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Applying Metrics to
Rule-Based Systems

Abstract

Author  Paul Doyle

Since the introduction of software measurement theory in the early seventies
1t has been accepted that in order to control software 1t must first be measured.
Unambiguous and reproducible measurements are considered to be the most useful
i controlling software productivity, costs and quality, and diverse sets of
measurements are required to cover all aspects of software

A set of measures for a rule-based language RULER 1s proposed using a
process which helps identify components within software that are not currently
measurable, and encourages the maximum re-use of existing software measures. The
mitial set of measures proposed 1s based on a set of basic primitive counts. These
measures can then be performed with the aid of a specially built prototype static
analyser R-DAT Analysis of obtained results 1s performed to help provide tentative
acceptable ranges for these measures

It 1s 1mportant to ensure that measurement 1s performed for all newly
emerging development methods, both procedural and non-procedural As software
engineering continues to generate more diverse methods of system development, 1t
1s important to continually update our methods of measurement and control This
thesis demonstrates the practicality of defining and implementing new measures for
rule-based systems
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1 Introduction

This chapter introduces the fundamental theory behind the 1dea of
measurement, in particular how 1t relates to software engineering Section 11
explains some of the general aspects of measurement and section 12 relates
measurement to modern day software development environments Section 1 3

provides an overview of the areas covered by this thesis

1.1 Measurement theory

There are many interpretations of the importance and usefulness of
measurement 1n everyday life It 1s often surprising however, that a great deal of
confusion still exists because of these varied interpretations Before we can really
appreciate the theory of measurement we should first clarify what 1n fact
measurement 1S The following formal definition provides us with a good base from

which to work

Measurement 1s the process by which numbers or symbols are
assigned to attributes of entities in the real world 1n such a way as to

describe them according to clearly defined rules

Now we can see that measurement 1s involved with capturing information
about attributes of entities We can define an enriry as an object, for example a room
or a person, or an activity, such as a journey or the test phase of a software project

An attnibute 15 a feature of these entities which we are interested in~ This could be



the weight of the person, the colour of the room or even the length of time to walk
through the room Further discussion relating attributes and entities to a software

engineering framework 1s provided in chapter 2

Using this procedure we can identify typical ambiguity associated with
measurement It would be incorrect for example, to state that we measure 'entities’
or that we measure 'attributes', rather we measure 'attributes of entities' It would
be ambiguous to say that we 'measure a man' since we could measure the weight,
height or complexion Similarly we cannot say that we 'measure the weight', since
we measure the weight at a specific time under certain conditions (altitude, dressed

or undressed, before or after a meal etc )

Returning to our definition we find that measurement assigns numbers or
symbols to attributes of entities to describe them These numbers or symbols can be
any designated scale (for example height could be measure in Metric or Impenal
scales) and therefore measurement of the same attribute may return many values
depending on the scale used This 1s an important point to remember when
interpreting results There 1s a tendency to believe that a number obtained from a
measure 1S a precise representation of the attribute Measurement however 1s not that
clear cut There are many different views on what 1s and 1s not measurement, and

we can turn to Fenton for a good discussion of the science of measurement [Fenton
91]

1.2 Measurement in software

Software engineering 1s the term used to describe the collection of techniques
concerned with applying an engineering approach to the construction of software
products  This 'engineering' approach involves managing, costing, planning,
modelling, analysing, designing, implementing, testing and maintaining software
systems These activities along with supportive tools and techniques are used 1n an

attempt to produce high quality systems that are delivered on time and within a



specified budget

Although this approach was proposed nearly two decades ago, the
improvements 1n software products has not matched the imtial, perhaps over
optimistic hopes for this method Fenton attributes this failure to the less than
rigorous approach taken for measurement within this discipline and provides the

following observations

1 Producers of software still fail to set measurable targets when developing
products Claims are often made regarding the 'user-friendliness',
'rehability’ and 'maintainability’ of the products without specifying what
these mean 1n measurable terms Producers have only vague notions of their
objectives which implies that they cannot fully achieve them Gilb summed

up this situation with the following statement

"projects without clear goals will not achieve their goals clearly” [Gilb 87]

2. We fail to measure the components which make up the real costs of software
projects For example we usually do not know how much time was really

spent on design compared to testing

3 We do not attempt to quantify the quality of the products we produce Thus
we cannot tell a potential user how reliable a product will be 1n terms of 1ts
likelihood of failure 1n a given period or use, or how much time will be

required to port the product to a different machine

Fenton goes on to stress the need for measurement but claims that 1t 1s

misused and little understood

"measurement performed 1s done infrequently, inconsistently and
incompletely Moreover it 1s quite detached from the normal scientific

view of measurement” [Fenton 91]



Measurement while cited by DeMarco as the key to controlling software
production, 1s not well enough understood to be as effective as once hoped When
measurement takes place the motivation for 1t 1s not always clear and 1t could be said
that most measurements are done purely to please the quality controller and that the
results are unscientific and unreliable However, the aim of software measurement
18 to control or predict the state of software development This can be done by
focusing measures to achieve project specific results. An example would be
collecting data in order to monitor and modify development The earlier in the
product life-cycle this 1s done the more control there 1s on quality in terms of

functionality, reliability, cost and scheduling

1.2.1 Software metrics

Now that we have established that software engineering requires measurement
1t 1s 1mportant to see how this has been done so far First however, we should

clarify at this point the difference between a metric and a measure

® Metnics numerically characterise simple attributes like length, number of
decisions, number of operators (for programs), number of bugs found, cost

and time (for processes)

o Measures are 'functions' of metrics which can be used to assess or predict

more complex attributes like cost or quality

However, since there 1s an inevitable confusion relating to the phrase 'metric'
due to 1ts many different interpretations, an attempt will be made to ensure that the

term will not be used, wherever possible

The term software metrics however 1s an all-embracing term given to a wide

range of apparently diverse activities These include



Cost of effort estimation models and measurements
Productivity measures and models

Quality control and assurance

Data collection

Quality models and measures

Performance evaluation and models

Algorithmic complexity

Structural and complexity metrics

These activities are listed 1n an order that represents a progression from the
topics that are concerned with high level goals down to the foundational material on
which these may depend Most of these will be expanded in the following three

chapters

1.3 Measurement for rule-based systems

Most of the measurement activities mentioned 1n section 1 2 2 were developed
for third generation languages However, there 1s a need to ensure that measurement
15 performed for all software systems This may require the development of new

measures for new software development methodologies

The aim of this thesis 1s to take a langauge which incorporates methods of
development for which no measures exist and to define those measures under a
standard framework which 1s presented 1n chapter two To ensure that measures
which already exist are not 'reinvented', chapters three and four provide a summary
of the more common and frequently implemented measures Chapter five goes on
to describe a process through which measures may now be defined, and chapter six
suggests a new set of measures for a rule-based language This 1s followed by an

mitial analysis of the results obtained using a prototype static analyser to collect data



1.4 Summary

Software metrics are not well defined methods for assessing software quality
Producers of software should have well defined goals before measurement techniques
relevant to these goals can be 1dentified Only then can results be obtained from
measurement that have meaning One of the primary concerns with software
engineering 1s not the fact that measures are not being used but that when they are,
they are not focused on a particular goal and the results are unscientific and not

applicable to the real world

The use of measurement within software to provide information on quality,
cost and development schedules needs to be extended to encompass all methods of
software development, and not just the more traditional third generation languages
The following three chapters provide the required background for software
measurement as 1t 1s currently used in todays development environments, while
chapters 5,6 and 7 discuss the use of newly proposed measures for rule-based

systems



2 A framework for measurement

2.1 Software entities and attributes

The use of software metrics 1s often perceived to be quite straight forward.
Measurements are performed on specified parts of the system and conclusions are
drawn from these results This however, while true in one sense, 1S a naive over
stmplified approach taken by many involved in quality assessment A typical set of

tasks required to successfully take advantage of these techniques are provided below.

® Set up a framework for the metrics
® Have a clear understanding of the aims of measurement

® Decide how this measurement will take place

The success of the measurement process will be based on how strictly these
steps are adhered to Too often measurement theory 1s employed without a clearly
stated target or aim In these cases 1t 1s difficult to make claims regarding any aspect
of the software Such haphazard systems would not provide sound analytical results
with which a high degree of confidence could be associated The collection of
evidence should be a clearly defined process which 1s specified before measurement

begins

The first step relating to the framework 1s a matter of deciding between
various existing methods for incorporating measurements nto a software assessment

scheme Before this can be done however, we must first identify the components



within software which we may wish to measure It 1s widely agreed that there are

three distinct entities whose attnibutes we are interested 1n measuring.

L Processes - software related activities (usually with time factors)
o Products - deliverables such as documents and source code
° Resources - items that are nput to processes

Within these entities we can identify internal and external attributes which are

items of interest upon which we would like to perform either measurement or

prediction
o Internal attributes reter to measurement of the given entities in terms
of themselves
° External attributes refer to how given entities relate to their

environment

Typically, managers and users tend to be more interested in the external
attributes of entities, such as the cost-effectiveness of a production, or the degree of
reliability or useability of the software It has been observed however, that these
attributes are traditionally the most difficult to measure, mainly due to the lack of
quantifiable definition with which to assess them Subjectivity plays a major part in
resisting the establishment of standards for such attributes, For example, the
useabihity of a system 1s as yet still assessed by the 'feel' of the interface. Efforts are
being made to standardise interfaces, but as yet these do not cover all forms of

software applications

Current attempts to measure external or high level attributes have been based
on the 1dentification of more primitive or lower level sub-attributes which are called
internal attributes  For example, we could take an external attribute such as
maintainability, and attempt to ascertain its value by dividing 1t into source code

stmplicity and consistency  Relevant measures could then be devised to quantify



these two internal attributes In general 1t can be stated that measuring external
attributes 1s based on the measurement of related internal attributes Evidence
obtamned from internal attributes 1s used to support external ones because we cannot

measure external attributes directly

2.1.1 Processes

Processes are software related activities which normally have a time factor
An example of a typical process in the system development life cycle would be the
construction of specification and design documentation, integrated testing or the
development of the entire software system from the 1nitial specification stage through
to the installation stage A process may be time dependent and not activity
dependent This could relate to a specific ime period of the project development,

for example, Month of Seprember

External attributes associated with this entity are related to general notions of
quality, stability, controllability, observability and cost-effectiveness. The main
problem associated with these attributes 1s that they are not very well understood and
they tend to be very subjective, for example, the controllability of testing procedures.
Therefore 1t 1s difficult to define objective measures It 1s hoped that from
experience obtained using these subjective measurements more objectivity will be

developed.

Although there 1s a large degree of subjectivity associated with external
attributes, objective internal attributes have been 1dentified  These directly

measurable attributes are

® Time - duration of the process
® Effort - associated with the process
® Incidents - the number of incidents of a particular type arising

during a process eg no of bugs found during testing



Given the fact that there are very few directly measurable internal attributes
1t 1s still possible to combine them to form indirect measures We must keep 1n mind
however, an understanding of what 1s captured by the indirect measure For
example, in a process for formal testing, the average cost of identifying errors during
processing AC could use the indirect measure below where Cosr relates to the cost
incurred 1n performing the formal testing and Number of errors 1s the number of

errors detected in the software as a direct results of this testing process

_ Cost (Equation 2.1)
Number of errors found

In this example the external attribute of cost has been related to a specific
item and then quantified using the internal attribute associated with frequency of

defined incidents Simularly other expressions of cost may also be quantified

2.1.2 Products

Products within software are usually seen as deliverables of the software
development life cycle These deliverables are physical entities which are typically
documents and code resulting from software development These could be
specification and design documents, source code, user and installation manuals and
testing specification documentation at various levels of detall External attributes
associated with these products are numerous Recently the draft standard ISO9126
which 1s a Iist of proposed product quality characteristics has been approved
[ISO9126] This now ensures that a common set of external attributes may now be
1dentified for product analysis A set of proposed internal attributes are also supphed
but they are not part of the approved standard It 1s however a significant step
towards standard measurement techmques for product attributes Below are the

ISO9126 standardised external product attributes

10



Functionality
"A set of arrributes that bear on the existence of a set of functions and their
specified properties  The funcnions are those that sansfy stated or implied

needs "

Relability
"A set of artributes that bear on the capability of software to maintain s

level of performance under stared conditions for a stated period of time.”

Useability*
"A set of attributes that bear on the effort needed for use, and on the

individual assessment of such use, by a stated or implied set of users.”

Efficiency
"A set of attributes that bear on the relationship berween the level of
performance of the software and the amount of resources used, under stated

conditions "

Maintainability
"A set of attnibutes that bear on the effort required to make specific

"

modifications

Portability
"A set of attributes thar bear on the ability of software to be transferred from

one environment to another "

These external attributes are related to both documentation and source code
As already stated the internal attributes associated with these are not standardised and
there are many suggested ways of measurement At present an informative appendix

to ISO9126 exists containing proposed 1nternal attributes which are given below

H



Functionality
Suitability
Accuracy
Interoperability.
Compliance

Security

Relability
Maturity
Fault tolerance

Recoverability

Useability
Understandability
Learnability
Operability-

Efficiency*
Time behaviour

Resource behaviour

Maintainability
Analysability
Changeability
Stability
Testability

Portability
Adaptability
Installability

Conformance

Appropriateness of a set of functions to specified tasks.
Production of agreed results or effects

Ability to interact with specified systems.

Adherence to specified standards or conventions.

Prevention of unauthorised access to programs and data.

Frequency of failure by faults in the software
Maintenance of specified levels of performance.

Re-establishment of performance after software faults.

Users effort for recognising logical concepts.
Users effort for learning 1ts application.

Effort for operation and operation control

Throughput rate in performance of functions.

Resource amount and duration required

Effort required to 1dentify deficiencies or failure.
Effort required for fault removal or modification.
Risk of unexpected effect of modification

Effort required for validating the modified software

Opportunity for adaptation to different environments.
Effort to install s/w onto specified environments.

Adherence to standards relating to portability



2.1.3 Resources

These are considered to be the inputs of software production Examples are
personnel (individual or teams), materials, tools (software and hardware), and
methods The cost of employing these inputs 1s one of our primary 1nterests, 1t has
a high degree of relevance to all resources and 1t 1s easily measured ( sometimes the

cost 1s directly related to the number of attributes)

With personnel we must introduce productivity as well as cost We can only
realistically consider the productivity of a programmer with respect to some activity
such as the time taken to code, test, and design a program or the volume of output
such as the number of lines of code written over a period of time, or the number of
pages 1n the specification and design documentation An example would be the
defimtion of software productivity P as being the amount of output divided by the
effort input, where the output 1s measured 1n lines of code and the input 1s the effort

1n man months

P = Amount of output (Equation 2.2)
effort input

This formula 1s derived from the product (amount) and the process (effort)
This, however, 1s not a true representation of the productivity of software since Lines
Of Code does not have a direct relation to productivity It should be noted that

although many measurements are feasible, the underlying principles behind their use
should first be assessed
N
Other attributes of interest to personnel are age, experience and intelligence
With teams they are size, structure, and experience of team leader Measurement
of these attributes are often based on empirical evidence and 1s not easily

quantifiable

13



2.2 Prediction and assessment

Measurement within software 1s typically a process involving the assessment
of an attribute of an entity However a prediction 1s often required regarding
attributes of entities which do not yet exist For example, at the end of the product
life cycle 1t 1s possible to accurately determine the cost of development We would
like to predict this cost at the early stages in product development to accurately
budget resources  Similar predictions are required to determine development

schedules and effort

Fenton made the distinction between prediction and assessment by first

providing the following definition

"A model 1s an abstract representation of an object" [Fenton 91]

This implies that there are many different types of models, but there are

primarily two main models of interest within software measurement

L Models which are abstract representations of process, products, and

resources These are used to define unambiguous measures

° Models which are abstract representations of the relationships between

attributes of entities These relate two or more measures 1n a formula

If we take the second model and look at an example, we can eliminate some
of the confusion relating to the difference between prediction and assessment Below

1S a simple model

(Equation 2.3)

by
il
|~

where [ 1s the number of lines of code 1n a software product, E 1s the effort required

to produce the product and a 1s a constant. The extent to which this model 1s used

14



for assessment or prediction depends on how much we know about the parameters
of the model If the parameter [ 1s known then we are assessing the value of E and
not predicting 1t However, 1f the project 1s still in the specification stages and we
are estimating the number of required hines of code (maybe based on the functionality
of the system) then we are using this model to predict the effort required for software
development In this case we would need a prediction (or estimation) procedure to
determine the value of I We can see from this that a model 1s merely a formula and
on 1its own 1s insufficient for performing prediction Methods to determine the model
parameters and procedures to interpret the results are also required The following

definition formalises these concepts

"A prediction system consists of a mathematical model rogether with
a set of prediction procedures for determining unknown parameters,

and ntrerprenng results. " [Littlewood 88]

Using the same model different results may be obtained depending on the
prediction procedures used Much confusion exists in software regarding assessment
and prediction, but since the ultimate goal 1s prediction even assessment metrics are

claimed to be part of prediction systems

2.3 Measurement frameworks

Now that standard methods of measurement have been introduced they should
be set into a comprehensive framework which incorporates the 1deas introduced 1n
this chapter We consider which processes, products and resources are relevant to
each method, which attnibutes (internal and external) we are measuring, and whether
they are performing assessment or prediction We will cover briefly all of the topics

introduced earlier but our main emphasis will be on product measurement

15
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2.3.1 Cost and effort estimation

This 1s concerned with the prediction of cost and effort process attributes. The
most well known model 1s undoubtably Boehm's COCOMO (COnstructive COst

MOdel) [Boehm 81] model for estimation of size and effort of software products

Within COCOMO there are three models, basic, intermediate, and detailed,
each of which can be used at different stages of development These models were
derived from data obtained from applications written 1n Fortran, PL 1 and COBOL.

