
Applying Metrics to
Rule-Based Systems

A Thesis by: Paul D oyle , B .Sc.
Supervisor: M r. R enaat V erbruggen

Subm itted to
D ublin C ity U niversity
C om puter A pplications

for the degree o f
M a s te r o f Science

July 1992

D e c la ra tio n : N o portion o f this w ork has been subm itted in support o f an application
for another degree o r qualification in the D ublin C ity U niversity o r any
o ther U niversity o r Institu te o f L earning.

Acknowledgements

T o m y paren ts w ho provided m e w ith m ore support and encouragem ent than they w ill
ev er know , and to R enaat w hose advice and guidance w as invaluable

Contents

1 Introduction 1

1 1 M easurem ent theory 1
1.2 M easurem ent in softw are 2

1 2 1 Softw are m etrics 4
1 3 M easurem ent fo r rule-based system s 5
1 4 Sum m ary 6

2 A framework for measurement 7

2 1 Softw are en tities and attributes 7
2 1 1 Processes 9
2 1 2 P roducts 10
2.1 3 R esources 13

2 2 P red iction and assessm ent 14
2 3 M easurem ent fram ew orks 15

2 3 1 C ost and e ffo rt estim ation 16
2 3 2 P roductiv ity m easures and m odels 17
2 3 3 Q uality m odels and m easures 17
2 3 4 D ata collection 19
2 3 5 P erfo rm ance evaluation 20
2 3 6 S tructural and com plexity m etrics 20
2 3 7 T he G Q M paradigm 21

2 4 Sum m ary 23

3 Specification and design measures 24

3 1 In troduction 24

i

3 2 Specification m easures 26
3 2 1 D eM arco 's "BA N G " m etric (specification w eights) 26
3 2 2 Function points 34

3 3 D esign m odels 37
3 .4 D esign m easures 41

3 4 1 D esign w eigh t 42
3 5 Sum m ary 46

4 Product attribute measures 47

4 1 In troduction 47
4 2 In ternal p roduct attributes 47
4 3 T extual m easurem ent 49

4 3 1 L ines o f code 49
4 3 2 P red icting length using function points 51
4 3 3 T oken based m easures 52

4 4 S tructural m easures 57
4 4 1 F low graph m odel o f structure 58
4 4 2 D efin ing program structure 59
4 4 3 D ecom posing flow graphs 60
4 4 4 F low graph based m easures 61

4 .5 A rchitectural m easures 69
4 5 1 C all g raph m easures 70

4 6 Sum m ary 72

5 Measurement for new development methods 73

5 1 In troduction 73
5 2 L anguage generations 73
5 3 F ourth generation languages 75

5 3 1 P rincip les and com ponents 76
5 4 L ogic program m ing in softw are engineering 78
5 5 R ule based system 79
5 6 C ustom ising m easurem ents for d iverse system 80

5 6 1 G eneral m easurem ent definition process 81
5 7 Sum m ary 89

il

6 D efin in g m e tr ic s fo r a ru le -b a se d la n g u ag e 90

6 1 In troduction 90
6 2 T he R U L E R language 90

6 2 1 P rogram D evelopm ent M ethodology 91
6 .3 D efin ing m easures for a rule-based language 92

6 3 1 A nalyse the language 92
6 3 2 D ecide w hat com ponents can be m easured by existing

techniques 96
6 3 3 Investigate how (if possible) all o ther com ponents can be

m easured 99
6 .3 4 C om plete definition process 116

6 4 Sum m ary 118

7 R e su lts a n d an a ly s is 119

7 1 In troduction 119
7 2 T ool developm ent 119

7 2 1 In itialising for R -D A T 120
7 3 A nalysis o f data 125

7 3 1 R esults using R -D A T 126
7 3 2 G raphing relationships 127

7 4 In itial m easurem ent ranges 134
7 5 Sum m ary 135

8 C o n c lu s io n 136

8 1 C onclusion 136
8 1 2 M easurem ent in R U L E R 137

8 2 F u tu re w ork 138

References 141

in

Applying Metrics to
Rule-Based Systems

Abstract
A uthor Paul D oyle

Since the in troduction o f softw are m easurem ent theory in the early seventies
it has been accepted that in o rder to control softw are it m ust first be m easured.
U nam biguous and reproducib le m easurem ents are considered to b e the m ost useful
m contro lling softw are productiv ity , costs and quality , and d iverse sets o f
m easurem ents are required to cover all aspects o f softw are

A set o f m easures for a rule-based language R U L E R is proposed using a
process w hich helps identify com ponents w ithin softw are that are not cu rren tly
m easurable, and encourages the m axim um re-use o f existing softw are m easures. T he
in itial set o f m easures proposed is based on a set o f basic p rim itive counts. T hese
m easures can then be perform ed w ith the aid o f a specially bu ilt p ro to type static
analyser R -D A T A nalysis o f obtained results is perfo rm ed to help prov ide tentative
acceptab le ranges for these m easures

It is im portant to ensure that m easurem ent is perform ed fo r all new ly
em erging developm ent m ethods, both procedural and non-procedural As softw are
engineering continues to generate m ore diverse m ethods o f system developm ent, it
is im portan t to continually update our m ethods o f m easurem ent and contro l T his
thesis dem onstrates the practicality o f defining and im plem enting new m easures fo r
ru le-based system s

IV

1 Introduction

T his chapter introduces the fundam ental theory behind the idea o f
m easurem ent, in particu lar how it relates to softw are engineering Section 1 1
explains som e o f the general aspects o f m easurem ent and section 1 2 relates
m easurem ent to m odern day softw are developm ent environm ents Section 1 3
p rov ides an overv iew o f the areas covered by this thesis

1.1 M easurement theory

T here are m any in terpretations o f the im portance and usefulness o f
m easurem ent in everyday life It is often surprising how ever, that a g rea t deal o f
confusion still exists because o f these varied in terpretations B efore w e can really
appreciate the theory o f m easurem ent w e should first c larify w hat in fact
m easurem ent is T he follow ing form al defin ition p rovides us w ith a good base from
w hich to w ork

Measurement is the process by w hich num bers o r sym bols are
assigned to attributes o f entities in the real w orld in such a w ay as to
describe them according to clearly defined rules

N ow w e can see that m easurem ent is involved w ith capturing inform ation
about a ttributes o f en tities W e can define an entity as an object, fo r exam ple a room
o r a person , o r an activ ity , such as a jou rney o r the test phase o f a softw are p ro ject
A n attribute is a feature o f these entities w hich w e a re in terested in This could be

1

the w eight o f the person , the co lour o f the room o r even the length o f tim e to w alk
th rough the room F urth er discussion relating attribu tes and en tities to a softw are
engineering fram ew ork is provided m chapter 2

U sing this p rocedure w e can identify typical am biguity associated with
m easurem ent It w ould be incorrect for exam ple, to state that w e m easure 'en tities '
o r that w e m easure 'a ttrib u tes ', ra ther w e m easure 'a ttrib u tes o f en tities ' It w ould
b e am biguous to say that w e 'm easu re a m an ' since w e could m easure the w eight,
heigh t o r com plexion S im ilarly w e cannot say that w e 'm easu re the w e ig h t', since
w e m easure the w eight a t a specific tim e under certain conditions (altitude, dressed
o r undressed , before o r a fter a m eal etc)

R eturn ing to ou r defin ition w e find that m easurem ent assigns num bers o r
sym bols to a ttributes o f entities to describe them T hese num bers o r sym bols can be
any designated scale (fo r exam ple height could be m easure in M etric o r Im perial
scales) and therefo re m easurem ent o f the sam e attribu te m ay return m any values
depending on the scale used This is an im portan t po in t to rem em ber w hen
in terpreting results T here is a tendency to believe that a num ber obtained from a
m easure is a p recise representation o f the attribu te M easurem ent how ever is no t that
c lear cu t T here are m any d ifferen t view s on w hat is and is not m easurem ent, and
w e can turn to Fenton for a good discussion o f the science o f m easurem ent [Fenton
91]

1.2 Measurement in software

Softw are engineering is the term used to describe the collection o f techniques
concerned w ith applying an engineering approach to the construction o f softw are
products T his 'eng ineering ' approach involves m anaging, costing , p lanning ,
m odelling , analysing, designing, im plem enting, testing and m aintaining softw are
system s T hese activ ities along with supportive tools and techniques are used in an
attem pt to p roduce high quality system s that are delivered on tim e and w ithin a

2

specified budget

A lthough this approach w as proposed nearly tw o decades ago, the
im provem ents m softw are products has not m atched the in itial, perhaps over
op tim istic hopes for this m ethod Fenton attribu tes this fa ilu re to the less than
rigorous approach taken fo r m easurem ent w ithin this d iscip line and p rovides the
fo llow ing observations

1 P roducers o f softw are still fail to set m easurable targets w hen developing
products C laim s are often m ade regard ing the 'u ser-frien d lin ess ',
're liab ility ' and 'm ain ta inab ility ' o f the products w ithout specifying w hat
these m ean in m easurable term s P roducers have only vague notions o f their
objectives w hich im plies that they cannot fully achieve them G ilb sum m ed
up th is situation w ith the follow ing statem ent

"projects without clear goals will not achieve their goals c learly" [Gilb 87]

2. W e fail to m easure the com ponents w hich m ake up the real costs o f softw are
pro jects F o r exam ple w e usually do not know how m uch tim e w as really
spent on design com pared to testing

3 W e do no t a ttem pt to quantify the quality o f the p roducts w e produce Thus
w e cannot tell a potential user how reliab le a product w ill be in term s o f its
likelihood o f fa ilu re in a given period o r use, o r how m uch tim e w ill be
required to p o rt the product to a d ifferen t m achine

Fenton goes on to stress the need for m easurem ent bu t claim s that it is
m isused and little understood

"measurement performed is done infrequently, inconsistently and
incompletely Moreover it is quite detached from the normal scientific
view o f measurement" [Fenton 91]

3

M easurem ent w hile cited by D eM arco as the key to contro lling softw are
p roduction , is not w ell enough understood to be as effective as once hoped W hen
m easurem ent takes p lace the m otivation for it is no t alw ays c lear and it could b e said
that m ost m easurem ents a re done purely to p lease the quality con tro ller and that the
resu lts a re unscientific and unreliable H ow ever, the aim o f softw are m easurem ent
is to con tro l o r p red ic t the state o f softw are developm ent T his can b e done by
focusing m easures to achieve p ro ject specific results. A n exam ple w ould be
collecting data in o rder to m onitor and m odify developm ent T he earlie r in the
p roduct life-cycle this is done the m ore contro l there is on quality in term s o f
functionality , re liab ility , cost and scheduling

1.2.1 Software metrics

N ow that w e have established that softw are engineering requires m easurem ent
it is im portan t to see how this has been done so far F irs t how ever, w e should
c larify a t this po in t the d ifference betw een a m etric and a m easure

• Metrics num erically characterise sim ple a ttribu tes like length , num ber o f
decisions, num ber o f operators (for p rogram s), num ber o f bugs found, cost
and tim e (for processes)

• Measures are 'func tions ' o f m etrics w hich can be used to assess o r p red ict
m ore com plex attributes like cost o r quality

H ow ever, since there is an inevitable confusion relating to the phrase 'm e tric '
due to its m any d ifferen t in terpretations, an attem pt w ill be m ade to ensure that the
term w ill n o t b e used, w herever possib le

T he term software metrics how ever is an a ll-em bracing term given to a w ide
range o f apparen tly d iverse activities T hese include

4

• C ost o f e ffo rt estim ation m odels and m easurem ents
• P roductiv ity m easures and m odels
• Q uality contro l and assurance
• D ata collection
• Q uality m odels and m easures
• P erfo rm ance evaluation and m odels
• A lgorithm ic com plexity
• S tructural and com plexity m etrics

T hese activ ities a re listed in an o rder that represents a p rogression from the
topics that a re concerned w ith high level goals dow n to the foundational m aterial on
w hich these m ay depend M ost o f these w ill be expanded in the follow ing th ree
chapters

1.3 M easurement for rule-based systems

M ost o f the m easurem ent activities m entioned in section 1 2 2 w ere developed
fo r th ird generation languages H ow ever, there is a need to ensure that m easurem ent
is perfo rm ed fo r a ll softw are system s T his m ay requ ire the developm ent o f new
m easures fo r new softw are developm ent m ethodologies

T he aim o f this thesis is to take a langauge w hich incorporates m ethods o f
developm ent for w hich no m easures ex ist and to define those m easures under a
standard fram ew ork w hich is presented in chapter tw o T o ensure that m easures
w hich a lready exist a re not 're in v en ted ', chapters th ree and four p rov ide a sum m ary
o f the m ore com m on and frequently im plem ented m easures C hapter five goes on
to describe a process through w hich m easures m ay now be defined, and chapter six
suggests a new set o f m easures fo r a ru le-based language T his is follow ed by an
in itia l analysis o f the results obtained using a pro to type static analyser to co llect data

5

1.4 Summary

Softw are m etrics a re no t w ell defined m ethods fo r assessing softw are quality
P roducers o f softw are should have w ell defined goals befo re m easurem ent techniques
re levan t to these goals can b e identified O nly then can results be obtained from
m easurem ent that have m eaning O ne o f the p rim ary concerns w ith softw are
engineering is not the fact that m easures are not being used bu t that w hen they are,
they a re n o t focused on a particu lar goal and the results a re unscientific and not
applicab le to the real w orld

T he use o f m easurem ent w ithin softw are to p rov ide in form ation on quality ,
cost and developm ent schedules needs to be extended to encom pass all m ethods o f
softw are developm ent, and not ju s t the m ore traditional third generation languages
T he fo llow ing three chapters prov ide the required background fo r softw are
m easurem ent as it is curren tly used in todays developm ent environm ents, w hile
chapters 5 ,6 and 7 discuss the use o f new ly proposed m easures for ru le-based
system s

6

2 A framework for measurement

2.1 Software entities and attributes

T he use o f softw are m etrics is often perceived to be quite straight forw ard .
M easurem ents are perform ed on specified parts o f the system and conclusions are
draw n from these results This how ever, w hile true in one sense, is a naive over
sim plified approach taken by m any involved in quality assessm ent A typical set o f
tasks required to successfully take advantage o f these techniques are prov ided below .

• Set up a fram ew ork for the m etrics
• H ave a clear understanding o f the aim s o f m easurem ent
• D ecide how this m easurem ent w ill take p lace

T he success o f the m easurem ent process will be based on how strictly these
steps are adhered to T oo often m easurem ent theory is em ployed w ithout a c learly
stated target o r aim In these cases it is difficult to m ake claim s regarding any aspect
o f the softw are Such haphazard system s would not p rovide sound analytical results
w ith w hich a high degree o f confidence could be associated T he collection o f
ev idence should be a clearly defined process which is specified before m easurem ent
begins

T he first step relating to the fram ew ork is a m atter o f decid ing betw een
various existing m ethods for incorporating m easurem ents into a softw are assessm ent
schem e B efore this can be done how ever, we m ust first identify the com ponents

7

w ithin softw are w hich we may wish to m easure It is w idely agreed that there are
th ree d istinct en tities w hose a ttributes w e are interested in m easuring.

• P rocesses - softw are related activities (usually w ith tim e factors)
• P roducts - deliverables such as docum ents and source code
• R esources - item s that are input to processes

W ithin these entities w e can identify internal and external attributes w hich are
item s o f in terest upon w hich w e w ould like to perform either m easurem ent o r
prediction

• Internal attributes refer to m easurem ent o f the given en tities in term s
o f them selves

• External attributes refer to how given entities relate to their
environm ent

Typically , m anagers and users tend to be m ore interested in the ex ternal
a ttribu tes o f entities, such as the cost-effectiveness o f a p roduction , o r the degree o f
reliability o r useabihty o f the softw are It has been observed how ever, that these
a ttribu tes are traditionally the m ost difficult to m easure, m ainly due to the lack o f
quantifiab le definition with w hich to assess them Subjectiv ity plays a m ajo r p a rt in
resisting the establishm ent o f standards for such a ttn b u tes . F o r exam ple, the
useability o f a system is as yet still assessed by the 'fee l' o f the in terface. E ffo rts are
being m ade to standardise in terfaces, but as yet these do not cover all fo rm s o f
softw are applications

C urren t attem pts to m easure external o r high level attributes have been based
on the identification o f m ore p rim itive o r low er level sub-attributes w hich a re called
in ternal attribu tes F o r exam ple, we could take an external a ttribu te such as
m aintainability , and attem pt to ascertain its value by d iv iding it in to source code
sim plicity and consistency R elevant m easures could then be devised to quantify

8

these tw o internal attributes In general it can be stated that m easuring external
a ttribu tes is based on the m easurem ent o f related in ternal a ttributes Evidence
obtained from internal attributes is used to support external ones because w e cannot
m easure external attributes directly

2.1 .1 Processes

Processes are softw are related activities which norm ally have a tim e factor
A n exam ple o f a typical process in the system developm ent life cycle w ould be the
construction o f specification and design docum entation, in tegrated testing o r the
developm ent o f the en tire softw are system from the in itial specification stage through
to the installation stage A process may be tim e dependent and not activ ity
dependent This could relate to a specific tim e period o f the pro ject developm ent,
fo r exam ple, Month o f September

E xternal attributes associated with this entity are related to general notions o f
quality , stability, contro llability , observability and cost-effectiveness. T he m ain
prob lem associated with these attributes is that they are not very w ell understood and
they tend to be very subjective, fo r exam ple, the controllability o f testing procedures.
T herefo re it is d ifficu lt to define objective m easures It is hoped that from
experience obtained using these subjective m easurem ents m ore objectiv ity w ill be
developed.

A lthough there is a large degree o f subjectivity associated with ex ternal
attribu tes, objective internal attributes have been identified T hese directly
m easurable attributes are

• T im e - duration o f the process
• E ffo rt - associated with the process
• Incidents - the num ber o f incidents o f a particu lar type arising

during a process eg no o f bugs found during testing

9

Given the fact that there are very few directly m easurable in ternal attributes
it is still possible to com bine them to form indirect m easures W e m ust keep m m ind
how ever, an understanding o f w hat is captured by the ind irect m easure F o r
exam ple, in a process for form al testing, the average cost o f identify ing e rro rs during
processing AC could use the ind irect m easure below w here Cost relates to the cost
incurred in perform ing the form al testing and Number o f errors is the num ber o f
e rro rs detected in the softw are as a d irect results o f this testing process

A C = _________ ^ 0 S t -------------- (Equation 2.1)Number o f errors found

In this exam ple the external attribute o f cost has been related to a specific
item and then quantified using the internal attribute associated w ith frequency o f
defined incidents Sim ilarly o ther expressions o f cost m ay also be quantified

2.1 .2 Products

Products w ithin softw are are usually seen as deliverab les o f the softw are
developm ent life cycle T hese deliverables are physical en tities w hich are typically
docum ents and code resulting from softw are developm ent T hese could b e
specification and design docum ents, source code, user and installation m anuals and
testing specification docum entation at various levels o f detail E xternal attribu tes
associated w ith these products are num erous Recently the d ra ft standard IS 0 9 1 2 6
w hich is a list o f proposed product quality characteristics has been approved
[IS 0 9 1 2 6] This now ensures that a com m on set o f external attributes m ay now be
identified for product analysis A set o f proposed internal a ttributes are also supplied
bu t they are not part o f the approved standard It is how ever a significant step
tow ards standard m easurem ent techniques for product a ttribu tes Below are the
IS 0 9 1 2 6 standardised external p roduct attributes

10

Functionality
"A set o f attributes that bear on the existence o f a set o f functions and their
specified properties The functions are those that satisfy stated or implied
needs "

R eliability
"A set o f attributes that bear on the capability o f software to maintain its
level of performance under stated conditions fo r a stated period o f tim e."

U seab ility
"A set o f attributes that bear on the effort needed fo r use, and on the
individual assessment of such use, by a stated or implied set o f users. "

E fficiency
"A set o f attributes that bear on the relationship between the level o f

performance o f the software and the amount o f resources used, under stated
conditions "

M aintainability
"A set o f attributes that bear on the effort required to make specific
modifications "

Portab ility
"A set o f attributes that bear on the ability o f software to be transferred from
one environment to another "

T hese external attributes are related to both docum entation and source code
As already stated the internal attributes associated with these are not standardised and
there are m any suggested w ays o f m easurem ent At present an inform ative appendix
to IS 0 9 1 2 6 exists containing proposed internal attributes w hich are given below

11

Functionality
Suitability
A ccuracy
Interoperability .
C om pliance
Security

A ppropriateness o f a set o f functions to specified tasks.
P roduction o f agreed results o r effects
A bility to interact w ith specified system s.
A dherence to specified standards o r conventions.
P revention o f unauthorised access to p rogram s and data.

