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Abstract
Estimation of Buffer Overflow Probabilities and

Economies of Scale in ATM M ultiplexers by
Analysis of a M odel of Packetized Voice Trafficby Paul J. Farrell

We obtain upper bounds on the probability of buffer overflow for an ATM multiplexer 
of L identical packetized voice sources The multiplexer is modelled by a FCFS 
single server queue The arrivals at the multiplexer are a homogenous superposition 
of the arrivals from L independent identical sources, with each source modelled by 
a copy of a discrete time Markov Chain which we call the Cell Level M odel 
Throughout, appropriate parameters are scaled with L, to maintain a constant load 
over all superposition sizes
The probability that, the queue-length (q^) of the queue in a finite buffer exceeds 
the buffer size b, is bounded above by the probability that the queue-length (qL) of 
the queue m an infinite buffer exceeds length b In order to bound the former above, 
we find upper bounds or approximations for the latter by using the theory of,

•  Large Deviations, to determine its asymptotics for large b,
•  Martingales, to obtain upper bounds, valid for all positive b,
•  Large Deviations, to determine its asymptotics for large L  for time rescaled 

(proportional to L ) arrival processes
These demonstrate the multiplexing gam and economies of scale obtainable from 
large and small buffers and large multiplexers, respectively



Chapter 1

Introduction

1.1 Integrated Services Digital Network (ISDN)
The developement of ATM networks presents new problems in queueing theory, prob
lems that cannot be solved by classical queueing theory ATM networks transmit 
packets of data or cells, as they have come to be called The asynchronous nature 
of the network means that in an ATM multiplexer cells from different sources can 
compete for available transmission bandwidth This leads inevitably to buffering of 
queueing cells awaiting transmission The nature of the arriving streams of cells at 
the buffer means that they cannot be modelled effectively by a Poisson process unlike 
the modelling of traffic at the call level arriving at an exchange in the classical theory 
as it is applied to teletraffic The arrivals (calls) m that case can be assumed to be 
independent and hence the arrival streams can be modelled by a Poisson process 
But the arrivals at an ATM multiplexer axe highly correlated They are produced in 
bursts and are not well modelled by a Poisson process [1]

The asynchronicity and the need for queueing m an ATM multiplexer result m 
an inability to predetermine the delay that will be experienced by an arriving cell 
The delay will be random due to the randomness of the queue length A further 
difficulty arises, should the buffer be fall when a cell arrives then that cell will be 
lost i e will not be transmitted The possibility of buffer overflow and cell loss has 
therefore to be addressed It is not possible to guarantee with certainty that the
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buffer will not overflow or that delays will not become excessively long. But it is 
possible to guarantee that neither will occur with a probability greater than some 
prescribed value. This value must be extremely small, of the order of 10-9, because 
of the high transmission bandwidth. The problem arises of how to dimension the 
buffer in order to guarantee that buffer overflow will not occur with a probability 
greater than this. This problem is resistant to exact treatment because of the bursty 
nature of the arrival streams [1].

Because of the nature of the traffic as we have pointed out this problem cannot 
be solved by classical queueing theory; we need more recently developed techniques. 
The small probabilities mean we are dealing with rare events [1]. The theory of 
large deviations is a theory of rare events [2]. The correlations between arrivals 
mean we are dealing with non-independent arrivals. The theory of Martingales has 
been used to extend results applying to independent random variables to results for 
non-independent random variables [3].

We use the theory of large deviations and the theory of Martingales to obtain up
per bounds or approximations for the tail of the queue length distribution in a model 
of a packetized voice ATM multiplexer that consists of a homogeneous superposition 
of independent sources feeding arrivals into an infinite buffer served on a first come 
first served basis. The traffic from each of the sources is modelled using a discrete 
time Markov Chain.

1.2 Asynchronous Transfer M ode (ATM)
Information and its transmission or communication is becoming of greater and greater 
significance in a shrinking and increasingly fast paced and changing world.

Information technology advances, such as the development of digital technology 
and the rapid development of optical fibre transmission technology, are leading to 
the development of high speed or broadband digital communications networks that 
are capable of providing new types of communication services [4].

These services would traditionally be carried by separate networks, specialised for 
the particular service that they carry. It is, however, more economical to integrate
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all of these services onto a single network, called an Integrated Services Digital Net
work (ISDN), thus avoiding the need for overlaying networks and allowing increased 
flexibility m the introduction and evolution of services This increased economy is 
motivating the development of the Integrated Services Digital Network (ISDN) [4] 

The new services that will use such a network will involve the transmission of 
information in entirely digital form It is this fact, that all the different services are 
transmitted as digital streams, that makes integration possible The network need 
be able to handle nothing other than bit streams For example, in digital telephony, 
the initial analogue voice signal is sampled at discrete instants by digital technology 
which represents the sampled value m digital form The encoded signals are then 
divorced from the analogue waveforms of the source Thus, the digital transmission 
and switching equipment of a digital telephone or voice network is inherently capable 
of servicing any traffic of a digital nature The services, and the technologies used 
to provide them, are termed broadband, their speeds ranging from 1 Mb/s (106 bits 
per second) to 100 Mb/s and greater [4]

For transmission through the network, different bit streams are multiplexed onto 
a single Transmission medium to form a single bit stream The type of multiplexing 
used with such digital bit streams is termed Time Division Multiplexing (TDM) [4] 

The large disparity between transmission bit rate, for example Gb/s (109 bits per 
second) where fibre optics and laser technologies are used in transmission, and the bit 
rate of, say, data terminals or telephones, which range from less than 1 kb/s to hun
dreds of kb/s depending on the encoding algorithms used, suggests that substantial 
economies should be achieved by using large multiplexers and also suggests the util
isation of new broadband services in order to capitalise on the increased bandwidth 
capability [4]

1.2.1 Multiplexing
The Transmission medium used for broadband services, and hence for the integrated 
services digital network, is optical fibre, because of its high bandwidth and transmis
sion reliability Both constant bit rate and vanable bit rate communications must be
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capable of sharing this transmission medium, and so the question of how this can be 
done efficiently and flexibly must be addressed.

The form of Time Division Multiplexing (TDM) that provides the greatest flex
ibility and the most efficient use of bandwidth, when different variable bit rate 
or bursty communications share the same transmission medium, is Asynchronous 
Time Division Multiplexing (ATDM) more commonly called Asynchronous Transfer 
Mode(ATM) [4].

Time Division Multiplexing (TDM) involves the multiplexing of different bit 
streams onto a common transmission medium in time slots of a predetermined length. 
There are two basic forms of TDM, namely, Synchronous Transfer Mode (STM) and 
Asynchronous Transfer Mode (ATM) [4, 5].

The STM approach involves the assumption of a common time frame of reference 
for all of the sources. Within this frame of reference each source is assigned its slot 
or slots. These slots, once assigned, are termed circuits and are said to be owned by 
the source, with each source having exclusive use of its assigned slot or slots in the 
reference frame [4].

In the case of single rate traffic, i.e. all the sources having the same bit rate, 
single slot TDM is used, with all the slots being of the same fixed length and, as the 
name suggests, exactly one slot being assigned to each source [4].

In the case of multi-rate traffic, slot assignment is more complicated, and multi
window TDM is used. For multi-window TDM the transmission channel capacity 
is divided into windows within the frame of reference, one window for each of the 
different bit rates, and each window is further divided into slots, each of the same 
fixed duration particular to that window and differing in duration from slots in other 
windows. One slot is assigned to each source in the window corresponding to its bit 
rate [4].

This multi-window TDM approach is inflexible for the following reasons. An 
initial standardized set of source bit rates must be chosen as must the number of 
sources of each bit rate type. But in a network with evolving services it may be 
difficult or impossible to predict what standard bit rates should be fixed and how
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many of them should be chosen The approach does not allow for the evolution of new 
services and is m this sense inflexible There are also difficulties in formatting and 
synchronising slot, window and frame lengths, and there can be as many windows as 
source types Sharing of capacity is inflexible as any change in the number of sources 
of more than one type can necessitate changing many window boundaries [4]

A more flexible form of TDM for dealing with multi-rate sources, is multi-slot 
TDM, where a source can be assigned, if needed, more than one slot in a reference 
frame A reference bit rate is chosen belonging to one of the source types We then 
proceed to derive the single-slot TDM format just as we would if all sources had this 
reference bit-rate Then any source with a bit-rate less than this reference rate is 
assigned one slot, and any source with a bit-rate greater than the reference rate is 
assigned the number of slots it requires, given its bit-rate Slots assigned then have 
a fixed owner withm the frame of reference [4]

Bandwidth is wasted m this case by sources of bit-rate lower than the reference 
rate Choosing a small reference rate results in large numbers of slots, and high bit 
rate sources then require large numbers of slots, which all leads to greater complexity 
m tracking the assigned slots A balance must therefore be struck in this case between 
wasting bandwidth and increasing slot assignment complexity, and, m order to strike 
this balance, we again need to be able to predict the traffic mix, a task which may 
be difficult or impossible and which is in any case an imposition resulting from a lack 
of flexibility m the multi-slot TDM format [4]

The Synchronous Transfer Mode thus lacks flexibility when dealing with an evolv
ing network This is due to having to choose a reference frame structure, both the 
choice and the structure itself are inherently incompatible with the flexible evolution 
of network services

The Asynchronous Transfer Mode abandons the idea of a common time reference 
frame for all of the sources Sources simply seize bandwidth when they have generated 
a sufficient number of bits The data to be transmitted is segmented into packets or 
cells of a fixed length Time is divided into slots of a fixed length, the length being the 
time taken to transmit a cell on the transmission line There is no reference frame,
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and hence each slot has no implicit owner, unlike STM where each slot is assigned 
an owner within the frame of reference. Thus in the ATM format each cell must be 
labelled. A cell then consists of data, plus a header, which contains the label that 
identifies the cells source and the time slot it was transmitted in. The header will 
contain other information, such as the type and priority of the data being transmitted, 
and possibly other routing information. The absence of a reference frame in an ATM 
network means new services can be introduced flexibly as they evolve. ATM also 
allows for more efficient use of bandwidth, particularly in the case of variable bit rate 
(VBR) sources, such as silence suppressed packetized voice sources, where speech 
activity detection is used. The use of ATM therefore provides for greater flexibility 
and more efficient use of bandwidth than the use of STM [4].

However, in the ATM format several sources may attempt to seize the same time 
slot, something which cannot happen with STM where slots are assigned to individual 
sources. If this occurs ,then, as only one cell can be transmitted per slot, one cell 
will be transmitted and the remaining cells will have to queue in a buffer until a slot 
becomes available for each. Thus, in the ATM format cells may suffer random delay 
depending on the length of the queue in the buffer, unlike the STM format where 
delay is fixed by the framing. Further, cells will be lost should the buffer capacity be 
exceeded by the length of the queue of waiting cells [4].

ATM thus allows for flexible sharing of a transmission medium, without the 
scheduling complexity of STM, but at the expense of this random delay, and the 
possibility of cell loss. Quality of service can only be guaranteed statistically in an 
ATM network [4, 5].

ATM is the multiplexing technique of choice for broadband ISDN primarily be
cause of this flexibility, which is of importance due to the fact that it is not possible 
to predict what future traffic will be carried on the evolving ISDN. And due to the 
fact that different types of traffic, much of it from variable bit rate sources, will be 
carried on the ISDN [4, 5].

ATM multiplexing is used in the operation of ATM switches in the ISDN Network. 
The type of switching used is called packet switching, to distinguish it from circuit
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switching Circuit switching provides a dedicated path between two points carrying 
any information that fits into the available bandwidth Thus, for example, switching 
using STM is circuit switching, as slot ownership is assigned to sources within the 
reference frame, the slots being termed circuits [4]

1.2.2 Buffering and QoS
As the discussion of the previous subsection pointed out, competition for available 
transmission bandwidth is inevitable in an ATM multiplexer Buffering and buffer 
dimensioning are thus an essential part of the operation of an ATM multiplexer 
Should the queue become larger than the buffer can cope with, then cells will be lost, 
also excessively long queues can lead to unacceptable degradation of the service 

The ATM forum proposed three parameters to measure the quality of service 
experienced by traffic as it passes through a queueing system [6] They are

• the cell loss ratio
•  the mean cell delay

• the cell delay variance

These parameters depend on a fourth,
•  buffer overflow frequency

What is required in order to guarantee a prescribed QoS is an upper bound on each 
of these parameters This requires us to have an upper bound on the tail of the 
queue length distribution for the queue in the buffer The queue length distribution 
for the queue m an infinite buffer will provide us with an upper bound on all of 
the parameters The reasons for this become clear when the meaning of the three 
parameters is explained The cell loss ratio is the ratio of the expected number of 
cells lost to the expected number of cells arriving at the queue The expected number 
of cells lost per tick is,

E [number of cells lost] =  E [number of cells arriving at a full buffer] P  [buffer overflow]
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E [number of cells lost] 
cell loss ratio E [number of cells arriving at a full buffer]

=  P  [buffer overflow]

The probability that the buffer overflows is bounded above by the probability that 
the queue length in an infinite buffer exceeds the buffer size. The mean cell delay 
can be bounded above in a similar manner, as the length of time that a cell will wait 
in the queue is approximately the length of the queue it finds on arrival at the buffer 
divided by the service rate. The cell delay variance can also be bounded once the tail 
of the queue length distribution is bounded. The typical values envisaged as upper 
limits on the cell loss ratio for an ATM multiplexer range between 10-8 to 10~u . 
These are extremely small probabilities, so small that in many applications events 
with such probabilities of occurring would be regarded as never occurring [1]. As 
we stated earlier transmission bandwidth can be of the order of Gb/s (109 bits per 
second) if fibre optic technology is used [4]. But in a multiplexer with a transmission 
rate of one Gigabit per second and a cell loss ratio of 10-8 we would lose on average 
one cell per minute [1]. Thus we see the reason for requiring such low buffer overflow 
probabilities.

In order to be able to guarantee to the user a prescribed Quality of Service (QoS) 
for an ATM based ISDN it is thus necessary to approximate the tail of the queue 
length distribution of the queue at an ATM multiplexer or to be able to put an upper 
bound on the probability that such a queue will exceed any given length.

The cell loss ratio is then,
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Chapter 2

Markov Chains
The models for an ATM multiplexer which we will be concerning ourselves with in 
this thesis involve modelling traffic from a single transmission source using Markov 
Chains. In this Chapter we outline the more important results and ideas relating to 
Markov Chains.

2.1 Stochastic Processes and Markov Chains
A stochastic process with state space E  is a collection {X t|t e  T} of random variables 
X t defined on the same probability space and taking values in E. T  is referred to as 
the parameter set. If T  is countable, for example, T  =  N, then the process is said to 
be a discrete parameter process. Otherwise it is referred to as a continuous parameter 
process. Usually t represents time, and X t is thought of as the state of the process 
at time t [7].

Markov Processes are a particular class of stochastic processes, with the defining 
feature, that given the present state of the stochastic process the future evolution is 
independent of the past. A Markov process is called a Markov Chain if the parameter 
set is discrete.

Thus the stochastic process {X„|n 6 TV} on the state space E which we will take 
to be discrete is a Markov chain provided that,

P [x„+l =  j \X 0, ... j y  =  P[X„+1 =  j \X n] for all j  € E
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P [ x n+l = j \X n = 1} =  P B(*,j) 1,3 e E
are called the transition probabilities for the Markov chain X  And the matrix of all 
such probabilities is called the transition matrix of the Markov chain

If,

Pn(i,j)  =  independent of n
then the Markov chain is referred to as time-homogeneous or as having stationary 
transition probabilities [7]

2.1.1 Transition Matrix Properties
The transition matrix of a Markov chain X  is a square matrix with the properties 
that all of its entries are positive, less than or equal to one, and that its rows sum to 
l i e ,

y ;  P (i, j)  =  1 for each i E E  
j z e

Given the initial distribution Po(*o) the joint distribution of X 0, ,X n for any 
n is ,

P[X0 =  io, , X n = ln\ = Pq{%q)P{iq, li)P(li, i2) P ^m -l^m )  (2 1)
From this we can prove,

P^n+m =  j \ X n =  *] =  P m(*,j) 1,3 £ E  and m 6 N  
and this m turn implies,

=  ■£ pW(,,k)P<-nHk,]) 1,3 € E
k e E

This is known as the Chapman-Kolmogorov equation, and it says that, starting in 
state i, in order to reach state j  m exactly m  + n steps, X  must enter some interme
diate state k after m  steps, and then reach state j  from state k in n steps The right 
hand side of equation 2 6 above can also be written,

P” M = P [J fm= J|Jf0=.] (2 2)

The probabilities
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and hence we can write, for a stationary Markov chain,

P [*„+m =j \ x„=i ]=  pp im = j \X 0 = «] (2.3)

This tells us that the evolution of the process X  after time n, from fixed state i, is 
the same as the evolution of the process after time 0, from the same state i. In other 
words from all times of entry into state i, the process evolution will be the same, 
from that time, independent of that time, or how it reached this state i.

An important property of Markov chains is called the strong Markov property 
which holds for certain random present times T, instead of fixed present times, These 
random times have the property that for every time n the following holds,

I { t < n} =

Such a random time is called a stopping time or a Markov time. The occurrence or 
not of the event {T < n} can be determined from the values of X 0, ..., X n alone. The 
occurrence of T  does not anticipate the future evolution of the Markov Chain. The 
strong Markov Property then states, for any stopping time T,

P[Xr+m|XTl; n < T] = P m(XT, j ) for all m e N  and j  e  E  (2.6)
n X T+m= j \ X T = i} = P " ‘ ( i , j )  (2.7)

It tells us that the evolution of the Markov Chain starts afresh at time T  if T  is a 
stopping time [7].

Next we discuss the classification of the states of a Markov Chain.

2.1.2 Classification of States
In this section we describe how the states of a Markov chain are classified. This 
is covered in detail in [7]. The states of a Markov Chain are divided into classes 
according to properties of the time of first visit to the state, given that the Markov 
Chain is initially in the same state. These times are sometimes called the times of

I { T < n ]  (X0,  , X n) (2.4)
1 if T  < n (2.5)

0 otherwise
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first return to the state or recurrence times for the state. The successive returns to 
a particular state constitute a recurrent event.

The question arises as to whether a return to a particular state is certain or not. 
And, further, if it is certain, the question of the finiteness of its mean recurrence time 
arises. States are classified according to the answer to these questions for each state.

Let T  be the time of first visit to state j  given that X Q — j  then, state j  is called 
recurrent if

P [T < o o |X 0 = j]  =  l  (2-8)
In words the state is recurrent if a return to the state is certain. Such a state will be 
visited infinitely often. State j  is called transient if

P[T = oo\X0 =j]  > 0  (2.9)

i.e. if a return to the state is not certain. Such a state will be visited only finitely 
many times; there will be a last visit to the state after which the state will not be 
entered again, hence the name transient. A recurrent state j  is called null if

E[T|X0 = j\ = oo (2.10)

Otherwise j  is called non-null. Thus, recurrent states are called null or non-null, 
according as their mean recurrence times are infinite or finite respectively.

There is one further classification of the recurrent states of a Markov Chain,
namely, whether or not a state is periodic or not i.e. whether T  6 {5,25,35,..... }
with probability 1 for some integer S > 1, called the period of the state, or not. A 
state that is not periodic is called aperiodic.

All results pertaining to aperiodic states can be applied to periodic states j ,  with 
period 6, by considering the Markov Chain {Yn\n 6 N},  where Yn =  X ng, in which j  
is aperiodic. The times of successive returns to a recurrent state j ,  given X 0 = j ,  form 
an increasing sequence of Stopping times. Thus, in particular, the Strong Markov 
Property holds at every element of the sequence.

