
Ease : A Real-Tim e Multitasking Executive
<

David D oyle, B .Sc. Eng.
for the Degree of

M aster o f Engineering
at

D ublin C ity U niversity
for

Dr.Barry M e M ullin, B .E ng., P h .D .
School o f E lectronic Engineering

D ublin C ity U niversity

April 1996

I hereby certify that this material, which I now submit for assessment
on the program of study leading to the award of Master of Engineering is
entirely my own work and has not been taken from the work of others save
and to the extent that such work has been cited and acknowledged withm
the text of my work

Signed: /\LtJ$ tfyk TD No.: ____

D at e : __

1

C ontents

Real T im e Concepts 2

1 1 What Constitutes Real Time 2

1 2 Hardware Issues 4
1 2 1 Real Time CPU 4
1 2 2 Memory 5

1 3 Language Issues 6
1 3 1 Modularity 6
1 3 2 Recursion 7
1 3 3 Re-entrant Procedures 7
1 3 4 Data Typing 8

13 4 1 Abstract Data Typing 8
1 3 5 Assembly Languages 8
1 3 6 Object Oriented languages 9

1 4 Strategies for Real Time Scheduling 10
1 4 1 Busy Waiting 10
1 4 2 Coroutines 11
1 4 3 Interrupt Driven Systems 11

14 3 1 Context switching 12
1 4 3 2 Context switching using the stack 13
1 4 3 3 Round Robm Systems 13
1 4 3 4 Preemptive Priority Systems 14
1 4 3 5 Hybrid Interrupt Systems 15

1 4 4 Foreground Background Systems 16
1 4 5 Task Control Block Model 16

14 5 1 Task Management 16

2

1 5 Inter Task Communication and Synchronisation 17

15 1 Data Sharing 17
15 11 Double Buffering 18
15 12 Ring Buffers 18

15 2 Message Passing 18

15 3 Semaphores 19

1 6 Conclusion 20

E xecutive Features 21

2 1 Desirable Features 21
2 11 Fundamental Features 21

2 1 1 1 Concurrent Processing 21
2 1 1 2 Hardware/Event Interface
2 1 1 3 Interprocess communication and Synchroni­

22

sation 22
2 12 Quality Attributes 22

2 12 1 Dependability 23
2 12 2 Reconfigurability 23
2 12 3 Usability 23
2 12 4 Certifyability 23
2 12 5 Constraints 23
2 12 6 Evolution Capability 23

2 2 System Specification 24
2 3 System Design 25

2 3 1 Scheduling Scheme 26
2 3 11 Task Control Structure 27

2 3 2 Inter-task Communication and Synchronisation 28
2 3 2 1 Communication Channel Information Structure 29
2 3 2 2 The Send Call 30
2 3 2 3 The Receive Call 31

2 3 3 Initialisation 31
2 3 3 1 Task Creation 31
2 3 3 2 Timer Initialisation 32

2 3 4 Services 32

2 3 4 1 Timer Services 32
2 3 4 2 Event Services 33
2 3 4 3 Error Services 33

2 4 Conclusion 33

3 Ease Software D esign 35
3 1 Coding conventions of Ease 35

3 11 Identifiers 36
3 12 Source Modules 37
3 13 Assembler Source Code 38

3 2 Target Platform Of Ease Prototype 39
3 3 Ease Kernel Module 39

3 3 1 Task Control Structure 40
3 3 2 Functions of the Kernel Module 40
3 3 3 Ease On line Task Management 42

3 4 Ease Communication Module 44
3 4 1 EaseChannelCtrl Structure 44
3 4 2 Comm Module Initialisation 45
3 4 3 Sending 45

3 4 3 1 Choosing Between Multiple Receivers 46
3 4 4 Receiving 47

3 4 4 1 Choosing Between Multiple Senders 48
3 5 Ease Timer Module 48
3 6 Generic Event Handling Modules 49
3 7 Conclusion 50

4 Im plem enting Applications w ith the Executive 51
4 1 The Target System 51

4 1 1 TMS320C30 51
4 12 Hardware description 52

4 12 1 Performance 52
4 12 2 Features 52
4 12 3 Software Tools 53

4 13 The TMS320C30 Optimising C Compiler 54

4

4 14 The L S I TMS320C30 Card 54
4 14 1 Analog Interface 54

4 2 Executive Implementation 54
4 2 1 Coding 55
4 2 2 Validation 57
4 2 3 Platform Timing Information 57

4 3 Executive Applications 59
4 3 1 Analog Signal Display 59

4 3 11 The Database Task 60
4 3 12 The Hardware Interface Task 61
4 3 13 PC Interface 61
4 3 14 PC Program 61

4 3 2 Motor Control 62
4 3 2 1 Target Application System Modelling 63
4 3 2 2 Simulation and Implementation 65

4 4 Conclusion 65

5 Conclusions and R ecom m endations 68
5 1 Summary 68
5 2 Salient Points 68
5 3 Negative Features 69

5 3 1 Real Time Stack Integrity 70
5 4 The Future 70

A Ease U ser’s G uide 0
A 1 Introducing Ease 0
A 2 Features of Ease 1

A 2 1 Scheduling with Ease 2
A 2 2 Synchronisation and Communication with Ease 2

A 3 Working with Ease 3
A 3 1 Naming Conventions used with East 3
A 3 2 Task generation with Ease 4
A 3 3 Services of Ease 5

A 4 Current platform of Ease 7

5

A 4 1 TMS320C30 Command files 7
A 4 2 Platform specific PC interface 7
A 4 3 Platform timing Information 8

A 5 Mechanisms of Ease 8
A 5 1 Ease error handling 8

A 6 Ease Timers 9
A 7 Directory Organisation of Ease 10

A 7 1 Source Files of Ease 10
A 7 2 Include files 11

A 8 Prototypes of Easeimt h 12
A 8 1 EaseCreate() 13
A 8 2 EaseSystemTimerInit() 15
A 8 3 EaseApplicationTimerImt() 16

A 9 Prototypes of Ease h 17
A 9 1 EaseReceive() 18
A 9 2 EaseSend() 21
A 9 3 EaseSystemTimerSet() 24
A 9 4 EaseApplicationTimerSet() 27
A 9 5 EaseSamplerSet() 29
A 9 6 Easelnt01mt() 31

A 10 Interface with External Computer System 32
A 10 1 EaseDspWordOut() 32
A 10 2 EaseDspWordIn() 34
A 10 3 EaseDspFloatOut() 35
A 10 4 EaseGetDspPtr() 36

A l l Prototypes of UI-LIB 37
A 11 1 readword() 37
A 11 2 wnteword() 38
A 11 3 tmstoIEEE() 39

A 12 Installing Ease m an IBM PC 39
A 12 1 Obtaining Ease 39
A 12 2 Setting up Ease 40
A 12 3 Running an Ease Application 40
A 12 4 Platform Specific Considerations 40

6

A 12 4 1 Configuration for a different TMS320C30 Sys­
tem 41

A 12 4 2 Configuration for a Different Microprocessor
System 41

B Code Listings 0
B 1 Ease Source Code Listings 0

B 1 1 Kernel h 0
B 1 2 Kernel c 2
B 1 3 Comm h 8
B 1 4 Comm c 9
B 1 5 Tim h 13
B 1 6 Tim c 14
B 1 7 IntO h 17
B 1 8 IntO c 18
B 1 9 Kextra h 20
B 1 10 Kextra asm 21
B i l l T m sjf asm 36

B 2 Application Programming Interface to Ease 39
B 2 1 Easelnit h 39
B 2 2 Ease h 40
B 2 3 Dsp_if h 42

7

List o f Figures

1 1 Time slicing under Round Robm 14
1 2 Preemptive Scheduling 15

3 1 The Kernel Module 41
3 2 Ease Task Control Structures 43
3 3 The Timer Module 49

4 1 Analog Signal Display Application 60
4 2 Analog Signal Display Screen Dump 62
4 3 Mechanical Shock Absorber Transfer Function Model 64
4 4 Block Diagram of Closed Loop Controlled Plant 64
4 5 Tasks m Motor Application 66

8

A bstract

Ease the real time multitasking executive described m this thesis is de­
signed for embedded systems with particular emphasis on DSP motor control
applications

Ease provides an application software interface to the underlying hard­
ware and encourages an object oriented programming approach which inher­
ently enhances software integrity, maintainability and dependability in the
potentially chaotic real time environment Its focus is to tackle the undesir­
able aspects of real time programming and device dependent issues thereby
allowing the application programmer to concentrate more on the application

The multitasking aspect of the executive means application tasks can
be generated with ease which aids development, evolution or enhancement
of an application The multitasking aspect also facilitates tasks dedicated
to on-line reconfiguration, error handling and fault correction or shutdown
procedures

The software quality of a real time application running on the Ease plat­
form is paid for by a small percentage of CPU processing power and a larger
response time to external events than an unstructured monolithic interrupt
driven system

During the course of research, development and prototyping of Ease ,
a number of suitable sample applications have been explored to test and
optimise its functionality The most notable of these is the control system
for the motor simulation of a shock absorber with an active disturbance
load This was implemented as seven concurrent tasks in a uniprocessor
DSP system, running Ease

A ck n ow led gem en ts

I wish to express my gratitude to my supervisor Dr Barry Me Mullm for his
professional advice, guidance and encouragement throughout this project

A special acknowledgement must be given to my family for their support
and encouragement during the course of my further education

Further thanks are due to my fellow postgrads whom I had the good
fortune of working with

Finally I would like to thank Power Electronics Ireland a division of For-
bairt whose financial backing made this project possible

1

C hapter 1

R eal T im e C oncepts

This chapter is a study of the existing body of knowledge through references
on real time systems

1.1 W h at C o n stitu te s R ea l T im e

It can be argued that all practical systems are real time A real time system
is characterised by the system responding to occurrences m a dynamic real
world environment, within a certain time frame Time is of the essence If
the real time system is to be effective then it must respond within given time
constraints

In real time systems the integrity of the system’s output depends not
only on the accuracy of the logical computations earned out but also upon
the time the output results are delivered to the external interface This
external interface indicates that real time software operates withm a highly
specialised hardware environment This hardware environment highlights
the embedded nature of real time systems The embedded computer system
exercises control over a system which is reacting with the real world The
computer is essentially withm the control loop

A real time application demands from its embedded system not only
significant computation and control processing but also, and even more im­
portantly, a guarantee of predictable, reliable and timely operation To be
useful the computer system must be deterministic

A definition for real time systems based on the mathematical description

2

of a system can be found in [9]

A real time system is a system that must satisfy explicit (bounded)
response times or risk severe consequences, including failure

It continues to describe a failed system

A failed system is a system which can not satisfy one or more of
the requirements laid out m the formal system specification

The definition of a failed system means that the system requirements
should be known a prion and system operating criteria specified precisely
This is particularly true for software as software is often the most volatile and
flexible element of a real time computer system Depending on the nature of
the critical timing constraints imposed by the external environment real time
systems are classified as hard or soft If failure to meet timing constraints
means that the system’s performance is degraded but not destroyed then the
system is classified as soft If failure to meet timing constraints leads to total
system failure then the real time system is classified as hard A firm real
time system is a system in which a low probability of failing to meet timing
constraints can be tolerated

A more formal definition of real time operation is given m [2] quoting
[18]

Real time operation is the operating mode of a computing system,
m which programs for the processing of data arriving from the
outside are permanently ready m such a way that the processing
results become available withm a prion given time frames

It should be noted that there is no time information given on the events
stimulating responses from real time systems The events triggering responses
m the first definition, and the arrival of data in the second definition, may
be at randomly distributed instants or predetermined points in time It is
the nature of real time environments to be potentially chaotic Taming and
controlling these environments through on going interaction over time is the
goal of real time systems To achieve this, prediction, measurement and
reduction of event response times is paramount

3

1.2 H ardw are Issues

Embedded real time systems have by definition very specialised hardware
platforms ’ The most notable aspect of this specialisation is the interface
devices which interact with sensors, the controlled process, user interface and
possibly an overall integrated computer system governing many embedded
systems

To successfully implement a practical real time system requires a sound
understanding of the underlying hardware Issues such as CPU performance,
interrupt facilities, memory space, language support and development tools
all have to be considered

Embedded platforms tend to make efficient use of hardware resulting in
minimal standalone hardware systems There is a minimal (or non existent)
amount of peripheral devices such as disk drives and printers Embedded
platforms are dedicated, therefore human interface is generally handled by an
external computer system Embedded systems are autonomous and therefore
must contain substantial code and system parameters m read only memory

Reliability is also a very important issue with real time hardware The
hardware must be fault tolerant The need for reliability sometimes necessi­
tates the need for employing identical redundant systems which can continue
operation if one or more of the systems fail [19] [20]

1.2.1 R eal T im e C PU

The choice of microprocessor for an embedded systems is important both
from a performance and functional point of view

The following are some real time concerns for the CPU

• Performance Processing Power of the Microprocessor

• Instruction Set A rich instruction set allows compilers to make effi­
cient use of code, for example floating point provision

• Language Support High level/Real time language support

• Interrupt Mechanisms Support for interrupt events

4

• On Chip Hardware Facilities Some processors have on chip timers
and memory

The real time CPU must have the appropriate processing power to per­
form the necessary computations withm the system’s real time timing con­
straints Efficient coding of real time programs greatly enhances the ability
of a system to satisfy timing constraints Efficient code makes the best use
of the available CPU power The ability to generate efficient code is greatly
enhanced by the richness of the instruction set and addressing modes

There are two different schools of thought on processor instruction sets
In a complex instruction set computer or CISC there are many instructions
some of which may be implemented by microcode within the micro proces­
sors hardware In this way complex functions are performed m hardware
and memory use is reduced The decode and execution time for every in­
struction increases however for CISC The advocates of reduced instruction
set computers or RISC machines argue that by simplifying the instruction
set, instruction execution speed can be increased Most compilers gener­
ate code with heavy use of a small number of instructions such as LOAD,
STORE, ADD, SUB and branch instructions RISC machines eliminate the
CISC disparity that the execution times for all instructions are increased
for the benefit of a few seldom used instructions RISC machines rely on
the compiler to generate efficient code whereas CISC relies on the speed of
hardware microcode to compensate for increased instruction times In real
time systems RISC machines have the advantage that the longest and aver­
age instruction execution time is reduced A discussion on the application
of RISC processors to real time systems is given m [12] while [13] presents a
more theoretical treatment

1.2.2 M em ory

Memory issues have an impact on all measures of systems performance The
most important memory issue for real time systems is access time Memory
access that is slower than a CPU clock cycle forces the CPU to wait a num­
ber of clock cycles to access the code or data This significantly increases
instruction fetch and/or data load and store operations Time critical data

5

structures and code should reside m fast memory Real time programs should
utilise internal registers and immediate addressing modes where possible to
minimise memory access Embedded computer systems must also contain
volatile and non volatile memory to be autonomous

1.3 L anguage Issu es

The following section is an exploration of the programming language features
that are desirable m real time applications Some of the features are desirable
not only m real time systems, but m all well structured, reliable, maintainable
and efficient software systems Real time software systems are a special
high performance subset of all software systems where software quality is
extremely important

1.3.1 M odularity

A language that facilitates modular programming is highly desirable m real
time systems Modularity promotes data encapsulation[7] If each module
has its own local data and has a well defined interface then there is less
chance of unpredictable data corruption by other functions There is also
the benefits of applying a structured approach to software analysis, design,
coding and unit testing The internal workings of the module are invisible
to the function calling it This aids maintainability as modifications can be
localised to particular modules All these factors are highly desirable for real
time systems

Parameter passing between modules can be achieved by several methods
including the use of global variables1, call by value or call by reference

Parameter passing through call by value or call by reference typically
involves the parameters or pointers being passed on to the stack which can
have a significant execution time impact for real time programs Global
variables do not have the same execution time penalty but do have an impact
on software quality Parameter passing can sometimes increase interrupt
latency as many compilers disable interrupts during parameter passing

G lo b a l variables are external parameters directly accessible to a number of modules

6

T h e call by value m echanism copies the actual value of the data to the

called function It works w ell when there is a test being perform ed on the data

or when the d ata is the input to a m ath em atical function T h e m echanism is

designed to ensure th at the input d ata is not changed b y calling the function

T h e input d ata of the call by reference m echanism is a pointer to the

d ata w hich the called function m ust access T h is m echanism is designed

to allow the input d ata to be changed by the called function Each access

to the input d ata b y the called function requires at least one level of data

indirection w hich has a perform ance im p act W hen the input d ata structures

are sufficiently large the call by reference m echanism has the advantage over

call by value in th at only a pointer to the input d ata structure needs to be

p laced on the stack rather than the entire structure as m call b y reference

1.3.2 Recursion

R ecursion is a m echanism provided b y m any program m ing languages w hereby

a function can call itse lf T h is m echanism allows th e program m er to w rite

elegant and concise code but m general has an adverse effect on real tim e

perform ance

T h e execution tim e for a llocation and de-allocation of param eters and

local variables is costly to real tim e program s w hich should be as efficient

as possible to m eet tim in g constraints T h e use of recursive functions m akes

the run tim e m em ory requirem ents very difficult to analyse

1.3.3 R e-entrant Procedures

A re-entrant function is one w hich can be called by a num ber of concurrently

running tasks Functions of this typ e are necessary if concurrent tasks need

to share the sam e code R e-entrant functions m ay not use any d ata that

is m a fixed location but m ust use m em ory w hich is d yn am ically allocated

for each call T his a llocation is either on the stack or through a m em ory

allocation schem e such as the m a llo c () procedure m C [11]

A w kw ard schem es m ust be em ployed if code is non re-entrant and needs

to be shared by two or m ore concurrent tasks For exam ple if two or more

tasks need to use a p articu lar non re-entrant function th ey m ay avoid the

7

problem by each having an exclu sive copy of the sam e function T h e problem

w ith non re-entrant functions is th at they contain d ata at a fixed location

which m ay be overw ritten each tim e the call is invoked

1.3.4 D ata Typing

Strongly typ ed languages force the application program m er to be precise

about the w ay d ata is handled w hich is beneficial to real tim e program s

T yp ed languages require that each variable and constant be declared as being

of a specific typ e and th at this declaration is m ade at com pile tim e

1.3.4.1 A bstract D ata Typing

It is im portant be able to represent abstract ideas concisely m com puter

languages as well as m hum an ones Languages th at allow abstract repre­

sentation of entities w hich com prise of different d ata typ es m akes program

design easier and aids program com prehension W h en m oving from the anal­

ysis and design stage to coding, effective m apping of inform ation m odels is

m ade m uch easier by provision of abstract d ata typ in g F in ally param eter

passing to functions is m ade clearer A n exam ple o f an abstract d ata typ e is

the s t r u c t specifier m the C program m ing la n g u a g e[ll] C also allows user

defined types through the t y p e d e f declaration

R eal tim e perform ance m ay be degraded by using abstract d ata types,

however its benefits to softw are qu ality and m ain tain ability are significant

For exam ple the C s t r u c t specifier is used to logically group d ata elem ents

Accessing a d ata elem ent m a structure requires know ledge of the address of

the structure and the displacem ent of its elem ent If the d ata elem ent was

not m a structure then only the address of th at elem ent would need to be

known and there would not need to be a displacem ent calculation

1.3.5 A ssem bly Languages

A ssem bly languages lack m ost of the desirable features of high level lan­

guages A ssem bly languages are tedious, unstructured and vary for different

m achines T h ey do have the advantage however of possessing a m ore di­

8

rect control of hardw are and possibly being m ore efficient than a high level

equivalent

Assem bler program m ing should therefore be lim ited to use m extrem ely

tim e critical applications or for controlling hardw are features not supported

by the com piler In real tim e system s assem bly program m ing is often nec­

essary to access elem ents of the h igh ly specialised em bedded hardw are en­

vironm ent In general assem bly language should be avoided w here possible

but typ ically em bedded real tim e system s w ill contain some in evitab le m ix

of high level and assem bly language

1.3.6 O bject O riented languages

Languages which are designed to encourage a high degree of d ata abstraction

and inform ation hiding are called object or ien ted languages O b ject oriented

program m ing techniques show significant advantages m im proving overall

system qu ality at all stages from m apping the problem dom ain to a robust,

qu ality specification, through design and over the life of a p articu lar software

application[7][8]

O b ject oriented languages provide m any features necessary to encourage

good software engineering technique Function p o lym o rp h ism for exam ple

allows the program m er to create a single function w hich operates on different

ob jects depending on the ob ject involved O b je ct inheritance allows the

program m er to create new ob jects m term s of existing objects

T h e increase m software qu ality is paid for b y a significant tim e p en alty

which m ay be too severe for m any real tim e system s For exam ple m one

study, code w ritten m ob jective C , (an ob ject oriented variant of C) was

found to be 43% slower than the sam e application w ritten in conventional

C or program s w ritten m the ob ject oriented language Sm alltalk are known

to be approxim ately 5 to 10 tim es slower than those w ritten m conventional

C[9]

In m any cases, p articu larly m real tim e system s w here software qu ality

is param ount the benefits of ob ject oriented techniques m ay m ake it w orth

em ploying m ore pow erful processors to overcom e the tim e p en alty associated

w ith ob ject oriented system s

9

1.4 S tra teg ies for R ea l T im e Schedu ling

A n operating system is a collection o f specialised system program s T he

K e rn e l or N ucleus holds the m inim um fu n ction ality required for an operating

system T h e K ernel m ust perform three core services task scheduling, task

dispatching and m ter-task com m unication T h e scheduler m odule determ ines

w hich task is to be run at a given tim e m the system T h e dispatcher does

the necessary bookkeeping to activate th e next task to be run and stores the

context of the last task T h e m ter-task com m unication m odule handles d ata

interchange and synchronisation betw een th e tasks w ith in a system

1.4.1 B usy W aiting

A busy w aiting schem e is not s trictly speaking a real tim e kernel but it

w arrants m ention as it is the sim plest w ay m w hich a real tim e com puter

system can respond to an event It com prises sim ply of a repetitive test to

establish w hether or not an event has occurred If the event has occurred

then a process is invoked to deal w ith it, if it has not then the sam e test is

repeated

B u sy w aiting or polled loop system s have a num ber of features desirable

for real tim e system s nam ely

1 T h e y allow for very fast response tim es (for single devices)

2 T h e y are easy to w rite and debug

3 T h e response tim e is easy to calcu late m aking the system event deter­

m inistic

H owever polled loop system s also have a num ber of general disadvantages

w hich are unacceptable m m any applications T h e y are as follows

1 T h e y require the processor to be dedicated to m onitoring a single event

2 T h e y can ’t operate in a m u ltitaskin g environm ent as only a single task

is allowed

3 T h e polled loop is a w aste of C P U processing power

10

1.4 .2 C o ro u tin es

Coroutine or co-operative m ulti task ing s y s te m s are used w id ely m soft real

tim e system s2 A coroutine schem e allows applications to be w ritten m a

m u ltitasking environm ent but requires disciplined program m ing and an ap­

propriate application C oroutines are im plem ented by breaking processes

up into discrete code segm ents or phases T h e phases are organised m a

w ay th at allows each process to be tem porarily suspended before com pletion

w ithout the loss of critica l d ata A t the end of each phase there is a call to

a central dispatcher which decides which process to run and keeps a record

of w hich phase the process is at A n y d ata th at needs to be preserved be­

tween dispatches m ust be stored in global variables C om m unication betw een

processes is also v ia global variables

If the process phases have a know n execution tim e then response tim es

can be determ ined A n oth er point of note is th at coroutines operate w ithout

hardw are interrupts T h e m am disadvantages w ith coroutines are th at not all

processes can be easily broken down into phases, com m unication v ia global

variables is not desirable and finally coroutines places great dem ands on the

program m er to use the schem e correctly

1.4.3 Interrupt D riven System s

In interrupt driven system s, scheduling is achieved through hardw are or soft­

ware interrupts T he interrupt inform s the real tim e system of th e occurrence

of an event D ispatching th e appropriate task is conducted by the interrupt

service routine m a single interrupt system or d irectly v ia hardw are in a m ul­

tip le interrupt schem e T h ere m ust be an idling program for the system to

revert to when all events have been serviced

T h e events which drive th e tasks of an interrupt driven system can be

sporadic, periodic or som e com bination of both System s m which only

periodic events occur are called fixed rate system s System s which m ust

respond to both sporadic and periodic events are called h ybrid system s

2For exam ple, in M icrosoft W in dow s program m ing

1 1

T h e m ost fundam ental m echanism m interrupt driven system s is context

sw itching C on currency is achieved through a principle called

pseudo-parallelism[4] A num ber of separate concurrent tasks can be run on

the sam e processor if all the inform ation relating to the state of any particular

task can be stored so the task can be resum ed after being interrupted T he

context is essentially the im age of a v irtu al processor on w hich each task

exists T h e real tim e kernel m akes the context sw itching invisible to the

application task

T h e price of concurrency is the context sw itching overhead w hich is a

m ajor contributor to event response tim es C on text sw itching tim es m ust

be m inim ised because any cycle w asted m th e kernel is of double loss to

the application as no useful work is being done A s a general rule only the

m inim um am ount of inform ation required to safely restore task context is

saved

T h e follow ing inform ation is generally w hat is saved as part of a context

sw itch

• T h e contents of the program counter

• T h e contents of the processor’s registers

• T h e contents o f coprocessors registers (if any)