R eliability
M aturity
F ault tolerance
R ecoverability

Frequency o f failure by faults in the softw are
M aintenance o f specified levels o f perform ance.
R e-establishm ent o f perfo rm ance after softw are faults.

U seability
U nderstandability
L earnability
O p erab ility

Users effort for recognising logical concepts.
U sers effo rt for learning its application.
E ffort for operation and operation control

Efficiency*
T im e behaviour T hroughpu t rate m perfo rm ance o f functions.
Resource behaviour Resource am ount and duration required

M aintainability
A nalysability
Changeability
Stability
Testability

E ffo rt required to identify deficiencies o r failure.
E ffo rt required for fault rem oval o r m odification.
Risk o f unexpected effect o f m odification
E ffort required for validating the m odified softw are

Portability
A daptability
Installability
C onform ance

O pportunity for adaptation to d ifferent environm ents.
E ffo rt to install s/w onto specified environm ents.
A dherence to standards relating to portability

12

2.1.3 Resources

T hese a re considered to b e the inputs o f softw are p roduction E xam ples are
personnel (individual o r team s), m aterials, tools (softw are and hardw are), and
m ethods T he cost o f em ploying these inputs is one o f o u r p rim ary in terests, it has
a h igh degree o f re levance to all resources and it is easily m easured (som etim es the
cost is d irectly related to the num ber o f attributes)

W ith personnel w e m ust in troduce productiv ity as w ell as cost W e can only
realistically consider the productiv ity o f a p rog ram m er w ith respect to som e activity
such as the tim e taken to code, test, and design a p rogram o r the vo lum e o f output
such as the num ber o f lines o f code w ritten over a period o f tim e, o r the num ber o f
pages in the specification and design docum entation A n exam ple w ould b e the
defin ition o f softw are productiv ity P as being the amount o f output d ivided by the
effort input, w here the ou tput is m easured in lines o f code and the input is the effo rt
in m an m onths

p = Amount o f output (E q u a tio n 2 .2)
effort input

T his fo rm ula is derived from the product (am ount) and the process (effort)
T h is, how ever, is not a true representation o f the productiv ity o f softw are since Lines
O f Code does no t have a d irect relation to productiv ity It should be noted that
although m any m easurem ents are feasible, the underly ing princip les behind the ir use
should first be assessed

\

O ther attribu tes o f in terest to personnel a re age, experience and intelligence
W ith team s they a re size, structure, and experience o f team leader M easurem ent
o f these attribu tes are often based on em pirical evidence and is not easily
quantifiab le

13

2.2 Prediction and assessment

M easurem ent w ithin softw are is typically a process involving the assessm ent
o f an attribu te o f an entity H ow ever a p red iction is often required regarding
a ttribu tes o f entities w hich do not yet exist F o r exam ple, a t the end o f the product
life cycle it is possib le to accurately determ ine the cost o f developm ent W e w ould
lik e to p red ic t this cost at the early stages in product developm ent to accurately
budget resources S im ilar p redictions are required to determ ine developm ent
schedules and e ffo rt

F enton m ade the d istinction betw een prediction and assessm ent by first
p rov id ing the follow ing defin ition

"A model is an abstract representation o f an object" [Fenton 91]

T his im plies that there a re m any d ifferen t types o f m odels, bu t there are
p rim arily tw o m am m odels o f in terest w ithin softw are m easurem ent

• M odels w hich a re abstract represen tations o f process, p roducts, and
resources T hese are used to define unam biguous m easures

• M odels w hich are abstract representations o f the relationships betw een
attribu tes o f entities T hese re la te tw o o r m ore m easures in a form ula

I f w e take the second m odel and look at an exam ple, w e can elim inate som e
o f the confusion relating to the d ifference betw een pred iction and assessm ent Below
is a sim ple m odel

E = — (Equation 2.3)
a

w here I is the num ber o f lines o f code in a softw are p roduct, E is the effo rt required
to p roduce the p roduct and a is a constant. T he extent to w hich this m odel is used

14

for assessm ent o r prediction depends on how much w e know about the param eters
o f the m odel If the param eter I is know n then we are assessing the value o f E and
not predicting it H ow ever, if the project is still in the specification stages and w e
a re estim ating the num ber o f required lines o f code (m aybe based on the functionality
o f the system) then w e are using this m odel to pred ict the e ffo rt required for softw are
developm ent In this case w e w ould need a prediction (or estim ation) p rocedure to
determ ine the value o f I W e can see from this that a m odel is m erely a fo rm ula and
on its ow n is insufficient for perform ing prediction M ethods to determ ine the m odel
param eters and procedures to in terpret the results are also required T he follow ing
defin ition form alises these concepts

"A prediction system consists of a mathematical model together with
a set o f prediction procedures fo r determining unknown parameters,
and interpumng results." [L ittlew ood 8 8]

U sing the sam e m odel d ifferen t results may be obtained depending on the
p red iction procedures used M uch confusion exists in softw are regarding assessm ent
and p red iction , but since the ultim ate goal is prediction even assessm ent m etrics are
claim ed to be part o f prediction system s

2 .3 M easurement frameworks

N ow that standard m ethods o f m easurem ent have been introduced they should
be set in to a com prehensive fram ew ork which incorporates the ideas in troduced in
this chap ter W e consider w hich processes, products and resources are re levant to
each m ethod, w hich attributes (internal and external) w e are m easuring, and w hether
they a re perform ing assessm ent o r prediction W e w ill cover briefly all o f the topics
in troduced earlie r but our main em phasis will be on product m easurem ent

15

2.3.1 Cost and effort estimation

T his is concerned with the prediction o f cost and e ffo rt process attributes. T he
m ost well know n m odel is undoubtably B oehm 's C O C O M O (C o n stru c tiv e C O st
M O del) [Boehm 81] m odel fo r estim ation o f size and e ffo rt o f softw are p roducts

W ithin C O C O M O there are three m odels, basic, in term ediate , and detailed ,
each o f w hich can be used at d ifferen t stages o f developm ent T hese m odels w ere
derived from data obtained from applications w ritten in F o rtran , P L 1 and C O B O L.
T he follow ing form ula calculates effort estim ation in person m onths

Effort = a S h * Product o f Cost Drivers (Equation 2.4)

S is m easured in thousands o f delivered source instructions (usually LO C)
a and b a re determ ined by the m ode o f developm ent T here are th ree m odes:
organic - sm all to m edium D P projects, em bedded - am bitious bu t tightly
constrained , and sem idetached -som ew here between the previous two

C O C O M O 's 15 cost drivers fall into four categories P roduct a ttn b u tes ,
personnel a ttn b u tes, com puter attributes, and project a ttn b u tes T he m odel p rov ides
defau lt values fo r cost d river attributes, but these should be m odified as m ore
h istorical data becom es available relating to actual cost C O C O M O provides
estim ates for developm ent e ffo rt and schedule divided into three phases; p roduc t
design, program m ing and integration testing

T he C O C O M O estim ation form ula is usually done at the specification stage
o f softw are developm ent The form ula above is as explained earlie r, only a m odel
o f softw are developm ent, and the prediction procedures for determ ining a ,b , and
S along with the m odel m ake up the prediction system It is hard therefore to ta lk
about the C O C O M O model fo r cost estim ation since d ifferen t prediction p rocedures
w ill yield d ifferent results A lso this is not a very satisfactory system since the

16

prediction o f the attribute for lines o f code could be as d ifficu lt as the pred iction o f
the original attribute o f cost (or effort)

2 .3 .2 Productivity measures and models

H ere w e are m easuring the resource attribute Personnel (team s o r individuals)
during a process (usually a calendar tim e period) T he m ost com m on m odels a re
those that take productiv ity as a function o f the output o f the personnel d u n n g a
process, divided by the input (cost) o f the personnel during that process as explained
m section 2 1 3

T he resource attribute o f productivity is assum ed to be captured as an ind irect
m easure o f a product attribute m easure and a process attribu te m easure

2 .3 .3 Quality models and measures

Q uality m odelling [M cCall 77] involves relating m etrics, in ternal a ttribu tes
and external attributes to som e theoretical fram ew ork It is used to associate external
p ro d u c t attributes (som etim es referred to as factors) to in ternal a ttributes (know n as
the criteria) which in turn are evaluated by using proposed sets o f m easures.

It is generally agreed that the use o f softw are engineering m ethods leads to
construction o f products with certain structural p roperties T hese properties are
characterised by internal attributes such as those proposed under IS 0 9 1 2 6 Som e m ay
even state that the verification o f the correct im plem entation o f these m ethods w ill
ensure 'sa tisfac to ry ' levels o f external attributes expected by softw are users, fo r
exam ple, reliability , m aintainability , and useability T hus the assum ption that good
in ternal structure leads to good external quality is part o f m ost softw are quality
m odels

17

W e m ust how ever realise that softw are engineering only p rov ides the
fram ew ork from w hich im provem ents in softw are are possib le by encouraging the
use o f im proved techniques, le projects in w hich the best com m on practice
techniques are applied routinely are deem ed m ore likely to have a satisfactory end
p roduct than those developed ad-hoc H ow ever none o f these m ethods can guaran tee
the level o f external a ttributes since so m uch depends on how these m ethods are
applied to individual p rob lem s A lso there is no standard scaling system for
determ ining the 'lev e l' o f external attributes

A lthough there is an 'in tu itive feel' regarding the connection betw een the
in ternal structure o f softw are products and external p roduct a ttribu tes, there is very
little scientific evidence to establish specific relationships This is perhaps the resu lt
o f d ifficu lties in setting up relevan t experim ents and a lack o f understanding o f how
to m easure im portant in ternal product attributes properly

D efining m odels o f quality aids in the developm ent o f a structured process

18

through w hich attributes o f softw are may be m easured, recorded, and re-used in
fu ture projects By providing reliable data, based on historical and m easured values,
prediction and assessm ent techniques may be used to control p roductiv ity , cost and
quality M easurable targets m ay be set w ithin softw are projects w hich w ill increase
confidence in the p ro d u cer's claim s to specified external attributes W ithout these
a ttribu tes being m ade quantifiable little w eight can be associated w ith claim s o f a
p ro d u c t's level o f quality

2 .3 .4 Data collection

M odels for cost/effo rt estim ation, productivity assessm ent and pred iction
depend on the accurate m easurem ent o f process and resource attributes. M uch o f the
w ork in data collection for all bu t product attributes m ust be done by hand so e ffo rt
is aim ed at setting in p lace rigorous procedures for gathering accurate m easures o f
the process and resource a ttributes T hree main techniques for gathering da ta a re as
follow s

Software analysers - data is generated autom atically as p rogram s are subm itted to
a com piler, specified m easures are perform ed a t this tim e.
D ynam ic analysis is perform ed w hen m easures are perfo rm ed
w ill the program is executing Softw are analysers a re by
nature algorithm ic and objective

Report forms - are logs w hich are com pleted by analysts and p rogram m ers at
various m ilestones in the product developm ent process
E ntries could include date, tim e, activ ities, e ffo rt in hours.
F orm s can often cause confusion regard ing the data requ ired .

Interviews - T o avoid m isunderstanding o f the data required w hile
com pleting form s-based-questionnaires, in terview s a re often
conducted The same inform ation is obtained using form s.

M ost form s o f data collection, with the exception o f softw are analysers suffer
from one m ajor problem they are not reproducible E lem ents o f subjectivity
in troduce uncertainties w hich affect the degree o f confidence associated w ith the data.

2 .3 .5 Performance evaluation

U sually m easures in this area deal with the p roduct a ttribu te efficiency This
can be defined in term s o f tim e (response tim es and processing tim es) and storage
(am ount o f resources used and the duration o f such use) E fficiency is m ainly seen
as an external attribute for executable code, how ever it can be an internal attribu te
w hich looks at the algorithm ic com plexity o f a program and identifies repetition o f
source code etc

In the case o f tim e efficiency assessm ent is perfo rm ed by determ ining key
inputs and basic m achine operations, and then w orking out the num ber o f basic
operations required as a function o f input size In term s o f our fram ew ork , one
possib le approach is to determ ine the efficiency o f the algorithm as an in ternal
attribu te w hich can be used to predict the external a ttribu te efficiency o f executable
code.

2 .3 .6 Structural and complexity metrics

M ost external product attributes are high level and very difficult to m easure,
so w e are often forced to consider m easures o f internal attributes o f products
W ithin com plexity there are two different issues to be addressed

Computational complexity
C oncerned with the efficiency o f the algorithm in its use o f m achine
resources

2 0

Psychological complexity
C oncerned with characteristics o f the softw are that affect program m ers
perform ance in com posing, com prehending and m odifying softw are

C urtis encom passes these notions into one definition

"Complexity is a characteristic o f the software interface which influences the
resources another system will expend or commit while interacting with the
software " [C urtis 8 8]

C om plexity is a function o f the softw are and its in teraction with o ther system s
(m achines, people, o ther softw are) To devise a com plexity m odel w e m ust com bine
specific m etrics according to som e theory or hypothesis Types o f com plexity
m odels w hich exist are as follow s

• Problem com plexity
• D esign com plexity
• P rogram / P roduct com plexity

T he m easurem ents defined should represent the d ifficulty that a
p rogram m er/analy st encounters when perform ing tasks such as designing, coding,
o r m aintaining softw are T here are num erous m easures w hich are concerned w ith
m easuring in ternal structural and com plexity a ttributes w hich w ill be detailed in
chapter 3

2 .3 .7 The GQM paradigm

It w as initially stated that for m easurem ent to be successful we m ust first have
objectives in m ind O nce those objectives have been established w e should use the
fram ew ork described in this chapter to identify relevant a ttributes and entities to be
m easured. This goal oriented approach is consistent w ith the G oal/Q uestion /M etnc

21

paradigm o f Basili and Rom bach [Basih et al 8 8] w hich is a well know n fram ew ork
for a w ide spectrum o f softw are m easurem ent T he idea is that a goal m ust be
identified before m easurem ent begins, this should lead to questions, and these
question can be answ ered with the use o f m easurem ent T he goals are norm ally
defined in term s o f purpose, perspective, and environm ent and to help define goals
a set o f tem plates a re provided

Template for goal definition

• Purpose to characterise / evaluate / predict / m otivate etc the process /
p roduct / m etric / m odel etc in o rder to understand / assess / m anage /
engineer / learn / im prove it Exam ple To evaluate the maintenance process
in order to improve it

• Perspective Exam ine the cost / effectiveness / correctness / defects / changes
/ p roduct m easure etc from the view point o f the m anager / custom er /
developer E xam ple Examine the cost from the viewpoint o f the developer

• E nvironm ent T he environm ent consists o f the follow ing process factors,
people factors, problem factors, m ethods, tools, etc E xam ple: The
maintenance staff are poorly motivated programmers who have limited access
to tools

G uidelines are also provided for process and p roduct related questions. T he
questions that a re addressed are the definition o f the process o r p roduct and re levant
a ttn b u tes W hen w e com e to defining the m easures it is understood that in m any
cases m ore than one m easure will be required for one question and these m ay
include subjective m easures

W e can now see how G Q M can be related to o u r fram ew ork A goal o r
question can be related to entities each having a choice betw een assessm ent o r
pred iction (en tities and attributes need to be defined first) W e now are concerned

2 2

w ith quantifying the a ttributes o f a product, process o r resource T he leaves o f the
h ierarchy tree are d irectly m easurable a ttnbu tes o f entities

2 .4 Summary

T o ensure that a system o f m easurem ent is im plem ented correc tly , an
understanding is required o f w hat the aim s o f the m easurem ent are T ypically there
a re th ree entities, resource, process, and product w hich a re to be evaluated. F o r
m easurem ent to be scientifically based, external a ttn b u tes need to be identified and
their corresponding in ternal attributes T he identification o f m easures to quantify
specific in ternal attributes w ill b e affected by the type o f in form ation required , m ost
m easures perform som e assessm ent o f the softw are, b u t a re usually claim ed to be
p a rt o f a prediction m odel M odels o f how these fram ew orks are defined are
typically Boehm and M cC all quality m odels o r the G Q M approach T he fo llow ing
tw o chapters give us a review o f the m ore com m on m easures applicable to the
product entity

23

3 Specification and design measures

3.1 Introduction

T he prediction and assessm ent o f softw are is a process w hich is not restric ted
to one stage o f the softw are developm ent life cycle It is im portant to define each
o f these activities as accurately as possible to identify m easures that a re phase
dependant A com m on softw are life cycle is the waterfall model Such a m odel has
been described by Boehm [Boehm 81], F igure 3-1

Requirements and Specifications - This phase should produce a com plete
specification o f the required functions and perform ance characteristics o f the
softw are It should also look at resource needs and p relim inary developm ent cost
estim ates

Product Design - T his phase should produce m ore detailed m odule specifications
including their expected size, the necessary com m unication am ong m odules,
algorithm s to be used, in terface data structures, and in ternal control structures. It
should h ighlight im portant constraints relative to tim ing o r storage, and include a
plan for testing the individual m odules

Programming/Coding - This phase should produce an im plem entation o f the m odules
in the chosen language together with unit testing and subsystem testing

System Integration - T his phase, usually com pleted by a group independent o f the

24

orig inal analysts and program m ers, should subject the integrated m odules to
extensive testing to ensure that all functional requirem ents a re m et E rro rs are , o f
course , corrected as discovered

Installation/Acceptance - This phase should deliver the product to the users
organisation for final acceptance tests w ithin the operational environm ent fo r w hich
i t is in tended D ocum entation m anuals are delivered , tra in ing is conducted, p rob lem s
recorded and corrected until the custom er accepts the product

Maintenance - T his is a continuing phase in w hich additional discovered e rro rs are
correc ted , changes in code and m anuals are m ade, new functions are added, and old
functions are deleted

Figure 3-1 T he w aterfall m odel o f the softw are life cycle

T hese stages are generally sequential but tend to be in terdependent. C hanges
from one phase filter through to cause significant changes in others M easures a re
not usually defined to fit neatly into the seven stages described, how ever, fo u r
general categories exist w hich contain related activities

25

Design - T his phase contains the R equirem ents/Specification , P roduct D esign , and
D etailed D esign phases A ll p relim inary w ork b efo re actual coding begins

Coding - T his phase is the sam e as the P rogram m ing /C oding phase C ode is w ritten
in th is phase

Testing - T his phase contains the System s Integration and Insta lla tion / A cceptance
phases. In ternal testing w ith sam e o r live test data is perfo rm ed in this phase

Maintenance - T his phase is the sam e as the M ain tenance phase Softw are is now
in operation

T his chapter describes som e o f the m ore com m on m etrics is in use under the
above classifications E m phasis is p laced in the la te r stages in p roduct ra ther than
process entities

3.2 Specification measures

In itia l costs and tim e estim ates are required at the earliest stages o f product
developm ent M easures during the analysis stage w hich attem pt to prov ide these
pred ictions are based on the system specification Since the specification describes
the requirem ents o f the system and not the im plem entation m ethod, quantitative
m easures o f the true function to be delivered , as perceived by the user, w ill be
p rov ided M ost research in to specification m etrics has been done by D eM arco

3.2 .1 DeM arco's "BANG" metric (specification weights)

Bang is a function m etric, an im plem entation-independent indication o f system
size T he inform ation conten t (size) o f the specification m odel is a d irect m easure

26

o f the quantity o f usable system functions to be delivered T he m easure is based on
the decom position o f each part o f the specification m odel dow n to their p rim itive
levels such as data elem ents, objects and relationships T he relationship betw een
these prim itives is then quantified using a w eighted factor

Bang is the earliest p red icto r o f size w hich is used to drive the cost m odel and
hence is only a very rough estim ator

Primitive Components of the Model

A com ponent o f the specification m odel is considered p rim itive i f it is not
partitioned into subordinate com ponents Each part o f the specification m odel
(functional m odel, data model and state transition m odel) is divided dow n to its
p rim itive level, see Table 3 1

Types o f primitives

• Functional p rim itives (Functional M odel)

• D ata Elem ent is the prim itive data item (character, num ber e tc). D ata
Elem ents are contained in the data dictionary com ponent o f the functional
m odel

• T he p rim itive com ponent o f retained data organisation is the object. An
object is a group o f stored data item s, all o f w hich characterise the sam e
entity (D ata M odel)

• T he prim itive com ponent o t retained data interconnectedness is the
relationship (D ata M odel)

27

Table 3.1
P a r tit io n in g vehicle Is used to p a r tit io n T o p ro d u c e as

p rim itiv es
Function netw ork System requirem ents Functional

prim itives
D ata dictionary System data D ata elem ents
O bject diagram Retained data O bjects
O bject diagram Retained data R elationships
State diagram C ontrol characteristics States
State diagram C ontrol characteristics T ransitions

T he fo llow ing p rim itive counts p rovide basic m easures for use w ith Bang.