The following formula calculates effort estimation in person months

Effort = aS® * Product of Cost Drvers (Equation 2.4)

S 15 measured 1n thousands of delivered source instructions (usually LOC)
a and b are determined by the mode of development There are three modes:
organic - small to medium DP projects, embedded - ambitious but tightly

constrained, and semidetached -somewhere between the previous two

COCOMO's 15 cost dnivers fall into four categories Product attributes,
personnel attnibutes, computer attributes, and project attributes The model provides
default values for cost driver attributes, but these should be modified as more
historical data becomes available relating to actual cost COCOMO provides
estimates for development effort and schedule divided into three phases; product

design, programming and integration testing

The COCOMO estimation formula 1s usually done at the specification stage
of software development The formula above 1s as explained earlier, only a model
of software development, and the prediction procedures for deterniming a,b, and
S along with the model make up the prediction system It 1s hard therefore to talk
about the COCOMO model for cost estimation since different prediction procedures

will yield different results  Also this 1s not a very satisfactory system since the

16



prediction of the attribute for lines of code could be as difficult as the prediction of

the original attribute of cost (or effort)

2.3.2 Productivity measures and models

Here we are measuring the resource attribute Personnel (teams or individuals)
during a process (usually a calendar time period) The most common models are
those that take productivity as a function of the output of the personnel during a
process, divided by the input (cost) of the personnel during that process as explained

m section 2 1 3

The resource attribute of productivity 1s assumed to be captured as an indirect

measure of a product attribute measure and a process attribute measure

2.3.3 Quality models and measures

Quality modelling [McCall 77] involves relating metrics, internal attributes
and external attributes to some theoretical framework It 1s used to associate external
product attributes (sometimes referred to as factors) to internal attributes (known as

the criteria) which 1 turn are evaluated by using proposed sets of measures.

It 1s generally agreed that the use of software engineering methods leads to
construction of products with certain structural properties These properties are
characterised by internal attributes such as those proposed under ISO9126 Some may
even state that the venification of the correct implementation of these methods will
ensure 'satisfactory’ levels of external attributes expected by software users, for
example, rehability, maintainability, and useability Thus the assumption that good
internal structure leads to good external quality 1s part of most software quality

models

17



We must however realise that software engineering only provides the
framework from which improvements in software are possible by encouraging the
use of improved techniques, 1e projects in which the best common practice
techniques are applied routinely are deemed more likely to have a satisfactory end
product than those developed ad-hoc However none of these methods can guarantee
the level of external attributes since so much depends on how these methods are
applied to individual problems Also there 1s no standard scaling system for

determining the 'level' of external attributes

Use Factor Criteria

Opaorebliity

YO volume

— T 1 mZ

Reuseablllty

=TI

Figure 2-1 A typical Quality Model

Although there 1s an 'intuitive feel' regarding the connection between the
internal structure of software products and external product attributes, there 1s very
little scientific evidence to establish specific relationships  This 1s perhaps the result
of difficulties 1n setting up relevant experiments and a lack of understanding of how

to measure 1mportant internal product attributes properly

Defining models of quality aids in the development of a structured process

18



through which attributes of software may be measured, recorded, and re-used 1n
future projects By providing reliable data, based on historical and measured values,
prediction and assessment techniques may be used to control productivity, cost and
quality Measurable targets may be set within software projects which will increase
confidence 1n the producer's claims to specified external attributes Without these
attributes being made quantifiable little weight can be associated with claims of a

product's level of quality

2.3.4 Data collection

Models for cost/effort estimation, productivity assessment and prediction
depend on the accurate measurement of process and resource attributes. Much of the
work 1 data collection for all but product attributes must be done by hand so effort
1s aimed at setting in place rigorous procedures for gathering accurate measures of
the process and resource attributes Three main techniques for gathering data are as

follows

Software analysers - data 1s generated automatically as programs are submutted to
a compiler, specified measures are performed at this time.
Dynamic analysis 1s performed when measures are performed
will the program 1s executing Software analysers are by

nature algorithmic and objective

Reporr forms - are logs which are completed by analysts and programmers at
various milestones 1n the product development process
Entries could include date, time, activities, effort in hours.

Forms can often cause confusion regarding the data required.

Interviews - To avoid msunderstanding of the data required while
completing forms-based-questionnaires, mnterviews are often

conducted The same information 1s obtained using forms,

19



Most forms of data collection, with the exception of software analysers suffer
from one major problem they are not reproducible Elements of subjectivity

introduce uncertainties which affect the degree of confidence associated with the data.

2.3.5 Performance evaluation

Usually measures 1n this area deal with the product attribute efficiency This
can be defined 1n terms of time (response times and processing times) and storage
(amount of resources used and the duration of such use) Efficiency 1s mainly seen
as an external att}lbute for executable code, however it can be an internal attribute
which looks at the algorithmic complexity of a program and 1dentifies repetition of

source code etc

In the case of time efficiency assessment 1s performed by determining key
mputs and basic machine operations, and then working out the number of basic
operations required as a function of nput size In terms of our framework, one
possible approach 1s to determine the efficiency of the algorthm as an internal
attribute which can be used to predict the external attribute efficiency of executable

code.

2.3.6 Structural and complexity metrics

Most external product attributes are high level and very difficult to measure,
so we are often forced to consider measures of internal attributes of products

Within complexity there are two different 1ssues to be addressed

Compurational complexiry
Concerned with the efficiency of the algorithm in 1ts use of machine

resources



Psychological complexity

Concerned with characteristics of the software that affect programmers

performance in composing, comprehending and modifying software

Curtis encompasses these notions into one definition

"Complexiry 1s a characteristic of the software interface which influences the
resources another system will expend or comnut while interacting with the

software " [Curtis 88]

Complexity 1s a function of the software and 1ts interaction with other systems
(machines, people, other software) To devise a complexity model we must combine
specific metrics according to some theory or hypothesis Types of complexity

models which exist are as follows

° Problem complexity
L Design complexity
o Program / Product complexity

The measurements defined should represent the difficulty that a
programmer/analyst encounters when performing tasks such as designing, coding,
or mantaining software There are numerous measures which are concerned with
measuring 1nternal structural and complexity attributes which will be detailed 1n

chapter 3

2.3.7 The GQM paradigm

It was 1mitially stated that for measurement to be successful we must first have
objectives in mind  Once those objectives have been established we should use the
framework described 1n this chapter to identify relevant attributes and entities to be

measured. This goal oriented approach 1s consistent with the Goal/Question/Metric

21



paradigm of Basili and Rombach [Basili et al 88] which 1s a well known framework
for a wide spectrum of software measurement The 1dea 1s that a goal must be
identified before measurement begins, this should lead to questions, and these
question can be answered with the use of measurement The goals are normally
defined 1n terms of purpose, perspective, and environment and to help define goals

a set of templates are provided

Template for goal definition

L Purpose to characterise / evaluate / predict / motivate etc the process /
product / metric / model etc in order to understand / assess / manage /
engineer / learn / improve it Example To evaluate the maintenance process

In order to improve it

o Perspective Examine the cost / effectiveness / correctness / defects / changes
/ product measure etc from the viewpoint of the manager / customer /

developer Example Examine the cost from the viewpoint of the developer

o Environment The environment consists of the following process factors,
people factors, problem factors, methods, tools, etc Example: The
maintenance staff are poorly monvated programmers who have limited access

1o tools

Guidelines are also provided for process and product related questions. The
questions that are addressed are the definition of the process or product and relevant
attributes When we come to defining the measures 1t 1s understood that in many
cases more than one measure will be required for one question and these may

include subjective measures

We can now see how GQM can be related to our framework A goal or
question can be related to entities each having a choice between assessment or

prediction ( entities and attributes need to be defined first) We now are concerned
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with quantifying the attributes of a product, process or resource The leaves of the

hierarchy tree are directly measurable attributes of entities

Goal - Evaluate new design
method X'
Wm ature
roduct! @ S
QUEStON - usNg'X 7y orevemonts 7 of %X 7
Proportion Average  Function Effort
Metric - of degngners years points oc
expenence

Figure 2-2 The GQM approach

2.4 Summary

To ensure that a system of measurement 1s implemented correctly, an
understanding 1s required of what the aims of the measurement are Typically there
are three entities, resource, process, and product which are to be evaluated. For
measurement to be scientifically based, external attributes need to be identified and
their corresponding internal attributes The 1dentification of measures to quantify
specific internal attributes will be affected by the type of information required, most
measures perform some assessment of the software, but are usually claimed to be
part of a predicion model Models of how these frameworks are defined are
typically Boehm and McCall quality models or the GQM approach The following
two chapters give us a review of the more common measures applicable to the

product entity
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3 Specification and design measures

3.1 Introduction

The prediction and assessment of software 1s a process which 1s not restricted
to one stage of the software development life cycle It 1s important to define each
of these activities as accurately as possible to identify measures that are phase
dependant A common software life cycle 1s the warerfall model Such a model has

been described by Boehm {Boehm 81], Figure 3-1

Requirements and Specifications - This phase should produce a complete
specification of the required functions and performance characteristics of the
software It should also look at resource needs and preliminary development cost

estimates

Product Design - This phase should produce more detailed module specifications
including their expected size, the necessary communication among modules,
algorithms to be used, interface data structures, and internal control structures. It
should highlight important constraints relative to timing or storage, and include a

plan for testing the individual modules

Programmung/Coding - This phase should produce an implementation of the modules

In the chosen language together with unit testing and subsystem testing

System Integranon - This phase, usually completed by a group independent of the
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ongmal analysts and programmers, should subject the integrated modules to
extensive testing to ensure that all functional requirements are met Errors are, of

course, corrected as discovered

Installation/Acceptance - This phase should deliver the product to the users
organisation for final acceptance tests within the operational environment for which
itisintended Documentation manuals are delivered, training 15 conducted, problems

recorded and corrected until the customer accepts the product

Maintenance - This 1s a continuing phase 1n which additional discovered errors are
corrected, changes 1n code and manuals are made, new functions are added, and old

functions are deleted

Requirements/
Specifications—
L Product Design ,_]

+— Detailed Design _}

[:— Programming r-l
{—‘System IntegranonL\‘

t— Installation

2

'—J Maintainance

Figure 3-1 The waterfall model of the software life cycle

These stages are generally sequential but tend to be interdependent. Changes
from one phase filter through to cause significant changes 1n others Measures are
not usually defined to fit neatly into the seven stages described, however, four

general categories exist which contain related activities



Design - This phase contains the Requirements/Specification, Product Design, and

Detailed Design phases All preliminary work before actual coding begins

Coding - This phase 1s the same as the Programming/Coding phase Code 1s written

1n this phase

Testing - This phase contains the Systems Integration and Installation/ Acceptance

phases. Internal testing with same or live test data 1s performed 1n this phase

Maintenance - This phase 1s the same as the Maintenance phase Software 1s now

1n operation

This chapter describes some of the more common metrics 1s 1n use under the
above classifications Emphasis 1s placed in the later stages in product rather than

process entities

3.2 Specification measures

Imtial costs and time estimates are required at the earliest stages of product
development Measures during the analysis stage which attempt to provide these
predictions are based on the system specification Since the specification describes
the requirements of the system and not the implementation method, quantitative
measures of the true function to be dehivered, as perceived by the user, will be

provided Most research into specification metrics has been done by DeMarco

3.2.1 DeMarco's "BANG" metric (specification weights)

Bang 1s a function metric, an implementation-independent indication of system

size The information content (size) of the specification model 1s a direct measure
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of the quantity of usable system functions to be delivered The measure is based on
the decomposition of each part of the specification model down to their primitive
levels such as data elements, objects and relationships The relationship between

these primitives 1s then quantified using a weighted factor

Bang 15 the earliest predictor of size which 1s used to drive the cost model and

hence 1s only a very rough estimator

Primitive Components of the Model

A component of the specification model 1s considered primitive if 1t 15 not
partitioned into subordinate components Each part of the specification model
(functional model, data model and state transition model) 1s divided down to 1ts

primitive level, see Table 3 1

Types of primitives

° Functional primitives (Functional Model)

L Data Element 1s the primitive data item (character, number etc). Data
Elements are contained 1n the data dictionary component of the functional
model

° The primitive component of retained data organisation 1s the object. An
object 1s a group of stored data items, all of which characterise the same

entity (Data Model)

° The primitive component ot retained data interconnectedness 1s the

relationship (Data Model)
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Table 3.1

Partitioning vehicle | Is used to partition To produce as
primitives
Function network System requirements Functional
primitives
Data dictionary System data Data elements
Object diagram Retained data Objects
Object diagram Retained data Relationships
State diagram Control characteristics | States
State diagram Control charactenistics | Transitions

The following primitive counts provide basic measures for use with Bang.

FP
FMP

DE:
DEI
DEO
DER
OB
RE
ST
TR
TC

RE

count of functional primitives lying inside the man-machine boundary
count of modified manual functional primitives (functions lying outside the
man-machine boundary that must be changed to accommodate 1nstallation of
the new automated system)

count of all data element

count of all input data elements

count of all output data elements

count of data elements retained (stored) in automated form

count of objects in the retained data model

count of relationships 1n the retained data model

count of states in the state transition model

count of transitions in the in the transitton model

count of data tokens around the boundary of the 1™ functional primitive
(evaluated for each primitive) , a token 1s a data item that need not be
subdivided within the primitive ‘

count of relationships involving the 1™ object of the retained data

model(evaluating for each object)

28



DeMarco 1dentified two systems classifications with which Bang could be used.

(a) Function strong systems

(b) Data strong systems

The former relates to systems that can be thought of almost entirely 1n terms
of the operations they perform on data The latter relates to systems that can be
thought of in terms of the data they act upon, the data groupings and the

interrelations rather than the operations

(a) Formulating Bang for Function-Strong Systems

The principle component of Bang for function-strong systems i1s FP
However some functions cost more to implement than others Variations exist in

both size and complexity which must be adjusted for in the model
(1) Correcting for Vanations in Function Size

Correcting for size 1s based on the observation that the function model has
reduced the system to a series of linked primitive rransformarions Output tokens are
generated from input tokens 1n each transformation The information content or size
of a transformation can be approximated as a function of TC, the number of tokens

in the transformation Studies [Halstead 77] into how size varies with TC leads to

the following relationship

Size (Pruminive) a TC, *log, (TC) (Equation 3.1)

Table 3 2 provides weighted values based on this formula

29



Table 3.2
Data Weighting for Size Correction of Functional Primitives

TC;  Corrected FP Increment (CFPI)

2 1.0
3 2.4
4 4.0
5 5.8
6 1.8
7 9.8
8 12.0
9 14.3
10 16.6
The corrected FP (CFP) is now
CFP =Y, CFPI (Equation 3.2)

(i) Correcting for Variations in Complexity

DeMarco reasoned that the complexity of primitives do not vary greatly and
when they do they have a discernible pattern. Sixteen well defined categories were
identified and a correction factor for each was given.

J Separation - primitives that divide incoming data items

»  Amalgamation - primitives that combine incoming data

»  Data direction - primitives that steer data according to a control variable

»  Simple update - primitives that update one or more items of stored data

J Storage management - primitives that analyse stored data, and act based on
the state of that data

] Edit - primitives that evaluate the net input data at the man-machine boundary
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Verification - primitives that check for and report internal inconsistency
Text manmipulation - primitives that deal with text strings

Synchromization - primitives that decide when to act

Output generation - primitives that format net output data flows

Display - primutives that construct two-dimensional outputs (graphs, pictures)
Tabular analysis - primitives that do formatting and simple tabular reporting
Anithmetic - primitives that do simple mathematics

Imnianion - primitives that establish starting values of stored data
Computation - primitives that do complex mathematics

Device management - primitives that control devices adjacent to the computer

boundary

Table 3 3 contains a suggested set of correction factors for these categories

Table 3.3

Complexity Weighting Factors by Class of Function

Class Weight Class Weight

Separation 06 Synchromzation 15

Amalgamation 06 Output 10
Generation

Data Direction 03 Display 18

Simple Update 05 Tabular 10
Analysis

Storage 10 Arnthmetic 07

Management

Edit 08 Inmitiation 10

Verification 10 Computation 20

Text 10 Device 25

Manipulation Management

Complexity weighting factors are environment dependent  Relative
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complexity of anthmetic and formatting functions for example would be different in
C and Cobol The weighting factors given need to be altered to suit the project's

development environment

(b) Formulating Bang for Data-Strong Systems

This vanation of Bang relates to systems that have a significant database and
most of the effort 1s allocatable to tasks having to do with implementing the database
itself The most obvious primitive count to base measurement analysis upon 1s OB,
the count of objects in the database Adjustments are required to account for the
different costs of implementing different objects Table 3 4 provides weights for

each object as a function of its relatedness to other objects

Table 3.4

Relation Weighting of Objects

RE, Corrected OB Increment (COBI)
1 10
2 23
3 40
4 58
5 78
6 98

Bang 1s the sum of the COBI over all objects

Bang = M (Equation 3.3)
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Prediction using Bang

This measure 1s a quantitative indicator of the net useable function from the
user's point of view It can be used early 1n the life cycle to predict effort and can
be used as n cost models to predict development costs Below are two algonthms
provided by DeMarco for the computation of Bang The first 1s for function-strong

systems and the second 1s for data-strong systems

ALGORITHM 1: Computation of Bang for Function-Strong System

Set ininral value of FUNCTIONBANG to zero

For each functional primitive in the function model

Compute Token Count around the boundary

For each incoming our outgoing data flow

1 Determine how many separate tokens of data are visible within the primitive
This 1s not always the same as the count of data elements If a group of data
elements can be moved from input to output without looking nside, it

constitutes only a singe token
2 Write Token Count at the point where the data flow meets the primitive
Set Token Count = sum of tokens noted around the boundary
Use Token Count to enter Table 3 1 and record CFPI from the table
Allocate primitives to a Class
Access Table 3 2 by Class and note the associated Weight

Multply CFPI by the accessed Weight
Add Weighted CFPI to FUNCTIONBANG

33



ALGORITHM 2: Computation of Bane for Data-Strone Systems

Set initial value of DATABANG to zero.
For each object in the retained data model:

Compute count of relationships involving that object. Use the relationship
count to access Table 3.3 and record COB1 accessed.
Add COBI to DATABANG.