We can classify sets of states according to whether states outside them can be 
reached by states inside the set or not. A state j  can be reached from a state i if
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there exists an integer n >  0 such that P n( i , j )  > 0 If a state can be reached from 
another state, then, there is a sequence of intermediate states, each of which can be 
reached from the preceding state m one time step

A set of states is said to be closed if no state outside it can be reached from any 
state inside it Such a set containing only one state is called an absorbing state A 
closed set containing no closed proper subsets is called irreducible And a Markov 
Chain is called irreducible if the set of all states is irreducible A simple criterion for 
determining whether or not a Markov Chain is irreducible follows directly from these 
definitions

A Markov Chain is irreducible if and only if every state can be reached from every 
other state

Inspection of the transition matrix or the transition diagram for the Markov Cham 
will tell us if the chain is irreducible or not This follows from the fact that if j  can 
be reached from % and k can be reached from j ,  then k can be reached from % Thus, 
by inspection of the Transition matrix, in an iterative fashion, using this fact we 
can find all the closed sets, and in particular, determine whether or not the chain is 
irreducible

In fact if we find a closed set C, and delete from the transition matrix all rows 
and columns corresponding to states not in C, then, the resulting matrix is again a 
Markov matrix, in fact it is the transition matrix for the Markov chain with state 
space C

From a recurrent state only recurrent states can be reached The reason for this 
is as follows Say, for example, that from a recurrent state j  it is possible to reach 
a state * i e there is a positive probability of going from j  to i m a finite number 
of steps Then, m order for j  to be recurrent, the probability of going, eventually, 
from i to j ,  must be 1 After visiting state i, the chain will eventually visit state 
j ,  after which it will return to j  infinitely often But after each visit, there is the 
positive probability that it will visit i, thus i will be visited infinitely often, i e «is 
also recurrent

The set of all recurrent states of a Markov chain is a closed set, and can be divided,
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m a unique manner, into irreducible closed sets This is because, from a recurrent 
state only recurrent states (and not transient states) can be reached, hence the set of 
all recurrent states must be closed The division into irreducible closed sets follows 
from the fact that the set of all states that can be reached from a fixed state j  is 
by definition a closed set, and if that fixed state is a recurrent state, then it can be 
reached from any state m this set, and hence, every state m this set can be reached 
from every other state m this set via the intermediate state j ,  implying that the set 
is irreducible The set is unique for j ,  hence, the partition of the set of all recurrent 
states is unique

For an irreducible Markov Chain we can thus say that all states are transient, or 
all states are recurrent Since the set of all recurrent states is an irreducible set, it 
must be the set of all states or it must be the empty set, and in the latter case all 
states must be transient We can go further and say that if all states are recurrent 
then they must all be recurrent null, or all be recurrent non-null, and further, all 
must be aperiodic or all must be periodic with the same penod

For an irreducible finite closed set C  we can add that there are no recurrent null or 
transient states If there were one recurrent null state, then by the earlier statements 
all states would be recurrent null From any state in C, and for any given number of 
time steps, we can say that the probability of a transition to some state m C  from 
that state, m that number of time steps, is 1 This is because C is irreducible But, 
If every state in C were recurrent null, then there would be some time step for which 
all of the transition probabilities from that state were < 1/N,  where N  is the size 
C, contradicting the last statement Put simply, m order for the chain to spend a 
fantastically long time between returns to every state m the set, it would have to 
leave the set, as the set is finite, but this is impossible, as the set is an irreducible 
closed set Similarly, if one state were transient, all states would be transient, due to 
irreducibility, and again, m order for the chain to leave all of these states, which are 
finite in number, never to return, the chain would have to leave the closed set

We can now say that in any Markov Chain with a finite state space, there are no 
recurrent null states and not all states are transient
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In order to classify the states of a Markov Cham with finite state space it is 
necessary to first identify the irreducible closed sets, then all states belonging to these 
sets are recurrent non-null, and all other states are transient In order to determine 
if the recurrent state j  is periodic or not, we simply find the greatest common divisor 
of the set of all n > 1, such that, P n(j, j)  > 0 If this is equal to 1, then the state is 
aperiodic, and hence, all recurrent states are aperiodic If it is greater than 1, then 
it is the penod of the state, and of all the recurrent states In order to determine 
the g c d of the set of all the above n, it is necessary to look only at the sequences 
of states through which the chain can pass to return to j , and to count the number 
of states m enough of the sequences to be able to evaluate the g c d and hence the 
period For example if two such sequences differ in length by 1, then all of the states 
are aperiodic, as the g c d of the set of all n  > 1 , such that P n{j,j)  > 0, is 1

2.1.3 Limiting probabilities and the invariant measure
In 2 1 we descnbed how the states of a Markov Chain may be classified The use
fulness of this classification is due essentially to the fact that we can restrict our 
attention to states of one particular type This is always the case for irreducible 
Markov Chains, and we showed how the states of Markov Chain with finite state 
space can be easily classified The chains which we will be dealing with will have 
finite state spaces, but we will state the following theorem which can be used to 
classify the states of a Markov Cham with infinite state space

The theorem is of interest to us for another reason A corollary to this theo
rem, which applies to irreducible aperiodic Markov Chains (ergodic) with finite state 
spaces, guarantees the existence of a so-called invariant distribution for such Markov 
Chains [7] This invariant distribution gives us the probability, as n  tends to infinity 
,that starting m an initial state i we are in state j ,  n  steps later This probability 
depends only on j , it is independent of the initial state i In the long run the chain 
forgets the initial distribution The independence from the initial state also means 
that the absolute probability of being in state j  also tends to the invariant probabil
ity of being in this state The process settles into this invariant distribution The
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term invariant derives from the fact that if the the Markov Cham has this initial 
distribution, then it will have this distribution at all subsequent times The invariant 
distribution is also called the stationary distribution, and is sometimes referred to 
as the equilibrium distribution, this referring to the equilibnum reached by a large 
ensemble of such identical processes, where the number of processes m any state, at 
any time, tends to a constant, for large enough times, with the proportion of pro
cesses in that state being (approximately) the stationary probability of being in that 
state [8]

We now state the theorem and its corollary [7]

Theorem 1 Let X  be irreducible and aperiodic Then all states are recurrent non
null if and only if the system of linear equations,

ttO) =  H 7rW p ( ^ j )  (2 1 1 )
l £ E

E  * 0 )  =  1 (2 12)
J&E

where j  €. E , has a solution % I f  the solution exists, then it is strictly positive and 
there are no other solutions, and further,

f (j) = J ^ r (l!j) (213)
for all i , j  £ E

Corollary 1 I f  X  is an irreducible aperiodic Markov Cham with finitely many states, 
then

A j )  = Y , k (i)P( i ,j ) (2 14)
J&E

2 > 0 )  =  1 (2 15)jeE
has a unique solution The solution it is strictly positive, and

^ ( j )  = }™ 0p n (*’3) (2 1 6 )

for all 1,3 € E
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Thus an irreducible aperiodic Markov Chain with finite state space has an invariant 
distribution. It is possible to interpret the invariant distribution probability for a 
state j  as the rate at which state j  is visited [7].

If we write m (j) for the mean recurrence time for j  then, we can say the follow
ing [7],
Proposition 1 Let j  be an aperiodic recurrent non-null state. Then,

= (2.17)
n->oo m ( j )

We also have the following [7],
Proposition 2 Let j  be a recurrent non-null aperiodic state, and let n(j) be as before. 
Then,

=  7r^ ') ° -S- (2 -18)n  +  1 m=0
This tells us that the fraction of time spent by the chain in state j  is 7r (j) and it has 
the following corollary [7],
Corollary 2 Let X  be an irreducible recurrent Markov Chain with stationary distri
bution 7r. Let f  be a bounded function on E. Then,

^  =  5 3  * 0 ’) / O') a -s- (2-19)ri~i~1 m=o jeJS
And a corollary to this is [7],
Corollary 3 Let X  be an irreducible recurrent Markov Chain with stationary distri
bution t v . Let f  be a bounded function on E. Then,

lim — j r  E [f{Xm)] = Y ,  ?!' ( j ) f ( j )  independent of i (2.20)
n  '+' 1 m= 0 j e E

We could summarise some of the more important facts concerning Markov Chains
that we have described in 2.1.2 and 2.1.3 as follows. An irreducible Markov Chain
has at most one invariant (stationary) distribution. Its states are either all transient,
all null recurrent or all non-null recurrent. Further, all states are periodic or all are
aperiodic. They are all non-null recurrent if and only if the chain admits one invariant
distribution, and this is certainly the case if the chain has finite state space.
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Up to this point we have been considering Markov Chains where we know something 
about the “present” state of the chain, and we wish to know something about the
“future” states But, in some situations, it is desirable to know something about the
“past” developement o f the Markov Chain given knowledge of the “present”

If a Markov Cham has a stationary distribution, then it behaves as a Markov 
Cham if its evolution is observed in reversed tim e If the stationary distribution 
of the Markov Chain is 7r, then the transition matrix for the reversed chain has 
transition probabilities related to the transition probabilities of the forward chain m  
the following manner [8],

Q ( , ’ J )  =  * ( , )  ( 2  2 1 )

The nth step transition probabilities for this chain can be calculated in exactly the 
same fashion as they are calculated for the forward chain They are related to the 
nth step transition probabilities of the forward chain as follows,

=  (2 22)
tt(z)

Thus, the study of the past developement of the original Markov Cham reduces to 
the study of the reversed chain In the special case when Q(i , j ) =  P{i , j )  the chain 
is said to be time-reversible, and all the probability relations for such a chain are 
symmetric m time It can be shown that if P(i , j )  >  0 if and only if P(j, i)  >  0 
and if all sets o f such pairs ( ij)  are reachable from all others, then the chain is time 
reversible

2.1.4 Reversed Markov Chains and reversed tim e
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Chapter 3
The M odels
We described in chapter 1, broadly the operation of A TM . We w ill now describe in 

greater detail the situation we wish to model.

We begin by assuming that we have L independent sources or lines. Traffic from all 

of these sources is to be multiplexed onto a single transmission line using asynchronous 

time division multiplexing. Therefore we discretise tim e into fixed length slots. Each 

source produces digital information in the form of fixed length packets called cells. 

A  single cell can be transmitted in each time slot. Thus the length of a time slot is 

equal to the transmission period of the multiplexer. Cells arrive at the multiplexer at 

the beginning of a tim e slot and are transmitted at the end of a time slot. In  practice 

a cell is of size 48 bytes with an additional 5 bytes for the header giving a total size 

of 53 bytes (424 bits) [5].

3.1 Packetized Voice
W ith  packetized voice a continuous time signal is generated by the source and is 

digitally sampled at discrete instants. The standard sampling rate used in digital 

telephony is 8 kHz and a sample is 8 bits thus giving us a constant bit rate of 64 

kb/s. This digital information is then filled into the fixed length packets. Information 

is not sent by the source to the multiplexer until a packet has been filled. This process 

introduces its own fixed delay or packetization period [9]. I t  is measured in units of
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the multiplexer transmission period and we will label it s Thus s will be the ratio 
of the packetization period to the multiplexer transmission period

Speech contains, typically, 50 percent silence and hence digital telephony uses 
silence detection and suppression [5] This means that no cells are generated during 
periods of silence This produces bursty traffic from the source, what would otherwise 
be a constant bit rate output becomes a variable bit rate output, with periods of 
activity during talk spurts alternating with periods of inactivity during silences We 
will refer to active periods as burst periods and inactive periods as silences A burst 
period begins with the arrival o f a cell at the multiplexer and it ends s ticks after the 
arrival at the multiplexer o f the last cell in the burst This period of s ticks after the 
last cell of a burst is referred to as the overhang period One tick after this period 
has ended a silence is said to have begun, and it continues until the next burst begins 
with the arrival of another cell at the multiplexer Thus burst periods are multiples of 
s ticks m length A burst period then, consists a period of cells arriving periodically 
every s ticks, plus the overhang period of s ticks We illustrate this in figure 3-1

burst silence burst

I I I I I I I I I I ................ I J_l I J I T 1
time (ticks)

(overhang)

Figure 3-1 Sample of traffic on a single line

The group of cells arriving dunng a burst period we will refer to as a burst The 
length of a burst will then be measured as the number of cells in the burst Bursts 
and silences are of random length During normal conversation the duration of talk- 
spurts fits the exponential distribution reasonably well while the duration of inactive 
periods is approximated less well by the exponential distribution But we will assume, 
as others have, that both active and inactive (real-time) periods are exponentially
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distributed [10]. Thus bursts and silences are of random length and, since we are 

operating on a discrete tim e scale, we assume that burst and silence lengths are each

i.i.d ., and further that silence and burst lengths are independent of each other. We 

w ill define the probability that a burst continues for another cell to be a  i.e.

and hence the expected numbers of cells in a burst, and the expected number of ticks 

in a silence are,

3.2 Superposition of Packetized voice sources

tized voice sources. The arrival process at the multiplexer w ill be the superposition 

of the L individual arrival processes.

The multiplexer serves one cell per tick, and the ratio of the packetization period 

to the multiplexer transmission period is s ticks. Thus s active voice sources w ill 

just saturate the multiplexer, or to put it another way, the multiplexer w ill be not be 

idle at any time during a period of length at least equal to the length of the shortest 

burst period among the s active sources. And, during the period when s sources are 

active, at the end of each interval of s ticks starting from the tim e of the first arrival,

geometrically distributed, and that burst lengths are i.i.d . and silence lengths are

a  =  P  [burst continues] (3.1)

and we define the probability that a silence continues for another tick to be (3 i.e.

(3 =  P  [silence continues for another tick] (3.2)

Then,

P  [burst =  n cells] =  (1 — a ) a n 1 
P[silence =  m  ticks] =  (1 — /?)/?m_1

(3.3)

(3.4)

E  [burst length] =  — -—
1 —  a

(3.5)

(3.6)

In  the situation that we are modelling, there w ill be L independent identical packe-
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an arriving cell w ill find the buffer empty. In  other words over this period when s 
sources are active, cells w ill not accumulate in the multiplexer buffer. Conversely, 

during periods where more than s sources are active, cells w ill accumulate in the 

multiplexer buffer; the length of the queue in the multiplexer buffer w ill grow over 

this period. A fter s ticks from the tim e of the first arrival, all arriving cells w ill 

find the buffer occupied. However, once the number of active sources falls below 

s the back-log of cells in the buffer can be cleared. And, during any such period 

when the number of active sources is less than s, the buffer queue length decreases 

to zero, except for periodic fluctuations, after which, arriving cells find the buffer to 

be empty. These high frequency periodic fluctuations are the only contribution to 

the queue length in the m ultiplexer buffer when the number of active sources is less 

than or equal to s, and are simply due to the simultaneous arrival of two or more 

cells at the multiplexer. In  other words, these high frequency fluctuations in queue 

length are due to an instantaneous increase in the cell arrival rate at the multiplexer 

above the service rate, as opposed to a temporary increase in the average arrival 

rate, over a period of tim e greater than s, to above the service rate, as occurs in 

the case where the number of active sources exceeds s. The former leads to short 

length, short term queues, the latter can result in long queues lasting long periods 

of time. Large queues are also subject to these small high frequency changes. But 

these fluctuations are unimportant in the growth of large queues. They are however, 

an important consideration in buffer dimensioning. In  order to accurately estimate 

the queue length distribution, the contribution to the queue-length from the cell-level 

component must be taken into account. The queue in the multiplexer buffer can be 

viewed as having two components: the burst-level component and, added to it, a 

cell-level component.

When the number of active lines over a period greater than s ticks exceeds s or 

equivalently when the average arrival rate over a period greater than s ticks exceeds 

the service rate, we are in what is referred to as a heavy traffic regime. A  heavy 

traffic regime results in long term large queues. This is referred to as burst level 

congestion. When the number of active lines over a period greater than s is less

2 2



than s then we are in a low traffic regime and we have short term, short length 
queues i e high frequency fluctuations of small amplitude in small queue-lengths 
This is referred to as cell-level congestion A defect m many of the models used to 
study ATM multiplexer congestion has been the failure o f the models to properly 
take these high frequency, low amplitude queue-length fluctuations into account For 
example Daigle and Langford [10] describe three models A  Semi Markov Process 
model, a Continuous time Markov Cham model, and a Uniform Arrival and Service 
model The first and last of their models ignore the high frequency fluctuations 
completely, and as a result, underestimate cell level congestion by assuming no queue 
length changes under a low traffic regime Their Continuous time Markov Chain 
model overestimates cell level congestion by implicitly assuming higher frequency 
fluctuations m queue length than can occur m the system being modelled These 
observations were confirmed by their simulations

Each individual source generates an arrival process that is in fact an alternating 
renewal process But because of the bursty and periodic nature o f individual sources, 
the superposed arrival process is not a renewal process, the mter-amval times of 
the superposed process are negatively correlated and the average arrival intensities 
over penods longer than s are positively correlated Only a superposition of Poisson 
processes is itself a renewal process, in fact again a Poisson process, and modelling 
the superposed process by a Poisson process has been shown to be unsatisfactory [11]

3.3 Modelling traffic from a single source
In this section we will describe how we model traffic from an individual source 
The model we introduce in 3 3 1, the C e ll L evel M o d el, is new and is the model 
which we will use throughout the thesis The model we describe in 3 3 2 the B lo ck  
L evel M o d e l has been studied in detail by Buffet and Duffield [3] We will make a 
comparison between the two models in Chapter 4
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3.3.1 The Cell Level Model
We will model traffic from a single source in the following manner Define the random 
variable X  (t) where t  6  N  and X  (i) takes values m the state space E =  { 0 ,1 ,2 , , s}
by,

X (t ) =  m in{s, time since last cell arrival from the source at the multiplexer}

Then X  (t) =  0 means an arrival from this source at time t  And X  (t) is a Markov 
Chain Its transition diagram is shown in Figure 3-2

Figure 3-2 Cell level transition diagram for single line

The periodic nature of the arrivals from a single source means that transitions 
from state 0 through to state s — 1 each occur with probability 1 At state s — 1 either 
a cell arrives with probability a  (i e the burst continues) and the state of the source 
makes the transition from state s — 1 to state 0 or the transition from s — 1 to s 
occurs l e the burst ends and a period o f silence begins with probability 1 — a  From 
state s transitions can occur to state s i e the silence continues with probability (3, 
or to state 0 î e the silence ends with the arrival o f another cell and the beginning of 
a new burst with probability 1 — /? The following is the (s +  1) by (s + 1 )  transition

24



matrix for this Markov Cham model for a single line,

( 0 1 • 0 0 0

0 0 0 0 0
0 0 • 0 0  0

p  =

0 0 0 1 0
a 0 • 0 0 1 — a

\ l - ß  0
The states of this Markov Chain form an irreducible closed set and are recurrent 

non-null aperiodic (ergodic) Recall form Chapter 2 that they form an irreducible 
closed set because every state can be reached from every other state i e for each pair 
of states % and j  there exists an integer n such that P n(i,j)  >  0, this can also be 
seen from the transition diagram Recall such a Markov Cham is termed irreducible 
Further, from 2 1 3 ,  since the state space is finite all states are recurrent non-null 
(since none axe transient and all states must be either transient or recurrent non-null 
by irreducibility) Finally from 2 1 3 all states are periodic or aperiodic and since a 
transition is possible from s to itself, i e P(s, s) >  0 the g c d of all n >  1 such that 
P n(s,s) >  0 is 1 that is s cannot be periodic, hence all states are aperiodic All of 
this implies from 2 1 3  that the Markov Cham has a unique stationary distribution 
In fact it has stationary distribution,

The cell level model described above is the model of greatest interest to us But a 
simplified model (studied m detail m [3]) which we will call the Block Level Model 
can be derived from it, and, in chapter 4 we compare the effective bandwidth decay 
rates for the two models The block level model is derived from the cell-level model

7T 1 ■ 1 1 (3 7)

We will refer to this model from now on as the c e ll- le v e l m o d e l

3.3.2 The Block Level Model
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by looking at the cell-level model on a different tim e scale, we look at the number of 

arrivals in each block of s ticks Thus we define a new random variable Y  and define 

a block to be a unit of tim e of size s ticks during which a cell may or may not arrive 

We define Y  as follows,

y, E {0,1}

Yj =  0 if  no cell arrival m block number j  
Yj =  1 if  one cell arrival m block number j

(3 8) 

(3 9) 

(3 10)

We could relate this process to the X  process by w riting X JS for the state of the 

source at the jth. tick m the kth block Then,

Yj =  0 => X JS_i =  s 
Yj =  1 =£► X jS_i <  s

(311)

(312)

But this process w ill not be a Markov Chain unless we make the incorrect assumption 

that the end of one burst and the beginning of the next cannot occupy the same block 

This is clearly possible as is illustrated in the figure 3-3

block block block

J _ L I I I I

end of burst

J__ L ...........................

time(ticks) ------^

beggining o f next burst

Figure 3-3 Bursts overlapping m a block

Instead we w ill define Y  as m and assume that Y  is a Markov Chain w ith the 

transition diagram shown in Figure 3-4 The transition m atrix for this Markov Cham  

is,

P = (  I (313)1 — a a
d 1 — d
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Where a and d are defined by,

a =  P K +1 =  1\Y, =  0] 

d =  P  K +1 =  O K  =  1]

(314) 

(3 15)

We can see from these equations that a is the probability that a silent source

1-d

Figure 3-4 Block Level Transition Diagram 

becomes active and d is the probability that an active source becomes silent Thus,

a =

d =

P  [silence <  s] 
1 -/f

P  [burst ends] 

1 —  a

(3 16) 

(3 17) 

(318) 

(3 19)

This Markov chain has unique stationary distribution,

’r = i T d ( d ° ) (3 20)

As described earlier, the traffic presented to the multiplexer, w ill be the super

position of the traffic from all of the individual sources We w ill be interested in 

homogeneous superpositions, where all of the sources produce traffic which generates 

the same arrival process at the multiplexer for each individual source
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The effective bandwidth  
approximation

4.1 Effective bandwidth approximation
In  this chapter we use the theory of large deviations to find an approximation for 

for the ta il of the queue length distribution for the queue in an infinite buffer served 

at deterministic service rate where the arrivals are a homogeneous superposition of 

arrivals from sources modelled by the cell level model this can be used to approximate 

the the probability of buffer overflow from a finite buffer fed by the same arrivals 

process with the same service rate. The approximation is known as the effective 

bandwidth approximation [2] and is of the form,

P[<7 > b] fa e~lh
where 7  is a constant. We also calculate the effective bandwidth approximation for the 

queue length distribution for the queue in an infinite buffer served at deterministic 

service rate where the arrivals are a homogeneous superposition of arrivals from 

sources modelled by the block level model [3]. We compare the decay rate constants 

for each model. In  this we apply the work of Glynn and W h itt [12], Lewis and 

Russell [2] and Duffield et al [13] to our new cell level model and to the block level 

model already studied in detail in [3] to obtain the decay rate constants in each case. 

We then compare the two constants. In  Section 4.1.2 we state the Large Deviations

Chapter 4
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result of Glynn and W h itt [12] and explain their result using the work of Lewis and 

Russell [2]. We also state w ith proof an expression for the decay rate constant 7  which 

is to be found in [2]. We give a proof from [2] of the Glynn and W hitt result [12]. In  

Section 4.1.3 we explain the term effective bandwidth approximation [2]. In  Section 

4.2 we give results from [13] on calculating the decay rate constant. In  Section 4.3 

we apply these results to calculate the decay rate constant for our new model the 

cell level model. In  Section 4.4 we do the same for the block level model of [3]. In  

Section 4.5 we compare the two decay rate constants and prove that the decay rate 

constant for the cell level model is smaller than that for the block level model.

