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Abstract

Passtve dynamic walkers are a body of robots, both simulated and real-world, that can
"walk" down a shghtly inclined plane powered only by gravity and eventually acquire
a stable periodic gait Of particular interest 1s the fact that the motion appears "human-
like" Performance indicators such as efficiency, step period etc are also
commendable Common to all previously modelled creatures 1s that a hip mass 1s

utilised to represent a torso - an omission that 1s tackled here

An upper body, represented as an mverted pendulum, 1s added to a passive creature
To keep the body 1 an upnight position, a simple controller apphies a varying torque
as necessary Periodic gaits are achievable, both stable and unstable, where stability 1s
contrived through the addition of a damper Performance indicators are as good as
those of the body-less creatures indicating that the torso 1s not a hindrance Finally the

addition of further dampers at the hip joint can improve performance
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Chapter One

Bipedal Locomotion

1.1 Introduction

Animmating creatures, or articulated figures, can in essence be split up nto two
categories of approach kinematic and dynamic modelling

Kinematic Kinematic animation 1s concerned only with the specification of joimnt
angles and velocities over time and does not deal with the forces and torques affecting
a creature

Dynamic Physical based anmimation incorporates the rules of physics nto the
modelling process to generate realistic motion “Realism” here refers to behaviour
consistent with a simulated model of the real world Incorporation of dynamics brings
extra problems 1 e 1ntegration of the equations of motion over time 1s computationally
expensive and cumbersome and the provision of control forces and torques to the

creature 1S complex

There are broadly speaking two approaches to the method integrating physics nto the

creation of lifelike amimation of creatures which are outhned 1n the next two sections

1.1.1 Trajectory based animation

The first poses the problem 1n terms of a trajectory through state-space and time,
which 1s subject to the constraints of the desired motion Therefore a typical problem
would deal with mimimising a certain objective (e g minimum control energy) subject

to certain constraints (e g be 1n position a at time ty and 1n position b at time t;)

One restriction of dealing with motions as trajectories 1s that 1t 1s difficult to properly
incorporate 1nteractions with the environment Discontmuities in the motion, such as

those caused by contact with the ground, pose difficulties for many optimisation



techmques In addition, a new trajectory must be generated for each new desired
motion Two advantages associated with this method however are that 1t relates well
to the i1dea of key-framing, and that these techniques are also able to find the most
plausible solution, even 1if no physical solution is possible (e g walking on water) A
more detailed discussion of one method of posing the problem n a format based upon

desired trajectory 1s outlined n [Ega96]

1.1.2 Control Algorithms

The second method 1s to utihise a controller or control algorithm, where a controller
makes control decisions based upon a mechanical simulation and as such does not
explicitly calculate a trajectory Therefore, the problem 1s one of the user providing
the creatures construction and posing the question “How would 1t move”” The motion
of a creature 1s thus made up of a sequence of control algorithms, with each control
algorithm providing a particular type of motion e g walking, jogging, running etc

Physically built controllers, require much user assistance and manual tweaking must
be performed to provide correct motion In most cases the control system 1s decoupled
and separate algorithms are needed to perform the various different kinds of motion

required (e g hopping or skipping or walking or running etc )

It 1s therefore more useful to synthesis a controller and then maybe build one
However synthesising controllers 1s not problem free Complex control algorithms
utilising 1ntricate algorithms such as neural-networks, genetic algorithms etc have
been formulated providing realistic animation - (see [Ega97] for a more detailed
discussion) A major drawback of these approaches 1s that researchers are able to
provide motion to “certain” creatures in ““certain” situations but are unable to provide
widespread animation To provide a vanation 1n gait e g changing from walking to
running requires reformulation of the problem Also while controllers increase the
autonomy of the creature thus reducing user input, they also reduce user control The

more complex the control algorithm the less control the user has



1.2 Biped locomotion

Of primary concern 1n this thesis 1s bipedal locomotion - movement of two-legged
creatures The mam advantage of bipedal locomotion 1s 1ts naturalness bipeds should
be able to traverse whatever terrain they are in, much as a human might What follows
1s a brief discussion, not intended as a complete review, of some research 1n each area

of the three disciplines given above

1.2.1 Human Motion analysis

The first area of bipedal research 1s purely medical based and involves capturing
actual human data and analysing 1t Hurmuzulu's laboratory [Hur0O] has been
developing quantitative measures to assess the dynammc stability of human
locomotion, where the analytical methodology 1s based on Floquet theory He carned
out a study comparing the gait kinematics and dynamics of polio survivors with that
of non-paralysed humans utilising graphical and analytical tools Phase plane portraits
and first return maps were used as graphical tools to detect abnormal patterns n the
sagittal kinematics of polio gait He concluded that polio patients walked less
symmetrically than "normal” people did and that their motion was also less stable

then "normal"” people

1.2.2 Human Simulation

In her laboratory Hodgins et al [Hod0O] are interested in providing animations,
prmarily of humans nvolved 1n various activities such as running, bicyching and
diving The goal of their research 1s two-fold firstly realistic characteristic motion
and secondly high level control by the amimator and underlying simulation carried out
by the machine These motions are achieved through application of control algorithms
to the physically realistic model of the human that 1s being ammated The physical
model of a human 1s taken from the mass and inertia properties prevalent 1n the
biomechanics literature The control algorithms involve the use of inverse kinematics,
proportional-derivative control laws, state machines, active control laws and synergies

- a complete published list 1s available on the web site [Hod00] In addition secondary
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motion and group behaviours have been added to the simulation to increase

complexity and realism

Simulation 1s not without 1ts difficulties and some of the problems that have been
encountered are as follows adapting behaviours to new actors 1s difficult because a
control system that 1s tuned for one character will not work on a character with
different limb lengths, masses, or moments of mertia New activities need new
controllers and also creating appropriate transitions from one behaviour (either
existing or new) to the next can be a challenging problem While these problems have
been solved the processes involved can be quite complex and may not lead

themselves to a physical implementation 1n robotic form

1.2.3 Legged Robots

The body of work contained 1n this thesis falls primarily into the third and final area
of research 1e legged robots A list of biped robot researchers can be found at
[Cal00], but what follows are examples of some of the more successful creatures that

were built

The Massachusetts Institute of Technology [Mit00] has been successful in building
legged robots for the past two decades Led by Marc Raibert [Rai86] the MIT Leg
Laboratory explores active balance and dynamics in legged systems, robots and
amimals alike Activities for the robots are made up of a combination of simple
algorithms that focus on support, posture and propulsion, thus providing balance and
basic control A single set of control algonthms, modified in various ways, has
successfully controlled numerous runnming machines as well as hopping, gymnastics
etc Several simple algorithms currently under development have had promising
results on walking machines According to the lab web-site "the abiulity of sumple
algorithms to operate under these diverse circumstances suggests thewr fundamental
nature” [Mit00] A number of bipedal creatures in particular have been created

including the spring turkey and planar biped
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Again, there are a number of problems with the research partaken by the laboratory
For each creature separate control algorithms must be formulated for each walking
activity so reusability would be an 1ssue Each creature also requires a relatively
small, but 1n the long run, a considerable amount of power to keep 1n motion Finally

taking for example the spring turkey, the construction costs 1e =~ $100,000 are

substantial

In Japan the Honda Corporation has successfully built a humanoid robot known as P/
[Hon00O] This robot with human-like appearance 1s versatile, capable of walking
sideways as well as forwards and can traverse stairs and 1s robust enough to tolerate
pushing Originally designed as a possible home robot several generations have
evolved (the newest version available 1s P3) but still there are a number of problems
n existence These are namely the high price tag (in the region of millions of dollars),
low battery Iife (1n the region of minutes) and limited intelligence (a person 1s
constantly needed to operate the robot) Honda aims at improving performance and

operability 1n future models

g@f«(@«g@wx N o
P

Fig 1.1: The Honda robots (P2 and P3), © Honda Corporation Ltd
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Katoh and Mon constructed a biped with very simple dynamics and telescopically
retractable legs [Kat84] It consists of a three degree of freedom model with
independently adjustable leg lengths Mura and Shimoyama built a robot that
generated gait by linear feedforward control, joint torque schedules were pre-
calculated and played back on command [Mmu84] Hurmuzulu created a kneeless
biped with an additional body mass connected to the hip through a pelvic joint
[Hur86] Particular attention was paid to the effect of the robots' impact with the
ground and the impact conditions were justifiably considered as an integral part of the
goverming equations Central to the robots mentioned 1s that fact that all have some
form of actuation Controlling this actuation, if applied, has volved the use of

complex control algornithms

1.3 Passive Dynamics

Another topic of research 1s based upon bipedal creatures that have no actuation
except the passive mteraction of gravity, mertia and collisions and have no control

system 1€ passive dynamic creatures

Def: A passive dynamic creature 1S one whose motion 1s fully determmed by

gravity, mertia and collisions and involves no control system [Gos96b]

The philosophy here 1s to solve a simple system to get a better msight into the
underlying mechanics of complicated systems Then small amounts of power can be
added 1n efficient ways to allow them to walk on level ground or up a hill and simple

control mechanisms can be introduced to increase the stability of the motion

The rest of this thesis 1s organised as follows

= Chapter two introduces previous work on this topic and identifies the missing

component common to all passive dynamic creatures namely the inclusion of a

torso
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Chapter three outlines the mechanics of the creature In formulating the dynamacs,
the equations of motion for the creature along with the impact of the collision with
the ground are taken into account

Chapter four indicates how this motion will be analysed Poincaré maps are
formulated and Newton's method 1s used to find fixed points These fixed points
are then classified as erther stable or unstable

Chapter five gives the results attained for the creatures that are dealt with here
The mitial part of this chapter involves results that correlate with resuits for
similar creatures 1 e for a body-less creature and the remamning gives previously
unpublished results

The final chapter 1dentifies the conclusions gamed and possibilities for future

work
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Chapter Two

Passive Dynamic Walkers

2.1 Passive Dynamic Walking

In 1980 Mochon and McMahon [Moc80] argued from electromyographic data that
humans were not actively controlling most of their movements during walking. Other
EMG studies, more recently published for instance in [Ros94], indicate that much of
human walking may indeed be passive i.e. muscles are not used in significant
guantities to provide movement. Inspired by the research [Moc80b] on ballistic
walking (Ballistic walking is considered to be the most fundamental, and therefore the
most revealing, approach to bipedal walking, involving creatures walking in a ballistic
fashion i.e. legs swing and impact with the ground), Tad McGeer designed and
analysed a passive dynamic walker [McG90], This consisted of a simple rigid two-
legged creature 'walking' down a shallow slope with no outside control or additional
energy input i.e. it was powered by gravity alone. Thus the passive-walking pattern is
determined by the natural frequency of the mechanical system. An interesting
characteristic determined was that the creature achieved a stable limit cycle that
looked almost human-like. One interpretation of a limit cycle means that one step
only needs to be fully determined as all subsequent steps are just “copies” of it and
stability indicates that any disturbance that occurs is rectified and the creature keeps
walking. An extension given by McGeer [McG90b] was to include knees, which
provided natural ground clearance, and again a stable limit cycle was achieved. These

creatures were initially simulated and then later built.

In addition to pioneering the passive-dynamic approach to gait study, McGeer utilised
a Poincare map as a means of analysing the given simulation results. Other authors as
shall be seen in section 2.3 have made improvements on the characteristics of passive
creatures through the use of dampers and simple control laws. In addition the analysis

ofthat motion has become more adept over the years.
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2.2 Why study passive dynamic walking?

Designing and building biped robots 1s fuelled by the potential advantages they would
provide Biped robots are better smted to working in hazardous environments, such as
chemucal spills, or exploration on unsuitable terrain such as on another planet and
more especially n rehabilitation technology (1€ as an alternative to wheel-chairs
whereby paralysed people could actually walk again) Science fiction even dictates
the possibility of front-line fighting 1n a war situation using bipeds At present one of
the main obstacles to a wider application of legged robots 1s their lack of energy
effictency Much work has taken place on overall gait synthesis based upon brain
control and muscle power leading to impressive but limited creatures The reasoning

behind the study of passive dynamic walking can be summansed as follows

1 It makes for mechanical simplicity and relatively high efficiency McGeer's results
and those of the researchers that emulated his work provide animation that is both
humanlike and stable Trying to get a fundamental understanding of how humans
walk from a mechanical point of view could prove useful in providing control
later

2 The simplicity promotes understanding McGeer used the analogy of powered
fhight research [McG90] The Wright brothers began by studying and building
glhders Once they fully understood the concepts of “unpowered” flight, adding
power (1 ¢ engme) was only a minor change The concept therefore 1s to start with
a machine with no active control and then the addition of control should be
uncomplicated

3 Ewvidence exists (1n the form of EMG results) that a minimal amount of control
and actuation 1s necessary for some basic human motions, mncluding gait
[Gos98a] At the heart of these motions, the body 1s at or very close to a it
cycle As already outlined EMG studies have shown relative muscle mactivity
during the swing phase of human motion [Ros94] that could be termed "passive"
Of course an equally legitimate approach to achieving stable and efficient walking
1s to start with arbitrary amounts of control and actuation and then to gradually

minimise their role
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Central to the study of planar passive walking 1s the simplicity of the model being
considered By disregarding complex additional charactenistics to the 1dea of motion
such as complex control algorithms, optimisation, external torques and forces etc,
more 1nsights can be gamed on the fundamentals of bipedal motion — which 1s

currently not fully understood

Rule: The general motto of passive walking could be epitommsed therefore as

starting from the bottom up

2.3 Collection of Passive Creatures

Passive dynamic toys are not a new phenomenon and a collection of pictures of
antique patented toys 1s attainable at [Cor00] However the concept of passive
dynamic creatures in terms of serious analysis and design 1s relatively fresh
Therefore literature on the topic of passive dynamic walking 1s quite limited and
predominantly contains the analysis of three very similar creatures designed by three
authors, McGeer's original, Goswami's Compass model and Garcia's Point Mass

model

2.3.1 McGeer's Original Passive Dynamic Walker

Mc Geer's [McG90] model, the original, has two rigid legs connected by a frictionless
hinge at the hip Each leg has an arc-style structure at the base, which act as feet The
arc-like semi-circular feet are used as a mathematical convemence rather than a
physical necessity There 1s a point mass at the joint of the two legs 1 e the hip, which
serves as being a "crude torso " The stance leg 1s 1n constant contact with the ground
while the swing leg moves similar to a swinging pendulum - thus the complete system
1s akin to a double pendulum The complete system can therefore be modelled by four
generalised co-ordmates one for each leg angle and angle velocity This creature 18
based on the ballistic walker of Mochon and McMahoﬁ [Moc80] — a bipedal toy that

walks down shallow slopes by rocking sideways This model however doesn’t rock
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from side to side In the solution method given by McGeer a rimless wheel model was
analysed first to provide basic nsights, followed by the more complex creature
described above The wheel had only a centre point and spokes (no rnm) and the
analysis involved 1solating two side by side spokes Finally note that as an extension
knees were added 1n and this creature 1s represented in a stmple form in Fig 2 1 The

addition of knees leads to there being 8 states

"

ST

Fig 2.1: Simple representation of McGeers' Passive Dynamic Walker with knees
More details can be found at [McG90b]

There are some general regulations that must be adhered too - but these are adopted

by all models and as such are characteristic of passive creatures

= foot scuffing 1e where the swing leg grazes the ground mudway through its
trajectory, 1s 1ignored

= collision of the feet with the ground is shipless plastic This means that the
configuration of the creature stays the same and angular momentum 1s conserved

= finally foot transition (1 e when one foot hits the ground and the roles of the legs

are switched) 1s imstantaneous
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The solution process involved formulating the equations of motion of the swing
phase, which are highly non-lmear and a set of algebraic conditions to simulate heel-
strike and the swapping of leg roles To solve the dynamics and to find Imit cycles
McGeer performed a linearisation about an equilibrium point 1 € the creature standing
rigidly upright The flaw inherent 1n this method shall be outlined in section 2 4
Finally each step was modelled as a Poincaré map which could then be analysed for

stability

The conclusions reached by McGeer are summarised as follows

» fixed points were found but these were not necessarily always stable

» efficiency can be measured as the mimimum slope necessary to provide motion
and the mimmum angle ¥ found was 0 005 radians

= parameter changes were made and the effects noted scaling of leg mass, leg
length and gravity may not destroy the limit cycle, moving centre of masses could

destroy the limit cycle and addition of a hap mass improved efficiency

2.3.2 Compass Gait Creature

Others have adopted McGeer's oniginal ideas Although the models that are used are
not sigmficantly different or improved from the oniginal, 1t 1s the extent of analysis of
passive walking that has advanced in recent years Goswami [Gos94] slightly
modified the creature to form a compass-like biped This “compass-like” model 1s
very similar 1n structure to that of McGeer's, except that there are no arcs present to
resemble feet - instead there 1s just a point The problem of foot scuffing 1s avoided by
including retractable mass-less lower legs (remember this 1s a simulation and those
mass-less lower legs are plausible) The telescopic retraction of the leg solves the
problem of foot clearance without affecting the robot dynamics The long-term
motivation behind this study 1s to formulate a simple biologically mspired active
control law of a 17-dof biped robot bemng built in project BIP co-ordinated by the
INRIA laboratory in Grenoble, France [Bip00] The first prototype of this robot was
built in March 2000 and successfully walks
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Fig 2.2: Compass Gait Creature Note the absence of "feet" and use of retractable

legs

One notable augmentation 1n the solution method was the utilisation of the full non-
linear equations As previously stated McGeer utilised a linearisation about an
equilibrium point and this 1s discounted by Goswami In a later work [Gos96b] a

comparison of both methods was carried out and this 1s outlined 1n section 2 5

Three parameters, namely the ground slope and normalised mass and length
completely describe the creature Any continuous change in one of the parameters
leads to an evolution of the steady gait through a regime of bifurcations leading to a
chaotic state where no two steps are identical [Gos98] A bifurcation (or period
doubling) indicates that each alternative step 1s repeated, and thus Goswamm found
that as the slope increases stable period one solutions transform 1nto stable period two
solutions and so on until eventually chaos 1s reached A necessary but not sufficient
condition for the stability of such gauts 1s the contraction of the "phase fluid" volume
and the volume contraction was thus computed Goswami added m passive dampers

at the hip joint, to dissipate the energy build-up, and this results in a sigmficant
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mmprovement 1n the stability and versatility of the gait (1e 1mproving the maximum
attainable stable slope) Finally Goswamu also investigated the performance of several
active control schemes which enlarged the basin of attraction of passive limit cycles
and created new gaits [Gos97a] The notion of adding 1n dampers and outside control

1s addressed 1n section 2 7

In summary therefore the additional charactenistics of passive walking found were
» possibility of using full non-linear equations

= pertod doubling (1 ¢ bifurcations ) leading to a chaotic state

» addition of dampers at hip increase stability and versatility

» simple passivity mimicking laws can be added in

2.3.3 Simplest Creature: Point Mass

Garcia's “point-foot” [Gar98a] model 1s the most simplistic of all It 1s a determimstic
generalisation of Alexander's non-deterministic theoretic "mimmal" model [Ale95]
This creature has no arcs for feet, instead having point masses (1e m) The hip-mass
M 1s much larger than the foot mass m (= 1000 times) so that the motion of a swinging

foot does not affect the motion of the hip

ramp slope y

Fig 2.3: Point mass creature
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This special mass distribution further simplifies the underlying mechanics and
mathematics mnvolved 1n the solution process This significant reduction also allows
the author to perform analytical computation, estimate the initial conditions necessary
and to form stability estimates of period one gaits After nondimensionalising the
governing equations 1t was found that the only free parameter was the slope y Again,

similar to Goswami's solution method above, the full non-linear equations are utilised

The model displays two period one gait cycles, one of which 1s stable for 0 < y <
0015 By wncreasing the slope y beyond this value, stable cycles of higher peniods
appear, and the walking-like motions apparently become chaotic through a sequence

of period doublings, which again agrees with the findings of Goswami

2.3.4 Other passive creatures of interest

Berkemeter and Smith [Ber97] extended the concept of passive dynamic walking
from bipedal to quadrupedal locomotion The creature consisted of a pair of McGeer
two-dimensional bipeds linked together by a 'spine' A rimless wheel model was
analysed first to provide basic nsights followed by a more complex model with free-
swinging legs The gaits of the quadruped are more efficient than those of the biped

but are unstable Future work was to evolve around stabilising this creature, but as of

yet no results have been published

Camp [Cam97] demonstrated that a simple open-loop actuation/control scheme 1s all
that 1s required to produce stable, powered, human-like walking motions 1n a set of
roughly human-like legs By having a 'powered mode' the creature does not require a
slope and can traverse level ground Stable and unstable gait hmit cycles and period
doubling, for a variety of structural, physical and control/actuation parameters were

observed

The origmal passive walkers give a hip trajectory that 1s far from smooth However
successful applications would require a smooth hip trajectory to protect the

electronics of the creature from the large velocity changes due to ground collisions
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Quint van der Linde [Qu98] showed that an actively adjustable stance leg compliance

1n combination with a viscous damping can result in smaller hip velocity changes

Work has also been carried out on motion 1n 3D McGeer's [McG91] numernical 3D
studies only led to unstable period motions Garcia [Gar99] and Coleman [Col98]
utilised a gradient search method to try to improve the unstable eigenvalues of
McGeer's model Improvements were made but he still returned a maximum
eigenvalue modulus that indicated nstability (1e well above 1) Kuo numencally
simulated a passive dynamic 3D model of walking but again did not find stable
passive motions [Kuo98] Finally Coleman has a physical walker that walks and
balances 1n 3D, but cannot stand still and does not yet know exactly which aspects of
1ts physical description are needed to theoretically predict its stability with computer

simulation [Col98]

Suggestions were given as to how to maybe stabilise models 1n three-dimensions and
some of the suggestions include

= using ellipsoid or toroid feet [Gar99]

» using freely swinging arms [Gar99] - presumably a torso would be needed first'

= 1ncluding ball-socket hips with torsional springs for stabilty [McG91]

2.4 Passive Dynamic Walker with Torso

Common to all passive creatures that have been developed up to now, 1s the omission
of an extended torso and that 1s the primary goal of this body of work - to rectify that
While addressing the 1ssue of passive running McGeer [McG90a] mdicated that a
torso would "have an important role as a torque-reaction partner, so this should be
added to the model " The added torso will be treated as another link, much akin to the
well-known mverted pendulum problem Control will be needed to keep the body n
an upright position and 1t 1s felt that the controller should be kept as simple as possible
to preserve the simplicity of the creature The need to use this simple controller seems
necessary and this fact 1s echoed by Rumna i [Rw97] "the possibility that

asymptotically stable balance can be achieved without control 1s somewhat
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unmintuitive since top heavy upright things tend to fall down when standing still or

more generally, since dynamical systems tend to fall down "

In his proposal on future work in the area of passive dynamic walking Ruina [Rwm97]
suggested the mportance of placing a torso onto a passive creature saying that
"Chopped at the waist theoretical and mechanical models may represent the motions
of a more complete mechanism  such a theoretical model might not have too great a
relevance for healthy humans because the simulation of springs 1s most accurately
accomplished with tiring co-contraction (which 1s often avoided by humans) But it
does point towards the utility of passive measures for prosthetics and towards simple

spring or damper simulating control laws "

Finally note that in formulating the code involved 1n the solution for the bodied
creature, a body-less creature shall also be considered The goal of this body-less
creature 1s to attain the solutions previously published and as a building block for the

