Description This call imitializes the system timer The system timer 1s
used by fase for time shcing and for application task timer services The
frequency of the system timer 1s set before any task 1s mitiated The pe-
riod set by freq 1s the smallest time division between system timer events

Ease allows application tasks to use events for timer services as detailed 1n
section A 9 3

Constraints

e The onus 1s on the application developer to ensure that this function is
only called from the £ase application specific function EaseForge()

The behaviour of £ase will be unpredictable if this 1s not adhered to

15

A.8.3 EaseApplicationTimerInit()

Prototype

void EaseApplicationTimerInit(int freq),

Arguments

e 1nt freq This number 1s the frequency at which the application

timer 1s to be set at in hertz

Description This call imtializes the application timer Ease uses this timer
exclusively for application task timer services The frequency of this timer 1s
set before any task 1s mmtiated The period set by freq is the smallest time
division between application timer events Ease allows application tasks to

use events for timer serices as detailed 1n section A 9 4

Constraints

e The onus 1s on the application developer to ensure that this function 1s
only called from the £ase application speaific function EaseForge()

The behavour of £ase will be unpredictable 1f this 1s not adhered to

16

A.9 Prototypes of Ease.h

The file Ease h1s used to declare the Ease service calls for use by application

tasks The following prototypes are declared by Ease h
e EaseReceive()
e EaseSend()
e EaseSystemTimerSet()
° EaseAppllcatlonTlmerSet()
e EaseSamplerSet()

e EaseInt0Init()

The object files which contain these functions are archived into the Ease
library file Ease 11b

9}

17

A.9.1 EaseReceive()

Prototype

int EaseReceive(ant src_ch,
void * msg,
1nt max_msg_size,
int* msg_size,

EaseTaskId_t* rendezvous_tsk),

Arguments

e 1nt src.ch This s a positive integer to 1dentify the source inter-task

communication channel which this call seeks to receive a message from

e void * msg Thisis a pointer which indicates to Ease where a message
will be passed 1n the receiving task’s object memory The type 1s void

* to make 1t a generic pointer type

e i1nt maxmsg-size This informs Ease of the largest message size, 1n

32-bit words that the recerving task can receive

e 1nt* msg_size This returns the actual size of the message received
mn 32-bit words

o EaseTaskId_t* rendezvous_tsk This returns the 1dentifier of the

root function of the sending rendezvous partner

18

Return Value

e 1nt The non zero return values following are symbolic constants

denoting error messages and are defined m the £ase include file ease h

— A zero 1s returned 1f operation 1s successful

— NOT_VALID_CHANNEL 1s returned if src_ch 1s not a defined Ease

inter-task communication channel

— MSG_TOO_LARGE_FOR RECEIVERs returned if the receiving task tries
to rendezvous with a blocked sending task whose message size 1s

greater than max msg_size

Description In this call a task tries to obtain a message from the Ease
inter-task communication channel indicated by src_ch and blocks if none 1s
available It will remain blocked until a sending task sends on that channel

with a message not bigger than max msg size

19

Constraints

e 1nt src.ch This must be a positive integer denoting a defined Ease
inter-task communication channel Valid channels are 1n the range
zero to the symbolic constant CHANNELS which 1s a limit defined in
the £ase nter-task communication source module by the include file
comm h This imit 1s set at compile time before archiving comm obj

mnto ease h

e void * msg The msg argument 1s designed to be a pointer to data
types within a task’s local or static global memory The behavour of
Ease will be indeterminate if msg 1s a pointer to anything outside a

task’s private memory space

e 1nt maxmsg-size This himit 1s the responsibility of the application
developer who must ensure that the space allocated for an incoming
message 15 actually max msg_size If this number 1s larger than the
space actually allocated, data 1s liable to be corrupted with unpre-
dictable results Typically a si1zeof() macro will ensure that this

will not occur

20

A.9.2 EaseSend()

Prototype

int EaseSend(1int dst_ch,
void * msgl],
int msg_size,

EaseTaskId_t* rendezvous_tsk),

Arguments

e 1nt dst.ch Thisis a positive integer to 1dentify the destination inter-
task communication channel, over which this call seeks to send a mes-

sage

e void * msg This 1s a pointer which indicates to Ease where 1n the

sending task object memory the message to be sent exists

e 1nt msg_size This indicates to Ease the actual size of the message
to be relayed in 32-bit words

e FaseTaskId t* rendezvous_tsk This returns the i1dentifier of the

root function of the receiving rendezvous partner

21

Return Value

e 1nt The non zero return values following are symbolic constants

denoting error messages and are defined 1n the £ase include file ease h

— A zero 1s returned if operation 1s successful

— NOT_VALID_CHANNEL 1s returned if dst_ch 1s not a defined Ease

mter-task communication channel

— MSG_TOO_LARGE_FOR_RECEIVER 1s returned if the sending task tries
to rendezvous with a blocked receiver task who cannot receive a

message of size msg_size

Description In this call a task tries to send a message on the £ase 1nter-
task communication channel indicated by dst_ch and blocks if there 1s no
recerver waiting It will remain blocked until a receiving task seeks a message
on that channel with a maximum message size greater than or equal to than

msg_size

22

Constraints

e 1nt dst_ch This must be a positive integer denoting a defined Ease
mter-task communication channel Valid channels are in the range
zero to the symbolic constant CHANNELS which 1s a himit defined in
the £ase inter-task communication source module by the include file
comm h This limit 1s set at compile time before archiving comm obj

mto ease h

e void * msg The msg argument 1s designed to be a pointer to data
types within a task’s local or static global memory The behavour of
Ease will be indeterminate 1f msg 1s a pointer to anything outside a

task’s private memory space

o 1nt msg.size The onus 1s on the application developer who must
ensure that this 1s the actual size of the message to be sent If the
number 15 too small then an incomplete message will be sent If the
number 1s too large then unspecified data will be appended to the end

of the message Typically a s1zeof() macro will ensure that these

scenarios will not occur

23

A.9.3 EaseSystemTimerSet()

Prototype

int EaseSystemTimerSet(int ticks,
int channel,

int mode),

Arguments

e 1nt ticks This is the number of system timer events an application

task wishes to wait before £ase indicates a timing event

e 1nt channel This is a positive mteger which indicates to Ease the
inter-task communication channel over which a message 1s to be relayed

indicating the occurrence of ticks number of system timer events

e 1nt mode This informs £ase of the mode required from the system

timer The timer may be set 1n a MONOSTABLE or ASTABLE mode

24

Return Value

e int The non zero return values following are symbolic constants

denoting irregularities and are defined in the Ease include file ease h

— A zero 1s returned if operation 1s successful

— NOT_VALID_CHANNEL 1s returned if channel is not a defined £ase

inter-task communication channel

— RESET_WHILE ACTIVE 1s returned if the system timer 1s already

servicing a timing request when the current call reset 1t

— INCORRECT.TIMER MODE 1s returned if the mode argument 1s not
one of the symbolic constants MONOSTABLE or ASTABLE defined in

the Ease include file ease h

Description In this call an application task requests timer services from
the Ease system timer The system timer generates events at a rate defined
by EaseSystemTimerInit() This requests £ase to send a message indi-
cating that ticks number of system timer events have occurred meaning
that a specific period of time has elapsed This message 1s sent on the Ease
inter-task communication channel indicated by channel The message will
be sent repeatedly every ticks system timer events if the mode 1s ASTABLE If
the mode 1s MONOSTABLE 1s the message will be sent once after ticks system
timer events has elapsed

The message consists of a integer array of two 32-bit words, the first word
being SYSTEM_TIMER MSG which 1s a symbolic constant defined in ease h and
the second being the number of system timer events that happened since
system timer imitialisation by the function EaseSystemTimerInit()

This call will override any previous system timer request which has not

expired

25

Constraints

e 1nt channel This must be a positive integer denoting a defined Ease
inter-task communication channel Vahd channels are in the range
zero to the symbolic constant CHANNELS which 1s a himit defined n
the £ase 1nter-task communication source module by the include file

comm h This lhimit 1s set at compile time before archiving comm obj

into ease h

e 1nt mode This must be one of the symbolic constants MONOSTABLE or
ASTABLE defined in ease h

26

A.9.4 EaseApplicationTimerSet()

Prototype

int EaseAppllcatlonTlmerSet(1nt ticks,
int channel,

int mode),

Arguments

e 1nt ticks This s the number of application timer events an apph-

cation task wishes to wait before Ease indicates a timing event

e 1nt channel This 1s a positive integer which indicates to Ease the
inter-task communication channel over which a message 1s to be relayed

indicating the occurrance of ticks number of application timer events

e 1nt mode This informs £ase of the mode required from the system
timer The timer may be set 1n a MONOSTABLE or ASTABLE mode