• T h e contents of m em ory page registers

• M em ory m apped I/O location m irror im ages

• Special variables

N orm ally interrupts are disabled during the critica l context-sw itching pe­

riod Som etim es however after sufficient context has been saved, interrupts

m ay be re-enabled after a p artia l context sw itch m order to handle a burst

of interrupts, to detect spurious interrupts, or to handle a tim e overloaded

condition

1.4 .3 .1 C on tex t sw itch ing

12

1.4.3.2 C ontext switching using the stack

A typ ical m ethod for saving and restoring context m a m ulti tasking system

is b y using the stack T h e TM S320C30 com piler for exam ple generates code

to push all the processor registers used by an interrupt function on to the

stack upon entry to the function C onversely it pops these registers off the

stack to restore the original context upon function exit

T h e stack is a resource w ith a lim ited m em ory allocation T h e am ount of

stack space that a program consum es and releases swells and recedes at run

tim e T h e storage of task context also places an e x tra strain on the stack

T h ere is a danger of the stack m em ory being exhausted by the com bined

stack usage of a num ber of tasks p articu larly if interrupts are not disabled

during interrupt routines If interrupts are not disabled during interrupt

routines then a num ber of interrupts occurring or even a burst of the sam e

interrupt w ill cause a num ber of contexts to be stored and m ay lead to stack

overrun

T h e dynam ic nature of the stack usage m akes it very difficult to determ ine

how m uch stack space a program w ill consum e before an event and how m uch

stack space the event handler w ill consum e after the event T h e real tim e

system m ust take into account the com bined worst case stack usage m order

to m aintain system integrity at all tim es

1.4.3.3 Round Robin System s

T h e R o u n d R obin Schem e is characterised b y having several tasks which

are executed sequentially to com pletion often m conjunction w ith a cyclical

execu tive T h e fundam ental idea behind round robin is th at each task is

assigned a fixed quantum of processor tim e called a t im e slice A fixed rate

clock generates an interrupt corresponding to the end of a tim e slice If the

task does not com plete w ithm its tim e slice then the context is sw itched and

the task is placed at the end of an execu table list It is assum ed th at all tasks

have an equal priority T he round robin schem e is the fairest w ay to allocate

processor power betw een tasks of equal p riority It m ust be noted however

th a t round robm system s do not respond to extern al interrupts bu t only

the system clock interrupt R eal tim e response tim es are hard to calcu late

13

Time Slicing under Round Robin

Task3 Task3
Task2 Task2

Taskl Taskl

Processor time allotted to tasks

F igu re 1 1 T im e slicing under Round R obin

as th ey are a function of the length o f the tim e slice and of the num ber of

executable processes on the executable list

1.4.3.4 Preem ptive Priority System s

In preem ptive p riority system s scheduling is achieved through assigning real

tim e events w ith a p articu lar priority T his allows the tasks which need

processor attention to m eet their deadline to interrupt tasks of lower priority

T h e priorities of these tasks m ay be fixed or dyn a m ic

T h e scheduling p riority of a task m ay not necessarily reflect how critica l

the task is to the system For exam ple m rate m onotom c system s p riority is

assigned based on the execution frequency of tasks A task driven by an event

w ith a short period is assigned a high priority, how ever this task m ay not

be the m ost im portant task to the system T his is a phenom enon known as

p r io r i ty invers ion T h is distinction is of no concern w hen all the tasks m ust

m eet their deadlines, how ever in m any real tim e system s transient overloads

m ay occur and it m ay not be possible to m eet all deadlines W hen such an

overload occurs then it is v ita l th at critica l tasks m eet their deadline even

at th e expense of less critical deadlines In this w ay system in tegrity has a

b etter chance of being upheld even after transient overloads W hen a lower

priority task is denied resources m this w ay through a higher priority task

preem pting, the lower p riority task is said to be facing a problem know n as

14

Preemptive Scheduling

Task2 preempts
Taskl

Task3 preempts
Task2

Task3

Task3 completes

■ Task2 completes

Task2 Task2

Taskl Taskl
1

Processor time allotted to tasks

F igu re 1 2 P reem p tive Scheduling

starvation

1.4.3.5 Hybrid Interrupt System s

T here are m any versions of interrupt only system s H ybrid system s incor­

porate bo th the fixed rate and the sporadic interrupts w hich typ ica lly are

present m an em bedded application

A special typ e of h ybrid system uses a com bination of round robm and

preem ptive system s In such a system tasks of equal priority m ay run con­

currently in round robm fashion w hile a higher p riority task can preem pt a

lower priority one

Interrupt only system s have the advantages that th ey are easy to w rite

and code efficient T h e y have typ ica lly very fast response tim es as scheduling

is achieved v ia hardw are

T h e disadvantages o f interrupt only system s is the processing power

w asted m the idling task and the difficu lty in providing advanced services

T hese advanced services include interfaces to devices and m ulti-layered net­

works A n other weakness is the system ’s vu ln erability to tim in g variations

15

and unanticipated race conditions

1.4.4 Foreground Background System s

T h e foreground background m odel of real tim e scheduling system s sum s up all

the system s discussed so far T h e foreground of the m odel com prises a num ­

ber of interrupt driven tasks T h e background is used by non tim e-critical

tasks T h e background tasks can alw ays be preem pted by any foreground

task T h e background processing power can be used to perform low priority

self testing or perform ance testing

1.4.5 Task Control Block M odel

T h e task control block m odel is a technique for representing and controlling

a m ulti tasking system It is quite popular in com m ercial, fu ll featured,

real tim e operating system s It has the advantage th at it can cater for a

variable num ber of tasks and th a t tasks can be created d yn am ically T h e

m am disadvantage of the task control block m odel is that when the num ber

of tasks created is large then the kernel overhead becom es significant m aking

the system unw ieldy

T h e task control block technique hinges on assigning each task w ith an

identification string or num ber, a status, a p riority and space to store the

ta sk ’s context T hese item s are stored m a structure called the task control

block Each task control block would typ ica lly be grouped m a larger d ata

structure such as a linked list

1.4.5.1 Task M anagem ent

T h e operating system m anages tasks m the system on the basis o f th e infor­

m ation stored m the task control block T h e task control block is updated

upon any scheduling event In a uniprocessor system there can be only one

task executin g at any one tim e T h ere are three different states th a t the

status field of the task control block can be

T h ey are

• running

1 6

• ready

• blocked

T h e running task is the one which is cu rrently a llocated the C P U A

ready task is one tem porarily blocked to let another task run A ta sk ’s status

would be set to ready if it was preem pted or if its tim e slice had expired

Blocked tasks are ones which are not selected as read y Tasks are m ade

ready by the operating system upon a certain event A n event is either a

hardw are interrupt or a softw are trap C ertain system s also have a d o rm a n t

task state T h e dorm ant state is used b y system s m w hich the num ber of

tasks is fixed and where the task control block is a llocated for all possible

tasks A dorm ant task is one which is not yet created or available to the

operating system

E very event or system level call is m ade v ia the operating system T h e

operating system decides the next eligib le task to run after a scheduling event,

releases the C P U from tasks when their tim e slice has expired, arbitrates

on the allocation of resources and facilita tes inter task com m unication and

synchronisation

1.5 In ter Task C om m u n ication and Synchro­
n isa tion

T h e integrity of d ata transfer betw een tasks and the synchronisation of tasks

bo th internally and extern ally poses a problem m any m u ltitasking system

T h e system m ust guarantee not only th at d ata is transferred correctly but

also that certain sequences of events m ust never occur

1.5.1 D ata Sharing

T h e sim plest and fastest w ay to pass d ata betw een tasks is v ia shared m em ­

ory Com pilers can generate very efficient code for accessing d ata in this w ay

as it only requires know ledge of an address m m em ory T h e disadvantages

of using shared m em ory betw een a num ber of tasks is th at the shared data

is prone to corruption T his can occur for exam ple through a task operating

17

c

w ith shared d ata w hich is preem pted by a higher p riority task w hich updates

the sam e d ata T h e preem ption could occur w hile the form er task is m id w ay

through a calculation using the data, y ield ing un predictable results T h e use

of shared m em ory for intertask com m unication requires the system to have

some other synchronisation m echanism such as sem aphores built into the

code to guarantee system integrity

1.5.1.1 D ouble Buffering

D ouble buffering is used when tim e relative d ata needs to be transferred and

th e producer generates d ata at a slower rate than the consum er processes

it It is com m only used m system s such as telem etry T h e basic idea is that

there is shared m em ory divided into tw o blocks A t any tim e there w ill be

one block updated by the producer and the other can be accessed by the

consum er A hardw are or software sw itch is used to a ltern ate betw een the

two buffers D ouble buffering is also com m only know n as p in g pong buffering

T h e consum er m ust consum e d ata faster than it is produced for this system

to work

1.5.1.2 R ing Buffers

R ing buffers are an extension of the above double buffering schem e w here

there is m ore than tw o buffers for the producer to fill T h e system operates

on a F IF O queue schem e T h e F IF O system allows the consum er to have

m ore tim e before servicing the queue T h is system is com m only used m a

system such as a d ata logger w here the tim e afforded by the F IF O depth

allows the system to w rite to disk

1.5.2 M essage Passing

M essage passing is a schem e m w hich tasks can transfer d ata v ia the oper­

ating system through calls to send and receive T h e d ata is transferred to a

m u tu ally agreed upon m em ory location w hich is generally cleared after the

operation Synchronisation is achieved through task rendezvous A sending

task is blocked until there is a receiver present to take its m essage C on­

18

versely a receiving task is blocked until there is a sending task present to

generate a m essage

If there are m ultip le readers and w riters then the identities of the blocked

tasks are recorded by the op erating system T h e operating system chooses

w hich of the blocked tasks w ill rendezvous if there are a num ber of tasks

blocked pending on a rendezvous partner N ull m essages m ay be passed for

pure synchronisation purposes

Som e executives m ay convert external events into m essages w hich the

tasks m ay synchronise w ith

1.5.3 Sem aphores

C ritica l regions are identified as being the sections of code m tasks w hich ac­

cess resources which can on ly be used by one task at a tim e T hese resources

include shared m em ory, certain peripherals and the C P U itself O ne of the

m am thrusts of task synchronisation is ensuring that certain sequences of

events don’t occur such as tw o tasks entering their critica l regions and ac­

cessing the sam e resource D ijstra[l] put forw ard a schem e for protecting

critical regions in m u ltitiaskm g system s which m ake use of a special variable

called a sem aphore

T h e sem aphore is basica lly an unsigned counter and there are tw o op­

erations which can be perform ed on it up and dow n A n up action on a

sem aphore w ill increm ent the value of th at sem aphore A down operation

w ill decrem ent the value of a sem aphore or block the process w hich m ade the

call if the sem aphore is zero

T h e up and down operations on sem aphores are atom ic w hich m eans that

no other process can access the sem aphore until the sem aphore operation is

com plete T his is essential to avoid race conditions and solve synchronisation

problem s

A process w ill never be blocked if it does an up operation If there are

any tasks blocked on an unsuccessful down operation the up operation w ill

free one of these tasks

Sem aphores are a very versatile synchronisation m echanism T h e y do

require an effort on the application program m er’s part to id en tify critica l

19

regions, choose and m aintain appropriate sem aphores and em bed sem aphore

operations m the app lication ’s code

1.6 C onclu sion

A real tim e system interacts w ith , or reacts to, a dynam ic real world envi­

ronm ent T h e system ’s in tegrity depends not only upon the system s logical

correctness but also upon a tim ely response to extern al events R eal tim e

system s m ust be predictable, reliable and tim ely to be useful Precise system

specification is especially im portant for real tim e system s

R eal tim e software system s operate m specialised hardw are environm ents

T hese hardw are environm ents would typ ica lly have connections to sensors

and actuators to interact w ith or m onitor a real process It is im portant that

the application program m er has a sound understanding of the underlying

hardw are as C P U perform ance, interrupt facilities and m em ory issues all

have a direct im pact on real tim e perform ance

Real tim e software system s are a high perform ance subset of all software

system s T h e software for real tim e system s should be well structured, reli­

able, determ inistic, m aintainable and efficient T h e concurrent nature of real

tim e system s m eans th at there is som e degree of m u ltitaskin g m the software

Softw are qu ality is p articu larly im p ortant for real tim e system s

If there are a num ber of concurrent processes m a real tim e system the

software system w ill benefit from a real tim e operating system T he real

tim e op erating system facilitates the structurin g of the processes and ac­

tiv ities of an application into dedicated tasks T h is has the advantage of

m aking the solution to the application m odular T h e second advantage of a

real tim e executive is th at it structures interactions betw een application tasks

by handling intertask com m unication and synchronisation m a safe m anner

(m inim ising the chances of un an ticipated race conditions) T h e third advan­

tage of an execu tive is that it provides an application softw are interface to

the underlying hardw are T his A P I provides an event interface m echanism

for tasks

20

C hapter 2

E xecutive Features

2.1 D esirab le F eatures

T h e com puter m a real tim e em bedded system is essentially w ithm the control

loop and its responsibilities m that role are its p rim ary functions Synchroni­

sation, scheduling and com m unication betw een the different com ponents of

real-tim e software m a reliable, tim ely and pred ictable fashion places great

dem ands on the software T h e real tim e environm ent requires a num ber of

features from the software, m any of w hich fall m the dom ain of the executive

2.1.1 Fundam ental Features

T h ere are three fundam ental features w hich reflect w hat is essential m real­

tim e systems[5][9][2][10] T h e y can be item ised as follows

• Concurrent Processing

• H ardw are/Event Interface

• Interprocess Com m unication and Synchronisation

2 1.1.1 Concurrent Processing

A ll real tim e system s m ust fa cilita te concurrent processing T h e level of

concurrent processing is a function of the num ber of external events that

m ust be handled by the system and the natural parallelism of processing

21

w ithm it T h e execu tive m ust ensure th at the m ulti-taskm g schem e is flexible

and efficient It should be determ inistic for critica l tasks

2.1.1.2 H ardw are/Event Interface

A ll real tim e em bedded system s m ust have a significant interface to the un­

derlying hardw aie T h e real tim e em bedded system m ay be defined as being

m perm anent contact w ith an active environm ent If the execu tive is designed

m a m odular fashion then very specific hardw are interface m odules could be

added, m odified or rem oved w ith out affecting the core o f the executive T h e

real tim e system m ust be able to respond to events and th e executive m ust

support an event interface to the tasks that m ake up its application

2.1.1.3 Interprocess com m unication and Synchronisation

T h e real tim e system m ust fa cilita te inter task com m unication and synchro­

nisation It m ust do this m a w ay th at avoids d ata corruption and race

conditions to m aintain software qu ality

2.1.2 Q uality A ttributes

T h e qu ality attrib utes tend to influence the w ay m w hich system s should

be developed T h ey also influence the design but are independent of the

required fun ction ality [5]

• D ependability

• R econfigurability

• U sability

• C ertifyab ility

• Constraints

• E volution C ap ab ility

22

2.1 .2 .1 D ep en d ab ility

D ep endability is a m easure of how m uch reliance can be p lace on the qual­

ity of service that a system can deliver It is a function of reliab ility and

m aintainability

2.1.2.2 Reconfigurability

T his is a property of a system w hich expresses the possibility of being able

to influence the structure and/or functions during system operation If a

system is capable of changing its properties w ith ou t degradation of its ser­

vices then it can be qualified as reconfigurable on-lm e If m odifications of its

properties necessitates tem porary interruption of its services then the system

is reconfigurable offline

2.1.2.3 U sability

T his system feature is related to ease of use o f a system by its end user

2.1.2.4 Certifyability

C ertifiab ility of a system expresses the possib ility of obtaining a form al state­

m ent of com pliance of system operation w ith respect to its specified require­

m ents

2.1.2.5 Constraints

T his is a system property which m easures the ab ility of a system to com ply

w ith non-functional or physical constraints T hese m ay be characteristics

such as size, power consum ption, price, colour and tem peratu re range for

exam ple

2.1.2.6 Evolution Capability

T his is a m easure of how m uch a system is designed to evolve over its life

cycle

23

2.2 S y stem S pecification

The thesis so far has been a study of what is essential, desirable and reason­
able m real time systems However the application domain ultimately defines
the specification of the executive The target application considered in this
thesis is that of DSP servo motor control The ultimate application to which
the executive provided a software platform was a research servo motor test
bed This application required the following features

• Control frequencies of up to 4 kHz

• Real time user interface and display

• On line reconfigurability of system parameters

• Control of an active load

• Intensive mathematical computation m control algorithm

It is clear from above that the executive must facilitate multiple concur­
rent application tasks These tasks must interact with other and the external
environment The executive must be structured in a way that guarantees re­
sponse deadlines for time critical tasks m the system The core features to
be provided are as follows

• Preemptive event driven scheduling

• Synchronisation and communication facilities for application tasks

• Handling of device interrupts

Each task m the application should be a separate programming entity
with its own exclusive data code and stack The executive must provide for
communication between these exclusive memory areas

The executive must also provide a means of synchronisation internally
between tasks and externally with the real time environment To guarantee
response deadlines of time critical tasks requires a priority scheme where
critical tasks can preempt tasks of lower priority The scheduler is therefore

24

activated on a scheduling event which may be internal or external Finally
the executive overhead must not be too great for the application and the
hardware platform

2.3 S y stem D esig n

The executive considered m this thesis is essentially a software platform facil­
itating concurrent application tasks and providing application services The
executive is designed for an embedded hardware platform, therefore the mam
thrust of the design is to make it a minimal kernel This design strives to
make the kernel fast and efficient m order to reduce overhead and to meet
timing constraints Simplicity is chosen as a fundamental design principle as
it inherently makes the executive more predictable, dependable and optimal
by not allowing unwieldy complexity to creep m It is important that the
internal workings of the executive are understood by the application pro­
grammer The executive was christened Ease

Unlike commercial operating systems the embedded environment typi­
cally does not have to handle device drivers for devices such as disk drives
and complex user interface devices The embedded system can however have
many varied and application specific device interfaces For this reason a de­
sign decision was made that hardware interface would be carried out directly
by the application tasks and not via system calls Ease still provides an
event interface for application tasks This approach makes Ease smaller, less
complex and provides more flexibility for the application programmer

An embedded system typically would have a known number of tasks and
these would each be assigned a priority Static process priority was chosen
over dynamic process pnority as dynamic process priority may obscure ap­
plication bugs For the embedded system there is also no need for dynamic
process creation and destruction

To make Ease as platform independent as possible it was written m C
where possible and assembly where necessary All executive components
were coded m a modular fashion to aid evolution, development, addition or
enhancement of its services All executive services are accessed through C
callable functions

25

The message passing scheme was adopted for inter-task communication
and synchronisation Message passing inherently incorporates communica­
tion and synchronisation m one mechanism It was decided that external
events should be converted to messages by Ease

The design goals may be summed up as follows

• Optimise speed and efficiency but not at the expense of design com­
prehension

• Keep executive functions small and fast

• Allow all program components to co-operate with each other with min­
imum overhead

• Choose to spend memory to gam speed

2.3.1 Scheduling Schem e

The fundamental uniprocessor method for introducing concurrency involves
pseudo-parallelism This is achieved by the executive switching processor
context between independent task objects These tasks have one of three
states ready, running or blocked Tasks are not created dynamically The
executive keeps track of task states m a task control structure

Task scheduling under Ease is conducted on a priority basis with a time
slicing scheme for tasks of equal priority The scheduler is run upon a schedul­
ing event which is an event which changes the state of an application task
The scheduler is triggered by one of three conditions The scheduling event
may originate from an external source such as an interrupt The scheduling
event may originate from the Ease system clock which indicates that a task
has expended its time slice Finally the scheduler may be invoked from a
task seeking to send or receive a message The call to send/receive will result
m an application task changing state either through rendezvous, which will
make another task ready or by blocking the task making the call if there is
no rendezvous partner Scheduling is guaranteed at a minimal level by the
Ease system clock The actual scheduling mechanism is designed to be as
fair as possible without excessive overhead

The scheduling mechanism does the following on a scheduling event

26

• Make a limited context switch so the scheduler can run

• Run scheduler to decide which ready task to select on the basis of the
relevant states of tasks withm the application

• Update the task control structure on the basis of the scheduler’s deci­
sion

• If the same task is to be run restore it

• If another task is to be run do a full context switch

2.3.1.1 Task Control Structure

E a se keeps track of task states through a task control structure An ele­
ment corresponding to a single application task of this task control structure
contains the following information

• Blocked status running ready or blocked

• Quantum tick the amount of time slices that the task has run for

• Stack pointer pointer to task’s exclusive stack

• Task Id An integer to identify application task

• Root Function pointer to root function of the task

• Next member pointer to next task of same priority

E a se maintains closed linked lists of tasks of equal priority E a se keeps
an array of pointers to the current task at each priority level A scheduling
event which may cause a task of any priority level to be unblocked causes
the E a se scheduler to scan through all of these linked lists starting at the
list corresponding to the highest priority tasks The time slicing clock will
cause a scheduling event which will not change the current priority level In
this case E ase will advance the quantum tick of the task and check to see if
it has expended its share of CPU time If the task has expended its quota of
quantum ticks then the executive will run the next ready task on the list of
tasks at that priority level

27

2.3.2 Inter-task C om m unication and Synchronisation

As message passing inherently incorporates communication and synchroni­
sation m the same mechanism Ease employs message passing for inter-task
communication and synchronisation This approach slightly penalises tasks
that only want a synchronisation service but has the advantage of making the
mechanism generic without the need for another service for communication
If tasks require only synchronisation then a null message is passed

The Ease message passing scheme is designed to transfer data between
the application tasks’ exclusive memory areas This service may be ignored
m lieu of another method such as the use of global variables but this forsakes
the advantages that message passing gives The message passing scheme
copies the message data from the sender task’s exclusive memory area to
the receiver’s Message passing ensures that there is no data corruption
and structures the application m a way that improves software quality and
maintainability