"new" bodied creature

2.5 Linearnsation versus full non-linear equations

Before the solution process begins one important decision must be made whether to
use the full non-linear equations of motion, which shall be generated by the creature,

or to perform some sort of linearisation

The process of solving the given problem has had two avenues of approach over the
years McGeer [McG90] took the method of linearising the dynamic equations of the
creature about an equilibrnium point thus providing a simpler problem to deal with
The equilibrium point was the creature standing perfectly upright, and this allowed

exphcit integration of the dynamical equations Next the collision equations with the

ground were added and the conditions for the existence of a periodic solution of this
coupled system were found In order to study the stability of this periodic solution a
second linearisation about the periodic solution 18 necessary One means of

determimng efﬁc1en2:y for a creature 1s to determine the minimum slope attainable
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and McGeer numerically found walking motions for slopes as low as about 0 005
radians [McG90] The main problem with this approach 1s that the linear solution 1s
valid only within a narrow region around the point of linearisation However for any

real gait, significant deviation from this point 1s required [Gos96b]

The second approach as shall be adopted here 1s to utilise the full non-linear
equations Advantages for this approach are outlined 1n the next paragraph though the
main disadvantage 1s that you have to rely extensively on numerical simulations
However, the computational burden 1s manageable as the robot model has a relatively

small state space dimension

Goswami [Gos96b] used both techniques and compared them Apart from the fact that
the non-linear approach has a much wider basin of attraction he found that the
maximum slope attainable increases slightly This ts due to the fact that for higher
slopes, the robots dynamics 1nvolve larger state values (angles and velocities) which
begin to render the linearisation (about an equilibrium point of the state vector being
0) nvalid By comparing the linear and non-linear state vectors on equivalent slopes,
he also found that the joint angles vary less sensitively than the joint velocities
Finally the only energy source in the model, the mechanical energy, which comprises
solely of the sum of the kinetic and potential energies1e £ = KE + P E also varies
quite steeply between both methods Given that there 1s such vanations he
hypothesised that 1t would be more appropriate to use the full non-linear solution,

which 1s 1n keeping with the approach of Garcia [Gar99]

26 Description of a stable passive period one gait.

It has been stated that passive dynamic creatures may possess stable limit cycles and 1t
1s this description that 1s now outlined For the purposes of outliming the motion of the
creature phase space terminology shall be adopted Phase space 1s described as the
space consisting of the generalised co-ordinate/generalised velocity vanables 1 € state
space [Gos96a] The phase space of the body-less creature 1s 4-dimensional (as shall
be shown 1n chapter three) and for the bodied creature 1t 1s 6-dimensional, where the

numbers correspond to the number of states present Since we cannot graphically
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visuahise these high dimensional spaces, diagrams will be limited to the displacement
and velocity of only one link This high-dimensionality also leads to problems in

determining the size of the basin of attraction for the limit cycle

swing leg manoeuvres through air

swing leg angle u;

o * &:V‘V *
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. ) *
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Heel-strike

Fig 2.4: Limit Cycle Note that this just represents the swing leg of the body-less

creature The straight line represents the collision of the leg with the ground

A period one gait 1s one, which repeats 1tself after every single time period, a period
two 1s one which repeats itself after every two time periods and so on A loose
defimtion of stability indicates that any disturbances to the gait get swallowed up and
the creature keeps moving 1n an upright manner The phase space diagram 1n Fig 2 4
deals with the angle and angular velocity of the swing leg over time The step begins
the moment after heel-strike has taken place At time ¢ = 0, the pivot leg 1s 1n the
stance position Immediately 1t becomes the swing leg, and the previous swing leg the
stance leg, traverses up 1n the air, reaches a maximum point and descends At time ¢ =
T, the leg impacts with the ground (heel-strike) and a velocity jump 1s observed (1 e

the straight hine 1n the diagram) Now the leg roles are reversed and next step
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continues The diagram shows the phase plane diagram for the body-less creature,

with hipmass of 0, on a slope of 0 005

2.7 Poincaré Map

McGeer [Mc90] placed a step in terms of a Poincaré map - something which 1s
prevalent in the non-linear dynamics literature ¢ g [Ott93] What this basically means
1s that one step can be dealt with or encoded 1n terms of a complete function It 1s
often useful to reduce a continuous dynamical system into a discrete one and this can
be achieved through the use of a Pomcaré map It 1s a tool developed by Henn
Poincaré for a visualisation of the flow (1 e continuous system) in a phase space of
more than two dimensions If the phase space 1s N-dimensional then the Poincaré map
has dimension N-I Thus the Poincaré map represents a reduction of the N-

dimensional flow to an N-/ dimensional map

The map 1tself 1s a carefully chosen (curved) surface in the phase space that 1s crossed
by almost all orbits The Poincaré map maps the points of the Poincaré section onto

itself For 1llustrative purposes take N =3 with states {x,, x,, x,} The points 4 and

B represent two successive crossings of the surface of section 1e shaded region A

can be used as an 1nitial condition to find B and vice versa Thus the Pomcaré map 1n

Fig 2 5 shows the mapping of {x,", x,"}to {x,"", x,”"} and the Pomcaré map section

consists of the shaded region
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Fig 2.5 Powcaré Map

28 Active Control and Stabilisation Using Dampers

For the bodied creature as shall be outlined here, external torques are necessary to
keep the body upright and to prowvide stability The use of these and passivity
mimicking control laws enforced through dampers has been studied by Goswami
[Gos97a] and McGeer [McG90a] primarily to increase performance The actual

dampers and control laws that are used are highlighted in chapter four

Goswami's [Gos97a] control laws were founded on the mechamical energy principles
of the system As the robot walks down on a slope 1ts support pomnt also shifts
downward at every touchdown As 1t loses gravitational potential energy in this way
1ts kinetic energy increases accordingly This 1s exactly the amount of kinetic energy
that 1s to be absorbed at the end of each step by the impact By resetting the potential
energy reference line to the line of touchdown (1 ¢ 1gnoring the slope which would
lead to a decrease i potential energy), the total energy of the robot appears constant

regardless of 1ts downward descent The control law formulated attempted to bring the

current energy level of the robot E to the target energy level £ at an exponential rate

What was ntroduced was a simple control law of the form — (u,,u,) The control
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law 1s implemented through the use of torques at erther the ankle, or hip or both For

- (E-E
mnstance the hip torque has the form u,, =—(——), where 1s a constant value
u, —u,
(taken to be 0 1) The overall effect of this was a demonstration that the basin of
attraction of the limit cycle could be significantly enlarged Another control law
which attempted to maintain a specified average speed of progression based upon the

velocity of the robot enables 1t to walk up a slope

McGeer [McG90a] employs active control to try to stabilise unstable cycles in his
runmng creature He also states that the running cycle can be modulated to allow, for
example, crossing unevenly-spaced stepping stones Step-to-step modulation 1s
provided for by lineansation of the stride function Then active stabilisation 1s

achieved through the use of the Linear Quadratic Regulator Algorithm

2.9 Goal of this research work

At this pomnt 1t should be appropriate to highlight the purpose and eventual goals of
this body of work Previous research as has been outlined 1n this chapter consists of
body-less creatures and 1t 1s this omission that shall be tackled, as a torso leads to a
more complete and realistic creature The primary reference or source model utilised
shall be that of McGeer's - see section 2 3 1 and the objectives therefore are

= addition of extra link, 1 e torso into the creatures description

= keep this ink upright but in accordance with the philosophy of passive dynamic

walkers using as simple a controller as possible
» 1dentify whether limit cycles exist, and the possibility of bifurcations leading to

chaos
= analyse stability, efficiency, and performance indicators

* try and improve on performance through the addition of extra dampers
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Chapter Three

The Solution Process

3.1 Introduction

This chapter details the solution process involved 1n generating the creatures motion
This procedure has very definite individual components and the complete method
leads to the generation of a single sfep The first component will be to determine the
configuration of the creature being studied Two creatures are considered 1n this work,
namely McGeer's original [McG90] and a new passive dynamic walker with a torso
McGeer's model 1s utilised as a means of formulating and coding the solution process
and of proofing the code involved Some slight improvements on his results were
made, as shall be highlighted in chapter 5 All of the solution methods used on the
body:less creature have been previously published and were used as a framework n

the solution method for the bodied creature

3.2 Creature Configurations

3.2.1 Body-less

Before the addition of a torso, 1t was necessary to gain an isight into body-less
motion Therefore the first creature considered consists, as McGeers’ does [McG90],

of the following parameters
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Fig 3.1: Body-less Creature consisting of two legs and a hip mass on a slopey

Legs

The creature has two ngid legs, one 1n motion known as the swing leg and the other
anchored to the ground, the sfance leg Each leg 1s 1dentical consisting of length L and
of mass M with the centre of mass positioned at the point comleg, a vector given from
the end point Each leg has an arc-style structure at the base of radius R, which act as
feet The arc-like semi-circular feet are used as a mathematical convemence rather
than a physical necessity and could be removed as necessary A more complete list of
vectors mfluencing the creature 1s given 1n appendix A and mn Fig 3 2 below Finally

note that the centre of mass M 1s offset slightly and this 1s indicated by the vanable w
Hip g
The joint connecting both legs contains a mass, known as the hip mass and 1s

represented by the parameter mhip The hip mass 1s attached to each leg and thus each

leg has total mass mhp + M The total mass of the robot 1s thus 2(mhip + M)

Inertia

The moment of mertia 1s given by

I = Massxr,,’ G1
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where 7, 1s the radius of gyration [Han88] and Mass 1s explained below The radius

of gyration value used by McGeer [McG90], namely r,, =0 347 1s approximated

here with an actual value of rg,,,2 =0 121 utilised The effects of varying this value

will be highlighted in chapter five There are two different Mass values associated

with equation 3 1 for each of the two legs for the swing leg Mass = M + mhip and

for the stance Mass =M

Length

At the time of heel-strike, since both legs are in contact with the ground, the robot
configuration can be completely described by what Goswamu [Gos96b] terms the
mter-leg angle o Since the leg angles here are equal but opposite this inter-leg angle

1s simply twice the swing leg angle 1€ 2g; The step length 1s then given by the’

following formula

Length =2 L Sin 32
Stance Leg Only
? ? mhip
M
o
w
L
R
( comleg

Fig 3.2: 4 close up of just one leg This gives the vectors n the creature's

configuration as given i the section above
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Generalised co-ordinates

The gait of the creature 1s given then by two stages swing where the swing leg moves
while the stance 1s pivoted to the ground, and transition or collision whereby the roles
of the two legs are swapped The combination of both processes leads to a step
Angles are measured relative to the normal to the ground, and positive indicates a
clockwise motion Changes in the shape of the creature are therefore specified

through generalised co-ordinates (1 ¢ angles and speeds) and there are two of each

qi angle stance leg makes with the ground
U speed at which angle 1s changing

q2 angle swing leg makes with the stance leg
u; speed at which 1t 1s changing

(note that u, =q, and u =gq,)

Thus the state vector of the creature 1s

0 ={q,,9,,u,,u,} (33)

Note that at the start of a step the legs have equal and opposite angles1e ¢; = - ¢q;

Thus 1 equation 32 =2xgq, The final parameter mvolving an angle to be

considered 1s the slope of the ground y

Assumptions

Certain assumptions are also made namely

e the impact of the swing leg with the ground 1s inelastic and without shiding By
bemng 1nelastic this means that there 1s no rebound This condition could be
enforced 1n a physical model by placing dead rubber at the end of the feet These
conditions lead to the robot configuration remaining the same throughout and to
conservation of momentum before and after collision with the ground

* A knee-less creature would not be able to clear the ground as the swing leg

manoeuvres and as such scuffing of the ground 1s 1gnored
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These assumptions are not unusual and as such are common to the two other creatures

currently been researched upon 1 ¢ [Gar97] and [Gos96b]

External torques

Init1ally there are no external torques applied However in the next chapter 1t 1s shown
that the addition of an external torque at the hip joint can be used 1n order to improve
stability and versatility These dampers can be either linear or non-linear, with better

performance gathered from the non-lmear ones

3.2.1 Bodied Creature

qs

Fig 3.3: Passive dynamic walker with torso

Torso

The addition of a body 1s fairly straightforward the torso or body 1s treated as another
rigid Iink added to the creature This link of length lbody, centre of mass combody,
measured with respect to the end of the link, and mass mbody, 1s attached to the

previous creature at the hip point, with another hinge joint
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Generalised Co-ordinates

The body 1s iitially in an upright position and therefore resembles an inverted
pendulum It creates two new co-ordinates in relation to the upright normal, an angle
q; and velocity u3 and thus the state vector describing the system has six components

namely

e(t)z{qlaq2’q39ulau2:u3} (34)

Inertia

For the bodied creature the radius of gyration of each leg rgy,2 must be lowered to
0 09 1n order for solutions to be found The moment of inertia of the body 1s given by
I = mbodyx rngODzwhere rng,OD2 1s the radius of gyration of the body and

mtially has a value of 0 121

f combody

Ibody

spring and
damper
causing
torque

Fig 3.4: Non-linear spring and damper at body joint
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External Torques
In order to keep the torso n an upright position an external torque 1s apphied This

torque 1s reacted off the stance leg and 1s incorporated 1nto the equations of motion

3.3 Generating the Equations of motion for the creatures.

As the creatures mvolved consist of relatively few links and little or no external
forces, formulation of the equations of motion 1s straightforward enough For the
body-less creature consisting just of the two legs, the dynamic equations of the swing
stage are similar to the well-known double pendulum equations Since the legs of the
robot are assumed 1dentical, the equations are similar regardless of the support leg
considered Generation of the equations of motion can be achieved through numerous
methods by hand, such as Newton-Euler integration, Lagrangian methods, Kane’s
method etc Alternatively they can be generated by machine Ideally two methods,

one by machine and one by hand should be carried out to ensure accuracy

Goswam [Gos96a] uses the Lagrangian method and ends up with an equation
mvolving a 2 x 2 nertia matnx, a 2 x 2 matrix with centrifugal terms and a 2 x /
vector of gravitational torques The actual formulation of the equations was achieved
using the freely available package Sci-lab [Sci00] Garcia [Gar97] generated his
equations of motion using the special purpose generator AUTOLEV and correlated
his results by working out the equations by hand His equations are 1n a similar format
of a combination of matrices and vectors McGeer formulated his equations by hand

with much of the solution method outlined in [McG90]

I have decided to use Kane’s method, which 1s incorporated into a Mathematica ®
package called the Dynamics Workbench [Kuo00] to produce the equations of motion
mcorporated here The Dynamics Workbench 1s a freely available Mathematica

package for doing dynamics It enables the user to generate equations of motion
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primarily for nigid body mechanical systems Along with general Mathematica

commands [W0196]‘the overall equations of motion can be constructed

3.3.1 Dynamics Workbench

In formulating the velocities and forces applied to generate the equations of motion
the dynamics workbench package 1s called upon The primary low-level commands
that are used are briefly explained 1n this section While this section can be used as a
reference the full Mathematica code used to generate the equations of motion for the

body-less creature 1s given 1n Appendix B and for the bodied one in Appendix C

Reference Frames

The dynamics Workbench describes a mechanical system using bodies and reference
Jframes where one or more bodies may be used to describe a rigid body and one or
more reference frames may be attached to that body For instance a rigid body
constituting a leg called “/egone” will have a reference frame associated with 1t
consisting of three axes legone[l], legone[2], legone[3]. There 1s a single default
body corresponding to the Newtoman reference frame called ground and therefore

any 1nitial body will be described 1n relation to the ground frame

Note: The bodied creature consists of 3 links and thus the reference frames involved
here are as follows sta[i] (for the stance leg), swif1] (for the swing leg), and bod]i]
(for the body), where each : value corresponds to a certain axis and thus has value 7, 2

or 3 All the reference frames are outlined in Fig 3 5
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bod[2]

sta[2] bod[1]

sta[l] bod[3]

swi[l]

ground[2]

/L ground(1]

ground(3]

Fig 3.5: Reference frames for each of the three rigid [inks 1n the bodied creature

Connections
Each body 1s defined with respect to an inboard body, which precedes 1t, and are
connected by a particular type of joint In this piece of work, joints that are considered

are of one type only, iinge This means that the rigid body can only move 1n one
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direction only In describing say for nstance a hinge joint between two bodies b; and
b;, on b, the vector BodyToJnt describes the joint location with respect to the body’s
centre of mass (1e com), and on the nboard body b, the vector InbToJnt describes
the joint location with respect to the body’s centre of mass This 1s shown 1n diagram

format in Fig 3 6

Hinge BodyTodnt p,
Joint

QJHJ

com
inbTodnt

by

com

Fig 3.6: Rigid links in Dynamics Workbench

3.3.2 Dynamics Workbench - Some Generic Commands Used

This section gives some of the commands used that are particular to the Dynamucs
Workbench package These are the commands that are utilised to form the equations
of motion and are included 1n the code given in Appendix B and C For a more

complete tutorial on how to use the Dynamics Workbench see [Kuo00]
AddBody[ new_body, inboard _body, joint type ] adds a body, new body, to a
previously defined inboard body using a specified joint Joints used here are hinge

joints

AppIrq[ body, torque | applies a torque or moment specified by a vector torque to a
body

PosPnt[ point, body ] returns as a vector, the position of the point attached to the
body

Eom This command generates the equations of motion that describe the system
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Inertia This gives the Inertia vector associated with the rigid body

3.3.3 Vectors describing motion

Upon setting up the description of the creature using some of the commands given 1n
the previous section a group of vectors gives a portrayal of the bodied creature's

movement These vectors for each leg and the torso mvolve the following velocity

Veon and acceleration d,, of the centre of mass of the ngid link and angular rotation

Q of the ngid hnk Now the individual vectors for each leg, the torso and the hip
point (where velocity v and a only are involved) are as follows (the reference frames

below are outlined in Fig 3 5)

Stance Leg

Veom = {(—(comleg — R)yu,)sta[1] + (—Ru, )ground[1] (35)

8o = (—(comleg — R)u,”)sta[1] + (~(comleg — R)ull)sta[l] + (—-Rul’) ground[1]

(36)
Q.. =u, ground[3] 37)
Hip joint
V = (—Ru,)ground[1] + (—L + R)u,)sta[l] 38

G = ((-L + Ryu,") sta[2] + (—Ru, ) ground[1] + ((~L + R)u, ) sta[l]
(39

Swing Leg
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Veom = (—Ru;)ground[1] + (L + R)u,)sta[1] + (—(comleg — L)u, ) swi[l]
(3 10)
dcon = (=L + R)u,”) sta[2] + (~(comleg — L)u,") swi[2] + (—Ru, ) ground[1] +

((—L + R)u,)sta[1] + (—(comleg — L)u, ) swi[l]
(311)

U, = u2, ground[3] (3 12)
Body

Veom = (—Ru,) ground[1] + ((—L + R)u,)sta[1] + (—(—combody + Ibody)u,)bod[1]
(313)

acom =((-L + R)ulz) sta|2] + ((—combody — lbody)u32) bod[2] + (—Ru, )ground[1] +
((—L + R)u, sta[1] + ((combody — lbody)u,) bod[1]

(3 14)

I‘Jbody =u, ground|3] (315)

3.3.3.1 State vector

The vector descriptions given above 1n equations 3 5 to 3 15 along with the masses
(1e hip, leg and body) and forces mvolved (1e gravity) are used to generate the
equations of motion and the full code 1s given 1n the appendices However direct use
of the Dynamics Workbench does not place the equations of motion 1n the required
format, that of the state derivative The general form of the equations of motion (using

Newtons law which states that Force 1s mass by acceleration) can be given as

u, 0
A|u, |=|0 (3 16)
u, 0

where A 1s a matrix (;ontalnlng a mixture of all the terms mnvolved and the vector of 0

values comes from the fact that the applied force 1s 0 Manipulation (incorporated
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directly through Mathematica and included 1n the final part of the code m Appendix

C) of these terms 1n A can however lead to the following (for the equations of motion)

u, u,
Miu, |-R=0 or Mlu, |=R 317
Uy Uy

where M 1s a 3x3 matrix containing the terms linear in the time-derivatives of
generalised speeds from the equations of motion of the creature and R contains all the
other values The matrices M and R for the body-less creature are given n appendix D
but for the bodied creature (although comprehensive n size) are shown in equations

319and 320

The state of the system 1s 6 = {q, s Gys Gys Uyps Uy, Uy }, and thus the state derivative 1s

e(t)={q1,%,%,upuz,u3} (3 18)

Calculation of the final three values 1n the state derivative vector 1s achieved by
performing the following solving the linear equation (3 17) For this equation the

matrices M and R are as follows
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M =

llsta + comleg 2 M + L* Mbody +
comleg® Mhip +1? Mhip —
2comlegM R—-2LMR -

2 L Mbody R — 2 comleg Mhip R

—2LMmipR +4MR? +2Mbody R* +
2 R (comleg (comleg (M + Mhip) + L(M + Mbody

+ Mhip) — (2 M + Mbody + 2 Mhip) R) Cosq,,
— (combody — lbody) Mbody ((L—R)

Cos(q, — q3) + RCos (q)(comleg — L)
(M + Mhp) (L — R)Cos(ql — q2) + (comleg — L)
(M + Mhip)RCos(q2) — (combody — lbody)Mbody

((L - R)Cos(ql — q2) + RCos(q3),
0

g(M + Mhip)(—R + (~comleg + R)Cos(g,))Sin(y) + gMbody(—R + (—L+ R) Cos(q,)) Sin(y)
+ g(M + Mhip)(—R + (=L + R)Cos(q,))Sin(y) + g(M + Mhip)(comleg — R)Cos(y)Sin(q,) +
gMbody(L — R)Cos(y)Sin(q,) + (g + M + Mhip)(L — R)Cos(y)Sin(q,) + R(comleg(M + Mhip)

+ L(M + Mbody + Mhip) — (2M + Mbody + 2Mhip)R) Sin(q, Ju, 2y (comleg — LYM + Mhip)((-L +
R)Sin(g; — q,) + RSin(q,))u,” — (combody — Ibody)Mbody((~L + R)Sin(q, — q3) + RSin(g; ))us°,
—(comleg — LY(M + Mhip)(g Sin(y — q,) (L - R) Sin(q, —q,)u,”),
g(combody — Ibody)Mbody Sin(y — q4) — (combody — Ibody)Mbody(L — R)Sin(q, — g )ul2 +

Srac(Kiin — damp uy)

(comleg — LYM + Mhip) —(comleg — lbody)(Mbody)
(L - R)Cos(q, —q3) (L -R)Cos(gq, —g3) +
+ R Cos(q,) R Cos (g3)

Ilswi + (comleg — L)2

combody — Ibody)* Mbod:
(M + Mhip) ( Y ) 4

0 Inertiabody

(3 19)

(3 20)
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Solving equation 3 17 using the matrices mn 3 19 and 3 20 leads to the final three
values mnvolved 1n the formulation of the state denivative 8(r) for the bodied creature

and this 1s given 1n full in Appendix E

3.4 Collision detection - Transition Matrix

At heel-strike, collision with the ground occurs and the two legs switch roles This
collision of the swing leg 1s assumed to be nelastic and without sliding Therefore the

following rules must be observed

> the robot configuration must remain unchanged
» The angular momentum of the creature about the impacting foot as well as the
angular momentum of the pre-impact support leg about the hip are conserved

These conservation laws lead to a discontinuous change in robot velocity

From the first rule above, the angles at transition are just swapped1e g; = - g, and 1t

