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Applying Metrics to 
Rule-Based Systems

Abstract
A uthor Paul D oyle

Since the in troduction o f  softw are m easurem ent theory  in the early  seventies 
it has been accepted that in o rder to control softw are it m ust first be m easured. 
U nam biguous and reproducib le  m easurem ents are considered to b e  the m ost useful 
m  contro lling  softw are productiv ity , costs and quality , and d iverse sets o f  
m easurem ents are required to cover all aspects o f  softw are

A set o f m easures for a rule-based language R U L E R  is proposed using a 
process w hich helps identify  com ponents w ithin softw are that are not cu rren tly  
m easurable, and encourages the m axim um  re-use o f  existing softw are m easures. T he 
in itial set o f  m easures proposed is based on a  set o f  basic  p rim itive  counts. T hese 
m easures can then be perform ed w ith the aid o f  a specially  bu ilt p ro to type static 
analyser R -D A T  A nalysis o f  obtained results is perfo rm ed  to help prov ide tentative 
acceptab le ranges for these m easures

It is im portant to ensure that m easurem ent is perform ed fo r all new ly 
em erging  developm ent m ethods, both procedural and non-procedural As softw are 
engineering continues to generate m ore diverse m ethods o f  system  developm ent, it 
is im portan t to continually  update our m ethods o f  m easurem ent and contro l T his 
thesis dem onstrates the practicality  o f  defining and im plem enting new  m easures fo r 
ru le-based system s
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1 Introduction

T his chapter introduces the fundam ental theory  behind the idea o f  
m easurem ent, in  particu lar how  it relates to softw are engineering Section 1 1 
explains som e o f  the general aspects o f  m easurem ent and section 1 2  relates 
m easurem ent to m odern day softw are developm ent environm ents Section 1 3 
p rov ides an  overv iew  o f  the areas covered by this thesis

1.1 M easurement theory

T here  are  m any in terpretations o f  the im portance and usefulness o f  
m easurem ent in everyday life  It is often surprising how ever, that a g rea t deal o f 
confusion still exists because o f  these varied  in terpretations B efore w e can really  
appreciate  the theory  o f  m easurem ent w e should first c larify  w hat in fact 
m easurem ent is T he follow ing form al defin ition  p rovides us w ith a  good base from  
w hich to  w ork

Measurement is the process by w hich num bers o r sym bols are 
assigned to attributes o f  entities in the real w orld  in such a w ay as to 
describe them  according to clearly  defined rules

N ow  w e can see that m easurem ent is involved w ith  capturing inform ation 
about a ttributes o f  en tities W e can define an entity as an object, fo r exam ple a  room  
o r a  person , o r an  activ ity , such as a jou rney  o r the test phase o f  a  softw are p ro ject 
A n attribute is a feature  o f  these entities w hich w e a re  in terested  in This could be
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the w eight o f  the person , the co lour o f  the room  o r even the length o f  tim e to w alk  
th rough the room  F urth er discussion relating attribu tes and en tities to a  softw are 
engineering  fram ew ork  is provided  m  chapter 2

U sing  this p rocedure  w e can identify  typical am biguity  associated with 
m easurem ent It w ould be incorrect for exam ple, to state that w e m easure 'en tities ' 
o r that w e m easure 'a ttrib u tes ', ra ther w e m easure 'a ttrib u tes o f  en tities ' It w ould 
b e  am biguous to say that w e 'm easu re  a m an ' since w e could m easure the w eight, 
heigh t o r  com plexion S im ilarly  w e cannot say that w e 'm easu re  the w e ig h t', since 
w e  m easure  the w eight a t a  specific tim e under certain  conditions (altitude, dressed 
o r  undressed , before  o r a fter a m eal etc )

R eturn ing  to ou r defin ition  w e find that m easurem ent assigns num bers o r 
sym bols to a ttributes o f  entities to describe them  T hese num bers o r  sym bols can be 
any designated scale (fo r exam ple height could be m easure in M etric  o r Im perial 
scales) and therefo re  m easurem ent o f  the sam e attribu te  m ay return  m any values 
depending on the scale used This is an im portan t po in t to  rem em ber w hen 
in terpreting  results T here  is a tendency to believe that a  num ber obtained from  a 
m easure  is  a  p recise  representation  o f  the attribu te  M easurem ent how ever is no t that 
c lear cu t T here  are  m any d ifferen t view s on w hat is and is not m easurem ent, and 
w e can turn  to Fenton  for a good discussion o f  the science o f  m easurem ent [Fenton 
91]

1.2 Measurement in software

Softw are engineering is the term  used to describe the collection o f  techniques 
concerned w ith  applying an engineering approach to the  construction  o f  softw are 
products T his 'eng ineering ' approach involves m anaging, costing , p lanning , 
m odelling , analysing, designing, im plem enting, testing and m aintaining softw are 
system s T hese activ ities along with supportive tools and techniques are  used in an 
attem pt to p roduce  high quality  system s that are  delivered  on tim e and w ithin  a
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specified budget

A lthough this approach w as proposed nearly  tw o decades ago, the 
im provem ents m  softw are products has not m atched the in itial, perhaps over 
op tim istic  hopes for this m ethod Fenton attribu tes this fa ilu re  to the less than 
rigorous approach taken fo r m easurem ent w ithin this d iscip line and p rovides the 
fo llow ing observations

1 P roducers o f  softw are still fail to set m easurable targets w hen developing
products C laim s are  often m ade regard ing  the 'u ser-frien d lin ess ', 
're liab ility ' and 'm ain ta inab ility ' o f  the products w ithout specifying w hat 
these m ean in  m easurable term s P roducers have only vague notions o f  their 
objectives w hich im plies that they cannot fully achieve them  G ilb sum m ed 
up th is situation w ith  the follow ing statem ent

"projects without clear goals will not achieve their goals c learly" [Gilb 87]

2. W e fail to m easure the com ponents w hich m ake up the real costs o f  softw are
pro jects F o r exam ple w e usually do not know  how  m uch tim e w as really  
spent on design com pared to testing

3 W e do no t a ttem pt to quantify  the quality o f  the p roducts w e produce Thus
w e cannot tell a  potential user how  reliab le a product w ill be  in term s o f  its 
likelihood o f  fa ilu re  in a given period  o r  use, o r how  m uch tim e w ill be 
required  to p o rt the product to a d ifferen t m achine

Fenton  goes on to stress the need for m easurem ent bu t claim s that it is 
m isused and little  understood

"measurement performed is done infrequently, inconsistently and 
incompletely Moreover it is quite detached from  the normal scientific 
view o f  measurement" [Fenton 91]
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M easurem ent w hile cited by D eM arco as the key to contro lling  softw are 
p roduction , is not w ell enough understood to be as effective as once hoped W hen 
m easurem ent takes p lace the  m otivation for it is no t alw ays c lear and it could b e  said 
that m ost m easurem ents a re  done purely  to p lease  the quality  con tro ller and that the 
resu lts a re  unscientific and unreliable H ow ever, the aim  o f  softw are m easurem ent 
is to  con tro l o r p red ic t the state o f  softw are developm ent T his can b e  done by 
focusing m easures to achieve p ro ject specific results. A n exam ple w ould be 
collecting  data in o rder to m onitor and m odify developm ent T he earlie r in the 
p roduct life-cycle this is done the m ore contro l there  is on quality  in term s o f  
functionality , re liab ility , cost and scheduling

1.2.1 Software metrics

N ow  that w e have established that softw are engineering requires m easurem ent 
it is im portan t to see how  this has been done so far F irs t how ever, w e should 
c larify  a t this po in t the d ifference betw een a m etric and a m easure

•  Metrics num erically  characterise  sim ple a ttribu tes like  length , num ber o f  
decisions, num ber o f  operators (for p rogram s), num ber o f  bugs found, cost 
and tim e (for processes)

•  Measures are  'func tions ' o f  m etrics w hich can be used to assess o r p red ict 
m ore com plex attributes like cost o r quality

H ow ever, since there  is an inevitable confusion relating  to the phrase  'm e tric ' 
due  to its m any d ifferen t in terpretations, an attem pt w ill be  m ade to ensure  that the 
term  w ill n o t b e  used, w herever possib le

T he  term  software metrics how ever is an a ll-em bracing  term  given to a  w ide 
range o f  apparen tly  d iverse  activities T hese include
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•  C ost o f e ffo rt estim ation m odels and m easurem ents
•  P roductiv ity  m easures and m odels
•  Q uality  contro l and assurance
•  D ata collection
•  Q uality  m odels and m easures
•  P erfo rm ance  evaluation and m odels
•  A lgorithm ic com plexity
•  S tructural and com plexity  m etrics

T hese activ ities a re  listed in an o rder that represents a p rogression  from  the 
topics that a re  concerned w ith high level goals dow n to the foundational m aterial on 
w hich these m ay depend M ost o f  these w ill be expanded in the follow ing th ree  
chapters

1.3 M easurement for rule-based systems

M ost o f  the m easurem ent activities m entioned in section 1 2  2 w ere developed 
fo r th ird  generation  languages H ow ever, there  is a need to ensure that m easurem ent 
is perfo rm ed  fo r a ll softw are system s T his m ay requ ire  the developm ent o f  new  
m easures fo r new  softw are developm ent m ethodologies

T he  aim  o f  this thesis is to take a langauge w hich incorporates m ethods o f  
developm ent for w hich no m easures ex ist and to define those m easures under a 
standard fram ew ork  w hich is presented  in chapter tw o T o ensure  that m easures 
w hich a lready  exist a re  not 're in v en ted ', chapters th ree  and four p rov ide  a sum m ary 
o f  the  m ore  com m on and frequently  im plem ented m easures C hapter five goes on 
to  describe a process through w hich m easures m ay now  be  defined, and chapter six 
suggests a new  set o f  m easures fo r a ru le-based language T his is follow ed by an 
in itia l analysis o f  the  results obtained using a  pro to type  static analyser to co llect data
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1.4 Summary

Softw are m etrics a re  no t w ell defined m ethods fo r assessing softw are quality  
P roducers o f  softw are should have w ell defined goals befo re  m easurem ent techniques 
re levan t to  these goals can b e  identified O nly then can results be obtained from  
m easurem ent that have m eaning O ne o f  the p rim ary  concerns w ith softw are 
engineering  is not the fact that m easures are  not being used bu t that w hen they are, 
they a re  n o t focused on a particu lar goal and the results a re  unscientific and not 
applicab le  to the real w orld

T he  use o f  m easurem ent w ithin softw are to  p rov ide  in form ation on quality , 
cost and developm ent schedules needs to be extended to encom pass all m ethods o f  
softw are developm ent, and not ju s t the m ore traditional third  generation languages 
T he  fo llow ing three  chapters prov ide the required  background fo r softw are 
m easurem ent as it is curren tly  used in todays developm ent environm ents, w hile 
chapters 5 ,6  and 7 discuss the use o f  new ly proposed  m easures for ru le-based 
system s
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2 A framework for measurement

2.1 Software entities and attributes

T he use o f  softw are m etrics is often perceived to be quite  straight forw ard . 
M easurem ents are perform ed on specified parts o f  the system  and conclusions are  
draw n from  these results This how ever, w hile true in one sense, is a  naive over 
sim plified  approach taken by m any involved in quality assessm ent A typical set o f  
tasks required  to successfully take advantage o f  these techniques are  prov ided  below .

•  Set up a fram ew ork for the m etrics
•  H ave a clear understanding o f  the aim s o f  m easurem ent
•  D ecide how  this m easurem ent w ill take p lace

T he  success o f  the m easurem ent process will be based on how  strictly  these 
steps are  adhered to T oo  often m easurem ent theory is em ployed w ithout a  c learly  
stated target o r aim In these cases it is difficult to m ake claim s regarding any aspect 
o f  the softw are Such haphazard system s would not p rovide sound analytical results 
w ith w hich a high degree o f confidence could be associated T he collection  o f  
ev idence should be a clearly defined process which is specified before m easurem ent 
begins

T he first step relating to the fram ew ork is a  m atter o f  decid ing betw een  
various existing m ethods for incorporating m easurem ents into a softw are assessm ent 
schem e B efore this can be done how ever, we m ust first identify  the com ponents
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w ithin softw are w hich we may wish to m easure It is w idely agreed that there  are  
th ree  d istinct en tities w hose a ttributes w e are interested in m easuring.

•  P rocesses - softw are related activities (usually w ith tim e factors)
•  P roducts - deliverables such as docum ents and source code
•  R esources - item s that are  input to processes

W ithin these entities w e can identify internal and external attributes w hich are 
item s o f  in terest upon w hich w e w ould like to perform  either m easurem ent o r 
prediction

•  Internal attributes refer to m easurem ent o f  the given en tities in term s 
o f them selves

•  External attributes refer to how given entities relate to  their 
environm ent

Typically , m anagers and users tend to be m ore interested in the ex ternal 
a ttribu tes o f  entities, such as the cost-effectiveness o f  a p roduction , o r the degree o f  
reliability  o r useabihty  o f  the softw are It has been observed  how ever, that these 
a ttribu tes are  traditionally  the m ost difficult to m easure, m ainly due to the lack  o f  
quantifiab le  definition with w hich to assess them  Subjectiv ity  plays a m ajo r p a rt in 
resisting  the establishm ent o f  standards for such a ttn b u tes . F o r exam ple, the 
useability  o f  a system  is as yet still assessed by the 'fee l' o f  the in terface. E ffo rts  are  
being m ade to standardise in terfaces, but as yet these do not cover all fo rm s o f  
softw are  applications

C urren t attem pts to m easure external o r high level attributes have been based 
on the identification o f  m ore p rim itive  o r low er level sub-attributes w hich a re  called  
in ternal attribu tes F o r exam ple, we could take an external a ttribu te  such as 
m aintainability , and attem pt to ascertain its value by d iv iding it in to  source code 
sim plicity  and consistency R elevant m easures could then be devised to quantify
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these tw o internal attributes In general it can be stated that m easuring external 
a ttribu tes is based on the m easurem ent o f  related in ternal a ttributes Evidence 
obtained from  internal attributes is used to support external ones because w e cannot 
m easure external attributes directly

2.1 .1  Processes

Processes are  softw are related activities which norm ally  have a tim e factor 
A n exam ple o f  a typical process in the system  developm ent life cycle w ould be the 
construction o f  specification and design docum entation, in tegrated testing o r the 
developm ent o f  the en tire  softw are system  from  the in itial specification stage through 
to the installation stage A process may be tim e dependent and not activ ity  
dependent This could relate to a specific tim e period o f  the pro ject developm ent, 
fo r exam ple, Month o f  September

E xternal attributes associated with this entity are  related  to general notions o f 
quality , stability, contro llability , observability  and cost-effectiveness. T he m ain 
prob lem  associated with these attributes is that they are  not very  w ell understood and 
they tend to be very subjective, fo r exam ple, the controllability o f  testing procedures. 
T herefo re  it is d ifficu lt to define objective m easures It is hoped that from  
experience obtained using these subjective m easurem ents m ore objectiv ity  w ill be 
developed.

A lthough there  is a large degree o f subjectivity associated with ex ternal 
attribu tes, objective internal attributes have been identified T hese directly  
m easurable attributes are

•  T im e - duration o f  the process
•  E ffo rt - associated with the process
•  Incidents - the num ber o f  incidents o f  a particu lar type arising

during a process eg no o f  bugs found during testing

9



Given the fact that there are very few directly  m easurable in ternal attributes 
it is still possible to com bine them  to form  indirect m easures W e m ust keep m  m ind 
how ever, an understanding o f  w hat is captured by the ind irect m easure F o r 
exam ple, in a process for form al testing, the average cost o f  identify ing e rro rs  during 
processing AC  could use the ind irect m easure below  w here Cost relates to the cost 
incurred  in perform ing  the form al testing and Number o f  errors is the num ber o f  
e rro rs  detected in the softw are as a d irect results o f  this testing process

A C  = _________ ^ 0 S t -------------- (Equation 2.1)Number o f errors found

In this exam ple the external attribute o f cost has been related to a  specific 
item  and then quantified using the internal attribute associated w ith frequency o f 
defined incidents Sim ilarly  o ther expressions o f  cost m ay also be quantified

2.1 .2  Products

Products w ithin softw are are usually seen as deliverab les o f  the softw are 
developm ent life cycle T hese deliverables are physical en tities w hich are  typically  
docum ents and code resulting from  softw are developm ent T hese could  b e  
specification and design docum ents, source code, user and installation m anuals and 
testing specification docum entation at various levels o f  detail E xternal attribu tes 
associated  w ith these products are  num erous Recently the d ra ft standard IS 0 9 1 2 6  
w hich is a  list o f  proposed product quality characteristics has been approved  
[IS 0 9 1 2 6 ] This now  ensures that a com m on set o f external attributes m ay now  be 
identified  for product analysis A set o f  proposed internal a ttributes are  also supplied 
bu t they are  not part o f  the approved standard It is how ever a significant step 
tow ards standard m easurem ent techniques for product a ttribu tes Below  are  the 
IS 0 9 1 2 6  standardised external p roduct attributes
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Functionality
"A set o f  attributes that bear on the existence o f  a set o f  functions and their 
specified properties The functions are those that satisfy stated or implied 
needs "

R eliability
"A set o f  attributes that bear on the capability o f  software to maintain its 
level of performance under stated conditions fo r  a stated period o f  tim e."

U seab ility
"A set o f attributes that bear on the effort needed fo r  use, and on the 
individual assessment of such use, by a stated or implied set o f  users. "

E fficiency
"A set o f  attributes that bear on the relationship between the level o f  

performance o f  the software and the amount o f  resources used, under stated  
conditions "

M aintainability
"A set o f attributes that bear on the effort required to make specific 
modifications "

Portab ility
"A set o f  attributes that bear on the ability o f  software to be transferred from  
one environment to another "

T hese external attributes are  related to both docum entation  and source code 
As already stated the internal attributes associated with these are  not standardised and 
there are  m any suggested w ays o f  m easurem ent At present an inform ative appendix 
to IS 0 9 1 2 6  exists containing proposed internal attributes w hich are given below
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Functionality
Suitability
A ccuracy
Interoperability .
C om pliance
Security

A ppropriateness o f  a set o f  functions to specified tasks. 
P roduction o f agreed results o r effects 
A bility  to interact w ith specified system s.
A dherence to specified standards o r conventions. 
P revention o f  unauthorised access to p rogram s and data.

R eliability
M aturity  
F ault tolerance 
R ecoverability

Frequency o f  failure by faults in the softw are 
M aintenance o f  specified levels o f  perform ance. 
R e-establishm ent o f perfo rm ance after softw are faults.