It is worth remembering that measures derived from the specification model
are only as good as the model itself. 1f it specifies something other than the system
required, the metrics will also be astray. Also it the requirements change and the
model is not revised then the measures will be out of data and useless.

3.2.2 Function points

Function points [Albrecht 79] are implementation independent measures
useable in the early stages of the software life cycle. As with Bang, function points
use the requirements specification and are a weighted sum of counts of user visible
product features. The aim of function points is to provide a measure of size which
can be used to drive cost models such as COCOMO. The following points should
be remembered before using function points.

. They cannot be derived without a full software system specification, a user
requirements document is not sufficient.

J Differences of 400 to 2000% in the number of function points counted at the
start and finish of system development are not uncommon. This can be due
to the introduction of non-specified functionality, or the fact that the level of
detail in the specification is coarser than that of the implementation.
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Therefore the number and complexity of inputs, outputs, and enquiries will
be underestimated. Using function points for prediction may not always be
useful.

J Elements of subjectivity are required for function point counting which
eliminates the possibility of automating the process. Detailed counting rules
are required to ensure sufficient levels of consistency.

J The counting rules need tailoring to the specific analysis methods used.
[Ratcliffe et al 90].

. Function points have been successful in DP applications but their use in real
time and scientific applications is controversial.

J Within function points there is an adjustment based on the technological
complexity of the product. This involves assessing the impact of 14 factors
on a six-point ordinal scale. This introduces more subjectivity.

Computing the Value FP

The first step in obtaining a value for FP is to first compute the unadjusted
function count UFC. The number o f"items’ of the following types must be counted:

External inputs - Those from the user which provide distinct application-
oriented data. Examples are file names and menu selections.
These do not include enquiries.

External outputs - Those to the user which provide distinct application-oriented
data. Examples are reports and messages.

External enquiries - These are interactive inputs requiring some response.

Externalfiles - These are machine readable interfaces to other systems.

Internalfiles - These are logical master files in the system.
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Having 1dentified the various types of items, each 1s given a subjective

'complexity' rating of either simple, average or complex Weighting factors for each

are given 1n Table 3 5

Table 3.5

Weighting Factors for FP ordinal scale

ITEM Weighting Factor
Simple Average | Complex
External input 3 4 6
External output 4 5 7
User mquiry 3 4 6
External file 7 10 15
Internal file 5 7 10

In theory there are 15 different varieties of 1tems (each five types multiplied

by the three levels of complexity) so we have

15
UFC =Y (No of items of variety 1) * (weight) (Equation 3.4)
=1

The adjusted function pomt count FP 1s dertved from UFC by multiplying 1t
by a technical complexity factor TCF

FP = UFC x TCF (Equation 3.5)

Factors Contributing to Complexity (TCF)

Fl Rehable back-up and recovery F2 Data communications

F3 Distnibuted functions F4 Performance
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F5:  Heawvily used configuration F6 On-line data entry

F7  Operational ease F8  On-line update

F9 Complexity interface F10  Complex processing
F11. Reusability F12  Installation ease
F13: Muluple sites F14  Facilitate change

Each factor 1s rated on a 'scale’ 0,1,2,3,4,5, where 0 means 1t 1s irrelevant

and 5 means 1t 1s essential Then TCF 1s

14
TC =065 + 0 12 F, (Equation 3.6)
1=1

TCF varies from Q0 65 1f all £, = 0to135fall F, =5

One fault with function point 1s that 1t includes subjective notions of
complexity, both internal and external If these measures could be performed
separately then 1t might be possible to develop a measure that provides a measure of .

true functionality

3.3 Design models

A design 1s a model of a particular way of meeting the system requirements.
A design should be a formal representation of the software to be implemented and
1t should be thought of as a rigorous blueprint for construction It must be recorded

and kept up to date throughout the duration of the project

"Design 15 the determination of whar modules & what intermodular interfaces

shall be implemented to fulfil the specified requirements " [DeMarco 88]

Program and system designs are based around decomposition down to the

module level The product of the decomposition into modules can be seen as the
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design module The completed design model consists of a partitioning of the whole
into 1ts modules and a census of all interfaces between these modules The design

model 1s complemented by a set of internal model specifications describing their

contents

The following points indicate some important relationships between design

and implementation of design

L One to one relationship between modules indicated 1n the design &

modules implemented 1n the code

° One to one relationship between intermodular connections indicated

1n the design and intermodular references (CALLS etc )

° One to one relationship between intermodular data interfaces indicated

n the design and intermodular shared data implemented 1n the code

To summarise, designs should describe all data interfaces between modules
Many project teams fail to complete the design stage by ignoring inter-module
interfaces  Such deficiencies deprive development teams of important feedback
regarding the validity of the partitioming and hence the design DeMarco outlined

the following test to see 1f design was correctly performed (Figure 3-2)

The Did-We-Really-Do-Design Test

Iy

Put the design into a sealed envelope

N8

Guve the completed software to an outside expert, someone who 1s not
Jamiliar with the original design

Ask your expert to derive the design implied by the implementation
Compare the derved design with the design 1n the envelope

If the two are not 1denncal, you didn't really do design
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Requirement Result

Declared Compare
Design
Re-

construction
of the

Implemented

System

Design

Figure 3-2 The Did-We-Really-Do-Design Test

A common technique for design modelling 1s to represent a design as a

hierarchy of modules (Figure 3-3)

v R 2

R

Figure 3-3 Hierarchy of modules

The sigmificance of such a hierarchy 1s that the manager starts the managed
model by passing control to 1t. The managed model does 1ts work and then returns
control to 1ts manager One module 1n the hierarchy 1s working at any given time.

Traditionally control 1s passed up and down, never sideways
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Invocation 1s the act of passing control to a subordinate module All the lines
connecting modules on the hierarchy represent invocations and all are shown The
hierarchy 1s a statement of all the possible invocations in the system If two modules
share data or control parameters then they are said to be coupled This information

1s shown along side the lines of invocation on the hierarchy

This denotes a switch .’, \
This denotes data O}r

Rec é

F‘°°é i Edit ok H°°?
Eof i
Iy
B

C D

Figure 3-4 Invocation conventions in module hierarchies

To develop meaningful design measures we must ask the following question When

1S the partitioning into modules complete? DeMarco proposed the following rule:

Rule: The design partntioning 1s complete when the modules are small
enough to be umplemented withour any further partitioning A simple
rest of adherence 1s thar no implemented module shall need an

tnternally named procedure

So far nothing has been suggested about 70w you ought to design systems or

what 1s a good or bad design, although much work has been done by Yourdon 1n this
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area [Yourdon et al 79] This section provides a understanding of what a design

model 1s so that the following section relating to specific measures makes sense.

3.4 Design measures

As projects approach conclusion the prediction of the cost, size and effort of
the system should be converging to their actual values For this to happen more
accurate projections are required as the development proceeds as shown 1n Figure 3-
5 For example, cost predictions made during the design phase must :1mprove on
those made during the analysis phase Measures of product cost based on the design
must be more reliable and precise Initial estimates of function are based on Bang

which are implementation independent and not related to how the specification 1s

implemented
t r—
Projected
Costs
4 TN 2 )
BANG /
Manpower
Loading
Implementation
Analysis
Time

Figure 3-5 Improving cost prediction over time
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3.4.1 Design weight

To 1mprove on Bang we need to incorporate a measure which includes the
effort implied 1n the design This implementation-dependent predictor 1s usually

called the Design Weight The following steps are required to produce this predictor.

1 Calculate primitive metrics (derived from the design model)
2 Calculate composite predictor (design weight) using a weighted

formulation

3 Collect data from a range of projects
4 Produce a prediction line equation
5 Projection of new development costs from the prediction line equation

and the observed value of the predictor

Primitive Design Measures

The design model should contain a hierarchy of modules with all connections
and couples indicated, and a design data dictionary describing all data items (couples,
tables, files, database(s), and structured data types) The following are basic

measures observable from such a model

MO Count of modules

CO*  Count of intermodular normal connections (a normal connection 1s a reference
from nside one module to another whole module, that 1s, a CALL or

PERFORM or other subroutine invocations

DA, Count of data tokens explicitly shared along normal connections to and from

module ¢ (Evaluated for each module )

SW,  Count of control tokens (switches) shared along normal connections to and

from module ¢ (Evaluated for each module )
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EN  Count of encapsulared data groups 1n the design model (an encapsulated data
group 1s a data area made available to a limited number of modules)
EW, Count of encapsulation width of data group : (width 1s defined as the number

of modules with access to the group)

ED, Count of encapsulation depth of data group : (depth 1s defined as the number

of data elements contained 1n the group)

PA  Count of pathological connections (a pathological connection 1s a reference
from 1nside one module to part of another module, that 1s, a GOTO to an

internal label)

PD, Count of pathological data tokens shared by module : (a pathological data
token 1s one that 1s obtained from a module not connected to module 1 by any

normal connection)

PS Count of pathological control tokens shared by module ¢

Usually, 1f 1t 1s 1impossible to provide counts for the primitives listed then the
developers have probably gone about the design 1n such a way that DA, SW, PD,
and PS are not apparent, 1e they have concentrated on the control structure rather
than on the data sharing It 1s important to examine the volume and complexity of

the interfaces

Design weight collects these primitive metrics together to use as a predictor
for remaining 1mplementation effort, coding and testing Initial efforts to use MO,
the count of modules, as a predictor of effort proved quite disappointing as modules
of similar size require different efforts, usually relating to how complex they are.
It 1s generally thought that effort required in module design, coding and testing varies

with the number of decisions 1n the module
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Predicting Decision Count Inside Modules

A good estimate of the decision count within a module 1s to assume that the
internal structure of each module 1s 1somorphic to the data structure at 1ts boundaries

[Warnier 76] Figure 3-6 gives the full set of 1somorphisms between data structure

and process structure

This data structure: Implies this process structure:
Any more A ?
{ A } gs No

B c
e10 .
\

Yos %>ls there a D

No

Figure 3-6 Data and Process parallels

The procedure for predicting decision counts from the data structure observed

at the modular boundary 1s
Start with the decision count = 0

1 Write down a data dictionary formulanon of all data arriving at the module
boundary  Express the result ar the roken level (fiom the viewpomnt of the

module)
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2. Analyse the data structure of the result, applying the following rules

(a) For each iteration in the data structure, add one to the decision count

(b) For each two-way selection (Either-Or) in the data structure, add one
to the decision count

(c) For each n-way selection in the data structure, add n - 1 to the
decision count

(d)  For each option (data item that may or may not be present) in the
data structure, add one to the decision count

Table 3.6
Module Weights

Decision Count || O 1 2 3 4 5 6

Token 1 10 11 12 14

Count

2.4 26 (29 |33 (37
4.0 44 (49 |54 |62 |72
58 63 (71 |79 |90 105125
78 85 [95 (10711221141 (168
98 107 (1201341153178 ]212
120 | 130|146 | 164 | 187 (218 (260
143 [156 174196223 (260310

X || NN W N

Design weight 1s simply the sum of the Module weights over the set of all
modules 1n the design
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Design Weight = Y Module Weight, (Equation 3.7)

The cost predictor (weight) of each module 1s now a function of the token
count at 1ts boundary, and the predicted decision count inside Table 3 6 contains

a suggested set of 1nitial values
3.5 Summary

The system life cycle development model has been used as a partition for
metrics, which allows us to 1dentify stage dependent measures This waterfall model
enable the 1dentification of four general categories, Design, Coding, Testing and
Maintenance So far little research has been performed to provide design measures,
which, quite often 1s seen as a relatively mnor stage, however such measures
(design and specification metrics) allow early predictions for software cost models
Most notably DeMarco's Specification and Design weight measures are among the
few that currently exist As the coding phase begins however, a wider range and
variety of measures can be implemented, some of which will be discussed 1n the

following chapter
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4 Product attribute measures

4.1 Introduction

In chapter 3 the waterfall model of the system life cycle was introduced.
Specification and design measures associated with the early stages of this life cycle
were described and indicated to be an essential part of the prediction of software
product size Predictions of software size are then used to drive cost models such
as COCOMO to predict effort and cost of product development This chapter will

concentrate on measures associated with the later stages of the software life cycle

Of the three entities defined relating to software products in chapter 2,
(Product, Process, and Resource) Product 1s the most relevant to this research. The
ISO9126 quality attributes outlined previously are based on interesting external
product attributes and associated internal attributes. This chapter focuses in on well

known and implemented internal attributes

4.2 Internal product attributes

Internal product attributes are attributes of software (including documentation)
which are dependant on the product itself This section 1s intended to look 1n detail
at those attributes, and suggested methods of measurement Specifically those related

to textual, structural and architectural components of software
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Internal attributes are considered to be the key to improving software quality
which 15 one of the main aims of software engineering Internal attributes may be
used for quality control and assessment and are the building blocks for measuring

complexity

It 1s generally agreed that the use of software engineering methods leads to
the construction of products with certain structural properties These properties are
characterised by internal attributes such as those proposed in 1ISO9126 which were
discussed 1n section 2 1 2 There 1s a wide consensus among software engineers that
these internal structural attributes wtill help ensure increased quality in the external
attributes expected by software users Thus the assumption that 'good' internal
structure leads to 'good' external quality 1s fundamental to most software quality

models We can conclude.,

‘Axiom’ of software engineering

Good internal structure ---> Good external quality

We must however, realise that software engineering only provides the
framework for producing 'good' software by encouraging the use of structured
techniques, 1e. projects in which the best common practice techniques are applied
routinely are 'more likely' to have a satisfactory end product than those developed
'ad-hoc’ However, none of these methods can guarantee the level of quality of
external attributes since so much depends on the how these methods are applied to

individual problems

Although there 1s an intuitive feeling regarding the connection between the
internal structure of software products and external product attributes, there 1s very
little scientific evidence to establish specific relationships  This 1s perhaps caused by
the difficulties in setting up relevant experiments and perhaps a lack of understanding

of how to measure important internal product attributes properly
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4.3 Textual measurement

Initial coherent software measurement research was performed by Maurice
Halstead. Halstead's work was based on the idea that software comprehension was
related to a process of mental manipulation of program tokens. This was the first
attempt at deriving software measures from a theory, and the first set of measures
used in an industrial context. Most textual based measures are concerned with code
size and volume. These issues are discussed below along with typical measures
associated with them.

The size of a program is an important measure for three reasons. The first
Is that it is easy to compute after the program is completed, the second is because
itis the most important factor for many models of software development, and thirdly
that productivity is normally based on a size measure.

While 'size" would seem to be a rather straight forward attribute to assess we
find that it becomes quite complex when notions of effort, functionality, complexity,
redundancy and reuse hecome part of the measurement. The reason for the
complexity is that size is normally used in the assessment of cost, productivity, and
effort. The problem seems to be defining a set of fundamental attributes which will
cover the notion of size in software. There appear to be three such attributes of
software: length, complexity and functionality. The state-of-the-art for size
measurement is that a) there is some consensus view on measuring length of
programs but not specifications or designs, b) there is some work on measuring
functionality of specifications (which applies equally to designs and programs), but
c) there is little work on measuring problem complexity other than what has been
done under computational complexity.

4.3.1 Lines of code

The Number of Lines of Code (NLOC) is the most used measure of source
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code program length However, there 1s a real need for a standardised defimition of
'a line of code’ For example, do we include commented lines and variable
declarations, and what happens if a line contains more than one instruction? To

avoid such ambiguity, Conte provided the following defimition

"A line of code 1s any line of program text that 1s not a comment or
blank line, regardless of the number of statements or fragments of
statements on the line  This specifically includes all lines contaiming
program headers, declarations and executable and non-executable

statements " [Conte et al 86]

To show that we now refer to non-commented lines of code we use the
abbreviation NCLOC (or ELOC - effective lines of code) This definition however,
loses some valuable length information If we wish to determine the number of
pages required to print the program source code or what storage space 1s required
for a program, then we need to know the length of the program expressed in terms

of commented lines of code

CLOC 1s the number of lines of commented program text Using this we can

define total length,
LOC = NCLOC + CLOC (Equation 4.1)

This way we can define indirect measure such as the density of comments in
a program (CLOC/LOC) If we are seeking a single measure for the length of a
program then LOC 1s preferable to NCLOC However 1n general 1t 1s useful to
gather both measures since they are measuring different things If we continue to
look for a 'pure’ notion of length then we must consider the following measures

which are classified as ratio measures

° Measure the length in terms of the number of bytes of storage

required for the text,
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o Measure the length in terms of the number of characters CHAR 1n the

program text

The good thing about ratio scales 1s that in principle we can re-scale each 1n
terms of the other For example 1f « 1s the average number of characters per line

of text then we have the following re-scaling’

LOC = CHAR (Equation 4.2)

4.3.2 Predicting length using function points

It 15 usually required to predict the attribute length early on 1n the product life
cycle since 1t 1s easily understood and can be used in cost prediction models. One
way of predicting length 1s to relate length to different life cycle products One such
system 1nvolves taking the function point count obtained from the specification and
applying a language dependent expansion ratio, to obtain an estimate of the lines of
code required  Although such a method may not be entirely accurate it does provide
a reasonable estimate 1if the expansion ratio 1s based on historical product

development data
Expansion ratio for language X

Size of product at Specificarion stage 1 (in FP)

Size of product ar code stage (in LOC)

The length n terms 1f LOC may be estimated from the formulas equation 4 3-
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LOC =« Y S (Equation 4.3)

Where S, 1s the size of the module 1 (measured 1n FP), m is the number of
modules, and « 1s the function point to code expansion ratio recorded from previous
projects using the same specification and code conventions This 1s a very general

prediction system where the model parameters are estimated by the user

Attempts to establish empirical relationships between length of program code
and length of program documentation [Walston et al 79] led to the following

observation

D = 49110 (Equation 4.4)

Where D 1s the length of documentation measured in pages and L 1s the
length of program code measured in thousands of LOC This 1s only good for rule
of thumb estimations More accurate results are possible when data 1s collected for

specific environments
4.3.3 Token based measures
Halstead's method of code analysis 1s based on the identification of tokens

within the program text Using these tokens he formalised a set of measures to

determine the Volume of a module or program in terms of its Length and

Vocabulary
Volume = Length x log, (Vocabulary)
Length = N, (count of all instances of ail used operators) +

N, (count of all instances of all used operands)
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Vocabulary = n, (count of unique operators used) +

n, (count of unique operands used)

The two categories of tokens identified were operators and operands. Any
keyword 1n a program that specifies an action 1s considered an operator, while a
symbol to represent data 1s considered an operand. Most punctuation marks are also
categorised as operators Variables, constants and labels are operands Operators
consist of arithmetic symbols (such as +, -, and /), command names (such as
WHILE, OR, and READ), special symbols (such as assignments, braces, and

parentheses), and even function names

The following measures formalise the most commonly used counts associated

with program code, based on Halstead's token identification

1 Vocabulary size

n=ny+ny (Equation 4.5)

Comments not included

Time to read/
understand
program

N

Figure 4-1 Behaviour of N as a measure of program legibility
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2. Program length:
N = Nj + N2 (Equation 4.6)

Total use of operands and operators. This is sometimes used as an indicator
of the legibility of a program. As N increases, the time required to understand the
program also increases. Figure 4-1 graphs this relationship to give an indications of
the relationship between program volume, as defined above, and the estimated
legibility of the program.