4.1.1 The equilibrium queue-length
Our problem consists of finding an upper bound or approximation for the ta il of the 

queue-length distribution of a single server queue operating in discrete time with  

a FCFS service discipline and an infinite buffer, where there are non-independent 

arrivals to the queue. Let qn be the queue-length at time —n. Then the queue-length 

at time 0 w ill be the sum of the queue-length at time —1 and the arrivals at tim e — 1 
minus the work done by the server at time —1. The queue is never negative, thus, 

if  the server can do more work than the work presented to it at time —1, then the 

queue-length w ill be 0. Let Un be the arrivals at time — n. Let Yn be the work the 

server can do at time —n. Then we can write the following Lindley equation for the 

queue-length at tim e 0,

q0 =  sup{0, U\ - Y i + q i }
We can iterate this equation as follows,

q0 =  sup{0 , Ui — Yi +  qi}
— sup{0, U\ — Y i +  sup{t/2 — U2 +  92} }

=  sup{0 , Ui — Yi +  U2 — Y2 +  92}

=  sup{0 , U1 +  U2 — (Yi +  Y2) +  <72}
Let An — Ui and Sn — 5Z" Y*i; i«e. An is the number of arrivals up to tim e —n and 

Sn is the service that can be performed up to tim e - n .  Let Wn =  An -  Sn, then Wn
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is called the workload process We w ill define Wq =  0 Then iterating equation 5 1 

t  — 1 times we get,

q0 =  sup{ Wo, W i, ,W t +  qt}

We are interested in the equilibrium queue-length Any queue w ith a FCFS service 

discipline and stationary ergodic arrivals Ut and services Yt has a unique stationary 

distribution if  the load is less than 1 [14] The equilibrium queue-length is then given 

by,

q =  sup Wt
t> o

4.1.2 Large deviations
We are interested in finding an approximation to, or upper bound on, the ta il of the 

queue-length distribution of a queue w ith non-independent arrivals We can do this 

using the theory of Large Deviations Glynn and W h itt [12] showed that if  (^ M ) ,  

where t  is discrete, satisfies a Large Deviation principle with rate function / ,  i e ,

P [—  >  w] «  e~tT̂
L t  ~  1

then,

P [<7 >  b] ss e~lb

and,

- I (w )7  =  in f -w w

The reason for this is indicated by the following [2],

P [<7 > 6] =  P[sup Wt >  b] 
t> o

=  p[(j{ff,>i)]
t> o

<  £ P [W i> & ]
t>o
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but,

W* b
P  [Wt >b]  =  P [ ^ > ^ ]

«  e~tT̂

=  e~bW

Thus,

. 1 ( b )  h H>>/2)  . I ( b / t )
P [ g > 6] «  e~b b + e b~ V ^ +  + e b~b7r +

binf.

=  e~lb

Hv>)

w ith the second equality due to the fact that the term that dominates the nght hand 

side of the first for large b, is the term for which the exponent is smallest We can 

derive a further expression for the decay constant 7  [2],

te-V
I w yj

4 » 9 < for all ww
0w — I(w) < 0 for all w
sup{w|0u; — I(w) < 0}

0V
I

S'

7  =  sup{0|A(0) <  0}

where X(9) is the scaled cumulant generating function (C G F) for the workload pro

cess

The following is a rigorous proof of the result for the asymptotic decay rate of the 

queue-length distribution ta il [2] Recall,

Thus,

q =  sup Wt 
t> 0

t>0
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{ q > b } D  {Wt > b}
which implies, for a l i i  >  0

P [q > b] >  P [Wt > b]
Let b =  tw for fixed w >  0 Then,

Wt b {Wt > b }  =
=  {T >™>

Thus for each t  > 0

hence,

which implies,

and hence,

P  [q>b] >  P  [Wt >b] 
Wt>  P [—  >  w] t

i l o g P ( i > 6] >

1 1 to Wt
lim in f-lo g P fg  >61 >  lim in f— - lo g P i—  >  w]b—too b LI -  J -  w }j ° t  ~  J

=  — lim m f -  lo g P f—  >  w] w t->oc t  1 t ~ 1
>  J(w)
— w

This is true for all w >  0 thus,

lim in f \  logP[g >  6] >  sup{—— }
6 - k j o  o  w > 0  w

=  - m f i M
UJ>0 W

In  order to complete the proof it  is necessary to get an upper bound on the lim  sup 

Let the sequence of random variables {Wt}t> o satisfy the conditions of the Gartner- 

Ellis theorem [15] That is, for all real 9 let,

A,(9) =  ilo g E [e« ]  
A (9) =
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and let the lim it exist and be finite Further, let 7  =  sup{0|A(0) <  0}

Then consider the set {0|A(0) <  0} I f  this set is empty then 7  =  —00 and then,

lim  sup ^ log P[q > b \  <  —7
6—>00 0

I f  the set is not empty then let 9 <  7  be an element of this set Then from Chemoff’s 

bound we have,

P[Wt >  b] <  e~§bE[e§Wt]

But ~E[e**Wt] is finite, thus,

lim  sup lo g P [Wt >  b\ <  —9
b - t o o  b

Now for each integer N,
t = N

P[supW i >  b] <  ^ P  [Wt >b]
t < N  t = l

<  TV sup P ^  >  b]
t < N

But this implies,

lim  sup ^ log P  [sup Wt >  b\ <  sup lim  sup \  log P  [Wt >  b]
6—>00 b  t < N  t < N  6—K5o b

<  - 9
We also have,

t = N
P[supWt >  b] <  V P [Wt >b]

t<N t= 1

<  e ^ h J2 V[edWt]
t > N

=  e~°b £  etXt{§)
t > N

Now the limt̂ -oo At(0) =  X(9) <  0, thus there exists e >  0 such that A <  —e, and 

there exists an integer N(9)  depending on 6 such that At(9) <  —e for all t  >  N(0) 
This implies

P  [sup Wt >  b] <  e~eb eie
v 
1

t > N

< e~eb
1 — e_e
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implying,

Thus, as

lim sup — log P  [sup Wt >  b] < - e
b—>cx> b  t < N

1

lim  sup \  log P  [sup Wt >  b]
b - t o o  b  t>o

is equal to,

m ax{lim  sup -  lo g P [ sup Wt >  6], lim  sup— logP [ sup Wt >  b}}
b - x x  b  t < N { § )  b - > ° °  °  t > N ( 6 )

we have,

lim  sup ^ log P  [sup Wt >b] <  —9
b—t o o  b  t >  0

and this is true for all 9 <  7  and hence,

lim  sup ^ log P  [sup Wt >  b] <  —7
6->oo b  t >  0

Thus together w ith the lower bound we have,

lim  7“ log P [q >  b\ =  - 7
0—voo 0

as required

This tells us that the ta il of the queue length distribution is asymptotically log-linear 

w ith slope - 7  [2]

4.1.3 Effective Bandwidths
The approximation, for large b,

P[? b] fa e~lb

is called the effective bandwidth approximation [2], for the following reason Con

sider the situation which is of concern to us We have an arrival process served at 

deterministic service rate r , 1 e the workload process is,

Wt =  A t - r t
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A(0) =  Um j  logE[e0Wi]

=  lim  -lo g E [e 0Atl — r6
t-HX> t 6  L J

=  A (9 ) - r d

where X(9) is the scaled CG F of the arrivals process. Thus we can write the following,

7 (r) =  sup{0 |A(0) <  r0}

which gives us 7  as a function of the service rate r. Now if  our queue has finite 

waiting space, i.e. we have a finite buffer, then we can use the effective bandwidth 

approximation to give us an upper bound on the probability of the buffer overflowing. 

This is because the probability of finite buffer overflow is bounded above by the 

probability that the infinite buffer queue length exceeds the finite buffer size. This 

leads us to the reason for the term, effective bandwidth. I f  we have a prescribed 

probability of buffer overflow in an A TM  network of, say y, and we have a buffer of 

fixed capacity b, then we would want to know what is the minimum service rate needed 

to guarantee that the probability of buffer overflow w ill not exceed our prescribed 

value y. Using our upper bound we get the following for this service rate r(y)

r(y)  =  in f{r|e ~7^ 6 <  y}

From which we get,

/  ̂ K9y) r(y) = - y 1
V y

with Qy =  w e cau effective bandwidth of the arrivals. I t  is the

minimum transmission bandwidth needed to guarantee that the probability of buffer 

overflow w ill not exceed the prescribed value y.

thus the scaled CGF is,

4.2 Calculating the decay rate constant
The decay rate constant 7  can be calculated for our models of an A TM  multiplexer 

by using the scaled CG F for the workload process [13]. Our model is an example of
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a finite state Markov Additive Process for which 7  can be found using the following 

technique from [13]. The workload process for the homogeneous superposition of L 
independent sources served at rate r , is,

<  =  Y , ( 4 ' - r / L )
1 = 1

Where is the number of arrivals from source I up to tim e —t. The first thing we

note is that if  we let X f be the vector of states (X (1), ........, in the state space

E  =  E xL, then X t is the state of the system of L sources or lines at tim e — t, and is a 

Markov Chain w ith transition m atrix P  =  P®L where this means the outer product 

of the transitions matrices for the L lines. I f  we let the increment in the workload be 

Z (x t ) when X t =  x t then,

E [gW i] =  • • • S  e *£ » = iz(xt) n  P (X n =  xn|X n_i =  x „ _ i)7r(x i)
x i e E  x t e E  n = 2

where 7r(x i) is the probability that X ! =  x ,. The product of the t — 2 transition 

probabilities with 7r(x !) is just the jo int probability of the t state vectors. I f  we write,

P ( « ) ( x , , V i )  =  eiz <*">P(X„ =  x „ |X „_ , =  x„_ ,)

and write,

7r(0)(x!) =  eez X̂n 7̂r(x!)

then we have,

E  [ew ‘L] =  7r(0)P (0)4l T

And hence,

=  t1liS ) i log^ ( 0)p (0)tlT ]
=  log[sp(P(0))] (4.2)

where sp(A) means spectral radius of the m atrix A. Note we can write P (0 ) as 

P D e -i> where D  =  D®1 and D  is the diagonal m atrix w ith e6n̂  in the (x, i) position 

where n(i) is the number of arrivals if  a source is in state i. The above result follows
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from a result of Frobenius [7] which says, if  a m atrix A  is positive; i.e. all its entries 

are non-negative and at least one entry is positive, and if  the m atrix raised to some 

power is such that all its entries are positive, then, lim n^oo (spfo))̂  =  B  where all 

entries of B  are non-negative. Now if the Markov Chain X t is irreducible, recurrent, 

non-null and aperiodic then P (0 ) satisfies the conditions of this theorem because P  

does and because D  is a diagonal m atrix w ith positive diagonal entries. Thus we can

Km i  log [ir(0)P (0)*lT] -  Um \  log[(sp(P (0)))‘] =  Hm i  l o g l ^ ^ - ]

=  lim  -  log[7r(0)B (0) l T]
t - y o o  t  

=  0

Where B  plays the same part here as B  in the theorem of Frobenius. We have 

therefore,

=  f e 7 1°s[7r(0)p (0)ilT ]
=  jlog[(sp(P(ff)))*]
=  log[sp(P(0))]

as required.

Now if X t is stationary and recurrent and irreducible, then sp(P(0)) is in fact the 

maximum of the moduli of the eigenvalues of P  (9). For our models the individual 

sources are modelled by Markov Chains which satisfy this condition and, hence X t 

satisfies this condition. The problem of finding 7  reduces therefore to finding positive 

9 for which the log of the maximum of the moduli of the eigenvalues of P (0 ) is 0.

4.3 The cell level model
In  order to find the decay rate constant 7  for the queue qL produced by the homo

geneous superposition of L sources modelled by the cell level model, we need to find 

the maximum of the moduli of the eigenvalues of the transformed m atrix, P (0 ) for 

the superposed process.
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Define v as follows,

v(9) =  sp(P (0))
=  sp (P D e -0 )

where,

P  =  p®L 

D  =  D®l

Then define v as follows,

v(9) =  sp (PDe~°lL) 
=  e~e/Lsp(PD)

Recall that 7  is given by,

7  =  sup{0|A(0) <  0}

But,

Thus,

But,

Thus,

A(0) =  logsp (P (0)) 
=  log t)(0)

7  =  sup{0 |?)(0) <  1}

m  =  (v(e))L

7  =  sup{0 |i)(0) <  1} 
=  sup{0 |w(0) <  1}

Now,

v(9) =  e e/Lsj> (PD) 
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And sp (PD) is just the largest eigenvalue o f PD  In order to find v{9) we need to  
find the largest eigenvalue of matrix P D  Recall that the transition matrix A for the 
forward Markov Chain for a single line m the cell level model is,

/

A =

0

0

0

1

0

0

0 0 

0 0 

0 0

0

0

0

0 1 0
0 0 1 - a
0 0 ¡3

0 0 • 

a 0 

\ l - / 3  0 •
We are working in reversed time, that is we are looking at the arrival process reversed 
in time Thus we want the reversed Markov chain transition matrix P  with entries 
given by,

P  -  —A
lJ ~  7Tj

Where 7r i s  the unique stationary distribution of the Markov Cham

1 for j , j  6  { 0 , , s — 1} and for i =  j7T3  _

7Tj
TTr

7Tt

Thus we have,

P  =

1 — a  
1 - / 3 for %=  s and j  e  { 0 , , 8 -
1 - ( 3  
1 — a for j =  s and i E { 0 , , s ~

( 0 0 • 0 a  1 \— a
1 0 0 0 0
0 1 • 0 0 0

0 0 0 0 0
0 0 1 0 0

0 • 0 I - (3
p  J
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1 ee 0 
0 1 0 

0 0

and the (s +  1) x  (s +  1) matrix D  is,

D =

0  0  0

0  0  0

0  0  0

0 0 

0 0 

0 0

1 0 0 

0 1 0 

0 0 1
Thus the transformed matrix is,

P(9) =  PDe~0/L
where,

PD  =

0 0 • 0 a 1 — a
ee 0 0 0 0
0 1 0 0 0

0 0

0

0

0

\

0 0 

0 0

0 0 0 1 -/? /?

The characteristic equation of matrix PD  is,

Det (x — PD) =  —xs+1 +  (3xs +  ae0x +  e0(l — a — /3) 
=  g(x,o,s)

Thus,

v(9) =  e~6!L sup{x|p(x, 9, s) =  0}
=  su p {V \g(x‘e0/L, 9, s) =  0}

Where we have put xl =  xe~°/L Thus we have the following for 7 ,

7  =  sup{0| SYvp{xi\g(xie9lL, 9, s) =  0} <  1}
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Thus to find 7  we should attempt to solve,

g(ee/L,0,s ) =  0

Then 7  will be the supremum of the resulting solution set This gives us the following, 

_ e { s + i ) e / L + p e s o / L  +  a e e e o i L  +  e e ( l _ a _  p - )  =  o (4 3)

Note that the 7  which we would obtain if we could solve this equation and find the 
supremum of the solution set would depend on L Now we are interested in finding 
the decay rate constant for the queue qL produced by the superposition of L sources 
for large L 1 e the queue for a large multiplexer The load p of the multiplexed system  
is,

________ L________
P s  +  (1 -  ex)/(I -  ¡3)

This is dependent on L The requirement for stable queuing is that p <  1 Thus in 
order to study the queue for different values of L we will have to scale the parameters 
of the model to ensure that p remains constant To this end we define the constants 
(w r t L) a  and r  as follows,

s

T  =  L( 1 - / 3 )

That is we scale s and /3 m a manner that makes p constant w r t L Putting the 
rescaled parameters into our equation for 9 we get,

Rearranging this so that all the L dependent terms appear on the same side we get,
= a (ee/L ~ l ) +  l  

V /L ~  1) +  I
Now consider the behaviour of 7 (L) w r t L We know 7 (L) solves the above 
equation Thus consider the right hand side of that equation,

a ( e e!L — 1) +  £ a ( e ° lL — 1) +  +  (1 —
(e°!L —  1) +  f (ee!L —  1) +  £
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t

Thus for all L > 0 we have,

_  a W L ~ !) +  r )  | t1 - « ) !
(e»/L_l) +  i + (e*/i- 1) +  J

(1 -  a ) i—  CK -f- -----------  ---
a + (eHL-l) +  i 

> a

e(l - < r ) y ( L )  <  I  (4 5)a
Hence the sequence o f gammas depending on L, y(L), is bounded above as follows,

7 (£ )  <  g y l° g [ l/a ]

For typical values o f a  and a  the right hand side of this inequality will be much 
smaller than 1 Thus y(L) will be much smaller than 1 Now consider the following,

( l - a ) f ;  (1 -  a)r
a +  — j7\ r7— ^ — - =  a +  v '(C7(L)JL _  1) +  r ~  1 -  1) +  r

(1 — a ) r  ,.<  aH— 7-- ; (4 6)
7 (L) +  r

_  a y  (L) +  r  
7 (L ) +  r

In fact if y(L) is small (and/or L is large), we have,
(l-a)f (1 —  a)ra  +  , ,r\,r-----— =r =  a  +  — v 1

(4 7)

(ei(L)lL - ! ) - ( - £  L(ei(LyL — 1) +  r

(1 —  a)r 
y(L) +  r  

_  ary(£) +  r  
7 (L ) +  r

Thus we obtain the following equation for an approximation for 7 (L)
e(ff-ih (L) =

7 (L) +  r

But the solutions to this equation are independent o f L and are much smaller than 
1 for typical values of a  and a, hence we can write the following equation for 7 an 
approximation for the decay rate constant for the queue-length qL that is independent 
of L

1 _  a y  + r
l  +  ( l - c r )7  7  +  t
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a(l  — a j j 2 +  (r ( l  — a) — (1 — a))^ =  0

giving us the quadratic equation,

Which gives us,

„ =  (L = o;(l — a)
7  =  ( 1  -  O )  -  ^ ( 1  -  < T )  ( 4 g )

This is positive as required because,

p =  a + l=*
T

<  1

which implies,
I -  a a  H >  1

and this implies,

1 —  a  —  t ( 1 —  a) >  0

As noted earlier we can use the effective bandwidth approximation to give us an 
upper bound on the probability of overflow of a finite buffer m an ATM multiplexer 
In the next section we find 7  for the block level model

4.4 The block level model
In chapter 3 we described a 2 state Markov model Y  from [3] as follows We let the 
state space E =  {0 ,1 }  and define the transition matrix to be,

P  = (  1 \1 — a a
d 1 — d

Where,

a =  P[Fm  =  l\Yt =  0] 
d =  P[Yt+l =  0\Yt =  l] 

43



This has unique stationary distribution,

T = ^ T d i d a )

And

ft i Pij —  7tjPj%

implying that the Markov Chain Y  is reversible, 1 e the m atnx for the reversed chain 
is also P  As with the cell level model,

p  _  p ® L

and,

D  =  D®l

and for the states j  G E  we have for the number of arrivals z3 when Y  is m state j ,

P[z(Yt) =  Zj\Yt =  j] =
J e  {0 ,1 }

1 If z3 =  J  

0 otherwise
Hence,

Pie) =  p„(0)
=  PtJe0(Z]~s/L)

That is, the diagonal 2 x 2  matrix D  is,

D =

and therefore the transformed matrix is,

1 0 

0 e0

P(d) =  PDe~0s/L
Where,



D et( x I - P D )  =  x2 -  ((1 -  a) +  (1 -  d)ee)x +  (1 -  o )( l  -  d)ee -  ode6
=  x2 — ((1 — a) +  (1 — d)ee)x +  (1 — a — d)eB
=  h(x, 9)

As in the cell-level model in order to find 7  we now solve, w ith =  |

Me7' ,  7) =  0 

Then assuming that 7  is small, we have the following,

(1 +  7 a)2 -  ((1 -  a) +  (1 -  d)( 1 +  7))(1  +  7 a) +  (1 -  a -  rf)(l +  7 ) =  0

Then,

72(a(cr -  (1 -  d)) +  'y((a +  d)a -  a) =  0

The characteristic equation of P D  is,

hence,
((a +  d)a -  a)

7 a(( 1 -  d) -  a) (4

4.5 Comparison of block and cell level models
The cell level model captures more of the features of the situation we wish to model 
than the block level model But we would like to know if the bound on the tail of 
the distribution of the block level model queue is more, or less conservative than the 
bound on the the tail of the distribution of the cell level model queue If it is more 
conservative then we could use it for dimensioning the buffer in an ATM multiplexer, 
in place of the cell level model upper bound If it is less conservative then we could 
not The answer to this question is the latter, as TBlock >  TCell

((a +  d)a -  a)
Ceil a ((i_rf) _ a)

_  (1 ~  a) -  t(1 -  <r) 
TBtock -  a { l - a )
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In  order to compare the two models we must first relate the parameters from each. 

The defining equation for a means that a is the probability that a silent line becomes 

active, which for the cell level model means P  [silence <  s]. But this is just 1 — (3s, 
and (3 is close to 1 i.e. 1 — /3 is close to 0. Thus we have,

a =  1 -13s
= 1 -  (1 -  (1 -/?))'

«  1 —  1 +  s(l — (3)
= s ( l ~P)

Sim ilarly d is the probability that an active line becomes inactive which for the cell 

level model is 1 — a. Thus,

d =  1 — a

Hence,

T =  L( 1-/3) 
a= L -sa

a
W riting both Tjjlock and TCell terms ° f  a, ^ and a  we get,

(a +  d)a — a 
7Block “  a{ 1 - a ) - d a

(a +  d)a — a 
^Cell — a) — da (I — a)

and 0 <  a < 1. Thus, da > da( 1 — a) and we have,

7Block >  TCell

Hence the block level upper bound on buffer overflow is less conservative than the 

cell level upper bound.