F P count o f functional p rim itives lying inside the m an-m achine boundary
F M P count o f m odified m anual functional p rim itives (functions lying ou tside the

m an-m achine boundary that m ust be changed to accom m odate installation o f
the new autom ated system)

DE- count o f all data elem ent
D E I count o f all input data elem ents
D E O count o f all output data elem ents
D E R count o f data elem ents retained (stored) in autom ated form
OB count o f objects in the retained data model
R E count o f relationships in the retained data model
ST count o f states in the state transition model
T R count o f transitions in the in the transition m odel
TC, count o f data tokens around the boundary o f the ilh functional p rim itive

(evaluated for each prim itive) , a token is a data item that need no t be
subdivided w ithin the prim itive

RE, count o f relationships involving the ith ob ject o f the retained data
m odel(evaluating for each object)

28

D eM arco identified tw o system s classifications with w hich Bang could be used.

(a) Function strong system s
(b) D ata strong system s

T he form er relates to system s that can be thought o f alm ost entirely in term s
o f the operations they perform on data T he latter relates to system s that can be
thought o f in term s o f the data they act upon, the data groupings and the
in terre la tions ra ther than the operations

(a) F o rm u la tin g B ang fo r F u n c tio n -S tro n g System s

T he princip le com ponent o f Bang fo r function-strong system s is F P
H ow ever som e functions cost m ore to im plem ent than o thers V ariations ex ist in
both size and com plexity which m ust be adjusted for in the m odel

(1) C orrecting for V ariations in Function Size

C orrecting for size is based on the observation that the function m odel has
reduced the system to a series o f linked prim itive transformations O utput tokens a re
generated from input tokens in each transform ation T he inform ation con ten t o r size
o f a transform ation can be approxim ated as a function o f TC, the num ber o f tokens
in the transform ation Studies [Halstead 77] into how size varies w ith TC leads to
the follow ing relationship

Size {Primitive) a TC, * log2 (TC) (E q u a tio n 3 .1)

T able 3 2 provides w eighted values based on this form ula

29

D a ta W eig h tin g fo r S ize C o rre c tio n o f F u n c tio n a l P rim itiv e s

Table 3.2

TC; C o rre c te d F P In c re m e n t (C F P I)
2 1 . 0

3 2.4
4 4 .0
5 5.8
6 7.8
7 9.8
8 1 2 . 0

9 14.3
10 16.6

T he corrected FP (C FP) is now

C F P = Y , C F P I i (Equation 3.2)

(ii) C orrecting for V ariations in Com plexity

D eM arco reasoned that the com plexity o f prim itives do not vary greatly and
w hen they do they have a discernib le pattern. Sixteen well defined categories w ere
identified and a correction factor for each was given.

• Separation - prim itives that divide incom ing data item s
• Amalgamation - prim itives that com bine incom ing data
• Data direction - p rim itives that steer data according to a control variab le
• Simple update - prim itives that update one o r m ore item s o f stored data
• Storage management - p rim itives that analyse stored data, and act based on

the state o f that data
• Edit - p rim itives that evaluate the net input data at the m an-m achine boundary

30

• Verification - p rim itives that check for and repo rt in ternal inconsistency
• Text manipulation - p rim itives that deal w ith text strings
• Synchronization - p rim itives that decide w hen to act
• Output generation - p rim itives that form at net output data flow s
• Display - p rim itives that construct tw o-dim ensional outputs (graphs, p ictures)
• Tabular analysis - p rim itives that do form atting and sim ple tabu lar reporting
• Arithmetic - p rim itives that do sim ple m athem atics
• Initiation - p rim itives that establish starting values o f stored data
• Computation - p rim itives that do com plex m athem atics
• Device management - p rim itives that contro l devices adjacent to the com puter

boundary

T ab le 3 3 contains a suggested set o f correction factors fo r these categories

Table 3 .3

C o m p lex ity W e ig h tin g F a c to rs b y C lass o f F u n c tio n

C lass W eig h t C lass W eig h t
Separation 0 6 S ynchronization 1 5
A m algam ation 0 6 O utput

G eneration
1 0

D ata D irection 0 3 D isplay 1 8

S im ple U pdate 0 5 T abular
A nalysis

1 0

Storage
M anagem ent

1 0 A rithm etic 0 7

E dit 0 8 Initiation 1 0

V erification 1 0 C om putation 2 0

T ext
M anipulation

1 0 D evice
M anagem ent

2 5

C om plexity w eighting factors a re environm ent dependent R elative

31

com plexity o f arithm etic and form atting functions fo r exam ple w ould b e d ifferen t in
C and C obol T he w eighting factors given need to be altered to suit the p ro jec t's
developm ent environm ent

(b) Formulating Bang for Data-Strong Systems

T his varia tion o f Bang relates to system s that have a significant database and
m ost o f the e ffo rt is allocatable to tasks having to do w ith im plem enting the database
itse lf T he m ost obvious p rim itive count to base m easurem ent analysis upon is OB,
the count o f objects in the database A djustm ents are required to account fo r the
d ifferen t costs o f im plem enting d ifferen t objects T able 3 4 p rovides w eights for
each ob ject as a function o f its relatedness to o ther objects

Table 3.4

Relation W eighting of Objects
RE, Corrected OB Increment (COBI)

1 1 0
2 2 3
3 4 0
4 5 8
5 7 8
6 9 8

B ang is the sum o f the C O B I over all objects

Bang . OB
(Equation 3.3)

Prediction using Bang

T his m easure is a quantitative ind icator o f the net useable function from the
u se r 's po in t o f view It can be used early in the life cycle to p red ict e ffo rt and can
b e used as in co st m odels to p red ic t developm ent costs Below are tw o algorithm s
p rov ided by D eM arco fo r the com putation o f Bang T he first is for function-strong
system s and the second is fo r data-strong system s

A L G O R I T H M 1 : C o m p u t a t i o n o f B a n s f o r F u n c t i o n - S t r o n e S y s t e m

Set initial value o f FUNCTIONBANG to zero
For each functional primitive in the function model

Compute Token Count around the boundary
For each incoming our outgoing data flow

1 Determine how many separate tokens o f data are visible within the primitive
This is not always the same as the count o f data elements I f a group o f data
elements can be moved from input to output without looking inside, it
constitutes only a singe token

2 Write Token Count at the point where the data flo w meets the primitive

Set Token Count = sum o f tokens noted around the boundary

Use Token Count to enter Table 3 1 and record CFPI from the table
Allocate prim itives to a Class
Access Table 3 2 by Class and note the associated Weight
Multiply CFPI by the accessed Weight
Add Weighted CFPI to FUNCTIONBANG

33

ALGORITHM 2: Computation o f Bane for Data-Strone Systems

Set initial value o f DATABANG to zero.
For each object in the retained data model:

Compute count o f relationships involving that object. Use the relationship
count to access Table 3 .3 and record C0B1 accessed.
Add COBI to DATABANG.

It is w orth rem em bering that m easures derived from the specification m odel
a re only as good as the m odel itself. I f it specifies som ething o ther than the system
requ ired , the m etrics w ill also be astray. A lso it the requirem ents change and the
m odel is not revised then the m easures w ill be out o f data and useless.

3 .2 .2 Function points

F unction points [A lbrecht 79] are im plem entation independent m easures
useable in the early stages o f the softw are life cycle. As w ith Bang, function points
use the requirem ents specification and are a w eighted sum o f counts o f user v isib le
p roduct features. T he aim o f function points is to prov ide a m easure o f size w hich
can be used to d rive cost m odels such as C O C O M O . T he follow ing points should
be rem em bered befo re using function points.

• T hey cannot be derived w ithout a full softw are system specification, a user
requirem ents docum ent is not sufficient.

• D ifferences o f 400 to 2000% in the num ber o f function points counted a t the
start and finish o f system developm ent are not uncom m on. T his can be due
to the introduction o f non-specified functionality , o r the fact that the level o f
detail in the specification is coarser than that o f the im plem entation.

34

T herefo re the num ber and com plexity o f inputs, outputs, and enquiries w ill
be underestim ated. U sing function poin ts fo r pred iction m ay not alw ays be
useful.

• E lem ents o f subjectivity are required for function po in t counting w hich
elim inates the possibility o f autom ating the process. D etailed counting rules
are required to ensure sufficient levels o f consistency.

• T he counting ru les need tailoring to the specific analysis m ethods used.
[R atcliffe e t al 90].

• Function points have been successful in D P applications bu t their use in real
tim e and scientific applications is controversial.

• W ithin function points there is an adjustm ent based on the technological
com plexity o f the product. T his involves assessing the im pact o f 14 factors
on a six-point ordinal scale. T his in troduces m ore subjectivity .

Computing the Value FP

T he first step in obtaining a value for F P is to first com pute the unadjusted
function count U F C . T he num ber o f ' item s’ o f the fo llow ing types m ust be counted:

External inputs -

External outputs -

External enquiries -
External files -
Internal files -

T hose from the user w hich prov ide d istinct application-
oriented data. Exam ples are file nam es and m enu selections.
T hese do not include enquiries.
T hose to the user w hich prov ide distinct application-oriented
data. E xam ples are reports and m essages.
T hese are in teractive inputs requiring som e response.
T hese are m achine readable interfaces to o ther system s.
T hese are logical m aster files in the system .

35

H aving identified the various types o f item s, each is given a subjective
'com plex ity ' rating o f e ither simple, average o r complex W eighting factors fo r each
are given m Table 3 5

T ab le 3 .5

W eighting Factors for FP ordinal scale
IT E M W eig h tin g F a c to r

Sim ple A verage Com plex
E xternal input 3 4 6

External output 4 5 7
U ser inquiry 3 4 6

External file 7 1 0 15
Internal file 5 7 1 0

In theory there are 15 d ifferent varieties o f item s (each five types m ultiplied
by the three levels o f com plexity) so we have

15UFC = ^ (No o f items o f variety i) * (weight) (E q u a tio n 3 .4)
(=1

T he adjusted function point count FP is derived from U FC by m ultiplying it
by a technical complexity factor T C F

FP = UFC * TCF (E q u a tio n 3 .5)

Factors Contributing to Complexity (TCF)

F I R eliable back-up and recovery F2 D ata com m unications
F3 D istributed functions F4 P erform ance

36

F 5 - H eavily used configuration
F 7 O perational ease
F 9 C om plexity interface
F l l . Reusability
F 13 : M ultip le sites

F 6 O n-line data entry
F 8 O n-line update
FIO C om plex processing
F12 Installation ease
F 14 F acilita te change

Each factor is rated on a 'sca le ' 0 ,1 ,2 ,3 ,4 ,5 , w here 0 m eans it is irre levan t
and 5 m eans it is essential T hen T C F is

T C F varies from 0 65 if all F, = 0 to 1 35 if all Ft = 5

O ne fault with function point is that it includes subjective notions o f
com plexity , both internal and external I f these m easures could be perform ed
separately then it m ight be possible to develop a m easure that provides a m easure o f .
true functionality

3 .3 D esign m odels

A design is a m odel o f a particu lar way o f m eeting the system requirem ents.
A design should be a form al representation o f the softw are to be im plem ented and
it should be thought o f as a rigorous b lueprin t for construction It m ust be recorded
and kept up to date throughout the duration o f the p ro ject

"Design is the determination of what modules & what intermodular interfaces
shall be implemented to fulfil the specified requirements " [D eM arco 8 8]

P rogram and system designs are based around decom position dow n to the
m odule level T he product o f the decom position into m odules can be seen as the

14

TC = 0 6 5 + 0 1 £ F , (E q u a tio n 3 .6)
1=1

37

design module T he com pleted design m odel consists o f a partition ing o f the w hole
in to its m odules and a census o f all in terfaces betw een these m odules T h e design
m odel is com plem ented by a set o f in ternal m odel specifications d escnb ing their
contents

T he follow ing points indicate som e im portan t relationships betw een design
and im plem entation o f design

• O ne to one relationship betw een m odules indicated in the design &
m odules im plem ented in the code

• O ne to one re lationship betw een in term odular connections indicated
in the design and in term odular references (C A LLS etc)

• O ne to one relationship betw een in term odular data in terfaces indicated
m the design and in term odular shared data im plem ented m the code

T o sum m arise, designs should describe all data in terfaces betw een m odules
M any p ro jec t team s fail to com plete the design stage by ignoring in ter-m odule
in terfaces Such deficiencies deprive developm ent team s o f im portan t feedback
regard ing the valid ity o f the partitioning and hence the design D eM arco outlined
the follow ing test to see i f design was correctly perform ed (F igure 3-2)

The Did-We-Reallv-Do-Desien Test

1 Put the design into a sealed envelope
2 Give the completed software to an outside expert, someone who is not

fam iliar with the original design
3 Ask your expert to derive the design implied by the implementation
4 Compare the derived design with the design in the envelope
5 I f the two are not identical, you didn't really do design

38

—^Requirement ^ ^ Result

Declared 1 Compare)

Design) Design

\ Re-
\ construction

\) of the
/ \ J Design
/Re- y
1 construct)

DesigrT^f Code Package V J Implemented ^ System

Figure 3-2 T he D id-W e-R eally -D o-D esign T est

A com m on technique fo r design m odelling is to represen t a design as a
h ierarchy o f m odules (F igure 3-3)

T he significance o f such a hierarchy is that the m anager starts the m anaged
m odel by passing contro l to it. T he m anaged m odel does its w ork and then re turns
con tro l to its m anager O ne m odule in the hierarchy is w ork ing a t any given tim e.
T rad itionally contro l is passed up and dow n, never sidew ays

39

Invocation is the act o f passing control to a subordinate m odule A ll the lines
connecting m odules on the h ierarchy represent invocations and all are show n T he
hierarchy is a statem ent o f all the possible invocations in the system I f tw o m odules
share data o r control param eters then they are said to be coupled This in form ation
is show n along side the lines o f invocation on the hierarchy

This denotes a switch
y f

This denotes data Q "

Figure 3-4 Invocation conventions in m odule hierarchies

T o develop m eaningful design m easures we m ust ask the follow ing question When
is the partitioning into modules com plete? D eM arco proposed the follow ing rule:

Rule: The design partitioning is complete when the modules are small
enough to be implemented without any further partitioning A simple
test o f adherence is that no implemented module shall need an
internally named procedure

So far nothing has been suggested about how you ought to design system s o r
w hat is a good o r bad design, although much w ork has been done by Y ourdon in this

40

area [Y ourdon et al 79] T his section provides a understanding o f w hat a design
m odel is so that the follow ing section relating to specific m easures m akes sense.

3 .4 D esign m e a su re s

A s p ro jects approach conclusion the prediction o f the cost, size and e ffo rt o f
the system should be converging to their actual values F o r this to happen m ore
accurate projections are required as the developm ent p roceeds as show n in F ig u re 3-
5 F o r exam ple, cost predictions m ade during the design phase m ust im prove on
those m ade during the analysis phase M easures o f p roduct cost based on the design
m ust be m ore reliable and precise Initial estim ates o f function are based on Bang
w hich are im plem entation independent and not related to how the specification is
im plem ented

Projected

Costs

F ig u re 3-5 Im proving cost prediction over tim e

41

3.4.1 Design weight

To im prove on Bang we need to incorporate a m easure which includes the
effo rt im plied in the design This im plem entation-dependent pred icto r is usually
called the Design Weight The follow ing steps are required to produce this p red icto r.

1 C alculate p rim itive m etrics (derived from the design m odel)
2 C alculate com posite pred ictor (design w eight) using a w eighted

form ulation
3 C ollect data from a range o f projects
4 Produce a prediction line equation
5 Projection o f new developm ent costs from the prediction line equation

and the observed value o f the predictor

Primitive Design Measures

T he design m odel should contain a hierarchy o f m odules w ith all connections
and couples indicated, and a design data dictionary describ ing all data item s (couples,
tables, files, database(s), and structured data types) T he follow ing are basic
m easures observable from such a model

M O C ount o f m odules

C O ’ C ount o f in term odular norm al connections (a norm al connection is a reference
from inside one m odule to another whole m odule, that is, a C A L L o r
PE R FO R M o r o ther subroutine invocations

DA, C ount o f data tokens explicitly shared along norm al connections to and from
m odule i (Evaluated for each m odule)

SW, C ount o f contro l tokens (sw itches) shared along norm al connections to and
from m odule i (Evaluated for each m odule)

42

E N C ount of encapsulated data groups in the design m odel (an encapsulated data
group is a data area m ade available to a lim ited num ber o f m odules)

EW , C ount o f encapsulation w idth o f data group i (w idth is defined as the num ber
o f m odules with access to the group)

ED , C ount o f encapsulation depth o f data group i (depth is defined as the num ber
o f data elem ents contained in the group)

PA C ount o f pathological connections (a pathological connection is a reference
from inside one m odule to part o f another m odule, that is, a G O T O to an
internal label)

PD, C ount o f pathological data tokens shared by m odule i (a pathological data
token is one that is obtained from a m odule not connected to m odule i by any
norm al connection)

PS, C ount o f pathological control tokens shared by m odule i

U sually, if it is im possible to provide counts fo r the prim itives listed then the
developers have probably gone about the design in such a way that D A , SW , P D ,
and PS are not apparent, le they have concentrated on the control structure ra th e r
than on the data sharing It is im portant to exam ine the volum e and com plexity o f
the interfaces

D esign w eight collects these prim itive m etrics together to use as a p red ic to r
for rem aining im plem entation effort, coding and testing Initial efforts to use M O ,
the count o f m odules, as a pred ictor o f effort proved qu ite disappointing as m odules
o f sim ilar size require d ifferen t efforts, usually relating to how com plex they are.
It is generally thought that effort required in m odule design, coding and testing v a n es
w ith the num ber o f decisions in the m odule

43

Predicting Decision Count Inside Modules

A good estim ate o f the decision count w ithin a m odule is to assum e that the
in ternal structure o f each m odule is isom orphic to the data structure at its boundaries
[W arm er 76] F igure 3-6 gives the full set o f isom orphism s betw een data structure
and process structure

This data structure:

{A}

[B | C]

(D)

Implies this process structure:

Yes / \ i s there a D

No

F ig u re 3-6 D ata and Process parallels

T he procedure for predicting decision counts from the data structure observed
a t the m odular boundary is

Start with the decision count = 0

1 Write down a data dictionary formulation of all data arriving at the module
boundary Express the tesult at the token level (fiom the viewpoint o f the
module)

44

2. Analyse the da ta structure o f the result, applying the fo llow in g rules

(a) For each iteration in the data structure, add one to the decision count

(b) For each two-way selection (Either-Or) in the data structure, add one
to the decision count

(c) For each n-way selection in the data structure, add n - 1 to the
decision count

(d) For each option (data item that may or may not be present) in the
data structure, add one to the decision count

T ab le 3 .6

M o d u le W eig h ts

D ecision C o u n t 0 1 2 3 4 5 6

T o k en
C o u n t

1 1 0 1 1 1 2 1 4

2 2 .4 2 6 2 9 3 3 3 7
3 4 .0 4 4 4 9 5 4 6 2 7 2
4 5 8 6 3 7 1 7 9 9 0 10 5 12 5
5 7 8 8 5 9 5 10 7 1 2 2 14 1 16 8

6 9 8 10 7 1 2 0 13 4 15 3 17 8 2 1 2

7 1 2 0 13 0 14 6 16 4 18 7 2 1 8 26 0

8 14 3 15 6 17 4 19 6 22 3 26 0 31 0

D esign w eight is sim ply the sum o f the M odule w eights over the set o f all
m odules in the design

45

Design Weight = ^ Module Weightt (Equation 3.7)

T he cost p red ic to r (w eight) o f each m odule is now a function o f the token
count a t its boundary , and the pred icted decision coun t inside T able 3 6 contains
a suggested set o f in itial values

3 .5 Summary

T he system life cycle developm ent m odel has been used as a partition for
m etrics, w hich allow s us to identify stage dependent m easures T his w aterfall m odel
enable the identification o f four general categories, D esign , C oding, T esting and
M ain tenance So far little research has been perfo rm ed to prov ide design m easures,
w hich, qu ite often is seen as a relatively m inor stage, how ever such m easures
(design and specification m etrics) allow early pred ictions for softw are cost m odels
M ost notably D eM arco 's Specification and D esign w eight m easures a re am ong the
few that curren tly ex ist A s the coding phase begins how ever, a w ider range and
varie ty o f m easures can b e im plem ented, som e o f w hich w ill be discussed in the
follow ing chapter

46

4 Product attribute measures

4.1 Introduction

In chapter 3 the w aterfall m odel o f the system life cycle was in troduced.
Specification and design m easures associated with the early stages o f this life cycle
w ere described and indicated to be an essential part o f the prediction o f softw are
p roduct size P redictions o f softw are size are then used to d rive cost m odels such
as C O C O M O to pred ict e ffo rt and cost o f p roduct developm ent This chapter w ill
concentrate on m easures associated with the later stages o f the softw are life cycle

O f the three entities defined relating to softw are products in chapter 2 ,
(P roduct, P rocess, and R esource) P roduct is the m ost re levan t to this research . T he
IS 0 9 1 2 6 quality attributes outlined previously are based on in teresting ex ternal
p roduct attributes and associated in ternal attributes. T his chap ter focuses in on w ell
know n and im plem ented internal attributes

4 .2 Internal product attributes

In ternal p roduct attributes are attributes o f softw are (including docum entation)
w hich a re dependant on the product itse lf This section is in tended to look in detail
a t those attribu tes, and suggested m ethods o f m easurem ent Specifically those related
to textual, structural and arch itectural com ponents o f softw are

47

Internal attribu tes a re considered to be the key to im proving softw are quality
w hich is one o f the main aim s o f softw are engineering In ternal attributes m ay be
used fo r quality control and assessm ent and are the building blocks fo r m easuring
com plexity

It is generally agreed that the use o f softw are engineering m ethods leads to
the construction o f products w ith certain structural p roperties T hese p roperties are
characterised by in ternal attributes such as those proposed in IS 0 9 1 2 6 w hich w ere
discussed in section 2 1 2 T here is a w ide consensus am ong softw are engineers that
these in ternal structural a ttributes w ill help ensure increased quality in the ex ternal
attributes expected by softw are users Thus the assum ption that 'g o o d ' in ternal
structure leads to 'g o o d ' external quality is fundam ental to m ost softw are quality
m odels W e can conclude.