3. Estimating length:
N = nllog2 n1 + N2 log2?2 (Equation 4.7)

4, Program volume:
V=N log2n (Equation 4.8)

Minimum volume of bits required to encode aprogram with a vocabulary of
noperand and operators and with length N.

5. The potential volume:

This is used to compute the algorithm's smallest possible volume. It would
be necessary to use a language where all actions were defined as procedures, eg:

y = sin(x).
n = ideal vocabulary where

)n* —function name and theassignment (2)
i) n2* = potential numberof input/output operands

K* = @+ N2 log2 (2 + N2¥) (Equation 4.9)

V* is a constant for a given algorithm independent of language.
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6 Program level

L=Y"" Where 0<L <1 (Equation 4.10)
v

The 'Distance’ between the program volume V and the potential volume V *,
1s sometimes called the level of abstractton When L = 1 we have the 1deal
situation, but the closer to zero that we get the greater number of operands and
operators used The value of 1 may seem 1deal, but we must take into consideration
the legibility of a program For languages like C 1t becomes very hard to interpret

minimalist code

7 Estimator of program level

[ =522 (Equation 4.11)

8 The programming effort

This 1s related to the number of 'elementary mental discniminations' required
to code the program It 1s derived from V = N log,n (the number of psychological

"moments” required to code the program, and D = 1/L (program difficulty)

E-Y (Equation 4.12)
L

This measure 1s linked to the number of bugs 1n a program More mental
effort 1s required the more errors there are 1n the code This can only be used when
a lot a data 1s available on the real number of bugs 1n a program A curve may be

plotted to show E verses bugs
9. The coding time

Time to code a preconceived algorithm in the language used S 1s the number
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of psychological 'moments' per second and 1t has been shown [Stroud 67] that 1t 1s
linked to coding ime Typical values of S are usually low about 7 or 8

5 <8 <20 (Equation 4.13)

10 Language level.

This 1s the aptitude of a language to express an algonthm It 1s often easier
to solve some problems in one language rather than another If the minimum volume
V" goes up then the program level varies 1n proportion Consequently the constant

o can be defined as follows

e =L+«V =I2%xV (Equation 4.14)

Table 4.1

Values for « for different languages

Language Mean «
English 216
PL/1 1.53
Algol68 121
Fortran 114
Ass SDC 088

11 Approximation of coding time

~,
1l

(Equation 4.15)

L |tw

The value of S can be adjusted over time as more data becomes available

regarding actual coding time
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4.4 Structural measures

A substantial amount of research has been devoted to the study of measures
derived from the control flow structure of a program. Control structure attributes
are usually modelled by directed graphs whose nodes correspond to program
statements and where the edge from one node to another indicates a flow of control
between corresponding statements These directed graphs are usually called control-
flow graphs or just flowgraphs An example of a program and its flowgraph are

shown 1n Figure 4-2

10 INPUTP

20 Dlv=2

80 LIM=INT (sqr(P))

40  FLAG = P/DIV-INT(P/DIV)

50 IFFLAG =0ORDIV=UMTHEN 80
60 DIV=DIV+1

70 GOTO40

80 IFFLAG<>QORP<4THEN110 110
80  PRINT DIV: "smaliest factor of™; P;

100 GOTO 120

110  PRINT P, "is prime”

120 END

Figure 4-2 A program and 1ts corresponding flowgraph

All programs can be structurally decomposed into primitive components
These decompositions may be used to define a wide range of so-called complexity
and structural measures The theory of control flow structure 1s formalized using
graph theory Wilson provides a reference to such graph theory as needed [Wilson
72]
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4.4.1 Flowgraph model of structure

A graph consists of a set of points (nodes) and line segments (edges). Ina

directed graph each edge 1s assigned a direction indicated by an arrowhead on the

edge. The following 1s a good definition of a flowgraph

"A Flowgraph is a directed graph in which two nodes, the start, and
the stop node, obey special properties the stop node has out-degree

zero, and every node lies on some walk from the start node to the stop

node "
Pq D, IF a or elss b then X else Y a
F
b
T
D, T
o IFathenA v X

D, While ado A
D, IFathenAelse B

Dy Repeat A untll a

D; Loop (A,B) exit when a

Figure 4-3 Some commonly occurring flowgraphs

Certain flowgraphs appear often enough to merit special names Figure 4-3

depicts the flowgraphs Py, P, Dy, D,, D,, D3, D,, Dy, and C_, which we will now

refer to by name
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4.4.2 Defining program structure

Within structured programming 1t 1s often stated that a program 1s structured

if 1t 15 'built up' using only a small number of allowable constructs These are

normally said to be sequence, selection, and iteration as shown 1n Figure 4-4 [Bohm

et al 66]. However, we find that in many languages we are forced to implement

what are considered structured constructs by using GOTO statements For example,

in Pascal GOTO's are used to implement the construct D, 1f we do not wish to

duplicate code unnecessarilly We require a more formal definmition of program

structure which can support many different views and a method for determining the

level of structure 1n an arbitrary flowgraph

Sequence P, @

Selection

C  1.A1
Do IFathena D, IFathenAelseB no
nl N‘
Iteration 2
® A
@——D "
T
A
a
D, While ado A Dy Repeat A untl a

Figure 4-4 Constructs for structured programs

First we nominate a family of prime flowgraphs The set of S-graphs consists

of the following flowgraphs

Each member of S (called the basic S-graph)
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L Each flowgraph which can be built recursively from the family S using only

the operations of sequence and nesting

We can now define a set of control structures that are suited for particular
applications By defimition, any control structure composed of this nominated set

will be 'structured' in terms of this local standard. 1e will be S-structured

If we let S° = { P,, Dy, D, }, then the class of SP-graphs 1s the class of
flowgraphs commonly know as D-structured graphs Bohm's results assert that every
algorithm can be encoded as an SP-graph  Although SP 1s sufficient, 1t 1s normally

extended to include the structures D, (1f-then-else) and D, (repeat-until)

4.4.3 Decomposing flowgraphs

Associated with all flowgraphs are decomposition trees which describe how
the flowgraph 1s built by sequencing and nesting primes An example of a flowgraph
F and 1ts decomposition tree 1s shown 1n Figure 4-5 Fenton provides the following
theorem and also provides a method for determining the umque decomposttion tree

of a flowgraph [Fenton et al 86]

Prime decomposition theorem Every flowgraph has a unique

decomposition into a hierarchy of primes

Flowgraph construction and decomposition 1s normally generated

automatically by most static analysis tools, eg QUALMS [Wilson et al 88]

It 1s easy to determmne 1f an arbitrary flowgraph 1s S-structured for some
family of primes S, by computing the decomposition tree and seeing if any of the
nodes are not a member of S or P, If this 1s true then the flowgraph 1s not an S-
graph We can see that the decomposition theorem shows that every program has

a quantifiable degree of structure, characterised by 1ts decomposition tree.
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Decomposition Tree D(F)

D1

DI Pl D2 D3

Figure 4-5 Flowgraph F and 1ts decomposition tree

4.4.4 Flowgraph based measures

A large number of interesting measures may be defined based on the

decomposition tree These measures are usually defined 1n terms of their effect on

primes and the operations on sequencing and nesting

@) Depth of nesting

To formulate a measure for the depth of nesting within an object a (such as

a program modelled by a flowgraph F), 1t 1s required to observe « 1n terms of 1its

effect on primes, sequences and nesting

Primes: The depth of nesting of the prime P, 1s zero, and the depth of nesting

of any other prime F 1s equal to one Thus, «(P,)=0 and if F 1s a

prime # P, then «(F) = 1

Sequence:  The depth of nesting of the sequence F;,, , F

n
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maximum of the depth of nesting of Fs. Thus

a(FI; ’ Fn) = max ( a(Fl)’ ’ a(Fn))

Nesting: The depth of nesting of the flowgraph F(F,, , F) is equal to the

maximum of the depth of nesting of the Fs plus one because of the

extra nesting level in F Thus.

«(F (F), ,Fp) =1+ max (a(F), ,a(Fy)

To see how we use this to calculate the value « for a flowgraph, consider the

flowgraph F 1n Figure 4-3

Thus we compute
«(F)

F =D, ((Dy, P}, Dy), Do(D3) )

= 1 + max («(D,, P;, D,), a( Dy(D3) ) )
= 1 + max (max (e«(D,), a(P,), «(D,)), 1 + «(D;))
= | + max (max (max (1, 0, 1) ,2)

=1 + max (1, 2)
=3
Fenton went on to define the properties of hierarchical measures as stated in
Table 4 2
Table 4.2
If the following characteristics uniquely determine m for any S-
graph F
M1 m(F) for each F element of S,
M2 The sequencing function(s),
M3 The nesting functions h, for each F element of S

Then we say that m 1s lerarchical
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The hierarchial measures may be automatically generated for a program once

we know M1, M2, M3 and the decomposition tree
(i1) Length measure

Defiming a length measure 'v' which provides a formal measure
corresponding to the number of statements in a program where the latter 1s modelled

by a flowgraph

MI1: v(P,) = 1, and for each prime F # P, v(F) = p + 1 where p 1s the number
of procedure nodes in F

M2: v, ,.,F)= Y wF)

i}
=1

n

M3. Vv(F (F, ,F))= 1+ WF) for each prnme *P,
1=1

Using our earlier example in Figure 4-2 we find that

v(f) =1+ v(D,, P|, Dy + v(Dy(Dy)

1 + vD)+ v(P) + v(Dy) + (1 + v(Dy))
I+ Q+1+1)+1+1

=7

Once a hierarchial measure has been characterised in terms of the conditions
M1, M2, M3 then we have the minimum information needed to calculate the

measure for all S-graphs

(iii) Simple hierarchical measures

Number of node measure 'n'

M1 n(F) = # nodes 1n F for each prime F.
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n

M2 nF, ,,F)= Y @F)-n+1)

=1

M3 n(F(F,, ,F)) = n(F)+) (nF) - 2n)
1=1

Number of edges measure 'e'
This 15 a ratio measure of one particular view of size

M1  e(F) = #edges of F for each pnnme F

n

M2 eF, ,F)= Y eF)
=1

M3 eF(F, ,F)) = eF)+ 3 (eF) -,
=1

Number of occurrences of names primes measure 'p'
M1 p(F) = 1 1if F 1s prime to be counted, else O

n

M2 pFl, ,F)= Y p(F)

=1

M3 p(F(FI’ ’ Fn)) = p(F) + E p(Fg)
=1

Is D-structured measure 'd’
This measure yields the value 1 1f the flowgraph 1s 'D-structured’ and O 1f 1ts

not This 1s a nominal measure
M1 d(F) = 1 for P,, Dy, D,, D,, D, D,, D, and otherwise 0

M2  d(F,, ,F,) = mn{dF,), ,dEF,)}
M3 dF(F, ,Fp) = mn {d(F),dE), ,dF,)}
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(iv)  Structural complexity

McCabe's cyclomatic complexity number v measures the number of linear
independent paths 1n a strongly connected program flowgraph F [McCabe 76] (for
consistency F will be continued to be used even though this measures 1s historically

known as v(G) ). It 1s formalised as
WF) =e-n+2 (Equation 4.16)

for a flowgraph F with e arcs and » nodes

McCabes cyclomatic number

viF)=e-n+2
v(iF)=5-4+2=3

Figure 4-6 Calculating v(F) i a sumple flowgraph

As the value of V(F) increases 1t 1s implied that more paths require testing,
1e a lot of arcs compared to nodes In Figure 4-7 we find a relationship between
the number of basic paths and v(F) We need to find a point where every small
increase 1n v(F) results 1n a large 1increase 1n the number of paths to test This upper

limit was set at 10 by McCabe on the basis of empirical evidence
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v(F) relationships
Number Basic Paths

v(F)

10

Figure 4-7 Graphing the relationship between v(F) and basic paths

v(F) measures the number of basic parhs 1n a component We can say that
1t represents the minimum number of tests required to cover the graph (it should be

noted that this does not mean 100% test coverage )

Sequence Pi &——= P, 1-2+2=1

Selection D, 3-3+2=2
D 4-4+2=2

.
T T y F : 1
F A A<> A1@
~ Cn (2*n)- (p+2)+2~=n

Do IFatenA D, IFatwnAeiseB c C{"Xf"'

nAn
Iteration
a A D, 8-8+2=2
F
@/D @T_DF
A D3 3-83+2=2
-
D, While ado A D,  RepeatAuntla

Figure 4-9 v(F) of usual constructs using v(F) = e -n + 2
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Figure 4-8 shows the number of basic paths in a component This shows the
number of uniquely different paths possible Paths which can be derived from others
are not considered basic, and hence are not included 1n this count In the example
provided you should note that there are only 3 basic paths, the fourth can be derived

from the first three

F _/\“\ C i_\ Flowgraph

vF)=12-11+2=3

=7~ ™ Basic Paths
C2
Cl s o, o om -
C4 M Non-basic

Paths

Figure 4-8 Interpreting v(F), counting basic paths

Since we have 1dentified a number of basic constructs within programming,
1t 15 an easy task to give the values of v(F) for their flowgraphs (see Figure 4-9) All
values are predetermined with the exception of the CASE statement were we need

to know the number of cases provided

If a program 1s truly structured then we can say that v(F) is reducible to one.
This 1s because we have only one input and one output In Figure 4-10 we reduce
the graph 1n a sequence of steps that must be performed sequentially and we are left
with one mput to a process ¢ from which there 1s one output Figure 4-11
demonstrates the case of unstructuréd programming where we have either more than

one wnput or more than one output In this case we cannot reduce the graph.
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Structured Programming: v(F) reducible to 1

Figure 4-10 Charactensing v(F) for structured programming

Non-structured Programming: v(F) >= 3

45
ol

Figure 4-11 Characterising v(F) for non-structured programs

v) More measures for flowgraphs

1 Control density

Mean number of decisions per node This 1s not a very useful metric as we

cannot act on 1t
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Dc = V(F) - 1 (Equation 4.17)
number of nodes

2. Number of levels

Maximum number of nested structures plus one This 1s always one 1n

sequential programming
3 Number of pending nodes

Number of auxiliary exits This 1s an indication of the ease of testing As

the number of auxiliary exits increases so does the difficulty 1n testing
4 Number of degrees

Maximum number of edges connected to the same node (characterising a
critical node) This 1s not as useful as it may appear since we cannot act on the

information obtained It does not identify the most critical nodes.

4.5 Architectural measures

Complexity 1s not considered to be directly related to the number of lines 1n
a program For example, 1f we had two 5,000-statement programs, the first having
only one 5,000 statement component and the second having 50 components of 100
statements, we could not say that these have equal measures of complexity. What
1s required 18 a method for analysing the calling relations between components. To
do this we require a graphical representation of calling relations between

components, usually referred to as the call graph

Using graph theory we construct graphs consisting of components of the

program (nodes) and the calling relation between two components (arcs) It 1s
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generally assumed that the call-graph has a distinguished 'root node' which

corresponds to the highest level module, 1 € an abstraction of the entire system

Single Call

Recursive Call

direct

indirect

Figure 4-12 Call graph conventions

In Figure 4-12 we read the graphs from top to bottom, so A can call B many
times 1f the call 1s within a loop structure The call graph helps highlight recursive
calls, the overall hierarch of the system, calls that skip levels, 1solated components
that may have missed the testing process, nodes with a ligh degree of arcs and helps

1dent1fy multiple roots to the system
4.5.1 Call graph measures
1 Size

Number of nodes

Number of arcs

2 Number of paths-

Paths going from root to final component
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Hierarchical complexity

Mean number of components per level

- Number of components (Equation 4.18)
Number of levels

Structural complexity §

Mean number of calls per components

Number of calls (Equation 4.19)
Number of components

Accessibility of a component  A(M)

Measure of the ease with which a component may be accessed

Ay - A (Equation 4.20)
14 N[
Where
® AM) Accessibility of node with a line segment to M,
o N Number of components called by M,

Testability of a path

Indication of the ease with which a path may be tested

T(P) = (M?_E‘p A—(}w—‘))‘1 (Equation 4.21)

Testability of a program or logical structure
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N
1 13- Equation 4.22)
T(S) = — (E —) (Equation 4.
N S T(P ;)
8 Entropy
Measure of disorderliness
1 Ixt .
H(G,) = el Loggl‘—‘I (Equation 4.23)
IXI IX;I

Where

X! = Number of nodes in path 1
Xy = SUM of all | X!

