Stability And Efficiency Of Passive Dynamic Walker With Torso And Simple Controller

Submitted by Alan Egan for the award of PhD

Dublin City University

Supervisor: Dr Mıchael Scott

> School of Computer Applications

February 2001

1 hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of PhD of Computer Applications is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within text of my work.

Abstract

Passive dynamic walkers are a body of robots, both simulated and real-world, that can "walk" down a slightly inclined plane powered only by gravity and eventually acquire a stable periodic gait Of particular interest is the fact that the motion appears "humanlıke" Performance indicators such as efficiency, step penod etc are also commendable Common to all previously modelled creatures is that a hip mass is utilised to represent a torso - an omission that is tackled here

An upper body, represented as an inverted pendulum, is added to a passive creature To keep the body in an upright position, a simple controller applies a varying torque as necessary Periodic gats are achievable, both stable and unstable, where stability is contrived through the addition of a damper Performance indicators are as good as those of the body-less creatures indicatıng that the torso is not a hindrance Finally the addition of further dampers at the hip joint can improve performance

Acknowledgements

Throughout the four years it took to complete this body of work many people provided endless amounts of support and encouragement - all that was necessary to complement the academic work and make it bearable It is here that I wish to thank all - there are too many names to mention so I will just say "Thank you famıly (brother, sisters, niece, cousins, aunts, uncles) and friends (both in college and outside)'"

Special words of thanks go particularly to my parents, Brendan and Angela and grandparents Michael and Mary - who instilled in me the confidence to never give up

Finally thanks go to my supervisor Dr Michael Scott for all the academic advice and guidance - I think if I stayed in DCU any longer they would be dedicating a wing to me'

Contents

CHAPTER ONE 8
BIPEDAL LOCOMOTION 8
11 Introducton 8
111 Trajectory based antmation 8
112 Control Algorthms 9
12 Bıped locomotion 10
121 Human Motion analysss 10
122 Human Simulation 10
123 Legged Robots 11
13 Passive Dynamics 13
CHAPTER TWO 15
PASSIVE DYNAMIC WALKERS 15
21 Passive Dynamic Walking 15
22 Why study passive dynamic walking? 16
23 Collection of Passive Creatures 17
23.1 McGeer's Original Passive Dynamic Walker 17
232 Compass Gatt Creature 19
233 Simplest Creature Pont Mass 21
234 Other passive creatures of interest 22
24 Passive Dynamic Walker with Torso 23
25 Linearisation versus full non-linear equations 24
26 Description of a stable passive period one gatt 25
27 Poincaré Map 27
28 Active Control and Stabilisation Using Dampers 28
29 Goal of thes research work 29
CHAPTER THREE 30
THE SOLUTION PROCESS 30
31 Introduction 30
32 Creature Configurations 30
321 Body-less 30
321 Bodied Creature 34
33 Generating the Equatons of moton for the creatures 36
33.1 Dynamics Workbench 37
332 Dynamics Workbench - Some Generic Commands Used 39
333 Vectors describing motion 40
3331 State vector 41
34 Colliston detection - Transition Matrxx 44
35 Generate complete step function 1 e Poincaré Map. 45
36 Find limit cycle . if it exists' 46
361 What is a stable limit cycle and how are they found? 46
362 Newton's Method 48
363 PseudoCode for full solution 49
364 Failure of Newton's method 50
365 Inttal Values 50
CHAPTER FOUR 52
CONTROL AND ANALYSIS 52
41 Introduction 52
4.2 Analysts Terminology 52
4.2.1 Dynamic System 53
4.2.2 Hamiltonian System 53
4.2.3 Non-Holonomic System 53
4.2.4 Stability 55
4.2.5 Bifurcation i.e. period doubling 56
4.2.6 Chaos 57
4.3 Investigating local stability using a numerical method 58
4.3.1 Eigenvalues. 59
4.3.2 Eigenvalue Examples 60
4.3.3 Is stability vital? 63
4.4 Other Performance monitors 63
4.4.1 Step period 63
4.4.2 Velocity 63
4.4.3 Efficiency 64
4.4.3.1 Fundamental Questions about efficiency. 64
4.5 Improving Performance 65
4.5.1 Tuning parameters 65
4.5.1.1 Necessary conditions for Mass Distribution 65
4.5.2 Add in external (passive) Springs and Dampers. 66
4.5.3 External Torques applied here. 67
4.6 Feedback Control For Upright Body 69
4.6.1 General Inverted Pendulum Problem. 69
4.6.2 Bodied Creature 70
4.6.4 Simple Controller Design 71
4.7 Energy 74
4.8 Block Diagram of complete system 75
CHAPTER FIVE. 76
RESULTS 76
5.1 Introduction 76
5.2 Body-less creature results 76
5.2.1 Initial Values and Basin of Attraction 76
5.2.2 Limit Cycles 77
5.3 Hip Mass effects 78
5.3.1 Varying the centre of mass of the leg 78
5.3.2 Varying the foot radius R 79
5.3.3 Effect on leg angles - i.e. inter-leg angle 81
5.3.4 Slope - minimum and maximum and Stability 82
5.3.5 Effect on Step period 84
5.3.6 Velocity and step length 86
5.3.7 Addition of a damper 87
5.3.8 Bifurcation 89
5.3.9 Summary 89
5.4 Bodied Results 90
5.4.1 Initial Values and Basin of Attraction 90
5.4.2 Limit Cycles 91
5.4.3 Stability 93
5.4.4 Effects of varying slope. 96
5.4.6 Efficiency and Maximum slope 99
5.4.7 Varying the centre of mass of the body 100
5.4.8 Effect of varying body mass 102
5.4.9 Effect of varying radius of gyration 102
5.4.10 Hip Damper 103
5.4.11 Total applied torque in each step. 104
5.4.12 Controller Issues. 105
5.4.13 Summary 106
CHAPTER SIX. 107
CONCLUSIONS AND FUTURE WORK 107
61 Achievements 107
62 Performance issues 108
63 Future Work 108
631 Creature configuration 108
632 Dampers 109
6.33 Controller 109
634 Optimusatton 110
635 Physical implementation 110
Biblıography 111
Appendix A 115
Vectors associated with the Bodied Creature 115
Appendix B 116
Mathematica Code for equattons of motnon t.e state derivative sta for the body-less creature
Note that code for transition matrix is only given for the bodied creature. 116
Appendax C 119
Mathematica Code for equations of motion i.e state derıvative sta for the bodied creature and the transition equatoon 119
Appendix D 122
Equatons of motion matrices for the body-less creature 122
Appendix E 123
State derivative for Bodied Creature 123
Transiton matrix for Bodied Creature 124
Appendix F. 128
Parameters, constants and inittal values used with the Bodted Creature 128
Appendix G 129
Body-less creature results 129
G 1 Limut Cycles 129
G 2 Basin of Attraction 131
G 3 Results for $m h i p=00$ 132
G31 Max and Min slope 132
G32 Etgenvalues 132
G 33 Step Length, Period and Velocites 132
G 4 Results for mhip $=02$ 134
G 41 Max and Min slope 134
G 5 Results for mhip $=04$ 135
G 51 Max and Min slope 135
G 52 Eigenvalues 135
G 53 Step Length, Period and Veloctttes 135
G 6 Resultsfor mhip $=08$ 136
G 61 Max and Min slope 136
G6 2 Eıgenvalues 136
G 63 Step Length, Period and Velocites 136
G 7 Results for mhtp = 12 137
G71 Max and Min slope 137
G72 Eigenvalues 137
G 73 Step Length, Period and Velocittes 137
G 8 Results for mhip $=16$ 138
G 81 Max and Min slope 138
G8 2 Etgenvalues 138
G 9 Effect of varying the legs centre of mass positoon 139
G 10 Effects of varying R 140
G 11 Effect of adding in a damper 141
Appendox H 142
Bodted creature results 142
H 1 Limit Cycles - Unstable creature 142
H 2 Body-less vs Bodied 144
H 3 Basin of Attraction 145
H 4 Results for bodied creature - stable 146
H.4.1 mbody $=10, m h t p=15$ 146
H42 mbody $=08, m h \iota=10$ 149
H43 mbody $=0.4, m h t p=10$ 151
H45 mbody $=02, m h i p=08$ 154
H46 mbody $=02, m h i p=04$ 155
H 5 Varying Centre of mass 157
H 6 Effect of varying mbody 159
H 7 Hip Damper 160
H. 71 mbody $=04, m h \imath p=10$ 160
H72 mbody $=08, m h t p=10$ 162
H73 mbody $=04, m h \iota p=08$ 164
H 8 Applıed Torque 165
H 9 Varying Radius of gyraton 166
H 10 Complex Controller 167
Appendox I. 168
Mechanical Energy 168

Chapter One

Bipedal Locomotion

1.1 Introduction

Anımatıng creatures, or artıculated figures, can in essence be split up into two categones of approach kinematic and dynamic modelling
Kinematic Kınematic anımation is concerned only with the specification of joint angles and velocities over tıme and does not deal with the forces and torques affecting a creature

Dynamic Physical based anımation incorporates the rules of physics into the modelling process to generate realistic motion "Realism" here refers to behaviour consistent with a simulated model of the real world Incorporation of dynamics brings extra problems 1 e integration of the equations of motion over time is computationally expensive and cumbersome and the provision of control forces and torques to the creature is complex

There are broadly speaking two approaches to the method integrating physics into the creation of lifelike anımation of creatures which are outlined in the next two sections

1.1.1 Trajectory based animation

The first poses the problem in terms of a trajectory through state-space and time, which is subject to the constrants of the desired motion Therefore a typical problem would deal with minımising a certain objective (e g minımum control energy) subject to certain constraints (e g be in position a at time t_{0} and in position b at time t_{1})

One restriction of dealing with motions as trajectories is that it is difficult to properly incorporate interactions with the environment Discontinuities in the motion, such as those caused by contact with the ground, pose difficulties for many optimisation
technıques In addition, a new trajectory must be generated for each new desired motion Two advantages associated with this method however are that it relates well to the idea of key-framıng, and that these techniques are also able to find the most plausible solution, even if no physical solution is possible (e g walking on water) A more detailed discussion of one method of posing the problem in a format based upon desired trajectory is outlined in [Ega96]

1.1.2 Control Algorithms

The second method is to utilise a controller or control algorthm, where a controller makes control decisions based upon a mechanical simulation and as such does not explicitly calculate a trajectory Therefore, the problem is one of the user providing the creatures construction and posing the question "How would it move" The motion of a creature is thus made up of a sequence of control algorithms, with each control algorithm providing a particular type of motion e g walking, jogging, running etc Physically built controllers, require much user assistance and manual tweaking must be performed to provide correct motion In most cases the control system is decoupled and separate algorithms are needed to perform the vanious different kinds of motion required (e g hopping or skipping or walking or running etc)

It is therefore more useful to synthesis a controller and then maybe build one However synthesising controllers is not problem free Complex control algorithms utilising intricate algorthms such as neural-networks, genetic algorithms etc have been formulated providing realistic anımation - (see [Ega97] for a more detailed discussion) A major drawback of these approaches is that researchers are able to provide motion to "certain" creatures in "certain" situations but are unable to provide widespread anımation To provide a variation in gat eg changing from walking to running requires reformulation of the problem Also while controllers increase the autonomy of the creature thus reducing user input, they also reduce user control The more complex the control algorithm the less control the user has

1.2 Biped locomotion

Of primary concern in this thesis is bipedal locomotion - movement of two-legged creatures The mam advantage of bipedal locomotion is its naturalness bipeds should be able to traverse whatever terrain they are in, much as a human might What follows is a brief discussion, not intended as a complete review, of some research in each area of the three disciplines given above

1.2.1 Human Motion analysis

The first area of bipedal research is purely medical based and involves capturing actual human data and analysing it Hurmuzulu's laboratory [Hur00] has been developing quantitative measures to assess the dynamic stability of human locomotion, where the analytical methodology is based on Floquet theory He carried out a study comparing the gat kinematics and dynamics of polio survivors with that of non-paralysed humans utilising graphical and analytical tools Phase plane portrats and first return maps were used as graphical tools to detect abnormal patterns in the sagittal kinematics of polio gat He concluded that polio patients walked less symmetrically than "normal" people did and that their motion was also less stable then "normal" people

1.2.2 Human Simulation

In her laboratory Hodgins et al [Hod00] are interested in providing anımations, primarily of humans involved in various activities such as running, bicychng and diving The goal of their research is two-fold firstly realistic characteristic motion and secondly high level control by the anımator and underlying simulation carred out by the machine These motions are achieved through application of control algorithms to the physically realistic model of the human that is being anımated The physical model of a human is taken from the mass and inertia properties prevalent in the biomechanics literature The control algorithms involve the use of inverse kinematics, proportional-derivatıve control laws, state machines, active control laws and synergies - a complete published list is avalable on the web site [Hod00] In addition secondary
motion and group behaviours have been added to the simulation to increase complexity and realism

Simulation is not without its difficulties and some of the problems that have been encountered are as follows adapting behaviours to new actors is difficult because a control system that is tuned for one character will not work on a character with different limb lengths, masses, or moments of inertia New activities need new controllers and also creating appropriate transitions from one behaviour (either existing or new) to the next can be a challenging problem While these problems have been solved the processes involved can be quite complex and may not lead themselves to a physical implementation in robotic form

1.2.3 Legged Robots

The body of work contained in this thesis falls primarily into the third and final area of research 1 e legged robots A list of biped robot researchers can be found at [Cal00], but what follows are examples of some of the more successful creatures that were built

The Massachusetts Institute of Technology [Mit00] has been successful in building legged robots for the past two decades Led by Marc Raıbert [Ra186] the MIT Leg Laboratory explores active balance and dynamics in legged systems, robots and animals alike Activities for the robots are made up of a combination of simple algorithms that focus on support, posture and propulsion, thus providing balance and basic control A single set of control algorithms, modified in various ways, has successfully controlled numerous running machines as well as hopping, gymnastics etc Several simple algorthms currently under development have had promising results on walking machines According to the lab web-site "the ability of simple algorthms to operate under these diverse circumstances suggests their fundamental nature" [Mit00] A number of bipedal creatures in particular have been created including the spring turkey and planar biped

Again, there are a number of problems with the research partaken by the laboratory For each creature separate control algorthms must be formulated for each walking activity so reusability would be an issue Each creature also requires a relatively small, but in the long run, a considerable amount of power to keep in motion Finally taking for example the spring turkey, the construction costs $1 \mathrm{e} \approx \$ 100,000$ are substantıal

In Japan the Honda Corporation has successfully built a humanoid robot known as Pl [Hon00] This robot with human-like appearance is versatile, capable of walking sideways as well as forwards and can traverse starrs and is robust enough to tolerate pushing Originally designed as a possible home robot several generations have evolved (the newest version avalable is $P 3$) but still there are a number of problems in existence These are namely the high price tag (in the region of millions of dollars), low battery life (in the region of minutes) and limited intelligence (a person is constantly needed to operate the robot) Honda aıms at improving performance and operability in future models

Fıg 1.1: The Honda robots (P2 and P3), © Honda Corporatıon Ltd

Katoh and Mori constructed a biped with very simple dynamics and telescopically retractable legs [Kat84] It consists of a three degree of freedom model with independently adjustable leg lengths Mura and Shimoyama built a robot that generated gatt by linear feedforward control, joint torque schedules were precalculated and played back on command [Miu84] Hurmuzulu created a kneeless biped with an additional body mass connected to the hip through a pelvic joint [Hur86] Particular attention was paid to the effect of the robots' impact with the ground and the impact conditions were justifiably considered as an integral part of the governing equations Central to the robots mentioned is that fact that all have some form of actuation Controlling this actuation, if applied, has involved the use of complex control algonthms

1.3 Passive Dynamics

Another topic of research is based upon bipedal creatures that have no actuation except the passive interaction of gravity, mertia and collisions and have no control system 1 e passive dynamic creatures

Def: A passive dynamic creature is one whose motion is fully determined by gravity, mertia and collisions and involves no control system [Gos96b]

The philosophy here is to solve a simple system to get a better insight into the underlying mechanics of complicated systems Then small amounts of power can be added in efficient ways to allow them to walk on level ground or up a hill and simple control mechanisms can be introduced to increase the stability of the motion

The rest of this thesis is organised as follows

- Chapter two introduces previous work on this topic and identifies the missing component common to all passive dynamic creatures namely the inclusion of a torso
- Chapter three outlones the mechanics of the creature In formulating the dynamics, the equations of motion for the creature along with the impact of the collision with the ground are taken into account
- Chapter four indicates how this motion will be analysed Poincaré maps are formulated and Newton's method is used to find fixed points These fixed points are then classified as either stable or unstable
- Chapter five gives the results attained for the creatures that are dealt with here The initial part of this chapter involves results that correlate with results for simılar creatures 1 e for a body-less creature and the remaining gives previously unpublished results
- The final chapter identifies the conclusions gamed and possibilities for future work

Chapter Two

Passive Dynamic Walkers

2.1 Passive Dynamic Walking

In 1980 Mochon and McMahon [Moc80] argued from electromyographic data that humans were not actively controlling most of their movements during walking. Other EMG studies, more recently published for instance in [Ros94], indicate that much of human walking may indeed be passive i.e. muscles are not used in significant quantities to provide movement. Inspired by the research [Moc80b] on ballistic walking (Ballistic walking is considered to be the most fundamental, and therefore the most revealing, approach to bipedal walking, involving creatures walking in a ballistic fashion i.e. legs swing and impact with the ground), Tad McGeer designed and analysed a passive dynamic walker [McG90]. This consisted of a simple rigid twolegged creature 'walking' down a shallow slope with no outside control or additional energy input i.e. it was powered by gravity alone. Thus the passive-walking pattern is determined by the natural frequency of the mechanical system. An interesting characteristic determined was that the creature achieved a stable limit cycle that looked almost human-like. One interpretation of a limit cycle means that one step only needs to be fully determined as all subsequent steps are just "copies" of it and stability indicates that any disturbance that occurs is rectified and the creature keeps walking. An extension given by McGeer [McG90b] was to include knees, which provided natural ground clearance, and again a stable limit cycle was achieved. These creatures were initially simulated and then later built.

In addition to pioneering the passive-dynamic approach to gait study, McGeer utilised a Poincare map as a means of analysing the given simulation results. Other authors as shall be seen in section 2.3 have made improvements on the characteristics of passive creatures through the use of dampers and simple control laws. In addition the analysis of that motion has become more adept over the years.

2.2 Why study passive dynamic walking?

Designing and building biped robots is fuelled by the potential advantages they would provide Biped robots are better suited to working in hazardous environments, such as chemical spills, or exploration on unsuitable terrain such as on another planet and more especially in rehabilitation technology (1 e as an alternative to wheel-chars whereby paralysed people could actually walk again) Science fiction even dictates the possibility of front-line fighting in a war situation using bipeds At present one of the main obstacles to a wider application of legged robots is their lack of energy efficiency Much work has taken place on overall gait synthesis based upon brain control and muscle power leading to impressive but limited creatures The reasoning behınd the study of passive dynamic walkıng can be summarised as follows

1 It makes for mechanical simplicity and relatıvely high efficiency McGeer's results and those of the researchers that emulated his work provide anımation that is both humanlike and stable Trying to get a fundamental understanding of how humans walk from a mechanical point of view could prove useful in providing control later

2 The simplicity promotes understanding McGeer used the analogy of powered flught research [McG90] The Wright brothers began by studying and building gliders Once they fully understood the concepts of "unpowered" flight, adding power (e engine) was only a minor change The concept therefore is to start with a machine with no active control and then the addition of control should be uncomplicated

3 Evidence exists (in the form of EMG results) that a minımal amount of control and actuation is necessary for some basic human motions, including gat [Gos98a] At the heart of these motions, the body is at or very close to a limit cycle As already outlined EMG studies have shown relative muscle inactivity during the swing phase of human motion [Ros94] that could be termed "passive" Of course an equally legitımate approach to achieving stable and efficient walking is to start with arbitrary amounts of control and actuation and then to gradually mınımıse therr role

Central to the study of planar passive walking is the simplicity of the model being considered By disregarding complex additional characteristics to the idea of motion such as complex control algorthms, optımısation, external torques and forces etc, more insights can be gamed on the fundamentals of bipedal motion - which is currently not fully understood

Rule: The general motto of passive walking could be epitomised therefore as starting from the bottom up

2.3 Collectıon of Passive Creatures

Passive dynamic toys are not a new phenomenon and a collection of pictures of antıque patented toys is attanable at [Cor00] However the concept of passive dynamic creatures in terms of serious analysis and design is relatively fresh Therefore literature on the topic of passive dynamic walking is quite limited and predominantly contains the analysis of three very simılar creatures designed by three authors, McGeer's origınal, Goswamı's Compass model and Garcia's Pont Mass model

2.3.1 McGeer's Original Passive Dynamic Walker

Mc Geer's [McG90] model, the onginal, has two rigid legs connected by a frictionless hinge at the hip Each leg has an arc-style structure at the base, which act as feet The arc-like sem1-circular feet are used as a mathematical convenience rather than a physical necessity There is a point mass at the joint of the two legs 1 e the hip, which serves as being a "crude torso " The stance leg is in constant contact with the ground while the swing leg moves simılar to a swinging pendulum - thus the complete system is akin to a double pendulum The complete system can therefore be modelled by four generalised co-ordinates one for each leg angle and angle velocity This creature is based on the ballistic walker of Mochon and McMahon [Moc80] - a bipedal toy that walks down shallow slopes by rocking sideways This model however doesn't rock
from side to side In the solution method given by McGeer a rimless wheel model was analysed first to provide basic insights, followed by the more complex creature described above The wheel had only a centre point and spokes (no rim) and the analysis involved isolating two side by side spokes Finally note that as an extension knees were added in and this creature is represented in a simple form in Fig 21 The addition of knees leads to there being 8 states

Fig 2.1: Simple representation of McGeers' Passive Dynamic Walker with knees More detalls can be found at [McG90b]

There are some general regulations that must be adhered too - but these are adopted by all models and as such are characteristic of passive creatures

- foot scuffing 1 e where the swing leg grazes the ground midway through its trajectory, is ignored
- collision of the feet with the ground is slipless plastic This means that the configuration of the creature stays the same and angular momentum is conserved
- finally foot transition (1 e when one foot hits the ground and the roles of the legs are switched) is instantaneous

The solution process involved formulating the equations of motion of the swing phase, which are highly non-lmear and a set of algebrace conditions to sımulate heelstrike and the swapping of leg roles To solve the dynamics and to find limit cycles McGeer performed a linearisation about an equilibrium point 1 e the creature standing ngidly upright The flaw inherent in this method shall be outlined in section 24 Finally each step was modelled as a Poincare map which could then be analysed for stabılity

The conclusions reached by McGeer are summanised as follows

- fixed points were found but these were not necessarily always stable
- efficiency can be measured as the mınımum slope necessary to provide motion and the minımum angle γ found was 0005 radians
- parameter changes were made and the effects noted scalıng of leg mass, leg length and gravity may not destroy the limit cycle, moving centre of masses could destroy the limit cycle and addition of a hip mass improved efficiency

2.3.2 Compass Gait Creature

Others have adopted McGeer's orıginal ideas Although the models that are used are not significantly different or improved from the onginal, it is the extent of analysis of passive walking that has advanced in recent years Goswamı [Gos94] slightly modified the creature to form a compass-like biped This "compass-like" model is very similar in structure to that of McGeer's, except that there are no arcs present to resemble feet - instead there is just a point The problem of foot scuffing is avoided by including retractable mass-less lower legs (remember this is a simulation and those mass-less lower legs are plausible) The telescopic retraction of the leg solves the problem of foot clearance without affecting the robot dynamics The long-term motivation behind this study is to formulate a simple biologically inspired active control law of a 17 -dof biped robot being built in project BIP co-ordnated by the INRIA laboratory in Grenoble, France [Bip00] The first prototype of this robot was built in March 2000 and successfully walks

Fig 2.2: Compass Gait Creature Note the absence of "feet" and use of retractable legs

One notable augmentation in the solution method was the utilisation of the full nonlinear equations As previously stated McGeer utilised a linearisation about an equilibrium point and this is discounted by Goswamı In a later work [Gos96b] a comparison of both methods was carried out and this is outlined in section 25

Three parameters, namely the ground slope and normalised mass and length completely describe the creature Any continuous change in one of the parameters leads to an evolution of the steady gatt through a regime of bifurcations leading to a chaotic state where no two steps are identical [Gos98] A bifurcation (or period doubling) indicates that each alternative step is repeated, and thus Goswam found that as the slope increases stable period one solutions transform into stable period two solutions and so on until eventually chaos is reached A necessary but not sufficient condition for the stability of such gats is the contraction of the "phase fluid" volume and the volume contraction was thus computed Goswamı added in passive dampers at the hip joint, to dissipate the energy build-up, and this results in a significant
improvement in the stability and versatility of the gatt (1 e improving the maximum attanable stable slope) Finally Goswamı also investigated the performance of several active control schemes which enlarged the basin of attraction of passive limit cycles and created new gats [Gos97a] The notion of adding in dampers and outside control is addressed in section 27

In summary therefore the additional characteristics of passive walking found were

- possibility of using full non-linear equations
- period doubling (1 e bıfurcations) leading to a chaotic state
- addition of dampers at hip increase stability and versatility
- simple passıvity mımıcking laws can be added in

2.3.3 Simplest Creature: Point Mass

Garcia's "point-foot" [Gar98a] model is the most simplistic of all It is a deterministic generalısation of Alexander's non-determınıstic theoretic "mınımal" model [Ale95] This creature has no arcs for feet, instead having point masses ($1 \mathrm{e} m$) The hip-mass M is much larger than the foot mass $m(\cong 1000$ times) so that the motion of a swinging foot does not affect the motion of the hip

Fig 2.3: Point mass creature

This special mass distribution further simplifies the underlying mechanics and mathematics involved in the solution process This significant reduction also allows the author to perform analytical computation, estimate the initial conditions necessary and to form stability estimates of period one gats After nondimensionalising the governing equations it was found that the only free parameter was the slope γ Again, simılar to Goswamı's solution method above, the full non-linear equations are utilised

The model displays two period one gat cycles, one of which is stable for $0<\gamma<$ 0015 By increasing the slope γ beyond this value, stable cycles of higher periods appear, and the walking-like motions apparently become chaotic through a sequence of period doublings, which again agrees with the findings of Goswamı

2.3.4 Other passive creatures of interest

Berkemeier and Smith [Ber97] extended the concept of passive dynamic walking from bipedal to quadrupedal locomotion The creature consisted of a parr of McGeer two-dımensional bipeds linked together by a 'spine' A rimless wheel model was analysed first to provide basic insights followed by a more complex model with freeswinging legs The gaits of the quadruped are more efficient than those of the biped but are unstable Future work was to evolve around stabilising this creature, but as of yet no results have been published

Camp [Cam97] demonstrated that a simple open-loop actuation/control scheme is all that is required to produce stable, powered, human-like walking motions in a set of roughly human-like legs By having a 'powered mode' the creature does not require a slope and can traverse level ground Stable and unstable gatt limit cycles and period doubling, for a vaniety of structural, physical and control/actuation parameters were observed

The original passive walkers give a hip trajectory that is far from smooth However successful applications would require a smooth hip trajectory to protect the electronics of the creature from the large velocity changes due to ground collisions

Quint van der Linde [Qu198] showed that an actively adjustable stance leg compliance in combination with a viscous damping can result in smaller hip velocity changes

Work has also been carried out on motion in 3D McGeer's [McG91] numencal 3D studies only led to unstable period motions Garcia [Gar99] and Coleman [Col98] utilised a gradient search method to try to improve the unstable eigenvalues of McGeer's model Improvements were made but he still returned a maximum eigenvalue modulus that indicated instability (1 e well above 1) Kuo numencally sımulated a passive dynamic 3D model of walking but again did not find stable passive motions [Kuo98] Finally Coleman has a physical walker that walks and balances in 3D, but cannot stand still and does not yet know exactly which aspects of 1ts physical description are needed to theoretically predict its stability with computer simulation [Col98]

Suggestions were given as to how to maybe stabilise models in three-dimensions and some of the suggestions include

- using ellipsoid or torord feet [Gar99]
- usıng freely swingıng arms [Gar99] - presumably a torso would be needed first'
- including ball-socket hips with torsional springs for stabilty [McG91]

2.4 Passive Dynamic Walker with Torso

Common to all passive creatures that have been developed up to now, is the omission of an extended torso and that is the primary goal of this body of work - to rectify that While addressing the issue of passive running McGeer [McG90a] indicated that a torso would "have an important role as a torque-reaction partner, so this should be added to the model " The added torso will be treated as another link, much akin to the well-known inverted pendulum problem Control will be needed to keep the body in an upright position and it is felt that the controller should be kept as simple as possible to preserve the simplicity of the creature The need to use this simple controller seems necessary and this fact is echoed by Ruina in [Ru197] "the possibility that asymptotically stable balance can be achieved without control is somewhat
unintuitive since top heavy upright things tend to fall down when standing still or more generally, since dynamical systems tend to fall down "