The effective bandwidth approximation deals with large b. It  tells us nothing 

about small b. I t  also tells us nothing about the economies of scale that may be
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possible in large multiplexers And in fact the effective bandwidth approximation 
overestimates the probability o f cell loss from a finite buffer with bursty arrivals On 
the other hand the effective bandwidth approximation shows the multiplexing gam  
m large buffers
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An Upper Bound V ia M artingales

Chapter 5

In  this chapter we use the theory of Martingales to prove two new upper bounds of 

the form,

P [q > b ] <  <t>e~lb (5.1)

one for the full queue for the cell level model which includes the cell level queue the 

other for the burst level queue of the cell level model. The cell level queue is due to 

arrivals over a period shorter than the packetization periods in a multiplexer with  

a service rate of 1 cell per tick. This gives rise to short queues when the arrival 

rate temporarily exceeds the service rate. The burst level queue is due to arrivals 

over periods longer than s and is due to the average arrival rate over such a period 

exceeding the service rate. This gives rise to longer queues. The upper bound for the 

full queue does not exhibit the economies of scale seen in large multiplexers for any 

parameter values. The second upper bound does exhibit the economies of scale and 

is an improvement over the effective bandwidth approximation in terms of bounding 

the ta il of the queue length distribution of the burst level queue. That is, </> < 1 and 

(f> <  <3>L <  1 for some parameter values and for $  independent of L for this queue.

5.1 Martingales
Martingales were first studied by Levy but the development of the theory of M ar

tingales is due to Doob [16]. The term first appeared in connection with g a m b l in g
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and the basic idea underlying the concept is that of a game being fair [17], in the 
sense that a players conditional expected future fortune is the players current for
tune In this context the terms submartingales and supermartingales correspond to 
favourable and unfavourable games respectively [17] Martingale theory has devel
oped a scope far beyond its gambling origins In the context o f finding upper bounds 
queue length distributions Kingman [18] used the theory o f Martingales to obtain ex
ponential bounds for the queue length in the GI\G\1 queue Motivated by Kingman’s 
result Buffet and Duffield [3] used Martingale methods to obtain an upper bound on 
the queue length distribution for the block level model o f our Chapter 3, which can 
be viewed as an approximation for the burst level component of the queue in an ATM 
multiplexer We will use similar methods to obtain an upper bound on the tail o f  
the queue length distribution for the cell level model We begin with the definition 
of a Martingale Then we define a Markov Time (stopping time) Then we state two 
theorems which are used or appear m this chapter, due to Doob, an Optional Stop
ping Theorem for non-negative martingales and the Maximal Inequality for Positive 
Submartingales [16]
D efin it io n  1 Let {Mn} be a sequence of random variables defined on a probability 
space (O, T, P) Let {Fn} be a sequence of sub-a-algebras of T  with Tn C F »+i C T  
for all n Then {Mn} is called a submartmgale with respect to J  if,

•  Each Mn is Tn -measurable
•  E[JW„+] <  oo for all n
•  E[M n+11 ^ ] >  Mn for all n

where M + =  m ax{M n, 0} If { —Mn} is a submartmgale, then {Mn} is called a 
supermartmgale If both {Mn} and { - M n} are submartingales then {Mn} is called 
a martingale with respect to {J~n)
D efin it io n  2 Let {Tn) be a sequence of sub-a-algebras of T  with Tn C Fn+l C T  
for all n A random variable T  taking values in {0 ,1 , , oo} is called a Markov time
with respect to {Fn}, if for every n =  0 ,1 ,2 , , the event {T  =  n} is in Tn i e ,

{a; e  ftjT(a;) =  n} G Fn for all n (5 2)
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D efin it io n  3 Let {^ n } be a sequence of sub-a-algebras of T  mth Tn C .Fn+i C T  
for all n A random variable T  takmg values in {0 ,1 , , 00} is called a Markov time 
with respect to {̂ Fn}, if for every n =  0 ,1, 2, ,

This can be rewritten m the form of Definition 2 4,

{ T < n }

1 if T < n (5 3 )
0 otherwise

is Tn -measurable
Next we state an Optional Stopping Theorem [16] for positive martingales, (Theorem  
4 2 page 267 in [16])

T h eo rem  1 Let {Mn} be a martingale with respect to {J-n} and let T be Markov 
time with respect to {J~n} If Mn >  0 for all n, then

E [Mt I{t« x>}] <  E [M0] (5 4)

The following is called Doob’s Maximal Inequality for Positive Submartingales [16],

T h eo rem  2 Let {Mn} be a positive submartmgale Then for any positive m,

P[sup{M 0, , Mn} > m ) <  — E[Af„] (5 5)
m

5.2 M otivation
Kmgman [18] used the theory o f Martingales to  obtain exponential bounds for the 
queue length in the GI\G\1 queue Basically this involved proving that if { l^ } n>o is 
a sequence of 11 d random variables, then

P[sup(F0 +  +  Yn) >  x] < e - O x

n>l

Where 0 is a real number such that E[e0y] <  1 The proof of this involves constructing 
the Martingale,

e o ( Y 0 +  +y„)Mn = (E[eey])n+1
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This is a Martingale because, E [e| ^ wj] =  1 for all n, and ( Ê n])n>o is a sequence 
of independent non-negative random variables, hence,

E[Mn+1|F0, ,Yn] = Mn 

Then Doob’s maximal inequality for positive submartmgale tells us that,

P[sup{M 0, , Mn} > m] < ~ E [M n]
_  1 

m

This result is then used as follows to obtain the required exponential bound, for 9 >  0 

P[supF0 +  +  >  x] =  p [e6'suPn>o(yo+ +Yn) > e0x]
n> 0

=  P[sup e0{Yo+ +Yn)> e 0x]
n>0

0(yo+ +y„)
-  P[f>? ( E l e ^ p r  ^  e *1

where E[e0y] <  1,
Thus,

P [supF0 +  +  Yn > x] <  P[supM „ >  e6x]
n>0 n>0

<  e~6x

Now this result holds for i i d random vanables But m the situation of interest 
to us we are dealing with dependent random vanables Martingale methods can 
sometimes be used to  extend results that hold for independent random variables to 
results for dependent random variables This is what Buffet and Duffield did in [3] 
motivated by Kingman We will use similar methods to obtain our upper bound 

We will use a method for constructing Martingales for stationary Markov chains 
which says that if we have a stationary Markov chain Yt with transition matrix P  
and we have an eigenfunction /  E  —» R , (where E  is the state space for the Markov 
chain), with eigenvalue ¡i i e ,
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M, =

is a Martingale w .r.t. the filtration T  generated by T t =  a ( Y (0 ) ,............ , Y(t)).  Using

the constructed Martingale and the Optional Sampling theorem (Theorem 1) we can 

obtain an upper bound on the ta il of the queue length distribution of the form,

P [<7 >  b] < (f>e~bl

for the queue in an infinite buffer served at deterministic service rate on a FCFS 

basis, produced by the homogeneous superposition of L sources each modelled by an 

identical copy of the cell level model. Unlike the effective bandwidth approximation 

this upper bound holds for all values of b >  0 not just for large b.

5.3 The Martingale
We begin by briefly recalling the situation of interest to us. We have a queue with 

an infinite buffer with arrivals to the server processed on a first come first served 

basis. Let A t be the tim e reversed arrival process at the queue for discrete time, t. 
We define A0 =  0, and At to be the number of arrivals between time —t and time 0. 

Arrivals are served at deterministic service rate. The workload process Wt is defined 

by Wt =  At — rt. Then recall from Chapter 4 that under certain conditions the queue 

length has a unique stationary distribution [14]. The equilibrium queue length is 

given by,

q =  sup Wt
t> o

As in Chapter 4 we define, for real 9 and for t >  0 ,

A t (9) =  ^ logE [ew ‘]

A(0) =  lim  At (9)t—too

and assume the lim it exists. We note that A and A* are both strictly convex and 

essentially smooth. In the situation of concern to us the increments of the workload

then,
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process are controlled by the states of an underlying Markov Process X  The situation 
is an example of a Markov Additive Process (MAP) W ith such a process the workload 
is a function of the underlying Markov process in such a manner that the pair (X , W ) 
is also a Markov Process More precisely on probability space (Q, J-, P )  let X t be a 
stationary ergodic Markov Process on a state space E  with a-algebra S Let Wt be 
an additive component adjoined to it with WQ =  0 and such that(X , W)  is a Markov 
Process on the state space E  x  R+ (R+ being the positive real numbers) Let Z  be 
the increment process of W  Then the joint distribution of Zt+i and X t+i conditioned 
on (X u, Wu) for all u G [0, t] depends only on X t, and this is expressed through the 
kernel,

P{x, G x B) =  P[Xt+l G G, Zt+l G B\Xt =  x\ (5 6)

for G G £  and B  a Borel set o f R+ [19]
Returning to the cell level model, recall, we have a homogeneous superposition of 

L independent sources or lines served at deterministic service rate r The workload 
process for the superposition is,

w ?  =  ¿ ( 4 ° - r / ¿ )
/=1

where, as before, A® is the number of arrivals from source I up to time —t Again we 
let X t be the vector of states , X ^ )  m the state space E  =  E xL, where
state X ^  is a Markov chain for a single source Then X t is the state of the system  
of L sources or lines at time —t, and is also a Markov Cham If the transition matrix 
for the individual source Markov Cham is P, then the transition matrix for X t is the 
outer product of L copies of P  which we denote as before by P  =  P®L Recall from 
Chapter 4 that if we define the transformed transition matrix, P (0) by,

P ^ X x ^ x ^ i )  =  e ^ x")p(X„ =  X jjIXjj—! =  x ^ )

Then,

A(9) =  hm i lo g [ 7r(0) P (0)*lT]
=  log[sp(P(0))]
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where sp(A) means the spectral radius of the matrix A Then the Perron-Frobenius 
Theorem [7] tells us that for all 9 in the effective domain of A, is the unique, 
real, positive and simple maximal eigenvalue with corresponding strictly positive 
eigenvector, which we will denote by, 0 (x, 9) Recall that 7  is the unique positive 
solution of X(9) =  0 Then,

1 P ( 7 ) has a maximal eigenvalue ex^  =  1 with corresponding right eigenvector
, 7 )

2 Normalising 0 ( , 7 ) so that E[£(X o, 7 )] =  1 then M* =  elW* v (X t, 7 ) is a posi
tive martingale with respect to the canonical filtration T  generated by (X , W L), 
and we also have E[Mo] =  1

The proof of 2 is the following Firstly,

K  =  w?-i +  z(x.)

Thus,

e7Wf =  ¿yzixt)

Thus we have,

E [M ,+1(t ) |^ , ]  =  E [e 'w& f i ( X t f l ,7 )|.F t] 

=  e’ w ‘ E [e ^< x *+'>0(Xt+ I, 7 )|;Ft]

= e<w> Y . e ^ - « ) 0 (XH.1,7)P(Xt f l = x ,+1|X, = * 1)
x t+ i£ E

=  el W * Y ,  ^ ( X i + i , 7 ) P ( 7 ) ( x t + i5x t)
x t+ i£ E

=  e^w"v(Xt, 7)
=  M*

For the last part,

E [M 0] =  E [v (X o )] 

=  1
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concluding the proof This Martingale can be used to  prove an upper bound for the 
queue length distribution of the form,

P [g >  b] < <j>e~lb 

where, the prefactor (j> is defined by the following equation,

6 ' 1 =  inf E[e7(̂ “c)i;(X 1) | W i - c > 0 | X o = y ]y 6 E ,c > 0  L

The proof of this result is the following Define the stopping time r  by,

r  =  m f{i >  0\{WtL > b}}

Then,

P [su p W i >  &] =  P [t  <  oo]
t

Then applying the Optional Stopping Theorem (Theorem 1) we get the following,

1 =  E [M 0]
>  E [M T,r  <  oo]
=  £ E [ M re, r  =  n] (5 7)

n>0

But we can write the event { r  =  n} as follows,

{ t =  n} =  U  {G n( c ) n { Z B > c } n { X B_1 = x } }  (5 8)
c > 0 ,x e E

Where Gn(c) =  {m ax1<m<„_1 < b, W7[ l 1 =  b — c} Now this is a disjoint union
for the following reasons, Firstly c is an integer and E  is countable Let the integer 
ci, c2 >  0 and x 1} x 2 G E  be such that (cx, x x) ^  (02, x 2) then

niziiG^) n {zn > Cl} n =  x j }  c  Gn(ct) n {Zn > c j  n {xn_x = Xl}
c G„(c,) n {x„_i =  x j  
C  Gnic,)

C  W - 1  =  & - C t}
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Similarly,

n|=?{G„(ci) n { z n > a }  n  { x „ _ i =  x ;}}  c  Gn(a)  n  { z n > a }  n  { x n_ i =  Xi} 

c  Gn(ci) n  {x „ _ ! =  x;}

C {Xn_! =  Xi}

Thus,

n t 2i{Gn(ci) n  { z n > a }  n  {x „ _ ! =  x 5} }  c  {W„L_ i =  b - c i) n  { x n_x =  Xi} 

This is true for i =  1,2 hence, 

n t? {G „ (c i) n { ^ > c i} n { x w_1 =  X i}} c  n i : W - 1 =  f t - c i} n { X n_1 =  x i}

=  ^

Thus we have the result. The union is disjoint. Thus substituting Equation 5.8 into 

Equation 5.7 we get,

1 >  < * E E E  E[e’ <z--'> u (X „ ; 7 ); G„(c) n  {Z„ >  c) n { X „ - i =  x }] (5.9)
n > 0  c> 0  x 6 E

We note here that for those x  for which {Zn >  c} fl {X „ _ i =  x }  is the empty set 

the resultant terms in the sum 5.9 w ill be zero. Hence Let E(c) C E  be the set of 

all states x  for which {Zn >  c} fl { X n_x =  x } is no t the empty set. Then we can 

rewrite 5.9 as,

1 >  ê bY E  £  E[e^z"-ĉ ( X n;7 );Gn( c ) n { Z n > c } n { X ri_1 =x^5.10)  
n > 0 c > 0 x e E (c)

But conditioned on X „_ !, Gn(c) is independent of Zn and X „  hence, we can rewrite 

E[e'y(Zn-c)t;(X n; j ) - G n(c) D {Zn >  c] n  {X „_ ! =  x}] as follows,

=  E [e ''<z" -c)u (X „ ;  7)/(G„(c)n{z„>c)n{x„_,=x)}]

=  E[e’ <z"-»)1,(X „; 7 ) / ( G„W} /{ Z„>c)i{x„_,= ,})]

=  E[e’ 'z" - :> t,(X „;7 ) / )c;„(c)} / {z. >c)|X „_1 =  x ]P [X „_ , =  x]

=  E[e1'(Z“ - ' ,« (X „ i7 )/(z .> c}|X n- 1 =  x ]B [/{a ,w } |X „ .1 =  x ]P !X n_, =  xj 

=  E[e’ <z" -cV (X „ ;7 ) / )z. >c)|X „_1 =  x ]P [G „(c)|X „_ , =  x ]P [X n_, =  x]

56



Now we can define,

E[e1̂Zn~'^vpCn, j ) \Z n >  c |X „_i =  x] =  E [ ^ Z" - ^ ( X , , 7 ) / (z .> c } |X .- i  -  *]

E[e'T̂ n~^tj(XW!7 ) / | Z|1>c)|X n- 1 =  x]
P [Z„ >  c |X „_i =  x]

And this is well defined on E (c) Then we can rewrite the right hand side of the last 
equation as,

E [e^ z^ v ( X n, 7)\Zn >  c|Xji_! =  x ]P [Zn >  c l X ^  =  x j P f G ^ l X ^  =  x j P p C ^  =  x] 

But this is just,

E[e^ » - ‘>„(X„,7 )|Z„ > c|X „_! =  x ]P [{Z„ > c ) n C ,( e )  n {X „_! =  x}] (5 11)

Hence, putting this back into the sum m Equation 5 9 and summing over x  e  E(c)
(all other terms being zero) we get,

1 >  e* Y .  E [e ^ " -« M X „ , T)|Z„ >  d X ^ !  =  x]P[G „(c) n {Z„ >  c] n  {X „_ , =  x}]
n ,c ,x

We will write

4,-1 =  inf. E [e^z”- :>i;(Xn, 7 ) |Z „ > c |X „ _ 1 = x ]  (5 12)
c> 0 ,x £ E (c )

This is independent of n for a stationary Markov process X  Thus

<j>~] =  m f E[e7(Zl- c)t;(X 1, 7 ) |Z 1 > c |X o  =  x] (513)
c> 0 ,x £ E (c )

Thus,

1 > e ^ E E  E  ^ -1P[GB( c ) n { Z B > c } n { X ft_1 =  x}]] (5 14)
n > 0  c> 0  x e E (c )

=  E  P[G „(c) n  {Z„ > c} n { X , . ,  =  x}]] (515)
n > 0  c> 0  x e E (c )

=  elb(j)~x y j P [r  =  n]
n>0

=  e76^_1P [r  <  oo]
=  e7V _1P[sup Wt > b] 

t> o
=  e7V _1P[9>6]
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Thus, we have,

completing the proof

5.4 Calculating The Prefactor
The prefactor is defined by,

(j}-1 =  m f E[e7(Zl_c)i)(X i) |Z 1 - c > 0 | X o  =  x]
xeE(c),c>0

=  _inf ,-c>°,ixr xi (617)
xGE(c),c>0 P [Z i C >  0 |X q — x]

Now we can write,

Z i =  # { * g { i ,  ,L}\X[ =  0 } - 1  (5 18)
=  # { .€ { 1 ,  ,L}|JCS =  1 } - 1  (5 19)

with the first equation due to the fact that arrivals from source i only occur when
the Markov chain X\  is in state 0 and Z\ is the total number o f arrivals at time t — 1 
minus the service completed m one tick, that service being 1 The second equation 
is due to the fact that the Markov chain X\  makes transitions to state 0 only from 
state 1 and from no other state and does so with probability 1 This can be seen 
from the transition matrix in Equation 4 3 Chapter 4

Let E (c) =  {x  6  E|J){z|x* =  1} — 1 >  c} Then, by Equation 5 18 we have,

{Xo 6  E (c)}  C {Zx -  c >  0}

and,

{Zx -  c >  0} C {Xo G E (c)}

Hence,

Pfe>&] <  4>e~lb (5 16)

{Zt -  c >  0} =  { X 0 G E (c)}  

58



I { Z \  —c>0} =  -^{X oeE(c)}

Note also that for c >  L — 1 both sides of this last equation will be 0 We can 
therefore rewrite Equation 5 17 as,

, =  mf ix,_=_xi
xeE(c),oo P [X 0 G E (c )|X 0 =  x]

m f Efe')'^1- c)i)(X 1)|X o =  x] (5 21)
x £ E (c ) ,c > 0

inf e~'yc'E[eyW' i>(X1) |X 0 =  x] (5 22)
x £ E (c ) ,c > 0

inf e_7CE [M 1|X 0 =  x] (5 23)x 6 E (c ) ,c > 0  L I u J v
=  inf e_C7z)(x) (5 24)

x £ E (c ) ,c > 0

where c 6  {1, , L — 2} and where Equation 5 22 is due to

W f =  WoL +  Z (X !)
= o + z(xo
=  Zi

And Equation 5 24 is due to an elementary property of Martingales 
Let

m (x) =  Jj{z G {1, ,L}\xl =  l  for x  G E (c)} (5 25)

Then Equation 5 24 is,
L —m (x )

4T 1 =  m f e- C7 TT u(x*)t;(l)mW (5 26)i !e E - l ,m ( x ) > c + l ,c > 0  ¿ 1

N o t e c G { l ,  , L — 2} and m (x) G {c +  2, ,L}
Now, recall from Chapter 4 that the transformed kernel of the reversed Markov 

chain for a single line in a homogeneous superposition of L lines for the cell level

Thus, E(c) =  E(c) for the cell level model, and,
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model, with 6 =  7 is,

0 0 • 0 a 1 —  a

e7 0 0 0 0

0 1 0 0 0

P(7) =  e~ ^ L

0 0 • • 0 0 0
0 0 1 0 0

, 0 0 • 0 1 - p p
The equation for v  is, subject to normalisation,

v =  P (7 ) f

Written in full this then is,

1  u ( 0 )  N

v(s)

=  er^!L

\

0 0 0 a 1 -
& 0 • 0 0 0
0 1 • • • 0 0 0

0 0 0 0 0
0 0 • 1 0 0
0 0 0 1 - p p /

( v(0) X

v(s)
Prom this we obtain the following set o f equations for the components of 1

e~^L(av(s — 1) +  (1 — o;)i;(s)) =  v(0) 
e~1 L̂eyv(0) =  t>(l) 

e~^Lv( l )  =  v{2)

(5 27) 

(5 28) 

(5 29)
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e 1!Lv(s — 2) =  d ( s  — 1) (5 30)
e~7/L(( l  -  P)v(s -  1) +  pv(s))  =  t>(s) (5 31)

Rearranging Equation 5 31 we have,
t>(s — 1) _  e7/ L — P

v(s)  1 - / 5
>  1 (5 33)

(5 32)

as 7  >  1 Subtracting equation 5 31 from equation 5 27 we get,

e-7/,L(o; +  P  — l)(w(s - 1) - v(s)) =  t>(0) -  ̂ (s)

which, from the last inequality 5 33 and the fact that e_7/,£ >  0, implies,

t>(0) >  v(s) a  +  P — 1 > 0  (5 34)

In the case of bursty traffic we will have a  +  P — 1 >  0 Now from equation 5 28 to  
5 30 we can see,

t>(l) >  >  t>(s — 1) (5 35)

Thus we have,

w (l) >  • • >  v(s — 1) >  t>(0) >  v (s) (5 36)