'Axiom' o f software engineering
Good internal structure — > Good external quality

W e m ust how ever, realise that softw are engineering only provides the
fram ew ork for producing 'g o o d ' softw are by encouraging the use o f structured
techniques, le. p rojects in w hich the best com m on p ractice techniques a re applied
rou tinely are 'm ore likely ' to have a satisfactory end p roduc t than those developed
'ad -h o c ' H ow ever, none o f these m ethods can guaran tee the level o f quality o f
external attributes since so much depends on the how these m ethods are applied to
individual problem s

A lthough there is an intuitive feeling regard ing the connection betw een the
in ternal structure o f softw are products and external p roduc t attribu tes, there is very
little scientific evidence to establish specific relationships T h is is perhaps caused by
the difficulties in setting up relevant experim ents and perhaps a lack o f understanding
o f how to m easure im portant internal product a ttributes p roperly

48

4.3 Textual measurement

Initial coherent softw are m easurem ent research w as perform ed by M aurice
H alstead. H alstead 's w ork was based on the idea that softw are com prehension w as
related to a process o f mental m anipulation o f p rogram tokens. T his w as the first
a ttem pt at deriv ing softw are m easures from a theory , and the first set o f m easures
used in an industrial context. M ost textual based m easures are concerned w ith code
size and volum e. T hese issues are discussed below along with typical m easures
associated with them .

T he size o f a program is an im portant m easure fo r three reasons. T he first
is that it is easy to com pute after the program is com pleted , the second is because
it is the m ost im portant factor for many m odels o f softw are developm ent, and th ird ly
that p roductiv ity is norm ally based on a size m easure.

W hile 's ize ' w ould seem to be a ra ther straight forw ard a ttribu te to assess w e
find that it becom es quite com plex when notions o f e ffo rt, functionality , com plexity ,
redundancy and reuse becom e part o f the m easurem ent. T he reason fo r the
com plexity is that size is norm ally used in the assessm ent o f cost, p roductiv ity , and
effort. T he problem seem s to be defining a set o f fundam ental attributes w hich w ill
cover the notion o f size in softw are. T here appear to be three such attributes o f
softw are: length , com plexity and functionality. T he state-of-the-art fo r size
m easurem ent is that a) there is som e consensus v iew on m easuring length o f
p rogram s but not specifications or designs, b) there is som e w ork on m easuring
functionality o f specifications (which applies equally to designs and program s), bu t
c) there is little w ork on m easuring problem com plexity o ther than w hat has been
done under com putational com plexity.

4 .3 .1 L ines o f code

T he N um ber o f Lines o f Code (N LO C) is the most used measure of source

49

code program length H ow ever, there is a real need fo r a standardised defin ition o f
'a line o f code' F o r exam ple, do w e include com m ented lines and variab le
declarations, and w hat happens if a line contains m ore than one instruction9 To
avoid such am biguity , C onte provided the follow ing definition

"A line o f code is any line o f program text that is not a comment or
blank line, regardless o f the number o f statements or fragments o f
statements on the line This specifically includes all lines containing
program headers, declarations and executable and non-executable
statements " [C onte et al 86]

T o show that w e now refer to non-com m ented lines o f code w e use the
abbreviation N C LO C (or ELO C - effective lines o f code) T his definition how ever,
loses som e valuable length inform ation If w e w ish to determ ine the num ber o f
pages required to p rin t the program source code o r w hat storage space is required
fo r a p rogram , then w e need to know the length o f the p rogram expressed in term s
o f com m ented lines o f code

C LO C is the num ber o f lines o f com m ented p rogram text U sing this w e can
define total length,

LOC = NCLOC + CLOC (E q u a tio n 4 .1)

This way w e can define indirect m easure such as the density o f com m ents m
a program (CLOC/LOC) I f w e are seeking a single m easure fo r the length o f a
p rogram then LO C is p referab le to N C LO C H ow ever in general it is useful to
g a ther both m easures since they are m easuring d ifferen t th ings I f w e continue to
look fo r a 'p u re 1 notion o f length then w e m ust consider the follow ing m easures
w hich are classified as ratio m easures

• M easure the length in term s o f the num ber o f bytes o f storage
required for the text.

50

• M easure the length in term s o f the num ber o f characters C H A R in the
program text

T he good thing about ratio scales is that in p rinc ip le w e can re-scale each in
term s o f the o ther F o r exam ple if a is the average num ber o f characters p e r line
o f text then w e have the follow ing re-scaling’

IO C = CHAR (E q u a tio n 4 .2)
a

4.3 .2 Predicting length using function points

It is usually required to predict the attribute length early on in the p roduct life
cycle since it is easily understood and can be used in cost prediction m odels. O ne
w ay o f predicting length is to relate length to d ifferent life cycle p roducts O ne such
system involves taking the function point count obtained from the specification and
applying a language dependent expansion ratio , to obtain an estim ate o f the lines o f
code required A lthough such a m ethod may not be en tirely accurate it does p rov ide
a reasonable estim ate i f the expansion ratio is based on historical p roduct
developm ent data

Expansion ratio for language X

Size o f product at Specification stage 1 (in FP)

Size o f product at code stage (in LOC)

T he length in term s if LO C may be estim ated from the form ulas equation 4 3 ‘

51

m
LOC = a £ s ,

1=1

(Equation 4.3)

W here S, is the size o f the module 1 (measured in FP), m is the number of
modules, and a is the function point to code expansion ratio recorded from previous
projects using the same specification and code conventions This is a very general
prediction system where the model parameters are estimated by the user

Attempts to establish empirical relationships between length o f program code
and length o f program documentation [Walston et al 79] led to the following
observation

D = 4 9 L 101 (E quation 4.4)

W here D is the length o f documentation measured in pages and L is the
length o f program code measured in thousands o f LOC This is only good for rule
o f thumb estimations M ore accurate results are possible when data is collected for
specific environments

4 .3 .3 Token based m easures

H alstead's method of code analysis is based on the identification o f tokens
within the program text Using these tokens he formalised a set o f measures to
determine the Volume o f a module or program in terms o f its Length and
Vocabulary

Volume = Length x log2 (Vocabulary)

Length = N{ (count of all instances o f all used operators) +
N2 (count o f all instances o f all used operands)

52

Vocabulary = n] (count o f unique operators used) +
n2 (count o f unique operands used)

The two categories of tokens identified were operators and operands. Any
keyword in a program that specifies an action is considered an operator, while a
symbol to represent data is considered an operand. M ost punctuation marks are also
categonsed as operators Variables, constants and labels are operands Operators
consist o f arithmetic symbols (such as + , -, and /), command names (such as
W HILE, OR, and READ), special symbols (such as assignments, braces, and
parentheses), and even function names

The following measures formalise the most commonly used counts associated
with program code, based on Halstead's token identification

1 Vocabulary size
n = n: + n2 (E quation 4.5)

Comments not included

F igure 4-1 Behaviour o f N as a measure o f program legibility

53

2. Program length:

N = Nj + N2 (Equation 4.6)

Total use o f operands and operators. This is sometimes used as an indicator
o f the legibility of a program. As N increases, the time required to understand the
program also increases. Figure 4-1 graphs this relationship to give an indications of
the relationship between program volume, as defined above, and the estimated
legibility o f the program.

3. Estimating length:
N = n1 log2 n1 + n2 log2 n2 (Equation 4.7)

4. Program volume:
V = N log2 n (Equation 4.8)

Minimum volume of bits required to encode a program with a vocabulary o f
n operand and operators and with length N.

5. The potential volume:

This is used to compute the algorithm 's smallest possible volume. It would
be necessary to use a language where all actions were defined as procedures, eg:
y = sin(x).

n = ideal vocabulary where
i) n* — function name and the assignment (2)
ii) n2* = potential number o f input/output operands

K* = (2 + n2*) log2 (2 + n2*) (Equation 4.9)

V* is a constant for a given algorithm independent o f language.

54

6 Program level

L = — Where 0 < L <. 1 (Equation 4.10)V

The 'D istance' between the program volume Vand the potential volume V*,
is sometimes called the level o f abstraction When L = 1 we have the ideal
situation, but the closer to zero that we get the greater number o f operands and
operators used The value o f 1 may seem ideal, but we must take into consideration
the legibility o f a program For languages like C it becomes very hard to interpret
minimalist code

7 Estimator o f program level

I - — * I j L (Equation 4.11)
«1 ^2

8 The programming effort

This is related to the number o f 'elementary mental discriminations' required
to code the program It is derived from V = N log2n (the number o f psychological
"moments" required to code the program, and D = 1/L (program difficulty)

E = — (Equation 4.12)L

This measure is linked to the number o f bugs in a program M ore mental
effort is required the more errors there are in the code This can only be used when
a lot a data is available on the real number o f bugs in a program A curve may be
plotted to show E verses bugs

9. The coding time

Tim e to code a preconceived algorithm in the language used S is the number

55

of psychological 'moments' per second and it has been shown [Stroud 67] that it is
linked to coding time Typical values o f S are usually low about 7 or 8

5 <. S ¿20 (E quation 4.13)

10 Language level.

This is the aptitude of a language to express an algorithm It is often easier
to solve some problems in one language rather than another If the minimum volume
V * goes up then the program level varies in proportion Consequently the constant
a can be defined as follows

a = L * V* = Lz * V (E quation 4.14)

Table 4.1

Values fo r a fo r d ifferent languages

Language M ean a
English 2 16

PL/1 1.53
Algol68 1 21
Fortran 1 14

Ass SDC 0 88

11 Approximation o f coding time

T = — (E quation 4.15)5

The value of S can be adjusted over time as more data becomes available
regarding actual coding time

56

4.4 Structural measures

A substantial amount o f research has been devoted to the study o f measures
derived from the control flow structure o f a program. Control structure attributes
are usually modelled by directed graphs whose nodes correspond to program
statements and where the edge from one node to another indicates a flow o f control
between corresponding statements These directed graphs are usually called control-
flow graphs or just flowgraphs An example o f a program and its flowgraph are
shown in Figure 4-2

10 INPUT P
'* 10

20 DIV-2
\
1
/
» 20

30 LIM-INT (sqr(P)) •> 30

40 FLAG = P/DIV-INT(P/DIV) \

50 IF FLAG - 0 OR DIV - UM THEN 80
■

60 DIV-DIV+ 1 50̂
I f)

70

80

GOTO 40

IF FLAG <> 0 OR P < 4 THEN 110

oT"

F 60

90

90 PRINT DIV; "smallest factor of"; P;

100 GOTO 120

110 PRINT P, "is prime"
120

120 END

F igure 4-2 A program and its corresponding flowgraph

All programs can be structurally decomposed into primitive components
These decompositions may be used to define a wide range o f so-called complexity
and structural measures The theory o f control flow structure is formalized using
graph theory Wilson provides a reference to such graph theory as needed [Wilson
72]

57

4.4.1 Flowgraph model of structure

A g r a p h consists of a set o f points { n o d e s) and line segments (e d g e s) . In a
d i r e c t e d g r a p h each edge is assigned a direction indicated by an arrowhead on the
edge. The following is a good definition o f a f l o w g r a p h

" A F l o w g r a p h i s a d i r e c t e d g r a p h i n w h i c h t w o n o d e s , t h e s t a r t , a n d

t h e s t o p n o d e , o b e y s p e c i a l p r o p e r t i e s t h e s t o p n o d e h a s o u t - d e g r e e

z e r o , a n d e v e r y n o d e l i e s o n s o m e w a l k f r o m t h e s t a r t n o d e t o t h e s t o p

n o d e "

Certain flowgraphs appear often enough to merit special names Figure 4-3
depicts the flowgraphs P0, P ,, D0, D ,, D ,, D3, D4, D5, and Cn, which we will now
refer to by name

58

4.4.2 Defining program structure

Within structured programming it is often stated that a program is structured
if it is 'built up' using only a small number o f allowable constructs These are
normally said to be sequence, selection, and iteration as shown m Figure 4-4 [Bohm
et al 66]. However, we find that in many languages we are forced to implement
what are considered structured constructs by using GOTO statements For example,
m Pascal GOTO's are used to implement the construct D4 if we do not wish to
duplicate code unnecessarily We require a more formal definition o f program
structure which can support many different views and a method for determining the
level o f structure in an arbitrary flowgraph

First we nominate a family o f prime flowgraphs The set o f S-graphs consists
o f the following flowgraphs

• Each member of S (called the basic S-graph)

59

• Each flowgraph which can be built recursively from the family S using only
the operations o f sequence and nesting

We can now define a set o f control structures that are suited for particular
applications By definition, any control structure composed o f this nominated set
will be 'structured' in terms o f this local standard, le will be S - s t r u c t u r e d

If we let SD = { P lf D0, D , }, then the class o f SD-graphs is the class of
flowgraphs commonly know as D - s t r u c t u r e d graphs Bohm 's results assert that every
algorithm can be encoded as an SD-graph Although SD is sufficient, it is normally
extended to include the structures D, (lf-then-else) and D3 (repeat-until)

4 .4 .3 Decomposing flowgraphs

Associated with all flowgraphs are decomposition trees which describe how
the flowgraph is built by sequencing and nesting primes An example o f a flowgraph
F and its decomposition tree is shown in Figure 4-5 Fenton provides the following
theorem and also provides a method for determining the unique decomposition tree
o f a flowgraph [Fenton et al 86]

P r i m e d e c o m p o s i t i o n t h e o r e m E v e r y f l o w g r a p h h a s a u n i q u e

d e c o m p o s i t i o n i n t o a h i e r a r c h y o f p r i m e s

Flowgraph construction and decomposition is normally generated
automatically by most static analysis tools, eg QUALMS [Wilson et al 88]

It is easy to determine if an arbitrary flowgraph is S-structured for some
family o f primes S , by computing the decomposition tree and seeing if any o f the
nodes are not a member of S or Pn If this is true then the flowgraph is not an S-
graph We can see that the decomposition theorem shows that every program has
a quantifiable degree o f structure, characterised by its decomposition tree.

60

4 .4 .4 F low graph based m easures

A large number o f interesting measures may be defined based on the
decomposition tree These measures are usually defined m terms o f their effect on
primes and the operations on sequencing and nesting

(i) D epth of nesting

To formulate a measure for the depth o f nesting within an object a (such as
a program modelled by a flowgraph F), it is required to observe a in terms o f its
effect on primes, sequences and nesting

Prim es: The depth o f nesting o f the prime Pj is zero, and the depth o f nesting
of any other prime F is equal to one Thus, a (P !)= 0 and if F is a
prime * P[then a(F) = 1

Sequence: The depth of nesting o f the sequence F j, , F n is precisely the

61

maximum of the depth of nesting of F,s. Thus

a (F ,; , F n) = max (a (F j) , , a (F n))

Nesting: The depth o f nesting o f the flowgraph F (F ,, , Fn) is equal to the
maximum of the depth of nesting of the F,s plus one because of the
extra nesting level in F Thus.

a (F (F j, , F J) = 1 + max (a (F ,) , , a (F n))

To see how we use this to calculate the value a for a flowgraph, consider the
flowgraph F in Figure 4-3

F = D, ((Dj, P j, D2), D0(D3))

Thus we compute
a(F) = 1 + max (a O ^ , P „ D2), a (D0(D3)))

= 1 + max (max (« (D ^ , a ^) , a (D 2)), 1 + a (D 3))
= 1 + max (max (max (1, 0, 1) ,2)
= 1 + max (1, 2)
= 3

Fenton went on to define the properties o f hierarchical measures as stated m
Table 4 2

Table 4.2
If the following characteristics uniquely determine m for any S-
graph F

M l m(F) for each F element of S,
M2 The sequencing function(s),
M3 The nesting functions h, for each F element o f S

Then we say that m is hierarchical

62

The hierarchial measures may be automatically generated for a program once
we know M l, M2, M3 and the decomposition tree

(ii) Length measure

Defining a length measure V which provides a formal measure
corresponding to the number of statements in a program where the latter is modelled
by a flowgraph

M l: v(P,) = 1, and for each prime F * P 1; v(F) = p + 1 where p is the number
of procedure nodes in F

in
M2: v (F „ , ,Fn) = £ v(F)

(=1

n
M3. v(F (F ,, ,Fn)) v (F ') f o r e a c h p r i m ei=1

Using our earlier example in Figure 4-2 we find that

v(f) = 1 + v(Dj, P „ D2) + v(D0(D3))
= 1 + (v (D ,)+ v(P,) + v(D2)) + (1 + v(D3))
= 1 + (2 + 1 + 1) + 1 + 1
= 7

Once a hierarchial measure has been characterised in terms o f the conditions
M l, M 2, M3 then we have the minimum information needed to calculate the
measure for all S-graphs

(iii) Simple hierarchical measures

Number o f node measure V
M l n(F) = ft nodes in F for each prime F.

63

n
M2 n (F „ , ,F n) = E (n(F) - n +1)

1=1

M3 n(F(F„ , Fn)) = n (f) + E W ~ 2n)
1=1

Number of edges measure 'e'
This is a ratio measure o f one particular view of size

M l e(F) = #edges o f F for each prime F
n

M 2 e(F„ , F „) = Y , ' (F)
1= 1

n
M3 e(F(F„ , F J) = « (i) + E W O “ '

1=1

Number of occurrences of names primes measure 'p'
M l p(F) = 1 if F is prime to be counted, else 0

n
M2 p (F l, , F n) = £ p(F)

1

n
M3 p(F(F„ , F„)) = p(F) * E PlF)

1=1

Is D-structured measure 'd'
This measure yields the value 1 if the flowgraph is ’D-structured' and 0 if its

not This is a nominal measure

M l d(F) = 1 for Pj, D0, D[, D2, D3, D4, D4 and otherwise 0
M2 d (F „ , Fn) = mm{d(F,), , d(Fn)}
M3 d(F(F, , F n)) = mm {d(F),d(F,), , d(Fn)}

64

(iv) Structural complexity

M cCabe's cyclomatic complexity number v measures the number o f linear
independent paths in a strongly connected program flowgraph F [McCabe 76] (for
consistency F will be continued to be used even though this measures is historically
known as v(G)). It is formalised as

v(F) = e - n + 2 (Equation 4.16)

for a flowgraph F with e arcs and n nodes

As the value o f v(F) increases it is implied that more paths require testing,
le a lot o f arcs compared to nodes In Figure 4-7 we find a relationship between
the num ber o f basic paths and v(F) We need to find a point where every small
increase in v(F) results in a large increase in the number o f paths to test This upper
lim it was set at 10 by M cCabe on the basis o f empirical evidence

65

v(F) relationships

F igure 4-7 Graphing the relationship between v(F) and basic paths

v(F) measures the number o f basic paths in a component We can say that
it represents the minimum number o f tests required to cover the graph (it should be
noted that this does not mean 100% test coverage)

66

Figure 4-8 shows the number o f basic paths in a component This shows the
number o f uniquely different paths possible Paths which can be derived from others
are not considered basic, and hence are not included in this count In the example
provided you should note that there are only 3 basic paths, the fourth can be derived
from the first three

Since we have identified a number of basic constructs within programming,
it is an easy task to give the values of v(F) for their flowgraphs (see Figure 4-9) All
values are predetermined with the exception o f the CA SE statement were we need
to know the number o f cases provided

If a program is truly structured then we can say that v(F) is reducible to one.
This is because we have only one input and one output In Figure 4-10 we reduce
the graph in a sequence of steps that must be performed sequentially and we are left
with one input to a process c from which there is one output F igure 4-11
demonstrates the case o f unstructured programming where we have either more than
one input or more than one output In this case we cannot reduce the graph.

