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Abstract. This paper describes a novel automatic skull-stripping method
for premature infant data. A skull-stripping approach involves the re-
moval of non-brain tissue from medical brain images. The new method
reduces the image artefacts, generates binary masks and multiple thresh-
olds, and extracts the region of interest. To define the outer boundary of
the brain tissue, a binary mask is generated using morphological opera-
tors, followed by region growing and edge detection. For a better accu-
racy, a threshold for each slice in the volume is calculated using k-means
clustering. The segmentation of the brain tissue is achieved by applying
a region growing and finalized with a local edge refinement. This tech-
nique has been tested and compared to manually segmented data and to
four well-established state of the art brain extraction methods.
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1 Introduction

In this study, we focus on Magnetic Resonance Imaging (MRI) brain segmen-
tation from premature infants. Premature birth is associated with a high risk
of an injury in white matter. This brain injury can cause the development of
cerebral palsy [12] [26]. Therefore, the segmentation of newborn brain MRI is an
important task for the study and diagnosis of neurodevelopment disorders at an
early stage. The first stage of brain segmentation involves the extraction of the
entire region of interest (ROI) which consists of the brain tissue such as corti-
cal grey matter (GM), white matter (WM), deep grey matter, and cerebellum.
This procedure is called skull-stripping and requires removing the skull, fat and
cerebrospinal fluid (CSF) parts. Skull-stripping is a difficult task on adult brain
MRI. However, it is more challenging using premature infant brain MRI because
infants are still in an early development stage of the brain structure. Harnsberger
et al. [8] provides an useful insight into the development of the newborn brain
MRI and the undergoing changes in the brain structure during the first years of
age.

Over the past years, various techniques have been proposed for unsupervised
skull stripping such as histogram-based [2] [20], region-based [7] [22] , boundary-
based [23] , graph-cut based [18], fuzzy-based [9] or hybrid approaches [4] [19].



Some of the methods have been embedded in software tools such as Brain-
Suite [21], SPM8 [25], MRIcroN [17] or FMRIB Software Library (FSL) [5] [24].
Brain Surface Extraction (BSE) [22] is one of the well-established Brain Extrac-
tion Algorithms (BEA). BSE is an edge based method which uses an anisotropic
diffusion filter, followed by a Marr and Hildreth edge detector. The final seg-
mentation is obtained by applying morphological operators on the edge map to
enable the removal of the non-brain tissue. The second well-established BEA is
called Brain Extraction Tool (BET) [23]. This method is based on estimating
the intensity threshold of the brain and non-brain regions, and then determines
the centre of gravity of the brain volume, followed by defining the initial sphere
which is based on the previous calculated centre of gravity. Finally, the tech-
nique deforms the initial sphere outwards to the brain tissue boundaries. The
third well-known brain segmentation approach is called Statistical Parametric
Mapping (SPM) [6] which consists of realigning, normalizing and segmenting
steps. Realigning and normalizing were performed to transform the volume into
the Talairach space. The segmentation generates GM, WM and CSF areas.

Only a few methods have been developed with the main focus on brain ex-
traction from MRI data from infants. One of these approaches was proposed by
Chiverton et al. [4]. Their technique first removes the background using region
growing, then uses parameter estimation to fit an intensity Gaussian mixture
model to a predefined histogram. A 2D mask is created by segmentation using
thresholding and region growing. The final segmentation is achieved using sim-
ple 3D morphological operators. Another approach based on infant brain MRI
was proposed by Kobashi et al. [9]. This technique uses fuzzy rule-based active
surface models. The images were segmented using thresholding and morpholog-
ical operations. A surface model was achieved using connected triangles which
allow the surface to be deformed by moving them around. The positions of the
triangles were defined using fuzzy IF-THEN rules.

The aim of this paper is to present a novel skull-stripping method called
Hybrid Skull-Stripping (HSS) which removes all non-brain tissue in brain MRIs
using premature infant data. At this stage, the region of interest is composed of
cortical grey matter, deep grey matter, white matter and the cerebellum. The
removal parts are skull, fat, fluid, eyes and body parts. According to our knowl-
edge, BET and BSE have been used by the majority of the previous developed
skull-stripping approaches for comparison purposes. In this paper, we use BET,
BSE and SPM to compare with the new method.