Now,

u(0) +  v(l)  +  + t ; ( s ) (^ — ^ )  =  s + ^  (5 37)

This and the previous inequality imply,

v(s) <  1 (5 38)

Thus from equation 5 36 we can rewrite equation 5 26 as,

(f>~1 =  in f{e -7Cu (s)i - mW u (l)mW |m (x )6 {c +  2, ,L } , c G { l ,  , L -  2}}
=  inf{ e~Jcv(s)L( |m (x) e { c + 2 ,  , L], c €  {1, , L -  2 }}

m f e- 7ci;(s)i ( 4 4 )c+2 (5 39)
c e { i,  ,l - 2} v '  v i ; ( s ) '  v '
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r 1 = mf u(s)^ ) ’( £ ^ M r
ce{i, ,l- 2} v ( s ) t;(s)

Clearly the value of c giving us the infimum only depends on whether,

e ~ M l )  ,
V(8)

We can prove that this is the case We do this as follows Firstly, by 5 36

e~ M l )  =
v ( s ) f(s)

And by Equation 5 31
v(s  — 1) e7/L — (3 

t»(s)
ei/L -  i +  (i _  j3)

1 - / 3  
L(e^L -  1 ) +  r

Where this last equation is due to 5 36 We can rewrite this equation as,

Hence,
e M l )  =  ĉ -iy-2^/L^(e7/L-l) +  r

t;(s) t

Now consider the inverse of the right hand side of this equation,

7(l-<r) -27¡L  T
L(ei /L — 1) +  r

If we subtract 1 from this and multiply the result by (1 — Q')e7 <̂7~1̂ e_27/i

But this is just,

YT^rr-— -------(1 -  a)e^-^e~ 2̂ L
L { e ^ L  -  1 )  +  r  y  J

e^-i) -  a _  (i _

Now consider,

eK - D  - a - (  1 -  
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(5 41)

(5 42)

(5 43) 

(5 44) 

(5 45)

(5 46)

(5 47) 

we get,

(5 48)

(5 49) 

(5 50)

(5 40)



At 6 =  0 this is 0 and its derivative w r t 0 is,

(ff _  _  (1 - a ) ( a -  1 -
±j

And this is,
e^ - i ) ( ( i  _  a ) ( i  _  a +  h e-*>/L -  ( i  _  a)) < -  a)( l  -  a +  \ )

L

Now if a >  1 /2  then, 1 — a  <  1 /2  and,
e««-i)((l _ „ ) ( ! _ „ + ! ) -  (!_„)) <  e»(«-i)((i/2)(l-a +  |)-(:

<  0

if a  <  1 — j  And consequently
1 } (  1 ̂

>  1

L

v( l)
v(s)e7 

Alternatively,
v(s  — 1) _  L(eJ/L — 1) +  r  
v(s)e7 e7r

if,
L(eilh -  1)

r  <  - i --------
e7 -  1

Recall from Equation 4 4 that,

>  1

e,7(<T-1) =  a L ( e 7 /L  -  1 )  +  T
L(e7/L — 1) +  r  

Thus,
L(e7/L -  l) (e 7^~^ -  ck)

1 -  e7^ “ 1) ~  T

Now consider,
L(eJ/L — 1) _  L(e7/L - 1 )  L{e^L -  l^ e 7^ " 1) -  a)

e7 — 1 T _  e7 -  1 1 -  e7^ - 1)
/r 1 e7(ir_̂  -  a=  L (e7/  — 1) ( -------------- ---------,— £ )

e7 — 1 i - e7(<r-i)'

=  ¿(c7^  1](l - e ^ - ( e 7 -l)(e7H ) - Q
1 ){ (e7 — l ) ( l  — e7^ -1))

=  L(e7 /i -  IK  1 ~  ^  +  ae7 ~  g7tr )
(e7 — 1)(1 — e7^ -1))
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I-a))

(5 52)

(5 53)

(5 54)

(5 55)

(5 56)

(5 57) 

(5 58) 

-) (5 59) 

(5 60)

(5 51)



This w ill be positive if  1 — a  +  ae1 — e7<r >  0 since a <  1 and 7  >  0 and 1 >  a and 

L(e7/L — 1) >  0 So consider,

1 — a  +  ae0 — e0(T 

This is 0 at 9 =  0 and it has derivative w ith respect to 6,

ae° — ae0cr >  0

on [0 ,00) if  a  >  a  Thus,

1 — a  +  ae0 — e0<T >  0

on (0 ,00) if  a  >  a  and m particular at 9 =  7  Hence,

I/(e7/L -  1)
e7 -  1

if  a  >  a  Hence,

>  T

And consequently by 5 42

e 1v(s  — 1)
     >  1v(s)

e 7^(1)
v(s)

if  a  >  a
Finally, returning to 5 43

for 9 =  0, and,

For all 9 >  0, and,

L(ee/L -  1) +  r  9 +  t  
eer ^  eeT

=  0

L(e°/L -  1 ) +  T 9 +  t
eer  >  eeT

9 +  t  1 + T
— g—  = ----- >  1e°T er

(5 61)

(5 62)

(5 63)

(5 64)

(5 65)

(5 66)

(5 67) 

(5 68)

(5 69)

(5 70)
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For 9 = 1 and r  such that,

Now the derivative of

with respect to 9 is,

r  <  — !—  (5 71)e —  1

9 +  r  
eer (5 72)

e#T(1- S) >  0 (5 73)

for 0 <  9 <  1, and the derivative of
('e°T)2 

1 +  r
er (5 74)

with respect to r  is,

for all r  Thus
6 <  0 (5 75)(er)

£ M 1 )  >  r t ^ - 1 )
d (s) u (s)

>  1 (5 77)
for r  <  l / ( e  — 1) Thus we have,

e~7t>(l) > 1  (5 78)v(s)
For any one of r  <  l / ( e  — 1) or a  <  a  or a < 1 — (2/L)  if a  >  1 /2  all of which axe
reasonable assumptions, since r  <  0 5 m for example the simulations in [9] and a  is
close to 1 and a <  1 and L is large
We need an expression for v(s) in order to find Now from Equation 5 27 to  
Equation 5 30 we have,

5>(*) =  +  Y e is-1'th/L)v(s-l)
1=0 2=1

=  +  1)

=  7 / W - 1)
=  (s -  1 +  e^e~^e-^L)v(s -  1)
=  (a -  1 +  e<77e - 7e - 7/L) (1 +  ^ )u (s)r
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From the normalisation of v  we now have,
q !——/ \ _   6 ̂  1-/3____________

( s -  l  +  e°”/e-'ie-'r/L)(l +  i )  +  ±E%
s/L + I—a 

L(l— 0)

( ¥  +  5 ^ r ) (  i  +  9  +  f e f
a +i=2

(1 +  >  +  

Returning to Equation 5 40 we now have,

1—a 
r

-  »M‘0 ’|f3 r)' ls”>
=  e_7i;(s)L~3i; ( l )3 (5 80)

Thus we have the following for the prefactor,

- 1 =  e ~ 7 (e 7(7e ~ 2 7 / £ ( ^ ^ e 7 /_____ —  +  1 ) ) 3 ( ---------------------------------- a +  r ------------------------------------- y

That is,
/ | e ^ - ^ W - l Ui , L(ey/L—1) \ , i-o

A — g 7 (p~"f( T IL ___________________ ' ( S f l__ _ _______ L_______A  + _____ r _____/  Z .... t -  ) L
V ~  e ^  e [ ^  I a + l=a J

Now consider,
1 ff( l  +  2) +  lzS

=  log( g + T1_g T ) (5 81)
>  0 (5 82)

This tells us that for large L the bound,

P  [qL >b] < (¡>e~lb (5 83)

does not exhibit the economies of scale seen for example m the upper bound ob
tained using Martingales for the block level model by Buffet and Duffield [3] These 
economies o f scale are seen in the simulations of Corcoran [9] for the rescaled cell 
level model
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5.5 Calculating The Prefactor for the burst level
queue

Consider a new Markov chain derived from the Markov chain for the cell level model 
defined by,

X* =  X ts (5 84)

and adjoined to this an additive component defined by,

Wt =  Wts (5 85)

with increments defined by,

Z(Xt) =  W t - W t - i  (5 86)

Then,

M t =  e ^ v { X t) (5 87)

is a Martingale with respect to the canonical filtration T  generated by (X , W)
Proof

Firstly,

Wt =  Wt^ + Z { X t)
Thus,

e7 Wt _  eTWt-le7̂ (Xt)

Thus we have,

E [M t+1(7 ) | ^ t ] =  E [e ^ * « 0 ( X ,+1, 7 )|;Ft]

Now w ntten in terms of the increments of the workload process for the cell level 
model,

•^(Xi+i) =  Z(X ts+1) +  . +  Z(X ts+s_i) +  Z (X ts+s) (5 88)
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Thus,

e ^ * E [ e ^ i+l)i)(X t+1, T) |^ ]  =  e ^ E [ e 7 ^ if( ^ ) i ) ( X t,+ ()7 )|J i]

This is,

^ w . j -  ■ £ e ^ . . « i ( x „ ' r ) n P ( X t m  =  x,|X„t,_1
X IGE x s £ E  n - l

which is,

e7Wi • • • Y Hxs, 7) II P (7)(Xis+n = Xn|Xts+„_! = X„_i) =
x iG E  x s e E  ra= l

where we had
S

P P^ts+s =  Xs, , X^s _̂i — Xx |X ts Xq] (5 89)
71=1

and,

P (0 )(x „ ,x n_ 1) =  e ^ x">P(XB =  x B|X n_i =  x ^ )

concluding the proof Note 7  and v  are the same decay rate and eigenvector as those
for the full cell level model
Now if we define, the ^"-stopping time,

t =  m fjilW t >  b}

We see that the proof for an upper bound that we used for the cell level model queue 
gives us an upper bound on qf W ith the new prefactor defined by,

<jf>-1 -  inf. E[e7^ " -c)w(XIl)7 )|Z n > c |X Il_1 =  x] (5 90)
c > 0 ,x e E (c )

Now X  is stationary since X  is stationary It has transition matrix P s Thus we can 
rewrite Equation 5 90 as,

4Tl =  inf. E[e'r(̂ - c)v (X i l 7 ) |Z i> c |X o  =  x] (5 91)
c > 0 ,x e E (c )

=  x n_ i)

_  e7̂ i)(xo,7) 

= M t
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But,

Z\ — Z\ +  +  Zg
=  W S

Thus, we have,

<j>-1 =  mf_ E [ e ^ - c^ ( X s, 7 )|W s > c |X o = x ]
c> 0 ,x e E (c )

which is,
=  f  E [ e ^ - ^ t , ( X „ T) / |H,,>cl|X (, =  x]

9  ,:>o“ Ufc, P[W, > c|Xo]

Now let A (c) =  { x £  E|jJ{*|a;1 e  {0, , s — 1}} — s > c} Then,

{ X x e A ( c) }  C {Ws > c }

and,

{Wa > c }  C ( X ^ A C c ) }

thus,

{Ws > c} =  { X x G A ic )}

hence,

I { W 3> C> =  ^ { X ie A (c )}

Now the numerator of Equation 5 93,

E[e^ - ^ ( X s, 7 )I{Wa>c}|Xo =  x]

IS ,

H  E[e7<w'-')«(X„ 7) V.>«) |Xo = x, X : = y]P[X, = y|Xo = x]
y £ E

by the Law of Total Probability [7] But this is,

£  E[e7(“ r- - ' !> u (X ,;7) / W €A(e))|X 0 =  x ,X ,  =  y ]P [X !  =  y |X „  =  j
y € E
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e-7C £  E[e’H'‘«(X„7 )|X0 = x ,X 1 =y]P[X1 = y|X(, =  x] (5101)
y e A (c )

which is,

¿2  E[M»|X0 = x ,X 1 =y]P[X1= y |X 0 = x] (5102)
yG A (c)

where M  is just the Martingale that we used to get the upper bound for the cell level 
model queue But then this is just,

e"7' £  «(y,7 )P[X1= y |X 0 = x] (5 103)
y £ A (c )

Next the denominator of 5 93 is,

P[W S >  c |X 0 =  x] =  P [X x <E A (c)|X o =  x] (5 104)
=  Y ,  P [X 1 =  y |X 0 =  x] (5 105)

y e A (c )

by Equation 5 96 Thus we can now write,
¿—I r e_7CD y£A (c)^(y,7 )P [X i =  y |X o =  x]
$ =  mf -----^  , _  iy  _  i  (5106)

c > 0 , x E E ( c )  ^ - ' y E A ( c )  [* '* -1  y | - * M )

Now we can say the following,
e ~ 7 C E y £ A (c) ^(y, t ) P [X i  =  y |X 0 =  x] >  _7C . E yeA(c) P [X i =  y |X p =  x]

£ y 6 A (c ) P [X ! =  y  |Xo =  X ] -  6 yeA(c) ^ y ’V  £ y6A(c) P [X i =  y  |X 0 =  x]
=  e_7C inf v(y,7) (5 107)y e A (c )

by Equation 5 97 which is just,

Thus,
inf f ^ y e A W «>(y,T)P[X, =  y |X ,  =  x] ^

c>o,xeE(c) EyeA(c) P [X i =  y |X 0 =  x] oo,yeA(c)
But this is just,

m f e 70 JJ v(yl)
c> o ,y e A (c )  t= 1

Now let m (y) =  ji{z|?/1 e  {0, , s — 1}}  then y  e  A (c) implies L > m(y) >  s +  c
Then the above becomes,

L - m (y )

m f e~7C TT v(y%)v(s — l ) m(y )c > 0 ,y e A (c ) ,m (y )> S+ c  V '  V J '
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m f e~'ycv(s)L~m^ v ( s  -  l ) m(y)
c > 0 ,m (y )> s + c

which is, with y  such that each y% =  s or s — 1 for all i and with m(y ) =  m (the 
choice of y  being superfluous once m  is chosen),

Then from Equation 5 36 this is,

m f e~7Ct;(s)i ( ^ ^ ) rc>0,m>s+c t>(s)

which by Equation 5 36 is,

infe~7Ci;(s)L(y(s/-,1V +c+1o o  v J K v (s) '
But we can write this as,

o o  v(s)e7 v(s)
But by Equation 5 53 to Equation 5 65, for a > a  or Equation 5 76 for r  <  ^  this 
is,

v v(s)err ' w  v u(s) '
And this can be rewritten as,

t>(a — 1) M s - 1 )  LM s - 1 )  M s - 1 )  v { s - l )  LM s - 1 )  L
v(s)e7 v(s) v(s) v(s)ei v(s) v(s)

Where the last line is by Equations 5 36 and 5 65

5.5.1 Economies of scale
If,

)'«(«) >  1 (5 108>

Then we will have, for all b >  0

P[«rf >  6] <
v(s)e< v(s) v(s) 1 t  „

~ v ( s — 1) v(s -  1) v(s -  1) u (s)
<  e ^ b
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Thus our upper bound will be an improvement on the effective bandwidth approxi
mation holding as it does for all b >  0 and being less conservative Further if we can 
show,

u ( £ - l )  >  k

t>(s)
>  1 1 (5 110)

where k is independent of L, then we will have an upper bound of the form,

P [qf > b } <  $ V 76 (5 111)

where <& =  |  <  1 and is independent of L This bound exhibits economies of scale 
which are seen in simulations for the burst level queue of the cell level model [9]

We will show this to be the case for some values of the model parameters First 
we will prove the following, useful inequality,

1 +  L{e^lL —  1)(1 —  a) >  ^  lh (5 U2)

Proof

Consider,

1 + L(ex/h -  1){1 -  a) -  (5 113)

At x — 0 this is 0 and its derivative is,

{ l - a ) { e x!L =  (1 -  a )(exlL -  ¿ L~SWL) (5 114)
=  (1 -  a) {ex/L -  (ex'Ly L~s)) (5 115)
< 0  (5 116)

for all x >  0 Thus, since 7  >  0 we have,

1 +  L{e^L -  1) (1 -  a) -  e(1- ^  < 0  (5117)

implying,

1 + L{ê h -  1)(1 -  a) < (5 118)
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 r / /T1 w >  e{ff- lh  (5 119)
1 + L{e^L a) v '

We can use this inequality to prove, another useful inequality,

3 ^ - 9  <  (5120)
T Cü(l —  a)

and hence, in conclusion,

_  p _  1a(l  — a)
Proof

1 +  L(ey/L -  1)(1 -  a)
aL ie1!1, — 1) +  r
L(e'r/L -  1) +  r

by Equation 4 4 and Equation 5 112
For convenience write u =  L(ey/L — 1) Then the above is,

(5 121)

>  (5 122)

(5 123)

OiU +  T  .>  ---------- (5 124)
1 +  w(l — a )  u  +  t  

Thus rearranging we get,

u(u( 1 — a) — (1 — a — t ( 1 — o)) <  0 (5 125)

which implies,

m(1 — a) — (1 — a  — t (1 — a) <  0 (5 126)

since u > 0 Thus,
(1 —  a — t (  1 — a)

« <  (i - g ) <5127)

Thus, replacing u with L(e7/L — 1) and dividing the right hand side above and below  
by t  and replacing ~  +  a  with  ̂ we get in conclusion,

L ( e7 / £ _  1 )  kzSL +  a _ 1—------------1 <   T - 5 128)
t  ck (1  — a )

_   p

a ( l  — a)
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'  V( t )  1 W  (a I I t(e^-l)) I—a
Consider the following We know a <  1 thus,

e7(o--l-l/L) <  1

Returning to Equation 5 46 and Equation 5 79

which implies,

Thus,

e7 (< r -l- l/L )  _  i
a  H-------------   <  a

v(s) >  ------------------ —

and recall that
,v(s-l) _  ¿(e7/L -  1)
1 v ( a )  ’  t

(5 130)

Thus,
(. +  i=g)(i +  ̂ a r

( « (« ) '  ( ’  (1 +  W 0 ^ 1 )a  +  I= a  15 >

Now we want to prove that the right hand side of this equation is greater than 1 We 
can prove this for a =  1 /2  and p < a  To do this we first assume,

1 — a  , L(e^L -  l ) w  >  a( 1 +  — ------------LY  (5 132)

then,

implying,

I - a  ^ L(e^L -  IV   a ( l  -\—  ------------Ly  >  0

1 — a  „  ¿ ( e ^ - l ) , . , ,------------ a ( l  H—  ---------------------- >  0

for a  =  1 /2  But since 1 +  ^ >  0 this implies,

T  T  T  T
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Hence, 6
L ( e ^ - l )  l - g  L ( e ^ - l )  >  1 - a  _  +

T  T  T  T  T

Thus,
£(ei/i _  1) 1 _  Q. £(ei/i_i) 1 -  a  L ( e ’!L - l ) .