1s assumed that the angle the body makes 1 € g; remains the same The change in the

velocity states 1s achieved by the conservation of angular momentum given in the

second rule (angular momentum before and after collision are equal) Thus, where *

indicates post heel-strike, and " indicates pre heel-strike,

u, u,
u, | = T|u, (321)
u,’ Uy

where T, the transition matrix, 1s formulated as follows let AngM be the angular

momentum Then

AngM ™~ = (AngM )T, (3 22)
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and therefore 7' 1s found from linear solving the above equation, which again 1s

implemented 1n Mathematica

Implementation of Algorithms

To mmplement the algonithms to find the limit cycles, the following was adopted As
the availability of a dynamics package, such as AutoLev or Alias Wavefront was not
viable due to financial constraints a free generator was searched for Goswami uses
Sci-lab (available at [Sc100]) but I decided to use Arthur Kuo's Dynamics Workbench
available at [Kuo00] The equations of motion and collision matrices were generated
utilising this package and generic Mathematica terms are used to get the equations 1n

the proper form to generate the fixed points of the Poincaré map

3.5 Generate complete step function i.e. Poincaré Map.

The movement of the creatures involved here consists of a swing phase and a
transition stage, after which both legs exchange roles Each complete step 1s
considered to be a Poincare map, or “stride function”, as McGeer called 1t [McG90] -
recall section 2 7 As a natural choice of the Poincaré section, the instant when the

swing leg of the robot leaves the ground, 1s chosen Therefore a step will consist of

the function P(0™) which takes as input 0, the state vector at the beginning and

returns 0*C*Y | the state just after the following heel-strike Thus much nformation
about a step will be encoded into the map P(6) (where P(0) 1s basically the

combination of the equations of motion and transition equations grouped into one

function)

The Poincaré map therefore consists of two components

¢ Numerical mmtegration of equations of motion to find heel-strike state:
First the swing leg manoeuvres upwards and then moves back down until heel-
strike 1s reached The equations of motion fully describe this and, since to solve
analytically for the state at heel-strike would be very cumbersome, if not

impossible, a numerical integration techmique 1s used The Runge-kutta techmque
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1s used with a special stopping mechanism 1e when heel-strike occurs, that 1s
when the height of the swing leg above ground 1s zero (Note that the imtial
ground collision of foot scuffing occurs early on 1n the period and 1s 1gnored ) To
get a precise pre-heel-strike state value 1t 1s necessary to zoom 1n on the Runge-
kutta stopping mechanism and thus a Newton-Raphson method 1s used to zero the
swing foot height
e Collision:

Once this process has achieved its goal, the state of the creature 1s known at the
moment of heel-strike and the transition or collision component, as described 1n
the previous section, can take place Post collision velocities are thus calculated

by assuming angular momentum before and after impact, about vartous points

For the Runge-kutta algorithm utilised above the time step taken 1s 0 0/ and the
numerical tolerance 1s taken to be 1xe™® The algorithm 1s coded to converge
quadratically to abs(0,) < numerical tolerance / 1000 where the factor of 1000 1s

arbitrary chosen

36 Find limit cycle ... if it exists!

McGeer [McG90] demonstrated that a somewhat humanoid mechanism 1s capable of
stable, human-like gait down a shallow slope with no external or internal forces
(besides gravity) and no control His passive-dynamic theory of bipedal motion
describes gait as a natural repetitive motion of a dynamical system, or in the language
of non-linear dynamics, a limit cycle Therefore finding limit cycles 1s of vital

importance

3.6.1 What is a stable limit cycle and how are they found?

A simple period one gait cycle, 1f 1t exists, corresponds to a set of 1mtial values for the

angles and rates which lead back to the same angles and rates after one complete step
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Taking the Poincaré language approach the state vector é(t) 1s a period one gait cycle
if P(O()) =0(r) (3 23)

where é(t) 1s what 1s known as a fixed point Higher period solutions do exist for the
body-less creature [Gar97] [Gos98] as well as non-periodic ones but period one
solutions are of central interest because they correspond to the important tasks of

steady walking (bifurcations or period doubling although are mentioned later 1n

chapter four)

A Limit Cycle 1s a periodic solution of a system and 1s represented by a closed loop 1n
the phase space The difference between a simple periodic solution and a limit cycle 1s
that the latter exerts 1ts influence 1n 1ts neighbourhood 1 € an attracting limt cycle will
absorb all solutions towards 1tself that are 1n 1ts neighbourhood, or basin of attraction

as 1t 1s called

An attracting himut cycle 1s also called a stable limit cycle since small perturbations in

the state of a system lying on the limit cycle reduce to zero in the long run

The periodic aspect of a limit cycle indicates that a limit cycle occurs if the output
state 1s the same as the input state Thus 1f 6(?) 1s the imtial state and as stated above
one complete step consists of the function P(6(¢)), where P(0(¢)) 1s the Poincaré
map, then

gait limit cycles correspond to fixed points of the map, or in other words the roots of

the function

GO@) = PO@)-6(r) (324)

where é(t) 1s known as a fixed point

Fixed pomts can be found by a separate Newton-Raphson search for zeros of 3 24

above
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3.6.2 Newton's Method

To find the roots of the Poincaré map the well-known Newton-Raphson method 1s
used Firstly a step can be thought of as an operator P(0)(the stride function) which
takes as mput a vector of scalar values which represent the various angles and velocity
rates at a defimite point 1n the motion (1 € just after ground collision) and returns the

values of 0 after the next ground collision

Starting with the mitial step (1 € 1mtial state 6, ), each subsequent step 1s determined

from the previous one The formula for the subsequent step 1s

=0, -0 (3 25)
P'@,)

As 1t not practical with the equations involved to proceeds analytically, the numerical

denvative of P(0), namely,

PO + M) — P(0) :
P

P'(0) = (3 26)

1s utiised Since 1t 1s the function G() = P(é) — 6 that we are looking at the

numerical derivative 1s

(PO + M) — (6 + M) — (PO) — )
F

G'(0) = (327)

As each step consists of multiple variables (1 € 4 or 6 values 1n the state vector) P’ 1s
actually the Jacobian of the Poincaré map J, with respect to the state variables For six

states this Jacobian J (1 e 1s P'(6)) 1s
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oF, oP, ©oF, OF 0P, OR
oq, 0q, Oq, Ou, Ou, Ou,
o°P, OP, OP, OP, OP, 0P,
Oq, Oq, 0qy Ouy Ou, Ou,
oP, oP, 0P, OP, OP, OP,

oP, OP, OP, OP, OP, 0P,
Oqy 0Oq, Ogy Ou, Ou, Ouy
oP, oP, OP, OP, OP, OP,
Oq; Oq, 0qy; Ou, Ou, Ou,
oP, oF, O0F, OF, OP, OPF,

(3 28)

(Remember that the map P, like 0 1s a vector and has 6 values with P; corresponding
to the first value etc )
The combination of the individual components involved in finding the limit cycle

solutions are given below as pseudocode

3.63 PseudoCode for full solution

//Physical Equations

Describe physical makeup of creature

If necessary add in springs and dampers
Generate equations of motion

Use to formulate state dervative

Use to formulate transition matrix

// Poincaré Map

Give imitial guess for algorithm
Use Rungekutta to numerically integrate state derivative
Ignore foot-scuffing and stop at heel-strike

Use Newton's method to zero in on heel-strike solution
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Use Transition matrix for one complete step

// Fixed Points i.e. Newton's Method

While fixed point not found

Use second Newton's method on Poincaré map

3.64 Failure of Newton's method

Failure of Newton's method to converge to a solution can generally be caused by one

of the following reasons

» the mtial guess 1s not close enough to the solution

> there 1s no fixed point for the parameter family involved and this can only be
rectified by changing at least one parameter

> the slope of one of the state variable vs parameter plots 1s approaching infinite
slope This 1s known 1n the bifurification literature as a "turning point", and 1s

indicated by an unexpected zero value 1n the stnde function Jacobian J

3.65 Initial Values

Estimating the initial values can be quite challenging in 1itself The choice of mmtial
values, for the starting state 1s of vital importance, as only values within the basin of
attraction will eventually converge to a limit cycle The shape and size of the basin of
attraction of a limit cycle 1s 1n general a function of the robot parameters and are not

directly amenable to analytical solutions

Various approaches have been adopted to estimate the imitial values McGeer
[McG90] indicated that the stance and swing angles of {gq,,4,}={03,-023}

correspond roughly to the “known” values of human gait The other values were
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formulated from known gaits but randomly generated values were used, as he
hypothesised "it 1s perhaps naive, but it i1s also unbiased, and so can reveal

behaviour, which might otherwise go unnoticed "

Goswami uses the mmitial conditions calculated from his 1mtial linearised model and
where these failed, the state vector corresponding to a known steady gait of a robot

whose parameters were close to the robot under study were used [Gos96b]

Finally both McGeer[McG90] and Goswami [Gos98] pointed out explicitly that both
robots that they simulated can accept without falling down a much larger change 1n
the velocity states than the position states (1€ there can be a change of ~ 100° per
second 1n the velocity of the angles but a change of 2° in the position takes the states
out of the basin of attraction ) This was also proved to be the case here for both the

bodied and body-less creature as shall be highlighted 1n chapter five

The mitial velocity values chosen here are twofold - for the body-less creature I have
decided to use previously published values for a known solution 1 e

0, =(03015,-03015,-0 3763, -0 2822) (327)

These are similar to those published by McGeer [McG90] and used by Kuo and other
researchers [Kuo0O] For the bodied creature these values just have the mitial body

parameters appended to 1t, namely g, =u, =0, giving

0, =(03015,-03015,0,-03763, -0 2822, 0) (3 28)
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Chapter Four

Control and Analysis

4.1 Introduction

For any creature under investigation, with or without a torso, once limit cycles have
been 1dentified an analysis stage begins Of prime importance 1s establishing whether
or not the cycles or steps are stable or unstable Other aspects of analysis to be
determined 1nclude efficiency of the creature, step period and velocity, energy utilised
and the maximum slope attainable Improvements in some of these variables, most
notably stability, can be gained through the addition of external torques and damper
forces For some creatures, as found by both Goswami [Gos96b] and Garcia [Gar98]
there 1s a period doubling route to chaos present and thus this 1s another characteristic
that should be investigated All performance indicators mentioned above are outlined

1n this chapter along with the methods of implementation

As previously stated however some external torque 1s required to keep the torso of the
bodied creature upright Feedback control in the form of a fuzzy logic controller 1s
utilised and limit cycles are found The format of this controller 1s given along with
the logic involved These limut cycles are then analysed using the same techniques as

above

4.2 Analysis Terminology

In describing the passive dynamic walker system some terms that are common to norn-

linear dynamics are utilised These terms are now defined
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4.2.1 Dynamic System

A dynamical system may be defined as a mathematical model determining the state of
a system forward in time, where time can be discrete or continuous Therefore starting

at time ¢ = 0 at any subsequent time ¢, the state can be determined

4.2.2 Hamiltonian System

Hamiltonian systems are a class of dynamical systems incorporating various
properties such as mechanical systems in the absence of friction, the paths followed
by magnetic field lines in plasma, the mixing of flmds and the ray equations
describing the trajectories of propagating waves [Ott93] The main properties of these
systems include

o energy 1s conserved for time-independent systems

e possibly do not have attractors 1n the usual sense This mcompressibility of phase

space volumes for Hamiltonian syatems 1s called Liouvilles theorem

4.2.3 Non-Holonomic System

A dynamical system can be classified as either holonomic or non-holonomic To
determine which term applies you must examine the generalised co-ordinates If the
coordinates satisfy the following two conditions then the system 1s holonomuc, that 1s

if the coordinate values determine the configuration of the system and secondly that
the values may be varied arbitrarily and independently without violating the

constraints of the system [Syn70]

An example of a holonomic system would be a robotic arm involved n the
manufacture of cars The robot 1s 1 an nitial state, performs 1ts assigned task and
returns to a final state This final state coincides with the 1nitial one and therefore the
robot does not change 1ts location. Another example would be that of a scissors lying
on a table An example of a non-holonomic system would involve a ngid sphere

rolling without slipping on a fixed horizontal plane The system can be defined n
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terms of 5 generalised co-ordinates — the two horizontal Cartesian co-ordinates at the
centre of the sphere and 3 Eulenian angles Since the plane 1s not smooth, two
additional constraints are needed 1€ equating to 0 the honizontal velocity of the
particle of the sphere at the point of contact These conditions are non-integrable and
it 1s this non-integrability which make the system non-holonomic [Syn70] Other

examples might be a wheelcharr, bicycle or skateboard

The difference between holonomic and non-holonomic systems can be summarised as

follows

» with a holonomic system return to the original internal configuration means a
complete return to the original state 1 € the imitial and final states are completely
equal This however 1s not guaranteed for non-holonomic

> the system outcome for a non-holonomic system 1s path-dependent

> whereas holonomic kinematics can be expressed in terms of algebraic equations
which constrain the internal, rotational co-ordinates of a robot to the absolute
position/orientation of the body of interest, non-holonomic kinematics are

expressible with differential relationships only

As 1s well known 1n dynamics systems theory, conservative holonomic (1e
Hamiltonian) systems cannot have asymptotic stability since volume 1s conserved 1n
their phase spaces Therefore only non-Hamiltoman systems have asymptotical
stability Two mechamisms for losing the Hamiltonian structure of the goverming
equations are dissipation and non-holonomic constraints Passive dynamic creatures
are non-holonomic by virtue of their intermittent contact with the ground and are
moving along a particular path (1e down the slope) Also they are not conservative
since energy 1s lost at every heel-strike Thus the existence of this dissipative element
favours but does not guarantee the existence of a stable limit cycle Goswami
investigated the contraction of phase space volume and found that the "absolute value
of the determinant of the transition matrix was always negative (1e nferor to 1)

which indicates that phase space volumes are always contracted " [Gos99]

Finally Ruina questions how stability can be gained stating that "we know from our

study of bicycle stability and the like that non-holonomic systems can have
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asymptotical stability even without dissipation Can legged mechanisms also be made

stable without dissipation " [Rm97]

4.2.4 Stability

For each steady motion the establishment of stability 1s of vital importance since 1t
indicates whether the creature will keep walking indefinitely or will eventually
collapse Due to the non-lineanty of the creatures' dynamics, analytical methods of
investigating the stability of the passive gaits cannot be utilised and therefore stability
will be addressed using an analytically guided numerical method which involves
finding the eigenvalues of the Jacobian matrix J of the Poincaré map This 1s due to
the fact that the conventional defimitions of stability of a system in the sense of
Lyapunov, (around an equilibrium point) are not applicable to walking machines

Therefore 1t 1s orbital stability that 1s investigated, where a solution of the dynamic

system gives an orbit This method 1s also adopted by current researchers [Gar98]
[Gos96b] and 1s explained fully in Section 4 3 The applicability of the numerical
method practically guarantees that the limit cycle 1s stable as argued by Goswami
[Gos96b] who states that "unless we accidentally hit the exact states on an unstable

Limit cycle which will never be encountered in numerical trials”

What do we mean though by saying that a cycle 1s stable?

Def: We may say a gait 1s stable "if starting from a steady closed phase trajectory,

any finite disturbance leads to another nearby trajectory of similar shape” [Hur86]

Furthermore, 1f 1n spite of the disturbance, the system retumns to the onginal cycle, the
gait 1s asymptotically stable This 1s useful since 1t indicates that any disturbance to
the creatures motion would be swallowed up and motion should therefore be mfinite,

so long as the required slope 1s present
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Figure 4 1 presents the nature of a stable limit cycle in the phase plane of one rigid
body hnk The effect of any disturbance to one of the states on the lmit cycle 1s
attracted and swallowed up Therefore a system starting from a state on a limit cycle
will remain on 1t The complete shaded region 1n the diagram indicates the attracting
region of the limit cycle and 1s known as the domain of the limit cycle or its basin of
attraction Another indication of stability 1s the measure of the size of the basin of

attraction but this method 1s not undertaken here

Fig 4.1: Basin of attraction of a limit cycle Any point inside the shaded region would
be in the basin of attraction and would eventually settle on the limit cycle which 1s

also inside the region The limit cycle 1s not shown

4.2.5 Bifurcation i.e. period doubling

A qualitative change 1n the dynamics which occurs as a system parameter varies 1s
called a bifurcation There are a variety of types but the one of interest here 1s the
period doubling bifurcation In this case a stable period one orbit bifurcates into a
stable period two and an unstable period one orbit In practical terms here, taking for

mstance Goswamt's creature [Gos96b] as the slope is increased, stable period one
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solutions bifurcate into stable period two solutions, stable period two solutions
bifurcate into stable period four etc. An indication of bifurcation is achieved by
inspection of the eigenvalues of the Jacobian of the Poincare map in the
neighbourhood of the limit cycle. These are identified for stability (see section 4.3)
and should be all within the unit circle for stability. At a bifurcation point at least one

of these eigenvalues crosses the unit circle.

period two

period
one

Bifurcation
point

Fig 4.2: Bifurcation. Initially there is a stable period one orbit (stability is indicated

by a solid line) which bifurcates into stable period two and unstable period one.

4.2.6 Chaos

It is easy to see and to formulate how dynamic systems settle into period motions (i.e.
limit cycles) and steady states. Chaotic orbits can also appear at higher periods and
they appear to be very complex and are usually described as wild or turbulent. They
don’t necessarily appear in very complex systems either. An example will be given to

illustrate the concept which is taken from [Sha84].

Water drops from a tap continuously. A sensing device is used to time successive

drops. Therefore the system of dropping water consists of time intervals ,t2,12,......
etc. where At = tH# - tn. At a small flow rate the time intervals are equal. As the flow

is increased slightly period two cycles or sequences are noted i,e.ta,tb,ta,tb,ta,...
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etc As the flow increases further so too does the period frequency until at sufficiently
large flow the sequence of time intervals has apparently no regulanity This

irregularity 1s due to chaotic dynamics [Sha84]

One thing that should be pointed out 1s there 1s a particular route to chaos 1 e 1n the
above example there 1s a specific route of parameter ¢ to chaos ( ¢ changes 1n a

specific fashion)

43 Investigating local stability using a numerical method

To nvestigate the orbital stability of a limit cycle we again look at the Poincaré map
This nvolves the state vector from just after heel-strike to just after the following

heel-strike Again from section 3 6 1 a solution to the Poincaré map giving a limit

cycle 1s known as a fixed point Therefore 1f 0 1s a fixed point then by defimition the

following holds true
P® = 6 1)

For a small perturbation 86 around the limit cycle the non-linear mapping function P

can be expressed 1n terms of the Taylor's series expansion as
PO + & =~ PO + (NP (42)

where J 1s the Jacobian matrix of the map P(8) with respect to the state variables (1 e

oP oP
J 1s the matrix % with components 5) By rearranging the above equation the
J

Jacobian can then be given as
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PO + &) - PO
K4

J =

(43)

It would not be practical to analytically calculate the matrix J 1in equation 4 3 and thus
the numerical version 1s sought and utilised Construction of numerical version is
achieved as follows the first state vector vanable only 1e ¢, 1s perturbed by a
suitably small amount and the Pomcaré map of the complete state 1s noted The
mapping starting at this point will be close to, but not the same as, the original limit
cycle The difference in the resulting Pomcaré map of the perturbed state, minus the
orniginal fixed point and divided by the square root of the perturbation variable gives

the first column of the Jacobian To get the second column perturb the second state

vector variable 1 e ¢, and continue as above When all states have been dealt with the

Jacobian 1s complete

Note that the size of the perturbation utilised here 1s 1x 107, and Garcia [Gar98a]

used perturbations of the form 1x10™ This would be one possibility for future

work, to use even smaller perturbations to ensure improved accuracy Once the
Jacobian has been formed stability can be measured through investigation of the
eigenvalues of the matrix For the body-less creature there will be four eigenvalues,

and for the bodied six

4.3.1 Eigenvalues

Def: An eigenvector v of a matrix B 1s a nonzero vector that does not rotate when B
1s applied to it1e Bv =)\‘v where/\, 18 an eigenvalue of B If |}, | < /, then B'v = \'v

will vamsh as 1 — oo If | \;| > 1, then B'v will grow to infimty [Ske94]
Therefore an eigenvalue indicates just how vulnerable to change the matrix 1s For

asymptotical stability, which 1s required, all eigenvalues must be inside the umt circle

If all the eigenvalues of the Jacobian J are thus less than one 1e M,| <1, then all
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sufficiently small perturbations will decay to 0 and the system will approach 1its limit
cycle However 1if any eigenvalue 1s greater than 1, then the corresponding
eigenvector will bump the system divergently off the liiit cycle An eigenvalue of
exactly 1 indicates that the cycle 1s neutrally stable for perturbations along the
relevant eigenvector and thus perturbations will neither shrink nor grow [Ru97]

Commonly eigenvalues of magnitude 0 appear and these can be explained as follows

the perturbation has been along the limit cycle and that the resulting trajectory
corresponds to this perturbation along the same limit cycle [Gos96b] Frequently also,
and as shall be shown n the next chapter, eigenvalues of magmtude 1 do appear
appear and do not affect balance stability Many times persistent eigenvalues of
magnitude one have some obvious physical sigmficance, they can signify a one
parameter family of gait solutions for instance [Gar99] Also the indifference of most

of the 3-D devices to direction of travel generates an eigenvalue of 1 1n the map

4.3.2 Eigenvalue Examples

Body-less

Much headway in the analysis of the creatures’ gait and the effect of various
parameter changes can be made through dissection of the eigenvalues of the Jacobian
For the creature consisting of four state vanables, there are four eigenvalues and
associated groups of eigenvectors, and therefore the system 1s four-dimensional (In
actual fact 1t 1s only three-dimensional as one of the numencally calculated
eigenvalues near zero 1s approximately zero - see below for an explanation as to why)
McGeer [McG90] coined the term's speed, totter and swing for these eigenvalues and
accordingly indicated the influence of each as follows
»  Speed This 1s the convergence of the creature to a steady speed following that
given perturbation 1€ the eigenvalue Or 1n other words 1t 1s the dissipation of
speed appropriate for the slope 1n use
= Swing The eigenvector here 1s dominated by the swing angular speed The
eigenvalue of this mode 1s usually small It 1s a rapid adjustment (1 ¢ eliminated
immedaately at the first support transfer) of the swing motion to a normal walking

pattern
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Totter This is an oscillatory attempt to match step length with forward speed.
This is explained by the fact that the initial angle must correspond somehow to the

initial angular speed.

Example:

As an example, the fixed point, for a body-less creature with hip mass of 0, on a slope
0f 0.025 with an initial guess of {0.3015, -0.3015, -0.3763, -0.2822} turns out to be
{0.30171,-0.30171, -0.376368, -0.282189}. The Jacobian7then constructed is:

-0.0000228 -3.416 106 -0.00001628 458391 10'7
0.0000128098 -6.58372 10"6 0.0000168 -4.58391 10~7
5.63304 10'6 1.68293 10"6  -8.44291 10'7 -9.11447 10'7
2.08611 10'7 -1.63101 10"6  7.74861 10'7 -0.0000107975

and finally the eigenvalues are as follows (which coincide with previously published

values [KuoOOQ]:

speed 0.46223
swing -0.398202
swing -0.167559
totter 7.47672 10"1

( Note: the names are associated by analysing the effects of the various angles and
velocities as explained above).

