Estimation of Buffer OverflowProbabilitiesand Economies of Scale in ATMMultiplexers
by Analysis of a Model of Packetized Voice Traffic
by

Paul J. Farrell
M Sc

A Thesis submitted to Dublin City University for the degree of

Doctor in' Philosophy

School of Mathematical Sciences, Dublin City University
January, 1999

Internal Supervisor Dr E Buffet
External Supervisor Dr N G Duffield
I declare that this thesis is based on my own work

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of Doctor in Philosophy is entirely my own work and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work

Signed

Paul J Farrell

Date

Acknowledgements

I would like to thank my supervisor Dr Nick Duffield for all of his help and advice during the writing of this thesis and the preceding years
I would also like to thank Dr Emmanuel Buffet for his supervision in the early stages and for assistance at the end I would also like to thank Dr Jurgen Burzlaff for his assistance during the writing up
I would like to thank Kevin for all of his invaluable advice and help with the computer and for advice on the thesis, and Brendan and Grainne for their encouragement and questions about progress
Finally, I would like to thank my parents for all of their constant support, encouragement and advice throughout it all

Contents

1 Introduction 1
11 Integrated Services Digital Network (ISDN) 1
12 Asynchronous Transfer Mode (ATM) 2
121 Multıplexing 3
122 Buffermg and QoS 7
2 Markov Chains 9
21 Stochastic Processes and Markov Chains 9
211 Transition Matrix Properties 10
212 Classsfication of States 11
213 Limiting probabilities and the invanant measure 15
214 Reversed Markov Chains and reversed time 18
3 The Models 19
31 Packetızed Voice 19
32 Superposition of Packetized voice sources 21
33 Modelling traffic from a single source 23
331 The Cell Level Model 24
332 The Block Level Model 25
4 The effective bandwidth approximation 28
41 Effective bandwidth approximation 28
411 The equilibrium queue-length 29
412 Large deviations 30
413 Effectıve Bandwidths 34
42 Calculating the decay rate constant 35
43 The cell level model 37
44 The block level model 43
45 Companson of block and cell level models 45
5 An Upper Bound Via Martingales 48
51 Martıngales 48
52 Motivation 50
53 The Martıngale 52
54 Calculating The Prefactor 58
55 Calculating The Prefactor for the burst level queue 67
551 Economies of scale 71
6 Large Deviations Approximations 84
61 Large deviations 84
62 Large deviations and Queues 86
63 The Legendre-Fenchel Transform and the Shape Function 92
631 The Legendre Transform 92
632 Some Generalities 92
633 Theorems 101
64 The Shape function for the cell level model 105
641 Time rescaling 105
642 The Time Rescaled Cell level Model 108
643 Calculating The Cumulant Generating Function 110
644 The Shape Function For The Time Rescaled Cell Level Model 116
65 Economies of Scale 121
651 Calculating ν and γ for the rescaled cell level model 122
7 Conclusions and Suggestions for Future Study 124
71 Conclusions 124
711 The Models 124
712 The Effective Bandwidth Approximation 125
713 An Upper Bound Via Martıngales 125
714 Large Deviations Approximations 128
72 Future Work 129
Bibliography 133

List of Figures

3-1 Sample of traffic on a single line 20
3-2 Cell level transitıon diagram for single line 24
3-3 Bursts overlapping in a block 26
3-4 Block Level Transitton Dıagram 27
6-1 allustration 99
6-2 The Legendre-Fenchel transform, $f_{t}^{*}(b)$, for $b=0015$ as a functıon of $t 119$
6-3 The Legendre-Fenchel transform, $f_{t}^{*}(b)$, for $b=0038$ as a functıon of $t 119$
6-4 The Shape function, $I(b)$ 120
6-5 A plot of the approximatıon to $\log \mathbf{P}\left[q^{L}>b\right]$ obtained using the Shape function against b with $L=400$ 120
6-6 A Plot of The steep portion of fig 6-5 121

Abstract
 Estimation of Buffer Overflow Probabilities and Economies of Scale in ATM Multiplexers by Analysis of a Model of Packetized Voice Traffic by Paul J. Farrell

We obtain upper bounds on the probability of buffer overflow for an ATM multiplexer of L identical packetized voice sources The multiplexer is modelled by a FCFS single server queue The arrivals at the multiplexer are a homogenous superposition of the arrivals from L independent identical sources, with each source modelled by a copy of a discrete time Markov Chan which we call the Cell Level Model Throughout, appropriate parameters are scaled with L, to maintain a constant load over all superposition sizes
The probability that, the queue-length $\left(q_{b}^{L}\right)$ of the queue in a finite buffer exceeds the buffer size b, is bounded above by the probability that the queue-length (q^{L}) of the queue in an infinite buffer exceeds length b In order to bound the former above, we find upper bounds or approximations for the latter by using the theory of,

- Large Deviations, to determine its asymptotics for large b,
- Martingales, to obtain upper bounds, valid for all positive b,
- Large Deviations, to determine its asymptotics for large L for time rescaled (proportional to L) arrival processes

These demonstrate the multiplexing gain and economies of scale obtainable from large and small buffers and large multiplexers, respectively

Chapter 1

Introduction

1.1 Integrated Services Digital Network (ISDN)

The developement of ATM networks presents new problems in queueng theory, problems that cannot be solved by classical queueing theory ATM networks transmit packets of data or cells, as they have come to be called The asynchronous nature of the network means that in an ATM multiplexer cells from different sources can compete for available transmission bandwidth This leads inevitably to buffering of queueng cells awarting transmission The nature of the arriving streams of cells at the buffer means that they cannot be modelled effectively by a Poisson process unlike the modelling of traffic at the call level arriving at an exchange in the classical theory as it is appled to teletraffic The arrivals (calls) in that case can be assumed to be independent and hence the arrival streams can be modelled by a Porsson process But the arrivals at an ATM multiplexer are highly correlated They are produced in bursts and are not well modelled by a Poisson process [1]

The asynchromcity and the need for queueng in an ATM multiplexer result in an inability to predetermine the delay that will be expenenced by an arriving cell The delay will be random due to the randomness of the queue length A further difficulty arises, should the buffer be full when a cell arrives then that cell will be lost 1 e will not be transmitted The possibility of buffer overflow and cell loss has therefore to be addressed It is not possible to guarantee with certainty that the
buffer will not overflow or that delays will not become excessively long. But it is possible to guarantee that neither will occur with a probability greater than some prescribed value. This value must be extremely small, of the order of 10^{-9}, because of the high transmission bandwidth. The problem arises of how to dimension the buffer in order to guarantee that buffer overflow will not occur with a probability greater than this. This problem is resistant to exact treatment because of the bursty nature of the arrival streams [1].

Because of the nature of the traffic as we have pointed out this problem cannot be solved by classical queueing theory; we need more recently developed techniques. The small probabilities mean we are dealing with rare events [1]. The theory of large deviations is a theory of rare events [2]. The correlations between arrivals mean we are dealing with non-independent arrivals. The theory of Martingales has been used to extend results applying to independent random variables to results for non-independent random variables [3].

We use the theory of large deviations and the theory of Martingales to obtain upper bounds or approximations for the tail of the queue length distribution in a model of a packetized voice ATM multiplexer that consists of a homogeneous superposition of independent sources feeding arrivals into an infinite buffer served on a first come first served basis. The traffic from each of the sources is modelled using a discrete time Markov Chain.

1.2 Asynchronous Transfer Mode (ATM)

Information and its transmission or communication is becoming of greater and greater significance in a shrinking and increasingly fast paced and changing world.

Information technology advances, such as the development of digital technology and the rapid development of optical fibre transmission technology, are leading to the development of high speed or broadband digital communications networks that are capable of providing new types of communication services [4].

These services would traditionally be carried by separate networks, specialised for the particular service that they carry. It is, however, more economical to integrate
all of these services onto a single network, called an Ìntegrated Services Digital Network (ISDN), thus avoiding the need for overlaying networks and allowing increased flexibility in the introduction and evolution of services This increased economy is motivating the development of the Integrated Services Digital Network (ISDN) [4]

The new services that will use such a network will involve the transmission of information in entirely digital form It is this fact, that all the different services are transmitted as digital streams, that makes integration possible The network need be able to handle nothing other than bit streams For example, in dıgital telephony, the initial analogue voice signal is sampled at discrete instants by digital technology which represents the sampled value in digital form The encoded signals are then divorced from the analogue waveforms of the source Thus, the digital transmission and switching equipment of a digital telephone or voice network is inherently capable of servicing any traffic of a digital nature The services, and the technologies used to provide them, are termed broadband, their speeds ranging from $1 \mathrm{Mb} / \mathrm{s}\left(10^{6}\right.$ bits per second) to $100 \mathrm{Mb} / \mathrm{s}$ and greater [4]

For transmission through the network, different bit streams are multiplexed onto a single Transmission medium to form a single bit stream The type of multiplexing used with such digital bit streams is termed Time Division Multiplexing (TDM) [4]

The large disparity between transmission bit rate, for example $\mathrm{Gb} / \mathrm{s}\left(10^{9}\right.$ bits per second) where fibre optics and laser technologies are used in transmission, and the bit rate of, say, data termınals or telephones, which range from less than $1 \mathrm{~kb} / \mathrm{s}$ to hundreds of kb / s depending on the encoding algorithms used, suggests that substantial economies should be achieved by using large multiplexers and also suggests the utilisation of new broadband services in order to capitalise on the increased bandwidth capability [4]

1.2.1 Multiplexing

The Transmission medium used for broadband services, and hence for the integrated services dıgital network, is optical fibre, because of its high bandwidth and transmission reliability Both constant bit rate and variable bit rate communications must be
capable of sharing this transmission medium, and so the question of how this can be done efficiently and flexibly must be addressed.

The form of Time Division Multiplexing (TDM) that provides the greatest flexibility and the most efficient use of bandwidth, when different variable bit rate or bursty communications share the same transmission medium, is Asynchronous Time Division Multiplexing (ATDM) more commonly called Asynchronous Transfer Mode(ATM) [4].

Time Division Multiplexing (TDM) involves the multiplexing of different bit streams onto a common transmission medium in time slots of a predetermined length. There are two basic forms of TDM, namely, Synchronous Transfer Mode (STM) and Asynchronous Transfer Mode (ATM) [4, 5].

The STM approach involves the assumption of a common time frame of reference for all of the sources. Within this frame of reference each source is assigned its slot or slots. These slots, once assigned, are termed circuits and are said to be owned by the source, with each source having exclusive use of its assigned slot or slots in the reference frame [4].

In the case of single rate traffic, i.e. all the sources having the same bit rate, single slot TDM is used, with all the slots being of the same fixed length and, as the name suggests, exactly one slot being assigned to each source [4].

In the case of multi-rate traffic, slot assignment is more complicated, and multiwindow TDM is used. For multi-window TDM the transmission channel capacity is divided into windows within the frame of reference, one window for each of the different bit rates, and each window is further divided into slots, each of the same fixed duration particular to that window and differing in duration from slots in other windows. One slot is assigned to each source in the window corresponding to its bit rate [4].

This multi-window TDM approach is inflexible for the following reasons. An initial standardized set of source bit rates must be chosen as must the number of sources of each bit rate type. But in a network with evolving services it may be difficult or impossible to predict what standard bit rates should be fixed and how
many of them should be chosen The approach does not allow for the evolution of new services and is in this sense inflexible There are also difficulties in formatting and synchronising slot, window and frame lengths, and there can be as many windows as source types Sharng of capacity is inflexible as any change in the number of sources of more than one type can necessitate changing many window boundarnes [4]

A more flexible form of TDM for dealing with multi-rate sources, is multi-slot TDM, where a source can be assigned, if needed, more than one slot in a reference frame A reference bit rate is chosen belonging to one of the source types We then proceed to derive the single-slot TDM format just as we would of all sources had this reference bit-rate Then any source with a bit-rate less than this reference rate is assigned one slot, and any source with a bit-rate greater than the reference rate is assigned the number of slots it requires, given its bit-rate Slots assigned then have a fixed owner withn the frame of reference [4]

Bandwidth is wasted in this case by sources of bit-rate lower than the reference rate Choosing a small reference rate results in large numbers of slots, and high bit rate sources then require large numbers of slots, which all leads to greater complexity in tracking the assigned slots A balance must therefore be struck in this case between wasting bandwidth and increasing slot assignment complexity, and, in order to strike this balance, we again need to be able to predict the traffic mix, a task which may be difficult or impossible and which is in any case an imposition resulting from a lack of flexibility in the multi-slot TDM format [4]

The Synchronous Transfer Mode thus lacks flexibility when dealing with an evolving network This is due to having to choose a reference frame structure, both the choice and the structure itself are inherently incompatible with the flexible evolution of network services

The Asynchronous Transfer Mode abandons the idea of a common time reference frame for all of the sources Sources simply seize bandwidth when they have generated a sufficient number of bits The data to be transmitted is segmented into packets or cells of a fixed length Time is divided into slots of a fixed length, the length being the time taken to transmit a cell on the transmission line There is no reference frame,
and hence each slot has no implicit owner, unlike STM where each slot is assigned an owner within the frame of reference. Thus in the ATM format each cell must be labelled. A cell then consists of data, plus a header, which contains the label that identifies the cells source and the time slot it was transmitted in. The header will contain other information, such as the type and priority of the data being transmitted, and possibly other routing information. The absence of a reference frame in an ATM network means new services can be introduced flexibly as they evolve. ATM also allows for more efficient use of bandwidth, particularly in the case of variable bit rate (VBR) sources, such as silence suppressed packetized voice sources, where speech activity detection is used. The use of ATM therefore provides for greater flexibility and more efficient use of bandwidth than the use of STM [4].

However, in the ATM format several sources may attempt to seize the same time slot, something which cannot happen with STM where slots are assigned to individual sources. If this occurs , then, as only one cell can be transmitted per slot, one cell will be transmitted and the remaining cells will have to queue in a buffer until a slot becomes available for each. Thus, in the ATM format cells may suffer random delay depending on the length of the queue in the buffer, unlike the STM format where delay is fixed by the framing. Further, cells will be lost should the buffer capacity be exceeded by the length of the queue of waiting cells [4].

ATM thus allows for flexible sharing of a transmission medium, without the scheduling complexity of STM, but at the expense of this random delay, and the possibility of cell loss. Quality of service can only be guaranteed statistically in an ATM network $[4,5]$.

ATM is the multiplexing technique of choice for broadband ISDN primarily because of this flexibility, which is of importance due to the fact that it is not possible to predict what future traffic will be carried on the evolving ISDN. And due to the fact that different types of traffic, much of it from variable bit rate sources, will be carried on the ISDN $[4,5]$.

ATM multiplexing is used in the operation of ATM switches in the ISDN Network. The type of switching used is called packet switching, to distinguish it from circuit
switching Circuit switching provides a dedıcated path between two points carryng any information that fits into the avalable bandwidth Thus, for example, switching using STM is circuit switching, as slot ownership is assigned to sources within the reference frame, the slots being termed circuits [4]

1.2.2 Buffering and QoS

As the discussion of the previous subsection pointed out, competition for avalable transmission bandwidth is inevitable in an ATM multiplexer Buffering and buffer dimensioning are thus an essential part of the operation of an ATM multiplexer Should the queue become larger than the buffer can cope with, then cells will be lost, also excessively long queues can lead to unacceptable degradation of the service

The ATM forum proposed three parameters to measure the quality of service expenenced by traffic as it passes through a queueing system [6] They are

- the cell loss ratio
- the mean cell delay
- the cell delay variance

These parameters depend on a fourth,

- buffer overflow frequency

What is required in order to guarantee a prescribed QoS is an upper bound on each of these parameters This requires us to have an upper bound on the tall of the queue length distribution for the queue in the buffer The queue length distribution for the queue in an infinite buffer will provide us with an upper bound on all of the parameters The reasons for this become clear when the meaning of the three parameters is explaned The cell loss ratio is the ratio of the expected number of cells lost to the expected number of cells arriving at the queue The expected number of cells lost per tick is,
\mathbf{E} [number of cells lost] $=\mathbf{E}$ [number of cells arriving at a full buffer] \mathbf{P} [buffer overflow]

The cell loss ratio is then,

$$
\begin{aligned}
\text { cell loss ratio } & =\frac{\mathbf{E}[\text { number of cells lost }]}{\mathbf{E}[\text { number of cells arriving at a full buffer }]} \\
& =\mathbf{P}[\text { buffer overflow }]
\end{aligned}
$$

The probability that the buffer overflows is bounded above by the probability that the queue length in an infinite buffer exceeds the buffer size. The mean cell delay can be bounded above in a similar manner, as the length of time that a cell will wait in the queue is approximately the length of the queue it finds on arrival at the buffer divided by the service rate. The cell delay variance can also be bounded once the tail of the queue length distribution is bounded. The typical values envisaged as upper limits on the cell loss ratio for an ATM multiplexer range between 10^{-8} to 10^{-11}. These are extremely small probabilities, so small that in many applications events with such probabilities of occurring would be regarded as never occurring [1]. As we stated earlier transmission bandwidth can be of the order of $\mathrm{Gb} / \mathrm{s}\left(10^{9}\right.$ bits per second) if fibre optic technology is used [4]. But in a multiplexer with a transmission rate of one Gigabit per second and a cell loss ratio of 10^{-8} we would lose on average one cell per minute [1]. Thus we see the reason for requiring such low buffer overflow probabilities.

In order to be able to guarantee to the user a prescribed Quality of Service (QoS) for an ATM based ISDN it is thus necessary to approximate the tail of the queue length distribution of the queue at an ATM multiplexer or to be able to put an upper bound on the probability that such a queue will exceed any given length.

Chapter 2

Markov Chains

The models for an ATM multiplexer which we will be concerning ourselves with in this thesis involve modelling traffic from a single transmission source using Markov Chains. In this Chapter we outline the more important results and ideas relating to Markov Chains.

2.1 Stochastic Processes and Markov Chains

A stochastic process with state space E is a collection $\left\{X_{t} \mid t \in T\right\}$ of random variables X_{t} defined on the same probability space and taking values in E. T is referred to as the parameter set. If T is countable, for example, $T=N$, then the process is said to be a discrete parameter process. Otherwise it is referred to as a continuous parameter process. Usually t represents time, and X_{t} is thought of as the state of the process at time $t[7]$.

Markov Processes are a particular class of stochastic processes, with the defining feature, that given the present state of the stochastic process the future evolution is independent of the past. A Markov process is called a Markov Chain if the parameter set is discrete.