Return Value

e 1int The non zero return values following are symbolic constants

denoting 1rregularities and are defined 1n the £ase include file ease h

— A zero 1s returned if operation 1s successful

— NOT_VALID_CHANNEL 1s returned if channel 1s not a defined Ease

inter-task communication channel

— RESET WHILE_ACTIVE 1s returned if the system timer 1s already

servicing a timing request when the current call reset 1t

— INCORRECT.TIMERMODE 1s returned 1f the mode argument 1s not
one of the symbolic constants MONOSTABLE or ASTABLE defined in

the £ase include file ease h

27

Description In this call an apphcation task requests timer services from
the Ease application timer The application timer generates events at a
rate defined in EaseApplicationTimerInit() This requests Ease to send
a message ndicating that ticks number of application timer events have
occurred meaning that a specific period of time has elapsed This message
1s sent on the £ase inter-task communication channel indicated by channel
The message will be sent repeatedly every ticks system timer events if the
mode 1s ASTABLE If the mode 1s MONOSTABLE 1s the message will be sent once
after ticks system timer events has elapsed

The message consists of a integer array of two 32-bit words, the first
word being APPLICATION.TIMER MSG which 1s a symbolic constant defined
in ease h and the second being the number of application timer events
that happened since apphcation timer imtialisation by the £ase function
EaseApplicationTimerInit()

This call will override any previous application timer request which has

not expired

Constraints

e 1nt channel This must be a positive integer denoting a defined £ase
mter-task communication channel Valid channels are 1n the range
zero to the symbolic constant CHANNELS which 1s a limat defined in
the £ase mter-task communication source module by the include file
comm h This hmit 1s set at compile time before archiving comm obj

mnto ease h

e 1nt mode This must be one of the symbolic constants MONOSTABLE or
ASTABLE defined in ease h

28

A.9.5 EaseSamplerSet()

Prototype

int EaseSamplerSet(int channel),

Arguments

e i1nt channel This isthe £ase inter-task communication channel over

which a message will be passed by Ease indicating a sampling event

Return Value

e 1nt The non zero return values following are symbolic constants

denoting irregulanties and are defined 1in the Ease include file ease h

— A zero 1s returned 1f operation 1s successful

— NOT_VALID_CHANNEL 1s returned if channel 1s not a defined £ase

mnter-task communication channel

— RESET_WHILE.ACTIVE 1s returned if the application timer driving
controlling the sampler 1s already servicing a timing request when

the current call reset 1t

Description In this call an application task requests Ease to generate mes-
sages at an end of conversion event from the target system’s analog inter-
face Sampling events are triggered by the application timer which generates
triggering pulses at a rate defined in EaseApplicationTimerInit() Ths
message 1s sent on the ase inter-task communication channel indicated by
channel at each sampling instant

The message consists of a integer array of two 32-bit words, the first
word being END_OF_CONVERSIONMSG which 1s a symbolic constant defined
in ease h and the second being the number of application sampling events
that happened since application timer initialisation by the £ase function
EaseApplicationTimerInit()

This call will override any previous application timer request set by

EaseApplicationTimerSet which has not expired

29

Constraints

e 1nt channel This must be a positive integer denoting a defined Ease
inter-task communication channel Valid channels are in the range
zero to the symbolic constant CHANNELS which 1s a hmit defined in
the £ase mter-task communication source module by the include file
comm h This imit 1s set at compile time before archiving comm obj

into ease h

30

A.9.6 EaseIntOInit()

Prototype

int EaseIntOInit(int channel),

Arguments

e 1nt channel This s the £ase inter-task communication channel over

which a message will be passed by £ase indicating an INT0 event

Return Value

e 1nt The non zero return values following are symbolic constants

denoting error messages and are defined 1n the £ase include file ease h

— A zero 1s returned 1f operation 1s successful

— NOT_VALID_CHANNEL 1s returned if channel 1s not a defined £ase

inter-task communication channel

Description In this call an application task requests £ase to generate
messages at an INTO event, which 1s triggered by an external interrupt on
the INTO line This message 1s sent on the £ase inter-task communication
channel indicated by channel at each event instant

The message consists of a integer array of two 32-bit words, the first
word being INTOMSG which 1s a symbolic constant defined in ease h and
the second being the number of INTO events that happened since this call
enabled the INTO0 external interrupt line

Constraints

e 1nt channel This must be a positive integer denoting a defined Ease
inter-task communication channel Valid channels are in the range
zero to the symbolic constant CHANNELS which 1s a limut defined in
the Ease 1nter-task communication source module by the include file
comm h This hmut 1s set at compile time before archiving comm ob)

mto ease h

31

A.10 Interface with External Computer Sys-
tem

The prototype version of £ase availed of a dual port memory resource for
data exchange between the target DSP system and an external computer
system The communication process 1s governed by the application specific
Ease mclude file Dsp_.1f h The file Dsp_1f h contains symbolic constants
which reference specific locations in absolute memory within the dual port
memory space and declares prototypes for functions which application tasks
can call to read and write from these locations

The functions following are the £ase functions declared in Dsp_1f h for

use by application tasks

e EaseDspWordQut()
e EaseDspWordIn()
e EaseDspFloatOut(),

e EaseGetDspPtr()

The prototype version of £ase employed an IBM PC for on-line user
interface with a running £ase application The PC could access the DSP
dual port memory via ports in the PC I/O memory space Prototype Ease
applications employed an executable C file to conduct user interface from the
PC side This C file 1s compiled including the £ase include file Dsp_1f h
This ensures that an application and the user interface functions agree on
memory locations for data exchange The file Dsp_1f h also contains port
address information for use by the PC resident C file

The skeleton file u1_skel c contains examples of how to use the functions

to read and write to the DSP dual port memory space from the PC

A.10.1 EaseDspWordOut()

Prototype

int EaseDspWordOut(int dest,int word),

32

Arguments

e 1nt dest This indicates to Ease where 1n absolute memory to place
the output 32-bit word so that 1t can be accessed by an external com-

puter system via a dual port memory interface

o 1nt word This 1s the 32-bit word to be transfered by ase to an

external computer system via a dual port memory interface

Return Value

e 1nt The non zero return values following are symbolic constants
denoting errors and are defined 1n the application specific £ase include
file dsp_if h

— A zero 1s returned 1if operation 1s successful

— ADD_OUT_OF _RANGE 1s returned 1f dest indicates an address which

1s outside the dual port memory area

Description This call 1s used by an application task to place 32-bit word
mn absolute memory with a view to interfacing with an external computer
system via dual port memory space

This call places the word at a specific absolute memory location 1n the
dual port memory which typically would be referenced through a symbolic

constant defined 1n the £ase application specific include file dsp_1f h

Constraints

e i1nt dest This must be a positive integer not greater than the physical
size of the dual port memory space (specified by the symbolic constant
DUAL defined 1n tms_1f h)

33

A.10.2 EaseDspWordIn()

Prototype

int EaseDspWordIn(int source),

Arguments

e 1nt Source This indicates to Ease a specific location n absolute
memory which an external computer system has access to via dual

port memory space

Return Value

e 1nt This 1s the 32-bit word at the memory location that source

indicates

Description This callis used by an application task to read the 32-bit word
residing at a specific location in absolute memory with a view to mterfacing
with an external computer system via dual port memory space The absolute
address 1s referenced by source displaced by the location of the dual port
memory

The actual memory location of the input word would typically be refer-
enced through a symbolic constant defined in the application specific Ease
mclude file dsp1f h

Constraints

e 1nt dest This s a positive integer not greater than the physical size

of the dual port memory space (specified by the symbolic constant DUAL
defined in tms_1f h)

34

A.10.3 EaseDspFloatOut()

Prototype

int EaseDspFloatOut(lnt dest,float word),

Arguments

e 1nt dest This indicates to Ease where 1n absolute memory to place
the output floating point value so that 1t can be accessed by an external

computer system via a dual port memory interface

e float word This is the floating point value to be transfered by Ease

to an external computer system via a dual port memory interface

Return Value

e 1int The non zero return values following are symbolic constants
denoting errors and are defined 1n the application specific £ase include
file dsp_1f h

— A zero 1s returned 1if operation 1s successful

— ADD_QUT_OF _RANGE 1s returned 1if dest indicates an address which

1s outside the dual port memory area

Description This call 1s used by an application task to place a floating
point value mn absolute memory with a view to interfacing with an external
computer system via dual port memory space

Thus call places the floating point word at a specific absolute memory lo-
cation 1n the dual port memory which typically would be referenced through
a symbolic constant defined in the £ase application speafic include file
dsp_1f h

Conustraints

e 1nt dest This must be a positive integer not greater than the phys-
1cal size of the dual port memory space This size 1s specified by the

symbolic constant DUAL defined in tms_1f h

35

A.10.4 EaseGetDspPtr()

Prototype

void * EaseGetDspPtr(int memref),

Arguments

e 1nt memref This indicates to Ease a specific location in absolute
memory which an external computer system has access to via dual

port memory space

Return Value

e void * Any non NULL return value returned 1s a pointer to the mem-

ory location indicated by memref

Description This call 1s used by an application task to obtain a pomnter
to a specific location 1n absolute memory with a view to interfacing with an
external computer system via dual port memory space The absolute address
1s referenced by memref displaced by the location of the dual port memory

The memref argument would typicially reference the dual port memory
space through a symbolic constant defined in the application specific Ease
mclude file dspaf h