Ease also links event handling into the message passing scheme by con­
verting external events into messages which application tasks can respond to
This approach makes the mechanism of interface to external events invisible
to application tasks It also makes synchronisation to internal and external
events generic to application tasks

Ease keeps track of tasks sending and receiving messages through a com­
munication channel structure These communication channel structures are
basically queues of tasks which are seeking rendezvous partners The queue
can be either empty, be a queue of senders or a queue of receivers A task
that calls send/receive will be put on the channel queue until a rendezvous
partner makes the converse call Application tasks nominate which channel
they wish to conduct message passing over m their calls to send and receive
Tasks which seek a rendezvous partner are m a blocked state

From the above it is clear that an unbuffered message passing scheme
was chosen over a buffered scheme The reason for this design decision is
firstly that the buffered scheme makes the executive unwieldy and secondly
that it does not make sense to buffer most if not all real time events that
an application task may wish to respond to For example there is no sense

28

m buffering interrupts that must be serviced withm a specified time if the
interrupts are not serviced each time, that indicates a system failure Adding
buffering would increase the executive’s complexity and overhead for only
minimal extra advantage

Another consideration regarding message passing is whether the message
data has fixed or variable size The fixed sized message buffers have the
advantage of not needmg size information m message calls Variable sized
message buffers have the overhead of size checking to ensure that the sender’s
message is not too large for the receiver The fixed size message scheme makes
the entire real time system more predictable as each message package takes
a fixed length of time to transfer The variable size message passing scheme
increases the maximum interrupt latency as the amount of time to trans­
fer a message varies and interrupts are disabled during the critical sections
of message passing The worst case interrupt latency m the variable sized
scheme is the time taken for the largest message to be passed The variable
sized scheme has the advantage of decreasing average interrupt latency if the
message size varies over a range of sizes Fixed size message passing has less
overhead, more predictability and less flexibility than variable sized message
passing The variable size message passing scheme was chosen for Ease for
the flexibility aspect of it

All tasks at all priority levels have access to communication channels All
external events can each be attached to a specified communication channel
When the event occurs Ease will send a predefined message on that channel
The Ease communication channels support multiple senders and receivers
Ease does not guarantee which task on the channel’s queue will rendezvous
first if there is a number of tasks on that queue

2.3.2.1 Com m unication Channel Inform ation Structure

Ease uses the communication channel information structure to keep track
of message passing m the system The structure is simply a queue of three
elements task identification, a pointer to memory and a size The three ele­
ments have different meanings depending on whether the channel is currently
maintaining a queue of senders or receivers

29

If the channel has a queue of senders then the task identification is a
unique integer to identify the task which is blocked on send The pointer to
memory is a pointer to the task’s private memory where it has prepared a
message The size element is the size m 32-bit words of the message that it
wishes to send on that channel

If the channel has a queue of receivers then the task identification is a
unique integer to identify the task blocked on receive The memory pointer is
a pointer to the receiver’s private memory area where it wishes the incoming
message to be placed The size element is the maximum size of message in
32-bit words that the receiver wishes to take

In the case of rendezvous Ease will know which task to unblock Ease
will also have to make a decision based on the sender’s and receiver’s size
arguments There can be two occurrences which would result m a message
not being passed The first is if a sender is queued and the receiver it is about
to rendezvous with has a maximum message size smaller than the sender’s
message size The second is if a receiver is queued and the sender’s message
size is greater than the receiver’s maximum message size Both conditions
will result m the call to send or receive failing and Ease indicating that
the sender’s message size is too large for the receiver Passing a message
of incompatible size generally indicates an application error However the
system may recover from the situation gracefully as follows If the receiver
is queued the sending task can reduce the size of its message until the call
succeeds If the sender is queued then the receiver could increase its buffer
size until the sender’s message fits Alternatively one could just let the call
fail until another task with the appropriate size seeks to rendezvous

2.3.2 2 The Send Call

The send call is the application task’s interface to the Ease message passing
mechanism The task nominates the channel it wishes to send the message
over with this call It also passes a pointer to the memory where the message
resides and the size of the message The call returns the standard success
or failure code depending on the success of the call A failure can be an
invalid channel or that the message size is too great for the receiver The call

30

also returns a pointer to the rendezvous task’s root function to identify the
rendezvous partner The root function will be discussed m section 2 3 3 1

2.3 2 3 The R eceive Call

The receive call is the converse call to send The receiving task nominates
the channel it wishes to receive over with this call It passes a message
pointer and maximum message size to Ease via this call Receive returns
whether the operation was a success the actual size of the message received
and a pointer to identify the rendezvous task The call will fail if an invalid
channel argument is passed to it or if the sender’s message size is too great

As event generators are virtual tasks Ease returns a NULL task pointer
if the sender is an event converted to a message by Ease

2.3.3 Initialisation

Ease requires a number of application specific details which it must have
access to upon system initialisation For example, the number of tasks the
executive must deal with is application specific Ease needs access to in­
formation provided by the application programmer on the number of tasks,
their priorities, their stack allocations and a way to uniquely identify each
task This information will be placed m the executive’s task control struc­
ture There may also be a number of other hardware specific initialisation
procedures such as the initialisation of the system clock for time slicing In
essence Ease requires both private and application specific initialisation

To provide application specific setup m a flexible way, Ease requires the
application programmer to write an application specific C function which
generates tasks and sets system timers This approach also provides a frame­
work for adding of any future initialisation processes which may be needed
The implied target platform specific initialisation is handled in this function
also

2.3.3 1 Task Creation

The application specific initialisation function will consist of calls to create
tasks The application programmer passes three arguments m the create task

31

call These are the name of the root function of the task, its priority and the
stack space the task must be allocated The root function of a task is the C
function which represents that task The root function typically consists of
an endless loop

The application programmer must be careful in choosing the stack allo­
cation If the stack allocated is too small then the task stack may overrun
and corrupt data, on the other hand if the sum of the stack allocations are
too great then there may not be enough physical memory The stack must be
able to accommodate all the local variables of the task’s root function plus
those of any functions which are subsequently called to the deepest nested
level and must cater for memory taken by the actual parameters passed on
the stack

2.3.3.2 Tim er Initialisation

In this same initialisation function a call to set all timers used by the appli­
cation must be called The application programmer passes one argument m
the timer initialisation call This argument is simply the frequency

A particular timer on the target system has the special function of gen­
erating time slice ticks for application tasks and must be called regardless of
whether application tasks wish to avail of system timer services or not The
period time slicing tick must also be set to an appropriate value which is
generally recommended to be ten times the time it takes to switch context

2.3.4 Services

The executive services are made through C calls The most fundamental
calls are send and receive, discussed above The other calls are calls to set
timers and cause events to generate messages

2.3 4.1 Tim er Services

All timer service functions are called directly by the application tasks They
consist of three arguments

• Ticks

32

• Channel

• Mode

W ith the channel argument, the task nominates the channel on which a
message will be sent when the timer has expired

The ticks argument is the number of timer events that the executive
must wait before sending the message The tick period is set by a timer
initialisation call m the application specific initialisation routine

The mode argument informs Ease of the mode of the timer The mode
may be monostable or astable

2.3.4.2 Event Services

The initialisation functions of event services are simpler than the timer ser­
vices in that they have only one argument This argument is simply the
channel which the executive will send a message over when the event occurs
Each event to which Ease provides event services has i t ’s own initialisation
function defined m ease h

2.3 4.3 Error Services

Ease indicates errors through leaving an error message string at a specific
global location in memory This location can also be accessed by application
tasks An application task detecting a serious error can copy its error message
string to this global location

The executive also gives application tasks access to special variables
through the include file which gives information on interrupts which are lost
through no task being ready to respond to them

2.4 C onclusion

Ease , the executive of this project, is specified for DSP motor control ap­
plications This application domain demands certain features and quality
attributes from the executive Ease is specified to support multiple con­
current application tasks and facilitate preemptive event driven scheduling

33

Ease is designed to be small, fast and efficient as it is to be used m an
embedded environment

Task scheduling under Ease is conducted on a priority basis with a time
slicing scheme for tasks of equal priority Ease employs message passing as a
means of intertask communication and task synchronisation as message pass­
ing incorporates both m the same mechanism Ease also links event handling
into the message passing scheme by converting external events into messages
which application tasks can respond to This approach makes the mechanism
of interface to external events invisible to application tasks It also makes
synchronisation to internal and external events generic to application tasks

34

C hapter 3

Ease Software D esign

As the application domain of Ease is the embedded environment Ease is
designed to be fast and efficient to reduce overhead and meet the timing
constraints imposed on it It is designed to be compact so as not to take
up too much memory, as memory is quite a scarce resource m embedded
systems These optimisations are not however made at the expense of design
comprehension and software quality

Ease is designed m a modular fashion to aid evolution, development,
addition or enhancement of its services Executive services can be made ap­
plication specific or target platform specific by adding or modifying modules
Simplicity is chosen as a fundamental design principle as it inherently makes
Ease more predictable, dependable, robust and optimal Refer to the Ease
User’s Guide Appendix A for further details

3.1 C od ing con ven tion s o f Ease

Ease is coded m a mix of ANSI C and assembler The assembler source code
is used only where necessary 1 e for certain kernel operations not facilitated
by C and for platform specific hardware interface

All source files are compiled or assembled and their object files archived
into the library file ease l ib This library is then simply linked into an
application to utilise the Ease software platform

The interface to this library is defined m the API header files ease h. and
e a se im t h These header files declare all the Ease functions and variables

35

which the application may need
Ease is however made up from a range of interdependent modules The

following sections detail the particular conventions and the software practice
used m coding Ease

3.1.1 Identifiers

All Ease functions and global1 variables are prefixed by Ease For example
the following declarations are made m the file k e rn e l h

extern int EaseClockTick,
extern void EaseScheduleAfterlnt(void),

This scheme is used to avoid clashes with user applications which may
accidentally have variables of the same name as an Ease variable Ease uses
global variables to share certain data between modules

The following definitions are made m k e rn e l h to qualify variables de­
clared outside functions

ttdefme public
#defme private static

These definitions are used to limit the scope of identifiers within the
source code of Ease It is good software practice for a number of reasons to
limit the scope of identifiers because only functions which need the identifiers
should have access to them The scope of an identifier can be limited m C by
using or omitting the s t a t i c qualifier The additional symbolic constants
p r iv a te and p u b lic were added to make the scope of the identifiers clear in
coding It would be preferable if the the default scope for C identifiers was
p r iv a te but however this is not the case and the source code of Ease replaces
the omission with the explicit qualifier p u b lic to clearly indicate that the
particular identifier is being consciously and deliberately made public The
word s t a t i c has no mnemonic value m the context of limiting scope of
identifiers therefore it is replaced in the source code of Ease with p r iv a te

private m t idle_priority,
public m t EaseCurrentPriority,

1 G lo b al m th is sense m eanin g variables visib le to any part o f the entire program

36

The variable id le _ p r io n ty is used only by the source module k e rn e l c
and is therefore declared as private The variable E a seC u rren tP rio rity
needs to be accessed by other Ease modules and is therefore declared as
public

The identifiers used m Ease are intended to be as descriptive as possible
without being too lengthy If they comprise of more than one word each word
is separated either by underscores or by modulating capitalisation between
the first and subsequent letters of each word

3.1.2 Source M odules

All Ease C source modules comprise of a C source file and a header file The
source file contains all the functions and data possessed by the module The
header file defines the interface to that module The source module will at
least include its own header and the headers of other modules with which it
interacts

The modules comprise of the following elements

• Definitions specific to the module

• Public data accessible to other modules

• Functions callable from outside the module

• Private data exclusively used by the module

• Functions exclusively used by the module

There is also another layer from an API (Application Programming In­
terface) perspective These are the functions and data accessible to the ap­
plication These are defined m the API header files ease h and e a s e im t h
and are not dealt with m this section

All definitions specific to a module should appear m only one place and
may need to be visible to other modules, therefore Ease places these defini­
tions in the module’s header file These definitions may be made with for
example, the #def m e preprocessor directive or the typedef declaration

The following section of k e rn e l h illustrates this

37

«define MAX.TASKS 15
«define PRIORITY.LEVELS 8
«define QUANTUM 2

«define TIMERO.INTVEC 0x9

typedef void (*EaseTaskId_t)(void),

All data which needs to be accessible to other modules appears in the
module’s header file Ease header files always use the e x te rn storage class
specifier to declare the data which the module allows external access This
data is also declared (without the ex te rn) as p u b lic m the C source file

The module’s functions callable from outside the module are also declared
in the module’s header file using the ex te rn storage class specifier Any
module which requires to use these functions simply includes the header file
of the appropriate module

Variables and functions which are used exclusively by the module are
present only m the module’s source file and do not appear m the module’s
header The variables are explicitly declared as private in the module’s source
file

3.1.3 A ssem bler Source Code

The assembler source code is used for operations not facilitated by C The
assembler is used m conjunction with ANSI C code and therefore must not
violate the C environment from the application’s perspective This means
that it must respect the C register conventions[16]

The assembler functions of Ease are also C callable This means that
they have the same stack calling convention as the TMS320C30 C compiler
and that all function names are prefixed by an underscore Their function
prototypes are declared m a header file of the same name Ease currently
has two assembler files k e x tra asm and tins_if asm k e x tra asm is used for
Ease specific operations such as context saving and restoring and tm s_if asm
is used for hardware specific peripheral interface

38

3.2 Target P la tform O f Ease P r o to ty p e

Ease is developed using the TMS320C30 C compiler and support tools on an
MSDOS platform[16] [15]

Some of the design of Ease is specific to the TMS320C0 microprocessor
and to the specific hardware configuration of the particular card used to
prototype it The target system is described m chapter 4 1

One of the most basic constraints of a target system is the microprocessor
The CPU clock speed is an important factor for the system to meet timing
constraints Instruction sets, addressing modes and language support all
contribute to have an impact on the software design Ease must use assembler
routines m conjunction with C to handle features which the C language does
not facilitate such as context switching and interrupt enabling and disabling

The hardware elements specific to the TMS320C30 microprocessor which
have a direct impact on Ease are its two on chip 32-bit timers One of these
is used as a system clock for Ease to generate its time slicing tick Ease
employs assembler routines to deal with timer setup

The specific card that was used to prototype Ease is the Loughborugh
Sound Images TMS320C30 card[17] The hardware elements of this which
affect Ease are the dual port memory access space (which is used for interface
to a PC) and the analog interface The analog interface comprised of two
16-bit digital to analog converters and two 16-bit analog to digital converters
One of the TMS320C30 timers is used to trigger conversions for both of the
analog to digital converters This constrained Ease to use the other timer as
a system timer

3.3 Ease K ern el M od u le

This module is the core module of Ease It contains the main function of the
entire program It calls a number of assembler functions from k e x tra asm
It deals with the following three activities

• System Initialisation

• Scheduling

39

• System Timer Services

3.3.1 Task Control Structure

The Scheduling mechanism of Ease is based on the way it groups elements of
its task control structure The task control structure is defined m k e rn e l h
and reads as follows

typedef void (*EaseTaskId_t)(void),

typedef struct EaseTaskCtrl_s
{

int blocked_status, /* FALSE if not blocked else TRUE */
int quantum_tick,
m t task.sp,
int task_id, /* Integer to identify task */
EaseTaskId_t root, /* address of root function of task */
struct EaseTaskCtrl_s *next.member, /* pointer to next member */

} EaseTaskCtrl ,

There are five data fields m the above structure The b locked_sta tus
field indicates if the task is blocked or ready to run

The task’s quantum tick is incremented every time there is a system timer
interrupt and the task represented by that structure is currently running If
the quantum_tick exceeds QUANTUM which is defined m the file k e rn e l h the
quantum tick is reset and the scheduler is called

The task _ id field is a unique integer to identify the task and is also an
index into an array (the kernel’s array of tasks) The ro o t is a pointer to the
root function of the task represented by the structure The root function of
a task is similar to the mam function of standard C program to that task

The task_sp is the address of the last location of the task’s stack pointer
after a context switch Ease uses this to restore the task’s context

3.3.2 Functions of th e K ernel M odule

The kernel module performs the initialisation of its task control structure
It gets the essential task information from calling the user defined function

40

Kernel Module

Initialisation
Local to Module

m ain()
Easelm t()
EaseGroup()

Callable Externally
EaseCreate()
EaseSystemTimerlmt()

Scheduling

Local to Module
EaseScanLevelAfterlnt()

Callable Externally
EaseScanLevel()
EaseScheduleAfterlnt()

System Tim er Sen/ices

Local to Module
EaseSystemTimerMsg()

Callable Externally
EaseSystemTlmerSet()

Figure 3 1 The Kernel Module

EaseForge() which m turn calls the kernel function EaseCreate() for
each task m the system The function EaseCreate() initialises a data
structure for each task These data structures are then grouped into the
Ease internal management scheme by calling the function EaseGroup()
The kernel’s initialisation function also calls the intertask communication
module’s initialisation routine EaseChannellmt () which will be discussed
m the following section Finally with all the task structures initialised and
grouped the variables EaseCurrentTask and EaseCurrentPrionty are set

The initialisation is completed with Ease enabling the interrupt for the
system timer and running the first task The first task to run will be a task on
the highest priority level The user defined function EaseForge() will also
make a call to the kernel module’s function EaseSystemTimerlmt () The
system timer generates the clock ticks for the Ease round robin scheduler

The kernel module handles all scheduling after events There are two
scheduling functions in the kernel module The simple scheduling case oc­
curs when a task’s quantum is expended and is handled by the function
EaseScanLevel() In this case the task’s context will switch to a task on

41

the same priority level The more general scheduler is invoked after an event
which could make a task of any priority level ready The function to handle
this is EaseScheduleAfterlnt ()

The functions EaseSystemTimerSet () and EaseSystemTimerMsg() han­
dle the kernel’s system timer services These functions were added to the
kernel after the timer handling module was stabilised and provide timer ser­
vices from the system timer They will be dealt with m the timer module
section

3.3.3 Ease On line Task M anagem ent

Each task in the system is represented by an EaseTaskCtrl structure As
the number of tasks is generally fixed m an embedded real time system it
was decided that there should be a fixed number of task control structures
which could be used by an Ease application The kernel module possesses
an array of MAX_TASKS task control structures This scheme precludes the
need for dynamic memory allocation m the kernel module The array also
allows quick access to a task structure through knowing the task’s task_Id
field which is an index into this array

Ease manages tasks through grouping its task control structures into
closed linked lists of tasks of the same priority It maintains an array of
current task pointers to record the current task at each priority level This
initialisation is handled m the functions Easelnit and EaseGroup m the
kernel module

Ease also has the following two data arrays to aid real time performance
int EaseTaskPr[MAX_TASKS]
m t EaseNTasks[PRIORITY_LEVELS],

The EaseTaskPr is an array storing the task priority for each task The task
priority can be accessed knowing the task_id The EaseNTasks array is used
to store the number of tasks at each priority level

The kernel’s time slicing scheduler uses these closed linked lists to quickly
select the next task to run when a task has expended its quantum This
switching is handled by the Ease kernel function EaseScanLevel

A more general scheduler is required for an event other than a system
timer interrupt The is because the event could potentially cause any task m

42

Close Linked Lists Of Application Tasks At Each Priority Level

Figure 3 2 Ease Task Control Structures

43

the system to be unblocked including a task at a higher priority than the task
currently running The general scheduler must scan through all the tasks of
the system starting at the highest priority working down to the lowest

3.4 Ease C om m u n ication M od u le

The Ease message passing scheme which is used for intertask communication
is defined m the comm module of Ease This is an important module as it
not only handles communication but also defines the event interface for later
modules which will also use the comm module to convert events to messages
which are compatible with this scheme

The Ease message passing scheme is unbuffered2 All interrupts are dis­
abled while m the comm module as it transfers data between tasks (or rather
memory belonging to different tasks) The module consists of three functions

void EaseChannelInit()
int EaseSendC int dest_Ch,void msg[],

m t msg_size,
EaseTaskld.t * rendezvous_tsk),

int EaseReceive(mt src_ch,
void msg[] ,
m t max_msg_size,
int *msg_size
EaseTaskld.t * rendezvous_tsk),

Ease tasks send to and seek messages from Ease communication channels
Though the scheme is unbuffered there may be a number of tasks blocked
waiting on a certain channel These all have to be queued

3.4.1 EaseC hannelC trl Structure
The EaseChannelCtrl structure is central to the message passing scheme
Each EaseChannelCtrl structure represents a single Ease communication
channel Ease maintains an array of these The structure reads as follows

struct EaseChanCtrl_s

int source_flag,
m t id_q[MAX_MESSAGES] ,
m t *msg_q[MAX_MESSAGES],

2If buffering is required then a task m ay be created to provide it using th is schem e

44

m t size_q[MAX_MESSAGES] ,
m t heacLq,
m t tail_q,

} EaseChanCtrl,

The source jf lag field indicates whether the channel is currently a queue
of senders or receivers

The id_q[] is the queue of task_ids from tasks blocked pending on
rendezvous

The msg_q[] is an array of pointers to the sender’s message or the re­
ceiver’s message buffer corresponding to the tasks queued at id_q[]

The size_q[] is an array of sender message sizes or receiver message
buffer sizes corresponding to the tasks queued at id_q[]

The head_q and tail_q are indexes into the queue arrays indicating the
head and tail of the channel’s queue

3.4.2 Com m M odule In itialisation

The function EaseChannellnit simply sets the head_q equal to the tail_q
for each communication channel This indicates that each channel is empty
and has no tasks blocked pending rendezvous

3.4.3 Sending

When a task makes a call to EaseSend specifying a channel, there can be
one of three outcomes

1 Rendezvous with a receiving task on that channel

2 No rendezvous, task blocked and queued on that channel

3 Call fails through error

If there is a rendezvous, there is a receiving task, with a suitably sized
message buffer, blocked and queued on that channel The following happens

• The message is transferred

• The receiver is unblocked

45

• The receiver is informed of the sender

• The receiver is informed of the actual message size

• The tail of the channel queue is advanced

• The Ease general scheduler is called

The sender is allowed to continue and is not blocked The general sched­
uler will decide whether the receiver or the sender runs next depending on
their priorities The reciever is informed of the sender task and actual sender’s
message size through locations referenced by arguments passed to the receive
call

If there is no rendezvous then the sending task has no receiving task to
rendezvous with on that channel The following happens

• The channel sourcejflag is set to TRUE

• The sender task_id is stored on the channel’s id_q

• The sender message size and pointer is stored on queue

• The sender task is blocked

• The head of the queue is advanced

• The Ease general scheduler is called

An error is returned if there are receiving tasks blocked on that channel,
but none has a large enough message buffer to take the sender’s message

3.4.3 1 Choosing Betw een M ultip le R eceivers

The order m which receiver tasks request senders can not be predicted Like­
wise if a number of tasks are queued up pending rendezvous it can not be
predicted which one will rendezvous first The comm module of Ease will
choose the task that has been the longest time m the receiver queue for ren­
dezvous if a sender task becomes available If this sender task has a greater
message size than the size argument passed by the receiver task the comm

46

module will scan through the list of pending receivers until it finds a receiver
with a suitably sized message buffer If there is not one available it returns

an error

3.4.4 R eceiving

When a task makes a call to EaseRecieve specifying a channel there can be
one of three outcomes

1 Rendezvous with a sending task on that channel

2 No Rendezvous, task blocked and queued on that channel

3 Call fails through error

If there is a rendezvous, there is a sending task with a suitably sized
message, blocked and queued on that channel The following happens