Thus the stochastic process $\left\{X_{n} \mid n \in N\right\}$ on the state space E which we will take to be discrete is a Markov chain provided that,

$$
\mathbf{P}\left[X_{n+1}=j \mid X_{0}, \ldots . X_{n}\right]=\mathbf{P}\left[X_{n+1}=j \mid X_{n}\right] \quad \text { for all } j \in E
$$

The probabilities

$$
\mathbf{P}\left[X_{n+1}=\jmath \mid X_{n}=\imath\right]=\mathbf{P}_{n}(\imath, \jmath) \quad \imath, \jmath \in E
$$

are called the transition probabilities for the Markov chain X And the matrix of all such probabilities is called the transition matrix of the Markov chain

If,

$$
P_{n}(\imath, \jmath)=P(\imath, \jmath) \quad \text { independent of } \mathrm{n}
$$

then the Markov chain is referred to as time-homogeneous or as having stationary transition probabilities [7]

2.1.1 Transition Matrix Properties

The transition matrix of a Markov chain X is a square matrix with the properties that all of its entries are positive, less than or equal to one, and that its rows sum to 11e,

$$
\sum_{\jmath \in E} P(\imath, \jmath)=1 \quad \text { for each } \imath \in E
$$

Given the intial distribution $P_{0}\left(\imath_{0}\right)$ the joint distribution of X_{0}, \quad, X_{n} for any n is ,

$$
\begin{equation*}
\mathbf{P}\left[X_{0}=\imath_{0}, \quad, X_{n}=\imath_{n}\right]=P_{0}\left(\imath_{0}\right) P\left(\imath_{0}, \imath_{1}\right) P\left(\imath_{1}, \imath_{2}\right) \quad P\left(\imath_{m-1}, \imath_{m}\right) \tag{21}
\end{equation*}
$$

From this we can prove,

$$
\mathbf{P}\left[X_{n+m}=\jmath \mid X_{n}=\imath\right]=\mathbf{P}^{m}(\imath, \jmath) \quad \imath, \jmath \in E \text { and } m \in N
$$

and this in turn imples,

$$
\mathbf{P}^{(m+n)}(\imath, \jmath)=\sum_{k \in E} \mathbf{P}^{(m)}(\imath, k) \mathbf{P}^{(n)}(k, \jmath) \quad \imath, \jmath \in E
$$

This is known as the Chapman-Kolmogorov equation, and it says that, starting in state \imath, in order to reach state \jmath in exactly $m+n$ steps, X must enter some intermediate state k after m steps, and then reach state \jmath from state k in n steps The right hand side of equation 26 above can also be written,

$$
\begin{equation*}
\mathbf{P}^{m}(\imath, \jmath)=\mathbf{P}\left[X_{m}=\jmath \mid X_{0}=\imath\right] \tag{22}
\end{equation*}
$$

and hence we can write, for a stationary Markov chain,

$$
\begin{equation*}
\mathbf{P}\left[X_{n+m}=j \mid X_{n}=i\right]=\mathbf{P}\left[X_{m}=j \mid X_{0}=i\right] \tag{2.3}
\end{equation*}
$$

This tells us that the evolution of the process X after time n, from fixed state i, is the same as the evolution of the process after time 0 , from the same state i. In other words from all times of entry into state i, the process evolution will be the same, from that time, independent of that time, or how it reached this state i.

An important property of Markov chains is called the strong Markov property which holds for certain random present times T, instead of fixed present times, These random times have the property that for every time n the following holds,

$$
\begin{align*}
I_{\{T \leq n\}} & =I_{\{T \leq n\}}\left(X_{0}, \ldots \ldots, X_{n}\right) \tag{2.4}\\
& =\left\{\begin{array}{cl}
1 & \text { if } T \leq n \\
0 & \text { otherwise }
\end{array}\right. \tag{2.5}
\end{align*}
$$

Such a random time is called a stopping time or a Markov time. The occurrence or not of the event $\{T \leq n\}$ can be determined from the values of X_{0}, \ldots, X_{n} alone. The occurrence of T does not anticipate the future evolution of the Markov Chain. The strong Markov Property then states, for any stopping time T,

$$
\begin{array}{r}
\mathbf{P}\left[X_{T+m} \mid X_{n} ; n \leq T\right]=P^{m}\left(X_{T}, j\right) \quad \text { for all } m \in N \text { and } j \in E \\
\mathbf{P}\left[X_{T+m}=j \mid X_{T}=i\right]=P^{m}(i, j) \tag{2.7}
\end{array}
$$

It tells us that the evolution of the Markov Chain starts afresh at time T if T is a stopping time [7].

Next we discuss the classification of the states of a Markov Chain.

2.1.2 Classification of States

In this section we describe how the states of a Markov chain are classified. This is covered in detail in [7]. The states of a Markov Chain are divided into classes according to properties of the time of first visit to the state, given that the Markov Chain is initially in the same state. These times are sometimes called the times of
first return to the state or recurrence times for the state. The successive returns to a particular state constitute a recurrent event.

The question arises as to whether a return to a particular state is certain or not. And, further, if it is certain, the question of the finiteness of its mean recurrence time arises. States are classified according to the answer to these questions for each state.

Let T be the time of first visit to state j given that $X_{0}=j$ then, state j is called recurrent if

$$
\begin{equation*}
\mathbf{P}\left[T<\infty \mid X_{0}=j\right]=1 \tag{2.8}
\end{equation*}
$$

In words the state is recurrent if a return to the state is certain. Such a state will be visited infinitely often. State j is called transient if

$$
\begin{equation*}
\mathbf{P}\left[T=\infty \mid X_{0}=j\right]>0 \tag{2.9}
\end{equation*}
$$

i.e. if a return to the state is not certain. Such a state will be visited only finitely many times; there will be a last visit to the state after which the state will not be entered again, hence the name transient. A recurrent state j is called null if

$$
\begin{equation*}
\mathbf{E}\left[T \mid X_{0}=j\right]=\infty \tag{2.10}
\end{equation*}
$$

Otherwise j is called non-null. Thus, recurrent states are called null or non-null, according as their mean recurrence times are infinite or finite respectively.

There is one further classification of the recurrent states of a Markov Chain, namely, whether or not a state is periodic or not i.e. whether $T \in\{\delta, 2 \delta, 3 \delta, \ldots .$. with probability 1 for some integer $\delta>1$, called the period of the state, or not. A state that is not periodic is called aperiodic.

All results pertaining to aperiodic states can be applied to periodic states j, with period δ, by considering the Markov Chain $\left\{Y_{n} \mid n \in N\right\}$, where $Y_{n}=X_{n \delta}$, in which j is aperiodic. The times of successive returns to a recurrent state j, given $X_{0}=j$, form an increasing sequence of Stopping times. Thus, in particular, the Strong Markov Property holds at every element of the sequence.

We can classify sets of states according to whether states outside them can be reached by states inside the set or not. A state j can be reached from a state i if
there exists an integer $n \geq 0$ such that $P^{n}(2, j)>0$ If a state can be reached from another state, then, there is a sequence of intermediate states, each of which can be reached from the preceding state in one time step

A set of states is said to be closed if no state outside it can be reached from any state inside it Such a set containing only one state is called an absorbing state A closed set contanning no closed proper subsets is called irreducible And a Markov Chain is called irreducible if the set of all states is irreducible A simple criterion for determining whether or not a Markov Chan is irreducible follows directly from these definitions

A Markov Chain is urreducible of and only if every state can be reached from every other state

Inspection of the transition matrix or the transition diagram for the Markov Chain will tell us if the chain is irreducible or not This follows from the fact that if \jmath can be reached from \imath and k can be reached from \jmath, then k can be reached from \imath Thus, by inspection of the Transition matrix, in an iterative fashion, using this fact we can find all the closed sets, and in particular, determine whether or not the chain is ırreducible

In fact if we find a closed set C, and delete from the transition matrix all rows and columns corresponding to states not in C, then, the resulting matrix is again a Markov matrix, in fact it is the transition matrix for the Markov chain with state space C

From a recurrent state only recurrent states can be reached The reason for this is as follows Say, for example, that from a recurrent state \jmath it is possible to reach a state $\imath 1 \mathrm{e}$ there is a positive probability of going from \jmath to $\imath \mathrm{in}$ a finite number of steps Then, in order for \jmath to be recurrent, the probability of going, eventually, from \imath to \jmath, must be 1 After visiting state \imath, the chain will eventually visit state \jmath, after which it will return to \jmath infinitely often But after each visit, there is the positive probability that it will visit \imath, thus \imath will be visited infinitely often, $1 \mathrm{e} \imath$ is also recurrent

The set of all recurrent states of a Markov chain is a closed set, and can be divided,
in a unique manner, into irreducible closed sets This is because, from a recurrent state only recurrent states (and not transient states) can be reached, hence the set of all recurrent states must be closed The division into irreducible closed sets follows from the fact that the set of all states that can be reached from a fixed state \jmath is by definition a closed set, and if that fixed state is a recurrent state, then it can be reached from any state in this set, and hence, every state in this set can be reached from every other state in this set via the intermediate state \jmath, implying that the set is irreducible The set is unique for 3 , hence, the partition of the set of all recurrent states is unique

For an irreducible Markov Chain we can thus say that all states are transient, or all states are recurrent Since the set of all recurrent states is an irreducible set, it must be the set of all states or it must be the empty set, and in the latter case all states must be transient We can go further and say that if all states are recurrent then they must all be recurrent null, or all be recurrent non-null, and further, all must be aperiodic or all must be periodic with the same period

For an ırreducible finite closed set C we can add that there are no recurrent null or transient states If there were one recurrent null state, then by the earler statements all states would be recurrent null From any state in C, and for any given number of time steps, we can say that the probability of a transition to some state in C from that state, in that number of time steps, is 1 This is because C is irreducible But, If every state in C were recurrent null, then there would be some time step for which all of the transition probabilities from that state were $<1 / N$, where N is the size C, contradicting the last statement Put simply, in order for the chain to spend a fantastically long time between returns to every state in the set, it would have to leave the set, as the set is finite, but this is impossible, as the set is an irreducible closed set Simılarly, if one state were transient, all states would be transient, due to irreducibility, and again, in order for the chain to leave all of these states, which are finite in number, never to return, the chain would have to leave the closed set

We can now say that in any Markov Chain with a finite state space, there are no recurrent null states and not all states are transient

In order to classify the states of a Markov Chain with finite state space it is necessary to first identify the irreducible closed sets, then all states belonging to these sets are recurrent non-null, and all other states are transient In order to determine if the recurrent state \jmath is periodic or not, we simply find the greatest common divisor of the set of all $n \geq 1$, such that, $P^{n}(\jmath, \jmath)>0$ If this is equal to 1 , then the state is aperiodic, and hence, all recurrent states are aperiodic If it is greater than 1 , then it is the period of the state, and of all the recurrent states In order to determine the gcd of the set of all the above n, it is necessary to look only at the sequences of states through which the chain can pass to return to \jmath, and to count the number of states in enough of the sequences to be able to evaluate the gcd and hence the period For example if two such sequences differ in length by 1 , then all of the states are aperiodic, as the gcd of the set of all $n \geq 1$, such that $P^{n}(\jmath, \jmath)>0$, is 1

2.1.3 Limiting probabilities and the invariant measure

In 21 we described how the states of a Markov Chain may be classified The usefulness of this classification is due essentially to the fact that we can restrict our attention to states of one particular type This is always the case for irreducible Markov Chains, and we showed how the states of Markov Chain with finite state space can be easily classsfied The chains which we will be dealing with will have finte state spaces, but we will state the following theorem which can be used to classify the states of a Markov Chain with infinite state space

The theorem is of interest to us for another reason A corollary to this theorem, which apphes to ırreducible aperıodıc Markov Chains (ergodic) with finite state spaces, guarantees the existence of a so-called invariant distribution for such Markov Chains [7] This invariant dıstribution gives us the probability, as n tends to infinty ,that starting in an initial state \imath we are in state \jmath, n steps later This probability depends only on \jmath, it is independent of the initial state \imath In the long run the chain forgets the initial distribution The independence from the initial state also means that the absolute probability of being in state \jmath also tends to the invariant probability of being in this state The process settles into this invariant distribution The
term invariant derives from the fact that if the the Markov Cham has this initial distribution, then it will have this distribution at all subsequent times The invariant distribution is also called the stationary distribution, and is sometimes referred to as the equilibrium distribution, this referring to the equilibrium reached by a large ensemble of such identical processes, where the number of processes in any state, at any time, tends to a constant, for large enough times, with the proportion of processes in that state being (approximately) the stationary probability of being in that state [8]

We now state the theorem and its corollary [7]
Theorem 1 Let X be urreduczble and aperiodic Then all states are recurrent nonnull f and only of the system of linear equations,

$$
\begin{array}{r}
\pi(\jmath)=\sum_{\imath \in E} \pi(\imath) P(\imath, \jmath) \\
\sum_{\jmath \in E} \pi(\jmath)=1 \tag{212}
\end{array}
$$

where $\jmath \in E$, has a solution π If the solution exists, then it is strictly positive and there are no other solutions, and further,

$$
\begin{equation*}
\pi(\jmath)=\lim _{n \rightarrow \infty} P^{n}(\imath, \jmath) \tag{array}
\end{equation*}
$$

for all $\imath, \jmath \in E$

Corollary 1 If X is an ırreducible aperiodıc Markov Chain with finitely many states, then

$$
\begin{array}{r}
\pi(\jmath)=\sum_{\imath \in E} \pi(\imath) P(\imath, \jmath) \\
\sum_{\jmath \in E} \pi(\jmath)=1 \tag{215}
\end{array}
$$

has a unıque solution The solution π is strictly positvve, and

$$
\begin{equation*}
\pi(\jmath)=\lim _{n \rightarrow \infty} P^{n}(\imath, \jmath) \tag{array}
\end{equation*}
$$

for all $\imath, \jmath \in E$

Thus an irreducible aperiodic Markov Chain with finite state space has an invariant distribution. It is possible to interpret the invariant distribution probability for a state j as the rate at which state j is visited [7].

If we write $m(j)$ for the mean recurrence time for j then, we can say the following [7],

Proposition 1 Let j be an aperiodic recurrent non-null state. Then,

$$
\begin{equation*}
\pi(j)=\lim _{n \rightarrow \infty} P^{n}(j, j)=\frac{1}{m(j)} \tag{2.17}
\end{equation*}
$$

We also have the following [7],
Proposition 2 Let j be a recurrent non-null aperiodic state, and let $\pi(j)$ be as before. Then,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{m=0}^{n} I_{j}\left(X_{m}\right)=\pi(j) \text { a.s. } \tag{2.18}
\end{equation*}
$$

This tells us that the fraction of time spent by the chain in state j is $\pi(j)$ and it has the following corollary [7],

Corollary 2 Let X be an irreducible recurrent Markov Chain with stationary distribution π. Let f be a bounded function on E. Then,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{m=0}^{n} f\left(X_{m}\right)=\sum_{j \in E} \pi(j) f(j) \quad \text { a.s. } \tag{2.19}
\end{equation*}
$$

And a corollary to this is [7],
Corollary 3 Let X be an irreducible recurrent Markov Chain with stationary distribution π. Let f be a bounded function on E. Then,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n+1} \sum_{m=0}^{n_{n}} \mathbf{E}\left[f\left(X_{m}\right)\right]=\sum_{j \in E} \pi(j) f(j) \quad \text { independent of } i \tag{2.20}
\end{equation*}
$$

We could summarise some of the more important facts concerning Markov Chains that we have described in 2.1.2 and 2.1.3 as follows. An irreducible Markov Chain has at most one invariant (stationary) distribution. Its states are either all transient, all null recurrent or all non-null recurrent. Further, all states are periodic or all are aperiodic. They are all non-null recurrent if and only if the chain admits one invariant distribution, and this is certainly the case if the chain has finite state space.

2.1.4 Reversed Markov Chains and reversed time

Up to this point we have been considering Markov Chains where we know something about the "present" state of the chain, and we wish to know something about the "future" states But, in some situations, it is desirable to know something about the "past" developement of the Markov Chain given knowledge of the "present"

If a Markov Chain has a stationary distribution, then it behaves as a Markov Cham if its evolution is observed in reversed time If the stationary distribution of the Markov Chain is π, then the transition matrix for the reversed chain has transition probabilities related to the transition probablities of the forward cham in the following manner [8],

$$
\begin{equation*}
Q(\imath, \jmath)=\frac{\pi(\jmath) P(\jmath, \imath)}{\pi(\imath)} \tag{221}
\end{equation*}
$$

The nth step transition probabilities for this chain can be calculated in exactly the same fashion as they are calculated for the forward chain They are related to the nth step transition probabilities of the forward chain as follows,

$$
\begin{equation*}
Q^{n}(\imath, \jmath)=\frac{\pi(\jmath) P^{n}(\jmath, \imath)}{\pi(\imath)} \tag{222}
\end{equation*}
$$

Thus, the study of the past developement of the original Markov Cham reduces to the study of the reversed chain In the special case when $Q(\imath, \jmath)=P(\imath, \jmath)$ the chain is sand to be time-reversible, and all the probability relations for such a chain are symmetric in time It can be shown that of $P(\imath, \jmath)>0$ if and only if $P(\jmath, \imath)>0$ and if all sets of such pairs (i, j) are reachable from all others, then the chain is trme reversible

Chapter 3

The Models

We described in chapter 1, broadly the operation of ATM. We will now describe in greater detail the situation we wish to model.

We begin by assuming that we have L independent sources or lines. Traffic from all of these sources is to be multiplexed onto a single transmission line using asynchronous time division multiplexing. Therefore we discretise time into fixed length slots. Each source produces digital information in the form of fixed length packets called cells. A single cell can be transmitted in each time slot. Thus the length of a time slot is equal to the transmission period of the multiplexer. Cells arrive at the multiplexer at the beginning of a time slot and are transmitted at the end of a time slot. In practice a cell is of size 48 bytes with an additional 5 bytes for the header giving a total size of 53 bytes (424 bits) [5].

3.1 Packetized Voice

With packetized voice a continuous time signal is generated by the source and is digitally sampled at discrete instants. The standard sampling rate used in digital telephony is 8 kHz and a sample is 8 bits thus giving us a constant bit rate of 64 kb / s. This digital information is then filled into the fixed length packets. Information is not sent by the source to the multiplexer until a packet has been filled. This process introduces its own fixed delay or packetization period [9]. It is measured in units of
the multiplexer transmission period and we will label it s Thus s will be the ratio of the packetization period to the multiplexer transmission period

Speech contains, typically, 50 percent silence and hence dıgital telephony uses sllence detection and suppression [5] This means that no cells are generated during periods of silence This produces bursty traffic from the source, what would otherwise be a constant bit rate output becomes a variable bit rate output, with periods of activity durıng talk spurts alternating with periods of nactivity durıng silences We will refer to actıve periods as burst perıods and nactive periods as sılences A burst period begins with the arrival of a cell at the multiplexer and it ends s ticks after the arrival at the multiplexer of the last cell in the burst This period of s ticks after the last cell of a burst is referred to as the overhang period One tick after this period has ended a silence is said to have begun, and it contmues until the next burst begins with the arrival of another cell at the multiplexer Thus burst periods are multiples of s ticks in length A burst period then, consists a period of cells arriving periodically every s ticks, plus the overhang period of s ticks We illustrate this in figure 3-1

Figure 3-1 Sample of traffic on a single line

The group of cells arriving during a burst period we will refer to as a burst The length of a burst will then be measured as the number of cells in the burst Bursts and silences are of random length During normal conversation the duration of talkspurts fits the exponential dıstribution reasonably well while the duration of inactive periods is approximated less well by the exponential distribution But we will assume, as others have, that both active and inactive (real-time) periods are exponentially
distributed [10]. Thus bursts and silences are of random length and, since we are operating on a discrete time scale, we assume that burst and silence lengths are each geometrically distributed, and that burst lengths are i.i.d. and silence lengths are i.i.d., and further that silence and burst lengths are independent of each other. We will define the probability that a burst continues for another cell to be α i.e.

$$
\begin{equation*}
\alpha=\mathbf{P}[\text { burst continues }] \tag{3.1}
\end{equation*}
$$

and we define the probability that a silence continues for another tick to be β i.e.

$$
\begin{equation*}
\beta=\mathbf{P}[\text { silence continues for another tick }] \tag{3.2}
\end{equation*}
$$

Then,

$$
\begin{align*}
\mathbf{P}[\text { burst }=n \text { cells }] & =(1-\alpha) \alpha^{n-1} \tag{3.3}\\
\mathbf{P}[\text { silence }=m \text { ticks }] & =(1-\beta) \beta^{m-1} \tag{3.4}
\end{align*}
$$

and hence the expected numbers of cells in a burst, and the expected number of ticks in a silence are,

$$
\begin{align*}
\mathbf{E}[\text { burst length }] & =\frac{1}{1-\alpha} \tag{3.5}\\
\mathbf{E}[\text { silence length }] & =\frac{1}{1-\beta} \tag{3.6}
\end{align*}
$$

3.2 Superposition of Packetized voice sources

In the situation that we are modelling, there will be L independent identical packetized voice sources. The arrival process at the multiplexer will be the superposition of the L individual arrival processes.