In his proposal on future work in the area of passive dynamic walking Ruina [Ru197] suggested the mportance of placing a torso onto a passive creature saying that "Chopped at the waist theoretical and mechanical models may represent the motoons of a more complete mechanism such a theoretical model mıght not have too great a relevance for healthy humans because the simulation of springs is most accurately accomplished with tiring co-contraction (which is often avoided by humans) But it does point towards the utlilty of passive measures for prosthetics and towards simple spring or damper simulating control laws "

Finally note that in formulating the code involved in the solution for the bodied creature, a body-less creature shall also be considered The goal of this body-less creature is to attain the solutions previously published and as a building block for the "new" bodied creature

2.5 Linearısation versus full non-linear equations

Before the solution process begins one important decision must be made whether to use the full non-linear equations of motion, which shall be generated by the creature, or to perform some sort of linearisation

The process of solving the given problem has had two avenues of approach over the years McGeer [McG90] took the method of linearising the dynamic equations of the creature about an equilibrium point thus providing a simpler problem to deal with The equilibrium point was the creature standing perfectly upright, and this allowed explicit integration of the dynamical equations Next the collision equations with the ground were added and the conditions for the existence of a periodic solution of this coupled system were found In order to study the stability of this periodic solution a second linearisation about the periodic solution is necessary One means of determınıng efficiency for a creature is to determıne the mınımum slope attanable
and McGeer numerically found walking motions for slopes as low as about 0005 radians [McG90] The main problem with this approach is that the linear solution is valid only within a narrow region around the point of linearisation However for any real gait, s1gnificant deviation from this point is required [Gos96b]

The second approach as shall be adopted here is to utilise the full non-linear equations Advantages for this approach are outhned in the next paragraph though the man disadvantage is that you have to rely extensively on numerical sımulations However, the computational burden is manageable as the robot model has a relatively small state space dimension

Goswamı [Gos96b] used both technıques and compared them Apart from the fact that the non-linear approach has a much wider basin of attraction he found that the maximum slope attainable increases slightly This is due to the fact that for higher slopes, the robots dynamics involve larger state values (angles and velocities) which begin to render the linearisation (about an equilibrium point of the state vector being 0) invalid By comparing the linear and non-linear state vectors on equivalent slopes, he also found that the joint angles vary less sensitively than the joint velocities Finally the only energy source in the model, the mechanical energy, which comprises solely of the sum of the kinetic and potentral energies 1 e $E=K E+P E$ also vanes quite steeply between both methods Given that there is such vanations he hypothesised that it would be more appropriate to use the full non-linear solution, which is in keeping with the approach of Garcia [Gar99]

26 Description of a stable passive period one gatt.

It has been stated that passive dynamic creatures may possess stable limit cycles and it is this description that is now outlined For the purposes of outlining the motion of the creature phase space termınology shall be adopted Phase space is described as the space consisting of the generalised co-ordınate/generalised velocity variables ie state space [Gos96a] The phase space of the body-less creature is 4-dimensional (as shall be shown in chapter three) and for the bodied creature it is 6 -dımensional, where the numbers correspond to the number of states present Since we cannot graphically
visualise these high dimensional spaces, diagrams will be limited to the displacement and velocity of only one link This high-dimensionality also leads to problems in determining the size of the basin of attraction for the limit cycle
swing leg manoeuvres through alr

Fig 2.4: Limit Cycle Note that this just represents the swing leg of the body-less creature The stranght line represents the collsion of the leg with the ground

A period one gait is one, which repeats itself after every single time period, a period two is one which repeats itself after every two time periods and so on A loose definition of stability indicates that any disturbances to the gatt get swallowed up and the creature keeps moving in an upright manner The phase space diagram in Fig 24 deals with the angle and angular velocity of the swing leg over time The step begins the moment after heel-strike has taken place At time $t=0$, the pivot leg is in the stance position Immediately it becomes the swing leg, and the previous swing leg the stance leg, traverses up in the air, reaches a maximum point and descends At tıme $t=$ T, the leg impacts with the ground (heel-strike) and a velocity jump is observed (1 e the straght line in the diagram) Now the leg roles are reversed and next step
contınues The diagram shows the phase plane diagram for the body-less creature, with hipmass of 0 , on a slope of 0005

2.7 Poincaré Map

McGeer [Mc90] placed a step in terms of a Poncaré map - something which is prevalent in the non-linear dynamics literature eg [Ott93] What this basically means is that one step can be dealt with or encoded in terms of a complete function It is often useful to reduce a contınuous dynamical system into a discrete one and this can be achieved through the use of a Pomcaré map It is a tool developed by Henrı Poncaré for a visualisation of the flow (1 e continuous system) in a phase space of more than two dimensions If the phase space is N -dimensional then the Poincare map has dımension $N-1$ Thus the Poincaré map represents a reduction of the N dimensional flow to an $N-I$ dimensional map

The map itself is a carefully chosen (curved) surface in the phase space that is crossed by almost all orbits The Poincaré map maps the points of the Poincaré section onto 1tself For illustrative purposes take $N=3$ with states $\left\{x_{1}, x_{2}, x_{3}\right\}$ The points A and B represent two successive crossings of the surface of section 1 e shaded region A can be used as an initial condition to find B and vice versa Thus the Pomcaré map in Fig 25 shows the mapping of $\left\{x_{1}{ }^{\prime}, x_{2}{ }^{n}\right\}$ to $\left\{x_{1}{ }^{n+1}, x_{2}{ }^{n+1}\right\}$ and the Pomcaré map section consists of the shaded region
x_{2}

x_{3}

Fig 2.5 Poincaré Map

28 Active Control and Stabilisation Usıng Dampers

For the bodied creature as shall be outlined here, external torques are necessary to keep the body upright and to provide stability The use of these and passivity mımicking control laws enforced through dampers has been studied by Goswamı [Gos97a] and McGeer [McG90a] prımanly to increase performance The actual dampers and control laws that are used are highlighted in chapter four

Goswamı's [Gos97a] control laws were founded on the mechanical energy principles of the system As the robot walks down on a slope its support point also shifts downward at every touchdown As it loses gravitational potential energy in this way its kinetic energy increases accordingly This is exactly the amount of kinetic energy that is to be absorbed at the end of each step by the impact By resetting the potential energy reference line to the line of touchdown (1 e ignoring the slope which would lead to a decrease in potential energy), the total energy of the robot appears constant regardless of its downward descent The control law formulated attempted to bring the current energy level of the robot E to the target energy level \hat{E} at an exponential rate What was introduced was a simple control law of the form - $\left(u_{1}, u_{2}\right)$ The control
law is implemented through the use of torques at etther the ankle, or hip or both For instance the hip torque has the form $u_{H}=\frac{-(E-\hat{E})}{u_{2}-u_{1}}$, where is a constant value (taken to be 0 1) The overall effect of this was a demonstration that the basin of attraction of the limit cycle could be significantly enlarged Another control law which attempted to maintain a specified average speed of progression based upon the velocity of the robot enables it to walk up a slope

McGeer [McG90a] employs active control to try to stabilise unstable cycles in his running creature He also states that the running cycle can be modulated to allow, for example, crossing unevenly-spaced stepping stones Step-to-step modulation is provided for by linearisation of the stride function Then active stabilisation is achieved through the use of the Linear Quadratic Regulator Algorthm

2.9 Goal of this research work

At this point it should be appropriate to highlight the purpose and eventual goals of this body of work Previous research as has been outlined in this chapter consists of body-less creatures and it is this omission that shall be tackled, as a torso leads to a more complete and realistic creature The primary reference or source model utilised shall be that of McGeer's - see section 231 and the objectives therefore are

- addition of extra link, 1 e torso into the creatures description
- keep this link upright but in accordance with the philosophy of passive dynamic walkers using as simple a controller as possible
- identify whether limit cycles exist, and the possibility of bifurcations leading to chaos
- analyse stability, efficiency, and performance indicators
- try and improve on performance through the addition of extra dampers

Chapter Three

The Solution Process

3.1 Introduction

This chapter detals the solution process involved in generating the creatures motion This procedure has very definite individual components and the complete method leads to the generation of a single step The first component will be to determine the configuration of the creature being studied Two creatures are considered in this work, namely McGeer's original [McG90] and a new passive dynamic walker with a torso McGeer's model is utilised as a means of formulating and coding the solution process and of proofing the code involved Some slight mprovements on his results were made, as shall be highlighted in chapter 5 All of the solution methods used on the body-less creature have been previously published and were used as a framework in the solution method for the bodied creature

3.2 Creature Configurations

3.2.1 Body-less

Before the addition of a torso, it was necessary to gain an insight into body-less motion Therefore the first creature considered consısts, as McGeers' does [McG90], of the following parameters

Fig 3.1: Body-less Creature consisting of two legs and a hip mass on a slope γ

Legs

The creature has two rigid legs, one in motion known as the swing leg and the other anchored to the ground, the stance leg Each leg is identical consisting of length L and of mass M with the centre of mass positioned at the point comleg, a vector given from the end point Each leg has an arc-style structure at the base of radius R, which act as feet The arc-like semi-circular feet are used as a mathematical convenience rather than a physical necessity and could be removed as necessary A more complete list of vectors influencing the creature is given in appendix A and in Fig 32 below Finally note that the centre of mass M is offset slightly and this is indicated by the variable w

Hıp

The joint connectung both legs contans a mass, known as the hip mass and is represented by the parameter mhip The hip mass is attached to each leg and thus each leg has total mass mhip $+M$ The total mass of the robot is thus $2(m h \imath p+M)$

Inertia

The moment of mertia is given by
$I=M a s s \times r_{g r}{ }^{2}$
where $r_{g y r}$ is the radus of gyration [Han88] and Mass is explaned below The radius of gyration value used by McGeer [McG90], namely $r_{g y r}=0347$ is approximated here with an actual value of $r_{g y r}{ }^{2}=0121$ uthlised The effects of varying this value will be highlighted in chapter five There are two different Mass values associated with equation 31 for each of the two legs for the swing leg Mass $=M+m h i p$ and for the stance Mass $=M$

Length

At the time of heel-strike, since both legs are in contact with the ground, the robot configuration can be completely described by what Goswamı [Gos96b] terms the inter-leg angle α Since the leg angles here are equal but opposite this inter-leg angle is simply twice the swing leg angle 1 e $2 q_{I}$ The step length is then given by the following formula

Length $=2 L \operatorname{Sin}$

Stance Leg Onlv

Fig 3.2: A close up of just one leg This gives the vectors in the creature's configuration as given in the section above

Generalised co-ordinates

The gait of the creature is given then by two stages swing where the swing leg moves while the stance is pivoted to the ground, and transition or collision whereby the roles of the two legs are swapped The combination of both processes leads to a step Angles are measured relative to the normal to the ground, and positive indicates a clockwise motion Changes in the shape of the creature are therefore specified through generallsed co-ordinates (1 e angles and speeds) and there are two of each
$q_{1} \quad$ angle stance leg makes with the ground
$u_{1} \quad$ speed at which angle is changing
$q_{2} \quad$ angle swing leg makes with the stance leg
$u_{2} \quad$ speed at which it is changing
(note that $u_{1}=q_{1}$ and $u=q_{2}$)

Thus the state vector of the creature is

$$
\begin{equation*}
\theta(\mathbf{t})=\left\{q_{1}, q_{2}, u_{1}, u_{2}\right\} \tag{33}
\end{equation*}
$$

Note that at the start of a step the legs have equal and opposite angles $1 \mathrm{e} q_{1}=-q_{2}$ Thus in equation $32=2 \times q_{1}$ The final parameter involving an angle to be considered is the slope of the ground γ

Assumptions

Certain assumptions are also made namely

- the impact of the swing leg with the ground is inelastic and without sliding By being inelastic this means that there is no rebound This condition could be enforced in a physical model by placing dead rubber at the end of the feet These conditions lead to the robot configuration remanning the same throughout and to conservation of momentum before and after collision with the ground
- A knee-less creature would not be able to clear the ground as the swing leg manoeuvres and as such scuffing of the ground is ignored

These assumptions are not unusual and as such are common to the two other creatures currently been researched upon 1 e [Gar97] and [Gos96b]

External torques

Initally there are no external torques applied However in the next chapter it is shown that the addition of an external torque at the hip joint can be used in order to improve stability and versatility These dampers can be etther linear or non-linear, with better performance gathered from the non-lmear ones

3.2.1 Bodied Creature

Fig 3.3: Passive dynamic walker with torso

Torso
The addition of a body is farrly straightforward the torso or body is treated as another ngid link added to the creature This link of length lbody, centre of mass combody, measured with respect to the end of the link, and mass mbody, is attached to the previous creature at the hip point, with another hinge joint

Generalised Co-ordinates

The body is initially in an upnght position and therefore resembles an inverted pendulum It creates two new co-ordinates in relation to the upright normal, an angle q_{3} and velocity u_{3} and thus the state vector describing the system has six components namely

$$
\begin{equation*}
\theta(\mathbf{t})=\left\{q_{1}, q_{2}, q_{3}, u_{1}, u_{2}, u_{3}\right\} \tag{34}
\end{equation*}
$$

Inertıa

For the bodied creature the radius of gyration of each leg $r_{g r i}{ }^{2}$ must be lowered to 009 in order for solutions to be found The moment of inertia of the body is given by $I=m b o d y \times r_{\text {gyrBOD }}{ }^{2}$ where $r_{\text {gyrBOD }}{ }^{2}$ is the radius of gyration of the body and initially has a value of 0121

Fig 3.4: Non-linear spring and damper at body joint

External Torques

In order to keep the torso in an upright position an external torque is applied This torque is reacted off the stance leg and is incorporated into the equations of motion

3.3 Generating the Equations of motion for the creatures.

As the creatures involved consist of relatively few links and little or no external forces, formulation of the equations of motion is straightforward enough For the body-less creature consisting just of the two legs, the dynamic equations of the swing stage are similar to the well-known double pendulum equations Since the legs of the robot are assumed identical, the equations are similar regardless of the support leg considered Generation of the equations of motion can be achieved through numerous methods by hand, such as Newton-Euler integration, Lagrangian methods, Kane's method etc Alternatively they can be generated by machine Ideally two methods, one by machine and one by hand should be carried out to ensure accuracy

Goswam1 [Gos96a] uses the Lagrangian method and ends up with an equation nvolving a 2×2 inertia matrix, a 2×2 matrix with centrifugal terms and a 2×1 vector of gravitational torques The actual formulation of the equations was achieved using the freely available package Scı-lab [Scı00] Garcia [Gar97] generated his equations of motion using the special purpose generator AUTOLEV and correlated his results by working out the equations by hand His equations are in a sımılar format of a combination of matrices and vectors McGeer formulated his equations by hand with much of the solution method outlined in [McG90]

I have decided to use Kane's method, which is incorporated into a Mathematica ${ }^{\circledR}$ package called the Dynamics Workbench [Kuo00] to produce the equations of motion incorporated here The Dynamics Workbench is a freely avallable Mathematica package for doing dynamics It enables the user to generate equations of motion
primarily for ngid body mechanical systems Along with general Mathematica commands [Wol96] the overall equations of motion can be constructed

3.3.1 Dynamics Workbench

In formulating the velocities and forces applied to generate the equations of motion the dynamics workbench package is called upon The primary low-level commands that are used are briefly explaned in this section While this section can be used as a reference the full Mathematica code used to generate the equations of motion for the body-less creature is given in Appendix B and for the bodied one in Appendix C

Reference Frames

The dynamics Workbench describes a mechanical system using bodies and reference frames where one or more bodies may be used to describe a rigid body and one or more reference frames may be attached to that body For instance a rigid body constituting a leg called "legone" will have a reference frame associated with it consisting of three axes legone[1], legone[2], legone[3]. There is a single default body corresponding to the Newtomian reference frame called ground and therefore any initial body will be described in relation to the ground frame

Note: The bodied creature consists of 3 links and thus the reference frames involved here are as follows sta[i] (for the stance leg), swi[1] (for the swing leg), and bod[i] (for the body), where each l value corresponds to a certan axis and thus has value 1,2 or 3 All the reference frames are outlined in Fig 35

Fig 3.5: Reference frames for each of the three rigid links in the bodied creature

Connections

Each body is defined with respect to an inboard body, which precedes it, and are connected by a particular type of joint In this piece of work, joints that are considered are of one type only, hinge This means that the ngid body can only move in one
direction only In describing say for instance a hinge joint between two bodies b_{I} and b_{2}, on b_{2} the vector BodyToJnt describes the joint location with respect to the body's centre of mass (1 e com) , and on the inboard body b_{I}, the vector InbToJnt describes the joint location with respect to the body's centre of mass This is shown in diagram format in Fig 36

Fig 3.6: Rigld links in Dynamics Workbench

3.3.2 Dynamics Workbench - Some Generic Commands Used

This section gives some of the commands used that are particular to the Dynamics Workbench package These are the commands that are utilised to form the equations of motion and are included in the code given in Appendix B and C For a more complete tutorial on how to use the Dynamics Workbench see [Kuo00]

AddBody[new_body, inboard_body, joint_type] adds a body, new_body, to a previously defined inboard_body using a specified joint Joints used here are hinge joints

AppTrq[body, torque] applies a torque or moment specified by a vector torque to a body

PosPnt[point, body] returns as a vector, the position of the point attached to the body

Eom This command generates the equations of motion that describe the system

Inertıa This gives the Inertia vector associated with the ngid body

3.3.3 Vectors describing motion

Upon setting up the description of the creature using some of the commands given in the previous section a group of vectors gives a portrayal of the bodied creature's movement These vectors for each leg and the torso involve the following velocity $\vec{v}_{C O M}$ and acceleration $\vec{a}_{\text {COM }}$ of the centre of mass of the rigid link and angular rotation Ω of the rigid link Now the individual vectors for each leg, the torso and the hip point (where velocity \vec{v} and \vec{a} only are involved) are as follows (the reference frames below are outlined in Fig 3 5)

Stance Leg

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}_{\text {Com }}=\left(-(\text { comleg }-R) u_{1}\right) \text { sta }[1]+\left(-R u_{1}\right) \text { ground }[1] \tag{35}
\end{equation*}
$$

$\overrightarrow{\mathbf{a}}_{\text {Com }}=\left(-(\right.$ comleg $\left.-R) u_{1}{ }^{2}\right)$ sta[1] $+\left(-(\right.$ comleg $\left.-R) u_{1}{ }^{\prime}\right)$ sta[1] $+\left(-R u_{1}{ }^{\prime}\right)$ ground[1]
$\Omega_{\text {sta }}=u_{1}^{\prime}$ ground[3]

Hip joint

$\overrightarrow{\mathbf{v}}=\left(-R u_{1}\right)$ ground $[1]+\left((-L+R) u_{1}\right)$ sta [1]
$\vec{a}=\left((-L+R) u_{1}^{2}\right)$ sta $[2]+\left(-R u_{1}{ }^{\prime}\right)$ ground $[1]+\left((-L+R) u_{1}\right)$ sta[1]

Swing Leg

$$
\begin{equation*}
\overrightarrow{\mathbf{v}}_{\mathrm{COM}}=\left(-R u_{1}\right) \text { ground }[1]+\left((-L+R) u_{1}\right) \text { sta }[1]+\left(-(\text { comleg }-L) u_{2}\right) \text { swi }[1] \tag{310}
\end{equation*}
$$

$$
\begin{align*}
& \overrightarrow{\mathbf{a}}_{\text {Com }}=\left((-L+R) u_{1}^{2}\right) \text { sta }[2]+\left(-(\text { comleg }-L) u_{2}^{2}\right) \operatorname{swi}[2]+\left(-R u_{1}\right) \text { ground }[1]+ \\
& \left((-L+R) u_{1}\right) \text { sta }[1]+\left(-(\text { comleg }-L) u_{2}\right) \text { swi }[1] \tag{311}
\end{align*}
$$

$$
\begin{equation*}
\dot{\mathbf{U}}_{\mathrm{sw}}=u_{2}^{\prime} \text { ground[3] } \tag{312}
\end{equation*}
$$

Body

$\overrightarrow{\mathbf{v}}_{\text {COM }}=\left(-R u_{1}\right)$ ground[1] $+\left((-L+R) u_{1}\right)$ sta[1] $+\left(-(-\right.$ combody $\left.+l b o d y) u_{3}\right)$ bod[1]

$$
\begin{aligned}
& \overrightarrow{\mathbf{a}}_{\text {Com }}=\left((-L+R) u_{1}^{2}\right) \text { sta }[2]+\left((- \text { combody }- \text { lbody }) u_{3}^{2}\right) \text { bod }[2]+\left(-R u_{1}\right) \text { ground }[1]+ \\
& \left((-L+R) u_{1} \text { sta }[1]+\left((\text { combody }- \text { lbody }) u_{2}\right) \text { bod }[\mathbf{1}]\right.
\end{aligned}
$$

$\mathbf{U}_{\text {body }}=u_{3}^{\prime}$ ground[3]

3.3.3.1 State vector

The vector descriptions given above in equations 35 to 315 along with the masses (1 e hıp, leg and body) and forces involved (1 e gravity) are used to generate the equations of motion and the full code is given in the appendices However direct use of the Dynamics Workbench does not place the equations of motion in the required format, that of the state derivative The general form of the equations of motion (using Newtons law which states that Force is mass by acceleration) can be given as

$$
A\left(\begin{array}{l}
u_{1} \tag{316}\\
u_{2} \\
u_{3}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0
\end{array}\right)
$$

where A is a matrix contaning a mixture of all the terms involved and the vector of 0 values comes from the fact that the applied force is 0 Manipulation (incorporated
directly through Mathematica and included in the final part of the code m Appendix C) of these terms in A can however lead to the following (for the equations of motion)
$M\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)-R=0 \quad$ or $\quad M\left(\begin{array}{l}u_{1} \\ u_{2} \\ u_{3}\end{array}\right)=R$
where M is a 3×3 matrix contaning the terms linear in the time-derivatives of generalised speeds from the equations of motion of the creature and R contans all the other values The matnces M and R for the body-less creature are given in appendix D but for the bodied creature (although comprehensive in size) are shown in equations 319 and 320

The state of the system is $\theta=\left\{q_{1}, q_{2}, q_{3}, u_{1}, u_{2}, u_{3}\right\}$, and thus the state derrvative is

$$
\begin{equation*}
\theta(\mathbf{t})=\left\{q_{1}, q_{2}, q_{3}, u_{1}, u_{2}, u_{3}\right\} \tag{318}
\end{equation*}
$$

Calculation of the final three values in the state derivative vector is achieved by performing the following solving the linear equation (317) For this equation the matrices M and R are as follows

$R=$

$$
\left(\begin{array}{l}
g(M+M h i p)\left(-R+(-\operatorname{comleg}+R) \operatorname{Cos}\left(q_{1}\right)\right) \operatorname{Sin}(\gamma)+g M b o d y\left(-R+(-L+R) \operatorname{Cos}\left(q_{1}\right)\right) \operatorname{Sin}(\gamma) \\
+g(M+M h i p)\left(-R+(-L+R) \operatorname{Cos}\left(q_{1}\right)\right) \operatorname{Sin}(\gamma)+g(M+\operatorname{Mhp})(\operatorname{comleg}-R) \operatorname{Cos}(\gamma) \operatorname{Sin}\left(q_{1}\right)+ \\
g M b o d y(L-R) \operatorname{Cos}(\gamma) \operatorname{Sin}\left(q_{1}\right)+(g+M+M \operatorname{Mhp})(L-R) \operatorname{Cos}(\gamma) \operatorname{Sin}\left(q_{1}\right)+R(\operatorname{comleg}(M+M h i p) \\
+L(M+M b o d y+M h i p)-(2 M+M b o d y+2 \operatorname{Mhip}) R) \operatorname{Sin}\left(q_{1}\right) u_{1}{ }^{2}+(\operatorname{comleg}-L)(M+M h i p)((-L+ \\
\left.R) \operatorname{Sin}\left(q_{1}-q_{2}\right)+R \operatorname{Sin}\left(q_{2}\right)\right) u_{2}{ }^{2}-(\operatorname{combody}-\operatorname{lbody}) \operatorname{Mbody}\left((-L+R) \operatorname{Sin}\left(q_{1}-q_{3}\right)+R \operatorname{Sin}\left(q_{3}\right)\right) u_{3}{ }^{2}, \\
\quad-(\operatorname{comleg}-L)(M+M h i p)\left(g \operatorname{Sin}\left(\gamma-q_{2}\right)-(L-R) \operatorname{Sin}\left(q_{1}-q_{2}\right) u_{1}{ }^{2}\right), \\
g(\operatorname{combody}-\operatorname{lbody}) \operatorname{Mbody\operatorname {Sin}(\gamma -q_{3})-(\operatorname {combody}-\operatorname {lbody})Mbody(L-R)\operatorname {Sin}(q_{1}-q_{3})u_{1}{}^{2}+} \\
\quad \operatorname{rrac}\left(\operatorname{Klin}-\operatorname{\operatorname {damp}u_{3})}\right.
\end{array}\right.
$$

Solving equation 317 using the matrices in 319 and 320 leads to the final three values involved in the formulation of the state denvative $\theta(t)$ for the bodied creature and this is given in full in Appendix E

3.4 Collision detection - Transition Matrix

At heel-strike, collision with the ground occurs and the two legs switch roles This collision of the swing leg is assumed to be inelastic and without sliding Therefore the following rules must be observed
$>$ the robot configuration must remain unchanged
$>$ The angular momentum of the creature about the impacting foot as well as the angular momentum of the pre-1mpact support leg about the hip are conserved These conservation laws lead to a discontinuous change in robot velocity

From the first rule above, the angles at transition are just swapped $1 \mathrm{e} q_{2}=-q_{1}$ and it is assumed that the angle the body makes $1 \mathrm{e} q_{3}$ remans the same The change in the velocity states is achieved by the conservation of angular momentum given in the second rule (angular momentum before and after collision are equal) Thus, where ${ }^{+}$ indicates post heel-strike, and 'indicates pre heel-strike,

$$
\left(\begin{array}{l}
u_{1}^{+} \tag{321}\\
u_{2}^{+} \\
u_{3}^{+}
\end{array}\right)=T\left(\begin{array}{l}
u_{1}^{-} \\
u_{2}^{-} \\
u_{3}^{-}
\end{array}\right)
$$

where T, the transition matrix, is formulated as follows let AngM be the angular momentum Then

$$
\begin{equation*}
A n g M^{-}=\left(A n g M^{+}\right) T, \tag{322}
\end{equation*}
$$

and therefore T is found from linear solving the above equation, which again is implemented in Mathematica

Implementation of Algorithms

To implement the algorithms to find the limit cycles, the following was adopted As the avalability of a dynamics package, such as AutoLev or Alias Wavefront was not viable due to financial constraints a free generator was searched for Goswamı uses Sci-lab (avarlable at [Sc 100$]$) but I decided to use Arthur Kuo's Dynamics Workbench available at [Kuo00] The equations of motion and collision matrices were generated utilising this package and generic Mathematica terms are used to get the equations in the proper form to generate the fixed points of the Poincare map

3.5 Generate complete step functıon i.e. Poincaré Map.

The movement of the creatures involved here consists of a swing phase and a transition stage, after which both legs exchange roles Each complete step is considered to be a Poincare map, or "stride function", as McGeer called it [McG90] recall section 27 As a natural choice of the Poincare section, the instant when the swing leg of the robot leaves the ground, is chosen Therefore a step will consist of the function $P\left(\theta^{+1}\right)$ which takes as input θ^{+1}, the state vector at the beginning and returns $\theta^{+(1+1)}$, the state just after the following heel-strike Thus much information about a step will be encoded into the map $P(\theta)$ (where $P(\theta)$ is basically the combination of the equations of motion and transition equations grouped into one function)

The Poincaré map therefore consists of two components

- Numerical integration of equations of motion to find heel-strike state:

First the swing leg manoeuvres upwards and then moves back down until heelstrike is reached The equations of motion fully describe this and, since to solve analytically for the state at heel-strike would be very cumbersome, if not impossible, a numerical integration technique is used The Runge-kutta technique
is used with a special stopping mechanism 1 e when heel-strike occurs, that is when the height of the swing leg above ground is zero (Note that the initial ground collision of foot scuffing occurs early on in the period and is ignored) To get a precise pre-heel-strike state value it is necessary to zoom in on the Rungekutta stopping mechanism and thus a Newton-Raphson method is used to zero the swing foot height

- Collision:

Once this process has achieved its goal, the state of the creature is known at the moment of heel-strike and the transition or collision component, as described in the previous section, can take place Post collision velocities are thus calculated by assuming angular momentum before and after impact, about various points

For the Runge-kutta algorithm utlised above the time step taken is 001 and the numerical tolerance is taken to be $1 \times e^{-8}$ The algorithm is coded to converge quadratically to $\operatorname{abs}\left(\theta_{I}\right)<$ numerical tolerance / 1000 where the factor of 1000 is arbitrary chosen

36 Find limit cycle ... if it exists!

McGeer [McG90] demonstrated that a somewhat humanoid mechanism is capable of stable, human-like gat down a shallow slope with no external or internal forces (besides gravity) and no control His passive-dynamic theory of bipedal motion describes gat as a natural repetitive motion of a dynamical system, or in the language of non-linear dynamics, a limit cycle Therefore finding limit cycles is of vital importance