U seability
U nderstandability
L earnability
O p erab ility

Users effort for recognising logical concepts. 
U sers effo rt for learning its application. 
E ffort for operation and operation  control

Efficiency*
T im e behaviour T hroughpu t rate  m perfo rm ance o f  functions. 
Resource behaviour Resource am ount and duration  required

M aintainability
A nalysability
Changeability
Stability
Testability

E ffo rt required to identify  deficiencies o r failure. 
E ffo rt required for fault rem oval o r m odification. 
Risk o f  unexpected effect o f  m odification 
E ffort required for validating the m odified softw are

Portability
A daptability
Installability
C onform ance

O pportunity  for adaptation to d ifferent environm ents. 
E ffo rt to install s/w  onto specified environm ents. 
A dherence to standards relating  to portability

12



2.1.3 Resources

T hese a re  considered to  b e  the  inputs o f  softw are p roduction  E xam ples are  
personnel (individual o r team s), m aterials, tools (softw are and hardw are), and 
m ethods T he  cost o f  em ploying these inputs is one o f  o u r p rim ary  in terests, it has 
a  h igh degree  o f  re levance to all resources and it is easily  m easured ( som etim es the 
cost is  d irectly  related  to the num ber o f  attributes)

W ith  personnel w e m ust in troduce productiv ity  as w ell as cost W e can only 
realistically  consider the productiv ity  o f  a  p rog ram m er w ith  respect to som e activity  
such as the tim e taken to  code, test, and design a p rogram  o r the vo lum e o f  output 
such as the  num ber o f  lines o f  code w ritten over a period  o f  tim e, o r  the num ber o f  
pages in  the  specification and design docum entation  A n exam ple w ould b e  the 
defin ition  o f  softw are productiv ity  P  as being the amount o f  output d ivided by the 
effort input, w here  the ou tput is m easured in lines o f  code and the input is the effo rt 
in m an m onths

p  = Amount o f  output (E q u a tio n  2 .2 )
effort input

T his fo rm ula  is derived from  the product (am ount) and the  process (effort) 
T h is, how ever, is not a true  representation  o f  the productiv ity  o f  softw are since Lines 
O f Code does no t have a  d irect relation to productiv ity  It should be noted that 
although m any m easurem ents are  feasible, the underly ing princip les behind the ir use 
should first be  assessed 

\

O ther attribu tes o f  in terest to personnel a re  age, experience and intelligence 
W ith  team s they a re  size, structure, and experience o f  team  leader M easurem ent 
o f  these attribu tes are  often based on em pirical evidence and is not easily 
quantifiab le
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2.2 Prediction and assessment

M easurem ent w ithin  softw are is typically  a process involving the assessm ent 
o f  an  attribu te  o f  an entity  H ow ever a  p red iction  is often  required  regarding 
a ttribu tes o f  entities w hich do not yet exist F o r exam ple, a t the end o f  the product 
life  cycle it is possib le  to accurately  determ ine the cost o f  developm ent W e w ould 
lik e  to  p red ic t this cost at the  early  stages in product developm ent to accurately  
budget resources S im ilar p redictions are  required  to determ ine developm ent 
schedules and e ffo rt

F enton  m ade the d istinction betw een prediction  and assessm ent by  first 
p rov id ing  the follow ing defin ition

"A model is an abstract representation o f  an object" [Fenton 91]

T his im plies that there  a re  m any d ifferen t types o f  m odels, bu t there  are  
p rim arily  tw o m am  m odels o f  in terest w ithin softw are m easurem ent

•  M odels w hich a re  abstract represen tations o f  process, p roducts, and 
resources T hese are  used to define unam biguous m easures

•  M odels w hich are  abstract representations o f  the relationships betw een 
attribu tes o f  entities T hese re la te  tw o o r m ore m easures in a form ula

I f  w e take the second m odel and look  at an exam ple, w e can elim inate som e 
o f  the confusion relating to the d ifference betw een pred iction  and assessm ent Below 
is a  sim ple m odel

E  = — (Equation 2.3)
a

w here I is the num ber o f  lines o f  code in a softw are p roduct, E  is the effo rt required  
to p roduce  the p roduct and a  is a constant. T he extent to w hich this m odel is used
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for assessm ent o r prediction depends on how much w e know  about the param eters 
o f  the m odel If the param eter I is know n then we are assessing the value o f  E  and 
not predicting  it H ow ever, if  the project is still in the specification stages and w e 
a re  estim ating the num ber o f  required  lines o f  code (m aybe based on the functionality  
o f  the system ) then w e are  using this m odel to pred ict the e ffo rt required  for softw are 
developm ent In this case w e w ould need a prediction  (or estim ation) p rocedure  to 
determ ine the value o f  I W e can see from  this that a  m odel is m erely a fo rm ula  and 
on its ow n is insufficient for perform ing  prediction M ethods to determ ine the  m odel 
param eters and procedures to in terpret the results are  also required  T he follow ing 
defin ition  form alises these concepts

"A prediction system consists of a mathematical model together with 
a set o f  prediction procedures fo r  determining unknown parameters, 
and interpumng results." [L ittlew ood 8 8 ]

U sing the sam e m odel d ifferen t results may be obtained depending on the 
p red iction  procedures used M uch confusion exists in softw are regarding assessm ent 
and p red iction , but since the ultim ate goal is prediction even assessm ent m etrics are  
claim ed to be part o f  prediction system s

2 .3  M easurement frameworks

N ow  that standard m ethods o f  m easurem ent have been introduced they should 
be set in to  a com prehensive fram ew ork which incorporates the ideas in troduced in 
this chap ter W e consider w hich processes, products and resources are  re levant to 
each m ethod, w hich attributes (internal and external) w e are  m easuring, and w hether 
they a re  perform ing  assessm ent o r prediction W e w ill cover briefly  all o f  the topics 
in troduced  earlie r but our main em phasis will be on product m easurem ent
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2.3.1 Cost and effort estimation

T his is concerned with the prediction o f cost and e ffo rt process attributes. T he 
m ost well know n m odel is undoubtably B oehm 's C O C O M O  (C o n stru c tiv e  C O st 
M O del) [Boehm  81] m odel fo r estim ation o f  size and e ffo rt o f  softw are p roducts

W ithin  C O C O M O  there are  three m odels, basic, in term ediate , and detailed , 
each  o f  w hich can be used at d ifferen t stages o f  developm ent T hese m odels w ere 
derived from  data obtained from  applications w ritten in F o rtran , P L  1 and C O B O L. 
T he follow ing form ula calculates effort estim ation in person m onths

Effort = a S h * Product o f  Cost Drivers (Equation 2.4)

S is m easured in thousands o f  delivered source instructions (usually  LO C )
a and b a re  determ ined by the m ode o f developm ent T here  are  th ree  m odes:
organic - sm all to m edium  D P projects, em bedded - am bitious bu t tightly
constrained , and sem idetached -som ew here between the previous two

C O C O M O 's 15 cost drivers fall into four categories P roduct a ttn b u tes , 
personnel a ttn b u tes, com puter attributes, and project a ttn b u tes  T he m odel p rov ides 
defau lt values fo r cost d river attributes, but these should be m odified as m ore 
h istorical data becom es available relating to actual cost C O C O M O  provides 
estim ates for developm ent e ffo rt and schedule divided into three phases; p roduc t 
design, program m ing and integration testing

T he C O C O M O  estim ation form ula is usually done at the specification stage 
o f  softw are developm ent The form ula above is as explained earlie r, only  a  m odel 
o f  softw are developm ent, and the prediction procedures for determ ining a ,b , and 
S along with the m odel m ake up the prediction system It is hard therefore  to  ta lk  
about the C O C O M O  model fo r cost estim ation since d ifferen t prediction  p rocedures 
w ill yield d ifferent results A lso this is not a very satisfactory system  since the
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prediction  o f  the attribute for lines o f code could be as d ifficu lt as the pred iction  o f  
the original attribute o f  cost (or effort)

2 .3 .2  Productivity measures and models

H ere  w e are m easuring the resource attribute Personnel (team s o r individuals) 
during  a  process (usually a calendar tim e period) T he  m ost com m on m odels a re  
those that take productiv ity  as a function o f  the output o f  the personnel d u n n g  a 
process, divided by the input (cost) o f  the personnel during that process as explained 
m  section 2 1 3

T he resource attribute o f  productivity  is assum ed to be captured  as an ind irect 
m easure o f  a product attribute m easure and a process attribu te  m easure

2 .3 .3  Quality models and measures

Q uality m odelling [M cCall 77] involves relating m etrics, in ternal a ttribu tes 
and external attributes to som e theoretical fram ew ork It is used to associate  external 
p ro d u c t attributes (som etim es referred  to as factors) to in ternal a ttributes (know n as 
the criteria) which in turn are evaluated by using proposed sets o f  m easures.

It is generally  agreed that the use o f  softw are engineering m ethods leads to 
construction  o f  products with certain structural p roperties T hese properties are  
characterised  by internal attributes such as those proposed under IS 0 9 1 2 6  Som e m ay 
even state that the verification o f  the correct im plem entation o f  these m ethods w ill 
ensure  'sa tisfac to ry ' levels o f external attributes expected by softw are users, fo r 
exam ple, reliability , m aintainability , and useability T hus the assum ption that good  
in ternal structure leads to good  external quality is part o f  m ost softw are quality  
m odels
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W e m ust how ever realise  that softw are engineering  only  p rov ides the 
fram ew ork  from  w hich im provem ents in softw are are  possib le by encouraging  the 
use o f  im proved techniques, le projects in w hich the best com m on practice  
techniques are applied routinely  are  deem ed m ore likely to have a satisfactory  end 
p roduct than those developed ad-hoc H ow ever none o f  these m ethods can guaran tee 
the level o f  external a ttributes since so m uch depends on how  these m ethods are  
applied  to  individual p rob lem s A lso there  is no  standard  scaling system  for 
determ ining  the 'lev e l' o f  external attributes

A lthough there is an 'in tu itive  feel' regarding the connection  betw een the 
in ternal structure o f  softw are products and external p roduct a ttribu tes, there  is very  
little  scientific evidence to establish specific relationships This is perhaps the resu lt 
o f  d ifficu lties in setting up relevan t experim ents and a  lack  o f  understanding  o f  how  
to m easure im portant in ternal product attributes properly

D efining m odels o f  quality aids in the developm ent o f  a structured  process
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through w hich attributes o f  softw are may be m easured, recorded, and re-used in 
fu ture projects By providing reliable data, based on historical and m easured values, 
prediction  and assessm ent techniques may be used to control p roductiv ity , cost and 
quality  M easurable targets m ay be set w ithin softw are projects w hich w ill increase 
confidence in the p ro d u cer's  claim s to specified external attributes W ithout these 
a ttribu tes being m ade quantifiable little w eight can be associated w ith claim s o f  a 
p ro d u c t's  level o f  quality

2 .3 .4  Data collection

M odels for cost/effo rt estim ation, productivity assessm ent and pred iction  
depend on the accurate m easurem ent o f process and resource attributes. M uch o f  the 
w ork  in data collection for all bu t product attributes m ust be done by hand so e ffo rt 
is aim ed at setting in p lace rigorous procedures for gathering accurate m easures o f  
the  process and resource a ttributes T hree  main techniques for gathering da ta  a re  as 
follow s

Software analysers - data is generated autom atically as p rogram s are subm itted to
a com piler, specified m easures are  perform ed a t this tim e. 
D ynam ic analysis is perform ed w hen m easures are  perfo rm ed  
w ill the program  is executing Softw are analysers a re  by 
nature algorithm ic and objective

Report forms - are logs w hich are com pleted by analysts and p rogram m ers at
various m ilestones in the product developm ent process 
E ntries could include date, tim e, activ ities, e ffo rt in hours. 
F orm s can often cause confusion regard ing  the data  requ ired .

Interviews - T o  avoid m isunderstanding o f  the data required  w hile
com pleting form s-based-questionnaires, in terview s a re  often 
conducted The same inform ation is obtained using form s.



M ost form s o f  data collection, with the exception o f  softw are analysers suffer 
from  one m ajor problem  they are not reproducible E lem ents o f  subjectivity 
in troduce uncertainties w hich affect the degree o f confidence associated w ith the  data.

2 .3 .5  Performance evaluation

U sually  m easures in this area deal with the p roduct a ttribu te efficiency This 
can be defined in term s o f  tim e (response tim es and processing tim es) and storage 
(am ount o f  resources used and the duration o f such use) E fficiency is m ainly seen 
as an external attribute for executable code, how ever it can be an internal attribu te  
w hich looks at the algorithm ic com plexity o f a program  and identifies repetition  o f  
source code etc

In the case o f  tim e efficiency assessm ent is perfo rm ed  by determ ining key 
inputs and basic m achine operations, and then w orking out the num ber o f  basic  
operations required  as a function o f  input size In term s o f  our fram ew ork , one 
possib le approach is to determ ine the efficiency o f  the algorithm  as an in ternal 
attribu te  w hich can be used to predict the external a ttribu te efficiency o f  executable 
code.

2 .3 .6  Structural and complexity metrics

M ost external product attributes are high level and very difficult to m easure, 
so w e are  often forced to consider m easures o f internal attributes o f  products 
W ithin  com plexity there are  two different issues to be addressed

Computational complexity
C oncerned with the efficiency o f  the algorithm  in its use o f  m achine 
resources
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Psychological complexity
C oncerned with characteristics o f  the softw are that affect program m ers 
perform ance in com posing, com prehending and m odifying softw are

C urtis encom passes these notions into one definition

"Complexity is a characteristic o f the software interface which influences the 
resources another system will expend or commit while interacting with the 
software " [C urtis 8 8 ]

C om plexity  is a function o f the softw are and its in teraction  with o ther system s 
(m achines, people, o ther softw are) To devise a com plexity  m odel w e m ust com bine 
specific m etrics according to som e theory or hypothesis Types o f  com plexity  
m odels w hich exist are  as follow s

•  Problem  com plexity
•  D esign com plexity
•  P rogram  / P roduct com plexity

T he m easurem ents defined should represent the d ifficulty  that a 
p rogram m er/analy st encounters when perform ing tasks such as designing, coding, 
o r m aintaining softw are T here  are  num erous m easures w hich are  concerned w ith 
m easuring in ternal structural and com plexity a ttributes w hich w ill be  detailed  in 
chapter 3

2 .3 .7  The GQM paradigm

It w as initially stated that for m easurem ent to be successful we m ust first have 
objectives in m ind O nce those objectives have been established w e should use the 
fram ew ork  described in this chapter to identify relevant a ttributes and entities to be 
m easured. This goal oriented approach is consistent w ith the G oal/Q uestion /M etnc
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paradigm  o f  Basili and Rom bach [Basih et al 8 8 ] w hich is a well know n fram ew ork 
for a  w ide spectrum  o f  softw are m easurem ent T he  idea is that a goal m ust be 
identified before m easurem ent begins, this should lead to questions, and these 
question can be answ ered with the use o f m easurem ent T he goals are  norm ally  
defined in term s o f  purpose, perspective, and environm ent and to help define goals 
a  set o f  tem plates a re  provided

Template for goal definition

•  Purpose to characterise / evaluate / predict /  m otivate etc the process /  
p roduct / m etric  / m odel etc in o rder to understand / assess / m anage / 
engineer /  learn /  im prove it Exam ple To evaluate the maintenance process 
in order to improve it

•  Perspective Exam ine the cost / effectiveness /  correctness /  defects /  changes 
/  p roduct m easure etc from  the view point o f  the m anager /  custom er /  
developer E xam ple Examine the cost from the viewpoint o f  the developer

•  E nvironm ent T he environm ent consists o f  the follow ing process factors, 
people factors, problem  factors, m ethods, tools, etc E xam ple: The 
maintenance staff are poorly motivated programmers who have limited access 
to tools

G uidelines are  also provided for process and p roduct related questions. T he 
questions that a re  addressed are the definition o f  the process o r p roduct and re levant 
a ttn b u tes  W hen w e com e to defining the m easures it is understood that in m any 
cases m ore than one m easure will be required for one question and these m ay 
include subjective m easures

W e can now see how G Q M  can be related to o u r fram ew ork A goal o r 
question can be related to entities each having a choice betw een assessm ent o r 
pred iction  ( en tities and attributes need to be defined first) W e now are  concerned
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w ith quantifying the a ttributes o f a product, process o r resource T he leaves o f  the 
h ierarchy tree are d irectly  m easurable a ttnbu tes o f  entities

2 .4  Summary

T o ensure that a system  o f  m easurem ent is im plem ented correc tly , an 
understanding is required  o f  w hat the aim s o f the m easurem ent are  T ypically  there  
a re  th ree  entities, resource, process, and product w hich a re  to be evaluated. F o r 
m easurem ent to be scientifically  based, external a ttn b u tes  need to be identified  and 
their corresponding in ternal attributes T he identification  o f  m easures to quantify  
specific in ternal attributes w ill b e  affected by the type o f  in form ation required , m ost 
m easures perform  som e assessm ent o f the softw are, b u t a re  usually claim ed to  be  
p a rt o f  a prediction m odel M odels o f  how these fram ew orks are  defined are  
typically  Boehm and M cC all quality m odels o r the G Q M  approach T he fo llow ing 
tw o chapters give us a review  o f  the m ore com m on m easures applicable to the 
product entity
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3 Specification and design measures

3.1 Introduction

T he prediction and assessm ent o f  softw are is a process w hich is not restric ted  
to one stage o f  the softw are developm ent life cycle It is im portant to define each 
o f  these activities as accurately  as possible to identify  m easures that a re  phase 
dependant A com m on softw are life cycle is the waterfall model Such a m odel has 
been described by Boehm [Boehm  81], F igure  3-1

Requirements and Specifications - This phase should produce a com plete  
specification o f  the required functions and perform ance characteristics o f  the 
softw are It should also look at resource needs and p relim inary  developm ent cost 
estim ates

Product Design - T his phase should produce m ore detailed  m odule specifications 
including their expected size, the necessary com m unication  am ong m odules, 
algorithm s to be used, in terface data structures, and in ternal control structures. It 
should h ighlight im portant constraints relative to tim ing o r storage, and include a 
plan for testing the individual m odules

Programming/Coding - This phase should produce an im plem entation  o f  the  m odules 
in the chosen language together with unit testing and subsystem  testing

System Integration - T his phase, usually com pleted by a group  independent o f  the
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orig inal analysts and program m ers, should subject the integrated m odules to 
extensive testing to ensure that all functional requirem ents a re  m et E rro rs  are , o f  
course , corrected  as discovered

Installation/Acceptance - This phase should deliver the product to the users 
organisation  for final acceptance tests w ithin the operational environm ent fo r w hich 
i t  is  in tended D ocum entation m anuals are delivered , tra in ing  is conducted, p rob lem s 
recorded  and corrected  until the custom er accepts the product

Maintenance - T his is a continuing phase in w hich additional discovered e rro rs  are  
correc ted , changes in code and m anuals are  m ade, new  functions are added, and old 
functions are  deleted

Figure 3-1 T he w aterfall m odel o f  the softw are life cycle

T hese stages are  generally  sequential but tend to be in terdependent. C hanges 
from  one phase filter through to cause significant changes in others M easures a re  
not usually  defined to fit neatly into the seven stages described, how ever, fo u r 
general categories exist w hich contain related activities
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Design  - T his phase  contains the R equirem ents/Specification , P roduct D esign , and 
D etailed  D esign phases A ll p relim inary  w ork  b efo re  actual coding  begins

Coding - T his phase is the sam e as the P rogram m ing /C oding  phase C ode is w ritten 
in  th is phase

Testing - T his phase contains the System s Integration  and Insta lla tion / A cceptance 
phases. In ternal testing w ith  sam e o r  live test data is perfo rm ed  in this phase

Maintenance - T his phase is the sam e as the M ain tenance phase Softw are is now 
in operation

T his chapter describes som e o f  the m ore com m on m etrics is in use under the 
above classifications E m phasis is p laced in the la te r stages in p roduct ra ther than 
process entities

3.2 Specification measures

In itia l costs and tim e estim ates are  required  at the  earliest stages o f  product 
developm ent M easures during the analysis stage w hich attem pt to prov ide these 
pred ictions are  based on the system  specification Since the specification describes 
the requirem ents o f  the system  and not the im plem entation  m ethod, quantitative 
m easures o f  the true  function to be  delivered , as perceived by the user, w ill be  
p rov ided  M ost research  in to  specification m etrics has been done by D eM arco

3.2 .1  DeM arco's "BANG" metric (specification weights)

Bang is a  function m etric, an im plem entation-independent indication o f  system  
size T he inform ation conten t (size) o f  the specification m odel is a d irect m easure
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o f  the quantity  o f  usable system  functions to be delivered T he m easure is based on 
the decom position o f  each part o f the specification m odel dow n to their p rim itive  
levels such as data elem ents, objects and relationships T he relationship betw een 
these prim itives is then quantified using a w eighted factor

Bang is the earliest p red icto r o f size w hich is used to drive the cost m odel and 
hence is only a very rough estim ator

Primitive Components of the Model

A com ponent o f  the specification m odel is considered  p rim itive  i f  it is not 
partitioned  into subordinate com ponents Each part o f  the specification m odel 
(functional m odel, data model and state transition m odel) is divided dow n to  its 
p rim itive  level, see Table 3 1

Types o f primitives

•  Functional p rim itives (Functional M odel)

•  D ata Elem ent is the prim itive data item  (character, num ber e tc). D ata
Elem ents are  contained in the data dictionary com ponent o f  the functional 
m odel

•  T he  p rim itive  com ponent o f  retained data organisation  is the object. An
object is a group o f  stored data item s, all o f w hich characterise the sam e 
entity  (D ata M odel)

•  T he prim itive com ponent o t retained data interconnectedness is the
relationship  (D ata M odel)
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Table 3.1
P a r tit io n in g  vehicle Is used  to  p a r tit io n T o p ro d u c e  as 

p rim itiv es
Function  netw ork System  requirem ents Functional

prim itives
D ata dictionary System  data D ata elem ents
O bject diagram Retained data O bjects
O bject diagram Retained data R elationships
State diagram C ontrol characteristics States
State diagram C ontrol characteristics T ransitions

T he fo llow ing p rim itive  counts p rovide basic m easures for use w ith Bang.