The multiplexer serves one cell per tick, and the ratio of the packetization period to the multiplexer transmission period is s ticks. Thus s active voice sources will just saturate the multiplexer, or to put it another way, the multiplexer will be not be idle at any time during a period of length at least equal to the length of the shortest burst period among the s active sources. And, during the period when s sources are active, at the end of each interval of s ticks starting from the time of the first arrival,
an arriving cell will find the buffer empty. In other words over this period when s sources are active, cells will not accumulate in the multiplexer buffer. Conversely, during periods where more than s sources are active, cells will accumulate in the multiplexer buffer; the length of the queue in the multiplexer buffer will grow over this period. After s ticks from the time of the first arrival, all arriving cells will find the buffer occupied. However, once the number of active sources falls below s the back-log of cells in the buffer can be cleared. And, during any such period when the number of active sources is less than s, the buffer queue length decreases to zero, except for periodic fluctuations, after which, arriving cells find the buffer to be empty. These high frequency periodic fluctuations are the only contribution to the queue length in the multiplexer buffer when the number of active sources is less than or equal to s, and are simply due to the simultaneous arrival of two or more cells at the multiplexer. In other words, these high frequency fluctuations in queue length are due to an instantaneous increase in the cell arrival rate at the multiplexer above the service rate, as opposed to a temporary increase in the average arrival rate, over a period of time greater than s, to above the service rate, as occurs in the case where the number of active sources exceeds s. The former leads to short length, short term queues, the latter can result in long queues lasting long periods of time. Large queues are also subject to these small high frequency changes. But these fluctuations are unimportant in the growth of large queues. They are however, an important consideration in buffer dimensioning. In order to accurately estimate the queue length distribution, the contribution to the queue-length from the cell-level component must be taken into account. The queue in the multiplexer buffer can be viewed as having two components: the burst-level component and, added to it, a cell-level component.

When the number of active lines over a period greater than s ticks exceeds s or equivalently when the average arrival rate over a period greater than s ticks exceeds the service rate, we are in what is referred to as a heavy traffic regime. A heavy traffic regime results in long term large queues. This is referred to as burst level congestion. When the number of active lines over a period greater than s is less
than s then we are in a low traffic regıme and we have short term, short length queues ie high frequency fluctuations of small amplitude in small queue-lengths This is referred to as cell-level congestion A defect many of the models used to study ATM multiplexer congestion has been the fanlure of the models to properly take these high frequency, low amplitude queue-length fluctuations into account For example Daıgle and Langford [10] describe three models A Semı Markov Process model, a Contınuous tıme Markov Chain model, and a Unıform Arrival and Service model The first and last of their models ignore the high frequency fluctuations completely, and as a result, underestimate cell level congestion by assuming no queue length changes under a low traffic regıme Their Contınuous tıme Markov Chain model overestimates cell level congestion by implicitly assuming higher frequency fluctuations in queue length than can occur in the system being modelled These observations were confirmed by their simulations

Each individual source generates an arrival process that is in fact an alternating renewal process But because of the bursty and periodic nature of individual sources, the superposed arrival process is not a renewal process, the inter-arrival times of the superposed process are negatively correlated and the average arrival intensities over periods longer than s are positively correlated Only a superposition of Poisson processes is itself a renewal process, in fact again a Poisson process, and modelling the superposed process by a Poisson process has been shown to be unsatisfactory [11]

3.3 Modelling traffic from a single source

In this section we will describe how we model traffic from an individual source The model we introduce in 33 1, the Cell Level Model, is new and is the model which we will use throughout the thesis The model we describe in 332 the Block Level Model has been studied in detail by Buffet and Duffield [3] We will make a comparison between the two models in Chapter 4

3.3.1 The Cell Level Model

We will model traffic from a single source in the following manner Define the random variable $X(t)$ where $t \in N$ and $X(t)$ takes values in the state space $E=\{0,1,2, \quad, s\}$ by,

$$
X(t)=\min \{s, \text { time since last cell arrival from the source at the multıplexer }\}
$$

Then $X(t)=0$ means an arrval from this source at time t And $X(t)$ is a Markov Chain Its transition diagram is shown in Figure 3-2

Fıgure 3-2 Cell level transition diagram for single line

The periodic nature of the arrivals from a single source means that transitions from state 0 through to state $s-1$ each occur with probability 1 At state $s-1$ either a cell arrives with probability α (e the burst continues) and the state of the source makes the transition from state $s-1$ to state 0 or the transition from $s-1$ to s occurs 1 e the burst ends and a period of silence begins with probability $1-\alpha$ From state s transitions can occur to state s ı e the silence continues with probability β, or to state 01 e the sılence ends with the arrival of another cell and the beginning of a new burst with probability $1-\beta$ The following is the $(s+1)$ by $(s+1)$ transition
matrix for this Markov Chain model for a single line,

The states of this Markov Chain form an irreducible closed set and are recurrent non-null aperiodıc (ergodic) Recall form Chapter 2 that they form an irreducible closed set because every state can be reached from every other state 1 e for each paar of states \imath and \jmath there exists an integer n such that $P^{n}(\imath, \jmath)>0$, this can also be seen from the transition diagram Recall such a Markov Chain is termed irreducible Further, from 213 , since the state space is finite all states are recurrent non-null (since none are transient and all states must be either transient or recurrent non-null by irreducibility) Finally from 213 all states are periodic or aperiodic and since a transition is possible from s to itself, $1 \mathrm{e} P(s, s)>0$ the gcd of all $n \geq 1$ such that $P^{n}(s, s)>0$ is 1 that is s cannot be periodic, hence all states are aperiodic All of this implies from 213 that the Markov Cham has a unique stationary distribution In fact it has stationary distribution,

$$
\pi=\frac{1}{s+\frac{1-\alpha}{1-\beta}}\left(\begin{array}{llllll}
1 & 1 & & 1 & 1 & \frac{1-\alpha}{1-\beta} \tag{37}
\end{array}\right)
$$

We will refer to this model from now on as the cell-level model

3.3.2 The Block Level Model

The cell level model described above is the model of greatest interest to us But a simplified model (studred in detall in [3]) which we will call the Block Level Model can be derived from it, and, in chapter 4 we compare the effective bandwidth decay rates for the two models The block level model is derived from the cell-level model
by looking at the cell-level model on a different time scale, we look at the number of arrivals in each block of s ticks Thus we define a new random variable Y and define a block to be a unit of time of size s ticks during which a cell may or may not arrive We define Y as follows,

$$
\begin{align*}
& Y_{3} \in\{0,1\} \tag{38}\\
& Y_{3}=0 \text { if no cell arrival in block number } \jmath \tag{39}\\
& Y_{3}=1 \text { if one cell arrival in block number } \jmath \tag{310}
\end{align*}
$$

We could relate this process to the X process by writing $X_{\jmath s}$ for the state of the source at the j th tick in the k th block Then,

$$
\begin{align*}
& Y_{\jmath}=0 \Rightarrow X_{\jmath s-1}=s \tag{311}\\
& Y_{J}=1 \Rightarrow X_{\jmath s-1}<s \tag{312}
\end{align*}
$$

But this process will not be a Markov Chain unless we make the incorrect assumption that the end of one burst and the beginning of the next cannot occupy the same block This is clearly possible as is illustrated in the figure 3-3

Figure 3-3 Bursts overlapping in a block

Instead we will define Y as in and assume that Y is a Markov Cham with the transition diagram shown in Figure 3-4 The transition matrix for this Markov Cham 1s,

$$
P=\left(\begin{array}{cc}
1-a & a \tag{313}\\
d & 1-d
\end{array}\right)
$$

Where a and d are defined by,

$$
\begin{align*}
a & =\mathbf{P}\left[Y_{\jmath+1}=1 \mid Y_{\jmath}=0\right] \tag{314}\\
d & =\mathbf{P}\left[Y_{\jmath+1}=0 \mid Y_{\jmath}=1\right] \tag{315}
\end{align*}
$$

We can see from these equations that a is the probability that a silent source

Figure 3-4 Block Level Transitıon Dıagram
becomes active and d is the probability that an active source becomes silent Thus,

$$
\begin{align*}
a & =\mathbf{P}[\text { sılence } \leq s] \tag{316}\\
& =1-\beta^{s} \\
d & =\mathbf{P}[\text { burst ends }] \tag{318}\\
& =1-\alpha \tag{319}
\end{align*}
$$

This Markov chain has unique stationary distribution,

$$
\pi=\frac{1}{a+d}\left(\begin{array}{ll}
d & a \tag{320}
\end{array}\right)
$$

As described earlier, the traffic presented to the multiplexer, will be the superposition of the traffic from all of the individual sources We will be interested in homogeneous superpositions, where all of the sources produce traffic which generates the same arrival process at the multiplexer for each individual source

Chapter 4

The effective bandwidth

approximation

4.1 Effective bandwidth approximation

In this chapter we use the theory of large deviations to find an approximation for for the tail of the queue length distribution for the queue in an infinite buffer served at deterministic service rate where the arrivals are a homogeneous superposition of arrivals from sources modelled by the cell level model this can be used to approximate the the probability of buffer overflow from a finite buffer fed by the same arrivals process with the same service rate. The approximation is known as the effective bandwidth approximation [2] and is of the form,

$$
\mathbf{P}[q \geq b] \approx e^{-\gamma b}
$$

where γ is a constant. We also calculate the effective bandwidth approximation for the queue length distribution for the queue in an infinite buffer served at deterministic service rate where the arrivals are a homogeneous superposition of arrivals from sources modelled by the block level model [3]. We compare the decay rate constants for each model. In this we apply the work of Glynn and Whitt [12], Lewis and Russell [2] and Duffield et al [13] to our new cell level model and to the block level model already studied in detail in [3] to obtain the decay rate constants in each case. We then compare the two constants. In Section 4.1.2 we state the Large Deviations
result of Glynn and Whitt [12] and explain their result using the work of Lewis and Russell [2]. We also state with proof an expression for the decay rate constant γ which is to be found in [2]. We give a proof from [2] of the Glynn and Whitt result [12]. In Section 4.1.3 we explain the term effective bandwidth approximation [2]. In Section 4.2 we give results from [13] on calculating the decay rate constant. In Section 4.3 we apply these results to calculate the decay rate constant for our new model the cell level model. In Section 4.4 we do the same for the block level model of [3]. In Section 4.5 we compare the two decay rate constants and prove that the decay rate constant for the cell level model is smaller than that for the block level model.

4.1.1 The equilibrium queue-length

Our problem consists of finding an upper bound or approximation for the tail of the queue-length distribution of a single server queue operating in discrete time with a FCFS service discipline and an infinite buffer, where there are non-independent arrivals to the queue. Let q_{n} be the queue-length at time $-n$. Then the queue-length at time 0 will be the sum of the queue-length at time -1 and the arrivals at time -1 minus the work done by the server at time -1 . The queue is never negative, thus, if the server can do more work than the work presented to it at time -1 , then the queue-length will be 0 . Let U_{n} be the arrivals at time $-n$. Let Y_{n} be the work the server can do at time $-n$. Then we can write the following Lindley equation for the queue-length at time 0 ,

$$
q_{0}=\sup \left\{0, U_{1}-Y_{1}+q_{1}\right\}
$$

We can iterate this equation as follows,

$$
\begin{aligned}
q_{0} & =\sup \left\{0, U_{1}-Y_{1}+q_{1}\right\} \\
& =\sup \left\{0, U_{1}-Y_{1}+\sup \left\{U_{2}-U_{2}+q_{2}\right\}\right\} \\
& =\sup \left\{0, U_{1}-Y_{1}+U_{2}-Y_{2}+q_{2}\right\} \\
& =\sup \left\{0, U_{1}+U_{2}-\left(Y_{1}+Y_{2}\right)+q_{2}\right\}
\end{aligned}
$$

Let $A_{n}=\sum_{i}^{n} U_{i}$ and $S_{n}=\sum_{i}^{n} Y_{i}$; i.e. A_{n} is the number of arrivals up to time $-n$ and S_{n} is the service that can be performed up to time $-n$. Let $W_{n}=A_{n}-S_{n}$, then W_{n}
is called the workload process We will define $W_{0}=0$ Then iterating equation 51 $t-1$ tumes we get,

$$
q_{0}=\sup \left\{W_{0}, W_{1}, \quad, W_{t}+q_{t}\right\}
$$

We are interested in the equilibrium queue-length Any queue with a FCFS service discipline and stationary ergodic arrivals U_{t} and services Y_{t} has a unique stationary distribution of the load is less than 1 [14] The equilibrium queue-length is then given by,

$$
q=\sup _{t \geq 0} W_{t}
$$

4.1.2 Large deviations

We are interested in finding an approximation to, or upper bound on, the tall of the queue-length distribution of a queue with non-mdependent arrivals We can do this using the theory of Large Deviations Glynn and Whitt [12] showed that if $\left(\frac{W_{t}}{t}, t\right)$, where t is discrete, satisfies a Large Deviation principle with rate function I, ı e,

$$
\mathbf{P}\left[\frac{W_{t}}{t} \geq w\right] \approx e^{-t I(w)}
$$

then,

$$
\mathbf{P}[q \geq b] \approx e^{-\gamma b}
$$

and,

$$
\gamma=\inf _{w} \frac{I(w)}{w}
$$

The reason for this is indicated by the following [2],

$$
\begin{aligned}
\mathbf{P}[q>b] & =\mathbf{P}\left[\sup _{t \geq 0} W_{t}>b\right] \\
& =\mathbf{P}\left[\bigcup_{t \geq 0}\left\{W_{t}>b\right\}\right] \\
& \leq \sum_{t \geq 0} \mathbf{P}\left[W_{t}>b\right]
\end{aligned}
$$

but,

$$
\begin{aligned}
\mathbf{P}\left[W_{t}>b\right] & =\mathbf{P}\left[\frac{W_{t}}{t}>\frac{b}{t}\right] \\
& \approx e^{-t I(b / t)} \\
& =e^{-b \frac{I(b / t)}{b / t}}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\mathbf{P}[q>b] & \approx e^{-b \frac{L(b)}{b}}+e^{-b \frac{L(b / 2)}{b / 2}}+\quad+e^{-b \frac{I(b / t)}{b / t}}+ \\
& \approx e^{-b \min f_{w} \frac{I(w)}{w}} \\
& =e^{-\gamma b}
\end{aligned}
$$

with the second equality due to the fact that the term that dominates the right hand side of the first for large b, is the term for which the exponent is smallest We can derive a further expression for the decay constant $\gamma[2]$,

$$
\begin{aligned}
\theta \leq \gamma & \Leftrightarrow \theta \leq \underset{w}{\operatorname{nf}} \frac{I(w)}{w} \\
& \Leftrightarrow \theta \leq \frac{I(w)}{w} \text { for all } w \\
& \Leftrightarrow \theta w-I(w) \leq 0 \text { for all } w \\
& \Leftrightarrow \sup \{w \mid \theta w-I(w) \leq 0\} \\
& \Leftrightarrow \lambda(\theta) \leq 0 \\
& \Leftrightarrow \gamma=\sup \{\theta \mid \lambda(\theta) \leq 0\}
\end{aligned}
$$

where $\lambda(\theta)$ is the scaled cumulant generating function (CGF) for the workload process

The following is a rigorous proof of the result for the asymptotic decay rate of the queue-length distribution tail [2] Recall,

$$
q=\sup _{t \geq 0} W_{t}
$$

Thus,

$$
\{q \geq b\}=\bigcup_{t \geq 0}\left\{W_{t} \geq b\right\}
$$

Thus for each $t \geq 0$

$$
\{q \geq b\} \supset\left\{W_{t} \geq b\right\}
$$

which imples, for all $t \geq 0$

$$
\mathbf{P}[q \geq b] \geq \mathbf{P}\left[W_{t} \geq b\right]
$$

Let $b=t w$ for fixed $w>0$ Then,

$$
\begin{aligned}
\left\{W_{t} \geq b\right\} & =\left\{\frac{W_{t}}{t} \geq \frac{b}{t}\right\} \\
& =\left\{\frac{W_{t}}{t} \geq w\right\}
\end{aligned}
$$

hence,

$$
\begin{aligned}
\mathbf{P}[q \geq b] & \geq \mathbf{P}\left[W_{t} \geq b\right] \\
& \geq \mathbf{P}\left[\frac{W_{t}}{t} \geq w\right]
\end{aligned}
$$

which imples,

$$
\frac{1}{b} \log \mathbf{P}[q \geq b] \geq \frac{1}{w} \frac{w}{b} \mathbf{P}\left[\frac{W_{t}}{t} \geq w\right]
$$

and hence,

$$
\begin{aligned}
\liminf _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}[q \geq b] & \geq \liminf _{b \rightarrow \infty} \frac{1}{w} \frac{w}{b} \log \mathbf{P}\left[\frac{W_{t}}{t} \geq w\right] \\
& =\frac{1}{w} \liminf _{t \rightarrow \infty} \frac{1}{t} \log \mathbf{P}\left[\frac{W_{t}}{t} \geq w\right] \\
& \geq-\frac{I(w)}{w}
\end{aligned}
$$

This is true for all $w>0$ thus,

$$
\begin{aligned}
\liminf _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}[q \geq b] & \geq \sup _{w>0}\left\{-\frac{I(w)}{w}\right\} \\
& =-\inf _{w>0} \frac{I(w)}{w}
\end{aligned}
$$

In order to complete the proof it is necessary to get an upper bound on the limsup
Let the sequence of random variables $\left\{W_{t}\right\}_{t \geq 0}$ satisfy the conditions of the GartnerEllis theorem [15] That is, for all real θ let,

$$
\begin{aligned}
\lambda_{t}(\theta) & =\frac{1}{t} \log \mathbf{E}\left[e^{\theta W_{t}}\right] \\
\lambda(\theta) & =\lim _{t \rightarrow \infty} \lambda_{t}(\theta)
\end{aligned}
$$

and let the limit exist and be finte Further, let $\gamma=\sup \{\theta \mid \lambda(\theta) \leq 0\}$
Then consider the set $\{\theta \mid \lambda(\theta) \leq 0\}$ If this set is empty then $\gamma=-\infty$ and then,

$$
\limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathrm{P}[q \geq b] \leq-\gamma
$$

If the set is not empty then let $\hat{\theta}<\gamma$ be an element of this set Then from Chernoff's bound we have,

$$
\mathbf{P}\left[W_{t} \geq b\right] \leq e^{-\hat{\theta} b} \mathbf{E}\left[e^{\hat{\theta} W_{t}}\right]
$$

But $\mathbf{E}\left[e^{\hat{\theta} W_{t}}\right]$ is finte, thus,

$$
\limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}\left[W_{t} \geq b\right] \leq-\hat{\theta}
$$

Now for each integer N,

$$
\begin{aligned}
\mathbf{P}\left[\sup _{t \leq N} W_{t} \geq b\right] & \leq \sum_{t=1}^{t=N} \mathbf{P}\left[W_{t} \geq b\right] \\
& \leq N \sup _{t \leq N} \mathbf{P}\left[W_{t} \geq b\right]
\end{aligned}
$$

But this implies,

$$
\begin{aligned}
\limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}\left[\sup _{t \leq N} W_{t} \geq b\right] & \leq \sup _{t \leq N} \limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}\left[W_{t} \geq b\right] \\
& \leq-\hat{\theta}
\end{aligned}
$$

We also have,

$$
\begin{aligned}
\mathbf{P}_{\left[\sup _{t \leq N} W_{t} \geq b\right]} & \leq \sum_{t=1}^{t=N} \mathbf{P}\left[W_{t} \geq b\right] \\
& \leq e^{-\hat{\theta} b} \sum_{t>N} \mathbf{E}\left[e^{\hat{\theta_{W}} W_{t}}\right] \\
& =e^{-\hat{\theta} b} \sum_{t>N} e^{t \lambda_{t}(\hat{\theta})}
\end{aligned}
$$