3.6.1 What is a stable limit cycle and how are they found?

A simple period one gat cycle, if it exists, corresponds to a set of initial values for the angles and rates which lead back to the same angles and rates after one complete step

Taking the Poincare language approach the state vector $\hat{\theta}(t)$ is a period one gatt cycle if $P(\hat{\theta}(t))=\hat{\theta}(t)$
where $\hat{\theta}(t)$ is what is known as a fixed point Higher period solutions do exist for the body-less creature [Gar97] [Gos98] as well as non-penodic ones but period one solutions are of central interest because they correspond to the important tasks of steady walking (bıfurcations or period doubling although are mentioned later in chapter four)

A Limit Cycle is a periodic solution of a system and is represented by a closed loop in the phase space The difference between a simple periodic solution and a limit cycle is that the latter exerts its influence in its neighbourhood 1 e an attracting limit cycle will absorb all solutions towards itself that are in its neighbourhood, or basin of attraction as it is called

An attracting limit cycle is also called a stable limit cycle since small perturbations in the state of a system lying on the limit cycle reduce to zero in the long run

The periodic aspect of a limit cycle indicates that a limit cycle occurs if the output state is the same as the input state Thus if $\theta(t)$ is the initial state and as stated above one complete step consists of the function $P(\theta(t))$, where $P(\theta(t))$ is the Poincare map, then
gat limit cycles correspond to fixed points of the map, or in other words the roots of the function

$$
\begin{equation*}
G(\hat{\theta}(t))=P(\hat{\theta}(t))-\hat{\theta}(t) \tag{324}
\end{equation*}
$$

where $\hat{\theta}(t)$ is known as a fixed point

Fixed points can be found by a separate Newton-Raphson search for zeros of 324 above

3.6.2 Newton's Method

To find the roots of the Poncare map the well-known Newton-Raphson method is used Firstly a step can be thought of as an operator $P(\theta)$ (the stride function) which takes as input a vector of scalar values which represent the various angles and velocity rates at a definte point in the motion (1 e just after ground collision) and returns the values of θ after the next ground collision

Starting with the initial step (1 e initial state θ_{0}), each subsequent step is determined from the previous one The formula for the subsequent step is

$$
\begin{equation*}
\theta_{t+1}=\theta_{\imath}-\frac{P\left(\theta_{\imath}\right)}{P^{\prime}\left(\theta_{\imath}\right)} \tag{325}
\end{equation*}
$$

As it not practical with the equations involved to proceeds analytically, the numerical derivatıve of $P(\theta)$, namely,

$$
\begin{equation*}
P^{\prime}(\theta)=\frac{P(\theta+\delta \theta)-P(\theta)}{\delta \theta} \tag{326}
\end{equation*}
$$

is utilised Since it is the function $G(\hat{\theta})=P(\hat{\theta})-\hat{\theta}$ that we are looking at the numerical derivative is

$$
\begin{equation*}
G^{\prime}(\theta)=\frac{(P(\hat{\theta}+\delta \theta)-(\hat{\theta}+\delta \theta))-(P(\hat{\theta})-\hat{\theta})}{\delta \theta} \tag{327}
\end{equation*}
$$

As each step consists of multiple variables (1 e 4 or 6 values in the state vector) P^{\prime} is actually the Jacobian of the Poincare map J, with respect to the state vanables For six states this Jacobian $J\left(1 \mathrm{e}\right.$ is $\left.P^{\prime}(\theta)\right)$ is

$$
J=\left\{\begin{array}{llllll}
\frac{\partial P_{1}}{\partial q_{1}} & \frac{\partial P_{1}}{\partial q_{2}} & \frac{\partial P_{1}}{\partial q_{3}} & \frac{\partial P_{1}}{\partial u_{1}} & \frac{\partial P_{1}}{\partial u_{2}} & \frac{\partial P_{1}}{\partial u_{3}} \tag{328}\\
\frac{\partial P_{2}}{\partial q_{1}} & \frac{\partial P_{2}}{\partial q_{2}} & \frac{\partial P_{2}}{\partial q_{3}} & \frac{\partial P_{2}}{\partial u_{1}} & \frac{\partial P_{2}}{\partial u_{2}} & \frac{\partial P_{2}}{\partial u_{3}} \\
\frac{\partial P_{3}}{\partial q_{1}} & \frac{\partial P_{3}}{\partial q_{2}} & \frac{\partial P_{3}}{\partial q_{3}} & \frac{\partial P_{3}}{\partial u_{1}} & \frac{\partial P_{3}}{\partial u_{2}} & \frac{\partial P_{3}}{\partial u_{3}} \\
\frac{\partial P_{4}}{\partial q_{1}} & \frac{\partial P_{4}}{\partial q_{2}} & \frac{\partial P_{4}}{\partial q_{3}} & \frac{\partial P_{4}}{\partial u_{1}} & \frac{\partial P_{4}}{\partial u_{2}} & \frac{\partial P_{4}}{\partial u_{3}} \\
\frac{\partial P_{5}}{\partial q_{1}} & \frac{\partial P_{5}}{\partial q_{2}} & \frac{\partial P_{5}}{\partial q_{3}} & \frac{\partial P_{5}}{\partial u_{1}} & \frac{\partial P_{5}}{\partial u_{2}} & \frac{\partial P_{5}}{\partial u_{3}} \\
\frac{\partial P_{6}}{\partial q_{1}} & \frac{\partial P_{6}}{\partial q_{2}} & \frac{\partial P_{6}}{\partial q_{3}} & \frac{\partial P_{6}}{\partial u_{1}} & \frac{\partial P_{6}}{\partial u_{2}} & \frac{\partial P_{6}}{\partial u_{3}}
\end{array}\right\}
$$

(Remember that the map P, like θ is a vector and has 6 values with P_{l} corresponding to the first value etc)
The combination of the individual components involved in finding the limit cycle solutions are given below as pseudocode

3.63 PseudoCode for full solution

//Physical Equations
Describe physical makeup of creature
If necessary add in springs and dampers
Generate equatıons of motion
Use to formulate state derivative
Use to formulate transition matrix
// Poincaré Map
Give initıal guess for algorithm
Use Rungekutta to numerically integrate state derivative
Ignore foot-scuffing and stop at heel-strike
Use Newton's method to zero in on heel-strike solution

Use Transition matrix for one complete step
// Fixed Points i.e. Newton's Method

While fixed point not found
Use second Newton's method on Poincaré map

3.64 Failure of Newton's method

Farlure of Newton's method to converge to a solution can generally be caused by one of the following reasons
> the initial guess is not close enough to the solution
$>$ there is no fixed point for the parameter family involved and this can only be rectıfied by changing at least one parameter
$>$ the slope of one of the state variable vs parameter plots is approaching infinite slope This is known in the bifurification literature as a "turning point", and is indicated by an unexpected zero value in the stride function Jacobian J

3.65 Initial Values

Estimating the initial values can be quite challenging in itself The chorce of initial values, for the starting state is of vital importance, as only values within the basin of attraction will eventually converge to a limit cycle The shape and size of the basin of attraction of a limit cycle is in general a function of the robot parameters and are not directly amenable to analytical solutions

Various approaches have been adopted to estimate the initial values McGeer [McG90] indicated that the stance and swing angles of $\left\{q_{1}, q_{2}\right\}=\{03,-03\}$ correspond roughly to the "known" values of human gatt The other values were
formulated from known gats but randomly generated values were used, as he hypothesised "tt is perhaps nalve, but it is also unbiased, and so can reveal behaviour, which might otherwise go unnoticed "

Goswamı uses the initial conditions calculated from his initial linearised model and where these farled, the state vector corresponding to a known steady gatt of a robot whose parameters were close to the robot under study were used [Gos96b]

Finally both McGeer[McG90] and Goswamı [Gos98] pointed out explicitly that both robots that they simulated can accept without falling down a much larger change in the velocity states than the position states $\left(1 \mathrm{e}\right.$ there can be a change of $\approx 100^{\circ}$ per second in the velocity of the angles but a change of 2° in the position takes the states out of the basin of attraction) This was also proved to be the case here for both the bodied and body-less creature as shall be highlighted in chapter five

The initial velocity values chosen here are twofold - for the body-less creature I have decided to use previously published values for a known solution 1 e
$\theta_{0}=(03015,-03015,-03763,-02822)$
These are sımılar to those published by McGeer [McG90] and used by Kuo and other researchers [Kuo00] For the bodied creature these values just have the initial body parameters appended to $1 t$, namely $q_{3}=u_{3}=0$, giving
$\theta_{0}=(03015,-03015,0,-03763,-02822,0)$

Chapter Four

Control and Analysis

4.1 Introduction

For any creature under investigation, with or without a torso, once limit cycles have been identified an analysis stage begins Of prime importance is establishing whether or not the cycles or steps are stable or unstable Other aspects of analysis to be determined include efficiency of the creature, step period and velocity, energy utilised and the maximum slope attanable Improvements in some of these vaniables, most notably stability, can be ganed through the addition of external torques and damper forces For some creatures, as found by both Goswamı [Gos96b] and Garcia [Gar98] there is a period doubling route to chaos present and thus this is another characteristic that should be investigated All performance indicators mentioned above are outlined in this chapter along with the methods of implementation

As previously stated however some external torque is required to keep the torso of the bodied creature upright Feedback control in the form of a fuzzy logic controller is utilised and limit cycles are found The format of this controller is given along with the logic involved These limit cycles are then analysed using the same techniques as above

4.2 Analysis Terminology

In describing the passive dynamic walker system some terms that are common to nonlinear dynamics are utilised These terms are now defined

4.2.1 Dynamic System

A dynamical system may be defined as a mathematical model determınıng the state of a system forward in time, where time can be discrete or continuous Therefore starting at tıme $t=0$ at any subsequent tume t_{1} the state can be determıned

4.2.2 Hamiltonian System

Hamıltonian systems are a class of dynamıcal systems incorporating vanious properties such as mechanical systems in the absence of friction, the paths followed by magnetic field lines in plasma, the mixing of fluids and the ray equations describing the trajectories of propagating waves [Ott93] The main properties of these systems include

- energy is conserved for time-independent systems
- possibly do not have attractors in the usual sense This mcompressibility of phase space volumes for Hamıltonian syatems is called Liouvilles theorem

4.2.3 Non-Holonomic System

A dynamical system can be classified as etther holonomic or non-holonomic To determine which term applies you must examine the generalised co-ordinates If the coordinates satisfy the following two conditions then the system is holonomic, that is if the coordinate values determine the configuration of the system and secondly that the values may be vaned arbitranly and independently without violating the constrants of the system [Syn70]

An example of a holonomic system would be a robotic arm involved in the manufacture of cars The robot is in an initial state, performs its assigned task and returns to a final state This final state coincides with the initial one and therefore the robot does not change its location. Another example would be that of a scissors lying on a table An example of a non-holonomic system would involve a rigid sphere rolling without slipping on a fixed horizontal plane The system can be defined in
terms of 5 generalised co-ordinates - the two horizontal Cartesian co-ordinates at the centre of the sphere and 3 Eulenan angles Since the plane is not smooth, two additional constraints are needed 1 e equating to 0 the horizontal velocity of the particle of the sphere at the point of contact These conditions are non-integrable and it is this non-integrability which make the system non-holonomic [Syn70] Other examples mıght be a wheelchair, bicycle or skateboard

The difference between holonomic and non-holonomic systems can be summarised as follows
$>$ with a holonomic system return to the original internal configuration means a complete return to the original state 1 e the initial and final states are completely equal This however is not guaranteed for non-holonomic
> the system outcome for a non-holonomic system is path-dependent
> whereas holonomic kinematics can be expressed in terms of algebraic equations which constrain the internal, rotational co-ordinates of a robot to the absolute position/orientation of the body of interest, non-holonomic kinematics are expressible with differential relationships only

As is well known in dynamics systems theory, conservative holonomic (ie Hamıltonian) systems cannot have asymptotic stability since volume is conserved in their phase spaces Therefore only non-Hamıltonian systems have asymptotical stability Two mechanısms for losing the Hamıltonian structure of the governing equations are dissipation and non-holonomic constraints Passive dynamic creatures are non-holonomic by virtue of their intermittent contact with the ground and are moving along a particular path (1 e down the slope) Also they are not conservative since energy is lost at every heel-strike Thus the existence of this dissipative element favours but does not guarantee the existence of a stable limit cycle Goswamı investigated the contraction of phase space volume and found that the "absolute value of the determinant of the transition matrix was always negative (ı e inferior to l) which indicates that phase space volumes are always contracted " [Gos99]

Finally Ruina questions how stability can be gained stating that "we know from our study of bicycle stability and the like that non-holonomic systems can have
asymptotıcal stability even without dissipatıon Can legged mechanisms also be made stable without dissipatıon " [Ru197]

4.2.4 Stability

For each steady motion the establishment of stability is of vital importance since it indicates whether the creature will keep walking indefintely or will eventually collapse Due to the non-linearity of the creatures' dynamics, analytical methods of investigating the stability of the passive gaits cannot be utilised and therefore stability will be addressed using an analytically guided numerical method which involves findıng the eıgenvalues of the Jacobian matrix J of the Poincaré map This is due to the fact that the conventional definitions of stability of a system in the sense of Lyapunov, (around an equilibrium point) are not applicable to walking machines Therefore it is orbital stability that is investigated, where a solution of the dynamic system gives an orbit This method is also adopted by current researchers [Gar98] [Gos96b] and is explained fully in Section 43 The applicability of the numerical method practically guarantees that the limit cycle is stable as argued by Goswamı [Gos96b] who states that "unless we accidentally hit the exact states on an unstable limit cycle which will never be encountered in numerical trials"

What do we mean though by saying that a cycle is stable?

Def: We may say a gait is stable "if starting from a steady closed phase trajectory, any finite disturbance leads to another nearby trajectory of similar shape" [Hur86]

Furthermore, if in spite of the disturbance, the system returns to the onginal cycle, the gat is asymptotically stable This is useful since it indicates that any disturbance to the creatures motion would be swallowed up and motion should therefore be infinite, so long as the required slope is present

Figure 41 presents the nature of a stable limit cycle in the phase plane of one ngid body link The effect of any disturbance to one of the states on the limit cycle is attracted and swallowed up Therefore a system starting from a state on a limit cycle will remain on it The complete shaded region in the diagram indicates the attracting region of the limit cycle and is known as the domain of the limit cycle or its basin of attraction Another indication of stability is the measure of the size of the basin of attraction but this method is not undertaken here

Fig 4.1: Basin of attraction of a limit cycle Any point inside the shaded region would be in the basin of attraction and would eventually settle on the limit cycle which is also inside the region The limit cycle is not shown

4.2.5 Bifurcation i.e. period doubling

A qualitative change in the dynamics which occurs as a system parameter vanes is called a bifurcation There are a variety of types but the one of interest here is the period doubling bifurcation In this case a stable period one orbit bifurcates into a stable peniod two and an unstable penod one orbit In practical terms here, taking for instance Goswamı's creature [Gos96b] as the slope is increased, stable period one
solutions bifurcate into stable period two solutions, stable period two solutions bifurcate into stable period four etc. An indication of bifurcation is achieved by inspection of the eigenvalues of the Jacobian of the Poincare map in the neighbourhood of the limit cycle. These are identified for stability (see section 4.3) and should be all within the unit circle for stability. At a bifurcation point at least one of these eigenvalues crosses the unit circle.

Fig 4.2: Bifurcation. Initially there is a stable period one orbit (stability is indicated by a solid line) which bifurcates into stable period two and unstable period one.

4.2.6 Chaos

It is easy to see and to formulate how dynamic systems settle into period motions (i.e. limit cycles) and steady states. Chaotic orbits can also appear at higher periods and they appear to be very complex and are usually described as wild or turbulent. They don't necessarily appear in very complex systems either. An example will be given to illustrate the concept which is taken from [Sha84].

Water drops from a tap continuously. A sensing device is used to time successive drops. Therefore the system of dropping water consists of time intervals $t_{1}, t_{2}, t_{3}, \ldots \ldots$. etc. where $\Delta t=t_{n+1}-t_{n}$. At a small flow rate the time intervals are equal. As the flow is increased slightly period two cycles or sequences are noted i.e. $t_{a}, t_{b}, t_{a}, t_{b}, t_{a}, \ldots$
etc As the flow increases further so too does the period frequency until at sufficiently large flow the sequence of time intervals has apparently no regularty This 1rregularty is due to chaotic dynamics [Sha84]

One thing that should be pointed out is there is a particular route to chaos 1 e in the above example there 1 s a specific route of parameter t to chaos (t changes in a specıfic fashıon)

43 Investigating local stability using a numerical method

To investigate the orbital stability of a lımit cycle we agan look at the Poincaré map This involves the state vector from just after heel-strike to just after the following heel-strike Again from section 361 a solution to the Poincare map giving a limit cycle is known as a fixed point Therefore if $\hat{\theta}$ is a fixed point then by definition the following holds true

$$
\begin{equation*}
P(\hat{\theta})=\hat{\theta} \tag{41}
\end{equation*}
$$

For a small perturbation $\partial \hat{\theta}$ around the limit cycle the non-linear mapping function P can be expressed in terms of the Taylor's senes expansion as
$P(\hat{\theta}+\delta \hat{\theta}) \approx P(\hat{\theta})+(J) \delta \hat{\theta}$
where J is the Jacobian matrix of the map $P(\theta)$ with respect to the state variables $(1 \mathrm{e}$ J is the matrix $\frac{\partial P}{\partial \theta}$ with components $\frac{\partial P_{i}}{\partial \theta_{j}}$) By rearranging the above equation the Jacobian can then be given as

$$
\begin{equation*}
J=\frac{P(\hat{\theta}+\partial \hat{\theta})-P(\hat{\theta})}{\partial \hat{\theta}} \tag{43}
\end{equation*}
$$

It would not be practical to analytically calculate the matrix J in equation 43 and thus the numerical version is sought and utilised Construction of numerical version is achieved as follows the first state vector vanable only $1 \mathrm{e} q_{l}$, is perturbed by a suitably small amount and the Pomcare map of the complete state is noted The mapping starting at this point will be close to, but not the same as, the oniginal limit cycle The difference in the resulting Pomcaré map of the perturbed state, minus the original fixed point and divided by the square root of the perturbation variable gives the first column of the Jacobian To get the second column perturb the second state vector variable 1 e q_{2} and continue as above When all states have been dealt with the Jacobian is complete

Note that the size of the perturbation utilised here is 1×10^{-3}, and Garcia [Gar98a] used perturbations of the form 1×10^{-4} This would be one possibility for future work, to use even smaller perturbations to ensure improved accuracy Once the Jacobian has been formed stability can be measured through investıgation of the eigenvalues of the matrix For the body-less creature there will be four elgenvalues, and for the bodied six

4.3.1 Eigenvalues

Def: An eigenvector v of a matrix B is a nonzero vector that does not rotate when B is applied to 1 it $1 \mathrm{e} B v=\lambda_{1} v$ where λ_{1} is an eigenvalue of B If $\left|\lambda_{1}\right|<1$, then $B^{\prime} v=\lambda^{\prime} v$ will vanısh as $t \rightarrow \infty$ If $\left|\lambda_{i}\right|>1$, then $B^{l} v$ will grow to infinity [Ske94]

Therefore an eigenvalue indicates just how vulnerable to change the matrix is For asymptotical stability, which is required, all eigenvalues must be inside the unit circle If all the eigenvalues of the Jacobian J are thus less than one $1 \mathrm{e}\left|\lambda_{1}\right|<1$, then all
sufficiently small perturbations will decay to 0 and the system will approach its limit cycle However if any eigenvalue is greater than 1 , then the corresponding eigenvector will bump the system divergently off the limit cycle An eigenvalue of exactly 1 indicates that the cycle is neutrally stable for perturbations along the relevant eigenvector and thus perturbations will nether shrınk nor grow [Ru197] Commonly eigenvalues of magnitude 0 appear and these can be explained as follows the perturbation has been along the limit cycle and that the resulting trajectory corresponds to this perturbation along the same limit cycle [Gos96b] Frequently also, and as shall be shown in the next chapter, eigenvalues of magntude 1 do appear appear and do not affect balance stability Many tımes persistent eigenvalues of magnitude one have some obvious physical significance, they can signify a oneparameter famıly of gat solutions for instance [Gar99] Also the indifference of most of the 3-D devices to direction of travel generates an eigenvalue of 1 in the map

4.3.2 Eigenvalue Examples

Body-less

Much headway in the analysis of the creatures' gait and the effect of various parameter changes can be made through dissection of the eigenvalues of the Jacobian For the creature consisting of four state variables, there are four eigenvalues and associated groups of eigenvectors, and therefore the system is four-dimensional (In actual fact it is only three-dımensional as one of the numencally calculated eigenvalues near zero is approxımately zero - see below for an explanation as to why) McGeer [McG90] coined the term's speed, totter and swing for these elgenvalues and accordingly indicated the influence of each as follows

- Speed This is the convergence of the creature to a steady speed following that given perturbation 1 e the eigenvalue Or in other words it is the dissipation of speed appropriate for the slope in use
- Swing The elgenvector here is dominated by the swing angular speed The eigenvalue of this mode is usually small It is a rapid adjustment (1 e eliminated immediately at the first support transfer) of the swing motion to a normal walking pattern
- Totter This is an oscillatory attempt to match step length with forward speed. This is explained by the fact that the initial angle must correspond somehow to the initial angular speed.

Example:

As an example, the fixed point, for a body-less creature with hip mass of 0 , on a slope of 0.025 with an initial guess of $\{0.3015,-0.3015,-0.3763,-0.2822\}$ turns out to be $\{0.30171,-0.30171,-0.376368,-0.282189\}$. The Jacobian J then constructed is:

$$
\left[\begin{array}{ccccc}
-0.0000228 & -3.41610^{-6} & -0.00001628 & 4.5839110^{-7} \\
0.0000128098 & -6.5837210^{-6} & 0.0000168 & -4.5839110^{-7} \\
5.63304 \quad 10^{-6} & 1.6829310^{-6} & -8.4429110^{-7} & -9.11447 \quad 10^{-7} \\
2.08611 \quad 10^{-7} & -1.6310110^{-6} & 7.74861 \quad 10^{-7} & -0.0000107975
\end{array}\right]
$$

and finally the eigenvalues are as follows (which coincide with previously published values [Kuo00]:

$$
\begin{array}{ll}
\text { speed } & 0.46223 \\
\text { swing } & -0.398202 \\
\text { swing } & -0.167559 \\
\text { totter } & 7.4767210^{-11}
\end{array}
$$

(Note: the names are associated by analysing the effects of the various angles and velocities as explained above).

Bodied

For the bodied creature there are two extra eigenvalues, thus giving a total of six eigenvalues. In practice and through the use of dampers etc. one eigenvalue stays at
approximately 1 and two stay at approximately 0 Finally it is worth noting that the number of places counted in the elgenvalues depends on the perturbation size As highlighted in section 43 a size of 1×10^{-3} is used and thus 3 decimal places are counted,

Example

As an example, the fixed point, for a bodied creature with hip mass of 15 and body mass of 10 , on a slope of 0025 , with damper coefficient of 055 , length of body 08 and centre of mass 00795 , and an inttial guess of $\{03015,-03015,0,-03763$, $02822,0\}$ turns out to be
$\{0283795,-0283795, \quad 00762199,-0348054,-00943815,000313977\}$ The Jacobian J then constructed is

$$
\left[\begin{array}{cccccc}
-17 \times 10^{-5} & -446 \times 10^{-6} & -107 \times 10^{-9} & -105 \times 10^{-5} & 674 \times 10^{-7} & -158 \times 10^{-8} \\
708 \times 10^{-6} & -553 \times 10^{-6} & 107 \times 10^{-9} & 105 \times 10^{-5} & -674 \times 10^{-7} & 158 \times 10^{-8} \\
-317 \times 10^{-9} & 207 \times 10^{-9} & 411 \times 10^{-8} & -328 \times 10^{-9} & 429 \times 10^{-10} & 441 \times 10^{-7} \\
964 \times 10^{-6} & 347 \times 10^{-7} & 373 \times 10^{-11} & 33 \times 10^{-6} & -113 \times 10^{-6} & 198 \times 10^{-8} \\
84 \times 10^{-6} & -629 \times 10^{-6} & -714 \times 10^{-10} & 662 \times 10^{-6} & -984 \times 10^{-6} & 121 \times 10^{-8} \\
289 \times 10^{-7} & -191 \times 10^{-7} & 202 \times 10^{-7} & 202 \times 10^{-8} & 172 \times 10^{-8} & -999 \times 10^{-6}
\end{array}\right]
$$

and finally the ergenvalues are as follows
$\lambda_{1}=100411$
$\lambda_{2}=0456093+0518358 I$
$\lambda_{3}=0456093-0518358 I$
$\lambda_{4}=0159779$
$\lambda_{s}=-000001$
$\lambda_{6}=29310^{-14}$

4.3.3 Is stability vital?

While stability is actively pursued and achieved in this body of work some researchers eg Garcia [Gar99] question whether it is crucial or not outlining the following
> slow instabilities (1 e instabilities with a time scale of over a second or two) may not be important because humans do have control and need to exercise this control to go where they want e g a bicycle loses its passive stability at about 15 mph but this is not sensed by a rider since the time scale of the instability is long
> unstable period one gats don't always lead to falls As is known in non-linear dynamics, systems which exhibit period-doubling and chaos can have a chaotic attractor which is bounded and stable in some sense, since the system does not leave the attractor if it starts on or near it Garcia therefore showed that some unstable period gats did not fall down because of the stability of the higher-period gats and the chaotic attractor

4.4 Other Performance monitors

4.4.1 Step period

The step period is the time taken for a complete step to occur Therefore this involves starting at just after heel-strike, the swing leg manoeuvring through the air, untıl heelstrike again when the two legs exchange roles

4.4.2 Velocity

The velocity of the creature should also be determined Step velocity or average speed per step (as determined in [Gos96b]) is given by the following formula
$v=\frac{\text { step length }}{\text { step period }}$,
where step length is determined using equation 32

4.4.3 Efficiency

Energetic inefficiency is measured by the slope γ of the incline needed to sustain gatt, with $\gamma=0$ being perfectly efficient, since no energy is required for motion Why look for efficient locomotion? As argued clearly in e g [Ale95] both evolutionary pressure and individual motivation push for high efficiency in anımal locomotion

In his research McGeer [McG90] numerically found walking motions for slopes as low as about 0005 radians and utilising his model mınımum slopes of 00005 were found here These will be fully outlined in Chapter 5 Garcia's creature reaches a minımum of zero where the dynamic solution approaches the static, parallel leg solution [Gar98a] Goswamı does not directly address the issue of efficiency but the minımum slope he refers to is 025° [Gos96b]

4.4.3.1 Fundamental Questions about efficiency.

The results from the theoretical walking model pose fundamental theoretical questions according to Ruina [Ru197] Is it possible to have an asymptotically stable locomotion mechanısm that is also perfectly efficient? The theory of Hamıltonian systems does not apply to walking machines because by virtue of their intermittent contact, they are non-holonomic Can legged mechanisms be made stable without dissipation?

