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Abstract

Passive dynamic walkers are a body o f robots, both simulated and real-world, that can 

"walk" down a slightly inclined plane powered only by gravity and eventually acquire 

a stable periodic gait O f particular interest is the fact that the motion appears "human

like" Performance indicators such as efficiency, step period etc are also 

commendable Common to all previously modelled creatures is that a hip mass is 

utilised to represent a torso - an omission that is tackled here

An upper body, represented as an inverted pendulum, is added to a passive creature 

To keep the body in an upright position, a simple controller applies a varying torque 

as necessary Periodic gaits are achievable, both stable and unstable, where stability is 

contrived through the addition o f a damper Performance indicators are as good as 

those o f the body-less creatures indicating that the torso is not a hindrance Finally the 

addition o f further dampers at the hip joint can improve performance
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Chapter One 

Bipedal Locomotion

1.1 Introduction

Animating creatures, or articulated figures, can in essence be split up into two 

categories o f  approach kinematic and dynamic modelling

Kinematic  Kinematic animation is concerned only with the specification of joint 

angles and velocities over time and does not deal with the forces and torques affecting 

a creature

Dynamic  Physical based animation incorporates the rules o f physics into the 

modelling process to generate realistic motion “Realism” here refers to behaviour 

consistent with a simulated model o f the real world Incorporation of dynamics brings 

extra problems 1 e integration o f the equations o f motion over time is computationally 

expensive and cumbersome and the provision of control forces and torques to the 

creature is complex

There are broadly speaking two approaches to the method integrating physics into the 

creation o f lifelike animation o f creatures which are outlined in the next two sections

1.1.1 Trajectory based animation

The first poses the problem in terms o f a trajectory through state-space and time, 

which is subject to the constraints of the desired motion Therefore a typical problem 

would deal with minimising a certain objective (e g minimum control energy) subject 

to certain constraints (e g be in position a at time to and in position b at time ti)

One restriction o f dealing with motions as trajectories is that it is difficult to properly 

incorporate interactions with the environment Discontinuities in the motion, such as 

those caused by contact with the ground, pose difficulties for many optimisation



techniques In addition, a new trajectory must be generated for each new desiredi < ,
motion Two advantages associated with this method however are that it relates well 

to the idea o f key-framing, and that these techniques are also able to find the most 

plausible solution, even if  no physical solution is possible (e g walking on water) A 

more detailed discussion o f one method o f posmg the problem in a format based upon 

desired trajectory is outlined in [Ega96]

1.1.2 Control Algorithms

The second method is to utilise a controller or control algorithm, where a controller 

makes control decisions based upon a mechanical simulation and as such does not 

explicitly calculate a trajectory Therefore, the problem is one o f the user providing 

the creatures construction and posing the question “How would it move9” The motion 

o f a creature is thus made up o f a sequence o f control algorithms, with each control 

algorithm providing a particular type o f motion e g walking, jogging, running etc 

Physically built controllers, require much user assistance and manual tweaking must 

be performed to provide correct motion In most cases the control system is decoupled 

and separate algorithms are needed to perform the various different kinds of motion 

required (e g hopping or skipping or walking or running etc )

It is therefore more useful to synthesis a controller and then maybe build one 

However synthesising controllers is not problem free Complex control algorithms 

utilising intricate algorithms such as neural-networks, genetic algorithms etc have 

been formulated providing realistic animation - (see [Ega97] for a more detailed 

discussion) A major drawback o f these approaches is that researchers are able to 

provide motion to “certain” creatures m “certain” situations but are unable to provide 

widespread animation To provide a variation in gait e g changing from walking to 

running requires reformulation of the problem Also while controllers increase the 

autonomy o f the creature thus reducing user input, they also reduce user control The 

more complex the control algorithm the less control the user has
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1.2 Biped locomotion

O f primary concern m this thesis is bipedal locomotion - movement o f two-legged 

creatures The mam advantage o f bipedal locomotion is its naturalness bipeds should 

be able to traverse whatever terrain they are in, much as a human might What follows 

is a brief discussion, not intended as a complete review, o f some research in each area 

o f the three disciplines given above

1.2.1 Human Motion analysis

The first area o f bipedal research is purely medical based and involves capturing 

actual human data and analysing it Hurmuzulu's laboratory [HurOO] has been 

developing quantitative measures to assess the dynamic stability o f human 

locomotion, where the analytical methodology is based on Floquet theory He earned 

out a study comparing the gait kinematics and dynamics o f polio survivors with that 

o f non-paralysed humans utilising graphical and analytical tools Phase plane portraits 

and first return maps were used as graphical tools to detect abnormal patterns in the 

sagittal kinematics o f polio gait He concluded that polio patients walked less 

symmetrically than "normal" people did and that their motion was also less stable 

then "normal" people

1.2.2 Human Simulation

In her laboratory Hodgins et al [HodOO] are interested in providing animations, 

primarily o f humans involved m various activities such as running, bicycling and 

diving The goal o f their research is two-fold firstly realistic characteristic motion 

and secondly high level control by the animator and underlying simulation earned out 

by the machine These motions are achieved through application o f control algonthms 

to the physically realistic model o f the human that is being animated The physical 

model o f a human is taken from the mass and inertia properties prevalent in the 

biomechanics literature The control algonthms involve the use o f inverse kinematics, 

proportional-denvative control laws, state machines, active control laws and synergies 

- a complete published list is available on the web site [HodOO] In addition secondary

10



motion and group behaviours have been added to the simulation to increase 

complexity and realism

Simulation is not without its difficulties and some o f the problems that have been 

encountered are as follows adapting behaviours to new actors is difficult because a 

control system that is tuned for one character will not work on a character with 

different limb lengths, masses, or moments o f inertia New activities need new 

controllers and also creating appropriate transitions from one behaviour (either 

existing or new) to the next can be a challenging problem While these problems have 

been solved the processes involved can be quite complex and may not lead 

themselves to a physical implementation m robotic form

1.2.3 Legged Robots

The body o f work contained in this thesis falls primarily into the third and final area 

o f research 1 e legged robots A list o f biped robot researchers can be found at 

[CalOO], but what follows are examples o f some o f the more successful creatures that 

were built

The Massachusetts Institute o f Technology [MitOO] has been successful m  building 

legged robots for the past two decades Led by Marc Raibert [Rai86] the MIT Leg 

Laboratory explores active balance and dynamics in legged systems, robots and 

animals alike Activities for the robots are made up o f a combination o f simple 

algorithms that focus on support, posture and propulsion, thus providing balance and 

basic control A single set o f control algorithms, modified m various ways, has 

successfully controlled numerous running machines as well as hopping, gymnastics 

etc Several simple algorithms currently under development have had promising 

results on walking machines According to the lab web-site "the ability o f  simple 

algorithms to operate under these diverse circumstances suggests their fundamental 

nature" [MitOO] A number o f bipedal creatures in particular have been created 

including the spring turkey and planar biped
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Again, there are a number o f problems with the research partaken by the laboratory 

For each creature separate control algorithms must be formulated for each walking 

activity so reusability would be an issue Each creature also requires a relatively 

small, but m the long run, a considerable amount o f power to keep in motion Finally 

taking for example the spring turkey, the construction costs l e  «$100,000 are 

substantial

In Japan the Honda Corporation has successfully built a humanoid robot known as P I  

[HonOO] This robot with human-like appearance is versatile, capable of walking 

sideways as well as forwards and can traverse stairs and is robust enough to tolerate 

pushing Originally designed as a possible home robot several generations have 

evolved (the newest version available is P3) but still there are a number o f problems 

m existence These are namely the high pnce tag (in the region o f millions o f dollars), 

low battery life (in the region o f minutes) and limited intelligence (a person is 

constantly needed to operate the robot) Honda aims at improving performance and 

operability in future models

Fig 1.1 : The Honda robots (P2 and P3), © Honda Corporation Ltd
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Katoh and Mon constructed a biped with very simple dynamics and telescopically 

retractable legs [Kat84] It consists o f  a three degree o f freedom model with 

independently adjustable leg lengths Mura and Shimoyama built a robot that 

generated gait by linear feedforward control, joint torque schedules were pre

calculated and played back on command [Miu84] Hurmuzulu created a kneeless 

biped with an additional body mass connected to the hip through a pelvic joint 

[Hur86] Particular attention was paid to the effect o f the robots' impact with the 

ground and the impact conditions were justifiably considered as an integral part o f the 

governing equations Central to the robots mentioned is that fact that all have some 

form o f actuation Controlling this actuation, if  applied, has involved the use of 

complex control algonthms

1.3 Passive Dynamics

Another topic o f research is based upon bipedal creatures that have no actuation 

except the passive interaction of gravity, mertia and collisions and have no control 

system 1 e passive dynamic creatures

Def: A passive dynamic creature is one whose motion is fully determined by

gravity, mertia and collisions and involves no control system [Gos96b]

The philosophy here is to solve a simple system to get a better insight into the 

underlying mechanics o f complicated systems Then small amounts o f power can be 

added m efficient ways to allow them to walk on level ground or up a hill and simple 

control mechanisms can be introduced to increase the stability o f the motion

The rest o f this thesis is organised as follows

■ Chapter two introduces previous work on this topic and identifies the missing 

component common to all passive dynamic creatures namely the inclusion o f a 

torso
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■ Chapter three outlines the mechanics o f the creature In formulating the dynamics, 

the equations o f motion for the creature along with the impact o f the collision with 

the ground are taken into account

■ Chapter four indicates how this motion will be analysed Poincare maps are 

formulated and Newton's method is used to find fixed points These fixed points 

are then classified as either stable or unstable

■ Chapter five gives the results attained for the creatures that are dealt with here 

The initial part o f this chapter involves results that correlate with results for 

similar creatures 1 e for a body-less creature and the remaining gives previously 

unpublished results

■ The final chapter identifies the conclusions gamed and possibilities for future 

work
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Chapter Two 

Passive Dynamic Walkers

2.1 Passive Dynamic Walking

In 1980 Mochon and McMahon [Moc80] argued from electromyographic data that 

humans were not actively controlling most o f their movements during walking. Other 

EMG studies, more recently published for instance in [Ros94], indicate that much of 

human walking may indeed be passive i.e. muscles are not used in significant 

quantities to provide movement. Inspired by the research [Moc80b] on ballistic 

walking (Ballistic walking is considered to be the most fundamental, and therefore the 

most revealing, approach to bipedal walking, involving creatures walking in a ballistic 

fashion i.e. legs swing and impact with the ground), Tad McGeer designed and 

analysed a passive dynamic walker [McG90], This consisted o f a simple rigid two- 

legged creature 'walking' down a shallow slope with no outside control or additional 

energy input i.e. it was powered by gravity alone. Thus the passive-walking pattern is 

determined by the natural frequency o f the mechanical system. An interesting 

characteristic determined was that the creature achieved a stable limit cycle that 

looked almost human-like. One interpretation o f a limit cycle means that one step 

only needs to be fully determined as all subsequent steps are just “copies” o f it and 

stability indicates that any disturbance that occurs is rectified and the creature keeps 

walking. An extension given by McGeer [McG90b] was to include knees, which 

provided natural ground clearance, and again a stable limit cycle was achieved. These 

creatures were initially simulated and then later built.

In addition to pioneering the passive-dynamic approach to gait study, McGeer utilised 

a Poincare map as a means o f analysing the given simulation results. Other authors as 

shall be seen in section 2.3 have made improvements on the characteristics of passive 

creatures through the use o f dampers and simple control laws. In addition the analysis 

o f that motion has become more adept over the years.
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2.2 Why study passive dynamic walking?

Designing and building biped robots is fuelled by the potential advantages they would 

provide Biped robots are better suited to working in hazardous environments, such as 

chemical spills, or exploration on unsuitable terrain such as on another planet and 

more especially in rehabilitation technology (1 e as an alternative to wheel-chairs 

whereby paralysed people could actually walk again) Science fiction even dictates 

the possibility o f front-line fighting in a war situation using bipeds At present one o f 

the main obstacles to a wider application o f legged robots is their lack of energy 

efficiency Much work has taken place on overall gait synthesis based upon brain 

control and muscle power leading to impressive but limited creatures The reasoning 

behind the study of passive dynamic walking can be summarised as follows

1 It makes for mechanical simplicity and relatively high efficiency McGeer's results 

and those o f the researchers that emulated his work provide animation that is both 

humanlike and stable Trying to get a fundamental understanding of how humans 

walk from a mechanical point of view could prove useful in providing control 

later

2 The simplicity promotes understanding McGeer used the analogy of powered 

flight research [McG90] The W nght brothers began by studying and building 

gliders Once they fully understood the concepts o f “unpowered” flight, adding 

power (i e engine) was only a minor change The concept therefore is to start with 

a machine with no active control and then the addition of control should be 

uncomplicated

3 Evidence exists (in the form o f EMG results) that a minimal amount o f control 

and actuation is necessary for some basic human motions, including gait 

[Gos98a] At the heart o f these motions, the body is at or very close to a limit 

cycle As already outlined EMG studies have shown relative muscle inactivity 

during the swing phase o f human motion [Ros94] that could be termed "passive" 

O f course an equally legitimate approach to achieving stable and efficient walking 

is to start with arbitrary amounts o f control and actuation and then to gradually 

minimise their role
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Central to the study o f planar passive walking is the simplicity o f the model being 

considered By disregarding complex additional characteristics to the idea o f motion 

such as complex control algorithms, optimisation, external torques and forces etc, 

more insights can be gamed on the fundamentals o f bipedal motion -  which is 

currently not fully understood

Rule: The general motto o f passive walking could be epitomised therefore as 

starting from  the bottom up

2.3 Collection of Passive Creatures

Passive dynamic toys are not a new phenomenon and a collection o f pictures of 

antique patented toys is attainable at [CorOO] However the concept o f passive 

dynamic creatures in terms o f serious analysis and design is relatively fresh 

Therefore literature on the topic o f passive dynamic walking is quite limited and 

predominantly contains the analysis o f three very similar creatures designed by three 

authors, McGeer's original, Goswami's Compass model and Garcia's Point Mass 

model

2.3.1 McGeer’s Original Passive Dynamic Walker

Me Geer's [McG90] model, the original, has two rigid legs connected by a fhctionless 

hinge at the hip Each leg has an arc-style structure at the base, which act as feet The 

arc-like semi-circular feet are used as a mathematical convenience rather than a 

physical necessity There is a point mass at the joint o f the two legs 1 e the hip, which 

serves as being a "crude torso " The stance leg is m constant contact with the ground 

while the swing leg moves similar to a swinging pendulum - thus the complete system 

is akin to a double pendulum The complete system can therefore be modelled by four 

generalised co-ordmates one for each leg angle and angle velocity This creature is 

based on the ballistic walker o f Mochon and McMahon [Moc80] -  a bipedal toy that 

walks down shallow slopes by rocking sideways This model however doesn’t rock
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from side to side In the solution method given by McGeer a rimless wheel model was 

analysed first to provide basic insights, followed by the more complex creature 

described above The wheel had only a centre point and spokes (no nm) and the 

analysis involved isolating two side by side spokes Finally note that as an extension 

knees were added in and this creature is represented in a simple form in Fig 2 1 The 

addition o f  knees leads to there being 8 states

Fig 2.1: Simple representation o f  McGeers' Passive Dynamic Walker with knees

More details can be found  at [McG90b]

There are some general regulations that must be adhered too - but these are adopted

by all models and as such are characteristic o f passive creatures

■ foot scuffing l e where the swing leg grazes the ground midway through its 

trajectory, is ignored

■ collision o f the feet with the ground is slipless plastic This means that the 

configuration o f the creature stays the same and angular momentum is conserved

■ finally foot transition (l e when one foot hits the ground and the roles o f the legs 

are switched) is instantaneous
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The solution process involved formulating the equations o f motion o f the swing 

phase, which are highly non-lmear and a set o f algebraic conditions to simulate heel- 

stnke and the swapping of leg roles To solve the dynamics and to find limit cycles 

McGeer performed a linearisation about an equilibrium point 1 e the creature standing 

rigidly upright The flaw inherent in this method shall be outlined in section 2 4 

Finally each step was modelled as a Pomcare map which could then be analysed for 

stability

The conclusions reached by McGeer are summarised as follows

■ fixed points were found but these were not necessarily always stable

■ efficiency can be measured as the minimum slope necessary to provide motion 

and the minimum angle y  found was 0 005 radians

■ parameter changes were made and the effects noted scaling o f leg mass, leg 

length and gravity may not destroy the limit cycle, moving centre o f masses could 

destroy the limit cycle and addition o f a hip mass improved efficiency

2.3.2 Compass Gait Creature

Others have adopted McGeer's original ideas Although the models that are used are 

not significantly different or improved from the original, it is the extent o f analysis o f 

passive walking that has advanced in recent years Goswami [Gos94] slightly 

modified the creature to form a compass-like biped This “compass-like” model is 

very similar in structure to that o f McGeer's, except that there are no arcs present to 

resemble feet - instead there is just a point The problem of foot scuffing is avoided by 

including retractable mass-less lower legs (remember this is a simulation and those 

mass-less lower legs are plausible) The telescopic retraction o f the leg solves the 

problem o f foot clearance without affecting the robot dynamics The long-term 

motivation behind this study is to formulate a simple biologically inspired active 

control law of a 17-dof biped robot being built in project BIP co-ordinated by the 

INRIA laboratory in Grenoble, France [BipOO] The first prototype o f this robot was 

built in March 2000 and successfully walks
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Fig 2.2: Compass Gait Creature Note the absence o f  "feet” and use o f  retractable 

legs

One notable augmentation in the solution method was the utilisation o f the full non

linear equations As previously stated McGeer utilised a linearisation about an 

equilibrium point and this is discounted by Goswami In a later work [Gos96b] a 

comparison o f both methods was earned out and this is outlined m section 2 5

Three parameters, namely the ground slope and normalised mass and length 

completely desenbe the creature Any continuous change in one o f the parameters 

leads to an evolution o f the steady gait through a regime o f bifurcations leading to a 

chaotic state where no two steps are identical [Gos98] A bifurcation (or penod 

doubling) indicates that each alternative step is repeated, and thus Goswami found 

that as the slope increases stable penod one solutions transform into stable penod two 

solutions and so on until eventually chaos is reached A necessary but not sufficient 

condition for the stability o f such gaits is the contraction o f the "phase fluid" volume 

and the volume contraction was thus computed Goswami added m passive dampers 

at the hip joint, to dissipate the energy build-up, and this results in a significant
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improvement in the stability and versatility o f the gait (1 e improving the maximum 

attainable stable slope) Finally Goswami also investigated the performance o f several 

active control schemes which enlarged the basin o f attraction o f passive limit cycles 

and created new gaits [Gos97a] The notion o f adding in dampers and outside control 

is addressed in section 2 7

In summary therefore the additional characteristics o f passive walking found were

■ possibility o f using full non-linear equations

■ period doubling (1 e bifurcations ) leading to a chaotic state

■ addition o f dampers at hip increase stability and versatility

■ simple passivity mimicking laws can be added m

2.3.3 Simplest Creature: Point Mass

Garcia's “point-foot” [Gar98a] model is the most simplistic o f all It is a deterministic 

generalisation o f Alexander's non-deterministic theoretic "minimal" model [Ale95] 

This creature has no arcs for feet, instead having point masses (l e m) The hip-mass 

M  is much larger than the foot mass m (= 1000 times) so that the motion of a swinging 

foot does not affect the motion of the hip

ramp slope y

Fig 2.3 : Point mass creature
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This special mass distribution further simplifies the underlying mechanics and 

mathematics involved in the solution process This significant reduction also allows 

the author to perform analytical computation, estimate the initial conditions necessary 

and to form stability estimates o f period one gaits After nondimensionalismg the 

governing equations it was found that the only free parameter was the slope y  Again, 

similar to Goswami's solution method above, the full non-lmear equations are utilised

The model displays two period one gait cycles, one o f which is stable for 0 < y  < 

0 015 By increasing the slope y beyond this value, stable cycles o f higher periods 

appear, and the walking-like motions apparently become chaotic through a sequence 

o f period doublings, which again agrees with the findings o f Goswami

2.3.4 Other passive creatures of interest

Berkemeier and Smith [Ber97] extended the concept o f passive dynamic walking 

from bipedal to quadrupedal locomotion The creature consisted o f a pair o f McGeer 

two-dimensional bipeds linked together by a 'spine' A rimless wheel model was 

analysed first to provide basic insights followed by a more complex model with free- 

swinging legs The gaits o f the quadruped are more efficient than those o f the biped 

but are unstable Future work was to evolve around stabilising this creature, but as o f 

yet no results have been published

Camp [Cam97] demonstrated that a simple open-loop actuation/control scheme is all 

that is required to produce stable, powered, human-like walking motions in a set of 

roughly human-like legs By having a 'powered mode' the creature does not require a 

slope and can traverse level ground Stable and unstable gait limit cycles and period 

doubling, for a variety o f structural, physical and control/actuation parameters were 

observed

The original passive walkers give a hip trajectory that is far from smooth However 

successful applications would require a smooth hip trajectory to protect the 

electronics o f the creature from the large velocity changes due to ground collisions
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Quint van der Linde [Qui98] showed that an actively adjustable stance leg compliance 

in combination with a viscous damping can result in smaller hip velocity changes

Work has also been carried out on motion in 3D McGeer's [McG91] numerical 3D 

studies only led to unstable period motions Garcia [Gar99] and Coleman [Col98] 

utilised a gradient search method to try to improve the unstable eigenvalues of 

McGeer's model Improvements were made but he still returned a maximum 

eigenvalue modulus that indicated instability (1 e well above 1) Kuo numerically 

simulated a passive dynamic 3D model o f walking but again did not find stable 

passive motions [Kuo98] Finally Coleman has a physical walker that walks and 

balances m 3D, but cannot stand still and does not yet know exactly which aspects of 

its physical description are needed to theoretically predict its stability with computer 

simulation [Col98]

Suggestions were given as to how to maybe stabilise models m three-dimensions and 

some o f the suggestions include

■ using ellipsoid or toroid feet [Gar99]

■ using freely swinging arms [Gar99] - presumably a torso would be needed first1

■ including ball-socket hips with torsional springs for stabilty [McG91]

2.4 Passive Dynamic Walker with Torso

Common to all passive creatures that have been developed up to now, is the omission 

o f an extended torso and that is the primary goal of this body of work - to rectify that 

While addressing the issue o f passive running McGeer [McG90a] indicated that a 

torso would "have an important role as a torque-reaction partner, so this should be 

added to the model " The added torso will be treated as another link, much akin to the 

well-known inverted pendulum problem Control will be needed to keep the body m 

an upright position and it is felt that the controller should be kept as simple as possible 

to preserve the simplicity of the creature The need to use this simple controller seems 

necessary and this fact is echoed by Ruma m [Rui97] "the possibility that 

asymptotically stable balance can be achieved without control is somewhat
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unintuitive since top heavy upright things tend to fa ll down when standing still or 

more generally, since dynamical systems tend to fa ll down "

In his proposal on future work m the area o f passive dynamic walking Ruina [Rui97] 

suggested the importance o f placing a torso onto a passive creature saying that 

"Chopped at the waist theoretical and mechanical models may represent the motions 

o f  a more complete mechanism such a theoretical model might not have too great a 

relevance fo r  healthy humans because the simulation o f  springs is most accurately 

accomplished with tiring co-contraction (which is often avoided by humans) But it 

does point towards the utility o f  passive measures fo r  prosthetics and towards simple 

spring or damper simulating control laws "

Finally note that in formulating the code involved in the solution for the bodied 

creature, a body-less creature shall also be considered The goal o f this body-less 

creature is to attain the solutions previously published and as a building block for the 

"new" bodied creature

2.5 Linearisation versus full non-linear equations

Before the solution process begins one important decision must be made whether to 

use the full non-linear equations o f motion, which shall be generated by the creature, 

or to perform some sort o f linearisation

The process o f solving the given problem has had two avenues o f approach over the 

years McGeer [McG90] took the method o f linearising the dynamic equations o f the 

creature about an equilibrium point thus providing a simpler problem to deal with 

The equilibrium point was the creature standing perfectly upright, and this allowed 

explicit integration o f the dynamical equations Next the collision equations with the 

ground were added and the conditions for the existence o f a periodic solution o f this 

coupled system were found In order to study the stability o f this periodic solution a 

second linearisation about the periodic solution is necessary One means of 

determining efficiency for a creature is to determine the minimum slope attainable
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and McGeer numerically found walking motions for slopes as low as about 0 005 

radians [McG90] The mam problem with this approach is that the linear solution is 

valid only within a narrow region around the point o f linearisation However for any 

real gait, significant deviation from this point is required [Gos96b]

The second approach as shall be adopted here is to utilise the full non-linear 

equations Advantages for this approach are outlined m the next paragraph though the 

mam disadvantage is that you have to rely extensively on numerical simulations 

However, the computational burden is manageable as the robot model has a relatively 

small state space dimension

Goswami [Gos96b] used both techniques and compared them Apart from the fact that 

the non-linear approach has a much wider basin o f attraction he found that the 

maximum slope attainable increases slightly This is due to the fact that for higher 

slopes, the robots dynamics involve larger state values (angles and velocities) which 

begin to render the linearisation (about an equilibrium point o f the state vector being 

0) invalid By comparing the linear and non-linear state vectors on equivalent slopes, 

he also found that the joint angles vary less sensitively than the joint velocities 

Finally the only energy source m the model, the mechanical energy, which comprises 

solely o f the sum o f the kinetic and potential energies i & E = K E  + P E  also vanes 

quite steeply between both methods Given that there is such vanations he 

hypothesised that it would be more appropnate to use the full non-linear solution, 

which is in keeping with the approach of Garcia [Gar99]

2 6 Description of a stable passive period one gait.