• The message is transferred

• The sender is unblocked

• The sender is informed of the receiver

• The tail of the channel queue is advanced

• The Ease general scheduler is called

The receiver is allowed to continue as normal upon the return from the
receive call The general scheduler will decide whether the reciever or the
sender runs next depending on their priorities The sender is informed of the
receiver task through locations referenced by arguments passed to the send
call

If there is no rendezvous then the receiving task has no sending task to
rendezvous with on that channel The following happens

• The channel sourcejflag is set to FALSE

• The receiver task_id is stored on the channels id_q

• The receiver message buffer size and pointer is stored on queue

47

• The receiver task is blocked

• The head of the queue is advanced

• The Ease general scheduler is called

An error is returned if there are sending tasks blocked on that channel,
but all of them seek to send messages larger than the receiver’s message
buffer

3.4.4.1 Choosing Betw een M ultiple Senders

The order in which sender tasks request receivers can not be predicted Like­
wise if a number of tasks are queued up pending rendezvous it can not be
predicted which one will rendezvous first The comm module of Ease will
choose the task that has been the longest time m the sender queue for ren­
dezvous if a receiver task becomes available If this sender task has a greater
message size than the size argument passed by the receiver task the comm
module will scan through the list of pending senders until it finds a sender
with a suitably sized message If there is not one available it returns an error

3.5 Ease T im er M od u le

The Ease timer module provides timer services in the hardware system’s
application timer which also triggers the A/D converters The module has
three functions They are initialisation of the application timer, task interface
to the timer or sampler and event handling when an application timer event
occurs

The initialisation of the application timer is done at startup by the user
defined function EaseForge and sets the rate of the application timer and en­
ables its interrupt This is done m the function EaseApplicationTimerlnit

The functions EaseApplicationTimerSet and EaseSamplerSet are called
by tasks so that the application can avail of application timer services They
attach a channel to the timer event, indicate the amount of events before
the message is sent and set the mode of the timer service interface as being
ASTABLE or MONOSTABLE

48

Timmer Module

Initialisation

Local to Module
none

Callable Externally
EaseApplicationTimerlmt()

Application Tim er Services

Local to Module
EaseTimerl lntHandler()

Callable Externally
EaseSamplerSet()
EaseApplicationTimerSet()

Figure 3 3 The Timer Module

The function EaseTimerllntHandler is called upon an application timer
event and effectively emulates a task calling the EaseSend function

The Kernel module also has similar services for the system timer As
the system timer is needed for scheduling it has the limitation that its base
frequency must be chosen to be suitable for Ease and not an arbitary value

3.6 G eneric E ven t H an d lin g M od u les

Generic events like the Ease IntO module basically have two functions, one
to attach a channel to the interrupt and enable it and another to emulate the
EaseSend function The function which attaches the channel to the event
takes one argument, the channel number This function does the interrupt
initialisation and enables the interrupt The function which emulates the
EaseSend function is at a basic level an interrupt service routine The target
platform specific interrupt handler is placed m the file kextra asm This
then calls the C routine of IntO module

49

3.7 C onclusion

Ease is designed and coded m a modular fashion using ANSI C and assem­
bler This modularity is designed to localise modifications to aid evolution,
development, addition or enhancement of its services The assembler code is
used only where necessary for operations not supported by C and to perform
certain platform specific hardware interface

The software design of Ease encourages a structured approach from appli­
cation programmers The application is divided into a number of dedicated
tasks which co-operate with each other m a timely and orderly fashion co­
ordinated by Ease There is scope for tasks of different priorities and time
slicing between tasks of the same priority

Ease employs message passing as a means of intertask communication
and synchronisation as both are encapsulated m the same mechanism The
message passing is designed m a flexible way over a number of communi­
cating channels which are independent of tasks and facilitate variable sized
messages The message passing scheme is expanded to handle external events
(interrupts) in a generic way by Ease converting them into messages

50

C hapter 4

Im plem enting A pplications
w ith th e E xecutive

This chapter describes the target platform and the software tools used for
prototyping Ease It goes on to describe the implementation of Ease from
the software design and how the code was prototyped and validated Once
the code of Ease was stable, platform timing information was obtained and is
shown m section 4 2 3 This chapter concludes describing actual applications
which were run with Ease , the most notable being the motor modelling
of a shock absorber which involved seven concurrent tasks controlling two
motors [32]

4.1 T he Target S y stem

The target platform for this project uses the TMS320C30 microprocessor
The executive shields the application programmer from excessive knowledge
of the hardware through providing its executive services The following sec­
tion describes the TMS320C30 as described from the Texas Instruments users
gmde [14] ^

4.1.1 TM S320C30

The TMS320C30 is a high performance CMOS 32-bit floating point device m
the TMS320 family of digital signal processors It achieves this performance
by implementing many functions m hardware which other microprocessors

51

implement m software or microcode
This single chip computer system can perform parallel multiply and ALU

operations on integer or floating point data withm a single cycle The pro­
cessor also possesses a general purpose register file, program cache, dedicated
auxiliary register arithmetic, internal dual access memories, one DMA chan­
nel supporting concurrent I/O , and a 60ns single cycle execution time

General purpose applications are greatly enhanced by 258K of RAM,
multiprocessor interface, internally and externally generated wait states, two
external interface ports, two timers, two serial ports, and multiple interrupt
structure

The register based architecture lends itself well to implementing high
level languages The processor has an associated C compiler and there are
numerous software tools for program development

4.1.2 Hardware description

4.1.2.1 Performance

• 60 ns execution time

• 33 3 MFLOPS

• 16 7 MIPS

4.1.2.2 Features

• 4K word single cycle access on chip ROM

• 2K word single cycle access on chip RAM

• 8 extended precision registers

• On chip DMA controller

• Parallel ALU and multiplier operations m single cycle

• Block repeat capability

• Zero overhead loops with single cycle branches

52

• Interlocked instructions for multiprocessing

• Two on chip serial ports 8/16/24/32 bit transfer

• Two on chip 32-bit timers

• 4 external interrupts

Refer to [14] for further detail on the target microprocessor

4.1.2.3 Software Tools

Texas Instruments have a number of software tools for program development
on the C30 The TMS320C30 linker generates object files m a Common Ob­
ject File Format (abbreviated to COFF) The TMS320C30 linker employs a
command file for information on memory configuration of the target hard­
ware platform This command file also allocates sections to particular places
m the target memory map The linker places code and data from output

obj files m these sections thereby populating absolute memory without the
need for embedding absolute addresses into source files In this way source
files can be written independently of the target platform because the cmd
file is application platform specific For embedded applications the code, re­
set vector and data constants sections would be placed m ROM through the

cmd file
The TMS320C30 linker creates executable modules by linking COFF ob­

ject files The linker allocates sections into the target system’s memory, it
relocates symbols and sections to assign them to absolute addresses and it
resolves undefined external references between input files The linker has a
command file associated with it which is used to do the following

• Define a memory model which conforms to the target system memory

• Combine object sections

• To define or redefine global symbols at link time

53

4.1.3 The TM S320C30 O ptim ising C Com piler

The processor’s C compiler is a full-featured optimising compiler which trans­
lates ANSI Standard C to TMS320C30 assembly language The TMS pro­
cessor uses 32-bit data sizes for floating point and integer values The C
compiler also supports large and small memory models[15][16]

4.1.4 T he L.S.I. TM S320C30 Card

The specific target platform for prototyping this executive is a development
card developed by Loughborough Sound Images L td[17] The system con­
sists of a TMS320C30 target system which has a resident monitor program
There is a dual port memory interface to a host development PC It has
software support for two monitor programs and facilitates assembly and C
programming

4.1.4.1 Analog Interface

The card’s analog interface consists of two 16-bit analog to digital input
channels and two digital to analog output channels The analog interface
can operate at sampling rates of up to 200 kHz The input channels include
sample and hold amplifiers and both input and output channels are buffered
by 5th order Sallen-Key anti-aliasing filters All converters in the interface
are triggered by an on board timer or a software trigger Therefore they are
not independently triggered channels

The analog input and output channels are accessed by a single 32-bit
serial, shift register The input signal is latched to the output upon next
interrupt unless the user program intervenes The 32-bit on chip timer has a
resolution of 120ns hence conversions can take place at very precise intervals

4.2 E x ecu tiv e Im p lem en ta tio n

The system specification of chapter 2 describes the executive’s requirements
and the system design describes how these requirements will be met Once
the system specification and design are finalised the next stage of the software

54

developm ent cycle is the program m ing phase T h is phase puts the design in

to practice and establishes w hether the design can be im plem ented

4.2.1 Coding

The executive was coded m a modular fashion The mam thrust of the coding
effort was to develop the executive by incrementally adding features to the
code starting with a base line functionality The base line feature of the
executive is its ability to multitask by switching processor context between
tasks Before any of this work was started time was spent becoming familiar
with the target platform and development tools

The code development cycle was as follows

1 Scheduler

• Context switching

• Allocation of task stack and data

• Task control block manipulation

• Time slicing mechanism

2 Inter-task communication

• Message passing mechanism

• Task interface to communication scheme

3 Event Interface

• Event handling mechanism

• Conversion of events to messages

• Task interface to event services

4 System initialisation

• Structured generation of tasks

• Application interface to system initialisation

5 External interface

55

• Interface specific to target platform

• Structured task interface to service

Each unit of code was developed and tested individually The high level
C code was first prototyped on Borland Turbo C + + VI 01 interactive de­
bugging environment before being integrated into the target system This
availed of the C debugging tools to thoroughly test the logical correctness of
the programs at a high level before cross compiling them The target devel­
opment degbuggmg tools only facilitated assembler debugging The assembly
routines were tested directly on the target platform through the target plat­
forms monitor program[17] The system design must be clear and precise m
order to define the exact specifications for each code unit

The coding of each module involved the following stages

1 Prototype code on PC interactive environment

2 Ensure prototyped code meets design requirements

3 Specify assembly routines necessary or specific to target platforms

4 Develop and test assembly modules (if any) in isolation

5 Integrate high level and assembly code

6 Cross compile to target platform

7 Test feature on target platform

Prototyping the platform independent aspects of a module facilitates rig­
orous testing of the code with comprehensive debugging tools When one is
confident that the code is robust and meets its requirements then the code
can be cross compiled to the target platform The prototyped code almost
invariably requires simulation code to act as scaffolding to substitute for
software or hardware modules not present

The design and the coding experiments isolate the platform specific as­
sembly routines which must be incorporated into the executive These rou­
tines can be tested m isolation with the target platform’s debugging tool
When one is confident that these perform correctly for all inputs then one
can integrate them into the module and the module into the executive

56

4 .2 .2 V a lid a tio n

Reliable software is a direct result of a good design process, good software
engineering practice and rigorous system testing When each module was
finished and passed its unit test it was ready for integration into the executive
and validation The goal of testing is to ensure that the software meets i t ’s
requirements In real time software there is a large emphasis on the temporal
qualities as well as the logical correctness of the system

The code of Ease was tested for logical correctness by isolating each func­
tion and providing inputs which exercise all flow of control paths withm that
function This approach minimises the chance that latent errors will pass
through the testing stage This technique was adopted for testing Ease code
as it comprehensively tests the software without being excessive The exercis­
ing of all flow of control paths is greatly aided by keeping executive functions
concise and clearly defined As interrupts are disabled during kernel opera­
tion the validation of logical correctness is free from temporal considerations

An important tool m validation is embedding software tests within func­
tional code for diagnostic purposes These may be added purely for develop­
ment purposes or as general system integrity tests m the final product

With the executive validated for logical correctness then a test application
must be derived to test the executive m a specialised application and to obtain
timing information

For example, to test the time slicing module of the executive a number of
tasks were created with equal priority These tasks all comprised of a routine
which takes a known time to execute and has a counter A break point is
placed at the end of the routine of one of the tasks It can be verified that
the scheduler was run by the counters of all tasks advancing and through
software check points within the scheduler’s code The executive’s overhead
can be calculated through calculating how much longer the tasks took to
execute their routine than their stand alone execution times

4.2.3 P latform T im ing Inform ation

The amount of op-codes executed by the processor is directly proportional
to the amount of time a particular piece of code takes The best case for

57

this is if each op-code takes one processor clock cycle to execute The clock
cycle for the TMS320C30 is 60 nano seconds The source files of Ease (both
assembler and C) generated code with the following op-codes (counting all
branch codes as 4 op-codes)

• Context Switching and scheduling

— Context Save 40 op-codes

— Scan Task Control Structure 34 + (14 n) op-codes

— Context Restore 41 op-codes

• Message Passing

— Send (with rendezvous) 131+(2n) op-codes (worst case path)

— Send (no rendezvous) 78 op-codes (worst case path)

— Receive (with rendezvous) 121+(2n) op-codes (worst case path)

— Receive (no rendezvous) 81 op-codes (worst case path)

The n for scanning the task control structure is the amount of tasks the
scheduler must scan through to find next task to run If the task to run is at
the highest priority level for example the worst case for this number is the
amount of tasks at that priority level minus one The amount of time spent
m a call to send or receive depends on whether rendezvous is achieved
If rendezvous is achieved either call may be responsible for transferring the
message The n for send or receive or send is the amount of 32-bit words to
be transferred by the executive As the size of messages is variable this can
take a variable amount of time to execute

The above data translates into the following times when an op code takes
60 nano seconds

• Context Save, Schedule and Restore 6 900 + (0 840n) ¡is

• Send (no rendezvous) 7 860 + (0 120n) fis

• Send (with rendezvous) 4 680 [is

58

• Receive (with rendezvous) 7 260 + (0 120n) fis

• Receive (no rendezvous) 4 86 /.is

It was discovered during the testing of Ease that these figures are de­
pended on a op-code taking 60 nano seconds This is not the case when
memory access has a wait state of a number of clock cycles The above
figures were found to be of the order of 60 percent greater if the critical
executive data structures were placed m SRAM general memory These fig­
ures only held if the critical data structures of Ease were stored m the on
chip RAM which has a zero wait state The context switching routine also
involved PUSH and POP operations on the stack which required the stacks of
the application tasks to be m this zero wait state on chip RAM for the above
figures to hold for context storing and saving

4.3 E x ecu tiv e A p p lica tion s

4.3.1 Analog Signal D isplay

A primary application was chosen to display two analog input channels on
a PC m real time The analog input channels each have a gam applied to
them and the modified signal is output to one of two analog output channels
The gam and sampling rate for the application is configurable from the PC
Although this application is straightforward it incorporates a number of real
time issues

• Hardware interface m real time

• Internal co-ordination of data

• On line reconfigurability

• Communication with external computer system

The application is decomposed into four dedicated tasks to perform the
various functions These tasks all communicate and synchronise with each
other through the Ease message passing mechanism The tasks also synchro­
nise with the hardware via Ease

59

PC Dual
Memory

Figure 4 1 Analog Signal Display Application

4.3.1.1 The Database Task

The internal data of the embedded system is managed by the task repre­
sented by database c data base task which stores the latest parameters
and variables Any task that needs information m this task’s memory will
send a message requesting the information As any task could potentially
become blocked waiting for information contained m this task, this task has
the highest priority

The core loop of database c continuously monitors the DATA_CH for a
message If the message is a request then it sends the information to the
appropriate task from its data, if the message is an update it updates its
data accordingly

while(TRUE)

receive(DATA_CH,(void *)&msg,sizeof(msg),&msgSize,&Rendezvous),
switch(msg com)
{

case CONTROL_PACKET_REQUEST
msg parmO=gainO,
msg parml=gaml,

60

send(INFO_CH,(void *)&msg,sizeof(msg),&Rendezvous),
break,

case DISPLAY_PACKET_REqUEST
msg parmO=gamO,
msg parml=gainl,
msg int_parmO=signalO,
msg int_parml=signall,
send(DISPLAY_CH,(void *)&msg,sizeof(msg),&Rendezvous),
break,

case I0_UPDATE
signalO=msg mt_parmO,
signall=msg mt_parml,
break,

case PARAMETER.UPDATE
gamO=msg parmO,
gainl=msg parml,
break,

>
>

4 3.1 2 The Hardware Interface Task

The hardware interface of the embedded system is handled by the task rep­
resented by c t r l c, the hardware interface being the access to the analog
interface and changing the sample rate of conversions This task also per­
forms the signal processing between analog input and output and updates
the data base task with the latest samples This task is placed at a priority
below the data base task as it is critical that each sample is stored

4.3.1 3 PC Interface

The transfer of variables to the PC is handled by the task represented by
d isp la y c, which continuously sends a message requesting data and polls
the data base task for the latest samples This task also checks the Ease I/O
flags m the dual memory space between the PC and the target system to see
if there is any incoming message from the PC If there is, it activates a PC
message handler represented by the task k b h it c

4.3.1.4 PC Program

The PC program is primarily a user interface and graphics display program
for the application It relays parameters to the target system and presents

61

Figure 4 2 Analog Signal Display Screen Dump

data from it m visual form

4.3.2 M otor Control

The motor control application is an extension of the previous application
The basic structure of the software is similar with a motor control task that
handles signal processing, a data base task that stores the latest control
parameters and variables, a display task and a task that polls the PC for
commands The application chosen for testing Ease is an advanced servo
motor application I t ’s background is as follows[32]

A great deal of interest has developed m the field of active sus­
pensions m recent years especially m the high performance auto­
motive areas[30] Currently the mam research is m the hydraulic
and electro-hydraulic areas The application considered explores
the use of an electrical suspension as a practical alternative The
executive structures the application which uses two concurrent
motor controllers

62

The target application comprises of the modelling of a shock absorber using
an electro-mechanical system Therefore an analytical model of the mechan­
ical shock is used as the starting block m the control design (Figure 4 3)
The reaction force response, Fact, is required to simulate that of a mechanical
shock absorber (equation 4 1) A linear mass, spring and damper has a ro­
tary equivalent and motor torque is equivalent to linear force By this means
disturbance torque, T^, applied to a rotary motor and controller is treated as
being analogous to the linear force, Fd%s, applied to the mechanical shock A
motor controller combination is designed to model the shock absorber The
test rig used comprises of two directly coupled permanent magnet DC mo­
tors one of which is controlled to act as the load, and the other ,Fact, as
described above The formulation of the shock absorber takes into account

• the mass of the shock absorber

• the spring and damper constants

4 .3 .2 .1 Target A pp lication S y stem M od ellin g

Fdis M s2 + B s + K s

Control: State space control techniques are chosen m this application as
they offer the ability to control all states of the system individually m order
to achieve the desired response A desired response is produced using a
reference model (Figure 4 4) The control law used is a simple feedback of
a linear combination of the state variables

Estim ation: In order to correctly use the above control method all ele­
ments of the state vector equation must be available for feedback purposes
To construct the entire state vector a steady state time invariant Kalman
filter is used [31] This estimator/filter combines state estimation and sensor
filtering The filter contains a model of the motor rig and the disturbance
torque The filter is a stochastic filter insofar as the bandwidth of the filter
is set by the stochastic properties of the plant and measurement models A

63

Figure 4 3 Mechanical Shock Absorber Transfer Function Model

Figure 4 4 Block Diagram of Closed Loop Controlled Plant

64

steady state implementation is chosen as it is numerically less intensive than
the time varying one A state description of the motor model used m the

filter is as m equation 4 2

0 ' ' 0 1 0 ■ 0 ■ 0
0 = 0 B m ! Jrn l/Jm 0 + 1 /Jm
Td 0 0 0 Td 0

4.3 2.2 Sim ulation and Im plem entation

The structure of the motor application is similar to the analog signals appli­
cation There are more processes running concurrently The motor modelling
of a shock absorber involves five independent task objects (figure 4 5) In
addition to the controller’s task there is a disturbance generation task and
an idling task At the highest priority there is the database task which holds
withm its local memory the latest values of variables, system states and
parameters The database task informs the display task of new variables,
informs the serial link handler of new system states, informs the controller
task of new parameters and accepts updates from any task that modifies or
generates data The database task is at the highest priority as any task could
potentially be blocked waiting for it to run

The controller task is at the next priority and responds to an end of
conversion event which indicates that data is ready after a sampling period
The other tasks, display, serial link handler and PC message handler involve
sending or receiving data from external sources that are not time critical

The executive was found to be sufficiently efficient to run 7 tasks con­
currently with on line user interface and concurrent serial interface The
motor sampling rate was 4kHz The application tasks stacks and the critical
data structures of Ease did have to be placed m the on chip RAM of the
TMS320C30

4.4 C on clu sion

Overall Ease was found to perform as designed and the applications devel­
oped with Ease benefited from it Ease demonstrated that it has adequate

65

Priority
0

Priority
1

Priority
2

Priority
3

End of conversion
event

^P C m essage handier^

Dual port
memory
which PC
can access

Priority
4

Idle task

Figure 4 5 Tasks m Motor Application

66

performance to deal with the motor modelling application which was a good
test of the executive

The target system is found to be a good one and a reasonable place
where an executive like Ease is suited The implementation of the executive
benefited from the software practice and a solid design strategy

67

C hapter 5

Conclusions and
R ecom m endat ions

5.1 Sum m ary

This thesis describes the development of a real time executive over the stages
of specification, design, coding, test and implementation It describes not
only the executive but also the software technique involved which is applica­
ble to the development of all systems

The executive facilitates multitasking, inter task communication and syn­
chronisation The executive has been proven to work through a number of
sample applications, the most notable being the motor simulation of a shock
absorber with an active disturbance generator[32] The multi tasking prop­
erties allowed the application to run 7 concurrent tasks each dedicated to a
particular function The executive structured the interaction between these
tasks The executive overhead was sufficiently low to allow the motor control
task and the disturbance task to both run with sampling periods of 4kHz

5.2 Salient P o in ts

The most important service that the executive provides is that it promotes
software quality and maintainability through providing a structured software
environment for applications The mam thrust of this executive is to enhance
software integrity for real time applications

The executive provides synchronisation, scheduling and communication

68

services It essentially tackles the undesirable aspects of real time program­
ming allowing the application programmer concentrate more on the applica­
tion and each task to concentrate on the function it is dedicated to

The executive described m this thesis has a number of advantages which
differentiate it from existing executives Firstly it is a specialised executive
which is targeted at embedded DSP microprocessors It was designed to
offer a limited number of sufficient features which makes it efficient, small
and easily grasped by the application programmer Furthermore there is
access to the source code of the executive which means that the executive is
not intrinsically opaque to the application programmer

5.3 N eg a tiv e F eatures

The advantages of having multiple independent tasks has the drawback that
each one has to have its own stack This leads to both wasteful memory
fragmentation between each stack and the potential for stack overflow if not
enough stack memory is allocated As each task context is pushed onto its
stack by the executive during context switching each stack must be allocated
with that much extra stack space It may be argued that m embedded sys­
tems memory is so tight and costly that a stack architecture for applications
is not practical given the memory constraints The stack runtime memory
requirements is largely a unknown quantity forcing application programmers
to err on the side of caution Allocating many stacks is a waste of mem­
ory because typically they would not all be at their full utilisation and the
programmer must allocate for the worst case

For the motor application it was found that the card’s DRAM memory
was too slow to maintain the application and that all stacks had to be placed
m the on chip RAM of the TMS320C30 This point again illustrates the
impact of memory issues for real time systems It may be argued that such
on chip RAM is a resource designed to be used by an executive

69

5.3 .1 R ea l T im e S tack In te g r ity

One of the most prominent requirements identified for the executive is a real
time stack watch dog This would warn the application programmer if one
the task stacks overflows It is very difficult to calculate the run time memory
requirements of a developing application and this would be a very useful tool
to have

This may be implemented by Ease checking the integrity of task stack
pointers when ever it gets control through a system call or a timer interrupt
The time slicing event for example would give a recurrent opportunity for
Ease to do this integrity test