F P  count o f  functional p rim itives lying inside the m an-m achine boundary
F M P  count o f m odified m anual functional p rim itives (functions lying ou tside the

m an-m achine boundary that m ust be changed to accom m odate installation  o f  
the new autom ated system )

DE- count o f  all data elem ent
D E I count o f  all input data elem ents
D E O  count o f  all output data elem ents
D E R  count o f  data elem ents retained (stored) in autom ated form
OB count o f  objects in the retained data model
R E  count o f  relationships in the retained data model
ST  count o f  states in the state transition model
T R  count o f transitions in the in the transition m odel
TC, count o f data tokens around the boundary o f  the ilh functional p rim itive

(evaluated for each prim itive) , a token is a data item  that need no t be 
subdivided w ithin the prim itive 

RE, count o f  relationships involving the ith ob ject o f  the retained  data
m odel(evaluating for each object)
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D eM arco  identified tw o system s classifications with w hich Bang could be used.

(a) Function strong system s
(b) D ata strong system s

T he form er relates to system s that can be thought o f  alm ost entirely  in term s 
o f  the operations they perform  on data T he latter relates to system s that can be 
thought o f in term s o f  the data they act upon, the data groupings and the 
in terre la tions ra ther than the operations

(a) F o rm u la tin g  B ang  fo r  F u n c tio n -S tro n g  System s

T he princip le com ponent o f  Bang fo r function-strong system s is F P  
H ow ever som e functions cost m ore to im plem ent than o thers V ariations ex ist in 
both size and com plexity which m ust be adjusted for in the m odel

(1) C orrecting  for V ariations in Function Size

C orrecting  for size is based on the observation that the function m odel has 
reduced the system  to a series o f  linked prim itive transformations O utput tokens a re  
generated  from  input tokens in each transform ation T he inform ation con ten t o r size 
o f  a transform ation can be approxim ated as a function o f  TC, the num ber o f  tokens 
in the transform ation Studies [Halstead 77] into how size varies w ith TC leads to 
the follow ing relationship

Size {Primitive) a TC, * log2 (TC) (E q u a tio n  3 .1 )

T able  3 2 provides w eighted values based on this form ula
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D a ta  W eig h tin g  fo r  S ize C o rre c tio n  o f F u n c tio n a l P rim itiv e s

Table 3.2

TC; C o rre c te d  F P  In c re m e n t (C F P I)
2 1 . 0

3 2.4
4 4 .0
5 5.8
6 7.8
7 9.8
8 1 2 . 0

9 14.3
10 16.6

T he corrected  FP (C FP) is now

C F P  = Y ,  C F P I i (Equation 3.2)

(ii) C orrecting  for V ariations in Com plexity

D eM arco reasoned that the com plexity o f prim itives do not vary greatly  and 
w hen they do they have a discernib le pattern. Sixteen well defined categories w ere 
identified and a correction factor for each was given.

•  Separation - prim itives that divide incom ing data item s
•  Amalgamation - prim itives that com bine incom ing data
•  Data direction - p rim itives that steer data according to a control variab le
•  Simple update - prim itives that update one o r m ore item s o f  stored data
•  Storage management - p rim itives that analyse stored data, and act based on

the state o f  that data
•  Edit - p rim itives that evaluate the net input data at the m an-m achine boundary
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•  Verification - p rim itives that check for and repo rt in ternal inconsistency
•  Text manipulation - p rim itives that deal w ith  text strings
•  Synchronization - p rim itives that decide w hen to act
•  Output generation - p rim itives that form at net output data flow s
•  Display - p rim itives that construct tw o-dim ensional outputs (graphs, p ictures)
•  Tabular analysis - p rim itives that do form atting  and sim ple tabu lar reporting
•  Arithmetic - p rim itives that do  sim ple m athem atics
•  Initiation - p rim itives that establish starting values o f  stored data
•  Computation - p rim itives that do com plex m athem atics
•  Device management - p rim itives that contro l devices adjacent to the com puter 

boundary

T ab le  3 3 contains a  suggested set o f  correction  factors fo r these categories

Table 3 .3

C o m p lex ity  W e ig h tin g  F a c to rs  b y  C lass o f F u n c tio n

C lass W eig h t C lass W eig h t
Separation 0  6 S ynchronization 1 5
A m algam ation 0  6 O utput

G eneration
1 0

D ata D irection 0 3 D isplay 1 8

S im ple U pdate 0 5 T abular
A nalysis

1 0

Storage
M anagem ent

1 0 A rithm etic 0  7

E dit 0  8 Initiation 1 0

V erification 1 0 C om putation 2  0

T ext
M anipulation

1 0 D evice
M anagem ent

2 5

C om plexity  w eighting factors a re  environm ent dependent R elative
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com plexity  o f  arithm etic  and form atting  functions fo r exam ple w ould  b e  d ifferen t in 
C and C obol T he w eighting factors given need to be altered to suit the p ro jec t's  
developm ent environm ent

(b) Formulating Bang for Data-Strong Systems

T his varia tion  o f  Bang relates to  system s that have a  significant database and 
m ost o f  the e ffo rt is allocatable to tasks having to do w ith im plem enting the database 
itse lf T he  m ost obvious p rim itive  count to base m easurem ent analysis upon is OB, 
the count o f  objects in the database A djustm ents are  required  to account fo r the 
d ifferen t costs o f  im plem enting d ifferen t objects T able  3 4 p rovides w eights for 
each ob ject as a  function o f  its relatedness to o ther objects

Table 3.4  

Relation W eighting of Objects
RE, Corrected OB Increment (COBI)

1 1 0
2 2 3
3 4 0
4 5 8
5 7 8
6 9 8

B ang is  the  sum  o f  the  C O B I over all objects

Bang . OB
(Equation 3.3)



Prediction using Bang

T his m easure is a quantitative ind icator o f  the net useable function from  the 
u se r 's  po in t o f  view  It can be  used early  in the life  cycle to p red ict e ffo rt and can 
b e  used as in  co st m odels to  p red ic t developm ent costs Below  are  tw o algorithm s 
p rov ided  by D eM arco  fo r the com putation  o f  Bang T he  first is for function-strong 
system s and the second is fo r data-strong system s

A L G O R I T H M  1 :  C o m p u t a t i o n  o f  B a n s  f o r  F u n c t i o n - S t r o n e  S y s t e m

Set initial value o f  FUNCTIONBANG to zero 
For each functional primitive in the function model

Compute Token Count around the boundary 
For each incoming our outgoing data flow

1 Determine how many separate tokens o f  data are visible within the primitive 
This is not always the same as the count o f  data elements I f  a group o f  data 
elements can be moved from input to output without looking inside, it 
constitutes only a singe token

2 Write Token Count at the point where the data flo w  meets the primitive

Set Token Count =  sum o f tokens noted around the boundary

Use Token Count to enter Table 3 1 and record CFPI from  the table 
Allocate prim itives to a Class
Access Table 3 2 by Class and note the associated Weight 
Multiply CFPI by the accessed Weight 
Add Weighted CFPI to FUNCTIONBANG
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ALGORITHM 2: Computation o f Bane for Data-Strone Systems

Set initial value o f  DATABANG to zero.
For each object in the retained data model:

Compute count o f  relationships involving that object. Use the relationship 
count to access Table 3 .3  and record C0B1 accessed.
Add COBI to DATABANG.

It is w orth rem em bering that m easures derived from  the specification m odel 
a re  only  as good as the m odel itself. I f  it specifies som ething o ther than the system  
requ ired , the m etrics w ill also be astray. A lso it the requirem ents change and the 
m odel is not revised  then the m easures w ill be out o f  data and useless.

3 .2 .2  Function points

F unction  points [A lbrecht 79] are  im plem entation  independent m easures 
useable in the early  stages o f  the softw are life cycle. As w ith Bang, function points 
use the requirem ents specification and are  a w eighted sum  o f  counts o f  user v isib le 
p roduct features. T he aim  o f  function points is to prov ide a m easure o f  size w hich 
can be used to d rive cost m odels such as C O C O M O . T he follow ing points should 
be rem em bered  befo re  using function points.

•  T hey cannot be derived w ithout a full softw are system  specification, a user 
requirem ents docum ent is not sufficient.

•  D ifferences o f  400 to 2000%  in the num ber o f  function points counted  a t the 
start and finish o f  system  developm ent are  not uncom m on. T his can be due 
to the introduction  o f  non-specified functionality , o r the fact that the level o f  
detail in the specification is coarser than that o f  the im plem entation.
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T herefo re  the num ber and com plexity  o f  inputs, outputs, and enquiries w ill 
be  underestim ated. U sing function poin ts fo r pred iction  m ay not alw ays be 
useful.

•  E lem ents o f  subjectivity are  required for function  po in t counting w hich 
elim inates the possibility  o f  autom ating the process. D etailed counting rules 
are  required  to ensure  sufficient levels o f  consistency.

•  T he  counting ru les need tailoring to the specific analysis m ethods used. 
[R atcliffe e t al 90].

•  Function  points have been successful in D P applications bu t their use in real 
tim e and scientific applications is controversial.

•  W ithin function points there is an adjustm ent based on the technological 
com plexity  o f  the product. T his involves assessing the im pact o f  14 factors 
on a six-point ordinal scale. T his in troduces m ore subjectivity .

Computing the Value FP

T he first step in obtaining a value for F P  is to first com pute the unadjusted 
function count U F C . T he num ber o f '  item s’ o f  the fo llow ing types m ust be  counted:

External inputs -

External outputs -

External enquiries - 
External files  - 
Internal files -

T hose from  the user w hich prov ide d istinct application- 
oriented data. Exam ples are  file nam es and m enu selections. 
T hese do not include enquiries.
T hose to the user w hich prov ide distinct application-oriented  
data. E xam ples are  reports and m essages.
T hese are  in teractive inputs requiring  som e response.
T hese are  m achine readable interfaces to o ther system s. 
T hese are  logical m aster files in the system .
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H aving identified the various types o f  item s, each is given a subjective 
'com plex ity ' rating o f  e ither simple, average o r complex W eighting factors fo r each 
are  given m Table 3 5

T ab le  3 .5

W eighting Factors for FP ordinal scale
IT E M W eig h tin g  F a c to r

Sim ple A verage Com plex
E xternal input 3 4 6

External output 4 5 7
U ser inquiry 3 4 6

External file 7 1 0 15
Internal file 5 7 1 0

In theory there are 15 d ifferent varieties o f item s (each five types m ultiplied 
by the three levels o f  com plexity) so we have

15UFC = ^  (No o f items o f variety i) * (weight) (E q u a tio n  3 .4) 
(=1

T he adjusted function point count FP  is derived from  U FC  by m ultiplying it 
by  a technical complexity factor  T C F

FP = UFC * TCF (E q u a tio n  3 .5)

Factors Contributing to Complexity (TCF)

F I  R eliable back-up and recovery F2 D ata com m unications
F3  D istributed functions F4 P erform ance
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F 5 - H eavily used configuration 
F 7 O perational ease
F 9 C om plexity interface
F l l .  Reusability 
F 13 : M ultip le  sites

F 6  O n-line data entry
F 8 O n-line update
FIO  C om plex processing 
F12 Installation ease
F 14  F acilita te  change

Each factor is rated on a 'sca le ' 0 ,1 ,2 ,3 ,4 ,5 , w here  0  m eans it is irre levan t 
and 5 m eans it is essential T hen T C F  is

T C F  varies from  0 65 if  all F, =  0 to 1 35 if  all Ft =  5

O ne fault with function point is that it includes subjective notions o f  
com plexity , both internal and external I f  these m easures could be perform ed 
separately then it m ight be possible to develop a m easure that provides a m easure o f . 
true functionality

3 .3  D esign  m odels

A design is a m odel o f  a  particu lar way o f m eeting the system  requirem ents. 
A  design should be a form al representation o f the softw are  to be im plem ented and 
it should be thought o f  as a rigorous b lueprin t for construction  It m ust be recorded  
and kept up to date throughout the duration o f  the p ro ject

"Design is the determination of what modules & what intermodular interfaces 
shall be implemented to fulfil the specified requirements " [D eM arco 8 8 ]

P rogram  and system  designs are based around decom position dow n to the 
m odule level T he product o f  the decom position into  m odules can be seen as the

14

TC = 0  6 5  + 0  1 £ F , (E q u a tio n  3 .6)
1=1
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design module T he com pleted design m odel consists o f  a  partition ing  o f  the w hole 
in to  its m odules and a  census o f  all in terfaces betw een these m odules T h e  design 
m odel is com plem ented by a  set o f  in ternal m odel specifications d escnb ing  their 
contents

T he  follow ing points indicate som e im portan t relationships betw een design 
and im plem entation  o f  design

•  O ne to one relationship  betw een m odules indicated in the design & 
m odules im plem ented in the code

•  O ne to one re lationship  betw een in term odular connections indicated 
in  the design and in term odular references (C A LLS etc )

•  O ne to one relationship  betw een in term odular data in terfaces indicated 
m  the design and in term odular shared data im plem ented m  the code

T o  sum m arise, designs should describe all data in terfaces betw een m odules 
M any p ro jec t team s fail to com plete the design stage by ignoring in ter-m odule 
in terfaces Such deficiencies deprive developm ent team s o f  im portan t feedback 
regard ing  the valid ity  o f  the partitioning and hence the design D eM arco  outlined 
the  follow ing test to  see i f  design was correctly  perform ed (F igure  3-2)

The Did-We-Reallv-Do-Desien Test

1 Put the design into a sealed envelope
2 Give the completed software to an outside expert, someone who is not 

fam iliar with the original design
3 Ask your expert to derive the design implied by the implementation
4 Compare the derived design with the design in the envelope
5  I f  the two are not identical, you didn't really do design
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—^Requirement ^ ^  Result

Declared 1 Compare)

Design ) Design

\ Re-
\ construction

\  ) of the
/  \ J  Design 
/Re- y
1 construct)

DesigrT^f Code Package V J  Implemented ^ System

Figure 3-2 T he D id-W e-R eally -D o-D esign T est

A  com m on technique fo r design m odelling is to represen t a design as a 
h ierarchy  o f  m odules (F igure  3-3)

T he  significance o f  such a hierarchy is that the m anager starts the m anaged 
m odel by  passing contro l to  it. T he m anaged m odel does its w ork  and then re turns 
con tro l to  its  m anager O ne m odule in the hierarchy is w ork ing  a t any given tim e. 
T rad itionally  contro l is passed up and dow n, never sidew ays
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Invocation is the act o f passing control to a subordinate m odule A ll the lines 
connecting m odules on the h ierarchy represent invocations and all are show n T he 
hierarchy is a statem ent o f  all the possible invocations in the system  I f  tw o m odules 
share data o r control param eters then they are said to be coupled This in form ation 
is show n along side the lines o f invocation on the hierarchy

This denotes a switch
y f

This denotes data Q "

Figure 3-4 Invocation conventions in m odule hierarchies

T o develop m eaningful design m easures we m ust ask the follow ing question When 
is the partitioning into modules com plete? D eM arco proposed the follow ing rule:

Rule: The design partitioning is complete when the modules are small
enough to be implemented without any further partitioning A simple 
test o f  adherence is that no implemented module shall need an 
internally named procedure

So far nothing has been suggested about how  you ought to design system s o r 
w hat is a good o r bad design, although much w ork has been done by Y ourdon in this
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area [Y ourdon et al 79] T his section provides a understanding o f w hat a  design 
m odel is so that the follow ing section relating to  specific m easures m akes sense.

3 .4  D esign  m e a su re s

A s p ro jects approach conclusion the prediction  o f  the cost, size and e ffo rt o f  
the system  should be converging to their actual values F o r this to happen m ore 
accurate projections are  required  as the developm ent p roceeds as show n in F ig u re  3- 
5 F o r exam ple, cost predictions m ade during the design phase m ust im prove on 
those m ade during the analysis phase M easures o f  p roduct cost based on the  design 
m ust be  m ore reliable and precise Initial estim ates o f  function are based on Bang 
w hich are  im plem entation  independent and not related to how  the specification  is 
im plem ented

Projected 

Costs

F ig u re  3-5 Im proving cost prediction over tim e
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3.4.1 Design weight

To im prove on Bang we need to incorporate a m easure which includes the 
effo rt im plied in the design This im plem entation-dependent pred icto r is usually  
called the Design Weight The follow ing steps are required  to produce this p red icto r.

1 C alculate p rim itive  m etrics (derived from  the design m odel)
2 C alculate com posite pred ictor (design w eight) using a w eighted

form ulation
3 C ollect data from  a range o f projects
4 Produce a prediction line equation
5 Projection o f  new developm ent costs from  the prediction  line equation  

and the observed value o f  the predictor

Primitive Design Measures

T he design m odel should contain a hierarchy o f  m odules w ith all connections 
and couples indicated, and a design data dictionary describ ing all data item s (couples, 
tables, files, database(s), and structured data types) T he follow ing are  basic 
m easures observable from  such a model

M O  C ount o f  m odules

C O ’ C ount o f  in term odular norm al connections (a norm al connection is a reference 
from  inside one m odule to another whole m odule, that is, a C A L L  o r 
PE R FO R M  o r o ther subroutine invocations

DA, C ount o f  data tokens explicitly  shared along norm al connections to and from  
m odule i (Evaluated for each m odule )

SW, C ount o f contro l tokens (sw itches) shared along norm al connections to  and 
from  m odule i (Evaluated for each m odule )
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E N  C ount of encapsulated data groups in the design m odel (an encapsulated data
group is a data area m ade available to a lim ited num ber o f  m odules)

EW , C ount o f  encapsulation w idth o f  data group i (w idth is defined as the num ber
o f  m odules with access to the group)

ED , C ount o f encapsulation depth o f data group i (depth is defined as the num ber 
o f  data elem ents contained in the group)

PA  C ount o f pathological connections (a pathological connection is a reference 
from  inside one m odule to part o f another m odule, that is, a G O T O  to an 
internal label)

PD, C ount o f  pathological data tokens shared by m odule i (a pathological data 
token is one that is obtained from  a m odule not connected to m odule i by  any 
norm al connection)

PS, C ount o f pathological control tokens shared by m odule i

U sually, if it is im possible to provide counts fo r the prim itives listed then the 
developers have probably  gone about the design in such a way that D A , SW , P D , 
and PS are  not apparent, le they have concentrated on the control structure ra th e r 
than on the data sharing It is im portant to exam ine the volum e and com plexity  o f  
the interfaces

D esign w eight collects these prim itive m etrics together to use as a p red ic to r 
for rem aining im plem entation effort, coding and testing Initial efforts to use M O , 
the count o f  m odules, as a pred ictor o f  effort proved qu ite  disappointing as m odules 
o f  sim ilar size require d ifferen t efforts, usually relating to how  com plex they are. 
It is generally  thought that effort required  in m odule design, coding and testing v a n es  
w ith the num ber o f  decisions in the m odule
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Predicting Decision Count Inside Modules

A good estim ate o f  the decision count w ithin a m odule is to assum e that the 
in ternal structure o f  each m odule is isom orphic to the data structure  at its boundaries 
[W arm er 76] F igure  3-6 gives the full set o f  isom orphism s betw een data structure 
and process structure

This data structure:

{A}

[ B | C ]

( D )

Implies this process structure:

Yes / \ i s  there a D 

No

F ig u re  3-6 D ata and Process parallels

T he procedure for predicting  decision counts from  the data structure observed 
a t the m odular boundary is

Start with the decision count =  0

1 Write down a data dictionary formulation of all data arriving at the module 
boundary Express the tesult at the token level (fiom the viewpoint o f  the 
module)
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2. Analyse the da ta  structure o f  the result, applying the fo llow in g  rules

(a) For each iteration in the data structure, add one to the decision count

(b) For each two-way selection (Either-Or) in the data structure, add one 
to the decision count

(c) For each n-way selection in the data structure, add n - 1 to the 
decision count

(d) For each option (data item that may or may not be present) in the 
data structure, add one to the decision count

T ab le  3 .6

M o d u le  W eig h ts

D ecision  C o u n t 0 1 2 3 4 5 6

T o k en
C o u n t

1 1 0 1 1 1 2 1 4

2 2 .4 2  6 2 9 3 3 3 7
3 4 .0 4 4 4 9 5 4 6  2 7 2
4 5 8 6  3 7 1 7 9 9 0 10 5 12 5
5 7 8 8 5 9 5 10 7 1 2  2 14 1 16 8