It has been stated that passive dynamic creatures may possess stable limit cycles and it 

is this descnption that is now outlined For the purposes o f outlining the motion o f the 

creature phase space terminology shall be adopted Phase space is descnbed as the 

space consisting o f the generalised co-ordinate/generalised velocity vanables l e state 

space [Gos96a] The phase space o f the body-less creature is 4-dimensional (as shall 

be shown in chapter three) and for the bodied creature it is 6-dimensional, where the 

numbers correspond to the number o f states present Since we cannot graphically

25



visualise these high dimensional spaces, diagrams will be limited to the displacement 

and velocity o f only one link This high-dimensionality also leads to problems in 

determining the size o f the basin o f attraction for the limit cycle

sw in g  l e g  m a n o e u v re s  t h r o u g h  a i r

swing leg  angle u2
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Fig 2.4 : Limit Cycle Note that this ju s t represents the swing leg o f  the body-less 

creature The straight line represents the collision o f  the leg with the ground

A period one gait is one, which repeats itself after every single time penod, a penod 

two is one which repeats itself after every two time periods and so on A loose 

definition o f stability indicates that any disturbances to the gait get swallowed up and 

the creature keeps moving in an upright manner The phase space diagram in Fig 2 4 

deals with the angle and angular velocity o f the swing leg over time The step begins 

the moment after heel-stnke has taken place At time t = 0, the pivot leg is in the 

stance position Immediately it becomes the swing leg, and the previous swing leg the 

stance leg, traverses up in the air, reaches a maximum point and descends At time t = 

T, the leg impacts with the ground (heel-stnke) and a velocity jump is observed (i e 

the straight line in the diagram) Now the leg roles are reversed and next step
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continues The diagram shows the phase plane diagram for the body-less creature, 

with hipmass o f 0, on a slope o f 0 005

2.7 Poincare Map

McGeer [Mc90] placed a step in terms o f a Poincare map - something which is 

prevalent in the non-linear dynamics literature e g [Ott93] What this basically means 

is that one step can be dealt with or encoded in terms o f a complete function It is 

often useful to reduce a continuous dynamical system into a discrete one and this can 

be achieved through the use o f a Pomcare map It is a tool developed by Henn 

Poincare for a visualisation o f the flow (l e continuous system) m a phase space of 

more than two dimensions If  the phase space is TV-dimensional then the Pomcare map 

has dimension N -l Thus the Poincare map represents a reduction o f the N- 

dimensional flow to an N -l  dimensional map

The map itself is a carefully chosen (curved) surface in the phase space that is crossed 

by almost all orbits The Poincare map maps the points o f the Pomcare section onto 

itself For illustrative purposes take N  = 3 with states {x, , x2, x3} The points A and

B  represent two successive crossings o f the surface o f section i e shaded region A 

can be used as an initial condition to find B  and vice versa Thus the Pomcare map in

Fig 2 5 shows the mapping o f {x,", x 2"} to {x,"+l, x2"+1} and the Pomcare map section 

consists o f the shaded region
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Fig 2.5 Poincaré Map

2 8 Active Control and Stabilisation Using Dampers

For the bodied creature as shall be outlined here, external torques are necessary to 

keep the body upright and to provide stability The use of these and passivity 

mimicking control laws enforced through dampers has been studied by Goswami 

[Gos97a] and McGeer [McG90a] primarily to increase performance The actual 

dampers and control laws that are used are highlighted m chapter four

Goswami's [Gos97a] control laws were founded on the mechanical energy principles 

o f the system As the robot walks down on a slope its support point also shifts 

downward at every touchdown As it loses gravitational potential energy m this way 

its kinetic energy increases accordingly This is exactly the amount o f kinetic energy 

that is to be absorbed at the end o f each step by the impact By resetting the potential 

energy reference line to the line o f touchdown (i e ignoring the slope which would 

lead to a decrease in potential energy), the total energy o f the robot appears constant 

regardless o f its downward descent The control law formulated attempted to bring the 

current energy level o f the robot E  to the target energy level E  at an exponential rate 

What was introduced was a simple control law of the form -  (w,, u2) The control
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law is implemented through the use o f torques at either the ankle, or hip or both For

-  ( E - E )
instance the hip torque has the form uH = --------------- , where is a constant value

U 2 —  M,
(taken to be 0 1) The overall effect o f this was a demonstration that the basin o f 

attraction o f the limit cycle could be significantly enlarged Another control law 

which attempted to maintain a specified average speed o f progression based upon the 

velocity o f the robot enables it to walk up a slope

McGeer [McG90a] employs active control to try to stabilise unstable cycles in his 

running creature He also states that the running cycle can be modulated to allow, for 

example, crossing unevenly-spaced stepping stones Step-to-step modulation is 

provided for by linearisation of the stride function Then active stabilisation is 

achieved through the use o f the Linear Quadratic Regulator Algorithm

2.9 Goal of this research work

At this point it should be appropriate to highlight the purpose and eventual goals of 

this body o f work Previous research as has been outlined m this chapter consists of 

body-less creatures and it is this omission that shall be tackled, as a torso leads to a 

more complete and realistic creature The primary reference or source model utilised 

shall be that o f McGeer's - see section 2 3 1 and the objectives therefore are

■ addition o f extra link, l e torso into the creatures description

■ keep this link upright but in accordance with the philosophy o f passive dynamic

walkers using as simple a controller as possible

■ identify whether limit cycles exist, and the possibility o f bifurcations leading to 

chaos

■ analyse stability, efficiency, and performance indicators

■ try and improve on performance through the addition o f extra dampers
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Chapter Three

The Solution Process

3.1 Introduction

This chapter details the solution process involved in generating the creatures motion 

This procedure has very definite individual components and the complete method 

leads to the generation o f a single step The first component will be to determine the 

configuration o f the creature being studied Two creatures are considered in this work, 

namely McGeer's original [McG90] and a new passive dynamic walker with a torso 

McGeer's model is utilised as a means o f formulating and coding the solution process 

and of proofing the code involved Some slight improvements on his results were 

made, as shall be highlighted m chapter 5 All o f the solution methods used on the 

body-less creature have been previously published and were used as a framework in
I

the solution method for the bodied creature

3.2 Creature Configurations

3.2.1 Body-less

Before the addition o f a torso, it was necessary to gain an insight into body-less 

motion Therefore the first creature considered consists, as McGeers’ does [McG90], 

o f the following parameters
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Fig 3.1: Body-less Creature consisting o f  two legs and a hip mass on a slope y  

Legs

The creature has two rigid legs, one in motion known as the swing leg and the other 

anchored to the ground, the stance leg Each leg is identical consisting of length L and 

o f mass M  with the centre o f mass positioned at the point comleg, a vector given from 

the end point Each leg has an arc-style structure at the base o f radius R, which act as 

feet The arc-like semi-circular feet are used as a mathematical convenience rather 

than a physical necessity and could be removed as necessary A more complete list of 

vectors influencing the creature is given in appendix A and in Fig 3 2 below Finally 

note that the centre o f mass M  is offset slightly and this is indicated by the variable w

Hip

The joint connecting both legs contains a mass, known as the hip mass and is 

represented by the parameter mhip The hip mass is attached to each leg and thus each 

leg has total mass mhip + M  The total mass o f the robot is thus 2(mhip + M )

Inertia

The moment o f inertia is given by

/  = Massx-r^ 2 (3 1)
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where rgyr is the radius o f gyration [Han88] and Mass is explained below The radius 

o f gyration value used by McGeer [McG90], namely r = 0 347 is approximated

here with an actual value of rRyr = 0121  utilised The effects o f varying this value

will be highlighted in chapter five There are two different Mass values associated 

with equation 3 1 for each o f the two legs for the swing leg Mass = M  + mhip and 

for the stance Mass = M

Length

At the time o f heel-stnke, since both legs are in contact with the ground, the robot 

configuration can be completely described by what Goswami [Gos96b] terms the 

inter-leg angle a  Since the leg angles here are equal but opposite this inter-leg angle 

is simply twice the swing leg angle l e 2qi The step length is then given by the 

following formula

Length =2 L Sin (3 2)

Stance L es Only

mhip

M

w

R
comleg

Fig 3.2 : A close up o f  ju st one leg This gives the vectors in the creature's 

configuration as given in the section above
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Generalised co-ordinates

The gait o f the creature is given then by two stages swing where the swing leg moves 

while the stance is pivoted to the ground, and transition or collision whereby the roles 

of the two legs are swapped The combination of both processes leads to a step 

Angles are measured relative to the normal to the ground, and positive indicates a 

clockwise motion Changes in the shape o f the creature are therefore specified 

through generalised co-ordinates (1 e angles and speeds) and there are two o f each

qi angle stance leg makes with the ground

ui speed at which angle is changing

qj angle swing leg makes with the stance leg

U2 speed at which it is changing

(note that w, = g,and u = q 2)

Thus the state vector o f the creature is

©(t) = {^i, , Wj, w2} (3 3)

Note that at the start o f a step the legs have equal and opposite angles i e qi = - q2 

Thus in equation 3 2 = 2 x q ] The final parameter involving an angle to be

considered is the slope o f the ground y

Assumptions

Certain assumptions are also made namely

• the impact o f the swing leg with the ground is inelastic and without sliding By 

being inelastic this means that there is no rebound This condition could be 

enforced in a physical model by placing dead rubber at the end o f the feet These 

conditions lead to the robot configuration remaining the same throughout and to 

conservation o f momentum before and after collision with the ground

• A knee-less creature would not be able to clear the ground as the swing leg 

manoeuvres and as such scuffing o f the ground is ignored
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These assumptions are not unusual and as such are common to the two other creatures 

currently been researched upon 1 e [Gar97] and [Gos96b]

External torques

Initially there are no external torques applied However in the next chapter it is shown 

that the addition o f an external torque at the hip joint can be used in order to improve 

stability and versatility These dampers can be either linear or non-lmear, with better 

performance gathered from the non-lmear ones

3.2.1 Bodied Creature

qa

Fig 3.3 : Passive dynamic walker with torso 

Torso

The addition o f a body is fairly straightforward the torso or body is treated as another 

rigid link added to the creature This link o f length Ibody, centre o f mass combody, 

measured with respect to the end o f the link, and mass mbody, is attached to the 

previous creature at the hip point, with another hinge joint
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Generalised. Co-ordinates

The body is initially in an upright position and therefore resembles an inverted 

pendulum It creates two new co-ordmates in relation to the upright normal, an angle 

q3 and velocity 113 and thus the state vector describing the system has six components 

namely

0(0 = “ i>«2, “ 3} (3 4)

Inertia

For the bodied creature the radius o f gyration o f each leg r• 2 must be lowered to

0 09 in order for solutions to be found The moment o f inertia o f the body is given by
2 21 = mbody x rmK0D where rgyrBOD is the radius o f gyration o f the body and 

initially has a value o f 0 121

Fig 3.4 : Non-linear spring and damper at body jo int
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External Torques

In order to keep the torso m an upright position an external torque is applied This 

torque is reacted off the stance leg and is incorporated into the equations o f motion

3.3 Generating the Equations of motion for the creatures.

As the creatures involved consist o f relatively few links and little or no external 

forces, formulation o f the equations o f motion is straightforward enough For the 

body-less creature consisting just o f the two legs, the dynamic equations o f the swing 

stage are similar to the well-known double pendulum equations Since the legs o f the 

robot are assumed identical, the equations are similar regardless o f the support leg 

considered Generation o f the equations o f motion can be achieved through numerous 

methods by hand, such as Newton-Euler integration, Lagrangian methods, Kane’s 

method etc Alternatively they can be generated by machine Ideally two methods, 

one by machine and one by hand should be earned out to ensure accuracy

Goswami [Gos96a] uses the Lagrangian method and ends up with an equation 

involving a 2 x 2  inertia matnx, a 2 x 2  matnx with centnfugal terms and a 2 x 1 

vector o f gravitational torques The actual formulation of the equations was achieved 

using the freely available package Sci-lab [SciOO] Garcia [Gar97] generated his 

equations o f motion using the special purpose generator AUTOLEV and correlated 

his results by working out the equations by hand His equations are in a similar format 

o f a combination of matnces and vectors McGeer formulated his equations by hand 

with much o f the solution method outlined m [McG90]

I have decided to use Kane’s method, which is incorporated into a M athem atica ® 

package called the Dynamics Workbench [KuoOO] to produce the equations o f motion 

incorporated here The Dynamics Workbench is a freely available Mathematica 

package for doing dynamics It enables the user to generate equations o f motion
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primarily for rigid body mechanical systems Along with general Mathematica 

commands [Wol96] the overall equations o f motion can be constructed

3.3.1 Dynamics Workbench

In formulating the velocities and forces applied to generate the equations o f motion 

the dynamics workbench package is called upon The primary low-level commands 

that are used are briefly explained in this section While this section can be used as a 

reference the full Mathematica code used to generate the equations o f motion for the 

body-less creature is given in Appendix B and for the bodied one m Appendix C

Reference Frames

The dynamics Workbench describes a mechanical system using bodies and reference 

fram es where one or more bodies may be used to describe a rigid body and one or 

more reference frames may be attached to that body For instance a rigid body 

constituting a leg called “legone” will have a reference frame associated with it 

consisting of three axes legone[l], legone[2], legone[3]. There is a single default 

body corresponding to the Newtonian reference frame called ground and therefore 

any initial body will be described in relation to the ground frame

Note: The bodied creature consists o f 3 links and thus the reference frames involved 

here are as follows sta[i] (for the stance leg), swi[i] (for the swing leg), and bod[i] 

(for the body), where each i value corresponds to a certain axis and thus has value 1 , 2  

or 3 All the reference frames are outlined in Fig 3 5
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Fig 3.5: Reference frames fo r  each o f  the three rigid links in the bodied creature 

Connections

Each body is defined with respect to an inboard body, which precedes it, and are 

connected by a particular type o f  joint In this piece o f work, joints that are considered 

are o f one type only, hinge This means that the ngid body can only move in one
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direction only In describing say for instance a hinge joint between two bodies b] and 

6 2 , on 62 the vector BodyToJnt describes the joint location with respect to the body’s 

centre o f mass (1 e com), and on the inboard body bj, the vector InbToJnt describes 

the joint location with respect to the body’s centre o f mass This is shown m diagram 

format in Fig 3 6

Hinge BodyToJnt h, 
joint 2

Fig 3.6: Rigid links in Dynamics Workbench

3.3.2 Dynamics Workbench - Some Generic Commands Used

This section gives some o f the commands used that are particular to the Dynamics 

Workbench package These are the commands that are utilised to form the equations 

o f motion and are included m the code given m Appendix B and C For a more 

complete tutorial on how to use the Dynamics Workbench see [KuoOO]

AddBody[ newjbody, inboardjbody, joint_type ]  adds a body, new body, to a 

previously defined mboard body using a specified joint Joints used here are hinge 

joints

AppTrq[ body, torque ]  applies a torque or moment specified by a vector torque to a 

body

PosPntf point, body ]  returns as a vector, the position o f the point attached to the 

body

Eom This command generates the equations o f motion that describe the system
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Inertia This gives the Inertia vector associated with the rigid body

3.3.3 Vectors describing motion

Upon setting up the description o f the creature using some of the commands given m 

the previous section a group o f vectors gives a portrayal o f the bodied creature's 

movement These vectors for each leg and the torso involve the following velocity 

vCOM and acceleration aCOM o f the centre o f mass o f the rigid link and angular rotation

Q of the rigid link Now the individual vectors for each leg, the torso and the hip 

point (where velocity v and a only are involved) are as follows (the reference frames 

below are outlined in Fig 3 5)

Stance Leg

v COM = (~(comleg -  i?)u,)sta[l] + (-Æ «,)ground[l] (3 5)

2 ' '(-(comleg -  R )u l )s ta [l] + (-(com leg -  R )u 1 )sta[l] + ( -R u { ) ground[l]

(3 6)

Q sta = ground[3] (3 7)

Hip jo in t

v = ( -R u l )ground[l] + ((-L  + R)ui )sta[l] (3 8)

a = ((-L  + R)u ,2) sta[2] + ( -R u i ) g roundfl] + ( ( -£  + /?)«, ) sta[l]

(3 9)

Swing Leg
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vCoM = ( ~ R u \)ground[l] + ( ( - L  + /?)w1)sta[l] + ( - (comleg -  L)u2) swi[l]

(3 10)

aCOM = ((-L  + * W )r ta [2 ]  + (-(comleg -  L)u22) swi[2] + ( - Ru,) ground[l] + 

((-L + i?)Mj)sta[l] + (- (comleg-L)u2) swi[l]

(3 11)

ÙSW1 = u 2 g round[3] (3 12)

Body

vCOM -  ground[l] + ((-L + /?)w,)sta[l] + (-(-combody + Ibody)^)bod[l]

(3 13)

a COM = ((—L + R W )  s ta (2] + ((-combody -  lbody)u32) bod[2] + (-7?w,)ground[l] + 

((-L  + R)ul sta[l] + ((combody — lbody)u2) bod[l]

(3 14)

Ùbody = u 3 ground[3] (3 15)

3.3.3.1 State vector

The vector descnptions given above in equations 3 5 to 3 15 along with the masses 

(i e hip, leg and body) and forces involved (i e gravity) are used to generate the 

equations of motion and the full code is given in the appendices However direct use 

o f the Dynamics Workbench does not place the equations o f motion in the required 

format, that o f the state derivative The general form of the equations of motion (using 

Newtons law which states that Force is mass by acceleration) can be given as

( * 0
A u2 = 0

A / vO;

where A is a matrix containing a mixture o f all the terms involved and the vector o f  0 

values comes from the fact that the applied force is 0 Manipulation (incorporated
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directly through Mathematica and included in the final part o f the code m Appendix 

C) o f these terms in A can however lead to the following (for the equations o f motion)

M /  \  M|
M u2 1 >3 II O or M u 2

KUl )

where M  is a 3x3 matrix containing the terms linear m the time-denvatives of 

generalised speeds from the equations o f motion o f the creature and R  contains all the 

other values The matrices M  and R for the body-less creature are given m appendix D 

but for the bodied creature (although comprehensive in size) are shown in equations 

3 19 and 3 20

The state o f the system is 0 = {qy, q2, , ux, u2 , w3}, and thus the state derivative is

Q(t) = { q l ,q 2 , q 3,u i ,u 2,u i } (3 18)

Calculation o f the final three values m the state derivative vector is achieved by 

performing the following solving the linear equation (3 17) For this equation the 

matrices M and R are as follows
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M  =

f 2
Usta + comleg 2 M  + L Mbody +

comleg2Mhip + L2 M h ip -
2 comleg M  R - 2 L M  R —

2 L Mbody R - 2  comleg Mhip R

- I L M h i p R  + A M R 2 + 2 M b o d yR 2 +

2 R  (comleg (comleg (M  + Mhip) + L (M  + Mbody

+ Mhip) -  (2 M  + Mbody + 2 Mhip) R) Cosqx,
-  (combody -  Ibody) Mbody ((L -  R)

Cos (#] -  q3 ) + RCos (q3 ) (comleg -  L)

(M  + Mhip) (L  -  R)Cos(qi -  q2) + (comleg -  L)

(M  + M hip)RCos(q2) -  (combody -  lbody)Mbody

((L -  R)Cos(q\ -  q2) + RCos(qi ),
0

(comleg -  L )(M  + Mhip) 

( (L -R )C o s (q { - q 2)

+ R Cos (q2 )

Ilswi + (comleg ■ 

(M  + Mhip)

LŸ

-  (comleg -  lbody)(Mbody) 

( (L -R )C o s (q x - q ^ )  +

R Cos (<73 )

(combody -  Ibody) Mbody

Inertiabody

(3 19)

R =

' g (M  + M hip)(-R  + ( - comleg + R)Cos(q{ ))Sin(y) + gM body(-R  + (- L  + R) Cos(qi )) Sin{y)

+ g (M  + M hip)(-R  + (- L  + R)Cos(ql ))Sin(y) + g (M  + Mhip)(comleg -  R)Cos(y)Sin(q] ) + 

gMbody(L -  R )C os(y)Sin(qi ) + (g  + M  + M hip)(L  -  R)Cos{y)Sin{qx ) + R(com leg(M  + Mhip)

+ L (M  + Mbody + Mhip) — (2M  + M body+ 2M hip)R )Sin(ql )u l2 +(comleg -  L )(M  + M hip){(-L  +

R)Sm {qì -  q 2) + RSin(q2))u22 -  (combody -  lbody)M body((-L + R)Sin(qx -  q3) + R S in iq ^ u 2̂ , 
-  (comleg -  L )(M  + M hip)(g Sin(y -  q 2) - ( L - R ) S i n ( q x - q 2) u 2), 

g  (combody -  lbody)M bodySin(y - q 3) ~  (combody -  lbody)Mbody(L -  R )Sin(ql - q 3 ) u 2 + 

frac(K hn — damp w3 )

(3 20)

V ;
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Solving equation 3 17 using the matnces m 3 19 and 3 20 leads to the final three 

values involved in the formulation o f the state derivative 0 {t) for the bodied creature 

and this is given in full m Appendix E

3.4 Collision detection - Transition Matrix

At heel-stnke, collision with the ground occurs and the two legs switch roles This 

collision of the swing leg is assumed to be inelastic and without sliding Therefore the 

following rules must be observed

>  the robot configuration must remain unchanged

>  The angular momentum of the creature about the impacting foot as well as the 

angular momentum of the pre-impact support leg about the hip are conserved 

These conservation laws lead to a discontinuous change in robot velocity

From the first rule above, the angles at transition are just swapped l e q2 = - qi and it 

is assumed that the angle the body makes l e q3 remains the same The change in the 

velocity states is achieved by the conservation o f angular momentum given m the 

second rule (angular momentum before and after collision are equal) Thus, where + 

indicates post heel-stnke, and " indicates pre heel-stnke,

( M, ( U\
+u2 = T u2 (3 21)

VW3 y VW3 y

where T, the transition matrix, is formulated as follows let AngM  be the angular 

momentum Then

AngM~ = (A ngM +) T , (3 22)
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and therefore T  is found from linear solving the above equation, which again is 

implemented in Mathematica

Im plem entation of Algorithms

To implement the algorithms to find the limit cycles, the following was adopted As 

the availability o f a dynamics package, such as AutoLev or Alias Wavefront was not 

viable due to financial constraints a free generator was searched for Goswami uses 

Sci-lab (available at [SciOO]) but I decided to use Arthur Kuo's Dynamics Workbench 

available at [KuoOO] The equations o f motion and collision matrices were generated 

utilising this package and generic Mathematica terms are used to get the equations in 

the proper form to generate the fixed points o f the Poincare map

3.5 Generate complete step function i.e. Poincare Map.

The movement o f the creatures involved here consists o f a swing phase and a 

transition stage, after which both legs exchange roles Each complete step is 

considered to be a Poincare map, or “stride function”, as McGeer called it [McG90] - 

recall section 2 7 As a natural choice o f the Poincare section, the instant when the 

c swing leg of the robot leaves the ground, is chosen Therefore a step will consist of 

the function P(9 +')  which takes as input 0 +', the state vector at the beginning and

returns 0 +(,+1), the state just after the following heel-stnke Thus much information 

about a step will be encoded into the map P(Q) (where P(Q) is basically the 

combination of the equations o f motion and transition equations grouped into one 

function)

The Poincare map therefore consists o f two components 

• Numerical integration of equations of motion to find heel-strike state:

First the swing leg manoeuvres upwards and then moves back down until heel- 

stnke is reached The equations o f motion fully desenbe this and, since to solve 

analytically for the state at heel-stnke would be very cumbersome, if  not 

impossible, a numencal integration technique is used The Runge-kutta technique
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is used with a special stopping mechanism 1 e when heel-stnke occurs, that is 

when the height o f the swing leg above ground is zero (Note that the initial 

ground collision o f foot scuffing occurs early on in the period and is ignored ) To 

get a precise pre-heel-stnke state value it is necessary to zoom in on the Runge- 

kutta stopping mechanism and thus a Newton-Raphson method is used to zero the 

swing foot height 

•  Collision:

Once this process has achieved its goal, the state o f the creature is known at the 

moment o f heel-stnke and the transition or collision component, as descnbed in 

the previous section, can take place Post collision velocities are thus calculated 

by assuming angular momentum before and after impact, about vanous points

For the Runge-kutta algonthm utilised above the time step taken is 0 01 and the 

numencal tolerance is taken to be 1 x e ~8 The algonthm is coded to converge 

quadratically to abs(0,) < numencal tolerance / 1000 where the factor o f 1000 is 

arbitrary chosen

3 6 Find limit cycle ... if it exists!