Bodied

For the bodied creature there are two extra eigenvalues, thus giving a total of six

eigenvalues. In practice and through the use of dampers etc. one eigenvalue stays at
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approximately 1 and two stay at approximately 0 Finally 1t 1s worth noting that the

number of places counted in the eigenvalues depends on the perturbation size As

hghlighted 1n section 4 3 a size of 1x1071s used and thus 3 decimal places are

counted,

Example

As an example, the fixed point, for a bodied creature with hip mass of 1 5 and body

mass of 1 0, on a slope of 0 025, with damper coefficient of 0 55, length of body 0 8
and centre of mass 0 0795, and an imtial guess of {03015, -0 3015, 0, -0 3763, -

02822, 0} turns out to be

{0 283795, -0283795, 00762199, -0348054, -00943815, 000313977} The

Jacobian J then constructed 1s

[ _17x10°  —446x107°
708x10° —553%x107°
-317x107°  207x107°
964x10™°  347x1077
84x10° —629x107°

| 289x1077 -191x107’

and finally the eigenvalues are as follows

A, =100411

A, =0456093 +0 5183581
A 5 =0456093 - 05183587

A 4 = 0159779
A s =—000001

As=29310"

~107x107°
107x107°
411x107%
373x107"

—714x107°
202x1077

-105x107°
105x107°
~328x107°
33x107¢
662x107°
202x107%

674 %1077
-674x1077
429x1071°
-113x107°
-984x107¢
172x107

~158x107 |
158x107®
441x1077
198x1078
121x1078
-999x10~° |
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4.3.3 Is stability vital?

While stability 1s actively pursued and achieved in this body of work some
researchers e g Garcia [Gar99] question whether 1t 1s crucial or not outlining the

following

» slow nstabilities (1 e 1nstabilities with a time scale of over a second or two) may
not be important because humans do have control and need to exercise this control
to go where they want e g a bicycle loses 1ts passive stability at about 15 mph but
this 1s not sensed by a rider since the time scale of the instability 1s long

> unstable period one gaits don’t always lead to falls As 1s known 1n non-linear
dynamics, systems which exhibit period-doubling and chaos can have a chaotic
attractor which 1s bounded and stable 1n some sense, since the system does not
leave the attractor 1f 1t starts on or near it Garcia therefore showed that some
unstable pertod gaits did not fall down because of the stability of the higher-period

gaits and the chaotic attractor

4.4 Other Performance monitors

4.4.1 Step period

The step pertod 1s the time taken for a complete step to occur Therefore this imnvolves
starting at just after heel-strike, the swing leg manoeuvring through the air, until heel-

strike again when the two legs exchange roles

4.4.2 Velocity

The velocity of the creature should also be determined Step velocity or average

speed per step (as determined 1n [Gos96b]) 1s given by the following formula
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b step length ’ (4 4)
step period

where step length 1s determined using equation 3 2

4.4.3 Efficiency

Energetic nefficiency 1s measured by the slope y of the incline needed to sustain gait,
with ¥ = 0 being perfectly efficient, since no energy is required for motion Why look

for efficient locomotion? As argued clearly in e g [Ale95] both evolutionary pressure

and individual motivation push for high efficiency in animal locomotion

In his research McGeer [McG90] numerically found walking motions for slopes as
low as about 0 005 radians and utilising his model minimum slopes of 0 0005 were
found here These will be fully outlined in Chapter 5 Garcia's creature reaches a
minimum of zero where the dynamic solution approaches the static, parallel leg
solution [Gar98a] Goswami does not directly address the 1ssue of efficiency but the

minimum slope he refers to 1s 0 25° [Gos96b]

4.4.3.1 Fundamental Questions about efficiency.

The results from the theoretical walking model pose fundamental theoretical questions
according to Ruina [Ru197] Is 1t possible to have an asymptotically stable locomotion
mechanism that 1s also perfectly efficient? The theory of Hamuiltonian systems does
not apply to walking machines because by virtue of their intermittent contact, they are

non-holonomic Can legged mechanisms be made stable without dissipation?
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4.5 Improving Performance

4.5.1 Tuning parameters

The creatures that are being studied mmvolve various mass distributions, states and
slopes By direct manipulation of these parameters improvements can be made 1n
terms of efficiency, stability etc Formulation of the best parameters to use 1s
evaluated using a brute force mechanism Parameter values are changed and effects

noted until the best solution 1s found

4.5.1.1 Necessary conditions for Mass Distribution

Garcia finds that "if the hip-mass were offset fore-aft from the legs, the gait cycles
would approach a static solution at some non-zero slope which depended on this
offset, and 'near-perfectly efficient’ walking would not be possible So for this model
and presumably for more complicated models, the existence of near-perfectly efficient
gait depends on the details of the mass distribution" [Gar98a] Some necessary

conditions on the mass distribution for near-zero slope walkers therefore are found to

be [Gar98b]

» If walking does occur at very small slopes then this motion will be very slow as
the walker will be close to static equilibrium at all times

»> As the slope goes to zero then the inter-leg angle at this instance also goes towards
Z€ro '

» From the first two conditions the line from the hip through the body centre of
mass must intersect the foot curve normally at the nominal contact point at zero-
slope walking For circular feet this 1s equivalent to the co-lineanty of the centre

of mass of the whole body, the hip, and the foot centre
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4.5.2 Add in external (passive) Springs and Dampers

e
mi.

-—
Ydamper =V2~ Y1

Fig 4.3: 4 damper

Def: A damper 1s a device, which associates each force to a velocity The velocity v
of a damper 1s the rate at which 1t 1s lengthening and the force 1s applied to the damper
by something else The velocity 1s relative and thus 1f the velocity of one end 1s v; and
the velocity of the other end 1s v,, the overall velocity v is v,- v; A positive force 1s an
attempt to lengthen the damper, a negative one to shorten it Examples of dampers

include shock absorbers and syringes The general constitutive law for a damper 1s

=bv “45)

where b 1s the damping coefficient

Def: A spring 1s a device holds potential energy due to the way 1t 1s colled Now

consider a mass attached to a spring The spring exerts a force

Fsprmg == k‘x (4 6)

where x1s the displacement of the mass from and equilibrium position and kis the

spring constant

In McGeer's work [McG90a] 1t was suggested that the presence of springs and
dampers, 1n particular at the hip joint could improve stability and even "convert"
unstable cycles nto stable ones Goswami [Gos98] continued this methodology by
placing dampers at the hip joint significantly improving gait stability and overall gait

versatility without violating the passiveness qualities of the creature The role of the
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damper as he states 1s to "effect a continuous dissipation of energy in the robot in
addition to the energy dissipated intermittedly during ground impact " Although both
linear and quadratic dampers were utilised, better results were achieved from the
quadratic ones The effects of damper are easily imitated by a control law 1n an active
robot and could be easily replaced by a motor implementing the same physical law A
summary of the results obtained by Goswam for the effects of additional dampers

mclude

» they do not alter the passive status of the robot

> the overall appearance of the gait however 1s altered 1 e the onginal cycle s
modified to another cycle of different shape While the gait appearance 1s altered
it 1s not necessarily destroyed This contradicts the claim by McGeer, who
indicated that even a small amount of friction (1 ¢ hip damping) would destroy the
stable limit cycle

> gives stable gaits for a much larger range of slopes (he mentions increases from 5°
to 10°)

» the robot can possess extremely large limit cycle attraction basins

4.5.3 External Torques applied here

The external torques applied in this body of work are achieved through the use of
torsional springs and dampers A linear torsional spring at a jomnt : will provide a

restoring torque proportional to g, A linear torsional damper at joint : will provide a

negative torque proportional to u,

As an example take a rigid body fixed to the ground with a hinge joint as m the
diagram below A torsional spring and damper with coefficients s and d will generate

a torque of 7 =—-sg, — du,
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{a1, uq}

Torsional spring and

damper J7T77777

Fig 4.4: Rigid body attached to ground with a hinge joint A torsional spring and

damper 1s present at the joint

Dampers are included here both at the hip joint and in conjunction with the torque
applied to keep the body upright As shall be outlined in the next section a torque
applied to the body acting off the stance leg can be utilised to keep the body upright
However stability 1s not ensured and one method of providing stability 1s to provide a
damper working 1n conjunction with this applied torque The damper utilised on the

body 1s simply that of the general constitutive law (Equation 4 6) and so has the form

F

damp

=damp u, 47)
where damp 1s the damper coefficient

Total Force on body

The total applied torque and damper applied to keep the body upnight and to provide
stability 1s given by the equation

F

total

= Frac(Klin — damp x u,) (48)

where damp 1s the damper coefficient, Klin 1s the torque coefficient and Frac 1s a

constant



Hip Dampers

Dampers at the hip are varied 1n form and their effects noted The general linear value

1S
Fdamp = Fﬁlc(HZ - ul) (4 9)
and the quadratic has the form

Fpny = Ffrrc(u, —u)? (4 10)

where Ffric 1s the damping coefficient

4.6 Feedback Control For Upright Body

4.6.1 General Inverted Pendulum Problem.

The body will be treated as an inverted pendulum and that classic engineering
problem 1s 1dentified here The situation mnvolves a dynamic system that consists of a
cart with a stick hinged to 1ts top The stick makes an angle ¢ with the normal The
system 18 obviously unstable - the pendulum will not remain upright as the system 1s
right now and an mput force 1s required The objective of the problem 1s to identify a
control system (1e feedback based) that will successfully maintamn the pendulum

an upright position The problem 1s shown 1n the diagram below
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F g e

777777777

Fig 4.5: Control of inverted pendulum

There are many methods of controlling an mnverted pendulum with most involving
linearisation e g PID, exact pole placement [Gop84] and state space However
utilising bang-bang logic (upon which the simple controller provided here 1 ¢ bang -
zero - bang) not only allows the full non-linear equations of motion to remain ntact,

but can be relatively simple to implement and 1t 1s this method that 1s adopted here

4.6.2 Bodied Creature

If the system 1s left as described then any reasonable body mass and length of body
leads to failure of Newton's method 1n finding fixed points (1 € 1t does not converge),
as the link topples over Thus, to keep the link upright and to find fixed points, 1t 1s
necessary to stabilise the upper body like an mverted pendulum using applied torques
reacted against the stance leg The sytem here 1s not 1n essence the same as that of the
general mverted pendulum as the 1ssue of stability does not just affect the body (1€

keeping the angle at 0) but involves the orbital stability of the complete system
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A very smple feedback control law 1s adopted here, namely 1f the body 1s fully
upright then no torque 1s applied If however there 1s an angle then a torque 1s utilised
where this torque 1s reacted against the stance leg This torque changes value
depending on the angle involved and thus the spring producing this torque 1s non-
linear (the control curve in section 4 7 outlies why the curve 1s non-linear) This
torque of magnitude Kiin 1s applied to the body in the direction of bod|3} Each
distinct creature has a specific control law whereby the various magnitudes of K,
mvolved n the controller, are determined by the masses and lengths involved In
physical terms these torques could be generated by a motor and a spring attached to 1t

or maybe just a simple spring

4 6.4 Simple Controller Design

Creation of a simple controller and 1ts underlining rules 1s achieved through analysing
the control behaviours of the nverted pendulum The controller should reflect the
relationship between the body vanables (g3, u3) and the applied torque r This
relationship can be graphed as a non-linear control curve If in plotting the vanation
of applied torque due to the vanables (g3, u3), a straight line at an angle appeared then
the control would be linear However non-linearity appears here because the torque

applied varies depending on the values associated with g; and u;

In formulating the control curve the following considerations were adhered to

» It 1s desired to keep the body upright (1 € g3 1s inside the range | 01 |rad1ans) This
indicates that most r will be applied within a small angle range At the desired
fully upright position1 e ¢; = 0, no torque 1s applied

> As a servo motor has a maximum output, the curve will have to reach a maximum

value at a certain angle

» In keeping with the passive philosophy the variation of applied r should be as

simple as possible

It should be noted that in essence two controllers were mvestigated, one which

depends solely on g, and one which depends on {g,,u,} (the methodology behnd

this 1s to try and find the most simple controller which works effectively) The curve
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that is utilised for the simpler case is shown in Fig 4.7. The actual control curve for
the control system is essentially unknown, as for any system and therefore this is just
a simple representation of what it might be like, containing three states or applied
torque values, zero, small and large. This representation was achieved through brute
force analysis of various r values and the effect caused i.e. the Runge-kutta algorithm
was studied with various torque values applied and the angle and velocity noted.
Because the controller is simple with just 2 unknown torque values small and large,
and it was desired to keep the body fairly rigid, it was easy to identify potential values
for the torque state values. Thus the controller utilised is a type of bang-zero-bang

controller.

Applied
torque
f?
D w s " small
f
ol .
7o Angle g3

large

Fig 4.7: Control curvefor torso when the value o fu$ is unimportant.
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Formulation of the associated rules comes from the critical points on the curve The

mput for each rule 1s {g,,u,} and imtally 1t 1s assumed that the velocity u, 1s zero

For the smallest positive angle the rule 1s

if (¢, >0and <=001) state=—small 412)

The full set of rules for zero velocity 1s given in the Fig 4 8 When u; 1s not zero then
the control curve 1s shifted This alters equation 4 12 giving a larger number 1f

possibilities and the full table of values 1s also shown in Fig 4 9

Angle Torque
Exactly 0 zero
000-001 small
001-002 large
>002 small

Fig 4.8: Table for control rules
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Values 0fU3 <-0(2 -0(].-» 0—> O-»OO. QO.>0(2 >O(2

<-IxI(T5 small small small small large small
>-1x10~-5& &<-1xl10*4 small small small large small -small
>-1x10-4 small small large small -small -large
=0 small large small -small -large -small
>0& & < 1x 10-5 large small -small -large -small -small
>1x10~5&&<Ix10 4 small - small -large -small -small -small
>1x10-4 -small - large -small -small -small -small

Fig 4.9: Control rules when velocity us is not 0.

4.7 Energy

The energy involved in motion is now addressed. This consists of the mechanical
energy the creature has and the applied external torques. The mechanical energy
consists of the sum of the potential and Kinetic energies. It is not addressed in this

body of work but the equations involved are given in Appendix I.

Goswami addressed the issue of the change in the form of the components of the
mechanical energy in [Gos96b]. He stated that, if the robot executes a periodic motion
the energy of the system must return to its initial value after every cycle, and since the
state values would be the exact same at the beginning as at the end, the potential and
kinetic energy values should also be equivalent. Recall also that as the robot walks
down on a slope its support point also shifts downward at every touchdown. As it
loses gravitational potential energy in this way its Kkinetic energy increases
accordingly. This is exactly the amount of kinetic energy that is to be absorbed at the

end of each step by the impact. If we reset our potential reference line to the line of
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touchdown, the total energy of the robot appears constant regardless of its downward
descent Failure to reset the potential reference line results m a slight loss of
mechanical energy as the robot descends Although not explicitly shown 1n chapter
five, when a sample of some mechanical energy values were configured this also

proved to be the case here

With regards to the applied external torque, the value of this 1s just the sum of the
mdividual forces 1n the time frame 1 ¢ within each step It shall be shown 1 chapter
five that the values involved are minute - indicating that although the passiveness of

the creature may be compromised to keep the body upright, that cost 1s minimal

4.8 Block Diagram of complete system

To clanfy how the complete system works , a block diagram 1s now shown

Newton's Method

Final State
Heel-strike Transition

Input state

Rungekutta

— ||

90 9F

————>
If ds and U3
too large

Applied t ‘——l

Feedback
controller
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Chapter Five

Results

51 Introduction

The overall goal of this body of work 1s to enhance the pool of passive dynamic
creatures through the simulation and analysis of a creature contaming an extended
torso Previous research has modelled a torso as just a hip point mass as outlined in
[McG90] [Gos96] and [Gar97] Imitial importance will be placed upon the effect of
the addition of extra hip mass to a body-less creature as the torso will be an extension
of this hip mass Therefore the first portion of this chapter deals with a body-less
creature with varying hip-mass values (starting with mhip = 0) The results gained
should, and do 1n fact, coincide with those of other body-less hip-massed creatures (as

referenced above)

The second segment of this chapter focuses on the creature with the torso and in
particular stability and performance i1ssues It shall be outlined that the overall effect
of the addition of a torso does not damage the creature's attributes, and in some

situations can improve performance

Finally, the complete set of results, which are i part summarised here, are given in

the appendices

5.2 Body-less creature results

5.2.1 Initial Values and Basin of Attraction

In order to find stable limit cycles parameter values should be wisely chosen as minor
maccuracies will lead to failure of convergence of Newton’s Method There are two

categories of parameter values, those which are held constant and those that are
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varying and numerical values are directly taken from known solutions given in
previously published work e g [McG90] [Kuo00] The full list of parameter symbols
with constant values and imtial values for the varniables which can be modified 1s
given 1n Appendix F Vanables such as comleg are those which can be modified and

the effect of some of these parameter variations 1s outlined later

As the choice of the imitial state values 1s crucial to the formulation of fixed point
solutions, values for a known solution are incorporated This initial state 1s taken to be

0, ={q,,9,,u,,u,} ={03015,-03015,-03763,—-0 2822}, which 1s given 1n both

[McG90] and [Kuo0O] The allowance of variation in each state value can be
summarised as follows (see Appendix G 2)

= the states g,,g, can be altered by approximately 6%,
» the velocity u, 1s shightly more ngid and can be varied by approximately 5%
» The most flexible of all four states u, can be altered by up to approximately 75%

Taking all points together this shows that the basin of attraction 1s quite small for

stable limit cycles

Finally 1t should be noted that the addition of a hip mass leads to a slight improvement
in the versatility of g,,q,, 1n that 1if mhip 1s 1 2 or greater the range of values the

angles take on increases by 0 01 radians (see Appendix G 2)

5.2.2 Limit Cycles

Once an 1mtial state "guess" has been 1dentified the process of finding a solution can
begin Using the 1nitial state values above, along with the constant values given 1n the
Appendix F, Newton's method was implemented and solutions for the fixed points for
a complete step 1 € solving equation 3 24 were sought Limit cycles as expected were

indeed located and an example of one 1s given 1 Fig 5 1 More are given in Appendix
Gl
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Fig 5.1: The limut cycle for just the swing legi1e {q,,u,} on y= 0005 radians Note

that mhip = 0 1n this creatures description

5.3 Hip Mass effects

As the torso 1n essence 1s an extension of the concept of the addition of hip mass to
the creature, the effects of altering the hip mass are of primary importance This
section highlights the effects of the addition of incremental hip mass values,
particularly 1n relation to performance issues, such as mmimum and maximum

attainable slope

5.3.1 Varying the centre of mass of the leg

The centre of mass of the leg denoted by the scalar value comleg 1s given 1n terms as
distance from the end pomnt of the nigid link to the centre of mass position It was
found that the centre of mass could be moved by a small amount both away from and
towards this end point The effect of the addition of extra hip mass has no profound
effect on how much variation the centre of mass can absorb While the upper and
lower bounds vary slightly the overall difference between both stays reasonably

constant as 1s llustrated in Fig 5 2
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0 7} *

0.681

comleg 0 64F

mhip

Fig 5.2: The value of comleg 1s originally taken to be 0 645, the straight horizontal
line Now for varying mhip1e 0, 04, and 0 8, the upper and lower bounds are shown
here As can be seen, while the upper and lower bounds vary, the difference between

both does not vary substantially

5.3.2 Varying the foot radius R

With the variation of the size of the foot radius R there are two noteworthy outcomes
Firstly there 1s a change 1n the slope needed for a limit cycle A small R needs a steep
slope, whereas a large R needs a small slope As the goal for passive walking 1s
efficiency 1 e slope as near to zero as possible, the larger the R, the more efficient the
creature 1s However realism dictates that the value of R be kept rather small and thus

the value R = 0 3 1s utilised throughout this work, in the form of a constant value
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Fig 5.3: Effect of varying R on y needed For mhip = 0 8 this shows that y needed to
keep the stance leg angle q, at about 0 3015 1s high as R approaches 0 and low as R
approaches 1

Secondly the value of R has a profound effect on the value of the speed eigenvalue 1 e

I\l(recall that eigenvalues )\,’s were discussed 1n section 43 3) When R 1s 1n

proximity to zero this value 1s also close to 0 and when in proximity to 1 1t 1s also

close to 1
[ J
0 9
0 8
o 7
[ ]
0 6
[ J
0 5¢
[ J
A1
0 2 0 3 0 4 0 5 0 6
R

Fig 5.4: The speed eigenvalue ) | as R increases
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5.3.3 Effect on leg angles - i.e. inter-leg angle

The inter-leg angle 1s defined as the angle between the stance and swing leg 1 ¢ the
angle at the hip joint Since both angles are equal and opposite the mnter-leg angle 1s

therefore just 2q, For mhip = 0 as y increases the inter-leg angle increases also 1 e

the creature takes wider steps on larger y

inter-leg
angle

Fig 5.5: Inter-leg angle increasing as y increases

As extra hip mass 1s added the effect again 1s for the inter-leg angle to widen, as

tllustrated in Fig 5 6
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Fig 5.6: As mhip increases (here from 02 to 1 6) so does the width of the inter-leg

angle

5.3.4 Slope - minimum and maximum and Stability

As slope 1s an 1ndication of efficiency (the walker needs a slope to move and thus y =
0 would be perfectly efficient) 1t 1s important to note effects on the mmmmum slope
attainable by parameter changes Firstly mhip 1s taken to be 0 and the limits of y for
period one gatt are found to be from 0 002 to 0 043 radians As hip mass 1s added and
incremented, there 1s also initially a growth 1n efficiency A hip mass, for nstance of
0 8, leads to a decrease 1n minimum ¥ to 0 0005 radians However 1f the hip mass 1s
too high 1e the creature has a heavy payload, then this efficiency gain seems to
disappear For example when mhip = 12 and mhip = 16 then the mimimum y

attainable 1s 0 004 radians (as 1n Appendix G)

Concerning maximum attainable y again the addition of mhip has a positive effect
with the maximum attainable slope increasing as mhp 1s incremented The maximum

y with mhip = 0 1s 0043, while with mhip = 12 a y value of 0058 radians 1s

achievable

With regards to stability, changes m mhp adversely affect the speed eigenvalue 1 e

A As the mhp value increases the value of /\ ; edges towards 1, as 1s shown n Fig
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57 Slope also seems to affect this eigenvalue with low or high slope values bringing

this close to nstability and an example 1s 1llustrated in Fig 5 8
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g 5.8: Effect of variation of A, due to increasing y, for mhip = 0 8
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Fig 5.9: Shows the variation in max and nun y as the value of mhip increases

5.3.5 Effect on Step period

The step period 1s the time for one complete step to occur 1 € from heel-strike to heel-
strike For a creature with no hip mass the step period increases as the slope increases
1e as the slope gets larger the creature takes longer (1€ section 53 3) slower (1€

fewer) steps
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Step
period

Fig 5.10: The step period for the creature with mhip = 0 is shown, varying as y

increases

The addition of varying hip mass does not alter the fact that the step period still

increases as y does However as the mhip value increases the overall step period

decreases as 1s outhined in Fig 5 11

Step
period

—m— 0 4

-+ -12

Fig 5.11: Step period for mhip = 0 4, 0 8 and 1 2 over slope varying from y = 0 to y =
0 04 radians
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5.3.6 Velocity and step length

Another means of determming performance 1s to determine the step length and

velocity of the creature The step length as outlined 1n section 321 1s given by

Length =2LSin where 1s the inter-leg angle The velocity on the other hand of
the robot over one step 1s
v Length

T
1€ equation 4 4

For the mass-less creature as y increases so too does the step length and velocity

| .