1 + - i—:----T  —  + '1  + J - : ----T  > —— + <K1 + - L- ; L)T  T  T  T  T

implying,
(a +  i=“)(l +  L{^/L-\)y

l A l  1 L  >  1 (5 133)(1 +  +  Ira

for a  under the assumption in Equation 5 132 Now assume the contrary to assump
tion Equation 5 132 That is, assume

<  a ( i  + H e'y/L~ 1)y  ( 5 1 3 4 )
T  T

and further, assume

p < a  (5 135)

We will now prove that both of the assumptions 5 134 and 5 135 cannot hold at the 
same time This will allow us to imply that if  5 135 is true then Equation 5 132 must 
be true implying Equation 5 133 for a =  1 /2  and 5 135 as we claimed Assumption 
5 134 implies

<  (1- g)(1 +  ̂ - i ) ) (5136)

for a = l / 2  Thus,
1 — a  , L{e^L -  IV L(e^L -  1) +  (<r)(l +  - i ----------- J-) <  1 +  -^ ------------}- (5 137)

hence,
(g +  1 ^ X 1  +  i g ^ a r  (g +  i=a)(1 +  i i ^ i r
(1 +  M£^zll)( T + l?  -  (1 +  ̂ - 1 ) )

1 - a . .. L(e’lL - l )  -



Thus,
M e _  1) , (a +  — 1(1 +  L(ey/L~1)y  i( I  + ziil =Z)i-g  ̂ t 'V Jl i L  > _ f5 141)

U +  T ) +  >  p t b M 1 )

Now at a  =  1/2 ,
(„ +  !=.)(! +  a £ ^ a )

(1 +  ^ = V  +  1?
is equal to,

'  (1  +  i ! s ^ = ! i )(7  + 1 = .  1 +  T  ;  ( i  +  a £ z ^ = a ) f f  +  i = . J

because,
> + ^ ) ( l  +  M g ^ a r , ¿ ( e ^  -1) (g +  ̂ )  ,,
' (1 +  i!5^z!i)ff +  1=« ' ^  r ' (i +  S f ^ z U ^ + t s '

IS,

((-----(a  +  _____ )2(1 L{ellL ~  ))g

which is,

(______( i ± S ) ______)W(1 +  ^ 7/ L - l ) r

and when a  =  1 /2  we have 2a =  1 and the above is then,
(___ t ± M _____)(1 +

But, by 5 141,
(g + i=g)(l +  3 g g z a ^  L(e7/L-i) ( a + i ^ }

(1 +  ̂ ( ^ ~ 1))<7 +  l^a r (i +  M ^ - i ) )g + i^a

(5 142)

is,
>  1 ( g + ^ )

pi +  a WP r
1
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But by Equation 5 120,
U ei(L - 1) J - lp +  p2a —------------  < p +  p <J -------

=  P +  P2£

a(l —  a)
i - 1

a
_  pa +  p — p2 

a

where the second equation is due to o =  1 /2  Now it is a simple matter to  show that 
the right hand side of the second equation is less than 1 under our assumption 5 135 
Subtracting it from 1 we get,

pa +  p -  p2 _  a -  p a -  p +  (?
a a

{ p - a ) { p -  1)
a

Now p <  1 so this is positive for p < a  which we have assumed in Equation 5 135 
This then implies, for p < a  and a  =  1/ 2 ,

i - lp +  f?oL{ellL — 1) <  p +  (?a -
a(l —  a) 

<  1

which implies,
1

>  1
p +  rcr- ^ — 1 

Thus for a =  1 /2
+  (<7 +  ̂ =)

(i +  T (l +  + 1—a 
r

I S ,

p ( l +  L{e-r/ L - l ) ) a +  i ^ a  
>  1

and hence, for a =  1 /2

+  L(e<lL -  l ) v _,
'  ( l  +  M ? ^ - i ) ) g + l = a  1 T  '  ( i + U f ' ^ g + i z g

77



IS,

1
>  -

P (i +  M £^ z H ) a +  i=°lr
>  i

Thus, by Equation 5 142, for a =  1 /2 ,

( < r + i = a ) ( i + i i s ^ r
(1 +  y « ^ £ z ii)f f + i=s  

But, returning to our first assumption m Equation 5 134

<  a { 1  +  W L ^ l r

>  1 (5 143)

then,

implying,

for a  =  1 /2  But since 1 +  ^  >  0 this implies,
^  ^ - 1 )  <  1^ _ a { 1 + L_(e^-l)

T  T  T  T  T

T  T

Hence,

( 1 + ^ t .- j )r ( l ^ ) _ g(1 +  ̂ - i ) ) <  i ^ _ g ( 1 + ^ /1_-^)r
T  T  T  T  T

Thus,
L ( ^ - D  l - g  ¿ ( e ^ - D  < l r £ + g ( 1  + X ( ^ - l )

T  T  T  T  T

implying,

( a + ^ ) ( l  +  « 5 ^ ) » '
(1 +  + 1=«
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contradicting Equation 5 143 Hence our two assumptions 5 134 and 5 135 cannot 
both be true at the same time
Thus we can say the following If we choose p < a  then

>  g (i+ t(eT/1 -  v
T  T

for a = 1 / 2  And then by Equation 5 133

( g + ^ x i + ! ^ ^ r

Hence finally by Equation 5 131

> 1 (5144)
for a =  1 /2  and p < a
This tells us, that the upper bound is an improvement over the effective bandwidth 
approximation at least for this set of parameter values We would also like to know 
if,

( V n > )  > k (5145)
>  1 (5 146)

where k is independent of L, as this would tell us something about economies of scale 
To this end consider the following 
Recall from Equations 4 4, 4 6 and 4 5

e(*-i)7W =  a V /L ~  !) +  5 
(e7/L - 1) +  £

_  <y.L(ey/L — 1) +  r  
L(e7/ L — 1) +  t  

aj{L)  +  t  

liL ) +  r

Thus upon rearrangement we have,

17 < 1 +  ^ ) log(W i 7 - ) (5’147)
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Now consider the derivative of the right hand side of this equation with respect to 

7 (L) This is,

1 l0g (a 7 ^ + T ) 1 ^ L ) +  r  0 - ~ a )T
7 (L)2 7 (L) +  r  7 (L) ay(L)  + r  (7 (L) +  r )2

We want to know if this is positive or otherwise Now rearranging and multiplying 

across by ay(L)  + r  > 0 and 7 (L)2 > 0 and simplifying we get,

/ ,r\ m .cryfL) + r . (1 -  a )r
- ( « 7 (L) +  t )  log( , . ) -  7 (1 ')-7(L) +  r  (7(L) +  t )

Now consider,

, . .  , a u  +  T. (1 - a ) r- ( OT +  r ) l o g ( - _ ) - u -i_ T

at u =  0 this is zero, and its denvative with respect to u is,

. , a u  +  T s . u +  t  (1 — a ) r  (1 — a ) r  (1 — a ) r
- a  lo g  ) +  [an +  t )  ±------ (=- -  -h V  +  ul  (7u  +  t  a u  + T (u +  t )2 (u + t )  (u +  r )2

which is,

. . a u  +  T. , (1 -  a)Ta  log( - ) +  u - - > 0U + T [U +  t Y
for all u >  0 since < 1 Thus the derivative of the right hand side of equation 

5 147 with respect to y(L)  is positive for all 7 (L) > 0 Now consider,

«■ =  1 +  ^ lo* < 7 T 7 )  (5148)

The solution of this is independent of L and the denvative of the nght hand side

with respect to 7  is positive for all 7  > 0 Thus we have,

1 +  - lo g ( a 7  +  T) =  <j  (5 149)

< (515°)

implying,

7 (L) >7 (5 151)
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Thus we have,

¿ ( e7 /i  _  1) 7 (£)
1 +  —    >  1 +  - ^ ^T T

>  i  +  lT
Now consider,

(1 +  M ^(̂ - i ) )g + iz s  

Replace 1 +  L(e7(/̂ /Lr .1) by x everywhere in this quotient. This becomes,

xa + T

Now differentiate this with respect to x. This gives us,

(xa +  +  ^ £L)x<7~1 -  (g + k^ L)ax<T _  x(T~V(o-+ -  (1

(xa +  ^ ) 2 (xcr +  ^ ) 2

This is positive if,

1 — Q!

Now assume,

Then

> (1 — a)x

1 -  a  -  l ì
—  >  (1 -  cr)(l +  m  ÌA)

1 ~ a   ̂ > (1 — a)x

for all x < 1 + Thus,

(*  +  * ? ) ( * )
xa +  —-T

is increasing for all x <  1 + ^ —T— Thus by Equation 5.152 we have,

( q + ^ x i + ^ ^ r  ( g + ^ K i + ? r
(1 +  ̂ - l ) )g + l=g (l +  2)a + i=fi

(5.152)

(5.153)

- a ) x )

(5.154)

(5.155)

(5.156)
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>  ff( i  +T T
> < r ( i + - rT

and the same argument as that used in Equation 5 132 to Equation 5 133 can be used 

to show,

( q + ^ X i  +  ?)g .  i
( l  +  ^ a  +  i ^  

with the left hand side independent of L Thus we have,

( < 7 + ^ g ) ( i + ^ = a )1'  ( g + ^ x i + ? r
(1 +  +  l= a  ( i  +  I J a + t a

>  1

But if o  =  1/2 and p <  a  then, we have by Equation 5 144

Now assume the contrary to Equation 5 155 that is assume,

1 -  a  L (e 1̂ /L -  1}< (1 _ ff)(i +   u.) (5 157)T T

and let a  =  1/2 and p <  a  then the argument m 5 157 to 5 143 gives us,

+ + > i
( 1 | L(ey/L- 1)\n- | 1-Q , o ¿-1+  r  )*  + r P + f>

>  1

where the second of the quotients is independent of L Note that we have not 

assumed here that

1 — a  „  H e ' ™ 1' -  IV
— —  < a(  1 +  ---- ------- Ly  (5 158)

so we couldn’t have used the contradiction argument used in Equations 5 134 to 

5 144 Thus we have proved that if a  =  1 and p <  a  then,

^ ( s  -  1 )^  >  k
v{s)

where k is independent of L

> 1 (5 160)
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P  [q  ̂ > b } <  (5 161)

where $ < 1 is independent of L We can say that,

*  =  ( iV ^ a + T ) ^  (5162)

more generally we have,

P[9i>6J < ((J ^ W  r  1 ) V *  (5163)
L s J Kv ( s - l ) ' v ( s - l ) XKv ( s - 1) '  v ( s y  v '

-  ( l + Hey/L- V )a  + k ^ .=  e7f_____- _____)2( A  z ' r )Le~lb (5 164)i L(eT'/i - l )  +  r ; | i - q ) ( i  [ 6 }

for all parameter values But it has to be determined if this is less than 1 for a  ^  1/2 

or p > a  and if

(1 + W /L- V )<J+1=!*
 1 u  Z l -n ) < 1 (5 165)V + ^ x i  +  ^ ^ V

which would imply economies of scale exist for the particular values of a  and a  and

t Finally we note that the condition, p >  a, is the same as,

q;(1 — a) .r  <  (5 166)
1 -  act '

In conclusion then, for a  =  1 /2  and p  <  a  we, have
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Large Deviations Approximations
Chapter 6

6.1 Large deviations
The development of large deviation theory began with Cramer who proved the theo

rem that bears his name for the large deviations of the empirical mean of a sequence 

of i.i.d. random variables. Chernoff subsequently discovered a general method for 

calculating the rate function from the cumulant generating function of the i.i.d. ran

dom variables. Gartner and Ellis generalised Cramer’s theorem for the case when the 

random variables are not i.i.d. and, from a major result of Varadhan, a generalisation 

of the method of Chernoff for calculating the rate function was shown to apply to the 

case of non-i.i.d random variables. This obtains the rate function from the Legendre- 

Fenchel transform of the scaled cumulant generating function [2]. In this chapter we 

apply the work of Botvich and Duffield [20] to our new cell level model in order to 

find (what they called) the Shape Function for this model. We also prove some new 

results on the shape function in the case of non-negatively associated workload incre

ments that flow from the definition of the shape function and from the sub-additivity 

theorem (Lemma 6.1.11 of [21]). We begin in this Section with the definitions of a 

Large Deviation Principle, the rate function and the cumulant generating function. 

In Section 6.2 we describe the work of Botvich and Duffield from [20]. In Section

6.3 we describe some of the properties of the Legendre-Fenchel Transform giving a 

number of well known results and some consequences not previously outlined for the



shape function We also prove some new theorems on the shape function in the case 

of non-negatively associated workload increments m subsection 6 3 3 In Section 6 4 

we apply the results of Botvich and Duffield [20] to find the shape function for the 

cell level model We relate this to the simulations of [9] This is also related to the 

work we earned out in [22] In Section 6 5 we desenbe the relationship between the 

shape function and economies of scale, this is from work we earned out m [22] We 

will now state formally what is meant by Large Deviation Principle, rate function 

and cumulant generating function

D efinition 4 Let { P n} be a sequence of probability measures on the real numbers 
Then {P n} said to satisfy a Large Deviation Principle with rate function I  and 
constants Vn if there is a function I  R  —> [0, oo] and a sequence of positive numbers 
{yn} diverging to +oo and,

lim sup-^-logPn[(7] < -  mf I(x)  (61)
n->oo Vn

for C  closed and,

lim inf -7- log P n[G] > — mf I(x) (6 2)
n-y 00 yn '‘ L J — X£G '

for G open

Now note that if A  is a set with,

mf I(x) =  mf I(x)
x ^ A '  v  '  z e A  v  1

mf I  (x)
x e A

where A' is the mtenor of A  and A  is the closure of A, then

lim m f-^-logPnL4] =  — mf I(x)n-^00 Vn 0 , 1 1 1  v ’
and we write,

P„[A] »  e- VninfxeAl(x)

For a sequence of random vanables, {X t} the cumulant generating function is defined 

by,
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D efinition 5 The cumulant generating function of the sequence of random variables, 
{ X t} is, the real function of real 6

g(B) =  lo g E ^ * ]  (6 3)

This can be used to obtain the rate function I  and both I  and g are convex Thus, 

for example, if A =  [a?o, oo] then,

=  — inf I  (x)
x £ [ x o , c o ]

=  -I(x o)

lim mf —  log P  „ [A]
n - H x >  V  

v n

6.2 Large deviations and Queues
Let Wt be the workload process for a general single server queue, where t  is discrete 

or real time That is let, A t be the arrivals to be served m the interval [—t, 0) and 

let St be the service that can be completed m the same time interval Then if the 

workload has stationary increments and the queue has a FCFS service discipline the 

queue length will have a unique stationary distribution [14], and the equilibrium 

queue length will be given by,

q =  sup Wt (6 4)t> o
For such a general single server queue Glynn and Whitt [12] showed that under very 

general conditions if the pair ( ^ ,  t) with t  G Z + satisfies a Large Deviation Principle 

with rate function /, l e ,

P [—  > w] »  e - tI{~w) (6 5)

then,

P  [ q > b \ n  e ' 7b (6 6)

where,

7  = inf I^ ~  (6 7)w w v ’
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This was generalised in [23] for t E R  and more general scaling functions than t.
Now we are interested in the queue qL in an infinite buffer generated by the L- 

fold homogeneous superposition of independent sources served at a constant service 

rate and modelled by the cell level model. Let the superposed workload process be 

WtL and let Wq =  0. The simulations of Corcoran [9] demonstrate that the broad 

features of the queue length distribution of this queue remain essentially unchanged 

when L  and the queue length b are jointly scaled. Thus we are led to consider the 

large deviation properties of the queue length distribution in L.
It was proved in [20] for more general situations than ours, under hypotheses that 

follow, that

T h e o re m  3 For b > 0 ,

lim Y lo g P te 1, >  Lb\ =  - I(b)
L - t O O  L

Where the function I , termed the shape function, is related to the cumulant generating 
function o f the workload process W tL.
The hypotheses under which this result holds are,

H y p o th e s is  1 Let, the rescaled cumulant generating function for the workload pro
cess W /J be,

A f(0) =  ^  Hm logEIe"«'."] (6.8)

then,
•  For each real 6 the limits,

\,(e) =  limAf(0)L-foo
\{0) = h m A t (0)

exist as extended real numbers. With the first limit existing uniformly for all t 
sufficiently large.

•  The functions A and At are both differentiable on the regions where they are 
finite (effective domain) and lirn^ ^  |A'(0n)| =  +00 fo r any sequence {9n}n, in 
the effective domain, which converges to a point on its boundary.
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• There exists 9 >  0 for which Xt(9) <  0 for all t.

•  For real t, We define W£r =  sup0<r/<r Wf_T, -  W f  for t  >  r  >  0. Then for all 
real 9,

limsuplim sup -r- sup log E ^ 01̂ ]  < 0
r->0 L -foo  L  t > 0

The function I  called the shape function is,

Comparing these hypotheses to the conditions in the Gartner-Ellis theorem, Duffield 

and Botvich [20] note that the first two hypotheses mean that for each fixed t the 

pair (W f,L )  satisfies a Large Deviation Principle with rate function (iAt)*. That is,

1
lim sup — log P [—r~ £ A] <  -  inf (tXt)*(w)

L->oo L  L
1 W lJ

lim inf y lo g P [ ——  6 A] >  -  inf (iAt)*(w)L-¥oo L, L/ w£A°

Now (tXt)*(w) =  t(X*t )(w /t),  thus, the third hypothesis means that any root of

(tXt)*(w) is negative, and we then have, for w > w%,
i w L

lim sup — lo g P [ —~~ > w\ <  ~(tXt)*(w)
L —t OO L  Li

1 W L
inf - lo g P [ - ^ -  > w] >  -] im (tX t)*(w)L—ÏOO Jj Lj t\rW

It is noted in [20] that the third hypothesis also guarantees the existence of a strictly 

positive solution 7  of the equation A(0) = 0 which is the asymptotic decay rate of 

the queue length distribution (recall chapter 4). The fourth hypothesis is a local 

regularity condition on the sample paths of the workload process.

Note that the result proved in [20] does not assume that the superposition is of 

i.i.d sources or that the sources are independent at all. We note that in the case of 

a homogeneous superposition of i.i.d workload processes the At (9) = lim ^ ^  XTtJ(9) 
condition is redundant, as then Cramer’s Theorem guarantees that the superposed 

workload process satisfies a Large Deviation Principle with rate function as described 

above [15].
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It was also noted m [20] that the differentiability condition guarantees that there 

is a unique w*t for which (tXt)*(w^) =  0 This number is such that,

S " 2 U « eL *

and m fact, converges exponentially to as L tends to infinity [15],

W lJ exp *
~ i r

that is, for any e >  0 there exists a number N  >  0, dependent on e, such that, for all 

L sufficiently large,

WL
P [ |i- £ - - < l > e ] < e - 1"

It was noted in [20] that in the case of a homogeneous superposition of independent 

sources, with single source workload Wt,
w*t = E  [Wt]

and converges exponentially to E[Wf] as L tends to infinity Further, since 

E lL i e~LN is finite, the Borel-Cantelli Lemma implies that satisfies the Strong 

Law of Large Numbers, that is,

W p
—=?— > E[Wi] a sLi

The reason why the result proved m [20] works is roughly the following

P[qL >  Lb] =  P[supWtL > Lb] 
t> o

=  p [C l{ w ,i > « } ]
t> o

The probability of each event in the union is exponentially small for large L Thus 

the probability is dominated by the largest of the probabilities of each of the events 

in the union, in other words by the probability of the most likely event This is,

supP[Wi£ > Lb]t> o
Now if for each fixed i, (W f, L) satisfies a Large Deviation Principle with rate function 

(tXt)* then,

P [WtL >Lb]  »  e“ L(iAt)*(6)
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In other words we have roughly the following,

P  [qL >Lb] fa supP[WtL >L&] 
t>o

fa sup e~L(tXt  ̂^
t> 0

_  —L m ft> 0(tAt)*(6)

=  e - LIW

It was also proved in [20] that the asymptotics of I(b) are,

lim (1(b) — by) =  v (6 9)b-too
where,

v =  — lim iAt(7 ), (610)t—HX>
provided this limit exists, and subject to some regularity requirements m the case of 

discrete t For large b we can approximate 1(b) by [20, 22],

1(b) fa v +  by (6 11)

Thus for large b and large L we have,

P  [qL >  b\ fa e-Li(6/L) 

w e~{Lv+bri)
=  e~Lve~ln (6 12)

Thus we can see from 6 12 that in multiplexer models v determines the economies 

of scale [22] that can be obtained from statistically multiplexing large numbers of 

sources Note that, v = 0 for uncorrelated arrivals as then Xt (y) =  A(7 ) =  0 

Therefore there are no economies of scale to be obtained from multiplexing large 

numbers of sources with uncorrelated arrivals If, however the increments of the

workloads on disjoint intervals are positively associated then u >  0 [20, 22]

For t  >  0, if we define At(0) =  tXt(0/t)  and we assume that the workload W f  has 

stationary increments and we define A(9) =  lim^o At (9) for real t  and assume that
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the limit exists as an extended real number for all real 9 and we make one further 

assumption, namely, that 0 is in the effective domain of A* Then,

/(0 )  =  A,(0)

for discrete t, and

7(0) =  A*(0) (6 13)

for real t  This tells us that for large L (under the conditions given) the workload is 

most likely to exceed 0 at the smallest times [20]
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6.3 The Legendre-Fenchel Transform and the Shape 
Function

In this section we will define the Legendre-Fenchel Transform /* of a function /  and 

describe some of its general properties [15] We describe how to calculate the shape 

function I  (b) form the Legendre transform of the cumulant generating function of the 

workload process W /J We show how the derivative of the shape function with respect 

to b is related to the cumulant generating function In subsection 6 3 2 we prove the 

new result that the shape function is sub-additive if the increments of the workload 

are non-negatively associated This has consequences for the shape of the shape 

function which we demonstrate Under this condition on the workload increments, 

and assuming 7(0) =  0, the shape function cannot be convex

6.3.1 The Legendre Transform
D efinition 6 [15] Let f  R  R  be a strictly convex function The Legendre- 
Fenchel transform of f ,  denoted by f* is defined by,

f*(y) =  sup [xy  -  f (x )}for  y ^ R
x£R

Lem m a 1 [15] Let f  R —t R  be a convex function Then,

1 ( /* ) ' =  ( f ) “ 1

2 f (x )  =  supyeR{xy  -  f*(y)}

3 (/*)* =  /  */ /  closed
4 f* is a convex function also known as the conjugate of f

6.3.2 Som e G eneralities
Most of the following lemmas and definitions are used either to prove further more 

useful lemmas or are used in section 6 3 2 Lemma 3 is used to prove Lemma 4 which
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m turn is used to prove Lemma 5 which is itself used to prove Theorem 4 m Section 

6 3 3 Lemma 6 tells us how to calculate the rate function /t* (b) from the cumulant 

generating function f ( t ,  9) The proofs of well known results are brief and so are 

provided for completeness We begin with some definitions

D efinition 7 Let 9t$ be the 9 at which supe{60 — t \ t (9)} occurs if such a 9 exists

D efinition 8 Let tf, be the unique t at which the mft>0 tX^(b/t) occurs if such a t 
exists

D efinition 9 Let f ( t ,9 )  =  tXt (9)

This simplifies the notation slightly as we can now write 

D efinition 10

/(6) = m f / ; ( 6)

The following Lemma is well known and is used later to prove Lemma 6,

Lem m a 2 f ( t ,  9) is convex as a function of 9 for 9 >  0 implying f"(t, 9) >  0 for all 
9 and a l l t >  0

P ro o f

From Defimtion6 we have f ( t ,9 ) =  logE[eeWi] Now by Schwarz inequality we have,

(E[eW t])2 < E [ e ^ Wt] E [ e ^ m ] 

where 0 < C < 9 Thus lettmg 9i =  9 — (  and 02 =  9 +  £ we get

logfEte1̂ ^ ] ]  < log[E [e*im ]] +  log[E[efl2W*]]2
proving that /(i, 9) is convex as a function of 9 >  0 for all t  >  0 hence,

f"(t,9) >  0

for 9 >  0 and t  > 0

We can show the known fact that /t*(6) is non-negative as follows,
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Lem m a 3 Let f ( t ,9 )  be defined as m Definition 9 and /t* (b) be the Legendre trans
form of f  Then /t*(b) > 0

P ro o f

It is obvious that,

b e - f ( t ,  6) =  0

for 9 =  0 for all i > 0 and all real b 
Thus,

sup{60 — f ( t ,  0)} > 0 9

We can also prove the known fact,

Lem m a 4 Let f ( t , 0 ) be defined as m Definition 9 and /t* (b) be the Legendre trans
form of f  Then, /t*(E[Wt]) =  0

P ro o f

For all e we have by Jensens inequality [8],

f { t , 9) =  logE[ew ]

>  lo g e ® ™
=  0E [Wt]

Thus,

e [ w t] e - f { t , e )  < o

But this implies,

f i m w t } )  < o

Implying by Lemma 3 that,

/,*(E[W,]) =  0

94



The next three lemma’s are also known results supplied only because they are 

usedlater. The following Lemma is used in the proof of Theorem 4,

Lem m a 5 Let f ( t ,  9) be defined as in Definition 9. Then, for b > E[Wt]

sup{b9 -  f ( t ,  0)} = sup{b9 -  f ( t ,  0)} e e> o

P ro o f

For 9 <  0 and b >  E[W*]

b9 — f (f, 9) <  E [Wt] 9 - f { t , 9 )
<  0

But

Thus,

sup {b9 — f ( t ,9 ) }  >  0 e

sup{£>0 — f ( t ,  0)} =  sup{b9 — f ( t ,  0)}
6 0>O

The following Lemma tells us how to calculate the rate function f?(b) from the 

cumulant generating function f( t ,9 ) .