Now the $\lim _{t \rightarrow \infty} \lambda_{t}(\hat{\theta})=\lambda(\hat{\theta})<0$, thus there exssts $\epsilon>0$ such that $\lambda<-\epsilon$, and there exists an integer $N(\hat{\theta})$ depending on $\hat{\theta}$ such that $\lambda_{t}(\hat{\theta})<-\epsilon$ for all $t>N(\hat{\theta})$ This implies

$$
\begin{aligned}
\mathbf{P}\left[\sup _{t \leq N} W_{t} \geq b\right] & \leq e^{-\hat{\theta} b} \sum_{t>N} e^{t \epsilon} \\
& <e^{-\hat{\theta} b} \frac{1}{1-e^{-\epsilon}}
\end{aligned}
$$

implyıng,

$$
\limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}\left[\sup _{t \leq N} W_{t} \geq b\right] \leq-\hat{\theta}
$$

Thus, as

$$
\limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}\left[\sup _{t \geq 0} W_{t} \geq b\right]
$$

is equal to,

$$
\max \left\{\limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}\left[\sup _{t \leq N(\hat{\theta})} W_{t} \geq b\right], \limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}\left[\sup _{t>N(\hat{\theta})} W_{t} \geq b\right]\right\}
$$

we have,

$$
\limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}\left[\sup _{t \geq 0} W_{t} \geq b\right] \leq-\hat{\theta}
$$

and this is true for all $\hat{\theta}<\gamma$ and hence,

$$
\limsup _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}\left[\sup _{t \geq 0} W_{t} \geq b\right] \leq-\gamma
$$

Thus together with the lower bound we have,

$$
\lim _{b \rightarrow \infty} \frac{1}{b} \log \mathbf{P}[q \geq b]=-\gamma
$$

as required
This tells us that the tall of the queue length distribution is asymptotically log-linear with slope $-\gamma[2]$

4.1.3 Effective Bandwidths

The approximation, for large b,

$$
\mathbf{P}[q \geq b] \approx e^{-\gamma b}
$$

is called the effective bandwidth approximation [2], for the following reason Consider the situation which is of concern to us We have an arrival process served at deterministic service rate r, 1 e the workload process is,

$$
W_{t}=A_{t}-r t
$$

thus the scaled CGF is,

$$
\begin{aligned}
\lambda(\theta) & =\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathrm{E}\left[e^{\theta W_{t}}\right] \\
& =\lim _{t \rightarrow \infty} \frac{1}{t} \log \mathrm{E}\left[e^{\theta A_{t}}\right]-r \theta \\
& =\hat{\lambda}(\theta)-r \theta
\end{aligned}
$$

where $\hat{\lambda}(\theta)$ is the scaled CGF of the arrivals process. Thus we can write the following,

$$
\gamma(r)=\sup \{\theta \mid \hat{\lambda}(\theta) \leq r \theta\}
$$

which gives us γ as a function of the service rate r. Now if our queue has finite waiting space, i.e. we have a finite buffer, then we can use the effective bandwidth approximation to give us an upper bound on the probability of the buffer overflowing. This is because the probability of finite buffer overflow is bounded above by the probability that the infinite buffer queue length exceeds the finite buffer size. This leads us to the reason for the term, effective bandwidth. If we have a prescribed probability of buffer overflow in an ATM network of, say y, and we have a buffer of fixed capacity b, then we would want to know what is the minimum service rate needed to guarantee that the probability of buffer overflow will not exceed our prescribed value y. Using our upper bound we get the following for this service rate $r(y)$

$$
r(y)=\inf \left\{r \mid e^{-\gamma(r) b} \leq y\right\}
$$

From which we get,

$$
r(y)=\frac{\lambda\left(\theta_{y}\right)}{\theta_{y}}
$$

with $\theta_{y}=\frac{\log (y)}{b}$. We call $r(y)$ the effective bandwidth of the arrivals. It is the minimum transmission bandwidth needed to guarantee that the probability of buffer overflow will not exceed the prescribed value y.

4.2 Calculating the decay rate constant

The decay rate constant γ can be calculated for our models of an ATM multiplexer by using the scaled CGF for the workload process [13]. Our model is an example of
a finite state Markov Additive Process for which γ can be found using the following technique from [13]. The workload process for the homogeneous superposition of L independent sources served at rate r, is,

$$
W_{t}^{L}=\sum_{l=1}^{L}\left(A_{t}^{(l)}-r / L\right)
$$

Where $A_{t}^{(l)}$ is the number of arrivals from source l up to time $-t$. The first thing we note is that if we let \mathbf{X}_{t} be the vector of states $\left(X^{(1)}, \ldots \ldots ., X^{(L)}\right)$ in the state space $\mathbf{E}=E^{\times L}$, then \mathbf{X}_{t} is the state of the system of L sources or lines at time $-t$, and is a Markov Chain with transition matrix $\mathbf{P}=P^{\otimes L}$ where this means the outer product of the transitions matrices for the L lines. If we let the increment in the workload be $Z\left(\mathbf{x}_{\mathrm{t}}\right)$ when $\mathbf{X}_{t}=\mathbf{x}_{t}$ then,

$$
\mathbf{E}\left[e^{\theta W_{t}^{L}}\right]=\sum_{\mathbf{x}_{1} \in \mathbf{E}} \cdots \sum_{\mathbf{x}_{t} \in \mathbf{E}} e^{\theta \sum_{n=1}^{t} Z\left(\mathbf{x}_{t}\right)} \prod_{n=2}^{t} \mathbf{P}\left(\mathbf{X}_{n}=\mathbf{x}_{n} \mid \mathbf{X}_{n-1}=\mathbf{x}_{n-1}\right) \pi\left(\mathbf{x}_{1}\right)
$$

where $\pi\left(\mathbf{x}_{1}\right)$ is the probability that $\mathbf{X}_{1}=\mathbf{x}_{1}$. The product of the $t-2$ transition probabilities with $\pi\left(\mathbf{x}_{1}\right)$ is just the joint probability of the t state vectors. If we write,

$$
\mathbf{P}(\theta)\left(\mathbf{x}_{n}, \mathbf{x}_{n-1}\right)=e^{\theta Z\left(\mathbf{x}_{n}\right)} \mathbf{P}\left(\mathbf{X}_{n}=\mathbf{x}_{n} \mid \mathbf{X}_{n-1}=\mathbf{x}_{n-1}\right)
$$

and write,

$$
\pi(\theta)\left(\mathbf{x}_{1}\right)=e^{\theta Z\left(\mathbf{x}_{n}\right)} \pi\left(\mathbf{x}_{1}\right)
$$

then we have,

$$
\mathbf{E}\left[e^{\theta W_{t}^{L}}\right]=\pi(\theta) \mathbf{P}(\theta)^{t} 1^{T}
$$

And hence,

$$
\begin{align*}
\lambda(\theta) & =\lim _{t \rightarrow \infty} \frac{1}{t} \log \left[\pi(\theta) \mathbf{P}(\theta)^{t} 1^{T}\right] \tag{4.1}\\
& =\log [\operatorname{sp}(\mathbf{P}(\theta))] \tag{4.2}
\end{align*}
$$

where $\operatorname{sp}(A)$ means spectral radius of the matrix A. Note we can write $\mathbf{P}(\theta)$ as $\mathbf{P D} e^{-\theta}$ where $\mathbf{D}=D^{\otimes L}$ and D is the diagonal matrix with $e^{\theta n(i)}$ in the (i, i) position where $n(i)$ is the number of arrivals if a source is in state i. The above result follows
from a result of Frobenius [7] which says, if a matrix A is positive; i.e. all its entries are non-negative and at least one entry is positive, and if the matrix raised to some power is such that all its entries are positive, then, $\lim _{n \rightarrow \infty} \frac{A^{n}}{(\operatorname{spp}(A))^{n}}=B$ where all entries of B are non-negative. Now if the Markov Chain \mathbf{X}_{t} is irreducible, recurrent, non-null and aperiodic then $\mathbf{P}(\theta)$ satisfies the conditions of this theorem because \mathbf{P} does and because \mathbf{D} is a diagonal matrix with positive diagonal entries. Thus we can say,

$$
\begin{aligned}
\lim _{t \rightarrow \infty} \frac{1}{t} \log \left[\pi(\theta) \mathbf{P}(\theta)^{t} 1^{T}\right]-\lim _{t \rightarrow \infty} \frac{1}{t} \log \left[(\operatorname{sp}(\mathbf{P}(\theta)))^{t}\right] & =\lim _{t \rightarrow \infty} \frac{1}{t} \log \left[\frac{\pi(\theta) \mathbf{P}(\theta)^{t} 1^{T}}{(\operatorname{sp}(\mathbf{P}(\theta)))^{t}}\right] \\
& =\lim _{t \rightarrow \infty} \frac{1}{t} \log \left[\pi(\theta) \mathbf{B}(\theta) 1^{T}\right] \\
& =0
\end{aligned}
$$

Where B plays the same part here as B in the theorem of Frobenius. We have therefore,

$$
\begin{aligned}
\lambda(\theta) & =\lim _{t \rightarrow \infty} \frac{1}{t} \log \left[\pi(\theta) \mathbf{P}(\theta)^{t} 1^{T}\right] \\
& =\lim _{t \rightarrow \infty} \frac{1}{t} \log \left[(\operatorname{sp}(\mathbf{P}(\theta)))^{t}\right] \\
& =\log [\operatorname{sp}(\mathbf{P}(\theta))]
\end{aligned}
$$

as required.
Now if \mathbf{X}_{t} is stationary and recurrent and irreducible, then $\operatorname{sp}(\mathbf{P}(\theta))$ is in fact the maximum of the moduli of the eigenvalues of $\mathbf{P}(\theta)$. For our models the individual sources are modelled by Markov Chains which satisfy this condition and, hence \mathbf{X}_{t} satisfies this condition. The problem of finding γ reduces therefore to finding positive θ for which the \log of the maximum of the moduli of the eigenvalues of $\mathbf{P}(\theta)$ is 0 .

4.3 The cell level model

In order to find the decay rate constant γ for the queue q^{L} produced by the homogeneous superposition of L sources modelled by the cell level model, we need to find the maximum of the moduli of the eigenvalues of the transformed matrix, $\mathbf{P}(\theta)$ for the superposed process.

Define \hat{v} as follows,

$$
\begin{aligned}
\hat{v}(\theta) & =\mathrm{sp}(\mathbf{P}(\theta)) \\
& =\mathrm{sp}\left(\mathbf{P D} e^{-\theta}\right)
\end{aligned}
$$

where,

$$
\begin{aligned}
\mathbf{P} & =P^{\otimes L} \\
\mathbf{D} & =D^{\otimes L}
\end{aligned}
$$

Then define v as follows,

$$
\begin{aligned}
v(\theta) & =\operatorname{sp}\left(P D e^{-\theta / L}\right) \\
& =e^{-\theta / L} \operatorname{sp}(P D)
\end{aligned}
$$

Recall that γ is given by,

$$
\gamma=\sup \{\theta \mid \lambda(\theta) \leq 0\}
$$

But,

$$
\begin{aligned}
\lambda(\theta) & =\log \operatorname{sp}(\mathbf{P}(\theta)) \\
& =\log \hat{v}(\theta)
\end{aligned}
$$

Thus,

$$
\gamma=\sup \{\theta \mid \hat{v}(\theta) \leq 1\}
$$

But,

$$
\hat{v}(\theta)=(v(\theta))^{L}
$$

Thus,

$$
\begin{aligned}
\gamma & =\sup \{\theta \mid \hat{v}(\theta) \leq 1\} \\
& =\sup \{\theta \mid v(\theta) \leq 1\}
\end{aligned}
$$

Now,

$$
v(\theta)=e^{-\theta / L} \operatorname{sp}(P D)
$$

And $\operatorname{sp}(P D)$ is just the largest eigenvalue of $P D$ In order to find $v(\theta)$ we need to find the largest elgenvalue of matrix $P D$ Recall that the transition matrix A for the forward Markov Chain for a single line in the cell level model is,

$$
A=\left(\begin{array}{cccccc}
0 & 1 & \cdot & & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & \cdot & & 0 & 0 \\
0 & 0 & \cdot & & 0 & 0 \\
& & & 0 \\
. & & \cdot & & & \\
0 & 0 & \cdot & & 0 & 1
\end{array}\right) 0 .
$$

We are working in reversed time, that is we are looking at the arrival process reversed in time Thus we want the reversed Markov chain transition matrix P with entries given by,

$$
P_{\imath j}=\frac{\pi_{3}}{\pi_{z}} A_{y}
$$

Where π is the unique stationary distribution of the Markov Chain

$$
\begin{aligned}
& \frac{\pi_{\jmath}}{\pi_{z}}=1 \text { for } \imath, \jmath \in\{0, \quad, s-1\} \text { and for } \imath=\jmath \\
& \frac{\pi_{\jmath}}{\pi_{2}}=\frac{1-\alpha}{1-\beta} \text { for } \imath=s \text { and } \jmath \in\{0, \quad, s-1\} \\
& \frac{\pi_{j}}{\pi_{2}}=\frac{1-\beta}{1-\alpha} \text { for } \jmath=s \text { and } \imath \in\{0, \quad, s-1\}
\end{aligned}
$$

Thus we have,

$$
P=\left(\begin{array}{ccccccc}
0 & 0 & & . & 0 & \alpha & 1-\alpha \\
1 & 0 & & 0 & 0 & 0 \\
0 & 1 & . & 0 & 0 & 0 \\
& . & . & & & . & \\
. & & & . & . & & . \\
0 & 0 & . & 0 & 0 & 0 \\
0 & 0 & & 1 & 0 & 0 \\
0 & 0 & . & & 0 & 1-\beta & \beta
\end{array}\right)
$$

and the $(s+1) \times(s+1)$ matrix D is,

$$
D=\left(\begin{array}{ccccccc}
e^{\theta} & 0 & & & & 0 & 0
\end{array}\right)
$$

Thus the transformed matrix is,

$$
P(\theta)=P D e^{-\theta / L}
$$

where,

$$
P D=\left(\begin{array}{ccccc}
0 & 0 & & 0 & \alpha \\
e^{\theta} & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
. & & & & \\
. & \cdot & & & \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1-\beta & \beta
\end{array}\right)
$$

The characteristic equation of matrix $P D$ is,

$$
\begin{aligned}
\operatorname{Det}(x-P D) & =-x^{s+1}+\beta x^{s}+\alpha e^{\theta} x+e^{\theta}(1-\alpha-\beta) \\
& =g(x, \theta, s)
\end{aligned}
$$

Thus,

$$
\begin{aligned}
v(\theta) & =e^{-\theta / L} \sup \{x \mid g(x, \theta, s)=0\} \\
& =\sup \left\{x^{4} \mid g\left(x^{c} e^{\theta / L}, \theta, s\right)=0\right\}
\end{aligned}
$$

Where we have put $x^{6}=x e^{-\theta / L}$ Thus we have the following for γ,

$$
\gamma=\sup \left\{\theta \mid \sup \left\{x^{\iota} \mid g\left(x^{‘} e^{\theta / L}, \theta, s\right)=0\right\} \leq 1\right\}
$$

Thus to find γ we should attempt to solve,

$$
g\left(e^{\theta / L}, \theta, s\right)=0
$$

Then γ will be the supremum of the resulting solution set This gives us the following,

$$
\begin{equation*}
-e^{(s+1) \theta / L}+\beta e^{s \theta / L}+\alpha e^{\theta} e^{\theta / L}+e^{\theta}(1-\alpha-\beta)=0 \tag{43}
\end{equation*}
$$

Note that the γ which we would obtain of we could solve this equation and find the supremum of the solution set would depend on L Now we are interested in finding the decay rate constant for the queue q^{L} produced by the superposition of L sources for large L_{1} e the queue for a large multiplexer The load ρ of the multiplexed system 1s,

$$
\rho=\frac{L}{s+(1-\alpha) /(1-\beta)}
$$

This is dependent on L The requirement for stable queuing is that $\rho<1$ Thus in order to study the queue for different values of L we will have to scale the parameters of the model to ensure that ρ remains constant To this end we define the constants (wrtL) σ and τ as follows,

$$
\begin{aligned}
\sigma & =\frac{s}{L} \\
\tau & =L(1-\beta)
\end{aligned}
$$

That is we scale s and β in a manner that makes ρ constant wrt L Putting the rescaled parameters into our equation for θ we get,

$$
-e^{\sigma \theta} e^{\theta / L}+\left(1-\frac{\tau}{L}\right) e^{\sigma \theta}+\alpha e^{\theta} e^{\theta / L}+-\alpha e^{\theta}+\frac{\tau}{L}=0
$$

Rearranging this so that all the L dependent terms appear on the same side we get,

$$
\begin{equation*}
e^{(\sigma-1) \theta}=\frac{\alpha\left(e^{\theta / L}-1\right)+\frac{\tau}{L}}{\left(e^{\theta / L}-1\right)+\frac{\tau}{L}} \tag{44}
\end{equation*}
$$

Now consider the behaviour of $\gamma(L)$ wrt L We know $\gamma(L)$ solves the above equation Thus consider the right hand side of that equation,

$$
\frac{\alpha\left(e^{\theta / L}-1\right)+\frac{\tau}{L}}{\left(e^{\theta / L}-1\right)+\frac{\tau}{L}}=\frac{\alpha\left(e^{\theta / L}-1\right)+\alpha \frac{\tau}{L}+(1-\alpha) \frac{\tau}{L}}{\left(e^{\theta / L}-1\right)+\frac{\tau}{L}}
$$

$$
\begin{aligned}
& =\frac{\alpha\left(\left(e^{\theta / L}-1\right)+\frac{\tau}{L}\right)}{\left(e^{\theta / L}-1\right)+\frac{\tau}{L}}+\frac{(1-\alpha) \frac{\tau}{L}}{\left(e^{\theta / L}-1\right)+\frac{\tau}{L}} \\
& =\alpha+\frac{(1-\alpha) \frac{\tau}{L}}{\left(e^{\theta / L}-1\right)+\frac{\tau}{L}} \\
& >\alpha
\end{aligned}
$$

Thus for all $L>0$ we have,

$$
\begin{equation*}
e^{(1-\sigma) \gamma(L)}<\frac{1}{\alpha} \tag{45}
\end{equation*}
$$

Hence the sequence of gammas depending on $L, \gamma(L)$, is bounded above as follows,

$$
\gamma(L)<\frac{1}{(1-\sigma)} \log [1 / \alpha]
$$

For typical values of α and σ the right hand side of this inequality will be much smaller than 1 Thus $\gamma(L)$ will be much smaller than 1 Now consider the following,

$$
\begin{align*}
\alpha+\frac{(1-\alpha) \frac{\tau}{L}}{\left(e^{\gamma(L) / L}-1\right)+\frac{\tau}{L}} & =\alpha+\frac{(1-\alpha) \tau}{L\left(e^{\gamma(L) / L}-1\right)+\tau} \\
& <\alpha+\frac{(1-\alpha) \tau}{\gamma(L)+\tau} \tag{46}\\
& =\frac{\alpha \gamma(L)+\tau}{\gamma(L)+\tau} \tag{47}
\end{align*}
$$

In fact if $\gamma(L)$ is small (and/or L is large), we have,

$$
\begin{aligned}
\alpha+\frac{(1-\alpha) \frac{\tau}{L}}{\left(e^{\gamma(L) / L}-1\right)+\frac{\tau}{L}} & =\alpha+\frac{(1-\alpha) \tau}{L\left(e^{\gamma(L) / L}-1\right)+\tau} \\
& \approx \alpha+\frac{(1-\alpha) \tau}{\gamma(L)+\tau} \\
& =\frac{\alpha \gamma(L)+\tau}{\gamma(L)+\tau}
\end{aligned}
$$