McGeer [McG90] demonstrated that a somewhat humanoid mechanism is capable o f 

stable, human-like gait down a shallow slope with no external or internal forces 

(besides gravity) and no control His passive-dynamic theory o f bipedal motion 

descnbes gait as a natural repetitive motion of a dynamical system, or in the language 

o f non-linear dynamics, a limit cycle Therefore finding limit cycles is o f vital 

importance

3.6.1 What is a stable limit cycle and how are they found?

A simple period one gait cycle, if  it exists, corresponds to a set o f initial values for the 

angles and rates which lead back to the same angles and rates after one complete step
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Taking the Poincare language approach the state vector 0(t) is a period one gait cycle 

if  F(0(O) = 0 (0  (3 23)

where 9(t) is what is known as a fixed  point Higher period solutions do exist for the 

body-less creature [Gar97] [Gos98] as well as non-penodic ones but period one 

solutions are o f central interest because they correspond to the important tasks of 

steady walking (bifurcations or period doubling although are mentioned later in 

chapter four)

A Limit Cycle is a periodic solution o f a system and is represented by a closed loop in 

the phase space The difference between a simple periodic solution and a limit cycle is 

that the latter exerts its influence in its neighbourhood l e an attracting limit cycle will

absorb all solutions towards itself that are in its neighbourhood, or basin o f  attraction

as it is called

An attracting limit cycle is also called a stable limit cycle since small perturbations in 

the state o f a system lying on the limit cycle reduce to zero in the long run

The periodic aspect o f a limit cycle indicates that a limit cycle occurs if  the output 

state is the same as the input state Thus if  Q(t) is the initial state and as stated above 

one complete step consists o f the function P(Q(t) ) , where P(Q(t)) is the Poincare 

map, then

gait limit cycles correspond to fixed points o f the map, or in other words the roots of 

the function

G(0(O) = />(0(O )-0(O  (3 24)

where 0 (t) is known as a fixed point

Fixed points can be found by a separate Newton-Raphson search for zeros o f 3 24 

above
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3.6.2 Newton's Method

To find the roots o f the Poincare map the well-known Newton-Raphson method is 

used Firstly a step can be thought o f as an operator /J(0) (the stride function) which 

takes as input a vector o f scalar values which represent the various angles and velocity 

rates at a definite point in the motion (1 e just after ground collision) and returns the 

values o f 0 after the next ground collision

Starting with the initial step (1 e initial state 0 O), each subsequent step is determined 

from the previous one The formula for the subsequent step is

0 = 0  (3 25)
,+1 ' P '(6 ,)

As it not practical with the equations involved to proceeds analytically, the numerical 

derivative o f P (0 ) , namely,

, ( 3 2 6 )

is utilised Since it is the function G(0) = P(0) -  0 that we are looking at the 

numerical derivative is

^  (P(Q + &>) -  (0 + m  -  (P(0) -  0)C<6) = ---------------------    (3 27)

As each step consists o f multiple variables (i e 4 or 6 values in the state vector) P' is 

actually the Jacobian o f the Poincare map J, with respect to the state variables For six 

states this Jacobian J  (i e is P '(0 )) is
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a/» 3PX spx ?P* dPx dPx
dq, dq2 dq3 dux du2 du3
dP2 dP2 dP2 dP2 dP2 dP2
dqx dq2 dq3 dux du2 du3
dP3 dP3 dP3 dP3 dP3 dP3
dqx dq2 dq3 dux du2 du3

dP4 dP4 dP< sp4 dP<
dqx dq2 dq3 dux du2 du3
dP5 dP5 dP5 dP5 dP5 dP5
dqx dq2 dq3 dux du2 du3
dP6 dP6 SP6 sp6 dPe dP6
dqx dq2 dq3 dux du2 du3

(3 28)

(Remember that the map P, like 0 is a vector and has 6 values with Pi corresponding 

to the first value e tc )

The combination o f the individual components involved in finding the limit cycle 

solutions are given below as pseudocode

3.63 Pseudocode for full solution

//Physical Equations

Describe physical makeup o f  creature

I f  necessary add in springs and dampers 

Generate equations o f  motion

Use to formulate state derivative 

Use to formulate transition matrix

//Poincare Map

Give initial guess fo r  algorithm

Use Rungekutta to numerically integrate state derivative

Ignore foot-scuffing and stop at heel-strike

Use Newton's method to zero in on heel-strike solution
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Use Transition matrix fo r  one complete step

//F ixedP oin ts i.e. Newton's Method

While fixed  point not found

Use second Newton's method on Poincare map

3.64 Failure of Newton's method

Failure o f Newton's method to converge to a solution can generally be caused by one

of the following reasons

> the initial guess is not close enough to the solution

> there is no fixed point for the parameter family involved and this can only be 

rectified by changing at least one parameter

> the slope o f one o f the state variable vs parameter plots is approaching infinite 

slope This is known in the bifunfication literature as a "turning point", and is 

indicated by an unexpected zero value in the stnde function Jacobian J

3.65 Initial Values

Estimating the initial values can be quite challenging in itself The choice o f initial 

values, for the starting state is o f vital importance, as only values within the basin o f 

attraction will eventually converge to a limit cycle The shape and size o f the basin o f 

attraction o f a limit cycle is in general a function o f the robot parameters and are not 

directly amenable to analytical solutions

Various approaches have been adopted to estimate the initial values McGeer 

[McG90] indicated that the stance and swing angles o f {g, , q 2} = {0 3, -  0 3} 

correspond roughly to the “known” values o f human gait The other values were
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formulated from known gaits but randomly generated values were used, as he 

hypothesised "it is perhaps naive, but it is also unbiased, and so can reveal 

behaviour, which might otherwise go unnoticed "

Goswami uses the initial conditions calculated from his initial linearised model and 

where these failed, the state vector corresponding to a known steady gait o f a robot 

whose parameters were close to the robot under study were used [Gos96b]

Finally both McGeer[McG90] and Goswami [Gos98] pointed out explicitly that both 

robots that they simulated can accept without falling down a much larger change in 

the velocity states than the position states (1 e there can be a change of « 100° per 

second in the velocity o f the angles but a change of 2° in the position takes the states 

out o f the basin o f attraction ) This was also proved to be the case here for both the 

bodied and body-less creature as shall be highlighted in chapter five

The initial velocity values chosen here are twofold - for the body-less creature I have 

decided to use previously published values for a known solution 1 e 

0 O = (0 3015, - 0  3015, - 0  3763, - 0  2822) (3 27)

These are similar to those published by McGeer [McG90] and used by Kuo and other 

researchers [KuoOO] For the bodied creature these values just have the initial body

parameters appended to it, namely q3 = w3 = 0, giving

9 0 = (0  3 0 1 5 ,-0  3 0 1 5 ,0 ,-0  3 7 6 3 ,-0  2822,0) (3 28)
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Chapter Four

Control and Analysis

4.1 Introduction

For any creature under investigation, with or without a torso, once limit cycles have 

been identified an analysis stage begins O f prime importance is establishing whether 

or not the cycles or steps are stable or unstable Other aspects o f analysis to be 

determined include efficiency o f the creature, step period and velocity, energy utilised 

and the maximum slope attainable Improvements in some o f these variables, most 

notably stability, can be gamed through the addition o f external torques and damper 

forces For some creatures, as found by both Goswami [Gos96b] and Garcia [Gar98] 

there is a period doubling route to chaos present and thus this is another characteristic 

that should be investigated All performance indicators mentioned above are outlined 

in this chapter along with the methods of implementation

As previously stated however some external torque is required to keep the torso o f the 

bodied creature upright Feedback control in the form of a fuzzy logic controller is 

utilised and limit cycles are found The format o f this controller is given along with 

the logic involved These limit cycles are then analysed using the same techniques as 

above

4.2 Analysis Terminology

In describing the passive dynamic walker system some terms that are common to non

linear dynamics are utilised These terms are now defined
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4.2.1 Dynamic System

A dynamical system may be defined as a mathematical model determining the state of 

a system forward in time, where time can be discrete or continuous Therefore starting 

at time t = 0 at any subsequent time t, the state can be determined

4.2.2 Hamiltonian System

Hamiltonian systems are a class o f dynamical systems incorporating various 

properties such as mechanical systems in the absence o f friction, the paths followed 

by magnetic field lines in plasma, the mixing o f fluids and the ray equations 

describing the trajectories o f propagating waves [Ott93] The main properties o f these 

systems include

• energy is conserved for time-independent systems

• possibly do not have attractors in the usual sense This mcompressibility o f phase 

space volumes for Hamiltonian syatems is called Liouvilles theorem

4.2.3 Non-Holonomic System

A dynamical system can be classified as either holonomic or non-holonomic To 

determine which term applies you must examine the generalised co-ordmates If  the 

coordinates satisfy the following two conditions then the system is holonomic, that is 

if  the coordinate values determine the configuration o f the system and secondly that 

the values may be varied arbitrarily and independently without violating the 

constraints o f the system [Syn70]

An example o f a holonomic system would be a robotic arm involved in the 

manufacture o f cars The robot is in an initial state, performs its assigned task and 

returns to a final state This final state coincides with the initial one and therefore the 

robot does not change its location. Another example would be that o f a scissors lying 

on a table An example o f a non-holonomic system would involve a rigid sphere 

rolling without slipping on a fixed horizontal plane The system can be defined in
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terms of 5 generalised co-ordinates -  the two horizontal Cartesian co-ordinates at the 

centre o f the sphere and 3 Eulenan angles Since the plane is not smooth, two 

additional constraints are needed 1 e equating to 0 the horizontal velocity o f the 

particle o f the sphere at the point o f contact These conditions are non-integrable and 

it is this non-integrabihty which make the system non-holonomic [Syn70] Other 

examples might be a wheelchair, bicycle or skateboard

The difference between holonomic and non-holonomic systems can be summarised as 

follows

> with a holonomic system return to the original internal configuration means a 

complete return to the original state i e the initial and final states are completely 

equal This however is not guaranteed for non-holonomic

> the system outcome for a non-holonomic system is path-dependent

> whereas holonomic kinematics can be expressed in terms o f algebraic equations 

which constrain the internal, rotational co-ordinates o f a robot to the absolute 

position/onentation o f the body o f interest, non-holonomic kinematics are 

expressible with differential relationships only

As is well known in dynamics systems theory, conservative holonomic (i e 

Hamiltonian) systems cannot have asymptotic stability since volume is conserved in 

their phase spaces Therefore only non-Hamiltonian systems have asymptotical 

stability Two mechanisms for losing the Hamiltonian structure o f the governing 

equations are dissipation and non-holonomic constraints Passive dynamic creatures 

are non-holonomic by virtue o f their intermittent contact with the ground and are 

moving along a particular path (i e down the slope) Also they are not conservative 

since energy is lost at every heel-stnke Thus the existence o f this dissipative element 

favours but does not guarantee the existence of a stable limit cycle Goswami 

investigated the contraction o f phase space volume and found that the "absolute value 

o f  the determinant o f  the transition matrix was always negative (i e inferior to 1)  

which indicates that phase space volumes are always contracted " [Gos99]

Finally Ruina questions how stability can be gained stating that "we know from  our 

study o f  bicycle stability and the like that non-holonomic systems can have
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asymptotical stability even without dissipation Can legged mechanisms also be made 

stable without dissipation " [Rui97]

4.2.4 Stability

For each steady motion the establishment o f stability is o f vital importance since it 

indicates whether the creature will keep walking indefinitely or will eventually 

collapse Due to the non-lineanty o f the creatures' dynamics, analytical methods of 

investigating the stability o f the passive gaits cannot be utilised and therefore stability 

will be addressed using an analytically guided numerical method which involves 

finding the eigenvalues of the Jacobian matrix J  o f the Poincare map This is due to 

the fact that the conventional definitions o f stability o f a system in the sense of 

Lyapunov, (around an equilibrium point) are not applicable to walking machines 

Therefore it is orbital stability that is investigated, where a solution o f the dynamic 

system gives an orbit This method is also adopted by current researchers [Gar98] 

[Gos96b] and is explained fully in Section 4 3 The applicability o f the numerical 

method practically guarantees that the limit cycle is stable as argued by Goswami 

[Gos96b] who states that "unless we accidentally hit the exact states on an unstable 

limit cycle which will never be encountered in numerical trials"

What do we mean though by saying that a cycle is stable*?

Def: We may say a gait is stable "if starting from  a steady closed phase trajectory,

any finite disturbance leads to another nearby trajectory o f  similar shape" [Hur86]

Furthermore, if  in spite o f the disturbance, the system returns to the original cycle, the 

gait is asymptotically stable This is useful since it indicates that any disturbance to 

the creatures motion would be swallowed up and motion should therefore be infinite, 

so long as the required slope is present
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Figure 4 1 presents the nature o f a stable limit cycle m the phase plane o f one rigid 

body link The effect o f any disturbance to one o f the states on the limit cycle is 

attracted and swallowed up Therefore a system starting from a state on a limit cycle 

will remain on it The complete shaded region in the diagram indicates the attracting 

region o f the limit cycle and is known as the domain o f the limit cycle or its basin of 

attraction Another indication o f stability is the measure o f the size o f the basin of 

attraction but this method is not undertaken here

Fig 4.1 : Basin o f  attraction o f  a limit cycle Any point inside the shaded region would 

be in the basin o f  attraction and would eventually settle on the limit cycle which is 

also inside the region The limit cycle is not shown

4.2.5 Bifurcation i.e. period doubling

A qualitative change in the dynamics which occurs as a system parameter vanes is 

called a bifurcation There are a vanety o f types but the one o f interest here is the 

period doubling bifurcation In this case a stable penod one orbit bifurcates into a 

stable penod two and an unstable penod one orbit In practical terms here, taking for 

instance Goswami's creature [Gos96b] as the slope is increased, stable penod one

56



solutions bifurcate into stable period two solutions, stable period two solutions 

bifurcate into stable period four etc. An indication o f bifurcation is achieved by 

inspection o f the eigenvalues o f the Jacobian of the Poincare map in the 

neighbourhood o f the limit cycle. These are identified for stability (see section 4.3) 

and should be all within the unit circle for stability. At a bifurcation point at least one 

o f these eigenvalues crosses the unit circle.

Fig 4.2: Bifurcation. Initially there is a stable period one orbit (stability is indicated 

by a solid line) which bifurcates into stable period two and unstable period one.

4.2.6 Chaos

It is easy to see and to formulate how dynamic systems settle into period motions (i.e. 

limit cycles) and steady states. Chaotic orbits can also appear at higher periods and 

they appear to be very complex and are usually described as wild or turbulent. They 

don’t necessarily appear in very complex systems either. An example will be given to 

illustrate the concept which is taken from [Sha84].

Water drops from a tap continuously. A sensing device is used to time successive 

drops. Therefore the system o f dropping water consists o f time intervals , t2, t2,......

etc. where At = tH+i -  tn . At a small flow rate the time intervals are equal. As the flow

is increased slightly period two cycles or sequences are noted i,e.ta, t b, t a, t b, t a,...

period two

period
one

Bifurcation
point
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etc As the flow increases further so too does the period frequency until at sufficiently 

large flow the sequence o f time intervals has apparently no regularity This 

irregularity is due to chaotic dynamics [Sha84]

One thing that should be pointed out is there is a particular route to chaos 1 e in the 

above example there is a specific route o f parameter t to chaos ( t changes in a 

specific fashion)

4 3 Investigating local stability using a numerical method

To investigate the orbital stability o f a limit cycle we again look at the Poincare map 

This involves the state vector from just after heel-stnke to just after the following 

heel-stnke Again from section 3 6 1 a  solution to the Poincare map giving a limit 

cycle is known as a fixed point Therefore if  0 is a fixed point then by definition the 

following holds true

P(Q) = 0 (4 1)

For a small perturbation 30  around the limit cycle the non-linear mapping function P

can be expressed in terms o f the Taylor's series expansion as

P(Q + S3) « P(Q) + (/)<50 (4 2)

where J  is the Jacobian matrix o f the map P(0) with respect to the state variables (l e

dP 8P
J is the matrix —  with components By rearranging the above equation the

Jacobian can then be given as
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/  = P (°  + ' « j  (43 )

It would not be practical to analytically calculate the matrix J  in equation 4 3 and thus 

the numerical version is sought and utilised Construction o f numerical version is 

achieved as follows the first state vector van able only l e qj, is perturbed by a 

suitably small amount and the Pomcare map o f the complete state is noted The 

mapping starting at this point will be close to, but not the same as, the original limit 

cycle The difference in the resulting Pomcare map o f the perturbed state, minus the 

original fixed point and divided by the square root o f the perturbation variable gives 

the first column o f the Jacobian To get the second column perturb the second state 

vector variable l e q2 and continue as above When all states have been dealt with the 

Jacobian is complete

Note that the size o f the perturbation utilised here is 1 x 1CT3, and Garcia [Gar98a] 

used perturbations o f the form lx lO '4 This would be one possibility for future 

work, to use even smaller perturbations to ensure improved accuracy Once the 

Jacobian has been formed stability can be measured through investigation o f the 

eigenvalues o f the matrix For the body-less creature there will be four eigenvalues, 

and for the bodied six

4.3.1 Eigenvalues

Def: An eigenvector v o f a matrix B  is a nonzero vector that does not rotate when B

is applied to it i e Bv = \tv where^, is an eigenvalue o f B If  |^ ( | < 1, then B'v = \ ‘v 

will vanish as i —> oo If  | ^ ( | > i ,  then B'v will grow to infinity [Ske94]

Therefore an eigenvalue indicates just how vulnerable to change the matrix is For 

asymptotical stability, which is required, all eigenvalues must be inside the unit circle 

If  all the eigenvalues o f the Jacobian J  are thus less than one l e |/1(| < 1, then all
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sufficiently small perturbations will decay to 0 and the system will approach its limit 

cycle However if  any eigenvalue is greater than 1, then the corresponding 

eigenvector will bump the system divergently off the limit cycle An eigenvalue o f 

exactly 1 indicates that the cycle is neutrally stable for perturbations along the 

relevant eigenvector and thus perturbations will neither shrink nor grow [Rui97] 

Commonly eigenvalues o f magnitude 0 appear and these can be explained as follows 

the perturbation has been along the limit cycle and that the resulting trajectory 

corresponds to this perturbation along the same limit cycle [Gos96b] Frequently also, 

and as shall be shown m the next chapter, eigenvalues o f magnitude 1 do appear 

appear and do not affect balance stability Many times persistent eigenvalues of 

magnitude one have some obvious physical significance, they can signify a one- 

parameter family o f gait solutions for instance [Gar99] Also the indifference o f most 

of the 3-D devices to direction of travel generates an eigenvalue o f 1 in the map

4.3.2 Eigenvalue Examples

Body-less

Much headway in the analysis o f the creatures’ gait and the effect o f various 

parameter changes can be made through dissection o f the eigenvalues o f the Jacobian 

For the creature consisting o f four state variables, there are four eigenvalues and 

associated groups o f eigenvectors, and therefore the system is four-dimensional (In 

actual fact it is only three-dimensional as one of the numerically calculated 

eigenvalues near zero is approximately zero - see below for an explanation as to why) 

McGeer [McG90] coined the term's speed, totter and swing for these eigenvalues and 

accordingly indicated the influence of each as follows

■ Speed  This is the convergence o f the creature to a steady speed following that 

given perturbation i e the eigenvalue Or in other words it is the dissipation of 

speed appropriate for the slope in use

■ Swing  The eigenvector here is dominated by the swing angular speed The 

eigenvalue o f this mode is usually small It is a rapid adjustment (1 e eliminated 

immediately at the first support transfer) o f the swing motion to a normal walking 

pattern
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Totter This is an oscillatory attempt to match step length with forward speed. 

This is explained by the fact that the initial angle must correspond somehow to the 

initial angular speed.

Example:

As an example, the fixed point, for a body-less creature with hip mass o f 0, on a slope 

o f 0.025 with an initial guess o f {0.3015, -0.3015, -0.3763, -0.2822} turns out to be 

{0.30171,-0.30171, -0.376368, -0.282189}. The Jacobian7then constructed is:

-0.0000228 
0.0000128098 
5.63304 1 0 '6 

2.08611 1 0 '7

-3 .4 1 6  10‘6 
-6 .58372  10"6 

1.68293 10 "6 
-1.63101 10"6

-0.00001628 
0.0000168 

-8.44291 1 0 '7 

7.74861 1 0 '7

4.58391 1 0 '7 
-4 .58391 10~7 
-9 .11447 1 0 '7 

-0.0000107975

and finally the eigenvalues are as follows (which coincide with previously published 

values [KuoOO]:

speed 0.46223

swing -0.398202

swing -0.167559

totter 7.47672 10"11

( Note: the names are associated by analysing the effects o f the various angles and 
velocities as explained above).

Bodied

For the bodied creature there are two extra eigenvalues, thus giving a total o f six 

eigenvalues. In practice and through the use o f dampers etc. one eigenvalue stays at
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approximately 1 and two stay at approximately 0 Finally it is worth noting that the 

number o f places counted in the eigenvalues depends on the perturbation size As 

highlighted m section 4 3  a size o f lx lO “3is used and thus 3 decimal places are 

counted,

Example

As an example, the fixed point, for a bodied creature with hip mass o f 1 5 and body 

mass o f 1 0, on a slope o f 0 025, with damper coefficient o f 0 55, length o f body 0 8 

and centre o f  mass 0 0795, and an initial guess o f {0 3015, -0 3015, 0, -0 3763, - 

0  2822, 0 } turns out to be

{0 283795, -0 283795, 0 0762199, -0 348054, -0 0943815, 0 00313977} The 

Jacobian /  then constructed is

-1 7xlO“5 -4 46x 10“6 -1 07xl0“9
7 08 xl(T6 -5 53x 10“6 1 07xl0“9
-3 17x 10“9 2 07 xlO”9 4 llxlO-8
9 64x 10“6 3 47 xlO-7 3 73x10““
8 4x 10“6 -6 29xl0-6 -7 14x10“'°
2 89x 10"7 -1 91 xlO'7 2 02 xl0~7

and finally the eigenvalues are as follows 

A ! = 1 00411

X 2 = 0  456093 + 0 518358/

A 3 = 0 4 5 6 0 9 3 -0  518358/

\  4 = 0 159779 

^  5 = - 0  0 0 0 0 1

A « = 2  93 1 0  “

-1 05xl0“5 6 74xl0“7 -1 58 xlO“8
1 05x 10“5 - 6 74x 10“7 1 58xl0“8
-3 28xlO“9 4 29x 10~10 4 41 xlO“7
3 3x 10“6 -1 13xl0“6 1 98x 10“8
6 62xl0“6 -9 84x 10“6 1 21 xlO“8
2 02 xlO“8 1 72 xlO“8 -999xl0“6
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4.3.3 Is stability vital?