Lem m a 6 Let f ( t , 9 ) be defined as in Definition 9 and f*(b) be the Legendre trans
form of f .  Then,

ft(b )  = w t t - f ( t , e t,t)

where 9 t jb is the unique 9  >  0 such that, for fixed t  and b

f '( t ,0 )  =  b 

if this equation has a solution for 9.
If on the other hand no such solution exists then, the supremum is only attained at 
infinity.
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P ro o f

By definition,

/t*(&) = sup { b 9 - f { t , 6 ) }
9

Then by Lemma 5,

fi(b) =  sup { b 9 - f ( t , 9 ) }  e>o
But by Lemma 2 /(£, 9) is convex as a function of 9 Thus b9 — f ( t ,  9) is concave as 

function of 9 Hence, if

f '( t ,9 )  =  b

for some 9 =  9t  ̂ Then,

r t ( i) =  w 0 - f ( t , e t,i,)

and 9t>b >  0

On the other hand if,

for any 9 Then,

i - / ' ( * , » ) #  0

for any 9 Thus as b9 — f ( t ,  9) is concave,

b - f ( t , 9 ) >  0

for all 9 >  0 and therefore, since b9 — f { t ,  9) is strictly increasing,



Lem m a 7 Let f i t , 9) be defined as m  Definition 9 and ft if)) be defined as m Defi
nition 6 and 9tj> be defined as in Definition 7 Then,

( / ,* ) '( * )  =  v

P ro o f

By Lemma 6,

/„•(&) =

Thus, from Lemma 2 we have,

The next Lemma is used m the proof of Lemma 8,

(/«*)' ®  +  1 » = » , , ^
90tj6 ,p9 t,b

-  e,* + b - d b ~ - b~db 
=  9tjb

With tb defined as in Definition 8 we can write the following equation for the 

shape function 1(b),

m  =  / ¡ w  ( 6 w )

And we have the following for the slope of I(b) at any b,

Lem m a 8 Let t& be defined as m Definition 8 and be finite and non-zero Let Qtib be 
defined as m Definition 7 Let (tb,ftb(b)) be a local minimum point for ftb(b) Then,

m  =

P ro o f

By Equation 6 5, 

thus ,

dft\(b)

97



=  f m \ tb^ + ( f t\ y (b )
=  o + ( f; by(b)
=  ( / t; r a
=  &tb,b

where the third equality follows from the fact that ( tb,f fb(b)) is a local minimum 

point The last equality follows from Lemma 7

The implications of Lemmas 3 to 8 can be summarised by the following diagram, 

where we have assumed for the purposes of illustration that 1(b) is concave (Diagram 

Over-leaf)
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Figure 6-1 illustration 
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The next Lemma tells us that >  0 for all b When we combine that with 

Lemma 10 we see that the sign of I"(b) =  d°tj )̂'i depends on f'{t{b),Qt,b)^^

Lem m a 9 Let f ( t ,  9) be defined as m Definition 9 and 9t,b be defined as m Definition 
7 be the unique finite 0 such that /'(£, 9) =  b for all b on some interval Let f"(t, 6t,b) >  
0 on this interval Then,

m ** =  i / /" (* ,  a ,*)db 
P ro o f

We have f ( t ,  9t,b) =  b Thus, differentiating both sides of this equation w r t b gives, 

and the result follows

Lem m a 10 Let f ( t ,  9) be defined as m Definition 9 and 9tjb be defined as m Definition 
7 Then,

d9t,b _  f % 9 tJb)

P ro o f

we prove this as follows, 

Hence under the assumption,

dt / '' ( tA * )

d \ n ( t , b ) _  301,4
dtdb dt

& ( n ( t , b ) _  d9t,b
dbdt dt

But

hence,

-  - f ( t , 9 tjb)
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Thus

dbdt db

Which by Lemma 9 gives,

& ( n m
dbdt

Hence we have the result

6.3.3 Theorem s
Recall that the Shape function is defined m terms of the Legendre Fenchel transform 

of the cumulant generating function of the workload process by [20],

Where /  is defined as in definition 9 We will now prove three new results for the 

Shape function for the case where the workload process has non-negatively associ

ated and stationary increments These follow very simply from the definition of the 

Legendre Fenchel transform, the definition of the Shape function, the Sub-additivity 

Theorem and a simple consequence of the Sub-additivity Theorem We prove that m 

the case of non-negatively associated and stationary workload increments the Shape 

function will be sub-additive and as a consequence a certain limit exists and further 

that the shape function cannot be convex on any interval which contains the origin 

We do not use these results again, but they are included here because they follow 

simply from definitions and are quite general

It was proved in [20] that for workload processes with non-negatively associated 

and stationary increments v =  — lim ^ ^  t \ ( t ,  6) is non-negative, to this we now add,

Hb) =  mft\*t (b/t)

Which can be rewritten as
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Theorem  4 Let the increments of the workload processes W /J be non-negatively as
sociated and stationary Let f ( t ,9 ) be defined as m Definition 9 Let /t* (b) be its 
Legendre transform Then 1(b) is sub-additive i e the following conclusion holds

I(bi +  b2) < L(bi) + 1 (62)

for all bi, 62 > 0

P ro o f

Firstly

/(¿1 + 12, 9) > f ( t 1} 0) +  f ( t 2, 9) for all t x, t 2 > 0

thus,

(61 +  62)0 ~ f ( t i  + t2, 9) <  (bi +  b2)9 — f ( t x,9) — f ( t 2,9)
=  bx9 — f ( t i ,  9) +  b29 — f ( t 2, 9) for all b, 9 >  0

By Lemma 5,

thus,

sup{&0 -  f ( t ,  0)} = sup{&0 -  /(£, 0)} 
0>o e

sup{(&! + b 2)9 -  f ( t i  + t 2,9 )}  <  sup{bi9 -  f ( t 1,0) +  b29 -  f ( t 2,9)}  e e
<  SUp{&i0 -  f ( t U 0)} +  SUp{&20 -  f(t2,  0)} e e

and hence,

f l +t>{h +  b2) <  f  1 ( h ) +  f  1 (h )
Then, by Lemma 3

|5of f f i h  + t.) = (11>i?tU /s+1*(6l + 62)
2  +  « ( • . ) )

=  ¡ i C W + g ' i W

with the last equality due to Lemma 3, that is /t*(6) > 0 Thus,

I {pi +  b2) < I(bi) +  I(b2) 
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This result tells us something about the shape of the Shape Function as Theorem 7 

will show Note that we have equality here for stationary and non-associated arrivals 

since m that case

But,

/ ( & 1  +  &2 ) =  7 (6 i)+  7 (6 2 )

Implies,

1(b) =  6/(1)

by a result due to Cauchy Farther

f(h+t2,0 ) =  /  ( i i ,  9) +  /  ( i 2> 9)

the same result of Cauchy also implies,

f(t,9) =  tf( 1,9) 

= tXx(9)

x t(9) = X,(9)

=  m

which implies,

which m turn implies,

1(1) =  mf A*(l/t)
=  7

Thus we can say,

Theorem  5 Let the increments of the workload processes W f  over disjoint time 
intervals be stationary and non-associated Then the the following conclusion holds

m  =  6/(1 )

=  by 
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Theorem  6 Let the increments of the workload processes W f  over disjoint time in
tervals be stationary and non-negatively associated Then the the following conclusion 
holds

and,

lim existsb-too b

lim I~ ~  =  mfb>0 ^6—> 0 0  0
P ro o f

By Theorem 4

I(b i + 1*2) < L(bi) + 1 (6 2 )

for all 61, &2 > 0 Then the existence of the limit and its equality with the mfimum 

follows from the sub-additivity theorem (Lemma 6 1 11 of [21])

Theorem  7 Let the increments of the workload processes W f  over disjoint time 
intervals be non-negatively associated and stationary Let 1(b) be defined as m Def
inition 10 Let 7(0) =  0 Let K  be an interval on the real line containing zero 
Then

I  (b) cannot be convex on K

P ro o f o f Theorem

By Theorem 4 ,

7(6i +  62) < 7(61) +  7(62) 
for all 61, &2 > 0, with equality if either 6t or &2 are zero Hence,

7(6i +  62) — 7(6i) < 7(62)
for all by ,b2 >  0 Hence, since 7(0) =  0 we have,

I ( h  +  h ) - 1 ( h )  < I ( b 2) ~  1(0)

for all 61, 62 > 0 Thus,

7(6i +  h )  — I ( b \ )  < 7(62)-7(0)
6 2  6 2
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lim  j f e + w - j f t )  <  lim  m - m
b2~+0 ¿>2 b2~t0 6 2

for all &i > 0 and hence,

m )  < m

for all b] >  0.

Hence,

I(b)is not convex on K.
This concludes this section devoted to more general discussion of the shape function. 

In the next section we will return to the shape function for the cell level model.

for all bi >  0 and b2 >  0. Thus,

6.4 The Shape function for the cell level model
We intend, for reasons outlined in Subsection 6.4.1, to look at the behaviour of the 

cell level model as we scale the number of sources L and the packetization period 

s while keeping the traffic characteristics constant. In order to do this we rescale 

the time scale on which the multiplexer operates so that it operates on a scale that 

is proportional to L. We calculate the cumulant generating function for the time 

rescaled workload process and from this we plot the Shape function. We then use 

the Shape function to plot a graph of an approximation to logP[gL > b] against b for 

finite L.

6.4.1 Tim e rescaling
In applications s, the packetization period, is expected to be very large as the trans

mission rate of the multiplexer is much faster than the the sampling rate of the 

individual sources during periods of speech activity. The number of multiplexed 

sources L will also be large. Thus we are interested in the behaviour of the cell level 

model for very large s and L. Again we have s =  crL for some fixed a, we have 

1 — /? =  t /L  for some fixed r  and we have a  independent of L. Then the mean burst
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s La
1 — a  1 — a

measured in units of the multiplexer transmission period The mean silence length is

1 _  L
1 — (3 T

also measured m units of the multiplexer transmission period Both the mean burst 

penod length and the mean silence length are thus invariant (independent of L) on 

a time scale which is proportional to L [22] Rescaling the time in this manner is 

equivalent to reducing the multiplexer transmission period or scaling the service rate 

proportional to L If we double the size of the superposition the server operates twice 

as fast As before the offered load is independent of L The characteristics of the 

arrivals from each individual source are kept constant modulo discretisation w r t i a s  

is the offered load but the service rate or transmission capacity increases proportional 

to L For example, in the simulations of Corcoran [9] the actual mean burst period 

length is maintained at 352ms, the actual mean silence length then depends on the 

offered load only, and with an offered load of 0 82 the mean silence length is roughly 

invariant as L is scaled, varying between 712 and 739ms over the range of values of 

L used in the simulation

We are interested in the the behaviour of the cell level model as we scale L, keep

ing the traffic constant The ratio of the source sampling period to the multiplexer 

transmission period, the transmission capacity (server speed) and the size of the su

perposition axe all scaled For the model this means that the single source arrivals 

process A[J is replaced by the time rescaled process A T£t which is convergent m distri

bution to some process At as L —» oo Large L  scaling limits were first investigated 

for modulated fluid processes by Weiss [24] and time rescaled renewal processes were 

studied by Snram and Whitt [11] What does Theorem 3 mean m the case of the 

time rescaled arrival process7 Well for a given superposition size L the single source 

reversed arrival process is A f  We define A% =  0 The service rate is r  which in the 

case of the cell level model is 1 The superposition of L independent copies of the 

arrivals generated by each source is denoted by £ L A TtJ Then the queue length at

period length is,
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qL =  sup ( 5 2 At ~ r t ) t>o L
This is invariant under time rescaling where we replace t  by Lt, thus,

qL =  s u p Q > £ t -  rLt)
* > °  l

Hence we have,

P[qL > Lb] =  P [ s u p A l t ~ rL t) > Lh\
‘ > 0  L

=  p t U  { Y . A L t ~ r L t >  L h )]
t > 0  L

For large L the probability of each event in the union becomes exponentially small in 

L. Hence the probability of the union is dominated by the largest probability among 

the events of the union. Thus,

P  [qL > Lb] sup P  [V] A ft — rLt >  Lb]
*> 0 L

Now for any fixed t the single source arrival processes are mutually independent. 

Thus by Chernoff’s theorem [4] we have for large L,
P[J2 A \ t — rLt >  Lb] «  inf e- 9LbE[ee{Â - Tt)]L

L
Define the cumulant generating function Af (0) by,

AtL(0) =  -logE [e*(̂ ~ ri)] t
Then we can write,

P  [ Y ,Au ~ r L t >  Lb] »  e- L{tx*r{b)
L

Thus,

P[qL >  Lb] fa e-Linft>0(.t^r(b)

Now A l t approximates At for large L hence Af (0) approximates At(0) = \  logE[efl(Ai-rt)] 

for large L. This is made rigourous in Theorem 3 by requiring that,

At(0) =  lim Af(0)L —too
A (0) =  lim At(0)v '  t -> 0 0

This explains the basis of Theorem 3 for the case of the time rescaled process [22].

time 0 is,
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6.4.2 The Tim e Rescaled Cell level M odel
The limiting reversed arrival process At for a single source has bursts of periodic 

arrivals separated by a fixed period a  The number of arrivals m a burst is geometri

cally distributed with mean Bursts are separated by exponentially distributed 

silences with mean length i  The arrival process At is a function of the continuous 

time Markov process X t The process X t has state space E =  [0, a) x {a} The 

process X t moves determimstically at unit rate from a  to 0 Prom 0 it jumps to a, 
from where with probability a  it moves as before to 0 Alternatively upon reaching 

a  from 0 it can with probability 1 — a  remain at o  for an exponentially distributed 

time with mean  ̂ The arrival process At is incremented by one arrival each time X t 
passes through the state 0 [22] Thus we write,

X t =  mm{cr, time to next arrival}

We will define p = , \_a^ r
The kernel for the limiting rescaled Markov process X t is,

Pt(®, d y ) =

(1 — a)e T x 5̂a(dy) +  (1 — a)re  T x  ff+y^dy +  a5a-t+x(dy) 0 < x <  t
fix-t{dy) a  >  x > t

e~Tt8a{dy) +  Te~r^~a+y^dy x =  a
This has stationary measure,

Q (dx) =  p(dx + —— — Scridx))r
Where dx is the Lebesgue measure on [0, a) and Sa is the unit measure at {a} This is 

the unique distribution on [0, a] which governs the steady state to which {X t} tends 

That this is the stationary distribution is verified by the following The defining 

equation for the stationary measure is,

j i  P t(x,dy)Q(dx) =  Q (dy) (615)

We will write U{a$}(dx) for the uniform measure on [a, b] with density 1 i e U(A) =  
f 4 Ida: for A  c  [a, b] Putting our expression for Q (dx) (up to a multiplicative
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constant) into this equation 6 15 we have,
( i  — °0-  f  P t(x,dy)Q(dx) =  f  P t (x,dy)(dx +  —— — Sa(dx)p  J X Jx T

=  f  P t ( x ,d y )d x +  —— —  [  P t {x,dy)6ff(dx))J0 T Jx

The first term here is,

J  P t (x, dy) dx =  ((1 -  ct)e~T̂ ~x Ŝa(dy) +  (1 -  a )re-T(i_x-<r+!')dy +  aSff- t+x(dy)) dx
+  J  Sx- t (dy)dx

=  ^ ~ e - ^ X ( d y )|‘ =„ +  (1 -  | S +‘  +  cU {„ . t^} (dy)
+U{o,<r-t}{dy)

=  ^ — ^ S , ( d y )  -  ^ — ^ - e - r % ( d y )  +  (1 -  a ) U { , . t ^ ( d y )T T
- ( 1  -  a )e -T(t- ff+»)rfy

+ a U {^ t,a} (dy) +  U{o>(r- t} (dy)

The second term is,

2 — ^ / P  t (x,dy)6(r(dx)) =  i z A e - T t 6 v (dy) +  ( l -a )e -T l* - ' -» )d yT Jx T

Combining the two we get,

- f  P t(®, dy)Q(dx) =  f  P t ( x ,d y )d x + ^ — ^  f  P t (x,dy)5<T(dx)
P JO J0 T  Jx

_  (j_  ̂ <x\ 6^ dy) +  (1 _ a)u{a_tj(r} (dy) +  U{0i(T_t}(dy) +  aU{a_ti<j}(dy) 
=  d y +  '-—~ 8 (r(dy)
=  (dy)

Thus,

f  P t (x,dy)Q(dx) =  Q (dy)
J 0

as required
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6.4.3 Calculating The Cumulant G enerating Function
In fact the arrival epochs of the process At form a delayed renewal process In other 

words, let T0 be the time of the first arrival (renewal) and let {5„}n>i be the times 

between successive arrivals, let {T„}„>i be the times of successive arrivals Then,

Tn =  T0 +  ± S t

Tand {Tn—T0 =  £I*=i is a Renewal process Renewal theory which we apply here

is described in detail in '[25] We will give the label G  to the distribution function 

of the time of the first arrival To And we will give the label F  to the common 

distribution of {¿>„}n>i Then F  will be given by,

roo
F ( d t) =  a5(r(dt) +  (1 —  a) / Te~Ty6a+y(dt)dy

Jo

We do not immediately have an expression for G but we can derive it from the 

distribution of To conditioned on the initial state of the underlying Markov Process 

X  For this distribution which we will call Gx we have,

rooGx(dt) =  6x(dt)5x((0, a)) +  i*({ff}) / re~Ty8a+y(dt)dyJ o
From this we can derive G as follows Recall that the stationary distribution of 

the Markov process X  is,

Q(dx) =  pdx +  °^6ff(dx)

Thus the distribution of To is,

rooG(dt) =  / Gx(dt)Q(dx)
Jo

Thus,

G{dt) =  p [ a Gx(dt)dx +  p {- ^  r C J d t K i d x )
JO T Jo

=  p j,( (o ,f f ) )< «  +  p 2 —T
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G(t) =  f* G(dy)
Jo

=  p fa 5v((0,c,))dy +  p (± ^ -  f ^ G A d y )
=  pt5t ((%o)) +  poSt ([<!,(x)) +  p —— — /  re- ” /  S,+X(dy)dxT Jo JO

(1 —  aA r°°=  pt6t ((0,a)) + paS t ([a,oo)) + p — - — J Te~TX8x((0 ,t  -  a))8t {{a, oo))dx

= pt5t((Q,o)) + pa8t([<ar,oo)) + p ^   ̂ (1 -  e~r(*~g))<yt((g, oo))
Thus, we now have expressions for both G, the distribution of the time T0 to the first 

renewal, and F , the common distribution of the inter-renewal times {S>j}n>i These 

are all we need to derive an expression for the cumulant generating function of the 

workload process Wt
Before that, we can prove that the arrival process At has stationary increments 

and constant renewal rate p To do this, we first calculate the mean inter-arrival time 

as follows,

roo
E [S „] =  /  yF(dy )

Jo
roo roo roo= a  y8a(dy) +  (1 -  a) / Te~Tt8a+t(dy)dt  

Jo Jo Jo
roo

=  a a  +  (1 —  a) / re ~ Tt(a +  t )dt  
Jo

(1 —  a )

We can now derive an expression for the distribution function G as follows,

OO
0

=  a a  +  (1 — a)a  +  
( l - o )

=  a  + T
_  1 

P
And we know - < oop

We want an expression for E[At] We can write, At m terms of the renewal epochs 

n>0 as follows,

OO

4  =  E w r » )
n=0

and hence, we have the following expression for E[At] in terms of G  and F,
OO

E [A ]  =  E p [ ^ < i ]
n=0
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=  5 2 ( < ;* f “ (*))
n=0

But this last expression can be rewritten as,
00 00
Z ( G * F " ( t ) )  =  G + Z ( G * F " ( t ) )
n ~0  n = loo

=  G +  { Y , F n{ t) )* G
71=1

OO
=  G +  F * ( £ i ? " ( i ) ) * G

n ~ 0 oo
=  G +  F * ' £ , ( G * F n{t))

n=0
=  G +  F  *E [A t]

That is, E[At] satisfies, the renewal equation,

E[At] =  G +  F * E [A t] 
or, on rearranging, we have for G,

G =  E[At] - F * E [ A t]
Thus we have E  [At\ =  pt iff,

G = pt — F  * pt
And in fact this is easily proved as follows,

F  *  pt =  p f  (t — x)F{dx)Jo
r t  r t  roo=  p i  (t -  x)aSa(dx) +  p ( t - x ) ( l - a )  re~TV 6tr+y(dx)dy

Jo Jo Jo
roo=  °o))(p(i -  o)u +  p ( l - a )  (t - a -  y)re~Ty6y((0, t  -  a))dy)