A stack fault can not always be detected by checking the stack pointer
a particular times For example a stack may overflow into memory it not
allocated to it and have returned to its allocated memory space between
checks A cathastrophic stack fault may corrupt Ease and not allow it to
make the check m the first place This stack integrity feature therefore will
not catch all stack faults but would get a high percentage of them for a
minimum of overhead Unless there is some hardware memory protection by
which a task may only use certain memory, stack fault detection be ensured
Such hardware facilities are rare in embedded systems

5.4 T h e F uture

The executive was found to have adequate services for most real time ap­
plications The multitasking structure directly promotes better applications
than unstructured monolithic interrupt driven systems Its API is easy to
use and the executive is easy to link into application code

Ease is readily portable to any other TMS320C30 platform There need
only to be changes in the command cmd file for the particular hardware
configuration If the TMS320C30 platform has different hardware resources
modules may need to be created to service them Porting Ease to a platform
that does not use the TMS320C30 requires changes to all non-C code and to
modules which are servicing hardware specific functions The general design
of Ease can still be maintained and reused even if the specific details change

70

The mam thrust of the development of the executive was to develop the
executive m a modular fashion, adding m features as modules were developed
and integrated This development approach provides ample scope for system
improvement The modifications are localised to each module

71

A ppendix A

Ease U ser’s Guide

A .l In trod u cin g Ease

Ease is a real-time multitasking Embedded software Application and Systems
Executive targeted at DSP platforms The digital computer m a real-time
embedded system controls a process by receiving data, processing it and tak­
ing action or returning results sufficiently quickly to affect the functioning of
the environment at that time The computer is essentially withm the control
loop and its responsibilities in that role are its primary functions Synchroni­
sation, scheduling and communication between the different components of
real-time software m a reliable, timely and predictable fashion places great
demands on the software

Ease provides an application software interface to the underlying hard­
ware and encourages a structured approach from application programmers
which enhances software integrity and maintainability m a potentially chaotic
real-time environment The confidence afforded by Ease is paid for by a small
percentage of CPU processing power and a larger response time to external
events than an unstructured, monolithic, interrupt driven system The fo­
cus of Ease is to tackle the undesirable aspects of real-time programming
and device dependent issues thereby allowing the application programmer to
concentrate more on the application

Ease has a number of advantages which differentiate it from existing
executives Firstly it is a specialised executive which is targeted at DSP
microprocessors It was designed as a low cost executive which offers a limited

0

number of sufficient features which makes it efficient, small and easily grasped
by the application programmer Furthermore there is access to the source
code of Ease which means that the executive is not intrinsically opaque to
the application programmer, as many commercial products are

A .2 F eatures o f Ease

Ease is a software platform which facilitates programming of concurrent ap­
plication tasks Ease is designed for embedded systems and therefore is a
minimal kernel designed to be fast and efficient to reduce overhead and meet
timing constrains but not at the expense of design comprehension Ease is
designed m a modular fashion to aid evolution, development, addition or
enhancement of its services Executive services can be made application spe­
cific or target platform specific by adding or modifying modules Simplicity
is chosen as a fundamental design principle as it inherently makes Ease more
predictable, dependable and optimal by not allowing unwieldy complexity to
creep in

The following are the core services offered with Ease

• Pre-emptive event driven scheduling of application tasks

• Synchronisation and communication facilities between application tasks

• Consistent application interface to internal and external events

• Executive support for object oriented techniques

The overall user application is made up of a number of tasks which co­
operate with each other m a timely and orderly fashion coordinated by Ease
Ease facilitates and encourages object oriented techniques for design and
implementation of application programs Each task is its own entity with
i t ’s own data, code and stack and essentially constitutes an object Each
task performs services while communication with other tasks is carried out
via message passing The form of each task is initialisation followed by an
endless loop which typically would have some interface to an internal or
external event

1

A .2.1 S ch ed u lin g w ith Ease

The fundamental uniprocessor method for introducing concurrency involves
pseudo parallelism This is achieved by switching processor context between
independent task objects

Task scheduling is conducted on a priority basis with a time slicing scheme
for tasks of equal priority The executive supports static process priority
This approach was adopted because the provision for dynamic process prior­
ities may obscure application bugs The scheduler is run upon a scheduling
event which may be a hardware interrupt or a software trap Scheduling is
guaranteed at a minimal level by a special clock interrupt given by a timer
which Ease uses as a system clock The actual scheduling mechanism is de­
signed to be as fair as possible without excessive overhead The scheduling
mechanism does the following on a scheduling event

• Make a limited context switch so the scheduler can run

• Run scheduler to decide which ready task to select on the basis of the
relevant states of tasks withm the application

• Update task information structure on the basis of the scheduler’s deci­
sion

• If the same task is to be run restore it

• If another task is to be run do a full context switch

A .2.2 S y n ch ro n isa tio n and C o m m u n ica tio n w ith Ease

Ease employs message passing as a means of mter-task communication and
by definition synchronisation is achieved through a rendezvous scheme All
communication and event handling is conducted via Ease All messages are
passed m a call to either EaseSend() or EaseReceive() In that call the
task specifies which one of a number of channels the message will go to

The calls may be paraphrased as

2

Send a message to a potential receiver seeking a message from
the specified channel number

and

Receive a message from a potential sender sending a message on
the specified channel number

A sending task is blocked until a receiver is present to take its message If
there are multiple readers or writers then the identities of the blocked tasks
are recorded until each blocked task has a rendezvous partner Ease does
not guarantee which of the blocked tasks will rendezvous first

Ease converts external events (interrupts) to messages which the tasks
can synchronise with through a block on receive mechanism If there is a
task waiting for the event then Ease sends a message to inform that task
that the event has occurred If there is no task waiting then the executive
records a lost interrupt and continues on Lost interrupts usually indicate
a pathological error m the application’s timing or that the processor is too
slow for the application

A .3 W orking w ith Ease

Tasks access Ease services through C function calls As a result of this tasks
must be written in a C or a C callable assembler if they wish to avail of any
communication or synchronisation services Ease provides

A .3.1 N a m in g C o n v en tio n s u sed w ith Ease

All Ease functions, type definitions and application wide global variable iden­
tifiers have Ease prepended to them Ease uses this convention to keep Ease
identifiers distinct from user application identifiers Ease can not predict the
results of an application programmer generating identifiers which start with
the characters Ease

3

Task is the name given to a separate concurrent process withm an Ease
application Each task possesses its own run time stack The root function
of a task operates like an autonomous concurrent m a m () a function and is
initiated at run time by Ease The root function’s prototype must be of the
form void task-name(void) In the concurrent environment functions used
by more than one task must be re-entrant so static data is not corrupted
Therefore the application programmer must ensure that there is only one
task using any non re-entrant function at a time

Ease requires application programmers to write an application specific
function called EaseForge() This function consists of calls to set timer
frequencies and a series of calls to EaseCreate() 2 to inform Ease of the
names of the root functions, the priorities and stack allocations of each task
m the application

The priority convention m Ease defines the highest priority as zero There
may up to seven priority levels3 In the function EaseForge() there must
be at least one task created with priority zero and at least one task created
m each priority level down to the lowest priority m use

JThe actual m a m () function is reserved for use within the E a s e kernel
2Prototype in e a s e i m t h

3This limit may be altered by changing the source files and recompiling

A .3.2 T ask g en era tio n w ith Ease

4

Here is an sample of how to use EaseForge()

/*

File Forge c

*/

#include"easeimt h"
#include"motorapp h"

void EaseForge(void)
{

EaseSystemTimerInit(5000),
EaseApplicationTimerInit(4500),

EaseCreate(motor_db, 0, 0x800),
EaseCreate(control_motor, 1, 0x300),
EaseCreate(display, 2, 0x200),
EaseCreate(pc_message, 2, 0x500),

>

The first argument to EaseCreate() is a pointer to the root function
of a task The second argument is the priority level of the task The third
argument is the stack space to be allocated for that task by Ease The
application programmer must be careful when choosing this number If the
stack allocated is too small then the task stack may overrun and corrupt
data, on the other hand if the sum of the stack allocations are too great
then there may not be enough physical memory The stack must be able
to accommodate all the local variables of the root task plus those of any
functions which are subsequently called to the deepest nested level and must
cater for memory taken by the actual parameters passed on the stack

The above EaseForge() function tells Ease that the application consists
of four tasks The #mclude file motorapp h contains among other things
the prototypes of the root functions

A .3.3 S erv ices o f Ease

The services of Ease are accessed through direct C function calls An appli­
cation compilation unit must #include the file ease h. to give the compiler

5

information on the service function prototypes
The following are prototypes of Ease functions

Called from application tasks (prototypes in ease h)

int EaseReceive(mt src_ch,
void * msg,
m t max_msg_size,int* msg_size,
EaseTaskId_t* rendezvous_tsk),

int EaseSend(int dst_ch,
void * msg,
int msg_size,
EaseTaskId_t* rendezvous_tsk),

int EaseApplicationTimerSet(mt ticks,
int channel,
m t mode) ,

int EaseSamplerSet(int ticks,
int channel,
int mode),

int EaseSystemTimerSet(int ticks,
m t channel,
m t mode_c) ,

m t Easelnt01mt(mt channel),

Called m EaseForge() (prototypes m easeinit h)

void EaseSystemTimerInit(mt f req) ,

void EaseApplicationTimerInit(mt freq) ,

void EaseCreate(EaseTaskId_t function,
m t priority,
m t stack.alloc) ,

The most fundamental functions are EaseSend() and EaseReceive()
as they are central to task communication and synchronisation The above
functions are described m detail m Section A 8 and Section A 9

6

A .4 C urrent p latform o f Ease

Ease is designed m a modular fashion using C where possible and assembly
language where necessary so as to make it as portable as possible Although
it is desirable that an executive would be portable, it has inherent machine
dependent modules and has to be developed on a physical hardware platform

The target platform chosen for the first prototype of Ease is one using the
TMS320C30 DSP microprocessor This was chosen for its performance, func­
tionality and the readily available C compiler made by Texas Instruments
More specifically the physical platform is a TMS320C30 micro-controller de­
veloped by Loughborough Sound Images Ltd The software platform is the
Texas Instruments TMS320C30 microprocessor development system

A .4.1 T M S 3 2 0 C 3 0 C om m an d files

The TMS320C30 linker employs a command file for information on memory
configuration of the target hardware platform This command file also al­
locates sections to particular places m the target memory map The linker
places code and data from output obj files m these sections thereby popu­
lating absolute memory without the need for embedding absolute addresses
into source files In this way source files can be written independently of the
target platform because the cmd file is application platform specific For
embedded applications the code, reset vector and data constants sections
would be placed m ROM through the cmd file

A .4.2 P la tfo r m sp ec ific P C in terfa ce

The LSI board used for prototyping Ease shares a dual port memory area
with an IBM PC thereby facilitating two way on-lme communication PC to
DSP interface requires programs running on both the PC and the DSP The
PC program was designed and tested as an MSDos application using Bor­
land Turbo C + + version 1 01 Ease provides prototypes for special functions
and information for this platform specific interface m an #in c lu d e file called
dsp_if h which is included by both the PC resident and DSP resident pro­
grams This platform specific interface is described m detail m section A 10

7

A .4.3 P la tfo r m t im in g In fo rm a tio n

On the LSI card the executive switches context in 10/ms while time-slicmg,
it passes messages m 38fxs and responds to interrupts m 8fis Only tasks on
the highest priority level can have that response guaranteed

A .5 M ech an ism s o f Ease

A .5.1 Ease error h a n d lin g

Ease indicates errors through leaving an error message string at a specific
location m memory This location can also be accessed by application tasks
through the pointer EaseErrorMessage which is declared m the Ease include
file ease h An application task detecting a serious error can copy its er­
ror message string to EaseErrorMessage Ease also gives application tasks
access to special variables through the include file ease h which gives infor­
mation on interrupts which are lost through no task being ready to respond
to them

The memory location which EaseErrorMessage points to is chosen to
be a location which an external computer system can access The obvious
choice for this location on the particular platform which the prototype Ease
was developed was in the dual port memory space

The following are the Ease error messages

• Too Many Tasks created in EaseForge This error message indi­
cates that there are too many tasks created for the particular Ease
compilation

• Number of task priority levels exceeds max in. EaseForge This
error message indicates that there are too many priority levels for the
particular Ease compilation

• Ease System timer not initialised This error message indicates
that the Ease system timer is not set and Ease cannot function

• Priority Rules not Respected m EaseForge This error message
indicates that there is a gap m the priority levels of the created tasks

8

There should be at least one task m each priority level

• Illegal Exit form root task task number This error message in­
dicates that there is a return from a root task function indicated by
task number Task number is derived from the order m which tasks
are created m the Ease intialisation function EaseForge() The first
task created m EaseForge() is numbered one

The first two messages indicate that the limits set m the Ease library
ease lib are exceeded If the application programmer wishes to extend
these limits the Ease source module kernel c must be recompiled with the
appropriate changes made to the symbolic constants defined m the Ease in­
clude file kernel h Ease will not initiate any tasks or enable any interrupts
if any of the first four conditions arise and will sit in a tight loop

A .6 Ease T im ers

Ease timers generate events at a rate set in the Ease application specific ini­
tialisation function EaseForge() through calls to EaseSystemTimerlnit ()
and EaseApplicationTimerlnit () The prototypes of these functions are
declared m the Ease include file Easeinit h The periods set by these calls
are the smallest time divisions with which Ease can provide timer services
Application tasks can avail of timer services at discrete submultiples of these
events

The timers are only set once and are only set before task initiation because
timers being reset on-line will affect the realtime software integrity

An application task requests Ease to send a message on a specific inter­
task communication channel to mark the occurrence of a specific number of
timer events Ease provides these timer services in an astable or monostable
mode The prototypes to set timers are declared m the Ease include file
ease h

Application timers which generate triggers for analogue samplers consti­
tute a special case of Ease timer services Ease sends a message on the
conclusion of each sampling period which is marked by an end of conversion
event

9

A .7 D irecto ry O rgan isation o f Ease

The release version of Ease has files in six directories, they are as follows

• Src East source modules and library file ease lib

• Include East include files

• Bin PC batch and executable files to aid East

• Skeleton Skeletal East files upon which applications can be built

• Apps Sample Ease application

• Motor Sample motor application with Ease

• Doc User documentation

A .7.1 Source F ile s o f Ease

The source files of Ease are compiled, linked and archived into a library file
called ease lib which the Ease application tasks may access through the
Ease include file ease h The Ease library file ease lib is target platform
specific and the source files of Ease may have to be recompiled and archived
for each particular target platform system In this way the Ease application
tasks are target platform independent The only application specific function
required by Ease is the initialisation function EaseForge() The following
figure shows the Ease modules which constitute the initial version of Ease

Kernel obj Comm obj Tim obj Kextra obj IntO obj T m sjf obj

The above modules have the following purposes

• Kernel obj This module handles task scheduling, initialisation and
system timer services

1 0

• Kextra obj This module contains services for the Ease source mod­
ules which have to be written in written in assembly language

• Comm obj This module handles mter-task communication

• Tim obj This module handles application timer services

• Into obj This module deals with interrupts on the external interrupt
line 0

• Tms_if obj This module deals with data exchange via a dual port
memory system

The most target platform specific file on a TMS320C30 system is the Ease
linker command file ease cmd This directs the TMS320C30 linker to place
the components of object files m appropriate sections of physical memory

A .7.2 In c lu d e files

The Ease include directory has files which are to be included by application
tasks compiled under Ease and by the compilation unit which contains the
Ease initialisation function EaseForge() It contains three files as follows

• Easemit h This file is included for use by the Ease initialisation
function EaseForge() It declares the prototypes for task creation
and timer initialisation

• Ease h This is included directly by an application task’s compilation
units It defines Ease symbolic constants, declares function prototypes
for Ease services and declares application wide Ease global variables

• Dsp_if h This include file is the most basic include file for PC to DSP
data interchange This contains symbolic constants referencing specific
locations m the dual port memory interface which will be different for
each applications interface The file is therefore usually included as a
local include file

11

A .8 P r o to ty p es o f E a se in it.h

This file is used to declare the task creation and timer initialisation function
prototypes and should only be called from the compilation unit containing the
Ease application specific initialisation function EaseForge() The following
prototypes are declared by E a se im t h

• E aseC reate()

• EaseSystem T im erlnit()

• E aseA p p lica tio n T im erln it()

The object files which contain these functions are archived into the Ease
library file Ease l i b

12

A .8.1 E a seC rea te ()

Prototype

void EaseCreate(EaseTaskId_t function,
int priority,
int stack_alloc),

Argum ents

• EaseTaskId_t function This indicates to Ease the function which
is to be made a root function of an Ease task

• int priority This is the priority level that the created task is to be
placed at

• int stack_alloc This is the stack allocation for the created task m
32-bit words

Description This function is used to register and initiate a specific Ease
task The call informs Ease of the details of the task’s priority, stack al­
location and the task’s root function identification It is called from the
application specific Ease initialisation routine EaseForge()

13

C onstraints

• EaseTaskId_t function This can be any C function whose prototype
is void function-nameivoid)

• int priority If the priority level argument is not valid then an error
message will be generated and Ease will not initiate any tasks

• int stack_alloc Ease does not conduct on-lme stack monitoring
stack_alloc must be large enough to accommodate all the local vari­
ables of the root task plus those of any functions which are subsequently
called to the deepest nested level and must cater for memory taken by
the actual parameters passed on the stack If the sum of task stack
allocations within an application is too large then there may not be
enough physical memory to accommodate them

• The onus is on the application developer to ensure that this function is
only called from the Ease application specific function EaseForge()
Ease will behave unpredictably if this is not adhered to

14

Prototype

void EaseSystemTimerlnit (m t freq),

Argum ents

• int f req This number is the frequency at which system clock is to
be set at m hertz

D escription This call initializes the system timer The system timer is
used by Ease for time slicing and for application task timer services The
frequency of the system timer is set before any task is initiated The pe­
riod set by f req is the smallest time division between system timer events
Ease allows application tasks to use events for timer services as detailed m
section A 9 3

Constraints

• The onus is on the application developer to ensure that this function is
only called from the Ease application specific function EaseForge()
The behaviour of Ease will be unpredictable if this is not adhered to

A .8.2 E a se S y ste m T im e r In it()

15

P rototype

void EaseApplicationTimerInit(mt freq),

Argum ents

• m t freq This number is the frequency at which the application
timer is to be set at m hertz

D escription This call initializes the application timer Ease uses this timer
exclusively for application task timer services The frequency of this timer is
set before any task is initiated The period set by freq is the smallest time
division between application timer events Ease allows application tasks to
use events for timer sences as detailed m section A 9 4

Constraints

• The onus is on the application developer to ensure that this function is
only called from the Ease application specific function EaseForge()
The behavour of Ease will be unpredictable if this is not adhered to

A .8.3 E a seA p p lic a tio n T im e rIn it()

16

A .9 P r o to ty p es o f E ase .h

The file Ease h is used to declare the Ease service calls for use by application
tasks The following prototypes are declared by Ease h

• EaseReceive()

• EaseSend()

• EaseSystemTimerSet()

• EaseA pplicationT im erSet()

• EaseSam plerSet()

• E a se ln tO In it()

The object files which contain these functions are archived into the Ease
library file Ease l i b

e

17

P rototype

m t EaseReceive(mt src_ch,
void * msg,
m t max_msg_size,
m t * msg_size}
EaseTaskId_t* rendezvous_tsk),

Argum ents

• m t src_ch This is a positive integer to identify the source inter-task
communication channel which this call seeks to receive a message from

• void * msg This is a pointer which indicates to Ease where a message
will be passed in the receiving task’s object memory The type is void
* to make it a generic pointer type

• m t max_msg_size This informs Ease of the largest message size, m
32-bit words that the receiving task can receive

• m t * msg_size This returns the actual size of the message received
in 32-bit words

• EaseTaskId_t* rendezvous_tsk This returns the identifier of the
root function of the sending rendezvous partner

A .9.1 E a seR ec e iv e ()

18

R etu rn Value

• in t The non zero return values following are symbolic constants
denoting error messages and are defined m the Ease include file ease h

— A zero is returned if operation is successful

— NOT_VALID_CHANNEL is returned if src_ch is not a defined Ease
mter-task communication channel

— MSG_TOO_LARGEJFOR_RECEIVER is returned if the receiving task tries
to rendezvous with a blocked sending task whose message size is
greater than max_msg_size

D escription In this call a task tries to obtain a message from the Ease
mter-task communication channel indicated by src_ch and blocks if none is
available It will remain blocked until a sending task sends on that channel
with a message not bigger than max_msg_size

19

C onstraints

• m t src_ch This must be a positive integer denoting a defined Ease
inter-task communication channel Valid channels are m the range
zero to the symbolic constant CHANNELS which is a limit defined m
the Ease mter-task communication source module by the include file
comm h This limit is set at compile time before archiving comm obj
into ease h

• void * msg The msg argument is designed to be a pointer to data
types within a task’s local or static global memory The behavour of
Ease will be indeterminate if msg is a pointer to anything outside a
task’s private memory space

• m t max_msg_size This limit is the responsibility of the application
developer who must ensure that the space allocated for an incoming
message is actually max_msg_size If this number is larger than the
space actually allocated, data is liable to be corrupted with unpre­
dictable results Typically a s iz e o f () macro will ensure that this
will not occur

20

P rototype

m t EaseSend(int dst_ch,
void * msg[],
int msg_size,
EaseTaskId_t* rendezvous_tsk),

Argum ents

• m t dst_ch This is a positive integer to identify the destination inter­
task communication channel, over which this call seeks to send a mes­
sage

• void * msg This is a pointer which indicates to Ease where m the
sending task object memory the message to be sent exists

• int msg_size This indicates to Ease the actual size of the message
to be relayed m 32-bit words

• EaseTaskId_t* rendezvous_tsk This returns the identifier of the
root function of the receiving rendezvous partner

A .9.2 E a seS en d ()

21

R etu rn Value

• m t The non zero return values following are symbolic constants
denoting error messages and are defined m the Ease include file ease h

- A zero is returned if operation is successful

- NOT_VALID_CHANNEL is returned if dst_ch is not a defined Ease
inter-task communication channel

- MSG_TOO_LARGE_FOR-RECEIVER is returned if the sending task tries
to rendezvous with a blocked receiver task who cannot receive a
message of size msg_size

Description In this call a task tries to send a message on the Ease inter­
task communication channel indicated by dst_ch and blocks if there is no
receiver waiting It will remain blocked until a receiving task seeks a message
on that channel with a maximum message size greater than or equal to than
msg_size

22

C onstraints

• in t dst_ch This must be a positive integer denoting a defined Ease
mter-task communication channel Valid channels are m the range
zero to the symbolic constant CHANNELS which is a limit defined in
the Ease mter-task communication source module by the include file
comm h This limit is set at compile time before archiving comm obj
into ease h

• void * msg The msg argument is designed to be a pointer to data
types withm a task’s local or static global memory The behavour of
Ease will be indeterminate if msg is a pointer to anything outside a
task’s private memory space

• in t msg_size The onus is on the application developer who must
ensure that this is the actual size of the message to be sent If the
number is too small then an incomplete message will be sent If the
number is too large then unspecified data will be appended to the end
of the message Typically a s iz e o f () macro will ensure that these
scenarios will not occur

23

P rototype

int EaseSystemTimerSet(m t ticks,
int channel,
int mode),

Argum ents

• int ticks This is the number of system timer events an application
task wishes to wait before Ease indicates a timing event

• m t channel This is a positive integer which indicates to Ease the
mter-task communication channel over which a message is to be relayed
indicating the occurrence of ticks number of system timer events