67

(v) More measures for flowgraphs

1 Control density

Mean number o f decisions per node This is not a very useful metric as we
cannot act on it

D c = V i Q 1------ (Equation 4.17)number o f nodes

2. Number o f levels

Maximum number o f nested structures plus one This is always one in
sequential programming

3 Number of pending nodes

Number of auxiliary exits This is an indication o f the ease o f testing As
the number o f auxiliary exits increases so does the difficulty in testing

4 Number o f degrees

Maximum number of edges connected to the same node (characterising a
critical node) This is not as useful as it may appear since we cannot act on the
information obtained It does not identify the most critical nodes.

4.5 Architectural measures

Complexity is not considered to be directly related to the number o f lines in
a program For example, if we had two 5,000-statement programs, the first having
only one 5,000 statement component and the second having 50 components o f 100
statements, we could not say that these have equal measures o f complexity. What
is required is a method for analysing the calling relations between components. To
do this we require a graphical representation o f calling relations between
components, usually referred to as the call graph

Using graph theory we construct graphs consisting o f components o f the
program (nodes) and the calling relation between two components (arcs) It is

69

generally assumed that the call-graph has a distinguished 'root node' which
corresponds to the highest level module, 1 e an abstraction o f the entire system

In Figure 4-12 we read the graphs from top to bottom, so A can call B many
times if the call is within a loop structure The call graph helps highlight recursive
calls, the overall hierarch o f the system, calls that skip levels, isolated components
that may have missed the testing process, nodes with a high degree o f arcs and helps
identify multiple roots to the system

4.5 .1 Call graph measures

1 Size
Number o f nodes
Num ber o f arcs

2 Num ber o f paths-
Paths going from root to final component

70

Hierarchical complexity
Mean number of components per level

H = Number o f components (Equation 4.18)
Number of levels

Structural complexity S
Mean number o f calls per components

5 = Number °f.?.alls (Equation 4.19)
Number of components

Accessibility o f a component A(M)
Measure o f the ease with which a component may be accessed

(Equation 4.20)
i N,

W here
• A(M,) Accessibility o f node with a line segment to M k
• N, Number o f components called by M,

Testability o f a path
In d ic a tio n o f th e e a s e w ith w h ic h a path m ay b e te s ted

W • (£ - n ir r) ' 1 (Equation 4.21)
M i e p

Testability o f a program or logical structure

t (s \ _ J_ (Y ' (Equation 4.22)
K} ~ n m

Entropy
Measure o f disorderlmess

n { G A) = L o g M - (Equation 4.23)
KM l-*jl

W here
| X, | = Number of nodes in path 1

¡X | = SUM of all IX,|
N = Number o f paths

4.6 Summary

These last few chapters have covered quite extensively the most commonly
used measures in software projects This review however, is not intended to be
exhaustive but rather offer a representative sample o f measures at different stages o f
the development life cycle All measures presented have one thing in common
however, they have all been defined under the influence o f the development process
o f 3G L 's The following chapter briefly looks at other development process, while
chapters 6 and 7 describe newly defined measures for use with rule-based systems.

72

5 Measurement for new development methods

5.1 Introduction

As we have seen in chapters 3 and 4, a comprehensive set o f measures have
been defined for use in software development. Many of these measures were based
on the study o f program and system behaviour in research environments, and have
still to be validated in the commercial world. Attempts have been made to collect
data that would instantiate claims o f relations between a particular measure and the
software. A typical example is Boehm’s COCOMO model where studies were
conducted to establish param eter values for different development languages. Most
o f these values were computed for what are commonly called third generation
languages (3GLs). The whole definition process o f metric development has been
strongly influenced by the structure o f procedural 3GLs. This chapter examines a
'new ' language generation and describes a process for developing or modifying
existing measures so that prediction and assessment may be performed in this
language.

5.2 Language generations

The earliest or first generation o f computer languages was machine code.
Programs were not interpreted or complied - the instructions were in a form directly
readable by the machine. Computers were programmed with a binary notation. This
situation was improved by the use of mnemonic codes to represent operations,

73

although data was still in physical binary address Further advances were the
introduction of decimal numbers to represent storage locations and addresses

The s e c o n d g e n e r a t i o n of languages, which came into use about the mid-
1950's was s y m b o l i c a s s e m b l y l a n g u a g e Symbolic address were used instead o f
physical machine addresses This advantage was due to the fact that when physical
locations o f variables or instructions had to be changed, the program mer did not have
to re-enter the new physical addresses Popular languages were SAP (Symbolic
Assembly Program, for the IBM 704), EASYCODER and AUTOCODER

The t h i r d g e n e r a t i o n came into use in the 1960's and were called h i g h - l e v e l

l a n g u a g e s Scientific languages such as FORTRAN and ALGOL were introduced,
and business languages such as COBOL also became quite popular Programs were
becoming hardware independent, with little knowledge required about hardware
registers and instruction sets Mathematical expressions and English keywords
ensured that programs were easier to write Business applications required sufficient
degrees o f complexity that error detection became a very real time consuming task
in the development o f software The productivity levels o f software firms became
a very serious issue in the 1970's and led to the introduction o f software control
through measurement, as we have previously discussed

The term f o u r t h g e n e r a t i o n l a n g u a g e (4GL) wrongly implies an evolutionary
step beyond third generation languages In reality, what is provided is a user-tunable
application based on existing programming techniques, which in turn is a full service
programming language Most 4GLs ride on top o f a database, having been
specifically designed to front end such data repositories Figure 5-1 is a
representation of the development process from 3GLs to 4GLs The development
o f the 'new generation' was based on the need to increase the ease o f use o f the tools
being created for existing languages This figure shows a COBOL com piler with a
screen generator (eg Forms Management System), report generator, and a database
Structured Query Language (eg SQL) The interface between these tools becomes
cumbersome and inefficient when they are provided as extensions to existing

74

languages. One solution is to develop a new layer o f software above these tools with
the ability to interface with these diverse facilities. These 'new ' products have been
called fourth generation languages, but since there exists no 'new ' technology or
development strategy, it could be stated that the development o f fourth generation
languages has been more the work o f marketing policy than computer development.

Figure 5-1 Evolution o f Fourth Generation Languages

5.3 Fourth generation languages

4GL tools have made a significant impact on the productivity o f software
development. These gains have been credited to features such as ease o f use, use of
non-procedural code, direct access to database-management systems and reduction
in the development time of systems by a significant degree.

The difference between third and fourth generation languages is constantly
under debate but to give some reference to the more popular concepts we turn to J.
Martin. According to M artin, third generation languages are higher level languages

75

that are standardised and largely independent of hardware, and where system
development requires a step by step specification o f the program tasks [Martin 85]
Fortran, COBOL, C and Pascal are among the more commonly used 3GLs.
Programmers o f these languages are required to rely on procedures composed o f
tokens which consist of commands, types and functions

M artin defines 4GLs as non-procedural, end-user oriented languages.
However others have claimed associated features with these languages such as
report/screen generators, integrated database systems, and ease of use Examples are
DBase, Focus, Oracle, Mantis and Powerhouse These languages rely on predefined
procedures for performing high level operations, eg sorting Such facilities are
generally more powerful but less flexible than those offered in traditional high level
languages and hence procedural tools are often required to perform tasks not
provided by non-procedural facilities These however are not usually as expressive
as 3GL tokens

5 .3 .1 Principles and components

There are many claims for the use and productivity o f 4GLs Most o f these
claims are from vendors eager to demonstrate superiority in software development
using their product Before we can begin to establish the reliability of these claims
we need to examine some of the features and principles involved.

Norman Fenton [Fenton 91] claimed that fourth generation languages were
designed to increase the productivity levels of software development because
demands for software products was growing faster than developer's ability to provide
them Martin, being more specific, provided the following list o f objectives’

• To speed up the application-building process
• To make applications easy to modify, reducing maintenance costs
• To minimize debugging problems

76

• To generate bug-free code from high level expressions o f requirement
• To make languages friendly so that end users can solve their own

problems and put computers to work

Fourth generation languages should allow some applications to be generated
with lines o f code an order o f magnitude fewer than for example, development in
COBOL Thus alternative (and perhaps more accurate) names for these tools have
been H i g h P r o d u c t i v i t y L a n g u a g e s , N o n - p r o c e d u r a l L a n g u a g e s , or A p p l i c a t i o n

G e n e r a t o r s

Most such languages are dependant on a database and its corresponding data
dictionary The dictionary has in some cases evolved into a facility that can
represent more than data It can contain screen formats, report formats, dialogue
structures, associations among data, validity checks, security controls, authonsations
to read or modify data, calculations that are used to create fields, permissible ranges
and logical relationships among data

One major distinction made between third and fourth generation languages is
the introduction of non-procedural code in the latter A procedural language
specifies how something is accomplished, whereas a non-procedural language
specifies what is accomplished without describing how Thus we can say that
PASCAL is procedural since it contains a precise sequence o f instructions for every
action ^Application generators where the user fills in a form to specify the
requirement, are non-procedural since there is no concern for the details o f the
implementation Consider the following example in SQL

S E L E C T u s e r - n a m e F R O M e m p l o y e e - r e c o r d

G R O U P B Y u s e r - g r o u p

This leaves the software to decide how to extract the information from the
corresponding records in the database, sort the user names in alphabetical order and
list them

77

M artin made the point m 1985 that it was too early in the development of
fourth generation languages for standardisation He felt that it was too early in the
evolution o f the technology to make such a move and that it could inhibit creativity
It may be worth remembering that many 3GLs have disappeared over the last two
decades Jean Sam m et's book on programming languages listed 120 3GLs in 1969
[Sammet 69] (which did not include ADA, PASCAL or C), and o f those 120, fewer
than 10 are now in general use, and the ones that survived tended to be those
supported by large organisations Similarly the reduction in the number o f 4GLs
currently available will be high, but unlike 3GLs the support and standardisation is
still missing

5.4 Logic programming in software engineering

Logic in modern times was based on the work o f George Boole, an Irish
mathematician Boole's work resulted in proto-logic called propositional calculus
Since then logicians such as Turner and Von Neumann have made enormous inputs
to com puter science, but it is only now however, that logic is becoming an important
part o f the education o f computer programmers Logic Programming, whose main
advocate was Kowalski [Kowalski 74] has been described as

" A p r o c e s s t h a t i n v o l v e s t h e u s e o f l o g i c p r o g r a m m i n g l a n g u a g e s -

P r o l o g i s t h e b e s t k n o w n - w h i c h e n a b l e o n e t o w r i t e p r o g r a m s t h a t

a p p r o x i m a t e t o a c o l l e c t i o n o f p u r e l y l o g i c a l s t a t e m e n t s " [Gibbins 88]

Software acts as the interface between man and machine, and is written in a
language like format To ensure that such text is readable, an underlying logic is
required It is generally agreed that the way we represent software is a compromise
between what computing machines can be made to do, and what human beings can
understand

Prolog as we have stated is one o f the most popular logic programming

78

languages It consists o f a set o f logical statements with each statement being either
a fact or a rule Facts are categorical, rules are conditional The mam idea in
Prolog is to formulate a set o f rules and facts in predicate logic together with a
problem for which a solution is sought [Amble 87] Here is a small well known
example.

m o r t a l (x) i f h u m a n (x) I I x i s m o r t a l i f x i s h u m a n

h u m a n (x) i f G r e e k (x) I I x i s h u m a n i f x i s G r e e k

G r e e k (S o c r a t e s) I I S o c r a t e s i s G r e e k

a n s w e r (x) i f m o r t a l (x) / / x i s a n a n s w e r i f x i s

m o r t a l

= = > S o c r a t e s / / T h i s i s a n a n s w e r

Prolog has a syntax which is somewhat similar to predicate logic, and
contains an inference engine It is a higher level language than, for example, Pascal
as it conceals more o f the operations o f the computer Implementations o f solutions
in Prolog (where the problem is suited to this language) typically requires fewer lines
o f code than implementations in 3GLs

The above claims are similar to those made by producers o f many 4GLs, and
while it is not claimed that Prolog fits comfortable under this broad classification, it
is noted that the use o f rules and facts have been successfully implemented in
commercial systems It is generally felt that knowledge based systems (where
knowledge is stored as facts and rules), such as expert systems are considerably
different from traditional high productivity languages, and many 4GLs use rules to
implement non-procedural components o f their systems, such as data integrity
checks

5 .5 Rule based system

The use o f Prolog and other logic based languages has facilitated in the

79

development o f Expert Systems [Johnson et al 88] An Expert System or knowledge
based system is a system which manipulates 'knowledge' in order to perform a task
or tasks The knowledge in such a system is highly structured symbolic data which
represents a model o f the relationships between data elements and the uses to be
made o f them The performance o f a knowledge-based system depends both on the
quality o f its factual knowledge and the ways in which this knowledge is applied

Perhaps one of the best known examples of a knowledge-based system is
M YCIN [Shortliffe et al 73] which uses a knowledge base o f rules to aid in
diagnostic problem solving In this knowledge-based or rules-based system the
knowledge is represented by domain specific rules Rules in the form o f IF-THEN
statements encode judgemental knowledge which can be 'fired ' or 'activated by an
initial query or by other rules In this way rules can be chained together So if
R ulel requires the evaluation o f Rule2 we can say that they are chained together
It becomes clear then that a non-procedural nature is inherent with these types of
systems

5 .6 Customising measurements for diverse system

Early in this chapter it was stated that measures that exist have been defined
primarily for use with third generation languages As we have seen however, the
direction that software technology has taken is leading us away from these
development methods Fourth generation languages, logic programming, object-
oriented program ming, relational database languages and even expert systems are
providing developers with tools that are abstracting even further from the
implementation details o f both software and hardware Little research in these areas
has been published, although Verner and Tate [Verner et al 92] proposed a process
involving Function Point analysis, which provides data for COCOMO, which is
applicable to 4GLs A proposal for a suite o f metrics for object-oriented languages
has recently been published by Chidamber and Kemeerer [Chidamber et al 91]
Other areas have been slower to attract the attention o f researchers in the field o f

80

metrics. This chapter presents a generalised process through which measures may
be defined for a wide range o f software development methods

5.6 .1 General measurement definition process

The following steps are intended to be a generalised process for obtaining a
list o f useable software measures which are directly applicable to a specified
development processes

Step 1. Analyse the software

Step 2. Decide what components can be measured by existing techniques

Step 3. Investigate how (if possible) all other components can be measured

Step 4. Define a quality model unifying these measures

Step 5. Perform measurement and validation

Step 6 . Re-iterate / modify

These steps, while appearing quite simplistic, attempt to integrate existing
scientific measurement technology with new developments in a comprehensive
practical fashion It is a guide for deciding if a product can be controlled by the use
o f measures, and if critical elements in the software cannot be measured It is as
much a waste of tim e to perform inadequate measures as it is to not performing them
at all As we have seen, a substantial number o f measures do exist for specific
stages in the software life cycle and without doubt some o f these will be applicable
to development methods with similar constructs The definition o f measures for
software components where none exist is not always a straight-forward task, much
depends on what was revealed in the analysis o f the language and what constructs are

81

considered more critical to development success than others. Given below are
further descriptions o f the steps already outlined.

Step 1. Analyse the Software.

The success o f this entire process is firmly based on the results o f this step.
If our analysis is incomplete then all future decisions will not be based on sound
principles. It is a fundamental concept that a comprehensive understanding of
software and its components is required before rational decisions regarding
measurement are feasible.

By the use o f the term software we refer to both the documentation and the
source code. The list o f available software components should be itemised. Typical
components include:

• product specification
• product design
• program language or languages
• program source code
• user instructions
• development test plan and results

The stage o f the development process will greatly influence the available
software components, but usually the development language will be decided upon by
the end o f the specification stage.

The object o f analysis is to clearly indicate what components exist in order
to allow decisions to be made regarding applicable measures. For example, not all
developers produce specifications, and those that do may not have structured it in
such a way that Function Points would be applicable. Also the production o f design
documentation may not be in a standardised form, eg. SSADM (Structured Systems

82

Analysis and Design M ethodology), and hence measures such as Design W eight
which rely on basic counts such as number of modules and number of control tokens
may not be computable

If more than one programming language is used then each should be analysed
in turn, and the specific areas in which they are to be used should be determined
The analysis o f the development language involves decomposing it into its various
development tools and determine what strategy has been employed for each
component If we take a commercial 4GL language, typical components would be
a Form s Management System, Report Generator, Query language, Database and
perhaps a Data Integrity M anager Each o f these components employ diverse
implementation strategies For example, a token based language (Pascal-like
instructions) would be procedural, containing textual elements and relations, whereas
a forms manager would have a non-procedural nature So one method o f
classification for each component would be to identify procedural and non-procedural
parts Further detail relating to these classifications could also be provided, and
below are some preliminary suggestions

• Textual components
• M odule structure
• Calling relationships
• Data coupling
• Control structure

Upon completion o f this step, a table containing each component o f the
software, along with a comprehensive description o f each, should be produced

Step 2 . Decide what components can be measured by existing techniques

Based on the first step, each o f the components should be examined and a
decision made relating to its applicability to existing measures The approach taken
m this research has been to present measures based on the stages o f the software life

83

cycle W ith the identification o f components which are also stage dependent the task
o f reviewing measures is simplified The reason for the presentation o f such a wide
range o f measures was to give some indication o f the diversity o f measures available
Using the categories in section 3 1 figure 5-2 identifies the main categories of
measures, a systematic process o f relating measures to software components should
be initiated Those components for which no measures are available will be
examined further in step three It is worth noting that although many development
methods are not strictly procedural, if they have a similar development life cycle then
existing measures may be applicable For example if a specification and design stage
are present, measures are already defined Also, the presence o f textual components,
or procedural text may lead to the possible use o f H alstead 's measures

This step should associate measures with analysed components o f the
software, and highlight components where measures are lacking These components
are then analysed in the third step

Step 3 . Investigate how (if possible) all other components can be measured

Little help is available for this section Often it is just valuable to be aware
o f what factors are not being measured and that are outside our prediction or

84

assessment models. What is required, if measures are to be developed, is a further
detailed description o f the software components. This should help to identify aspects
o f importance within the software development process. It is also a good idea to
confer with people who have experience with these tools in order to gain some
practical understanding o f what are typical maintenance problems, complexity
factors, and other relevant issues.

The focal point o f this research has been to develop measures for a rule-based
system. This will be described as a practical application o f this stage in the
following chapter.

Step 4 Define a quality model unifying these measures.

In chapter 2 the concept o f defining product quality models was introduced.
M easures are provided as a tool to provide some 'proof' about the 'quality ' o f
attributes with which we are interested. Keeping this in mind we should take the
measures we have identified and/or defined and ensure that they are helping us to
obtain some required form o f verification o f particular attributes. It is quite wasteful
to collect data upon which no actions can be made or for which we have no use.

W e have already described the IS09126 model o f software quality. This
model however, is just one o f many such models in existence. Very often a
company will produce its own version o f 'quality' by identifying external attributes
which are most interesting to their customers or quality controller.

Let us break down the notion of quality and look at two proposed models by
Boehm and McCall. Both approaches identify a set o f characteristics which are listed
below.

• Sensitive to the environment (user) - > Quality Factors
• Decidable from within (developer) - > Quality Criteria

85

• M easurable (controller) - > Quality Metrics

In this system factors are characteristics o f the software, seen as black boxes,
while criteria are characteristics o f the software, seen as a white boxes. In Figure
5-3 we reintroduce the quality tree concept. Using this decomposition a software
engineer may monitor software quality.

It is most likely that a new quality model will be defined (or at least an
existing one modified), when new measures are developed. This could possibly
involve identifying new criteria or replacing specified metrics.

Step 5. Perform measurement and validation.