6 9 8 10 7 1 2  0 13 4 15 3 17 8 2 1  2

7 1 2  0 13 0 14 6 16 4 18 7 2 1  8 26 0

8 14 3 15 6 17 4 19 6 22 3 26 0 31 0

D esign  w eight is sim ply the sum o f the M odule  w eights over the set o f all 
m odules in  the design
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Design Weight = ^  Module Weightt (Equation 3.7)

T he cost p red ic to r (w eight) o f  each m odule is now  a function o f  the token 
count a t its boundary , and the pred icted  decision coun t inside T able  3 6  contains 
a  suggested set o f  in itial values

3 .5  Summary

T he system  life  cycle developm ent m odel has been used as a partition  for 
m etrics, w hich allow s us to identify  stage dependent m easures T his w aterfall m odel 
enable  the  identification o f  four general categories, D esign , C oding, T esting  and 
M ain tenance So far little  research  has been perfo rm ed  to prov ide design m easures, 
w hich, qu ite  often  is seen as a relatively  m inor stage, how ever such m easures 
(design and specification m etrics) allow  early  pred ictions for softw are cost m odels 
M ost notably  D eM arco 's  Specification and D esign w eight m easures a re  am ong the 
few  that curren tly  ex ist A s the coding phase begins how ever, a w ider range and 
varie ty  o f  m easures can b e  im plem ented, som e o f  w hich w ill be  discussed in the 
follow ing chapter
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4 Product attribute measures

4.1 Introduction

In chapter 3 the w aterfall m odel o f  the system  life  cycle was in troduced. 
Specification and design m easures associated with the early  stages o f  this life  cycle 
w ere described and indicated to be an essential part o f  the prediction  o f  softw are 
p roduct size P redictions o f  softw are size are  then used to d rive cost m odels such 
as C O C O M O  to pred ict e ffo rt and cost o f  p roduct developm ent This chapter w ill 
concentrate on m easures associated with the later stages o f  the softw are life  cycle

O f the three entities defined relating to softw are products in chapter 2 , 
(P roduct, P rocess, and R esource) P roduct is the m ost re levan t to this research . T he 
IS 0 9 1 2 6  quality  attributes outlined previously  are based on in teresting ex ternal 
p roduct attributes and associated in ternal attributes. T his chap ter focuses in on  w ell 
know n and im plem ented internal attributes

4 .2  Internal product attributes

In ternal p roduct attributes are  attributes o f  softw are (including docum entation) 
w hich a re  dependant on the product itse lf This section is in tended to look  in detail 
a t those attribu tes, and suggested m ethods o f m easurem ent Specifically  those related  
to  textual, structural and arch itectural com ponents o f  softw are
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Internal attribu tes a re  considered to be the key to im proving  softw are quality  
w hich is one o f  the main aim s o f  softw are engineering In ternal attributes m ay be 
used fo r quality control and assessm ent and are  the building blocks fo r m easuring 
com plexity

It is generally  agreed that the use o f  softw are engineering m ethods leads to 
the construction  o f  products w ith certain  structural p roperties  T hese p roperties are  
characterised  by in ternal attributes such as those proposed  in IS 0 9 1 2 6  w hich w ere 
discussed in section 2 1 2  T here  is a w ide consensus am ong softw are engineers that 
these in ternal structural a ttributes w ill help ensure increased  quality in the ex ternal 
attributes expected by softw are users Thus the assum ption that 'g o o d ' in ternal 
structure leads to 'g o o d ' external quality is fundam ental to m ost softw are quality  
m odels W e can conclude.

'Axiom' o f  software engineering 
Good internal structure —  >  Good external quality

W e m ust how ever, realise that softw are engineering  only provides the 
fram ew ork  for producing 'g o o d ' softw are by encouraging the use o f  structured 
techniques, le. p rojects in w hich the best com m on p ractice  techniques a re  applied 
rou tinely  are  'm ore  likely ' to have a satisfactory end p roduc t than those developed 
'ad -h o c ' H ow ever, none o f  these m ethods can guaran tee  the level o f  quality  o f  
external attributes since so much depends on the how  these m ethods are  applied  to 
individual problem s

A lthough there is an intuitive feeling regard ing  the connection betw een the 
in ternal structure o f  softw are products and external p roduc t attribu tes, there is very  
little  scientific evidence to establish specific relationships T h is  is perhaps caused by 
the difficulties in setting up relevant experim ents and perhaps a  lack o f  understanding 
o f  how  to m easure im portant internal product a ttributes p roperly
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4.3 Textual measurement

Initial coherent softw are m easurem ent research  w as perform ed by M aurice  
H alstead. H alstead 's w ork was based on the idea that softw are com prehension w as 
related to a process o f  mental m anipulation o f  p rogram  tokens. T his w as the first 
a ttem pt at deriv ing softw are m easures from  a theory , and the first set o f  m easures 
used in an industrial context. M ost textual based m easures are  concerned w ith code 
size and volum e. T hese issues are discussed below  along with typical m easures 
associated with them .

T he size o f  a program  is an im portant m easure fo r three reasons. T he first 
is that it is easy to com pute after the program  is com pleted , the second is because 
it is the m ost im portant factor for many m odels o f  softw are developm ent, and th ird ly  
that p roductiv ity  is norm ally based on a size m easure.

W hile 's ize ' w ould seem to be a ra ther straight forw ard  a ttribu te to assess w e 
find that it becom es quite com plex when notions o f  e ffo rt, functionality , com plexity , 
redundancy and reuse becom e part o f  the m easurem ent. T he reason fo r the 
com plexity  is that size is norm ally used in the assessm ent o f  cost, p roductiv ity , and 
effort. T he problem  seem s to be defining a set o f  fundam ental attributes w hich w ill 
cover the notion o f  size in softw are. T here appear to be three such attributes o f  
softw are: length , com plexity and functionality. T he  state-of-the-art fo r size 
m easurem ent is that a) there is som e consensus v iew  on m easuring length o f  
p rogram s but not specifications or designs, b) there is som e w ork  on m easuring 
functionality  o f  specifications (which applies equally to designs and program s), bu t 
c) there is little w ork on m easuring problem  com plexity  o ther than w hat has been 
done under com putational com plexity.

4 .3 .1  L ines o f code

T he N um ber o f  Lines o f  Code (N LO C) is the most used measure of source
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code program  length H ow ever, there is a real need fo r a standardised defin ition  o f  
'a line o f code' F o r exam ple, do w e include com m ented lines and variab le 
declarations, and w hat happens if  a line contains m ore than one instruction9 To 
avoid such am biguity , C onte provided the follow ing definition

"A line o f  code is any line o f  program text that is not a comment or 
blank line, regardless o f the number o f  statements or fragments o f  
statements on the line This specifically includes all lines containing 
program headers, declarations and executable and non-executable 
statements " [C onte et al 86]

T o show that w e now refer to non-com m ented lines o f  code w e use the 
abbreviation  N C LO C  (or ELO C  - effective lines o f  code) T his definition how ever, 
loses som e valuable length inform ation If  w e w ish to determ ine the num ber o f  
pages required  to p rin t the program  source code o r w hat storage space is required  
fo r a  p rogram , then w e need to know  the length o f  the  p rogram  expressed in term s 
o f  com m ented lines o f  code

C LO C  is the num ber o f  lines o f com m ented p rogram  text U sing this w e can 
define total length,

LOC  = NCLOC + CLOC  (E q u a tio n  4 .1)

This way w e can define indirect m easure such as the density o f  com m ents m 
a  program  (CLOC/LOC) I f  w e are  seeking a single m easure fo r the length o f  a 
p rogram  then LO C is p referab le  to N C LO C  H ow ever in general it is useful to 
g a ther both m easures since they are m easuring d ifferen t th ings I f  w e continue to 
look  fo r a 'p u re 1 notion o f  length then w e m ust consider the follow ing m easures 
w hich are  classified as ratio  m easures

•  M easure the length in term s o f the num ber o f  bytes o f  storage 
required  for the text.
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•  M easure the length in term s o f  the num ber o f  characters C H A R  in the 
program  text

T he good thing about ratio  scales is that in p rinc ip le  w e can re-scale  each in 
term s o f  the o ther F o r exam ple if  a is the average num ber o f  characters p e r line 
o f  text then w e have the follow ing re-scaling’

IO C  = CHAR (E q u a tio n  4 .2 )
a

4.3 .2  Predicting length using function points

It is usually required to predict the attribute length early  on in the p roduct life  
cycle since it is easily understood and can be used in cost prediction  m odels. O ne 
w ay o f  predicting  length is to relate length to d ifferent life  cycle p roducts O ne such 
system  involves taking the function point count obtained from  the specification and 
applying a language dependent expansion ratio , to obtain  an estim ate o f  the lines o f  
code required  A lthough such a  m ethod may not be  en tirely  accurate it does p rov ide  
a reasonable estim ate i f  the expansion ratio  is based on historical p roduct 
developm ent data

Expansion ratio for language X

Size o f  product at Specification stage 1 (in FP)

Size o f  product at code stage (in LOC)

T he length in term s if  LO C  may be estim ated from  the form ulas equation 4 3 ‘
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m
LOC = a £ s ,

1=1

(Equation 4.3)

W here S, is the size o f the module 1 (measured in FP), m is the number of 
modules, and a  is the function point to code expansion ratio recorded from previous 
projects using the same specification and code conventions This is a very general 
prediction system where the model parameters are estimated by the user

Attempts to establish empirical relationships between length o f program  code 
and length o f program documentation [Walston et al 79] led to the following 
observation

D = 4 9 L 101 (E quation  4.4)

W here D is the length o f documentation measured in pages and L is the 
length o f program code measured in thousands o f LOC This is only good for rule 
o f thumb estimations M ore accurate results are possible when data is collected for 
specific environments

4 .3 .3  Token based m easures

H alstead's method of code analysis is based on the identification o f tokens 
within the program text Using these tokens he formalised a set o f measures to 
determine the Volume o f a module or program in terms o f its Length and 
Vocabulary

Volume =  Length x log2 (Vocabulary)

Length =  N{ (count of all instances o f all used operators) +
N2 (count o f all instances o f all used operands)
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Vocabulary =  n] (count o f unique operators used) +  
n2 (count o f unique operands used)

The two categories of tokens identified were operators and operands. Any 
keyword in a program that specifies an action is considered an operator, while a 
symbol to represent data is considered an operand. M ost punctuation marks are also 
categonsed as operators Variables, constants and labels are operands Operators 
consist o f arithmetic symbols (such as + ,  -, and /), command names (such as 
W HILE, OR, and READ), special symbols (such as assignments, braces, and 
parentheses), and even function names

The following measures formalise the most commonly used counts associated 
with program code, based on Halstead's token identification

1 Vocabulary size
n = n: + n2 (E quation  4.5)

Comments not included

F igure 4-1 Behaviour o f N as a measure o f program legibility
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2. Program length:

N  = Nj + N2 (Equation 4.6)

Total use o f operands and operators. This is sometimes used as an indicator 
o f the legibility of a program. As N increases, the time required to understand the 
program also increases. Figure 4-1 graphs this relationship to give an indications of 
the relationship between program volume, as defined above, and the estimated 
legibility o f the program.

3. Estimating length:
N = n1 log2 n1 + n2 log2 n2 (Equation 4.7)

4. Program volume:
V = N log2 n (Equation 4.8)

Minimum volume of bits required to encode a program with a vocabulary o f
n operand and operators and with length N.

5. The potential volume:

This is used to compute the algorithm 's smallest possible volume. It would 
be necessary to use a language where all actions were defined as procedures, eg: 
y =  sin(x).

n =  ideal vocabulary where
i) n* — function name and the assignment (2)
ii) n2* =  potential number o f input/output operands

K* = (2 + n2*) log2 (2 + n2*) (Equation 4.9)

V* is a constant for a given algorithm independent o f language.
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6 Program level

L = —  Where 0 < L <. 1 (Equation 4.10)V

The 'D istance' between the program volume Vand the potential volume V*, 
is sometimes called the level o f abstraction When L =  1 we have the ideal 
situation, but the closer to zero that we get the greater number o f operands and 
operators used The value o f 1 may seem ideal, but we must take into consideration 
the legibility o f a program For languages like C it becomes very hard to interpret 
minimalist code

7 Estimator o f program level

I  -  — * I j L  (Equation 4.11)
«1 ^2

8 The programming effort

This is related to the number o f 'elementary mental discriminations' required 
to code the program It is derived from V =  N log2n (the number o f psychological 
"moments" required to code the program, and D  =  1/L (program difficulty)

E  = — (Equation 4.12)L

This measure is linked to the number o f bugs in a program M ore mental 
effort is required the more errors there are in the code This can only be used when 
a  lot a data is available on the real number o f bugs in a program A curve may be 
plotted to show E verses bugs

9. The coding time

Tim e to code a preconceived algorithm in the language used S is the number
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of psychological 'moments' per second and it has been shown [Stroud 67] that it is
linked to coding time Typical values o f S are usually low about 7 or 8

5 <. S ¿20 (E quation  4.13)

10 Language level.

This is the aptitude of a language to express an algorithm It is often easier 
to solve some problems in one language rather than another If  the minimum volume 
V * goes up then the program level varies in proportion Consequently the constant 
a  can be defined as follows

a  = L * V* = Lz * V (E quation  4.14)

Table 4.1

Values fo r a  fo r d ifferent languages

Language M ean  a
English 2 16

PL/1 1.53
Algol68 1 21
Fortran 1 14

Ass SDC 0 88

11 Approximation o f coding time

T = — (E quation  4.15)5

The value of S can be adjusted over time as more data becomes available 
regarding actual coding time
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4.4 Structural measures

A substantial amount o f research has been devoted to the study o f measures 
derived from the control flow structure o f a program. Control structure attributes 
are usually modelled by directed graphs whose nodes correspond to program 
statements and where the edge from one node to another indicates a flow o f control 
between corresponding statements These directed graphs are usually called control- 
flow  graphs or just flowgraphs An example o f a  program  and its flowgraph are 
shown in Figure 4-2

10 INPUT P
'* 10

20 DIV-2
\
1
/
» 20

30 LIM-INT (sqr(P)) •> 30

40 FLAG = P/DIV-INT(P/DIV) \

50 IF FLAG - 0 OR DIV -  UM THEN 80
■

60 DIV-DIV+ 1 50̂
I f)

70

80

GOTO 40

IF FLAG <> 0 OR P < 4 THEN 110

oT"

F 60

90

90 PRINT DIV; "smallest factor of"; P;

100 GOTO 120

110 PRINT P, "is prime"
120

120 END

F igure 4-2 A program and its corresponding flowgraph

All programs can be structurally decomposed into primitive components 
These decompositions may be used to define a wide range o f so-called complexity 
and structural measures The theory o f control flow structure is formalized using 
graph theory Wilson provides a reference to such graph theory as needed [Wilson 
72]
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4.4.1 Flowgraph model of structure

A g r a p h  consists of a set o f points { n o d e s )  and line segments ( e d g e s ) .  In a 
d i r e c t e d  g r a p h  each edge is assigned a direction indicated by an arrowhead on the 
edge. The following is a good definition o f a f l o w g r a p h

" A  F l o w g r a p h  i s  a  d i r e c t e d  g r a p h  i n  w h i c h  t w o  n o d e s ,  t h e  s t a r t ,  a n d  

t h e  s t o p  n o d e ,  o b e y  s p e c i a l  p r o p e r t i e s  t h e  s t o p  n o d e  h a s  o u t - d e g r e e  

z e r o ,  a n d  e v e r y  n o d e  l i e s  o n  s o m e  w a l k  f r o m  t h e  s t a r t  n o d e  t o  t h e  s t o p  

n o d e  "

Certain flowgraphs appear often enough to merit special names Figure 4-3 
depicts the flowgraphs P0, P ,, D0, D ,, D ,, D3, D4, D5, and Cn, which we will now 
refer to by name
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4.4.2 Defining program structure

Within structured programming it is often stated that a program is structured 
if  it is 'built up' using only a small number o f allowable constructs These are 
normally said to be sequence, selection, and iteration as shown m Figure 4-4 [Bohm 
et al 66]. However, we find that in many languages we are forced to implement 
what are considered structured constructs by using GOTO statements For example, 
m Pascal GOTO's are used to implement the construct D4 if  we do not wish to 
duplicate code unnecessarily We require a more formal definition o f program 
structure which can support many different views and a method for determining the 
level o f structure in an arbitrary flowgraph

First we nominate a family o f prime flowgraphs The set o f S-graphs consists 
o f the following flowgraphs

•  Each member of S (called the basic S-graph)
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•  Each flowgraph which can be built recursively from the family S  using only
the operations o f sequence and nesting

We can now define a set o f control structures that are suited for particular 
applications By definition, any control structure composed o f this nominated set 
will be 'structured' in terms o f this local standard, le will be S - s t r u c t u r e d

If  we let SD =  { P lf D0, D , }, then the class o f SD-graphs is the class of 
flowgraphs commonly know as D - s t r u c t u r e d  graphs Bohm 's results assert that every 
algorithm can be encoded as an SD-graph Although SD is sufficient, it is normally 
extended to include the structures D, (lf-then-else) and D3 (repeat-until)

4 .4 .3  Decomposing flowgraphs

Associated with all flowgraphs are decomposition trees which describe how 
the flowgraph is built by sequencing and nesting primes An example o f a flowgraph 
F  and its decomposition tree is shown in Figure 4-5 Fenton provides the following 
theorem and also provides a method for determining the unique decomposition tree 
o f a flowgraph [Fenton et al 86]

P r i m e  d e c o m p o s i t i o n  t h e o r e m  E v e r y  f l o w g r a p h  h a s  a  u n i q u e

d e c o m p o s i t i o n  i n t o  a  h i e r a r c h y  o f  p r i m e s

Flowgraph construction and decomposition is normally generated 
automatically by most static analysis tools, eg QUALMS [Wilson et al 88]

It is easy to determine if an arbitrary flowgraph is S-structured for some 
family o f primes S ,  by computing the decomposition tree and seeing if any o f the 
nodes are not a member of S  or Pn If this is true then the flowgraph is not an S- 
graph We can see that the decomposition theorem shows that every program  has 
a quantifiable degree o f structure, characterised by its decomposition tree.
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4 .4 .4  F low graph based m easures

A large number o f interesting measures may be defined based on the 
decomposition tree These measures are usually defined m terms o f their effect on 
primes and the operations on sequencing and nesting

(i) D epth  of nesting

To formulate a measure for the depth o f nesting within an object a  (such as 
a program modelled by a flowgraph F), it is required to observe a  in terms o f its 
effect on primes, sequences and nesting

Prim es: The depth o f nesting o f the prime Pj is zero, and the depth o f nesting
of any other prime F is equal to one Thus, a (P !)= 0  and if  F  is a 
prime * P[ then a(F ) =  1

Sequence: The depth of nesting o f the sequence F j, , F n is precisely the
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maximum of the depth of nesting of F,s. Thus

a (F ,; , F n) =  max ( a (F j) , , a (F n))

Nesting: The depth o f nesting o f the flowgraph F (F ,, , Fn) is equal to the
maximum of the depth of nesting of the F,s plus one because of the 
extra nesting level in F Thus.

a (F  (F j, , F J )  =  1 +  max (a (F ,) , , a (F n))

To see how we use this to calculate the value a  for a flowgraph, consider the
flowgraph F in Figure 4-3

F =  D, ( (Dj, P j, D2), D0(D3) )

Thus we compute
a(F ) =  1 +  max (a O ^ , P „  D2), a (  D0(D3) ) )

=  1 +  max (max (« (D ^ , a ^ ) ,  a (D 2)), 1 +  a (D 3) )
=  1 +  max (max (max (1, 0, 1) ,2)
=  1 +  max (1, 2)
=  3

Fenton went on to define the properties o f hierarchical measures as stated m 
Table 4 2

Table 4.2
If the following characteristics uniquely determine m for any S- 
graph F

M l m(F) for each F element of S,
M2 The sequencing function(s),
M3 The nesting functions h, for each F element o f S

Then we say that m is hierarchical
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The hierarchial measures may be automatically generated for a program once 
we know M l, M2, M3 and the decomposition tree