While stability is actively pursued and achieved in this body o f work some 

researchers e g Garcia [Gar99] question whether it is crucial or not outlining the 

following

> slow instabilities (1  e instabilities with a time scale o f over a second or two) may 

not be important because humans do have control and need to exercise this control 

to go where they want e g a bicycle loses its passive stability at about 15 mph but 

this is not sensed by a rider since the time scale o f the instability is long

> unstable period one gaits don’t always lead to falls As is known in non-lmear 

dynamics, systems which exhibit period-doubling and chaos can have a chaotic 

attractor which is bounded and stable in some sense, since the system does not 

leave the attractor if  it starts on or near it Garcia therefore showed that some 

unstable period gaits did not fall down because o f the stability o f the higher-period 

gaits and the chaotic attractor

4.4 Other Performance monitors

4.4.1 Step period

The step period is the time taken for a complete step to occur Therefore this involves 

starting at just after heel-stnke, the swing leg manoeuvring through the air, until heel- 

stnke again when the two legs exchange roles

4.4.2 Velocity

The velocity of the creature should also be determined Step velocity or average 

speed per step (as determined in [Gos96b]) is given by the following formula
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v _  step length  ̂ ( 4  4)

step period

where step length is determined using equation 3 2

4.4.3 Efficiency

Energetic inefficiency is measured by the slope y o f the incline needed to sustain gait, 

with y  = 0 being perfectly efficient, since no energy is required for motion Why look 

for efficient locomotion9 As argued clearly m e g  [Ale95] both evolutionary pressure 

and individual motivation push for high efficiency in animal locomotion

In his research McGeer [McG90] numerically found walking motions for slopes as 

low as about 0 005 radians and utilising his model minimum slopes o f 0 0005 were 

found here These will be fully outlined in Chapter 5 Garcia's creature reaches a 

minimum o f zero where the dynamic solution approaches the static, parallel leg 

solution [Gar98a] Goswami does not directly address the issue o f efficiency but the 

minimum slope he refers to is 0 25° [Gos96b]

4.4.3.1 Fundamental Questions about efficiency.

The results from the theoretical walking model pose fundamental theoretical questions 

according to Ruina [Rui97] Is it possible to have an asymptotically stable locomotion 

mechanism that is also perfectly efficient9 The theory o f Hamiltonian systems does 

not apply to walking machines because by virtue o f their intermittent contact, they are 

non-holonomic Can legged mechanisms be made stable without dissipation9
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4.5 Improving Performance

4.5.1 Tuning parameters

The creatures that are being studied involve various mass distributions, states and 

slopes By direct manipulation o f these parameters improvements can be made in 

terms of efficiency, stability etc Formulation o f the best parameters to use is 

evaluated using a brute force mechanism Parameter values are changed and effects 

noted until the best solution is found

4.5.1.1 Necessary conditions for Mass Distribution

Garcia finds that " if the hip-mass were offset fore-aft from  the legs, the gait cycles 

would approach a static solution at some non-zero slope which depended on this 

offset, and 'near-perfectly efficient' walking would not be possible So fo r  this model 

and presumably fo r  more complicated models, the existence o f  near-perfectly efficient 

gait depends on the details o f  the mass distribution" [Gar98a] Some necessary 

conditions on the mass distribution for near-zero slope walkers therefore are found to 

be [Gar98b]

>  I f  walking does occur at very small slopes then this motion will be very slow as 

the walker will be close to static equilibrium at all times

>  As the slope goes to zero then the inter-leg angle at this instance also goes towards 

zero '

^  From the first two conditions the line from the hip through the body centre of 

mass must intersect the foot curve normally at the nominal contact point at zero- 

slope walking For circular feet this is equivalent to the co-lmeanty of the centre 

of mass o f the whole body, the hip, and the foot centre
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4.5.2 Add in external (passive) Springs and Dampers

IT r
Vdamper = V2 “Vl

Fig 4.3: A damper

Def: A damper is a device, which associates each force to a velocity The velocity v

by something else The velocity is relative and thus if  the velocity o f one end is v/ and 

the velocity o f the other end is v2, the overall velocity v is v2- v/ A positive force is an 

attempt to lengthen the damper, a negative one to shorten it Examples o f dampers 

include shock absorbers and syringes The general constitutive law for a damper is

where b is the damping coefficient

Def: A spring is a device holds potential energy due to the way it is coiled Now 

consider a mass attached to a spring The spring exerts a force

where x  is the displacement o f the mass from and equilibrium position and A: is the 

spring constant

In McGeer's work [McG90a] it was suggested that the presence o f springs and 

dampers, m particular at the hip joint could improve stability and even "convert" 

unstable cycles into stable ones Goswami [Gos98] continued this methodology by 

placing dampers at the hip joint significantly improving gait stability and overall gait 

versatility without violating the passiveness qualities o f the creature The role o f the

o f a damper is the rate at which it is lengthening and the force is applied to the damper

(4 5)

(4 6 )
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damper as he states is to "effect a continuous dissipation o f  energy in the robot in 

addition to the energy dissipated intermittedly during ground impact " Although both 

linear and quadratic dampers were utilised, better results were achieved from the 

quadratic ones The effects of damper are easily imitated by a control law in an active 

robot and could be easily replaced by a motor implementing the same physical law A 

summary o f the results obtained by Goswami for the effects o f additional dampers 

include

> they do not alter the passive status o f the robot

> the overall appearance o f the gait however is altered 1 e the original cycle is 

modified to another cycle o f different shape While the gait appearance is altered 

it is not necessarily destroyed This contradicts the claim by McGeer, who 

indicated that even a small amount o f friction (1 e hip damping) would destroy the 

stable limit cycle

> gives stable gaits for a much larger range o f slopes (he mentions increases from 5° 

to 1 0 °)

> the robot can possess extremely large limit cycle attraction basins

4.5.3 External Torques applied here

The external torques applied m this body o f work are achieved through the use o f 

torsional springs and dampers A linear torsional spnng at a joint i will provide a 

restoring torque proportional to q, A linear torsional damper at joint / will provide a 

negative torque proportional to ut

As an example take a rigid body fixed to the ground with a hinge joint as m the 

diagram below A torsional spnng and damper with coefficients 5  and d  will generate 

a torque of r = -  sqx -  dux
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{qi. ui}

Torsional spring and

77777777damper

Fig 4.4: Rigid body attached to ground with a hinge jo in t A torsional spring and 

damper is present at the jo in t

Dampers are included here both at the hip joint and in conjunction with the torque 

applied to keep the body upright As shall be outlined in the next section a torque 

applied to the body acting off the stance leg can be utilised to keep the body upright 

However stability is not ensured and one method o f providing stability is to provide a 

damper working in conjunction with this applied torque The damper utilised on the 

body is simply that o f the general constitutive law (Equation 4 6 ) and so has the form

where damp is the damper coefficient 

Total Force on body

The total applied torque and damper applied to keep the body upright and to provide 

stability is given by the equation

where damp is the damper coefficient, Klin is the torque coefficient and Frac is a 

constant

F  damp = damP U (4 7)

F  tomi ~ Frac(Klin -  damp x « 3) (4 8 )
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Hip Dampers

Dampers at the hip are varied in form and their effects noted The general linear value 

is

Fda,np = F fnc{u2 -w ,)  (4 9)

and the quadratic has the form

F * v =FJhc(u1 - u lŸ  (410)

where Ffric is the damping coefficient

4.6 Feedback Control For Upright Body

4.6.1 General Inverted Pendulum Problem.

The body will be treated as an inverted pendulum and that classic engineering 

problem is identified here The situation involves a dynamic system that consists o f a 

cart with a stick hinged to its top The stick makes an angle (j> with the normal The 

system is obviously unstable - the pendulum will not remain upright as the system is 

right now and an input force is required The objective o f the problem is to identify a 

control system (l e feedback based) that will successfully maintain the pendulum m 

an upright position The problem is shown m the diagram below
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Fig 4.5: Control o f  inverted pendulum

There are many methods o f controlling an inverted pendulum with most involving 

linearisation e g PID, exact pole placement [Gop84] and state space However 

utilising bang-bang logic (upon which the simple controller provided here 1 e bang - 

zero - bang) not only allows the full non-linear equations o f motion to remain intact, 

but can be relatively simple to implement and it is this method that is adopted here

4.6.2 Bodied Creature

If  the system is left as described then any reasonable body mass and length o f body 

leads to failure o f Newton's method in finding fixed points (i e it does not converge), 

as the link topples over Thus, to keep the link upright and to find fixed points, it is 

necessary to stabilise the upper body like an inverted pendulum using applied torques 

reacted against the stance leg The sytem here is not m essence the same as that of the 

general inverted pendulum as the issue o f stability does not just affect the body (i e 

keeping the angle at 0 ) but involves the orbital stability o f the complete system
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A very simple feedback control law is adopted here, namely if  the body is folly 

upright then no torque is applied If  however there is an angle then a torque is utilised 

where this torque is reacted against the stance leg This torque changes value 

depending on the angle involved and thus the spring producing this torque is non

linear (the control curve in section 4 7 outlies why the curve is non-linear) This 

torque of magnitude Klin is applied to the body m the direction of bod[3] Each 

distinct creature has a specific control law whereby the various magnitudes o f Klin, 

involved in the controller, are determined by the masses and lengths involved In 

physical terms these torques could be generated by a motor and a spnng attached to it 

or maybe just a simple spnng

4 6.4 Simple Controller Design

Creation o f a simple controller and its underlining rules is achieved through analysing 

the control behaviours o f the inverted pendulum The controller should reflect the 

relationship between the body vanables {qi, u$) and the applied torque % This 

relationship can be graphed as a non-linear control curve If  m plotting the vanation 

o f applied torque due to the vanables (<q3, U3), a straight line at an angle appeared then 

the control would be linear However non-linearity appears here because the torque 

applied vanes depending on the values associated with q3 and u3

In formulating the control curve the following considerations were adhered to

> It is desired to keep the body upnght (1 e q3 is inside the range 10 11 radians) This

indicates that most r will be applied within a small angle range At the desired 

fully upnght position 1 e q3 = 0 , no torque is applied

> As a servo motor has a maximum output, the curve will have to reach a maximum 

value at a certain angle

> In keeping with the passive philosophy the vanation o f applied r should be as 

simple as possible

It should be noted that m essence two controllers were investigated, one which 

depends solely on q3 and one which depends on {<73 ,w3} (the methodology behind 

this is to try and find the most simple controller which works effectively) The curve
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that is utilised for the simpler case is shown in Fig 4.7. The actual control curve for 

the control system is essentially unknown, as for any system and therefore this is just 

a simple representation of what it might be like, containing three states or applied 

torque values, zero, small and large. This representation was achieved through brute 

force analysis o f various r values and the effect caused i.e. the Runge-kutta algorithm 

was studied with various torque values applied and the angle and velocity noted. 

Because the controller is simple with just 2 unknown torque values small and large, 

and it was desired to keep the body fairly rigid, it was easy to identify potential values 

for the torque state values. Thus the controller utilised is a type of bang-zero-bang 

controller.

Applied
torque

f ?

small^ ......................... w  •  "

o1 f
7  i Angle q3 

large

Fig 4.7 : Control curve fo r  torso when the value o f  u$ is unimportant.
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Formulation o f the associated rules comes from the critical points on the curve The 

input for each rule is {q3, u3} and initially it is assumed that the velocity w3 is zero 

For the smallest positive angle the rule is

i f  (q3 > 0 and <= 0 01) state = -sm all (4 12)

The full set o f rules for zero velocity is given in the Fig 4 8 When U3 is not zero then 

the control curve is shifted This alters equation 4 12 giving a larger number if 

possibilities and the full table o f values is also shown m Fig 4 9

Angle Torque

Exactly 0 zero

0  0 0  - 0  0 1 small

0  0 1  - 0  0 2 large

> 0  0 2 small

Fig 4.8: Table fo r  control rules
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V a lu e s  o f  U3 < -0.02 -0.01 -»  

-0.02
0->

-0.01
0- » 0.01 0.01 ->0.02 > 0.02

< - l x l ( T 5 small small small small large small

> -1 x 10~5 & & < - l x l O “4 small small small large small -small

> - l x l O -4 small small large small -small -large

= 0 small large small -small -large -small

>0 & & < 1 x 10-5 large small -small -large -small -small

> l x l 0 ~ 5 & & < l x l 0  4 small - small -large -small -small -small

> l x l 0 -4 - small - large -small -small -small -small

Fig 4.9 : Control rules when velocity us is not 0.

4.7 Energy

The energy involved in motion is now addressed. This consists o f the mechanical 

energy the creature has and the applied external torques. The mechanical energy 

consists o f the sum of the potential and kinetic energies. It is not addressed in this 

body o f work but the equations involved are given in Appendix I.

Goswami addressed the issue o f the change in the form of the components o f the 

mechanical energy in [Gos96b]. He stated that, if  the robot executes a periodic motion 

the energy o f the system must return to its initial value after every cycle, and since the 

state values would be the exact same at the beginning as at the end, the potential and 

kinetic energy values should also be equivalent. Recall also that as the robot walks 

down on a slope its support point also shifts downward at every touchdown. As it 

loses gravitational potential energy in this way its kinetic energy increases 

accordingly. This is exactly the amount o f kinetic energy that is to be absorbed at the 

end o f each step by the impact. If we reset our potential reference line to the line of
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touchdown, the total energy o f the robot appears constant regardless o f its downward 

descent Failure to reset the potential reference line results m a slight loss o f 

mechanical energy as the robot descends Although not explicitly shown in chapter 

five, when a sample o f some mechanical energy values were configured this also 

proved to be the case here

With regards to the applied external torque, the value o f this is just the sum of the 

individual forces in the time frame 1 e within each step It shall be shown in chapter 

five that the values involved are minute - indicating that although the passiveness o f 

the creature may be compromised to keep the body upright, that cost is minimal

4.8 Block Diagram of complete system

To clarify how the complete system works , a block diagram is now shown

Final State

0F

Newton's Method

Heel-strike Transition

Input state

0 o
Rungekutta 

-►

If q3 and u3 
too large

Applied x

Feedback
controller
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Chapter Five

Results

5.1 Introduction

The overall goal o f this body o f work is to enhance the pool o f passive dynamic 

creatures through the simulation and analysis o f  a creature containing an extended 

torso Previous research has modelled a torso as just a hip point mass as outlined in 

[McG90] [Gos96] and [Gar97] Initial importance will be placed upon the effect of 

the addition o f extra hip mass to a body-less creature as the torso will be an extension 

o f this hip mass Therefore the first portion o f this chapter deals with a body-less 

creature with varying hip-mass values (starting with mhip = 0) The results gained 

should, and do in fact, coincide with those o f other body-less hip-massed creatures (as 

referenced above)

The second segment o f this chapter focuses on the creature with the torso and in 

particular stability and performance issues It shall be outlined that the overall effect 

o f the addition o f a torso does not damage the creature's attributes, and in some 

situations can improve performance

Finally, the complete set o f results, which are m part summarised here, are given in 

the appendices

5.2 Body-less creature results

5.2.1 Initial Values and Basin of Attraction

In order to find stable limit cycles parameter values should be wisely chosen as minor 

inaccuracies will lead to failure o f convergence o f Newton’s Method There are two 

categories o f parameter values, those which are held constant and those that are
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varying and numerical values are directly taken from known solutions given m 

previously published work e g [McG90] [KuoOO] The full list o f parameter symbols 

with constant values and initial values for the variables which can be modified is 

given m Appendix F Variables such as comleg are those which can be modified and 

the effect o f some o f these parameter variations is outlined later

As the choice o f the initial state values is crucial to the formulation o f fixed point 

solutions, values for a known solution are incorporated This initial state is taken to be 

0 O = { q ^ q ^ u j  = {0 3 0 1 5 ,-0  3 0 1 5 ,-0  3 7 6 3 ,-0  2822}, which is given in both

[McG90] and [KuoOO] The allowance o f variation m each state value can be 

summansed as follows (see Appendix G 2)

■ the states qx, q2 can be altered by approximately 6 %,

■ the velocity w, is slightly more rigid and can be vaned by approximately 5%

■ The most flexible o f all four states u2 can be altered by up to approximately 75% 

Taking all points together this shows that the basin o f attraction is quite small for 

stable limit cycles

Finally it should be noted that the addition o f a hip mass leads to a slight improvement 

in the versatility of qt,q2, m that if  mhip is 1 2  or greater the range of values the 

angles take on increases by 0 01 radians (see Appendix G 2)

5.2.2 Limit Cycles

Once an initial state "guess" has been identified the process o f finding a solution can 

begin Using the initial state values above, along with the constant values given in the 

Appendix F, Newton's method was implemented and solutions for the fixed points for 

a complete step i e solving equation 3 24 were sought Limit cycles as expected were 

indeed located and an example o f one is given in Fig 5 1 More are given in Appendix 

G 1
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Fig 5.1 : The limit cycle fo r  ju s t the swing leg i e {q2,u2} on y  = 0 005 radians Note 

that mhip = 0  in this creatures description

5.3 Hip Mass effects

As the torso in essence is an extension o f the concept o f the addition o f hip mass to 

the creature, the effects of altering the hip mass are of primary importance This 

section highlights the effects o f the addition o f incremental hip mass values, 

particularly in relation to performance issues, such as minimum and maximum 

attainable slope

5.3.1 Varying the centre of mass of the leg

The centre o f mass o f the leg denoted by the scalar value comleg is given in terms as 

distance from the end point o f the ngid link to the centre o f mass position It was 

found that the centre o f mass could be moved by a small amount both away from and 

towards this end point The effect o f the addition o f extra hip mass has no profound 

effect on how much variation the centre o f mass can absorb While the upper and 

lower bounds vary slightly the overall difference between both stays reasonably 

constant as is illustrated in Fig 5 2
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mhip

Fig 5.2 : The value o f  comleg is originally taken to be 0 645, the straight horizontal 

line Now fo r  varying mhip l e  0 ,0  4, and 0 8 , the upper and lower bounds are shown 

here As can be seen, while the upper and lower bounds vary, the difference between 

both does not vary substantially

5.3.2 Varying the foot radius R

With the variation o f the size o f the foot radius R there are two noteworthy outcomes 

Firstly there is a change in the slope needed for a limit cycle A small R needs a steep 

slope, whereas a large R needs a small slope As the goal for passive walking is 

efficiency i e slope as near to zero as possible, the larger the R , the more efficient the 

creature is However realism dictates that the value o f R  be kept rather small and thus 

the value R = 0 3 is utilised throughout this work, in the form o f a constant value
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Fig 5.3: Effect o f  varying R on y needed For mhip = 0 8  this shows that y needed to 

keep the stance leg angle qx at about 0 3015 is high as R approaches 0 and low as R 

approaches 1

Secondly the value o f R has a profound effect on the value of the speed eigenvalue l e 

A,(recall that eigenvalues \ t's were discussed m section 4 3 3) When R is in

proximity to zero this value is also close to 0  and when in proximity to 1 it is also 

close to 1

0 9 

0 8 

0 7 

0 6 

0 5

A.i 0 2  0 3  0 4  0 5  0

R

Fig 5.4: The speed eigenvalue J\tas R increases
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5.3.3 Effect on leg angles - i.e. inter-leg angle

The inter-leg angle is defined as the angle between the stance and swing leg 1 e the 

angle at the hip joint Since both angles are equal and opposite the inter-leg angle is 

therefore just 2 q t For mhip = 0 as y  increases the inter-leg angle increases also 1 e 

the creature takes wider steps on larger y

inter-leg

Fig 5.5 : Inter-leg angle increasing as y increases

As extra hip mass is added the effect again is for the inter-leg angle to widen, as 

illustrated in Fig 5 6
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Fig 5.6 : As mhip increases (here from  0 2 to 1 6)  so does the width o f  the inter-leg 

angle

5.3.4 Slope - minimum and maximum and Stability

As slope is an indication o f efficiency (the walker needs a slope to move and thus y -  

0  would be perfectly efficient) it is important to note effects on the minimum slope 

attainable by parameter changes Firstly mhip is taken to be 0 and the limits o f y  for 

period one gait are found to be from 0 002 to 0 043 radians As hip mass is added and 

incremented, there is also initially a growth in efficiency A hip mass, for instance o f 

0 8 , leads to a decrease m minimum y  to 0 0005 radians However if  the hip mass is 

too high i e the creature has a heavy payload, then this efficiency gain seems to 

disappear For example when mhip = 1 2 and mhip = 1 6  then the minimum /  

attainable is 0 004 radians (as m Appendix G)

Concerning maximum attainable y again the addition of mhip has a positive effect 

with the maximum attainable slope increasing as mhip is incremented The maximum 

y  with mhip = 0 is 0 043, while with mhip = 1 2 a y value o f 0 058 radians is 

achievable

With regards to stability, changes m mhip adversely affect the speed eigenvalue 1 e 

ki As the mhip value increases the value o f \  i edges towards 1, as is shown in Fig
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5 7 Slope also seems to affect this eigenvalue with low or high slope values bringing 

this close to instability and an example is illustrated in Fig 5 8

Speed Eigenvalue

0 0 4 0 8 1 2

.7: Variation in A; due to additional mhip

1 1* •
lh

c. •

•

0 01  0 02  0 . 0 3  0 . 0 4

25

;>

0 05

•

Fig 5.8: Effect o f  variation o f  A, due to increasing y  fo r  mhip = 0 8
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Fig 5.9 : Shows the variation in max and mm y  as the value o f  mhip increases

5.3.5 Effect on Step period

The step period is the time for one complete step to occur i e from heel-stnke to heel- 

stnke For a creature with no hip mass the step period increases as the slope increases 

i e as the slope gets larger the creature takes longer (i e section 5 3 3) slower (i e 

fewer) steps



Step
period

2 88 

2 86 

2 84 

2 82

2 78

0 01 0 02 0 03 0 04

Fig 5.10: The step period fo r  the creature with mhip = 0 is shown, varying as y  

increases

The addition o f varying hip mass does not alter the fact that the step period still 

increases as y  does However as the mhip value increases the overall step penod 

decreases as is outlined in Fig 5 11

Step
period

Fig 5.11: Step period fo r  mhip -  0 4, 0 8  and 1 2 over slope varying from  y  = 0 to y  = 

0 04 radians

85



5.3.6 Velocity and step length

Another means o f determining performance is to determine the step length and 

velocity o f the creature The step length as outlined m section 3 2 1 is given by 

Length = 2L S in  where is the inter-leg angle The velocity on the other hand o f 

the robot over one step is

Length
v = ----2—

T
i e equation 4 4

For the mass-less creature as y  increases so too does the step length and velocity

y

Fig 5.12: Changes in velocity and length fo r  the mass-less creature as y  increases

The addition o f a hip-mass does not alter the fact that both velocity and step length 

increase as slope increases Again though both numerical values are larger than that 

involved m the mass-less case i e the addition of extra mhip increases both the 

velocity and step length o f the creature

86



y

Fig 5.13: Length and velocity fo r  creature with mhip = 0 8  again as y  increases

5.3.7 Addition of a damper

A damper is included at the hip joint m an effort to improve the maximum attainable 

slope The form of this damper is quadratic l e Ffric (u2 -  w,)2 where Ffric is the 

coefficient o f damping (as was outlined in section 4 5 3) Addition o f a damper has 

two mam effects Firstly the versatility o f the creature is inflated through the use of 

this applied damper This is outlined m Fig 5 14, which shows that the maximum 

attainable y  can be increased by using dampers o f varying damper coefficient values 

The process o f finding the best coefficient values is really through trial and error but it 

was found that only small values worked well here The coefficient values used with 

the various mhip values are {mhip = 0 4, Ffric = -0 008}, {mhip = 0 8 , Ffric = - 

0 012}and {mhip = 1 2 , Ffric = -0 02}

87



0 (H*

0 0

0 Oi

■4) 2 0 4 0 6 0

0 CH-5

♦ old max

-- •A--- new max

Fig 5.14: Increased maximum slope attainable provided by the addition o f  a 

quadratic damper

The second by-product o f the utilisation o f a hip damper is a change in the general 

appearance of the limit cycles This is illustrated in Fig 5 15 which shows the limit 

cycle for a damper-less model and for two different values o f the damping coefficient

--♦-- FEeic = 0

* Ffric = 0 001

- ■ - Ffxic = 0 0Œ

Fig 5.15: Limit cycles fo r  creature with mhip = 0 04 on y -  0 052 radians

88



5.3.8 Bifurcation

A bifurcation is a period doubling For one to occur period one solutions should 

disappear and stable period two solutions appear Other researchers [Gos96b] [Gar99] 

found them in their models as various parameters were brought towards a limit (1 e 

bifurcation point) For instance stable period one solutions would exist up to a certain 

slope and would then bifurcate into stable period two solutions An indication of 

bifurcation is achieved by inspection o f the eigenvalues o f the Jacobian o f the 

Pomcare map m the neighbourhood o f the limit cycle These are identified for 

stability (see section 4 3) and should be all less than 1 for stability At a bifurcation 

point at least one o f these eigenvalues crosses the unit circle Clearly on inspection in 

Appendix G (e g G 5) this is not the case here so bifurcation does not occur In 

[Gar98b] Garcia indicates that period doubling does occur for the model described 

here but in addition with knees Therefore the addition o f knees causes bifurcation to 

arise

5.3.9 Summary

The following is a summary of the effects o f increasing slope on the various 

parameters, firstly when the mhip is 0  and secondly when it is not

mhip  = 0

Slope Inter-leg

angle

Velocity Step Period Step Length

Increasing Increases Increases Increases Increases
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mhip > 0