Constraints

e 1nt memref This must be a positive integer not greater than the
physical size of the dual port memory space If memref 1s invalid then

the function will return a NULL ponter

36

A.11 Prototypes of UI-LIB

A.11.1 readword()

Prototype

long readword(long source),

Arguments

e long source This 1s the absolute address of a location in the dual

port memory

Return Value

e long int This 1s a 32-bit word at location source

Description This call 1s used to fetch a 32-bit word from an absolute

address 1n the dual port memory for PC consumption

Constraints

o long source This must be a positive integer not greater than the
physical size of the dual port memory space (specified by the symbolic
constant DUAL defined 1n tms_1f h)

37

A.11.2 writeword()

Prototype

void writeword(long dest,long data),

Arguments

e long dest This s the absolute address of a location 1n the dual port

memory

e long data This 1s a 32-bit word to be written to the an absolute

address of a location 1n the dual port memory

Return Value

e void

Description This call 1s used to place a 32-bit word at an absolute address

1in the dual port memory for DSP consumption

Constraints

e long source This must be a positive integer not greater than the

physical size of the dual port memory space(specified by the symbolic
constant DUAL defined in tms_1f h)

38

A.11.3 tmstolEEE()

Prototype

double tmsftoibmf(long a),

Arguments

e long a This 1s the TMS320C30 32-bit floating point representation

to be converted

Return Value

e double This s an IEEE format double precision float

Description This call 1s used convert a 32-bit floating point format word
previously obtained from the DSP and convert 1t to the IEEE format

A.12 Installing £ase in an IBM PC

The prototype version of Ease 1s developed for a TMS320C30 platform Pro-
grams written under £ase use the Texas mnstruments microprocessor develop-
ment tools The particular hardware environment 1s the TMS320C30 board
developed by Loughborough Sound Images Ease 1s completely compatible
with this hardware platform

A.12.1 Obtaining fase

The release version of £ase can be obtained through access to an anonymous
ftp site located in Dublin City Umiversity named ftp eeng dcu 1e Upon
successful connection to the ftp site give the user name as ftp to log 1n as a
guest and the password as your Internet email address

Ease 1s to be found 1n the pub/power/ease directory Declare the transfer
protocol as binary mode by using the bin command and transfer the files
README TXT and EASE ZIP to your PC using the get command

Use pkunzip with the switch -d to extract the files and subdirectories of

Ease The dos command line would look like this

39

pkunzip -d ease zip

The file README TXT gives a detailed description of how to install Ease

A.12.2 Setting up fase

The LSI systems board 1s connected to the PC via the PC 1/O ports The
base address of this port must be written to the data file port dat in the

\ease\bin

directory The port address 1s to be given in ASCII hexadecimal format In
the prototype version of £ase port dat contains the address 290

The TMS320C30 C compiler uses the environment variable C_DIR to spec-
ify alternate directories that contain #include files The path of the £ase
include files must be appended to the existing C_DIR paths The Appended
entry would look like the following if £ase 1s installed on the C drive

C_DIR=C \ease\include

A.12.3 Running an fase Application

An application loaded into the ¢30 memory and executed through the pro-
gram 30run exe 30run operates on out files To run an application type
30run and the name of the out file

To interface with the PC the £ase application requires a program to be
run from the PC The file u1-min gives the minimum interface with Ease

Each application will have 1ts own user interface program associated with 1t

A.12.4 Platform Specific Considerations

The prototype version of £ase was developed on a TMS320C30 system board
developed by Loughborough Sound Images ltd If £ase 1s to be used on
another hardware platform then alterations would have to be made to certain

Ease modules

40

A.12.4.1 Configuration for a different TMS320C30 System

If £ase 1s to be utilised on a hardware platform which 1s different from the
prototypes but one that still uses the TMS320C30 microprocessor system
then the majority of the code of Ease does not need to be changed The only
changes required are in the interface module tms_1f asm and in the TMS
linker command file ease cmd

Tms_1f needs to be altered as 1t references absolute memory and as 1t
relies on there being a dual port memory resource

Ease cmd describes the hardware configuration to the TMS lLinker so 1t

can generate out files from object files

A.12.4.2 Configuration for a Different Microprocessor System

If the target platform’s hardware system 1s based on microprocessor different
from the prototypes, all the £ase C source files are still valid All of the

assembly modules would have to be altered for the specific processor

41

Appendix B

Code Listings

B.1 £ase Source Code Listings

B.1.1 Kernel.h

/* ¢
FILE Kernel h

This file contains

a) Module to 1initialize Task control blocks
b) Scheduler for servicing clock ticks

¢) General scheduler called after interrupts
d) System timer services

David Doyle 6/10/94

Date initials history

ok sk ok o ok ok sk ok okt skl sk ok ok skok ok ok sk o ok ok ook sk sk ook ok ok sk sk o sk ok ok o ok ok sk ok ok
2/7/93 DD PRE-RELEASE

*/

#define NULL (0)

#define TRUE 1

#define FALSE O

#define ROGUE -1

#define SYSTEM_TIMER_MSG 4
#define INCORRECT_TIMER_MODE -3
#define RESET_WHILE_ACTIVE -4

#define MONOSTABLE O
#define ASTABLE 1

#define public
#define private static

#define EaseLock 1
#tdefine EaseUnlock 0

#define MAX_TASKS 15

#define PRIORITY_LEVELS 8
#define QUANTUM 2

#define TIMERO_INTVEC 0x9

typedef void (*EaseTaskId_t)(voad),

typedef struct EaseTaskCtrl_s

{
int blocked_status, /* FALSE 1f not blocked else TRUE */
int quantum_tick,
int task_sp,
int task_id, /* integer to 1dentify task */
EaseTaskId_t root, /* address of root function of task */
struct EaseTaskCtrl_s *next_member, /* pointer to next member */

} EaseTaskCtrl ,

extern EaseTaskCtrl EaseTask[MAX_TASKS+1],
extern EaseTaskCtrl* EaseTaskPtr [PRIORITY_LEVELS],

extern int EaseCurrentTask,

extern int EaseCurrentPrioraity,

extern int EaseTaskPr[MAX_TASKS],

extern int EaseNtasks[PRIORITY_LEVELS],

extern void EaseScheduleAfterInt(void),

extern void EaseForge(v01d),

extern void EaseIdle(void),

extern void EaseSystemTimerInit(int freq),

extern int EaseSystemTimerSet(int ticks,1int channel,int mode_c),
extern char* EaseErrorMessage,

extern int EaseClockTick,
extern int EaseScheduleCount,

extern void EaseIntOInt(void),

B.1.2 Kernel.c

/**/

/* FILE kernel ¢ */
/o ok ok ok ok skl ok ok kol ek ok sk ok ok ok sk skokokdokok ok ok kskok sk ok /

#include<string h>
#include<stdlib h>
#include'kernel h"
#include"comm h" /* 1included for channel_init(), */

public EaseTaskCtrl EaseTask[MAX_TASKS+1],

public EaseTaskCtrl* EaseTaskPtr[PRIORITY_LEVELS],
public 1int EaseCurrentTask,

public 1int EaseCurrentPriority,

public 1nt EaseNtasks[PRIORITY_LEVELS]={ 0,0,0,0,0 },
public 1int EaseScheduleCount=0,

public 1nt EaseTaskPr[MAX_TASKS],

public 1nt EaseSystemTimerActive=FALSE,

public 1int EaseSystemTimerNticks=0,

extern void EaseTimer0Int(void),

private int system_timer_period_of_ticks,
private 1nt system_timer_mode,

private int system_timer_channel,

private int 1dle_prioraty=0,

private int count=0,

private int system_timer_initialised=FALSE,

void EaseCreate(EaseTaskId_t function,int priority,int stack_alloc)
{
1f(1dle_priority < priority)
i1dle_priority=priority,
EaseTask[count] blocked_status=FALSE,
EaseTask[count] quantum_tick=0,
EaseStack{count,stack_alloc,function),
EaseTask[count] task_id=count,
EaseTask[count] root=function,
EaseTaskPr[count]=prioraity,
1f (count++>MAX_TASKS)
{
strcpy(EaseErrorMessage,"Too Many Tasks created in EaseForge()"),
EasePanic(),
}
}

void EaseGroup(void)

{

EaseTaskCtrl * ptr,* first,
int 1,],warning=FALSE,

for(3=0, J<PRIORITY_LEVELS, j++)
{
first=(NULL),
for(1=0,1<(count),1++)
{
1f (EaseTaskPr[1]>=PRIORITY_LEVELS)
{
strcpy(EaseErrorMessage,
"Number of task priority levels exceeds max in EaseForge"),
EasePanic(),

}
1f (EaseTaskPr[1]==3)
{
EaseNtasks[j]++,
1f(EaseNtasks[3]==1)
{
EaseTaskPtr[j] = &EaseTask[1],
ptr = &EaseTask[1],
first = &EaseTask[1],
}
else
{

ptr->next_member = &EaseTask[1],
ptr = &EaseTask[1],
}
3
}
1f (first==(NULL))
warning=TRUE,
1f (warning==TRUE && first'=(NULL))
{
strcpy(EaseErrorMessage,"Priority Rules not Respected 1in EaseForge"),
EasePanic(),
b
ptr->next_member=first,
ke
3 :

void EaseInat(void)
{
EaseForge(),
1f(system_timer_initialised==FALSE)
{ !
strcpy(EaseErrorMessage,"Ease System timer not initialised"),
EasePanic(),