N = Number of paths

4.6 Summary

These last few chapters have covered quite extensively the most commonly
used measures in software projects This review however, 1s not intended to be
exhaustive but rather offer a representative sample of measures at different stages of
the development life cycle All measures presented have one thing in common
however, they have all been defined under the influence of the development process
of 3GL's The following chapter briefly looks at other development process, while

chapters 6 and 7 describe newly defined measures for use with rule-based systems.
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5  Measurement for new development methods

5.1 Introduction

As we have seen in chapters 3 and 4, a comprehensive set of measures have
been defined for use in software development. Many of these measures were hased
on the study of program and system behaviour in research environments, and have
still to be validated in the commercial world. Attempts have been made to collect
data that would instantiate claims of relations between a particular measure and the
software. A typical example is Boehm’s COCOMO model where studies were
conducted to establish parameter values for different development languages. Most
of these values were computed for what are commonly called third generation
languages (3GLs). The whole definition process of metric development has heen
strongly influenced by the structure of procedural 3GLs. This chapter examines a
mew" language generation and describes a process for developing or modifying
existing measures so that prediction and assessment may be performed in this
language.

5.2 Language generations

The earliest or first generation of computer languages was machine code.
Programs were not interpreted or complied - the instructions were in a form directly
readable by the machine. Computers were programmed with a hinary notation. This
Situation was improved by the use of mnemonic codes to represent operations,
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although data was still in physical binary address Further advances were the

introduction of decimal numbers to represent storage locations and addresses

The second generation of languages, which came 1nto use about the mid-
1950's was symbolic assembly language Symbolic address were used instead of
physical machine addresses This advantage was due to the fact that when physical
locations of variables or instructions had to be changed, the programmer did not have
to re-enter the new physical addresses Popular languages were SAP (Symbolic
Assembly Program, for the IBM 704), EASYCODER and AUTOCODER

The third generation came nto use 1n the 1960's and were called high-level
languages Scientific languages such as FORTRAN and ALGOL were introduced,
and business languages such as COBOL also became quite popular Programs were
becoming hardware independent, with little knowledge required about hardware
registers and 1nstruction sets Mathematical expressions and English keywords
ensured that programs were easier to write  Business applications required sufficient
degrees of complexity that error detection became a very real time consuming task
1n the development of software The productivity levels of software firms became
a very serious 1ssue 1n the 1970's and led to the introduction of software control

through measurement, as we have previously discussed

The term fourth generation language (4GL) wrongly implies an evolutionary
step beyond third generation languages In reality, what 1s provided 1s a user-tunable
application based on existing programming techniques, which n turn 1s a full service
programming language Most 4GLs nde on top of a database, having been
specifically designed to front end such data repositories  Figure 5-1 15 a
representation of the development process from 3GLs to 4GLs The development
of the 'new generation' was based on the need to increase the ease of use of the tools
being created for existing languages This figure shows a COBOL compiler with a
screen generator (eg Forms Management System), report generator, and a database
Structured Query Language (eg SQL) The interface between these tools becomes

cumbersome and mefficient when they are provided as extensions to existing
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languages. One solution is to develop a new layer of software above these tools with
the ability to interface with these diverse facilities. These new' products have been
called fourth generation languages, but since there exists no mew" technology or
development strategy, it could be stated that the development of fourth generation
languages has been more the work of marketing policy than computer development.

Figure 5-1 Evolution of Fourth Generation Languages

5.3 Fourth generation languages

AGL tools have made a significant impact on the productivity of software
development. These gains have been credited to features such as ease of use, use of
non-procedural code, direct access to database-management systems and reduction
in the development time of systems by a significant degree.

The difference between third and fourth generation languages is constantly

under debate but to give some reference to the more popular concepts we turn to J.
Martin. According to Martin, third generation languages are higher level languages
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that are standardised and largely independent of hardware, and where system
development requires a step by step specification of the program tasks [Martin 85]
Fortran, COBOL, C and Pascal are among the more commonly used 3GLs.
Programmers of these languages are required to rely on procedures composed of

tokens which consist of commands, types and functions

Martin defines 4GLs as non-procedural, end-user oriented languages.
However others have claimed associated features with these languages such as
report/screen generators, integrated database systems, and ease of use Examples are
DBase, Focus, Oracle, Mantis and Powerhouse These languages rely on predefined
procedures for performing high level operations, eg sorting Such facilities are
generally more powerful but less flexible than those offered 1n traditional high level
languages and hence procedural tools are often required to perform tasks not
provided by non-procedural facilities These however are not usually as expressive
as 3GL tokens

5.3.1 Principles and components

There are many claims for the use and productivity of 4GLs Most of these
claims are from vendors eager to demonstrate superiority in software development
using their product Before we can begin to establish the rehabihity of these claims

we need to examine some of the features and principles involved.

Norman Fenton [Fenton 91] claimed that fourth generation languages were
designed to increase the productivity levels of software development because
demands for software products was growing faster than developer’s ability to provide

them Martin, being more specific, provided the following list of objectives:

® To speed up the application-building process
® To make applications easy to modify, reducing maintenance costs
] To mimnimize debugging problems
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o To generate bug-free code from high level expressions of requirement
L To make languages friendly so that end users can solve their own

problems and put computers to work

Fourth generation languages should allow some applications to be generated
with lines of code an order of magnitude fewer than for example, development 1n
COBOL Thus alternative (and perhaps more accurate) names for these tools have
been High Productivity Languages, Non-procedural Languages, or Application

Generators

Most such languages are dependant on a database and 1ts corresponding data
dictionary  The dictionary has in some cases evolved into a facility that can
represent more than data It can contain screen formats, report formats, dialogue
structures, associations among data, validity checks, secunty controls, authorisations
to read or modify data, calculations that are used to create fields, permissible ranges

and logical relationships among data

One major distinction made between third and fourth generation languages 1s
the introduction of non-procedural code in the latter A procedural language
specifies how something 1s accomplished, whereas a non-procedural language
specifies what 1s accomphshed without describing how  Thus we can say that
PASCAL 1s procedural since 1t contains a precise sequence of instructions for every
action (Apphcatlon generators where the user fills in a form to specify the
requirement, are non-procedural since there 1s no concern for the details of the

implementation Consider the following example in SQL

SELECT user-nume FROM employee-record
GROUP BY user-group

This leaves the software to decide how to extract the information from the
corresponding records in the database, sort the user names 1n alphabetical order and

list them
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Martin made the point 1n 1985 that 1t was too early in the development of
fourth generation languages for standardisation He felt that 1t was too early in the
evolution of the technology to make such a move and that it could inhibit creativity
It may be worth remembering that many 3GLs have disappeared over the last two
decades Jean Sammet's book on programming languages listed 120 3GLs 1n 1969
[Sammet 69] ( which did not include ADA, PASCAL or C), and of those 120, fewer
than 10 are now 1n general use, and the ones that survived tended to be those
supported by large organisations Similarly the reduction 1in the number of 4GLs
currently available will be high, but unlike 3GLs the support and standardisation 18

still missing

5.4 Logic programming in software engineering

Logic in modern times was based on the work of George Boole, an Irish
mathematician Boole's work resulted 1n proto-logic called propositional calculus
Since then logicians such as Turner and Von Neumann have made enormous inputs
to computer science, but 1t 1s only now however, that logic 1s becoming an important
part of the education of computer programmers Logic Programming, whose main

advocate was Kowalski [Kowalsk1 74] has been described as

"A process that involves the use of logic programmung languages -
Prolog 1s the best known - which enable one to write programs that

approximate to a collection of purely logical statements " [Gibbins 88]

Software acts as the interface between man and machine, and 1s written 1n a
language Iike format To ensure that such text 1s readable, an underlying logic 1s
required It 1s generally agreed that the way we represent software 1s a compromise
between what computing machines can be made to do, and what human beings can

understand

Prolog as we have stated 1s one of the most popular logic programming
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languages It consists of a set of logical statements with each statement being either
a fact or a rule Facts are categorical, rules are conditional The mam idea 1n
Prolog 1s to formulate a set of rules and facts in predicate logic together with a

problem for which a solution 1s sought [Amble 87] Here 1s a small well known

example.
mortal(x) 1if human(x) // x 1s mortal if x 1s human
human(x) if Greek(x) // x 15 human if x 1s Greek
Greek(Socrates) // Socrates 1s Greek
answer(x) if mortal(x) ! x 1§ an answer if x 1s
mortal
==> Socrates // This 1s an answer

Prolog has a syntax which 1s somewhat similar to predicate logic, and
contains an inference engine It 1s a higher level language than, for example, Pascal
as 1t conceals more of the operations of the computer Implementations of solutions
1n Prolog (where the problem 1s suited to this language) typically requires fewer lines

of code than implementations in 3GLs

The above claims are similar to those made by producers of many 4GLs, and
while it 15 not claimed that Prolog fits comfortable under this broad classification, 1t
1s noted that the use of rules and facts have been successfully implemented 1n
commercial systems It 1s generally felt that knowledge based systems (where
knowledge 1s stored as facts and rules), such as expert systems are considerably
different from traditional high productivity languages, and many 4GLs use rules to

implement non-procedural components of their systems, such as data integrity

checks

5.5 Rule based system

The use of Prolog and other logic based languages has facilitated in the

79



development of Expert Systems [Johnson et al 88] An Expert System or knowledge
based system 1s a system which manipulates 'knowledge' 1n order to perform a task
or tasks The knowledge 1n such a system 1s highly structured symbolic data which
represents a model of the relationships between data elements and the uses to be
made of them The performance of a knowledge-based system depends both on the

quality of its factual knowledge and the ways in which this knowledge 1s applied

Perhaps one of the best known examples of a knowledge-based system 1s
MYCIN [Shortliffe et al 73] which uses a knowledge base of rules to aid 1n
diagnostic problem solving In this knowledge-based or rules-based system the
knowledge 1s represented by domain specific rules Rules 1n the form of IF-THEN
statements encode judgemental knowledge which can be ‘fired' or 'activated by an
mitial query or by other rules In this way rules can be chained together So if
Rulel requires the evaluation of Rule2 we can say that they are chained together
It becomes clear then that a non-procedural nature 1s inherent with these types of

systems

5.6 Customising measurements for diverse system

Early 1n this chapter 1t was stated that measures that exist have been defined
primarily for use with third generation languages As we have seen however, the
direction that software technology has taken 1s leading us away from these
development methods Fourth generation languages, logic programming, object-
oriented programming, relational database languages and even expert systems are
providing developers with tools that are abstracting even further from the
implementation details of both software and hardware Little research 1n these areas
has been published, although Verner and Tate [Verner et al 92] proposed a process
involving Function Point analysis, which provides data for COCOMO, which 1s
applicable to 4GLs A proposal for a suite of metrics for object-oriented languages
has recently been published by Chidamber and Kemeerer [Chidamber et al 91]

Other areas have been slower to attract the attention of researchers in the field of

80



metrics. This chapter presents a generalised process through which measures may

be defined for a wide range of software development methods
5.6.1 General measurement definition process
The following steps are intended to be a generalised process for obtaining a

list of useable software measures which are directly applicable to a specified

development processes

Step 1. Analyse the software

Step 2. Decide what components can be measured by existing techniques
Step 3. Investigate how (if possible) all other components can be measured
Step 4. Define a quality model unifying these measures

Step 5. Perform measurement and validation

Step 6. Re-iterate / modify

These steps, while appearing quite simplistic, attempt to integrate existing
scientific measurement technology with new developments in a comprehensive
practical fashion It 18 a guide for deciding if a product can be controlled by the use
of measures, and 1f critical elements 1n the software cannot be measured It 1s as
much a waste of time to perform 1nadequate measures as 1t 18 to not performing them
at all As we have seen, a substantial number of measures do exist for specific
stages 1n the software life cycle and without doubt some of these will be applicable
to development methods with stmilar constructs The definition of measures for
software components where none exist 1s not always a straight-forward task, much

depends on what was revealed 1n the analysis of the language and what constructs are
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considered more critical to development success than others. Given below are
further descriptions of the steps already outlined.

Step 1. Analyse the Software.

The success of this entire process is firmly based on the results of this step.
If our analysis is incomplete then all future decisions will not be based on sound
principles. It is a fundamental concept that a comprehensive understanding of
software and its components is required hbefore rational decisions regarding
measurement are feasible.

By the use of the term software we refer to both the documentation and the
source code. The list of available software components should be itemised. Typical
components include:

»  product specification

*  product design

»  program language or languages

*  program source code

* User instructions

development test plan and results

The stage of the development process will greatly influence the available
software components, but usually the development language will be decided upon by
the end of the specification stage.

The object of analysis is to clearly indicate what components exist in order
to allow decisions to be made regarding applicable measures. For example, not all
developers produce specifications, and those that do may not have structured it in
such a way that Function Points would be applicable. Also the production of design
documentation may not be in a standardised form, eg. SSADM (Structured Systems
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Analysis and Design Methodology), and hence measures such as Design Weight
which rely on basic counts such as number of modules and number of control tokens

may not be computable

If more than one programming language 1s used then each should be analysed
mn turn, and the specific areas in which they are to be used should be determined
The analysis of the development language involves decomposing 1t into 1ts various
development tools and determine what strategy has been employed for each
component If we take a commercial 4GL language, typical components would be
a Forms Management System, Report Generator, Query language, Database and
perhaps a Data Integrity Manager Each of these components employ diverse
implementation strategies  For example, a token based language (Pascal-like
mstructions) would be procedural, containing textual elements and relations, whereas
a forms manager would have a non-procedural nature  So one method of
classification for each component would be to ident:1fy procedural and non-procedural
parts Further detail relating to these classifications could also be provided, and

below are some preliminary suggestions

] Textual components
L Module structure

° Calling relationships
o Data coupling

° Control structure

Upon completion of this step, a table containing each component of the

software, along with a comprehensive description of each, should be produced

Step 2. Decide what components can be measured by existing techniques

Based on the first step, each of the components should be examined and a
decision made relating to 1ts applicability to existing measures The approach taken

1n this research has been to present measures based on the stages of the software life
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cycle With the 1dentification of components which are also stage dependent the task
of reviewing measures 1s simplified The reason for the presentation of such a wide
range of measures was to give some indication of the diversity of measures available

Using the categories mn section 3 1 figure 5-2 identifies the main categories of
measures, a systematic process of relating measures to software components should
be mmtiated Those components for which no measures are available will be
examined further 1n step three It 1s worth noting that although many development
methods are not strictly procedural, if they have a similar development life cycle then
existing measures may be applicable For example 1f a specification and design stage
are present, measures are already defined Also, the presence of textual components,

or procedural text may lead to the possible use of Halstead's measures

A

8 types of measures

Figure 5-2 Associating measures to software life cycle stages

This step should associate measures with analysed components of the
software, and highlight components where measures are lacking These components

are then analysed 1n the third step

Step 3. Investigate how (if possible) all other components can be measured

Little help 1s available for this section Often 1t 1s just valuable to be aware

of what factors are not being measured and that are outside our prediction or
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assessment models. What is required, if measures are to be developed, is a further
detailed description of the software components. This should help to identify aspects
of importance within the software development process. It is also a good idea to
confer with people who have experience with these tools in order to gain some
practical understanding of what are typical maintenance problems, complexity
factors, and other relevant issues.

The focal point of this research has been to develop measures for a rule-based
system.  This will be described as a practical application of this stage in the
following chapter.

Step 4 Define a quality model unifying these measures.

In chapter 2 the concept of defining product quality models was introduced.
Measures are provided as a tool to provide some 'proof' about the 'quality’ of
attributes with which we are interested. Keeping this in mind we should take the
measures we have identified and/or defined and ensure that they are helping us to
obtain some required form of verification of particular attributes. It is quite wasteful
to collect data upon which no actions can be made or for which we have no use.

We have already described the 1S09126 model of software quality. This
model however, is just one of many such models in existence. Very often a
company will produce its own version of ‘quality’ by identifying external attributes
which are most interesting to their customers or quality controller.

Let us break down the notion of quality and look at two proposed models by
Boehm and McCall. Both approaches identify a set of characteristics which are listed
below.

J Sensitive to the environment (user) -> Quality Factors
J Decidable from within (developer) -> Quality Criteria
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] Measurable (controller) -> Quality Metrics

In this system factors are characteristics of the software, seen as black boxes,
while criteria are characteristics of the software, seen as a white boxes. In Figure
5-3 we reintroduce the quality tree concept. Using this decomposition a software
engineer may monitor software quality.

It is most likely that a new quality model will be defined (or at least an
existing one modified), when new measures are developed. This could possibly
involve identifying new criteria or replacing specified metrics.

Step 5. Perform measurement and validation.

The first part of this step is to collect data obtained from performing the
measures defined for use in the specified quality model. The process of data
collection was introduced in chapter 2 where typical methods were described. This
activity has been described as follows:

"Data should be collected with a clear purpose in mind. Not only a
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clear purpose but clear idea as to the precise way in which 1t will be

analysed so as to yield the desired information " [Moroney 50]

The immediate result of data collection 1s raw data To obtain direct
measures from this data we need some form of extracrion Our first step 15 to decide
what to measure, then decide how the indirect measures will be calculated, and hence

what direct measures are needed for analysis

Analysis
Data
Collection

Derived
Data

Direct measures Indirect measures

Figure 5-4 The role of data collection in measurement

The collection of data will typically span several phases of the development
life cycle It 1s an on-going process and not a fixed step, as some would behieve
As this raw data 1s collected 1t should be stored 1n a database which will allow easy

analysis when the collection phase has been completed

When we refer to 'analysing software measurement data' we assume the

following
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0 We have a number of measurements of one or more attributes from
a software entity, which can be referred to as a dataset.

»  The software items are comparable (modules from the same product,
similar projects in the same company, etc.)

»  Wewish to establish characteristics of the dataset, and/or relationships
between attributes.

Details of analysis techniques for data collected is beyond the scope of this
thesis, however Fenton's book Software Metrics provides comprehensive statistical
techniques for software measurement validation. Below is a summary of some of the
more standard methods of data analysis.

Datasets of software attribute values must be analysed with care because
software measures are not usually normally distributed. It is advisable:

To describe a set of attribute values using the box plot statistics based
on the median and upper and lower fourths rather than the mean and
variance. [Hoaglin et al 83]

«  When investigating the relationship between two variables always
inspect the scatterplot visually.