2 Proposed Method

2.1 Overview

Figure 1 presents an overview on the structure of the HSS algorithm proposed
in this paper. The pre-processing step deals with the improvement of the image
quality. This step is divided in two parts, first the image is smoothed to reduce
noise and the second part implicates intensity adjustment to remove the inten-
sity shifts between slices throughout the volume. The next step comprises the



generation of a binary mask. The mask is created within three steps, first reduc-
ing the partial volume effect, second removing small objects and finally detecting
the outer boundaries of the brain tissues. Before the ROI can be segmented, a
seed point is automatically defined and a threshold for each image in the volume
is calculated. The final step refines the outer edges.

Fig. 1. Overview of the proposed skull stripping technique

2.2 Data Pre-Processing

One challenge in medical images is generated by the inconsitencies appearing
in the images between patients and throughout the patient volumes. In order
to address this issue we propose to apply a two-step procedure. The first step
addresses the noise reduction in the images while preserving the edges, while the
second step deals with the adjustment of intensity changes in all slices of the
dataset.

Anisotropic diffusion filter The Coherence Enhancing Diffusion Filter (CED)
from Weickert [27] allows us to smooth the image and strengthen the edges.
In previous skull stripping approaches [22] [28], a similar anisotropic diffusion
filter [13] has been used to strengthen the edges between each region. This allows
a more precise removal of the non-brain tissue and it facilitates the separation
of each region of interest such as WM and GM. This works well on adult MRIs.
However, when using infant brain MRIs especially preterm children, this task
is more complicated and this is caused by a higher quantity of Partial Volume



Effect (PVE). In our case, the focus of applying of the anisotropic diffusion filter
lies in strengthening the edges between the brain tissue and the CSF in order to
facilitate the application of an edge detector in a later stage of the algorithm.
Experimentally, we concluded that the best results were obtained when setting
the CED paramenters to the following values: σ = 0.5, ρ = 4.

Intensity Adjustment Due to the MRI acquisition procedure, MRIs images
include intensity changes, not only between patients but also within the same
data sequence. The aim of this step is to adjust the ROI intensity into the
same range throughout the entire sequence of one patient. In the first part,
the background is removed by using a simple tresholding procedure that sets all
background pixels to 0. In the second part, the intensity of the foreground region
is adjusted in each image individually. The approximate ROI which includes
all brain tissue is detected using histogram analysis. In each histogram, one
local maximum and two local minima of the ROI are detected. By knowing the
location of the ROI in the histogram, the region is shifted into the same intensity
range for each image. To avoid a cut-off in the bright intensity, that area will
be stretched out, so a smooth transition is still maintained. Figure 2 presents
an example of an image taken before and after the intensity adjustment and its
corresponding histogram. The approximate ROI which lies between two local
minimums is clearly visible in the histogram. The pixels with intensities smaller
than 1 × 104 in the histogram belong to the background. The adjustment of
the intensity does not mean that each region has the same intensity throughout
the volume but implies that each region can be found in a certain range. The
problem which remains to be addressed is that the GM and WM still overlap in
their intensity range.

Fig. 2. Left: an sample and its associated histogram before applying the intensity
adjustment; right: same sample after the intensity adjument was applied



2.3 Creating Mask

In the first stage, a primary mask of the main brain region is constructed with
the intention of reducing the PVE. This is provided by bringing the ROI into the
foreground and the other region into the background using once the erosion and
dilation operators. In the resulting image, the foreground region will be defined
by a different intensity value when compared to the background region.

In the second step, a fast binary region growing is used to check the connec-
tivity of the main brain region. Additionally this enables us to remove regions
that are not connected such as the eyes. The automated seedpoint detection for
this step is explained in the next sub-section.

To generate the final mask, the Marr and Hildreth edge detector [11] is ap-
plied on the second mask that was modified by projecting the intensities on the
ROI. The Marr and Hildreth edge detector first runs a Gaussian low-pass filter
followed by detecting the boundaries using the Laplacian edge operator. The
best results have been obtained using a Gaussian kernel of 5 × 5 and a variance
σ of 2. The purpose of this final step is to remove the large fluid areas on the
outside of the brain region. Due to partial volume effect, in some cases the edge
detector does not find enclosed boundaries. Morphological operators have been
applied on the edge map to connect loose ends of edges. The images correspond-
ing to each mask generation step are given in Figure 3. In the proposed HSS
algorithm, the generation of the binary mask is essential, as it will be used as
boundary stopping condition in a later procedure.