• int mode This informs Ease of the mode required from the system
timer The timer may be set m a MONOSTABLE or ASTABLE mode

A .9.3 E a se S y ste m T im e r S e t()

24

R etu rn Value

• int The non zero return values following are symbolic constants
denoting irregularities and are defined m the Ease include file ease h

— A zero is returned if operation is successful

- NOT_VALID_CHANNEL is returned if channel is not a defined Ease
mter-task communication channel

— RESET_WHILE_ACTIVE is returned if the system timer is already
servicing a timing request when the current call reset it

- INCORRECT_TIMER_MODE is returned if the mode argument is not
one of the symbolic constants MONOSTABLE or ASTABLE defined m
the Ease include file ease h

D escription In this call an application task requests timer services from
the Ease system timer The system timer generates events at a rate defined
by EaseSystemTimerlnit () This requests Ease to send a message indi­
cating that ticks number of system timer events have occurred meaning
that a specific period of time has elapsed This message is sent on the Ease
mter-task communication channel indicated by channel The message will
be sent repeatedly every ticks system timer events if the mode is ASTABLE If
the mode is MONOSTABLE is the message will be sent once after ticks system
timer events has elapsed

The message consists of a integer array of two 32-bit words, the first word
being SYSTEM_TIMER_MSG which is a symbolic constant defined m ease h and
the second being the number of system timer events that happened since
system timer initialisation by the function EaseSystemTimerlnit ()

This call will override any previous system timer request which has not
expired

25

C onstrain ts

• m t channel This must be a positive integer denoting a defined Ease
inter-task communication channel Valid channels are m the range
zero to the symbolic constant CHANNELS which is a limit defined in
the Ease mter-task communication source module by the include file
comm h This limit is set at compile time before archiving comm obj
into ease h

• int mode This must be one of the symbolic constants MONOSTABLE or
ASTABLE defined in ease h

26

Prototype

int EaseApplicationTimerSet(int ticks,
m t channel,
int mode),

Argum ents

• m t ticks This is the number of application timer events an appli­
cation task wishes to wait before Ease indicates a timing event

• int channel This is a positive integer which indicates to Ease the
inter-task communication channel over which a message is to be relayed
indicating the occurrance of ticks number of application timer events

• m t mode This informs Ease of the mode required from the system
timer The timer may be set m a MONOSTABLE or ASTABLE mode

Return Value

• m t The non zero return values following are symbolic constants
denoting irregularities and are defined m the Ease include file ease h

— A zero is returned if operation is successful

— NOT_VALID_CHANNEL is returned if channel is not a defined Ease
inter-task communication channel

— RESET_WHILE_ACTIVE is returned if the system timer is already
servicing a timing request when the current call reset it

— INCORRECT_TIMER_MODE is returned if the mode argument is not
one of the symbolic constants MONOSTABLE or ASTABLE defined m
the Ease include file ease h

A .9 .4 E a se A p p lic a tio n T im e r S e t()

27

Description In this call an application task requests timer services from
the Ease application timer The application timer generates events at a
rate defined m EaseApplicationTimerlnit () This requests Ease to send
a message indicating that ticks number of application timer events have
occurred meaning that a specific period of time has elapsed This message
is sent on the Ease mter-task communication channel indicated by channel
The message will be sent repeatedly every ticks system timer events if the
mode is ASTABLE If the mode is MONOSTABLE is the message will be sent once
after ticks system timer events has elapsed

The message consists of a integer array of two 32-bit words, the first
word being APPLICATION_TIMER_MSG which is a symbolic constant defined
m ease h and the second being the number of application timer events
that happened since application timer initialisation by the Ease function
EaseApplicationTimerlnit()

This call will override any previous application timer request which has
not expired

Constraints

• int channel This must be a positive integer denoting a defined Ease
mter-task communication channel Valid channels are in the range
zero to the symbolic constant CHANNELS which is a limit defined m
the Ease mter-task communication source module by the include file
comm h This limit is set at compile time before archiving comm obj
into ease h

• int mode This must be one of the symbolic constants MONOSTABLE or
ASTABLE defined in ease h

28

Prototype

m t EaseSamplerSet(int channel),

Argum ents

• int channel This is the Ease inter-task communication channel over
which a message will be passed by Ease indicating a sampling event

R eturn Value

• int The non zero return values following are symbolic constants
denoting irregularities and are defined in the Ease include file ease h

- A zero is returned if operation is successful

- NOT_VALID_CHANNEL is returned if channel is not a defined Ease
inter-task communication channel

- RESET _WHILE_ACTIVE is returned if the application timer driving
controlling the sampler is already servicing a timing request when
the current call reset it

D escription In this call an application task requests Ease to generate mes­
sages at an end of conversion event from the target system’s analog inter­
face Sampling events are triggered by the application timer which generates
triggering pulses at a rate defined m EaseApplicationTimerImt() This
message is sent on the Ease inter-task communication channel indicated by
channel at each sampling instant

The message consists of a integer array of two 32-bit words, the first
word being END_0F_C0NVERSI0N_MSG which is a symbolic constant defined
in ease h and the second being the number of application sampling events
that happened since application timer initialisation by the Ease function
EaseApplicationTimerlnit()

This call will override any previous application timer request set by
EaseApplicationTimerSet which has not expired

A .9.5 E a seS a m p lerS e t()

29

C onstraints

• int channel This must be a positive integer denoting a defined Ease

mter-task communication channel Valid channels are m the range
zero to the symbolic constant CHANNELS which is a limit defined m
the Ease mter-task communication source module by the include file
comm h This limit is set at compile time before archiving comm obj
into ease h

30

Prototype

m t Easelnt01nit(int channel),

Argum ents

• int channel This is the Ease mter-task communication channel over
which a message will be passed by Ease indicating an INTO event

R eturn Value

• int The non zero return values following are symbolic constants
denoting error messages and are defined m the Ease include file ease h

— A zero is returned if operation is successful

- NOT_VALID_CHANNEL is returned if channel is not a defined Ease
mter-task communication channel

D escription In this call an application task requests Ease to generate
messages at an INTO event, which is triggered by an external interrupt on
the INTO line This message is sent on the Ease mter-task communication
channel indicated by channel at each event instant

The message consists of a integer array of two 32-bit words, the first
word being INT0_MSG which is a symbolic constant defined m ease h and
the second being the number of INTO events that happened since this call
enabled the INTO external interrupt line

Constraints

• int channel This must be a positive integer denoting a defined Ease
mter-task communication channel Valid channels are m the range
zero to the symbolic constant CHANNELS which is a limit defined m
the Ease mter-task communication source module by the include file
comm h This limit is set at compile time before archiving comm obj
into ease h

A .9.6 E aseIn tO In it()

31

A .10 In terface w ith E x tern a l C om p u ter S ys­
tem

The prototype version of Ease availed of a dual port memory resource for
data exchange between the target DSP system and an external computer
system The communication process is governed by the application specific
Ease include file Dsp_if h The file Dsp_if h contains symbolic constants
which reference specific locations m absolute memory withm the dual port
memory space and declares prototypes for functions which application tasks
can call to read and write from these locations

The functions following are the Ease functions declared m Dsp_if h for
use by application tasks

• EaseDspWordOut()

• EaseDspWordIn()

• EaseDspFloatQut(),

• EaseGetDspPtr()

The prototype version of Ease employed an IBM PC for on-line user
interface with a running Ease application The PC could access the DSP
dual port memory via ports in the PC I/O memory space Prototype Ease
applications employed an executable C file to conduct user interface from the
PC side This C file is compiled including the Ease include file Dsp_if h
This ensures that an application and the user interface functions agree on
memory locations for data exchange The file Dsp_if h also contains port
address information for use by the PC resident C file

The skeleton file ui_skel c contains examples of how to use the functions
to read and write to the DSP dual port memory space from the PC

A .10.1 E a seD sp W o rd O u t()

P rototype

m t EaseDspWordOut(int dest,mt word),

32

• m t d e s t This indicates to Ease where in absolute memory to place
the output 32-bit word so that it can be accessed by an external com­
puter system via a dual port memory interface

• in t word This is the 32-bit word to be transfered by Ease to an
external computer system via a dual port memory interface

R eturn Value

• in t The non zero return values following are symbolic constants
denoting errors and are defined in the application specific Ease include
file dsp_if h.

- A zero is returned if operation is successful

— ADD_0UT_0F_RANGE is returned if d e s t indicates an address which
is outside the dual port memory area

Description This call is used by an application task to place 32-bit word
m absolute memory with a view to interfacing with an external computer
system via dual port memory space

This call places the word at a specific absolute memory location m the
dual port memory which typically would be referenced through a symbolic
constant defined m the Ease application specific include file dsp_if h

Constraints

• m t d e s t This must be a positive integer not greater than the physical
size of the dual port memory space (specified by the symbolic constant
DUAL defined m tm s_if h)

A rgum ents

33

P rototype

m t EaseDspWordIn(mt source) ,

Argum ents

• m t Source This indicates to Ease a specific location in absolute
memory which an external computer system has access to via dual
port memory space

R eturn Value

• m t This is the 32-bit word at the memory location that source
indicates

D escription This call is used by an application task to read the 32-bit word
residing at a specific location m absolute memory with a view to interfacing
with an external computer system via dual port memory space The absolute
address is referenced by source displaced by the location of the dual port
memory

The actual memory location of the input word would typically be refer­
enced through a symbolic constant defined m the application specific Ease
include file dsp_if h

Constraints

• m t dest This is a positive integer not greater than the physical size
of the dual port memory space (specified by the symbolic constant DUAL
defined in tms_if h)

A .10.2 E a seD sp W o rd In ()

34

P rototype

int EaseDspFloatOut(mt dest,float word),

Argum ents

• m t dest This indicates to Ease where in absolute memory to place
the output floating point value so that it can be accessed by an external
computer system via a dual port memory interface

• float word This is the floating point value to be transfered by Ease
to an external computer system via a dual port memory interface

R eturn Value

• m t The non zero return values following are symbolic constants
denoting errors and are defined m the application specific Ease include
file dsp_if h

— A zero is returned if operation is successful

— ADD_OUT_OF_RANGE is returned if dest indicates an address which
is outside the dual port memory area

D escription This call is used by an application task to place a floating
point value m absolute memory with a view to interfacing with an external
computer system via dual port memory space

This call places the floating point word at a specific absolute memory lo­
cation m the dual port memory which typically would be referenced through
a symbolic constant defined m the Ease application specific include file
dsp_if h

Constraints

• m t dest This must be a positive integer not greater than the phys­
ical size of the dual port memory space This size is specified by the
symbolic constant DUAL defined m tms_if h

A .10.3 E a seD sp F lo a tO u t()

35

Prototype

void * E aseG etD spPtr(m t memref) ,

Argum ents

• m t memref This indicates to Ease a specific location m absolute
memory which an external computer system has access to via dual
port memory space

R eturn Value

• void * Any non NULL return value returned is a pointer to the mem­
ory location indicated by memref

D escription This call is used by an application task to obtain a pointer
to a specific location m absolute memory with a view to interfacing with an
external computer system via dual port memory space The absolute address
is referenced by memref displaced by the location of the dual port memory

The memref argument would typicially reference the dual port memory
space through a symbolic constant defined m the application specific Ease
include file dsp_if h

Constraints

• m t memref This must be a positive integer not greater than the
physical size of the dual port memory space If memref is invalid then
the function will return a NULL pointer

A .10.4 E a s e G e tD sp P tr ()

36

A . 11 P r o to ty p es o f U I-L IB

A .11.1 read w ord ()

P rototype

long readw ord(long so u rc e) ,

Argum ents

• long source This is the absolute address of a location m the dual
port memory

R eturn Value

• long in t This is a 32-bit word at location source

D escription This call is used to fetch a 32-bit word from an absolute
address m the dual port memory for PC consumption

Constraints

• long source This must be a positive integer not greater than the
physical size of the dual port memory space (specified by the symbolic
constant DUAL defined m tm s_if h)

37

A .11.2 w r itew o rd ()

Prototype

void wnteword(long dest.long data),

Argum ents

• long dest This is the absolute address of a location m the dual port
memory

• long data This is a 32-bit word to be written to the an absolute
address of a location m the dual port memory

R eturn Value

• void

D escription This call is used to place a 32-bit word at an absolute address
m the dual port memory for DSP consumption

Constraints

• long source This must be a positive integer not greater than the
physical size of the dual port memory space(specified by the symbolic
constant DUAL defined m tms_if h)

38

P rototype

double tmsftoibmf(long a),

Argum ents

• long a This is the TMS320C30 32-bit floating point representation

to be converted

R eturn Value

• double This is an IEEE format double precision float

D escription This call is used convert a 32-bit floating point format word
previously obtained from the DSP and convert it to the IEEE format

A .12 In sta llin g Ease in an IB M P C

The prototype version of Ease is developed for a TMS320C30 platform Pro­
grams written under Ease use the Texas instruments microprocessor develop­
ment tools The particular hardware environment is the TMS320C30 board
developed by Loughborough Sound Images Ease is completely compatible
with this hardware platform

A .12.1 O b ta in in g Ease

The release version of Ease can be obtained through access to an anonymous
f tp site located in Dublin City University named f tp eeng dcu le Upon
successful connection to the ftp site give the user name as f tp to log m as a
guest and the password as your Internet email address

Ease is to be found m the pub/power/ease directory Declare the transfer
protocol as binary mode by using the bin command and transfer the files
README TXT and EASE ZIP to your PC using the get command

Use pkunzip with the switch -d to extract the files and subdirectories of
Ease The dos command line would look like this

A .11.3 tm sto IE E E ()

39

pkunzip -d ease zip

The file README TXT gives a detailed description of how to install Ease

A .12.2 S e tt in g up Ease

The LSI systems board is connected to the PC via the PC I/O ports The
base address of this port must be written to the data file port dat m the

\ease\bin

directory The port address is to be given m ASCII hexadecimal format In
the prototype version of Ease port dat contains the address 290

The TMS320C30 C compiler uses the environment variable C_DIR to spec­
ify alternate directories that contain # m c l u d e files The path of the Ease
include files must be appended to the existing C_DIR paths The Appended
entry would look like the following if Ease is installed on the C drive

C_DIR=C \ease\mclude

A .12.3 R u n n in g an Ease A p p lic a tio n

An application loaded into the c30 memory and executed through the pro­
gram 30run exe 30run operates on out files To run an application type
30run and the name of the out file

To interface with the PC the Ease application requires a program to be
run from the PC The file u i-m in gives the minimum interface with Ease
Each application will have its own user interface program associated with it

A .12.4 P la tfo rm S p ecific C o n sid era tio n s

The prototype version of Ease was developed on a TMS320C30 system board
developed by Loughborough Sound Images ltd If Ease is to be used on
another hardware platform then alterations would have to be made to certain
Ease modules

40

If Ease is to be utilised on a hardware platform which is different from the
prototypes but one that still uses the TMS320C30 microprocessor system
then the majority of the code of Ease does not need to be changed The only
changes required are m the interface module tm s_if asm and m the TMS
linker command file ease cmd

Tms_if needs to be altered as it references absolute memory and as it
relies on there being a dual port memory resource

Ease cmd describes the hardware configuration to the TMS linker so it
can generate out files from object files

A .12.4.2 Configuration for a Different M icroprocessor System

If the target platform’s hardware system is based on microprocessor different
from the prototypes, all the Ease C source files are still valid All of the
assembly modules would have to be altered for the specific processor

A .12.4.1 C onfiguration for a different T M S 320C 30 S ystem

41

A ppendix B

Code Listings

B . l Ease Source C od e L istin gs

B .1 .1 K ern e l.h
/* *

FILE Kernel h

This file contains
a) Module to initialize Task control blocks
b) Scheduler for servicing clock ticks
c) General scheduler called after interrupts
d) System timer services

David Doyle 6/10/94

Date initials history

2/7/93 D D PRE-RELEASE

*/

#def m e NULL (0)
#define TRUE 1
#define FALSE 0
«define ROGUE -1
#defme SYSTEM_TIMER_MSG 4
#defme INC0RRECT_TIMER_M0DE -3
#define RESET_WHILE_ACTIVE -4

#def m e MONOSTABLE 0
#def m e ASTABLE 1

0

«define public
«define private static

#defme EaseLock 1
Sdefine EaseUnlock 0

«define MAX.TASKS 15
«define PRIORITY_LEVELS 8
«define QUANTUM 2

«define TIMERO.INTVEC 0x9

typedef void (*EaseTaskId_t)(void),

typedef struct EaseTaskCtrl_s
{

m t blocked_status, /* FALSE if not blocked else TRUE */
int quantum_tick,
int task_sp,
int task_id, /* integer to identify task */
EaseTaskId_t root, /* address of root function of task */
struct EaseTaskCtrl_s *next.member, /* pointer to next member */

} EaseTaskCtrl ,

extern EaseTaskCtrl EaseTask[MAX_TASKS+l],
extern EaseTaskCtrl* EaseTaskPtr[PRIORITY_LEVELS],
extern m t EaseCurrentTask,
extern m t EaseCurrentPrionty,
extern m t Eas eTaskPr[MAX_TASKS] ,
extern m t EaseNtasks[PRIORITY_LEVELS],
extern void EaseScheduleAfterlnt(void),
extern void EaseForge(void),
extern void Easeldle(void),
extern void EaseSystemTimerlnit (m t freq),
extern m t EaseSystemTimerSet(mt ticks,mt channel,mt mode_c),
extern char* EaseErrorMessage,
extern m t EaseClockTick,
extern m t EaseScheduleCount,

extern void EaselntOInt(void),

1

B .1 .2 K ern e l.c
/**/
/* FILE kernel c */
/♦♦SIC*************!!!***********************************/

#include<strmg h>
#mclude<stdlib h>
#include"kernel h"
#indude"comm h" /* included for channel_imt(), */

public EaseTaskCtrl EaseTask[MAX_TASKS+1],
public EaseTaskCtrl* EaseTaskPtr[PRIORITY_LEVELS],
public int EaseCurrentTask,
public int EaseCurrentPriority,
public int EaseNtasks[PRIORITY_LEVELS]={ 0,0,0,0,0 },
public int EaseScheduleCount=0,
public int EaseTaskPr[MAX_TASKS],
public int EaseSystemTimerActive=FALSE,
public int EaseSystemTimerNticks=0,

extern void EaseTimerOInt(void),

private m t system_timer_penod_of_ticks,
private m t system_timer_mode,
private m t system_timer_channel,
private m t idle_pnonty=0,
private m t count=0,
private m t system_timer_mitialised=FALSE,

void EaseCreate(EaseTaskId_t function,int priority,mt stack_alloc)

if(idle_pnonty < priority)
idle_prlority=prlorlty,

EaseTask[count] blocked_status=FALSE,
EaseTask[count] quantum_tick=0,
EaseStack(count,stack_alloc,function),
EaseTask[count] task_id=count,
EaseTask[count] root=function,
Eas eTaskPr [count] =pnor lty,
if(count++>MAX_TASKS)
{

strcpy(EaseErrorMessage,"Too Many Tasks created m EaseForgeO"),
EasePauic(),

>
>

void EaseGroup(void)

2

EaseTaskCtrl * ptr,* first,
m t 1 , j , warmng=FALSE,

for(j =0,j<PRIORITY_LEVELS, j ++)
{

first=(NULL),
for(1=0,i<(count),i++)
■C

if(EaseTaskPr[l]>=PRIORITY_LEVELS)
{

strcpy(EaseErrorMessage,
"Number of task priority levels exceeds max m EaseForge"),

EasePanicO ,
>

if(EaseTaskPr[l]==j)

EaseNtasks[j]++,
if(EaseNtasks[j]==l)
{

EaseTaskPtr[j] = &EaseTask[l],
ptr = &EaseTask[i],
first = ftEaseTask [l],

>
else

ptr->next.member = &EaseTask[i],
ptr = &EaseTask[i],

>
>

}
if(first==(HULL))

warnmg=TRUE,
if(warning==TRUE && first1=(NULL))
{

strcpy(EaseErrorMessage,"Priority Rules not Respected m EaseForge"),
EasePanicO ,

>
ptr->next_member=first,

>
>

void Easelnit(void)

EaseForge(),
if(system_timer_initialised==FALSE)
{ I

strcpy(EaseErrorMessage,"Ease System timer not initialised"),
EasePanicO .