! . Velocity

Fig 5.12: Changes in velocity and length for the mass-less creature as y increases

The addition of a hip-mass does not alter the fact that both velocity and step length
increase as slope mcreases Again though both numerical values are larger than that
mvolved 1n the mass-less case 1€ the addition of extra mhip increases both the

velocity and step length of the creature
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Fig 5.13: Length and velocity for creature with mhip = 0 8 again as y increases

5.3.7 Addition of a damper

A damper 1s mncluded at the hip joint in an effort to improve the maximum attainable
slope The form of this damper 1s quadratic 1¢ Ffric(u, —u,)’ where Ffiic 1s the

coefficient of damping (as was outlined 1n section 4 5 3) Addition of a damper has
two main effects Firstly the versatility of the creature 1s inflated through the use of
this applied damper This 1s outlined in Fig 5 14, which shows that the maximum
attamable y can be mcreased by using dampers of varying damper coefficient values
The process of finding the best coefficient values 1s really through trial and error but 1t
was found that only small values worked well here The coefficient values used with
the various mhip values are {mhip = 04, Ffric = -0 008}, {mhip = 08, Ffric = -
0012}and {mhip =1 2, Ffric =-0 02}
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Fig 5.14: Increased maximum slope attainable provided by the addition of a

quadratic damper

The second by-product of the utilisation of a hip damper 1s a change 1n the general
appearance of the limit cycles This 1s 1llustrated mn Fig 5 15 which shows the limit

cycle for a damper-less model and for two different values of the damping coefficient
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Fig 5.15: Linut cycles for creature with mhip = 0 04 on y = 0 052 radians
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5.3.8 Bifurcation

A bifurcation 1s a period doubling For one to occur period one solutions should
disappear and stable period two solutions appear Other researchers [Gos96b] [Gar99]
found them 1n their models as various parameters were brought towards a hmit (1 e
bifurcation point) For instance stable period one solutions would exist up to a certain
slope and would then bifurcate into stable period two solutions An indication of
bifurcation 1s achieved by inspection of the eigenvalues of the Jacobian of the
Poincaré map in the neighbourhood of the limt cycle These are identified for
stability (see section 4 3) and should be all less than 1 for stability At a bifurcation
point at least one of these eigenvalues crosses the unit circle Clearly on mnspection 1n
Appendix G (e g G 5) this 1s not the case here so bifurcation does not occur In
[Gar98b] Garcia indicates that period doubling does occur for the model described
here but 1n addition with knees Therefore the addition of knees causes bifurcation to

arise

5.3.9 Summary

The following 1s a summary of the effects of increasing slope on the various

parameters, firstly when the mhAp 1s 0 and secondly when 1t 1s not

mhip =0

Slope Inter-leg Velocity Step Period | Step Length
angle

Increasing | Increases Increases Increases Increases
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mhip > 0

Slope Inter-leg Velocity Step Period | Step Length
angle

Increasing | Bigger  + | Increases Increases Increases
Increases
also

In terms of efficiency and maximum slope, as more mhip 1s added the efficiency (1 ¢
mummum slope y) deteriorates and the maximum slope increases A damper placed at

the hip can increase the maximum attainable slope

Finally this body of work deals with "human-like" motion and thus the goal would be
for the creature to carry a fairly heavy payload Therefore if the results for the bodied
creature can show an increase 1n efficiency and maximum slope attainable 1t can be

deemed a success

5.4 Bodied Results

5.4.1 Initial Values and Basin of Attraction

The choice of parameter values and the 1nitial state guess for 8, 1s of vital importance

as mvald values may lead to failure m the discovery of fixed points As a starting
point parameter values and state values where stable passive walking can be expected
for the body-less creature are utilised With regard to the length and centre of mass of
the torso, 1mitial values were kept small until solutions were discovered Fnally 1n

conjunction with these values 1s the desired 1mitial body position of uprightness 1€

f
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g, =u, =0 This gives the guess value for the state as

0, = 1g,,, G551, 15, 15} = {0 3015,— 0 3015, 0,—0 3763,— 0 2822, 0}

The original bang-zero-bang controller torque values were found through manual
tweaking Through brute force various torque values were tested (within the Runge-
kutta part of the solution process) and when the desired solution of a fairly nigid torso
was found these were used as the initial values These then didn’t change much and
only ‘considerable’ changes in mass distnbutions (1e hip and body) required

alteration of the applied torque state values

According to McGeer, a human has about 70% [McG90] of body mass above the hip
and thus the goal would be to have a fairly heavy payload for the creature's legs to
carry Therefore while some examples quoted 1n this chapter are for small hip and

body masses, 1t 15 those concerming heavy payloads that are of primary interest

The addition of a torso leads to an increase in the basin of attraction for the state
variable values Examples are shown in Appendix H 3 and shows that increases of up
to 15 % are available on the state values for the body-less case As the controller 1s
designed to quickly swallow up errors in the body states 1t 1s also worth noting that g;

and u; don’t need to be too accurate

5.4.2 Limit Cycles

Of primary concern was the discovery of fixed points 1 e limit cycles, 1f they existed

at all Limit cycles were indeed found and an example 1s shown in Fig 5 16

As a means of testing the code involved in the solution method mmtial values
concerning the body that are mimuscule were chosen, and disregarding the bang-zero-
bang control (since there 1s no body length), this gave a limit cycle similar to that of

the body-less creature with the same parameters - see Appendix H 2
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Initially, as shown 1n that diagram, the solutions are unstable, but this obstacle fades
through the addition of a damper and “tweaking” of the parameter values as shall be

indicated later

Fig 5.16: Unstable solution The parameters involved are mbody = 08, mhip = 1,
combody = 07, Ibody = 0 8 and applied tvalues {small = 0 003, large = 0 02}

The goal throughout 1s to provide human-like motion and unrealistic solutions that
were encountered, such as the body performing complete revolutions, are non-

anthropomorphic and thus were discounted
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5.4.3 Stability

Stability 1s a contentious 1ssue with the presence of a just a torso and applied torque
leading to eigenvalues well over the boundary limit of 1 Taking the situation in Fig

516 1e an unstable solution, there are two eigenvalues 1e | and ,) outside the

unit circle and two are approximately 0 1e j;and ) as illustrated in Fig 5 17

| |
37 . ) Y = 03
| . m oy = 045
i L
& I
A1 A2 A3 X4 As Xe

Fig 5.17: Eigenvalues for unstable solution on three different y values The
parameters again involved are mbody = 08, mhip = 1, combody = 07, lbody = 08
and applied t values {small = 0003, large = 002} Note that it 1s the first two

eigenvalues that provide instability

As previously described 1 section 4 5 3 1t 1s necessary to utilise a damper to provide
stability Determining the type of damper used was achieved through trial and error
Imtially a linear damper was adopted and 1n addition a constant factoring value had to
be combined to provide a successful solution The overall applied torque and damper

1s therefore given in section4 531 ¢

F . = Ffrac(Klin — damp x u,),

AN
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where damp 1s the damping coefficient, Klin 1s the applied torque and Ffrac 1s the

constant factoring value

Once this was taken mto consideration, stable solutions were discovered and can be

seen n Appendix H
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0.0005 ds

L

0 07622 0 07626 0 07632 0 07634

Fig 5.18: Stable solution The following parameter choices are made mbody = I,
mhip =15, lbody =0 8, combody =0 795, damp = 055, Frac= 5, and applied
values {small = 0 0008, large = 0 0009}

A stable solution 1s now shown 1n Fig 5 18 One final thing to note 1s that the first
eigenvalue remains at a value of approximately one This value of one indicates that
the cycle 1s neutrally stable for perturbations along the relevant eigenvector and thus

perturbations will neither shrink nor grow
It may be that another combination of applied torques and dampers may lead to a

more "mmproved" class of solutions, 1n particular stability, and this 1s one option for

future work
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Fig 5.19 Eigenvalues for stable solution in Fig 5 18 on three different y values

5.4.4 Effects of varying slope.

Angles
As the slope y increases both g, and g, increase and thus does the inter-leg angle The

angle the body makes 1 e ¢; however decreases as y 1s enlarged 1 ¢ the body tends

towards "straightening itself up"
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Fig 5.20: Varwation in angles as y increases The case shown here 1s for the following
parameters mbody = 1, mhip =15, lbody =0 8, combody =0 795, damp = 055,
Frac= 5, and applied © values {small = 0 0008, large = 0 0009} Note that the range
of y 1s from the minmimum of 0 0005 to the maximum of 0 043 radians While 1t 1s hard

to make out 1n the diagram q; actually decreases from 0 08 radians to 0 07

Step period

Once again the step period 1s the time taken for one complete step 1 € from heel-strike

to heel-strike and 1n common with the body-less creature the step period increases as

the slope increases

2 5f ®
2 45
L
2 4
[ J
2 35
e 0 01 0 02 0 03 0 04 0 05 0 06 Y
-

Fig 5.21: Variation in step period as y increases The case shown here 1s for the
Jollowing parameters mbody = 0 4, mhip = 1, lbody = 0 8, combody = 0 795, damp
=039, Frac= 5, and applied © values {small = 0 00002, large = 0 0001}
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Velocity

Velocity again determined by equation4 41 e
by Length

T

also increases

05 .
0 45
0 4

03

Fig 5.22: Varation in velocity as yincreases The parameters are mbody = 08, mhip

= 1, lbody = 0 8, combody = 0 795, damp = 0 39, Frac= 5, and applied r values
{small = 0 00005, large = 0 0005}

Step period

Velocity

OSW

0 01 002 003 004 Y

Fig. 5.23: Effect of variation of y on both step period and velocity The case shown
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here s for y from the mmmum of 00005 to the maximum of 0 043 radians The
parameters involved are mbody = 1, mhip =15, lbody =0 8, combody =0 795,
damp = 055, Frac= 5, and applied © values {small = 0 0008, large = 0 0009}

Stability

As the slope increases the eigenvalues tend to approach zero until instability occurs

An example of their structure 1s given 1n Fig 5 24

!
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Fig 5.24: Eigenvalues for the creature in Fig 5 23 as y 1s varied Note that As and ) 4

are both approximately 0 and thus only one 1s shown

5.4.6 Efficiency and Maximum slope

Efficiency 1s determined as the mimimum slope attainable by the creature 1e the
mimmum y needed for continuous movement In section 5 3 4 1t was concluded that
the mmimum slope needed for a creature with hip mass included was approximately
0 0005 radians In order therefore to claim that the bodied creature outlined does not
significantly hamper efficiency, then values close to that of the body-less creature are

desired Efficiency depends on the parameters mvolved (1 e mhip, mbody, combody,
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damp) but as shown through all the examples outlined 1n appendix H, efficiency 1s
good 1n general with mimmimum slopes equalling those of the body-less detected (e g
creature with parameters mbody = I, mhip =15, lbody =0 8, combody =0 795,
damp = 055, Frac= 5, and t states {small = 0 0008, large = 0 0009} has minimum
v of 0 0005 radians)

As for the maximum slope attainable this again depends on how the parameters are
formulated but improvements can be made on that of the body-less creature For
example a body-less creature of hip mass equal to 0 8 had a maximum feasible slope
of 0 057 Now for a hip mass of 1 0 and body mass of 0 4 this could be increased to
0 06 radians for stable motions and as far as 0 81 radians for unstable ones Further
increases are attamnable through the addition of a hip damper, as shall be outlined in

section 549

Finally 1t should be pointed out that further increases in maximum slope and
efficiency may be attainable through a vanation on the applied torque and damper

used here, and this shall be addressed 1n the next chapter as possible future work

mhip mbody | lbody combody | damp | minimum | maximum
04 02 01 0 095 022 0 0006 006

10 04 08 0795 03 0 0008 006

15 10 08 0795 055 0 0005 0043

Fig 5.25: Table of some mimimum and maximum y values

5.4.7 Varying the centre of mass of the body

As the centre of mass of the body 1s measured 1n relation to the end of the link, the

higher the value of combody the closer the centre of mass 1s to the hip mass pont For
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an unstable solution (1 ¢ no damper) the range of values for which fixed points can be
found 1s fairly large In approximate terms the centre of mass can be moved from the
end closest to the hip up to about the middle of the body link and still fixed points are
found However all solutions are unstable The effects of moving the centre of mass
up the body away from the hip are as follows all angles decrease (1 e the mter-leg
angle becomes smaller and the angle the body makes becomes more upright), the

velocity u; increases and stability deteriorates

When the damper 1s added for stability the range of values of combody for which
fixed point solutions can be found 1s diminutive As an example for the following
creature parameters mhp = 15, mbody = 10, lbody = 08 and damp = 055,
combody can be varied from 0 799 to 0 793 before mnstability occurs and after 0 75 no
fixed pomt solutions are possible The same effects as above are also noted and a full

set of solutions 1s given in Appendix H 5

This low centre of mass necessity 1s one flaw that needs to be eradicated and would
form one major component of future work, possibly through the addition of more

dampers This 1ssue 1s addressed in the next chapter

combody =0 55
arrow indicates
that g;1s 0 005

radsi1e 03°
ary
combody = 0 797
combody arrow indicates
that q31s 0 0104
radsie 06°

combody
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Fig. 5.26. Effect of variation of combody on the body angle q3 This 1s for the unstable
case of parameters mbody = 08, mhip =1, combody =07, lbody =0 8 and applied ©
values {small = 0 003, large = 0 02} on y= 0025

5.4.8 Effect of varying body mass

The examples shown throughout this chapter have given a definite value to mbody
What 1s addressed now 1s how much scope there 1s for vanation to this value Once
agamn variation depends on the parameters 1n question but 1n general there 1s scope for
alteration The table below shows how much some values can be changed and the
main detail that can be gathered from these results 1s the following the body mass
must be less than the hip mass for stable limit cycles to occur Again this 1s an 1ssue

for further work and 1s addressed 1n the next chapter

mhip mbody minimum maximum
Is 10 ” 04 12

10 04 03 07

04 02 02 035

Fig: 5.27: Variation possible in mbody values

5.4.9 Effect of varying radius of gyration

The radius of gyration for the body 1s given as a constant value of 0 121 - see
Appendix F However this value can be altered - the estimation given 1s the maximum
allowed but 1t can be decreased as far as 0 05 The effect of dimmishing the value 1s

as follows all angles decrease m size

The radius of gyration for the leg 1s also given as a constant value of 0 09 For the

body-less creature a value of 0 121 was used but this only leads to failure of Newton's
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method to converge 1f used here The range of possible values 1s from 0 1 back to

0 04 Again the effect of diminishing the value 1s to decrease the angular values

5.4.10 Hip Damper

Taking cue from the body-less creature and mn an effort to improve versatility a
damper was placed at the hip joint As outlined 1n section 4 5 3 both a linear and

quadratic were tested but 1t was the quadratic one that provided mtially impressive
results Therefore the equation used for the applied damper 1s Ffiic (4, —u,)*, where

Ffric 1s the damping coefficient and u; and u, are the velocities of the stance and

swing angles Individual values utilised for Ffric are given in Appendix H 7

Again there are two outcomes of note with regard to the addition of the quadratic
damper described Firstly there 1s an increase in the maximum slope attamnable The
table in Fig 5 28 highlights the increases for a few examples It 1s worth highlighting
that with the body-less creature and additional hip damper, the maximum slope found

for a realistic creature was 0 07 radians, which 1s increased on slightly here

Parameters | mhip mbody Old max y | New max y | Increase
10 04 0 06 0073 =21 %
08 04 0055 0065 =18 %
10 08 004 0051 =27%
15 10 0043 0055 =27%

Fig 5.28: Increases in maximum slope through addition of damper

Secondly the addition of a hip damper alters the general appearance of the Iimit cycle

created Addition of a damper, may slightly shrink or magnify the format of the limit

cycle
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Fig 5.29: Limut cycles for various hip damper coefficient values The creature
parameters are mbody = 04, mhip = 1 0, damp = 0 39, Frac= 5, lbody = 0 8 all on
a slope of y = 0 065 It 1s worth noting also that previous to this damper addition the

maximum attainable ywas 0 055 radians

5.4.11 Total applied torque in each step.

To keep the body upright and stable it has been established that external torque values
are required How significant 1s the value of this external torque? The complete
external force applied to the creature 1s given 1n section 453 1e
F = Frac(Klin — damp xu;) Ths 1s per 1teration and per step mvolves summation
but 1s dimmutive For example, for the creature outhned in Fig 523 on y =0 025 1t

1s -0 0289354 N/m per step The applied torque increases as the yincreases and 1s

shown in Fig 5 30 and Fig 5 31 Finally more values are given in Appendix H 8
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Fig 5.30: Total applied torque as y increasesfor one stepfor the creature with mhip

= 1.5 and mbody = 1.0. Note that the applied torque is shown as having a negative

value - this means that it is a restoringforce.

Fig 5.31: Total applied torque as y increasesfor one stepfor the creature with mhip

= 0.8 and mbody = 0.2.

5.4.12 Controller Issues

The purpose of this work was the addition of a torso with as simplistic a controller as
possible, thus trying to sustain as much as possible the basic premise of passive
dynamic walkers i.e. little or no control. Most of the results prior to now have
involved the controller based solely on the g3 value and given in Fig 4.8. If however

the controller given in Fig 4.9 is utilised there are no major changes in performance.
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The only difference 1s a change 1n the appearance of ¢; - now 1t leans backwards

shightly Some results 1llustrate this and are given in Appendix H 10

5.4.13 Summary

The following 1s a summary of the effects of the variation of the slope on the various

parameters which 1s m-line with that of the body-less creature

Slope Inter-leg Angle q; Velocity | Step Period | Step Length
angle
Increasing | Increases Decreases | Increases | Increases Increases

In terms of efficiency values equalling those of the body-less creature have been
found Improvements in maximum slope attainable, in particular in conjunction with a

damper placed at the hip have been 1dentified
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Chapter Six

Conclusions And Future Work

6.1 Achievements

Previous work [McG90] [Gos96] and [Gar97] has well established that a passively
engimeered biped can "walk" down a slightly inclined plane powered only by gravity
and eventually acquire a stable periodic gait Thus the passive-walking pattern 1s
determined by the natural frequency of the mechanical system An interesting
characteristic was that the creatures mvolved achieved a stable limit cycle that looked
human-like Common to all creatures involved was that a hip mass was utilised to
represent a torso and 1t 1s this exclusion of an extended torso that has been addressed

here

McGeer's creature [McG90] was used as the foundation with an extra mverted link
representing the torso Keeping this link m an upright position can be achieved
through the use of a simple fuzzy logic controller without violating the inherent
simplicity of the model The solution process mvolved formulation of the equations of
motion and transition equations and then fixed point solutions were sought and these

provided the limit cycles

Once limit cycles were found 1t needed to be determined if they were stable or
unstable While not immediately available, stability could be achieved through the
addition of a damper and manual tweaking of the variable values mnvolved Finally 1t
was shown that the addition of a hip damper could improve on the previous results

gamed
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6.2 Performance issues

The main performance issues regarding passive creatures can be summarised as
stability, efficiency, maximum slope, velocity and step period With regard to practical
performance 1ssues, the creature of McGeer (used as the foundation of this research)
achieved a mmimum slope of 0 005 radians and a maximum of 0 06 radians [McG90]

Thus to deem the bodied creature a "success" values similar in stature were sought

As stated previously, stability was achieved although after some tweaking There 1s a
slight increase 1n the basin of attraction indicating that a larger error in the mitial state
vector 1s acceptable as compared to the body-less case McGeer utilised a linearised
solution process 1n his work and thus improvements n efficiency should be gained,
and this was found to be the case with solutions existing for slopes as low as 0 0005
radians - this 1s similar to the result found here for the body-less case Improvements
were also made 1n the maximum slope achievable The velocity and step period values
are 1n keeping with those of the body-less creature 1e 1increasing as the slope
increases Finally the applied torque utilised 1n keeping the body upright, an external
force which may be problematic in a physical implementation of the creature, 1s
shown to be minute per step taken Thus the applied torque necessary to keep the

body upright would not require a large power source

6.3 Future Work

6.3.1 Creature configuration

The simulated creature outlined here consists of three rigid links, two representing
legs and one a torso, connected via hinge joints This type of joint has limit degrees of
freedom and thus keeps the structure of the creature simple Addition of ball and
socket joints would aid realism (more human-like), and may positively effect some of

the performance 1ssues and should be simulated
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This creature requires a low centre of mass for stable solutions to be detected
However lgher centre of mas$s positions would be necessary m a real world
environment One method of combating this problem may be to add in extra mass

components 1n specific locations

Addition of a torso 1s just one development necessary for a chopped at the waist
bipedal creature Any realistic creature (either simulated or real) will be required to
perform some sort of tasks other than just movement Thus some sort of freely

moving gripping arms need to be added

In [McG90b] McGeer updated his bipedal robot through the addition of knees This
was accomplished by splitting each leg into two, a thigh and a shank and placing a
stop at each knee to prevent hyperextension Once again stable limit cycles were
found and as possible future work knees should be incorporated into the creature

containing a torso described here

6.3.2 Dampers

Addition of dampers have been very useful here, providing stability and giving more
versatile solutions Those modelled have a linear form to keep the torso upright and a
quadratic form at the hip joint Different types of dampers, other than those mentioned
here may further increase the performance of the creature In particular addition of
extra springs and dampers may lead to improvements 1n the positioning of the centre

of mass of the torso

6.3.3 Controller

Central to the research in the area of passive ballistic walkers 1s the notion of
simplicity To remain true to this motto as elementary a controller as possible was
utilised As previously outlined there were two versions of controller used, each had

three states and one took into account the value of the angle velocity u; While
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solutions were found other shghtly more complex controllers (however not too

complex') might be used to keep the body upright and provide better performance

Other forms of external control (such as the passivity mimicking laws used by
Goswam [Gos97a]) mught also be added into the solution process to provide better

solutions

6.3.4 Optimisation

Many performance gauges were emphasised throughout chapter five However
mnstead of just finding a solution 1t would be best to find the best solution Therefore
the solution process should be optimised to find for example the least energetic cost in
movement, the fastest step etc Within this also 1s the notion of improving

performance values e g trying to get the most efficient creature etc

6.3.5 Physical implementation

The whole process outlined 1n this 1s work 1s based upon simulation Thus a real
model should be constructed and investigated One of the main 1ssues would be how
to 1implement the controller - as a non-linear spring or as an actuator? Obviously the

most energy efficient solution should be sought giving the best performances
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Appendix A:

Vectors associated with the Bodied Creature.

Height of 'Points' above ground

It will be useful to have the heights of various points on the creature at particular time

mtervals Therefore the vector values for these points are

foot—height = (L — R)Cos[q,]stal2] + (-L + R)Coslq,]swi|2]

hip—height = (L - R) sta]2] + R ground|2]

Vectors

Bodytojnt is the vector from the new body's COM to the joint connecting it

o Stance to ground

—Rground[2] - (comleg — R) sta|2]

v

e Swing fo stance l mhip
(L - comleg) swif2] A

e Body to hip

—(Ibody - combody) bod[2]

Inbtojnt is the vector from the Inboard bodys COM to the joint connecting it to the
hew body

e Stance to ground

0

e Swing to stance mhip
(L - comleg) sta[2] /*‘ y
e Body to stance /‘

(L — comleg) sta]2]
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Appendix B:

Mathematica Code for equations of motion i.e. state derivative sta for
the body-less creature. Note that code for transition matrix is only given
for the bodied creature.