The first part o f this step is to collect data obtained from performing the
measures defined for use in the specified quality model. The process o f data
collection was introduced in chapter 2 where typical methods were described. This
activity has been described as follows:

"Data should be collected with a clear purpose in mind. Not only a

86

c l e a r p u r p o s e b u t c l e a r i d e a a s t o t h e p r e c i s e w a y i n w h i c h i t w i l l b e

a n a l y s e d s o a s t o y i e l d t h e d e s i r e d i n f o r m a t i o n " [Moroney 50]

The immediate result o f data collection is r a w data To obtain direct
measures from this data we need some form of e x t r a c t i o n Our first step is to decide
what to measure, then decide how the indirect measures will be calculated, and hence
what direct measures are needed for analysis

/W C

Extraction;

Refined
Data

Data
Collection

Analysis

\
Product

Direct measures Indirect measures
Figure 5-4 The role o f data collection in measurement

The collection o f data will typically span several phases o f the development
life cycle It is an on-going process and not a fixed step, as some would believe
As this raw data is collected it should be stored in a database which will allow easy
analysis when the collection phase has been completed

W hen we refer to 'analysing software measurement data' we assume the
following

87

• W e have a number o f measurements o f one or more attributes from
a software entity, which can be referred to as a dataset.

• The software items are comparable (modules from the same product,
similar projects in the same company, etc.)

• We wish to establish characteristics o f the dataset, and/or relationships
between attributes.

Details o f analysis techniques for data collected is beyond the scope o f this
thesis, however Fenton's book Software Metrics provides comprehensive statistical
techniques for software measurement validation. Below is a summary o f some o f the
more standard methods o f data analysis.

Datasets o f software attribute values must be analysed with care because
software measures are not usually normally distributed. It is advisable:

• To describe a set o f attribute values using the box plot statistics based
on the median and upper and lower fourths rather than the mean and
variance. [Hoaglin et al 83]

• When investigating the relationship between two variables always
inspect the scatterplot visually.

• To use robust correlation coefficients to confirm whether or not a
relationship exists between two attributes. [Siegel et al 88]

• In the presence o f atypical values, to use robust regression to identify
a linear relationship between two attributes, or remove the atypical
values before analysis [Sprent 89].

• To use Tukey's ladder to assist the selection o f transformations when

88

faced with non-linear relationships [Tukey et al 77]

• To use principle component analysis to investigate the dimensionality
o f datasets with large numbers o f correlated attributes

Further recommended reading material is [Dobson 90] and [Draper et al 66],
which provide good introductions to the principles o f generalised linear models and
classical regression analysis

S tep 6. Re-iterate / modify

It is traditional to include such a step in most processes to allow for
corrections in the original method As more data becomes available since our initial
definition o f measures, validation and analysis may indicate required changes in our
proposed models Such 'fine-tuning1 is required to ensure that measures are indeed
useful and are associated with specified attributes

5 .7 S um m ary

The process for defining new measures as stated in this chapter is not
intended to be a formal methodology, but rather a guide to utilising existing
measures and identifying when and where new measures are required The approach
to measurement within software engineering should be scientific and not haphazard,
which is too often the case When measurement is required it should be well
understood what is to be measured, and how these measures are to be implemented

(Now that these steps have been presented, and are based on standard
approaches to software assessment and prediction, they will be used in the next
chapter to develop a new set of measures for a rule-based language

89

6 Defining metrics for a rule-based language

6.1 Introduction

The requirement for the existence o f measures for software systems has
already been stated The last chapter gave a general set o f stages which could be
used to develop these measures for systems other than 3GLs These steps however
were not too specific in the area o f actual metric definition, which is more an
intuitive problem than a simple analytical one To define measures for a language
requires some insight into the languages structure with an understanding o f how that
language is used in software development To demonstrate this definition o f m etncs,
a case study using a rule-based fourth generation language called RULER has been
used The stages outlined in the previous chapter will be used where applicable
Although the initial stages are relevant, further data collection and research will be
required to complete the validation o f new measures as required by later stages.

6 .2 The R U LER language

Ruler is a 4GL for application development on D igital's VAX range o f
computers using Digital's record manager RMS, and also for use on IBM PCs This
language has been designed and developed by an Irish software firm and it is only
available at present in this country [Ruler 87] Many of the standard claims made
by 4GL vendors such as increased productivity, high level and non-procedural
characteristics, integrated data dictionary and reduction in maintenance

90

requirements, can also be applied to this language

RULER allows the programmer to record wide-ranging knowledge related to
application data in a data dictionary This knowledge is recorded as integrity rules
using a specially designed procedural langauge These rules define, validation
constraints, reverential constraints (joins) and computation o f derived fields.

6 .2 .1 Program Development Methodology

The waterfall development life cycle described in section 3 1 still applies to
this language, however specification and design phases become the focus for activity.

The analysis activity usually results in an initial Entity-Relationship model and
an initial specification o f required business functions to be implemented Then a
prototype is developed based on the design and specification to allow users to venfy
whether the developer's understanding o f the system is the correct one Continued
expansion and refinement o f the prototype is required until the system is completed.

The functions identified in the analysis phase are implemented as programs.
RULER offers five distinct program types, On-line, Report, Batch, Menu and Chain.
Each o f these programs is specified using a consistent easy-to-use form filling
interface for standard programming attributes, and a full screen WYSIWYG editor
for more complex attributes

Using the Entity-Relationship model records and files are defined The data
dictionary supplies information on record relationships, ensuring record and field
names are valid, and also supplying information about record layouts and field
formats so that default forms can be generated In addition the data dictionary
contains integrity rules for types, fields and files

91

6.3 Defining measures for a rule-based language

The main focus of this research is to provide a set o f measures for a rule
based language The steps provided will be used where appropriate, but the mam
effort will be based on the third step This should provide a practical example o f
how measures can be defined for languages that are not necessarily procedural
Later steps such as validation require a great deal o f data and only initial statistical
analysis for measures defined will be provided.

6 .3.1 Analyse the language

The analysis o f RULER will be primarily focused on the identification of
product measures These measures will be based on the implementation phase and
not on the earlier stages which are to some extent implementation independent

As we have described, RULER is a rule-based 4GL which runs on the VAX
under VMS It use the VAX/VMS Record Management System (RMS), and its own
Dictionary Management System (DMS) The DMS is considered to be the core o f
the system and it is here that data types, fields and files are described and stored
along with related rules, especially those related to integrity However, before we
provide detailed descriptions we must first identify all o f the components within a
typical RULER product

A . Design specification

For applications to be developed using RULER it is important to ensure that
the initial stages o f specification and design are performed with more enthusiasm than
is typically shown for 3GLs SSADM is often used to ensure a more rigorous
specification o f the system design The following are typical components within
SSADM

92

Entity Relationships - This model depicts the system entities (or data stores) and
specifies the relationships between them It can also specify
the numerical relationships between connected entities This
model can be easily translated into a physical data base
implementation

Data Flows - Data flows define the data requirements o f the system and
highlight the required system functionality. Identified
processes can be implemented as modules within the system,
and the data required for each process is also specified.

Entity Description - This is intended to provide a complete description o f the data
to be implemented in the system Required data is specified
by the data flows and it is then decomposed into individual
data items These can be further specified with respect to its
format (for example char, numeric, alphanumenc) and its
length This information can be directly entered into the data
dictionary, along with comments and rules (for example:
specified allowable ranges for numeric data items)

B. Dictionary management system

The data dictionary is the 'core' of the system as it is where all data is
described Note that data is stored in the RMS files Once data has been defined
programs may be generated which automatically include these data descriptions The
type, field and file entities are described in the data dictionary and have the following
relationship

"A. file has many fields, each field is on only one file (if a similar field is on
another file, then a new field is created), each field refers to only one type,
a type can be referred to by many fields "

93

The types are the primitive data items required for applications Once a type
has been defined, along with any rules for validation, it can be referred to by many
fields; each field will automatically inherit the specification o f its type, but can also
have further rules associated with it

Files describe the details o f an RMS file record structure and its indices
RULER treats the terms file and record synonymously since each file is assumed to
have one record type for each application

As stated the rules are allowed within the data dictionary which ensures the
inclusion o f specific knowledge to be contained within applications These rules are
textual, and similar in syntax to many traditional procedural languages (such as
Pascal)

C . P ro g ram generato rs

There are five program generators used to create specific types o f programs,
On-line, M enu, Chain, Batch and Report Details o f each are given below

On-line Program Generator - This allows you to specify the program details and
will either generate a default, or use a previously edited form A forms editor is
used to change this form layout, both background text and data fields The
executable 'program ' is then generated which includes all relevant dictionary rules
for validation, derivation, and file-lookup This final 'program ' can then be run.

Menu Program Generator - A default menu form is created and can then be edited
using the standard Form Editor The menu actions are then specified, as a set of
choice/action pairs, the choice being what the user would enter on the menu form
and the action being the name o f the program to be run

Chain Program Generator - Chain programs are intended to link together a suite o f
related program s, so that when the chain program is executed it initiates an

94

environment within which the full suite o f programs available can be executed.

Batch Program Generator - This is very similar to the report program except for
minor difference in syntax and file related options.

Report Program Generator - This involves specifying a primary file for reporting,
choose required 'linked' files, specifying other report requirements such as sequence
fields, width, page size and any processing and/or selection criteria using a textual
rule based language. The system can generate default report layouts.

Table 6.1
C om ponent D etails

Design Specification ER model
Data Flows
Entity Description

Dictionary Management
System

Data descriptions and relationships.
Textual/procedural based rules.

Program Generators On-line: Form s/procedures
Menu: Form s/procedures
Chain: Form s/procedures
Batch: Form s/procedures
Report: Form s/procedures

All o f the program generators above are form based with default values
applicable to some fields. Because o f the specific nature o f each, little except the
creation o f file and field relations, screen layouts and addition process commands are
required. Each o f these programs contain an optional procedure section where rules,
similar to those in the data dictionary, are used. Variations in syntax between
program s exist but these rules represent a procedural textual component similar to
those in 3GLs. Table 6.1 summarises this information which will be used as the

95

basis for step 2 to help identify those components which may be measured using
existing techniques

6.3 .2 Decide what components can be measured by existing techniques

This step would typically involve an extensive search o f publications for
articles relating to measurable attributes of software Chapters 3 and 4 gave a
comprehensive description o f existing measures and at what stage o f the system life
cycle these may be used Using these measures the components identified in Table
6 1 will be categorised into those than can be measured, and those which cannot

6.3 .2 .1 Design specification

This component contains a standard method for program and system
specification Structured design and specification measures have been described in
chapter 3 and relate directly to the type of designs produced for RULER systems.

DeM arco's "Bang" metric

This is based on the specification documentation, and has been defined for
data strong systems which involve large database applications This would be
suitable as it is an implementation independent functional measure indicating system
size

Function points

Another measure for use in early cost models is FP, also described in section
3 2 2 This measure can be used as input to the COCOMO cost model However,
an FP to LOC expansion ratio for RULER would be required to provide an estimate
for the lines o f code parameter of COCOMO

96

Research by Verner and Tate provide a process for estimating size and effort
m 4GLs using FP and COCOMO [Verner et al 92] As we have seen Function-Point
analysis is used for sizing, and COCOMO for effort and schedule estimation, so to
make these tools 'fit' a 4GL development process estimates need adjusting

Design weight

DeMarco also provides a design measure (see section 3 4 1) which requires
basic counts obtainable from Data Flow diagrams and would be applicable to
documentation specifying RULER programs/ systems This measure provides further
information related to the effort implied in the design and hence could be part o f a
cost model

6 .3 .2 .2 Dictionary management system

This component contained two distinct sections, the database and its
relationships, and the textual rules which may be associated with the three identified
entities types, fields and files

The data description and relationship portion o f the database have no directly
related measures Indeed there is little research available for this area o f
measurement It will be required to identify some measures relating to the database
structure in the third step

The textual rules which may be incorporated into the data dictionary may be
viewed from two perspectives The first is that they are just textual tokens consisting
o f operators and operands, and as such, standard Halstead textual based measures
may be applied The second is to view this text as a representation o f knowledge
relating to the data, in the form of rules or integrity checks Again little
documentation o f measures relating to rules or integrity in systems is available and
this will be discussed in the third step

97

6.3.2.3 Program generatore

All program generators are similar in the method through which programs are
generated. M ost o f the relationships between files and programs are set by defaults
but can be modified. If further computation o f the data is required then a procedure
may be written. These procedures contain a specially defined language which is
similar but more extensive, than the one provided in the data dictionary. Comments
relating to the textual rules in the DMS are also relevant to these procedures.

The structure o f the modules or programs, although simplified by RULER is
similar to that o f 3GL languages. A calling relationship can be identified and
architectural measures discussed in chapter 4 are applicable, although recursion is not
permitted.

Structural measures can also be used in Batch, On-line, and Report programs
where there is a often a high use o f procedural code, however the other two program
generators do not contain typical complex structures o f procedural languages as
defined in section 4 .4 .2 . Decomposition o f directed graphs into prime subgraphs
may be performed within instances of programs, however unique decomposition of
rules would be more useful. This issue will be addressed in section 8.2.

W e can conclude that within the Program Generators, nearly all o f existing
procedural measures are applicable, however they fail to measure the behaviour of
rules. Measures relating to rules within programs and the data dictionary will be
discussed in step 3.

W ith relation to the rules, dynamic measures may also be defined to help
estimate the test coverage o f test cases. Such measures are usually identified for test
coverage o f source code, but could be expanded to include rules. This will also be
discussed in the following step.

Table 6.2 summarises this information which will be used as the basis for Step

98

3. Here we can see the components which we can measure using existing software
measures and also identify those which as yet require some form of development.

Table 6.2

Sum m ary of m easurable com ponents of R U LER

C om ponent Detail M easures
Design
Specification

ER model BANG for data strong
systems.

Function Point and
COCOMO model

Data Flows
Entity Description

Dictionary
Management
System

Data descriptions and
relationships

To be defined

Textual/procedural rules Textual measures

Rule measures to be
defined

Program
Generators

On-line: Form s/Proc. Textual measures

Structural measures

Architectural measures

Rule & Dynamic measures
to be defined

Menu: Form s/Proc.
Chain: Form s/Proc.
Batch: Form s/Proc.
Report: Form s/Proc.

6 .3 .3 Investigate how (if possible) all o ther com ponents can be m easured

RULER can be considered to contain four layers o f rules, three within the
DMS and the other at the module (program) level, with each layer associated with
one o f the four entities (types, fields, files and modules). All measures identified
relating to rules may be applied to these four entities. We can view the first three
as the dictionary integrity rules that specify, in more detail, the contents or
accessability o f the data.

One primary difference between these layers is the permissible level of

99

complexity o f the rules. Figure 6-1 illustrates the relationship between each entity
showing an optional addition o f rules o f entity

Types 1— ___

■
— Fields P illili__

Entities —
1 — Optional Rule

Files fe—
. = f e : : y
Modules l n i i

Figure 6-1 Relationship o f rules within specified layers

The results from measures applied to each o f the four layers may be plotted
in an attempt to characterise the relationship between these layers F igure 6-2
graphically represents the possible tolerance values for our proposed measures An
average result o f the measure is obtained over the four levels Deviations from this
average are then plotted to identify differences in these measures for each layer, this
characterisation is indented to provide an indication o f the typical results obtained
from measurement Overlays o f standard measurement characteristics with obtained
ones could offer similar information to a kiviat graph [Logiscope 90], and help
identify possible problematic areas within the software

6 .3 .3 .1 M etrics associated with rules

Before measures are presented for use with RULER the format o f rules within
each entity are provided to indicate the difference between each In general rules
consist o f one or more statements which differ for each entity by the number o f
prim ary and subordinate statements possible Example 6 1 provides the format that
rules on all layer take

100

Primary statement
Primary statement

Subordinate statement
Subordinate statement

Primary statement
E xam ple 1: General format o f rules within entities

Examples of possible characteristics of rules for each entity
Deviations Deviations Deviations

Types

Fields

Files

1 t

Modules

Average result Average result Average result
F igure 6-2 Graphing characterisations o f measures for each entity

Table 6 3 provides the set o f allowable primary and subordinate statements
for each entity

A. Type ru les

Rules at this level are provided to allow the program to define customised
data types These rules will be automatically activated when a data item of that type
is manipulated in any way

101

Table 6.3
Statements within entities

P rim ary S tm . E ntity S ubord inate E ntity
STORE AS Type PRINT Type

REJECT Field
ASSERT File
IF Module

ASSERT Type Assignment Field
IF Field NULL File

File Function/ Module
Module routine call

DEFAULT Field
SOURCE File
EXTERNAL Module
Function/
routine call

Assm CUSTJJO eq 0 or CUSTJJO in all CUSTOMER. CUSTJtQ
Else Prim ”Invalid Customer Number”,

End Assert;
Example 6.2 Typical type rule

The rule in Example 6 2 ensures that a field o f type CUST_NO is accepted
only if its value matches with some record in the file CUSTOMER, or has a value
o f zero, and the match is performed against the CUST_NO field o f the CUSTOMER
record

B. F ield ru les

Rules at this level are used to control values o f record fields These rules
will be automatically activated when a data item is entered or altered

102

D erm TOTVAL « VAL1 + VAL2 + VAL3;
Assert TOTVAL < 1500
Else

Print “Total value exceeds 1500°;
End ass ert;

E xam ple 6.3 : Typical field rule

The rule in Example 6 3 ensures that the value o f the field TOTVAL is
derived using three other values VAL1, VAL2 and VAL3, and that this value does
not exceed a specified range

C. File / record rules

Integrity rules which are not logically associated with just one field can be
specified at the file (record) level in the Dictionary rather than the field level
Field rules are active when data is input whereas file rules are only activated when
the record is committed

I f deleting order
Assert m jH IP M E N T S eq 0
Else

Print “Cannot delete order, shipments exist
Reject;

End assert*
E xam ple 6 .4 : Typical file rule

This rule ensures that before the ORDER record can be deleted we must
assert that the field NO_SHIPMENTS is zero If this is not the case then a message
is returned to provide the reason for not completing the deleting instruction

103

6.3.3.2 Module rules

M odule rules are contained within the procedure section o f a program form
This procedure is an optional addition to the function o f program , and usually
involves a further set o f rules relating to the data Rules within the Menu and Chain
program s are primarily for organising program calling structure and will not be
included in the analysis o f rules for procedures The number o f primary and
secondary statements applicable to rule within modules is too great to present here,
for further information regarding RULER syntax, refer to the RULER manual
Example 6 5 provides an typical statement within such modules The syntax reads
very similar to most structured 3GLs

Derive EXQHJiATEJ'O = CURRTQ,EXCHJiA TEJL;
Derive VALUEJRJX) using

IfCUKRCOBEJO ~ 1
VALUE J R J O « VALUEJURRJO,

Else
VALUE J R J O = VALUEjCURRjrO/EXCHJMTEJ’O;

End if;
End derive;

Exam ple 6.5: Typical module rule

6 .3 .3 .3 D efining m easures fo r ru les an d d a ta

Having looked at the structure o f RULER and the syntax employed within
both the DMS and modules we can now provide a set o f primitives (p-counts)
relating to RULER from which a set o f composite measures may be defined These
measures can be collected as soon as the source code has been completed Although
more primitives may be conceived, the following represent the most essential ones

As previously indicated there are four entities within RULER, and since many

104

o f the measures we shall define are applicable to these entities, a special naming
convention for has been developed for p-counts Those p-counts listed below are all
measures obtainable from either o f the four entities To demonstrate this the letter
x has been inserted, where x is an element o f the following set {T, F , R, M}, which
specify type, field, record and module respectively

Table 6.4

P rim itive counts (p-counts) m easu rable in R U LER

p-counts D escription
Dxi} count o f the number o f rules containing data item j in the zth

entity
FD*,i count o f the number o f rules fired for data item j in the ith entity

Rx, count o f all rules in the ith entity (including sub-rules)
DLt, count o f all data items in the zth entity

UDLt, count o f all unique data items in the ith entity
Cx count o f all entity

SRjc, count o f all sub-rules for the ith entity
CR* count o f all entities containing rules

W here the value o f x is explicitly stated there it is not possible to perform this
measure any other entity other than the one specified To ensure a clear
understanding o f the terms used the following definitions are provided

Rule A statement within either the DMS or the module that is constructed
by the program mer in the form of procedural code In the general
case an assignment is considered to be a rule, however, more complex
rules such as If-Else statements containing a comparison and up to
two assignments, are counted also as one rule If another rule is
nested within an If-Else pair this is considered to be a sub-rule (see
below)

105

Data Item • A variable named within a rule in either the module, record, field, or
type definition For the purpose o f measurement variables which
appear more than once in a rule are only counted once

Sub-rule. Rules below the first level o f nesting, such as those within nested IF 1
statements

Below is a set o f nine initial composite measures based on the p-counts in
Table 6 4, which may be evaluated for all four entities

A. Data criticality

This measure gives the average number o f rules that a data item appears in
This measure can be recorded for either individual instances o f an entities, given by
ADx„ or for all instances o f the entity, given by ADx This should give an
indication o f how many rules are associated with a data item in the same entity