4.5 Improving Performance

4.5.1 Tuning parameters

The creatures that are being studied involve various mass distributions, states and slopes By direct manıpulation of these parameters improvements can be made in terms of efficiency, stability etc Formulation of the best parameters to use is evaluated using a brute force mechanism Parameter values are changed and effects noted until the best solution is found

4.5.1.1 Necessary conditions for Mass Distribution

Garcia finds that "if the hip-mass were offset fore-aft from the legs, the gait cycles would approach a static solution at some non-zero slope which depended on this offset, and 'near-perfectly efficlent' walking would not be possible So for this model and presumably for more complicated models, the existence of near-perfectly efficient gat depends on the detalls of the mass distribution" [Gar98a] Some necessary conditions on the mass distribution for near-zero slope walkers therefore are found to be [Gar98b]
> If walking does occur at very small slopes then this motion will be very slow as the walker will be close to static equilibrium at all times
$>$ As the slope goes to zero then the inter-leg angle at this instance also goes towards zero
$>$ From the first two conditions the line from the hip through the body centre of mass must intersect the foot curve normally at the nominal contact point at zeroslope walking For circular feet this is equivalent to the co-linearity of the centre of mass of the whole body, the hip, and the foot centre

4.5.2 Add in external (passive) Springs and Dampers

Fig 4.3: A damper

Def: A damper is a device, which associates each force to a velocity The velocity v of a damper is the rate at which it is lengthening and the force is applied to the damper by something else The velocity is relative and thus if the velocity of one end is v_{l} and the velocity of the other end is v_{2}, the overall velocity v is $v_{2}-v_{l}$ A positive force is an attempt to lengthen the damper, a negatıve one to shorten it Examples of dampers include shock absorbers and syringes The general constitutive law for a damper is

$$
\begin{equation*}
F_{d a m p}=b v \tag{45}
\end{equation*}
$$

where b is the damping coefficient

Def: A spring is a device holds potential energy due to the way it is corled Now consider a mass attached to a spring The spring exerts a force

$$
\begin{equation*}
F_{\text {sprmg }}=-k x \tag{46}
\end{equation*}
$$

where x is the displacement of the mass from and equilibrium position and k is the spring constant

In McGeer's work [McG90a] it was suggested that the presence of springs and dampers, in particular at the hip joint could improve stability and even "convert" unstable cycles into stable ones Goswamı [Gos98] contınued this methodology by placing dampers at the hip joint significantly improving gatt stability and overall gatt versatility without violating the passiveness qualities of the creature The role of the
damper as he states is to "effect a continuous dissipation of energy in the robot in addition to the energy dissipated intermittedly during ground impact " Although both linear and quadratic dampers were utilised, better results were achieved from the quadratic ones The effects of damper are easily imitated by a control law in an active robot and could be easily replaced by a motor implementing the same physical law A summary of the results obtaned by Goswamı for the effects of additional dampers include
$>$ they do not alter the passive status of the robot
$>$ the overall appearance of the gat however is altered 1 e the onginal cycle is modified to another cycle of different shape While the gatt appearance is altered it is not necessarily destroyed This contradicts the claim by McGeer, who indicated that even a small amount of friction (1 e hip damping) would destroy the stable limit cycle
$>$ gives stable gaits for a much larger range of slopes (he mentions increases from 5° to 10°)
$>$ the robot can possess extremely large limit cycle attraction basins

4.5.3 External Torques applied here

The external torques applied in this body of work are achieved through the use of torsional springs and dampers A linear torsional spring at a joint l will provide a restoring torque proportional to q, A linear torsional damper at joint l will provide a negative torque proportional to $u_{\text {t }}$

As an example take a rigid body fixed to the ground with a hinge joint as in the diagram below A torsional spring and damper with coefficients s and d will generate a torque of $\tau=-s q_{1}-d u_{1}$

Fig 4.4: Rigid body attached to ground with a hinge joint A torsional spring and damper is present at the joint

Dampers are included here both at the hip joint and in conjunction with the torque applied to keep the body upright As shall be outlined in the next section a torque applied to the body acting off the stance leg can be utilised to keep the body upright However stability is not ensured and one method of providing stability is to provide a damper working in conjunction with this applied torque The damper utilised on the body is simply that of the general constitutive law (Equation 4 6) and so has the form

$$
\begin{equation*}
F_{\text {damp }}=\operatorname{damp} u_{3} \tag{4}
\end{equation*}
$$

where damp is the damper coefficient

Total Force on body

The total applied torque and damper apphed to keep the body upright and to provide stability is given by the equation
$F_{\text {toal }}=\operatorname{Frac}\left(\right.$ Klın $\left.-\operatorname{damp} \times u_{3}\right)$
where damp ts the damper coefficient, Klm is the torque coefficient and Frac is a constant

Hip Dampers

Dampers at the hip are varied in form and therr effects noted The general linear value 1S

$$
\begin{equation*}
F_{\text {damp }}=F f r ı c\left(u_{2}-u_{1}\right) \tag{49}
\end{equation*}
$$

and the quadratic has the form
$F_{\text {damp }}=\operatorname{Ffrac}\left(u_{2}-u_{1}\right)^{2}$
where Ffric is the damping coefficient

4.6 Feedback Control For Upright Body

4.6.1 General Inverted Pendulum Problem.

The body will be treated as an inverted pendulum and that classic engineering problem is identıfied here The situation involves a dynamic system that consists of a cart with a stick hinged to its top The stick makes an angle ϕ with the normal The system is obviously unstable - the pendulum will not remain upright as the system is rught now and an input force is required The objective of the problem is to 1dentify a control system (1 e feedback based) that will successfully mantain the pendulum in an upright position The problem is shown in the diagram below

Fig 4.5: Control of inverted pendulum

There are many methods of controlling an inverted pendulum with most involving linearisation eg PID, exact pole placement [Gop84] and state space However utilising bang-bang logic (upon which the simple controller provided here 1 e bang zero - bang) not only allows the full non-linear equations of motion to remain intact, but can be relatively simple to implement and it is this method that is adopted here

4.6.2 Bodied Creature

If the system is left as described then any reasonable body mass and length of body leads to farlure of Newton's method in finding fixed points (1 e it does not converge), as the link topples over Thus, to keep the link upright and to find fixed points, it is necessary to stabilise the upper body like an inverted pendulum using apphed torques reacted against the stance leg The sytem here is not in essence the same as that of the general inverted pendulum as the issue of stability does not just affect the body (1 e keeping the angle at 0) but involves the orbital stability of the complete system

A very simple feedback control law is adopted here, namely if the body is fully upright then no torque is applied If however there is an angle then a torque is utilised where this torque is reacted aganst the stance leg This torque changes value depending on the angle involved and thus the spring producing this torque is nonlinear (the control curve in section 47 outhes why the curve is non-linear) This torque of magnitude $K l m$ is applied to the body in the direction of bod[3] Each distunct creature has a specific control law whereby the various magnitudes of Klın, involved in the controller, are determined by the masses and lengths involved In physical terms these torques could be generated by a motor and a spring attached to it or maybe just a simple spring

46.4 Simple Controller Design

Creation of a simple controller and its underlining rules is achieved through analysing the control behaviours of the inverted pendulum The controller should reflect the relationship between the body vanables $\left(q_{3}, u_{3}\right)$ and the applied torque τ This relationship can be graphed as a non-linear control curve If in plotting the variation of applied torque due to the variables (q_{3}, u_{3}), a straight line at an angle appeared then the control would be linear However non-linearity appears here because the torque applied vanies depending on the values associated with q_{3} and u_{3}

In formulating the control curve the following considerations were adhered to
$>$ It is desired to keep the body upright ($1 \mathrm{e} q_{3}$ is inside the range $|01|$ radians) This indicates that most τ will be applied within a small angle range At the desired fully upright position 1 e $q_{3}=0$, no torque is applied
\Rightarrow As a servo motor has a maximum output, the curve will have to reach a maximum value at a certann angle
$>$ In keeping with the passive philosophy the variation of applied τ should be as simple as possible

It should be noted that in essence two controllers were investigated, one which depends solely on q_{3} and one which depends on $\left\{q_{3}, u_{3}\right\}$ (the methodology behind this is to try and find the most simple controller which works effectively) The curve
that is utilised for the simpler case is shown in Fig 4.7. The actual control curve for the control system is essentially unknown, as for any system and therefore this is just a simple representation of what it might be like, containing three states or applied torque values, zero, small and large. This representation was achieved through brute force analysis of various τ values and the effect caused i.e. the Runge-kutta algorithm was studied with various torque values applied and the angle and velocity noted. Because the controller is simple with just 2 unknown torque values small and large, and it was desired to keep the body fairly rigid, it was easy to identify potential values for the torque state values. Thus the controller utilised is a type of bang-zero-bang controller.

Fig 4.7: Control curve for torso when the value of u_{3} is unimportant.

Formulation of the associated rules comes from the critical points on the curve The input for each rule is $\left\{q_{3}, u_{3}\right\}$ and initially it is assumed that the velocity u_{3} is zero For the smallest positive angle the rule is

$$
\text { if }\left(q_{3}>0 \text { and }<=001\right) \text { state }=- \text { small }
$$

The full set of rules for zero velocity is given in the Fig 48 When u_{3} is not zero then the control curve is shifted This alters equation 412 giving a larger number if possibilities and the full table of values is also shown in Fig 49

Angle	Torque
Exactly 0	zero
$000-001$	small
$001-002$	large
>002	small

[^0]| Values of \mathbf{u}_{3} | ≤-0.02 | $\begin{aligned} & -0.01 \rightarrow \\ & -0.02 \end{aligned}$ | $\begin{aligned} & 0 \rightarrow \\ & -0.01 \end{aligned}$ | $0 \rightarrow 0.01$ | $\mathbf{0 . 0 1 ~} \boldsymbol{\rightarrow} \mathbf{0 . 0 2}$ | ≥ 0.02 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $<-1 \times 10^{-5}$ | small | small | small | small | large | small |
| $\geq-1 \times 10^{-5}$ \& \& $<-1 \times 10^{-4}$ | small | small | small | large | small | -small |
| $\geq-1 \times 10^{-4}$ | small | small | large | small | -small | -large |
| $=0$ | small | large | small | -small | - -arge | -small |
| $>0 \& \&<1 \times 10^{-5}$ | large | small | -small | -large | -small | -small |
| $\geq 1 \times 10^{-5}$ \& \& $<1 \times 10^{-4}$ | small | - small | -large | -small | -small | -small |
| $\geq 1 \times 10^{-4}$ | - small | - large | -small | -small | -small | -small |
| | | | | | | |

Fig 4.9: Control rules when velocity u_{3} is not 0.

4.7 Energy

The energy involved in motion is now addressed. This consists of the mechanical energy the creature has and the applied external torques. The mechanical energy consists of the sum of the potential and kinetic energies. It is not addressed in this body of work but the equations involved are given in Appendix I.

Goswami addressed the issue of the change in the form of the components of the mechanical energy in [Gos96b]. He stated that, if the robot executes a periodic motion the energy of the system must return to its initial value after every cycle, and since the state values would be the exact same at the beginning as at the end, the potential and kinetic energy values should also be equivalent. Recall also that as the robot walks down on a slope its support point also shifts downward at every touchdown. As it loses gravitational potential energy in this way its kinetic energy increases accordingly. This is exactly the amount of kinetic energy that is to be absorbed at the end of each step by the impact. If we reset our potential reference line to the line of
touchdown, the total energy of the robot appears constant regardless of its downward descent Farlure to reset the potential reference line results in a slight loss of mechanical energy as the robot descends Although not explicitly shown in chapter five, when a sample of some mechanical energy values were configured this also proved to be the case here

With regards to the applied external torque, the value of this is just the sum of the individual forces in the time frame 1 e within each step It shall be shown in chapter five that the values involved are minute - indicating that although the passiveness of the creature may be compromised to keep the body upright, that cost is mınımal

4.8 Block Diagram of complete system

To clanfy how the complete system works, a block diagram is now shown

Newton's Method

Chapter Five

Results

5.1 Introduction

The overall goal of this body of work is to enhance the pool of passive dynamic creatures through the simulation and analysis of a creature contaning an extended torso Previous research has modelled a torso as just a hip point mass as outlined in [McG90] [Gos96] and [Gar97] Initial importance will be placed upon the effect of the addition of extra hip mass to a body-less creature as the torso will be an extension of this hip mass Therefore the first portion of this chapter deals with a body-less creature with varying hip-mass values (starting with $m h i p=0$) The results gained should, and do in fact, coincide with those of other body-less hip-massed creatures (as referenced above)

The second segment of this chapter focuses on the creature with the torso and in particular stability and performance issues It shall be outlined that the overall effect of the addition of a torso does not damage the creature's attributes, and in some situations can improve performance

Finally, the complete set of results, which are in part summarised here, are given in the appendices

5.2 Body-less creature results

5.2.1 Initial Values and Basin of Attraction

In order to find stable limit cycles parameter values should be wisely chosen as minor maccuracies will lead to fallure of convergence of Newton's Method There are two categones of parameter values, those which are held constant and those that are
varying and numerical values are directly taken from known solutions given in previously published work eg [McG90] [Kuo00] The full list of parameter symbols with constant values and initial values for the variables which can be modified is given in Appendix F Varıables such as comleg are those which can be modified and the effect of some of these parameter variations is outlined later

As the choice of the inttal state values is crucial to the formulation of fixed point solutions, values for a known solution are incorporated This initial state is taken to be $\theta_{0}=\left\{q_{1}, q_{2}, u_{1}, u_{2}\right\}=\{03015,-03015,-03763,-02822\}$, which is given in both [McG90] and [Kuo00] The allowance of variation in each state value can be summarised as follows (see Appendix G 2)

- the states q_{1}, q_{2} can be altered by approximately 6%,
- the velocity u_{1} is slightly more ngid and can be varied by approximately 5%
- The most flexible of all four states u_{2} can be altered by up to approximately 75% Taking all points together this shows that the basin of attraction is quite small for stable limit cycles

Finally it should be noted that the addition of a hip mass leads to a slight improvement in the versatility of q_{1}, q_{2}, in that if mhip is 12 or greater the range of values the angles take on ıncreases by 001 radıans (see Appendix G 2)

5.2.2 Limit Cycles

Once an initial state "guess" has been identıfied the process of finding a solution can begin Using the initial state values above, along with the constant values given in the Appendix F, Newton's method was implemented and solutions for the fixed points for a complete step 1 e solving equation 324 were sought Limıt cycles as expected were indeed located and an example of one is given in Fig 51 More are given in Appendix G 1

Fig 5.1: The limit cycle for just the swing leg \imath e $\left\{q_{2}, u_{2}\right\}$ on $\gamma=0005$ radians Note that mhip $=0$ in this creatures description

5.3 Hip Mass effects

As the torso in essence is an extension of the concept of the addition of hip mass to the creature, the effects of alterıng the hip mass are of primary importance This section highlights the effects of the addition of incremental hip mass values, particularly in relation to performance issues, such as minımum and maximum attaınable slope

5.3.1 Varying the centre of mass of the leg

The centre of mass of the leg denoted by the scalar value comleg is given in terms as distance from the end point of the rigid link to the centre of mass position It was found that the centre of mass could be moved by a small amount both away from and towards this end point The effect of the addition of extra hip mass has no profound effect on how much variation the centre of mass can absorb While the upper and lower bounds vary slightly the overall difference between both stays reasonably constant as is illustrated in Fig 52

Fig 5.2: The value of comleg is orıginally taken to be 0 645, the straight horizontal line Now for varying mhip ie 0, 04 , and 0 8, the upper and lower bounds are shown here As can be seen, while the upper and lower bounds vary, the difference between both does not vary substantually

5.3.2 Varying the foot radius R

With the variation of the size of the foot radius R there are two noteworthy outcomes Firstly there is a change in the slope needed for a limit cycle A small R needs a steep slope, whereas a large R needs a small slope As the goal for passive walking is efficiency 1 e slope as near to zero as possible, the larger the R, the more efficient the creature is However realism dictates that the value of R be kept rather small and thus the value $R=03$ is uthlised throughout this work, in the form of a constant value

- J

Fig 5.3: Effect of varying R on γ needed For mhip $=08$ this shows that γ needed to keep the stance leg angle q_{1} at about 03015 is hugh as R approaches 0 and low as R approaches 1

Secondly the value of R has a profound effect on the value of the speed eigenvalue 1 e λ_{1} (recall that eigenvalues λ_{1} 's were discussed in section 433) When R is in proximity to zero this value is also close to 0 and when in proximity to 1 it is also close to 1

Fig 5.4: The speed eigenvalue λ_{1} as R increases

5.3.3 Effect on leg angles - i.e. inter-leg angle

The inter-leg angle is defined as the angle between the stance and swing leg 1 e the angle at the hip joint Since both angles are equal and opposite the inter-leg angle is therefore just $2 q_{1}$ For mhlp $=0$ as γ increases the inter-leg angle increases also 1 e the creature takes wider steps on larger γ

γ

Fig 5.5: Inter-leg angle increasing as γ increases

As extra hip mass is added the effect again is for the inter-leg angle to widen, as illustrated in Fig 56

Fig 5.6: As mhip increases (here from 02 to 1 6) so does the width of the inter-leg angle

5.3.4 Slope-minimum and maximum and Stability

As slope is an indication of efficiency (the walker needs a slope to move and thus $\gamma=$ 0 would be perfectly efficient) it is important to note effects on the minımum slope attanable by parameter changes Firstly mhip is taken to be 0 and the limits of γ for period one gatt are found to be from 0002 to 0043 radians As hip mass is added and incremented, there is also initially a growth in efficiency A hip mass, for instance of 08 , leads to a decrease in minımum γ to 00005 radians However if the hip mass is too high 1 e the creature has a heavy payload, then this efficiency gain seems to disappear For example when mhtp $=12$ and mhip $=16$ then the mınımum γ attanable is 0004 radians (as in Appendix G)

Concerning maximum attainable γ again the addition of $m h i p$ has a positive effect with the maximum attanable slope increasing as mhip is incremented The maximum γ with mhip $=0$ is 0043 , while with mhip $=12$ a γ value of 0058 radians is achıevable

With regards to stability, changes in mhip adversely affect the speed eigenvalue 1 e

57 Slope also seems to affect this elgenvalue with low or high slope values bringing this close to instability and an example is illustrated in Fig 58

Fig 5.7: Variation in λ_{1} due to additonal mhip

Fig 5.8: Effect of variation of λ_{1} due to increasing γ, for mhip $=08$

Fig 5.9: Shows the variatıon in max and min γ as the value of mhip increases

5.3.5 Effect on Step period

The step period is the time for one complete step to occur 1 e from heel-strike to heelstrike For a creature with no hip mass the step period increases as the slope increases 1 e as the slope gets larger the creature takes longer (1 e section 533) slower (e fewer) steps

Fig 5.10: The step period for the creature with mhip $=0$ is shown, varying as γ increases

The addition of varying hip mass does not alter the fact that the step period still increases as γ does However as the mhip value increases the overall step period decreases as is outlined in Fig 511

Fig 5.11: Step period for mhip $=04,08$ and 12 over slope varying from $\gamma=0$ to $\gamma=$ 004 radtans

5.3.6 Velocity and step length

Another means of determining performance is to determıne the step length and velocity of the creature The step length as outlined in section 321 is given by Length $=2 L \operatorname{Sin}$ where is the inter-leg angle The velocity on the other hand of the robot over one step is
$v=\frac{\text { Length }}{T}$
1e equation 44

For the mass-less creature as γ increases so too does the step length and velocity

γ

Fig 5.12: Changes in velocity and length for the mass-less creature as γ increases

The addition of a hip-mass does not alter the fact that both velocity and step length increase as slope increases Again though both numerical values are larger than that involved in the mass-less case 1 e the addition of extra mhip increases both the velocity and step length of the creature

γ

Fig 5.13: Length and velocity for creature with mhip $=08$ again as γ increases

5.3.7 Addition of a damper

A damper is included at the hip joint in an effort to improve the maximum attanable slope The form of this damper is quadratic 1 e $\operatorname{Ffric}\left(u_{2}-u_{1}\right)^{2}$ where Ffric is the coefficient of damping (as was outlined in section 453) Addition of a damper has two main effects Firstly the versatility of the creature is inflated through the use of this applied damper This is outlined in Fig 5 14, which shows that the maximum attanable γ can be increased by using dampers of varying damper coefficient values The process of finding the best coefficient values is really through trial and error but it was found that only small values worked well here The coefficient values used with the varıous mhip values are $\{m h \iota p=04$, Ffric $=-0008\},\{m h \imath p=08$, Ffric $=-$ $0012\}$ and $\{m h \iota p=12, F f r ı c=-002\}$

Fig 5.14: Increased maximum slope attainable provided by the addition of a quadratic damper

The second by-product of the utilisation of a hip damper is a change in the general appearance of the limit cycles This is illustrated in Fig 515 which shows the limit cycle for a damper-less model and for two different values of the damping coefficient

Fig 5.15: Limit cycles for creature with mhip $=004$ on $\gamma=0052$ radıans

5.3.8 Bifurcation

A bifurcation is a period doubling For one to occur peniod one solutions should disappear and stable period two solutions appear Other researchers [Gos96b] [Gar99] found them in their models as vanous parameters were brought towards a limit (1 e bifurcation point) For instance stable period one solutions would exist up to a certan slope and would then bifurcate into stable period two solutions An indication of bifurcation is achieved by inspection of the eigenvalues of the Jacobian of the Poincaré map in the neıghbourhood of the limit cycle These are 1dentified for stability (see section 4 3) and should be all less than 1 for stability At a bifurcation point at least one of these eigenvalues crosses the unit circle Clearly on inspection in Appendix G (eg G 5) this is not the case here so bifurcation does not occur In [Gar98b] Garcia indicates that period doubling does occur for the model described here but in addition with knees Therefore the addition of knees causes bifurcation to arise

5.3.9 Summary

The following is a summary of the effects of increasing slope on the various parameters, firstly when the mhip is 0 and secondly when it is not
$m h i p=0$

Slope	Inter-leg angle	Velocity	Step Period	Step Length
Increasing	Increases	Increases	Increases	Increases

Slope	Inter-leg angle	Velocity	Step Period	Step Length
Increasing	B1gger Increases also	Increases	Increases	Increases

In terms of efficiency and maxımum slope, as more mhip is added the efficiency (1 e mınımum slope γ) deteriorates and the maxımum slope increases A damper placed at the hip can increase the maximum attanable slope

Finally this body of work deals with "human-like" motion and thus the goal would be for the creature to carry a farly heavy payload Therefore if the results for the bodied creature can show an increase in efficiency and maxımum slope attanable it can be deemed a success

5.4 Bodied Results

5.4.1 Initial Values and Basin of Attraction

The choice of parameter values and the mitial state guess for θ_{0} is of vital importance as invalid values may lead to fallure in the discovery of fixed points As a starting point parameter values and state values where stable passive walking can be expected for the body-less creature are utilised With regard to the length and centre of mass of the torso, initial values were kept small until solutions were discovered Finally in conjunction with these values is the desired initial body position of uprightness 1 e
$q_{3}=u_{3}=0$ This gives the guess value for the state as $\theta_{0}=\left\{q_{1}, q_{2}, q_{3}, u_{1}, u_{2}, u_{3}\right\}=\{03015,-03015,0,-03763,-02822,0\}$

The original bang-zero-bang controller torque values were found through manual tweakıng Through brute force varıous torque values were tested (within the Rungekutta part of the solution process) and when the desired solution of a farrly nigid torso was found these were used as the initial values These then didn't change much and only 'considerable' changes in mass distributions (1 e hip and body) required alteration of the applied torque state values

According to McGeer, a human has about 70% [McG90] of body mass above the hip and thus the goal would be to have a farly heavy payload for the creature's legs to carry Therefore while some examples quoted in this chapter are for small hip and body masses, it is those concerning heavy payloads that are of prumary interest

The addition of a torso leads to an increase in the basin of attraction for the state variable values Examples are shown in Appendix H 3 and shows that increases of up to 15% are avarlable on the state values for the body-less case As the controller is designed to quickly swallow up errors in the body states it is also worth notung that q_{3} and u_{3} don't need to be too accurate

5.4.2 Limit Cycles

Of primary concern was the discovery of fixed points 1 e limit cycles, if they existed at all Lımıt cycles were indeed found and an example is shown in Fig 516

As a means of testing the code involved in the solution method intial values concernıng the body that are mınuscule were chosen, and disregarding the bang-zerobang control (since there is no body length), this gave a limit cycle similar to that of the body-less creature with the same parameters - see Appendix H 2

Intially, as shown in that diagram, the solutions are unstable, but this obstacle fades through the addition of a damper and "tweakıng" of the parameter values as shall be indicated later

Fig 5.16: Unstable soluton The parameters involved are mbody $=08, \operatorname{mh} p=1$, combody $=07$, lbody $=08$ and applıed τ values $\{$ small $=0003$, large $=002\}$

The goal throughout is to provide human-like motion and unrealistic solutions that were encountered, such as the body performing complete revolutions, are nonanthropomorphic and thus were discounted

5.4.3 Stability

Stability is a contentious issue with the presence of a just a torso and applied torque leading to eigenvalues well over the boundary limit of 1 Taking the stituation in Fig 5161 e an unstable solution, there are two elgenvalues $\left(\begin{array}{lll}1 & e_{1} & \text { and }\end{array}{ }_{2}\right)$ outside the unit circle and two are approximately $0\left(1 \mathrm{e} \quad{ }_{5}\right.$ and $\left.{ }_{6}\right)$ as illustrated in Fig 517

Fig 5.17: Eigenvalues for unstable solution on three different γ values The parameters again involved are mbody $=08, m h ı p=1$, combody $=07, l b o d y=08$ and applied τ values $\{$ small $=0003$, large $=002\}$ Note that it is the first two elgenvalues that provide instability

As previously described in section 453 it is necessary to uthlise a damper to provide stability Determining the type of damper used was achieved through trial and error Initially a linear damper was adopted and in addition a constant factorng value had to be combined to provide a successful solution The overall applied torque and damper is therefore given in section 4531 e
$F_{\text {toalal }}=\operatorname{Ffrac}\left(\right.$ Klın $\left.-\operatorname{damp} \times u_{3}\right)$,
where damp is the damping coefficient, Klin is the applied torque and Ffrac is the constant factorng value

Once this was taken into consideration, stable solutions were discovered and can be seen in Appendix H

Fig 5.18: Stable solution The following parameter choices are made mbody $=1$, $m h i p=15$, lbody $=0$ 8, combody $=0$ 795, damp $=055$, Frac $=5$, and applied τ values $\{$ small $=00008$, large $=00009\}$

A stable solution is now shown in Fig 518 One final thing to note is that the first ergenvalue remans at a value of approximately one This value of one indicates that the cycle is neutrally stable for perturbations along the relevant eigenvector and thus perturbations will neither shrink nor grow

It may be that another combination of applied torques and dampers may lead to a more "improved" class of solutions, in particular stability, and this is one option for future work

Fig 5.19 Eigenvalues for stable solution in Fig 518 on three different γ values

5.4.4 Effects of varying slope.

Angles

As the slope γ increases both q_{1} and q_{2} increase and thus does the inter-leg angle The angle the body makes $1 \mathrm{e} q_{3}$ however decreases as γ is enlarged 1 e the body tends towards "straightening itself up"

q_{3}

Fig 5.20: Variatıon in angles as γ increases The case shown here is for the following parameters $\operatorname{mbody}=1, \operatorname{mh} i p=15$, lbody $=08$, combody $=0 \quad 795$, damp $=055$, Frac $=5$, and applıed τ values $\{$ small $=00008$, large $=00009\}$ Note that the range of γ is from the minimum of 00005 to the maximum of 0043 radians Whle it is hard to make out in the diagram q_{3} actually decreases from 008 radians to 007

Step period

Once again the step period is the time taken for one complete step 1 e from heel-strike to heel-strike and in common with the body-less creature the step period increases as the slope increases

Fig 5.21: Variation in step period as γ increases The case shown here ts for the following parameters mbody $=04$, mhip $=1, l b o d y=08$, combody $=0$ 795, damp $=0$ 39, Frac $=5$, and applied τ values $\{$ small $=000002$, large $=00001\}$

Velocity

Velocity agann determıned by equatıon 441 e

$$
v=\frac{\text { Length }}{T}
$$

also increases

Fig 5.22: Variation in velocity as γ increases The parameters are mbody $=08, \mathrm{mh} p \mathrm{p}$ $=1$, lbody $=0$ 8, combody $=0$ 795, damp $=039$, Frac $=5$, and applied τ values $\{$ small $=000005$, large $=00005\}$

Fig. 5.23: Effect of variatıon of γ on both step period and velocity The case shown
here $i s$ for γ from the minimum of 00005 to the maximum of 0043 radians The parameters involved are mbody $=1$, mhip $=15$, lbody $=0 \quad 8$, combody $=0 \quad 795$, damp $=055$, Frac $=5$, and applied τ values $\{$ small $=00008$, large $=00009\}$

Stabllity

As the slope increases the eigenvalues tend to approach zero until instability occurs An example of their structure is given in Fig 524

Fig 5.24: Eigenvalues for the creature in $F_{l} g 523$ as γ is varled Note that λ_{5} and λ_{6} are both approximately 0 and thus only one is shown

5.4.6 Efficiency and Maximum slope

Efficiency is determined as the minımum slope attanable by the creature 1 e the minımum γ needed for contınuous movement In section 534 it was concluded that the minımum slope needed for a creature with hip mass included was approximately 00005 radıans In order therefore to clam that the bodied creature outlined does not sigmficantly hamper efficiency, then values close to that of the body-less creature are desired Efficiency depends on the parameters involved (1 e mhip, mbody, combody,
damp) but as shown through all the examples outlined in appendix H , efficiency is good in general with minımum slopes equalling those of the body-less detected (e g creature with parameters $m b o d y=1, \operatorname{mh} p=15, l b o d y=08$, combody $=0795$, damp $=055$, Frac $=5$, and τ states $\{$ small $=00008$, large $=00009\}$ has mınımum γ of 00005 radians)

As for the maximum slope attanable this again depends on how the parameters are formulated but improvements can be made on that of the body-less creature For example a body-less creature of hip mass equal to 08 had a maxımum feasible slope of 0057 Now for a hip mass of 10 and body mass of 04 this could be increased to 006 radians for stable motions and as far as 081 radians for unstable ones Further increases are attainable through the addition of a hip damper, as shall be outlined in section 549

Finally it should be pointed out that further increases in maximum slope and efficiency may be attanable through a variation on the applied torque and damper used here, and this shall be addressed in the next chapter as possible future work

mhip	mbody	lbody	combody	damp	minimum	maximum
04	02	01	0095	022	00006	006
10	04	08	0795	03	00008	006
15	10	08	0795	055	00005	0043

Fig 5.25: Table of some minimum and maximum γ values

5.4.7 Varying the centre of mass of the body

As the centre of mass of the body is measured in relation to the end of the link, the higher the value of combody the closer the centre of mass is to the hip mass point For
an unstable solution (1 e no damper) the range of values for which fixed points can be found is farly large In approximate terms the centre of mass can be moved from the end closest to the hip up to about the middle of the body link and still fixed points are found However all solutions are unstable The effects of moving the centre of mass up the body away from the hip are as follows all angles decrease (1 e the inter-leg angle becomes smaller and the angle the body makes becomes more upright), the velocity u_{3} increases and stability deteriorates

When the damper is added for stability the range of values of combody for which fixed point solutions can be found is diminutive As an example for the following creature parameters $m h i p=15, \operatorname{mbody}=10, l b o d y=08$ and damp $=055$, combody can be vaned from 0799 to 0793 before instability occurs and after 075 no fixed point solutions are possible The same effects as above are also noted and a full set of solutions is given in Appendix H 5

This low centre of mass necessity is one flaw that needs to be eradicated and would form one major component of future work, possibly through the addition of more dampers This issue is addressed in the next chapter

Fig. 5.26. Effect of variatıon of combody on the body angle q_{3} This is for the unstable case of parameters mbody $=08, \operatorname{mh} p=1$, combody $=07$, lbody $=08$ and applıed τ values $\{$ small $=0003$, large $=002\}$ on $\gamma=0025$

5.4.8 Effect of varying body mass

The examples shown throughout this chapter have given a definite value to mbody What is addressed now is how much scope there is for variation to this value Once again variation depends on the parameters in question but in general there is scope for alteration The table below shows how much some values can be changed and the main detail that can be gathered from these results is the following the body mass must be less than the hip mass for stable limit cycles to occur Again this is an issue for further work and is addressed in the next chapter

mhip	mbody		minimum	maximum
15	10		04	12
10	04		03	07
04	02		02	035

Fig: 5.27: Variation possible in mbody values

5.4.9 Effect of varying radius of gyration

The radius of gyration for the body is given as a constant value of 0121 - see Appendix F However this value can be altered - the estimation given is the maximum allowed but it can be decreased as far as 005 The effect of dimımishing the value is as follows all angles decrease m size

The radius of gyration for the leg is also given as a constant value of 009 For the body-less creature a value of 0121 was used but this only leads to farlure of Newton's
method to converge if used here The range of possible values is from 01 back to 004 Again the effect of diminishing the value is to decrease the angular values

5.4.10 Hip Damper

Taking cue from the body-less creature and in an effort to improve versatility a damper was placed at the hip joint As outlined in section 453 both a linear and quadratic were tested but it was the quadratic one that provided initally impressive results Therefore the equation used for the applied damper is $\operatorname{Ffric}\left(u_{2}-u_{1}\right)^{2}$, where Ffric is the damping coefficient and u_{I} and u_{2} are the velocities of the stance and swing angles Individual values utilised for Ffric are given in Appendix H 7

Again there are two outcomes of note with regard to the addition of the quadratic damper described Firstly there is an increase in the maximum slope attanable The table in Fig 528 highlights the increases for a few examples It is worth highlighting that with the body-less creature and additional hip damper, the maximum slope found for a realistic creature was 007 radians, which is increased on slightly here

Parameters	mhip	mbody	Old max γ	New max γ	Increase
	10	04	006	0073	$\cong 21 \%$
	08	04	0055	0065	$\cong 18 \%$
	10	08	004	0051	$\cong 27 \%$
	15	10	0043	0055	$\cong 27 \%$

Fig 5.28: Increases in maximum slope through addition of damper

Secondly the addition of a hip damper alters the general appearance of the limit cycle created Addition of a damper, may slightly shrink or magnify the format of the limit cycle

Fig 5.29: Limit cycles for various hip damper coefficient values The creature parameters are $m b o d y=04, m h u p=10$, damp $=039$, Frac $=5, l b o d y=08$ all on a slope of $\gamma=0065$ It is worth noting also that previous to this damper addition the maxımum attainable γ was 0055 radıans

5.4.11 Total applied torque in each step.

To keep the body upright and stable it has been established that external torque values are required How significant is the value of this external torque? The complete external force applied to the creature is given in section 453 ie $F_{\text {toal }}=\operatorname{Frac}\left(\right.$ Klin $\left.-\operatorname{damp} \times u_{3}\right)$ This is per iteration and per step involves summation but is diminutive For example, for the creature outlined in Fig 523 on $\gamma=0025$ it is $-00289354 \mathrm{~N} / \mathrm{m}$ per step The applied torque increases as the γ increases and is shown in Fig 530 and Fig 531 Finally more values are given in Appendix H 8

Fig 5.30: Total applied torque as γ increases for one step for the creature with mhip $=1.5$ and mbody $=1.0$. Note that the applied torque is shown as having a negative value - this means that it is a restoring force.