}

EaseCreate(Easeldle, (1dle_priority+1),0x50),
EaseGroup(),

EaseChannelInit(),
EaseCurrentTask=EaseTaskPtr[0]->task_id,
EaseCurrentPriority=0,

3

void EaseScanLevelAfterInt(int *z)

{

EaseTaskCtrl *sweeper,
sweeper=EaseTaskPtr [*z]->next_member,

while(sweeper'=EaseTaskPtr[*z])
{
1f (sweeper->blocked_status==FALSE)
{
EaseCurrentTask=sweeper—>task_id,
EaseCurrentPriority=+*z,
EaseTaskPtr[*z]=sweeper,
EaseRun(EaseCurrentTask),
}
sweeper=sweeper->next_member,
¥
}

void EaseScheduleAfterInt(void)
{
int z,
z=0,
EaseScheduleCount++,
while(TRUE)
{
1f (EaseTaskPtr[z]->blocked_status==FALSE)
{
EaseCurrentPriority=z,
EaseCurrentTask=EaseTaskPtr[z]->task_id,
EaseRun(EaseCurrentTask),
}
else
{
EaseScanLevelAfterInt(&z),
}

zZ++

s

int EaseSystemTimerSet(int ticks,int channel,int mode_c)

{

int status=0,
asm(" TRAP 0O"),
1f (0>channel| | channel>CHANNELS)
{
asm(' TRAP 1"),
return(NOT_VALID_CHANNEL),
}
1f (mode_c '=MONOSTABLE&&mode_c '=ASTABLE)
{
asm(" TRAP 1"),
return(INCORRECT_TIMER_MODE),
}
1f (EaseSystemTimerNticks'=0)
status=RESET_WHILE_ACTIVE,
EaseSystemTimerNticks=ticks,
system_timer_period_of_ticks=ticks,
system_timer_mode=mode_c,
EaseSystemTimerActive=TRUE,
system_timer_channel=channel,
asm(" TRAP 1"),
return(status),

void EaseSystemTimerMsg(void)

{
EaseTaskCtrl *sweeper,
int 1,messagel[2],s1ze,tail,head,lucky_task,
EaseChanCtrl *ch,

ch=gEaseChannel[system_timer_channel],
tail=ch->tail_q,

head=ch->head_q,

size=2,

message [0]=SYSTEM_TIMER_MSG, ,
message[1]=EaseClockTick,
1f (system_timer_mode==ASTABLE)
{
EaseSystemTimerNticks=system_timer_period_of_ticks,
¥
else
{
EaseSystemTimerActive=FALSE,
}

1f((ch->source_flag==FALSE)&&(ta1l'=head))
{

EaseTransfer((int *)message, (1nt *)ch->msg_q[tail]l,size),

lucky_task=ch->1d_q[taill,
EaseTask[lucky_task] blocked_status=FALSE,
EaseRendezvousRedemer[1ucky_task]=(EaseTaskId_t) (NULL),
EaseSenderMsg51ze[lucky_task]=51ze,
1f (++ch->ta1l_q==MAX_MESSAGES)
ch->tail_qg=0,
EaseScheduleAfterInt(),
}
}

void EaseScanLevel(voad)
{

EaseTaskCtrl *sweeper, -

1f (EaseSystemTimerActive==TRUE&&EaseSystemTimerNticks==0)
EaseSystemTimerMsg(),

sweeper=EaseTask [EaseCurrentTask] next_member,

while(TRUE)
{
1f (sweeper->blocked_status==0)
{
EaseCurrentTask=sweeper->task_id,
EaseTaskPtr[EaseCurrentPriority]=sweeper,
EaseRun(EaseCurrentTask),
}
sweeper=sweeper—>next_member,
}
}

void Easeldle(void)
{

while(TRUE),
}

void EaseSystemTimerInit(int freq)

{
float tick_period,
system_timer_initialised=TRUE,
1f(EaseSetVec(TIMERO_INTVEC,EaseTimer0Int) '=0)

EasePanic(),

tick_period=1/(float)freq,
EaseTimer0((aint)(tick_period*1/120E-9)),

void main(void)

{
strcpy(EaseErrorMessage,""),
EaseInat(),

1f (EaseSetIEreg(TIMERO_INTVEC)!=0)
EasePanic(),
EaseRun(EaseCurrentTask),
while(TRUE),
}

B.1.3 Comm.h
/*

FILE comm h
This file contains ease communication modules

David Doyle 10/9/94

Date initials history

ke o ok o e ook o ok ke o ok ok sk s sk ks sk ok ok o sk e e o ok sk o ks ok ks ke o ke ko o sk sk ok ok ok
10/9/94 DD PRE-RELEASE

*/

#define TRUE 1
#define FALSE O

#define CHANNELS 8
#define MAX_MESSAGES 5
#define SIGNAL_CH 5

#define NOT_VALID_CHANNEL -1
#define MSG_TOO_LARGE_FOR_RECEIVER -2

typedef struct EaseChanCtrl_s
{
int source_flag,
ant 1d_q[MAX_MESSAGES],
int *msg_q[MAX_MESSAGES],
int size_q[MAX_MESSAGES],
int head_gq,
int tail_gq,
} EaseChanCtrl,

extern EaseChanCtrl EaseChannel [CHANNELS],

extern void EaseChannelInit(void),

extern EaseTaskId_t EaseRendezvousRedemer [MAX_TASKS],
extern int EaseSenderMsgSize[MAX TASKS],

extern int EaseSendCount,

extern int EaseReceiveCount,

extern int EaseReceive(int src_ch,void msgl],
int max_msg_size,
int *msg_size,
EaseTaskId_t* rendezvous_tsk),
extern int EaseSend(int dst_ch,void msgll,
int msg_size,
EaseTaskId_t* rendezvous_tsk),

B.1.4 Comm.c

/**

* File comm ¢ handles intertask communication *
ook ook o ok ke sk sk ok ok ok ok e e s s o ok sk ok ok ok o s o ok ok ok ok ok o oo sk ok ok ok o sk Kok Kk ok ok ok e/

#include "kernel h"
#include "comm h"

extern void EaseSchedule(void),
extern void EaseTransfer(ant * source,1int * dest ,int size),

public int EaseSendCount=0,
public int EaseReceiveCount=0,

public EaseChanCtrl EaseChannel [CHANNELS],
public EaseTaskId_t EaseRendezvousRedemer [MAX_TASKS],
public int EaseSenderMsgSize [MAX_TASKS],

void EaseChannellnit(void)
{

ant 1,

for(1=0,1<CHANNELS, 1++)
{
EaseChannel[1] source_flag=FALSE,
EaseChannel[1] tail_qg=0,
EaseChannel[1] head_g=0,
}
}

int EaseSend(int dst_ch,void msgl[],
int msg_size,
EaseTaskId_t* rendezvous_tsk)

int 1=0,head,tai1l,lucky_task,
EaseChanCtrl *ch,

asm(" TRAP 0O"),
EaseSendCount++,

1f(0>dst_ch/| |dst_ch>CHANNELS)
return(NOT_VALID_CHANNEL),
ch=gEaseChannel[dst_ch],
head=ch->head_gq,
tail=ch->tail_q,

1f((tail==head) || (ch->source_flag==TRUE))
{
ch->source_flag=TRUE,

ch->1d_q[head] =EaseTaskPtr[EaseCurrentPriority]l->task_id,
ch->s1ze_q[head]l=msg_saze,
ch->msg_q[head]=(ant *)msg,
EaseTaskPtr[EaseCurrentPriority]->blocked_status=TRUE,
1f (++ch->head_q==MAX_MESSAGES)

ch->head_q=0,

EaseSchedule(),
*rendezvous_tsk=EaseRendezvousRedemer[EaseCurrentTask],
return(0),

¥

else

{
lucky_task=ch->1d_q[tail],
1f(msg_size > ch->size_q[tail])

return(MSG_TOO_LARGE_FOR_RECEIVER),

EaseTransfer((int *)msg, (1nt *)ch->msg_qltail] ,msg_size),
EaseTask[lucky_task] blocked_status=FALSE,

*rendezvous_tsk=EaseTask[lucky_task] root,
EaseRendezvousRedemer [lucky_task]=EaseTask[EaseCurrentTask] root,
EaseSenderMsgSize[lucky_task]l=msg_size,

1f (++ch->ta1l_g==MAX_MESSAGES)
ch->tail_q=0,

1f (EaseTaskPr[lucky_task]>EaseCurrentPriority)

{
asm(" TRAP 1"),
return(0),

}

else

{
EaseSchedule(),
return(0),

}

}
}

int EaseReceive(int src_ch,

void msgl],

int max_msg_size,

int *msg_size,

EaseTaskId_t* rendezvous_tsk)