Thus we obtain the followng equation for an approximation for $\gamma(L)$

$$
e^{(\sigma-1) \gamma(L)}=\frac{\alpha \gamma(L)+\tau}{\gamma(L)+\tau}
$$

But the solutions to this equation are independent of L and are much smaller than 1 for typical values of α and σ, hence we can write the following equation for γ an approximation for the decay rate constant for the queue-length q^{L} that is independent of L

$$
\frac{1}{1+(1-\sigma) \gamma}=\frac{\alpha \gamma+\tau}{\gamma+\tau}
$$

giving us the quadratic equation,

$$
\alpha(1-\sigma) \gamma^{2}+(\tau(1-\sigma)-(1-\alpha)) \gamma=0
$$

Which gives us,

$$
\begin{equation*}
\gamma=\frac{(1-\alpha)-\tau(1-\sigma)}{\alpha(1-\sigma)} \tag{48}
\end{equation*}
$$

This is positive as required because,

$$
\begin{aligned}
\rho & =\frac{1}{\sigma+\frac{1-\alpha}{\tau}} \\
& <1
\end{aligned}
$$

which implies,

$$
\sigma+\frac{1-\alpha}{\tau}>1
$$

and this implies,

$$
1-\alpha-\tau(1-\sigma)>0
$$

As noted earlier we can use the effective bandwidth approximation to give us an upper bound on the probability of overflow of a finite buffer in an ATM multiplexer In the next section we find γ for the block level model

4.4 The block level model

In chapter 3 we described a 2 state Markov model Y from [3] as follows We let the state space $E=\{0,1\}$ and define the transition matrix to be,

$$
P=\left(\begin{array}{cc}
1-a & a \\
d & 1-d
\end{array}\right)
$$

Where,

$$
\begin{aligned}
a & =\mathbf{P}\left[Y_{t+1}=1 \mid Y_{t}=0\right] \\
d & =\mathbf{P}\left[Y_{t+1}=0 \mid Y_{t}=1\right]
\end{aligned}
$$

This has unique stationary distribution,

$$
\pi=\frac{1}{a+d}\left(\begin{array}{ll}
d & a
\end{array}\right)
$$

And

$$
\pi_{\imath} P_{\imath \jmath}=\pi_{\jmath} P_{\jmath \imath}
$$

implying that the Markov Chain Y is reversible, 1 e the matrix for the reversed chain is also P As with the cell level model,

$$
\mathbf{P}=P^{\otimes L}
$$

and,

$$
\mathbf{D}=D^{\otimes L}
$$

and for the states $\jmath \in E$ we have for the number of arrivals z_{\jmath} when Y is in state \jmath,

$$
\begin{gathered}
\jmath \in\{0,1\} \\
\mathbf{P}\left[z\left(Y_{t}\right)=z_{\jmath} \mid Y_{t}=\jmath\right]= \begin{cases}1 & \text { If } z_{\jmath}=\jmath \\
0 & \text { otherwise }\end{cases}
\end{gathered}
$$

Hence,

$$
\begin{aligned}
P(\theta) & =P_{\imath \jmath}(\theta) \\
& =P_{\imath \jmath} e^{\theta\left(z_{j}-s / L\right)}
\end{aligned}
$$

That is, the diagonal 2×2 matrix D is,

$$
D=\left(\begin{array}{cc}
1 & 0 \\
0 & e^{\theta}
\end{array}\right)
$$

and therefore the transformed matrix is,

$$
P(\theta)=P D e^{-\theta s / L}
$$

Where,

$$
P D=\left(\begin{array}{cc}
1-a & a e^{\theta} \\
d & (1-d) e^{\theta}
\end{array}\right)
$$

The characteristic equation of $P D$ is,

$$
\begin{aligned}
\operatorname{Det}(x I-P D) & =x^{2}-\left((1-a)+(1-d) e^{\theta}\right) x+(1-a)(1-d) e^{\theta}-a d e^{\theta} \\
& =x^{2}-\left((1-a)+(1-d) e^{\theta}\right) x+(1-a-d) e^{\theta} \\
& =h(x, \theta)
\end{aligned}
$$

As in the cell-level model in order to find γ we now solve, with $\sigma=\frac{s}{L}$

$$
h\left(e^{\gamma \sigma}, \gamma\right)=0
$$

Then assuming that γ is small, we have the followng,

$$
(1+\gamma \sigma)^{2}-((1-a)+(1-d)(1+\gamma))(1+\gamma \sigma)+(1-a-d)(1+\gamma)=0
$$

Then,

$$
\gamma^{2}(\sigma(\sigma-(1-d))+\gamma((a+d) \sigma-a)=0
$$

hence,

$$
\begin{equation*}
\gamma=\frac{((a+d) \sigma-a)}{\sigma((1-d)-\sigma)} \tag{49}
\end{equation*}
$$

4.5 Comparison of block and cell level models

The cell level model captures more of the features of the situation we wish to model than the block level model But we would like to know if the bound on the tall of the distribution of the block level model queue is more, or less conservative than the bound on the the tall of the distribution of the cell level model queue If it is more conservative then we could use it for dimensioning the buffer in an ATM multiplexer, in place of the cell level model upper bound If it is less conservative then we could not The answer to this question is the latter, as $\gamma_{\text {Block }}>\gamma_{\text {Cell }}$

$$
\begin{aligned}
\gamma_{\text {Cell }} & =\frac{((a+d) \sigma-a)}{\sigma((1-d)-\sigma)} \\
\gamma_{\text {Block }} & =\frac{(1-\alpha)-\tau(1-\sigma)}{\alpha(1-\sigma)}
\end{aligned}
$$

In order to compare the two models we must first relate the parameters from each. The defining equation for a means that a is the probability that a silent line becomes active, which for the cell level model means $\mathbf{P}[$ silence $\leq s]$. But this is just $1-\beta^{s}$, and β is close to 1 i.e. $1-\beta$ is close to 0 . Thus we have,

$$
\begin{aligned}
a & =1-\beta^{s} \\
& =1-(1-(1-\beta))^{s} \\
& \approx 1-1+s(1-\beta) \\
& =s(1-\beta)
\end{aligned}
$$

Similarly d is the probability that an active line becomes inactive which for the cell level model is $1-\alpha$. Thus,

$$
d=1-\alpha
$$

Hence,

$$
\begin{aligned}
\tau & =L(1-\beta) \\
& =L \frac{a}{s} \\
& =\frac{a}{\sigma}
\end{aligned}
$$

Writing both $\gamma_{\text {Block }}$ and $\gamma_{\text {Cell }}$ in terms of a, d and σ we get,

$$
\begin{aligned}
\gamma_{\text {Block }} & =\frac{(a+d) \sigma-a}{\sigma(1-\sigma)-d \sigma} \\
\gamma_{\text {Cell }} & =\frac{(a+d) \sigma-a}{\sigma(1-\sigma)-d \sigma(1-\sigma)}
\end{aligned}
$$

and $0<\sigma<1$. Thus, $d \sigma>d \sigma(1-\sigma)$ and we have,

$$
\gamma_{\text {Block }}>\gamma_{\text {Cell }}
$$

Hence the block level upper bound on buffer overflow is less conservative than the cell level upper bound.

The effective bandwidth approximation deals with large b. It tells us nothing about small b. It also tells us nothing about the economies of scale that may be
possible in large multiplexers And in fact the effective bandwidth approximation overestimates the probability of cell loss from a finite buffer with bursty arrivals On the other hand the effective bandwidth approximation shows the multiplexing gain in large buffers

Chapter 5

An Upper Bound Via Martingales

In this chapter we use the theory of Martingales to prove two new upper bounds of the form,

$$
\begin{equation*}
\mathbf{P}[q>b] \leq \phi e^{-\gamma b} \tag{5.1}
\end{equation*}
$$

one for the full queue for the cell level model which includes the cell level queue the other for the burst level queue of the cell level model. The cell level queue is due to arrivals over a period shorter than the packetization periods in a multiplexer with a service rate of 1 cell per tick. This gives rise to short queues when the arrival rate temporarily exceeds the service rate. The burst level queue is due to arrivals over periods longer than s and is due to the average arrival rate over such a period exceeding the service rate. This gives rise to longer queues. The upper bound for the full queue does not exhibit the economies of scale seen in large multiplexers for any parameter values. The second upper bound does exhibit the economies of scale and is an improvement over the effective bandwidth approximation in terms of bounding the tail of the queue length distribution of the burst level queue. That is, $\phi<1$ and $\phi<\Phi^{L}<1$ for some parameter values and for Φ independent of L for this queue.

5.1 Martingales

Martingales were first studied by Levy but the development of the theory of Martingales is due to Doob [16]. The term first appeared in connection with gambling
and the basic idea underlying the concept is that of a game being fair [17], in the sense that a players conditional expected future fortune is the players current fortune In this context the terms submartingales and supermartingales correspond to favourable and unfavourable games respectively [17] Martingale theory has developed a scope far beyond its gambling origins In the context of finding upper bounds queue length distributions Kingman [18] used the theory of Martingales to obtan exponential bounds for the queue length in the $G I|G| 1$ queue Motivated by Kingman's result Buffet and Duffield [3] used Martingale methods to obtain an upper bound on the queue length distribution for the block level model of our Chapter 3, which can be viewed as an approximation for the burst level component of the queue in an ATM multiplexer We will use similar methods to obtain an upper bound on the tall of the queue length distribution for the cell level model We begin with the definition of a Martıngale Then we define a Markov Time (stopping tıme) Then we state two theorems which are used or appear in this chapter, due to Doob, an Optional Stopping Theorem for non-negative martingales and the Maximal Inequality for Positive Submartingales [16]

Definition 1 Let $\left\{M_{n}\right\}$ be a sequence of random varıables defined on a probabslity space $(\Omega, \mathcal{F}, P) \quad$ Let $\left\{\mathcal{F}_{n}\right\}$ be a sequence of sub- σ-algebras of \mathcal{F} with $\mathcal{F}_{n} \subset \mathcal{F}_{n+1} \subset \mathcal{F}$ for all n Then $\left\{M_{n}\right\}$ is called a submartingale with respect to $\left\{\mathcal{F}_{n}\right\}$ v,

- Each M_{n} ıs \mathcal{F}_{n}-measurable
- $\mathbf{E}\left[M_{n}^{+}\right]<\infty$ for all n
- $\mathbf{E}\left[M_{n+1} \mid \mathcal{F}_{n}\right] \geq M_{n}$ for all n
where $M_{n}^{+}=\max \left\{M_{n}, 0\right\} \quad$ If $\left\{-M_{n}\right\}$ is a submartingale, then $\left\{M_{n}\right\}$ is called a supermartıngale If both $\left\{M_{n}\right\}$ and $\left\{-M_{n}\right\}$ are submartıngales then $\left\{M_{n}\right\}$ as called a martungale with respect to $\left\{\mathcal{F}_{n}\right\}$

Definition 2 Let $\left\{\mathcal{F}_{n}\right\}$ be a sequence of sub- σ-algebras of \mathcal{F} with $\mathcal{F}_{n} \subset \mathcal{F}_{n+1} \subset \mathcal{F}$ for all n A random varıable T taking values in $\{0,1,, \infty\}$ as called a Markov time with respect to $\left\{\mathcal{F}_{n}\right\}$, if for every $n=0,1,2$, , the event $\{T=n\}$ is in \mathcal{F}_{n} ze,

$$
\begin{equation*}
\{\omega \in \Omega \mid T(\omega)=n\} \quad \in \mathcal{F}_{n} \quad \text { for all } n \tag{52}
\end{equation*}
$$

This can be rewritten in the form of Definition 24 ,
Definition 3 Let $\left\{\mathcal{F}_{n}\right\}$ be a sequence of sub- σ-algebras of \mathcal{F} with $\mathcal{F}_{n} \subset \mathcal{F}_{n+1} \subset \mathcal{F}$ for all n A random varable T taking values in $\{0,1,, \infty\}$ is called a Markov time with respect to $\left\{\mathcal{F}_{n}\right\}$, of for every $n=0,1,2, \quad$,

$$
I_{\{T \leq n\}}=\left\{\begin{array}{cc}
1 & \imath f T \leq n \tag{53}\\
0 & \text { otherwıse }
\end{array}\right.
$$

${ }_{\text {ss }} \mathcal{F}_{n}$-measurable

Next we state an Optional Stopping Theorem [16] for positive martingales, (Theorem 42 page 267 in [16])

Theorem 1 Let $\left\{M_{n}\right\}$ be a martingale with respect to $\left\{\mathcal{F}_{n}\right\}$ and let T be Markov tume with respect to $\left\{\mathcal{F}_{n}\right\}$ If $M_{n} \geq 0$ for all n, then

$$
\begin{equation*}
\mathbf{E}\left[M_{T} I_{\{T<\infty\}}\right] \leq \mathbf{E}\left[M_{0}\right] \tag{54}
\end{equation*}
$$

The following is called Doob's Maximal Inequality for Positıve Submartingales [16], Theorem 2 Let $\left\{M_{n}\right\}$ be a positive submartingale Then for any positive m,

$$
\begin{equation*}
P\left[\sup \left\{M_{0}, \quad, M_{n}\right\} \geq m\right] \leq \frac{1}{m} \mathbf{E}\left[M_{n}\right] \tag{55}
\end{equation*}
$$

5.2 Motivation

Kingman [18] used the theory of Martingales to obtain exponential bounds for the queue length in the $G I|G| 1$ queue Basically this involved proving that if $\left\{Y_{n}\right\}_{n \geq 0}$ is a sequence of 11 d random variables, then

$$
\mathbf{P}\left[\sup _{n \geq 1}\left(Y_{0}+\quad+Y_{n}\right) \geq x\right] \leq e^{-\theta x}
$$

Where θ is a real number such that $\mathbf{E}\left[e^{\theta Y}\right] \leq 1$ The proof of this involves constructing the Martingale,

$$
M_{n}=\frac{e^{\theta\left(Y_{0}++Y_{n}\right)}}{\left(\mathbf{E}\left[e^{\theta Y}\right]\right)^{n+1}}
$$

This is a Martingale because, $\mathbf{E}\left[\frac{e^{\theta Y_{n}}}{\mathrm{E}\left[e^{\theta Y_{n}}\right]}\right]=1$ for all n, and $\left(\frac{e^{\theta Y_{n}}}{\mathrm{E}\left[e^{\left.Y_{n}\right]}\right.}\right)_{n \geq 0}$ is a sequence of independent non-negative random variables, hence,

$$
\mathbf{E}\left[M_{n+1} \mid Y_{0}, \quad, Y_{n}\right]=M_{n}
$$

Then Doob's maximal inequality for positive submartingale tells us that,

$$
\begin{aligned}
\mathbf{P}\left[\sup \left\{M_{0}, \quad, M_{n}\right\} \geq m\right] & \leq \frac{1}{m} \mathbf{E}\left[M_{n}\right] \\
& =\frac{1}{m}
\end{aligned}
$$

This result is then used as follows to obtain the required exponential bound, for $\theta \geq 0$

$$
\left.\begin{array}{rl}
\mathbf{P}\left[\sup _{n \geq 0} Y_{0}+\quad+Y_{n} \geq x\right] & =\mathbf{P}\left[e^{\theta \sup _{n \geq 0}\left(Y_{0}+\right.}+Y_{n}\right)
\end{array} e^{\theta x}\right] .
$$

where $\mathbf{E}\left[e^{\theta Y}\right] \leq 1$,
Thus,

$$
\begin{aligned}
\mathbf{P}\left[\sup _{n \geq 0} Y_{0}+\quad+Y_{n} \geq x\right] & \leq \mathbf{P}\left[\sup _{n \geq 0} M_{n} \geq e^{\theta x}\right] \\
& \leq e^{-\theta x}
\end{aligned}
$$

Now this result holds for 11 d random variables But in the situation of interest to us we are dealing with dependent random variables Martingale methods can sometımes be used to extend results that hold for independent random variables to results for dependent random variables This is what Buffet and Duffield did in [3] motivated by Kingman We will use similar methods to obtain our upper bound

We will use a method for constructing Martingales for stationary Markov chains which says that if we have a stationary Markov chain Y_{t} with transition matrix P and we have an elgenfunction $f \quad E \rightarrow \mathbf{R}$, (where E is the state space for the Markov chain), with elgenvalue $\mu_{1} \mathrm{e}$,

$$
\sum_{\imath \in E} f(\imath) P(\imath, \jmath)=\mu f(\jmath)
$$

then,

$$
M_{t}=f\left(Y_{t}\right) \mu^{-t}
$$

is a Martingale w.r.t. the filtration \mathcal{F} generated by $\mathcal{F}_{t}=\sigma(Y(0), \ldots \ldots, Y(t))$. Using the constructed Martingale and the Optional Sampling theorem (Theorem 1) we can obtain an upper bound on the tail of the queue length distribution of the form,

$$
\mathbf{P}[q>b] \leq \phi e^{-b \gamma}
$$

for the queue in an infinite buffer served at deterministic service rate on a FCFS basis, produced by the homogeneous superposition of L sources each modelled by an identical copy of the cell level model. Unlike the effective bandwidth approximation this upper bound holds for all values of $b \geq 0$ not just for large b.

5.3 The Martingale

We begin by briefly recalling the situation of interest to us. We have a queue with an infinite buffer with arrivals to the server processed on a first come first served basis. Let A_{t} be the time reversed arrival process at the queue for discrete time, t. We define $A_{0}=0$, and A_{t} to be the number of arrivals between time $-t$ and time 0 . Arrivals are served at deterministic service rate. The workload process W_{t} is defined by $W_{t}=A_{t}-r t$. Then recall from Chapter 4 that under certain conditions the queue length has a unique stationary distribution [14]. The equilibrium queue length is given by,

$$
q=\sup _{t \geq 0} W_{t}
$$

As in Chapter 4 we define, for real θ and for $t>0$,

$$
\begin{aligned}
\lambda_{t}(\theta) & =\frac{1}{t} \log \mathrm{E}\left[e^{\theta W_{t}}\right] \\
\lambda(\theta) & =\lim _{t \rightarrow \infty} \lambda_{t}(\theta)
\end{aligned}
$$

and assume the limit exists. We note that λ and λ_{t} are both strictly convex and essentially smooth. In the situation of concern to us the increments of the workload
process are controlled by the states of an underlyıng Markov Process X The situation is an example of a Markov Additive Process (MAP) With such a process the workload is a function of the underlying Markov process in such a manner that the pair (X, W) is also a Markov Process More precisely on probability space $(\Omega, \mathcal{F}, \mathbf{P})$ let X_{t} be a stationary ergodic Markov Process on a state space E with σ-algebra \mathcal{E} Let W_{t} be an additive component adjoined to it with $W_{0}=0$ and such that (X, W) is a Markov Process on the state space $E \times R^{+}$(R^{+}being the positive real numbers) Let Z be the increment process of W Then the joint distribution of Z_{t+1} and X_{t+1} conditioned on (X_{u}, W_{u}) for all $u \in[0, t]$ depends only on X_{t}, and this is expressed through the kernel,

$$
\begin{equation*}
P(x, G \times B)=\mathbf{P}\left[X_{t+1} \in G, Z_{t+1} \in B \mid X_{t}=x\right] \tag{56}
\end{equation*}
$$

for $G \in \mathcal{E}$ and B a Borel set of R^{+}[19]
Returning to the cell level model, recall, we have a homogeneous superposition of L independent sources or lines served at deterministic service rate r The workload process for the superposition is,

$$
W_{t}^{L}=\sum_{l=1}^{L}\left(A_{t}^{(l)}-r / L\right)
$$

where, as before, $A_{t}^{(l)}$ is the number of arrivals from source l up to tıme - t Again we let \mathbf{X}_{t} be the vector of states $\left(X^{(1)}, \quad, X^{(L)}\right)$ in the state space $\mathbf{E}=E^{\times L}$, where state $X^{(l)}$ is a Markov chann for a single source Then \mathbf{X}_{t} is the state of the system of L sources or lines at time $-t$, and is also a Markov Chain If the transition matrix for the individual source Markov Chain is P, then the transition matrix for \mathbf{X}_{t} is the outer product of L copies of P which we denote as before by $\mathbf{P}=P^{\otimes L}$ Recall from Chapter 4 that of we define the transformed transition matrix, $\mathbf{P}(\theta)$ by,

$$
\mathbf{P}(\theta)\left(\mathbf{x}_{n}, \mathbf{x}_{n-1}\right)=e^{\theta Z\left(\mathbf{x}_{n}\right)} \mathbf{P}\left(\mathbf{X}_{n}=\mathbf{x}_{n} \mid \mathbf{X}_{n-1}=\mathbf{x}_{n-1}\right)
$$