Fig 5.31: Total applied torque as γ increases for one step for the creature with mhip $=0.8$ and mbody $=0.2$.

5.4.12 Controller Issues

The purpose of this work was the addition of a torso with as simplistic a controller as possible, thus trying to sustain as much as possible the basic premise of passive dynamic walkers i.e. little or no control. Most of the results prior to now have involved the controller based solely on the q_{3} value and given in Fig 4.8. If however the controller given in Fig 4.9 is utilised there are no major changes in performance.

The only difference is a change in the appearance of q_{3} - now it leans backwards slightly Some results illustrate this and are given in Appendix H 10

5.4.13 Summary

The following is a summary of the effects of the variation of the slope on the various parameters which is m -line with that of the body-less creature

Slope	Inter-leg angle	${\text { Angle } q_{3}}^{\text {Velocity }}$	Step Period	Step Length	
Increasing	Increases	Decreases	Increases	Increases	Increases

In terms of efficiency values equalling those of the body-less creature have been found Improvements in maximum slope attainable, in particular in conjunction with a damper placed at the hıp have been identıfied

Chapter Six

Conclusions And Future Work

6.1 Achievements

Previous work [McG90] [Gos96] and [Gar97] has well established that a passively engineered biped can "walk" down a slightly inclıned plane powered only by gravity and eventually acquire a stable periodic gat Thus the passive-walking pattern is determined by the natural frequency of the mechanical system An interesting characteristic was that the creatures involved achieved a stable limit cycle that looked human-like Common to all creatures involved was that a hip mass was uthlised to represent a torso and it is this exclusion of an extended torso that has been addressed here

McGeer's creature [McG90] was used as the foundation with an extra inverted link representing the torso Keeping this link in an upright position can be achieved through the use of a simple fuzzy logic controller without violating the inherent simplicity of the model The solution process involved formulation of the equations of motion and transition equations and then fixed point solutions were sought and these provided the limit cycles

Once limit cycles were found it needed to be determıned if they were stable or unstable While not immediately avallable, stability could be achieved through the addition of a damper and manual tweaking of the variable values involved Finally it was shown that the addition of a hip damper could improve on the previous results gamed

6.2 Performance issues

The man performance issues regarding passive creatures can be summarised as stability, efficlency, maximum slope, velocity and step period With regard to practical performance issues, the creature of McGeer (used as the foundation of this research) achieved a mınımum slope of 0005 radıans and a maxımum of 006 radıans [McG90] Thus to deem the bodied creature a "success" values similar in stature were sought As stated previously, stability was acheved although after some tweaking There is a slight increase in the basin of attraction indicating that a larger error in the initial state vector is acceptable as compared to the body-less case McGeer utilised a linearised solution process in his work and thus improvements in efficiency should be ganed, and this was found to be the case with solutions existing for slopes as low as 00005 radians - this is similar to the result found here for the body-less case Improvements were also made in the maximum slope achievable The velocity and step period values are in keeping with those of the body-less creature 1 e increasing as the slope increases Finally the applied torque utilised in keeping the body upright, an external force which may be problematic in a physical implementation of the creature, is shown to be minute per step taken Thus the applied torque necessary to keep the body upright would not require a large power source

6.3 Future Work

6.3.1 Creature configuration

The simulated creature outlined here consists of three ngid links, two representing legs and one a torso, connected via hinge joints This type of joint has limit degrees of freedom and thus keeps the structure of the creature simple Addition of ball and socket joints would aid realısm (more human-lıke), and may positively effect some of the performance issues and should be simulated

This creature requires a low centre of mass for stable solutions to be detected However higher centre of mass positions would be necessary in a real world environment One method of combating this problem may be to add in extra mass components in specific locations

Addition of a torso is just one development necessary for a chopped at the wast bipedal creature Any realistic creature (either simulated or real) will be required to perform some sort of tasks other than just movement Thus some sort of freely moving gripping arms need to be added

In [McG90b] McGeer updated his bipedal robot through the addition of knees This was accomplished by splitting each leg into two, a thigh and a shank and placing a stop at each knee to prevent hyperextension Once again stable limit cycles were found and as possible future work knees should be incorporated into the creature contanning a torso described here

6.3.2 Dampers

Addition of dampers have been very useful here, providing stability and giving more versatile solutions Those modelled have a linear form to keep the torso upright and a quadratic form at the hip joint Different types of dampers, other than those mentioned here may further increase the performance of the creature In particular addition of extra springs and dampers may lead to improvements in the positioning of the centre of mass of the torso

6.3.3 Controller

Central to the research in the area of passive ballistic walkers is the notion of simplicity To remain true to this motto as elementary a controller as possible was utilised As previously outlined there were two versions of controller used, each had three states and one took into account the value of the angle velocity u_{3} While
solutions were found other slightly more complex controllers (however not too complex') might be used to keep the body upright and provide better performance

Other forms of external control (such as the passivity mimıcking laws used by Goswamı [Gos97a]) might also be added into the solution process to provide better solutions

6.3.4 Optimisation

Many performance gauges were emphasised throughout chapter five However instead of just finding a solution it would be best to find the best solution Therefore the solution process should be optımısed to find for example the least energetic cost in movement, the fastest step etc Within this also is the notion of improving performance values eg trying to get the most efficient creature etc

6.3.5 Physical implementation

The whole process outlined in this is work is based upon simulation Thus a real model should be constructed and investigated One of the main issues would be how to implement the controller - as a non-linear spring or as an actuator? Obviously the most energy efficient solution should be sought giving the best performances

Bibliography

[Ale95] Alexander, R, McN Simple models of human motion Applied Mechantcs Review, 48 461-469, 1995
[Apt00] www aptronix com/fuzzynet
[Ber97] Berkemeier, M Smith, A Quadrupedal Walking - a Passive Dynamic Approach IEEE Transactons on Robotıcs and Automatıon, 1997
[Bez93] Bezdek, J, C Fuzzy Models - What Are They And Why? IEEE Transactions On Fuzzy Systems, 1 1, pp1-6, 1993
[Bıp00] www inrialpes fr/bip/
[Bur74] Burley, D, M Studies in Optimization International Textbook Company Limited 1974
[Ca100] robby caltech edu/~kayta/bipedsite htm
[Cam97] Camp, J Powered "Passive" Dynamic Walking Masters of Engineering Project Report, The Sibley School of Mechanical and Aerospace Engıneerıng, Cornell Unıversity, Itaca NY, August 1997
[Col98] Coleman, M and Ruına, A An uncontrolled walking toy that cannot stand still Physical Review Letters, 80 (16) 3658-3661 1998
[Co198b] Coleman, M A Stabılity Study Of A Three-Dimensional Passive Dynamıc Model Of Human Gait PhD Thests, Cornell Unıversity, Ithaca, New York, 1998
[Cor00] www cemr cornell edu/~runalab/pdw html
[Ega96] Egan, A Physically Realistic Anımation Using Spacetıme Constraints Submitted in requirement for Masters Thesis, Dublin City Unıversity, 1996
[Ega97] Egan, A A Review Of Synthesising Autonomous Controllers To Provide Physically Based Anımation Working Paper CA2497, Dublin City University, 1997
[Fow96] Fowble, J V and Kuo, A D Stability And Control Of Passive Locomotion In 3D Proceedings of the conference on Biomechanics and Neural control of Movement, pages 28-29, 1996
[Fuz00] www cs cmu edu/groups/at/html/faqs/av/fuzzy
[Gar98a] Garcia, M Chatterjee, Ruma A, Coleman, M The sımplest walking model Stabılity, Complexity, and scaling ASME Journal of Biomechanıcal Engıneering, 1998
[Gar98b] Garcia, M, Chatterjee, A Speed, Efficiency, and Stabilhty of SmallSlope 2-D Passive Dynamic Bipedal Walking Proceedings Internatoonal Conference on Robotics and Automatıon, Leuven, Belgium 1998
[Gar99] Garcia, M, Stability, Scalıng And Chaos In Passive Dynamic Gait Models PhD Thesis, Cornell University, Ithaca, New York, 1999
[Gop84] Gopal, M Modern Control Systems Theory New Delhi, Wiley Eastern, 1984
[Gos94] Goswamı, A , and Espiau, B Compass gat revisited In Proc IFAC Symposium on Robot Control (SYROCO), pages 839-846, Capr, September 1994
[Gos96a] Goswamı, A, B Espiau and A Keramane, Limıt Cycles and their Stability in A Passive Bipedal Gait In Proc of IEEE Conf on Robotıcs Automatıon, pages 246-251, Minneapolis, April 1996
[Gos96b] Goswamı, A, Thuılot, B, and Espiau, B Compass-like biped robot part 1 Stability and bifunfication of passive gats Technical report, INRIA, No 2996, Oct 1996
[Gos97a] Goswamı, A, Esprau, B and Keramane, A Limıt cycles in a passive compass gat biped and passitivity-mımıcking control laws Journal of Autonomous Robots, 4 273-286, 1997
[Gos97b] Goswamı, A , Thuilot, B, and Esprau, B Bifurcation and Chaos in a Simple Passive Bipedal Gait IEEE International Conference on Robotics and Automation, Albuquerque, NM, April 1997
[Gos98] Goswamı, A, Thurlot, B Espiau, B A study of the passive gatt of a compass-like biped robot symmetry and chaos International Journal of Robotics Research, Vol 17, No 12, 1998
[Han88] Hannah, J Hılher, M J Applıed Mechanics Longman Scientıfic and Technical, 1988
[Hod00] www cc gatech edu/gvu/anımation
[Hon00] www honda co jp/english/technology
[Hur86] Hurmuzulu, Y, and Moskowitz The Role Of Impact In The Stability Of Bipedal Locomotion, Dynamics and Stability of systems, 1(3) 217234, 1986
[Hur00] cyborg seas smu edu/~hurmuzlu/index html
[Kat84] Katoh, R, and Morı, M Control Method Of Bıped Locomotion Giving Asymptotıc Stabılity Of Trajectory Automatıca, 20(4) 405-411, 1984
[Kuo98] Kuo, A, D Stabilisation Of Lateral Motion In Passive Dynamic Walking Internatıonal Journal of Robottcs Research Submitted 1998
[Kuo00] www-personal engin edu/~artkuo
[Lot65] Lotfi, Zadeh Fuzzy Sets Information and Control, 8 338-353, 1965
[Lot73] Lotfi, Zadeh Outline Of A New Approach to the Analysis Of Complex Systems IEEE Transactıon on Sys, Man and Cyb, 1973
[McG90] McGeer, T Passive Dynamıc Walking Internatonal Journal of Robotıcs Research 9(2) 62-82 1990
[McG90a] McGeer, T Passive Bipedal Runnıng Proc R, Soc Lond B, 204 1071341990
[McG90b] McGeer, T Passive Walking With Knees In Proceedings 1990 IEEE International Conference On Robotics And Automation, pages 16401645, Los Alamitos, CA, 1990
[McG91] McGeer, T Passive Dynamic Biped Catalogue In Proceedings Of The $2^{\text {nd }}$ Internatıonal Symposium Of Experimental Robotics, SpringerVerlag, New York, 1991
[Mit00] www al mit edu/projects/legleb
[Miu84] Miura, H, and Shimoyama, I Dynamic Walking Of A Biped, International Journal of Robotics Research, 3(2) 60-74 1984
[Moc80] S Mochon and TA McMahon Ballistıc Walking an improved model Mathematical Biosciences, 52 241-260, 1980
[Moc80b] S Mochon and TA McMahon Ballistıc Walking Journal of Biomechanics, 13 49-57, 1980
[Ott93] Ott, E Chaos in Dynamical Systems Cambridge Unıversity Press, 1993
[Pre90] Press, W et al Numerical Recipes in C, Cambridge University Press, 1990
[Qu198] Quint van der Linde, R Active leg compliance for passive walking Proceedings of the 1998 IEEE International Conference on Robotics and Automation, pages 2339-2344, 1998
[Ra186] Rabert, M H Legged Robots the Balance M I T Press, Cambridge, USA, 1986
[Ru197] Ruina, A, Future Project Descriptions An excerpt from a National Science Foundation proposal Avalable as a compressed file at www ccmr cornell edu/~ruınalab/walkıng_papers html
[Ros94] Rose, J, and Gamble, J, G, (eds) Human Walking Williams and Witkin, Baltımore, USA, 1994
[Sc199] www-rocq 1 nria fr/scilab/
[Sha84] Shaw, R The Drıpping Facet As A Model Chaotic System Aerial Press, Santa Cruz, 1984
[Skew94] Skewchuk, J, R An introduction to the conjugate gradient method without the agonizing pain Available as a compressed file at www cs cmu edu/~quake-papers
[Syn70] Synge, J, and Griffith, B Principles of Mechanics. McGraw-Hill Kogakusha, Ltd Third Edition, 1970
[Wol96] Wolfram, S The Mathematica Book, Version 3 Cambridge University Press, 1996

Appendıx A:

Vectors associated with the Bodied Creature.

Height of 'Points' above ground

It will be useful to have the heights of various points on the creature at particular time intervals Therefore the vector values for these points are

$$
\begin{aligned}
& \text { foot-heıght }=(L-R) \operatorname{Cos}\left[q_{1}\right] \text { sta }[2]+(-L+R) \operatorname{Cos}\left[q_{2}\right] \text { swi[2] } \\
& \text { hıp-heıght }=(L-R) \text { sta }[2]+R \text { ground }[2]
\end{aligned}
$$

Vectors

Bodytojnt is the vector from the new body's COM to the joint connecting it

- Stance to ground
-Rground[2] - (comleg - R) sta[2]
- Swing to stance

$$
(L-\text { comleg }) \text { swi[2] }
$$

- Body to hip
-(lbody - combody) bod[2]

Inbtojnt is the vector from the Inboard bodys COM to the joint connecting it to the hew body

- Stance to ground

0

- Swing to stance
(L - comleg) sta[2]
- Body to stance
(L - comleg) sta[2]

Appendix B:

Mathematica Code for equations of motion i.e. state derivative sta for the body-less creature. Note that code for transition matrix is only given for the bodied creature.

```
(* Include dynamıcs Workbench package *)
<<c \DynamıcsWorkbench m
(* Clear the internal varıables storıng parameters of the model *)
NewModel
```

```
(* Add in the two leg reference frames sta and swi *)
AddFrame[sta, ground, Hinge, Axis->ground[3]],
AddFrame[swl, ground, Hınge, Axls->ground[3]],
udofs ={1, 2},
(* Kınematıcs of the legs *)
AngVel[ sta ] = u[1] ground[3],
AngVel[ swl ] = u[2] ground[3],
Bodies = {sta, swz},
Inboard[ sta ] = ground,
Inboard[ swl ] = sta,
rank = R ground[2],
vank = Cross[ AngVel[sta], rank],
(* hlp ls positıoned at jolnt jolnıng the two legs *)
(*NOTE THAT Cl IS USED FOR comleg here *)
```

hap $=$ PosPnt[(L-Cl) sta[2], sta] ground[2],
(* Velocrtıes of legs *)
VelCOM[sta] = vank + Cross[AngVel[sta], (Cl-R) sta[2]],
AccCOM[sta $]=\operatorname{Dt}[V e l C O M[s t a], t$, Constants->\{R,Cl,lp\}]/
$\{q[1] '->u[1], q[2] '->u[2]\}$,
AngAcc[sta] = Dt[AngVel[sta],t],
Kınematics $=\left\{u[1]==q t[1]^{\prime}[t], u[2]==q t[2]^{\prime}[t]\right\}$,
Force[sta] = \{\},
Torque[sta] = \{\},
Force[swl] = \{\},
Torque[swl] = \{\},
VelJnt[swl] = Sımplıfy[VelCOM[sta] + Cross[AngVel[sta],
(L-Cl) sta[2]]]
VelCOM[swi] = VelJnt[swl] + Cross[AngVel[swl],
-(L-Cl) swl[2]]
AngAcc[swı] = Dt[AngVel[swı],t],
AccJnt [swı] = Sımplıfy[AccCOM[sta] + Cross[AngVel[sta],
Cross [Angvel[sta], (L-Cl) sta[2]]] + Cross[
AngAcc[sta], (L-Cl) sta[2]], Trig->False],
AccCOM[swı] = Sımplıfy[AccJnt[swl] + Cross[AngVel[swl],
Cross[AngVel[swı], -(L-Cl) swı[2]]] + Cross[

```
            AngAcc[swl], -(L-Cl) swl[2] ] ],
BodyToJnt[sta] = -rank - (Cl-R) sta[2],
BodyToJnt[swl] = (L-Cl) swl[2],
InbToJnt[sta] = 0,
InbToJnt[swl] = (L-Cl) sta[2],
(* Mass of legs ıncludıng hıp mass *)
Mass[ swı ] = M + Mhıp, Mass[ hıp ] = Mhıp, Mass[ sta ] = M + Mhıp,
Inertia[ sta ] = Il sta[1]**sta[1]+Il sta[3]**sta[3],
Inertıa[ swl ]=Ilswl swi[1]**swl[1]+Ilswl swi[3]**swl[3],
(* Forces applıed to the legs i e gravıty *)
AppFrc[ sta, Mass[sta] grav, 0],
AppFrc[ swı, Mass[swı] grav, 0],
(* Torque applıed by spring and damper at the hip joint *)
AppTrq[swl , Ffrıc((u[2]-u[1])^2) ground[3]],
grav = g (-Cos[gamma] ground[2] + Snn[gamma] ground[1]),
(* Generate the equations of motion *)
eom = EOM
(* next need to splıt up eom so that state derıvatıve can be found *)
test=Sımplıfy[MassMatrıx[eom]]
*)
Prınt[StrıngForm["Value for the 2*2 matrıx M"]]
m11=Coefficlent[eom[[1]][[1]], (u[1])', 1],
m12=Coefficlent[eom[[1]][[1]], (u[2])', 1],
m21=Coefficient[eom[[2]][[1]], (u[1])', 1],
m22=Coefficient[eom[[2]][[1]], (u[2])', 1],
(* Matrix M in section \(33^{3 *}\) )
```

```
MatM[2,2]={{-m11,-m12},{-m21,-m22}}
```

MatM[2,2]={{-m11,-m12},{-m21,-m22}}
Prınt[StrıngForm["rıght hand side values"]]
Prınt[StrıngForm["rıght hand side values"]]
rest1 = eom[[1]][[1]] - (Coefflclent[eom[[1]][[1]], (u[1])',
rest1 = eom[[1]][[1]] - (Coefflclent[eom[[1]][[1]], (u[1])',
1]*u[1]') - (Coefficlent[eom[[1]][[1]], (u[2])', 1]*u[2]'),
1]*u[1]') - (Coefficlent[eom[[1]][[1]], (u[2])', 1]*u[2]'),
rest2 = eom[[2]][[1]] - (Coefficient[eom[[2]][[1]], (u[1])',
rest2 = eom[[2]][[1]] - (Coefficient[eom[[2]][[1]], (u[1])',
1]*u[1]') - (Coefficlent[eom[[2]][[1]], (u[2])', 1]*u[2]'),
1]*u[1]') - (Coefficlent[eom[[2]][[1]], (u[2])', 1]*u[2]'),
(* Matrix R in section 3 3 3*)

```
\(\operatorname{Rmat}[1,2]=\{\) rest 1, rest 2\(\}\)
```

(* Lınear solve to get last values for state derıvatıve *)
uveldot = LinearSolve[MatM[2,2],Rmat [1, 2]]

```
```

(*
(* Linear solving above glves the state vector sta *)
sta = {u[1],u[2],uveldot[[1]],uveldot[[2]]}
sta >> c \stateder ma

```

\section*{Appendix C:}

\section*{Mathematica Code for equations of motion i.e. state derivatıve sta for the bodied creature and the transition equation.}
```

(* Include DynamıcsWorkbench package *)
<<c \DynamıcsWorkbench m

```
NewModel

(* Setting up frames of reference *)
AddFrame[sta, ground, Hınge, Axıs->ground[3]],
AddFrame[swı, ground, Hınge, Axis->ground[3]],
AddFrame[bod, ground, Hinge, Axis->ground[3]],
udofs=\{1, 2, 3\},
AngVel[ sta ] \(=u[1]\) ground[3],
AngVel[ swl ] \(=u[2]\) ground[3],
AngVel[ bod ] \(=u[3]\) ground[3],
Bodies \(=\{\) sta, swi, bod),
Inboard[ sta ] = ground,
Inboard[ swl ] = sta,
Inboard[ bod ] = sta,
(* hdpos is the vector from the com upwards - means back towards the
hıp *)
hıp \(=\) PosPnt[(L-comleg) sta[2], sta] ground[2],
rank \(=\mathrm{R}\) ground[2],
vank = Cross[ AngVel[sta], rank],
VelCOM[ sta ] = vank + Cross[ AngVel[sta], (comleg-R) sta[2]],
AccCOM[ sta ] = Dt[VelCOM[sta],t, Constants->\{R,comleg,lp\}]/
\(\{q[1] '->u[1]\),
_q[2]'->u[2]\},
AngAcc[ sta ] = Dt [AngVel[sta],t],
Kınematıcs \(=\{u[1]==\) qt[1]'[t], \(u[2]==q t[2] '[t], u[3]==q t[3] '[t]\)
\},
Force[sta] = \{\},
Torque[sta] = \{\},
Force[swl] = \{\},
Torque [swz] = \{\},
Force[bod] \(=\{ \}\),
Torque[bod] = \{\},
VelJnt[ swl ] = Sımplıfy[ VelCOM[ sta ] + Cross[AngVel[sta],
    (L-comleg) sta[2]] ],
VelCOM[ swl ] = VelJnt[swl] + Cross[ AngVel[swl],
_-(L-comleg) swi[2] ],
ÄngAcc [swl] \(=\operatorname{Dt}[\) AngVel [swl], \(t]\),
AccJnt[swl] = Sımplıfy[ AccCOM[sta] + Cross[AngVel[sta],
_Cross[AngVel[sta], (L-comleg) sta[2] ] ] + Cross[
```

_AngAcc[sta], (L-comleg) sta[2]], Trig->False];
AccCOM[swi] = Simplify[AccJnt[swi] + Cross[AngVel[swi],
Cross[AngVel[swi], -(L-comleg) swi[2]]] + Cross[
AngAcc[swi], -(L-comleg) swi[2]]];
-*)
VelCOM[bod] = VelJnt[swi] + Cross[AngVel[bod], (lbody-combody) bod[2]
];
AngAcc[bod] = Dt [AngVel[bod],t];
AccCOM[bod] = Simplify[AccJnt[swi] + Cross[AngVel[bod],
_Cross[AngVel[bod], (lbody-combody) bod[2]]] + Cross[
__AngAcc[swi], (lbody-combody) bod[2]], Trig->False];
BodyToJnt[sta] = -rank - (comleg-R) sta[2];
BodyToJnt[swi] = (L-comleg) swi[2];
BodyToJnt[bod] = (lbody-combody) bod[2];
InbToJnt[sta] = 0;
InbToJnt[swi] = (L-comleg) sta[2];
InbToJnt[bod] = (L-comleg) sta[2];
(* Note that each leg contains the hip mass *)
Mass[swi] = M + Mhip;
Mass[hip] = Mhip;
Mass[sta] = M + Mhip;
Mass[bod] = Mbody;
Inertia[sta] = Ilsta sta[1]**sta[1]+Ilsta sta[3]**sta[3];
Inertia[swi] = Ilswi swi[1]**swi[1]+Ilswi swi[3]**swi[3];
Inertia[bod] = Inertiabody bod[1]**bod[1]+Inertiabody
bod[3]**bod[3];
AppFrc[sta, Mass[sta] grav, 0];
AppFrc[swi, Mass[swi] grav, 0];
AppFrc[bod, Mass[bod] grav, 0];
(* Torsional Springs position and force - added to try to improve
stability *)
AppTrq[swi, Ffric((u[2]-u[1])^2) swi[3]];
(* Inverted pendulum torque - spring and damper with damping coeff
damp and torque Klin and constant Frac *)
AppTrq[bod, Frac(Klin - damp*u[3]) bod[3]];
grav = g (-Cos[gamma] ground[2] + Sin[gamma] ground[1]);
eom = EOM;
test=Simplify[MassMatrix[eom]];
(* Again need to get into form for linear solving *)
(* Matrix M in section 3.3.3*)
M[3,3]={test[[1]][[1]], test[[1]][[2]], test[[1]][[3]]};

```
```