. To use robust correlation coefficients to confirm whether or not a
relationship exists between two attributes. [Siegel et al 8]

» Inthe presence of atypical values, to use robust regression to identify
a linear relationship between two attributes, or remove the atypical
values before analysis [Sprent 89].

»  To use Tukey's ladder to assist the selection of transformations when
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faced with non-linear relationships [Tukey et al 77]

° To use principle component analysis to investigate the dimensionality

of datasets with large numbers of correlated attributes

Further recommended reading material 1s [Dobson 90} and [Draper et al 66],
which provide good introductions to the principles of generalised linear models and

classical regression analysis

Step 6. Re-iterate / modify

It 1s traditional to include such a step in most processes to allow for
corrections 1n the original method As more data becomes available since our 1nitial
defimtion of measures, validation and analysis may indicate required changes in our
proposed models Such 'fine-tuning' 1s required to ensure that measures are indeed

useful and are associated with specified attributes

5.7 Summary

The process for defining new measures as stated in this chapter 1s not
mtended to be a formal methodology, but rather a guide to utilising existing
measures and 1deﬁt1fy1ng when and where new measures are required The approach
to measurement within software engineering should be scientific and not haphazard,
which 1s too often the case When measurement 1s required it should be well

understood what 1s to be measured, and how these measures are to be implemented

( Now that these steps have been presented, and are based on standard
approaches to software assessment and prediction, they will be used in the next

chapter to develop a new set of measures for a rule-based language
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6 Defining metrics for a rule-based language

6.1 Introduction

The requirement for the existence of measures for software systems has
already been stated The last chapter gave a general set of stages which could be
used to develop these measures for systems other than 3GLs These steps however
were not too specific in the area of actual metric definition, which 1s more an
intuitive problem than a simple analytical one To define measures for a language
requires some insight into the languages structure with an understanding of how that
language 1s used 1n software development To demonstrate this definition of metnics,
a case study using a rule-based fourth generation language called RULER has been
used The stages outlined 1n the previous chapter will be used where applicable
Although the 1nitial stages are relevant, further data collection and research will be

required to complete the validation of new measures as required by later stages.

6.2 The RULER language

Ruler 1s a 4GL for application development on Digital's VAX range of
computers using Digital's record manager RMS, and also for use on IBM PCs This
language has been designed and developed by an Irish software firm and 1t 1s only
available at present in this country [Ruler 87] Many of the standard claims made
by 4GL vendors such as increased productivity, high level and non-procedural

characteristics, 1ntegrated data dictionary and reduction 1n  maintenance

90



requirements, can also be applied to this language

RULER allows the programmer to record wide-ranging knowledge related to
application data in a data dictionary This knowledge 1s recorded as inregrity rules
using a specially designed procedural langauge These rules define, validation

constraints, reverential constraints (joins) and computation of derived fields.

6.2.1 Program Development Methodology

The waterfall development life cycle described 1n section 3 1 still applies to

this language, however specification and design phases become the focus for activity.

The analysis activity usually results in an imtial Entity-Relationship model and
an imtial specification of required business functions to be implemented Then a
prototype 1s developed based on the design and specification to allow users to venfy
whether the developer's understanding of the system 1s the correct one Continued

expansion and refinement of the prototype 1s required until the system 1s completed.

The functions 1dentified 1n the analysis phase are implemented as programs.
RULER offers five distinct program types, On-line, Report, Batch, Menu and Chain.
Each of these programs 1s specified using a consistent easy-to-use form filling
interface for standard programming attributes, and a full screen WYSIWYG editor

for more complex attributes

Using the Entity-Relationship model records and files are defined The data
dictionary supplies information on record relationships, ensuring record and field
names are valid, and also supplying information about record layouts and field
formats so that default forms can be generated In addition the data dictionary

contains integrity rules for types, fields and files
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6.3 Defining measures for a rule-based language

The main focus of this research 1s to provide a set of measures for a rule
based language The steps provided will be used where appropnate, but the main
effort will be based on the third step This should provide a practical example of
how measures can be defined for languages that are not necessarily procedural
Later steps such as validation require a great deal of data and only mitial statistical

analysis for measures defined will be provided.

6.3.1 Analyse the language

The analysis of RULER will be primarily focused on the identification of
product measures These measures will be based on the implementation phase and

not on the earher stages which are to some extent implementation independent

As we have described, RULER 1s a rule-based 4GL which runs on the VAX
under VMS It use the VAX/VMS Record Management System (RMS), and 1ts own
Dictionary Management System (DMS) The DMS 1s considered to be the core of
the system and 1t 1s here that data types, fields and files are described and stored
along with related rules, especially those related to integrity However, before we
provide detailed descriptions we must first identify all of the components within a

typical RULER product

A. Design specification

For applications to be developed using RULER 1t 1s important to ensure that
the imtial stages of specification and design are performed with more enthusiasm than
1s typically shown for 3GLs SSADM s often used to ensure a more rigorous
specification of the system design  The following are typical components within
SSADM
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Ennty Relationships - This model depicts the system entities (or data stores) and

Data Flows

Ennity Description

specifies the relationships between them It can also specify
the numerical relationships between connected entities This
model can be easily translated into a physical data base

implementation

- Data flows define the data requirements of the system and
highlight the required system functionality.  Identified
processes can be implemented as modules within the system,

and the data required for each process 1s also specified.

- This 15 intended to provide a complete description of the data
to be implemented in the system Required data 1s specified
by the data flows and 1t 1s then decomposed into individual
data items These can be further specified with respect to its
format (for example char, numeric, alphanumeric) and 1its
length This information can be directly entered into the data
dictionary, along with comments and rules (for example:

specified allowable ranges for numeric data 1tems)

B. Dictionary management system

The data dictionary 1s the 'core' of the system as it 1s where all data 1s

described Note that data 1s stored in the RMS files Once data has been defined

programs may be generated which automatically include these data descriptions The

type, field and file entities are described 1n the data dictionary and have the following

relationship

"A file has many fields, each field 1s on only one file (1f a stmilar field 1s on

another file, then a new field 1s created), each field refers to only one type,

a type can be referred to by many fields "
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The types are the primitive data items required for applications  Once a type
has been defined, along with any rules for validation, 1t can be referred to by many
fields; each field will automatically inherit the specification of 1ts type, but can also

have further rules associated with 1t

Files describe the details of an RMS file record structure and 1ts indices
RULER treats the terms file and record synonymously since each file 1s assumed to

. have one record type for each application

As stated the rules are allowed within the data dictionary which ensures the
inclusion of specific knowledge to be contained within applications These rules are

textual, and similar 1n syntax to many traditional procedural languages (such as
Pascal)

C. Program generators

There are five program generators used to create specific types of programs,

On-line, Menu, Chain, Batch and Report Details of each are given below

On-line Program Generator - This allows you to specify the program details and
will either generate a default, or use a previously edited form A forms editor 1s
used to change this form layout, both background text and data fields The
executable 'program’ 1s then generated which includes all relevant dictionary rules

for validation, derivation, and file-lookup This final 'program' can then be run.

Menu Program Generator - A default menu form 1s created and can then be edited
using the standard Form Editor The menu actions are then specified, as a set of
choice/action pairs, the choice being what the user would enter on the menu form

and the action being the name of the program to be run

Chain Program Generator - Chain programs are intended to link together a suite of

related programs, so that when the chain program 1s executed 1t initiates an
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environment within which the full suite of programs available can be executed.

Batch Program Generator - This is very similar to the report program except for
minor difference in syntax and file related options.

Report Program Generator - This involves specifying a primary file for reporting,
choose required 'linked" files, specifying other report requirements such as sequence
fields, width, page size and any processing and/or selection criteria using a textual
rule based language. The system can generate default report layouts.

Table 6.1
Component Details

Design Specification ER model

Data Flows

Entity Description
Dictionary Management Data descriptions and relationships.
System Textual/procedural based rules.
Program Generators On-ling: Forms/procedures

Menu:  Forms/procedures
Chain: ~ Forms/procedures
Batch:  Forms/procedures
Report:  Forms/procedures

All of the program generators above are form based with default values
applicable to some fields. Because of the specific nature of each, little except the
creation of file and field relations, screen layouts and addition process commands are
required. Each of these programs contain an optional procedure section where rules,
similar to those in the data dictionary, are used. Variations in syntax between
programs exist but these rules represent a procedural textual component similar to
those in 3GLs. Table 6.1 summarises this information which will be used as the
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basts for step 2 to help identify those components which may be measured using

existing techniques

6.3.2 Decide what components can be measured by existing techniques

This step would typically involve an extensive search of publications for
articles relating to measurable attrlbuteé of software Chapters 3 and 4 gave a
comprehensive description of existing measures and at what stage of the system life
cycle these may be used Using these measures the components 1dentified in Table

6 1 will be categorised into those than can be measured, and those which cannot

6.3.2.1 Design specification

This component contains a standard method for program and system
specification  Structured design and specification measures have been described 1n

chapter 3 and relate directly to the type of designs produced for RULER systems.
DeMarco's "Bang" metric

This 1s based on the specification documentation, and has been defined for
data strong systems which involve large database applications This would be
suitable as 1t 1s an implementation independent functional measure indicating system

size
Function points

Another measure for use 1n early cost models 1s FP, also described 1n section
322 This measure can be used as input to the COCOMO cost model However,
an FP to LOC expansion ratio for RULER would be required to provide an estimate

for the lines of code parameter of COCOMO
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Research by Verner and Tate provide a process for estimating size and effort
m 4GLs using FP and COCOMO [Verner et al 92] As we have seen Function-Point
analysis 1s used for sizing, and COCOMO for effort and schedule estimation, so to

make these tools 'fit' a 4GL development process estimates need adjusting

Design weight

DeMarco also provides a design measure (see section 3 4 1) which requires
basic counts obtainable from Data Flow diagrams and would be applicable to
documentation specifying RULER programs/ systems This measure provides further
information related to the effort implied 1n the design and hence could be part of a

cost model

6.3.2.2 Dictionary management system

This component contained two distinct sections, the database and 1ts
relationships, and the textual rules which may be associated with the three 1dentified

entities types, fields and files

The data description and relationship portion of the database have no directly
related measures Indeed there 1s little research available for this area of
measurement It will be required to 1dentify some measures relating to the database

structure 1n the third step

The textual rules which may be incorporated into the data dictionary may be
viewed from two perspectives The first 1s that they are just textual tokens consisting
of operators and operands, and as such, standard Halstead textual based measures
may be applied The second 1s to view this text as a representation of knowledge
relating to the data, in the form of rules or integrity checks Agamn little
documentation of measures relating to rules or integrity in systems 1s available and

this will be discussed 1n the third step
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6.3.2.3 Program generatore

All program generators are similar in the method through which programs are
generated. Most of the relationships between files and programs are set by defaults
but can be modified. If further computation of the data is required then a procedure
may be written. These procedures contain a specially defined language which is
similar but more extensive, than the one provided in the data dictionary. Comments
relating to the textual rules in the DMS are also relevant to these procedures.

The structure of the modules or programs, although simplified by RULER is
similar to that of 3GL languages. A calling relationship can be identified and
architectural measures discussed in chapter 4 are applicable, although recursion is not
permitted.

Structural measures can also be used in Batch, On-line, and Report programs
where there is a often a high use of procedural code, however the other two program
generators do not contain typical complex structures of procedural languages as
defined in section 4.4.2. Decomposition of directed graphs into prime subgraphs
may be performed within instances of programs, however unique decomposition of
rules would be more useful. This issue will be addressed in section 8.2.

We can conclude that within the Program Generators, nearly all of existing
procedural measures are applicable, however they fail to measure the behaviour of
rules. Measures relating to rules within programs and the data dictionary will be
discussed in step 3.

With relation to the rules, dynamic measures may also be defined to help
estimate the test coverage of test cases. Such measures are usually identified for test
coverage of source code, but could be expanded to include rules. This will also be
discussed in the following step.

Table 6.2 summarises this information which will be used as the hasis for Step
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3. Here we can see the components which we can measure using existing software
measures and also identify those which as yet require some form of development,

Measures

BANG for data strong
systems.

Tahle 6.2
Summary of measurable components of RULER
Component Detall
Design ER model
Specification
Data Flows

Entity Description

Dictionary Data descriptions and
Management relationships
System

Textual/procedural rules

Program On-line: Forms/Proc.
oenerators Menu:  Forms/Proc.
Chain:  Forms/Proc.
Batch:  Forms/Proc.
Report:  Forms/Proc.

Function Point and
COCOMO model

To be defined

Textual measures

Rule measures to be
defined

Textual measures
Structural measures
Architectural measures

Rule & Dynamic measures
to be defined

6.3.3 Investigate how (if possible) all other components can be measured

RULER can be considered to contain four layers of rules, three within the
DMS and the other at the module (program) level, with each layer associated with
one of the four entities (types, fields, files and modules). All measures identified
relating to rules may be applied to these four entities. We can view the first three
as the dictionary integrity rules that specify, in more detail, the contents or

accessability of the data.

One primary difference between these layers is the permissible level of
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complexity of the rules. Figure 6-1 1illustrates the relationship between each entity

showing an optional addition of rules of entity

Entities —|

— Optional Rule

Figure 6-1 Relationship of rules within specified layers

The results from measures applied to each of the four layers may be plotted
in an attempt to characterise the relationship between these layers Figure 6-2
graphically represents the possible tolerance values for our proposed measures An
average result of the measure 1s obtained over the four levels Deviations from this
average are then plotted to 1dentify differences in these measures for each layer, this
characterisation 1s indented to provide an indication of the typical results obtained
from measurement Overlays of standard measurement characteristics with obtained
ones could offer similar information to a kiviat graph [Logiscope 90], and help

1dentify possible problematic areas within the software

6.3.3.1 Maetrics associated with rules

Before measures are presented for use with RULER the format of rules within
each entity are provided to indicate the difference between each In general rules
consist of one or more statements which differ for each entity by the number of
primary and subordinate statements possible Example 6 1 provides the format that

rules on all layer take
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Promary starement

Primary statement
Subordinate statement
Subordinate statement

Primary statement

Example 1: General format of rules within entities

Examples of possible characteristics
of rules for each entity

Deviations Deviations Deviations
) @@= E—)
Types
Fiekls
Flles
Modules

Average result Average result Average result

Figure 6-2 Graphing characterisations of measures for each entity

Table 6 3 provides the set of allowable primary and subordinate statements

for each entity

A. Type rules

Rules at this level are provided to allow the program to define customised
data types These rules will be automatically activated when a data item of that type

1s manipulated 1n any way
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Table 6.3

Statements within entities

Primary Stm. | Entity Subordinate Entity "
STORE AS Type PRINT Type
REJECT Field
ASSERT File
IF Module
ASSERT Type Assignment Field
IF Field NULL File
File Function/ Module
Module routine call
DEFAULT Field
SOURCE File
EXTERNAL Module
Function/
routine call

End Assert;

Assert CUST_NO eq 0 or CUST NO in all CUSTOMER.CUST NQO
Else  Print "Invalid Customer Number”,

Example 6.2 Typical type rule

The rule in Example 6 2 ensures that a field of type CUST_NO 1s accepted

only 1f 1ts value matches with some record in the file CUSTOMER, or has a value

of zero, and the match 1s performed against the CUST _NO field of the CUSTOMER

record

B. Field rules

Rules at this level are used to control values of record fields These rules

will be automatically activated when a data item 1s entered or altered
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Dertve TOTVAL = VALI + VAL2Z + VAL3;
Assert TOTVAL < 1500
Else
Print “Toral value exceeds 1500°;

End assert;

Example 6.3: Typical field rule

The rule i Example 6 3 ensures that the value of the field TOTVAL 1s
derived using three other values VAL1, VAL2 and VAL3, and that this value does

not exceed a specified range

C. File / record rules

Integnity rules which are not logically associated with just one field can be
specified at the file ( record ) level in the Dictionary rather than the field level
Field rules are active when data 1s input whereas file rules are only activated when

the record 1s commutted

If delering order
Assert NO_SHIPMENTS eq O

Else
Primt “Cannot delete order, shipments exist";
Regect;

Engd assert,

Example 6.4: Typical file rule
This rule ensures that before the ORDER record can be deleted we must

assert that the field NO_SHIPMENTS 1s zero If this 18 not the case then a message

1s returned to provide the reason for not completing the deleting mstruction
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6.3.3.2 Module rules

Module rules are contained within the procedure section of a program form
This procedure 1s an optional addition to the function of program, and usually
involves a further set of rules relating to the data Rules within the Menu and Chain
programs are primarily for organising program calling structure and will not be
included 1n the analysis of rules for procedures The number of primary and
secondary statements applicable to rule within modules 1s too great to present here,
for further information regarding RULER syntax, refer to the RULER manual
Example 6 5 provides an typical statement within such modules The syntax reads

very sumilar to most structured 3GLs

Derive EXCH _RATE_TO = CURRTO,EXCH_RATE_PL;
Dertve VALUE_IR_TQ using
If CURRCODE_T0 = 1
VALUE IR _TO = VALUE_CURR_TO,
Else
VALUE_IR_TO = VALUE_CURR_TO/EXCH_RATE, TO;
End if;
End dertve;

Example 6.5: Typical module rule

6.3.3.3 Defining measures for rules and data

Having looked at the structure of RULER and the syntax employed within
both the DMS and modules we can now provide a set of primitives (p-counts)
relating to RULER from which a set of composite measures may be defined These
measures can be collected as soon as the source code has been completed Although

more primitives may be conceived, the following represent the most essential ones

As previously indicated there are four entities within RULER, and since many
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of the measures we shall define are applicable to these entities, a special naming

convention for has been developed for p-counts Those p-counts listed below are all

measures obtainable from either of the four entities To demonstrate this the letter

x has been 1nserted, where x 1s an element of the following set {T, F, R, M}, which

specify type, field, record and module respectively

Table 6.4

Primitive counts (p-counts) measurable in RULER

p-counts Description
Dx, count of the number of rules containing data item ; 1n the ith
entiry