{
int 1=0,head,ta1l,lucky_task,
EaseChanCtrl *ch,

asm(" TRAP 0"),
EaseReceiveCount++,

10

1f(0>src_chl | src_ch>CHANNELS)
return(NOT_VALID_CHANNEL),
ch=&EaseChannel[src_ch],
head=ch->head_q,
tail=ch->tail_q,

1f((ta1l==head) || (ch->source_flag==FALSE))
{
ch->source_flag=FALSE,
ch->1d_q[head]l=EaseTaskPtr [EaseCurrentPriority]l->task_id,
ch->s1ze_q[head]l=max_msg_size,
ch->msg_q[head]l=(1nt *)msg,
EaseTaskPtr[EaseCurrentPriorityl]->blocked_status=TRUE,
1f (++ch->head_q==MAX_MESSAGES)
ch->head_q=0,

EaseSchedule(),
*rendezvous_tsk=EaseRendezvousRedemer [EaseCurrentTask],
*msg_size=EaseSenderMsgSize[EaseCurrentTask],
return(0),

¥

else

{
lucky_task=ch->1d_q[ta1l],
1f(max_msg_size < ch->size_ql[ta1ll)

return(MSG_TOO_LARGE_FOR_RECEIVER),

EaseTransfer((int *)ch->msg_qltaill,

(1nt *)msg,

ch->size_q[tail]),
*msg_size=ch->size_q[ta1l],
EaseTask[lucky_task] blocked_status=FALSE,

*rendezvous_tsk=EaseTask[lucky_task] root,

EaseRendezvousRedemer [lucky_task]
=EaseTask[EaseCurrentTask] root,

EaseSenderMsgSize[lucky_task]=*msg_size,

1f (++ch->ta1l_qg==MAX_MESSAGES)
ch->tail_q=0,

1f (EaseTaskPr[lucky_task]>EaseCurrentPriority)

{
asm(" TRAP 1),
return(0),

}

else

{
EaseSchedule(),
return(0),

3

11

12

B.1.5 Tim.h

/*

FILE TIM h

This module handles application timer services

David Doyle 7/7/93

Date initials history

sk ook ok okskok ok ok gk ook ook ok sk s e ok skok ok skok sk s kskok sk o ok sk e ko skok ok ok ke sk ok ok
7/7/93 DD PRE-RELEASE

*/

#define TRUE 1
#define FALSE O

#define TIMER1_INTVEC OxA

#define CONVERSION_COMPLETE_INTVEC 0x2
#define END_OF_CONVERSION_INT 2
#define APPLICATION_TIMER_MSG 3

extern void EaseApplicationTimerInit(aint freq),

extern int EaseApplicationTimerSet(int ticks,int channel,int mode),
extern int EaseSamplerSet(int channel),

extern int EaselntiCount,

extern int EaseLostIntl,

13

B.1.6 Tim.c

/**/

/* FILE tim2 ¢ */
/A sk sk Aok ok ok Aok ook ook ok ok ok ok ok ok ook ok koo sk ok ok ok ok ok ok ko ok /

#include'kernel h"
#include"comm h"
#include”"tim h"
#include<stdlib h>

extern void EaseTimeriInt(void),
extern void EaseIntiInt(void),

public int EaseIntiCount,
public int EaseLostInti1=0,
public void EaseTimeriHandler(void),

private int tim_channel,
private int insignia,
private int n_ticks=0,
private int period_of_ticks,
private int mode,

void EaselApplicationTimerInit(int freq)
{

float period,

int t_reg,

period=(float)1/freq,

t_reg=(int)(period/(120E-9)),
EaseSetVec(TIMER1_INTVEC,EaseTimeriInt),

EaseSetVec (CONVERSION_COMPLETE_INTVEC,EaseIntiInt),
EaseTimer1(t_reg),

EaseIntiCount=0,

int EaseApplicationTimerSet(int ticks,int channel,int mode_c)
{
int status=0,
asm(" TRAP O"),
1f (0>channell | channel>CHANNELS)
{
asm("” TRAP 1),
return(NOT_VALID_CHANNEL),
}
1f (mode_c '=MONOSTABLE&&mode_c |=ASTABLE)
{
asm(" TRAP 1"),
return(INCORRECT_TIMER_MODE),

14

}
1f(n_ticks'=0)
status=RESET_WHILE_ACTIVE,
n_ticks=ticks,
period_of_ticks=ticks,
mode=mode_c,
1ns1gn1a=APPLICATION_TIMER_MSG,
taim_channel=channel,
EaseSetIEreg(TIMER1_INTVEC),
asm('" TRAP 1"),
return(status),

int EaseSamplerSet(int channel)

{

3

int status=0,ticks=1,mode_c=ASTABLE,
asm(" TRAP 0"),
1f(0>channell| | channel>CHANNELS)
{
asm(" TRAP 1"),
return(NOT_VALID_CHANNEL),
}
1f(n_ticks'!=0)
status=RESET_WHILE_ACTIVE,
n_ticks=ticks,
period_of_ticks=ticks,
mode=mode_c,
insignia=END_OF_CONVERSION_INT,
tim_channel=channel,
EaseSetIEreg(CONVERSION_COMPLETE_INTVEC),
asm(" TRAP 1"),
return(status),

void EaseTimeriIntHandler(void)

{

int 1,message[2],s1ze,ta1l,head,lucky_task,
EaseChanCtrl #*ch,

ch=¢EaseChannel[tim_channel],
tail=ch->tail_q,
head=ch->head_q,

s1ze=2,

message[0]=1nsagnia,
message[1]=EaseIntiCount++,

1f(--n_t1cks==0)
{

15

1f (mode==ASTABLE)

{
n_ticks=period_of_ticks,

}

else

{
EaseUnsetIEreg (CONVERSION_COMPLETE_INTVEC),
EaseUnsetIEreg(TIMER1_INTVEC),

}

1f ((ch->source_flag==FALSE)&%(ta1l'=head))

{

EaseTransfer((int *)message, (1nt *)ch->msg_q[tail],size),

/% Unblock receiver */
lucky_task=ch->1d_q[tail],

EaseTask[lucky_task] blocked_status=FALSE,
EaseRendezvousRedemer [lucky_task]=(EaseTaskId_t) (NULL),
EaseSenderMsgSize [lucky_task]=size,

1f (++ch->ta1l_g==MAX_MESSAGES)
ch->tail_q=0,

EaseScheduleAfterInt(),
}

else
{
EaseLostInti++,
}
¥

EaseRun(EaseTaskPtr[EaseCurrentPriority]l->task_id),

3

16

B.1.7 Int0.h
/*

FILE INTO h
This module deals with inerrupts on the IntO line

David Doyle 2/9/93

Date initials history

Aeokokofedkeok ok ook ok ok ok sk stk ok ok ok skl ok sk ok sk sk sk sk stk sk sk sk sk ok s s ek s sk s sk sk ok sk sk o ke sk ok ok
2/9/93 DD PRE-RELEASE

*/

#define INTO_VEC Ox1
#define INTO_INT 1

extern int EaseIntOInit(int channel),
extern int EaseIntOCount,
extern int EaselLostIntO,

17

B.1.8 IntO.c

/**/

/* FILE 1nt0 c */
JHRFEAAA KKK AR AR A AR AR R AR KK Rk Rk KKk kK

#include"kernel h"
#include"comm h"
#include"1intO h"

public int EaseIntOCount,
public int EaseLostInt0=0,
public void EaseIntOHandler(void),
private int intO_channel,

int EaseIntOInit(int channel)

{
1nt0_channel=channel,
EaseSetVec(INTO_VEC,EaseIntOInt),
EaseIntOCount=0,
EaseSetIEreg(INTO_VEC),
return(0),

void EaseIntOHandler(void)
{

int 1,message[2],s1ze,ta11,head,lucky_task,
EaseChanCtrl *ch,

ch=g¢EaseChannel[1nt0_channell],
tail=ch->tail_q,
head=ch->head_q,

si1ze=2,

message[0]=INTO_INT,
message[1]=EaseIntOCount++,

1f((ch->source_flag==FALSE)&&(tail'=head))
{

EaseTransfer((int *)message, (ant *)ch->msg_ql[taill,size),

/* Unblock receiver */
lucky_task=ch->1d_g[ta1l],

EaseTask[lucky_task] blocked_status=FALSE,
EaseRendezvousRedemer [lucky_task]l=(EaseTaskId_t) (NULL),
EaseSenderMsgSize[lucky_task]=size,

1f (++ch->ta1l_g==MAX_MESSAGES)
ch->tail_q=0,

18

EaseScheduleAfterInt(),
}
else
{
EaseLostIntO++,
EaseRun(EaseTaskPtr [EaseCurrentPriority]->task_id),

3
}

19

B.1.9 Kextra.h
/*

FILE Kextra h

This file contains the prototypes to the functions
contained in kextra asm

David Doyle 6/10/94

Date initials history

ket o sk e o e e s ok o e s ok o o ok ok ok sk ok ke ok ek sk sk sk stk sk sk ok o o sk ok ke ok ke skeok s s skok ok ok
2/7/93 DD PRE-RELEASE