R[1,3]=test[[2]],
uveldot=LınearSolve[M[3,3],R[1,3]],
Prınt[StrıngForm["State Vector 1s "]],
sta={u[1],u[2],u[3],uveldot[[1]],uveldot[[2]],uveldot[[3]]}
sta >> c \statemat nb

```

\section*{TRANSITION EQUATIONS (SECTION 3.4)- SAME CODE AS ABOVE UNTIL EQUATIONS OF MOTION ARE FORMED}
```

eom = EOM,
amawhole = AngMom[{sta, Swl}, 0],(*+
AngMom[{bod}, PosPnt[(L-comleg) sta[2], sta]]*)
amaswl = AngMom[{swl}, PosPnt[(L-comleg) sw_[2], swl]],
amabod = AngMom[{bod}, PosPnt[(L-comleg) sta[2], sta]],
M[3,3]={{Coefficient[amawhole sta[3],
u[1]],Coefficlent[amawhole sta[3], u[2]],
Coefficlent[amawhole sta[3], u[3]]},
{Coefflclent[amaswl sta[3], u[1]],Coefficlent[amaswl sta[3], u[2]],
Coefficlent[amaswı sta[3], u[3]]},
{Coefficient[amabod sta[3], u[1]],\overline{Coefficlent[amabod sta[3], u[2]],}
Coefficlent[amabod sta[3], u[3]]}},
(*Angular Momemtum before*)
ambefwhole = AngMom[{sta, swi}, PosPnt[-(comleg-R) swl[2] -R
ground[2],
swl]], (*+ AngMom[{bod}, PosPnt[(L-comleg) sta[2], sta]]*)
ambsta = AngMom[{sta}, PosPnt[(L-comleg) sta[2], sta]],
ambbod = AngMom[{bod}, PosPnt[(L-comleg) sta[2], sta]],
Bef[1,3]={ambefwhole sta[3],ambsta sta[3],ambbod sta[3]},
cond1=LunearSolve[M[3,3], Bef[1, 3]]
cond1 >> c \artkuo\mar3\transmat nb

```

\section*{Appendix D}

\section*{Equations of motion matrices for the body-less creature}

The equations of motion for the body-less creature can be written as
\(M\binom{u_{1}}{u_{2}}-R\binom{u_{1}{ }^{2}}{u_{2}{ }^{2}}=0\),
where the matrices \(M\) and \(N\) are
\(M=\left[\begin{array}{cc}I l+\left(\text { comleg }^{2}+L^{2}\right)(2 m+m h l p) & (\text { comleg }-L) L(2 m+m h l p) \operatorname{Cos}\left(q_{1}-q_{2}\right) \\ (\text { comleg }-L) L(2 m+m h l p) \operatorname{Cos}\left(q_{1}-q_{2}\right) & \text { Ilswl }+(\text { comleg }-L)^{2}(2 m+m h l p)\end{array}\right]\)
\(R=\left[\begin{array}{c}-(2 m+m h l p)\left(g(\text { comleg }+L) \operatorname{Sin}\left(\gamma-q_{1}\right)+(\operatorname{comleg}-L) L \operatorname{Sin}\left(q_{1}-q_{2}\right) u_{2}^{2}\right. \\ (\text { comleg }-L)(2 m+m h l p)\left(-g \operatorname{Sin}\left(\gamma-q_{2}\right)+L \operatorname{Sin}\left(q_{1}-q_{2}\right) u_{1}^{2}\right.\end{array}\right]\)

\section*{Appendix E:}

\section*{State derivative for Bodied Creature}
```

0(t)={u[1], u[2], u[3], -(((-()comleg - L)*(combody - lbody)^2*
Mbody*(M + Mh_p)*((L - R)*Cos[q[1] - q[2]] + R*Cos[q[2]])) -
(combody - lbody)*Mbody*(Ilswı + (comleg - L)^2*(M + Mhıp))*
((L - R)*Cos[q[1] - q[3]] + R*Cos[q[3]]))*
(g*(combody - lbody)*Mbody*Sin[gamma - q[3]] -
(combody - lbody)*Mbody*(L - R)*SIn[q[1] - q[3]]*
u[1]^2 + frac*(Klın - damp*u[3])))/(Inertıabody*((Ilswl + (comleg -
L)^2*(M + Mhlp))*(Ilsta + comleg^2*M + L^2*M + L^2*Mbody +
comleg^2*Mh1p +
L^2*Mhlp - 2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R -
2*comleg*Mhıp*R - 2*L*Mhıp*R + 4*M*R^2 + 2*Mbody*R^2 +
4*Mh1p*R^2 + 2*R*(L*M + L*Mbody + L*Mh1p +
comleg*(M + Mhıp) - 2*M*R - Mbody*R - 2*Mhıp*R)*
Cos[q[l]]) -(comleg - L)*(M + Mhip)*
((L - R)*Cos[q[1] - q[2]] + R*Cos[q[2]])*
((comleg - L)* (M + Mhıp)* (L - R)*Cos[q[1]-q[2]] +
(comleg - L)*(M + Mhıp)*R*Cos[q[2]] -
(combody - lbody)*Mbody*
((L - R)*Cos[q[1] - q[3]] + R*Cos[q[3]]))))) +
(-((comleg - L)*(M + Mhip)*((L - R)*Cos[q[1] - q[2]] +
R*Cos[q[2]])*(g*(-comleg + L)*(M + Mhıp)*
Sin[gamma - q[2]] + Khıp/(q[1] - q[2]) +
(comleg - L)*(M + Mh_p)*(L - R)*Sın[q[1] - q[2]]*
u[1]^2 + Ffric*Sin[u[1] - u[2]]*
(u[1] - u[2])^2)) +(Ilswı + (comleg - L)^2*(M + Mhıp))*
(g*(M + Mhıp)*(-R + (-comleg + R)*Cos[q[1]])*Sın[gamma] +
g*Mbody*(-R + (-L + R)*Cos[q[1]])*Sın[gamma] +
g* (M + Mhıp)*(-R + (-L + R)*Cos[q[1]])*Sın[gamma] +
g*(M + Mhıp)*(comleg - R)*Cos[gamma]*Sın[q[1]] +
g*Mbody*(L - R)*Cos[garma]*Sin[q[1]] +
g*(M + Mhıp)*(L - R)*Cos[ganma]*Sın[q[1]] +
R*(L*M + L*Mbody + L*Mhıp + comleg*(M + Mhip) - 2*M*R -
Mbody*R - 2*Mhıp*R)*Sın[q[1]]*u[1]^2 +
(comleg - L)*(M + Mhıp)*
((-L + R)*Sin[q[1] - q[2]] + R*Sin[q[2]])*u[2]^2 \

- (combody - lbody)*Mbody*((-L + R)*Sın[q[1] - q[3]] +
R*Sin[q[3]])*u[3]^2))/((Ilsw1 + (comleg - L)^2*(M + Mh_p))*
(Ilsta + comleg^2*M + L^2*M + L^2*Mbody + comleg^2*Mhıp + L^2*Mhıp -
2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R - 2*comleg*Mhip*R -
2*L*Mhıp*R + 4*M*R^2 + 2*Mbody*R^2 + 4*Mhıp*R^2 +
2*R*(L*M + L*Mbody + L*Mhıp + comleg*(M + Mhıp) - 2*M*R -
Mbody*R - 2*Mhıp*R)*Cos[q[1]]) -(comleg - L)*(M + Mhıp)*((L -
R)*Cos[q[1] - q[2]] +R*Cos[q[2]])*((comleg - L)*(M + Mhip)*(L - R)*
Cos[q[1] - q[2]] +(comleg - L)*(M + Mhıp)*R*Cos[q[2]] -
(combody - lbody)*Mbody*((L - R)*Cos[q[1] - q[3]] + R*Cos[q[3]]))),
(g* (-comleg + L)*(M + Mhıp)*Sın[gamma - q[2]] +
Khıp/(q[1] - q[2]) +(comleg - L)*(M + Mhıp)*(L - R)*Sın[q[1] - q[2]]*
u[1]^2 + Ffric*Sın[u[1] - u[2]]*(u[1] - u[2])^2)/
(Ilswl + (comleg - L)^2*(M + Mhip)) -((combody -
lbody)^2*Mbody*(g*(combody - lbody)*Mbody*SIn[gamma - q[3]] - (combody
- lbody)*Mbody*(L - R)*Sın[q[1] - q[3]]*u[1]^2 + frac*(Klln -

```
```

damp*u[3])))/(Inertıabody*(Ilswı + (comleg - L)^2*(M + Mhıp))) -
(((comleg - L)*(M + Mhıp)*(L - R)*Cos[q[1] - q[2]] +
(comleg - L)*(M + Mhıp)*R*Cos[q[2]] -(combody - lbody)*Mbody*
((L - R)*}\operatorname{Cos[q[1] - q[3]] + R*Cos[q[3]]))*
(-(((-)(comleg - L)*(combody - lbody)^2*Mbody*(M + Mhıp)*
((L - R)*Cos[q[1] - q[2]] + R*Cos[q[2]])) \

- (combody - lbody)*Mbody*(Ilswı + (comleg - L)^2*(M + Mhıp))*
((L - R)*Cos[q[1] - q[3]] + R*Cos[q[3]]))*
(g*(combody - lbody)*Mbody*SIn[gamma - q[3]] -
(combody - lbody)*Mbody*(L - R)*Sun[q[1] - q[3]]*
u[1]^2 + frac*(Klın - damp*u[3])))/(Inertıabody*((Ilswl + (comleg -
L)^2*(M + Mh_p))*(Ilsta + comleg^2*M + L^2*M + L^2*Mbody +
comleg^2*Mhıp +
L^2*Mhip - 2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R -
2*comleg*Mhıp*R - 2*L*Mhıp*R + 4*M*R^2 + 2*Mbody*R^2 +
4*Mhıp*R^2 +2*R*(L*M + L*Mbody + L*Mhıp + comleg*(M + Mhıp) -
2*M*R - Mbody*R - 2*Mh_p*R)*Cos[q[1]]) - (comleg - L)*(M + Mh_p)*((L -
R)*Cos[q[1] - q[2]] + R*Cos[q[2]])*((comleg - L)*(M + Mhlp)*(L - R)*
Cos[q[1] - q[2]] +(comleg - L)*(M + Mhıp)*R*Cos[q[2]] -
(combody - lbody)*Mbody*((L - R)*Cos[q[1] - q[3]] + R*Cos[q[3]])))))
\
+(-((comleg - L)* (M + Mhıp)*((L - R)*Cos[q[1] - q[2]] +
R*Cos[q[2]])*(g*(-comleg + L)*(M + Mhıp)*Sın[gamma - q[2]] +
Khıp/(q[1] - q[2]) +(comleg - L)*(M + Mhıp)*(L - R)*SIn[q[1] - q[2]]*
u[1]^2 +Ffrıc*Sın[u[1] - u[2]]*(u[1] - u[2])^2)) +
(Ilswı + (comleg - L)^2* (M + Mhıp))*(g* M + Mhıp)* (-R + (-comleg +
R)*Cos[q[1]])*Sın[gamma] +g*Mbody*(-R + (-L +
R)*}\operatorname{Cos[q[1]])*Sln[gamma] +
g* (M + Mhıp)*(-R + (-L + R)* Cos[q[1]])*Sın[gamma] +
g*(M + Mhıp)*(comleg - R)*Cos[gamma]*Sın[q[1]] +
g*Mbody*(L - R)*Cos[gamma]*Sin[q[1]] +g*(M + Mhıp)*(L -
R)*Cos[gamma]*Sın[q[1]] +R*(L*M + L*Mbody + L*Mhıp + comleg*(M +
Mhıp) - 2*M*R -Mbody*R - 2*Mhıp*R)*Sın[q[1]]*u[1]^2 +
(comleg - L)* (M + Mhıp)*((-L + R)*Sın[q[1] - q[2]] + R*Sın[q[2]])*
u[2]^2 - (combody - lbody)*Mbody*((-L + R)*Sln[q[1] - q[3]] +
R*Sin[q[3]])*
u[3]^2))/((Ilswl + (comleg - L)^2*(M + Mh_p))*
(Ilsta + comleg^2*M + L^2*M + L^2*Mbody + comleg^2*MhIp +
L^2*Mhュp - 2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R -
2*comleg*Mhıp*R - 2*L*Mhıp*R + 4*M*R^2 + 2*Mbody*R^2 +
4*Mhıp*R^2 + 2*R*(L*M + L*Mbody + L*Mhıp + comleg*(M + Mhlp) - 2*M*R
-

Mbody*R - 2*Mhıp*R)*Cos[q[l]]) -(comleg - L)*(M + Mhıp)*
((L - R)* Cos[q[1] - q[2]] + R* Cos[q[2]])*((comleg - L)*(M + Mhıp)*(L

- R)*Cos[q[1] - q[2]] +(comleg - L)*(M + Mhıp)*R*Cos[q[2]] -
(combody - lbody)*Mbody*((L - R)*Cos[q[1] - q[3]] + R*Cos[q[3]])))))/
(Ilswl + (comleg - L)^2*(M + Mhıp)),(g*(combody -
lbody)*Mbody*Sın[gamma - q[3]] -(combody - lbody)*Mbody*(L -
R)*Sın[q[1] - q[3]]*u[1]^2 +frac*(Klın - damp*u[3]))/Inertıabody}

```

\section*{Transition matrix for Bodied Creature}
```

cond =
{(Ilsta*u[1] + (comleg - L)*(M + Mh1p)*(com1eg - R)*u[1] +
(comleg - L)*(M + Mhzp)*R*Cos[q[1]}*u[1])/
(-((comleg - L)*(M + Mhıp)* (-L + R)*Cos[q[1] - q[2]]) +
(comleg - L)*(M + Mhıp)*R*Cos[q[2]]) -
((Ilswl + (comleg - L)^2*(M + Mhıp))*

```
```

 (-((Ilsta + (M + Mhıp)*R*(R + (comleg - R)*Cos[q[1]]) +
 (M + Mhlp)*(comleg - R)*(comleg - R + R*Cos[q[1]]) -
 (M + Mhıp)*(-L + R)*
 (L - R + R*Cos[q[1]] +
 (comleg - L)*Cos[q[1] - q[2]]) +
 (M + Mh_p)*R*(R + (L - R)* Cos[q[1]] +
 (comleg - L)* Cos[q[2]]))*
 (Ilsta*u[1] + (comleg - L)*(M + Mhıp)*(comleg - R)*
 u[1] + (comleg - L)*(M + Mhıp)*R*Cos[q[1]]*u[1])) \
 +(-((comleg - L)*(M + Mhıp)*(-L + R)*Cos[q[1] - q[2]]) +
(comleg - L)*(M + Mhıp)*R*Cos[q[2]])*
(Ilsta*u[1] - (M + MhIp)*(-L + R)*
(R*}\operatorname{Cos[q[1]] + (comleg - R)* Cos[q[1] - q[2]])*
u[1] + (M + Mhıp)*(comleg - R)*
(comleg - L + R*Cos[q[1]] +
(L - R)* Cos[q[1] - q[2]])*u[1] +
(M + Mhıp)*R*(R + (comleg - R)*Cos[q[2]])*u[1] +
(M + Mhlp)*R*(R + (comleg - L)*Cos[q[1]] +
(L - R)*Cos[q[2]])*u[1] + Ilsw_*u[2] +
(comleg - L)*(M + Mhap)*(comleg - R + R*Cos[q[2]])*u[2]))
)/((-((comleg - L)*(M + Mhıp)*(-L + R)*Cos[q[1] - q[2]]) +
(comleg - L)*(M + Mhıp)*R*Cos[q[2]])*
(-((Ilswl + (comleg - L)^2* (M + Mhıp))*
(Ilsta + (M + MhIp)*R*(R + (comleg - R)*Cos[q[1]]) +
(M + Mhıp)*(comleg - R)*(comleg - R + R*Cos[q[1]]) -
(M + Mhıp)*(-L + R)*
(L - R + R*Cos[q[1]] +
(comleg - L)*Cos[q[1] - q[2]]) +
(M + Mh_p)*R* (R + (L - R)*Cos[q[1]] +
(comleg - L)* Cos[q[2]]))) +
(-((comleg - L)*(M + Mhıp)*(-L + R)*Cos[q[1] - q[2]]) +
(comleg - L)*(M + Mhıp)*R*Cos[q[2]])*
(Ilswl + (comleg - L)*(M + Mhıp)*
(comleg - L + (L - R)*Cos[q[1] - q[2]] + R*Cos[q[2]])
))), (-((Ilsta + (M + Mhlp)*R*(R + (comleg - R)*Cos[q[1]]) +
(M + Mhlp)*(comleg - R)*(comleg - R + R*Cos[q[1]]) -
(M + MhIp)*(-L + R)*
(L - R + R*Cos[q[1]] +
(comleg - L)*Cos[q[1] - q[2]]) +
(M + Mhıp)*R*(R + (L - R)*Cos[q[1]] +
(comleg - L)*Cos[q[2]]))*
(Ilsta*u[1] + (comleg - L)*(M + Mhıp)*(comleg - R)*u[1] +
(comleg - L)*(M + Mh_p)*R*Cos[q[1]]*u[1])) +
(-((comleg - L)*(M + Mhıp)*(-L + R)* Cos[q[1] - q[2]]) +
(comleg - L)*(M + Mhıp)*R*Cos[q[2]])*
(Ilsta*u[1] - (M + Mh_p)*(-L, + R)*
(R*Cos[q[1]] + (comleg - R)*Cos[q[1] - q[2]])*u[1]

+ (M + Mhıp)*(comleg - R)*(comleg - L + R*Cos[q[l]] +
(L - R)*Cos[q[1] - q[2]])*u[1] +
(M + Mhıp)*R*(R + (comleg - R)*Cos[q[2]])*u[1] +
(M + Mhıp)*R*(R + (comleg - L)* Cos[q[1]] +
(L - R)* Cos[q[2]])*u[1] + Ilswi*u[2] +
(comleg - L)*(M + Mhip)*(comleg - R + R*Cos[q[2]])*u[2]))/
(-((Ilswl + (comleg - L)^2*(M + Mhlp))*
(Ilsta + (M + Mhıp)*R*(R + (comleg - R)*Cos[q[1]]) +
(M + Mhlp)*(comleg - R)*(comleg - R + R*Cos[q[1]]) -
(M + MhIp)*(-L + R)*(L - R + R*Cos[q[1]] +
(comleg - L)*Cos[q[1] - q[2]]) +
(M + Mhıp)*R* (R + (L - R)* Cos[q[1]] +
(comleg - L)*Cos[q[2]]))) +
(-((comleg - L)*(M + Mh_p)*(-L + R)* Cos[q[1] - q[2]]) +

```
```

 (comleg - L)*(M + Mhıp)*R*Cos[q[2]])*
 (Ilswl + (comleg - L)*(M + Mhıp)*
 (comleg - L + (L - R)* Cos[q[1] - q[2]] + R*Cos[q[2]]))),
 -(((-((combody - lbody)*Mbody* (-L + R)*Cos[q[1] - q[3]]) +
 (combody - lbody)*Mbody*R*Cos[q[3]])*
 ((Ilsta*u[1] + (comleg - L)* (M + Mhıp)*(comleg - R)*
 u[1] + (comleg - L)*(M + Mh_p)*R* Cos[q[1]]*u[1])/
 (-((comleg - L)* (M + Mhıp)* (-L + R)*Cos[q[1] - q[2]]) +
 (comleg - L)*(M + Mhzp)*R*Cos[q[2]]) -
 ((Ilswl + (comleg - L)^2*(M + Mhıp))*
 (-((Ilsta + (M + Mhıp)*R*(R + (comleg - R)*Cos[q[1]]) +
 (M + Mhュp)*(comleg - R)*
 (comleg - R + R*Cos[q[1]]) -
 (M + Mhıp)*(-L + R)*
 (L - R + R*Cos[q[1]] +
 (comleg - L)* Cos[q[1] - q[2]]) +
 (M + Mh_p)*R*
 (R + (L - R)* Cos[q[1]] +
 (comleg - L)*Cos[q[2]]))*
 (Ilsta*u[1] +
 (comleg - L)* (M + Mhıp)*(comleg - R)*u[1] +
 (comleg - L)*(M + Mhıp)*R*Cos[q[1]]*u[1])) +
 (-((comleg - L)*(M + Mhıp)*(-L + R)*
 Cos[q[1] - q[2]]) +
 (comleg - L)*(M + Mhzp)*R*Cos[q[2]])*
 (Ilsta*u[1] - ,
 (M + Mhıp)* (-L + R)*
 (R*}\operatorname{cos[q[1]] +
 (comleg - R)* Cos[q[1] - q[2]])*u[1] +
 (M + Mhlp)*(comleg - R)*
 (comleg - L + R* Cos[q[1]] +
 (L - R)*Cos[q[1] - q[2]])*u[1] +
 (M + Mhıp)*R* (R + (com1eg - R)* Cos[q[2]])*u[1] +
 (M + Mhıp)*R*
 (R + (comleg - L)* Cos[q[1]] +
 (L - R)*Cos[q[2]])*u[1] + Ilswz*u[2] +
 (comleg - L)*(M + Mhıp)*(comleg - R + R* Cos[q[2]])*
 u[2])))/
 ((-((comleg - L)*(M + Mhıp)*(-L + R)*
 Cos[q[1] - q[2]]) +
 (com1eg - L)*(M + Mhıp)*R* Cos[q[2]])*
 <-((IlswI + (comleg - L)^2*(M + Mhıp))*
 (Ilsta + (M + Mh_p)*R* (R + (comleg - R)*Cos[q[1]])
 + (M + Mhlp)*(comleg - R)*
 (comleg - R + R*Cos[q[1]]) -
 (M + Mhıp)* (-L + R)*
 (L - R + R*Cos[q[1]] +
 (comleg - L)*Cos[q[1] - q[2]]) +
 (M + Mh_p)*R*
 (R + (L - R)* Cos[q[1]] +
 (comleg - L)*Cos[q[2]]))) +
 (-((comleg - L)* (M + Mh_p)* (-L + R)*
 Cos[q[1] - q[2]]) +
 (comleg - L)*(M + Mhıp)*R*Cos[q[2]])*
 (Ilswl + (comleg - L)* (M + Mhlp)*
 (comleg - L + (L - R)*Cos[q[1] - q[2]] +