(ii) Length measure

Defining a length measure V  which provides a formal measure 
corresponding to the number of statements in a program where the latter is modelled 
by a flowgraph

M l: v(P,) =  1, and for each prime F * P 1; v(F) =  p +  1 where p is the number
of procedure nodes in F

in
M2: v (F „  , ,Fn) =  £  v(F)

(=1

n
M3. v(F (F ,, ,Fn)) v ( F ' )  f o r  e a c h  p r i m ei=1

Using our earlier example in Figure 4-2 we find that

v(f) =  1 +  v(Dj, P „  D2) +  v(D0(D3))
=  1 +  (v (D ,)+  v(P,) +  v(D2)) +  ( 1 +  v(D3))
= 1 + (2 + 1 + 1) + 1 + 1
=  7

Once a hierarchial measure has been characterised in terms o f the conditions 
M l, M 2, M3 then we have the minimum information needed to calculate the 
measure for all S-graphs

(iii) Simple hierarchical measures

Number o f node measure V
M l n(F) =  ft nodes in F for each prime F.
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n
M2 n (F „  , ,F n) =  E  (n(F) -  n +1)

1=1

M3 n(F(F„ , Fn)) =  n (f) + E  W  ~ 2n)
1=1

Number of edges measure 'e'
This is a ratio measure o f one particular view of size 

M l e(F) =  #edges o f F for each prime F
n

M 2 e(F„ , F „ ) =  Y ,  ' (F)
1= 1

n
M3 e(F(F„ , F J )  =  « ( i)  + E  W O  “ '

1=1

Number of occurrences of names primes measure 'p'
M l p(F) =  1 if F is prime to be counted, else 0

n
M2 p (F l, , F n) =  £  p(F)

1

n
M3 p(F(F„ , F„)) =  p(F) * E  PlF)

1=1

Is D-structured measure 'd'
This measure yields the value 1 if  the flowgraph is ’D-structured' and 0 if  its 

not This is a nominal measure

M l d(F) =  1 for Pj, D0, D[, D2, D3, D4, D4 and otherwise 0
M2 d (F „  , Fn) =  mm{d(F,), , d(Fn)}
M3 d(F(F, , F n)) =  mm {d(F),d(F,), , d(Fn)}
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(iv) Structural complexity

M cCabe's cyclomatic complexity number v measures the number o f linear 
independent paths in a strongly connected program flowgraph F [McCabe 76] (for 
consistency F will be continued to be used even though this measures is historically 
known as v(G) ). It is formalised as

v(F) = e -  n + 2  (Equation 4.16)

for a  flowgraph F with e arcs and n nodes

As the value o f v(F) increases it is implied that more paths require testing, 
le a lot o f arcs compared to nodes In Figure 4-7 we find a relationship between 
the num ber o f basic paths and v(F) We need to find a point where every small 
increase in v(F) results in a large increase in the number o f paths to test This upper 
lim it was set at 10 by M cCabe on the basis o f empirical evidence
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v(F) relationships

F igure 4-7 Graphing the relationship between v(F) and basic paths

v(F) measures the number o f basic paths in a component We can say that 
it represents the minimum number o f tests required to cover the graph (it should be 
noted that this does not mean 100% test coverage )
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Figure 4-8 shows the number o f basic paths in a component This shows the 
number o f uniquely different paths possible Paths which can be derived from others 
are not considered basic, and hence are not included in this count In the example 
provided you should note that there are only 3 basic paths, the fourth can be derived 
from the first three

Since we have identified a number of basic constructs within programming, 
it is an easy task to give the values of v(F) for their flowgraphs (see Figure 4-9) All 
values are predetermined with the exception o f the CA SE statement were we need 
to know the number o f cases provided

If a program is truly structured then we can say that v(F) is reducible to one. 
This is because we have only one input and one output In Figure 4-10 we reduce 
the graph in a sequence of steps that must be performed sequentially and we are left 
with one input to a process c from which there is one output F igure 4-11 
demonstrates the case o f unstructured programming where we have either more than 
one input or more than one output In this case we cannot reduce the graph.
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(v) More measures for flowgraphs

1 Control density

Mean number o f decisions per node This is not a very useful metric as we 
cannot act on it



D c  =  V i Q  1------ (Equation 4.17)number o f nodes

2. Number o f levels

Maximum number o f nested structures plus one This is always one in 
sequential programming

3 Number of pending nodes

Number of auxiliary exits This is an indication o f the ease o f testing As 
the number o f auxiliary exits increases so does the difficulty in testing

4 Number o f degrees

Maximum number of edges connected to the same node (characterising a 
critical node) This is not as useful as it may appear since we cannot act on the 
information obtained It does not identify the most critical nodes.

4.5 Architectural measures

Complexity is not considered to be directly related to the number o f lines in 
a program For example, if we had two 5,000-statement programs, the first having 
only one 5,000 statement component and the second having 50 components o f 100 
statements, we could not say that these have equal measures o f complexity. What 
is required is a method for analysing the calling relations between components. To 
do this we require a graphical representation o f calling relations between 
components, usually referred to as the call graph

Using graph theory we construct graphs consisting o f components o f  the 
program (nodes) and the calling relation between two components (arcs) It is
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generally assumed that the call-graph has a distinguished 'root node' which 
corresponds to the highest level module, 1 e an abstraction o f the entire system

In Figure 4-12 we read the graphs from top to bottom, so A can call B many 
times if  the call is within a loop structure The call graph helps highlight recursive 
calls, the overall hierarch o f the system, calls that skip levels, isolated components 
that may have missed the testing process, nodes with a high degree o f arcs and helps 
identify multiple roots to the system

4.5 .1  Call graph measures

1 Size
Number o f nodes 
Num ber o f arcs

2 Num ber o f paths-
Paths going from root to final component
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Hierarchical complexity
Mean number of components per level

H = Number o f components (Equation 4.18)
Number of levels

Structural complexity S
Mean number o f calls per components

5  =  Number °f.?.alls  (Equation 4.19)
Number of components

Accessibility o f a component A(M)
Measure o f the ease with which a component may be accessed

(Equation 4.20)
i N,

W here
•  A(M,) Accessibility o f node with a line segment to M k
•  N, Number o f components called by M,

Testability o f a path
In d ic a tio n  o f  th e e a s e  w ith  w h ic h  a path m ay  b e  te s ted

W  •  ( £  - n ir r ) ' 1 (Equation 4.21)
M i e p

Testability o f a program or logical structure



t ( s \  _ J_ ( Y '  (Equation 4.22)
K} ~ n  m

Entropy
Measure o f disorderlmess

n { G A )  = L o g M -  (Equation 4.23)
KM l-*jl

W here
| X, | =  Number of nodes in path 1

¡X | =  SUM of all IX,|
N =  Number o f paths

4.6  Summary

These last few chapters have covered quite extensively the most commonly 
used measures in software projects This review however, is not intended to be 
exhaustive but rather offer a representative sample o f measures at different stages o f 
the development life cycle All measures presented have one thing in common 
however, they have all been defined under the influence o f the development process 
o f 3G L 's The following chapter briefly looks at other development process, while 
chapters 6 and 7 describe newly defined measures for use with rule-based systems.
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5 Measurement for new development methods

5.1 Introduction

As we have seen in chapters 3 and 4, a comprehensive set o f measures have 
been defined for use in software development. Many of these measures were based 
on the study o f program and system behaviour in research environments, and have 
still to be validated in the commercial world. Attempts have been made to collect 
data that would instantiate claims o f relations between a particular measure and the 
software. A typical example is Boehm’s COCOMO model where studies were 
conducted to establish param eter values for different development languages. Most 
o f these values were computed for what are commonly called third generation 
languages (3GLs). The whole definition process o f metric development has been 
strongly influenced by the structure o f procedural 3GLs. This chapter examines a 
'new ' language generation and describes a process for developing or modifying 
existing measures so that prediction and assessment may be performed in this 
language.

5.2 Language generations

The earliest or first generation o f computer languages was machine code. 
Programs were not interpreted or complied - the instructions were in a form directly 
readable by the machine. Computers were programmed with a binary notation. This 
situation was improved by the use of mnemonic codes to represent operations,
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although data was still in physical binary address Further advances were the 
introduction of decimal numbers to represent storage locations and addresses

The s e c o n d  g e n e r a t i o n  of languages, which came into use about the mid- 
1950's was s y m b o l i c  a s s e m b l y  l a n g u a g e  Symbolic address were used instead o f 
physical machine addresses This advantage was due to the fact that when physical 
locations o f variables or instructions had to be changed, the program mer did not have 
to re-enter the new physical addresses Popular languages were SAP (Symbolic 
Assembly Program, for the IBM 704), EASYCODER and AUTOCODER

The t h i r d  g e n e r a t i o n  came into use in the 1960's and were called h i g h - l e v e l  

l a n g u a g e s  Scientific languages such as FORTRAN and ALGOL were introduced, 
and business languages such as COBOL also became quite popular Programs were 
becoming hardware independent, with little knowledge required about hardware 
registers and instruction sets Mathematical expressions and English keywords 
ensured that programs were easier to write Business applications required sufficient 
degrees o f complexity that error detection became a very real time consuming task 
in the development o f software The productivity levels o f software firms became 
a very serious issue in the 1970's and led to the introduction o f software control 
through measurement, as we have previously discussed

The term f o u r t h  g e n e r a t i o n  l a n g u a g e  (4GL) wrongly implies an evolutionary 
step beyond third generation languages In reality, what is provided is a user-tunable 
application based on existing programming techniques, which in turn is a full service 
programming language Most 4GLs ride on top o f a database, having been 
specifically designed to front end such data repositories Figure 5-1 is a 
representation of the development process from 3GLs to 4GLs The development 
o f the 'new generation' was based on the need to increase the ease o f use o f the tools 
being created for existing languages This figure shows a COBOL com piler with a 
screen generator (eg Forms Management System), report generator, and a database 
Structured Query Language (eg SQL) The interface between these tools becomes 
cumbersome and inefficient when they are provided as extensions to existing
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languages. One solution is to develop a new layer o f software above these tools with 
the ability to interface with these diverse facilities. These 'new ' products have been 
called fourth generation languages, but since there exists no 'new ' technology or 
development strategy, it could be stated that the development o f fourth generation 
languages has been more the work o f marketing policy than computer development.

Figure 5-1 Evolution o f Fourth Generation Languages

5.3 Fourth generation languages

4GL tools have made a significant impact on the productivity o f software 
development. These gains have been credited to features such as ease o f use, use of 
non-procedural code, direct access to database-management systems and reduction 
in the development time of systems by a significant degree.

The difference between third and fourth generation languages is constantly 
under debate but to give some reference to the more popular concepts we turn to J. 
Martin. According to M artin, third generation languages are higher level languages
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that are standardised and largely independent of hardware, and where system 
development requires a step by step specification o f the program tasks [Martin 85] 
Fortran, COBOL, C and Pascal are among the more commonly used 3GLs. 
Programmers o f these languages are required to rely on procedures composed o f 
tokens which consist of commands, types and functions

M artin defines 4GLs as non-procedural, end-user oriented languages. 
However others have claimed associated features with these languages such as 
report/screen generators, integrated database systems, and ease of use Examples are 
DBase, Focus, Oracle, Mantis and Powerhouse These languages rely on predefined 
procedures for performing high level operations, eg sorting Such facilities are 
generally more powerful but less flexible than those offered in traditional high level 
languages and hence procedural tools are often required to perform tasks not 
provided by non-procedural facilities These however are not usually as expressive 
as 3GL tokens

5 .3 .1  Principles and components

There are many claims for the use and productivity o f 4GLs Most o f these
claims are from vendors eager to demonstrate superiority in software development 
using their product Before we can begin to establish the reliability of these claims 
we need to examine some of the features and principles involved.

Norman Fenton [Fenton 91] claimed that fourth generation languages were 
designed to increase the productivity levels of software development because 
demands for software products was growing faster than developer's ability to provide 
them Martin, being more specific, provided the following list o f objectives’

•  To speed up the application-building process
•  To make applications easy to modify, reducing maintenance costs
•  To minimize debugging problems
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•  To generate bug-free code from high level expressions o f requirement
•  To make languages friendly so that end users can solve their own 

problems and put computers to work

Fourth generation languages should allow some applications to be generated 
with lines o f code an order o f magnitude fewer than for example, development in 
COBOL Thus alternative (and perhaps more accurate) names for these tools have 
been H i g h  P r o d u c t i v i t y  L a n g u a g e s ,  N o n - p r o c e d u r a l  L a n g u a g e s ,  or A p p l i c a t i o n  

G e n e r a t o r s

Most such languages are dependant on a database and its corresponding data 
dictionary The dictionary has in some cases evolved into a facility that can 
represent more than data It can contain screen formats, report formats, dialogue 
structures, associations among data, validity checks, security controls, authonsations 
to read or modify data, calculations that are used to create fields, permissible ranges 
and logical relationships among data

One major distinction made between third and fourth generation languages is 
the introduction of non-procedural code in the latter A procedural language 
specifies how something is accomplished, whereas a non-procedural language 
specifies what is accomplished without describing how Thus we can say that 
PASCAL is procedural since it contains a precise sequence o f instructions for every 
action ^Application generators where the user fills in a form to specify the 
requirement, are non-procedural since there is no concern for the details o f the 
implementation Consider the following example in SQL

S E L E C T  u s e r - n a m e  F R O M  e m p l o y e e - r e c o r d  

G R O U P  B Y  u s e r - g r o u p

This leaves the software to decide how to extract the information from the 
corresponding records in the database, sort the user names in alphabetical order and 
list them
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M artin made the point m 1985 that it was too early in the development of 
fourth generation languages for standardisation He felt that it was too early in the 
evolution o f the technology to make such a move and that it could inhibit creativity 
It may be worth remembering that many 3GLs have disappeared over the last two 
decades Jean Sam m et's book on programming languages listed 120 3GLs in 1969 
[Sammet 69] ( which did not include ADA, PASCAL or C), and o f those 120, fewer 
than 10 are now in general use, and the ones that survived tended to be those 
supported by large organisations Similarly the reduction in the number o f 4GLs 
currently available will be high, but unlike 3GLs the support and standardisation is 
still missing

5.4  Logic programming in software engineering

Logic in modern times was based on the work o f George Boole, an Irish 
mathematician Boole's work resulted in proto-logic called propositional calculus 
Since then logicians such as Turner and Von Neumann have made enormous inputs 
to com puter science, but it is only now however, that logic is becoming an important 
part o f the education o f computer programmers Logic Programming, whose main 
advocate was Kowalski [Kowalski 74] has been described as

" A  p r o c e s s  t h a t  i n v o l v e s  t h e  u s e  o f  l o g i c  p r o g r a m m i n g  l a n g u a g e s  -

P r o l o g  i s  t h e  b e s t  k n o w n  -  w h i c h  e n a b l e  o n e  t o  w r i t e  p r o g r a m s  t h a t

a p p r o x i m a t e  t o  a  c o l l e c t i o n  o f  p u r e l y  l o g i c a l  s t a t e m e n t s  " [Gibbins 88]

Software acts as the interface between man and machine, and is written in a 
language like format To ensure that such text is readable, an underlying logic is 
required It is generally agreed that the way we represent software is a compromise 
between what computing machines can be made to do, and what human beings can 
understand

Prolog as we have stated is one o f the most popular logic programming
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languages It consists o f a set o f logical statements with each statement being either 
a fact or a rule Facts are categorical, rules are conditional The mam idea in 
Prolog is to formulate a set o f rules and facts in predicate logic together with a 
problem for which a solution is sought [Amble 87] Here is a small well known 
example.

m o r t a l ( x )  i f h u m a n ( x ) I I x  i s  m o r t a l  i f  x  i s  h u m a n

h u m a n ( x )  i f  G r e e k ( x ) I I x  i s  h u m a n  i f  x  i s  G r e e k

G r e e k ( S o c r a t e s ) I I S o c r a t e s  i s  G r e e k

a n s w e r  ( x )  i f  m o r t a l ( x ) / / x  i s  a n  a n s w e r  i f  x  i s

m o r t a l

=  =  >  S o c r a t e s / / T h i s  i s  a n  a n s w e r

Prolog has a syntax which is somewhat similar to predicate logic, and 
contains an inference engine It is a higher level language than, for example, Pascal 
as it conceals more o f the operations o f the computer Implementations o f solutions 
in Prolog (where the problem is suited to this language) typically requires fewer lines 
o f code than implementations in 3GLs

The above claims are similar to those made by producers o f many 4GLs, and 
while it is not claimed that Prolog fits comfortable under this broad classification, it 
is noted that the use o f rules and facts have been successfully implemented in 
commercial systems It is generally felt that knowledge based systems (where 
knowledge is stored as facts and rules), such as expert systems are considerably 
different from traditional high productivity languages, and many 4GLs use rules to 
implement non-procedural components o f their systems, such as data integrity 
checks

5 .5  Rule based system

The use o f Prolog and other logic based languages has facilitated in the
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development o f Expert Systems [Johnson et al 88] An Expert System or knowledge 
based system is a system which manipulates 'knowledge' in order to perform  a task 
or tasks The knowledge in such a system is highly structured symbolic data which 
represents a model o f the relationships between data elements and the uses to be 
made o f them The performance o f a knowledge-based system depends both on the 
quality o f its factual knowledge and the ways in which this knowledge is applied

Perhaps one of the best known examples of a knowledge-based system is 
M YCIN [Shortliffe et al 73] which uses a knowledge base o f rules to aid in 
diagnostic problem solving In this knowledge-based or rules-based system the 
knowledge is represented by domain specific rules Rules in the form o f IF-THEN  
statements encode judgemental knowledge which can be 'fired ' or 'activated by an 
initial query or by other rules In this way rules can be chained together So if 
R ulel requires the evaluation o f Rule2 we can say that they are chained together 
It becomes clear then that a non-procedural nature is inherent with these types of 
systems

5 .6  Customising measurements for diverse system

Early in this chapter it was stated that measures that exist have been defined 
primarily for use with third generation languages As we have seen however, the 
direction that software technology has taken is leading us away from these 
development methods Fourth generation languages, logic programming, object- 
oriented program ming, relational database languages and even expert systems are 
providing developers with tools that are abstracting even further from the 
implementation details o f both software and hardware Little research in these areas 
has been published, although Verner and Tate [Verner et al 92] proposed a process 
involving Function Point analysis, which provides data for COCOMO, which is 
applicable to 4GLs A proposal for a suite o f metrics for object-oriented languages 
has recently been published by Chidamber and Kemeerer [Chidamber et al 91] 
Other areas have been slower to attract the attention o f researchers in the field o f
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metrics. This chapter presents a generalised process through which measures may 
be defined for a wide range o f software development methods

5.6 .1  General measurement definition process

The following steps are intended to be a generalised process for obtaining a 
list o f useable software measures which are directly applicable to a specified 
development processes

Step 1. Analyse the software

Step 2. Decide what components can be measured by existing techniques

Step 3. Investigate how (if possible) all other components can be measured

Step 4. Define a quality model unifying these measures

Step 5. Perform measurement and validation

Step 6 . Re-iterate / modify

These steps, while appearing quite simplistic, attempt to integrate existing 
scientific measurement technology with new developments in a comprehensive 
practical fashion It is a guide for deciding if a product can be controlled by the use 
o f measures, and if critical elements in the software cannot be measured It is as 
much a waste of tim e to perform inadequate measures as it is to not performing them 
at all As we have seen, a substantial number o f measures do exist for specific 
stages in the software life cycle and without doubt some o f these will be applicable 
to development methods with similar constructs The definition o f measures for 
software components where none exist is not always a straight-forward task, much 
depends on what was revealed in the analysis o f the language and what constructs are
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considered more critical to development success than others. Given below are 
further descriptions o f the steps already outlined.

Step 1. Analyse the Software.

The success o f this entire process is firmly based on the results o f this step. 
If  our analysis is incomplete then all future decisions will not be based on sound 
principles. It is a fundamental concept that a comprehensive understanding of 
software and its components is required before rational decisions regarding 
measurement are feasible.

By the use o f the term software we refer to both the documentation and the 
source code. The list o f available software components should be itemised. Typical 
components include:

•  product specification
•  product design
•  program language or languages
•  program source code
•  user instructions
•  development test plan and results

The stage o f the development process will greatly influence the available 
software components, but usually the development language will be decided upon by 
the end o f the specification stage.