FDx, count of the number of rules fired for data item j 1n the i1th enuty
Rx, count of all rules 1n the 1th ennity (including sub-rules)

DlIx, count of all data items 1n the 1th enfry

UDIx, count of all umque data items n the ith ennity
Cx count of all entity

SRx, count of all sub-rules for the ith enrizty

CRx count of all enfities containing rules

Where the value of x 1s explicitly stated there 1t 1s not possible to perform this

measure any other entity other than the one specified To ensure a clear

understanding of the terms used the following definitions are provided

Rule

A statement within either the DMS or the module that 1s constructed
by the programmer 1n the form of procedural code In the general
case an assignment 18 considered to be a rule, however, more complex
rules such as If-Else statements containing a comparison and up to
two assignments, are counted also as one rule If another rule 1s
nested within an If-Else pair this 1s considered to be a sub-rule (see

below)
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Data Item* A vaniable named within a rule 1n either the module, record, field, or
type defimtion For the purpose of measurement variables which

appear more than once 1n a rule are only counted once

Sub-rule. Rules below the first level of nesting, such as those within nested IF

statements

Below 1s a set of nine mitial composite measures based on the p-counts in

Table 6 4, which may be evaluated for all four entities

A. Data criticality

This measure gives the average number of rules that a data item appears 1n
This measure can be recorded for erther individual instances of an entities, given by
ADx, or for all instances of the entity, given by ADx This should give an

indication of how many rules are associated with a data item 1n the same entity

Using the Equation 6 1 below we can observe a standard level of criticality
on an individual 1nstance of an entity which can help 1dentify anomalous 1nstances
For example, if we determine that 95% of modules result 1n a value within a
reasonable range (determined using historic data), we can investigate further the

remaimng 5% of modules to determine the reason for the higher level of criticality

ADx, = DIx, (Equation 6.1)
' UDK,

A variation of this measure 1s to obtain the same information except to 1gnore
nstances of the entity, given in Equation 6 2 Using this formula we can determine
the criticality of data 1tems within a specified entity This provides us with a wider

indicator of the sensitivity or criticality of the data
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Y, DI, (Equation 6.2)

To help 1dentify possible criticality problems in data items 1t 1S best to set
tolerance ranges which act as indicators to specific areas of code. When average
values are used 1t 1s quite easy to have 1solated anomalies undetected due to the
weighting associated with a large volume of 'acceptable' results The presence of
a maximum value can pinpoint individual cases that are beyond the acceptable ranges
set (again these ranges are set based on historical data) Equatton 6 3 provides the

formula for obtaining this maximum level of criticality
MDx = max (Dxqy, ..., Dx,,) (Equation 6.3)

One adjustment which could be made 1s that the tolerance ranges indicated
could be adjusted for the volume of rules and data items within the system. A

volume measure 1s proposed 1n section 6 3 3 4
B: Rule complexity

The complexity of the rules 1s an indication of how difficult it will be to
maintain the system  Yet again we can record this measure for either individual
nstances of entities, given by ADIx,, or for all instances of the entity, given by
ADIx This gives an indication of the average complexity of rules within the same

entity, based on the number of data items they manipulate

Using Equation 6 4 we can observe the level of complexity on a individual
mstance of an entity This can help 1denufy specific entities that are more complex

and hence possibly less maintainable than others
ARx, = Blf_' (Equation 6.4)
Rx

i
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A variation to this measure similar to that given for data criticality 1s to obtain
the same information for all instances of the entity This formula 1s given 1n

Equation 6 5

n
Y DI,

ADIx = &1 (Equation 6.5)
Rx

i

-
[}
—

The more data manipulated within rules the more errors likely at coding, and
the longer 1t will take to modify the code 1if required This measure will need a
tolerance range which may be used to indicate when rules are too ‘complex’ within

an entity, different ranges will be required for different entities

Yet again we must ensure that in the process of measurement we do not miss
rules with unacceptable levels of complexity because we are using an average
measure The presence of a maximum value can help 1solate specific rules with

suspect levels of complexity

MDIx = max( 2 %) (Equation 6.6)

C. Descriptive measures

A set of measures primarily defined to provide a general description of the
system can be defined quite easily Trends may be observed to exist in systems and
the deviation of systems from those trends may indicate added complexity within the
system  Further investigation would then be required An example of four such

descriptive measures are given below

The formula for determining the percentage of entity x containing rules 1s

given 1n Equation 6.7. This measure can be used to indicate the use of rules within
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different entities An example of trends within the module entity, would be that

rules are more scarce in On-line programs than Batch programs

Px = C;‘Rx + 100 (Equation 6.7)
X

Equation 6 8 evaluates what percentage of rules within the ith entity are in
fact sub-rules This measure 1s stmilar to the depth of nesting measure defined for
3GLs The difference however 1s that rules within RULER are not often nested
Such nesting increase the complexity of the system as 1t effectively creates another

'layer’ of rules associated with a data item

PNx, = SRIix, * 100 (Equation 6.8)

We can present this last measure in another format This time we refer to the
complete system and we are not focus on individual instances of an entity Equation
6 9 calculates the percentage of rules within all instances of entities that are sub-

rules

ANx = =1 (Equation 6.9)

Now that a set of composite measure have been defined a example 1s provided
to demonstrate their application Using an extract of code from a batch module,
given 1n Figure 6-3, we can demonstrate the application of these measures to entity
module. Since we are only using an instance of the entity there are only four
measures listed above which can be implemented The measure to be evaluated are
ADM,, ARM,, PNM,, and ANM,, which need the following p-counts, UDIM,, DIM,,
RM,, SRM, The results of all these are presented in Table 6 5
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if TRATE = 1
o, WORKCRATE = EXCH RATE PL,
eise

~ WORK RATE = EXCH_RATE BS;
end if:

NUM CNT = NUM|CNT + L :
NUMDAYS = T AGING DATE - NUM|CNT;

If NUM_DAYS in 0 to 30
CURRL = OS BAL CURR *-1;

else
IfNUM DAYS in 31 to 60
CURR2 = 0S BAL CURR *-1:
e
~ CURR3 = OS BAL CURR *-1;
—end if;
end if:

CURRT = 0S BAL CURR *-1 + NUMJCNT;

Figure 6-3 Example of a Batch program procedure

Table 6.5
Results of Applying Module measures
P-counts Results Metrics Results
UDIM; 12 ADM:; 15
DIM; 18 ARM,; 3
RM; 6 PNM; 16.6
SRM; 1 ANM:; 0.2

All of the p-counts used to obtain these measures may be collected
automatically which would mean that a static analyser could be designed to generate
measures for RULER objectively and efficiently. A prototype tool which attempts
to perform some of these p-counts is described in the following chapter. The values
obtained for the example in Table 6.5 could then be compared to other modules to
help determine it's relative complexity. Using a large sample of data, acceptable
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ranges for results are determined. Only when these have heen defined can be begin
to make some decisions based on the values obtained in our example above.

One way to provide both a visual representation of the rules and a diagram
from which p-counts can be measured is to construct a Rule/Data (RD) relationship
graph. Nodes on the graph are either data items, rules, or sub-rules. Arcs represent
the relationship between nodes. Typical relationship exist between data items and
rules, data-items and sub-rules, and rules and sub-rules. Using the extract rules
obtained for Figure 6-3 a RD graph has been constructed in Figure 6-4,

Figure 6-4 A rule-data relationship diagram for a batch program procedure

To provide a full description of the graph a symbol table is required. This
table, shown in Table 6.6, is a key for the contents of the graphs, containing a
description of all the symbols. As we can see in the diagram rules and data items
are not always interconnected, rule 1 and its related data for example are not
connected in any way to the rest of the code. The arcs (relationships) are non-
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directional and only provide an indication that a relationship exists and not what form

that relationship takes

Table 6.6
Symbol table for RD diagram
Symbol Description Symbol Description

Dataitem 1 | T Rate Data item 10 | CurrT
Data 1item 2 | Work_Rate Data item 11 | Curr2

Data item 3 | Exch_Rate PL | Data item 12 | Curr3

Data item 4 | Exch_Rate BS | Rule 1 IF-ELSE
Data item 5 | Num_Cnt Rule 2 Assignment
Data item 6 | Num_Days Rule 3 Assignment
Data item 7 | T_Aging_Date | Rule 4 IF-ELSE
Data item 8 | Currl Rule 5 Assignment
Data item 9 | Os_Bal_Curr Sub-rule 1 IF-ELSE

This RD relationship diagram can also be used to calculate a measure of
coupling that exists between rules and data (1 e the connectivity of the graph).
Using standard graph theory an adjacency matrix may be constructed from which we
can determine which nodes are directly connected [Sedgewick 84] This information
18 usually presented 1n the form of an adjacency list Further levels of coupling (1 e
which nodes are indirectly connected via one other node) may be obtained by
multiplying the matrix by itself. Within software 1t 1s beheved that lower levels of
couphing are more desirable as 1t facilitates the process of maintenance Similarly
the lower the level coupling for a node then the easier 1t 1S to maintain that node,

without diversely affecting other nodes

6.3.3.4 Data measures

Using the p-counts 1dentified in Table 6.4, measures may be identified for use
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which relate to the storage of data within the DMS  Examples of an imtial set of

possible composite measures relating specifically to the data are presented below.

A: Volume measures

It was indicated earlier that some of the criticality measures could be related
to the s1ze or volume of the system Thus the more data there 1s within a system the
more likely that higher percentages will be associated with greater numbers of rules
Equation 6 10 formulates the volume of data in the system as a direct measure of the

amount of data within the DMS

V = CF (Equation 6.10)

This 18 a count of all the unique data items defined 1n the system This
measure cannot be used alone, but 1t could be an indicator of system complexity

when related to other p-counts, examples of which are given below

Equation 6 11 gives the ratios of records to volume, or put another way 1t
measures the average number of data items per record, while Equation 6.12 gives
the ratio of modules to volume, or a measure of the average number of data items

per module

FV = Y (Equation 6.11)
CR

MV = v . (Equation 6.12)
CM

These last two measures provide more information relating to the distribution
of data within the DMS and the modules Higher values of FV and MV 1mply a

possible large set of unpartitioned data
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6.3.3.5 Dynamic measures of rules firmng

For dynamic measures to be calculated a tool must be created that 1s able to
collect data while the application 1s runnming  Most dynamic measures are used to
determine the reliability of a system or to determine the test coverage The measures
defined 1n this section are sumilar to dynamic measure currently mn existence which
relate to the level of test coverage The only difference 1s that coverage 1s related
to rules and not statements The test coverage of the system can also be measured

using the following general formula

Rato = or (Equation 6.13)
NO

Where OT 1s the number of objects tested, and NO 1s the number of objects

n the system

Objects usually 1dentified for structured code are BI (block of 1instructions),
DDP (decision to decision path), and LCSAJ (Linear code sequence and jump), all
of which may be applied on a small scale to rules within procedures However, to
ensure that rules are being tested then we need to identify rule related objects.

Below are two objects for use with RULER

RI Rule Instance:  The number of rules in the entire system A basic object that
can be used to indicate whether or not all rules have been
executed at least once

RB Rule Block: The number of rules associated with a data item 1irrespective

of where that rule 1s stored

Using these objects test cases can be defined for the system and measures of
the rules fired noted Using the coverage ratio formula from Equation 6 13 we can
determune the percentage coverage of rule blocks, or the percentage number of rules

associated with a data item that were implemented In this case NO 1s calculated as
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the number of rules associated with a data item for all entities, and OT 1s number of

rules associated with that data items that were activated 1n a test period

or

RBC, = ( — ) = 100 (Equation 6.14)
NO

Where:

n m

p q
OT = Y FDT, + §FDFU * ;:FDRU + Y FDM,

t=1 1=1

n m P q
NO = EDTIJ * EDFU * ZDRU * EDMU
1=1 1=1 =1 1=1

To demonstrate the computation of RBC for a data item; the results of a test
case have been presented in Table 6 7 The number of rules which reference the

data 1items 1n all four entities are given along with the number of rules which were

actually activated during the rest case alpha

Table 6.7
Result of Test Case

Entity | Number of rules a data item Number of rules activated

appears in: Dx during test case
Type 3 2
Field 10 7
Record 2 1
Module 30 10

Using this data we can see that the percentage coverage for a data item j 1s

calculated below as 44 4%

RBC, = (2T ) « 100 = 29 . 100 - 44.4%
NO 45

/
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The percentage coverage of just one data item 1s not very helpful if there are
thousands 1n the system, so a measure of coverage for rules activated relating to all
data 1items 1n the system needs to be defined, shown 1n Equation 6 15 below Since
each declared field 1s an entity, the complete list of unique data items 1s calculated

using the number of field entities 1n the system

6.3.4 Complete definition process

The final three steps are briefly described in this section As previously
stated the primary aim of this research 1s define a set of measures for a rule based
language The last steps 1n the process described in chapter 5 were included for the

sake of completeness but are not entirely relevant to this thesis

Step 4 Define a model unifying these measures

Existing quality models are applicable to all measures defined so far As
described earlier ISO9126 provides a set of top level attributes which are most
desired 1n software The sub-attributes (or internal attributes) of these external
attnbutes are related to 1ssues such as complexity, which many of the measures
defined provide data on  Step 2 1n this process indicated that many components are
already measurable and that additional measures relating to rules and data were
required, so these measures are additions to the tools available to assess the

maintainabihity of software using this rule based language

Step 5 Perform measurement and vahdate data
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Daifficulties relating to the validation of measures have been addressed 1n
section 5 5.1 It has also been stated that validation 1s a non-trivial task that typically
evolves the presence of large volumes of data collected over a period of time. This
research does not have access to the considerable amount of data required, so a less

than rigorous validation 1s proposed

There have been three different methods employed which offer some

indication of the validity of the measures proposed
A. External review

All measures proposed have been reviewed by other members of the metrics
community, notably Richard Bache who has contributed to the development of the
software static analyser QUALMS by introducing newly developed test coverage
measures based on the program flowgraph structure [Bache 90] Richard has
produced many papers relating to test coverage metrics including co-authored papers
with Norman Fenton and 1s currently involved with SCOPE [SCOPE 90], an Espnt
IT project which 1s assessing the teasibility of a software quality assurance scheme

in Europe
B. Publication

A paper based on the proposals for metrics for rule based systems was
accepted and read at the IEEE Fifth International Software Engineering Knowledge

Engineering conference in Capri, Italy [Doyle et al 92]
C. User observations

A range of statistical analysis of RULER modules has been published as part
of an evaluation of case study performances in SCOPE [Neil et al 92], 1t was found
that these traditional structural measures failed to identify critical parts of the system

that the case study provider considered atfected the maintainability of the software.
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Based on these observations, the rules presented in this chapter have been defined.

D. Trend analysis

Since complete vahidation cannot be performed an 1nitial set of trend analysis
will be presented To collect the data for these analysis a prototype static analysis
tool has been developed concurrently with this research  Using this tool large
volumes of module rules have been analysed and statistical results have been
extracted to attempt to provide descriptive information and tentative correlations
between p-counts Although further analysis 1s required to ensure that conclusions
are valid these results will help set imtial tolerance ranges for the measures defined.
Both the description of the analysis tool and statistical analysis are presented 1n

chapter 7

Step 6 Re-iterate / modify

Modifications to our model may be required based on historical data
Correlations may not be made between measured values and software performance
If such a case arises, modification or 'fine-tuning' of the measures may be required

This will only be known when the process of validation 1s complete

6.4 Summary

This chapter provides a set of measures which attempt to capture relevant
information regarding the mamntamability of RULER  Components for which
measures already exist have been i1dentified along with their related measures, while
new primitive counts were defined for components for which no measures existed
Using these p-counts, composite measures were formulated along with a rule-data
relationship diagram from which most p-counts can be obtained The validation of
these measures has still to be completed and this 1ssue will be addressed further 1n

the following chapter
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/ Results and analysis

7.1 Introduction

In order to provide data from which analysis can be initiated, a static analysis
tool has been developed. This tool has been used to collect data for applications
developed using RULER. It also demonstrates the practicality of data collection
within the RULER environment. This prototype tool, described in section 7.2,
demonstrates the ease in which a complete tool could be developed. A modular
development process has heen used to allow changes to be made as data requirements
are modified. Requirements for data collection based on defined p-counts have
altered, and although alterations to the tool have not been completed, such changes
should require little difficulty.

Using the data collected, analysis has been performed to further describe the
relationships between data and rules within the system. Section 7.3 graphs this data
and provides tentative conclusions and tolerance ranges for measures defined in
chapter 6.