R*}\operatorname{Cos}[q[2]]))\)|)
(Inertlabody + (combody - lbody)*(-combody + lbody)*Mbody)) +
(-((combody - lbody)*Mbody*(-L + R)*Cos[q[1] - q[3]]*u[1]) +
(combody - lbody)*Mbody*R*Cos[q[3]]*u[1] +

```

Inertıabody*u[3] \(+(\) combody - lbody \() *(-\) combody + lbody \() * M b o d y * ~\) u[3])/(Inertıabody + (combody - lbody)*(-combody +
lbody)*Mbody) \}

\section*{Appendix F:}

Parameters, constants and initial values used with the Bodied Creature.

The following is a list of the parameters involved in the creatures' description and movement Any parameters that were treated as constants have therr values shown
\begin{tabular}{|c|c|c|}
\hline Symbol & Description & Value \\
\hline \(q_{1}\) & Stance leg angle & \\
\hline \(q_{2}\) & Swmg leg angle & \\
\hline \(q_{3}\) & Body angle & \\
\hline \(u_{1}\) & Speed at which stance angle is changing & \\
\hline \(u_{2}\) & Speed at which swing angle is changing & \\
\hline \(u_{3}\) & Speed at which body angle is changing & \\
\hline \(\gamma\) & Slope angle of ground & \\
\hline & & \\
\hline \(L\) & Length of leg & 1 \\
\hline \(R\) & Radus of foot & 03 \\
\hline Cl & Distance from foot to centre of mass of leg & 0645 \\
\hline lbody & Length of the body & \\
\hline combody & Distance from end of body to centre of mass & \\
\hline \(g\) & Gravity & 1 \\
\hline & & \\
\hline M & Mass of leg & 04 \\
\hline Mhip & Mass of hip & \\
\hline Mbody & Mass of body & \\
\hline & & \\
\hline Ffric & Coefficient of friction & \\
\hline Khip & Coefficient of damping & \\
\hline Klin & Torque applied to body & \\
\hline tol & Numerical tolerance of the integrator & 000001 \\
\hline Frac & Torque constant & \\
\hline & & \\
\hline Ilsw1 & Inertia of swing leg & 0121* (M+Mhıp) \\
\hline Ilsta & Inertia of stance leg & \(0121 *\) M \\
\hline Inertiabody & Inertia of body & \\
\hline w & leg axis -> mass centre offset & \\
\hline
\end{tabular}

\section*{Appendix G.}

\section*{Body-less creature results}

\section*{G. 1 Limit Cycles}

The first issue was the discovery of limit cycles Here is a selection of those that were discovered and are for vanous values of \(m h t p\), on divers \(\gamma\) values Finally note that the phase plane diagram is for one leg only


Fig G.1: \(\gamma=0025, m h u p=02\)


Fig G.2: \(\gamma=0025, m h \iota p=008\)


Fig G.3: \(\gamma=0025 m h \iota p=12\)

\section*{G. 2 Basin of Attraction}

The initial values for the state vector are \(\theta_{0}=\left\{q_{1}, q_{2}, u_{1}, u_{2}\right\}=\{03015,-03015,-03763,-02822\}\) The basin of attraction indicates how much each of the four values can be altered by individually and still give a fixed point solution These possible mutations are as follows
mhip \(=0.4\)
\begin{tabular}{|l|l|l|l|l|}
\hline Original & Maximum & Minimum & \begin{tabular}{l} 
Average \\
difference
\end{tabular} & Percentage \\
\hline 03015 & 032 & 028 & \(\pm 002\) & \(\approx 66 \%\) \\
\hline-03763 & -04 & -036 & \(\pm 0015\) & \(\approx 39 \%\) \\
\hline-02822 & -045 & 0 & \(\pm 022\) & \(\approx 77 \%\) \\
\hline
\end{tabular}

Finally note that for a \(m h i p\) value of 12 then the \(q_{1}\) and \(q_{2}\) angles can be altered from 027 to 032 radians

\section*{G. 3 Results for \(\mathbf{m h i p}=0.0\)}

\section*{G.3.1 Max and Min slope}

This set of results deals with the minimum and maximum slope attainable by the body-less, hipmass-less walker. Note that the initial state guess is taken to be \(\{0.3015,-0.3015,-0.3763,-0.2822\}\) and the slope range is from 0.0005 to 0.043 radians, which corresponds to previous published results, and the various values are:

Note: Maximum values are given in bold and min in italics
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & \(\boldsymbol{q}_{\boldsymbol{l}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{2}\) \\
\hline 0.0005 & 0.075262 & -0.075262 & -0.10977 & -0.108068 \\
\hline 0.005 & 0.170507 & -0.170507 & -0.237502 & -0.218184 \\
\hline 0.010 & 0.21709 & -0.21709 & -0.292437 & -0.25407 \\
\hline 0.020 & 0.278032 & -0.278032 & -0.355112 & -0.279307 \\
\hline 0.025 & 0.301571 & -0.301571 & -0.376368 & -0.282189 \\
\hline 0.030 & 0.322498 & -0.322498 & -0.393858 & -0.281540 \\
\hline 0.040 & 0.359002 & -0.359002 & -0.421196 & -0.273343 \\
\hline \(\mathbf{0 . 0 4 3}\) & 0.368913 & -0.368913 & -0.427929 & -0.269614 \\
\hline
\end{tabular}

\section*{G.3.2 Eigenvalues}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & speed & totter & swing & swing \\
\hline 0.0005 & 0.957501 & -0.520021 & -0.092922 & \(\approx 0\) \\
\hline 0.005 & 0.79926 & -0.484081 & -0.105031 & \(\approx 0\) \\
\hline 0.010 & 0.687616 & -0.443237 & -0.123194 & \(\approx 0\) \\
\hline 0.020 & 0.526698 & -0.397183 & -0.156886 & \(\approx 0\) \\
\hline 0.025 & 0.462247 & -0.398299 & -0.167495 & \(\approx 0\) \\
\hline 0.030 & -0.419282 & 0.405872 & -0.17061 & \(\approx 0\) \\
\hline 0.040 & -0.517468 & 0.314626 & -0.158651 & \(\approx 0\) \\
\hline \(\mathbf{0 . 0 4 3}\) & -0.559012 & 0.292647 & -0.15272 & \(\approx 0\) \\
\hline
\end{tabular}

\section*{G.3.3 Step Length, Period and Velocities}
\begin{tabular}{|l|l|l|l|}
\hline Slope & Step Length & Step Period & \begin{tabular}{l} 
Velocity \(=\) \\
Length \\
Period
\end{tabular} \\
\hline 0.0005 & 0.299912 & 2.7699070 & 0.10827511 \\
\hline 0.005 & 0.668821 & 2.790077 & 0.23971417 \\
\hline 0.010 & 0.841333 & 2.8014572 & 0.30031977 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline 0020 & 1055694 & 28235438 & 037388971 \\
\hline 0025 & 1134231 & 28349733 & 040008524 \\
\hline 0030 & 1202390 & 28468138 & 042236341 \\
\hline 0040 & 1315765 & 28717991 & 045816749 \\
\hline \(\mathbf{0 . 0 4 3}\) & 1345361 & 28796142 & 046720182 \\
\hline
\end{tabular}

\section*{G. 4 Results for mhip \(=0.2\)}

\section*{G.4.1 Max and Min slope}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & \(\boldsymbol{q}_{\boldsymbol{I}}\) & \(\boldsymbol{q}_{\boldsymbol{2}}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(\boldsymbol{u}_{\mathbf{2}}\) \\
\hline 00005 & 00753826 & -00753826 & -0111317 & -0091232 \\
\hline 0005 & 0171816 & -0171816 & -0242286 & -0180288 \\
\hline 0025 & 0305022 & -0305022 & -0384336 & -0210171 \\
\hline 004 & 0363234 & -0363234 & -04292 & -0183763 \\
\hline \(\mathbf{0 . 0 4 8}\) & 0389026 & -0389026 & -0445726 & -0164839 \\
\hline
\end{tabular}

\section*{G. 5 Results for mhip \(=0.4\)}

\section*{G.5.1 Max and Min slope}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & \(\boldsymbol{q}_{\boldsymbol{1}}\) & \(\boldsymbol{q}_{\boldsymbol{2}}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{\boldsymbol{2}}\) \\
\hline 00005 & 00752312 & -00752312 & -0112021 & -00825862 \\
\hline 0005 & 0173445 & -0173445 & -024629 & -016124 \\
\hline 0025 & 0308686 & -0308686 & -038977 & -0170418 \\
\hline 004 & 0367128 & -0367128 & -0433815 & -0133593 \\
\hline \(\mathbf{0 . 0 5 2}\) & 0404767 & -0404767 & -0456631 & -00980575 \\
\hline
\end{tabular}

\section*{G.5.2 Eigenvalues}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & speed & totter & swing & swing \\
\hline 00005 & 0975364 & 0280297 & 0280297 & \(\approx 0\) \\
\hline 0005 & 08671 & 0273757 & 0273757 & \(\approx 0\) \\
\hline 0025 & 0537091 & 0285454 & 0285454 & \(\approx 0\) \\
\hline 004 & 0352319 & 0311417 & 0311417 & \(\approx 0\) \\
\hline \(\mathbf{0 . 0 5 2}\) & 0327514 & 0327514 & 0265992 & \(\approx 0\) \\
\hline
\end{tabular}

\section*{G.5.3 Step Length, Period and Velocities}
\begin{tabular}{|l|l|l|l|}
\hline Slope & Step Length & Step Period & \begin{tabular}{l} 
Velocity \(=\) \\
\(\frac{\text { Length }}{\text { Period }}\)
\end{tabular} \\
\hline 00005 & 02997906 & 25031640 & 0119764665 \\
\hline 0005 & 06799490 & 25270688 & 0269066279 \\
\hline 0025 & 11577885 & 26079568 & 0443944661 \\
\hline 004 & 13400700 & 26719546 & 0501531725 \\
\hline \(\mathbf{0 . 0 5 2}\) & 14479315 & 27221394 & 0531909387 \\
\hline
\end{tabular}

\section*{G. 6 Results for mhip \(=0.8\)}

\section*{G.6.1 Max and Min slope}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & \(\boldsymbol{q}_{\boldsymbol{1}}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{\mathbf{2}}\) \\
\hline 00005 & 00773091 & -00773091 & -0116113 & -0075824 \\
\hline 0005 & 0177204 & -0177204 & -0253079 & -0141855 \\
\hline 0025 & 0314512 & -0314512 & -0396331 & -0125782 \\
\hline 004 & 0372531 & -0372531 & -0438615 & -0077983 \\
\hline \(\mathbf{0 . 0 5 6}\) & 0429037 & -0429037 & -0466206 & -0021889 \\
\hline
\end{tabular}

\section*{G.6.2 Eigenvalues}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & speed & totter & swing & swing \\
\hline 00005 & 0981897 & 0296308 & 0296308 & \(\approx 0\) \\
\hline 0005 & 0891872 & 0283191 & 0283191 & \(\approx 0\) \\
\hline 0025 & 053887 & 0287592 & 0287592 & \(\approx 0\) \\
\hline 004 & 0353086 & 0309621 & 0309621 & \(\approx 0\) \\
\hline \(\mathbf{0 . 0 5 6}\) & -0542341 & 0251882 & -0191078 & \(\approx 0\) \\
\hline
\end{tabular}
G.6.3 Step Length, Period and Velocities
\begin{tabular}{|l|l|l|l|}
\hline Slope & Step Length & Step Period & \begin{tabular}{l} 
Velocity \(=\) \\
Length
\end{tabular} \\
\hline 00005 & 03080057 & 24144430 & 0127568014 \\
\hline 0005 & 06940704 & 24470927 & 0283630611 \\
\hline 0025 & 11767116 & 25589101 & 0459848745 \\
\hline 004 & 13560347 & 26334398 & 0514929067 \\
\hline \(\mathbf{0 . 0 5 6}\) & 15131691 & 27781639 & 0544665165 \\
\hline
\end{tabular}

\section*{G. 7 Results for mhip \(=1.2\)}

\section*{G.7.1 Max and Min slope}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{\mathbf{2}}\) \\
\hline 00005 & N/A & N/A & N/A & N/A \\
\hline 0004 & 0167281 & -0167281 & -0241439 & -0127301 \\
\hline 0005 & 0180855 & -0180855 & -025859 & -0131708 \\
\hline 0025 & 031832 & -031832 & -0399955 & -0100985 \\
\hline 004 & 037577 & -037577 & -0440996 & -00478034 \\
\hline \(\mathbf{0 . 0 5 8}\) & 0429081 & -0429081 & -0470442 & 00197021 \\
\hline
\end{tabular}

\section*{G.7.2 Eigenvalues}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & speed & totter & swing & swing \\
\hline 00005 & N/A & N/A & N/A & N/A \\
\hline 0004 & 0918128 & 0288104 & 0288104 & \(\approx 0\) \\
\hline 0005 & 0900238 & 0285847 & 0285847 & \(\approx 0\) \\
\hline 0025 & 0531771 & 0287683 & 0287683 & \(\approx 0\) \\
\hline 004 & 0351469 & 0306511 & 0306511 & \(\approx 0\) \\
\hline 0058 & -0742184 & 0246388 & -0133312 & \(\approx 0\) \\
\hline
\end{tabular}

\section*{G.7.3 Step Length, Period and Velocities}
\begin{tabular}{|l|l|l|l|}
\hline Slope & Step Length & Step Period & \begin{tabular}{l} 
Velocity \(=\) \\
Length \\
Period
\end{tabular} \\
\hline 00005 & N/A & N/A & N/A \\
\hline 0005 & 07077482 & 24133982 & 0293257946 \\
\hline 0025 & 11889940 & 25416899 & 0467796641 \\
\hline 004 & 13655295 & 26201817 & 052158322 \\
\hline \(\mathbf{0 . 0 5 8}\) & 15132842 & 27055385 & 0559328281 \\
\hline
\end{tabular}

\section*{G. 8 Results for mhip \(=1.6\)}

\section*{G.8.1 Max and Min slope}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & \(\boldsymbol{q}_{\mathbf{1}}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{\mathbf{2}}\) \\
\hline 00005 & \(\mathrm{~N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline 0004 & 0170311 & -0170311 & -0245814 & -0121734 \\
\hline 0025 & 032087 & -032087 & -0402197 & -00851974 \\
\hline 004 & 0377863 & -0377863 & -0442398 & -00288882 \\
\hline \(\mathbf{0 . 0 5 8}\) & 0430805 & -0430805 & -0471316 & 00411057 \\
\hline
\end{tabular}

\section*{G.8.2 Eigenvalues}
\begin{tabular}{|l|l|l|l|l|}
\hline Slope & speed & totter & swing & swing \\
\hline 00005 & \(\mathrm{~N} / \mathrm{A}\) & N/A & N \(/ \mathrm{A}\) & \(\mathrm{N} / \mathrm{A}\) \\
\hline 0004 & 0921018 & 0289166 & 0289166 & \(\approx 0\) \\
\hline 0025 & 0525414 & 0287315 & 0287315 & \(\approx 0\) \\
\hline 004 & 0350121 & 0303839 & 0303839 & \(\approx 0\) \\
\hline 0058 & -0818211 & 0248165 & -0116589 & \(\approx 0\) \\
\hline
\end{tabular}

\section*{G. 9 Effect of varying the legs centre of mass position}

All results are based on \(\gamma=0025\) radians
mhip \(=0.0\)
\begin{tabular}{|c|c|c|c|c|}
\hline comleg & \(q_{1}\) & \(q_{2}\) & \(u_{1}\) & \(\boldsymbol{u}_{2}\) \\
\hline \multicolumn{5}{|l|}{Crashes before this value for comleg} \\
\hline 0.56 & 0277749 & -0 277749 & -0 391155 & -0 307288 \\
\hline eigenvalues & -0 798382 & 053773 & -0 0948024 & \(\approx 0\) \\
\hline 0645 & 0301571 & -0301571 & -0 376368 & -0 282189 \\
\hline ergenvalues & 0462247 & -0 398299 & -0 167495 & \(\approx 0\) \\
\hline 0.067 & 0308731 & -0 308731 & -0 372087 & -0 276276 \\
\hline eigenvalues & 0424337 & -0 314878 & -0 195367 & \(\approx 0\) \\
\hline \multicolumn{5}{|l|}{Only unstable solutions exist after this value} \\
\hline
\end{tabular}
mhip \(=0.4\)
\begin{tabular}{|l|l|l|l|l|}
\hline comleg & \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{\mathbf{2}}\) \\
\hline Crashes before this value for comleg & \multicolumn{3}{|l|}{} \\
\hline \(\mathbf{0 . 5 9}\) & 0292008 & -0292008 & -0397874 & -0200875 \\
\hline elgenvalues & 0601379 & 0300718 & 0300718 & \(\approx 0\) \\
\hline 0645 & 0308686 & -0308686 & -038977 & -0170418 \\
\hline elgenvalues & 0537091 & 0285454 & 0285454 & \(\approx 0\) \\
\hline \(\mathbf{0 . 7 0}\) & 0325127 & -0325127 & -0381431 & -0143181 \\
\hline elgenvalues & 0449546 & 0263785 & 0263785 & \(\approx 0\) \\
\hline Only unstable solutions exist after this value & \\
\hline
\end{tabular}
mhip \(=0.8\)
\begin{tabular}{|l|l|l|l|l|}
\hline comleg & \(\boldsymbol{q}_{\boldsymbol{I}}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(\boldsymbol{u}_{2}\) \\
\hline Crashes before this value for comleg & \multicolumn{3}{l|}{} \\
\hline \(\boldsymbol{0 . 0 6}\) & 0300216 & -0300216 & -0402682 & -0155974 \\
\hline elgenvalues & 0604919 & 0271268 & 0271268 & \(\approx 0\) \\
\hline 0645 & 0314512 & -0314512 & -0396331 & -0125782 \\
\hline ergenvalues & 0353086 & 0309621 & 0309621 & \(\approx 0\) \\
\hline \(\mathbf{0 . 0 6 9}\) & 0328305 & -0328305 & -0389756 & -0098244 \\
\hline ergenvalues & 0459957 & 0300466 & 0300466 & \(\approx 0\) \\
\hline \multicolumn{5}{|l|}{ Only unstable solutions exist after this value } \\
\hline
\end{tabular}

\section*{G. 10 Effects of varying \(R\)}

If \(R\) is at zero then the creature is similar to a point-footed model and the creature needs a rather steep slope At \(\mathrm{R}=1\) we have a synthetic wheel rolling on a level ground 1 e slope is 0 Results gathered for various values of \(R\) are now given
Note that where necessary the \(\gamma\) value changes (1e at large and small R values) and this is also highlighted
mhip is \(\mathbf{0 . 4}\) and initially \(=\mathbf{0 . 0 2 5}\)
\begin{tabular}{|l|l|l|l|l|}
\hline \(\boldsymbol{R}\) & \(\boldsymbol{q}_{\boldsymbol{l}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{2}\) \\
\hline \begin{tabular}{l}
01 \\
\(\gamma=0035\)
\end{tabular} & 0269148 & -0269148 & -0353544 & -0129867 \\
\hline & 0366008 & 0366008 & 0267224 & \(\approx 0\) \\
\hline 02 & 0270485 & -0270485 & -0356631 & -015801 \\
\hline & 0440723 & 0311663 & 0311663 & \(\approx 0\) \\
\hline 03 & 0301571 & -0301571 & -0376368 & -0282189 \\
\hline & 0537091 & 0285454 & 0285454 & \(\approx 0\) \\
\hline 04 & 0359682 & -0359682 & -0431959 & -0184419 \\
\hline & 0634328 & 0261995 & 0261995 & \(\approx 0\) \\
\hline 06 & 0375468 & -0375468 & -0427439 & -0238985 \\
\hline & 0867302 & 0242081 & 0242081 & \(\approx 0\) \\
\hline \begin{tabular}{l}
07 \\
\(\gamma=0001\)
\end{tabular} & 021022 & -021022 & -0242615 & -017222 \\
\hline & 0971823 & -0492455 & -0140326 & \(\approx 0\) \\
\hline
\end{tabular}
mhıp is 0.8 and initially \(=0.025\)
\begin{tabular}{|l|l|l|l|l|}
\hline \(\boldsymbol{R}\) & \(\boldsymbol{q}_{\boldsymbol{1}}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{2}\) \\
\hline 02 & 0274961 & -0274961 & -0361261 & -0115642 \\
\hline & 0439079 & 0313502 & 0313502 & \(\approx 0\) \\
\hline 03 & 0314512 & -0314512 & -0396331 & -0125782 \\
\hline & 053887 & 0287592 & 0287592 & \(\approx 0\) \\
\hline 04 & 0366941 & -0366941 & -0441002 & -013739 \\
\hline & 0649096 & 0263418 & 0263418 & \(\approx 0\) \\
\hline \begin{tabular}{l}
06 \\
\(\gamma=0001\)
\end{tabular} & 0162229 & -0162229 & -0204301 & -012943 \\
\hline & 0969924 & 0288947 & 0288947 & \(\approx 0\) \\
\hline
\end{tabular}

\section*{G. 11 Effect of adding in a damper}

Note that damper doesn't work on a creature with no hip mass - a slight damper coefficient tended to destroy the limit cycle and thus give no solution

A Quadratic damper is administered with applied torque of \(\operatorname{Ffric}\left(u_{2}-u_{1}\right)^{2}\)
```

mhip = 0.4

```
\begin{tabular}{|l|l|l|l|l|l|}
\hline Ffric & \(\gamma\) & \(\boldsymbol{q}_{\boldsymbol{I}}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(\boldsymbol{u}_{\boldsymbol{2}}\) \\
\hline-0001 & 0053 & 0406592 & -0406592 & -0458499 & -00974121 \\
\hline & & 0328889 & 0328889 & 0261396 & \(\approx 0\) \\
\hline-0005 & 0054 & 0404075 & -0404075 & -0461585 & -0106188 \\
\hline & & 0337496 & 0337496 & 0254777 & \(\approx 0\) \\
\hline-0005 & 0055 & 040702 & -040702 & -0463183 & -0103013 \\
\hline & & 0339252 & 0330252 & 0248098 & \(\approx 0\) \\
\hline-0008 & 0056 & 0403 & -0403 & -0466745 & -011422 \\
\hline & & 0407078 & -0407078 & 0184229 & \(\approx 0\) \\
\hline-0008 & \(\mathbf{0 . 0 6}\) & 0415236 & -0415236 & -0472814 & -0100185 \\
\hline & & 0399425 & 0399425 & 017696 & \(\approx 0\) \\
\hline
\end{tabular}
mhip \(=0.8\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline Ffric & \(\gamma\) & \(\boldsymbol{q}_{\boldsymbol{I}}\) & \(\boldsymbol{q}_{\boldsymbol{2}}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(\boldsymbol{u}_{\mathbf{2}}\) \\
\hline-0008 & 0058 & 0420472 & -0420472 & -0471493 & -00302886 \\
\hline & & 0334499 & 0334499 & 0235099 & \(\approx 0\) \\
\hline & 0062 & 0431414 & -0431414 & -0476747 & -00156495 \\
\hline & & 0336215 & 0336215 & 0217427 & \(\approx 0\) \\
\hline-0012 & \(\mathbf{0 . 0 6 5}\) & 0435402 & -0435402 & -0482552 & -00148927 \\
\hline & & 0364051 & 0364051 & 0183449 & \(\approx 0\) \\
\hline
\end{tabular}
\[
\text { mhip }=1.2
\]
\begin{tabular}{|l|l|l|l|l|l|}
\hline Ffric & \(\gamma\) & \(\boldsymbol{q}_{\boldsymbol{I}}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(\boldsymbol{u}_{\boldsymbol{2}}\) \\
\hline-0015 & 0062 & 0431466 & -0431466 & -0479804 & 0011745 \\
\hline & & 0341678 & 0341678 & 0207332 & \(\approx 0\) \\
\hline-0015 & 0064 & 0436833 & -0436833 & -0482208 & 00196097 \\
\hline & & 0341111 & 0341111 & 0200562 & \(\approx 0\) \\
\hline-002 & \(\mathbf{0 . 0 6 8}\) & 0443128 & -0443128 & -0489323 & 00241565 \\
\hline & & 0386533 & -0386533 & 0152497 & \(\approx 0\) \\
\hline
\end{tabular}

\section*{Appendix H :}

\section*{Bodied creature results}

\section*{H. 1 Limit Cycles - Unstable creature}

\section*{UNSTABLE RESULTS}

Initially unstable solutions were encountered, but these were not desirable As they were undesirable solutions, only one example is included here The parameters for this solution are as follows
\(m b o d y=08\), mht \(p=1\), combod \(y=07, l b o d y=08\) and \(\tau=(0003,002,0003)\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline slope & \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{I}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 00007 & 00617144 & -00617144 & 00027611 & -00830726 & -00560537 & -000154928 \\
\hline 0001 & 00716057 & -00716057 & 00037038 & -00968041 & -00653969 & -000203824 \\
\hline 001 & 0221512 & -0221512 & -00067466 & -0266008 & -0124314 & 00107297 \\
\hline 003 & 0301618 & -0301618 & 00087996 & -0375297 & -0149613 & 000982882 \\
\hline 004 & 033431 & -033431 & 00090379 & -0409796 & -0137195 & 00148455 \\
\hline \(\mathbf{0 4 5}\) & 0348545 & -0348545 & 00092159 & -0424534 & -0129626 & 00172924 \\
\hline \begin{tabular}{l} 
Egen- \\
values
\end{tabular} & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline 00007 & 464345 & 171251 & 0662563 & 0169514 & -000007 & \(\cong 0\) \\
\hline 0001 & 45159 & 123109 & 086754 & 00904947 & -0000078 & \(\cong 0\) \\
\hline 001 & 581933 & 0435251 & 0435251 & 0342155 & -000008 & \(\cong 0\) \\
\hline 003 & 390528 & 315237 & 0520259 & 00643784 & -000007 & \(\cong 0\) \\
\hline 004 & 394581 & 34856 & 0484671 & 00560412 & -000007 & \(\cong 0\) \\
\hline 045 & 412756 & 349796 & 0470406 & 00525742 & -000007 & \(\cong 0\) \\
\hline
\end{tabular}
\(\mathbf{u}_{2}\)




\section*{H. 2 Body-less vs. Bodied}

As a means of testing the code written for the bodied creature, a comparison was made between a bodied creature with minute parameters and a body-less one Both creatures have mhıp \(=04\) and are on \(\gamma=0025\) radians The parameters for the bodied creature are all approxımately 0

This the limit cycle for the body-less creature


This is the limit cycle for the bodied creature


\section*{H. 3 Basin of Attraction}

Initial values are
\(\theta_{0}=\left\{q_{1}, q_{2}, q_{3}, u_{1}, u_{2}, u_{3}\right\}=\{03015,-03015,0,-03763,-02822,0\}\) There is no vanation between no hip mass and one of 04 Now for each variable the max and mın value are
\(\operatorname{mhip}=1.5, \operatorname{mbody}=1.0\)
\begin{tabular}{|l|l|l|l|l|}
\hline Original & Maximum & Minimum & \begin{tabular}{l} 
Average \\
difference
\end{tabular} & Percentage \\
\hline 03015 & 036 & 029 & \(\pm 0035\) & \(\approx 86 \%\) \\
\hline 0 & & & & \\
\hline-03763 & -039 & -033 & \(\pm 003\) & \(\approx 125 \%\) \\
\hline-02822 & -05 & 01 & \(\pm 03\) & \(\approx 94 \%\) \\
\hline 0 & & & & \\
\hline
\end{tabular}
mhip \(=0.8, \operatorname{mbody}=0.4\)
\begin{tabular}{|l|l|l|l|l|}
\hline Original & Maximum & Minimum & \begin{tabular}{l} 
Average \\
dufference
\end{tabular} & Percentage \\
\hline 03015 & 034 & 028 & \(\pm 003\) & \(\approx 10 \%\) \\
\hline 0 & & & & \\
\hline-03763 & -04 & -034 & \(\pm 003\) & \(\approx 125 \%\) \\
\hline-02822 & -05 & 01 & \(\pm 03\) & \(\approx 94 \%\) \\
\hline 0 & & & & \\
\hline
\end{tabular}

\section*{H. 4 Results for bodied creature - stable}

\section*{H.4.1 mbody \(=1.0\), mhip \(=1.5\)}
lbody \(=0.8\), combody \(=0.795\), damp \(=0.55\), Frac \(=5\)
\(\tau\) states \(=\{\) small \(=000008, l\) arg \(e=00009\}\).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & \(\boldsymbol{q}_{\boldsymbol{I}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{\boldsymbol{3}}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(\boldsymbol{u}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\mathbf{3}}\) \\
\hline 00005 & 00732531 & -00732531 & 0080648 & -0105581 & -00691833 & 00004858 \\
\hline 0001 & 00939995 & -0093995 & 00802105 & -0133665 & -00841465 & 00001813 \\
\hline 0005 & 0162181 & -0162181 & 007952 & -0222382 & -0120715 & 00006229 \\
\hline 001 & 02058 & -02058 & 00784453 & -0272871 & -0126115 & 000126436 \\
\hline 0025 & 0283795 & -0283795 & 00762199 & -0348054 & -00943815 & 000313797 \\
\hline 003 & 0302953 & -0302953 & 00759478 & -0363439 & -00784396 & 000373738 \\
\hline 004 & 033631 & -033631 & 00761449 & -0387401 & -00434981 & 000489863 \\
\hline \(\mathbf{0 0 4 3}\) & 0345367 & -0345367 & 00763266 & -0393305 & -0032517 & 00052378 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Eıgenvalue & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline 00005 & 100399 & 0934877 & 0709489 & 0276596 & -000001 & \(\cong 0\) \\
\hline 0001 & 100406 & 0870775 & 0643534 & 0279627 & -000001 & \(\cong 0\) \\
\hline 0005 & 100406 & 0756813 & 0756813 & 0225386 & -000001 & \(\cong 0\) \\
\hline 001 & 100407 & 0740568 & 0740568 & 0200875 & -000001 & \(\cong 0\) \\
\hline 0025 & 100411 & 0690446 & 0690446 & 0159779 & -000001 & \(\cong 0\) \\
\hline 003 & 100413 & 067654 & 067654 & 014968 & -000001 & \(\cong 0\) \\
\hline 004 & 100416 & 0651676 & 0651676 & 013227 & -000001 & \(\cong 0\) \\
\hline 0043 & 100417 & 0644786 & 0644786 & 0127619 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline slope & step period & length & Velocity \\
\hline 00005 & 22650957353 & 029196531 & 01288975 \\
\hline 0001 & 22911910094 & 037378705 & 01631409 \\
\hline 0005 & 23117506184 & 063740823 & 02757253 \\
\hline 001 & 23353536755 & 080015242 & 03426257 \\
\hline 0025 & 24007477684 & 107520300 & 04478617 \\
\hline 003 & 24211080232 & 113901405 & 04704515 \\
\hline 004 & 24604336279 & 124607493 & 05064452 \\
\hline 0043 & 24719707128 & 127420621 & 05154616 \\
\hline
\end{tabular}

\(q_{3}\)





\section*{H.4.2 mbody \(=0.8\), mhip \(=1.0\)}
damp \(=0.39\), Frac \(=5, \operatorname{Ibody}=0.8\), combody \(=0.795\).
\(\tau\) states \(=\{\) small \(=000005, l\) arg \(e=00005\}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & \(\boldsymbol{q}_{\boldsymbol{1}}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{q}_{\boldsymbol{3}}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\boldsymbol{3}}\) \\
\hline 00005 & 00739573 & -00739573 & 00629932 & -010524 & -00721221 & 00004 \\
\hline 0001 & 00940243 & -00940243 & 0062665 & -0132227 & -0087613 & 00001667 \\
\hline 001 & 0205645 & -0205645 & 00614322 & -0270616 & -0136102 & 000118242 \\
\hline 0025 & 028356 & -028356 & 00597739 & -0346021 & -0110307 & 000297124 \\
\hline \(\mathbf{0 0 4}\) & 0336056 & -0336056 & 00599388 & -0385662 & -00634686 & 000467344 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Eıgenvalue & \(\lambda_{I}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline 00005 & 100459 & 0891317 & 0713645 & 0275695 & -000001 & \(\cong 0\) \\
\hline 0001 & 100465 & 0830715 & 0668302 & 0273414 & -000001 & \(\cong 0\) \\
\hline 001 & 100468 & 0712002 & 0712002 & 0151918 & -000001 & \(\cong 0\) \\
\hline 0025 & 100472 & 0673993 & 0673993 & 0126536 & -000001 & \(\cong 0\) \\
\hline 004 & 100464 & 0756596 & 075696 & 0191054 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline slope & step period & length & Veloctty \\
\hline 00005 & 23057505310 & 029475165 & 0127833278 \\
\hline 0001 & 2327261659 & 037388455 & 0160654263 \\
\hline 001 & 23622067996 & 079958416 & 0338490331 \\
\hline 0025 & 24215065021 & 107441027 & 0443694979 \\
\hline 004 & 24780760816 & 124528006 & 0502518898 \\
\hline
\end{tabular}




\section*{H.4.3 mbody \(=0.4\), mhip \(=1.0\)}
damp \(=0.39\), Frac \(=5\), lbody \(=0.8\), combody \(=0.795\).
\(\tau\) states \(=\{\) small \(=000005, l\) arg \(e=00003\}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & \(\boldsymbol{q}_{I}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 00008 & 00873017 & -00873017 & 00500665 & -0130485 & -00872932 & 000025708 \\
\hline 0005 & 0163876 & -0163876 & 00490164 & -0235228 & -0136209 & 000062824 \\
\hline 001 & 0208629 & -0208629 & 00474583 & -028909 & -0144412 & 000128692 \\
\hline 0025 & 0288673 & -0288673 & 00436584 & -0368168 & -011355 & 000326011 \\
\hline 004 & 0342181 & -0342181 & 00423192 & -0408314 & -00609854 & 000511136 \\
\hline 0045 & 0357288 & -0357288 & 00424135 & -0417904 & -00419738 & 00056998 \\
\hline 006 & 0397601 & -0397601 & 00441499 & -0440095 & 00166736 & 000738824 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Eıgenvalue & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline 00008 & 100295 & 0966749 & 0403191 & 0403191 & -000001 & \(\cong 0\) \\
\hline 0005 & 100295 & 0799045 & 0399281 & 0399281 & -0000001 & \(\cong 0\) \\
\hline 001 & 100295 & 0566881 & 0440263 & 0440263 & -000001 & \(\cong 0\) \\
\hline 0025 & 100298 & 0560751 & 0560751 & 0242892 & -000001 & \(\cong 0\) \\
\hline 004 & 100301 & 0553457 & 0553457 & 0184287 & -000001 & \(\cong 0\) \\
\hline 0045 & 100302 & 0548016 & 0548016 & 0171176 & -000001 & \(\cong 0\) \\
\hline 006 & 100306 & 0528229 & 0528229 & 0140815 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline slope & step pertod & length & Velocity \\
\hline 00005 & 2261732610 & 03474351627 & 015361460553 \\
\hline 0005 & 2279620999 & 06438310164 & 028242897248 \\
\hline 001 & 2301328022 & 08105104668 & 035219249887 \\
\hline 0025 & 2367861499 & 10916040749 & 046100841428 \\
\hline 004 & 2430688604 & 12643576068 & 052016436984 \\
\hline 0045 & 2450916405 & 13105943964 & 053473647396 \\
\hline 006 & 2509863499 & 14280100957 & 056895926664 \\
\hline
\end{tabular}




H44 mbody \(=04\), mhıp \(=08\)
damp \(=\), Frac \(=5\), lbody \(=0.1 \mathrm{com}=0.095\)
\(\tau\) states \(=\{\) small \(=000002, l\) arg \(e=00002\}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & \(\boldsymbol{q}_{\boldsymbol{I}}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{q}_{\mathbf{3}}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\mathbf{3}}\) \\
\hline 00006 & 00778613 & -00778613 & 00502617 & -0115391 & -00806356 & 00003386 \\
\hline 0001 & 00942551 & -00942551 & 0050072 & -013863 & -00947573 & 00001783 \\
\hline 001 & 0207839 & -0207839 & 00482123 & -0285069 & -0149873 & 00012138 \\
\hline 0025 & 0287522 & -0287522 & 00452662 & -0363961 & -0123864 & 00030943 \\
\hline 004 & 0340931 & -0340931 & 00443998 & -0404379 & -00747838 & 00048811 \\
\hline \(\mathbf{0 0 5 5}\) & 0383591 & -0383591 & 00456764 & -0429943 & -00194907 & 00065592 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Etgenvalue & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline 00006 & 100404 & 0980972 & 0409205 & 0409205 & -00001 & \(\cong 0\) \\
\hline 0001 & 100407 & 0941525 & 0399171 & 0399171 & -00001 & \(\cong 0\) \\
\hline 001 & 100406 & 053232 & 053232 & 0385078 & -00001 & \(\cong 0\) \\
\hline 0025 & 100408 & 0594693 & 0594693 & 0217646 & -00001 & \(\cong 0\) \\
\hline 004 & 100413 & 0581812 & 0581812 & 0169606 & -00001 & \(\cong 0\) \\
\hline 0055 & 100417 & 0561825 & 0561825 & 0139369 & -00001 & \(\cong 0\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline slope & stepperiod & length & Veloctty \\
\hline 00006 & 2284634911 & 03101879921 & 01357713617 \\
\hline 0001 & 2293852043 & 03747913920 & 01633895233 \\
\hline 001 & 2325821714 & 08076205730 & 03472409635 \\
\hline 0025 & 2386921268 & 10877434292 & 04557098065 \\
\hline 004 & 2446703529 & 12604795471 & 05517461439 \\
\hline 0055 & 2504432417 & 13882188099 & 05543047600 \\
\hline
\end{tabular}

\section*{H.4.5 \(\operatorname{mbody}=0.2, \operatorname{mhip}=0.8\)}
```