Then,

$$
\begin{aligned}
\lambda(\theta) & =\lim _{t \rightarrow \infty} \frac{1}{t} \log \left[\pi(\theta) \mathbf{P}(\theta)^{t} 1^{T}\right] \\
& =\log [\operatorname{sp}(\mathbf{P}(\theta))]
\end{aligned}
$$

where $\operatorname{sp}(A)$ means the spectral radius of the matrix A Then the Perron-Frobenius Theorem [7] tells us that for all θ in the effective domain of $\lambda, e^{\lambda(\theta)}$ is the unque, real, positive and simple maximal eigenvalue with corresponding strictly positive elgenvector, which we will denote by, $\hat{v}(\mathbf{x}, \theta)$ Recall that γ is the unique positive solution of $\lambda(\theta)=0$ Then,
$1 \mathbf{P}(\gamma)$ has a maximal eigenvalue $e^{\lambda(\gamma)}=1$ with corresponding right eigenvector $\hat{v}(, \gamma)$

2 Normalising $\hat{v}(, \gamma)$ so that $\mathbf{E}\left[\hat{v}\left(\mathbf{X}_{0}, \gamma\right)\right]=1$ then $\mathbf{M}_{t}=e^{\gamma W_{t}^{L}} \hat{v}\left(\mathbf{X}_{t}, \gamma\right)$ is a positive martingale with respect to the canomical filtration \mathcal{F} generated by (\mathbf{X}, W^{L}), and we also have $\mathbf{E}\left[\mathbf{M}_{0}\right]=1$

The proof of 2 is the following Firstly,

$$
W_{t}^{L}=W_{t-1}^{L}+Z\left(\mathbf{X}_{t}\right)
$$

Thus,

$$
e^{\gamma W_{t}^{L}}=e^{\gamma W_{t-1}^{L}} e^{\gamma Z\left(\mathbf{x}_{t}\right)}
$$

Thus we have,

$$
\begin{aligned}
\mathbf{E}\left[\mathbf{M}_{t+1}(\gamma) \mid \mathcal{F}_{t}\right] & =\mathbf{E}\left[e^{\gamma W_{t+1}^{L}} \hat{v}\left(\mathbf{X}_{t+1}, \gamma\right) \mid \mathcal{F}_{t}\right] \\
& =e^{\gamma W_{t}^{L}} \mathbf{E}\left[e^{\gamma Z\left(\mathbf{x}_{t+1}\right)} \hat{v}\left(\mathbf{X}_{t+1}, \gamma\right) \mid \mathcal{F}_{t}\right] \\
& =e^{\gamma W_{t}^{L}} \sum_{\mathbf{x}_{t+1} \in \mathbf{E}} e^{\gamma Z\left(\mathbf{x}_{t+1}\right)} \hat{v}\left(\mathbf{X}_{t+1}, \gamma\right) \mathbf{P}\left(\mathbf{X}_{t+1}=\mathbf{x}_{t+1} \mid \mathbf{X}_{t}=\mathbf{x}_{t}\right) \\
& =e^{\gamma W_{t}^{L}} \sum_{\mathbf{x}_{t+1} \in \mathbf{E}} \hat{v}\left(\mathbf{X}_{t+1}, \gamma\right) \mathbf{P}(\gamma)\left(\mathbf{x}_{t+1}, \mathbf{x}_{t}\right) \\
& =e^{\gamma W_{t}^{L}} \hat{v}\left(\mathbf{X}_{t}, \gamma\right) \\
& =\mathbf{M}_{t}
\end{aligned}
$$

For the last part,

$$
\begin{aligned}
\mathbf{E}\left[\mathbf{M}_{0}\right] & =\mathbf{E}\left[\hat{v}\left(\mathbf{X}_{0}\right)\right] \\
& =1
\end{aligned}
$$

concluding the proof Ths Martingale can be used to prove an upper bound for the queue length distribution of the form,

$$
\mathbf{P}[q>b] \leq \phi e^{-\gamma b}
$$

where, the prefactor ϕ is defined by the following equation,

$$
\phi^{-1}=\operatorname{mf}_{\mathbf{y} \in \mathbf{E}, c>0} \mathbf{E}\left[e^{\gamma\left(W_{\mathbf{1}}^{L}-c\right)} v\left(\mathbf{X}_{1}\right)\left|W_{\mathbf{1}}^{L}-c>0\right| \mathbf{X}_{0}=\mathbf{y}\right]
$$

The proof of this result is the following Define the stopping time τ by,

$$
\tau=\operatorname{mf}\left\{t>0 \mid\left\{W_{t}^{L}>b\right\}\right\}
$$

Then,

$$
\mathbf{P}\left[\sup _{t} W_{t}^{L}>b\right]=\mathbf{P}[\tau<\infty]
$$

Then applying the Optional Stopping Theorem (Theorem 1) we get the following,

$$
\begin{align*}
1 & =\mathbf{E}\left[\mathbf{M}_{0}\right] \\
& \geq \mathbf{E}\left[\mathbf{M}_{\tau}, \tau<\infty\right] \\
& =\sum_{n \geq 0} \mathbf{E}\left[\mathbf{M}_{n}, \tau=n\right] \tag{57}
\end{align*}
$$

But we can write the event $\{\tau=n\}$ as follows,

$$
\begin{equation*}
\{\tau=n\}=\bigcup_{c \geq 0, \mathbf{x} \in \mathbf{E}}\left\{G_{n}(c) \cap\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}\right\} \tag{58}
\end{equation*}
$$

Where $G_{n}(c)=\left\{\max _{1 \leq m \leq n-1} W_{m}^{L} \leq b, W_{n-1}^{L}=b-c\right\}$ Now this is a disjoint union for the following reasons, Firstly c is an integer and \mathbf{E} is countable Let the integer $c_{1}, c_{2} \geq 0$ and $\mathbf{x}_{1}, \mathbf{x}_{2} \in \mathbf{E}$ be such that $\left(c_{1}, \mathbf{x}_{1}\right) \neq\left(c_{2}, \mathbf{x}_{2}\right)$ then

$$
\begin{aligned}
\cap_{\imath=1}^{2=2}\left\{G_{n}\left(c_{\imath}\right) \cap\left\{Z_{n}>c_{\imath}\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{\mathbf{1}}\right\}\right\} & \subseteq G_{n}\left(c_{\imath}\right) \cap\left\{Z_{n}>c_{\imath}\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{\mathbf{1}}\right\} \\
& \subseteq G_{n}\left(c_{\imath}\right) \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{1}\right\} \\
& \subseteq G_{n}\left(c_{\imath}\right) \\
& \subseteq\left\{W_{n-1}^{L}=b-c_{\imath}\right\}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\cap_{i=1}^{i=2}\left\{G_{n}\left(c_{i}\right) \cap\left\{Z_{n}>c_{i}\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{\mathbf{i}}\right\}\right\} & \subseteq G_{n}\left(c_{i}\right) \cap\left\{Z_{n}>c_{i}\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{\mathbf{i}}\right\} \\
& \subseteq G_{n}\left(c_{i}\right) \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{\mathbf{i}}\right\} \\
& \subseteq\left\{\mathbf{X}_{n-1}=\mathbf{x}_{\mathbf{i}}\right\}
\end{aligned}
$$

Thus,

$$
\cap_{i=1}^{i=2}\left\{G_{n}\left(c_{i}\right) \cap\left\{Z_{n}>c_{i}\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{i}\right\}\right\} \subseteq\left\{W_{n-1}^{L}=b-c_{i}\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{\mathbf{i}}\right\}
$$

This is true for $i=1,2$ hence,

$$
\begin{aligned}
\cap_{i=1}^{i=2}\left\{G_{n}\left(c_{i}\right) \cap\left\{Z_{n}>c_{i}\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{\mathbf{i}}\right\}\right\} & \subseteq \cap_{i=1}^{i=2}\left\{W_{n-1}^{L}=b-c_{i}\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}_{\mathbf{i}}\right\} \\
& =\phi
\end{aligned}
$$

Thus we have the result. The union is disjoint. Thus substituting Equation 5.8 into Equation 5.7 we get,

$$
\begin{equation*}
1 \geq e^{\gamma b} \sum_{n \geq 0} \sum_{c \geq 0} \sum_{\mathbf{x} \in \mathbf{E}} \mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n} ; \gamma\right) ; G_{n}(c) \cap\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}\right] \tag{5.9}
\end{equation*}
$$

We note here that for those \mathbf{x} for which $\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}$ is the empty set the resultant terms in the sum 5.9 will be zero. Hence Let $\hat{\mathbf{E}}(c) \subset \mathbf{E}$ be the set of all states \mathbf{x} for which $\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}$ is not the empty set. Then we can rewrite 5.9 as,

$$
1 \geq e^{\gamma b} \sum_{n \geq 0} \sum_{c \geq 0} \sum_{\mathbf{x} \in \tilde{\mathbf{E}}(c)} \mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n} ; \gamma\right) ; G_{n}(c) \cap\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\} \mid(5.10)\right.
$$

But conditioned on $\mathbf{X}_{n-1}, G_{n}(c)$ is independent of Z_{n} and \mathbf{X}_{n} hence, we can rewrite $\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n} ; \gamma\right) ; G_{n}(c) \cap\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}\right]$ as follows,

$$
\begin{aligned}
& =\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n} ; \gamma\right) I_{\left\{G_{n}(c) \cap\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}\right\}}\right] \\
& =\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n} ; \gamma\right) I_{\left\{G_{n}(c)\right\}} I_{\left\{Z_{n}>c\right\}} I_{\left.\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}\right\}}\right] \\
& =\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n} ; \gamma\right) I_{\left\{G_{n}(c)\right\}} I_{\left\{Z_{n}>c\right\}} \mid \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{P}\left[\mathbf{X}_{n-1}=\mathbf{x}\right] \\
& =\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n} ; \gamma\right) I_{\left\{Z_{n}>c\right\}} \mid \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{E}\left[I_{\left\{G_{n}(c)\right\}} \mid \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{P}\left[\mathbf{X}_{n-1}=\mathbf{x}\right] \\
& =\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n} ; \gamma\right) I_{\left\{Z_{n}>c\right\}} \mid \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{P}\left[G_{n}(c) \mid \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{P}\left[\mathbf{X}_{n-1}=\mathbf{x}\right]
\end{aligned}
$$

Now we can define,

$$
\begin{aligned}
\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n}, \gamma\right)\left|Z_{n}>c\right| \mathbf{X}_{n-1}=\mathbf{x}\right] & =\frac{\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n}, \gamma\right) I_{\left\{Z_{n}>c\right\}} \mid \mathbf{X}_{n-1}=\mathbf{x}\right]}{\mathbf{E}\left[I_{\left\{Z_{n}>c\right\}} \mid \mathbf{X}_{n-1}=\mathbf{x}\right]} \\
& =\frac{\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n}, \gamma\right) I_{\left\{Z_{n}>c\right\}} \mid \mathbf{X}_{n-1}=\mathbf{x}\right]}{\mathbf{P}\left[Z_{n}>c \mid \mathbf{X}_{n-1}=\mathbf{x}\right]}
\end{aligned}
$$

And this is well defined on $\hat{\mathbf{E}}(c)$ Then we can rewrite the right hand side of the last equation as,
$\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n}, \gamma\right)\left|Z_{n}>c\right| \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{P}\left[Z_{n}>c \mid \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{P}\left[G_{n}(c) \mid \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{P}\left[\mathbf{X}_{n-1}=\mathbf{x}\right]$
But this is just,

$$
\begin{equation*}
\mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n}, \gamma\right)\left|Z_{n}>c\right| \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{P}\left[\left\{Z_{n}>c\right\} \cap G_{n}(c) \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}\right] \tag{511}
\end{equation*}
$$

Hence, putting this back into the sum in Equation 59 and summing over $\mathbf{x} \in \hat{\mathbf{E}}(c)$ (all other terms beng zero) we get,
$1 \geq e^{\gamma b} \sum_{n, c, \mathbf{x}} \mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n}, \gamma\right)\left|Z_{n}>c\right| \mathbf{X}_{n-1}=\mathbf{x}\right] \mathbf{P}\left[G_{n}(c) \cap\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}\right]$
We will write

$$
\begin{equation*}
\phi^{-1}=\inf _{c>0, \mathbf{x} \in \hat{\mathbb{E}}(c)} \mathbf{E}\left[e^{\gamma\left(Z_{n}-c\right)} v\left(\mathbf{X}_{n}, \gamma\right)\left|Z_{n}>c\right| \mathbf{X}_{n-1}=\mathbf{x}\right] \tag{512}
\end{equation*}
$$

This is independent of n for a stationary Markov process \mathbf{X} Thus

$$
\begin{equation*}
\phi^{-1}=\inf _{c>0, \mathbf{x} \in \hat{\mathbf{E}}(c)} \mathbf{E}\left[e^{\gamma\left(Z_{1}-c\right)} v\left(\mathbf{X}_{1}, \gamma\right)\left|Z_{1}>c\right| \mathbf{X}_{0}=\mathbf{x}\right] \tag{513}
\end{equation*}
$$

Thus,

$$
\begin{align*}
1 & \left.\geq e^{\gamma b} \sum_{n \geq 0} \sum_{c \geq 0} \sum_{\mathbf{x} \in \hat{\mathbf{E}}(c)} \phi^{-1} \mathbf{P}\left[G_{n}(c) \cap\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}\right]\right] \tag{514}\\
& \left.=e^{\gamma b} \phi^{-1} \sum_{n \geq 0} \sum_{c \geq 0} \sum_{\mathbf{x} \in \hat{\mathrm{E}}(c)} \mathbf{P}\left[G_{n}(c) \cap\left\{Z_{n}>c\right\} \cap\left\{\mathbf{X}_{n-1}=\mathbf{x}\right\}\right]\right] \tag{515}\\
& =e^{\gamma b} \phi^{-1} \sum_{n \geq 0} \mathbf{P}[\tau=n] \\
& =e^{\gamma b} \phi^{-1} \mathbf{P}[\tau<\infty] \\
& =e^{\gamma b} \phi^{-1} \mathbf{P}\left[\sup _{t>0} W_{t}^{L}>b\right] \\
& =e^{\gamma b} \phi^{-1} \mathbf{P}[q>b]
\end{align*}
$$

Thus, we have,

$$
\begin{equation*}
\mathbf{P}[q>b] \leq \phi e^{-\gamma b} \tag{516}
\end{equation*}
$$

completing the proof

5.4 Calculating The Prefactor

The prefactor is defined by,

$$
\begin{align*}
\phi^{-1} & =\operatorname{mf}_{\mathbf{x} \in \hat{\mathbf{E}}(c), c>0} \mathbf{E}\left[e^{\gamma\left(Z_{1}-c\right)} \hat{v}\left(\mathbf{X}_{1}\right)\left|Z_{1}-c>0\right| \mathbf{X}_{0}=\mathbf{x}\right] \\
& =\operatorname{mif}_{\mathbf{x} \in \hat{\mathbf{E}}(c), c>0} \frac{\mathbf{E}\left[e^{\gamma\left(Z_{1}-c\right)} \hat{v}\left(\mathbf{X}_{1}\right) I_{\left\{Z_{1}-c>0\right\}} \mid \mathbf{X}_{0}=\mathbf{x}\right]}{\mathbf{P}\left[Z_{1}-c>0 \mid \mathbf{X}_{0}=\mathbf{x}\right]} \tag{517}
\end{align*}
$$

Now we can write,

$$
\begin{align*}
Z_{1} & =\sharp\left\{\imath \in\{1, \quad, L\} \mid X_{1}^{z}=0\right\}-1 \tag{518}\\
& =\sharp\left\{\imath \in\{1, \quad, L\} \mid X_{0}^{z}=1\right\}-1 \tag{519}
\end{align*}
$$

with the first equation due to the fact that arrivals from source \imath only occur when the Markov chain X_{t}^{2} is in state 0 and Z_{1} is the total number of arrivals at time $t=1$ minus the service completed in one tick, that service being 1 The second equation is due to the fact that the Markov chain X_{t}^{2} makes transitions to state 0 only from state 1 and from no other state and does so with probability 1 This can be seen from the transition matrix in Equation 43 Chapter 4

Let $\mathbf{E}(c)=\left\{\mathbf{x} \in \mathbf{E} \mid \sharp\left\{\imath \mid x^{2}=1\right\}-1>c\right\} \quad$ Then, by Equation 518 we have,

$$
\left\{\mathbf{X}_{0} \in \mathbf{E}(c)\right\} \subset\left\{Z_{1}-c>0\right\}
$$

and,

$$
\left\{Z_{1}-c>0\right\} \subset\left\{\mathbf{X}_{0} \in \mathbf{E}(c)\right\}
$$

Hence,

$$
\left\{Z_{1}-c>0\right\}=\left\{\mathbf{X}_{0} \in \mathbf{E}(c)\right\}
$$

Thus, $\mathbf{E}(c)=\hat{\mathbf{E}}(c)$ for the cell level model, and,

$$
I_{\left\{Z_{1}-c>0\right\}}=I_{\left\{\mathbf{x}_{0} \in \mathbf{E}(c)\right\}}
$$

Note also that for $c \geq L-1$ both sides of this last equation will be 0 We can therefore rewrite Equation 517 as,

$$
\begin{align*}
\phi^{-1} & =\inf _{\mathbf{x} \in \mathbf{E}(c), c>0} \frac{\mathbf{E}\left[e^{\gamma\left(Z_{1}-c\right)} \hat{v}\left(\mathbf{X}_{1}\right) I_{\left\{\mathbf{X}_{0} \in \mathbf{E}(c)\right\}} \mid \mathbf{X}_{0}=\mathbf{x}\right]}{\mathbf{P}\left[\mathbf{X}_{0} \in \mathbf{E}(c) \mid \mathbf{X}_{0}=\mathbf{x}\right]} \tag{520}\\
& =\inf _{\mathbf{x} \in \mathbf{E}(c), c>0} \mathbf{E}\left[e^{\gamma\left(Z_{1}-c\right)} \hat{v}\left(\mathbf{X}_{1}\right) \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{521}\\
& =\inf _{\mathbf{x} \in \mathbf{E}(c), c>0} e^{-\gamma c} \mathbf{E}\left[e^{\gamma W_{1}^{L}} \hat{v}\left(\mathbf{X}_{1}\right) \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{522}\\
& =\inf _{\mathbf{x} \in \mathbf{E}(c), c>0} e^{-\gamma c} \mathbf{E}\left[\mathbf{M}_{1} \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{523}\\
& =\inf _{\mathbf{x} \in \mathbb{E}(c), c>0} e^{-c \gamma} \hat{v}(\mathbf{x}) \tag{524}
\end{align*}
$$

where $c \in\{1, \quad, L-2\}$ and where Equation 522 is due to

$$
\begin{aligned}
W_{1}^{L} & =W_{0}^{L}+Z\left(\mathbf{X}_{\mathbf{1}}\right) \\
& =0+Z\left(\mathbf{X}_{\mathbf{1}}\right) \\
& =Z_{1}
\end{aligned}
$$

And Equation 524 is due to an elementary property of Martingales Let

$$
\begin{equation*}
m(\mathbf{x})=\sharp\left\{\imath \in\{1, \quad, L\} \mid x^{\imath}=1 \quad \text { for } \quad \mathbf{x} \in \mathbf{E}(c)\right\} \tag{525}
\end{equation*}
$$