The object o f analysis is to clearly indicate what components exist in order 
to allow decisions to be made regarding applicable measures. For example, not all 
developers produce specifications, and those that do may not have structured it in 
such a way that Function Points would be applicable. Also the production o f design 
documentation may not be in a standardised form, eg. SSADM (Structured Systems
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Analysis and Design M ethodology), and hence measures such as Design W eight 
which rely on basic counts such as number of modules and number of control tokens 
may not be computable

If  more than one programming language is used then each should be analysed 
in turn, and the specific areas in which they are to be used should be determined 
The analysis o f the development language involves decomposing it into its various 
development tools and determine what strategy has been employed for each 
component If  we take a commercial 4GL language, typical components would be 
a Form s Management System, Report Generator, Query language, Database and 
perhaps a Data Integrity M anager Each o f these components employ diverse 
implementation strategies For example, a token based language (Pascal-like 
instructions) would be procedural, containing textual elements and relations, whereas 
a forms manager would have a non-procedural nature So one method o f 
classification for each component would be to identify procedural and non-procedural 
parts Further detail relating to these classifications could also be provided, and 
below are some preliminary suggestions

•  Textual components
•  M odule structure
•  Calling relationships
•  Data coupling
•  Control structure

Upon completion o f this step, a table containing each component o f the 
software, along with a comprehensive description o f each, should be produced

Step 2 . Decide what components can be measured by existing techniques

Based on the first step, each o f the components should be examined and a 
decision made relating to its applicability to existing measures The approach taken 
m this research has been to present measures based on the stages o f the software life
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cycle W ith the identification o f components which are also stage dependent the task 
o f reviewing measures is simplified The reason for the presentation o f such a wide 
range o f measures was to give some indication o f the diversity o f measures available 
Using the categories in section 3 1 figure 5-2 identifies the main categories of 
measures, a systematic process o f relating measures to software components should 
be initiated Those components for which no measures are available will be 
examined further in step three It is worth noting that although many development 
methods are not strictly procedural, if  they have a similar development life cycle then 
existing measures may be applicable For example if  a specification and design stage 
are present, measures are already defined Also, the presence o f textual components, 
or procedural text may lead to the possible use o f H alstead 's measures

This step should associate measures with analysed components o f the 
software, and highlight components where measures are lacking These components 
are then analysed in the third step

Step 3 . Investigate how (if possible) all other components can be measured

Little help is available for this section Often it is just valuable to be aware 
o f what factors are not being measured and that are outside our prediction or
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assessment models. What is required, if measures are to be developed, is a further 
detailed description o f the software components. This should help to identify aspects 
o f importance within the software development process. It is also a good idea to 
confer with people who have experience with these tools in order to gain some 
practical understanding o f what are typical maintenance problems, complexity 
factors, and other relevant issues.

The focal point o f this research has been to develop measures for a rule-based 
system. This will be described as a practical application o f this stage in the 
following chapter.

Step 4 Define a quality model unifying these measures.

In chapter 2 the concept o f defining product quality models was introduced. 
M easures are provided as a tool to provide some 'proof' about the 'quality ' o f 
attributes with which we are interested. Keeping this in mind we should take the 
measures we have identified and/or defined and ensure that they are helping us to 
obtain some required form o f verification o f particular attributes. It is quite wasteful 
to collect data upon which no actions can be made or for which we have no use.

W e have already described the IS09126 model o f software quality. This 
model however, is just one o f many such models in existence. Very often a 
company will produce its own version o f 'quality' by identifying external attributes 
which are most interesting to their customers or quality controller.

Let us break down the notion of quality and look at two proposed models by 
Boehm and McCall. Both approaches identify a set o f characteristics which are listed 
below.

•  Sensitive to the environment (user) - >  Quality Factors
•  Decidable from within (developer) - >  Quality Criteria
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•  M easurable (controller) - >  Quality Metrics

In this system factors are characteristics o f the software, seen as black boxes, 
while criteria are characteristics o f the software, seen as a white boxes. In Figure 
5-3 we reintroduce the quality tree concept. Using this decomposition a software 
engineer may monitor software quality.

It is most likely that a new quality model will be defined (or at least an 
existing one modified), when new measures are developed. This could possibly 
involve identifying new criteria or replacing specified metrics.

Step 5. Perform measurement and validation.

The first part o f this step is to collect data obtained from performing the 
measures defined for use in the specified quality model. The process o f data 
collection was introduced in chapter 2 where typical methods were described. This 
activity has been described as follows:

"Data should be collected with a clear purpose in mind. Not only a
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c l e a r  p u r p o s e  b u t  c l e a r  i d e a  a s  t o  t h e  p r e c i s e  w a y  i n  w h i c h  i t  w i l l  b e  

a n a l y s e d  s o  a s  t o  y i e l d  t h e  d e s i r e d  i n f o r m a t i o n  " [Moroney 50]

The immediate result o f data collection is r a w  data To obtain direct 
measures from this data we need some form of e x t r a c t i o n  Our first step is to decide 
what to measure, then decide how the indirect measures will be calculated, and hence 
what direct measures are needed for analysis

/W C

Extraction;

Refined
Data

Data
Collection

Analysis

\
Product

Direct measures Indirect measures
Figure 5-4 The role o f data collection in measurement

The collection o f data will typically span several phases o f the development 
life cycle It is an on-going process and not a fixed step, as some would believe 
As this raw data is collected it should be stored in a database which will allow easy 
analysis when the collection phase has been completed

W hen we refer to 'analysing software measurement data' we assume the 
following
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•  W e have a number o f measurements o f one or more attributes from 
a software entity, which can be referred to as a dataset.

•  The software items are comparable (modules from the same product, 
similar projects in the same company, etc.)

•  We wish to establish characteristics o f the dataset, and/or relationships 
between attributes.

Details o f analysis techniques for data collected is beyond the scope o f this 
thesis, however Fenton's book Software Metrics provides comprehensive statistical 
techniques for software measurement validation. Below is a summary o f some o f the 
more standard methods o f data analysis.

Datasets o f software attribute values must be analysed with care because 
software measures are not usually normally distributed. It is advisable:

•  To describe a set o f attribute values using the box plot statistics based 
on the median and upper and lower fourths rather than the mean and 
variance. [Hoaglin et al 83]

•  When investigating the relationship between two variables always 
inspect the scatterplot visually.

•  To use robust correlation coefficients to confirm whether or not a 
relationship exists between two attributes. [Siegel et al 88]

•  In the presence o f atypical values, to use robust regression to identify 
a linear relationship between two attributes, or remove the atypical 
values before analysis [Sprent 89].

•  To use Tukey's ladder to assist the selection o f transformations when
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faced with non-linear relationships [Tukey et al 77]

•  To use principle component analysis to investigate the dimensionality
o f datasets with large numbers o f correlated attributes

Further recommended reading material is [Dobson 90] and [Draper et al 66], 
which provide good introductions to the principles o f generalised linear models and 
classical regression analysis

S tep  6. Re-iterate / modify

It is traditional to include such a step in most processes to allow for 
corrections in the original method As more data becomes available since our initial 
definition o f measures, validation and analysis may indicate required changes in our 
proposed models Such 'fine-tuning1 is required to ensure that measures are indeed 
useful and are associated with specified attributes

5 .7  S um m ary

The process for defining new measures as stated in this chapter is not 
intended to be a formal methodology, but rather a guide to utilising existing 
measures and identifying when and where new measures are required The approach 
to measurement within software engineering should be scientific and not haphazard, 
which is too often the case When measurement is required it should be well 
understood what is to be measured, and how these measures are to be implemented

( Now that these steps have been presented, and are based on standard 
approaches to software assessment and prediction, they will be used in the next 
chapter to develop a new set of measures for a rule-based language
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6 Defining metrics for a rule-based language

6.1 Introduction

The requirement for the existence o f measures for software systems has 
already been stated The last chapter gave a general set o f stages which could be 
used to develop these measures for systems other than 3GLs These steps however 
were not too specific in the area o f actual metric definition, which is more an 
intuitive problem than a simple analytical one To define measures for a language 
requires some insight into the languages structure with an understanding o f how that 
language is used in software development To demonstrate this definition o f m etncs, 
a case study using a rule-based fourth generation language called RULER has been 
used The stages outlined in the previous chapter will be used where applicable 
Although the initial stages are relevant, further data collection and research will be 
required to complete the validation o f new measures as required by later stages.

6 .2  The R U LER  language

Ruler is a 4GL for application development on D igital's VAX range o f 
computers using Digital's record manager RMS, and also for use on IBM PCs This 
language has been designed and developed by an Irish software firm and it is only 
available at present in this country [Ruler 87] Many of the standard claims made 
by 4GL vendors such as increased productivity, high level and non-procedural 
characteristics, integrated data dictionary and reduction in maintenance
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requirements, can also be applied to this language

RULER allows the programmer to record wide-ranging knowledge related to 
application data in a data dictionary This knowledge is recorded as integrity rules 
using a specially designed procedural langauge These rules define, validation 
constraints, reverential constraints (joins) and computation o f derived fields.

6 .2 .1  Program Development Methodology

The waterfall development life cycle described in section 3 1 still applies to 
this language, however specification and design phases become the focus for activity.

The analysis activity usually results in an initial Entity-Relationship model and 
an initial specification o f required business functions to be implemented Then a 
prototype is developed based on the design and specification to allow users to venfy  
whether the developer's understanding o f the system is the correct one Continued 
expansion and refinement o f the prototype is required until the system is completed.

The functions identified in the analysis phase are implemented as programs. 
RULER offers five distinct program types, On-line, Report, Batch, Menu and Chain. 
Each o f these programs is specified using a consistent easy-to-use form filling 
interface for standard programming attributes, and a full screen WYSIWYG editor 
for more complex attributes

Using the Entity-Relationship model records and files are defined The data 
dictionary supplies information on record relationships, ensuring record and field 
names are valid, and also supplying information about record layouts and field 
formats so that default forms can be generated In addition the data dictionary 
contains integrity rules for types, fields and files
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6.3 Defining measures for a rule-based language

The main focus of this research is to provide a set o f measures for a rule 
based language The steps provided will be used where appropriate, but the mam 
effort will be based on the third step This should provide a practical example o f 
how measures can be defined for languages that are not necessarily procedural 
Later steps such as validation require a great deal o f data and only initial statistical 
analysis for measures defined will be provided.

6 .3.1 Analyse the language

The analysis o f RULER will be primarily focused on the identification of 
product measures These measures will be based on the implementation phase and 
not on the earlier stages which are to some extent implementation independent

As we have described, RULER is a rule-based 4GL which runs on the VAX 
under VMS It use the VAX/VMS Record Management System (RMS), and its own 
Dictionary Management System (DMS) The DMS is considered to be the core o f 
the system and it is here that data types, fields and files are described and stored 
along with related rules, especially those related to integrity However, before we 
provide detailed descriptions we must first identify all o f the components within a 
typical RULER product

A . Design specification

For applications to be developed using RULER it is important to ensure that 
the initial stages o f specification and design are performed with more enthusiasm than 
is typically shown for 3GLs SSADM is often used to ensure a more rigorous 
specification o f the system design The following are typical components within 
SSADM
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Entity Relationships - This model depicts the system entities (or data stores) and
specifies the relationships between them It can also specify 
the numerical relationships between connected entities This 
model can be easily translated into a physical data base 
implementation

Data Flows - Data flows define the data requirements o f the system and
highlight the required system functionality. Identified 
processes can be implemented as modules within the system, 
and the data required for each process is also specified.

Entity Description - This is intended to provide a complete description o f the data
to be implemented in the system Required data is specified 
by the data flows and it is then decomposed into individual 
data items These can be further specified with respect to its 
format (for example char, numeric, alphanumenc) and its 
length This information can be directly entered into the data 
dictionary, along with comments and rules (for example: 
specified allowable ranges for numeric data items)

B. Dictionary management system

The data dictionary is the 'core' of the system as it is where all data is 
described Note that data is stored in the RMS files Once data has been defined 
programs may be generated which automatically include these data descriptions The 
type, field and file entities are described in the data dictionary and have the following 
relationship

"A. file  has many fields, each field is on only one file (if a similar field is on 
another file, then a new field is created), each field refers to only one type, 
a type can be referred to by many fields "
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The types are the primitive data items required for applications Once a type 
has been defined, along with any rules for validation, it can be referred to by many 
fields; each field will automatically inherit the specification o f its type, but can also 
have further rules associated with it

Files describe the details o f an RMS file record structure and its indices 
RULER treats the terms file  and record synonymously since each file is assumed to 
have one record type for each application

As stated the rules are allowed within the data dictionary which ensures the 
inclusion o f specific knowledge to be contained within applications These rules are 
textual, and similar in syntax to many traditional procedural languages (such as 
Pascal)

C . P ro g ram  generato rs

There are five program generators used to create specific types o f programs, 
On-line, M enu, Chain, Batch and Report Details o f each are given below

On-line Program Generator - This allows you to specify the program details and 
will either generate a default, or use a previously edited form A forms editor is 
used to change this form layout, both background text and data fields The 
executable 'program ' is then generated which includes all relevant dictionary rules 
for validation, derivation, and file-lookup This final 'program ' can then be run.

Menu Program Generator - A default menu form is created and can then be edited 
using the standard Form  Editor The menu actions are then specified, as a set of 
choice/action pairs, the choice being what the user would enter on the menu form 
and the action being the name o f the program to be run

Chain Program Generator - Chain programs are intended to link together a suite o f 
related program s, so that when the chain program is executed it initiates an
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environment within which the full suite o f programs available can be executed.

Batch Program Generator - This is very similar to the report program except for 
minor difference in syntax and file related options.

Report Program Generator - This involves specifying a primary file for reporting, 
choose required 'linked' files, specifying other report requirements such as sequence 
fields, width, page size and any processing and/or selection criteria using a textual 
rule based language. The system can generate default report layouts.

Table 6.1
C om ponent D etails

Design Specification ER model
Data Flows
Entity Description

Dictionary Management 
System

Data descriptions and relationships.
Textual/procedural based rules.

Program Generators On-line: Form s/procedures
Menu: Form s/procedures
Chain: Form s/procedures
Batch: Form s/procedures
Report: Form s/procedures

All o f the program generators above are form based with default values 
applicable to some fields. Because o f the specific nature o f each, little except the 
creation o f file and field relations, screen layouts and addition process commands are 
required. Each o f these programs contain an optional procedure section where rules, 
similar to those in the data dictionary, are used. Variations in syntax between 
program s exist but these rules represent a procedural textual component similar to 
those in 3GLs. Table 6.1 summarises this information which will be used as the
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basis for step 2 to help identify those components which may be measured using 
existing techniques

6.3 .2  Decide what components can be measured by existing techniques

This step would typically involve an extensive search o f publications for 
articles relating to measurable attributes of software Chapters 3 and 4 gave a 
comprehensive description o f existing measures and at what stage o f the system life 
cycle these may be used Using these measures the components identified in Table 
6 1 will be categorised into those than can be measured, and those which cannot

6.3 .2 .1  Design specification

This component contains a standard method for program and system 
specification Structured design and specification measures have been described in 
chapter 3 and relate directly to the type of designs produced for RULER systems.

DeM arco's "Bang" metric

This is based on the specification documentation, and has been defined for 
data strong systems which involve large database applications This would be 
suitable as it is an implementation independent functional measure indicating system 
size

Function points

Another measure for use in early cost models is FP, also described in section 
3 2 2 This measure can be used as input to the COCOMO cost model However, 
an FP to LOC expansion ratio for RULER would be required to provide an estimate 
for the lines o f code parameter of COCOMO
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Research by Verner and Tate provide a process for estimating size and effort 
m 4GLs using FP and COCOMO [Verner et al 92] As we have seen Function-Point 
analysis is used for sizing, and COCOMO for effort and schedule estimation, so to 
make these tools 'fit' a 4GL development process estimates need adjusting

Design weight

DeMarco also provides a design measure (see section 3 4 1) which requires 
basic counts obtainable from Data Flow diagrams and would be applicable to 
documentation specifying RULER programs/ systems This measure provides further 
information related to the effort implied in the design and hence could be part o f a 
cost model

6 .3 .2 .2  Dictionary management system

This component contained two distinct sections, the database and its 
relationships, and the textual rules which may be associated with the three identified 
entities types, fields and files

The data description and relationship portion o f the database have no directly 
related measures Indeed there is little research available for this area o f 
measurement It will be required to identify some measures relating to the database 
structure in the third step

The textual rules which may be incorporated into the data dictionary may be 
viewed from two perspectives The first is that they are just textual tokens consisting 
o f operators and operands, and as such, standard Halstead textual based measures 
may be applied The second is to view this text as a representation o f knowledge 
relating to the data, in the form of rules or integrity checks Again little 
documentation o f measures relating to rules or integrity in systems is available and 
this will be discussed in the third step
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6.3.2.3 Program generatore

All program generators are similar in the method through which programs are 
generated. M ost o f the relationships between files and programs are set by defaults 
but can be modified. If  further computation o f the data is required then a procedure 
may be written. These procedures contain a specially defined language which is 
similar but more extensive, than the one provided in the data dictionary. Comments 
relating to the textual rules in the DMS are also relevant to these procedures.

The structure o f the modules or programs, although simplified by RULER is 
similar to that o f 3GL languages. A calling relationship can be identified and 
architectural measures discussed in chapter 4 are applicable, although recursion is not 
permitted.

Structural measures can also be used in Batch, On-line, and Report programs 
where there is a often a high use o f procedural code, however the other two program 
generators do not contain typical complex structures o f procedural languages as 
defined in section 4 .4 .2 . Decomposition o f directed graphs into prime subgraphs 
may be performed within instances of programs, however unique decomposition of 
rules would be more useful. This issue will be addressed in section 8.2.

W e can conclude that within the Program Generators, nearly all o f existing 
procedural measures are applicable, however they fail to measure the behaviour of 
rules. Measures relating to rules within programs and the data dictionary will be 
discussed in step 3.

W ith relation to the rules, dynamic measures may also be defined to help 
estimate the test coverage o f test cases. Such measures are usually identified for test 
coverage o f source code, but could be expanded to include rules. This will also be 
discussed in the following step.

Table 6.2 summarises this information which will be used as the basis for Step
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3. Here we can see the components which we can measure using existing software 
measures and also identify those which as yet require some form of development.

Table 6.2

Sum m ary  of m easurable  com ponents of R U LER

C om ponent Detail M easures
Design
Specification

ER model BANG for data strong 
systems.

Function Point and 
COCOMO model

Data Flows
Entity Description

Dictionary
Management
System

Data descriptions and 
relationships

To be defined

Textual/procedural rules Textual measures

Rule measures to be 
defined

Program
Generators

On-line: Form s/Proc. Textual measures

Structural measures

Architectural measures

Rule & Dynamic measures 
to be defined

Menu: Form s/Proc.
Chain: Form s/Proc.
Batch: Form s/Proc.
Report: Form s/Proc.

6 .3 .3  Investigate how (if possible) all o ther com ponents can be m easured

RULER can be considered to contain four layers o f rules, three within the 
DMS and the other at the module (program) level, with each layer associated with 
one o f the four entities (types, fields, files and modules). All measures identified 
relating to rules may be applied to these four entities. We can view the first three 
as the dictionary integrity rules that specify, in more detail, the contents or 
accessability o f the data.