Fig. 3. Displays each mask step, starting with the original image, followed by first
mask, then second mask and finish with the final mask. The small bright part visible
in the third image is a leftover of the lacrimal glands.

2.4 Automatic seedpoint detection

The seedpoint is the starting point for the region growing algorithm used in HSS.
During the intensity adjustment, the seedpoint in the z direction is determined
by selecting the image with the largest connected region of brain tissue. Within
the image of seedpoint z, the x and y coordinates are obtained by extracting the
largest connected region associated with the dominant intensity. The dominant



intensity in ROI is retrieved as a local maximum in the histogram. One pixel will
be taken from the extracted region and defined as seedpoint with the coordinate
(x,y,z).

2.5 ROI Segmentation

To extract the ROI, a region growing algorithm is applied on the MRI sequence.
Pohle et al. [14] proposed an adaptive region growing to segment regions in
medical images using two runs of the region growing. However, if conditions
such as shape differences or intensity changes within the region of interest are
not well defined then the method does not work well. Li et al. [10] propose a
different region growing method to address this problem. This has been done by
using an adaptive threshold based on the mean value and standard deviation of
the region of interest to define the grey value range of the current pixel.

We tried different thresholds such as the adaptive threshold proposed by Li
et al. and we tried to use the difference of the current value and a fixed value. In
our trials these thresholds have generated erroneous segmentation in several vol-
umes. Therefore, we decided that the use of one threshold for the entire volume
is not as efficient as calculating thresholds for each slice individually. The range
of the intensity values in the ROI is still very large. By using a threshold for each
image, we can define a more precise threshold for different parts of the volume.
The idea on how to calculate the threshold came from the K-means clustering
algorithm, where the clustering process is defined as follows:

J =

K∑
j=1

∑
n∈Sj

|xn − µj |2 (1)

The algorithm clusters the data points into K disjoint classes Sj each containing
nj data points, where xn is an observation and µj is the geometric centroid of
the data points in cluster Sj . Each cluster was initialised with a predefined value.
To speed up the process, the classes are calculated from the grey values of the
histogram. This means that the algorithm does not need to run over the entire
image which would be 512 × 512. Instead the classes can be calculated from an
array of the size of 1 × 126. For each image, the intensity range is partitioned
into eight classes which allows putting more weight on the intensity range of
the ROI. The eight classes are presented in an array which is used as threshold
in the ROI segmentation. During the extraction procedure, the class to which
the current voxel will be assigned to, will define the voxel as brain or non-brain
tissue.

Region Growing A region growing algorithm is used to extract the brain
tissue. This algorithm considers two thresholds as a stopping condition. The
first threshold is used for the identification of the outer boundaries between
ROI and CSF in which case we applied the final binary mask. As soon as the
algorithm hits a boundary pixel, the region growing stops. The second threshold



is used to differentiate the ROI and non-brain tissue within the volume in this
case the previous calculated array threshold is applied. To assign the current
voxel to a class in that array, the smallest distance between the current voxel
and the class centroids is used. In a post-processing step, a local edge refinement
has been applied which uses the gradient magnitude to refine the outer border
pixel. A few automated segmented samples are shown in Figure 4 (top row).

3 Evaluation

3.1 Data aquisition

T2 brain volume MRIs (TR: 2660; TE: 142.7; DFOV: 16×16cm) of premature
infants have been imaged at full term equivalent in the Children’s University
Hospital, Dublin, Ireland. Each slice has a thickness of 1 mm and a dimension
of 512 × 512 pixels. Our database consists of MRI volumes from five patients.
The data of Patient 1 includes 170 images, Patient 2 has 178 images, Patient
3 consists of 186 images, Patient 4 consists of 172 images and the fifth patient
includes 88 images. The dataset is composed of a total of 794 images. The first
four patients have a slice spacing of 0.5 mm and the fifth patient has a slice
spacing of 1 mm. In order to perform a comprehensive quantitative evaluation
of the proposed HSS, the entire database was manually segmented. The manually
segmented data has been marked in conjunction with a clinical expert from the
Children’s University Hospital, Dublin, Ireland.