7.2 Tool development

R-DAT (Rule and DATa static analyser) is a prototype tool which calculates
some of the measures described in chapter 6 and has heen developed primarily to
demonstrate the feasibility of producing rule and data related measures using a static
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code analyser, and to provide a comprehensive foundation which would facilitate

further development

R-DAT was developed on a SUN 4 workstation and was written using C,
YACC and LEX An mitial problem exists in taking RULER code from the VAX
and transferring 1t onto the SUN However, within the development environment of

this tool direct connections between these two hosts exist

To maximise the flexibility of the tool, R-DAT was developed as a set of
tools that incorporate the use of 'pipes’ which serve as the connection between each
tool. Figure 7-1 provides a general representation of R-DAT's functionality as
described 1n section 7 2 1 and 7 2 2, while Figure 7-2 shows 1n detail the process

of measurement

Application

SUN

Step 2
Measures

Figure 7-1 Overview of R-DAT and RULER 1ntegration

7.2.1 Initialising for R-DAT

A setup procedure 1s required before R-DAT can be used, consisting of the

following two steps
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data files

Figure 7-2 Detailed process of measurement using R-DAT

A. Code extraction

This function 1s provided by the RULER system All code within the
modules can be extracted as part of a documentation process These files however
contain other non-standard 'statements' which are part of the documentation text and
are not module rules Similarly a documentation process 1s provided for the contents
of the DMS Rules associated with types, fields and records are also extracted using
the RULER documentation feature Four files are created, one for each of the four
entinies Each file contains a description of each instance of the entity along with the

rules associated with that instance

B. Code transfer

The transferring of files between different systems 1s typically well

documented and easily implemented In this case FTP provided the required facility

The result of these two steps 1s to provide four files on a SUN workstation

which can be used as mput to R-DAT
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7.2.2 Implementing R-DAT

A. Rule extraction

This procedure removes all documentation information within the RULER
files. Imtially this was performed using editor macros, however this could be
performed using a small program written in LEX This program has not as yet been
developed, but would be a significant advantage when large volumes of code are to

be processed

B. Lower case rules

This program was wrntten using LEX and merely reduces all characters 1n a
file to lower case The main reason for this 1s that RULER 1s not case sensitive,
unlike Unix, so the work required in 1dentifying recurring instances of the same

token 1s reduced

C. Pseudo-code generator

This program parses RULER code and produces a simplified abstraction, or
pseudo-code equivalent Using this new representation 1t 1s easier to calculate the
required measures All reference to the assignment operations between data items
1s removed A possible extension of this program would be to take this pseudo-code
and provide a graphical interface giving the Rule-Data relationship diagram

representation of the code The form of this pseudo-code 1s given in Figure 7-3

D. Duplicate deletion

This program ehminates the duphcate data items within the same rule, as
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required by the defimtion of a rule in section 6 3 3.3 Data 1items between RULE

and END-RULE blocks are sorted and duplicates eliminated

Module 1
RULEI
Data 1item1
Data 1item?2
END-RULEI!1
RULE2
Data item?2
Data item3
END-RULE2
Module 2
RULE!1
Data item4
END-RULE2
etc

Figure 7-3 Pseudo-code structure produced for RULER code

E. Measurement table

This program produces a table 1n the format described in Example 7.1 Each
row contains the details for each instance of entity so in the case of more than one
rule, four bits of data are added to the 1ow for every extra rule All subsequent

measures are then performed based on the data 1n this table.

Module Rule no No of data No of sub-rules | Level
number 1tems

Example 7.1 Table format tor data collected from RULER code
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F. Measurement files

Using the measurement table described more specific measures may be
obtamned. This 1s done by writing 'awk' programs which extract relevant data from
this table and produce a file of more specific and condensed information Three such

programs have been written which produce files of the following format

Module Number Rule Number Number of data items

Example 7.2 Output file - filename |

Module Number of rules Number of Number of
Number in module data items sub-rules

Example 7.3 Output file - filename 2

Data item Number of occurrences

Example 7.4 Output file - filename 3

G. Calculate measures

Using these final three files eight measures are calculated For additional
measures to be provided suitable 'awk' programs need to be constructed Three such

programs have been written which are described 1n Table 7 1
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Program
Metrics 1

Metrics?2

Metrics3

7.3 Analysis of data

The task of validation is by no means trivial. Many existing and popular
measures are still applied to software when no significant analysis has been
performed to demonstrate the relationship between the measure and the attribute it
Many attribute / measure relationships have been accepted as
intuitive, but are often based on little, if any, scientific evidence. The process of
validation as previously mentioned is a long and detailed statistical task which has
been covered in more detail by Norman Fenton [Fenton 91].

claims to assess.

This section attempts to provide a description and characterisation of the data

Table 7.1

Measures obtained using R-DAT

Measures computed

Average rule comglexit for all instances of an entity,
based on the number of data items they manipulate.

Maximum rule complexity for all instances of an entity,
based on the number of data items they manipulate.

Average size of an entity instance, based on the number
of rules in an instance of that entity.

Maximum size of an entity instance, based on the
number of rules in an instance of that entity.

Average size of an entity instance, based on the number
of data items in an instance of that entity.

Maximum size of an entity instance, based on the
number of data items in an instance of that entity.

Average level of criticality of data items based on the
number of rules a data item is in.

Maximum level of criticality of data items based on the
number of rules a data items is in.
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collected 1n order to allow tolerance ranges for measures to be denved and to
1dentify trends within rules that could lead to further research into more composite
measures (similar to DeMarco's BANG metrics) which would attempt to provide a

single measure of system complexity, mamntainability, or size

Two methods of data analysis have been performed The first 1s provided by
the use of R-DAT from which we can obtain quantified results for our measures
The second mvolves using statistical tools to provide more descriptive information
regarding the relationships between p-counts defined in chapter 6 These measures

have been performed for the module entity due to the restriction of available data.

Table 7.2

Results of module analysis using R-DAT

Measures evaluated Results
Average number of data items per rule 007
Maximum number of data items per rule 057
Average number of rules per module 002
Maximum number of rules per module 018
Average number of data items per module 013
Maximum number of data items per module 058
Average number of rules per data item 002
Maximum number of rules per data item 022

7.3.1 Results using R-DAT

The use of R-DAT at this stage 1s more to provide the three files in examples
7 1107 3 than to perform actual measurement However results have been extracted

for the measures listed 1n Table 7 1 Typical use of this tool would not include the
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use of statistical analysis and so these results would be vital to the assessment of the
software Both the measures below and statistical analysis in section 7 3 2 are based
on the same three files Section 7 3 2 will however contain far more descriptive
information from which ranges for measures can be determined Table 7 2 contains
output from running R-DAT but the significance of the information will be discussed

further 1n the next section

7.3.2 Graphing relationships

The three files created using R-DAT as described 1n section 7 2 (filename 1,
filename 2 and filename 3) can be nput to any standard statistical package from
which descriptive information of the data can be obtained MINITAB was chosen
for this task primarily because of 1ts accessability A mimtab batch program was
written which performed analysis of these three files These results were then
incorporated 1nto a Lotus 123 style spreadsheet and graphically presented In this
section we examine those graphs and discuss the setting of mitial ranges for a set of

measures

Rules were observed 1n only three of the five module entity types, online,
report and batch modules The graph in Figure 7-4 represents the histogram of data
items to rules (ignoring sub-rules 1 e rules nested below the first level) within
modules with maximum level indicators included to show the difference between the
three module types If a rule contains many sub-rules then 1t 1s likely to contain a
high number of data items which accounts to some extent for the larger values on
this graph We can confirm this by looking at Figure 7-7, where we see that batch
modules have more sub-rules than the other two This 1s compensated for in Figure

7-9 where rules and sub-rules are included

We can conclude however that 89 % of rules have a complexity rating of less
than or equal to 20 However 100% of rules in online and report modules have a

maximum value of 6 Larger values are probably caused by the use of sub-rules
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within batch modules which will be considered later in this section So an 1mitial

range for rule complexity as defined in Equation 6 5, 1s 20 for batch modules and

6 for the other two

Maximum Levels

Report  ----
Online

19

Modules

10

0 5 106 15 20 25 80 85
Data items to Rules

Figure 7-4 Rule complexity for all modules

Table 7.3

Basic statistics relating to Figure 7-4

" Minimum Maximum Mean

Standard Dev.

" 0 47 10 1

10 74
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The graph in Figure 7-5 presents the number of rules in a module to provide

a measure of module 'size'

100% of both batch and online modules are below 4,

and although the report modules, which tend to be larger are as high as 15, 92% of

them have a size value of less than or equal to 4

It 1s only a small number of

modules that exceed this value and as we shall see 1n Figure 7-6, report modules

typically contain a higher number of data items

So based on this data we can set

an 1nitial range for acceptable module size based on the number of rules as being

between 0 and 4, which accounts for over 90% of all modules

Modules

&7 T T T T T T T T T T T T T T
Maximum Levels

50 Report ----
Online ——
Batch -

1 2 3 4 &

8 8

] 7
Rules in modules

10

B i e

11 12

I3

13 14 18

Figure 7-5 Size of a module instance based on the number of rules

Table 7.4

Basic statistics based on Figure 7-5

" Minimum

Maximum

Mean

Standard Dev,

L

15

1 962

2 019
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Figure 7-6 graphs the histogram of the number of data items that appear in
a module, to indicate the size of the module The first point to notice is that
although batch modules contain far less rules than report modules they manipulate
almost as much data, which explains why they contain more data items to rules,
shown 1n Figure 7-4 It would perhaps be more correct to ensure that size measures

contain information about data 1tems and rules

Maximum Levels

Report ----
Online

18

12

Modules

L 4 % A%
0 8 10 158 20 ?s 30 .35 40 45 50 55 60
Data items in module

Figure 7-6 Module size based on the number of data items 1n a module

Table 7-5

Basic statistics relating to Figure 7-6

l The number of data items that appear in a module for all modules

Minimum Maximum Mean Standard Dev.

" 1 58 14 27 12 91

The distribution of sub-rules to modules 1s well defined As indicated before,

one of the reasons why there are more data items to rules in batch modules can be
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directly related to the fact that they contain more sub-rules A good 1nitial value for
this measure 1s 3, which account for 92% of the modules Although higher values

exist, they are rather unusual and further investigation of these modules 1s required

to examine the reasons for these values

59 T T T T T T T
Maximum Levels

Online

Modules

0 1 2 3 4 5 8 7
Sub-Rulss in module

Figure 7-7 Module complexity based on the number of sub-rules

Table 7.6

Basic statistics relating to Figure 7-7

Minimum Maximum Mean Standard Dev. "

0 7 0933 1 463 ||

The histogram in Figure 7-8 takes into account both the rules and sub-rules
as a measure of the size of a module Yet again we see that report modules contain
more rules than the others, although these exceptions represent only a small
percentage of the modules An adjusted range for the size of a module based on the

total number of rules could be 8 which would account for 95% of the modules
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T-Rules in module

Figure 7-8 Module size based on the number of rules and sub-rules

Table 7.7

Basic statistics relating to Figure 7-8

Minimum Maximum Mean Standard Dev. "

1 18 2 895 2084 |

The graph 1n Figure 7-9 1s a corrected version of Figure 7-4, to include all
rules 1n modules (rules and sub-rules) Note that there 1s a slight reduction 1n the
larger values obtained in Figure 7-4 Those that still exist can be related to
sequences of assignment statements within rules, which as described earlier are not
counted as rules The complexity of rules in both online and report modules 1s not
affected much by the inclusion of sub-rules which 1s to be expected based on Figure
7-7 It may be necessary to differentiate between these types of modules when
setting tolerance ranges A range from O - 5 captures all values for online and report

modules while 15 covers 86% of batch modules
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Figure 7-9 Rule complexity for all modules, adjusted for sub-rules

Table 7.8

Basic statistics relating to Figure 7-9

The number of data items to total rules per module
" Minimum Maximum Mean Standard Dev.
" 1 37 7 061 7 669

Figure 7-10 gives an indication of the criticality of data by graphing the
number of rules they appear in It 1s quite clear from the graph that at least 90% of
data 1tems appear 1n 4 or less rules However a maximum value of 22 exists, which
would make the data item highly critical Such high values should be investigated
to see 1f they are constants, or other relatively stable items of information If this
18 not the case the rules they are associated with should be extracted and examined
to determine 1f such high levels are required This function could be an extension

to R-DAT Suggested range for this measure 1s 0 - 4
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Figure 7-10 Data item criticality based on the number of rules 1t's in

Table 7-9

Basic statistics for Figure 7-10

Minimum Maximum Mean Standard Deyv.

1 21 2 505 7

7.4 Initial measurement ranges

The ranges for all of these measures have been defined for the module entity
and new values are be required for the other three entites These values are
provided as an mnitial set of ranges within which a high percentage of data falls,
however no correlation between these values and the maintainability of systems that
conform to them has been established This will require further data and analysis
It 1s not recommended that these ranges should remain constant As more systems
are analysed further evidence of their validity will be obtained and these values

should be changed to reflect this
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B Measure Minimum | Maximum
Rule complexity (excluding sub-rules) 0 8
Module size based on the number of rules 0 4
Module size based on the number of data items 0 20
Number of sub-rules 1n a module 0 3
Module size based on number of rules + sub-rules 0 8
Rule complexity (including sub-rules) 0 20
Data cnticality 0 4

7.5 Summary

The prototype static analyser R-DAT has been developed to collect enough
data to perform the 1nitial analysis presented 1n this chapter Although not complete,
1t demonstrates the ease with which data may be collected This 1s one of the most
important 1ssues 1n software assessment - the production of objective and
reproducible measures The data R-DAT provided allowed the graphing of
relationships between p-counts and measures to help provide tentative ranges which
could be used as an indicator of the level of system complexity, maintainabulity, and

S1ze
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8 Conclusion

8.1 Conclusion

With the increased pressure on developers to produces systems of ever higher
quality, measurement has provided a much needed tool with which to quantify
attributes in quality modules. Measurement in software also aids in the prediction
of resource usage, effort, and cost. Efforts have been made to ensure that when it
is performed, measurement is done scientifically and with specific goals in mind (not
just to please the Quality Controller). For project management to be effective
information obtained from measurement should be accurate, objective and reliable.

Measurement has been used in software engineering to help assess and predict
attributes such as complexity, useability and reliability for almost two decades and
most measures defined were tailored for procedural languages such as Cobol, Pascal
and Fortran. Many of these measures, still in use today, are not universally accepted
with questions regarding how they relate to attributes still under debate. The use of
Halstead's size measures relating to operands and operators is seen as a vital part of
many prediction and assessment models, however the use of these vocabulary
measures as a the basis for software science is rather controversial. Assuming that
many existing measures do quantify important attributes of software, most have been
developed for procedural development methods. Other development methods such
as object-oriented, rule hased and 4GL systems also require measurement for the
same reasons as procedural systems, ie. greater control of system development can
only be obtained when increased reliability in measurement is possible. Some

136



implementation independent measures do exist, but are confined to cost and size

estimations based on documentation produced early 1n the software life cycle

This research focuses on measures that can be applied to rule based systems,
and provides a set of steps through which measures can be developed for other non-
procedural development tools Using these steps a set of measures have been defined
for a 4GL rule based language called RULER This set of six steps attempts to help
1n the 1dentification of components of the software for which no measures exist As
much re-use of existing measures as possible 1s encouraged to ensure that as much

standardisation as possible 1s maintained within the science of software measurement

Using a set of identified primitive counts, composite measures were developed
which attempt to formulate attributes such as rule complexity, data criticality, and
entity size. All of these measures provide quantified values useable 1n the assessment
of an applications maintainability These measures easily fit the quality model

structures defined by Boehm and McCall

8.1.2 Measurement in RULER

The categorisation for which measures were defined are data criticality, rule
complexity, descriptive measures, volume measures and test coverage Each of these
categories contain a number of measures which are based on the defined set of p-
counts To improve the objectivity and reusability of these measures a prototype
static analysis tool R-DAT was developed which provided data for some of these

measures to allow preliminary data analysis to be performed

R-DAT allows the collection of data for all except the fifth category of
measures, which requires that p-counts be evaluated while the application 1s running
No attempt was made to develop a dynamic code analyser to provide this data
However Iittle validation 1s require for test coverage Once suitable 'blocks' have

been 1dentified all that 1s required 1s the collection of data to ensure that as a high
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a percentage of the application has been executed as possible This measure based
on the identification of a new block conforms to conventional test coverage

estimation methods

Chapter 7 provides an analysis of the other four categories from which a set
of measurement tolerance ranges were decided Ranges for measures are typically
used to ensure that systems conform to acceptable levels of a particular attribute (or
sub-attribute) The ranges in chapter 7 were primarily set to ensure that at least 90%
of all data collected was within them It 1s not claimed that they are meaningful
indicators of rule complexity and data criticality It 1s important to note that
relationships between the attributes mentioned and the measurement ranges in chapter
7 have not been established This 1s not the aim of this thesis To set meaningful
values for these ranges requires the analysis of larger volumes of data and also a
rigorous validation to ensure that relationships between these measures and attributes
exist As stated, the aim of this thesis 1s to demonstrate that measurement theory can
be applied to rule-based systems and that measures for these systems can be

developed

8.2 Future work

Tool development for measures 1s considered to be an important requirement
for the assessment of attnbutes in an effective objective way It has been
demonstrated that both objective and reproducible measurement may be performed
for applications developed in RULER Existing measures have been applied using
QUALMS, while R-DAT provided alternative measures Using both of these tools
the feasibility of the assessment of the maintainability of RULER applications has
been demonstrated However, R-DAT 1n 1ts present state 1s incomplete  Further
modification to 1t's functionality 1s required An RD-diagram could be produced,
which would provide a visual representation of individual modules, types, fields or
records and allow direct access to the coding of rules and data items which contamn

out of range values
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Another problem with R-DAT s that at present due to the use of ‘awk’
programs, decimal values are not possible in measurement results. Implementation
of these programs in C would provide more suitable results. Greater functionality
is also required to provide values for all measures defined in chapter 6.

With regard to measures defined, those that exist are only intended to be low
level indicators for use in more complex measures. The definition of these measures
will require a better understanding of what these measures actually assess. An
approach similar to the one used by DeMarco in his definition of Design Weight is
one possible method for establishing higher level measures such as system
complexity, or system maintainability.

Now that measures for rule-based systems have been developed and
implemented, other non-procedural development methods should he analysed with
the idea of producing measures which quantify their unique properties. Logic
programming and object oriented development methods are still badly supported by
software measurement. A set of measures should be developed for Prolog and Lisp
which may facilitate the standardisation of measures for all rule-based systems. The
measures defined in chapter 6 should also be applied to Prolog to determine how
applicable they are to different types of rule-hased languages.

The decomposition of directed graphs into unique primes should be examined
further to determine if unique decomposition of rules within rule-based systems is
possible. Such a method could be the basis of a measurement framework for which

parameters could he defined in a similar fashion to those measures described in
section 4.4.4,

The existence of measures for any system is only useful if those measures are
actually used. An article by Lieberherr [Lieberherr et al 89] proposed that one
method for ensuring a good program was to encode a set of measures within the
language itself. In this way we are guaranteed that a minimum level of assessment
is performed.  This idea could be incorporated into RULER to ensure that
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compilation 1s preceded by a set of measures which could provide warnings to the

programmer or even provide suggested modifications to the source
As development approaches branch out into more and more diverse areas 1t

1s 1mportant to continually update our methods for controlling their development

This research has shown that such measurement 1s both feasible and practical
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