*/

extern i1nt EaseSetVec(int intVector, void (*theFunction)(void)),
extern int EaseSetIEReg(lnt theBat),
extern int EaseUnsetIEreg(int theBit),
extern void EaseTimerO0(int theOffset),
extern void EaseTimeri(int theOffset),
extern void EaseStack(int TaskID,
int theStackAlloc,
void (*theFunction) (void)),
extern int * EaseGetSP(void),
extern void EasePanic(void),
extern void EaseRun(int theTaskID),
extern void EaseTimerOInt(void),
extern void EaseTameriInt(void),
extern void EaseSchedule(void),
extern void EaseIntOInt(void),
extern void EaseIntiInt(void),
extern void EaseDisableInterrupts(void),
extern void EaseTransfer(int * theSrc,int * theDest,int theSize),
extern void EaseRootExit(void),

20

B.1.10 Kextra.asm

o e 3 s ok sk ok o 3¢ S 3 sfe o ke s e sk s sk s ok e e o e sk sk sk 3¢ ke e ok s ke sk ke ok ok e ok sk sk sk ke sk s sk 3k o e Sk ok sk ok s e e sk o sk sk ok ok ke o ok ok ok ok ok

KEXTRA asm David Doyle School of Electronic Engineering DCU
DATE 9/6/94

Contains
1) _EaseSetVec , Sets interrupt vectors
2) _EaseSetIEreg , Sets Interrupt enable reg
2a) _EaseUnsetIEreg s
3) _EaseTimer0 , 1nitializes clock
4) _EaseTimeri , 1nitializes timeril
5) _EaseStack , Puts 1nitial context of task on task’s stack
6) _EaseGetSp , snatches SP
7) _EasePanic
8) _EaseRun , Pops context off new tasks stack
9) _EaseTimerOInt » Context switching rountines that call
10) _EaseTimerilInt , relevent handlers

11) _EaseSchedule

12) _EaseIntOInt

13) _EaseIntiInt

14) _EaseDisableInterrupts , Safely changes ST ‘GIE ’ bat
18) _EaseTransfer

16) _EaseRootExit

¥ OX K OE K K K K KK X X K F K K K K X R K XK

3 2k ok ok ok ok ok ok e sk e ok ok ke ok ok sk ok ke ok o ok ok K 3k sk sk Sk 3 Sk ok ok 3k o 3k e e ok sk sk ok sk ak sk okeoke ok ko s ok e 3k ok sk ok ok sk sk sk ok ok ok sk skok ok k sk k ok

, 1nitalize vectors to reset

sect 1nt01
word —c_1nt00
sect 1nt02
word _c_int00
sect 1nt03
word _c_1nt00
sect 1int04
word _c_int00
sect 1nt05b
word _c_1nt00
sect 1nt06
word _c_1nt00
sect 1int07
word _c_int00
sect 1nt08
word _c_1nt00 ’
sect 1nt09
word _c_int00
sect int10
word _c_1int00
sect intil

21

sect trap0
word _trapO
sect trapl
word _trapi

FP set AR3
QUANTUM set 2
ALLOC set 400h
SIZE_TASK_STRUCTURE set 6
TIMER_RESET set 601h
TIMER_GO set 6cih
DUAL set 30000h

sect " cinit"

word 1,_EaseErrorMessage

word DUAL

globl _EaseErrorMessage

bss _EaseErrorMessage,1

, base task stack section defined

sect " t_stack"

B_SP word 0

data
TIMER_CTRL_O word 808020h
PERIOD_REG_O word 808028h
TIMER_CTRL_1 word 808030h
PERIOD_REG_1 word 808038h
ADD_TIMER1_INT word _EaseTimeriInt
ADD_INTO_INT word _EaseIntOInt
EasePanicAddress word _EasePanic
BASE_SP word B_SP
BASE_TASK_TABLE word _EaseTask
TASK_PTR word _EaseTaskPtr
N_TASKS word _EaseNtasks
EaseRootExitAddress word _EaseRootEx1t
RootExa1tStrangAdd word EaseRootExitString
EaseRootExitStrang byte " Illegal Exit form root task "

word OOH , THE TERMINATOR
, symbols used

text

22

global _trap0

global _trapil

global _EaseSetVec
global _EaseSetlEreg
global _EaseUnsetlEreg
global _EaseTimer0
global _EaseTimerl
global _EaseStack
global _EaseGetSp
global _EaseRun

global _EasePanic
global _EaseTimerOInt
global _EaseTimerilInt
global _EaseSchedule
global _EaselIntOInt
global _EaseIntilInt
global _EaseDisablelInterrupts
global _EaseTransfer
global _EaseRootExit

global _EaseIntOHandler

global _EaseTimeriIntHandler
global _EaseScheduleAfterInt
global _EaseScanLevel

global _c_int09
global _c_int00

global _EaseTaskPtr

global _EaseCurrentTask
global _EaseCurrentPriority
global _EaseSystemTimerActive
global _EaseSystemTimerNticks
global _EaseSystemTimerMsg

global _EaseTask
global _EaseNtasks
global _EaseChannel

sect " cinit"

word 1, _EaseClockTick
word 0

globl _EaseClockTick
bss _EaseClockTick,1

text

_trap0

23

RETS

_trapi

RETI

_EaseSetVec

PUSH FP

ILDI SP,FP

LDI *-FP(2),4R0
ILDI *-AR3(3),R0

LDI ARO,R1
SUBI 10,R1
BGT S1
STI RO, *ARO
LDI O,RO
B S2
s1
LbI -1,RO
S2
LDI *-FP(1),R1
BD R1
LDI *FP,FP
NOP
SUBI 2,SP
_EaseSetIEreg
PUSH FP
LDI SP,FP
LDI *-FP(2),Rt
CMPI 10,R1
LDIGT O,RO
BGT S3
LDI 1,R0
LSH Ri,RO
ROR RO
OR RO,IE
LDI O,RO
S3
LDI *~FP(1),R1
BD R1
LDI *FP,FP
Nop
SUBI 2,3P
_EaseUnsetIEreg
PUSH FP
LDI SP,FP
LDI *-FP(2),R1
CMPI 10,R1
LDIGT O,RO

24

, Load argument count

, Load argument count

BGT sS4
LDI 1,RO
LSH R1,RO
ROR RO
NOT RO
AND RO,IE
LDI O,RO
sS4
LDI *-FP(1),R1
BD Ri
LDI *FP ,FP
NOP
SUBI 2,SP
_EaseTimer0Q
PUSH FP
LDI Sp,FP
LDI Q@TIMER_CTRL_O,ARO
LDI TIMER_RESET,RO
STI RO, *ARO
LDI ©PERIOD_REG_O,AR1
LDI *-FP(2),RO
STI RO,*AR1
LDI TIMER_GO,RO
STI RO,*ARO
LDI *-FP(1),R1
BD R1
LDI *FP,FP
NOP
SUBI 2,SP
_EaseTimer1
PUSH FP
LDI SP,FP
LDI @TIMER_CTRL_1,ARO
LDI TIMER_RESET,RO
STI RO,*ARO
LDI ©PERIOD_REG_1,AR1
LDI *-FP(2),R0
STI RO,*AR1
LDI TIMER_GO,RO
STI RO, *ARO
LDI *-FP(1),R1
BD R1
LDI *FP ,FP
NOP

25

SUBI 2,SP

_EaseStack
PUSH FP
LDI SP,FP
LDI *-FP(2),AR0 , = count
LDI *-FP(3),AR1 , = stack_alloc
LDI *-FP(4),AR2 , = *function
LDI QBASE_SP,R1 , = Absolute address of task’s stack
LDI SP,RO » tempory storage for SP & FP
LDI R1,FP , ST changed but OK at this stage
LDI R1,SP
LDI QEaseRootExi1tAddress,R2 , Panic 1f return from root task
STI R2,*FP
PUSH AR2 , Push 1nital context
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R1
PUSHF R1
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH RE
PUSHF R6
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH AR1
PUSH AR2
PUSH AR4
PUSH ARSE
PUSH ARG
PUSH AR7
PUSH IRO
PUSH IR1
PUSH BK
PUSH RC
PUSH RS
PUSH RE

26

PUSH DP

MPYI SIZE_TASK_STRUCTURE,ARO , saves inital SP of task
ADDI OBASE_TASK_TABLE, ARO

STI SP,*+AR0(2)
LDI RO,SP , restores system SP and FP
LDI RO,FP
ADDI AR1,R1 , allocate stack
STI R1,Q@BASE_SP
LDI *-FP(1),R1
BD R1
LDI *FP,FP
NOP
SUBI 2,SP
_EaseGetSp
LDI SP,RO
SUBI i,R0 , Take pc off stack
RETS
_EasePanic
L1
BR L1
_EaseRun
POP ARO , get task to run
POP ARO

MPYI SIZE_TASK_STRUCTURE, ARO
ADDI @BASE_TASK_TABLE, ARO

LDI *+ARO(2),SP , change to tasks stack
POP DP
POP RE
PQP RS
PQP RC
POP BK
POP IR1
POP IRO
POP AR7
POP ARG
POP AR5
POP AR4
POP AR2
POP AR1
POP ARO