3.2 Visual Examination

Figure 4 (top row) shows automated segmented images sampled from one pa-
tient volume. A visual examination of our results indicates the accuracy of the
proposed HSS and in order to emphasis this, we have performed a quantitative
evaluation when our method is compared against the manually segmented data.
During the post-processing step, only the outer boundaries of the ROI were re-
fined but not inside the ROI. Consequently, on some images small parts of CSF
can remain. To get a clear opinion on the efficiency of the proposed segmenta-
tion method, the results of HSS were compared against the manually segmented
data and against four state of the art BEA tools. Each tool, BrainSuite [21],
FSL [5] [24], SPM8 [25] and MRIcroN [17], are freely available on the internet,
and use one of the three well-established BEA. BrainSuite has embedded BSE
and allows the application in a stepwise manner so that the parameters can be
adjusted for each step. The only parameter we need to optimize is the size of the
structuring element employed in the erosion algorithm in the final step. BET
is embedded in two software tools we used. MRIcroN applies BET (version 1)
and FSL applies BET2 (version 2). The best results of both tools were obtained
using their default values with a fractional intensity threshold of 0.5. Applying
SPM8, the best results were provided by adjusting the bias regularisation to a
value of 0.1 and using the native space for the generation of GM, WM and CSF.



Fig. 4. Top row: result images of the automated skull-stripping segmentation; bottom
row: images manually annotated by a clinical expert. The intensity difference between
the top and bottom row images is caused by an automatic intensity adjustment in the
display of the top row images by Matlab.

3.3 Similarity Metrics and Numerical Evaluation

1. The first set of tests is done by using the Dice Similarity Metric (DSM) which
describes the amount of overlap voxels between the manual segmented data
and the automated segmented data. The mathematical formula to calculate

the metric is described as follow: DSM = 2|M1∩M2|
|M1|+|M2| , where M1 is the auto-

mated segmented volume and M2 is the manual segmented volume. The dice
similarity metric is a very popular comparison metric used for evaluations
in many MRI segmentation approaches [1] [3] [15] [18] [22].

2. The Jaccard metric (JS) measures the similarity between two volumes and
has been used as a comparison in previous brain segmentation techniques
[16] [18] [19] [22]. This is done by dividing the size of the intersection and the
size of the union of the two datasets. The mathematical formula to calculate
the Jaccard similarity is described as follow: JS = |M1∩M2|

|M1|∪|M2|
3. Over-segmentation can be calculated using the false positive. This formula

calculates the percentage of the amount of voxels which remains in the vol-
ume as a part of the ROI but do not belong to the ROI. The false positive

was calculated as follow: FP = |M1−M2|
|M2|

4. Under-segmentation can be calculated using the false negative. This formula
calculates the percentage of the amount of voxels which have been removed
from the ROI but would belong to the ROI. The false negative was calculated

as follow: FN = |M2−M1|
|M2|

All the comparison results are shown in Table 1.



Table 1. Quantitative performance evaluation when the proposed skull-stripping
method (HSS) is compared against four state of the art implementations. Best results
are highlighted in bold

Methodology DSM JS FP(%) FN(%)

Patient 1 HSS 0.9586 0.9249 4.3435 3.9532
FSL 0.8800 0.7858 26.8620 0.3171
BrainSuite 0.9065 0.8290 18.2950 1.9336
MRIcroN 0.7840 0.6448 38.3500 10.7870
SPM8 0.9076 0.8308 16.1460 3.5014

Patient 2 HSS 0.9462 0.8979 7.0101 3.9170
FSL 0.8793 0.7846 26.5170 0.7418
BrainSuite 0.9029 0.8229 1.0563 16.8360
MRIcroN 0.8547 0.7463 30.7940 2.3911
SPM8 0.9187 0.8496 12.5900 4.3385

Patient 3 HSS 0.9607 0.9245 3.7178 4.1182
FSL 0.8838 0.7918 26.2120 0.1605
BrainSuite 0.7437 0.5919 24.6060 26.2380
MRIcroN 0.7097 0.5501 45.0090 20.2370
SPM8 0.8386 0.7220 27.651 7.8324

Patient 4 HSS 0.9586 0.9205 4.5710 3.7439
FSL 0.8586 0.7522 32.9050 0.0275
BrainSuite 0.9044 0.8255 0.3393 17.1720
MRIcroN 0.8144 0.6869 38.3750 49.4460
SPM8 0.8733 0.7751 27.8950 0.8640