(* Include dynamics Workbench package *)

<<c \DynamicsWorkbench m

(* Clear the internal variables storing parameters of the model *)
NewModel

(* Add in the two leg reference frames sta and swi *)
AddFrame[sta, ground, Hinge, Axis->ground{3]],

AddFrame [sw1i, ground, Hinge, Axis->ground([3]],

udofs = {1, 2},

(* Kinematics of the legs *)

AngVel[ sta ] = ul[l] ground[3],
AngVel[ swi ] = ul{2] ground[3],

Bodies = {sta, swi},
Inboard[ sta ] = ground,
Inboard[ swi ] = sta,

rank = R ground([2],
vank = Cross[ AngVel[sta], rank],

(* hip 1s positioned at joint joining the two legs *)

(*NOTE THAT Cl IS USED FOR comleg here *)

hip = PosPnt[(L-Cl) stafl2], stal ground(2],
(* Velocities of legs *)

VelCOM[ sta ] = vank + Cross[ AngVel[sta], (Cl-R) staf[2]},

AccCOoM[ sta ] Dt [VelCOM[stal,t, Constants->{R,Cl,1p}] /
{gl1l]'->ull]),gl2]'->u[2]},

Dt [AngVel{[sta], t],

I

I

AngAcc[ sta ]

Kinematics = {u[l] == qt[1]'[t], ul2] == gt[2]1'[t] },
Force[sta]l = {},

Torque(stal] = {},

Force[swi] = {

Torque[swi] =
Veldnt|[ swi ]

w o~

implify[ VelCOM[ sta ] + Cross[AngVel[sta]l,
(L-C1) stafl2]] 1
VelCOM[ swi ] = VelJnt[swi] + Cross|[ AngVel[swi],
-(L-Cl) swi[2] ]
AngAcc[swi] = Dt[AngVel[swi],t],
Accdnt [swi] = Simplify[ AccCOM[sta] + Cross[AngVel[sta],
Cross([Angvel[sta], (L-Cl) staf2z] 1 1 + Cross|
AngAcc(sta], (L-Cl) sta[2]]), Trig->False],
AccCOM[swi] = Simplify[ Accdnt[swi] + Cross[AngVel[swi],
Cross[AngVel[sw1], -(L-Cl) swa[2] ] ] + Cross]|
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AngAcc[swi], -(L-Cl) swi{2] ] ],

BodyToJdnt [sta] = -rank - (Cl-R) stal[2],
BodyTodnt[swi] = (L-Cl) swi[2],
InbTodnt{sta] = 0,

InbTodnt[swi] = (L-Cl) sta[2],

(* Mass of legs including hip mass *)

Mass[ swi ] = M + Mhip, Mass| hip ]} = Mhip, Mass[ sta ] = M + Mhip,
Inertial[ sta ] = Il sta[l]l**sta[l]l+I1 stal[3]1**stal3],

Inertial swi ]=Ilswi swi{l]**swi[l]+Ilswi swi[3]**swi[3],

(* Forces applied to the legs 1 e gravity *)

AppFrc{ sta, Mass{sta] grav, 0],
AppFrc{ swi, Mass[swi] grav, 0],

(* Torque applied by spring and damper at the hip joint *)
RAppTrqg[swyr , Ffric({(u[2]-u[l])"2) ground[3]],
grav = g (-Cos[gamma] ground[2] + Sin[gamma] ground{l]),

(* Generate the equations of motion *)
eom = EOM

(* next need to splait up eom so that state deravative can be found *)

test=Simplify[MassMatrix[eom] ]

Print[StringForm["Value for the 2*2 matrix M"]]

mll=Coefficient(eom([[1]][[1]], (ull])', 1],
ml2=Coefficient[eom[[1]][[1]]}, (ul[2])', 17,
m21=Coefficient{eom{ {277 ([1]], (ufll)', 11,
m22=Coefficient[eom{[2]][[1]], (u[2])', 1],

(* Matrix M in section 3 3 3%)
MatM(2,2]1={{-ml11l, ml2}, {-m21, -m22}}

Print[StraingForm["right hand side values"]]

restl = eom[[11]1[[1]] - (Coefficient| eom[[1]]}([1]], (u[l])",
11*ufl]") - (Coefficient( eom[[1]][[1]], (u[2})', 11*ul2]'),
rest2 = eom[[2]][[1]] - (Coefficient{ eom[([2]][([1]1], (ulll)}"',
11*ufl]") - (Coefficient( eom[[2]][[1]], (uf2]))', 1]*ul2]'),

(* Matrix R in section 3 3 3*%)
Rmat[1,2]={restl, rest2}
(* Linear solve to get last values for state derivative *)

uveldot = LinearSolve[MatM[2,2],Rmat(l,2]]
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(* Linear solving above gives the state vector sta *)

sta = {ufl],ul2],uveldot{[1]],uveldot([[2]]}
sta >> ¢ \stateder ma
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Appendix C:

Mathematica Code for equations of motion i.e. state derivative sta for
the bodied creature and the transition equation.

(* Include DynamicsWorkbench package *)

<<¢c \DynamicsWorkbench m

NewModel

(* Setting up frames of reference *)

AddFrame [sta, ground, Hinge, Axis->ground{3]]
AddFrame [swi, ground, Hinge, Axis->ground[3]].,
AddFrame [bod, ground, Hinge, Axis->ground[3]]

’

udofs={1, 2, 3},

AngVel[ sta ] = ul[l] ground[3],

BngVel[ swi ] = ul2] ground[3],

AngVell bod ] = ul3] ground[3],

Bodies = {sta, swi, bod}.,

Inboard|[ sta ] = ground,

Inboard[ swi ] = sta,

Inboard|[ bod ] = sta,

(* hdpos 1s the vector from the com upwards - means back towards the
hip *)

hip = PosPnt|[ (L-comleqg) stal[2], sta] ground([2],

rank = R ground{2],

vank = Cross|[ AngVel([sta], rank],

VelCOM[ sta ] = vank + Cross|[ AngVel[sta], (comleg-R) stal[2]],
AccCOM[ sta ] = Dt[VelCOM[sta]l,t, Constants->{R,comleqg,lp}] /
{ql1]'~>u[1],

~ql2]'->ul2]},
AngAcc|[ sta ] = Dt[AngVel][sta]l,t],

Kinematics = {u[l] == qt[1]'[t], ul[2] == qt([2]'([t], ul[3] == gt[3]'[t]
b

Forcel[sta] = {},

Torque[sta] = {},

Forcel[swi] = {1},

Torquefswi] = {1},

Forcel[bod}] = {},

Torque [bod] = {},

Veldnt[ swi ] = Simplify[ VelCOM[ sta ] + Cross[AngVel [sta],
_(L-comleg) stal2]] 1], )
VelCOM[ swi ] = VelJnt([swi] + Cross[ AngVel{[swi],

_—(L-comleg) swi[2] 1,

AngAcc([swi] Dt {AngVel [sw1],t],

Accdnt[swi] = Saimplify[ AccCOM[sta] + Cross[AngVel[stal,
_Cross[AngVel[sta], (L-comleg) stal[2] ] ] + Cross]|

Il
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_AngAcc[sta], (L-comleg) sta[2]], Trig->False];
AccCOM[swi] = Simplify[ Accintfswi] + Cross[AngVel[swi],
_Cross[AngVel[swi], -(L-comleg) swi[2] ] ] + Cross[
_AngAcc[swi], -(L-comleg) swil[2] 1 1:

Vel COM[bod]

g\ﬁgAcc[bod] = Dt[AngVel[bod],t]:

AccCOM[bod] = Simplify[ Accdnt[swi] + Cross[AngVel[bod],
_Cross[AngVel[bod], (Ibody-combody) bod[2] ] ] + Cross[
_AngAcc[swi], (Ibody-combody) bod[2]], Trig->False];

BodyToJdnt[sta] = -rank - (comleg-R) sta [2];
BodyToJdnt[swi] = (L-comleg) swi[2];
BodyToJdnt[bod] = (Ibody-combody) bod[2];
InbToJdnt[sta] = O;

InbTodnt[swi] = (L-comleg) stal[?];
InbTodnt[bod] = (L-comleg) sta [2];

(* Note that each leg contains the hip mass *)

Mass[ swi ] = M + Mhip;
Mass|[ hip ] = Mhip;
Mass[ sta ] = M + Mhip;
Mass|[ bod ] = Mbody;

Inertia[ sta ] = llstasta[l]**sta[l]+llsta sta[3]**stal[3];
Inertial swi ] = Ilswiswi[1]**swi[1]+1lswi swi[3]**swi[3];
Inertia[ bod ] = Inertiabody bod[1]**bod[1]+Inertiabody
bod[3]**bod[3]1;

AppFrc[ sta, Mass[sta]grav, O0];

AppFrc[ swi, Mass[swi]grav, O0];

AppFrc[ bod, Mass[bod]grav, O0];

(* Torsional Springs position and force - added to try to improve
stability *)

AppTrql[ swi , Ffric(u[2]-u[1]D~2) swi[3]]:

* Inverted pendulum torque - spring and damper with damping coeff
damp and torque Klin and constant Frac *)

AppTrql[ bod, Frac(Klin - damp*u[3]) bod[3]]:;

grav = g (-Cos[gamma] ground[2] + Sin[gamma] ground[1]);
eom = EOM;

test=Simplify[MassMatrix[eom]];

(* Again need to get into form for linear solving *)

* Matrix M in section 3.3.3%)
ML3,3]1={test[[1]] [[1]1]. test [[1]] [[21]., test[[1]] L[311};

VelJdnt[swi] + Cross[AngVel[bod], (Ibody-combody) bod[2]
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(* Matrix R in section 3 3 3%)
R[1,3]=test[[2]],

uveldot=LinearSolve[M[3,3],R[1,3]],
Print [StringForm["State Vector 1s "]],

sta={ull},ul2),ul3),uveldot{[1}1]),uveldot[[2}],uveldot{{3}]}
sta >> ¢ \statemat nb

dkkhhkhhhkhhRhhkhAhTdddhdrddbdotd bbb bbb bdrhhbib bbb dh bt

TRANSITION EQUATIONS (SECTION 3.4)- SAME CODE AS ABOVE
UNTIL EQUATIONS OF MOTION ARE FORMED

eom = EOM,

amawhole = AngMom([{sta, swi}, 0], (*+

____AngMom[{bod}, PosPnt[ (L-comleqg) stal2], stal]¥*)
amaswl = AngMom([{swi}, PosPnt[ (L-comleg) swi[2], swill],
amabod = AngMom[{bod}, PosPnt{[ (L-comleg) sta[2], stall,

M[3,3]={{Coefficient [amawhole stal[3],

ull]],Coefficient{amawhole sta[3], ul[2]],

___Coefficient[amawhole sta[3], u[3]]},

{Coefficient[amasw1i sta[3], ull]],Coefficient[amaswi sta[3], ul2]],
Coefficient[amaswi sta[3], ul3]]},

{Coefficient [amabod sta[3], ull]],Coefficient{amabod stal[3], ul2]],
Coefficient [amabod sta[3], ul[3]]}},

(*Angular Momemtum before¥*)

ambefwhole = AngMom[{sta, swi}, PosPnt[-(comleg-R) swi[2] -R
ground[2],
swi 1], (*+ AngMom[{bod}, PosPnt[ (L-comleg) sta(2], sta]l?*)

I

ambsta
ambbod

AngMom[{sta}, PosPnt[ (L-comleg) stal[2], sta]ll,
AngMom[ {bod}, PosPnt[ (L-comleg) stal2], stall,

l

Bef[1l,3]={ambefwhole sta[3],ambsta sta[3],ambbod sta[3]},

condl=LinearSolve[M[3,3],Bef[1,3]]

condl >> ¢ \artkuo\mar3\transmat nb
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Appendix D

Equations of motion matrices for the body-less creature

The equations of motion for the body-less creature can be written as

2
M[ul)“RLulzJ:O’
u, u2

where the matrices M and N are

Mo Il +(comleg +L)(2m+mhuip) (comleg— L)L(2m+ mhip) Cosq, —q,)
(comleg— L)L(2m+ mhip) Cos(q, —q,) liswi+ (comleg— LY’ (2m+ mhip)

Ro|™ (2m + mhip) (g (comleg + L) Sin(y —q,) + (comleg — L) L Sin(q, — qz)uz2
(comleg — L)(2m + mhip)(—g S (y —q,) + L Sin(q, — qz)ul2
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Appendix E:

State derivative for Bodied Creature

O(t)= {ull], ul2], ul3], ~(((-((comleg - L)*(combody - lbody)~2*

Mbody* (M + Mhip)* ((L - R)*Cos([qg[l] - g[2]] + R*Cos[q[2]])) -
(combody - lbody) *Mbody* (Ilswi + (comleg - L)"2*(M + Mhip))*

((L - R)*Cos[q[l] - q[3]] + R*Cos[q[31]1))*

{g* (combody - lbody)*Mbody*Sin{gamma - g{31] -

{(combody - lbody)*Mbody* (L - R)*Sin[gl[l] ~ g[3]]*

ul[l]”2 + frac*(Klin - damp*u[3])))/(Inertiabody*((Ilswi + (comleg -
L)"*2*(M + Mhip))*(Ilsta + comleg”2*M + L"2*M + L"”2*Mbody +
comleg”2*Mhip +

L~2*Mhip - 2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R -

2*comleg*Mhip*R - 2*L*Mhip*R + 4*M*R"2 + 2*Mbody*R"2 +

4*Mhip*R"2 + 2*R*(L*M + L*Mbody + L*Mhip +

comleg* (M + Mhip) - 2*M*R - Mbody*R - 2*Mhip*R)*

Cos[gfl]l]) -(comleg - L)*(M + Mhip)*

((L - R)*Cos[q[l] - q[2]] + R*Cos{qgq[2]])*

({(comleg - L)*(M + Mhaip)*(L - R)*Cos[q[l]-q2]]+

(comleg - L)*(M + Mhip)*R*Cos([qg(2]] -
(combody -~ lbody) *Mbody*

((L - R)*Cos[qll] - g[3]] + R*Cos[qg[3]11))))) +

(~((comleg - L)*(M + Mhip)*((L - R)*Cos[qg[l] - qgl2]] +
R*Cos([ql2]1)*{(g*(~comleg + L)*(M + Mhip)*

Sin[gamma - g[2]] + Khip/{q[l] - q[2]) +

(comleg - L)* (M + Mhip)*(L - R)*Sin[qg[l] - q[2]]*

ulll”2 + Ffraic*Sin[u(l] - ul2]1*

(uf[l] - ul[2])"2)) +(Ilswir + (comleg - L)"2*(M + Mhaip))~*
(g* (M + Mhip)*(-R + (-comleg + R)*Cos[q[l]])*Sin[gamma] +
g*Mbody* (=R + (-L + R)*Cos[ql[l]])*Sin{gamma] +

g*(M + Mhip)*(-R + (-L + R)*Cos[g[l1l]])*Sin[gamma]l +

g*(M + Mhip)* (comleg - R)*Cos[gamma]*Sin[qg[1l]] +

g*Mbody* (L - R)*Cos[gammal*Sin[g[l]] +

g*(M + Mhip)*(L - R)*Cos[gammal*Sin[qg[l]] +

R* (L*M + L*Mbody + L*Mhip + comleg* (M + Mhip) - 2*M*R -

Mbody*R - 2*Mhip*R)*Sin{q(li]*ufl1"2 +

(comleg - L)*(M + Mhip)~*

((-L + R)*Sin[qll] - gql2]] + R*Sain[qg[2]]1)*uf2]1"2 \

- (combody - lbody)*Mbody*{((-L + R)*Sin[g[l] - ql3]1 +
R*Sin{qg[3]])*u[3]172))/((Ilswi + (comleg - L}"2*(M + Mhaip))*

(Ilsta + comleg”2*M + L"2*M + L"2*Mbody + comleg”2*Mhip + L"2*Mhip -
2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R - 2*comleg*Mhip*R -

2*L*Mhip*R + 4*M*R"2 + 2*Mbody*R"2 + 4*Mhip*R"2 +

2*R* (L*M + L*Mbody + L*Mhip + comleg* (M + Mhip) - 2*M*R -
Mbody*R - 2*Mhip*R)*Cos([qg[1l]]) -{comleg - L)*(M + Mhip)*((L -
R)*Cos[qg[l] - gf2]] +R*Cos(gl2]])*{((comleg — L)*(M + Mhaip)*(L - R)*

Cos[qll] - g[2]] +(comleg - L)*(M + Mhip)*R*Cos[q[2]] -

(combody - lbody)*Mbody* ((L - R)*Cos[qll] - q[3]] + R*Cos([g{311))),
(g* (-comleg + L)* (M + Mhip)*Sain[gamma - gf2]] +

Khip/{(qll] - g[2]) +{(comleg - L)*(M + Mhip)*(L - R)*Sin[q[l] - q[2]]*

ull]j”~2 + Ffraic*Sin[u[l] - ul2]]*(u[l] - u[2])"2)/

(Ilswi + (comleg - L)"2*(M + Mhip)) =-{(combody -

1body) "2*Mbody* (g* (combody - lbody) *Mbody*Sin{gamma - g{3]] -{combody
- lbody) *Mbody* (L - R)*Sin[ql[l] - g[3]]*u{l]”2 + frac*(Klin -
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damp*u[3])))/(Inertiabody* (Ilswi + (comleg - L)"2*(M + Mhip))) -
(((comleg - L)*(M + Mhip)*(L - R)*Coslq[l] - q[2]] +

(comleg - L)*(M + Mhip)*R*Cos[q[2]] -(combody — lbody)*Mbody*

((L - R)*Coslqll] - gql3]1 + R*Cos[qgl3]1]))*

(= (((-({comleg - L)*(combody - lbody)"2*Mbody* (M + Mhip)*

((L - R)y*Cos[qgll] - ql2]] + R*Cos(qgl2]1)) \

- {(combody - lbody)*Mbody*(Ilswi + (comleg - L)"2*(M + Mhip))*

({(L - R)*Cos[ql[l] - q[3]) + R*Cos[ql3]]1})*

(g* (combody - 1lbody) *Mbody*Sin{gamma - q[3]] -

(combody - lbody)*Mbody* (L - R)*San[q[l1] - g[3]]*

ulll”2 + frac*(Klin - damp*u[3])))/{(Inertiabody*((Ilswi + (comleg -
L)"2*(M 4+ Mhip))*(Ilsta + comleg”2*M + L"2*M + L"2*Mbody +
comleg”2*Mhip +

L~2*Mhip - 2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R -

2*comleg*Mhip*R ~ 2*L*Mhip*R + 4*M*R"2 + 2*Mbody*R"2 +

4*Mhip*R"2 +2*R* (L*M + L*Mbody + L*Mhip + comleg*(M + Mhip) -

2*M*R - Mbody*R - 2*Mhip*R)*Cos[q(l]]) -(comleg - L)*(M + Mhip)* ((L -
R)*Cos[g[l} - gl2]] + R*Cos[q[2]])*((comleg - L)*(M + Mhip)*(L - R)*
Cos[qgll] - gql[2]] +(comleg - L)*(M + Mhip)*R*Cos[qg[2]] -

(combody - lbody) *Mbody* ((L - R)*Cos[q[l] - q[3]} + R*Cos[q[3]1])))))
\

+ (- ((comleg - L)* (M + Mhip)*((L - R)*Cos[qg[l}] - gl2]] +
R*Cos[ql[2]])*(g* (-comleg + L)* (M + Mhip)*Sin[gamma - g[2]] +
Khip/(q[l] - ql[2]) +(comleg - L)*(M + Mhip)*(L - R)*Sin(qg(1l] - q[211*
ull]”™2 +Ffric*Sinf{ul[l] - ul2]1*(ull] - ul2])"2)) +

(Ilswi + (comleg - L)"*"2*(M + Mhip))*(g*(M + Mhip)*(-R + (-comleg +
R)*Cos[qll]])*Sin[gamma] +g*Mbody*(-R + (-L +
R)*Cos[qfl]}])*Sin[gamma] +

g*(M + Mhip)*(-R + (-L + R)*Cos[qg[1]])*Sin[{gamma] +

g* (M + Mhip)*(comleg - R)*Cos[gamma]*Sin[qg[l]] +

g*Mbody* (L - R)*Cos{gammal]*Sin{g{l]] +g*{(M + Mhip)*(L -
R)*Cos[gamma] *Sin[q[1l]] +R* (L*M + L*Mbody + L*Mhip + comleg* (M +
Mhip) - 2*M*R -Mbody*R - 2*Mhip*R)*Sin[q[1]]*u[l]"2 +

(comleg - L)*(M + Mhip)*((-L + R)*3Sain[q[l] - q[2]] + R*Sin[qg[2]])*
uf2]72 - (combody - lbody)*Mbody* ({(-L + R)*Sain[qg[1] - q[31] +
R*Sin[q[3]])*

ul3172))/((Ilswi + (comleg - L)"2*(M + Mhip))*

(Ilsta + comleg”2*M + L"2*M + L"2*Mbody + comleg”2*Mhip +

L*2*Mhip - 2*comleg*M*R - 2*L*M*R - 2*L*Mbody*R -

2*comleg*Mhip*R - 2*L*Mhip*R + 4*M*R"2 + 2*Mbody*R"2 +

4*Mhip*R"2 + 2*R*(L*M + L*Mbody + L*Mhip + comleg* (M + Mhip) - 2*M*R
Mbody*R - 2*Mhip*R)*Cos[g[l]]) -(comleg - L)*(M + Mhip)*

({L - R)*Cos[qgll] - gl[2]] + R*Cos[ql[2]])*((comleg - L)*(M + Mhip)* (L
- R)*Cos[gll] - g[2]] +(comleg - L)*(M + Mhaip)*R*Cos[ql2]] -
(combody - 1lbody)*Mbody* ((L - R)*Cos[q[l] - g[3}] + R*Cos[q[311)))))/
(Ilswi + (comleg - L)"2*(M + Mhip)), (g* (combody -

1body) *Mbody*Sin[gamma - q[3]] - (combody - lbody)*Mbody* (L -
R)*Sin[qg[1l] - g[3]1]*ull1l1"2 +frac*(Klin - damp*u([3}))/Inertiabody}

Transition matrix for Bodied Creature

cond = i
{(Ilsta*u[l}] + (comleg - L)*(M + Mhip)*(comleg - R)*u[l] +
(comleg ~ L)*{(M + Mhip)*R*Cos[g[l]}*ull})/
(-(({comleg -~ L)*(M + Mhip)*(-L + R)*Cos[q[l] - g[2]]) +
(comleg - L)*(M + Mhip)*R*Cos[qg[2]]) -
((Ilswi + (comleg - L)"2*(M + Mhip))*

124



(-((Ilsta + (M + Mhip)*R*(R + (comleg - R)*Cos[g[l]]) +
(M + Mhip)*(comleg - R)*(comleg -~ R + R*Cos[q[l]]) -
(M + Mhip)*(-L + R)*
(L - R + R*Cos[g[1]] +
(comleg - L)*Cos([qg[l] - qgl2]]) +
(M + Mhip)*R*(R + (L - R)*Cos[qgfl]] +
(comleg - L)*Cos[q[2]]))*
(Ilsta*u[l] + (comleg - L)*(M + Mhip)*{(comleg - R)*
ull] + (comleg - L)*(M + Mhip)*R*Cos{qg[l]]1*ull])) \
+ (-((comleqg - L)*(M + Mhip)*(-L + R)*Cos[qll] - gl2]]) +
(comleg - L)*{M + Mhip)*R*Cos[qg[2]])*
(Ilsta*ufl] - (M + Mhip)*(-L + R)*
(R*Cos[q{1]] + (comleg - R)*Cos[q[l] - ql2]])*
ufl] + (M + Mhip)*(comleg - R)*
{comleg - L + R*Cos[qg[l]] +
(L - R)y*Cos[all]l - ql2]])*ull] +
(M + Mhip)*R*{R + (comleg - R)*Cos[g[2]])*u[l] +
(M + Mhip)*R*(R + (comleg - L)*Cos[g[l]] +
(L - R)*Cos{gl2]])*ull] + Ilswi*u(2] +
(comleg - L)*(M + Mhip)*(comleg - R + R*Cos[qg[2]])*ul2]))
Y/ ((-((comleg - L)*(M + Mhip)*(-L + R)*Cos[ql[l] - gql2]]) +
(comleg - L)* (M + Mhip)*R*Cos[qg[2]])~*
(=((Ilswi + (comleg - L)"2*(M + Mhip))*