27

POPF R7
pPoP R7
POPF R6
POP R6
POPF R6
POP R5
POPF R4
pPop R4
POPF R3
POP R3
POPF R2
PQOP R2
POPF R1
pop R1
POPF RO
PopP RO
PapP FP
POP ST
RETI
~EaseTimer0Int
PUSH ST
PUSH AR3
PUSH RO
PUSHF RO
LDI @_EaseSystemTimerActive,RO
BZ S5
LDI ©_EaseSystemTimerNticks,RO
SUBI 1,R0
STI RO,@_EaseSystemTimerNtacks
BNZ S5
LDI Q_EaseClockTick,AR3
ADDI 1,AR3
STI AR3,Q_EaseClockTick
LDI Q@_EaseCurrentPriority,4AR3
ADDI QN_TASKS,AR3
LDI *AR3,R0
CMPI 1,RO
BZD SWITCH
LDI QTASK_PTR,AR3
ADDI @_EaseCurrentPriority,AR3
LDI *AR3,AR3
LPI *+AR3(1),R0
ADDI 1,R0
CMPI QUANTUM,RO

28

LDIZ
STI

S6
LDI
ADDI
LDI
CMPI
BZD
LDI
ADDI
STI

LDI
ADDI
LDI
LDI
ADDI
CMPI
LDIZ
STI
BZ

0,RO
RO, *+AR3(1)
SWITCH

@_EaseCurrentPriority,AR3
QN_TASKS,AR3

*AR3,RO

1,R0

END_EaseTimerQInt
Q_EaseClockTick,AR3

1,AR3
AR3,Q_EaseClockTack

Q@QTASK_PTR,AR3
@_EaseCurrentPrioraity,AR3
*AR3,AR3

*+AR3(1),RO

1,R0

QUANTUM, RO

0,RO

RO, *+AR3(1)

SWITCH

END_EaseTimer0OInt

POPF
POP
POP

POP
RETI

SWITCH
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSHF
PUSH
PUSH

RO
RO
AR3

ST

R1
R1
R2
R2
R3
R3
R4
R4
RS
R5
R6
R6
R7
R7
ARO
AR1

29

PUSH AR2
PUSH AR4
PUSH ARS
PUSH ARS
PUSH ART
PUSH IRO
PUSH IR1
PUSH BK
PUSH RC
PUSH RS
PUSH RE
PUSH DP
STI SP,*+AR3(2)
CALL _EaseScanLevel
CALL _EasePanic
_EaseTimeriInt
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R1
PUSHF R1
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH R5
PUSHF Rb
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH AR1
PUSH AR2
PUSH AR4
PUSH ARb
PUSH AR6
PUSH ART
PUSH IRO

30

PUSH
PUSH
PUSH
PUSH
PUSH
PUSH

LDI
ADDI
LDI
STI

IR1
BK
RC
RS
RE
DP

QTASK_PTR,ARO
@_EaseCurrentPriority,ARO
*ARO,ARO

SP,*+ARO(2)

CALL _EaseTimeriIntHandler
CALL _EasePanic

_EaseSchedule
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R1
PUSHF R1
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH R5
PUSHF RS
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH AR1
PUSH AR2
PUSH AR4
PUSH AR5
PUSH ARG
PUSH ART
PUSH IRO
PUSH IRt
PUSH BK
PUSH RC
PUSH RS
PUSH RE
PUSH DP

31

LDI
ADDI
LDI
STI

QTASK_PTR,ARO
Q_EaseCurrentPriority,ARO
*ARO,ARO

SP,*+AR0(2)

CALL _EaseScheduleAfterInt

CALL _EasePanic

_EaseIntOInt
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R1
PUSHF R1
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH RS
PUSHF Rb6
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH ARt
PUSH AR2
PUSH AR4
PUSH ARS
PUSH ARG
PUSH AR7
PUSH IRO
PUSH IR1
PUSH BK
PUSH RC
PUSH RS
PUSH RE
PUSH DP
LDI QTASK_PTR, ARO
ADDI Q_EaseCurrentPriority,ARO
LDI *AR0, ARO
STI SP,*+AR0(2)

32

IACK

*ARO

CALL _EaselIntOHandler

CALL _EasePanic

_EaseIntlInt
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R1
PUSHF R1
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH R5
PUSHF RS
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH AR1
PUSH AR2
PUSH AR4
PUSH ARS
PUSH ARG
PUSH AR7
PUSH IRO
PUSH IR1
PUSH BK
PUSH RC
PUSH RS
PUSH RE
PUSH DP
LDI QTASK_PTR,ARO
ADDI ©@_EaseCurrentPriority,ARO
LDI *ARO, ARO
STI SP,*+ARO(2)

CALL _EaseTimeriIntHandler
CALL _EasePanic

33

_EaseDisableInterrupts
PUSH IE
LDI O,IE
NOP
NOP
AND ODFFFh,ST
POP 1IE
RETS

_EaseTransfer
PUSH FP
LDI SP,FP

LDI *-FP(2),AR0O

LDI *-FP(3),AR1

LDI =*-FP(4),RC

SUBI 1,RC

RPTB R_EaseTransfer

LDI *ARO++,RO
R_EaseTransfer

STI RO,*AR1++

LDI *-FP(1),R1
BD R1

LDI *FP,FP

Nop

SUBI 2,SP

_EaseRootEx1t
PUSH FP
LDI SP,FP

LDI QRootExatStringAdd,ARO
LDI Q@_EaseErrorMessage,AR1

_CopyErrorStrang

LDI *ARO++,RO

BZ _CopyTaskID

STI RO,*AR1++

B _CopyErrorStriang
_CopyTaskID

LDI Q@_EaseCurrentTask,RO
ADDI 30h,RO

ADDI 1,RO
STI RO,*AR1++
LDI Oh,RO

STI RO, *AR1
B _EasePanic

end

35

B.1.11 Tms_if.asm

stk e ook o ok sk o o sk e ok o ok ke sk sk e e s ke o ok sk sk ok sk ok ko ok
* TMS_IF asm

*

* Interface routines for C30 to PC and Analog

* Interface devaces

*

sk e ko e sk ok s o o sk sk K ok sk sk sk s ke o o sk ok ook o sk kol o e o o sk sk ok sk ok
*

* Routines included are as follows

*

*

ok ok sk sk o o ok ok o o ok ok koK ok o o s ook sk ks sk o ok ke oo o o ek ok o sk ok sk ok ok ok ok

data

ADCADR word 000804000h
POS_LIMIT word 000007FFFh
NEG_LIMIT word OFFFF8000h
DUAL word 000030000h
SIZEOFDUAL word 00000ffffh

text
FP set AR3

global _read_adc
_read_adc

PUSH FP

LDI SP,FP

LDI QADCADR, ARO

ADDI *-FP(2),ARO

LDI *ARO,RO

ASH -16,RO

LDI *-FP(1),R1
BD R1

LDI *FP,FP

NCP

SUBI 2,SP

global _out_dac

_out_dac
PUSH FP
LDI SP,FP

LDI QADCADR,ARO
ADDI *-FP(2),ARO
LDI #-FP(3),RO
CMPI @POS_LIMIT,RO

36

LDIGT
CMPI
LDILT
ASH
STI

LDI
BD
LDI
Noep
SUBI

QPOS_LIMIT,RO
QNEG_LIMIT,RO
QNEG_LIMIT,RO
16,R0

RO, *ARO

*~FP(1),R1
R1
*FP ,FP

2,5P

globl _EaseDspWordOut

_EaseDspWordOut

PUSH FP

LDI SP,FP

LDI @DUAL, ARO

LDI *-FP(2),R0

BN WordAddOutOfRange

CMPI @SIZEOFDUAL,RO

BGT WordAddOutOfRange

ADDI RO,ARO

LDI *-FP(3),R0

STI RO, *ARO

LDI 0,RO

BR _ENDEaseDspWordOut
WordAddOutOfRange

LDI -1,R0
_ENDEaseDspWordOut

LDI *-FP(1),R1

BD R1

LDI *FP ,FP

NoP

SUBI 2,SP

¢
globl _EaseDspWordIn

_EaseDspWordIn
PUSH FP
LDI SP,FP
LDI QDUAL, ARO
ADDI *-FP(2),ARO
LDI *ARO,RO
LDI *-FP(1),R1
BD R1
LDI *FP ,FP
NOP
SUBI 2,SP

37

globl _EaseDspFloatOut

_EaseDspFloatQOut

PUSH FP

LDI SP,FP

LDI QDUAL, ARO

LDI *-FP(2),RO

BN FloatAddOutOfRange

CMPI @SIZEOFDUAL,RO

BGT FloatAddOutOfRange

ADDI RO,ARO

LDF *~-FP(3),R0

STF RO, *ARO

LDI 0,RO

BR _ENDEaseDspFloatQOut
FloatAddQutOfRange

LDI -1,R0
_ENDEaseDspFloatOut

LDI *-FP(1),R1

BD R1

LDI *FP,FP

NOP

SUBI 2,SP

s

globl _EaseDspFloatIn

,-EaseDspFloatIn
PUSH FP
LDI SP,FP
LDI @DUAL, ARO
ADDI #*-FP(2),ARO
LDF *ARO,RO
LDI *-FP(1),R1
BD R1
LDI *FP,FP
ROP
SUBI 2,SP

globl _EaseGetDspPtr

_EaseGetDspPtr
PUSH FP
LDI SP,FP
LDI *-FP(2),R0
BN PtrAddOutOfRange
CMPI @SIZEOFDUAL,RO
BGT PtrAddOutOfRange
ADDI @DUAL,RO