One primary difference between these layers is the permissible level of
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complexity o f the rules. Figure 6-1 illustrates the relationship between each entity 
showing an optional addition o f rules o f entity

Types 1— ___

■
— Fields P illili__

Entities —
1 — Optional Rule

Files fe—  
.  = f e : : y
Modules l n i i

Figure 6-1 Relationship o f rules within specified layers

The results from measures applied to each o f the four layers may be plotted 
in an attempt to characterise the relationship between these layers F igure 6-2 
graphically represents the possible tolerance values for our proposed measures An 
average result o f the measure is obtained over the four levels Deviations from this 
average are then plotted to identify differences in these measures for each layer, this 
characterisation is indented to provide an indication o f the typical results obtained 
from measurement Overlays o f standard measurement characteristics with obtained 
ones could offer similar information to a kiviat graph [Logiscope 90], and help 
identify possible problematic areas within the software

6 .3 .3 .1  M etrics associated with rules

Before measures are presented for use with RULER the format o f rules within 
each entity are provided to indicate the difference between each In general rules 
consist o f one or more statements which differ for each entity by the number o f 
prim ary and subordinate statements possible Example 6 1 provides the format that 
rules on all layer take
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Primary statement 
Primary statement

Subordinate statement 
Subordinate statement 

Primary statement
E xam ple 1: General format o f rules within entities

Examples of possible characteristics of rules for each entity
Deviations Deviations Deviations

Types

Fields

Files

1 t

Modules

Average result Average result Average result
F igure 6-2 Graphing characterisations o f measures for each entity

Table 6 3 provides the set o f allowable primary and subordinate statements 
for each entity

A. Type ru les

Rules at this level are provided to allow the program to define customised 
data types These rules will be automatically activated when a data item of that type 
is manipulated in any way
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Table 6.3
Statements within entities

P rim ary  S tm . E ntity S ubord inate E ntity
STORE AS Type PRINT Type

REJECT Field
ASSERT File
IF Module

ASSERT Type Assignment Field
IF Field NULL File

File Function/ Module
Module routine call

DEFAULT Field
SOURCE File
EXTERNAL Module
Function/
routine call

Assm  CUSTJJO eq 0 or CUSTJJO in all CUSTOMER. CUSTJtQ 
Else Prim ”Invalid Customer Number”,

End Assert;
Example 6.2 Typical type rule

The rule in Example 6 2 ensures that a field o f type CUST_NO is accepted 
only if its value matches with some record in the file CUSTOMER, or has a value 
o f zero, and the match is performed against the CUST_NO field o f the CUSTOMER 
record

B. F ield  ru les

Rules at this level are used to control values o f record fields These rules 
will be automatically activated when a data item is entered or altered
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D erm  TOTVAL «  VAL1 +  VAL2 +  VAL3;
Assert TOTVAL <  1500 
Else

Print “Total value exceeds 1500°;
End ass ert;

E xam ple 6.3 : Typical field  rule

The rule in Example 6 3 ensures that the value o f the field TOTVAL is 
derived using three other values VAL1, VAL2 and VAL3, and that this value does 
not exceed a specified range

C. File / record rules

Integrity rules which are not logically associated with just one field can be 
specified at the file ( record ) level in the Dictionary rather than the field level 
Field rules are active when data is input whereas file rules are only activated when 
the record is committed

I f  deleting order 
Assert m jH IP M E N T S  eq 0  
Else

Print “Cannot delete order, shipments exist 
Reject;

End assert*
E xam ple 6 .4 : Typical file  rule

This rule ensures that before the ORDER record can be deleted we must 
assert that the field NO_SHIPMENTS is zero If  this is not the case then a message 
is returned to provide the reason for not completing the deleting instruction
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6.3.3.2 Module rules

M odule rules are contained within the procedure section o f a program form 
This procedure is an optional addition to the function o f program , and usually 
involves a further set o f rules relating to the data Rules within the Menu and Chain 
program s are primarily for organising program calling structure and will not be 
included in the analysis o f rules for procedures The number o f primary and 
secondary statements applicable to rule within modules is too great to present here, 
for further information regarding RULER syntax, refer to the RULER manual 
Example 6 5 provides an typical statement within such modules The syntax reads 
very similar to most structured 3GLs

Derive EXQHJiATEJ'O =  CURRTQ,EXCHJiA TEJL;
Derive VALUEJRJX) using 

IfCUKRCOBEJO  ~  1
VALUE J R J O  «  VALUEJURRJO,

Else
VALUE J R J O  =  VALUEjCURRjrO/EXCHJMTEJ’O;

End if;
End derive;

Exam ple 6.5: Typical module rule

6 .3 .3 .3  D efining m easures fo r ru les an d  d a ta

Having looked at the structure o f RULER and the syntax employed within 
both the DMS and modules we can now provide a set o f primitives (p-counts) 
relating to RULER from which a set o f composite measures may be defined These 
measures can be collected as soon as the source code has been completed Although 
more primitives may be conceived, the following represent the most essential ones

As previously indicated there are four entities within RULER, and since many
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o f the measures we shall define are applicable to these entities, a special naming 
convention for has been developed for p-counts Those p-counts listed below are all 
measures obtainable from either o f the four entities To demonstrate this the letter 
x has been inserted, where x is an element o f the following set {T, F , R, M}, which 
specify type, field, record and module respectively

Table 6.4

P rim itive counts (p-counts) m easu rable  in R U LER

p-counts D escription
Dxi} count o f the number o f rules containing data item j  in the zth 

entity
FD*,i count o f the number o f rules fired for data item j  in the ith entity

Rx, count o f all rules in the ith entity (including sub-rules)
DLt, count o f all data items in the zth entity

UDLt, count o f all unique data items in the ith entity
Cx count o f all entity

SRjc, count o f all sub-rules for the ith entity
CR* count o f all entities containing rules

W here the value o f x is explicitly stated there it is not possible to perform this 
measure any other entity other than the one specified To ensure a clear 
understanding o f the terms used the following definitions are provided

Rule A statement within either the DMS or the module that is constructed
by the program mer in the form of procedural code In the general 
case an assignment is considered to be a rule, however, more complex 
rules such as If-Else statements containing a comparison and up to 
two assignments, are counted also as one rule If  another rule is 
nested within an If-Else pair this is considered to be a sub-rule (see 
below)
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Data Item • A variable named within a rule in either the module, record, field, or
type definition For the purpose o f measurement variables which
appear more than once in a rule are only counted once

Sub-rule. Rules below the first level o f nesting, such as those within nested IF 1
statements

Below is a set o f nine initial composite measures based on the p-counts in
Table 6 4, which may be evaluated for all four entities

A. Data criticality

This measure gives the average number o f rules that a data item appears in 
This measure can be recorded for either individual instances o f an entities, given by 
ADx„ or for all instances o f the entity, given by ADx This should give an 
indication o f how many rules are associated with a data item in the same entity

Using the Equation 6 1 below we can observe a standard level o f criticality 
on an individual instance o f an entity which can help identify anomalous instances 
F or example, if  we determine that 95% o f modules result in a value within a 
reasonable range (determined using historic data), we can investigate further the 
remaining 5 % o f modules to determine the reason for the higher level o f criticality

D I x
A D x  = ------ — (Equation 6.1)‘ U D l x i

A variation o f this measure is to obtain the same information except to ignore 
instances o f the entity, given in Equation 6 2 Using this formula we can determine 
the criticality o f data items within a specified entity This provides us with a wider 
indicator o f the sensitivity or criticality o f the data
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n

E D !x. (Equation 6.2)
A D x  = CF

To help identify possible criticality problems in data items it is best to set 
tolerance ranges which act as indicators to specific areas of code. When average 
values are used it is quite easy to have isolated anomalies undetected due to the 
weighting associated with a large volume of 'acceptable' results The presence of 
a maximum value can pinpoint individual cases that are beyond the acceptable ranges 
set (again these ranges are set based on historical data) Equation 6 3 provides the 
formula for obtaining this maximum level of criticality

One adjustment which could be made is that the tolerance ranges indicated 
could be adjusted for the volume of rules and data items within the system. A 
volume measure is proposed in section 6 3 3 4

B: R ule com plexity

The complexity o f the rules is an indication o f how difficult it will be to 
maintain the system Yet again we can record this measure for either individual 
instances o f entities, given by ADIx,, or for all instances o f the entity, given by 
ADIx This gives an indication o f the average complexity o f rules within the same 
entity, based on the number of data items they manipulate

Using Equation 6 4 we can observe the level o f complexity on a individual 
instance o f an entity This can help identify specific entities that are more complex 
and hence possibly less maintainable than others

M D x  = max ( D x : v  ..., D x nm ) (Equation 6.3)

D l x (Equation 6.4)ARx Rx
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A variation to this measure similar to that given for data cnticahty is to obtain 
the same information for all instances o f the entity This formula is given m 
Equation 6 5

E  M t,
A D Ix  = — ---------  (Equation 6.5)

£
i=1

The more data manipulated within rules the more errors likely at coding, and 
the longer it will take to modify the code if required This measure will need a 
tolerance range which may be used to indicate when rules are too ’complex' withm 
an entity, different ranges will be required for different entities

Yet again we must ensure that in the process o f measurement we do not miss 
rules with unacceptable levels o f complexity because we are using an average 
measure The presence o f a maximum value can help isolate specific rules with 
suspect levels o f complexity

M D I x  = m a x ( ^ - ,  . ,  ^ ^ )  (Equation 6 .6)Rx̂  Rxn

C. Descriptive measures

A set o f measures primarily defined to provide a general description o f the 
system can be defined quite easily Trends may be observed to exist in systems and 
the deviation o f systems from those trends may indicate added complexity within the 
system Further investigation would then be required An example o f four such 
descriptive measures are given below

The formula for determining the percentage o f entity x containing rules is 
given in Equation 6.7. This measure can be used to indicate the use o f rules within

108



different entities An example o f trends within the module entity, would be that 
rules are more scarce in On-line programs than Batch programs

P x  =  * 100 (Equation 6.7)
C x

Equation 6 8 evaluates what percentage o f rules within the ith entity are m 
fact sub-rules This measure is similar to the depth o f nesting measure defined for 
3GLs The difference however is that rules within RULER are not often nested 
Such nesting increase the complexity o f the system as it effectively creates another 
'layer' o f rules associated with a data item

S R x
P N x  = -------   * 100 (Equation 6.8)

R x t

W e can present this last measure in another format This time we refer to the 
complete system and we are not focus on individual instances o f an entity Equation 
6 9 calculates the percentage o f rules within all instances o f entities that are sub
rules

E SR*.
A N x  = -------- —-----------------  (Equation 6.9)

E  Rx, -  £  SR*.
1=1 «=1

Now that a set o f composite measure have been defined a example is provided 
to demonstrate their application Using an extract o f code from a batch module, 
given in Figure 6-3, we can demonstrate the application o f these measures to entity 
module. Since we are only using an instance o f the entity there are only four 
measures listed above which can be implemented The measure to be evaluated are 
ADM,, ARM,, PNM „ and ANM,, which need the following p-counts, UDIM „ DIM,, 
RM,, SRM, The results o f all these are presented in Table 6 5
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if  TRATE  =  1
WORK_RATE =  EXCH_RA TE_PL;

else
WORK_RATE = EXCH_RATE_BS;

end if;
NUM_CNT =  NUMjCNT +  1;
NUMDAYS =  T_A GIN G DA TE - NUMjCNT;
if  NUM_DAYS in 0 to 30

CURR1 =  OS BAL CURR * -1;
else

if  NUM_DAYS in 31 to 60
CURR2 =  OS BAL CURR * -1;

else
CURR3 = OS BAL CURR * -1;

end if;
end if;
CURRT =  OS_BAL_CURR * -1 +  NUMjCNT;

F igure  6-3 Example o f a Batch program procedure

Table 6.5

Results of A pplying M odule m easures
P-counts Results M etrics R esults

UDIM; 12 ADM; 1.5
DIM; 18 ARMj 3
RM; 6 PNM; 16.6
SRM; 1 ANM; 0.2

All o f the p-counts used to obtain these measures may be collected 
automatically which would mean that a static analyser could be designed to generate 
measures for RULER objectively and efficiently. A prototype tool which attempts 
to perform some of these p-counts is described in the following chapter. The values 
obtained for the example in Table 6.5 could then be compared to other modules to 
help determine it's  relative complexity. Using a large sample o f data, acceptable
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ranges for results are determined. Only when these have been defined can be begin 
to make some decisions based on the values obtained in our example above.

One way to provide both a visual representation o f the rules and a diagram 
from which p-counts can be measured is to construct a Rule/Data (RD) relationship 
graph. Nodes on the graph are either data items, rules, or sub-rules. Arcs represent 
the relationship between nodes. Typical relationship exist between data items and 
rules, data-items and sub-rules, and rules and sub-rules. Using the extract rules 
obtained for Figure 6-3 a RD graph has been constructed in Figure 6-4.

Figure 6-4 A rule-data relationship diagram for a batch program procedure

To provide a full description o f the graph a symbol table is required. This 
table, shown in Table 6.6, is a key for the contents o f the graphs, containing a 
description o f all the symbols. As we can see in the diagram rules and data items 
are not always interconnected, rule 1 and its related data for example are not 
connected in any way to the rest o f the code. The arcs (relationships) are non-
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directional and only provide an indication that a relationship exists and not what form 
that relationship takes

Table 6.6 

Symbol tab le fo r RD d iagram

Symbol D escription Symbol D escription
Data item 1 T_Rate Data item 10 CurrT
Data item 2 Work_Rate Data item 11 Curr2
Data item 3 Exch_Rate_PL Data item 12 Curr3
Data item 4 Exch_Rate_BS Rule 1 IF-ELSE
Data item 5 Num_Cnt Rule 2 Assignment
Data item 6 Num_Days Rule 3 Assignment
Data item 7 T_Aging_Date Rule 4 IF-ELSE
Data item 8 C urri Rule 5 Assignment
Data item 9 Os_Bal_Curr Sub-rule 1 IF-ELSE

This RD relationship diagram can also be used to calculate a measure o f 
coupling that exists between rules and data (1 e the connectivity o f the graph). 
Using standard graph theory an adjacency matrix may be constructed from which we 
can determine which nodes are directly connected [Sedgewick 84] This information 
is usually presented in the form of an adjacency list Further levels o f coupling (1 e 
which nodes are indirectly connected via one other node) may be obtained by 
multiplying the matrix by itself. Within software it is believed that lower levels o f 
coupling are more desirable as it facilitates the process of maintenance Similarly 
the lower the level coupling for a node then the easier it is to maintain that node, 
without diversely affecting other nodes

6 .3 .3 .4  D ata m easures

Using the p-counts identified in Table 6.4, measures may be identified for use
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which relate to the storage of data within the DMS Examples of an initial set of 
possible composite measures relating specifically to the data are presented below.

A: Volume measures

It was indicated earlier that some of the cnticahty measures could be related 
to the size or volume of the system Thus the more data there is within a system the 
more likely that higher percentages will be associated with greater numbers o f rules 
Equation 6 10 formulates the volume of data in the system as a direct measure o f the 
amount o f data within the DMS

V  = C F  (Equation 6.10)

This is a count of all the unique data items defined in the system This 
measure cannot be used alone, but it could be an indicator of system complexity 
when related to other p-counts, examples of which are given below

Equation 6 11 gives the ratios o f records to volume, or put another way it 
measures the average number o f data items per record, while Equation 6.12 gives 
the ratio o f modules to volume, or a measure of the average number o f data items 
per module

F V  = —— (Equation 6.11)
C R

M V  = — —  , (Equation 6.12)
C M

These last two measures provide more information relating to the distribution 
o f data within the DMS and the modules Higher values o f FV and MV imply a 
possible large set o f unpartitioned data
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6 .3 .3 .5  Dynamic m easures of rules firing

For dynamic measures to be calculated a tool must be created that is able to 
collect data while the application is running Most dynamic measures are used to 
determine the reliability o f a system or to determine the test coverage The measures 
defined in this section are similar to dynamic measure currently in existence which 
relate to the level of test coverage The only difference is that coverage is related 
to rules and not statements The test coverage o f the system can also be measured 
using the following general formula

Ratio = (E quation  6.13)
NO

W here OT  is the number o f objects tested, and NO  is the number o f objects 
in the system

Objects usually identified for structured code are BI (block o f instructions), 
DDP (decision to decision path), and LCSAJ (Linear code sequence and jum p), all 
o f which may be applied on a small scale to rules within procedures However, to 
ensure that rules are being tested then we need to identify rule related objects. 
Below are two objects for use with RULER

R I R ule Instance: The number of rules in the entire system A basic object that
can be used to indicate whether or not all rules have been
executed at least once 

R B  R ule Block: The number of rules associated with a data item irrespective
of where that rule is stored

Using these objects test cases can be defined for the system and measures o f
the rules fired noted Using the coverage ratio formula from Equation 6 13 we can
determine the percentage coverage o f rule blocks, or the percentage number o f rules 
associated with a data item that were implemented In this case NO  is calculated as
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the number o f rules associated with a data item for all entities, and O T  is number o f 
rules associated with that data items that were activated in a test period

RBC = ( —  ) * 100 (E quation  6.14)
1 N O

Where'.
n m p  q

o r  = £ fot;  + £*»*■, + + E
1 ¿=1 (=1 (=1

n m p  q
NO  = £ z > r # -  E O F ,  + E ® * ,  + E d m ,

1=1 1=1 1=1 1=1

To demonstrate the computation of RBC for a data item j  the results o f a test 
case have been presented in Table 6 7 The number o f rules which reference the 
data items in all four entities are given along with the number o f rules which were 
actually activated during the test case alpha

Table 6.7 

Result of Test Case
E ntity N um ber of rules a d ata  item 

appears in: Dx,j
N um ber of ru les ac tivated  
d uring  test case

Type 3 2
Field 10 7

Record 2 1
M odule 30 10

Using this data we can see that the percentage coverage for a data item j  is 
calculated below as 44 4%

RBC. = ( ) * 100 = —  * 100 = 44.4%
1 N O  45
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The percentage coverage o f just one data item is not very helpful if  there are 
thousands in the system, so a measure o f coverage for rules activated relating to all 
data items in the system needs to be defined, shown in Equation 6 15 below Since 
each declared field is an entity, the complete list o f unique data items is calculated 
using the number of field entities in the system

m
£  R B C j

R B C  =   * 100
C F

6.3 .4  Complete definition process

The final three steps are briefly described in this section As previously 
stated the primary aim o f this research is define a set o f measures for a rule based 
language The last steps in the process descnbed in chapter 5 were included for the 
sake o f completeness but are not entirely relevant to this thesis

Step 4 Define a model unifying these measures

Existing quality models are applicable to all measures defined so far As 
described earlier IS09126 provides a set of top level attributes which are most 
desired in software The sub-attributes (or internal attributes) o f these external 
attributes are related to issues such as complexity, which many o f the measures 
defined provide data on Step 2 in this process indicated that many components are 
already measurable and that additional measures relating to rules and data were 
required, so these measures are additions to the tools available to assess the 
maintainability of software using this rule based language

Step 5 Perform measurement and validate data

116



Difficulties relating to the validation of measures have been addressed in 
section 5 5.1 It has also been stated that validation is a non-tnvial task that typically 
evolves the presence o f large volumes o f data collected over a period o f time. This 
research does not have access to the considerable amount o f data required, so a less 
than rigorous validation is proposed

There have been three different methods employed which offer some 
indication of the validity of the measures proposed

A. E x ternal review

All measures proposed have been reviewed by other members o f the metrics 
community, notably Richard Bache who has contributed to the development o f the 
software static analyser QUALMS by introducing newly developed test coverage 
measures based on the program flowgraph structure [Bache 90] Richard has 
produced many papers relating to test coverage metrics including co-authored papers 
with Norman Fenton and is currently involved with SCOPE [SCOPE 90], an Esprit 
II project which is assessing the feasibility o f a software quality assurance scheme 
m Europe

B. Publication

A paper based on the proposals for metrics for rule based systems was 
accepted and read at the IEEE Fifth International Software Engineering Knowledge 
Engineering conference in Capri, Italy [Doyle et al 92]

C . U ser observations

A range o f statistical analysis o f RULER modules has been published as part 
o f an evaluation o f case study performances in SCOPE [Neil et al 92], it was found 
that these traditional structural measures,failed to identify critical parts o f the system 
that the case study provider considered atfected the maintainability o f the software.
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Based on these observations, the rules presented in this chapter have been defined.

D . Trend analysis

Since complete validation cannot be performed an initial set of trend analysis 
will be presented To collect the data for these analysis a prototype static analysis 
tool has been developed concurrently with this research Using this tool large 
volumes o f module rules have been analysed and statistical results have been 
extracted to attempt to provide descriptive information and tentative correlations 
between p-counts Although further analysis is required to ensure that conclusions 
are valid these results will help set initial tolerance ranges for the measures defined. 
Both the description o f the analysis tool and statistical analysis are presented in 
chapter 7

Step 6 Re-iterate / modify

Modifications to our model may be required based on historical data 
Correlations may not be made between measured values and software performance 
If  such a case arises, modification or 'fine-tuning' o f the measures may be required 
This will only be known when the process of validation is complete

6.4 Summary

This chapter provides a set of measures which attempt to capture relevant 
information regarding the maintainability of RULER Components for which 
measures already exist have been identified along with their related measures, while 
new primitive counts were defined for components for which no measures existed 
Using these p-counts, composite measures were formulated along with a rule-data 
relationship diagram from which most p-counts can be obtained The validation o f 
these measures has still to be completed and this issue will be addressed further in 
the following chapter
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7 Results and analysis

7.1  Introduction

In order to provide data from which analysis can be initiated, a static analysis 
tool has been developed. This tool has been used to collect data for applications 
developed using RULER. It also demonstrates the practicality o f data collection 
within the RULER environment. This prototype tool, described in section 7 .2 , 
demonstrates the ease in which a complete tool could be developed. A modular 
development process has been used to allow changes to be made as data requirements 
are modified. Requirements for data collection based on defined p-counts have 
altered, and although alterations to the tool have not been completed, such changes 
should require little difficulty.