(Ilsta + (M + Mhip)*R*(R + (comleg - R)*Cos(q[l]]) +
(M + Mhip) * (comleg - R)*(comleg - R + R*Cos[qg[l]]) -
(M + Mhip)*(-L + R)*
(L - R + R*Cos[qg[l1l]] +
(comleg - L)*Cos[qll] - gql2]]) +
(M + Mhip)*R*(R + (L - R)*Cos[q[1l]] +
(comleg - L)*Cos[q[Z]]))) +
-({(comleg ~- L)*(M + Mhaip)*(-L + R)*Cos[qgl[l]l - ql2]]1) +

(comleg ~ L)*(M + Mhip)*R*Cos[qg[2]])*
(Ilswi + (comleg - L)*(M + Mhip)*
(comleg - L + (L - R)*Cos[qll]l - gf2]] + R*Cos[ql2]])
))), (=((Ilsta + (M + Mhip)*R*(R + (comleg - R)*Cos[q[l]]) +
(M + Mhip)* (comleg - R)*(comleg - R + R*Cos[q[l]]) -
(M + Mhip)*(-L + R)*
(L - R + R*Cosfgl1l]] +
(comleg - L)*Cos[ql[l] - gl2]]) +
(M + Mhip)*R*(R + (L - R)*Cos[g[l]] +
(comleg - L)*Cos[qg[2]]))*
(Ilsta*u[l] + (comleg - L)*(M + Mhip)* (comleg - R)*uf{l] +
(comleg - L)* (M + Mhip)*R*Cos[qg[l]]*uf{ll)) +
(-((comleg - L)*(M + Mhip)*(-L + R)*Cos[q[l] - ql[2]]) +
(comleg — L)* (M + Mhip)*R*Cos[qg[2]])*
(Ilsta*uf{l]l - (M + Mhap)*(-L + R)*
(R*Cos[q[1l]] + (comleg - R)*Cos[qgfl] - g[2]])*ull] \
+ (M + Mhip) * (comleg - R)*(comleg - L + R*Cos[gf[l]] +
(L = R}*Cos[gll] - gf2]1)*ull] +
(M + Mhip)*R*(R + (comleg - R)*Cos[g[2]])*ull] +
(M + Mhip)*R*(R + (comleg - L)*Cos[g[l]] +
(L - R)*Cos[qgql2]1]1)*ull]l + Ilswi*ul[2] +
(comleg - L)*(M + Mhip)* (comleg - R + R*Cos[q[2]])*uf2]))/
(-((Ilswi + (comleg - L)"2* (M + Mhip))~*
(Ilsta + (M + Mhip)*R*(R + (comleg - R)*Cos{[q[l]]
(M + Mhip)* (comleg - R)*(comleg - R + R*Cos[q[1l
(M + Mhip)*(-L + R)*(L - R + R*Cos[q[1l]] +
(comleg - L)*Cos[qg[l] - gq[2]]) +
(M + Mhip)*R*(R + (L - R)*Cos[qg[1]] +
(comleg - L)*Cos[gl[2]]1))) +
(-({comleg - L)*(M + Mhip)*(-L + R)*Cos[q[l] - q[2]]) +

)+
1)

]
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(comleg - L)*(M 4+ Mhip)*R*Cos[qg[2]])*
(Ilswi + (comleg - L)* (M + Mhip)*
(comleg - L + (L - R)*Cos{g[l] - gl{2]] + R*Cos[qg[2]
- (((-((combody - lbody)*Mbody*(-L + R)*Cos[qll] - gl3]]) +
(combody - lbody)*Mbody*R*Cos[qg[3]])*
((Ilsta*ufl] + (comleg - L)*(M + Mhip)*(comleg - R)
u[l] + (comleg - L})*(M + Mhip)*R*Cos[g[l]]*ul
(-((comleg - L)*(M + Mhip)*(-L + R)*Cos{qll] - g
(comleg - L)*(M + Mhip)*R*Cos[qgl2]]) -
((Ilswi + (comleg - L)"2*(M + Mhip))*
(-((Ilsta + (M + Mhip)*R*(R + (comleg - R)*Cos[g[l]]) +
(M + Mhip) *(comleg - R)*
(comleg - R + R*Cos[q[l]]) -
(M + Mhap)*(-L + R)*
(L - R + R*Cos[g[1l]] +
(comleg - L)*Cos[qll] - ql2]]) +
(M + Mhip) *R*
(R + (L - R)*Cos[g[l]] +
(comleg - L)*Cos[q[2]]))}*
(Ilsta*ul] +
(comleg - L)* (M + Mhip)*(comleg - R)*u[l] +
(comleg - L)*(M + Mhip)*R*Cos[g[1l]]*ufl])) +
(-({comleg - L)*(M + Mhip)*(-L + R)*
Cos[qll] - ql[2]]) +
(comleg ~ L)* (M + Mhip)*R*Cos[g[2]])*
(Ilsta*ull] - s
(M + Mhip)*(-L + R)*
(R*Cos{g[1l]] +
(comleg - R)*Cos[g[1l] - gl21])*ull] +
(M + Mhip)* (comleg - R)*
(comleg - L + R*Cos[qg[l]] +
(L = R}*Cos[gll] - g[2]])*u(l] +
(M + Mhap)*R* (R + (comleg - R)*Cos[qg[2]])*ull] +
(M + Mhip) *R*
(R + (comleg - L)*Cos[g[l]] +
(L - R)*Cos[qgl2]11)*ull]l + Ilswi*ul[2] +
(comleg - L)*(M + Mhip)* (comleg - R + R*Cos[g[2]])*
uf{2])))/
({(-((comleg - L)*(M + Mhip)*(-L + R)*
Coslqll] - qgl2]]) +
(comleg - L)*(M + Mhip)*R*Cos{q[2]])*
(-=((Ilswi + (comleg - L)"2*(M + Mhaip))*
(Ilsta + (M + Mhip)*R*(R + (comleg - R)*Cos[q{1]])

1),

*
11)/
(211) +

(M + Mhip)* (comleg - R)*
(comleg - R + R*Cos[q[l]]) -
(M + Mhip)*(-L + R)*
(L - R + R*Cos[qg[1l]] +
(comleg - L)*Cos[q[l] - gq[2]]) +
(M + Mhip) *R*
(R + (L - R)*Cos[q[l]] +
(comleg - L)*Cos[qg[2]1))) +
(-{{comleg - L)*(M + Mhip)*{(-L + R)*
Cos[ql[l] - gl2]1) +
(comleg - L)*(M + Mhip)*R*Cos[qg[2]])*
(Ilswi + (comleg - L)* (M + Mhip)*
(comleg - L + (L - R)*Cos{ql[l] - g[2]] +
R*Cos{ql2]11))))))/
(Inertiabody + (combody - lbody)* (-combody + lbody) *Mbody) ) +
(= ({combedy - lbody) *Mbody* (-L + R)*Cos[qgll] = g[3]1]1*ull]) +
(combody - 1lbody) *Mbody*R*Cos[q[3]]*u[l] +
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Inertiabody*u[3] + (combody - lbody)*{(-combody + lbody)*Mbody*
ul[3])/(Inertiabody + (combody - lbody)* (-combody +
1lbody) *Mbody) }
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Appendix F:

Parameters, constants and initial values used with the Bodied Creature.

The following 1s a list of the parameters involved 1n the creatures' description and

movement Any parameters that were treated as constants have their values shown

Symbol Description Value
q; Stance leg angle

q; Swmg leg angle

q; Body angle

u; Speed at which stance angle 1s changing

Uy Speed at which swing angle 1s changing

U3 Speed at which body angle 1s changing

y Slope angle of ground

L Length of leg 1

R Radus of foot 03

Cl Distance from foot to centre of mass of leg 0645
Ibody Length of the body

combody Distance from end of body to centre of mass

g Gravity 1

M Mass of leg 04
Mhip Mass of hip

Mbody - Mass of body

Ffric Coefficient of friction

Khip Coctficient of damping

Khn Torque applied to body

tol Numerical tolerance of the mtegrator 0 00001
Frac Torque constant

Iswi1 Inertia of swing leg 0121 * (M + Mhip)
Ilsta Inertia of stance leg 0121*M
Inertiabody Inertia of body

W leg ax1s -> mass centre offset
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Appendix G.

Body-less creature results

G.1 Limit Cycles

The first 1ssue was the discovery of limit cycles Here 1s a selection of those that were
discovered and are for various values of mhip, on divers y values Finally note that the
phase plane diagram 1s for one leg only

u;
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o o 0 3 S * .
L 4 L *
L4 *
* [ ¢
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* F *
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e 0 1f .
4 L *
* o [ 4
Py r »
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Fig G.1: y= 0025, mhip =0 2
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-0 1§
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-0 2p
4
/ -0 3
/ -0 3p \\
’
_ . , LN
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A

Fig G.2: y= 0025, mhip = 0 08
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G.2 Basin of Attraction

The 1nitial values for the state vector are
0, =1q9,,9,,u,,u,} ={03015,—03015,—0 3763,—0 2822} The basin of attraction

indicates how much each of the four values can be altered by individually and still
give a fixed point solution These possible mutations are as follows

mhip = 0.4

Original Maximum | Minimum | Average Percentage
difference

03015 032 028 +002 =6 6%

-03763 -04 -0 36 + 0015 ~39%

-0 2822 -0 45 0 +022 = 77%

Fmally note that for a mhip value of 1 2 then the ¢; and g, angles can be altered from
027 to 0 32 radians
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G.3 Results for mhip = 0.0

G.3.1 Max and Min slope

This set of results deals with the minimum and maximum slope attainable by the
body-less, hipmass-less walker. Note that the initial state guess is taken to be
{0.3015, -0.3015, -0.3763, -0.2822} and the slope range is from 0.0005 to 0.043
radians, which corresponds to previous published results, and the various values are:

Note: Maximum values are given in bold and min in italics

Slope JIL 2 u, uz

0.0005 0.075262 -0.075262 -0.10977 -0.108068
0.005 0.170507 -0.170507 -0.237502 -0.218184
0.010 0.21709 -0.21709 -0.292437 -0.25407
0.020 0.278032 -0.278032 -0.355112 -0.279307
0.025 0.301571 -0.301571 -0.376368 -0.282189
0.030 0.322498 -0.322498 -0.393858 -0.281540
0.040 0.359002 -0.359002 -0.421196 -0.273343
0.043 0.368913 -0.368913 -0.427929 -0.269614

G.3.2 Eigenvalues

Slope speed totter swing swing
0.0005 0.957501 -0.520021  -0.092922 =*9
0.005 0.79926 -0.484081  -0.105031 «0
0.010 0.687616 -0.443237 -0.123194 «0
0.020 0.526698 -0.397183  -0.156886 « 0
0.025 0.462247 -0.398299  -0.167495 ~*
0.030 -0.419282  0.405872 -0.17061 «0
0.040 -0.517468 0.314626 -0.158651 ~0
0.043 -0.559012  0.292647 -0.15272 *0

G.3.3 Step Length, Period and Velocities

Slope Step Length Step Period Velocity =
Length
Period

0.0005 0.299912 2.7699070 0.10827511

0.005 0.668821 2.790077 0.23971417

0.010 0.841333 2.8014572 0.30031977
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0020 1 055694 2 8235438 037388971
0025 1 134231 2 8349733 0 40008524
0030 1 202390 2 8468138 042236341
0 040 1 315765 28717991 045816749
0.043 1 345361 2 8796142 046720182
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G.4 Results for mhip = 0.2

G.4.1 Max and Min slope

Slope q; q:2 uj; U

0 0005 00753826 -0 0753826 0111317 -0091232
0005 0171816 0171816 -0 242286 -0 180288
0025 0305022 -0 305022 -0 384336 -0210171
004 0363234 -0 363234 -0 4292 -0 183763
0.048 0 389026 -0 389026 -0445726 -0 164839
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G.5 Results for mhip = 0.4

G.5.1 Max and Min slope

Slope q1 q: uj uz
0 0005 00752312 -0 0752312 -0 112021 -0 0825862
0 005 0 173445 -0 173445 -0 24629 -016124
0025 0 308686 -0 308686 -0 38977 -0 170418
004 0367128 -0 367128 -0 433815 -0 133593
0.052 0404767 -0 404767 -0 456631 -0 0980575
G.5.2 Eigenvalues
Slope speed totter swing swing
0 0005 0975364 | 0280297 | 0280297 |=~
0 005 0 8671 0273757 | 0273757 |=
0025 0537091 | 0285454 |0285454 | =~
004 0352319 |0311417 [0311417 | =
0.052 0327514 | 0327514 [0265992 | =~
G.5.3 Step Length, Period and Velocities
Slope Step Length Step Period Velocity =
Length
Period
0 0005 02997906 2 5031640 0 119764665
0 005 06799490 2 5270688 0269066279
0 025 1 1577885 2 6079568 0 443944661
0 04 1 3400700 2 6719546 0 501531725
0.052 1 4479315 27221394 0 531909387
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G.6 Results for mhip = 0.8

G.6.1 Max and Min slope

Slope qi 92 uj uz
0 0005 0 0773091 -0 0773091 -0116113 -0 075824
0 005 0177204 -0 177204 -0 253079 -0 141855
0 025 0314512 -0 314512 -0 396331 -0 125782
004 0372531 -0 372531 -0 438615 -0 077983
0.056 0429037 -0 429037 -0 466206 -0 021889
G.6.2 Eigenvalues
Slope speed totter swing swing
0 0005 0981897 | 0296308 | 0296308 |=~
0 005 0891872 [ 0283191 |0283191 |=~
0025 053887 0287592 | 0287592 |=
004 0353086 | 0309621 | 0309621 |=
0.056 -0 542341 [ 0251882 |-0191078 |~
G.6.3 Step Length, Period and Velocities
Slope Step Length Step Period Velocity =
Length
Period
0 0005 0 3080057 2 4144430 0127568014
0 005 0 6940704 2 4470927 0283630611
0 025 11767116 2 5589101 0459848745
004 1 3560347 2 6334398 0 514929067
0.056 15131691 2 7781639 0 544665165
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G.7 Results for mhip =1.2

G.7.1 Max and Min slope

Slope q1 92 uj uz
0 0005 N/A N/A N/A N/A
0 004 0 167281 -0 167281 -0 241439 -0 127301
0 005 0 180855 -0 180855 -0 25859 -0 131708
0 025 031832 -0 31832 -0 399955 -0 100985
0 04 037577 -0 37577 -0 440996 -0 0478034
0.058 0 429081 -0 429081 -0 470442 00197021
G.7.2 Eigenvalues
Slope speed totter swing swing
0 0005 N/A N/A N/A N/A
0004 0918128 | 0288104 | 0288104 |~
0 005 0900238 | 0285847 | 0285847 |~
0025 0531771 | 0287683 | 0287683 |~
004 0351469 | 0306511 |0306511 |~
0058 -0742184 | 0246388 |-0133312 |~
G.7.3 Step Length, Period and Velocities
Slope Step Length Step Period Velocity =
Length
Period
0 0005 N/A N/A N/A
0 005 07077482 2 4133982 0293257946
0025 1 1889940 2 5416899 0467796641
0 04 1 3655295 2 6201817 0521158322
0.058 1 5132842 2 7055385 0 559328281
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G.8 Results for mhip = 1.6

G.8.1 Max and Min slope

Slope qi q:2 Ui uz

0 0005 N/A N/A N/A N/A

0 004 0170311 -0 170311 -0 245814 -0 121734
0025 032087 -0 32087 -0 402197 -0 0851974
004 0377863 -0 377863 -0 442398 -0 0288882
0.058 0 430805 -0 430805 -0471316 00411057
G.8.2 Eigenvalues

Slope speed totter swing swing

0 0005 N/A N/A N/A N/A

0 004 0921018 | 0289166 | 0289166 |=0

0025 0525414 | 0287315 |0287315 |=~

004 0350121 | 0303839 |0303839 |=~0

0058 -0 818211 | 0248165 |-0116589 |~0
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G.9 Effect of varying the legs centre of mass position

All results are based on y = 0 025 radians

mhip = 0.0

comleg ! q; I q2 | u; | 7P
Crashes before this value for comleg

0.56 0277749 -0277749 -0 391155 -0 307288
eigenvalues -0 798382 053773 -0 0948024 ~0

0 645 0301571 -0 301571 -0 376368 -0 282189
eigenvalues 0462247 -0 398299 -0 167495 =0

0.067 0308731 -0 308731 -0 372087 -0276276
eigenvalues 0424337 -0 314878 -0 195367 ~0

Only unstable solutions exist after this value

mhip = 0.4

comleg | q; | q | up | u
Crashes before this value for comleg

0.59 0 292008 -0 292008 -0 397874 -0 200875
eigenvalues 0601379 0300718 0300718 =0

0 645 0308686 -0 308686 -0 38977 -0 170418
eigenvalues 0537091 0285454 0285454 ~0

0.70 0325127 -0 325127 -0 381431 -0 143181
eigenvalues 0449546 0263785 0263785 ~0

Only unstable solutions exist after this value

mhip = 0.8

comleg | 41 | 42 | u, | u,
Crashes before this value for comleg

0.06 0300216 -0 300216 -0 402682 -0 155974
eigenvalues 0604919 0271268 0271268 ~0

0 645 0314512 -0 314512 -0 396331 -0 125782
eigenvalues 0353086 0309621 0309621 ~0

0.069 0328305 -0 328305 -0 389756 -0 098244
eigenvalues 0459957 0 300466 0300466 =0

Only unstable solutions exist after this value
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G.10 Effects of varying R

If R 1s at zero then the creature 1s similar to a point-footed model and the creature
needs a rather steep slope At R =1 we have a synthetic wheel rolling on a level
ground 1 e slope1s 0 Results gathered for various values of R are now given

Note that where necessary the y value changes (1 e at large and small R values) and
this 1s also highlighted

mhip is 0.4 and initially = 0.025

R q: q2 uj uz

01 0269148 | -0269148 | -0353544 | -0129867

y=0035
0366008 | 0366008 |0267224 |=0

02 0270485 |-0270485 |-0356631 | -0 15801
0440723 | 0311663 | 0311663 | =0

03 0301571 |-0301571 |-0376368 |-0282189
0537091 | 0285454 | 0285454 | =0

04 0359682 | -0359682 | -0431959 | -0184419
0634328 | 0261995 |0261995 |=0

06 0375468 | -0375468 | -0427439 |-0238985
0867302 | 0242081 |0242081 |=~0

07 021022 -021022 | -0242615 |-017222

¥ =0001
0971823 | -0492455 | -0140326 | ~0

mhip is 0.8 and initially = 0.025

R qi q: u; uz

02 0274961 |-0274961 |-0361261 |-0115642
0439079 | 0313502 | 0313502 |=0

03 0314512 |-0314512 | -0396331 | -0125782
0 53887 0287592 | 0287592 | =0

04 0366941 |-0366941 |-0441002 | -0 13739
0649096 | 0263418 | 0263418 |=~0

06 0162229 |-0162229 |-0204301 |-012943

y=0001
0969924 | 0288947 | 0288947 |~0
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G.11 Effect of adding in a damper

Note that damper doesn’t work on a creature with no hip mass - a slight damper

coefficient tended to destroy the limit cycle and thus give no solution

A Quadratic damper 1s admimistered with applied torque of Ffric (u, —u,)?

mhip = 0.4

Ffric |y q1 q:2 uj u;

-0 001 ;| 0053 | 0406592 -0 406592 -0 458499 -0 0974121
0 328889 0328889 0261396 ~0

-0 005 | 0 054 | 0404075 -0 404075 -0 461585 -0 106188
0337496 0337496 0254777 ~(

-0 005 | 0055 | 040702 -0 40702 -0 463183 -0 103013
0339252 0330252 0 248098 ~0

-0 008 | 0056 | 0403 -0 403 -0 466745 -0 11422
0407078 -0 407078 0 184229 ~ 0

-0 008 | 0.06 0415236 -0 415236 -0 472814 -0 100185
0399425 0399425 0 17696 ~0

mhip = 0.8

Ffric |y q1 q: uj u;

-0 008 | 0058 | 0420472 -0 420472 -0 471493 -0 0302886

] 0334499 0334499 0235099 =0
B 0062 0431414 -0 431414 -0476747 -0 0156495

0336215 0336215 0217427 ~0

-0012 | 0.065 | 0435402 -0 435402 -0 482552 -0 0148927
0364051 0364051 0 183449 ~ 0

mhip =1.2

Ffric |y q1 q: uj u;

-0015 10062 | 0431466 -0 431466 -0 479804 0011745
0341678 0341678 0207332 ~0

-0015 10064 | 0436833 -0 436833 -0 482208 00196097
0341111 0341111 0200562 ~0

-002 |0.068 | 0443128 -0 443128 -0 489323 00241565
0386533 -0 386533 0 152497 ~ 0
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Appendix H:

Bodied creature results

H.1

UNSTABLE RESULTS

Initially unstable solutions were encountered, but these were not desirable As they
were undesirable solutions, only one example 1s included here The parameters for

this solution are as follows

Limit Cycles - Unstable creature

mbody = 0 8, mhip =1, combody =0 7, Ibody =0 8 and = (0 003, 0 02, 0 003)

slope q1 92 q3 u u; Us
00007 | 00617144 | -00617144 | 0 0027611 | -0 0830726 -0 0560537 | -0 00154928
0001 00716057 | -00716057 | 0 0037038 | -0 0968041 -0 0653969 | -0 00203824
001 0221512 -0 221512 | -0 0067466 | -0 266008 -0 124314 | 00107297
003 0301618 -0301618 | 00087996 | -0375297 -0 149613 | 000982882
004 033431 -0 33431 00090379 | -0 409796 -0 137195 | 00148455
0 45 0348545 -0 348545 | 00092159 | -0424534 -0129626 | 00172924
Etgen- /11 ﬂz ﬂ3 ﬂq /15 16
values
00007 | 464345 171251 0 662563 0169514 -0 00007 0
0001 45159 123109 086754 00904947 -0 000078 | =0
001 581933 0435251 0435251 0342155 -0 00008 ~0
003 390528 315237 0520259 00643784 -0 00007 =0
004 394581 34856 0484671 00560412 -0 00007 =~
045 412756 349796 0470406 00525742 -0 00007 =0

up
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H.2 Body-less vs. Bodied

As a means of testing the code wntten for the bodied creature, a comparison was
made between a bodied creature with minute parameters and a body-less one Both
creatures have mhip = 04 and are on y =0025radians The parameters for the

bodied creature are all approximately 0

This the limit cycle for the body-less creature
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H.3 Basin of Attraction

Initial values are

0, =149:,9,,95,u,,u,,u;} ={03015,-03015,0,— 0 3763,-0 2822,0} There 1s no
vanation between no hip mass and one of 0 4 Now for each variable the max and min

value are

mhip = 1.5, mbody = 1.0

Original Maximum | Minimum | Average Percentage
difference

03015 036 029 + 0035 ~86%

0

-0 3763 -0 39 -033 +0 03 ~125%

-0 2822 -05 01 +03 =~ 94 %

0

mhip = 0.8, mbody = 0.4

Original Maximum | Minimum | Average Percentage
difference

03015 034 028 +003 ~ 10 %

0

-0 3763 -04 -0 34 003 ~125%

-0 2822 -05 01 +03 = 94%

0
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H.4 Results for bodied creature - stable

H.4.1 mbody =1.0, mhip =1.5

Ibody = 0.8, combody = 0.795, damp = 0.55, Frac=35
7 states = {small = 0 00008, / arge = 0 0009} .