L 3

>
EaseCreate(EaseIdle,(idle_priority+l),0x50),
EaseGroup(),
EaseChannellnitO,
EaseCurrentTask=EaseTaskPtr[0]->task_id,
EaseCurrentPnority=0,

void EaseScanLevelAfterInt(mt *z)
i

EaseTaskCtrl *sweeper,

sweeper=EaseTaskPtr[*z]->next_member,

while(sweeper’=EaseTaskPtr[*z])
{

if(sweeper->blocked_status==FALSE)
{

EaseCurrentTask=sweeper->task_id,
EaseCurrentPrionty=*z,
EaseTaskPtr[*z]=sweeper,
EaseRun(EaseCurrentTask),

>
sweeper=sweeper->next_member,

>
>

void EaseScheduleAfterlnt(void)
■C

m t z,
z=0,
EaseScheduleCount++,
while(TRUE)
{

if(EaseTaskPtr[z]->blocked_status==FALSE)
■C

EaseCurrentPriority=z,
EaseCurrentTask=EaseTaskPtr[z]->task_id,
EaseRun(EaseCurrentTask),

>
else
{

EaseScanLevelAfterInt(&z),
>
z++,

}
}

m t EaseSystemTimerSet(mt ticks,mt channel,mt mode_c)

4

m t status=0,
asm(" TRAP 0"),
if (0>ch.aitnel| I ch.annel>CHANNELS)
{

asm(" TRAP 1"),
return(NOT_VALID_CHANNEL),

>
if(mode_c1=M0N0STABLE&&mode_c,=ASTABLE)
i

asm(" TRAP 1"),
r e t u m (IHC0RRECT_TIMER_M0DE) ,

>
if(EaseSystemTimerNticksl=0)

status=RESET_WHILE_ACTIVE,
EaseSystemTimerNticks=ticks,
system_timer_period_of_ticks=ticks,
system_timer_mode=mode_c,
EaseSystemTimerActive=TRUE,
system_timer_channel=channel,
asm(" TRAP 1"),
return(status),

void EaseSystemTimerMsg(void)

EaseTaskCtrl *sweeper,
int i,message[2],size,tail,head,lucky_task,
EaseChanCtrl *ch,

ch=&EaseChannel[system_timer_channel],
tail=ch->tail_q,
head=ch->head_q,
size=2,

message[0]=SYSTEM_TIMER_MSG, ,
message[1]=EaseClockTick,
if(system_timer_mode==ASTABLE)
{

EaseSystemTimerHticks=system_timer_period_of_ticks,
>
else
{

EaseSystemTimerActive=FALSE,
>

if((ch->source_flag==FALSE)&&(tail1=head))
{

EaseTransfer((int *)message,(m t *)ch->msg_q[tail],size),

5

lucky_task=ch->id_q[tail] ,
EaseTask[lucky_task] blocked_status=FALSE,
EaseRendezvousRedemer[lucky_task]=(EaseTaskId_t)(NULL),
EaseSenderMsgSize[lucky_task] =size,
if(++ch->tail_q==MAX_MESSAGES)

ch->tail_q=0,
EaseScheduleAfterlntO ,

>

void EaseScanLevel(void)
{

EaseTaskCtrl *sweeper,

if(EaseSystemTimerActive==TRUE&&EaseSystemTimerNticks==0)
EaseSystemTimerMsgO,

sweeper=EaseTask[EaseCurrentTask] next_member,

while(TRUE)
{

if(sweeper->blocked_status==0)

EaseCurrentTask=sweeper->task_id,
EaseTaskPtr [EaseCurrentPnority] =sweeper,
EaseRun(EaseCurrentTask),

>
sweeper=sweeper->next.member,

>
}

void Easeldle(void)
{

while(TRUE),
}

void EaseSystemTimerInit(mt freq)
{

float tick_penod,
syst em_timer_ mitlalis ed=TRUE,
if(EaseSetVec(TIMERO_INTVEC,EaseTimerOInt)'=0)

EasePanicO,
tick_period=l/(float)freq,
EaseTimerO((mt) (tick_period*l/120E-9)),

void mam(void)

strcpy(EaseErrorMessage,""),
EaselnitQ,

6

if(EaseSetIEreg(TIMERO_INTVEC)1=0)
EasePanicQ,

EaseRun(EaseCurrentTask),
while(TRUE),

7

B .1 .3 C o m m .h
/*

FILE comm h

This file contains ease communication modules

David Doyle 10/9/94

Date initials history
* % * % * * 3|C *

10/9/94 D D PRE-RELEASE

*/

#def m e TRUE 1
«define FALSE 0

«define CHANNELS 8
«define MAX.MESSAGES 5
«define SIGNAL.CH 5

«define NOT_VALID_CHANNEL -1
«define MSG_T00_LARGE_F0R_RECEIVER -2

typedef struct EaseChanCtrl_s

int source_flag,
int id_q[MAX_MESSAGES],
m t *msg_q[MAX_MESSAGES],
m t size_q[MAX_MESSAGES],
m t head_q,
m t tail_q,

> EaseChanCtrl,

extern EaseChanCtrl EaseChannel[CHANNELS] ,
extern void EaseChannellnit(void),
extern EaseTaskId_t EaseRendezvousRedemer[MAX_TASKS],
extern m t EaseSenderMsgSize[MAX_TASKS],
extern m t EaseSendCount,
extern int EaseReceiveCount,

extern m t EaseReceive(mt src_ch,void msg[],
m t max_msg_size,
m t *msg_size,
EaseTaskId_t* rendezvous_tsk),

extern m t EaseSend(mt dst_ch,void msg[] ,
m t msg_size,
EaseTaskId_t* rendezvous_tsk),

8

B .1 .4 C o m m .c
/**
* File comm c handles intertask communication *
**/

«include "kernel h"
«include "comm h"

extern void EaseSchedule(void),
extern void EaseTransfer(mt * source,mt * dest ,int size),

public m t EaseSendCount=0,
public int EaseReceiveCount=0,

public EaseChanCtrl EaseChannel[CHANNELS],
public EaseTaskId_t EaseRendezvousRedemer[HAX_TASKS],
public m t EaseSenderMsgSize[MAX_TASKS],

void EaseChannellnit(void)
{

m t l,

for(i=0,1<CHANNELS,i++)
{

EaseChannel[1] source_flag=FALSE,
EaseChannel[1] tail_q=0,
EaseChannel[1] head_q=0,

>
>

m t EaseSend(int dst_ch,void msg[],
m t msg_size,
EaseTaskId_t* rendezvous_tsk)

{
m t i=0,head,tail,lucky_task,
EaseChanCtrl *ch,

asm(" TRAP 0"),
EaseSendCount++,

if(0>dst_chI Idst_ch>CHANNELS)
return(NOT_VALID_CHANNEL),

ch=&EaseChannel[dst_ch],
head=ch->head_q,
tail=ch->tail_q,

if((tail==head) II (ch->source_flag==TRUE))

ch->source_flag=TRUE,

9

ch->id_q[head]=EaseTaskPtr[EaseCurrentPriority]->task_id,
ch->size_q[head]=msg_size,
ch->msg_q[head] = (m t *)msg,
EaseTaskPtr[EaseCurrentPrionty]->blocked_status=TRUE,
if(++ch->head_q==MAX_MESSAGES)

ch->head_q=0,

EaseScheduleO,
*rendezvous_tsk=EaseRendezvousRedemer[EaseCurrentTask],
return(O),

>
else
{

lucky_task=ch->id_q[tail],
if(msg_size > ch->size_q[tail])

return(MSG_TOO_LARGE_FOR_RECEIVER),
EaseTransfer((mt *)msg,(mt *)ch->msg_q[tail],msg_size),
EaseTask[lucky_task] blocked_status=FALSE,

*rendezvous_tsk=EaseTask[lucky_task] root,
EaseRendezvousRedemer[lucky_task]=EaseTask[EaseCurrentTask] root,
EaseSenderMsgSize [lucky_task]=msg_size,

if(++ch->tail_q==MAX_MESSAGES)
ch->tail_q=0,

if (EaseTaskPr [lucky_task] >EaseCurrentPnonty)

asm(" TRAP 1"),
return(O),

>
else

EaseScheduleO ,
return(O),

>
>

>

int EaseReceive(int src_ch,
void msg[] ,
int max_msg_size,
int =t=msg_size,
EaseTaskId_t* rendezvous_tsk)
•C

int i=0,head,tail,lucky_task,
EaseChanCtrl *ch,

asm(" TRAP 0"),
EaseReceiveCount++,

10

if(0>src_chI|src_ch>CHANNELS)
return(NOT_VALID_CHANNEL),

ch=&EaseChannel[src_ch],
head=ch->head_q,
tail=ch->tail_q,

if((tail==head) II (ch->source_flag==FALSE))
{

ch->source_flag=FALSE,
ch->id_q[head]=EaseTaskPtr[EaseCurrentPriority]->task_id,
ch->size_q[head]=max_msg_size,
ch->msg_q[head] = (m t *)msg,
EaseTaskPtr[EaseCurrentPriority]->blocked_status=TRUE,
if(++ch->head_q==MAX_MESSAGES)

ch->head_q=0,

EaseScheduleQ,
*rendezvous_tsk=EaseRendezvousRedemer[EaseCurrentTask],
*msg_size=EaseSenderMsgSize[EaseCurrentTask],
return(O),

>
else

lucky_task=ch->id_q[tail],
if(max_msg_size < ch->size_q[tail])

return(MSG_TOO_LARGE_FOR_RECEIVER),
EaseTransfer((int *)ch->msg_q[tail],

(m t *)msg,
ch->size_q[tail]),

*msg_size=ch->size_q[tail],
EaseTask[lucky_task] blocked_status=FALSE,

*rendezvous_tsk=EaseTask[lucky_task] root,
Eas eRendezvousRedemer[lucky _t ask]

=EaseTask[EaseCurrentTask] root,
EaseSenderMsgSize[lucky_task]=*msg_size,

if(++ch->tail_q==MAX_MESSAGES)
ch->tail_q=0,

if (EaseTaskPr [lucky_task] >EaseCurrentPnority)

asm(" TRAP 1"),
return(0),

>
else

EaseScheduleQ ,
return(O),

11

>
>

12

B .1 .5 T im .h
/*

FILE TIM h

This module handles application timer services

David Doyle 7/7/93

Date initials history
* % * ate * * * * * * * * $ * * * *
7/7/93 D D PRE-RELEASE

*/

#def m e TRUE 1
#def m e FALSE 0

#defme TIMER1_INTVEC OxA
#defme CÜNVERSION_COMPLETE_INTVEC 0x2
#defme END_0F_C0NVERSI0N_INT 2
#defme APPLICATION_TIMER_MSG 3

extern void EaseApplicationTimerImt(int freq),
extern m t EaseApplicationTimerSet(mt ticks,mt channel,mt mode),
extern m t EaseSamplerSet(mt channel),
extern m t EaselntlCount,
extern m t EaseLostlntl,

13

B .1 .6 T im .c
J ** /
/* FILE tim2 c */
I $$3|c:4c3|c$34e$$34c$$:{G3|c$$$$$$3|c3(c$$3|G:4c$:4c:tc3|C3|c3|c:(c$$:4c:4c:4c$$:4c:4c:4c3|c:4c$:4E:4e$3|c $ $ $ $ $ $ $ $ $ $ $ $ /

#mclude"kernel h"
#include"comm h"
#mclude"tim h"
#mclude<stdlib h>

extern void EaseTimerllnt(void),
extern void Easelntllnt(void),

public int EaseIntiCount,
public m t EaseLostIntl=0,
public void EaseTimerlHandler(void),

private m t tim_channel,
private m t insignia,
private m t n_ticks=0,
private m t penod_oi_ticks,
private int mode,

void EaseApplicationTimerInit(mt freq)
{

float period,
int t_reg,

period=(float)1/freq,
t_reg=(mt) (period/(120E-9)),
EaseSetVec(TIMERl_INTVEC,EaseTimerlInt),
EaseSetVec(CONVERSION_COMPLETE_INTVEC.Easelntllnt),
EaseTimerl(t_reg),
Easelnt1Count=0,

m t EaseApplicationTimerSet(mt ticks,mt channel,mt mode_c)
{

m t status=0,
asm(" TRAP 0"),
if(0>channel||channel>CHANNELS)
{

asm(" TRAP 1"),
return(IiOT_VALID_CHAMEL),

>
if(mode_c1=M0N0STABLE&&mode_c1=ASTABLE)
{

asm(" TRAP 1"),
return(INC0RRECT_TIMER_M0DE),

14

}
if(n_ticks1=0)

status=RESET_WHILE_ACTIVE,
n_ticks=ticks,
penod_of _ticks=ticks,
mode=mode_c,
ins ignia=APPLICATION_TIMER_MSG,
tim_channel=channel,
EaseSetIEreg(TIMERl_INTVEC),
asm(" TRAP 1"),
return(status),

int EaseSamplerSet(mt channel)
{

int status=0,ticks=l,mode_c=ASTABLE,
asm(" TRAP 0"),
if(0>channel|Ichannel>CHANNELS)
{

asm(" TRAP 1"),
return(NOT_VALID_CHANNEL),

>
if(n_ticks1=0)

status=RESET_WHILE_ACTIVE,
n_ticks=ticks,
period_of_ticks=ticks,
mode=mode_c,
insignia=END_0F_C0NVERSI0N_INT,
tira_channel=channel,
EaseSetIEreg(CONVERSION_COMPLETE_INTVEC),
asm(" TRAP 1"),
return(status),

void EaseTimerllntHandler(void)

int i,message[2].size.tail.head.lucky.task,
EaseChanCtrl *ch,

ch=&EaseChannel[tim_channel] ,
tail=ch->tail_q,
head=ch->head_q,

size=2,

message[0]=insignia,
message[1]=EaseIntlCount++,

if(— n_ticks==0)
■C

15

if(mode==ASTABLE)
{

n_ticks=period_of_ticks,
>
else
■C

EaseUnsetIEreg(CONVERSIDN_CQMPLETE_INTVEC),
EaseUnsetIEreg(TIMERl_INTVEC),

}
if((ch->source_flag==FALSE)&&(tail1=head))
{

EaseTransfer((mt *)message, (nit *)ch->msg_q[tail],size),

/* Unblock receiver */
lucky_task=ch->id_q[tail],
EaseTask[lucky_task] blocked_status=FALSE,
EaseRendezvousRedemer[lucky_task]=(EaseTaskId_t)(NULL),
EaseSenderMsgSize[lucky_task]=size,

if(++ch->tail_q==MAX_MESSAGES)
ch->tail_q=0,

EaseScheduleAfterlntO ,
>
else
{

EaseLostIntl++,
>

>
EaseRun(EaseTaskPtr[EaseCurrentPriority]->task_id),

>

16

B .1 .7 IntO.h
/*

F IL E INTO h

T h is m od u le d e a ls w i t h i n e r r u p t s on th e I n t o l i n e

D a v id D o y le 2 /9 /9 3

D a te i n i t i a l s h i s t o r y
*

2 /9 /9 3 D D PRE-RELEASE

*/

d e f m e IN T 0 .V E C 0x1
d e f m e IN T O .IN T 1

e x te r n m t E a s e l n t 0 1 n i t (m t c h a n n e l) ,
e x te r n m t E a s e ln tO C o u n t ,
e x te r n m t E a s e L o s t ln tO ,

17

B .1 .8 IntO.c
/**/
/ * F IL E in t o c * /
/ s i c * # * * * * * * * * * * * * * * * * /

m c lu d e " k e r n e l h "
m c lu d e "c o m m h "
m c lu d e " m t O h "

p u b l ic i n t E a s e ln tO C o u n t ,
p u b l ic m t E a s e L o s t In t0 = 0 ,
p u b l ic v o id E a s e ln tO H a n d le r (v o id) ,
p r i v a t e m t m tO _ c h a n n e l,

i n t E a s e I n t O I m t (m t c h a n n e l)
{

m tO _ c h a n n e l= c h a n n e l,
E a s e S e tV e c (IN T O _ V E C ,E a s e In tO In t) ,
E a s e In t0 C o u n t= 0 ,
E a s e S e tIE re g (IN T O _ V E C) ,
r e t u r n (0) ,

}

v o id E a s e ln tO H a n d le r (v o id)
{

m t 1 , m e ssag e [2] , s i z e , t a i l , h e a d , lu c k y _ t a s k ,
E a s e C h a n C tr l * c h ,

c h = & E a s e C h a n n e l[m tO _ c h a n n e l] ,
t a i l = c h - > t a i l _ q ,
h e a d = c h -> he ad _q ,

s iz e = 2 ,

m e ssag e [0] = IN T 0 _ IN T ,
m essa g e [1] = E a s e In tO C o u n t+ + ,

i f ((c h -> s o u rc e _ f la g = = F A L S E) & & (ta i l ’ = h e a d))
{

E a s e T ra n s f e r ((m t *)m e s s a g e , (m t *) c h - > m s g _ q [t a i l] , s i z e) ,

/ * U n b lo c k r e c e iv e r * /
lu c k y _ t a s k = c h - > id _ q [t a i l] ,
Eas e T a s k [lu c k y _ ta s k] b io c k e d _ s ta tu s = F A L S E ,
E a s e R e n d e z v o u s R e d e m e r [lu c k y _ ta s k]= (E a s e T a s k Id _ t) (N U L L) ,
E a s e S e n d e rM s g S iz e [lu c k y _ ta s k]= s iz e ,

i f (+ +ch-> ta il_q= =M AX_M ESSA G ES)
c h - > t a i l_ q = 0 ,

18

>
e ls e
{

E a s e L o s tIn tO + + ,
E a s e R u n (E a s e T a s k P tr [E a s e C u r r e n t P n o n t y] - > t a s k _ id) ,

>

E a s e S c h e d u le A fte r ln tO ,

19

B .1 .9 K e x tr a .h
/*

F IL E K e x t r a h

T h is i i l e c o n ta in s th e p r o to ty p e s t o th e f u n c t io n s
c o n ta in e d m k e x t r a asm

D a v id D o y le 6 /1 0 /9 4

D a te i n i t i a l s h i s t o r y

2 /7 /9 3 D D PRE-RELEASE

*/

e x t e r n i n t E a s e S e tV e c (m t m t V e c t o r , v o id (* t h e F u n c t io n) (v o id)) ,
e x te r n i n t E a s e S e t IE R e g (m t t h e B i t) ,
e x te r n i n t E a s e U n s e t IE r e g (m t t h e B i t) ,
e x t e r n v o id E a s e T im e rO (m t t h e O f f s e t) ,
e x te r n v o id E a s e T im e r l (m t t h e O f f s e t) ,
e x te r n v o id E a s e S ta c k (m t T a s k ID ,

i n t t h e S ta c k A l lo c ,
v o id (* t h e F u n c t io n) (v o id)) ,

e x te r n m t * E a s e G e tS P (v o id) ,
e x te r n v o id E a s e P a n ic (v o id) ,
e x t e r n v o id E a s e R u n (m t t h e T a s k ID) ,
e x te r n v o id E a s e T im e r O In t (v o id) ,
e x t e r n v o id E a s e T im e r l l n t (v o id) ,
e x t e r n v o id E a s e S c h e d u le (v o id) ,
e x t e r n v o id E a s e ln t O I n t (v o id) ,
e x t e r n v o id E a s e l n t l i n t (v o i d) ,
e x te r n v o id E a s e D is a b le ln t e r r u p t s (v o id) ,
e x t e r n v o id E a s e T ra n s fe r (i n t * t h e S r c , i n t * t h e D e s t , i n t t h e S iz e) ,
e x t e r n v o id E a s e R o o t E x i t (v o id) ,

20

B .1 .1 0 K e x tr a .a sm
**
*
* KEXTRA asm D a v id D o y le S c h o o l o f E le c t r o n ic E n g in e e r in g DCU
* DATE 9 /6 /9 4
*

* C o n ta in s
* 1) _E a s e S e tV e c
* 2) _ E a s e S e t IE re g
* 2 a) _ E a s e U n s e tIE re g
* 3) _E a se T im e rO
* 4) _ E a s e T im e r i
* 5) _ E a s e S ta c k
* 6) _E aseG etS p
* 7) _ E a s e P a n ic
* 8) _E aseR un
* 9) _ E a s e T im e rO In t
* 10) _ E a s e T im e r l I n t
* 11) _E a s e S c h e d u le
* 12) _ E a s e In tO In t
* 13) _ E a s e I n t l I n t
* 14) _ E a s e D is a b le In te r r u p ts , S a f e ly changes ST ‘ G IE ’ b i t
* 15) _ E a s e T ra n s fe r
* 16) _ E a s e R o o tE x it
*
*

, m i t a l i z e v e c to r s t o r e s e t
s e c t m t O l
w o rd _ c _ m t0 0
s e c t m t0 2
w o rd _ c _ m t0 0
s e c t m t0 3
w o rd _ c _ m t0 0
s e c t m t0 4
w o rd _ c _ m t0 0
s e c t m t0 5
w o rd _ c _ m t0 0
s e c t m tO 6
w ord _ c _ m t0 0
s e c t m t0 7
w o rd _ c _ m t0 0
s e c t m t0 8
w o rd _ c _ m t0 0
s e c t in t 0 9
w ord _ c _ m t0 0
s e c t in t I O
w ord _ c _ m t0 0
s e c t i n t l l

, S e ts i n t e r r u p t v e c to r s
, S e ts I n t e r r u p t e n a b le re g

} , i n i t i a l i z e s c lo c k
, i n i t i a l i z e s t i m e r l
, P u ts i n i t i a l c o n te x t o f t a s k on t a s k ’ s s ta c k

, s n a tc h e s SP

, Pops c o n te x t o f f new ta s k s s ta c k
, C o n te x t s w i t c h in g r o u n t in e s t h a t c a l l

, r e le v e n t h a n d le r s

21

s e c t tra p O
w o rd _ tra p O
s e c t t r a p l
w o rd _ t r a p l

FP s e t AR3
QUANTUM s e t 2
ALLOC s e t 4 00 h
SIZE_TASK_STRUCTURE s e t 6
T IM ER .R ESET s e t 601h
TIMER.GO s e t 6 c lh
DUAL s e t 30 000h

s e c t " e m i t "
w o rd 1 ,_ E a s e E r ro rM e s s a g e
w o rd DUAL
g lo b i _ E a s e E rro rM e s s a g e
b s s _ E a s e E r ro rM e s s a g e ,1

, b ase t a s k s ta c k s e c t io n d e f in e d
s e c t " t _ s t a c k "

B_SP w o rd 0

d a ta

TIM ER_C TRL_0 w o rd
PERI0D_REG_0 w o rd
TIM ER_CTRL_1 w ord
PERI0D_REG_1 w ord

A D D _TIM ER1_IN T w ord
ADD _IN TO _INT w o rd
E a s e P a n ic A d d re s s w o rd

BASE.SP w ord

BASE_TASK_TABLE w o rd
TASK .PTR w o rd
N.TASKS w o rd

E a s e R o o tE x itA d d re s s w ord
R o o tE x i tS t r m g A d d w o rd
E a s e R o o tE x itS t r m g b y te

w o rd 00H , T H E

, s y m b o ls u se d

t e x t

8 08 02 0h
8 0 8 02 8 h
8 08 03 0h
8 08 03 8h

_ E a s e T im e r i I n t
_ E a s e In tO In t
_ E a s e P a n ic

B_SP

_ E a s e T a s k
_ E a s e T a s k P tr
_ E a s e N ta s k s

_ E a s e R o o tE x it
E a s e R o o tE x i tS t r m g
" I l l e g a l E x i t fo rm r o o t t a s k

' E R M I N A T O R

22

g lo b a l _ tra p O
g lo b a l _ t r a p l
g lo b a l _E a s e S e tV e c
g lo b a l _ E a s e S e t IE re g
g lo b a l _ E a s e U n s e tIE re g
g lo b a l _E a seT im e rO
g lo b a l _ E a s e T im e r l
g lo b a l _ E a s e S ta c k
g lo b a l _E a seG etS p
g lo b a l _E aseR un
g lo b a l _ E a s e P a n ic
g lo b a l _ E a s e T im e rO In t
g lo b a l _ E a s e T im e r l I n t
g lo b a l _ E a s e S c h e d u le
g lo b a l _ E a s e In tO In t
g lo b a l _ E a s e I n t l I n t
g lo b a l _ E a s e D is a b le In te r r u p ts
g lo b a l _ E a s e T ra n s fe r
g lo b a l _ E a s e R o o tE x it

g lo b a l _ E a s e In tO H a n d le r

g lo b a l _ E a s e T im e r l In tH a n d le r
g lo b a l _ E a s e S c h e d u le A f te r In t
g lo b a l _ E a s e S c a n L e v e l

g lo b a l _ c _ m t0 9
g lo b a l _ c _ m t0 0

g lo b a l _ E a s e T a s k P tr
g lo b a l _ E a s e C u rre n tT a s k
g lo b a l _ E a s e C u r r e n t P r io r i t y
g lo b a l _ E a s e S y s te m T im e rA c tiv e
g lo b a l _ E a s e S y s te m T im e rN t ic k s
g lo b a l _E a seS ys te m T im e rM sg

g lo b a l _ E a s e T a sk
g lo b a l _ E a s e N ta s k s
g lo b a l _E a s e C h a n n e l

s e c t " e m i t "
w ord l , _ E a s e C lo c k T ic k
w o rd 0
g lo b i _ E a s e C lo c k T ic k
b ss _ E a s e C lo c k T ic k ,1

t e x t
_ tra p O

23

RETS

. t r a p l
R E T I

.E a s e S e tV e c

Si

S2

PUSH FP
L D I S P ,FP
L D I * - F P (2) ,
L D I * -A R 3 (3)
L D I A R O .R l
SUBI 1 0 ,R1
BGT S I
S T I RO, *AR0
L D I 0 ,R 0
B S2

L D I - 1 ,R0

L D I * - F P (l) ,
BD R1
L D I * F P , FP
NOP
SUBI 2 ,S P

_ E a s e S e tIE re g

S3

PUSH FP
L D I S P .F P
L D I * - F P (2) ,R 1
CMPI 1 0 , R1
LD IG T oo

BGT S3
L D I 1 ,R0
LSH R 1.R 0
ROR RO
OR R O .IE
L D I 0 ,R0

L D I * - F P (l) , R 1
BD R1
L D I * F P ,F P
NOP
SUBI 2 , SP

_ E a s e U n s e tIE re g
PUSH FP
L D I S P .FP
L D I * - F P (2) , R l
CMPI 1 0 ,R i
LD IG T 0 ,R 0