Then Equation 524 is,

$$
\begin{equation*}
\phi^{-1}=\operatorname{mff}_{x^{2} \in E-1, m(\mathbf{x})>c+1, c>0} e^{-c \gamma} \prod_{\imath=1}^{L-m(\mathbf{x})} v\left(x^{z}\right) v(1)^{m(\mathbf{x})} \tag{526}
\end{equation*}
$$

Note $c \in\{1, \quad, L-2\}$ and $m(\mathbf{x}) \in\{c+2, \quad, L\}$
Now, recall from Chapter 4 that the transformed kernel of the reversed Markov chain for a single line in a homogeneous superposition of L lines for the cell level
model, with $\theta=\gamma$ 1s,

$$
\mathbf{P}(\gamma)=e^{-\gamma / L}\left(\begin{array}{cccccc}
0 & 0 & & 0 & \alpha & 1-\alpha \\
e^{\gamma} & 0 & & 0 & 0 & 0 \\
0 & 1 & & 0 & 0 & 0 \\
. & \cdot & & & \cdot & \\
& & . & . & & \cdot \\
0 & 0 & . & & 0 & 0 \\
0 & 0 & & 1 & 0 & 0 \\
0 & 0 & & 0 & 1-\beta & \beta
\end{array}\right)
$$

The equation for v is, subject to normalisation,

$$
v=\mathbf{P}(\gamma) v
$$

Written in full this then is,

$$
\left(\begin{array}{c}
v(0) \\
\cdot \\
\cdot \\
v(s)
\end{array}\right)=e^{-\gamma / L}\left(\begin{array}{cccccc}
0 & 0 & & & 0 & \alpha \\
e^{\gamma} & 0 & & \cdot & 0 & 0 \\
0 & 1 & \cdots & 0 & 0 & 0 \\
\cdot & & & & & \\
& & & & \cdot & \\
0 & 0 & & 0 & 0 & 0 \\
0 & 0 & & & 1 & 0 \\
0 & 0 & & 0 & 1-\beta & \beta
\end{array}\right)\left(\begin{array}{c}
v(0) \\
\cdot \\
\\
\\
v(s)
\end{array}\right)
$$

From this we obtain the following set of equations for the components of v,

$$
\begin{align*}
e^{-\gamma / L}(\alpha v(s-1)+(1-\alpha) v(s)) & =v(0) \tag{5}\\
e^{-\gamma / L} e^{\gamma} v(0) & =v(1) \tag{528}\\
e^{-\gamma / L} v(1) & =v(2) \tag{529}
\end{align*}
$$

$$
\begin{align*}
e^{-\gamma / L} v(s-2) & =v(s-1) \tag{530}\\
e^{-\gamma / L}((1-\beta) v(s-1)+\beta v(s)) & =v(s) \tag{531}
\end{align*}
$$

Rearranging Equation 531 we have,

$$
\begin{align*}
\frac{v(s-1)}{v(s)} & =\frac{e^{\gamma / L}-\beta}{1-\beta} \tag{532}\\
& >1 \tag{533}
\end{align*}
$$

as $\gamma>1$ Subtracting equation 531 from equation 527 we get,

$$
e^{-\gamma / L}(\alpha+\beta-1)(v(s-1)-v(s))=v(0)-v(s)
$$

which, from the last inequality 533 and the fact that $e^{-\gamma / L}>0$, implies,

$$
\begin{equation*}
v(0)>v(s) \Leftrightarrow \alpha+\beta-1>0 \tag{534}
\end{equation*}
$$

In the case of bursty traffic we will have $\alpha+\beta-1>0$ Now from equation 528 to 530 we can see,

$$
\begin{equation*}
v(1) \gg v(s-1) \tag{535}
\end{equation*}
$$

Thus we have,

$$
\begin{equation*}
v(1)>\quad \cdots>v(s-1)>v(0)>v(s) \tag{536}
\end{equation*}
$$

Now,

$$
\begin{equation*}
v(0)+v(1)+\quad+v(s)\left(\frac{1-\alpha}{1-\beta}\right)=s+\frac{1-\alpha}{1-\beta} \tag{537}
\end{equation*}
$$

This and the previous inequality imply,

$$
\begin{equation*}
v(s)<1 \tag{538}
\end{equation*}
$$

Thus from equation 536 we can rewrite equation 526 as,

$$
\begin{align*}
\phi^{-1} & =\operatorname{mf}\left\{e^{-\gamma c} v(s)^{L-m(\mathbf{x})} v(1)^{m(\mathbf{x})} \mid m(\mathbf{x}) \in\{c+2, \quad, L\}, c \in\{1, \quad, L-2\}\right\} \\
& =\operatorname{mf}\left\{\left.e^{-\gamma c} v(s)^{L}\left(\frac{v(1)}{v(s)}\right)^{m(\mathbf{x})} \right\rvert\, m(\mathbf{x}) \in\{c+2, \quad, L\}, c \in\{1, \quad, L-2\}\right\} \\
& =\inf _{c \in\{1, \quad, L-2\}} e^{-\gamma c} v(s)^{L}\left(\frac{v(1)}{v(s)}\right)^{c+2} \tag{5}
\end{align*}
$$

Where this last equation is due to 536 We can rewrite this equation as,

$$
\begin{equation*}
\phi^{-1}=\inf _{c \in\{1,, L-2\}} v(s)^{L}\left(\frac{v(1)}{v(s)}\right)^{2}\left(\frac{e^{-\gamma} v(1)}{v(s)}\right)^{c} \tag{540}
\end{equation*}
$$

Clearly the value of c giving us the infimum only depends on whether,

$$
\begin{equation*}
\frac{e^{-\gamma} v(1)}{v(s)}>1 \tag{541}
\end{equation*}
$$

We can prove that this is the case We do this as follows Firstly, by 536

$$
\begin{equation*}
\frac{e^{-\gamma} v(1)}{v(s)}=e^{\gamma(\sigma-1)} e^{-2 \gamma / L} \frac{v(s-1)}{v(s)} \tag{542}
\end{equation*}
$$

And by Equation 531

$$
\begin{align*}
\frac{v(s-1)}{v(s)} & =\frac{e^{\gamma / L}-\beta}{1-\beta} \tag{543}\\
& =\frac{e^{\gamma / L}-1+(1-\beta)}{1-\beta} \tag{544}\\
& =\frac{L\left(e^{\gamma / L}-1\right)+\tau}{\tau} \tag{545}
\end{align*}
$$

Hence,

$$
\begin{equation*}
\frac{e^{-\gamma} v(1)}{v(s)}=e^{\gamma(\sigma-1)} e^{-2 \gamma / L} \frac{L\left(e^{\gamma / L}-1\right)+\tau}{\tau} \tag{546}
\end{equation*}
$$

Now consider the inverse of the right hand side of this equation,

$$
\begin{equation*}
e^{\gamma(1-\sigma)} e^{2 \gamma / L} \frac{\tau}{L\left(e^{\gamma / L}-1\right)+\tau} \tag{547}
\end{equation*}
$$

If we subtract 1 from this and multiply the result by $(1-\alpha) e^{\gamma(\sigma-1)} e^{-2 \gamma / L}$ we get,

$$
\begin{equation*}
\frac{(1-\alpha) \tau}{L\left(e^{\gamma / L}-1\right)+\tau}-(1-\alpha) e^{\gamma(\sigma-1)} e^{-2 \gamma / L} \tag{548}
\end{equation*}
$$

But this is just,

$$
\begin{equation*}
e^{\gamma(\sigma-1)}-\alpha-(1-\alpha) e^{\gamma(\sigma-1)} e^{-2 \gamma / L} \tag{549}
\end{equation*}
$$

Now consider,

$$
\begin{equation*}
e^{\theta(\sigma-1)}-\alpha-(1-\alpha) e^{\theta(\sigma-1)} e^{-2 \theta / L} \tag{550}
\end{equation*}
$$

At $\theta=0$ this is 0 and its derivative wrt θ is,

$$
\begin{equation*}
(\sigma-1) e^{\theta(\sigma-1)}-(1-\alpha)\left(\sigma-1-\frac{2}{L}\right) e^{\theta(\sigma-1)} e^{-2 \theta / L} \tag{551}
\end{equation*}
$$

And this is,
$e^{\theta(\sigma-1)}\left((1-\alpha)\left(1-\sigma+\frac{2}{L}\right) e^{-20 / L}-(1-\sigma)\right) \leq e^{\theta(\sigma-1)}\left((1-\alpha)\left(1-\sigma+\frac{2}{L}\right)-(1-\sigma)\right)$
Now if $\alpha \geq 1 / 2$ then, $1-\alpha \leq 1 / 2$ and,

$$
\begin{aligned}
e^{\theta(\sigma-1)}\left((1-\alpha)\left(1-\sigma+\frac{2}{L}\right)-(1-\sigma)\right) & \leq e^{\theta(\sigma-1)}\left((1 / 2)\left(1-\sigma+\frac{2}{L}\right)-(1-\sigma)\right) \\
& =e^{\theta(\sigma-1)}\left(\frac{1}{L}-(1 / 2)(1-\sigma)\right) \\
& <0
\end{aligned}
$$

If $\sigma<1-\frac{2}{L}$ And consequently

$$
\begin{equation*}
\frac{v(1)}{v(s) e^{\gamma}}>1 \tag{552}
\end{equation*}
$$

Alternatıvely,

$$
\begin{equation*}
\frac{v(s-1)}{v(s) e^{\gamma}}=\frac{L\left(e^{\gamma / L}-1\right)+\tau}{e^{\gamma} \tau}>1 \tag{553}
\end{equation*}
$$

If,

$$
\begin{equation*}
\tau<\frac{L\left(e^{\gamma / L}-1\right)}{e^{\gamma}-1} \tag{554}
\end{equation*}
$$

Recall from Equation 44 that,

$$
\begin{equation*}
e^{\gamma(\sigma-1)}=\frac{\alpha L\left(e^{\gamma / L}-1\right)+\tau}{L\left(e^{\gamma / L}-1\right)+\tau} \tag{555}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{L\left(e^{\gamma / L}-1\right)\left(e^{\gamma(\sigma-1)}-\alpha\right)}{1-e^{\gamma(\sigma-1)}}=\tau \tag{556}
\end{equation*}
$$

Now consider,

$$
\begin{align*}
\frac{L\left(e^{\gamma / L}-1\right)}{e^{\gamma}-1}-\tau & =\frac{L\left(e^{\gamma / L}-1\right)}{e^{\gamma}-1}-\frac{L\left(e^{\gamma / L}-1\right)\left(e^{\gamma(\sigma-1)}-\alpha\right)}{1-e^{\gamma(\sigma-1)}} \tag{557}\\
& =L\left(e^{\gamma / L}-1\right)\left(\frac{1}{e^{\gamma}-1}-\frac{e^{\gamma(\sigma-1)}-\alpha}{1-e^{\gamma(\sigma-1)}}\right) \tag{558}\\
& =L\left(e^{\gamma / L}-1\right)\left(\frac{1-e^{\gamma(\sigma-1)}-\left(e^{\gamma}-1\right)\left(e^{\gamma(\sigma-1)}-\alpha\right)}{\left(e^{\gamma}-1\right)\left(1-e^{\gamma(\sigma-1)}\right)}\right) \tag{559}\\
& =L\left(e^{\gamma / L}-1\right)\left(\frac{1-\alpha+\alpha e^{\gamma}-e^{\gamma \sigma}}{\left(e^{\gamma}-1\right)\left(1-e^{\gamma(\sigma-1)}\right)}\right) \tag{560}
\end{align*}
$$

This will be positive of $1-\alpha+\alpha e^{\gamma}-e^{\gamma \sigma}>0$ since $\sigma<1$ and $\gamma>0$ and $1>\alpha$ and $L\left(e^{\gamma / L}-1\right)>0 \quad$ So consider,

$$
\begin{equation*}
1-\alpha+\alpha e^{\theta}-e^{\theta \sigma} \tag{561}
\end{equation*}
$$

This is 0 at $\theta=0$ and it has derivative with respect to θ,

$$
\begin{equation*}
\alpha e^{\theta}-\sigma e^{\theta \sigma}>0 \tag{562}
\end{equation*}
$$

on $[0, \infty)$ if $\alpha>\sigma$ Thus,

$$
\begin{equation*}
1-\alpha+\alpha e^{\theta}-e^{\theta \sigma}>0 \tag{563}
\end{equation*}
$$

on $(0, \infty)$ if $\alpha>\sigma$ and in particular at $\theta=\gamma$ Hence,

$$
\begin{equation*}
\frac{L\left(e^{\gamma / L}-1\right)}{e^{\gamma}-1}>\tau \tag{564}
\end{equation*}
$$

If $\alpha>\sigma$ Hence,

$$
\begin{equation*}
\frac{e^{-\gamma} v(s-1)}{v(s)}>1 \tag{565}
\end{equation*}
$$

And consequently by 542

$$
\begin{equation*}
\frac{e^{-\gamma} v(1)}{v(s)}>1 \tag{566}
\end{equation*}
$$

If $\alpha>\sigma$
Finally, returning to 543

$$
\begin{align*}
\frac{L\left(e^{\theta / L}-1\right)+\tau}{e^{\theta} \tau} & >\frac{\theta+\tau}{e^{\theta} \tau} \tag{567}\\
& =0 \tag{568}
\end{align*}
$$

for $\theta=0$, and,

$$
\begin{equation*}
\frac{L\left(e^{\theta / L}-1\right)+\tau}{e^{\theta} \tau}>\frac{\theta+\tau}{e^{\theta} \tau} \tag{569}
\end{equation*}
$$

For all $\theta>0$, and,

$$
\begin{equation*}
\frac{\theta+\tau}{e^{\theta} \tau}=\frac{1+\tau}{e \tau}>1 \tag{570}
\end{equation*}
$$

For $\theta=1$ and τ such that,

$$
\begin{equation*}
\tau<\frac{1}{e-1} \tag{571}
\end{equation*}
$$

Now the derivative of

$$
\begin{equation*}
\frac{\theta+\tau}{e^{\theta} \tau} \tag{572}
\end{equation*}
$$

with respect to θ is,

$$
\begin{equation*}
\frac{e^{\theta} \tau(1-\theta)}{\left(e^{\theta} \tau\right)^{2}} \geq 0 \tag{573}
\end{equation*}
$$

for $0 \leq \theta \leq 1$, and the derivative of

$$
\begin{equation*}
\frac{1+\tau}{e \tau} \tag{574}
\end{equation*}
$$

with respect to τ is,

$$
\begin{equation*}
\frac{-e}{(e \tau)^{2}}<0 \tag{575}
\end{equation*}
$$

for all τ Thus

$$
\begin{align*}
\frac{e^{-\gamma} v(1)}{v(s)} & >\frac{e^{-\gamma} v(s-1)}{v(s)} \tag{576}\\
& >1 \tag{577}
\end{align*}
$$

for $\tau<1 /(e-1)$ Thus we have,

$$
\begin{equation*}
\frac{e^{-\gamma} v(1)}{v(s)}>1 \tag{578}
\end{equation*}
$$

For any one of $\tau<1 /(e-1)$ or $\sigma<\alpha$ or $\sigma<1-(2 / L)$ if $\alpha \geq 1 / 2$ all of which are reasonable assumptions, since $\tau<05 \mathrm{in}$ for example the simulations in [9] and α is close to 1 and $\sigma<1$ and L is large
We need an expression for $v(s)$ in order to find ϕ^{-1} Now from Equation 527 to Equation 530 we have,

$$
\begin{aligned}
\sum_{i=0}^{s-1} v(\imath) & =\left(e^{(s-1) \gamma / L} e^{-\gamma}+\sum_{i=1}^{s-1} e^{(s-1-\imath) \gamma / L}\right) v(s-1) \\
& =\left(e^{(s-1) \gamma / L} e^{-\gamma}+\frac{e^{(s-1) \gamma / L}-1}{e^{\gamma / L}-1}\right) v(s-1) \\
& =\left(e^{(s-1) \gamma / L} e^{-\gamma}+\frac{L\left(e^{(s-1) \gamma / L}-1\right)}{L\left(e^{\gamma / L}-1\right)}\right) v(s-1) \\
& =\left(s-1+e^{\sigma \gamma} e^{-\gamma} e^{-\gamma / L}\right) v(s-1) \\
& =\left(s-1+e^{\sigma \gamma} e^{-\gamma} e^{-\gamma / L}\right)\left(1+\frac{\gamma}{\tau}\right) v(s)
\end{aligned}
$$

From the normalisation of v we now have,

$$
\begin{aligned}
v(s) & =\frac{s+\frac{1-\alpha}{1-\beta}}{\left(s-1+e^{\sigma \gamma} e^{-\gamma} e^{-\gamma / L}\right)\left(1+\frac{\gamma}{\tau}\right)+\frac{1-\alpha}{1-\beta}} \\
& =\frac{s / L+\frac{1-\alpha}{L(1-\beta)}}{\left(\frac{s-1}{L}+\frac{e^{\sigma \gamma} e^{-\gamma}}{e^{\prime / L L}}\right)\left(1+\frac{\gamma}{\tau}\right)+\frac{1-\alpha}{1-\beta}} \\
& =\frac{\sigma+\frac{1-\alpha}{\tau}}{\left(1+\frac{\gamma}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}
\end{aligned}
$$

Returning to Equation 540 we now have,

$$
\begin{align*}
\phi^{-1} & =v(s)^{L}\left(\frac{v(1)}{v(s)}\right)^{2}\left(\frac{e^{-\gamma} v(1)}{v(s)}\right)^{1} \tag{579}\\
& =e^{-\gamma} v(s)^{L-3} v(1)^{3} \tag{580}
\end{align*}
$$

Thus we have the following for the prefactor,

$$
\phi^{-1}=e^{-\gamma}\left(e^{\gamma \sigma} e^{-2 \gamma / L}\left(\frac{L\left(e^{\gamma / L}-1\right)}{\tau}+1\right)\right)^{3}\left(\frac{\sigma+\frac{1-\alpha}{\tau}}{\left(\sigma+\frac{e^{\gamma(\sigma-1-1 / L)}-1}{L}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)+\frac{1-\alpha}{\tau}}\right)^{L}
$$

That is,

$$
\phi=e^{\gamma}\left(e^{-\gamma \sigma} e^{2 \gamma / L} \frac{1}{\left(\frac{L\left(e^{\gamma / L}-1\right)}{\tau}+1\right)}\right)^{3}\left(\frac{\left(\sigma+\frac{e^{\gamma(\sigma-1-1 / L)}-1}{L}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)+\frac{1-\alpha}{\tau}}{\sigma+\frac{1-\alpha}{\tau}}\right)^{L}
$$

Now consider,

$$
\begin{align*}
\lim _{L \rightarrow \infty} \frac{1}{L} \log \phi & =\log \left(\frac{\sigma\left(1+\frac{\gamma}{\tau}\right)+\frac{1-\alpha}{\tau}}{\sigma+\frac{1-\alpha}{\tau}}\right) \tag{581}\\
& >0 \tag{582}
\end{align*}
$$

This tells us that for large L the bound,

$$
\begin{equation*}
\mathbf{P}\left[q^{L}>b\right] \leq \phi e^{-\gamma b} \tag{583}
\end{equation*}
$$

does not exhibit the economies of scale seen for example in the upper bound obtained using Martingales for the block level model by Buffet and Duffield [3] These economies of scale are seen in the simulations of Corcoran [9] for the rescaled cell level model

5.5 Calculating The Prefactor for the burst level queue

Consider a new Markov chain derived from the Markov chain for the cell level model defined by,

$$
\begin{equation*}
\hat{\mathbf{X}}_{t}=\mathbf{X}_{t s} \tag{584}
\end{equation*}
$$

and adjoined to this an additıve component defined by,

$$
\begin{equation*}
\hat{W}_{t}=W_{t s} \tag{585}
\end{equation*}
$$

with increments defined by,

$$
\begin{equation*}
\hat{Z}\left(\hat{\mathbf{X}}_{t}\right)=\hat{W}_{t}-\hat{W}_{t-1} \tag{586}
\end{equation*}
$$