Slope Inter-leg

angle

Velocity Step Period Step Length

Increasing Bigger +

Increases

also

Increases Increases Increases

In terms of efficiency and maximum slope, as more mhip is added the efficiency (1 e 

minimum slope y )  deteriorates and the maximum slope increases A damper placed at 

the hip can increase the maximum attainable slope

Finally this body of work deals with "human-like" motion and thus the goal would be 

for the creature to carry a fairly heavy payload Therefore if  the results for the bodied 

creature can show an increase in efficiency and maximum slope attainable it can be 

deemed a success

5.4 Bodied Results

5.4.1 Initial Values and Basin of Attraction

The choice o f parameter values and the initial state guess for 0{j is o f vital importance 

as invalid values may lead to failure m the discovery o f fixed points As a starting 

point parameter values and state values where stable passive walking can be expected 

for the body-less creature are utilised With regard to the length and centre o f mass of 

the torso, initial values were kept small until solutions were discovered Finally in 

conjunction with these values is the desired initial body position o f uprightness i e
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q 3 = «3  = 0 This gives the guess value for the state as 

0 O = {q],q 2 ,q3,ul ,u2 ,u3} = {0 3 0 1 5 ,-0  3015, 0 ,-0  37 6 3 ,-0  2822,0}

The original bang-zero-bang controller torque values were found through manual 

tweaking Through brute force various torque values were tested (within the Runge- 

kutta part o f the solution process) and when the desired solution o f a fairly rigid torso 

was found these were used as the initial values These then didn’t change much and 

only ‘considerable’ changes in mass distributions (i e hip and body) required 

alteration o f the applied torque state values

According to McGeer, a human has about 70% [McG90] o f body mass above the hip 

and thus the goal would be to have a fairly heavy payload for the creature's legs to 

carry Therefore while some examples quoted m this chapter are for small hip and 

body masses, it is those concerning heavy payloads that are o f primary interest

The addition o f a torso leads to an increase m the basin o f attraction for the state 

variable values Examples are shown m Appendix H 3 and shows that increases o f up 

to 15 % are available on the state values for the body-less case As the controller is 

designed to quickly swallow up errors in the body states it is also worth noting that q3 

and u3 don’t need to be too accurate

5.4.2 Limit Cycles

O f primary concern was the discovery o f fixed points i e limit cycles, if  they existed 

at all Limit cycles were indeed found and an example is shown in Fig 5 16

As a means o f testing the code involved in the solution method initial values 

concerning the body that are minuscule were chosen, and disregarding the bang-zero- 

bang control (since there is no body length), this gave a limit cycle similar to that of 

the body-less creature with the same parameters - see Appendix H 2
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Initially, as shown m that diagram, the solutions are unstable, but this obstacle fades 

through the addition of a damper and “tweaking” o f the parameter values as shall be 

indicated later

u 2

Fig 5.16: Unstable solution The parameters involved are mbody = 0 8 , mhip = 1, 

combody = 0 7, Ibody = 0 8  and applied rvalues {small = 0 003, large = 0 02}

The goal throughout is to provide human-like motion and unrealistic solutions that 

were encountered, such as the body performing complete revolutions, are non- 

anthropomorphic and thus were discounted

92



5.4.3 Stability

Stability is a contentious issue with the presence o f a just a torso and applied torque 

leading to eigenvalues well over the boundary limit o f 1 Taking the situation in Fig 

5 16 1 e an unstable solution, there are two eigenvalues (i e , and 2) outside the 

unit circle and two are approximately 0 (i e 5 and 6) as illustrated m Fig 5 17

♦ Y = 03

■h Y = 0007

■ Y = 045

Fig 5.17: Eigenvalues fo r  unstable solution on three different y  values The 

parameters again involved are mbody - 0  8 , mhip = 1, combody - 0  7, Ibody = 0 8  

and applied r  values {small -  0 003, large = 0 02} Note that it is the first two 

eigenvalues that provide instability

As previously described in section 4 5 3 it is necessary to utilise a damper to provide 

stability Determining the type of damper used was achieved through trial and error 

Initially a linear damper was adopted and in addition a constant factoring value had to 

be combined to provide a successful solution The overall applied torque and damper 

is therefore given m section 4 5 3 i e

Fwmi = Ffrac(Klin -  damp x « 3),

\
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where damp is the damping coefficient, Klin is the applied torque and Ffrac is the 

constant factoring value

Once this was taken into consideration, stable solutions were discovered and can be 

seen in Appendix H

u 2

Ul
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U3

Fig 5.18: Stable solution The following parameter choices are made mbody = 1, 

mhip =1 5, Ibody =0 8 , combody =0 795, damp = 0 55, Frac= 5, and applied t  

values {small = 0 0008, large = 0 0009}

A stable solution is now shown in Fig 5 18 One final thing to note is that the first 

eigenvalue remains at a value o f approximately one This value of one indicates that 

the cycle is neutrally stable for perturbations along the relevant eigenvector and thus 

perturbations will neither shrink nor grow

It may be that another combination o f applied torques and dampers may lead to a 

more "improved" class o f solutions, m particular stability, and this is one option for 

future work
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1 '

0 8 

0. <5

0 t  

0

A,r A-6

♦  y  = . 0 0 0 5

y  = . 0 2 5

■ 7 = 0 4 3

Fig 5.19 Eigenvalues fo r  stable solution in Fig 5 18 on three different y values

5.4.4 Effects of varying slope.

Angles

As the slope y increases both qi and q2 increase and thus does the inter-leg angle The 

angle the body makes l e qs however decreases as y is enlarged i e the body tends 

towards "straightening itself up"
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Fig 5.20: Variation in angles as y  increases The case shown here is fo r  the following  

parameters mbody — 1, mhip =1 5, Ibody —0 8 , combody =0 795, damp = 0 55, 

Frac= 5, and applied t  values {small = 0 0008, large = 0 0009} Note that the range 

o f  y  is from  the minimum o f 0 0005 to the maximum o f 0 043 radians While it is hard 

to make out in the diagram q3 actually decreases from  0 08 radians to 0 07

Step period

Once again the step period is the time taken for one complete step i e from heel-stnke 

to heel-stnke and in common with the body-less creature the step penod increases as 

the slope increases

2 5 

2 45 

2 4 

2 35

0 01 0 02 0 03 0 04 0 05 0 06 T

Fig 5.21: Variation in step period as y  increases The case shown here is fo r  the 

following parameters mbody = 0 4, mhip = 1, Ibody = 0 8 , combody = 0 795, damp 

-  0 39, Frac= 5, and applied r values {small = 0 00002, large -  0 0001}
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Velocity again determined by equation 4 4 1 e

Lengthv = -----2 —
T

V elocity

also increases

0 5 •

0 45 •

0 4

0 35 •

0 3

0 25

0 01 0 02 0 03 0 04
0 15 •

•

Fig 5.22: Variation in velocity as yincreases The parameters are mbody = 0 8 , mhip 

= 1, Ibody = 0 8 , combody = 0 795, damp = 0 39, Frac= 5, and applied r values 

{small = 0 00005, large = 0 0005}

2 5 

2 

1 5 

1

0 5

Step period

Velocity

0 01 0 02 0 03 0 04 Y

Fig. 5.23: Effect o f  variation o f  yon both step period and velocity The case shown
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here is fo r  y  from  the minimum o f  0 0005 to the maximum o f  0 043 radians The 

parameters involved are mbody = 1, mhip =1 5, Ibody =0 8 , combody =0 795, 

damp = 0 55, Frac= 5, and applied t  values {small = 0 0008, large = 0 0009}

Stability

As the slope increases the eigenvalues tend to approach zero until instability occurs 

An example o f their structure is given in Fig 5 24

1

0.6
i

0 (5 

0 4
A

o :>

o . o i 0 . 0 2 0 . 0 3 0 0 4

Fig 5.24: Eigenvalues fo r  the creature in Fig 5 23 as y  is varied Note that X 5 and \  <5 

are both approximately 0  and thus only one is shown

5.4.6 Efficiency and Maximum slope

Efficiency is determined as the minimum slope attainable by the creature 1 e the 

minimum y  needed for continuous movement In section 5 3 4 it was concluded that 

the minimum slope needed for a creature with hip mass included was approximately 

0 0005 radians In order therefore to claim that the bodied creature outlined does not 

significantly hamper efficiency, then values close to that o f the body-less creature are 

desired Efficiency depends on the parameters involved (1 e mhip, mbody, combody,
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damp) but as shown through all the examples outlined in appendix H, efficiency is 

good m general with minimum slopes equalling those o f the body-less detected (e g 

creature with parameters mbody = 1, mhip =1 5, Ibody —0 8 , combody =0 795, 

damp = 0 55, Frac= 5, and r states {small = 0 0008, large = 0 0009} has minimum 

y o f 0 0005 radians)

As for the maximum slope attainable this again depends on how the parameters are 

formulated but improvements can be made on that o f the body-less creature For 

example a body-less creature o f hip mass equal to 0  8 had a maximum feasible slope 

of 0 057 Now for a hip mass o f 1 0 and body mass o f 0 4 this could be increased to 

0 06 radians for stable motions and as far as 0 81 radians for unstable ones Further 

increases are attainable through the addition o f a hip damper, as shall be outlined in 

section 5 4 9

Finally it should be pointed out that further increases in maximum slope and 

efficiency may be attainable through a variation on the applied torque and damper 

used here, and this shall be addressed in the next chapter as possible future work

mhip mbody Ibody combody damp minimum maximum

0 4 0 2 0  1 0 095 0  2 2 0  0006 0  06

1 0 0 4 0 8 0 795 0 3 0  0008 0  06

1 5 1 0 0 8 0 795 0 55 0 0005 0 043

Fig 5.25: Table o f  some minimum and maximum y values

5.4.7 Varying the centre of mass of the body

As the centre o f mass o f the body is measured in relation to the end o f the link, the 

higher the value o f combody the closer the centre o f mass is to the hip mass point For
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an unstable solution (1  e no damper) the range of values for which fixed points can be 

found is fairly large In approximate terms the centre o f mass can be moved from the 

end closest to the hip up to about the middle o f the body link and still fixed points are 

found However all solutions are unstable The effects o f moving the centre of mass 

up the body away from the hip are as follows all angles decrease (1 e the inter-leg 

angle becomes smaller and the angle the body makes becomes more upright), the 

velocity U3 increases and stability deteriorates

When the damper is added for stability the range o f values o f combody for which 

fixed point solutions can be found is diminutive As an example for the following 

creature parameters mhip = 15, mbody = 10, Ibody = 0 8  and damp = 0 55, 

combody can be varied from 0 799 to 0 793 before instability occurs and after 0 75 no 

fixed point solutions are possible The same effects as above are also noted and a full 

set o f solutions is given m Appendix H 5

This low centre o f mass necessity is one flaw that needs to be eradicated and would 

form one major component o f future work, possibly through the addition o f more 

dampers This issue is addressed m the next chapter

combody = 0 55 
arrow indicates 
that q3 is 0 005 
rads 1 e 0 3°

combody

combody

that q3 is 0 0104 
rads 1 e 0 6°

combody = 0 797 
arrow indicates
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Fig. 5.26. Effect o f  variation o f  combody on the body angle q3 This is fo r  the unstable 

case ofparameters mbody = 0 8 , mhip =1, combody =0 7, I body =0 8  and applied x 

values {small = 0 003, large = 0 02} on y  = 0 025

5.4.8 Effect of varying body mass

The examples shown throughout this chapter have given a definite value to mbody 

What is addressed now is how much scope there is for variation to this value Once 

again vanation depends on the parameters in question but in general there is scope for 

alteration The table below shows how much some values can be changed and the 

main detail that can be gathered from these results is the following the body mass 

must be less than the hip mass for stable limit cycles to occur Again this is an issue 

for further work and is addressed in the next chapter

mhip mbody minimum maximum

1 5 1 0 0 4 1  2

1 0 0 4 03 0 7

0 4 0 2 0 2 0 35

Fig: 5.27 : Variation possible in mbody values

5.4.9 Effect of varying radius of gyration

The radius o f gyration for the body is given as a constant value o f 0 121 - see 

Appendix F However this value can be altered - the estimation given is the maximum 

allowed but it can be decreased as far as 0 05 The effect of diminishing the value is 

as follows all angles decrease m size

The radius of gyration for the leg is also given as a constant value o f 0 09 For the 

body-less creature a value o f 0 121 was used but this only leads to failure o f Newton's
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method to converge if  used here The range o f possible values is from 0 1 back to 

0 04 Again the effect o f diminishing the value is to decrease the angular values

5.4.10 Hip Damper

Taking cue from the body-less creature and m an effort to improve versatility a 

damper was placed at the hip joint As outlined in section 4 5 3 both a linear and 

quadratic were tested but it was the quadratic one that provided initially impressive 

results Therefore the equation used for the applied damper is Ffric(u2 -  w,)2, where 

Ffric is the damping coefficient and ut and u2 are the velocities of the stance and 

swing angles Individual values utilised for Ffric are given in Appendix H 7

Again there are two outcomes o f note with regard to the addition o f the quadratic 

damper described Firstly there is an increase in the maximum slope attainable The 

table in Fig 5 28 highlights the increases for a few examples It is worth highlighting 

that with the body-less creature and additional hip damper, the maximum slope found 

for a realistic creature was 0 07 radians, which is increased on slightly here

Parameters mhip mbody Old m ax y New m ax y Increase

1 0 0 4 0  06 0 073 = 2 1  %

0 8 0 4 0 055 0 065 = 18%

1 0 0 8 0 04 0 051 = 27 %

1 5 1 0 0 043 0 055 = 27 %

Fig 5.28: Increases in maximum slope through addition o f  damper

Secondly the addition o f a hip damper alters the general appearance o f the limit cycle 

created Addition o f a damper, may slightly shrink or magnify the format o f the limit 

cycle
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FEnc = (3L8

EEnc  = 0 012

EEac = 0 008

-0 4

Fig 5.29: Limit cycles fo r  various hip damper coefficient values The creature 

parameters are mbody = 0 4, mhip = 10, damp = 0 39, Frac= 5, Ibody = 0 8  all on 

a slope o f  y  = 0 065 It is worth noting also that previous to this damper addition the 

maximum attainable ywas 0 055 radians

5.4.11 Total applied torque in each step.

To keep the body upright and stable it has been established that external torque values 

are required How significant is the value o f this external torque7  The complete 

external force applied to the creature is given in section 4 5 3 i e 

Ftotal ~ Frac(Klm -  dam px u3) This is per iteration and per step involves summation 

but is diminutive For example, for the creature outlined in Fig 5 23 on y  = 0 025 it 

is -0 0289354 N/m per step The applied torque increases as the /increases and is 

shown in Fig 5 30 and Fig 5 31 Finally more values are given in Appendix H 8
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Fig 5.30: T o tal a p p lie d  to rq u e  a s  y  in c re a se s  f o r  o n e  step  f o r  the crea tu re  with m hip  

=  1 . 5  a n d  m b o d y  = 1 .0 . N o te  that the a p p lie d  to rq u e  is  sh o w n  a s  h a v in g  a n e g a tiv e  

v a lu e  - this m ean s that it is  a  re s to r in g  fo r c e .

Fig 5.31: T o ta l a p p lie d  to rq u e  a s  y  in c re a se s  f o r  o n e  step  f o r  the c rea tu re  with m hip  

=  0 .8  a n d  m b o d y  =  0 .2.

5.4.12 Controller Issues

The purpose o f this work was the addition o f a torso with as simplistic a controller as 

possible, thus trying to sustain as much as possible the basic premise o f passive 

dynamic walkers i.e. little or no control. Most o f the results prior to now have 

involved the controller based solely on the q 3 value and given in Fig 4.8. If however 

the controller given in Fig 4.9 is utilised there are no major changes in performance.
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The only difference is a change in the appearance o f q3 - now it leans backwards 

slightly Some results illustrate this and are given in Appendix H 10

5.4.13 Summary

The following is a summary o f the effects o f the variation o f the slope on the various 

parameters which is m-line with that o f the body-less creature

Slope Inter-leg

angle

Angle q3 Velocity Step Period Step Length

Increasing Increases Decreases Increases Increases Increases

In terms o f efficiency values equalling those o f the body-less creature have been 

found Improvements in maximum slope attainable, in particular m conjunction with a 

damper placed at the hip have been identified
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Chapter Six

Conclusions And Future Work

6.1 Achievements

Previous work [McG90] [Gos96] and [Gar97] has well established that a passively 

engineered biped can "walk" down a slightly inclined plane powered only by gravity 

and eventually acquire a stable penodic gait Thus the passive-walking pattern is 

determined by the natural frequency o f the mechanical system An interesting 

characteristic was that the creatures involved achieved a stable limit cycle that looked 

human-like Common to all creatures involved was that a hip mass was utilised to 

represent a torso and it is this exclusion o f an extended torso that has been addressed 

here

McGeer's creature [McG90] was used as the foundation with an extra inverted link 

representing the torso Keeping this link m an upright position can be achieved 

through the use o f a simple fuzzy logic controller without violating the inherent 

simplicity o f the model The solution process involved formulation of the equations of 

motion and transition equations and then fixed point solutions were sought and these 

provided the limit cycles

Once limit cycles were found it needed to be determined if  they were stable or 

unstable While not immediately available, stability could be achieved through the 

addition o f a damper and manual tweaking o f the variable values involved Finally it 

was shown that the addition o f a hip damper could improve on the previous results 

gamed
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6.2 Performance issues

The mam performance issues regarding passive creatures can be summarised as 

stability, efficiency, maximum slope, velocity and step period  With regard to practical 

performance issues, the creature o f McGeer (used as the foundation o f this research) 

achieved a minimum slope o f 0 005 radians and a maximum o f 0 06 radians [McG90] 

Thus to deem the bodied creature a "success" values similar in stature were sought 

As stated previously, stability was achieved although after some tweaking There is a 

slight increase in the basin o f attraction indicating that a larger error in the initial state 

vector is acceptable as compared to the body-less case McGeer utilised a linearised 

solution process in his work and thus improvements m efficiency should be gamed, 

and this was found to be the case with solutions existing for slopes as low as 0 0005 

radians - this is similar to the result found here for the body-less case Improvements 

were also made in the maximum slope achievable The velocity and step period values 

are in keeping with those o f the body-less creature i e increasing as the slope 

increases Finally the applied torque utilised in keeping the body upright, an external 

force which may be problematic in a physical implementation o f the creature, is 

shown to be minute per step taken Thus the applied torque necessary to keep the 

body upright would not require a large power source

6.3 Future Work

6.3.1 Creature configuration

The simulated creature outlined here consists o f three rigid links, two representing 

legs and one a torso, connected via hinge joints This type of joint has limit degrees of 

freedom and thus keeps the structure o f the creature simple Addition o f ball and 

socket joints would aid realism (more human-like), and may positively effect some o f 

the performance issues and should be simulated
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This creature requires a low centre o f mass for stable solutions to be detected 

However higher centre o f mass positions would be necessary m a real world 

environment One method o f combating this problem may be to add in extra mass 

components in specific locations

Addition o f a torso is just one development necessary for a chopped at the waist 

bipedal creature Any realistic creature (either simulated or real) will be required to 

perform some sort o f tasks other than just movement Thus some sort o f freely 

moving gripping arms need to be added

In [McG90b] McGeer updated his bipedal robot through the addition o f knees This 

was accomplished by splitting each leg into two, a thigh and a shank and placing a 

stop at each knee to prevent hyperextension Once again stable limit cycles were 

found and as possible future work knees should be incorporated into the creature 

containing a torso described here

6.3.2 Dampers

Addition o f dampers have been very useful here, providing stability and giving more 

versatile solutions Those modelled have a linear form to keep the torso upnght and a 

quadratic form at the hip joint Different types o f dampers, other than those mentioned 

here may further increase the performance o f the creature In particular addition o f 

extra springs and dampers may lead to improvements in the positioning of the centre 

o f mass o f the torso

6.3.3 Controller

Central to the research m the area o f passive ballistic walkers is the notion of 

simplicity To remain true to this motto as elementary a controller as possible was 

utilised As previously outlined there were two versions o f controller used, each had 

three states and one took into account the value o f the angle velocity iij While
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solutions were found other slightly more complex controllers (however not too 

complex') might be used to keep the body upright and provide better performance

Other forms of external control (such as the passivity mimicking laws used by 

Goswami [Gos97a]) might also be added into the solution process to provide better 

solutions

6.3.4 Optimisation

Many performance gauges were emphasised throughout chapter five However 

instead o f just finding a solution it would be best to find the best solution Therefore 

the solution process should be optimised to find for example the least energetic cost m 

movement, the fastest step etc Withm this also is the notion of improving 

performance values e g trying to get the most efficient creature etc

6.3.5 Physical implementation

The whole process outlined m this is work is based upon simulation Thus a real 

model should be constructed and investigated One o f the main issues would be how 

to implement the controller - as a non-linear spring or as an actuator9 Obviously the 

most energy efficient solution should be sought giving the best performances
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Vectors associated with the Bodied Creature.

Height of 'Points' above ground

It will be useful to have the heights o f various points on the creature at particular time 

intervals Therefore the vector values for these points are

fo o t-h e ig h t  = (L — /?)Co5 [^,] sta[2] + ( -L  + R)Cos[q2] swi[2] 

hip -  height = (L -  R) sta [2] + R ground [2]

Vectors

Bodytojnt is the vector from the new body's COM to the joint connecting it

• Stance to ground

-i?ground[2] -  (comleg -  R) sta[2]

• Swing to stance 

(L -  com leg) swi[2]

• Body to hip

- ( Ibody -  combody) bod [2]

Inbtojnt is the vector from  
hew body

• Stance to ground 

0

• Swing to stance 

{L -  comleg) sta[2]

• Body to stance 

(L -  comleg) sta[2]

Appendix A:

the Inboard bodys COM to the jo in t connecting it to the

M
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Appendix B:

Mathematica Code for equations of motion i.e. state derivative sta for 
the bodv-less creature. Note that code for transition matrix is only given 
for the bodied creature.