damp =0.22, Frac=5, lbody =0.1 combody =0.095.
\tau states ={small =000001,l large=00001}

```
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{l}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 00007 & 00821395 & -00821395 & 00501706 & -0126733 & -00880368 & 00007518 \\
\hline 0001 & 00941341 & -00941341 & 00500382 & -014446 & -00988131 & 000034861 \\
\hline 001 & 0209401 & -0209401 & 00474405 & -0298216 & -0156367 & 000129217 \\
\hline 0025 & 0290784 & -0290784 & 00430628 & -0379984 & -0126879 & 00033278 \\
\hline 004 & 0345019 & -0345019 & 00411814 & -0420769 & -00735953 & 00052468 \\
\hline 006 & 0400898 & -0400898 & 0042569 & -0452363 & 000528144 & 00075980 \\
\hline 007 & 0424867 & -0424867 & 00446988 & -0463066 & 00453224 & 00086966 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Etgenvalue & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline 00007 & 100199 & 0984819 & 039847 & 039847 & -00001 & \(\cong 0\) \\
\hline 0001 & 1002 & 0967022 & 039338 & 039338 & -00001 & \(\cong 0\) \\
\hline 001 & 1002 & 0724261 & 0389101 & 0389101 & -000009 & \(\cong 0\) \\
\hline 0025 & 100202 & 0465806 & 0465806 & 035324 & -00001 & \(\cong 0\) \\
\hline 004 & 100204 & 0492255 & 0492255 & 023423 & -00001 & \(\cong 0\) \\
\hline 006 & 100207 & 0482722 & 0482722 & 0170188 & -00001 & \(\cong 0\) \\
\hline 007 & 100209 & 0471818 & 0471818 & 0150138 & -00001 & \(\cong 0\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline slope & step period & length & Velocity \\
\hline 00007 & 2242348709 & 03270821614 & 0145865877 \\
\hline 0001 & 2247302146 & 03743159553 & 0166562362 \\
\hline 001 & 2281866721 & 08133325603 & 0356432982 \\
\hline 0025 & 2348415539 & 10986696719 & 0467834441 \\
\hline 004 & 2412943795 & 12731329782 & 0527626453 \\
\hline 006 & 2494759878 & 14372124370 & 0576092492 \\
\hline 007 & 2534482328 & 15022096460 & 0592708668 \\
\hline
\end{tabular}

H 46 mbody \(=0.2\), mhip \(=0.4\)
damp \(=0.22\), Frac \(=5\), lbody \(=0.1\) combody \(=0.095\)
\(\tau\) states \(=\{\) small \(=000001, l\) arg \(e=00001\}\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline & \(\boldsymbol{q}_{\boldsymbol{1}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 00006 & 00774912 & -00774912 & 00502639 & -0116283 & -00894548 & 000109891 \\
\hline 0001 & 00940019 & -00940019 & 00501563 & -0140062 & -0105833 & 000034438 \\
\hline 001 & 0207599 & -0207599 & 00493676 & -0289011 & -0176563 & 000114208 \\
\hline 0025 & 0287975 & -0287975 & 00475515 & -0370686 & -0162563 & 000296023 \\
\hline 004 & 0342044 & -0342044 & 00471085 & -0412598 & -0120271 & 000474351 \\
\hline 006 & 0298029 & -0298029 & 00494079 & -0445566 & -00518869 & 000699127 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Eıgenvalue & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline 00007 & 100206 & 0988903 & 03919 & 039847 & -000010 & \(\cong 0\) \\
\hline 0001 & 100209 & 0944972 & 0380886 & 0380886 & -00001 & \(\cong 0\) \\
\hline 001 & 100207 & 0631141 & 0407733 & 0407733 & -00001 & \(\cong 0\) \\
\hline 0025 & 100207 & 0532047 & 0532047 & 0272277 & -00001 & \(\cong 0\) \\
\hline 004 & 100209 & 0550366 & 0550366 & 0194262 & -00001 & \(\cong 0\) \\
\hline 006 & 100211 & 0539927 & 0539927 & 014573 & -00001 & \(\cong 0\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline slope & step period & length & Velocity \\
\hline 00006 & & 03087254205 & \\
\hline 0001 & 23370165 & 03737964862 & 015994601 \\
\hline 001 & 23570127 & 08067422310 & 034227317 \\
\hline 0025 & 24056726 & 10892635556 & 045278960 \\
\hline 004 & 24598844 & 12639329566 & 051381803 \\
\hline 006 & 25328199 & 14292082130 & 056427549 \\
\hline
\end{tabular}



\section*{H.5. Varying Centre of mass}

This section outlines the effect of varying combody on the solution process Once again it is broken up into two sections stable and unstable, where unstable solutions allow much variation and stable ones do not

\section*{Unstable}

Paramters: mbody \(=0.8\), mhip \(=1\)
combody \(=0.7\), lbody \(=0.8\) and \(\tau\) states \(\{\) small \(=0.003\), large \(=0.02\}\) on \(=0.025\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline combody & \(\boldsymbol{q}_{\boldsymbol{l}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 055 & 0275166 & -0275166 & 000546444 & -0342053 & -0161562 & 001681355 \\
\hline\(\lambda_{1} \mathbf{s}\) & 137286 & 427536 & 0536872 & 00745697 & -000008 & \(\cong 0\) \\
\hline 06 & 0278483 & -0278483 & 00067958 & -0346876 & -015866 & 00132771 \\
\hline\(\lambda_{1}^{\prime} \mathbf{s}\) & 954331 & 369205 & 0536617 & 00720775 & -000008 & \(\cong 0\) \\
\hline 07 & 0282361 & -0282361 & 000871669 & -035448 & -0153748 & 000727246 \\
\hline\(\lambda_{1}^{\prime} \mathbf{s}\) & 396888 & 290849 & 0542962 & 00695022 & -000007 & \(\cong 0\) \\
\hline 0795 & 0283357 & -0283357 & 00104471 & -0359796 & -0150245 & 00004434 \\
\hline\(\lambda_{1} \mathbf{\prime} \mathbf{s}\) & 245145 & 110343 & 0551493 & 00678219 & \(\cong 0\) & \(\cong 0\) \\
\hline 0797 & 028335 & -028335 & 00104869 & -0359887 & -0150184 & 00002674 \\
\hline\(\lambda_{1}^{\prime} \mathbf{s}\) & 244335 & 10616 & 055168 & 00677896 & \(\cong 0\) & \(\cong 0\) \\
\hline
\end{tabular}

Stable
Parameters: mbody \(=0.2\), mhip \(=0.4\)
damp \(=0.22\), \(\operatorname{Frac}=5\), lbody \(=0.1 \mathrm{com}=0.095\)
\(\tau\) states \(\{\) small \(=0.00001\), large \(=0.0001\}\), on \(=0.025\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline combody & \(q_{1}\) & \(q_{2}\) & \(q_{3}\) & \(\boldsymbol{u}_{I}\) & \(\boldsymbol{u}_{2}\) & \(u_{3}\) \\
\hline 009 & 0288068 & -0 288068 & 00215296 & -0 370461 & -0 162407 & 00058998 \\
\hline \(\lambda_{1}\) 's & 100416 & 0531239 & 0531239 & 0273064 & -000009 & \(\cong 0\) \\
\hline 0093 & 0288013 & -0 288013 & 00326807 & -0 370597 & -01625 & 000413606 \\
\hline \(\lambda_{1}\) 's & 100291 & 0531716 & 0531716 & 0272591 & -0 0001 & \(\cong 0\) \\
\hline 0095 & 0287975 & -0 287975 & 00475515 & -0 370686 & -0 162563 & 000296023 \\
\hline \(\lambda_{1}\) 's & 100207 & 0532047 & 0532047 & 0272277 & -0 0001 & \(\cong 0\) \\
\hline 0097 & 0287935 & -0 287935 & 00822982 & -0 370774 & -0162627 & 00017831 \\
\hline \(\lambda_{1}\) 's & 100124 & 0532353 & 0532353 & 0271964 & -0 0001 & \(\cong 0\) \\
\hline 0099 & 0287893 & -0 287893 & 025852 & -0370862 & -0162693 & 00005 \\
\hline \(\lambda_{1}\) 's & 10004 & 0532674 & 0532674 & 0271642 & -0 0001 & \(\cong 0\) \\
\hline
\end{tabular}

Parameters: \(\mathbf{m h i p}=1.5\), mbody \(=1.0\)
lbody \(=0.8\), combody \(=0.795\), damp \(=0.55\), Frac \(=5\).
\(\tau\) states \(\{\) small \(=0.00008\), large \(=0.0009\}\), on \(=0.025\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline combody & \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{1}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 0797 & 0283719 & -0283719 & 0131882 & -0348172 & -0094408 & 00018901 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline\(\lambda_{1}^{\prime} \mathbf{s}\) & 100245 & 0691179 & 0691179 & 0159356 & -000001 & \(\cong 0\) \\
\hline 0795 & 0283795 & -0283795 & 00762199 & -0348054 & -00943815 & 000313797 \\
\hline\(\lambda_{1}^{\prime} \mathbf{s}\) & 100411 & 0690446 & 0690446 & 0159779 & -000001 & \(\cong 0\) \\
\hline 0793 & 0283867 & -0283867 & 00524644 & -0347933 & -0094357 & 000438008 \\
\hline\(\lambda_{1}^{\prime} \mathbf{s}\) & 100577 & 0689713 & 0689713 & 0160203 & -000001 & \(\cong 0\) \\
\hline 079 & 0283969 & -0283969 & 00346825 & -0347749 & -00943236 & 000623843 \\
\hline\(\lambda_{1} \mathbf{\prime} \mathbf{s}\) & 100827 & 0688606 & 0688606 & 0160844 & \(\cong 0\) & \(\cong 0\) \\
\hline 075 & 0284636 & -0284636 & 000147668 & -0344857 & -00942744 & 00309918 \\
\hline\(\lambda_{1} \mathbf{s}\) & 104285 & 0676311 & 0676311 & 0170046 & \(\cong 0\) & \(\cong 0\) \\
\hline
\end{tabular}

\section*{H 6. Effect of varying mbody}
\(\operatorname{mhip}=1.5, \operatorname{mbody}=1.0\),
\(\mathrm{lbody}=0.8\), combody \(=0.795\), damp \(=0.55\), Frac \(=5\)
\(\tau\) states \(=\{\) small \(=000008, l\) arg \(e=00009\}\).
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline mbody & \(q_{1}\) & \(q_{2}\) & \(q_{3}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(u_{2}\) & \(u_{3}\) \\
\hline 04 & 029134 & -0 29134 & 0198439 & -0 375901 & -0 095529 & -0 00005 \\
\hline \(\lambda_{1}\) 's & 100264 & 0513655 & 0513655 & 0277827 & 000009 & \(\cong 0\) \\
\hline 07 & 0287131 & -0 287131 & 0110182 & -0 360442 & -0 0950866 & 000334149 \\
\hline \(\lambda_{1}\) 's & 100284 & 0610819 & 0610819 & 0202481 & -0 00001 & \(\cong 0\) \\
\hline 10 & 0283795 & -0 283795 & 00762199 & -0348054 & -00943815 & 000313797 \\
\hline \(\lambda\), 's & 100411 & 0690446 & 0690446 & 0159779 & -0 00001 & \(\cong 0\) \\
\hline 12 & 0281921 & -0 281921 & 00633571 & -0 341073 & -00938582 & 00030274 \\
\hline \(\lambda_{1}\) 's & 100496 & 0731726 & 0731726 & 0142845 & -0 00001 & \(\cong 0\) \\
\hline & & & & & & \\
\hline
\end{tabular}
unstable then until 16 when no solutions begin to exist
```

mhip $=1.0$, mbody $=0.4$,
damp $=0.39$, Frac $=5$, lbody $=0.8$, combody $=0.795$.
τ states $=\{$ small $=000005, l$ arg $e=00003\}$

```

mhip \(=0.4, \operatorname{mbody}=0.2\),
damp \(=0.22\), Frac \(=5\), lbody \(=0.1 \mathrm{com}=0.095\)
\(\tau\) states \(\{\) small \(=0.00001\), large \(=0.0001\}\), on \(=0.025\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline mbody & \(\boldsymbol{q}_{\mathbf{1}}\) & \(\boldsymbol{q}_{\mathbf{2}}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{\mathbf{2}}\) & \(\boldsymbol{u}_{\mathbf{3}}\) \\
\hline No solutions ex1st for mbody lower than 02 & \\
\hline 03 & 0286776 & -0286776 & 00312723 & -0360719 & -0158734 & 000284804 \\
\hline\(\lambda_{1}\) 's & 100314 & 0615799 & 0615799 & 0202611 & -00001 & \(\cong 0\) \\
\hline 035 & 028622 & -028622 & 00267937 & -0356316 & -0157047 & 000279888 \\
\hline\(\lambda_{1}\) 's & 100368 & 064938 & 064938 & 0181939 & -00001 & \(\cong 0\) \\
\hline
\end{tabular}

\section*{H. 7 Hip Damper}

A Quadratic damper is used with applied torque of \(\operatorname{Ffric}\left(u_{2}-u_{1}\right)^{2}\)

\section*{H.7.1 mbody \(=0.4\), mhip \(=1.0\)}

\section*{Same parameters as H.4.3.}

This table gives the effect of various Ffric values on slope \(=0.065\) where the Ffric values that gave the best results are shown.
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffric & \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{1}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline-0.008 & 0.403418 & -0.403418 & 0.0543739 & -0.469985 & -0.0137412 & 0.00634116 \\
\hline & & & & & & \\
\hline-0.012 & 0.407565 & -0.407565 & 0.0495499 & -0.457063 & 0.0122486 & 0.0071346 \\
\hline & & & & & & \\
\hline-0.018 & 0.408641 & -0.408641 & 0.047823 & -0.452929 & 0.0218136 & 0.00744112 \\
\hline
\end{tabular}

\section*{Eigenvalues}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffric & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline-0.008 & 1.00274 & 0.756131 & 0.756131 & 0.0786171 & -0.00001 & \(\cong 0\) \\
\hline & & & & & & \\
\hline-0.012 & 1.00291 & 0.611246 & 0.611246 & 0.103464 & -0.00001 & \(\cong 0\) \\
\hline & & & & & & \\
\hline-0.018 & 1.00297 & 0.568417 & 0.568417 & 0.115422 & -0.00001 & \(\cong 0\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Ffric & step period & length & Velocity \\
\hline-0.008 & 2.45625196 & 1.458577708 & 0.593821729 \\
\hline-0.012 & 2.41267131 & 1.455629510 & 0.603326903 \\
\hline-0.018 & 2.28896185 & 1.444203959 & 0.630942782 \\
\hline
\end{tabular}

\section*{Maximum slopes attainable}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffric & \(\boldsymbol{q}_{\boldsymbol{I}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline-0.012 & 0.419505 & -0.419505 & 0.0503852 & -0.462592 & 0.0329884 & 0.00768644 \\
\hline\(\gamma=\mathbf{0 . 0 7}\) & & & & & & \\
\hline-0.018 & 0.423758 & -0.423758 & 0.0541803 & -0.475091 & 0.0261558 & 0.00741166 \\
\hline\(\gamma=\mathbf{0 . 0 7 3}\) & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffric & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline-0.012 & 1.00292 & 0.5942 & 0.5942 & 0.0994319 & -0.00001 & \(\cong 0\) \\
\hline\(\gamma=\mathbf{0 . 0 7}\) & & & & & & \\
\hline-0.018 & 1.0028 & 0.682079 & 0.682079 & 0.0782041 & -0.00001 & \(\cong 0\) \\
\hline\(\gamma=\mathbf{0 . 0 7 3}\) & & & & & & \\
\hline
\end{tabular}


This diagram shows the Limit Cycles on \(\gamma=0065\)

\section*{H. 72 mbody \(=0.8, \operatorname{mhip}=1.0\)}

\section*{Same parameters as H.4.2.}

This table gives the effect of various Ffric values on slope \(=\mathbf{0 . 0 4 5}\) where the Ffric values that gave the best results are shown
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffric & \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline-0008 & 0351355 & -0351355 & 00631716 & -0403639 & -00590579 & 000480934 \\
\hline & & & & & & \\
\hline-0012 & 0351146 & -0351146 & 00653776 & -0409957 & -00691161 & 000449811 \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{Eigenvalues}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffric & \(\lambda_{l}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline-0008 & 100458 & 0724368 & 0724368 & 0104909 & -000001 & \(\cong 0\) \\
\hline & & & & & & \\
\hline-0012 & 100446 & 0785412 & 0785412 & 00946992 & -000001 & \(\cong 0\) \\
\hline & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline Ffric & step period & length & Velocıty \\
\hline-0008 & 24225913267 & 12925760828 & 05335510238 \\
\hline-0012 & 23663344714 & 12919380237 & 05459659398 \\
\hline
\end{tabular}

\section*{Maxımum slopes attainable}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffric & \(\boldsymbol{q 1}\) & \(\boldsymbol{q 2}\) & \(\boldsymbol{q 3}\) & \(\boldsymbol{u} \mathbf{1}\) & \(\boldsymbol{u} 2\) & \(\boldsymbol{u} \mathbf{3}\) \\
\hline-0008 & 0357066 & -0357066 & 00633256 & -0407093 & -00518172 & 00050292 \\
\hline\(\gamma=\mathbf{0 0 4 7}\) & & & & & & \\
\hline-0012 & 0367983 & -0367983 & 00655578 & -0419202 & -00459992 & 000518607 \\
\hline\(\gamma=\mathbf{0 0 5 1}\) & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffruc & \(\lambda_{1}\) & \(\lambda_{2}\) & \(\lambda_{3}\) & \(\lambda_{4}\) & \(\lambda_{5}\) & \(\lambda_{6}\) \\
\hline-0008 & 100459 & 0716684 & 0716684 & 0103059 & -000001 & \(\cong 0\) \\
\hline\(\gamma=\mathbf{0 0 4 7}\) & & & & & & \\
\hline-0012 & 10045 & 0750494 & 0750494 & 0091013 & -000001 & \(\cong 0\) \\
\hline\(\gamma=\mathbf{0 0 5 1}\) & & & & & & \\
\hline
\end{tabular}


This diagram shows the Limit Cycles on \(\gamma=0045\)

\section*{H. 7.3 mbody \(=0.4\), mhip \(=08\)}

\section*{Same parameters as H.4.4.}

This table gives the effect of vanous Ffric values on slope \(\mu=\mathbf{0 . 0 6}\) where the Ffric values that gave the best results are shown
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffric & \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline-0003 & 0373504 & -0373504 & 00733276 & -0487863 & -0118508 & 0003575 \\
\hline & 344766 & 100326 & 0491696 & 00655008 & -000001 & \(\cong 0\) \\
\hline & & & & & & \\
\hline-0008 & 0395018 & -0395018 & 00499126 & -0445407 & -00180766 & 00065185 \\
\hline & 100402 & 0621116 & 0621116 & 0110058 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}
\(\mu=0.062\)
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffrac & \(\boldsymbol{q}_{\boldsymbol{l}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{l}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline-0008 & 0400022 & -0400022 & 00501982 & -0447795 & -00102048 & 00067368 \\
\hline & 100402 & 0615099 & 0615099 & 0108142 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}

\section*{\(\mu=0.065\)}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline Ffric & \(\boldsymbol{q}_{I}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline-0012 & 0405943 & -0405943 & 00529754 & -0457614 & -00108365 & 000666508 \\
\hline & 100392 & 0667797 & 0667797 & 00917404 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}

\section*{H. 8 Applied Torque}
\begin{tabular}{|l|l|l|l|l|}
\hline mbody \(=1\), mhip \(=15\) & Torque & & mbody \(=\mathbf{0 8}\) mhip \(=10\) & Torque \\
\hline 00005 & -00250161 & & 00005 & -00158356 \\
\hline 0001 & -00204931 & & 0001 & -00139283 \\
\hline 0005 & -00204931 & & 001 & -00135017 \\
\hline 001 & -0021497 & & 0025 & -00157188 \\
\hline 0025 & -00289354 & & 004 & -00180096 \\
\hline 0043 & -00289354 & & & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline mbody \(=\mathbf{0} 4\) mhip \(=\mathbf{1}\) & Torque & & mbody \(=\mathbf{0 4}\) mhip \(=\mathbf{0 8}\) & Torque \\
\hline 00008 & -000578143 & & 00006 & -000615093 \\
\hline 0005 & -000549235 & & 0001 & -000552428 \\
\hline 001 & -000611214 & & 001 & -000557509 \\
\hline 0025 & -000833589 & & 0025 & -000695179 \\
\hline 004 & -00105034 & & 004 & -000833714 \\
\hline 006 & -00132937 & & 0055 & -000966618 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|}
\hline mbody \(=02\) mhip \(=088\) & Torque & & & Torque \\
\hline 00007 & -000422771 & & & \\
\hline 0001 & -000327594 & & & \\
\hline 0025 & -000759446 & & & \\
\hline 004 & -00106775 & & & \\
\hline 007 & -0016279 & & & \\
\hline & & & & \\
\hline
\end{tabular}

\section*{H. 9 Varying Radius of gyration}
mhip \(=1.5\), mbody \(=1.0\)

\section*{Parameters:}

Ibody \(=0.8\), combody \(=0.795\), damp \(=0.55\), \(\mathrm{Frac}=5, \quad=0.025\).
\(\tau\) states \(=\{\) small \(=000008, l\) arg \(e=00009\}\).
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline radıus gyr & \(\boldsymbol{q}_{\boldsymbol{l}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{l}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline bod \(=0121\) & 0283795 & -0283795 & 00762199 & -0348054 & -00943815 & 000313797 \\
\hline\(\lambda_{1} \mathbf{s}\) & 100411 & 0690446 & 0690446 & 0159779 & -000001 & \(\cong 0\) \\
\hline bod \(=009\) & 0283791 & -0283791 & 00762169 & -0348051 & -00943829 & 00042597 \\
\hline\(\lambda_{\mathbf{\prime}} \mathbf{s}\) & 100413 & 0690442 & 0690442 & 0159781 & -000001 & \(\cong 0\) \\
\hline bod \(=005\) & 0283669 & -0283669 & 00718488 & -0348274 & -00944591 & 0246121 \\
\hline\(\lambda_{\mathbf{\prime}} \mathbf{s}\) & 100402 & 0764968 & 0764968 & 0164953 & \(\cong 0\) & \(\cong 0\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline radıus gyr & \(\boldsymbol{q}_{\boldsymbol{l}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{l}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline leg \(=01\) & 0291521 & -0291521 & 00773395 & -0349971 & -00919796 & 000313335 \\
\hline\(\lambda_{1}\) 's & 100425 & 063606 & 063606 & 0160012 & -000001 & \(\cong 0\) \\
\hline leg \(=009\) & 0283791 & -0283791 & 00762169 & -0348051 & -00943829 & 00042597 \\
\hline\(\lambda_{1}\) 's & 100413 & 0690442 & 0690442 & 0159781 & -000001 & \(\cong 0\) \\
\hline leg \(=004\) & 0239549 & -0239549 & 00699325 & -0341002 & -0117388 & 000303788 \\
\hline\(\lambda_{1} ' s\) & 100335 & 0970099 & 0970099 & 0197147 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}

\section*{H. 10 Complex Controller}

On slope \(\gamma=0025\)
\(\underline{\mathrm{mh}} \mathrm{p}=15 \mathrm{mbody}=10\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{I}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 0283787 & -0283787 & -00899587 & -0348033 & -00943614 & 000305087 \\
\hline 100409 & 0690225 & 0690225 & 0159846 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}
\(\underline{\mathrm{mhip}}=10 \mathrm{mbody}=08\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 0283553 & -0283553 & -00699312 & -0346004 & -011029 & 000290952 \\
\hline 100466 & 071182 & 071182 & 0151968 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}
\(\underline{\text { mhip }}=10\) mbody \(=04\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{I}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 0288672 & -0288672 & -00604298 & -0368161 & -0113541 & 000319901 \\
\hline 100297 & 0560653 & 0560653 & 0242955 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}
\(\underline{m h ı p}=08 \mathrm{mbody}=04\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\boldsymbol{q}_{\boldsymbol{1}}\) & \(\boldsymbol{q}_{2}\) & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{\boldsymbol{l}}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 028752 & -028752 & -00587354 & -0363954 & -0123854 & 000304068 \\
\hline 100407 & 0594581 & 0594581 & 0217706 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}
\(\underline{\mathrm{mh}} \mathbf{1} \mathrm{p}=08 \mathrm{mbody}=02\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & \(q_{3}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{2}\) & \(\boldsymbol{u}_{3}\) \\
\hline 0290784 & -0290784 & -00611985 & -037998 & -0126872 & 000326162 \\
\hline 100201 & 0465768 & 0465768 & 0353277 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}
mhıp \(=04\) mbody \(=02\)
\begin{tabular}{|l|l|l|l|l|l|}
\hline \(\boldsymbol{q}_{1}\) & \(\boldsymbol{q}_{2}\) & & \(\boldsymbol{q}_{3}\) & \(\boldsymbol{u}_{1}\) & \(\boldsymbol{u}_{2}\) \\
\hline 0287974 & -0287974 & -00564755 & -0370681 & -0162555 & \(\boldsymbol{u}_{3}\) \\
\hline 100207 & 0531955 & 0531955 & 0272335 & -000001 & \(\cong 0\) \\
\hline
\end{tabular}

\section*{Appendix I:}

\section*{Mechanical Energy}

\section*{Body-less:}

\section*{Potential Energy}
\(P E=m \times g \times h\) and the total \(P E\) for the creature is
\[
\begin{aligned}
P E= & M \times g \times \text { height of swlCOM above ground }+ \\
& M \times g \times \text { height of sta COM above ground }+ \\
& \text { Mhıp } \times g \times \text { height of hip COM above ground }
\end{aligned}
\]

\section*{Kinetic Energy}

Since the creature is similar to that of a rolling wheel, the total kinetic energy is composed of two parts, the kinetic energy of the translation of the centre of mass, and the kinetic energy of rotation about the centre of mass This gives that the kinetic energy is given by \(K E=\left(05 \times M \times v^{2}\right)+\left(05 \times I l \times \omega^{2}\right)\) and thus is
\[
\begin{aligned}
K E= & 05 \times M \times\left\|\vec{v}_{C O M} s w l\right\|^{2}+ \\
& 05 \times M \times\left\|\vec{v}_{\text {COM }} s t a\right\|^{2}+ \\
& 05 \times M h l p \times\left\|\vec{v}_{\text {COM }} h l p\right\|^{2}+ \\
& 05 \times I l s t a \times\left\|u_{1}\right\|^{2}+05 \times I l s w l \times\left\|u_{2}\right\|^{2}
\end{aligned}
\]

\section*{Bodied :}

\section*{Potential Energy}
\[
\begin{aligned}
P E= & M \times g \times \text { height of swlCOM above ground }+ \\
& M \times g \times \text { height of sta COM above ground }+ \\
& M h i p \times g \times \text { height of hip COM above ground }+ \\
& \text { Mbody } \times g \times \text { height of bodyCOM above ground }
\end{aligned}
\]

\section*{Kinetic Energy}
\[
\begin{aligned}
K E= & 05 \times M \times\left\|\vec{v}_{\text {COM }} s w l\right\|^{2}+ \\
& 05 \times M \times \| \vec{v}_{\text {COM }} \text { sta } \|^{2}+ \\
& 05 \times M h l p \times\left\|\vec{v}_{\text {COM }} h i p\right\|^{2}+ \\
& 05 \times M b o d y \times \| \vec{v}_{\text {COM }} \text { body } \|^{2}+ \\
& 05 \times \text { Ilsta } \times\left\|u_{1}\right\|^{2}+05 \times \text { Ilswl } \times\left\|u_{2}\right\|^{2}+05 \times \text { Inerttabody } \times\left\|u_{3}\right\|^{2}
\end{aligned}
\]```


[^0]:    Fig 4.8: Table for control rules