Using the Equation 6 1 below we can observe a standard level o f criticality
on an individual instance o f an entity which can help identify anomalous instances
F or example, if we determine that 95% o f modules result in a value within a
reasonable range (determined using historic data), we can investigate further the
remaining 5 % o f modules to determine the reason for the higher level o f criticality

D I x
A D x = ------ — (Equation 6.1)‘ U D l x i

A variation o f this measure is to obtain the same information except to ignore
instances o f the entity, given in Equation 6 2 Using this formula we can determine
the criticality o f data items within a specified entity This provides us with a wider
indicator o f the sensitivity or criticality o f the data

106

n

E D !x. (Equation 6.2)
A D x = CF

To help identify possible criticality problems in data items it is best to set
tolerance ranges which act as indicators to specific areas of code. When average
values are used it is quite easy to have isolated anomalies undetected due to the
weighting associated with a large volume of 'acceptable' results The presence of
a maximum value can pinpoint individual cases that are beyond the acceptable ranges
set (again these ranges are set based on historical data) Equation 6 3 provides the
formula for obtaining this maximum level of criticality

One adjustment which could be made is that the tolerance ranges indicated
could be adjusted for the volume of rules and data items within the system. A
volume measure is proposed in section 6 3 3 4

B: R ule com plexity

The complexity o f the rules is an indication o f how difficult it will be to
maintain the system Yet again we can record this measure for either individual
instances o f entities, given by ADIx,, or for all instances o f the entity, given by
ADIx This gives an indication o f the average complexity o f rules within the same
entity, based on the number of data items they manipulate

Using Equation 6 4 we can observe the level o f complexity on a individual
instance o f an entity This can help identify specific entities that are more complex
and hence possibly less maintainable than others

M D x = max (D x : v ..., D x nm) (Equation 6.3)

D l x (Equation 6.4)ARx Rx

107

A variation to this measure similar to that given for data cnticahty is to obtain
the same information for all instances o f the entity This formula is given m
Equation 6 5

E M t,
A D Ix = — --------- (Equation 6.5)

£
i=1

The more data manipulated within rules the more errors likely at coding, and
the longer it will take to modify the code if required This measure will need a
tolerance range which may be used to indicate when rules are too ’complex' withm
an entity, different ranges will be required for different entities

Yet again we must ensure that in the process o f measurement we do not miss
rules with unacceptable levels o f complexity because we are using an average
measure The presence o f a maximum value can help isolate specific rules with
suspect levels o f complexity

M D I x = m a x (^ - , . , ^ ^) (Equation 6 .6)Rx̂ Rxn

C. Descriptive measures

A set o f measures primarily defined to provide a general description o f the
system can be defined quite easily Trends may be observed to exist in systems and
the deviation o f systems from those trends may indicate added complexity within the
system Further investigation would then be required An example o f four such
descriptive measures are given below

The formula for determining the percentage o f entity x containing rules is
given in Equation 6.7. This measure can be used to indicate the use o f rules within

108

different entities An example o f trends within the module entity, would be that
rules are more scarce in On-line programs than Batch programs

P x = * 100 (Equation 6.7)
C x

Equation 6 8 evaluates what percentage o f rules within the ith entity are m
fact sub-rules This measure is similar to the depth o f nesting measure defined for
3GLs The difference however is that rules within RULER are not often nested
Such nesting increase the complexity o f the system as it effectively creates another
'layer' o f rules associated with a data item

S R x
P N x = ------- * 100 (Equation 6.8)

R x t

W e can present this last measure in another format This time we refer to the
complete system and we are not focus on individual instances o f an entity Equation
6 9 calculates the percentage o f rules within all instances o f entities that are sub
rules

E SR*.
A N x = -------- —----------------- (Equation 6.9)

E Rx, - £ SR*.
1=1 «=1

Now that a set o f composite measure have been defined a example is provided
to demonstrate their application Using an extract o f code from a batch module,
given in Figure 6-3, we can demonstrate the application o f these measures to entity
module. Since we are only using an instance o f the entity there are only four
measures listed above which can be implemented The measure to be evaluated are
ADM,, ARM,, PNM „ and ANM,, which need the following p-counts, UDIM „ DIM,,
RM,, SRM, The results o f all these are presented in Table 6 5

109

if TRATE = 1
WORK_RATE = EXCH_RA TE_PL;

else
WORK_RATE = EXCH_RATE_BS;

end if;
NUM_CNT = NUMjCNT + 1;
NUMDAYS = T_A GIN G DA TE - NUMjCNT;
if NUM_DAYS in 0 to 30

CURR1 = OS BAL CURR * -1;
else

if NUM_DAYS in 31 to 60
CURR2 = OS BAL CURR * -1;

else
CURR3 = OS BAL CURR * -1;

end if;
end if;
CURRT = OS_BAL_CURR * -1 + NUMjCNT;

F igure 6-3 Example o f a Batch program procedure

Table 6.5

Results of A pplying M odule m easures
P-counts Results M etrics R esults

UDIM; 12 ADM; 1.5
DIM; 18 ARMj 3
RM; 6 PNM; 16.6
SRM; 1 ANM; 0.2

All o f the p-counts used to obtain these measures may be collected
automatically which would mean that a static analyser could be designed to generate
measures for RULER objectively and efficiently. A prototype tool which attempts
to perform some of these p-counts is described in the following chapter. The values
obtained for the example in Table 6.5 could then be compared to other modules to
help determine it's relative complexity. Using a large sample o f data, acceptable

110

ranges for results are determined. Only when these have been defined can be begin
to make some decisions based on the values obtained in our example above.

One way to provide both a visual representation o f the rules and a diagram
from which p-counts can be measured is to construct a Rule/Data (RD) relationship
graph. Nodes on the graph are either data items, rules, or sub-rules. Arcs represent
the relationship between nodes. Typical relationship exist between data items and
rules, data-items and sub-rules, and rules and sub-rules. Using the extract rules
obtained for Figure 6-3 a RD graph has been constructed in Figure 6-4.

Figure 6-4 A rule-data relationship diagram for a batch program procedure

To provide a full description o f the graph a symbol table is required. This
table, shown in Table 6.6, is a key for the contents o f the graphs, containing a
description o f all the symbols. As we can see in the diagram rules and data items
are not always interconnected, rule 1 and its related data for example are not
connected in any way to the rest o f the code. The arcs (relationships) are non-

111

directional and only provide an indication that a relationship exists and not what form
that relationship takes

Table 6.6

Symbol tab le fo r RD d iagram

Symbol D escription Symbol D escription
Data item 1 T_Rate Data item 10 CurrT
Data item 2 Work_Rate Data item 11 Curr2
Data item 3 Exch_Rate_PL Data item 12 Curr3
Data item 4 Exch_Rate_BS Rule 1 IF-ELSE
Data item 5 Num_Cnt Rule 2 Assignment
Data item 6 Num_Days Rule 3 Assignment
Data item 7 T_Aging_Date Rule 4 IF-ELSE
Data item 8 C urri Rule 5 Assignment
Data item 9 Os_Bal_Curr Sub-rule 1 IF-ELSE

This RD relationship diagram can also be used to calculate a measure o f
coupling that exists between rules and data (1 e the connectivity o f the graph).
Using standard graph theory an adjacency matrix may be constructed from which we
can determine which nodes are directly connected [Sedgewick 84] This information
is usually presented in the form of an adjacency list Further levels o f coupling (1 e
which nodes are indirectly connected via one other node) may be obtained by
multiplying the matrix by itself. Within software it is believed that lower levels o f
coupling are more desirable as it facilitates the process of maintenance Similarly
the lower the level coupling for a node then the easier it is to maintain that node,
without diversely affecting other nodes

6 .3 .3 .4 D ata m easures

Using the p-counts identified in Table 6.4, measures may be identified for use

112

which relate to the storage of data within the DMS Examples of an initial set of
possible composite measures relating specifically to the data are presented below.

A: Volume measures

It was indicated earlier that some of the cnticahty measures could be related
to the size or volume of the system Thus the more data there is within a system the
more likely that higher percentages will be associated with greater numbers o f rules
Equation 6 10 formulates the volume of data in the system as a direct measure o f the
amount o f data within the DMS

V = C F (Equation 6.10)

This is a count of all the unique data items defined in the system This
measure cannot be used alone, but it could be an indicator of system complexity
when related to other p-counts, examples of which are given below

Equation 6 11 gives the ratios o f records to volume, or put another way it
measures the average number o f data items per record, while Equation 6.12 gives
the ratio o f modules to volume, or a measure of the average number o f data items
per module

F V = —— (Equation 6.11)
C R

M V = — — , (Equation 6.12)
C M

These last two measures provide more information relating to the distribution
o f data within the DMS and the modules Higher values o f FV and MV imply a
possible large set o f unpartitioned data

113

6 .3 .3 .5 Dynamic m easures of rules firing

For dynamic measures to be calculated a tool must be created that is able to
collect data while the application is running Most dynamic measures are used to
determine the reliability o f a system or to determine the test coverage The measures
defined in this section are similar to dynamic measure currently in existence which
relate to the level of test coverage The only difference is that coverage is related
to rules and not statements The test coverage o f the system can also be measured
using the following general formula

Ratio = (E quation 6.13)
NO

W here OT is the number o f objects tested, and NO is the number o f objects
in the system

Objects usually identified for structured code are BI (block o f instructions),
DDP (decision to decision path), and LCSAJ (Linear code sequence and jum p), all
o f which may be applied on a small scale to rules within procedures However, to
ensure that rules are being tested then we need to identify rule related objects.
Below are two objects for use with RULER

R I R ule Instance: The number of rules in the entire system A basic object that
can be used to indicate whether or not all rules have been
executed at least once

R B R ule Block: The number of rules associated with a data item irrespective
of where that rule is stored

Using these objects test cases can be defined for the system and measures o f
the rules fired noted Using the coverage ratio formula from Equation 6 13 we can
determine the percentage coverage o f rule blocks, or the percentage number o f rules
associated with a data item that were implemented In this case NO is calculated as

114

the number o f rules associated with a data item for all entities, and O T is number o f
rules associated with that data items that were activated in a test period

RBC = (—) * 100 (E quation 6.14)
1 N O

Where'.
n m p q

o r = £ fot; + £*»*■, + + E
1 ¿=1 (=1 (=1

n m p q
NO = £ z > r # - E O F , + E ® * , + E d m ,

1=1 1=1 1=1 1=1

To demonstrate the computation of RBC for a data item j the results o f a test
case have been presented in Table 6 7 The number o f rules which reference the
data items in all four entities are given along with the number o f rules which were
actually activated during the test case alpha

Table 6.7

Result of Test Case
E ntity N um ber of rules a d ata item

appears in: Dx,j
N um ber of ru les ac tivated
d uring test case

Type 3 2
Field 10 7

Record 2 1
M odule 30 10

Using this data we can see that the percentage coverage for a data item j is
calculated below as 44 4%

RBC. = () * 100 = — * 100 = 44.4%
1 N O 45

115

The percentage coverage o f just one data item is not very helpful if there are
thousands in the system, so a measure o f coverage for rules activated relating to all
data items in the system needs to be defined, shown in Equation 6 15 below Since
each declared field is an entity, the complete list o f unique data items is calculated
using the number of field entities in the system

m
£ R B C j

R B C = * 100
C F

6.3 .4 Complete definition process

The final three steps are briefly described in this section As previously
stated the primary aim o f this research is define a set o f measures for a rule based
language The last steps in the process descnbed in chapter 5 were included for the
sake o f completeness but are not entirely relevant to this thesis

Step 4 Define a model unifying these measures

Existing quality models are applicable to all measures defined so far As
described earlier IS09126 provides a set of top level attributes which are most
desired in software The sub-attributes (or internal attributes) o f these external
attributes are related to issues such as complexity, which many o f the measures
defined provide data on Step 2 in this process indicated that many components are
already measurable and that additional measures relating to rules and data were
required, so these measures are additions to the tools available to assess the
maintainability of software using this rule based language

Step 5 Perform measurement and validate data

116

Difficulties relating to the validation of measures have been addressed in
section 5 5.1 It has also been stated that validation is a non-tnvial task that typically
evolves the presence o f large volumes o f data collected over a period o f time. This
research does not have access to the considerable amount o f data required, so a less
than rigorous validation is proposed

There have been three different methods employed which offer some
indication of the validity of the measures proposed

A. E x ternal review

All measures proposed have been reviewed by other members o f the metrics
community, notably Richard Bache who has contributed to the development o f the
software static analyser QUALMS by introducing newly developed test coverage
measures based on the program flowgraph structure [Bache 90] Richard has
produced many papers relating to test coverage metrics including co-authored papers
with Norman Fenton and is currently involved with SCOPE [SCOPE 90], an Esprit
II project which is assessing the feasibility o f a software quality assurance scheme
m Europe

B. Publication

A paper based on the proposals for metrics for rule based systems was
accepted and read at the IEEE Fifth International Software Engineering Knowledge
Engineering conference in Capri, Italy [Doyle et al 92]

C . U ser observations

A range o f statistical analysis o f RULER modules has been published as part
o f an evaluation o f case study performances in SCOPE [Neil et al 92], it was found
that these traditional structural measures,failed to identify critical parts o f the system
that the case study provider considered atfected the maintainability o f the software.

117

Based on these observations, the rules presented in this chapter have been defined.

D . Trend analysis

Since complete validation cannot be performed an initial set of trend analysis
will be presented To collect the data for these analysis a prototype static analysis
tool has been developed concurrently with this research Using this tool large
volumes o f module rules have been analysed and statistical results have been
extracted to attempt to provide descriptive information and tentative correlations
between p-counts Although further analysis is required to ensure that conclusions
are valid these results will help set initial tolerance ranges for the measures defined.
Both the description o f the analysis tool and statistical analysis are presented in
chapter 7

Step 6 Re-iterate / modify

Modifications to our model may be required based on historical data
Correlations may not be made between measured values and software performance
If such a case arises, modification or 'fine-tuning' o f the measures may be required
This will only be known when the process of validation is complete

6.4 Summary

This chapter provides a set of measures which attempt to capture relevant
information regarding the maintainability of RULER Components for which
measures already exist have been identified along with their related measures, while
new primitive counts were defined for components for which no measures existed
Using these p-counts, composite measures were formulated along with a rule-data
relationship diagram from which most p-counts can be obtained The validation o f
these measures has still to be completed and this issue will be addressed further in
the following chapter

118

7 Results and analysis

7.1 Introduction

In order to provide data from which analysis can be initiated, a static analysis
tool has been developed. This tool has been used to collect data for applications
developed using RULER. It also demonstrates the practicality o f data collection
within the RULER environment. This prototype tool, described in section 7 .2 ,
demonstrates the ease in which a complete tool could be developed. A modular
development process has been used to allow changes to be made as data requirements
are modified. Requirements for data collection based on defined p-counts have
altered, and although alterations to the tool have not been completed, such changes
should require little difficulty.

Using the data collected, analysis has been performed to further describe the
relationships between data and rules within the system. Section 7.3 graphs this data
and provides tentative conclusions and tolerance ranges for measures defined in
chapter 6 .

7 .2 T ool developm ent

R-DAT (Rule and DATa static analyser) is a prototype tool which calculates
some of the measures described in chapter 6 and has been developed primarily to
demonstrate the feasibility of producing rule and data related measures using a static

119

code analyser, and to provide a comprehensive foundation which would facilitate
further development

R-DAT was developed on a SUN 4 workstation and was written using C,
YACC and LEX An initial problem exists in taking RULER code from the VAX
and transferring it onto the SUN However, within the development environment o f
this tool direct connections between these two hosts exist

To maximise the flexibility o f the tool, R-DAT was developed as a set o f
tools that incorporate the use o f 'pipes' which serve as the connection between each
tool. F igure 7-1 provides a general representation o f R -D A T's functionality as
described in section 7 2 1 and 7 2 2, while Figure 7-2 shows in detail the process
o f measurement

7.2 .1 Initialising for R-DAT

A setup procedure is required before R-DAT can be used, consisting o f the
following two steps

12 0

A. Code extraction

This function is provided by the RULER system All code within the
modules can be extracted as part o f a documentation process These files however
contain other non-standard 'statements' which are part o f the documentation text and
are not module rules Similarly a documentation process is provided for the contents
o f the DMS Rules associated with types, fields and records are also extracted using
the RULER documentation feature Four files are created, one for each o f the four
entities Each file contains a description o f each instance o f the entity along with the
rules associated with that instance

B. Code transfer

The transferring o f files between different systems is typically well
documented and easily implemented In this case FTP provided the required facility

The result o f these two steps is to provide four files on a SUN workstation
which can be used as input to R-DAT

121

7.2 .2 Im plem enting R-DAT

A. Rule extraction

This procedure removes all documentation information within the RULER
files. Initially this was performed using editor macros, however this could be
performed using a small program written in LEX This program has not as yet been
developed, but would be a significant advantage when large volumes o f code are to
be processed

B. Lower case rules

This program was written using LEX and merely reduces all characters in a
file to lower case The mam reason for this is that RULER is not case sensitive,
unlike Unix, so the work required in identifying recurring instances o f the same
token is reduced

C. Pseudo-code generator

This program parses RULER code and produces a simplified abstraction, or
pseudo-code equivalent Using this new representation it is easier to calculate the
required measures All reference to the assignment operations between data items
is removed A possible extension of this program would be to take this pseudo-code
and provide a graphical interface giving the Rule-Data relationship diagram
representation o f the code The form of this pseudo-code is given in Figure 7-3

D. Duplicate deletion

This program eliminates the duplicate data items within the same rule, as

122

required by the definition of a rule in section 6 3 3.3 Data items between RULE
and END-RULE blocks are sorted and duplicates eliminated

Module 1
RULE1

Data item i
Data item2

END-RULE 1
RULE2

Data item2
Data item3

END-RULE2

Module 2
RULE1

Data item4
END-RULE2

etc

Figure 7-3 Pseudo-code structure produced for RULER code

E. Measurement table

This program produces a table in the format described in Example 7.1 Each
row contains the details for each instance of entity so in the case o f more than one
rule, four bits o f data are added to the low for every extra rule All subsequent
measures are then performed based on the data in this table.

Module Rule no No of data No of sub-rules Level
number items

Example 7.1 Table format tor data collected from RULER code

123

F. M easurem ent files

Using the measurement table described more specific measures may be
obtained. This is done by writing 'aw k' programs which extract relevant data from
this table and produce a file o f more specific and condensed information Three such
programs have been written which produce files o f the following format

M odule N um ber Rule N um ber N um ber of data item s

Exam ple 7.2 Output file - filename 1

M odule N um ber of rules N um ber of N um ber of
N um ber in m odule d ata items sub-rules

: Example 7.3 Output file - filenam e 2

D ata item N um ber of occurrences

Exam ple 7 .4 Output file - filenam e 3

G . C alcu late m easures

Using these final three files eight measures are calculated For additional
measures to be provided suitable 'awk' programs need to be constructed Three such
programs have been written which are described in Table 7 1

124

Table 7.1

Measures obtained using R -D A T

P rogram M easures com puted
Metrics 1 Average rule complexity for all instances o f an entity,

based on the number o f data items they manipulate.
Maximum rule complexity for all instances o f an entity,
based on the number o f data items they manipulate.

Metrics2 Average size of an entity instance, based on the number
o f rules in an instance o f that entity.
Maximum size o f an entity instance, based on the
number o f rules in an instance o f that entity.
Average size of an entity instance, based on the number
of data items in an instance o f that entity.
Maximum size of an entity instance, based on the
number o f data items in an instance o f that entity.

Metrics3 Average level of criticality o f data items based on the
number of rules a data item is in.
Maximum level of criticality o f data items based on the
number o f rules a data items is in.

7.3 Analysis of data

The task of validation is by no means trivial. Many existing and popular
measures are still applied to software when no significant analysis has been
performed to demonstrate the relationship between the measure and the attribute it
claims to assess. Many attribute / measure relationships have been accepted as
intuitive, but are often based on little, if any, scientific evidence. The process o f
validation as previously mentioned is a long and detailed statistical task which has
been covered in more detail by Norman Fenton [Fenton 91].

This section attempts to provide a description and characterisation o f the data

125

collected in order to allow tolerance ranges for measures to be denved and to
identify trends within rules that could lead to further research into more composite
measures (similar to DeM arco’s BANG metrics) which would attempt to provide a
single measure o f system complexity, maintainability, or size

Two methods o f data analysis have been performed The first is provided by
the use o f R-DAT from which we can obtain quantified results for our measures
The second involves using statistical tools to provide more descriptive information
regarding the relationships between p-counts defined in chapter 6 These measures
have been performed for the module entity due to the restriction o f available data.