Patient 5 HSS 0.9475 0.9004 3.6053 6.7189
FSL 0.8955 0.8107 22.4920 0.6913
BrainSuite 0.9262 0.8626 12.6160 2.8591
MRIcroN 0.8714 0.7721 25.2660 3.2830
SPM8 0.8529 0.7436 15.5720 14.0590

4 Discussion

The quantitative results displayed in Table 1 indicate that HSS returns accurate
results when applied to skull stripping on brain MRI data of premature infants.
Table 2 reveals the accuracy of each analysed technique in comparison with the
other brain extraction methods by observing the average results of each test. HSS
provides the overall best results in the dice similarity, Jaccard similarity and false
positive results. The average similarity values are: 95% for the Dice calculation
and 91% for the Jaccard calculation. There is an average of misclassified voxels
of less than 5% which is a satisfactory result.

Every approach has its strong and weak points which is reflected in the results
values in Table 1 and Table 2. HSS has two main weak points which have to be
addressed in future work. First, due to the partial volume effect, the boundaries
between the lacrimal glands (tear glands) and the ROI are not always visible on
the MRI of premature infant. As a consequence, the region growing algorithm
will continue to grow in the region instead of excluding it. A second weak point



Table 2. Average values over the entire database of the results from each comparison
test

Methodology DSM JS FP(%) FN(%)

HSS 0.9543 0.9127 4.6495 4.4902

FSL 0.8794 0.7850 26.9976 0.3876

BrainSuite 0.8767 0.7863 11.3825 13.0077

MRIcroN 0.8068 0.6800 35.5588 17.2288

SPM8 0.8782 0.7842 19.9708 6.1191

consists in the presence of CSF boundaries inside the brain volume. During the
pre-processing step only outer boundaries have been refined and for that reason
small parts of fluid can remain inside the ROI.

The comparison evaluation revealed that FSL returned the smallest percent-
age in false negatives but a higher percentage in false positives. This occurs
because FSL leaves the CSF in the image and therefore it is less likely to have
removed too much of the brain tissue. On the other hand, the higher rate of
false positives is caused by the remaining CSF. FSL removes the skull and the
fat and only in a few places small parts of the skull can be observed. This tech-
nique seems to be a good solution for the removal of skull and fat. In brain MRIs
of premature children at the age of a few weeks, the brain structure has not been
fully developed. The challenge of early brain development is mainly caused by
the fact that the infant brain contains less white matter myelin then the adult
brain which results in less defined edges between different regions. Looking at
the results generated by BrainSuite and FSL, we observed that they are simular.
The major differences can be found in the over segmentation and under segmen-
tation. BrainSuite has average error rates of 11% for FP and 13% for FN and
this might be caused by the edge detection that BSE is based on and the partial
volume effect that prevents the edge detection to find the correct boundaries.
The problem of PVE has been solved in HSS by using morphological operators
to reduce the PVE and by combining the edge detection with morphological
operators to enclose the main edges between fluid and brain tissue. MRIcroN
uses the first version of BET technique. Same as FSL, MRIcroN does not take
the fluid inside the brain volume into consideration. For example, when applying
MRIcroN, within an image, on one half CSF and sometimes skull and fat tissue
remains and on the other half the CSF is removed but often some of the brain
tissue is removed as well. This leads to high error rates. The differences on the
results compared to FSL show us that the second version of BET comprise sig-
nificant improvement. SPM8 is the only technique of these four which was not
developed for skull stripping in the first place. The result is presented in three
different volumes where each volume represents a different region such as GM,
WM or CSF. The similarity and comparison results were calculated by com-
bining the GM and WM images. SPM8 results lie within the same accuracy of
FSL and BrainSuite. It has not been stated but in our opinion, SPM8 has been



developed to be used on clear structured adult brain MRI and not on children
brain MRI with the age of under two years.

5 Conclusion

The purpose of this paper is to introduce an automatic algorithm for the brain
extraction from infant MRI data. The developed algorithm is based on a hybrid
approach that embeds a suite of image processing tools that include a reduction
of artefacts, generation of a binary mask and the application of a region growing
for the extraction of the main brain region. One of the advantages of the proposed
approach consists in the reduction of PVE, and the numerical results indicate
higher performance of the proposed algorithm when compared to state of the
art implementations.
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