(* Include dynamics Workbench package *)

<<c \DynamicsWorkbench m

(* Clear the internal variables storing parameters of the model *) 

NewModel

(* Add m  the two leg reference frames sta and swi *)

AddFrame[sta, ground, Hinge, Axis->ground[3]],
AddFrame[swi, ground, Hinge, Axis->ground[3]], 
udofs = {1, 2),

(* Kinematics of the legs *)

AngVel[ sta ] = u[l] ground[3],
AngVel[ swi ] = u[2] ground[3],
Bodies = {sta, swi},
Inboard[ sta ] = ground,
Inboard[ swi ] = sta,
rank = R ground[2],
vank = Cross[ AngVel[sta], rank],

(* hip is positioned at joint joining the two legs *)

(*NOTE THAT Cl IS USED FOR comleq here *) 

hip = PosPnt[(L-Cl) sta[2], sta] ground[2],

(* Velocities of legs *)

VelCOM[ sta ] = vank + Cross[ AngVel[sta], (Cl-R) sta [2]],
AccCOM[ sta ] = Dt[VelCOM[sta],t, Constants->{R,Cl,lp}] /

{q [1] '->u[l],q [2]'->u[2]},
AngAcc[ sta ] = Dt[AngVel[sta],t],
Kinematics = {u[l] == qt[l]'[t], u[2] == qt[2]'[t] },
Force[sta] = {},
Torque[sta] = {},
Force[swi] = {},
Torque[swi] = {} ,
VelJnt[ swi ] = Simplify[ VelCOM[ sta ] + Cross[AngVel[sta],

(L-Cl) sta [2]] ]
VelCOM[ swi ] = VelJnt[swi] + Cross[ AngVel[swi],

-(L-Cl) swi[2] ]
AngAcc[swi] = Dt[AngVel[swi],t],
AccJnt[swi] = Simplify[ AccCOM[sta] + Cross[AngVel[sta],

Cross[AngVel[sta], (L-Cl) sta [2] ] ] + Cross[ 
AngAcc [sta] , (L-Cl) sta [2]], Tng->False] ,
AccCOM[swi] = Simplify[ AccJnt[swi] + Cross[AngVel[swi],
Cross[AngVel[swi], -(L-Cl) swi[2] ] ] + Cross[
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AngAcc[swi], -(L-Cl) swi[2] ] ],
BodyToJnt[sta] = -rank - (Cl-R) sta [2],
BodyToJnt[swi] = (L-Cl) swi[2],
InbToJnt[sta] = 0,
InbToJnt[swi] = (L-Cl) sta[2],

(* Mass of legs ìncluding hip mass *)
Mass[ swi ] = M + Mhip, Mass[ hip ] = Mhip, Mass[ sta ] = M + Mhip, 
Inertia[ sta ] = Il sta [ 1 ] **sta [ 1 ] + 1 1  sta[ 3 ] **sta[ 3 ] ,
Inertia[ swi ]=Ilswi swi[ 1 ] **swi[ 1 ] +Ilswi swi[ 3 ] **swi[ 3 ] ,

(* Forces applied to the legs i e gravity *)

AppFrc[ sta, Mass[sta] grav, 0],
AppFrc[ swi, Mass[swi] grav, 0],

(* Torque applied by spring and damper at the hip joint *)

AppTrq[swi , Ffnc ( (u [2]-u [ 1 ] ) A2) ground[3]],

grav = g (-Cos [gamma] ground [2] + S m  [gamma] ground[l]),

(* Generate the equations of motion *) 
eom = EOM

(* next need to split up eom so that state derivative can be found *)

test=Simplify [MassMatnx [eom] ]

Print[StringForm["Value for the 2*2 matrix M";

mll=Coeffìcient[eom[[1]] [ [1]], (u[l])', 1],
ml2=Coefficient[eom[[1]] [ [1]], (u[2])', 1],
m21=Coefficient[eom[[2]] [ [1]], (u[l])', 1],
m22=Coefficient[eom[[2]] [ [1]], (u [2]) ', 1],

(* Matrix M  m  section 3 3 3 *)

MatM[2,2]={{-mi1,-mi2},{-m21,-m22}}

Pnnt [StnngForm[ "nght hand side values"]]

resti = eom[[1]] [ [ 1]] - (Coeffìcient[ eom[[1]] [ [ 1]], (u[l])'f
l]*u[l]') - (Coefficient[ eom[[1]] [ [ 1]], (u [2]) ', l]*u[2]'),

rest2 = eom[[2]] [ [ 1]] - (Coeffìcient[ eom[[2]] [ [1]], (u[l])',
1]*u[l] ') - (Coefficient[ eom[[2]] [ [1]], (u[2])’, l]*u[2]'),

(* Matrix R in section 3 3 3 *)

Rmat[1,2]={resti, rest2}

(* Linear solve to get last values for state derivative *)

uveldot = LmearSolve [MatM [2, 2] , Rmat [ 1, 2] ]
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(*--------------------------------------------------
*)

(* Linear solving above gives the state vector sta *)

sta = {u[1] , u [2] , uveldot[[1]],uveldot[ [2]]} 
sta »  c \stateder ma

118



Appendix C:

Mathematica Code for equations of motion i.e. state derivative sta for 
the bodied creature and the transition equation.

(* Include DynamicsWorkbench package *)

« c  \DynamicsWorkbench m 

NewModel

( * ----------------------------------------------------------------------------------------------------------------------------------------------------------------------- * j

(* Setting up frames of reference *)

AddFrame[sta, ground, Hinge, Axis->ground[3]],
AddFrame[swi, ground, Hinge, Axis->ground[3]],
AddFrame[bod, ground, Hinge, Axis->ground[3]],

udofs={1, 2, 3},

AngVel[ sta ] = u[l] ground[3],
AngVel[ swi ] = u[2] ground[3],
AngVel[ bod ] = u[3] ground[3],
Bodies = {sta, swi, bod).

Inboard[ sta ] = ground,
Inboard[ swi ] = sta,
Inboard[ bod ] = sta,

(* hdpos is the vector from the com upwards - means back towards the 
hip * )

hip = PosPnt[(L-comleg) sta [2], sta] ground[2],

rank = R ground[2],
vank = Cross [ AngVel[sta], rank],
VelCOM[ sta ] = vank + Cross[ AngVel[sta], (comleg-R) sta[2]],
AccCOM[ sta ] = Dt[VelCOM[sta],t, Constants->{R,comleg,lp}] /
{q [1]’->u[1],
_q[2]'->u[2]},
AngAcc[ sta ] = Dt[AngVel[sta],t],
Kinematics = {u[l] == qt[l]'[t], u[2] == qt[2]'[t], u[3] == qt[3]'[t] 
},

Force[sta] = {},
Torque[sta] = {},
Force[swi] = {},
Torque[swi] = {},
Force[bod] = {},
Torque[bod] = {},

VelJnt[ swi ] = Simplify[ VelCOM[ sta ] + Cross[AngVel[sta],
__(L-comleg) sta [2]] ],
VelCOM[ swi ] = VelJnt[swi] + Cross[ AngVel[swi],

(L-comleg) swi[2] ],
AngAcc[swi] = Dt[AngVel[swi],t],
AccJnt[swi] = Simplify[ AccCOM[sta] + Cross[AngVel[sta],
_Cross[AngVel[sta], (L-comleg) sta [2] ] ] + Cross[

119



_AngAcc[sta], (L-comleg) sta[2]], Trig->False]; 
AccCOM[swi] = Simplify[ AccJntfswi] + Cross[AngVel[swi], 
_Cross[AngVel[swi], -(L-comleg) swi[2] ] ] + Cross[ 
_AngAcc[swi], -(L-comleg) swi[2] ] ];

( * ------------------------------------------------------------------
-*)

VelCOM[bod] = VelJnt[swi] + Cross[AngVel[bod], (lbody-combody) bod[2]
] ;
AngAcc[bod] = Dt[AngVel[bod],t];
AccCOM[bod] = Simplify[ AccJnt[swi] + Cross[AngVel[bod],
_Cross[AngVel[bod], (lbody-combody) bod[2] ] ] + Cross[
_AngAcc[swi], (lbody-combody) bod[2]], Trig->False];

BodyToJnt[sta] = -rank - (comleg-R) sta [2]; 
BodyToJnt[swi] = (L-comleg) swi[2];
BodyToJnt[bod] = (lbody-combody) bod[2]; 
InbToJnt[sta] = 0;
InbToJnt[swi] = (L-comleg) sta[2];
InbToJnt[bod] = (L-comleg) sta [2];

(* Note that each leg contains the hip mass *)

Mass[ swi ] = M + Mhip;
Mass[ hip ] = Mhip;
Mass[ sta ] = M + Mhip;
Mass[ bod ] = Mbody;

Inertia[ sta ] = Ilsta sta[1]**sta[1]+Ilsta sta[3]**sta[3];
Inertia[ swi ] = Ilswi swi[1]**swi[1]+Ilswi swi[3]**swi[3];
Inertia[ bod ] = Inertiabody bod[l]**bod[l]+Inertiabody 
bod[3]**bod[3];

AppFrc[ sta, Mass[sta] grav, 0];
AppFrc[ swi, Mass[swi] grav, 0];
AppFrc[ bod, Mass[bod] grav, 0];

(* Torsional Springs position and force - added to try to improve 
stability *)

AppTrq[ swi , Ffric((u[2]- u[1])~2) swi[3]];

(* Inverted pendulum torque - spring and damper with damping coeff 
damp and torque Klin and constant Frac *)

AppTrq[ bod, Frac(Klin - damp*u[3]) bod[3]];

grav = g (-Cos[gamma] ground[2] + Sin[gamma] ground[l]);

eom = EOM;

test=Simplify[MassMatrix[eom]];

(* Again need to get into form for linear solving *)

(* Matrix M in section 3.3.3*)
M[3,3]={test[[1]] [ [1]], test [ [1]] [ [2]], test[[1]] [[3]]};
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(* Matrix R m  section 3 3 3*)

R[l,3]=test[[2]],

uveldot=Lmear Solve [M[3,3],R[1,3]],
Print [StnngForm["State Vector is "] ] ,

sta=(u[l], u [2], u [3],uveldot[[1]],uveldot[[2] ] ,uveldot[ [3] ] } 

sta >> c \statemat nb

i t " k  • k 'k 'k 'k ie 'k 'k  "k "k V!r 'k 'k 'k ic  -k-k ic <k is &  "k *  -k -k •k ie k  ‘k  k  k  'k 'k 'k 'k 'k 'k 'k  "k ic  $c &  k k  k  k  k k k k  Jc Jc k  k  k  Je

TRANSITION EQUATIONS (SECTION 3 . 4 ) -  SAME CODE AS ABOVE 
UNTIL EQUATIONS OF MOTION ARE FORMED

eom = EOM,

amawhole = AngMom[{sta, swi}, 0],(*+
 AngMom[{bod}, PosPnt[ (L-comleg) sta[2], sta]]*)
amaswi = AngMom[{swi}, PosPnt[ (L-comleg) swi[2], swi]], 
amabod = AngMom[{bod}, PosPnt[ (L-comleg) sta[2], sta]],

M [3,3]={{Coefficient[amawhole sta [3], 
u [1]],Coefficient[amawhole sta[3], u[2]],
 Coefficient[amawhole sta [3], u[3]]},
{Coefficient[amaswi sta[3], u [1]],Coefficient[amaswi sta[3], u[2]] 
Coefficient[amaswi sta[3], u[3]]},_
{Coefficient[amabod sta[3], u [1]],Coefficient[amabod sta[3], u[2]] 
Coefficient[amabod sta [3], u[3]]}},

(*Angular Momemtum before*)

ambefwhole = AngMom[{sta, swi}, PosPnt[-(comleg-R) swi[2] -R 
ground[2],
 swi ]], (*+ AngMom[{bod}, PosPnt[ (L-comleg) sta [2], sta]]*)

ambsta = AngMom[{sta}, PosPnt[ (L-comleg) sta[2], sta]], 
ambbod = AngMom[{bod}, PosPnt[ (L-comleg) sta[2], sta]],

Bef[1,3]={ambefwhole sta[3],ambsta sta[3],ambbod sta[3]},

condl=LinearSolve[M[3,3],Bef[l,3]]

condl >> c \artkuo\mar3\transmat nb



Appendix D

Equations of motion matrices for the body-less creature

The equations o f motion for the body-less creature can be written as

/  \ ( 2Mj
- R

M,

KU2
2

\ U2 )

where the matrices M  and N  are

11 + (comle£ + L2) (2m + mhip) (comleg-L)L(2m + mhip) Co^q{ - q 2)

(comleg-L)L(2m +mhip) C o ^  —q2) Ilswi+(comleg-L )2 (2m + mhip)

- (2m + m hip)(g(comleg + L)Sin(y  — ql) + (comleg -  L)LSin(ql -  q2)u2 

(comleg -  L ) (2m + mhip )( -gS in (y  -  q2) + LS in (qx -  q2)u x
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Appendix E:

State derivative for Bodied Creature

6 { t )  =  {u [1], u [2], u [3], -(((-((comleg - L)*(combody - lbody)A2*
Mbody*(M + Mhip)*((L - R)*Cos[q[l] - q[2]] + R*Cos[q[2]])) - 
(combody - lbody)*Mbody*(Ilswi + (comleg - L)A2* (M + Mhip))*
((L - R)*Cos[q[l] - q [3]] + R*Cos[q[3]]))*
(g*(combody - lbody)*Mbody*Sm[gamma - q[3]] - 
(combody - lbody)*Mbody*(L - R)*Sin[q[l] - q [3]]*
u[l]A2 + frac*(Klin - damp*u[3])))/(Inertiabody*((Ilswi + (comleg - 
L)A2*(M + Mhip))*(Ilsta + comlegA2*M + LA2*M + LA2*Mbody + 
comlegA2*Mhip +
LA2*Mhip - 2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R - 
2*comleg*Mhip*R - 2*L*Mhip*R + 4*M*RA2 + 2*Mbody*RA2 +
4*Mhip*RA2 + 2*R*(L*M + L*Mbody + L*Mhip + 
comleg*(M + Mhip) - 2*M*R - Mbody*R - 2*Mhip*R)*
Cos[q[l]]) -(comleg - L)* (M + Mhip)*
((L - R)*Cos[q[1] - q [2]] + R*Cos[q[2]])*
((comleg - L) * (M + Mhip)*(L - R) *Cos [q [ 1] - q[2]] +
(comleg - L)* (M + Mhip)*R*Cos[q[2]] - 
(combody - lbody)*Mbody*
( (L - R) *Cos [q[l] - q [ 3 ] ] + R*Cos [q [3] ] ) ) ) ) ) +
(-((comleg - L)* (M + Mhip)*((L - R)*Cos[q[l] - q [2]] +
R*Cos[q[2]])*(g*(-comleg + L)* (M + Mhip)*
Sin[gamma - q[2]] + Khip/(q[l] - q[2]) +
(comleg - L) * (M + Mhip) * (L - R)*Sm[q[l] - q [ 2 ] ] * 
u[l]A2 + Ffric*Sin[u[l] - u[2]]*
(u[l] - u[2])A2)) + (Ilswi + (comleg - L)A2*(M + Mhip))*
(g*(M + Mhip)*(-R + (-comleg + R)*Cos[q[1]])*Sin[gamma] + 
g*Mbody* (-R + (-L + R) *Cos [q [ 1 ]]) * S m  [gamma] + 
g*(M + Mhip)*(-R + (-L + R)*Cos[q[1]])*Sin[gamma] + 
g*(M + Mhip)* (comleg - R)*Cos[gamma]*Sin[q[1]] + 
g*Mbody* (L - R) *Cos [gamma] * S m  [q [1] ] + 
g*(M + Mhip)* (L - R)*Cos[gamma]*Sin[q[1]] +
R*(L*M + L*Mbody + L*Mhip + comleg*(M + Mhip) - 2*M*R - 
Mbody*R - 2*Mhip*R) *Sm[q[l] ] *u[l] A2 +
(comleg - L)* (M + Mhip)*
((-L + R) * S m  [ q [ 1 ] - q[2]] + R*Sin [ q [ 2 ] ] ) *u [ 2 ] A2 \
- (combody - lbody)*Mbody*((-L + R)*Sin[q[l] - q[3]] +
R*Sin[q[3]])*u[3]A2))/((Ilswi + (comleg - L)A2*(M + Mhip))*
(Ilsta + comlegA2*M + LA2*M + LA2*Mbody + comlegA2*Mhip + LA2*Mhip - 
2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R - 2*comleg*Mhip*R - 
2 *L*Mhip*R + 4 *M*RA2 + 2*Mbody*RA2 + 4*Mhip*RA2 +
2*R*(L*M + L*Mbody + L*Mhip + comleg*(M + Mhip) - 2*M*R -
Mbody*R - 2*Mhip*R)*Cos[q[l]]) -(comleg - L)* (M + Mhip)*((L - 
R)*Cos[q[l] - q [2]] +R*Cos[q[2]])*((comleg - L)* (M + Mhip)* (L - R)* 
Cos[q[l] - q [2]] +(comleg - L)* (M + Mhip)*R*Cos[q[2]] -
(combody - lbody)*Mbody*((L - R)*Cos[q[l] - q[3]] + R*Cos[q [3]]))),
(g* (-comleg + L) * (M + Mhip) * S m  [gamma - q[2]] +
Khip/(q [1] - q [2]) +(comleg - L)* (M + Mhip)* (L - R)*Sin[q[l] - q [2]]* 
u [ 1 ] A2 + Ffnc*Sin[u[l] - u[2]]*(u[l] - u[2])A2)/
(Ilswi + (comleg - L)A2* (M + Mhip)) -((combody -
lbody)A2*Mbody*(g*(combody - lbody)*Mbody*Sin[gamma - q[3]] -(combody
- lbody) *Mbody* (L - R)*Sm[q[l] - q[3]]*u[l]A2 + frac* (Kim -
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damp*u[3])))/(Inertiabody*(Ilswi + (comleg - L)A2* (M + Mhip))) - 
(( (comleg - L)* (M + Mhip)* (L - R)*Cos[q[l] - q[2] ] +
(comleg - L)* {M + Mhip)*R*Cos[q[2]] -(combody - lbody)*Mbody*
((L - R)*Cos[q[l] - q [3]  ] + R*Cos[q [3]]))*
(-(((-((comleg - L)* (combody - lbody)A2*Mbody*(M + Mhip)*
((L - R)*Cos[q[1] - q [2]] + R*Cos[q[2]])) \
- (combody - lbody)*Mbody*(Ilswi + (comleg - L)A2*(M + Mhip))*
( (L - R)*Cos[q[1] - q [3]] + R*Cos[q[3]]))*
(g*(combody - lbody)*Mbody*Sin[gamma - q[3]] - 
(combody - lbody)*Mbody*(L - R)*Sin[q[l] - q[3]]*
u[l]A2 + frac*(Klin - damp*u[3])))/(Inertiabody*((Ilswi + (comleg - 
L)A2* (M + Mhip))*(lista + comlegA2*M + LA2*M + LA2*Mbody + 
comlegA2*Mhip +
LA2*Mhip - 2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R - 
2*comleg*Mhip*R - 2*L*Mhip*R + 4*M*RA2 + 2*Mbody*RA2 +
4*Mhip*RA2 +2*R*(L*M + L*Mbody + L*Mhip + comleg*(M + Mhip) -
2*M*R - Mbody*R - 2*Mhip*R)*Cos[q[1]]) -(comleg - L)* (M + Mhip)*((L -
R)*Cos[q[l] - q [2]] + R*Cos[q[2]])*((comleg - L)* (M + Mhip)* (L - R)*
Cos[q[l] - q[2]] +(comleg - L)*(M + Mhip)*R*Cos[q[2]] -
(combody - lbody)*Mbody*((L - R)*Cos[q[l] - q [3]] + R*Cos[q[3]])))))
\
+ (-((comleg - L)* (M + Mhip)*((L - R)*Cos[q[l] - q [2]] +
R*Cos [q [2] ])* (g* (-comleg + L)*(M + Mhip) * S m  [gamma - q [2] ] +
Khip/(q[l] - q[2] ) +(comleg - L) * (M + Mhip) * (L - R)*Sm[q[l] - q[2]]*
u [ 1] A2 +Ffnc*Sin[u[l] - u[2]]*(u[l] - u[2])A2)) +
(Ilswi + (comleg - L)A2*(M + Mhip))*(g*(M + Mhip)*(-R + (-comleg +
R) *Cos [q [ 1 ]]) * S m  [gamma] +g*Mbody* (-R + (-L +
R) *Cos [q [ 1 ]]) * S m  [gamma] +
g* (M + Mhip)*(-R + (-L + R) *Cos [q [ 1] ]) * S m  [gamma] +
g* (M + Mhip) * (comleg - R) *Cos [gamma] * S m  [q [ 1 ] ] +
g*Mbody*(L - R)*Cos[gamma]*Sin[q[1]] +g*(M + Mhip)*(L -
R)*Cos[gamma]*Sm[q[l]] +R*(L*M + L*Mbody + L*Mhip + comleg*(M +
Mhip) - 2*M*R -Mbody*R - 2*Mhip*R) * S m  [q [ 1 ] ] *u [ 1 ] A2 +
(comleg - L)* (M + Mhip)*((-L + R)*Sin[q[l] - q[2]] + R*Sin[q[2]])* 
u[2]A2 - (combody - lbody)*Mbody*((-L + R)*Sin[q[l] - q[3]] + 
R*Sm[q[3] ] ) *
u [3]A2))/((Ilswi + (comleg - L)A2*(M + Mhip))*
(lista + comlegA2*M + LA2*M + LA2*Mbody + comlegA2*Mhip +
LA2*Mhip - 2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R - 
2*comleg*Mhip*R - 2*L*Mhip*R + 4*M*RA2 + 2*Mbody*RA2 +
4*Mhip*RA2 + 2*R*(L*M + L*Mbody + L*Mhip + comleg*(M + Mhip) - 2*M*R

Mbody*R - 2*Mhip*R)*Cos[q[1]]) -(comleg - L)* (M + Mhip)*
((L - R)*Cos[q[1] - q [2]] + R*Cos[q[2]])*((comleg - L)* (M + Mhip)* (L
- R)*Cos[q[l] - q[2]] +(comleg - L)*(M + Mhip)*R*Cos[q [2]] - 
(combody - lbody)*Mbody*((L - R)*Cos[q[l] - q[3]] + R*Cos[q[3]])))))/ 
(Ilswi + (comleg - L)A2*(M + Mhip)),(g*(combody -
lbody)*Mbody*Sm[gamma - q[3]] -(combody - lbody)*Mbody*(L - 
R)*Sm[q[l] - q[3]]*u[l]A2 +frac* (Klin - damp*u [3] ))/Inertiabody}

Transition matrix for Bodied Creature

cond =
{(Ilsta*u[1] + (comleg - L)* (M + Mhip)* (comleg - R)*u[l] + 

(comleg - L)*(M + Mhip)*R*Cos[q[1]]*u[1])/
(-((comleg - L)* (M + Mhip)*(-L + R)*Cos[q[l] - q[2]]) + 

(comleg - L)* (M + Mhip)*R*Cos[q[2]]) - 
((Ilswi + (comleg - L)A2*(M + Mhip))*
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(-((lista + (M + Mhip)*R*(R + (comleg - R)*Cos[q[1]]) +
(M + Mhip)* (comleg - R)* (comleg - R + R*Cos[q[l]]) -
(M + Mhip)* (-L + R)*
(L - R + R*Costq[1]] +

(comleg - L)*Cos[q[l] - q [2] ] ) +
(M + Mhip)*R*(R + (L - R)*Cos[q[l]] +

(comleg - L) *Cos[q[2]]))*
(Ilsta*u[l] + (comleg - L)*(M + Mhip)* (comleg - R)* 

u[l] + (comleg - L)* (M + Mhip)*R*Cos[q[l]]*u[l])) \
+ (-((comleg - L)* (M + Mhip)*(-L + R)*Cos[q[l] - q [2]]) +

(comleg - L)* (M + Mhip)*R*Cos[q[2]])*
(Ilsta*u[1] - (M + Mhip)*(-L + R)*

(R*Cos[q[l]] + (comleg - R)*Cos[q[l] - q [2]])* 
u[l] + (M + Mhip)* (comleg - R)*
(comleg - L + R*Cos[q[l]] +

(L - R)*Cos[q [1] - q [2]])*u[1] +
(M + Mhip)*R*(R + (comleg - R)*Cos[q[2]])*u[1] +
(M + Mhip)*R*(R + (comleg - L)*Cos[q[l]] +

(L - R)*Cos[q[2]])*u[l] + Ilswi*u[2] +
(comleg - L)* (M + Mhip)* (comleg - R + R*Cos[q[2]])*u [2])) 

)/((-((comleg - L)* (M + Mhip)*(-L + R)*Cos[q[l] - q [2]]) +
(comleg - L)*(M + Mhip)*R*Cos[q[2]])*

(-((Ilswi + (comleg - L)A2* (M + Mhip))*
(lista + (M + Mhip)*R*(R + (comleg - R)*Cos[q[1]]) +

(M + Mhip)* (comleg - R)* (comleg - R + R*Cos[q[l]]) -
(M + Mhip)*(-L + R)*
(L - R + R*Cos[q[1]] +

(comleg - L)*Cos[q[l] - q [2]]) +
(M + Mhip)*R*(R + (L - R)*Cos[q[1]] +

(comleg - L)*Cos[q[2]]))) +
(-((comleg - L)* (M + Mhip)*(-L + R)*Cos[q[l] - q [2]]) +

(comleg - L)*(M + Mhip)*R*Cos[q[2]])*
(Ilswi + (comleg - L)* (M + Mhip)*

(comleg - L + (L - R)*Cos[q[l] - q[2]] + R*Cos[q[2]])
))), (-((lista + (M + Mhip)*R*(R + (comleg - R)*Cos[q[l]]) +

(M + Mhip)* (comleg - R)* (comleg - R + R*Cos[q[l]]) - 
(M + Mhip) * (-L + R) *
(L - R + R*Cos[q[1]] +

(comleg - L)*Cos[q[l] - q [2]]) +
(M + Mhip)*R*(R + (L - R)*Cos[q[1]] +

(comleg - L)*Cos[q[2]]))*
(Ilsta*u[l] + (comleg - L)* (M + Mhip)* (comleg - R)*u[l] + 

(comleg - L)* (M + Mhip)*R*Cos[q[1]]*u[1])) +
(-((comleg - L)* (M + Mhip)*(-L + R)*Cos[q[l] - q[2]]) +

(comleg -  L)* (M + Mhip)*R*Cos[q[ 2 ] ] ) *
(Ilsta*u[l] - (M + Mhip)*(-L + R)*

(R*Cos[q[1]] + (comleg - R)*Cos[q[l] - q[2]])*u[l] \
+ (M + Mhip)* (comleg - R)* (comleg - L + R*Cos[q[l]] +