q1 q2 q3 u u; u;
0 0005 00732531 -0 0732531 | 0 080648 -0 105581 -0 0691833 | 0 0004858
0001 0 0939995 -0 093995 0 0802105 -0 133665 -0 0841465 | 00001813
0 005 0162181 -0 162181 0 07952 -0 222382 -0 120715 00006229
001 02058 -0 2058 0 0784453 -0272871 -0126115 000126436
0025 0283795 -0 283795 00762199 ] -0 348054 -0 0943815 | 000313797
003 0302953 -0 302953 00759478 -0 363439 -0 0784396 | 000373738
004 033631 -033631 00761449 | -0 387401 -0 0434981 | 000489863
0043 0345367 -0 345367 00763266 | -0393305 -0 032517 00052378
Eigenvalue | }, A As Ay As As
0 0005 1 00399 0934877 0 709489 0276596 -0 00001 =20)
0001 1 00406 0870775 0 643534 0279627 -0 00001 ~(
0005 1 00406 0756813 0756813 0225386 -0 00001 =0
001 1 00407 0 740568 0 740568 0200875 -0 00001 =0
0025 100411 0 690446 0 690446 0159779 -0 00001 =0
003 100413 067654 067654 0 14968 -0 00001 =41
004 1 00416 0651676 0651676 013227 -0 00001 =0
0043 1 00417 0644786 0644786 0 127619 -0 00001 0
slope step period length Velocity
0 0005 2 2650957353 029196531 0 1288975
0001 2 2911910094 037378705 01631409
0 005 23117506184 0 63740823 02757253
001 2 3353536755 0 80015242 03426257
0025 2 4007477684 1 07520300 04478617
003 24211080232 1 13901405 04704515
004 24604336279 1 24607493 0 5064452
0043 24719707128 127420621 05154616
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0.07626

0.07632

0.07634
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H.4.2 mbody = 0.8, mhip =1.0

damp = 0.39, Frac= §, Ibody = 0.8, combody = 0.795.
T states = {small =0 00005, / arge = 0 0005}

q1 92 q3 U u; Uz
0 0005 0 0739573 -0 0739573 | 00629932 -0 10524 -0 0721221 | 0 0004
0001 00940243 -0 0940243 | 0062665 -0 132227 -0 087613 0 0001667
001 0 205645 -0 205645 00614322 -0 270616 -0 136102 000118242
0025 028356 -0 28356 0 0597739 -0 346021 -0 110307 000297124
004 0336056 -0 336056 0 0599388 -0 385662 -0 0634686 | 000467344
Exgenvalue | A, Az Az Ay As As
0 0005 1 00459 0891317 0713645 0275695 -0 00001 =0
0001 1 00465 0830715 0 668302 0273414 -0 00001 =0
001 1 00468 0712002 0712002 0151918 -0 00001 =14
0025 100472 0673993 0673993 0126536 -0 00001 =0
004 1 00464 0 756596 075696 0191054 -0 00001 ~0
slope step period length Velocity
0 0005 2 3057505310 029475165 0 127833278
0001 2 327261659 0 37388455 0 160654263
001 2 3622067996 079958416 0338490331
0025 2 4215065021 1 07441027 0443694979
004 2 4780760816 1 24528006 0502518898
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H.4.3 mbody = 0.4, mhip =1.0

damp = 0.39, Frac= 5, Ibody = 0.8, combody = 0.795.
T states = {small = 0 00005, large = 0 0003}

q: 9?2 qs3 u; u; Uz
0 0008 00873017 | -00873017 | 00500665 -0 130485 -0 0872932 | 0 00025708
0005 0163876 -0 163876 00490164 | -0235228 -0 136209 0 00062824
001 0208629 -0 208629 0 0474583 -0 28909 -0 144412 000128692
0 025 0 288673 -0 288673 00436584 | -0368168 -0 11355 000326011
004 0 342181 -0 342181 00423192 -0 408314 -0 0609854 [ 000511136
0045 0357288 -0357288 00424135 -0 417904 -0 0419738 | 0 0056998
006 0397601 -0 397601 00441499 | -0 440095 00166736 | 000738824
Eigenvalue | 2, A A3 Ay As As
0 0008 1 00295 0966749 0403191 0403191 -0 00001 =0
0 005 1 00295 0 799045 0399281 0399281 -0 000001 =0
001 100295 0566881 0440263 0 440263 -0 00001 =0
0025 1 00298 0560751 0560751 0242892 -0 00001 =0
004 1 00301 0 553457 0553457 0 184287 -0 00001 =0
0045 1 00302 0548016 0548016 0171176 -0 00001 =0
006 1 00306 0528229 0528229 0 140815 -0 00001 0
slape step period length Velocity
0 0005 2261732610 03474351627 015361460553
0 005 2 279620999 06438310164 0 28242897248
001 2301328022 0 8105104668 035219249887
0025 2 367861499 1 0916040749 046100841428
004 2 430688604 1 2643576068 052016436984
0 045 2 450916405 1 3105943964 0 53473647396
006 2 509863499 1 4280100957 0 56895926664

Uy

b
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H44

mbody = 0 4, mhip =08

damp =, Frac= S5, Ibody = 0.1 com = 0.095
t states = {small = 0 00002, / arge = 0 0002}

qi q2 qs3 u; u; us
0 0006 00778613 -00778613 1 00502617 -0 115391 -0 0806356 | 00003386
0001 00942551 -0 0942551 | 0050072 -0 13863 -00947573 | 00001783
001 0207839 -0 207839 00482123 -0 285069 -0 149873 00012138
0025 0287522 -0 287522 0 0452662 -0 363961 -0 123864 0 0030943
004 0340931 -0 340931 0 0443998 -0 404379 -0 0747838 | 00048811
0 055 0383591 -0 383591 0 0456764 -0 429943 -0 0194907 | 0 0065592
Eigenvalue | ), A A3 Ay As Ag
0 0006 1 00404 0980972 0409205 0409205 -0 0001 ~0
0001 1 00407 0941525 0399171 0399171 -0 0001 ~(
001 1 00406 053232 053232 0385078 -0 0001 ~0
0025 1 00408 0594693 0594693 0217646 -0 0001 =0
004 1 00413 0581812 0 581812 0 169606 -0 0001 0
0055 100417 0561825 0561825 0 139369 -0 0001 =0
slope step period length Velocity
0 0006 2 284634911 03101879921 01357713617
0001 2 293852043 03747913920 0 1633895233
001 2325821714 0 8076205730 0 3472409635
0025 2 386921268 1 0877434292 0 4557098065
004 2 446703529 1 2604795471 05517461439
0055 2504432417 1 3882188099 0 5543047600
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H.4.5 mbody = 0.2, mhip = 0.8

damp = 0.22, Frac= 5, Ibody =0.1 combody = 0.095.
7 states = {small =0 00001, /arge = 0 0001}

q: 4q: q3 Uy u uz
0 0007 00821395 | -00821395 | 00501706 | -0 126733 -0 0880368 | 0 0007518
0001 00941341 -0 0941341 | 00500382 | -0 14446 -0 0988131 | 0 00034861
001 0209401 -0 209401 00474405 | -0 298216 -0 156367 000129217
0025 0290784 -0 290784 00430628 | -0 379984 -0 126879 00033278
004 0 345019 -0 345019 00411814 | -0420769 -0 0735953 | 00052468
006 0 400898 -0 400898 0 042569 -0 452363 000528144 | 00075980
007 0 424867 -0 424867 0 0446988 | -0 463066 00453224 | 00086966
Eigenvalue | A, A A3 A4 As As
0 0007 1 00199 0984819 039847 039847 -0 0001 =0
0001 1002 0967022 039338 039338 -0 0001 =
001 1 002 0724261 0389101 0389101 -0 00009 =0
0 025 100202 0 465806 0465806 035324 -0 0001 =
004 1 00204 0492255 0492255 023423 -0 0001 =
006 1 00207 0482722 0482722 0170188 -0 0001 =
007 1 00209 0471818 0471818 0 150138 -0 0001 0
slope step period length Velocity
0 0007 2 242348709 03270821614 0 145865877
0001 2247302146 0 3743159553 0 166562362
001 2 281866721 0 8133325603 0356432982
0025 2 348415539 1 0986696719 0467834441
004 2 412943795 12731329782 0527626453
006 2 494759878 14372124370 0 576092492
007 2 534482328 1 5022096460 0 592708668
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H4 6 mbody =0.2, mhip=0.4

damp = 0.22, Frac= S5, lbody = 0.1 combody = 0.095
7 states = {small =0 00001, /arge = 0 0001}

q1 qz qs3 u; u usz
0 0006 00774912 -00774912 | 0 0502639 -0 116283 -0 0894548 | 0 00109891
0001 0 0940019 -0 0940019 | 00501563 -0 140062 -0 105833 0 00034438
001 0207599 -0 207599 0 0493676 -0 289011 -0 176563 000114208
0025 0287975 -0 287975 00475515 -0 370686 -0 162563 0 00296023
004 0 342044 -0 342044 00471085 -0 412598 -0 120271 000474351
006 0 298029 -0 298029 0 0494079 -0 445566 -0 0518869 | 000699127
Eigenvalue | ), A, A Ay As Ag
0 0007 1 00206 0988903 03919 039847 -0 00010 =0
0001 1 00209 0944972 0380886 0 380886 -0 0001 =0
001 1 00207 0631141 0407733 0407733 -0 0001 =0
0025 1 00207 0532047 0532047 0272277 -0 0001 =0
004 1 00209 0550366 0550366 0194262 -0 0001 =0
006 100211 0539927 0539927 0 14573 -0 0001 =0
slope step period length Velocity
0 0006 0 3087254205
0001 2 3370165 03737964862 0 15994601
001 2 3570127 08067422310 034227317
0 025 2 4056726 1 0892635556 045278960
004 2 4598844 1 2639329566 051381803
006 2 5328199 14292082130 056427549
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H.5. Varying Centre of mass
This section outlines the effect of varying combody on the solution process Once
again 1t 1s broken up into two sections stable and unstable, where unstable solutions

allow much varniation and stable ones do not

Unstable

Paramters: mbody = 0.8, mhip =1

combody =0.7, Ibody =0.8 and t states {small = 0.003, large = 0.02} on = 0.025
combody qi q2 g3 u; u; us
055 0275166 -0 275166 0 00546444 | -0 342053 -0 161562 001681355
A's 13 7286 427536 0536872 00745697 -0 00008 =0
06 0278483 -0 278483 00067958 -0 346876 -0 15866 00132771
A's 9 54331 369205 0536617 00720775 -0 00008 =0
07 0282361 -0 282361 0 00871669 | -0 35448 -0 153748 000727246
A's 3 96888 2 90849 0 542962 00695022 -0 00007 =0
0795 0 283357 -0 283357 00104471 -0 359796 -0 150245 0 0004434
A'S 245145 110343 0551493 00678219 =0 =0
0797 028335 -0 28335 0 0104869 -0 359887 -0 150184 0 0002674
A's 2 44335 10616 055168 0 0677896 =0 =0
Stable
Parameters: mbody = 0.2, mhip = 0.4
damp = 0.22, Frac= 5, lbody = 0.1 com = 0.095
T states {small = 0.00001, large = 0.0001} , on = 0.025
combody q: 9z q; u; U us;
009 0 288068 -0 288068 0 0215296 -0 370461 -0 162407 0 0058998
A's 100416 0531239 0531239 0273064 -0 00009 =0
0093 0288013 -0 288013 0 0326807 -0 370597 -0 1625 0 00413606
A's 1 00291 0531716 0531716 0272591 -0 0001 =0
0095 0287975 -0 287975 00475515 -0 370686 -0 162563 000296023
A's 1 00207 0532047 0532047 0272277 -0 0001 =0
0097 0287935 -0 287935 0 0822982 -0 370774 -0 162627 00017831
A's 100124 0532353 0532353 0271964 -0 0001 =0
0099 0287893 -0 287893 025852 -0 370862 -0 162693 0 0005
A's 1 0004 0532674 0532674 0271642 -0 0001 =0
Parameters: mhip = 1.5, mbody = 1.0
Ibody = 0.8, combody = 0.795, damp = 0.55, Frac= 5.
T states {small = 0.00008, large = 0.0009}, on = 0.025

hco'”b"dy q: 9> 93 U u %]
0797 0283719 -0 283719 0131882 -0 348172 -0 094408 00018901
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A's 1 00245 0691179 0691179 0 159356 -0 00001 =0

0795 0283795 -0 283795 00762199 | -0348054 -0 0943815 | 000313797
A's 100411 0 690446 0 690446 0159779 -0 00001 =0

0793 0 283867 -0 283867 00524644 | -0347933 -0 094357 0 00438008
A's 100577 0689713 0689713 0160203 -0 00001 =0

079 0283969 -0 283969 0 0346825 -0 347749 -00943236 | 000623843
A'S 100827 0 688606 0 688606 0160844 =0 =0

075 0284636 -0 284636 000147668 | -0 344857 -0 0942744 | 00309918
A's 104285 0676311 0676311 0 170046 =0 =0

158




H 6.

Effect of varying mbody

mhip = 1.5, mbody = 1.0,
Ibody = 0.8, combody = 0.795, damp = 0.55, Frac=5
7 states = {small = 0 00008, [ arge = 0 0009}.

mbody 4 9 qs uy u; u;

04 029134 -029134 0198439 -0 375901 -0 095529 -0 00005
A's 1 00264 0 513655 0513655 0277827 0 00009 =0

07 0287131 -0 287131 0110182 -0 360442 -0 0950866 | 000334149
A's 100284 0610819 0610819 0202481 -0 00001 =0

10 0283795 -0 283795 00762199 | -0 348054 -0 0943815 | 000313797
A's 100411 0 690446 0 690446 0159779 -0 00001 =0

12 0281921 -0 281921 0 0633571 -0 341073 -0 0938582 [ 00030274
A's 1 00496 0731726 0731726 0142845 -0 00001 =0
unstable then until 1 6 when no solutions begin to exist

mhip = 1.0, mbody = 0.4,

damp = 0.39, Frac= 5, Ibody = 0.8, combody = 0.795.

7 states = {small = 0 00005, / arge = 0 0003}

mbody q1 92 93 Uy uz us

03 0290297 -0 290297 00600032 [ -0375222 -0 114438 000337426
A's 1 00222 0504217 0504217 0299433 -0 00001 =0

06 0285882 -0 285882 00280669 [ -0356052 -0 111855 000307297
A's 100451 0647992 0 647992 0 182785 -0 00001 =0

08 0286776 -0 286776 00312723 [ -0360719 -0 158734 000284804
A's 1 00605 0711942 0711942 0151935 -0 00001 =0

No solutions begin to exist after this

mhip = 0.4, mbody = 0.2,

damp = 0.22, Frac= 5, Ibody = 0.1 com = 0.095

T states {small = 0.00001, large = 0.0001} , on = 0.025

mbody I qi I 92 | 93 I L] ) U;

No solutions exist for mbody lower than 0 2

03 0286776 -0 286776 00312723 | 0360719 -0 158734 0 00284804
A's 100314 0615799 0615799 0202611 -0 0001 =0

035 028622 -0 28622 00267937 | -0356316 -0 157047 000279888
A's 1 00368 0 64938 0 64938 0181939 -0 0001 =0
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H 7

Hip Damper

A Quadratic damper is used with applied torque of Ffric (u2 - w;)2

H.7.1 mbody = 0.4, mhip = 1.0

Same parameters as H.4.3.

This table gives the effect of various Ffric values on slope

values that gave the best results are shown.

Ffric <

-0.008 0.403418
02 0.407565
-0.018 0.408641
Eigenvalues

Ffric A,

-0.008 1.00274
002 1.00291
-0.018 1.00297
Ffric step period
-0.008 245625196
002 241267131
-0.018 2.28896185

92
-0.403418

-0.407565

-0.408641

0.756131

0.611246

0.568417

length

0.0543739
0.0495499

0.047823

Aj
0.756131

0.611246

0.568417

1.458577708
1.455629510
1.444203959

Maximum slopes attainable

Ffric il
002 0.419505
y = 0.07

-0.018 0.423758
y = 0.073

Ffric Ai
002 1.00292
y =0.07

-0.018 1.0028
y=0.073

92
-0.419505

-0.423758

A2
0.5942

0.682079

9s
0.0503852

0.0541803

Aj
0.5942

0.682079

«/
-0.469985

-0.457063

-0.452929

a4
0.0786171

0.103464

0.115422

Velocity

0.593821729
0.603326903
0.630942782

M
-0.462592

-0.475091

0.0994319

0.0782041

@

-0.0137412
0.0122486

0.0218136

@

0.0329884

0.0261558

‘b
Quol

= 0.065 where the Ffric

W
0.00634116
0.0071346

0.00744112

«j

0.00768644

0.00741166
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H.7 2 mbody = 0.8, mhip=1.0

Same parameters as H.4.2.

This table gives the effect of varnious Ffric values on slope = 0.045 where the Ffric
values that gave the best results are shown

Ffric 9 UH q3 uy Uz u;

-0 008 0351355 -0 351355 00631716 | -0 403639 -0 0590579 | 000480934
-0012 0351146 -0 351146 00653776 | -0 409957 -0 0691161 | 000449811
Eigenvalues

Ffric A A A3 A4 As As

-0 008 1 00458 0 724368 0724368 0 104909 -0 00001 =0

-0012 1 00446 0785412 0785412 00946992 | -0 00001 =0

Ffric step period length Velocity

-0 008 2 4225913267 1 2925760828 05335510238

-0 012 2 3663344714 1 2919380237 0 5459659398

.

Maximum slopes attainable

Ffric ql q2 q3 ul ul u3
-0 008 0357066 -0 357066 00633256 | -0 407093 -0 0518172 | 00050292
v =0 047
-0012 0367983 -0 367983 00655578 | 0419202 -0 0459992 | 000518607
y=0051
Ffric A Az As Ay As Ag
-0 008 1 00459 0 716684 0 716684 0103059 -0 00001 =0

=0 047
-0012 1 0045 0750494 0 750494 0091013 -0 00001 =0
y=0051
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This diagram shows the Limit Cycles ony =0 045
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H.7.3 mbody = 0.4, mhip=038

Same parameters as H.4.4.

This table gives the effect of various Ffric values on slope/l)\= 0.06 where the Ffric
values that gave the best results are shown

Ffric qi q> qs U u, Us
-0 003 0373504 -0 373504 00733276 -0 487863 -0 118508 0003575
344766 1 00326 0491696 0 0655008 -0 00001 =0
-0 008 0 395018 -0 395018 00499126 -0 445407 -0 0180766 | 0 0065185
1 00402 0621116 0621116 0110058 -0 00001 =0
M =0.062
Ffric q1 q> q3 Uy u, u;z
-0 008 0400022 -0 400022 00501982 -0 447795 -0 0102048 | 0 0067368
1 00402 0615099 0615099 0108142 -0 00001 =0
/V“ = (0.065
Ffine q 9 q3 u; u; uz
-0 012 0405943 -0 405943 00529754 -0457614 -0 0108365 | 000666508
1 00392 0667797 0667797 00917404 -0 00001 =0
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H.8 Applied Torque

mbody =1, mhip=135 Torque mbody =08 mhip =10 | Torque

0 0005 -0 0250161 0 0005 -0 0158356
0001 -0 0204931 0001 -0 0139283
0005 -0 0204931 001 -0 0135017
001 -0 021497 0025 -00157188
0025 -0 0289354 004 -0 0180096
0043 -0 0289354

mbody =0 4 mhip =1 Torque mbody =04 mhip =08 Torque

0 0008 -0 00578143 0 0006 -0 00615093
0 005 -0 00549235 0001 -0 00552428
001 -0 00611214 001 -0 00557509
0025 -0 00833589 0025 -0 00695179
004 -0 0105034 004 -0 00833714
006 -0 0132937 0055 -0 00966618
mbody = 02mhip=08 | Torque Torque

0 0007 -0 00422771

0001 -0 00327594

0025 -0 00759446

004 -0 0106775

007 -0 016279
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H.9 Varying Radius of gyration

mhip = 1.5, mbody = 1.0

Parameters:
Ibody = 0.8, combody = 0.795, damp = 0.55, Frac=5, =0.025.
7 states = {small = 0 00008, / arge = 0 0009}.

radus gyr q: 9> q3 U u; Uu;
bod=0121 | 0283795 -0 283795 00762199 -0 348054 -0 0943815 | 000313797
A's 100411 0 690446 0 690446 0159779 -0 00001 =0

bod =0 09 0283791 -0 283791 00762169 -0 348051 -0 0943829 | 00042597
A's 100413 0690442 0 690442 0159781 -0 00001 =0

bod =0 05 0283669 -0 283669 00718488 -0 348274 -0 0944591 | 0246121
A's 1 00402 0 764968 0 764968 0 164953 =0 =0

radws gyr q; q> q; u; u; us

leg=01 0291521 -0291521 00773395 -0 349971 -00919796 | 000313335
A's 100425 0 63606 0 63606 0160012 -0 00001 =0

leg =009 0283791 -0 283791 00762169 -0 348051 -0 0943829 | 00042597
A's 100413 0690442 0690442 0 159781 -0 00001 =0
leg=004 0239549 -0 239549 00699325 -0 341002 -0 117388 0 00303788
'S 100335 0970099 0 970099 0197147 -0 00001 =0
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H.10 Complex Controller

On slope y =0 025

mhip=15 mbody=10

q1 q: q3 uy u; us
0283787 -0 283787 -0 0899587 -0 348033 -0 0943614 000305087
1 00409 0690225 0690225 0 159846 -0 00001 =0

mhip =10 mbody=08

q: 9> q3 u; u; Uus
0283553 -0 283553 -0 0699312 -0 346004 -0 11029 000290952
1 00466 071182 071182 0151968 -0 00001 =0
mhip=10 mbodv=04

q1 92 93 U u; Us
0288672 -0 288672 -0 0604298 -0 368161 -0 113541 000319901
100297 0560653 0 560653 0242955 -0 00001 =0

mhip =0 8 mbodvy =04

q1 q2 qs3 uy u; u;z

028752 -0 28752 -0 0587354 -0 363954 -0 123854 0 00304068
1 00407 0594581 0594581 0217706 -0 00001 =0

mhip =0 8 mbody =02

91 qz qs3 u u; Uus
0290784 -0290784 -0 0611985 -0 37998 -0 126872 000326162
1 00201 0465768 0465768 0353277 -0 00001 =0

mhip =04 mbody =02

qi 9> qs3 Uy u; u;

0 287974 -0287974 -0 0564755 -0 370681 -0 162555 000290384
1 00207 0531955 0531955 0272335 -0 00001 =
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Appendix I:

Mechanical Energy

Body-less:
Potential Energy

PE =m xgxh and the total P E for the creature 1s

PE = M xgxheghtof swiCOM above ground +
M x g x height of sta COM above ground +
Mhip x g x height of hip COM above ground

Kinetic Energy

Since the creature 1s simular to that of a rolling wheel, the total kinetic energy 1s
composed of two parts, the kinetic energy of the translation of the centre of mass, and
the kinetic energy of rotation about the centre of mass This gives that the kinetic
energy 1s givenby KE =05 xM xV)+ (05 % Il x®’) and thus 1s

KE = 05xMx||Vp,sw| +
05xM x|V, stal® +
0 5x Mhip x || Vop hip ||* +
05x Istax | u,|)’ +05x lswi x| u,l|

Bodied :

Potential Energy

PE = M xgxheightof swiCOM above ground +
M x g x height of sta COM above ground +

Mhip x g x height of hip COM above ground +
Mbody x g x height of bodyCOM above ground
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Kinetic Energy
KE = OSXMX||‘700MSW1”2 +
05xM x| {;COMSta “2 +
05 x Mhip || Vop hip ”2 +
05 x Mbody x| $cop body | +
05x listax | u|’> +05x Uswix| u, I* + 0 5 x Inertiabody x || u, ||°
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