Table 7.2

Results o f module analysis using R-DAT

M easures evaluated Results
Average number o f data items per rule 007
Maximum number o f data items per rule 057
Average number of rules per module 002
Maximum number of rules per module 018
Average number o f data items per module 013
Maximum number o f data items per module 058
Average number o f rules per data item 002
Maximum number o f rules per data item 022

7.3 .1 Results using R-DAT

The use o f R-DAT at this stage is more to provide the three files in examples
7 1 to 7 3 than to perform actual measurement However results have been extracted
for the measures listed in Table 7 1 Typical use o f this tool would not include the

126

use o f statistical analysis and so these results would be vital to the assessment o f the
software Both the measures below and statistical analysis in section 7 3 2 are based
on the same three files Section 7 3 2 will however contain far more descriptive
information from which ranges for measures can be determined Table 7 2 contains
output from running R-DAT but the significance of the information will be discussed
further in the next section

7.3 .2 Graphing relationships

The three files created using R-DAT as described in section 7 2 (filename 1,
filenam e 2 and filename 3) can be input to any standard statistical package from
which descriptive information o f the data can be obtained MINITAB was chosen
for this task primarily because o f its accessability A mimtab batch program was
written which performed analysis o f these three files These results were then
incorporated into a Lotus 123 style spreadsheet and graphically presented In this
section we examine those graphs and discuss the setting o f initial ranges for a set of
measures

Rules were observed in only three of the five module entity types, online,
report and batch modules The graph in Figure 7-4 represents the histogram o f data
items to rules (ignoring sub-rules l e rules nested below the first level) within
modules with maximum level indicators included to show the difference between the
three module types If a rule contains many sub-rules then it is likely to contain a
high number o f data items which accounts to some extent for the larger values on
this graph We can confirm this by looking at Figure 7-7, where we see that batch
modules have more sub-rules than the other two This is compensated for m Figure
7-9 where rules and sub-rules are included

We can conclude however that 89% of rules have a complexity rating o f less
than or equal to 20 However 100% of rules in online and report modules have a
maximum value of 6 Larger values are probably caused by the use o f sub-rules

127

within batch modules which will be considered later in this section So an initial
range for rule complexity as defined in Equation 6 5, is 20 for batch modules and
6 for the other two

Table 7.3
Basic statistics relating to Figure 7-4

M inim um M axim um M ean S ta n d a rd Dev.
0 47 10 1 10 74

128

The graph in Figure 7-5 presents the number o f rules in a module to provide
a measure o f module 'size' 100% of both batch and online modules are below 4,
and although the report modules, which tend to be larger are as high as 15, 92% of
them have a size value o f less than or equal to 4 It is only a small number of
modules that exceed this value and as we shall see in Figure 7-6, report modules
typically contain a higher number o f data items So based on this data we can set
an initial range for acceptable module size based on the number o f rules as being
between 0 and 4, which accounts for over 90% o f all modules

1 2 3 4 6 e 7 a 9 10 11 12 13 14 16
Rules in modules

F igure 7-5 Size o f a module instance based on the number o f rules

Table 7.4

Basic statistics based on Figure 7-5

M inim um M axim um M ean S tan d a rd Dev.
1 15 1 962 2 019

129

Figure 7-6 graphs the histogram of the number o f data items that appear in
a module, to indicate the size o f the module The first point to notice is that
although batch modules contain far less rules than report modules they manipulate
alm ost as much data, which explains why they contain more data items to rules,
shown in F igure 7-4 It would perhaps be more correct to ensure that size measures
contain information about data items and rules

Table 7-5

Basic statistics relating to Figure 7-6

The number of data items that appear in a module for all modules
M inimum Maximum Mean Standard Dev.

1 58 14 27 12 91

The distribution o f sub-rules to modules is well defined As indicated before,
one o f the reasons why there are more data items to rules in batch modules can be

130

directly related to the fact that they contain more sub-rules A good initial value for
this measure is 3, which account for 92% of the modules Although higher values
exist, they are rather unusual and further investigation o f these modules is required
to examine the reasons for these values

0 1 2 3 4 5 6 7

Sub-Rules in modulo

Figure 7-7 M odule complexity based on the number o f sub-rules

Table 7.6

Basic statistics relating to Figure 7-7

M inim um M axim um M ean S tan d a rd Dev.
0 7 0 933 1 463

The histogram in Figure 7-8 takes into account both the rules and sub-rules
as a measure o f the size o f a module Yet again we see that report modules contain
more rules than the others, although these exceptions represent only a small
percentage o f the modules An adjusted range for the size o f a module based on the
total number o f rules could be 8 which would account for 95 % of the modules

131

2 4 8 6 O 12 14 18 1«

T-Rules in module

Figure 7-8 Module size based on the number o f rules and sub-rules

Table 7 .7
Basic statistics relating to Figure 7-8

M inimum Maximum Mean Standard Dev.
1 18 2 895 2 984

The graph in Figure 7-9 is a corrected version o f Figure 7-4, to include all
rules in modules (rules and sub-rules) Note that there is a slight reduction in the
larger values obtained in Figure 7-4 Those that still exist can be related to
sequences o f assignment statements within rules, which as described earlier are not
counted as rules The complexity o f rules in both online and report modules is not
affected much by the inclusion o f sub-rules which is to be expected based on Figure
7-7 It may be necessary to differentiate between these types o f modules when
setting tolerance ranges A range from 0 - 5 captures all values for online and report
modules while 15 covers 86 % o f batch modules

132

Data item to Rules

F igure 7-9 Rule complexity for all modules, adjusted for sub-rules

Table 7.8
Basic statistics relating to Figure 7-9

T he n u m b er of d a ta item s to to ta l ru les p e r m odule
M inim um M axim um M ean S tan d a rd Dev.

1 37 7 061 7 669

Figure 7-10 gives an indication o f the cnticahty o f data by graphing the
number o f rules they appear in It is quite clear from the graph that at least 90% of
data items appear in 4 or less rules However a maximum value o f 22 exists, which
would make the data item highly critical Such high values should be investigated
to see if they are constants, or other relatively stable items o f information If this
is not the case the rules they are associated with should be extracted and examined
to determine if such high levels are required This function could be an extension
to R-DAT Suggested range for this measure is 0 - 4

133

Figure 7-10 Data item cnticality based on the number o f rules i t 's in

T able 7-9

Basic statistics for Figure 7-10

M inimum Maximum Mean Standard Dev.
1 2 1 2 505 7

7.4 Initial measurement ranges

The ranges for all o f these measures have been defined for the module entity
and new values are be required for the other three entities These values are
provided as an initial set o f ranges within which a high percentage o f data falls,
however no correlation between these values and the maintainability o f systems that
conform to them has been established This will require further data and analysis
It is not recommended that these ranges should remain constant As more systems
are analysed further evidence o f their validity will be obtained and these values
should be changed to reflect this

134

M easure M inim um M axim um
Rule complexity (excluding sub-rules) 0 8
M odule size based on the number o f rules 0 4
M odule size based on the number o f data items 0 20
N um ber o f sub-rules in a module 0 3
M odule size based on number o f rules + sub-rules 0 8
Rule complexity (including sub-rules) 0 20
Data cnticality 0 4

7.5 S um m ary

The prototype static analyser R-DAT has been developed to collect enough
data to perform the initial analysis presented in this chapter Although not complete,
it demonstrates the ease with which data may be collected This is one o f the most
important issues in software assessment - the production o f objective and
reproducible measures The data R-DAT provided allowed the graphing of
relationships between p-counts and measures to help provide tentative ranges which
could be used as an indicator o f the level o f system complexity, maintainability, and
size

135

8 Conclusion

8.1 Conclusion

With the increased pressure on developers to produces systems o f ever higher
quality, measurement has provided a much needed tool with which to quantify
attributes in quality modules. Measurement in software also aids in the prediction
o f resource usage, effort, and cost. Efforts have been made to ensure that when it
is performed, measurement is done scientifically and with specific goals in mind (not
just to please the Quality Controller). For project management to be effective
information obtained from measurement should be accurate, objective and reliable.

M easurement has been used in software engineering to help assess and predict
attributes such as complexity, useability and reliability for almost two decades and
most measures defined were tailored for procedural languages such as Cobol, Pascal
and Fortran. Many of these measures, still in use today, are not universally accepted
with questions regarding how they relate to attributes still under debate. The use o f
H alstead's size measures relating to operands and operators is seen as a vital part of
many prediction and assessment models, however the use o f these vocabulary
measures as a the basis for software science is rather controversial. Assuming that
many existing measures do quantify important attributes o f software, most have been
developed for procedural development methods. Other development methods such
as object-oriented, rule based and 4GL systems also require measurement for the
same reasons as procedural systems, ie. greater control o f system development can
only be obtained when increased reliability in measurement is possible. Some

136

implementation independent measures do exist, but are confined to cost and size
estimations based on documentation produced early in the software life cycle

This research focuses on measures that can be applied to rule based systems,
and provides a set o f steps through which measures can be developed for other non
procedural development tools Using these steps a set o f measures have been defined
for a 4GL rule based language called RULER This set o f six steps attempts to help
in the identification o f components of the software for which no measures exist As
much re-use o f existing measures as possible is encouraged to ensure that as much
standardisation as possible is maintained within the science o f software measurement

Using a set o f identified primitive counts, composite measures were developed
which attempt to formulate attributes such as rule complexity, data cnticality, and
entity size. All o f these measures provide quantified values useable in the assessment
o f an applications maintainability These measures easily fit the quality model
structures defined by Boehm and McCall

8 .1 .2 M easurement in RULER

The categorisation for which measures were defined are data cnticality, rule
complexity, descriptive measures, volume measures and test coverage Each o f these
categories contain a number o f measures which are based on the defined set o f p-
counts To improve the objectivity and reusability o f these measures a prototype
static analysis tool R-DAT was developed which provided data for some o f these
measures to allow preliminary data analysis to be performed

R-DAT allows the collection o f data for all except the fifth category of
measures, which requires that p-counts be evaluated while the application is running
No attempt was made to develop a dynamic code analyser to provide this data
However little validation is require for test coverage Once suitable 'blocks' have
been identified all that is required is the collection o f data to ensure that as a high

137

a percentage o f the application has been executed as possible This measure based
on the identification of a new block conforms to conventional test coverage
estimation methods

Chapter 7 provides an analysis of the other four categories from which a set
o f measurement tolerance ranges were decided Ranges for measures are typically
used to ensure that systems conform to acceptable levels o f a particular attribute (or
sub-attnbute) The ranges in chapter 7 were primarily set to ensure that at least 90%
o f all data collected was within them It is not claimed that they are meaningful
indicators o f rule complexity and data criticality It is important to note that
relationships between the attributes mentioned and the measurement ranges in chapter
7 have not been established This is not the aim of this thesis To set meaningful
values for these ranges requires the analysis o f larger volumes o f data and also a
ngorous validation to ensure that relationships between these measures and attributes
exist As stated, the aim o f this thesis is to demonstrate that measurement theory can
be applied to rule-based systems and that measures for these systems can be
developed

8.2 Future work

Tool development for measures is considered to be an important requirement
for the assessment of attributes in an effective objective way It has been
demonstrated that both objective and reproducible measurement may be performed
for applications developed in RULER Existing measures have been applied using
QUALM S, while R-DAT provided alternative measures Using both o f these tools
the feasibility o f the assessment of the maintainability o f RULER applications has
been demonstrated However, R-DAT in its present state is incomplete Further
modification to i t 's functionality is required An RD-diagram could be produced,
which would provide a visual representation o f individual modules, types, fields or
records and allow direct access to the coding o f rules and data items which contain
out o f range values

138

Another problem with R-DAT is that at present due to the use o f 'aw k'
program s, decimal values are not possible in measurement results. Implementation
o f these programs in C would provide more suitable results. Greater functionality
is also required to provide values for all measures defined in chapter 6 .

With regard to measures defined, those that exist are only intended to be low
level indicators for use in more complex measures. The definition o f these measures
will require a better understanding o f what these measures actually assess. An
approach similar to the one used by DeMarco in his definition o f Design W eight is
one possible method for establishing higher level measures such as system
complexity, or system maintainability.

Now that measures for rule-based systems have been developed and
implemented, other non-procedural development methods should be analysed with
the idea o f producing measures which quantify their unique properties. Logic
programming and object oriented development methods are still badly supported by
software measurement. A set o f measures should be developed for Prolog and Lisp
which may facilitate the standardisation o f measures for all rule-based systems. The
measures defined in chapter 6 should also be applied to Prolog to determine how
applicable they are to different types o f rule-based languages.

The decomposition o f directed graphs into unique primes should be examined
further to determine if unique decomposition o f rules within rule-based systems is
possible. Such a method could be the basis o f a measurement framework for which
parameters could be defined in a similar fashion to those measures described in
section 4 .4 .4 .

The existence o f measures for any system is only useful if those measures are
actually used. An article by Lieberherr [Lieberherr et al 89] proposed that one
method for ensuring a good program was to encode a set of measures within the
language itself. In this way we are guaranteed that a minimum level o f assessment
is performed. This idea could be incorporated into RULER to ensure that

139

compilation is preceded by a set o f measures which could provide warnings to the
program m er or even provide suggested modifications to the source

As development approaches branch out into more and more diverse areas it
is important to continually update our methods for controlling their development
This research has shown that such measurement is both feasible and practical

140

References

References

[Albrecht 79] Albrecht A J , "Measuring application development
productivity", Proceedings o f IBM Applications Development
Joint SHARE/GUIDE Symposium, M onterey, CA, 1979, 83-
92

[Amble 87] Amble T, L o g i c P r o g r a m m i n g a n d K n o w l e d g e E n g i n e e r i n g

Addison-W esley Publishers Ltd 1987

[Bache 90] Bache R , G r a p h t h e o r y m o d e l s o f s o f t w a r e , PhD thesis, South
Bank Polytechnic, London, 1990

[Basili et al 88] Basili VR, Rombach HD, "The TAM E project Towards
improvement-oriented software environments", IEEE
Transactions on Software Engineering 14(6), 1988, 758-773

[Boehm 81] Boehm B W , S o f t w a r e E n g i n e e r i n g E c o n o m i c s , Prentice Hall,
Englewood Cliffs, N J 1981

[Bohm et al 66] Bohm C, Jacopini G , "Flow diagrams, Turing machines and
languages with only two formation rules", CACM 9(5), 1966,
366-71

[Chidamber et al 91] Chidamber S, Kemerer C , "Towards a metrics suite for
Object Oriented Design" Proceedings o f sixth ACM
conference on OOPSLA, October 1991

141

[Conte et al 86]

[Curtis 80]

[DeMarco 88]

[Dobson 90]

[Doyle et al 92]

[Draper et al 66]

[Fenton et al 86]

[Fenton 91]

[Gibbms 88]

[Gilb 87]

[Halstead 77]

Conte SD, Dunsmore H E , Shen VY, S o f t w a r e E n g i n e e r i n g

m e t r i c s a n d m o d e l s , Benjamin Cummins Publishing, ine
1986

Curtis B , "Measurement and experimentation in software
engineering", Proc IEEE 68(9), 1980, 1144-1147

DeM arco T , C o n t r o l l i n g S o f t w a r e P r o j e c t s , Englewood
Cliffs, N J Prentice Hall, 1988

Dobson AJ , A n I n t r o d u c t i o n t o G e n e r a l i s e d L i n e a r M o d e l s ,

Chapman and Hall, London, 1990

Doyle P, Verbruggen R , "Applying metrics to rule-based
systems", Proceedings o f the 4th International Conference on
Software Engineering and Knowledge Engineering, IEEE
computer society press, June 1992, p l23-130

D raper N, Smith H, A p p l i e d R e g r e s s i o n A n a l y s i s , Wiley, New
York, 1966

Fenton NE, Whitty RW , "Axiomatic approach to software
metrication through program decomposition", Computer
Journal, 29(4), 1986,329-339

Fenton N E , S o f t w a r e M e t r i c s , A R i g o r o u s A p p r o a c h ,

Chapman & Hall, London 1991

Gibbins P, L o g i c w i t h P r o l o g Oxford University Press, New
York, 1988

Gilb T , P r i n c i p l e s o f S o f t w a r e E n g i n e e r i n g M a n a g e m e n t ,
Addison Wesley, 1987

Halstead M H , E l e m e n t s o f S o f t w a r e S c i e n c e New York
Elsevier North-Holland 1977

142

[Hoaghn et al 83]

[IS09126]

[Kitchenham 87]

[Kowalski 74]

[Littlewood 88]

[Lieberherr et al 89]

[Logiscope 88]

[Martin 85]

[McCabe 76]

[McCall 77]

[Moroney 50]

[Neil et al 92]

Hoaglin D, M osteller F , Tukey J, U n d e r s t a n d i n g E x p l o r a t o r y

D a t a A n a l y s i s W iley, New York, 1983

Software Product Quality Characteristics & Guidelines for
their Use

Kitchenham B , "Towards a constructive qualiuty m odel", ICL
Technical Journal, 2(4), 1987, 105-113

Kowalski R, L o g i c f o r p r o b l e m s o l v i n g Elsevier North
Holland, 1974

Littlewood B /'Forecasting software reliability", in S o f t w a r e

r e l i a b i l i t y , M o d e l l i n g a n d I d e n t i f i c a t i o n , (Ed Bittanti S),
Lecture Notes in Computer Science 341, Springer-Verlag,
1988, 141-209

Lieberherr K , Holland I , "Assuring Good Style for Object-
Oriented Program s", IEEE Software, September 1989, 38-48

V enlog S A, S o f t w a r e d e v e l o p m e n t a n d t e s t i n g u s i n g

L O G I S C O P E , March 1990

Martin J , F o u r t h G e n e r a t i o n L a n g u a g e s V o i I & I I Prentice
Hall, Englewood Cliffs, N J 1985

McCabe TJ , "A complexity measure", IEEE Trans software
Eng SE-2(4), 1976, 208-230

McCall J A , F a c t o r s i n s o f t w a r e q u a l i t y V o i I , I I , I I I , US
Rome Air Development Center Reports NTIS AD/A-049 014,
015, 055, 1977

Moroney M , F a c t s f r o m F i g u r e s Penguin Books, 1950

Neil M, Carson P, "DCU1 Case Study Data Analysis
Report", SCOPE consortium, Esprit II, P2151, March 1992.

143

[Ratcliffe et al 90] Rathcliffe B, Rollo AL , "Adapting function point analysis to
Jackson System Design", Software Engineering Journal, 5(1),
1990

[Ruler 87]

[Sammet 69]

[SCOPE 90]

[Sedgewick 84]

[Seigel et al 88]

[Sprent 89]

[Stroud 67]

[Tukey et al 77]

[Vemer et al 92]

[Walston et al 79]

[W armer 76]

Phimac Ltd , R U L E R r e f e r e n c e m a n u a l , April 1987

Sammet F E , P r o g r a m m i n g L a n g u a g e s H i s t o r y a n d

F u n d a m e n t a l s Prentice Hall, Englewood Cliffs N J 1969

SCOPE consortium, T e c h n i c a l A n n e x e , Esprit II, P2151, July
1990 T

Sedgewick R, A l g o r i t h m s , Addison-W esley, 1984

Seigel S, Castellan N, N o n p a r a m e t r i c S t a t i c s f o r B e h a v i o u r a l

S c i e n c e s (2nd Edition), McGraw Hill, New York, 1988

Sprent P , A p p l i e d N o n p a r a m e t r i c S t a t i s t i c a l M e t h o d s

Chapman and Hall, 1989

Stroud JM , "The Fine Structure o f Psychological Time"
Annuals o f New York Academy o f science 138,2 (1967) 623-
631

Tukey J, M osteller F , D a t a a n a l y s i s a n d r e g r e s s i o n Addison-
Wesley, 1977 '

Verner J, Tate G , "A software size model" IEEE
Transactions on Software Engineering, 18(4), April 1992,
p265-278

Walston CE, Felix CP , "A method of programming
measurement and estimation", IBM Systems J, 16(1), 1979,54-
73

W arm er JD , L o g i c a l C o n s t r u c t i o n o f P r o g r a m s , 3rd Ed ,
trans B M Flanagan New York Van Nostrand Reinhold,
1976.

144

[Wilson 72]

[Wilson et al 88]

[Yourdon et al 79]

Wilson RI , "Introduction to Graph Theory", Academic Press,
1972

Wilson L, Leelasena L, "The QUALMS Program
Documentation", Alvey Project SE/69, SBP/102, South Bank
Polytechnic, London, 1988

Yourdon E, Constantine LL, Structured Design, Prentice Hall,
1979.

145