(L - R)*Cos[q [1] - q [2]])*u[1] +
(M + Mhip)*R*(R + (comleg - R)*Cos[q[2] ] ) *u[1] +
(M + Mhip)*R*(R + (comleg - L)*Cos[q[l]] +

(L - R)*Cos[q[2]])*u[l] + Ilswi*u[2] +
(comleg - L)* (M + Mhip)* (comleg - R + R*Cos[q[2]])*u[2]))/ 

(-((Ilswi + (comleg - L)A2*(M + Mhip))*
(lista + (M + Mhip)*R*(R + (comleg - R) *Cos[q[1]]) +

(M + Mhip)* (comleg - R)* (comleg - R + R*Cos[q[l]]) - 
(M + Mhip)* (-L + R)* (L - R + R*Cos[q[l]] +

(comleg - L)*Cos[q[l] - q [2]]) +
(M + Mhip) *R* (R + (L - R) *Cos [q [ 1 ] ] +

(comleg - L)*Cos[q[2]]))) +
(-((comleg - L)* (M + Mhip)*(-L f R)*Cos[q[l] - q [2]]) +
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(comleg - L)* (M + Mhip)*R*Cos[q[2]])*
(Ilswi + (comleg - L)*(M + Mhip)*

(comleg - L + (L - R)*Cos[q[l] - q[2]] + R*Cos[q[2]]))), 
-(((-((combody - lbody)*Mbody*(-L + R)*Cos[q[l] - q [3]]) +

(combody - lbody)*Mbody*R*Cos[q[3]])*
((Ilsta*u[l] + (comleg - L)* (M + Mhip)* (comleg - R)*

u[l] + (comleg - L)*(M + Mhip)*R*Cos[q[1]]*u[1])/ 
(-((comleg - L)* (M + Mhip)*(-L + R)*Cos[q[l] - q [2]]) + 

(comleg - L)*(M + Mhip)*R*Cos[q[2]]) - 
((Ilswi + (comleg - L)A2* (M + Mhip))*

(-((lista + (M + Mhip)*R*(R + (comleg - R)*Cos[q[1]]) + 
(M + Mhip)* (comleg - R)*
(comleg - R + R*Cos[q[l]]) - 

(M + Mhip)*(-L + R) *
(L - R + R*Cos[q[1]] +

(comleg - L)*Cos[q[l] - q [2]]) +
(M + Mhip)*R*
(R + (L - R)*Cos[q[1]] +

(comleg - L)*Cos[q[2]]))*
(Ilsta*u[l] +

(comleg - L)* (M + Mhip)* (comleg - R)*u[l] + 
(comleg - L)* (M + Mhip)*R*Cos[q[1]]*u[1])) + 

(-((comleg - L)* (M + Mhip)*(-L + R)*
Cos[q[1] - q [2]]) +

(comleg - L)* (M + Mhip)*R*Cos[q[2]])*
(Ilsta*u[l] - '

(M + Mhip)* (-L + R) *
(R*Cos[q[l]] +

(comleg - R)*Cos[q[l] - q[2]])*u[l] +
(M + Mhip)* (comleg - R)*
(comleg - L + R*Cos[q[l]] +

(L - R)*Cos[q [1] - q [2]])*u[1] +
(M + Mhip)*R*(R + (comleg - R)*Cos[q[2]])*u[1] +
(M + Mhip)*R*
(R + (comleg - L)*Cos[q[l]] +

(L - R)*Cos[q[2]])*u[l] + Ilswi*u[2] +
(comleg - L)* (M + Mhip)* (comleg - R + R*Cos[q[2]])* 
u [ 2 ] ) ) ) /

((-((comleg - L)* (M + Mhip)*(-L + R)*
Cos[q [1] - q [2]]) +

(comleg - L)* (M + Mhip)*R*Cos[q[2]])*
(-((Ilswi + (comleg - L)A2*(M + Mhip))*

(lista + (M + Mhip)*R*(R + (comleg - R)*Cos[q [1]])
+

(M + Mhip)* (comleg - R)*
(comleg - R + R*Cos[q[l]]) - 

(M + Mhip) * (-L + R) *
(L - R + R*Cos[q[1]] +

(comleg - L)*Cos[q[l] - q [2]]) +
(M + Mhip)*R*
(R + (L - R) *Cos [q [ 1 ] ] +

(comleg - L)*Cos[q[2]] ) ) ) +
(-((comleg - L)* (M + Mhip)*(-L + R)*

Cos[q [1] - q [2]]) +
(comleg - L)* (M + Mhip)*R*Cos[q[2]])*

(Ilswi + (comleg - L)* (M + Mhip)*
(comleg - L + (L - R)*Cos[q[l] - q[2]] +

R*Cos[q[2]]))))))/
(Inertiabody + (combody - lbody)* (-combody + lbody)*Mbody)) + 

(-((combody - lbody)*Mbody*(-L + R)*Cos[q[l] - q[3]]*u[l]) + 
(combody - lbody)*Mbody*R*Cos[q[3]]*u[1] +
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Inertiabody*u[3] + (combody - lbody)*(-combody + lbody)*Mbody* 
u [3])/(Inertiabody + (combody - lbody)*(-combody + 

lbody)*Mbody)}
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Appendix F:

Parameters, constants and initial values used with the Bodied Creature.

The following is a list o f the parameters involved in the creatures' description and 

movement Any parameters that were treated as constants have their values shown

Symbol Description Value

<7/ Stance leg angle
<?2 Swmg leg angle
qs Body angle
Ul Speed at which stance angle is changing
u2 Speed at which swing angle is changing
u3 Speed at which body angle is changing

y Slope angle o f  ground

L Length o f leg 1
R Radius o f foot 0 3
Cl Distance from foot to centre o f  mass o f  leg 0 645
Ibody Length o f the body
combody Distance from end o f body to centre o f  mass
Z Gravity 1

M Mass o f  leg 0 4
Mhip Mass o f hip
Mbody ^ Mass o f body

Ffhc Coefficient o f  friction
Khip Coefficient o f  damping
Klin Torque applied to body
toi Numerical tolerance of the integrator 0 00001
Frac Torque constant

Ilswi Inertia o f  swmg leg 0 121 * (M + Mhip)
lista Inertia o f  stance leg 0 121 *M
Inertiabody Inertia o f body
w leg axis -> mass centre offset
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Appendix G.

Body-less creature results

G.1 Limit Cycles

The first issue was the discovery o f limit cycles Here is a selection o f those that were 
discovered and are for various values o f mhip, on divers y values Finally note that the 
phase plane diagram is for one leg only
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Fig G .l: y  = 0 025, mhip = 0 2

Ul

Fig G.2: y  = 0 025, mhip = 0 08
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Fig G.3: y = O 025 mhip = 1 2
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G.2 Basin of Attraction

The initial values for the state vector are 
B0 = {qx,q 2 ,u l ,u 2} = {0 30 1 5 ,-0  3 0 1 5 ,-0  3763 ,-0  2822} The basm of attraction
indicates how much each o f the four values can be altered by individually and still 
give a fixed point solution These possible mutations are as follows

mhip = 0.4

Original Maximum Minimum Average
difference

Percentage

0 3015 0 32 0  28 ± 0  0 2 * 6  6 %
-0 3763 -0 4 -0 36 ± 0 0 1 5 » 3 9%
-0  2822 -0 45 0 ± 0  2 2 ® 77%

Finally note that for a mhip value o f 1 2 then the qj and q2 angles can be altered from 
0 27 to 0 32 radians
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G.3 Results for mhip = 0.0

G.3.1 Max and Min slope

This set o f results deals with the minimum and maximum slope attainable by the 
body-less, hipmass-less walker. Note that the initial state guess is taken to be 
{0.3015, -0.3015, -0.3763, -0.2822} and the slope range is from 0.0005 to 0.043 
radians, which corresponds to previous published results, and the various values are:

Note: Maximum values are given in bold and min in italics

Slope JlL <72 u, u2
0.0005 0.075262 -0.075262 -0.10977 -0.108068
0.005 0.170507 -0.170507 -0.237502 -0.218184
0 . 0 1 0 0.21709 -0.21709 -0.292437 -0.25407
0 . 0 2 0 0.278032 -0.278032 -0.355112 -0.279307
0.025 0.301571 -0.301571 -0.376368 -0.282189
0.030 0.322498 -0.322498 -0.393858 -0.281540
0.040 0.359002 -0.359002 -0.421196 -0.273343
0.043 0.368913 -0.368913 -0.427929 -0.269614

G.3.2 Eigenvalues

Slope speed totter swing swing
0.0005 0.957501 -0.520021 -0.092922 * 0
0.005 0.79926 -0.484081 -0.105031 « 0
0 . 0 1 0 0.687616 -0.443237 -0.123194 « 0
0 . 0 2 0 0.526698 -0.397183 -0.156886 « 0
0.025 0.462247 -0.398299 -0.167495 * 0
0.030 -0.419282 0.405872 -0.17061 « 0
0.040 -0.517468 0.314626 -0.158651 ~ 0
0.043 -0.559012 0.292647 -0.15272 * 0

G.3.3 Step Length, Period and Velocities

Slope Step Length Step Period Velocity =
Length
Period

0.0005 0.299912 2.7699070 0.10827511
0.005 0.668821 2.790077 0.23971417
0 . 0 1 0 0.841333 2.8014572 0.30031977
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0  0 2 0 1 055694 2 8235438 0 37388971
0 025 1 134231 2 8349733 0 40008524
0 030 1 202390 2 8468138 0 42236341
0 040 1 315765 2 8717991 0 45816749
0.043 1 345361 2 8796142 0 46720182



G.4 Results for mhip = 0.2

G.4.1 Max and Min slope

Slope <n (¡2 U ] u2
0 0005 0 0753826 -0 0753826 -0 111317 -0 091232
0 005 0 171816 -0 171816 -0 242286 - 0  180288
0 025 0 305022 -0 305022 -0 384336 -0210171
0 04 0 363234 -0 363234 -0 4292 -0 183763
0.048 0 389026 -0 389026 -0 445726 -0 164839
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G.5 Results for mhip = 0.4

G.5.1 Max and Min slope

Slope qi R2 Uj « 2
0 0005 0 0752312 -0 0752312 - 0  1 1 2 0 2 1 -0 0825862
0 005 0173445 -0 173445 -0 24629 -0 16124
0 025 0 308686 -0 308686 -0 38977 -0 170418
0 04 0 367128 -0 367128 -0 433815 -0 133593
0.052 0 404767 -0 404767 -0 456631 -0 0980575

G.5.2 Eigenvalues

Slope speed totter swing swing
0 0005 0 975364 0 280297 0 280297 ~ 0
0 005 0 8671 0 273757 0 2 13 15 1 « 0
0 025 0 537091 0 285454 0 285454 « 0
0 04 0 352319 0311417 0311417 * 0
0.052 0 327514 0 327514 0 265992 « 0

G.5.3 Step Length, Period and Velocities

Slope Step Length Step Period Velocity =
Length
Period

0 0005 0 2997906 2 5031640 0119764665
0 005 0 6799490 2 5270688 0 269066279
0 025 1 1577885 2 6079568 0 443944661
0 04 1 3400700 2 6719546 0 501531725
0.052 1 4479315 2 7221394 0 531909387
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G.6 Results for mhip = 0.8

G.6.1 Max and Min slope

Slope qi q2 U] 1*2
0 0005 0 0773091 -0 0773091 -0 116113 -0 075824
0 005 0177204 -0 177204 -0 253079 -0 141855
0 025 0 314512 -0 314512 -0 396331 -0 125782
0 04 0 372531 -0 372531 -0 438615 -0 077983
0.056 0 429037 -0 429037 -0 466206 -0 021889

G.6.2 Eigenvalues

Slope speed totter swing swing
0 0005 0 981897 0 296308 0 296308 « 0
0 005 0 891872 0283191 0283191 « 0
0 025 0 53887 0 287592 0 287592 « 0
0 04 0 353086 0 309621 0 309621 « 0
0.056 -0 542341 0 251882 -0 191078 * 0

G.6.3 Step Length, Period and Velocities

Slope Step Length Step Period Velocity =
Length
Period

0 0005 03080057 2 4144430 0 127568014
0 005 0 6940704 2 4470927 0 283630611
0 025 1 1767116 2 5589101 0 459848745
0 04 1 3560347 2 6334398 0 514929067
0.056 1 5131691 2 7781639 0 544665165
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G. 7 Results for mhip = 1.2

G.7.1 Max and Min slope

Slope <u Q2 U i « 2
0 0005 N/A N/A N/A N/A
0 004 0167281 -0 167281 -0 241439 -0 127301
0 005 0180855 -0 180855 -0 25859 -0 131708
0 025 0 31832 -0 31832 -0 399955 -0 100985
0 04 0 37577 -0 37577 -0 440996 -0 0478034
0.058 0 429081 -0 429081 -0 470442 0 0197021

G.7.2 Eigenvalues

Slope speed totter swing swing
0 0005 N/A N/A N/A N/A
0 004 0 918128 0 288104 0 288104 « 0
0 005 0 900238 0 285847 0 285847 « 0
0 025 0 531771 0 287683 0 287683 « 0
0 04 0 351469 0 306511 0 306511 « 0
0 058 -0 742184 0 246388 -0 133312 « 0

G.7.3 Step Length, Period and Velocities

Slope Step Length Step Period Velocity =
Length
Period

0 0005 N/A N/A N/A
0 005 0 7077482 2 4133982 0 293257946
0 025 1 1889940 2 5416899 0 467796641
0 04 1 3655295 2 6201817 0 521158322
0.058 1 5132842 2 7055385 0 559328281
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G.8 Results for mhip = 1.6

G.8.1 Max and Min slope

Slope <n (¡2 Uj « 2
0 0005 N/A N/A N/A N/A
0 004 0170311 -0 170311 -0 245814 -0 121734
0 025 0 32087 -0 32087 -0 402197 -0 0851974
0 04 0 377863 -0 377863 -0 442398 - 0  0288882
0.058 0 430805 -0 430805 -0 471316 0 0411057

G.8.2 Eigenvalues

Slope speed totter swing swing
0 0005 N/A N/A N/A N/A
0 004 0 921018 0 289166 0 289166 « 0
0 025 0 525414 0 287315 0 287315 « 0
0 04 0 350121 0 303839 0 303839 « 0
0 058 - 0  818211 0 248165 -0 116589 « 0
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G.9 Effect of varying the legs centre of mass position

All results are based on y = 0 025 radians

mhip = 0.0

comleg <7/ Q2 Ui « 2
Crashes before t us value for comleg
0.56 0 277749 -0 277749 -0 391155 -0 307288
eigenvalues -0 798382 0 53773 -0 0948024 « 0
0 645 0 301571 -0 301571 -0 376368 -0 282189
eigenvalues 0 462247 -0 398299 -0 167495 * 0
0.067 0 308731 -0 308731 -0 372087 -0 276276
eigenvalues 0 424337 -0 314878 -0 195367 * 0
Only unstable solutions exist after this value

mhip = 0.4

comleg Hi (¡2 U ] « 2
Crashes before t us value for comleg
0.59 0 292008 -0 292008 -0 397874 -0 200875
eigenvalues 0 601379 0 300718 0 300718 » 0
0 645 0 308686 -0 308686 -0 38977 -0 170418
eigenvalues 0 537091 0 285454 0 285454 « 0
0.70 0 325127 -0 325127 -0 381431 -0 143181
eigenvalues 0 449546 0 263785 0 263785 ~ 0
Only unstable solutions exist after this value

mhip = 0.8

comleg 9i (¡2 «/ « 2
Crashes before t us value for comleg
0.06 0 300216 -0 300216 -0 402682 -0 155974
eigenvalues 0 604919 0 271268 0 271268 « 0
0 645 0 314512 -0 314512 -0 396331 -0 125782
eigenvalues 0 353086 0 309621 0 309621 « 0
0.069 0 328305 -0 328305 -0 389756 -0 098244
eigenvalues 0 459957 0 300466 0 300466 ~ 0
Only unstable solutions exist after this value
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G.10 Effects of varying R

If  R is at zero then the creature is similar to a point-footed model and the creature 
needs a rather steep slope At R = 1 we have a synthetic wheel rolling on a level 
ground 1 e slope is 0 Results gathered for various values o f R are now given 
Note that where necessary the y value changes (1 e at large and small R values) and 
this is also highlighted

mhip is 0.4 and initially = 0.025

R qi <12 U ] u2
0  1
y = 0 035

0 269148 - 0  269148 -0 353544 -0 129867

0 366008 0 366008 0 267224 « 0
0 2 0 270485 -0 270485 -0 356631 -0 15801

0 440723 0 311663 0 311663 « 0
0 3 0 301571 -0 301571 -0 376368 -0 282189

0 537091 0 285454 0 285454 « 0
0 4 0 359682 -0 359682 -0 431959 -0 184419

0 634328 0 261995 0 261995 » 0
0 6 0 375468 -0 375468 -0 427439 -0 238985

0 867302 0 242081 0 242081 * 0
0 7
y = 0  0 0 1

0  2 1 0 2 2 - 0  2 1 0 2 2 -0 242615 - 0  17222

0 971823 -0 492455 -0 140326 « 0

mhip is 0.8 and initially = 0.025

R <7/ <12 U] « 2
0 2 0 274961 -0 274961 -0 361261 -0 115642

0 439079 0 313502 0 313502 « 0
0 3 0 314512 -0 314512 -0 396331 -0 125782

0 53887 0 287592 0 287592 * 0
0 4 0 366941 -0 366941 -0 441002 -0 13739

0 649096 0 263418 0 263418 « 0
0 6
y = 0  0 0 1

0162229 -0 162229 -0 204301 -0 12943

0 969924 0 288947 0 288947 « 0
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G.11 Effect of adding in a damper

Note that damper doesn’t work on a creature with no hip mass - a slight damper 
coefficient tended to destroy the limit cycle and thus give no solution

A Quadratic damper is administered with applied torque o f Ffric (u2 -  m, ) 2

mhip = 0.4

Ffric Y 91 92 Uj « 2
- 0  0 0 1 0 053 0 406592 -0 406592 -0 458499 -0 0974121

0 328889 0 328889 0 261396 « 0
-0 005 0 054 0 404075 -0 404075 -0 461585 - 0  106188

0 337496 0 337496 0 254777 * 0
-0 005 0 055 0 40702 -0 40702 -0 463183 -0 103013

0 339252 0 330252 0 248098 « 0
- 0  008 0 056 0 403 -0 403 -0 466745 -0 11422

0 407078 -0 407078 0184229 * 0
- 0  008 0.06 0 415236 -0 415236 -0 472814 -0 100185

0 399425 0 399425 017696 « 0

mhip = 0.8

Ffric Y 9i 92 u, u2
- 0  008 0 058 0 420472 -0 420472 -0 471493 -0 0302886

0 334499 0 334499 0 235099 « 0
0  062 0431414 -0 431414 -0 476747 -0 0156495

0 336215 0 336215 0 217427 « 0
- 0  0 1 2 0.065 0 435402 -0 435402 -0 482552 -0 0148927

0 364051 0 364051 0183449 « 0

mhip = 1.2

Ffric r qi 92 «/ « 2
-0 015 0  062 0 431466 -0 431466 -0 479804 0 011745

0 341678 0 341678 0 207332 « 0
-0 015 0 064 0 436833 -0 436833 -0 482208 0 0196097

0 341111 0 341111 0 200562 » 0
- 0  0 2 0.068 0 443128 -0 443128 -0 489323 0 0241565

0 386533 -0 386533 0152497 ~ 0
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Appendix H:

Bodied creature results

H. 1 Limit Cycles - Unstable creature

UNSTABLE RESULTS

Initially unstable solutions were encountered, but these were not desirable As they 
were undesirable solutions, only one example is included here The parameters for 
this solution are as follows

mbody = 0 8 , mhip =1, combody =0 7, Ibody =0 8  and r = (0 003, 0 02, 0 003)

slope qi <12 (¡3 «/ u2 Hj
0 0007 0 0617144 -0 0617144 0 0027611 -0 0830726 -0 0560537 -0 00154928
0 001 0 0716057 -0 0716057 0 0037038 -0 0968041 -0 0653969 -0 00203824
001 0221512 -0 221512 -0 0067466 -0 266008 -0 124314 0 0107297
0 03 0301618 -0 301618 0 0087996 -0 375297 -0 149613 0 00982882
0 04 0 33431 -0 33431 0 0090379 -0 409796 -0 137195 0 0148455
0 45 0 348545 -0 348545 0 0092159 -0 424534 -0 129626 0 0172924
Eigen
values

ÀI X2 X3 X4 A6

0 0007 464345 1 71251 0 662563 0169514 -0 00007 = 0
0 001 4 5159 1 23109 0 86754 0 0904947 -0 000078 = 0
001 5 81933 0 435251 0 435251 0 342155 -0 00008 = 0
0 03 3 90528 3 15237 0 520259 0 0643784 -0 00007 = 0
0 04 3 94581 3 4856 0 484671 0 0560412 -0 00007 = 0
0 45 412756 3 49796 0 470406 0 0525742 -0 00007 = 0

u2
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H.2 Body-less vs. Bodied

As a means o f testing the code written for the bodied creature, a comparison was 
made between a bodied creature with minute parameters and a body-less one Both 
creatures have mhip = 0 4  and are on y  = 0 025 radians The parameters for the 
bodied creature are all approximately 0

This the limit cycle for the body-less creature 

u2

This is the limit cycle for the bodied creature 

u2

)
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H.3 Basin of Attraction

Initial values are
6>0 = {qx,q2 ,q^,ux,u2 ,uz} = {0 3 0 1 5 ,-0  3 0 1 5 ,0 ,-0  3 7 6 3 ,-0  2822,0} There is no 
variation between no hip mass and one o f 0 4 Now for each variable the max and mm 
value are

mhip = 1.5, mbody = 1.0

Original Maximum Minimum Average
difference

Percentage

0 3015 0 36 0 29 ± 0  035 » 8 6 %
0
-0 3763 -0 39 -0 33 + 0 03 » 1 2  5 %
-0  2822 -0 5 0  1 ± 0 3 * 94 %
0

mhip = 0.8, mbody = 0.4

Original Maximum Minimum Average
difference

Percentage

0 3015 0 34 0  28 ± 0  03 * 1 0 %
0
-0 3763 -0 4 -0 34 ± 0  03 W 12 5 %
-0  2822 -0 5 0  1 ± 0 3 * 94%
0
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H.4 Results for bodied creature - stable

H.4.1 mbody = 1.0, mhip = 1.5

lbody - 0.8, combody = 0.795, damp = 0.55, Frac= 5
t states = {small = 0 00008,1 arge = 0 0009}.