38

BR _ENDEaseGetDspPtr

PtrAddOutOfRange
LDI 0,R0
_ENDEaseGetDspPtr
LDI *-FP(1),R1
BD R1
LDI *FP,FP
NoP
SUBI 2,SP

B.2 Application Programming Interface
Ease

B.2.1 Easelnit.h
/*
FILE Easeinat h

David Doyle 6/10/94

Date initials history

Aok ook koo ok ok ok ok ok ok ok ek akok ok ok sk koo o ko ok ok ok ok ok sk o o ok ok okok ok o ok ek sk o sk sk ok ok
6/10/94 DD PRE-RELEASE

*/

typedef void (*#EaseTaskId_t)(void),

extern void EaseApplicationTimerInit(int freq),
extern void EaseSystemTimerInit(int freq),
extern void EaseCreate(EaseTaskId_t function,
int priority,

int stack_alloc),

39

to

B.2.2 Ease.h
/*

FILE Ease h

David Doyle 19/8/94

Date initials history

s koK o s o o o ke o ok ok ok ks o ok ok ok o s ook s ok sk ok s o o ok K ok o o o ok ok ks sk o ok ok o o
19/8/94 DD PRE-RELEASE

*/

#define TRUE 1
#define FALSE O
#define NULL (0)

#define NOT_VALID_CHANNEL -1
#define MSG_TOO_LARGE_FOR_RECEIVER -2
#define INCORRECT_TIMER_MODE -3
#tdefine RESET_WHILE_ACTIVE -4
##define INTO_MSG 1

#define END_OF_CONVERSION_INT 2
#define APPLICATION_TIMER_MSG 3
#define SYSTEM_TIMER_MSG 4

#define MONOSTABLE O
#define ASTABLE 1

typedef void (*EaseTaskId_t)(void),

extern int EaseReceive(ant src_ch,
void msgl],
int max_msg_size,
int *msg_size,
EaseTaskId_t* rendezvous_tsk),
extern int EaseSend(int dst_ch,
void msgll,
int msg_size,
EaseTaskId_t* rendezvous_tsk),
extern int EaseApplicationTimerSet(int ticks,
int channel,
int mode),
extern int EaseSamplerSet(int channel),
extern int EaseSystemTimerSet(aint ticks,
int channel,
int mode_c),
extern void EaseIntOInit(voad),

40

extern

extern
extern
extern
extern
extern
extern
extern
extern
extern

char* EaseErrorMessage,

int
int
int
int
int
int
int
int
int

EaseClockTick,
EaseIntiCount,
EaseLostInti,
EaseIntOCount,
EaseLostIntoO,
EaseClockTack,
EaseScheduleCount,
EaseSendCount,
EaseReceiveCount,

41

B.2.3 Dsp_if.h
/*

DSP_IF H to be included by both PC and C30 code
This defines the interface ports and the relevent
sections of dual port memory for PC interface with C30

INTEGER reference Values for Dual Port memory used by
both the C30 and PC They are relitive to the C30

Interface routines for C30 to PC

David Doyle

Date Initials History

Aok koo sk sk kokokokok ok ok s ki ik sk skl ok ok sk ok sk ok ok sk ok ok sk ok sk kR ok
2/2/94 DD Pre-Release

*/

#define BASE 0x290
#define DATAL BASE+0
#define DATAH BASE+2
#define ADDRL BASE+4
#define ADDRH BASE+6
#define CTRL BASE+8
#define INTR BASE+0xc

#define DUAL 0x00030000
#define INTEGER_OUT 0x200
#define FLOAT_OUT 0x210

#define FLAG_IN 0x222
#tdefine PARM_IN 0x100
#define PARM_OUT 0x130
#define VAR_QUT 0x160

#define ADD_OUT_OF_RANGE -1

#define EaseError 0x00
#define Easelock 1
#define EaseUnlock 0

extern int EaseDspWordOut (1nt dest,int word),
extern int EaseDspWordIn(int source),

extern int EaseDspFloatOut(int dest,float word),
extern void* EaseGetDspPtr(int memref),

42

extern int read_adc(int channel),
extern void outdac(int channel, int value),

43

Bibliography

[1] E W Duykstra, Co-operating Sequential Processes” in Programminng Lan-
guages Genuys F (ed) London Academic Press 1965

[2] Wolfgang A Hanlang, Alexander D Stoyenko Constructing Predictable
Real Tvme Systems Kluwer Academic Publishers, 1991

[3] David L Ripps An Implementation Guide to Real-Tvme Programmang
Englewood Chffs Yourdon Press,1990

[4] Andrew S Tanenbaum Operating Systems Design and Implementation
Prentice-Hall International Editions, 1987

[5] Ian Pyle, Peter Hurschka, Michel Lissandre and Ken Jackson Real-Time
Systems Investigating Industrial Practice Wiley Series in Software based
Systems, 1993

[6] Andre M van Tilborg Foundations of Real-Time Computing Formal
Specifications and Methods Kluwer Academic Publishers, 1991

[7] Peter Coad/Edward Yourdon Object Oriented Analysis second edition
Yourdon Press Computing Series, 1991

[8] Peter Coad/Edward Yourdon Object Oriented Design Yourdon Press
Computing Series, 1991

[9] Plulip A Laplante Real-Time Systems Design and Analysis An Engi-
neers Handbook IEEE Computer Society Press, 1992

[10] Ragunathan Rajkumar Synchromisation in Real-Time Systems A Pre-
ority Inheritance Approach Kluwer Academic Publishers, 1991

44

[11] Brian W Kermigan and Dennis M Ritchie Second Edition The C Pro-

grammang Language Prentice Hall Software Series, 1990

[12]) Warren Andrews RISC-based boards make headway 1n real-time appl-
cations Computer Design (Oct 1991) 69-80

[13] A Steininger and H Schweinzer Can the advantages of RISC be utilized
in Real Time Systems? Proceedings of the Furomicro 91 workshop on
Real Tvme Systems Par1s(1991) 30-35

[14] Texas Instruments TMS320C3X User’s Guide Digital Signal Processing
Products 2558539-9721 remsion E June 1991 Texas Instruments Incor-
porated, 1991

[15] Texas Instruments TMS320C30 Assembly Language Tools User Guide
Dugital Signal Processing Products Texas Instruments Incorporated,
1988

[16] Texas Instruments TMS320C30 Optimising C Compiler Reference
Guide Muicroprocessor Development Systems Products 1604910-9710 re-
mston D August 1990 Texas Instruments Incorporated, 1990

[17] Loughborugh Sound Images Ltd TMS320C30 PC System Board User
Guide & Technical Reference Version 1 01 September 1990 Loughborugh
Sound Images Ltd

[18] DIN 44300 Informationsverarbeitung Beuth-Verlag, 1985

[19] G Kalpan The X29 Is 1t coming or going ? IFEFE Spectrum pages 54-60,
June 1985

[20] G Carlow Architecture of the space shuttle primary avionics software
system Communications of the ACM, 27(9) 926-936,September 1984

[21] L Motus Time Concepts in Real-Time Software Control Engineering
Practice,Vol 1, No 1, pp 21-33 1993

[22] B Heindel How to EnsureTime Software Quality in for Real Time Sys-
tems Control Engineering Practice,Vol 1, No 1, pp 35-41 1993

45

[23] M Colnaric and W A Halang Architectural Support for Predictability in
Hard Real Time Systems Control Engineering Practice,Vol 1, No 1, pp
51-57 1993

[24] K Bastiaens and J M Van Campenhout A Visual Real Time Program-
ming Language Control Engineering Practice,Vol 1, No 1, pp 59-63 1993

[25] N C Audsley, A Burns and A J Wellings Deadline Monotonic Scheduling
Theory and Application Control Engineering Practice,Vol 1,No 1,pp 71-
78 1993

[26] A Sowyma State Charts-Based Specaification and Verification of Real-
Time Job Scheduhing Systems Control Engineering Practice,Vol 1, No 1,
pp 107-114 1993

[27] A Mok Fundamental design problems of distributed systems for the hard

real-time environment PhD Thesis, MIT Laboratory for Computer sci-
ence,fsMay 1983

(28] Liu CL and JW Layland Scheduling algorithms for multiprogram-
ming 1n a hard real-time environment Jounnal of the ACM 20(1)1973

[29] E Dystra The Next Fourty Years Personal note EWD 1051, 1989

[30] R Balh, R Curto Dimensioning the active suspension system of a
wheeled vehicle Flectrische Bahnen 1990

[31] L Lewis Optimal Estimation Wiley 1986

[32] D Doyle, B Clancy, B Mc Mullin, A Murray Real time Multitasking Ex-
ecutive for Embedded Systems Proceedings Irish DSP and Control Col-
loquium July 1994

46