J  o

=  p(t -  a)St ((a, oo)) -  p6t ((a, oo))—— —  + p6t ((a, oo))—— ^ e~r(i_<7)

Thus we have,

pt for £ < a
pa +  p ^ ( l  -  e~T̂ )  for i  >  <r 

=  G(t)
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Thus we have proved,

Hence At has stationary increments and the renewal rate is constant

We return to calculating the cumulant generating function for the workload pro

cess In order to calculate the cumulant generating function we need the distribution 

of the arrivals process We can determine this distribution from the distributions of 

the renewal epochs First we will write {A t — n}  m terms of renewal epoch events

{A t =  n} =  {Tn_i < t , T n > t}

But,

{Tn <t}c {Tn_i < t}
Hence the distribution of the arrivals process is, for n >  1

p [At =  n] =  P[Tn_! < i] — P[Tn < t]
=  G * F n' l {t) - G * F n{t)
=  F™-1 * pt -  2Fn * pt +  F n+1 * pt

and for n =  0,

P[At =  0] =  P[T0 > i]

=  1 — P[T0 < t]
=  1 -  G(t)
= 1 — pt +  F  * pt

These equations allow us to write the following expression for E[e0At]

[ * H _

B[e9At] =  l - p t  +  F * p t +  {F11- 1 * pt -  2Fn * pt +  F n+1 * pt)e6n 

Where F ° * p t  is defined to be pt and [t/a]- =  max{m e  Z+|t / a  >  m }

E[At] =  pt for all i > 0 (6 16)
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We have, then, the following expression for the cumulant generating function for 

the time rescaled workload process for the cell level model, with deterministic service 

rate of one cell per unit time

i [*H-
At {9) =  - log[l -  pt +  F * p t  +  Y  (F " _1 * ( * -  2 p n 'k Pt +  ir" +1 * ~ e 

t n=l

It is then a simple matter to prove that,

i [*/«■]-
At(0) =  -  log[l +  pt(ee -  1) +  Y  **  *  Pted{n~ l) (e0 -  l)2] - 9  (6 17)

* n=i

Now we need only calculate F n(dx) and the convolution with ptm  order to find At (9) 
We use Laplace transforms to derive an expression for F n(dx) We will use the 

notation L[ ] for the Laplace transform

First we find the Laplace transform of the distribution F
roo

L[F] =  / e~^F(dx)Jq
roo roo

=  / e~^x(a8a(dx) + (1 — a) / re~TyS(r+y(dx)dyJo Jo
roo roo roo

— a  J  e~PxS(T(dx) +  (1 -  a) j  J e~PxTe~Ty6<T+y(dx)dy

The first term is,

a  f  e~Px8Adx)  =Jo
The second term is,

roo roo roo(l  — a)  / e~^xre~Ty6<T+y(dx)dy =  (1 — a) Te~^cr+ŷ e~TydyJo Jo Jo
roo=  (1 — a)e~PaT I e~(T+̂ ydy

The two combined are,

L[F] = (a + ( l - Q) ( ^ L - ) ) e-0'

We now use the fact that the Laplace transform of a convolution is the product of 

the Laplace transforms, that is,

L [F n] = (L[F])"
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Hence,

L[F"1 =  (« +  (! -
Then expanding binomially we get,

L i n  =  -  a Y ( ~ ) ’ e - ^
r = 0  P  - \ - T

We can rewrite this as,

L [Fn] =  a ne~n̂ a +  ^ ( r ) a n_r(l — a)r(-^-— )re~n̂ a
T - 1 p  +  T

Now we need only take the inverse transform of this to find Fn We use the fact 

that the inverse transform of the sum is the sum of the inverse transforms And we 

again use the fact that the transform of a convolution is the product of the Laplace 

transforms to deduce that, the inverse transform of { - ^ Y e~n̂ a is the convolution 

of the inverse transform of ( j ^ Y  with the inverse transform of e~n â The inverse 

transform of is itself just the r-fold convolution of the inverse transform of

with itself The inverse transform of ( ^ 7) has the density re~TX and the r- 

fold convolution of this with itself has the gamma density T^r-Iy e~TX The inverse 

Laplace transform of e~ni3a is the measure 5na(dx) The convolution of this with

r (l?)r~Ie-TS , g  T (r-1)' e

r  % - j r — e T(x for x > n a
0 otherwise( r - 1 )

Thus we have the following for the distribution F n,

Fn(dx) =  6x((na, 00)) 53(r)o!"_r(l -  a )rr — — e~T̂x~n<r)dx +  a nSn(T(dx)
r=l v

In order to calculate A*(0) we need F n ★ pt The convolution with a sum is just 

the sum of the convolutions, hence we need to get

This is,

j f  Sx((na, 00))r — e t[x n<T)p { t - x ) d x

St((na, — e t(x na)p { t - x ) d x )
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Which becomes after integration by parts, and some rearrangement,

S « ( ( „ a , o c ) ) V ^  t  ^ ^ - ( . 1 -  r)
T i=r+1 1

We also need,

f  p{t -  x)an8na(dx)
Jo

Which is,

8t ((na, oo))anp(t — na)

Putting the convolutions back into the sum we get,

F n * pt =  5t ((na, oo))(53(r)an_r(l — a)r- e ~ T̂t~TUT̂ Y  — r) +  a np(t — na))
r=l T  l=r+ 1 ^

Which can be rewritten as,

F n* p t  = i t( (n a ,o o ))E (r )a il- r( l - Q !)r^ e - ^ — ) £  (r(£ ~ Wff))i (/_ r))
r=0 T i=r+l f

We will write,

Tf)b{n, r, a) =  —  - a ,l- r(l -  a )rr \ n  — ry
Now we have the following expression for At(0) the cumulant generating function of 

the time rescaled workload process, t \ t(0 )  is,

log 1 +  pt(ee -  1) +  ^ E  è  Kn, r, £  (t(* m ) ) ‘ (I -  lO e « -1' (e* -  l )2
T n=l r=0 i=r+l 1

- t e

6.4.4 The Shape Function For The Tim e Rescaled Cell Level 
M odel

We begin by using Equation 6 5 [20] to find 7(0) for the cell level model For t  <  a  
we have,

t \ t (0) =  log[l +  pt(e° -  1)] -  6t
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Thus,

A t (9) =  tx t (e/t)
=  log[l +  pt(ee/t -  1)] -  9

Thus we have,

- 9  if 9 < 0 

+oo if 9 >  0

Hence we have, the following for 7(0)

7(0) =  A*(0)

=  sup{—A(0)}0
=  sup{0}e<o
=  0

Next we will calculate the rate function f?(b) for t  <  a  For t  <  a  we have,

/(£, 9) =  log[l +  pt(e° -  1)] -  9t

Recall,

ft(b) =  sup { b 9 - f ( t , 9 ) }  e
Now /(£, 9) is convex as a function of 9, hence b9 — f ( t ,  9) is concave as a function of 

9 Thus the supremum occurs for 9 =  9t>b such that,

f ' ( t ,9 t>b) =  b

For t  <  a  this gives us,

pte0t'b
=  b -\- t

1 + pt{e0t’b — 1) 

which implies,

a , {b +  t̂  l - ( 6  +  i)
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Then,

rt (b) =  M y . - / ( ‘A s )
Hence,

f!(t) =  (b+ 1) i o g f f i  + ( l - ( 6 + 1 ) )  log!1 ~ ^  + t}]

The derivative of f t* (b) w r t t  for t  <  a  is,

Thus the second derivative of /t*(b) w r t  t  for t  <  a  is,

f*(h\ =  b b i C1 ~ p)2 +  ^  +  2pb^  ~ p) .
* t2 bt +  t2 (1 — (b +  i))(l — pt)

For b +  t  <  1 this is positive Thus /t* (6) is convex on (0, <r] But examples also show 

that ft(b)  is not convex on (0,io) as a function of t  for t0 >  a  This is shown by 

Figures 6-2 and 6-3

In order to plot the shape function for a given set of parameter values we numer

ically determine the infi>0 /¿* (b) for a range of values of b We do this by first fixing 

b and t  =  o  then calculating f* (b) for these values of b and t  Then we increment 

t  by a  and repeat the procedure until we have found mfi>0 f?(b) for the particular 

value of b We then increment b and repeat the whole procedure This is carried out 

by a program written in C The inft>0 /t* (b) values are then plotted against the cor

responding values of b giving us the graph of the shape function for these values and 

the model parameter values chosen The graph of the shape function for a  =  0 35696, 

p =  0 85, a  =  0 995466 and r  =  0 00553175 is shown in Figure 6-4 All graphs were 

plotted using “gnuplot” The graph of the approximation to logP[gL > b] obtained 

using the shape function plotted against b for these parameter values and L =  400 is 

shown in Figure 6-5
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t

Figure 6-2 The Legendre-Fenchel transform, f*{b), for b =  0 015 as a function o f t

t

Figure 6-3 The Legendre-Fenchel transform, f?(b), for  6 = 0 038 as a function o f t
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Figure 6-4 The Shape function, I  (b)

log P[qL >  b]

Figure 6-5 A plot of the approximation to logP[gL > b] obtained using the Shape 
function against b with L =  400

b

0 0 5  1 15 2 2

b

120



0 

-0 5 

-1
-U(b/L)

-15 

-2 

-2 5 

-3 0 1 2 3 4 5 6 7 8 9
b

Figure 6-6 A Plot of The steep portion of fig 6-5

6.5 Economies of Scale
We mentioned in 6 9-6 12 that for a very large class of models the asymptotic form 

of the shape function / for large b is [20, 22],

1(b) fa 7 b +  u (6 18)

and that v  can be seen to determine the economies of scale [22] obtainable by multi

plexing large numbers of sources through,

P[tfL >&] «  e~LI{b/L) (6 19)

»  e-"lb~Lv (6 20)

For Markov Models it is possible to calculate v  in the following manner [20, 22], 

Each source is described by a Markov Process X t , c is the service rate and arrival 

increments At are described by a family of transition kernels Pt (x,dy  x dz), i e

Pt ( x , Y x Z )  =  P [X t £ Y , A t e Z \ X 0 =  x\ (6 21)

The transformed kernel Pt(@) is given by,

Pt (x ,dy ,6 )  =  f  Pt (x ,dy  x dz)e6z (6 22)Jz
121



Then 7  is the value of 9 > 0 for which the largest eigenvalue of P\{9)  is 1 The value 

of v is got from,

f  Q(dx)v (x )  f  u(dx)
e" =

Ju (d x )v (x )  6̂ 23^

where X t the underlying Markov chain has stationary distribution Q(dx)  and u and v 

are respectively the left eigenmeasure and right eigenfunction of Pi (9) with eigenvalue 

1 [22]

6.5.1 Calculating v and 7  for the rescaled cell level m odel
Firstly for the rescaled cell level model the arrival increment A t for t  < a  is a 

deterministic function of X t and X 0 In fact it is a deterministic function of t  and 

X 0 Thus for t  <  a  the kernel Pt(x,  Y  x Z )  is,

Pt(x ,dy  x dz) =  Pt (x,dy)8hi(x)(dz) 

where h  is the deterministic function We have,

1 — t  if t  >  x  and x  ^  0

ht (x) — - —t  if t  <  x

—t  if x =  a  or 0

Thus the transformed kernel is,

Pt (x, dy, 9) =  [  P t (x, dy)6ht{x) (dz)eJz
=  Pt (x,dy)e0h*W

and this is just,

Pt(x, dy, 9) =  i

(6 24)

(6 25)

(6 26) 

(6 27)

(6 28)

Pt(x,  dy)ee(1~Q if t > x  and x  ^  0 

Pt(x,  dy)e~et if t  <  x 

Pt (x, dy)e~et if x  =  a  or 0 

Now the right eigenfunction v and left eigenmeasure u with eigenvalue 1 of P\ (9) are

the right eigenfunction and left eigenmeasure of Pt{9) because convolution preserves

such right eigenfunctions and left eigenmeasures thus, we need only solve,

f  u(dx)Pt (x, dy)eeht^  =  u(dy)  Jx (6 29)

122



f  v(y)Pt (x,dy)e9ht{x') =  v(x) (6 30)Jx
to find v
So let u(dx) =  elxdx +  ki6ff(dx) and let v(y) =  (e~7y, fc2) on [0, o) x  {cr} Then 

performing the integration and equating the relevant sides we can solve for ki and 

k2 This gives us, for u,

fci =  e7— -  (6 31)7  +  t  '

to find u and,

and, for v,

k 2 =  ^  (6 32)7  +  T

and further we find, in solving for u that,

e r{l~<T) ( l— ^  +  a)  =  1 (6 33)v7  + r  '  v '
which we recall is Equation 4 4 where L —> oo and 7 (L) —> 7  Thus for u we have,

u(dx) =  eyxdx +  e T-— —SJdx) (6 34)7  +  r

and for v we have,

Thus for v  we now have,

«(») =  (6 35)

f  Q(dx)v(x) f  u(dx) /t, ne^
e ¡u(dx)v(x)  (636)

putting u and v  into this equation gives us,

1 e7 - l  ( 7  +  T ) ( a 7  +  r )  
7 2 o  +  ~  (1 — « ) t  +  <r
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Conclusions and Suggestions for 
Future Study
In this chapter we give our conclusions from the work described in this thesis, and 

discuss future work that could be undertaken We divide this chapter according to 

the chapters of the thesis itself

7.1 Conclusions
7.1.1 The M odels
We have studied a new model for packetized voice traffic which we have called the 

cell level model The model consists of the homogeneous superposition of the traffic 

generated by L  independent sources The traffic from each source is modelled by a 

Markov Chain with a finite state space The states form an irreducible closed set 

and are recurrent non-null aperiodic (ergodic) having as a result a unique stationary 

distribution The only assumptions we make about the traffic from a single source 

is that the duration of talk spurts and in active periods are both exponentially dis

tributed (an assumption made by others [10]) and that as a result bursts and silences 

are geometrically distributed The model is thus a very accurate representation of 

packetized voice traffic from a single source We also mention a model that has 

been studied previously by Buffet and Duffield [3] which is simpler than the cell

Chapter 7
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level model and which is called the block level model and we point out where the 

connection between the two models breaks down

7.1.2 The Effective B andw idth Approxim ation
We calculated approximations to the decay constant 7  of the effective bandwidth 

approximations [2]

P[q > b) «  e~lb

for each of the cell level and block level models labeling the two resulting constants 

7C eii and 7 g ]ocj{ respectively We showed that,

T'Block > 7CeU (7 X)

and can conclude from this that the upper bound on buffer overflow obtained from the 

block level effective bandwidth approximation is less conservative than that obtained 

from the cell level effective bandwidth approximation 1 e the former upper bound 

could underestimate the probability of buffer overflow obtained using the latter upper 

bound

7.1.3 A n U pper Bound V ia M artingales
We proved an upper bound can be obtained of the form,

P[<7 > b] <  ^e-67

on the tail of the queue length distribution for the queue m an infinite buffer When the 

workload process is a Markov Additive Process (MAP). The cell level model workload 

process has increments which are controlled by an underlying Markov Process and it 

is an example of a MAP We calculated the prefactor (¡> for the cell level model and 

showed that,



and we showed that asymptotically m L,

(7 2)
(7 3)>  0

From which we conclude that for large L the bound,

P [ q ' >  i] < (7 4)

does not exhibit the economies of scale seen for example m the upper bound obtained 

using a different Martingale for the block level model by Buffet and Duffield [3] These

model This is not surprising since this upper bound has to bound the full queue

of the graph remain invariant as L  is changed in the simulations earned out in [9] 

However the upper bound obtained for what we term the burst level queue the 

queue resulting from arrivals over longer intervals of time than s, can exhibit these 

economies of scale since it does not bound the cell level queue We obtained such 

a bound and we proved for parameter values <7 = 1/2 and p <  a  it does exhibit 

economies of scale and is an improvement over the effective bandwidth approximation 

in terms of bounding the queue length distribution of this burst level queue Note, 

the condition p <  a  can be rewritten as,

but this is the same as,

economies of scale are seen in the simulations of Corcoran [9] for the rescaled cell level

including the cell level queue which is due to short term fluctuations in the amval 

rate over time periods smaller than the packetization period s These fluctuations 

result in short queues and this is exhibited in the graphs of logP[<?L > b] versus b by 

the almost straight steep portion of the graph The slope and intercept of this part



For a  =  l / 2  and p <  a  we, have

P [Qs >*>}< $ Le“76 (7-9)
where $  <  1 is independent of L. We can say th a t,

*  =  m a (7. 10) 

m ore generally we have,

P l- i  >M < I v(s)e7 ) v(s) (I r  1 )l e~*  (711)

( 1  , L(eilL- 1)\ , 1-a
—  P l (  I  V » /  I 1 ~r~ r  "r  r ______ ' ) i ' e -7 fc  f 7  1 2 )

-  e  <L (C7/1 — l ) + r j l (f f + i= g ) ( i  +  ^ - i ) ) g J ^  

for ail param eter values. B ut it has to  be determ ined if th is is less than  1 for a  /  1 /2  
or p >  a  and if

M +  +  l=g

which would im ply economies of scale exist for the  p articu la r values of <7, a  and r .
It appears to  be extrem ely difficult to  prove (in a  m anner o ther th an  num erically) 

th a t  the  bound exhibits economies of scale for o ther param eter values. One can for 
exam ple show th a t,

(f f +  l=SL)^1 + H ^ - l ) y  
( l + ^ ~ l ) -)a +  l^S

is, for fixed ^  an increasing function of a  for a  > ^  b u t th is implies a > 1 /2  
th a t  is it doesn’t  hold a t a  =  1/2. Now since,

and since a  >  0 Equation 7.6 is true, for all a  if,

t  <  q;(1 —  a)  (7.8)

7/£_ 1\L 1 «

(7.14)

(g +  i= a ) ( i  +  W L~l)y  h(a) =  K—   *----  (7.15)

> 1 (7.16)

at a  = 1/2 for p < a  the same must be true for values of a  on some interval centered 

on 1/2 but h(cr) may be decreasing on this interval i.e. ~  may not be in this interval, 

If it were then for all cr > 1/2 we would have h(a) > 1
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7.1.4 Large D eviations Approxim ations
Botvich and Duffield proved in [20] that,

Theorem  8 For b >  0,

lim ^  logPto1, > Lb] — —1(b)L-f oo L
Where the function I, termed the shape function, is related to the cumulant generating 

function of the workload process

They also proved that for workload processes with non-negatively associated and sta

tionary increments v  =  -  lim^oo tX(t, 9) is non-negative (provided the limit exists) 

We prove,

Theorem  9 We added the following Let the increments of the workload processes 
Wt be non-negatively associated and stationary Let f ( t ,  9) be defined as m Definition 
9 Let ft(b) be its Legendre transform Then 1(b) is sub-additive i e the following 
conclusion holds

I(bi +  62) < I(b 1) +  I(b2)

for all 61, 62 > 0 

and as a result,

T heorem  10 Let the increments of the workload processes WfJ over disjoint time 
intervals be stationary and non-associated Then the the following conclusion holds

m  =  w (i)

=  by

Note that 1(b) =  6/(1) means there are no economies of scale to be had from multi

plexing large numbers of sources generating a workload process with stationary and 

non-associated increments over disjoint time intervals We also have,
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T heorem  11 Let the increments o f the workload processes W[J over disjoint time in
tervals be stationary and non-negatively associated. Then the the follom ng conclusion 
holds.

and,

v 7 (&) •lim ——  exists
b —HX! b

b - + o o  b b > 0  b
We m ake no assum ptions here abou t the  existence of v. We also proved,

T heorem  12 Let the increments o f the workload processes W f  over disjoint time 
intervals be non-negatively associated and stationary. Let I  (b) be defined as in Def
inition 10. Let / ( 0 )  =  0. Let K  be an interval on the real line containing zero. 
Then

1(b) cannot be convex on K
These results do not directly  bear on the  cell level m odel b u t follow so sim ply from 
the definition o f the shape function th a t  we included them .

The sim ulations of C orcoran [9] dem onstra te  th a t  the  b road  features of the queue 
length d istribution  rem ain essentially unchanged when L  and the  queue length b are 
jo in tly  scaled. Thus we were led to  consider th e  large deviation properties of the 
queue length d istribution  in L. We calculate,

At (0) = lim i l o g E f e ^ « - ’*)]L-too t
for the tim e rescaled cell level m odel where A \ t is the  tim e rescaled single source 
arrival process. We then obtained  num erically the shape function for the  queue gen
erated  by the rescaled workload process for a  set of model param eter values previously 
used in the  sim ulations in th is was then  used to  ob ta in  graph of an approxim ation to  
logP[<7L >  b] versus b for L  =  400.

7.2 Future Work
We have only studied  here the  situa tion  arising from homogeneous superpositions of 
the  cell level m odel arrivals. Sim ilar techniques could be applied to  heterogeneous
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superpositions of cell level model arrivals For examples with other models see Botvich 

and Duffield [20] The model itself could be altered to include more than one type of 

silence, for example

It may be possible to prove an upper bound via Martingales for the burst level 

queue for the cell level model for which the prefactor is such that it exhibits economies 

of scale That is,

(f> <  kL (717)

where k <  1 and independent of L for parameter values other than a =  1/2 and 

P < « ( i e  r < ^ )

The initial steep portion of the graph in chapter 6 for the shape function approxi

mation to logP[<7L > b] which are due to cell level queueing should be similar to that 

obtained for a queue with Poisson arrivals at the same mean rate It may be possible 

to substantiate this theoretically and/or by simulation

The theorem on the sub-additivity of the shape function m the case of non- 

negatively associated workload increments may be of some use in proving that the 

shape function is always concave m some case/cases
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