Ri q2 <13 «/ «2 « i
0 0005 0 0732531 -0 0732531 0 080648 -0 105581 -0 0691833 0 0004858
0 001 0 0939995 -0 093995 0 0802105 -0 133665 -0 0841465 0 0001813
0 005 0162181 -0 162181 0 07952 -0 222382 -0 120715 0 0006229
0 01 0 2058 -0 2058 0 0784453 -0 272871 -0 126115 0 00126436
0 025 0 283795 -0 283795 0 0762199 -0 348054 -0 0943815 0 00313797
0 03 0 302953 -0 302953 0 0759478 -0 363439 -0 0784396 0 00373738
0 04 0 33631 -0 33631 0 0761449 -0 387401 -0 0434981 0 00489863
0 043 0 345367 -0 345367 0 0763266 -0 393305 -0 032517 0 0052378

Eigenvalue A] X2 A? À4 a 5
0 0005 1 00399 0 934877 0 709489 0 276596 -0 00001 = 0
0 001 1 00406 0 870775 0 643534 0 279627 -0 00001 = 0
0 005 1 00406 0 756813 0 756813 0 225386 -0 00001 = 0
001 1 00407 0 740568 0 740568 0 200875 -0 00001 = 0
0 025 1 00411 0 690446 0 690446 0 159779 -0 00001 = 0
0 03 1 00413 0 67654 0 67654 014968 -0 00001 = 0
0 04 1 00416 0 651676 0 651676 013227 -0 00001 = 0
0 043 1 00417 0 644786 0 644786 0 127619 -0 00001 = 0

slope step period length Velocity
0 0005 2 2650957353 0 29196531 01288975
0 001 2 2911910094 0 37378705 01631409
0 005 2 3117506184 0 63740823 0 2757253
001 2 3353536755 0 80015242 0 3426257
0 025 2 4007477684 1 07520300 0 4478617
0 03 2 4211080232 1 13901405 0 4704515
0 04 2 4604336279 1 24607493 0 5064452
0 043 2 4719707128 1 27420621 0 5154616
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H.4.2 mbody = 0.8, mhip = 1.0

damp = 0.39, Frac= 5, lbody = 0.8, combody = 0.795.
t states = {small = 0 00005,1 arge = 0 0005}

92 Ul «2 «J
0 0005 0 0739573 -0 0739573 0 0629932 -0 10524 -0 0721221 0 0004
0 001 0 0940243 -0 0940243 0 062665 -0 132227 -0 087613 0 0001667
001 0 205645 -0 205645 0 0614322 -0 270616 -0 136102 0 00118242
0 025 0 28356 -0 28356 0 0597739 -0 346021 -0 110307 0 00297124
0 04 0 336056 -0 336056 0 0599388 -0 385662 -0 0634686 0 00467344

Eigenvalue Aj A2 A, a 4 As A6
0 0005 1 00459 0 891317 0 713645 0 275695 -0 00001 = 0
0 001 1 00465 0 830715 0 668302 0 273414 -0 00001 = 0
0 01 1 00468 0 712002 0 712002 0151918 -0 00001 = 0
0 025 1 00472 0 673993 0 673993 0126536 -0 00001 = 0
0 04 1 00464 0 756596 0 75696 0 191054 -0 00001 = 0

slope step period length Velocity
0 0005 2 3057505310 0 29475165 0127833278
0 001 2 327261659 0 37388455 0160654263
0 01 2 3622067996 0 79958416 0 338490331
0 025 2 4215065021 1 07441027 0 443694979
0 04 2 4780760816 1 24528006 0 502518898

u2
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u3
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damp = 0.39, Frac= 5, lbody = 0.8, combody = 0.795.
r states = {small = 0 00005, / arge = 0 0003}

H.4.3 mbody = 0.4, mhip = 1.0

Hi q2 Ul U2 U3
0 0008 0 0873017 -0 0873017 0 0500665 -0 130485 -0 0872932 0 00025708
0 005 0163876 -0 163876 0 0490164 -0 235228 -0 136209 0 00062824
001 0 208629 -0 208629 0 0474583 -0 28909 -0 144412 0 00128692
0 025 0 288673 -0 288673 0 0436584 -0 368168 -0 11355 0 00326011
0 04 0 342181 -0 342181 0 0423192 -0 408314 -0 0609854 0 00511136
0 045 0 357288 -0 357288 0 0424135 -0 417904 -0 0419738 0 0056998
0 06 0 397601 -0 397601 0 0441499 -0 440095 0 0166736 0 00738824

Eigenvalue Ay X2 X3 X4 A-60 0008 1 00295 0 966749 0 403191 0 403191 -0 00001 = 0
0 005 1 00295 0 799045 0 399281 0 399281 -0 000001 = 0
0 01 1 00295 0 566881 0 440263 0 440263 -0 00001 = 0
0 025 1 00298 0 560751 0 560751 0 242892 -0 00001 0̂
0 04 1 00301 0 553457 0 553457 0184287 -0 00001 = 0
0 045 1 00302 0 548016 0 548016 0171176 -0 00001 = 0
0 06 1 00306 0 528229 0 528229 0140815 -0 00001 = 0

slope step period length Velocity
0 0005 2 261732610 0 3474351627 0 15361460553
0 005 2 279620999 0 6438310164 0 28242897248
0 01 2 301328022 0 8105104668 0 35219249887
0 025 2 367861499 1 0916040749 0 46100841428
0 04 2 430688604 1 2643576068 0 52016436984
0 045 2 450916405 1 3105943964 0 53473647396
0 06 2 509863499 1 4280100957 0 56895926664

Ul
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H 4 4 mbody = 0 4, mhip = 08

damp = , Frac= 5, lbody = 0.1 com = 0.095
r states = {small = 0 00002, 1 arge = 0 0002}

92 93 u , u2 «3
0  0006 0 0778613 -0 0778613 0 0502617 -0 115391 -0 0806356 0 0003386
0 001 0 0942551 -0 0942551 0 050072 -0 13863 -0 0947573 0 0001783
001 0 207839 -0 207839 0 0482123 -0 285069 -0 149873 0 0012138
0 025 0 287522 -0 287522 0 0452662 -0 363961 -0 123864 0 0030943
0 04 0 340931 -0 340931 0 0443998 -0 404379 -0 0747838 0 0048811
0 055 0 383591 -0 383591 0 0456764 -0 429943 -0 0194907 0 0065592

Eigenvalue Xj &2 X} X4 Xs Xi
0 0006 1 00404 0 980972 0 409205 0 409205 -0 0001 = 0
0 001 1 00407 0 941525 0 399171 0 399171 -0 0001 s o
001 1 00406 0 53232 0 53232 0 385078 -0 0001 = 0
0 025 1 00408 0 594693 0 594693 0 217646 -0 0001 = 0
0 04 1 00413 0581812 0 581812 0169606 -0 0001 = 0
0 055 1 00417 0 561825 0 561825 0139369 -0 0001 = 0

slope step period length Velocity
0 0006 2 284634911 0 3101879921 01357713617
0 001 2 293852043 0 3747913920 01633895233
001 2 325821714 0 8076205730 0 3472409635
0 025 2 386921268 1 0877434292 0 4557098065
0 04 2 446703529 1 2604795471 0 5517461439
0 055 2 504432417 1 3882188099 0 5543047600
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H.4.5 mbody = 0.2, mhip = 0.8

damp = 0.22, Frac= 5, Ibody =0.1 combody = 0.095.
rstates = {small = 0 00001,1arge = 0 0001}

Hi <12 qj «/ u2 «J
0 0007 0 0821395 -0 0821395 0 0501706 -0 126733 -0 0880368 0 0007518
0 001 0 0941341 -0 0941341 0 0500382 -0 14446 -0 0988131 0 00034861
001 0 209401 -0 209401 0 0474405 -0 298216 -0 156367 0 00129217
0 025 0 290784 -0 290784 0 0430628 -0 379984 -0 126879 0 0033278
0 04 0 345019 -0 345019 00411814 -0 420769 -0 0735953 0 0052468
0 06 0 400898 -0 400898 0 042569 -0 452363 0 00528144 0 0075980
0 07 0 424867 -0 424867 0 0446988 -0 463066 0 0453224 0 0086966

Eigenvalue Xi X2 Xj X4 Xs
0 0007 1 00199 0 984819 0 39847 0 39847 -0 0001 SO
0 001 1 002 0 967022 0 39338 0 39338 -0 0001 = 0
001 1 002 0 724261 0 389101 0 389101 -0 00009 SO
0 025 1 00202 0 465806 0 465806 0 35324 -0 0001 s o
0 04 1 00204 0 492255 0 492255 0 23423 -0 0001 sO
0 06 1 00207 0 482722 0 482722 0170188 -0 0001 s o
0 07 1 00209 0471818 0 471818 0 150138 -0 0001 sO

slope step period length Velocity
0 0007 2 242348709 0 3270821614 0145865877
0 001 2 247302146 0 3743159553 0166562362
001 2 281866721 0 8133325603 0 356432982
0 025 2 348415539 1 0986696719 0 467834441
0 04 2 412943795 1 2731329782 0 527626453
0 06 2 494759878 1 4372124370 0 576092492
0 07 2 534482328 1 5022096460 0 592708668
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H 4 6 mbody = 0.2, mhip = 0.4

damp = 0.22, Frac= 5, lbody = 0.1 combody = 0.095
r states = {small = 0 00001, / arge = 0 0001}

Hi <¡2 <¡3 Ul «2
0 0006 0 0774912 -0 0774912 0 0502639 -0 116283 -0 0894548 0 00109891
0 001 0 0940019 -0 0940019 0 0501563 -0 140062 -0 105833 0 00034438
001 0 207599 -0 207599 0 0493676 -0 289011 -0 176563 0 00114208
0 025 0 287975 -0 287975 0 0475515 -0 370686 -0 162563 0 00296023
0 04 0 342044 -0 342044 0 0471085 -0 412598 -0 120271 0 00474351
0 06 0 298029 -0 298029 0 0494079 -0 445566 -0 0518869 0 00699127

Eigenvalue A] A2 As A4 As
0 0007 1 00206 0 988903 0 3919 0 39847 -0 00010 = 0
0 001 1 00209 0 944972 0 380886 0 380886 -0 0001 = 0
001 1 00207 0631141 0 407733 0 407733 -0 0001 = 0
0 025 1 00207 0 532047 0 532047 0 272277 -0 0001 = 0
0 04 1 00209 0 550366 0 550366 0194262 -0 0001 = 0
0 06 1 00211 0 539927 0 539927 0 14573 -0 0001 = 0

slope step period length Velocity
0 0006 0 3087254205
0 001 2 3370165 0 3737964862 0 15994601
0 01 2 3570127 0 8067422310 0 34227317
0 025 2 4056726 1 0892635556 0 45278960
0 04 2 4598844 1 2639329566 0 51381803
0 06 2 5328199 1 4292082130 0 56427549

u2
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H.5. Varying Centre of mass

This section outlines the effect o f varying combody on the solution process Once
again it is broken up into two sections stable and unstable, where unstable solutions
allow much variation and stable ones do not

Unstable

Paramters: mbody = 0.8, mhip =1
combody =0.7, lbody =0.8 and x states {small = 0.003, large = 0.02} on = 0.025

combody 9i 92 93 Ul «2
0 55 0 275166 -0 275166 0 00546444 -0 342053 -0 161562 001681355
V s 13 7286 4 27536 0 536872 0 0745697 -0 00008 = 0
0 6 0 278483 -0 278483 0 0067958 -0 346876 -0 15866 0 0132771
V s 9 54331 3 69205 0 536617 0 0720775 -0 00008 = 0
0 7 0 282361 -0 282361 0 00871669 -0 35448 -0 153748 0 00727246
Vs 3 96888 2 90849 0 542962 0 0695022 -0 00007 = 0
0 795 0 283357 -0 283357 0 0104471 -0 359796 -0 150245 0 0004434
V s 2 45145 1 10343 0 551493 0 0678219 = 0 = 0
0 797 0 28335 -0 28335 0 0104869 -0 359887 -0 150184 0 0002674
V s 2 44335 1 0616 0 55168 0 0677896 = 0 = 0

Stable

Parameters: mbody = 0.2, mhip = 0.4
damp = 0.22, Frac= 5, lbody = 0.1 com = 0.095
t states {small = 0.00001, large = 0.0001}, on = 0.025

combody 9i 92 93 Ul «2
0 09 0 288068 -0 288068 0 0215296 -0 370461 -0 162407 0 0058998
V s 1 00416 0 531239 0 531239 0 273064 -0 00009 = 0
0 093 0 288013 -0 288013 0 0326807 -0 370597 -0 1625 0 00413606
V s 1 00291 0531716 0531716 0 272591 -0 0001 = 0
0 095 0 287975 -0 287975 0 0475515 -0 370686 -0 162563 0 00296023
V s 1 00207 0 532047 0 532047 0 272277 -0 0001 = 0
0 097 0 287935 -0 287935 0 0822982 -0 370774 -0 162627 0 0017831
Vs 1 00124 0 532353 0 532353 0 271964 -0 0001 = 0
0 099 0 287893 -0 287893 0 25852 -0 370862 -0 162693 0 0005
Vs 1 0004 0 532674 0 532674 0 271642 -0 0001 sO

Parameters: mhip = 1.5, mbody = 1.0
lbody = 0.8, combody = 0.795, damp = 0.55, Frac= 5.
t states {small = 0.00008, large = 0.0009}, on = 0.025

combody 9i 92 93 u2 Ui
0 797 0 283719 -0 283719 0 131882 -0 348172 -0 094408 0 0018901
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V s 1 00245 0 691179 0 691179 0 159356 -0 00001 = 0
0 795 0 283795 -0 283795 0 0762199 -0 348054 -0 0943815 0 00313797
V s 1 00411 0 690446 0 690446 0159779 -0 00001 = 0
0 793 0 283867 -0 283867 0 0524644 -0 347933 -0 094357 0 00438008
V s 1 00577 0 689713 0 689713 0 160203 -0 00001 = 0
0 79 0 283969 -0 283969 0 0346825 -0 347749 -0 0943236 0 00623843
V s 1 00827 0 688606 0 688606 0160844 = 0 = 0
0 75 0 284636 -0 284636 0 00147668 -0 344857 -0 0942744 0 0309918
V s 1 04285 0 676311 0 676311 0170046 = 0 sO
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H 6. Effect of varying mbody

mhip = 1.5, mbody = 1.0,
lbody = 0.8, combody = 0.795, damp = 0.55, Frac= 5
t  sta tes  =  {sm all = 0 00008, / arge  =  0 0009}.

mbody Qi Q2 q3 U1 «2 u3
0 4 0 29134 -0 29134 0198439 -0 375901 -0 095529 -0 00005
V* 1 00264 0 513655 0 513655 0 277827 0 00009 = 0
0 7 0 287131 -0 287131 0 110182 -0 360442 -0 0950866 0 00334149
Vs 1 00284 0 610819 0 610819 0 202481 -0 00001 = 0
1 0 0 283795 -0 283795 0 0762199 -0 348054 -0 0943815 0 00313797
Vs 1 00411 0 690446 0 690446 0159779 -0 00001 = 0
1 2 0 281921 -0 281921 0 0633571 -0 341073 -0 0938582 0 0030274
Vs 1 00496 0 731726 0 731726 0 142845 -0 00001 = 0
unstable then until 1 6 when no solutions begin to exist

mhip = 1.0, mbody = 0.4,
damp = 0.39, Frac= 5, lbody = 0.8, combody = 0.795.
t states = {small = 0 00005, / arge = 0 0003}

mbody <ii <12 93 «/ «2 u3
0 3 0 290297 -0 290297 0 0600032 -0 375222 -0 114438 0 00337426
Vs 1 00222 0 504217 0 504217 0 299433 -0 00001 = 0
0 6 0 285882 -0 285882 0 0280669 -0 356052 -0 111855 0 00307297
Vs 1 00451 0 647992 0 647992 0 182785 -0 00001 = 0
0 8 0 286776 -0 286776 0 0312723 -0 360719 -0 158734 0 00284804
Vs 1 00605 0 711942 0 711942 0 151935 -0 00001 = 0

No solutions begin to exist after this

mhip = 0.4, mbody = 0.2,
damp -  0.22, Frac= 5, lbody = 0.1 com = 0.095
t states {small = 0.00001, large = 0.0001}, on = 0.025

m b o d y ? / ?2 <13 « / « 2 u<
No solutions exist for m b o d y  lower than 0 2
0 3 0 286776 -0 286776 0 0312723 -0 360719 -0 158734 0 00284804
Vs 1 00314 0 615799 0 615799 0 202611 -0 0001 = 0
0 35 0 28622 -0 28622 0 0267937 -0 356316 -0 157047 0 00279888
Vs 1 00368 0 64938 0 64938 0 181939 -0 0001 = 0
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H. 7 Hip Damper

A Q uadratic dam per is used with applied torque o f Ffric (u2 -  w, ) 2

H.7.1 mbody = 0.4, mhip = 1.0

Same param eters as H.4.3.

This table gives the effect o f various Ffric values on slope = 0.065 where the Ffric 
values that gave the best results are shown.

Ffric <// 92 «/ «2 Wj
-0.008 0.403418 -0.403418 0.0543739 -0.469985 -0.0137412 0.00634116

-0.012 0.407565 -0.407565 0.0495499 -0.457063 0.0122486 0.0071346

-0.018 0.408641 -0.408641 0.047823 -0.452929 0.0218136 0.00744112

Eigenvalues

Ffric A, ¿2 Aj a 4 As A-6
-0.008 1.00274 0.756131 0.756131 0.0786171 -0.00001 = 0

-0.012 1.00291 0.611246 0.611246 0.103464 -0.00001 = 0

-0.018 1.00297 0.568417 0.568417 0.115422 -0.00001 = 0

Ffric step period length Velocity
-0.008 2.45625196 1.458577708 0.593821729
-0.012 2.41267131 1.455629510 0.603326903
-0.018 2.28896185 1.444203959 0.630942782

M axim um slopes attainable

Ffric i l 92 9s M; «2 «j
-0.012 0.419505 -0.419505 0.0503852 -0.462592 0.0329884 0.00768644
y = 0.07

-0.018 0.423758 -0.423758 0.0541803 -0.475091 0.0261558 0.00741166
y = 0.073

Ffric Ai A2 Aj Aj X,
-0.012 1.00292 0.5942 0.5942 0.0994319 -0.00001 = 0
y = 0.07
-0.018 1.0028 0.682079 0.682079 0.0782041 -0.00001 sO
y = 0.073
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This diagram shows the Limit Cycles on y = 0 065
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H.7 2 mbody = 0.8, mhip = 1.0

Same parameters as H.4.2.

This table gives the effect o f various Ffric values on slope = 0.045 where the Ffric 
values that gave the best results are shown

Ffric 9i 92 93 «/ «2 «i
-0 008 0 351355 -0 351355 0 0631716 -0 403639 -0 0590579 0 00480934

-0 012 0351146 -0 351146 0 0653776 -0 409957 -0 0691161 0 00449811

Eigenvalues

Ffric X] X2 Xj X4 Xs
-0 008 1 00458 0 724368 0 724368 0104909 -0 00001 = 0

-0 012 1 00446 0 785412 0 785412 0 0946992 -0 00001 = 0

Ffric step period length Velocity
-0 008 2 4225913267 1 2925760828 0 5335510238
-0 012 2 3663344714 1 2919380237 0 5459659398

Maximum slopes attainable

Ffric 9 l 9 2 93 u l u2 u3
-0 008 0 357066 -0 357066 0 0633256 -0 407093 -0 0518172 0 0050292
y = 0 047

-0 012 0 367983 -0 367983 0 0655578 -0 419202 -0 0459992 0 00518607
y = 0 051

Ffric Xj x 2 X3 X4 X5 Xó
-0 008 1 00459 0 716684 0 716684 0103059 -0 00001 = 0
y = 0 047
-0 012 1 0045 0 750494 0 750494 0 091013 -0 00001 = 0
y = 0 051
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This diagram shows the Limit Cycles on y = 0 045
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H.7.3 mbody = 0.4, mhip = 0 8

Same parameters as H.4.4.

This table gives the effect o f various Ffnc  values on slope/A = 0.06 where the Ffric 
values that gave the best results are shown

Ffnc qi 92 93 Ul «2 «3
-0 003 0 373504 -0 373504 0 0733276 -0 487863 -0 118508 0 003575

3 44766 1 00326 0 491696 0 0655008 -0 00001 = 0

-0 008 0 395018 -0 395018 0 0499126 -0 445407 -0 0180766 0 0065185
1 00402 0621116 0621116 0110058 -0 00001 = 0

M  = 0.062

F fn c 9i 92 93 «/ «2 »3-0 008 0 400022 -0 400022 0 0501982 -0 447795 -0 0102048 0 0067368
1 00402 0 615099 0 615099 0108142 -0 00001 = 0

M  = 0.065

F fn c 9i 92 93 Ul «2 u3
-0 012 0 405943 -0 405943 0 0529754 -0 457614 -0 0108365 0 00666508

1 00392 0 667797 0 667797 0 0917404 -0 00001 =  0
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H.8 Applied Torque

mbody = 1, mhip = 1 5 Torque mbody = 0 8  mhtp =1 0 Torque
0 0005 -0 0250161 0 0005 -0 0158356
0 001 -0 0204931 0 001 -0 0139283
0 005 -0 0204931 0 01 -0 0135017
001 -0 021497 0 025 -0 0157188
0 025 -0 0289354 0 04 -0 0180096
0 043 -0 0289354

mbody = 0 4 mhip = 1 Torque mbody = 0 4  mhip =0 8 Torque
0 0008 -0 00578143 0 0006 -0 00615093
0 005 -0 00549235 0 001 -0 00552428
0 01 -0 00611214 001 -0 00557509
0 025 -0 00833589 0 025 -0 00695179
0 04 -0 0105034 0 04 -0 00833714
0 06 -0 0132937 0 055 -0 00966618

mbody = 02 mhip = 0 8 Torque Torque
0 0007 -0 00422771
0 001 -0 00327594
0 025 -0 00759446
0 04 -0 0106775
0 07 -0 016279
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H.9 Varying Radius of gyration

mhip = 1.5, mbody = 1.0 

Parameters:
lbody = 0.8, combody = 0.795, damp = 0.55, Frac= 5, = 0.025.
t states = {small = 0 00008, / arge -  0 0009}.

radius gyr <li <¡2 9s u. u2 Ui
bod = 0 121 0 283795 -0 283795 0 0762199 -0 348054 -0 0943815 0 00313797
Vs 1 00411 0 690446 0 690446 0159779 -0 00001 = 0
bod = 0 09 0 283791 -0 283791 0 0762169 -0 348051 -0 0943829 0 0042597

Vs 1 00413 0 690442 0 690442 0159781 -0 00001 = 0
bod = 0 05 0 283669 -0 283669 0 0718488 -0 348274 -0 0944591 0 246121
Vs 1 00402 0 764968 0 764968 0 164953 = 0 = 0

radius gyr <li <12 <13 «/ «2 «J
leg = 0 1 0 291521 -0 291521 0 0773395 -0 349971 -0 0919796 0 00313335
Vs 1 00425 0 63606 0 63606 0160012 -0 00001 =  0

leg = 0 09 0 283791 -0 283791 0 0762169 -0 348051 -0 0943829 0 0042597
Vs 1 00413 0 690442 0 690442 0159781 -0 00001 =  0

leg = 0 04 0 239549 -0 239549 0 0699325 -0 341002 -0 117388 0 00303788
Vs 1 00335 0 970099 0 970099 0197147 -0 00001 = 0
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H.10 Complex Controller

On slope y = 0 025

mhip = 15 mbodv = 10

qi q2 q3 Ul «2 u3

0 283787 -0 283787 -0 0899587 -0 348033 -0 0943614 0 00305087
1 00409 0 690225 0 690225 0159846 -0 00001 = 0

mhip = 10 mbodv = 08

qi q2 qs Ul «2 u3
0 283553 -0 283553 -0 0699312 -0 346004 -0 11029 0 00290952
1 00466 071182 071182 0 151968 -0 00001 = 0

mhip = 10 mbodv = 04

qi ?2 qs Ul u2 u3
0 288672 -0 288672 -0 0604298 -0 368161 -0 113541 0 00319901
1 00297 0 560653 0 560653 0 242955 -0 00001 = 0

mhip = 08  mbodv = 04

qi q2 qs Ul «2 Us
0 28752 -0 28752 -0 0587354 -0 363954 -0 123854 0 00304068
1 00407 0 594581 0 594581 0 217706 -0 00001 = 0

mhip = 08  mbodv = 02

qi Ì2 qs U] «2 Us
0 290784 -0 290784 -0 0611985 -0 37998 -0 126872 0 00326162
1 00201 0 465768 0 465768 0 353277 -0 00001 = 0

mhip = 04 mbodv = 02
I

qi 92 1 qs Ul «2 u}
0 287974 -0 287974 -0 0564755 -0 370681 -0 162555 0 00290384
1 00207 0 531955 0 531955 0 272335 -0 00001 =  0

1

I
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Appendix I:

Mechanical Energy

Body-less:

Potential Energy

P E  = m x g x h  and the total P E  for the creature is

P E  = M  x g  x height o f  swiCOM above ground +

M  x g x  height o f  sta COM above ground 4-

Mhip x g x  height o f  hip COM above ground

Kinetic Energy

Since the creature is similar to that o f a rolling wheel, the total kinetic energy is 
composed o f two parts, the kinetic energy o f the translation o f the centre o f mass, and 
the kinetic energy o f rotation about the centre o f mass This gives that the kinetic 
energy is given by K  E = (0  5  x  M  x v 2)  + (0 5x11 x  co2) and thus is

K E  = 0  5  x M  x || vCOMswi ||2 +

0 5 x M  x || vCOMsta ||2 +

0 5 x Mhipx  || vC0Mhip \\2 +

0  5  x Ilsta x || w, ||2 + 0  5  x Ilswi x || u 2 \\2

B odied:

Potential Energy

P E  = M  x g x  height o f  swi COM above ground +
M  x g x  height o f  sta COM above ground +

Mhip x g x  height o f  hip COM above ground +

Mbodyx g  x height o f  bodyCOM above ground
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Kinetic Energy

K  E  = 0 5 x M  x || vCOMswi ||2 +

0 5 x M  x || v COMsta ||2 +

0 5 x Mhip x || vC0Mhip ||2 +

0 5 x M body x || vCOMbody ||2 +

0 5 x Ilsta x || w, ||2 + 0 5 x Ilswi x || u2 \\2 +  0 5 x Inertiabody x