24

BGT S4
L D I 1 ,R0
LSH R1 ,R0
ROR RO
NOT RO
AND RO, IE
L D I 0 ,R 0

L D I * -F P
BD R1
L D I * f p ,:
NOP
SUBI 2 ,SP

E a se T im e rO
PUSH FP
L D I S P ,F P

L D I Q TIM ER_C TRL_0, ARO
L D I T IM ER .RESET.R O
S T I RO, *ARO
L D I ®PERI0D_REG _0, AR1
L D I * - F P (2) ,R 0 , Load a rg u m e n t c o u n t
S T I R 0 ,*A R 1
L D I TIMER.GO.RO
S T I RO, *ARO

L D I * - F P (l) , R l
BD R1
L D I * F P , FP
NOP
SUBI 2 ,S P

.E a s e T im e r l
PUSH FP
L D I S P .FP

L D I QTIM ER_CTRL_1 , ARO
L D I T IM ER _R ESET, RO
S T I RO,*ARO
L D I ®PERI0D_REG_1,AR1
L D I * - F P (2) ,R 0 , Load a rg u m e n t c o u n t
S T I R 0 ,*A R 1
L D I TIMER_GO,RO
S T I RO, *ARO

L D I * - F P (l) , R 1
BD R1
L D I * F P ,F P
NOP

25

SUBI 2 ,S P

.E a s e S ta c k
PUSH FP
L D I S P .F P

L D I * - F P (2) , ARO
LD I * - F P (3) , AR1
L D I * - F P (4) , AR2
L D I 0BASE_SP,R1

L D I S P ,R 0
L D I R l.F P
L D I R 1 , SP

L D I Q EaseR ootE x
S T I R 2 , *F P

PUSH AR2
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R1
PUSHF R1
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH R5
PUSHF R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH AR1
PUSH AR2
PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7
PUSH IRO
PUSH IR 1
PUSH BK
PUSH RC
PUSH RS
PUSH RE

= c o u n t
= s t a c k _ a l lo c
= * f u n c t io n
= A b s o lu te a d d re s s o f t a s k ’ s s ta c k

te m p o ry s to ra g e f o r SP & FP
ST changed b u t OK a t t h i s s ta g e

P a n ic i f r e t u r n f ro m r o o t t a s k

, P u sh m i t a l c o n te x t

26

M PYI SIZE_TASK_STRUCTURE, ARO , s a v e s m i t a l SP o f t a s k
ADDI ®BASE_TASK_TABLE, ARO
S T I S P ,*+ A R 0 (2)

L D I R 0 ,S P , r e s t o r e s s y s te m SP and FP
L D I RO,FP

ADDI AR1.R1 , a l l o c a t e s ta c k
S T I R1,QBASE_SP

L D I * - F P (l) , R l
BD R1
L D I *F P ,F P
NOP
SUBI 2 ,S P

PUSH DP

.E a se G e tS p
L D I S P ,R 0
SUBI 1 ,R 0 , Ta ke pc o f f s ta c k
RETS

_ E a s e P a n ic

L I
BR L I

_E aseR un
POP ARO , g e t t<
POP ARO
MPYI SIZE_TASK_STRUCTURE, ARO
ADDI 0BASE_TASK_TABLE, ARO
L D I * + A R 0 (2) ,S P , changi
POP DP
POP RE
POP RS
POP RC
POP BK
POP IR 1
POP IRO
POP AR7
POP AR6
POP AR5
POP AR4
POP AR2
POP AR1
POP ARO

27

POPF R7
POP R7
POPF R6
POP R6
POPF R5
POP R5
POPF R4
POP R4
POPF R3
POP R3
POPF R2
POP R2
POPF R I
POP R I
POPF RO
POP RO
POP FP
POP ST
R E T I

E a s e T im e rO In t
PUSH ST
PUSH AR3
PUSH RO
PUSHF RO

L D I ® _ E a s e S y s te m T im e rA c tìv e , RO
BZ S5
L D I Q _ E a s e S y s te m T im e rN tic k s ,R O
SUBÌ 1 ,RO
S T I RO, ® _ E a s e S y s te m T im e rN tic k s
BNZ SS
L D I Q _ E a s e C lo c k T ic k , AR3
ADDI 1.AR 3
S T I A R3, ® _ E a s e C lo c k T ic k

L D I ®_Eas e C u r r e n t P r ì o r i t y , AR3
ADDI ®N_TASKS,AR3
L D I *A R 3 , RO
CMPI l,R O
BZD SWITCH

L D I ®TASK_PTR,AR3
ADDI Q _ E a s e C u r r e n t P r ì o r ì t y , AR3
L D I *A R 3,A R 3

L D I * + A R 3 (l) ,R O
ADDI 1 ,RO
CMPI QUANTUM.RO

28

L D IZ 0 ,R 0
S T I R 0 ,*+ A R 3 (1)
B SWITCH

L D I < 3 _ E a s e C u r re n tP r io r i ty ,A R 3
ADDI QN_TASKS, AR3
L D I * A R3.R0
CMPI 1 ,R0
BZD E N D _E a se T im e rO In t
L D I ® _ E a s e C lo c k T ic k ,A R 3
ADDI 1 , AR3
S T I A R 3 ,Q _ E a s e C lo c k T ic k

L D I QTASK_PTR,AR3
ADDI ® _ E a s e C u r r e n tP r io r i t y ,A R 3
L D I *A R 3 , AR3
L D I *+ A R 3(1) , RO
ADDI 1 ,R0
CMPI QUANTUM,RO
L D IZ 0 ,R 0
S T I R 0 ,*+ A R 3 (1)
BZ SWITCH

E N D _E a se T im e rO In t
POPF RO
POP RO
POP AR3

POP ST
R E T I

SWITCH
PUSH R I
PUSHF R I
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH R5
PUSHF R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH A R I

29

PUSH AR2

PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7

PUSH IRO
PUSH IR 1
PUSH BK
PUSH RC
PUSH RS
PUSH RE
PUSH DP

S T I S P ,*+ A R 3 (2)

CALL _ E a s e S c a n L e v e l
CALL _ E a s e P a n ic

_ E a s e T im e r l I n t
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R I
PUSHF R I
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH R5
PUSHF R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH A RI
PUSH AR2

PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7

PUSH IRO

PUSH I R l
PUSH BK
PUSH RC
PUSH RS
PUSH RE
PUSH DP

L D I ®TASK_PTR,ARO
ADDI Q _ E a s e C u r r e n tP r io r i ty ,A R O
L D I * ARO,ARO
S T I S P ,*+ A R 0 (2)

CALL _ E a s e T im e r l In tH a n d le r
CALL _ E a s e P a n ic

E a s e S c h e d u le
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R l
PUSHF R l
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH R5
PUSHF R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH A RI
PUSH AR2

PUSH AR4
PUSH ARS
PUSH AR6
PUSH AR7

PUSH IRO
PUSH I R l
PUSH BK
PUSH RC
PUSH RS
PUSH RE
PUSH DP

31

L D I ®TASK_PTR,ARO
ADDI ® _ E a s e C u r re n tP r io r i ty ,A R O
L D I * ARO,ARO
S T I S P ,*+ A R 0 (2)

CALL _ E a s e S c h e d u le A ite r In t

CALL _ E a s e P a n ic

E a s e ln tO In t
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R l
PUSHF R l
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH RS
PUSHF R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH AR1
PUSH AR2

PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7

PUSH IRO
PUSH IR 1
PUSH BK
PUSH RC
PUSH RS
PUSH RE
PUSH DP

L D I QTASK_PTR,ARO
ADDI Q _ E a s e C u r r e n tP r io n ty ,ARO
L D I * ARO, ARO
S T I S P , *+ A R 0 (2)

32

IACK *ARO

CALL _ E a s e In tO H a n d le r

CALL _ E a s e P a n ic

E a s e l n t l l n t
PUSH ST
PUSH FP
PUSH RO
PUSHF RO
PUSH R I
PUSHF R I
PUSH R2
PUSHF R2
PUSH R3
PUSHF R3
PUSH R4
PUSHF R4
PUSH R5
PUSHF R5
PUSH R6
PUSHF R6
PUSH R7
PUSHF R7
PUSH ARO
PUSH AR1
PUSH AR2

PUSH AR4
PUSH AR5
PUSH AR6
PUSH AR7

PUSH IRO
PUSH IR 1
PUSH BK
PUSH RC
PUSH RS
PUSH RE
PUSH DP

L D I ®TASK_PTR,ARO
ADDI ® _ E a s e C u r re n tP r io r i ty ,A R O
L D I *ARO,ARO
S T I S P ,*+ A R 0 (2)

CALL _ E a s e T im e r l In tH a n d le r
CALL _ E a s e P a n ic

33

_ E a s e D is a b le In te r r u p ts
PUSH IE
L D I 0 , IE
NOP
NOP
AND O D FFFh,ST
POP IE
RETS

_ E a s e T ra n s fe r
PUSH FP
L D I S P .F P

L D I * -F P (2) ,A R O
L D I * - F P (3) ,A R 1
L D I * - F P (4) ,R C
SU BI 1 ,RC
RPTB R _ E a s e T ra n s fe r
L D I *ARO++,RO

R_Eas e T ra n s f e r
S T I R O ,*A R l+ +

L D I * - F P (l) , R l
BD R1
L D I * F P , FP
NOP
SU BI 2 ,S P

_ E a s e R o o tE x it
PUSH FP
L D I S P .F P

L D I Q R o o tE x itS trm g A d d .A R O
L D I Q _ E a s e E rro rM e s s a g e ,A R l

_ C o p y E r r o r S t r m g
L D I *ARO++,RO
BZ _C o p yT a sk ID
S T I RO,*AR1++
B _ C o p y E r r o r S t r in g

C o p yTa sk ID
L D I Q_Eas e C u r re n tT a s k , RO
ADDI 3 0 h , RO
ADDI 1 ,R0
S T I R O ,*A R l+ +
L D I Oh,RO
S T I R O ,*A R l
B _ E a s e P a n ic

34

end

35

B . l . l l T m s J f .a s m

* TM S _IF asm
*

* I n t e r f a c e r o u t in e s f o r C30 t o PC and A n a lo g
* I n t e r f a c e d e v ic e s
*
*************** *

*
* R o u t in e s in c lu d e d a re as f o l l o w s
*
*
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

d a ta

ADCADR w ord 0 00 80 4 0 0 0 h
P 0 S _ L IM IT w o rd 0 00 00 7 F F F h
N E G .L IM IT w ord 0 FF FF 8 0 0 0 h
DUAL w ord 0 00 03 0 0 0 0 h
SIZEOFDUAL w ord O O O O O ffffh

t e x t
FP s e t AR3

g lo b a l _ re a d _ a d c
_ re a d _ a d c

PUSH FP
LD I S P .F P
L D I QADCADR,ARO
ADDI * - F P (2) , ARO
L D I *A R 0 ,R 0
ASH - 1 6 , RO

L D I * - F P (l) , R 1
BD R1
L D I * F P ,F P
NOP
SUB I 2 ,S P

g lo b a l _ o u t_ d a c
_ o u t_ d a c

PUSH FP
L D I S P .F P

L D I QADCADR,ARO
ADDI * - F P (2) , ARO
L D I * - F P (3) , R 0
CMPI Q P 0 S _L IM IT ,R 0

36

LD IG T ® PO S_LIM IT,RO
CMPI q n eg _ l i m i t . ro
L D IL T q n eg _ l i m i t . ro
ASH 16 .R 0
S T I RO, *AR0

L D I * - F P (l) , R 1
BD R1
L D I * F P . FP
NOP
SUBI 2 .S P

g lo b l _Eas eDspW ordOut
.EaseD spW ordO ut

PUSH FP
L D I S P .F P

L D I QDUAL.ARO
L D I * - F P (2) ,R 0
BN W ordAddO utO fRange
CMPI q s iz e o f d u a l . ro
BGT W ordAddO utO fRange
ADD I R 0.AR0
L D I * - F P (3) . RO
S T I RO, *AR0
L D I 0 .R 0
BR _ENDEaseDspW ordOut

io rd A d d O u tO fR an g e
L D I 1 1-̂ o

.ENDEaseDspW ordOut
L D I * - F P (l) , R 1
BD R1
L D I *F P ,F P
NOP
SUBI 2 ,S P

cg lo b l _E a seD sp W ord In
E a se D sp W ord ln

PUSH FP
L D I S P .F P

L D I QDUAL.ARO
ADD I * - F P (2) . ARO
L D I *A R 0 . RO

L D I * - F P (l) , R 1
BD R1
L D I * F P . FP
NOP
SUBI 2 .S P

37

g lo b i _ E a s e D s p F lo a tO u t
E a s e D s p F lo a tO u t

PUSH FP
L D I S P .F P

L D I QDUAL, ARO
L D I * - F P (2) , RO
BN F lo a tA d d O u tO fR a n g e
CMPI SSIZEOFDUAL.RO
BGT F lo a t AddO utO fRange
ADDI RO.ARO
LDF * - F P (3) , R 0
STF RO, *ARO
L D I 0 ,R0
BR _E N D E a se D sp F lo a tO u t

'Io a tA d d O u tO fRange
L D I -1 ,R 0

E N D E a se D sp F lo a tO u t
L D I * - F P (l) , R l
BD R1
LD I * F P ,F P
NOP
SUBI 2 , SP

g lo b i _ E a s e D s p F lo a tIn
_ E a s e D s p F lo a tIn

PUSH FP
L D I S P .FP

L D I «DUAL,ARO
ADDI * - F P (2) , ARO
LDF *ARO,RO

L D I * - F P (l) , R 1
BD R1
L D I * F P ,F P
NOP
SUBI 2 , SP

g lo b i _E a s e G e tD s p P tr
E a se G e tD sp P tr
PUSH FP
L D I SP ,FP

L D I * - F P (2) ,R 0
BN P trA d d O u tO fR a n g e
CMPI (5SIZE0FDUAL, RO
BGT P trA d d O u tO f Rcinge
ADDI ®DUAL, RO

BR _E N D E aseG e tD sp P tr
P trA d d O u tO fR a n g e

L D I 0 ,R 0
_E N D E aseG e tD sp P tr

L D I * - F P (l) , R l
BD R1
L D I * F P ,F P
NOP
SUBI 2 ,S P

B .2 A p p lica tio n P rogram m in g In terface to
Ease

B .2 .1 E a s e ln it .h
/*

F IL E E a s e in i t h

D a v id D o y le 6 /1 0 /9 4

D a te i n i t i a l s h i s t o r y

6 /1 0 /9 4 D D PRE-RELEASE

*/

ty p e d e f v o id (* E a s e T a s k I d _ t) (v o id) ,

e x t e r n v o id E a s e A p p l ic a t io n T im e r I n i t (m t f r e q) ,
e x te r n v o id E a s e S y s t e m T im e r I n i t (m t f r e q) ,
e x te r n v o id E a s e C re a te (E a s e T a s k Id _ t f u n c t i o n ,
i n t p r i o r i t y ,
i n t s t a c k _ a l l o c) ,

39

B .2 .2 E a se .h
/ *

F IL E Ease h

D a v id D o y le 1 9 /8 /9 4

D a te i n i t i a l s h i s t o r y

1 9 /8 /9 4 D D PRE-RELEASE

*/

d e f in e TRUE 1
d e f m e FALSE 0
d e fm e NULL (0)
d e f m e NOT_VALID_CHANNEL -1
d e fm e MSG_T00_LARGE_F0R_RECEIVER - 2
d e fm e INCORRECT_TIMER_MODE - 3
d e fm e RESET_W HILE_ACTIVE - 4

d e fm e INT0_MSG 1
« d e f in e EN D _0F_C 0N VERSI0N _IN T 2
d e fm e APPLICATION_TIMER_MSG 3
d e fm e SYSTEM_TIMER_MSG 4

d e f m e MONOSTABLE 0
d e f m e ASTABLE 1

ty p e d e f v o id (* E a s e T a s k I d _ t) (v o id) ,

e x t e r n m t E a s e R e c e iv e (m t s r c _ c h ,
v o id m sg [] ,
m t m a x _m sg _s ize ,
m t * m s g _ s iz e ,
E a s e T a s k Id _ t* r e n d e z v o u s _ ts k) ,

e x t e r n m t E a s e S e n d (in t d s t_ c h ,
v o id m sg [] ,
m t m s g _ s iz e ,
E a s e T a s k Id _ t* r e n d e z v o u s _ ts k) ,

e x t e r n m t E a s e A p p l ic a t io n T im e r S e t (m t t i c k s ,
m t c h a n n e l,
m t m o d e),

e x te r n m t E a s e S a m p le rS e t (in t c h a n n e l) ,
e x t e r n m t E a s e S y s te m T im e rS e t (m t t i c k s ,
m t c h a n n e l,
i n t m o d e _ c),
e x t e r n v o id E a s e ln t O I m t (v o id) ,

40

e x te rn c h a r* EaseErrorM essage,

e x t e rn i n t E a s e C lo c k T ic k ,
e x te r n m t E a s e in t 1C o u n t,
e x te r n i n t E a s e L o s t ln t l ,
e x te r n i n t E a s e ln tO C o u n t ,
e x te r n m t E a s e L o s t ln tO ,
e x te r n i n t E a s e C lo c k T ic k ,
e x te r n i n t E a s e S c h e d u le C o u n t,
e x te r n i n t E a se S e n d C ou n t,
e x te r n m t E a s e R e c e iv e C o u n t,

B .2 .3 D s p j f .h
/ *

D S P _ IF H t o be in c lu d e d by b o th PC and C30 code

T h is d e f in e s th e i n t e r f a c e p o r t s and th e r e le v e n t
s e c t io n s o f d u a l p o r t m em ory f o r PC in t e r f a c e w i t h C30

INTEGER r e fe r e n c e V a lu e s f o r D u a l P o r t m em ory u se d by
b o th th e C30 and PC T h e y a re r e l i t i v e t o t h e C30

I n t e r f a c e r o u t in e s f o r C30 t o PC

D a v id D o y le

D a te I n i t i a l s H is t o r y

2 / 2 /9 4 D D P re -R e le a s e

*/

d e f m e BASE 0x290
d e f m e DATAL BASE+0
d e f m e DATAH BASE+2
d e f m e ADDRL BASE+4
d e f m e ADDRH BASE+6
d e f m e CTRL BASE+8
d e f m e IN TR BASE+Oxc

d e f m e DUAL 0 x0 00 300 00
d e f m e INTEGER.OUT 0x200
d e f m e FLOAT _0UT 0x210
d e f m e FLAG . IN 0x2 22

d e f m e PARM_ IN 0x100
d e f m e PARM_OUT 0x130
d e f m e VAR_0UT 0x160

d e f m e ADD_0UT_0F_RANGE -1

d e f m e E a s e E r ro r 0x00
d e f m e E a se Lo ck 1
d e f m e E a s e U n lo c k 0

e x t e r n i n t E a s e D s p W o rd O u t(in t d e s t . m t w o rd) ,
e x te r n i n t E a s e D s p W o rd In (in t s o u r c e) ,
e x t e r n m t E a s e D s p F lo a tO u t (m t d e s t , f l o a t w o rd) ,
e x t e r n v o id * E a s e G e tD s p P t r (m t m e m re f) ,

42

e x t e r n i n t r e a d _ a d c (m t c h a n n e l) ,
e x te r n v o id o u t d a c (m t c h a n n e l, m t v a lu e) ,

43

Bibliography

1] E W Dijkstra, Co-operating Sequential Processes” m Programmvnng Lan­
guages Genuys F (ed) London Academic Press 1965

2] Wolfgang A Hanlang, Alexander D Stoyenko Constructing Predictable
Real Time Systems Kluwer Academic Publishers, 1991

3] David L Ripps An Implementation Guide to Real-Time Programming
Englewood Cliffs Yourdon Press, 1990

4] Andrew S Tanenbaum Operating Systems Design and Implementation
Prentice-Hall International Editions, 1987

5] Ian Pyle, Peter Hurschka, Michel Lissandre and Ken Jackson Real-Time
Systems Investigating Industrial Practice Wiley Series m Software based
Systems, 1993

6] Andre M van Tilborg Foundations of Real-Time Computing Formal
Specifications and Methods Kluwer Academic Publishers, 1991

7] Peter Coad/Edward Yourdon Object Oriented Analysis second edition
Yourdon Press Computing Series, 1991

8] Peter Coad/Edward Yourdon Object Oriented Design Yourdon Press
Computing Series, 1991

9] Phillip A Laplante Real-Time Systems Design and Analysis An Engi­
neers Handbook IEEE Computer Society Press, 1992

10] Ragunathan Rajkumar Synchronisation in Real-Time Systems A Pri­
ority Inheritance Approach Kluwer Academic Publishers, 1991

44

[11] Brian W Kernigan and Dennis M Ritchie Second Edition The C Pro­
gramming Language Prentice Hall Software Series, 1990

[12] Warren Andrews RISC-based boards make headway m real-time appli­
cations Computer Design (Oct 1991) 69-80

[13] A Stemmger and H Schwemzer Can the advantages of RISC be utilized
m Real Time Systems? Proceedings o f the Euromicro ’91 workshop on
Real Time Systems Pans(1991) 30-35

[14] Texas Instruments TMS320C3X User’s Guide Digital Signal Processing
Products 2558539-9721 revision E June 1991 Texas Instruments Incor­
porated, 1991

[15] Texas Instruments TMS320C30 Assembly Language Tools User Guide
Digital Signal Processing Products Texas Instruments Incorporated,
1988

[16] Texas Instruments TMS320C30 Optimising C Compiler Reference
Guide Microprocessor Development Systems Products 160^910-9710 re­
vision D August 1990 Texas Instruments Incorporated, 1990

[17] Loughborugh Sound Images Ltd TMS320C30 PC System Board User
Guide & Technical Reference Version 1 01 September 1990 Loughborugh
Sound Images Ltd

[18] DIN 44300 Informationsverarbeitung Beuth-Verlag, 1985

[19] G Kalpan The X29 Is it coming or going ? IEEE Spectrum pages 54-60,
June 1985

[20] G Carlow Architecture of the space shuttle primary avionics software
system Communications of the ACM, 27(9) 926-936,September 1984

[21] L Motus Time Concepts in Real-Time Software Control Engineering
Practice,Vol 1, No 1, pp 21-33 1993

[22] B Hemdel How to EnsureTime Software Quality m for Real Time Sys­
tems Control Engineering Practice,Vol 1, No 1, pp 35-41 1993

45

[23] M Colnaric and W A Halang Architectural Support for Predictability m
Hard Real Time Systems Control Engineering Practice,Vol 1, No 1, pp

51-57 1993

[24] K Bastiaens and J M Van Campenhout A Visual Real Time Program­
ming Language Control Engineering Practice,Vol 1, No 1, pp 59-63 1993

[25] N C Audsley, A Burns and A J Wellmgs Deadline Monotonie Scheduling
Theory and Application Control Engineering Practice,Vol l,No l,pp 71-
78 1993

[26] A Sowyma State Charts-Based Specification and Verification of Real-
Time Job Scheduling Systems Control Engineering Practice,Vol 1, No 1,
pp 107-114 1993

[27] A Mok Fundamental design problems of distributed systems for the hard
real-time environment PhD Thesis,MIT Laboratory for Computer sci­
ence,fsMay 1983

[28] Liu C L and J W Layland Scheduling algorithms for multiprogram­
ming m a hard real-time environment Jounnal o f the ACM 20(1)1973

[29] E Dijstra The Next Fourty Years Personal note EW D 1051, 1989

[30] R Balli, R Curto Dimensioning the active suspension system of a
wheeled vehicle Electrische Bahnen 1990

[31] L Lewis Optimal Estimation Wiley 1986

[32] D Doyle, B Clancy, B Me Mullm, A Murray Real time Multitasking Ex­
ecutive for Embedded Systems Proceedings Irish DSP and Control Col­
loquium July 1994

46