Using the data collected, analysis has been performed to further describe the 
relationships between data and rules within the system. Section 7.3 graphs this data 
and provides tentative conclusions and tolerance ranges for measures defined in 
chapter 6 .

7 .2  T ool developm ent

R-DAT (Rule and DATa static analyser) is a prototype tool which calculates 
some of the measures described in chapter 6 and has been developed primarily to 
demonstrate the feasibility of producing rule and data related measures using a static
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code analyser, and to provide a comprehensive foundation which would facilitate 
further development

R-DAT was developed on a SUN 4 workstation and was written using C, 
YACC and LEX An initial problem exists in taking RULER code from the VAX 
and transferring it onto the SUN However, within the development environment o f 
this tool direct connections between these two hosts exist

To maximise the flexibility o f the tool, R-DAT was developed as a set o f 
tools that incorporate the use o f 'pipes' which serve as the connection between each 
tool. F igure 7-1 provides a general representation o f R -D A T's functionality as 
described in section 7 2 1 and 7 2 2, while Figure 7-2 shows in detail the process 
o f measurement

7.2 .1  Initialising for R-DAT

A setup procedure is required before R-DAT can be used, consisting o f the 
following two steps
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A. Code extraction

This function is provided by the RULER system All code within the 
modules can be extracted as part o f a documentation process These files however 
contain other non-standard 'statements' which are part o f the documentation text and 
are not module rules Similarly a documentation process is provided for the contents 
o f the DMS Rules associated with types, fields and records are also extracted using 
the RULER documentation feature Four files are created, one for each o f the four 
entities Each file contains a description o f each instance o f the entity along with the 
rules associated with that instance

B. Code transfer

The transferring o f files between different systems is typically well 
documented and easily implemented In this case FTP provided the required facility

The result o f these two steps is to provide four files on a SUN workstation 
which can be used as input to R-DAT
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7.2 .2  Im plem enting R-DAT

A. Rule extraction

This procedure removes all documentation information within the RULER 
files. Initially this was performed using editor macros, however this could be 
performed using a small program written in LEX This program has not as yet been 
developed, but would be a significant advantage when large volumes o f code are to 
be processed

B. Lower case rules

This program was written using LEX and merely reduces all characters in a 
file to lower case The mam reason for this is that RULER is not case sensitive, 
unlike Unix, so the work required in identifying recurring instances o f the same 
token is reduced

C. Pseudo-code generator

This program parses RULER code and produces a simplified abstraction, or 
pseudo-code equivalent Using this new representation it is easier to calculate the 
required measures All reference to the assignment operations between data items 
is removed A possible extension of this program would be to take this pseudo-code 
and provide a graphical interface giving the Rule-Data relationship diagram 
representation o f the code The form of this pseudo-code is given in Figure 7-3

D. Duplicate deletion

This program eliminates the duplicate data items within the same rule, as
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required by the definition of a rule in section 6 3 3.3 Data items between RULE 
and END-RULE blocks are sorted and duplicates eliminated

Module 1
RULE1

Data item i
Data item2

END-RULE 1
RULE2

Data item2
Data item3

END-RULE2

Module 2
RULE1

Data item4
END-RULE2

etc

Figure 7-3 Pseudo-code structure produced for RULER code

E. Measurement table

This program produces a table in the format described in Example 7.1 Each 
row contains the details for each instance of entity so in the case o f more than one 
rule, four bits o f data are added to the low for every extra rule All subsequent 
measures are then performed based on the data in this table.

Module Rule no No of data No of sub-rules Level
number items

Example 7.1 Table format tor data collected from RULER code
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F. M easurem ent files

Using the measurement table described more specific measures may be 
obtained. This is done by writing 'aw k' programs which extract relevant data from 
this table and produce a file o f more specific and condensed information Three such 
programs have been written which produce files o f the following format

M odule N um ber Rule N um ber N um ber of data  item s

Exam ple 7.2 Output file - filename 1

M odule N um ber of rules N um ber of N um ber of
N um ber in m odule d ata  items sub-rules

: Example 7.3 Output file - filenam e  2

D ata item N um ber of occurrences

Exam ple 7 .4  Output file - filenam e  3

G . C alcu late  m easures

Using these final three files eight measures are calculated For additional 
measures to be provided suitable 'awk' programs need to be constructed Three such 
programs have been written which are described in Table 7 1
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Table 7.1

Measures obtained using R -D A T

P rogram M easures com puted
Metrics 1 Average rule complexity for all instances o f an entity, 

based on the number o f data items they manipulate.
Maximum rule complexity for all instances o f an entity, 
based on the number o f data items they manipulate.

Metrics2 Average size of an entity instance, based on the number 
o f rules in an instance o f that entity.
Maximum size o f an entity instance, based on the 
number o f rules in an instance o f that entity.
Average size of an entity instance, based on the number 
of data items in an instance o f that entity.
Maximum size of an entity instance, based on the 
number o f data items in an instance o f that entity.

Metrics3 Average level of criticality o f data items based on the 
number of rules a data item is in.
Maximum level of criticality o f data items based on the 
number o f rules a data items is in.

7.3 Analysis of data

The task of validation is by no means trivial. Many existing and popular 
measures are still applied to software when no significant analysis has been 
performed to demonstrate the relationship between the measure and the attribute it 
claims to assess. Many attribute / measure relationships have been accepted as 
intuitive, but are often based on little, if any, scientific evidence. The process o f 
validation as previously mentioned is a long and detailed statistical task which has 
been covered in more detail by Norman Fenton [Fenton 91].

This section attempts to provide a description and characterisation o f the data
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collected in order to allow tolerance ranges for measures to be denved and to 
identify trends within rules that could lead to further research into more composite 
measures (similar to DeM arco’s BANG metrics) which would attempt to provide a 
single measure o f system complexity, maintainability, or size

Two methods o f data analysis have been performed The first is provided by 
the use o f R-DAT from which we can obtain quantified results for our measures 
The second involves using statistical tools to provide more descriptive information 
regarding the relationships between p-counts defined in chapter 6 These measures 
have been performed for the module entity due to the restriction o f available data.

Table 7.2

Results o f module analysis using R-DAT

M easures evaluated Results
Average number o f data items per rule 007
Maximum number o f data items per rule 057
Average number of rules per module 002
Maximum number of rules per module 018
Average number o f data items per module 013
Maximum number o f data items per module 058
Average number o f rules per data item 002
Maximum number o f rules per data item 022

7.3 .1  Results using R-DAT

The use o f R-DAT at this stage is more to provide the three files in examples 
7 1 to 7 3 than to perform actual measurement However results have been extracted 
for the measures listed in Table 7 1 Typical use o f this tool would not include the
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use o f statistical analysis and so these results would be vital to the assessment o f the 
software Both the measures below and statistical analysis in section 7 3 2 are based 
on the same three files Section 7 3 2 will however contain far more descriptive 
information from which ranges for measures can be determined Table 7 2 contains 
output from running R-DAT but the significance of the information will be discussed 
further in the next section

7.3 .2  Graphing relationships

The three files created using R-DAT as described in section 7 2 (filename 1, 
filenam e  2 and filename 3) can be input to any standard statistical package from 
which descriptive information o f the data can be obtained MINITAB was chosen 
for this task primarily because o f its accessability A mimtab batch program was 
written which performed analysis o f these three files These results were then 
incorporated into a Lotus 123 style spreadsheet and graphically presented In this 
section we examine those graphs and discuss the setting o f initial ranges for a set of 
measures

Rules were observed in only three of the five module entity types, online, 
report and batch modules The graph in Figure 7-4 represents the histogram o f data 
items to rules (ignoring sub-rules l e rules nested below the first level) within 
modules with maximum level indicators included to show the difference between the 
three module types If a rule contains many sub-rules then it is likely to contain a 
high number o f data items which accounts to some extent for the larger values on 
this graph We can confirm this by looking at Figure 7-7, where we see that batch 
modules have more sub-rules than the other two This is compensated for m Figure 
7-9 where rules and sub-rules are included

We can conclude however that 89% of rules have a complexity rating o f less 
than or equal to 20 However 100% of rules in online and report modules have a 
maximum value of 6 Larger values are probably caused by the use o f sub-rules
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within batch modules which will be considered later in this section So an initial 
range for rule complexity as defined in Equation 6 5, is 20 for batch modules and 
6 for the other two

Table 7.3
Basic statistics relating to Figure 7-4

M inim um M axim um M ean S ta n d a rd  Dev.
0 47 10 1 10 74
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The graph in Figure 7-5 presents the number o f rules in a module to provide 
a measure o f module 'size' 100% of both batch and online modules are below 4, 
and although the report modules, which tend to be larger are as high as 15, 92% of 
them have a size value o f less than or equal to 4 It is only a small number of 
modules that exceed this value and as we shall see in Figure 7-6, report modules 
typically contain a higher number o f data items So based on this data we can set 
an initial range for acceptable module size based on the number o f rules as being 
between 0 and 4, which accounts for over 90% o f all modules

1 2 3 4 6 e 7 a 9 10 11 12 13 14 16
Rules in modules

F igure  7-5 Size o f a module instance based on the number o f rules

Table 7.4

Basic statistics based on Figure 7-5

M inim um M axim um M ean S tan d a rd  Dev.
1 15 1 962 2 019
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Figure 7-6 graphs the histogram of the number o f data items that appear in 
a module, to indicate the size o f the module The first point to notice is that 
although batch modules contain far less rules than report modules they manipulate 
alm ost as much data, which explains why they contain more data items to rules, 
shown in F igure 7-4 It would perhaps be more correct to ensure that size measures 
contain information about data items and rules

Table 7-5

Basic statistics relating to Figure 7-6

The number of data items that appear in a module for all modules
M inimum Maximum Mean Standard Dev.

1 58 14 27 12 91

The distribution o f sub-rules to modules is well defined As indicated before, 
one o f the reasons why there are more data items to rules in batch modules can be
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directly related to the fact that they contain more sub-rules A good initial value for 
this measure is 3, which account for 92% of the modules Although higher values 
exist, they are rather unusual and further investigation o f these modules is required 
to examine the reasons for these values

0 1 2 3 4 5 6 7

Sub-Rules in modulo 

Figure 7-7 M odule complexity based on the number o f sub-rules

Table 7.6

Basic statistics relating to Figure 7-7

M inim um M axim um M ean S tan d a rd  Dev.
0 7 0 933 1 463

The histogram in Figure 7-8 takes into account both the rules and sub-rules 
as a measure o f the size o f a module Yet again we see that report modules contain 
more rules than the others, although these exceptions represent only a small 
percentage o f the modules An adjusted range for the size o f a module based on the 
total number o f rules could be 8 which would account for 95 % of the modules
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2 4 8 6 O 12 14 18 1«

T-Rules in module 

Figure 7-8 Module size based on the number o f rules and sub-rules

Table 7 .7
Basic statistics relating to Figure 7-8

M inimum Maximum Mean Standard Dev.
1 18 2 895 2 984

The graph in Figure 7-9 is a corrected version o f Figure 7-4, to include all 
rules in modules (rules and sub-rules) Note that there is a slight reduction in the 
larger values obtained in Figure 7-4 Those that still exist can be related to 
sequences o f assignment statements within rules, which as described earlier are not 
counted as rules The complexity o f rules in both online and report modules is not 
affected much by the inclusion o f sub-rules which is to be expected based on Figure 
7-7 It may be necessary to differentiate between these types o f modules when 
setting tolerance ranges A range from 0 - 5 captures all values for online and report 
modules while 15 covers 86 % o f batch modules
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Data item to Rules

F igure  7-9 Rule complexity for all modules, adjusted for sub-rules

Table 7.8
Basic statistics relating to Figure 7-9

T he n u m b er of d a ta  item s to  to ta l ru les p e r m odule
M inim um M axim um M ean S tan d a rd  Dev.

1 37 7 061 7 669

Figure 7-10 gives an indication o f the cnticahty o f data by graphing the 
number o f rules they appear in It is quite clear from the graph that at least 90% of 
data items appear in 4 or less rules However a maximum value o f 22 exists, which 
would make the data item highly critical Such high values should be investigated 
to see if  they are constants, or other relatively stable items o f information If this 
is not the case the rules they are associated with should be extracted and examined 
to determine if  such high levels are required This function could be an extension 
to R-DAT Suggested range for this measure is 0 - 4
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Figure 7-10 Data item cnticality based on the number o f rules i t 's  in

T able 7-9

Basic statistics for Figure 7-10

M inimum Maximum Mean Standard Dev.
1 2 1 2 505 7

7.4 Initial measurement ranges

The ranges for all o f these measures have been defined for the module entity 
and new values are be required for the other three entities These values are 
provided as an initial set o f ranges within which a high percentage o f data falls, 
however no correlation between these values and the maintainability o f systems that 
conform to them has been established This will require further data and analysis 
It is not recommended that these ranges should remain constant As more systems 
are analysed further evidence o f their validity will be obtained and these values 
should be changed to reflect this
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M easure M inim um M axim um
Rule complexity (excluding sub-rules) 0 8
M odule size based on the number o f rules 0 4
M odule size based on the number o f data items 0 20
N um ber o f sub-rules in a module 0 3
M odule size based on number o f rules +  sub-rules 0 8
Rule complexity (including sub-rules) 0 20
Data cnticality 0 4

7.5  S um m ary

The prototype static analyser R-DAT has been developed to collect enough 
data to perform  the initial analysis presented in this chapter Although not complete, 
it demonstrates the ease with which data may be collected This is one o f the most 
important issues in software assessment - the production o f objective and 
reproducible measures The data R-DAT provided allowed the graphing of 
relationships between p-counts and measures to help provide tentative ranges which 
could be used as an indicator o f the level o f system complexity, maintainability, and 
size
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8 Conclusion

8.1 Conclusion

With the increased pressure on developers to produces systems o f ever higher 
quality, measurement has provided a much needed tool with which to quantify 
attributes in quality modules. Measurement in software also aids in the prediction 
o f resource usage, effort, and cost. Efforts have been made to ensure that when it 
is performed, measurement is done scientifically and with specific goals in mind (not 
just to please the Quality Controller). For project management to be effective 
information obtained from measurement should be accurate, objective and reliable.

M easurement has been used in software engineering to help assess and predict 
attributes such as complexity, useability and reliability for almost two decades and 
most measures defined were tailored for procedural languages such as Cobol, Pascal 
and Fortran. Many of these measures, still in use today, are not universally accepted 
with questions regarding how they relate to attributes still under debate. The use o f 
H alstead's size measures relating to operands and operators is seen as a vital part of 
many prediction and assessment models, however the use o f these vocabulary 
measures as a the basis for software science is rather controversial. Assuming that 
many existing measures do quantify important attributes o f software, most have been 
developed for procedural development methods. Other development methods such 
as object-oriented, rule based and 4GL systems also require measurement for the 
same reasons as procedural systems, ie. greater control o f system development can 
only be obtained when increased reliability in measurement is possible. Some
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implementation independent measures do exist, but are confined to cost and size 
estimations based on documentation produced early in the software life cycle

This research focuses on measures that can be applied to rule based systems, 
and provides a set o f steps through which measures can be developed for other non
procedural development tools Using these steps a set o f measures have been defined 
for a  4GL rule based language called RULER This set o f six steps attempts to help 
in the identification o f components of the software for which no measures exist As 
much re-use o f existing measures as possible is encouraged to ensure that as much 
standardisation as possible is maintained within the science o f software measurement

Using a set o f identified primitive counts, composite measures were developed 
which attempt to formulate attributes such as rule complexity, data cnticality, and 
entity size. All o f these measures provide quantified values useable in the assessment 
o f an applications maintainability These measures easily fit the quality model 
structures defined by Boehm and McCall

8 .1 .2  M easurement in RULER

The categorisation for which measures were defined are data cnticality, rule 
complexity, descriptive measures, volume measures and test coverage Each o f these 
categories contain a number o f measures which are based on the defined set o f p- 
counts To improve the objectivity and reusability o f these measures a prototype 
static analysis tool R-DAT was developed which provided data for some o f these 
measures to allow preliminary data analysis to be performed

R-DAT allows the collection o f data for all except the fifth category of 
measures, which requires that p-counts be evaluated while the application is running 
No attempt was made to develop a dynamic code analyser to provide this data 
However little validation is require for test coverage Once suitable 'blocks' have 
been identified all that is required is the collection o f data to ensure that as a high
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a percentage o f the application has been executed as possible This measure based 
on the identification of a new block conforms to conventional test coverage 
estimation methods

Chapter 7 provides an analysis of the other four categories from which a set 
o f measurement tolerance ranges were decided Ranges for measures are typically 
used to ensure that systems conform to acceptable levels o f a particular attribute (or 
sub-attnbute) The ranges in chapter 7 were primarily set to ensure that at least 90% 
o f all data collected was within them It is not claimed that they are meaningful 
indicators o f rule complexity and data criticality It is important to note that 
relationships between the attributes mentioned and the measurement ranges in chapter 
7 have not been established This is not the aim of this thesis To set meaningful 
values for these ranges requires the analysis o f larger volumes o f data and also a 
ngorous validation to ensure that relationships between these measures and attributes 
exist As stated, the aim o f this thesis is to demonstrate that measurement theory can 
be applied to rule-based systems and that measures for these systems can be 
developed

8.2 Future work

Tool development for measures is considered to be an important requirement 
for the assessment of attributes in an effective objective way It has been 
demonstrated that both objective and reproducible measurement may be performed 
for applications developed in RULER Existing measures have been applied using 
QUALM S, while R-DAT provided alternative measures Using both o f these tools 
the feasibility o f the assessment of the maintainability o f RULER applications has 
been demonstrated However, R-DAT in its present state is incomplete Further 
modification to i t 's  functionality is required An RD-diagram could be produced, 
which would provide a visual representation o f individual modules, types, fields or 
records and allow direct access to the coding o f rules and data items which contain 
out o f  range values
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Another problem with R-DAT is that at present due to the use o f 'aw k' 
program s, decimal values are not possible in measurement results. Implementation 
o f these programs in C would provide more suitable results. Greater functionality 
is also required to provide values for all measures defined in chapter 6 .

With regard to measures defined, those that exist are only intended to be low 
level indicators for use in more complex measures. The definition o f these measures 
will require a better understanding o f what these measures actually assess. An 
approach similar to the one used by DeMarco in his definition o f Design W eight is 
one possible method for establishing higher level measures such as system 
complexity, or system maintainability.

Now that measures for rule-based systems have been developed and 
implemented, other non-procedural development methods should be analysed with 
the idea o f producing measures which quantify their unique properties. Logic 
programming and object oriented development methods are still badly supported by 
software measurement. A set o f measures should be developed for Prolog and Lisp 
which may facilitate the standardisation o f measures for all rule-based systems. The 
measures defined in chapter 6 should also be applied to Prolog to determine how 
applicable they are to different types o f rule-based languages.

The decomposition o f directed graphs into unique primes should be examined 
further to determine if unique decomposition o f rules within rule-based systems is 
possible. Such a method could be the basis o f a measurement framework for which 
parameters could be defined in a similar fashion to those measures described in 
section 4 .4 .4 .

The existence o f measures for any system is only useful if those measures are 
actually used. An article by Lieberherr [Lieberherr et al 89] proposed that one 
method for ensuring a good program was to encode a set of measures within the 
language itself. In this way we are guaranteed that a minimum level o f assessment 
is performed. This idea could be incorporated into RULER to ensure that
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compilation is preceded by a set o f measures which could provide warnings to the 
program m er or even provide suggested modifications to the source

As development approaches branch out into more and more diverse areas it 
is important to continually update our methods for controlling their development 
This research has shown that such measurement is both feasible and practical
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