Then,

$$
\begin{equation*}
\hat{\mathbf{M}}_{t}=e^{\gamma \hat{W}_{t}} \hat{v}\left(\hat{\mathbf{X}}_{t}\right) \tag{587}
\end{equation*}
$$

is a Martingale with respect to the canonical filtration \mathcal{F} generated by $(\hat{\mathbf{X}}, \hat{W})$ Proof

Firstly,

$$
\hat{W}_{t}=\hat{W}_{t-1}+\hat{Z}\left(\hat{\mathbf{X}}_{t}\right)
$$

Thus,

$$
e^{\gamma \hat{W}_{t}}=e^{\gamma \hat{W}_{t-1}} e^{\gamma \hat{Z}\left(\hat{\mathbf{x}}_{t}\right)}
$$

Thus we have,

$$
\begin{aligned}
\mathbf{E}\left[\hat{\mathbf{M}}_{t+1}(\gamma) \mid \mathcal{F}_{t}\right] & =\mathbf{E}\left[e^{\gamma \hat{W}_{t+1}} \hat{v}\left(\hat{\mathbf{X}}_{t+1}, \gamma\right) \mid \mathcal{F}_{t}\right] \\
& =e^{\gamma \hat{W}_{t}} \mathbf{E}\left[e^{\gamma \hat{Z}\left(\hat{\mathbf{x}}_{t+1}\right)} \hat{v}\left(\hat{\mathbf{X}}_{t+1}, \gamma\right) \mid \mathcal{F}_{t}\right]
\end{aligned}
$$

Now written in terms of the increments of the workload process for the cell level model,

$$
\begin{equation*}
\hat{Z}\left(\hat{\mathbf{X}}_{t+1}\right)=Z\left(\mathbf{X}_{t s+1}\right)+.+Z\left(\mathbf{X}_{t s+s-1}\right)+Z\left(\mathbf{X}_{t s+s}\right) \tag{588}
\end{equation*}
$$

Thus,

$$
e^{\gamma \hat{W}_{t}} \mathbf{E}\left[e^{\gamma \hat{Z}\left(\hat{\mathbf{X}}_{t+1}\right)} \hat{v}\left(\hat{\mathbf{X}}_{t+1}, \gamma\right) \mid \mathcal{F}_{t}\right]=e^{\gamma \hat{W}_{t}} \mathbf{E}\left[e^{\gamma \sum_{t=1}^{s} Z\left(X_{t s+t}\right)} \hat{v}\left(\mathbf{X}_{t s+s}, \gamma\right) \mid \mathcal{F}_{t}\right]
$$

This is,

$$
e^{\gamma \hat{W}_{t}} \sum_{\mathbf{x}_{1} \in \mathbf{E}} \cdot \sum_{\mathbf{x}_{s} \in \mathbf{E}} e^{\gamma \sum_{i=1}^{s} Z\left(\mathbf{x}_{1}\right)} \hat{v}\left(\mathbf{x}_{s}, \gamma\right) \prod_{n=1}^{s} \mathbf{P}\left(\mathbf{X}_{t s+n}=\mathbf{x}_{n} \mid \mathbf{X}_{t s+n-1}=\mathbf{x}_{n-1}\right)
$$

which is,

$$
\begin{aligned}
e^{\gamma \hat{W}_{t}} \sum_{\mathbf{x}_{1} \in \mathbf{E}} \cdots \sum_{\mathbf{x}_{s} \in \mathbf{E}} \hat{v}\left(\mathbf{x}_{s}, \gamma\right) \prod_{n=1}^{s} \mathbf{P}(\gamma)\left(\mathbf{X}_{t s+n}=\mathbf{x}_{n} \mid \mathbf{X}_{t s+n-1}=\mathbf{x}_{n-1}\right) & =e^{\gamma \hat{W}_{t}} \hat{v}\left(\mathbf{x}_{0}, \gamma\right) \\
& =\hat{\mathbf{M}}_{t}
\end{aligned}
$$

where we had

$$
\begin{equation*}
\mathbf{P}\left[\mathbf{X}_{t s+s}=\mathbf{x}_{s}, \quad, \mathbf{X}_{t s+1}=\mathbf{x}_{1} \mid \mathbf{X}_{t s}=\mathbf{x}_{0}\right]=\prod_{n=1}^{s} \mathbf{P}\left(\mathbf{X}_{n}=\mathbf{x}_{n} \mid \mathbf{X}_{n-1}=\mathbf{x}_{n-1}\right) \tag{589}
\end{equation*}
$$

and,

$$
\mathbf{P}(\theta)\left(\mathbf{x}_{n}, \mathbf{x}_{n-1}\right)=e^{\theta Z\left(\mathbf{x}_{n}\right)} \mathbf{P}\left(\mathbf{X}_{n}=\mathbf{x}_{n} \mid \mathbf{X}_{n-1}=\mathbf{x}_{n-1}\right)
$$

concluding the proof Note γ and \hat{v} are the same decay rate and eigenvector as those for the full cell level model

Now if we define, the \mathcal{F}-stopping time,

$$
\tau=\operatorname{mnf}\left\{t \mid \hat{W}_{t}>b\right\}
$$

We see that the proof for an upper bound that we used for the cell level model queue gives us an upper bound on q_{s}^{L} With the new prefactor defined by,

$$
\begin{equation*}
\phi^{-1}=\inf _{c>0, \mathbf{x} \in \hat{\mathbf{E}}(c)} \mathbf{E}\left[e^{\gamma\left(\hat{\mathbf{Z}}_{n}-c\right)} v\left(\hat{\mathbf{X}}_{n}, \gamma\right)\left|\hat{Z}_{n}>c\right| \hat{\mathbf{X}}_{n-1}=\mathbf{x}\right] \tag{590}
\end{equation*}
$$

Now $\hat{\mathbf{X}}$ is stationary since \mathbf{X} is stationary It has transition matrix P^{s} Thus we can rewrite Equation 590 as,

$$
\begin{equation*}
\phi^{-1}=\inf _{c>0, \mathbf{x} \in \tilde{\mathrm{E}}(\boldsymbol{c})} \mathbf{E}\left[e^{\gamma\left(\hat{(}_{1}-c\right)} v\left(\hat{\mathbf{X}}_{1}, \gamma\right)\left|\hat{Z}_{1}>c\right| \hat{\mathbf{X}}_{0}=\mathbf{x}\right] \tag{591}
\end{equation*}
$$

But,

$$
\begin{aligned}
\hat{Z}_{1} & =Z_{1}+\quad+Z_{s} \\
& =W_{s}
\end{aligned}
$$

Thus, we have,

$$
\begin{equation*}
\phi^{-1}=\operatorname{mif}_{c>0, \mathbf{x} \in \tilde{\mathbf{E}}(c)} \mathbf{E}\left[e^{\gamma\left(W_{s}-c\right)} v\left(\mathbf{X}_{s}, \gamma\right)\left|W_{s}>c\right| \mathbf{X}_{0}=\mathbf{x}\right] \tag{592}
\end{equation*}
$$

which is,

$$
\begin{equation*}
\phi^{-1}=\inf _{c>0, \mathbf{x} \in \mathbf{E}(c)} \frac{\mathbf{E}\left[e^{\gamma\left(W_{s}-c\right)} v\left(\mathbf{X}_{s}, \gamma\right) I_{\left\{W_{s}>c\right\}} \mid \mathbf{X}_{0}=\mathbf{x}\right]}{\mathbf{P}\left[W_{s}>c \mid \mathbf{X}_{0}\right]} \tag{593}
\end{equation*}
$$

Now let $\mathbf{A}(c)=\left\{\mathbf{x} \in \mathbf{E} \mid \sharp\left\{\imath \mid x^{\imath} \in\{0, \quad, s-1\}\right\}-s>c\right\}$ Then,

$$
\begin{equation*}
\left\{\mathbf{X}_{1} \in \mathbf{A}(c)\right\} \subset\left\{W_{s}>c\right\} \tag{594}
\end{equation*}
$$

and,

$$
\begin{equation*}
\left\{W_{s}>c\right\} \subset\left\{\mathbf{X}_{1} \in \mathbf{A}(c)\right\} \tag{595}
\end{equation*}
$$

thus,

$$
\begin{equation*}
\left\{W_{s}>c\right\}=\left\{\mathbf{X}_{1} \in \mathbf{A}(c)\right\} \tag{596}
\end{equation*}
$$

hence,

$$
\begin{equation*}
I_{\left\{W_{s}>c\right\}}=I_{\left\{\mathbf{x}_{1} \in \mathbf{A}(c)\right\}} \tag{597}
\end{equation*}
$$

Now the numerator of Equation 593 ,

$$
\begin{equation*}
\mathbf{E}\left[e^{\gamma\left(W_{s}-c\right)} v\left(\mathbf{X}_{s}, \gamma\right) I_{\left\{W_{s}>c\right\}} \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{598}
\end{equation*}
$$

1s,

$$
\begin{equation*}
\sum_{\mathbf{y} \in \mathbf{E}} \mathbf{E}\left[e^{\gamma\left(W_{s}-c\right)} v\left(\mathbf{X}_{s}, \gamma\right) I_{\left\{W_{s}>c\right\}} \mid \mathbf{X}_{0}=\mathbf{x}, \mathbf{X}_{1}=\mathbf{y}\right] \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{599}
\end{equation*}
$$

by the Law of Total Probability [7] But this is,

$$
\begin{equation*}
\sum_{\mathbf{y} \in \mathbf{E}} \mathbf{E}\left[e^{\gamma\left(W_{s}-c\right)} v\left(\mathbf{X}_{s} ; \gamma\right) I_{\left\{X_{1} \in \mathbf{A}(c)\right\}} \mid \mathbf{X}_{0}=\mathbf{x}, \mathbf{X}_{1}=\mathbf{y}\right] \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{5100}
\end{equation*}
$$

by Equation 597 which is just,

$$
\begin{equation*}
e^{-\gamma c} \sum_{\mathbf{y} \in \mathbf{A}(\mathbf{c})} \mathbf{E}\left[e^{\gamma W_{s}} v\left(\mathbf{X}_{s}, \gamma\right) \mid \mathbf{X}_{0}=\mathbf{x}, \mathbf{X}_{1}=\mathbf{y}\right] \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{5}
\end{equation*}
$$

which is,

$$
\begin{equation*}
e^{-\gamma c} \sum_{\mathbf{y} \in \mathbf{A}(\mathbf{c})} \mathbf{E}\left[\mathbf{M}_{s} \mid \mathbf{X}_{0}=\mathbf{x}, \mathbf{X}_{1}=\mathbf{y}\right] \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{5102}
\end{equation*}
$$

where \mathbf{M} is just the Martingale that we used to get the upper bound for the cell level model queue But then this is just,

$$
\begin{equation*}
e^{-\gamma c} \sum_{\mathbf{y} \in \mathbf{A}(\mathbf{c})} v(\mathbf{y}, \gamma) \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{5103}
\end{equation*}
$$

Next the denominator of 593 is ,

$$
\begin{align*}
\mathbf{P}\left[W_{s}>c \mid \mathbf{X}_{0}=\mathbf{x}\right] & =\mathbf{P}\left[\mathbf{X}_{1} \in \mathbf{A}(c) \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{array}\\
& =\sum_{\mathbf{y} \in \mathbf{A}(c)} \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right] \tag{5105}
\end{align*}
$$

by Equation 596 Thus we can now write,

$$
\begin{equation*}
\phi^{-1}=\inf _{c>0, \mathbf{x} \in \hat{\mathbf{E}}(c)} \frac{e^{-\gamma c} \sum_{\mathbf{y} \in \mathbf{A}(c)} v(\mathbf{y}, \gamma) \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right]}{\sum_{\mathbf{y} \in \mathbf{A}(c)} \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right]} \tag{5106}
\end{equation*}
$$

Now we can say the following,

$$
\begin{align*}
\frac{e^{-\gamma c} \sum_{\mathbf{y} \in \mathbf{A}(\mathbf{c})} v(\mathbf{y}, \gamma) \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right]}{\sum_{\mathbf{y} \in \mathbf{A}(c)} \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right]} & \geq e^{-\gamma c} \inf _{\mathbf{y} \in \mathbf{A}(c)} v(\mathbf{y}, \gamma) \frac{\sum_{\mathbf{y} \in \mathbf{A}(\mathbf{c})} \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right]}{\sum_{\mathbf{y} \in \mathbf{A}(c)} \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right]} \\
& =e^{-\gamma c} \inf _{\mathbf{y} \in \mathbf{A}(c)} v(\mathbf{y}, \gamma) \tag{5107}
\end{align*}
$$

Thus,

$$
\inf _{c>0, \mathbf{x} \in \hat{\mathbb{E}}(c)} \frac{e^{-\gamma c} \sum_{\mathbf{y} \in \mathbf{A}(c)} v(\mathbf{y}, \gamma) \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right]}{\sum_{\mathbf{y} \in \mathbf{A}(c)} \mathbf{P}\left[\mathbf{X}_{1}=\mathbf{y} \mid \mathbf{X}_{0}=\mathbf{x}\right]} \geq \inf _{c>0, \mathbf{y} \in \mathbf{A}(c)} e^{-\gamma c} v(\mathbf{y}, \gamma)
$$

But this is just,

$$
\inf _{c>0, \mathbf{y} \in \mathbf{A}(c)} e^{-\gamma c} \prod_{v=1}^{L} v\left(y^{v}\right)
$$

Now let $m(\mathbf{y})=\sharp\left\{\imath \mid y^{\imath} \in\{0, \quad, s-1\}\right\}$ then $\mathbf{y} \in \mathbf{A}(c)$ implies $L \geq m(\mathbf{y})>s+c$ Then the above becomes,

$$
\operatorname{lif}_{c>0, \mathbf{y} \in \mathrm{~A}(c), m(\mathbf{y})>s+c} e^{-\gamma c} \prod_{v=1}^{L-m(\mathbf{y})} v\left(y^{2}\right) v(s-1)^{m}(\mathbf{y})
$$

Then from Equation 536 this is,

$$
\operatorname{mif}_{c>0, m(\mathbf{y})>s+c} e^{-\gamma c} v(s)^{L-m(\mathbf{y})} v(s-1)^{m}(\mathbf{y})
$$

which is, with \mathbf{y} such that each $y^{b}=s$ or $s-1$ for all \imath and with $m(\mathbf{y})=m$ (the choice of \mathbf{y} being superfluous once m is chosen),

$$
\operatorname{mf}_{c>0, m>s+c} e^{-\gamma c} v(s)^{L}\left(\frac{v(s-1)}{v(s)}\right)^{m}
$$

which by Equation 536 is,

$$
\operatorname{mif}_{c>0} e^{-\gamma c} v(s)^{L}\left(\frac{v(s-1)}{v(s)}\right)^{s+c+1}
$$

But we can write this as,

$$
\operatorname{mif}_{c>0}\left(\frac{v(s-1)}{v(s) e^{\gamma}}\right)^{c} v(s)^{L}\left(\frac{v(s-1)}{v(s)}\right)^{s+1}
$$

But by Equation 553 to Equation 565 , for $\alpha>\sigma$ or Equation 576 for $\tau<\frac{1}{e-1}$ this is,

$$
\left(\frac{v(s-1)}{v(s) e^{\gamma}}\right) v(s)^{L}\left(\frac{v(s-1)}{v(s)}\right)^{s+1}
$$

And this can be rewritten as,

$$
\begin{aligned}
\left(\frac{v(s-1)}{v(s) e^{\gamma}}\right) \frac{v(s-1)}{v(s)} v(s)^{L}\left(\frac{v(s-1)}{v(s)}\right)^{s} & =\left(\frac{v(s-1)}{v(s) e^{\gamma}}\right) \frac{v(s-1)}{v(s)} v(s)^{L}\left(\frac{v(s-1)}{v(s)}\right)^{\sigma L} \\
& >\left(\left(\frac{v(s-1)}{v(s)}\right)^{\sigma} v(s)\right)^{L}
\end{aligned}
$$

Where the last line is by Equations 536 and 565

5.5.1 Economies of scale

If,

$$
\begin{equation*}
\left(\frac{v(s-1)}{v(s)}\right)^{\sigma} v(s)>1 \tag{5l108}
\end{equation*}
$$

Then we will have, for all $b>0$

$$
\begin{aligned}
\mathbf{P}\left[q_{s}^{L}>b\right] & \leq \phi e^{-\gamma b} \\
& \leq\left(\frac{v(s) e^{\gamma}}{v(s-1)}\right) \frac{v(s)}{v(s-1)}\left(\left(\frac{v(s)}{v(s-1)}\right)^{\sigma} \frac{1}{v(s)}\right)^{L} e^{-\gamma b} \\
& <e^{-\gamma b}
\end{aligned}
$$

Thus our upper bound will be an improvement on the effective bandwidth approximation holding as it does for all $b>0$ and being less conservative Further if we can show,

$$
\begin{align*}
\left(\frac{v(s-1)}{v(s)}\right)^{\sigma} v(s) & >k \tag{5109}\\
& >1 \tag{5110}
\end{align*}
$$

where k is independent of L, then we will have an upper bound of the form,

$$
\mathbf{P}\left[q_{s}^{L}>b\right]<\Phi^{L} e^{-\gamma b}
$$

where $\Phi=\frac{1}{k}<1$ and is independent of L This bound exhibits economies of scale which are seen in simulations for the burst level queue of the cell level model [9]

We will show this to be the case for some values of the model parameters First we will prove the following, useful inequality,

$$
\begin{equation*}
\frac{1}{1+L\left(e^{\gamma / L}-1\right)(1-\sigma)}>e^{(\sigma-1) \gamma} \tag{5112}
\end{equation*}
$$

Proof
Consider,

$$
\begin{equation*}
1+L\left(e^{x / L}-1\right)(1-\sigma)-e^{(1-\sigma) x} \tag{5113}
\end{equation*}
$$

At $x=0$ this is 0 and its derivative is,

$$
\begin{align*}
(1-\sigma)\left(e^{x / L}-e^{(1-\sigma) x}\right) & =(1-\sigma)\left(e^{x / L}-e^{(L-s) x / L}\right) \tag{5114}\\
& =(1-\sigma)\left(e^{x / L}-\left(e^{x / L}\right)^{(L-s)}\right) \tag{5115}\\
& <0 \tag{5116}
\end{align*}
$$

for all $x>0$ Thus, since $\gamma>0$ we have,

$$
\begin{equation*}
1+L\left(e^{\gamma / L}-1\right)(1-\sigma)-e^{(1-\sigma) \gamma}<0 \tag{5117}
\end{equation*}
$$

ımplyıng,

$$
\begin{equation*}
1+L\left(e^{\gamma / L}-1\right)(1-\sigma)<e^{(1-\sigma) \gamma} \tag{5118}
\end{equation*}
$$

and hence, in conclusion,

$$
\begin{equation*}
\frac{1}{1+L\left(e^{\gamma / L}-1\right)(1-\sigma)}>e^{(\sigma-1) \gamma} \tag{5119}
\end{equation*}
$$

We can use this inequality to prove, another useful mequality,

$$
\begin{align*}
\frac{L\left(e^{\gamma / L}-1\right)}{\tau} & <\frac{\frac{1-\alpha}{\tau}+\sigma-1}{\alpha(1-\sigma)} \tag{5120}\\
& =\frac{\frac{1}{\rho}-1}{\alpha(1-\sigma)}
\end{align*}
$$

Proof

$$
\begin{align*}
\frac{1}{1+L\left(e^{\gamma / L}-1\right)(1-\sigma)} & >e^{(\sigma-1) \gamma} \tag{5122}\\
& =\frac{\alpha L\left(e^{\gamma / L}-1\right)+\tau}{L\left(e^{\gamma / L}-1\right)+\tau} \tag{5123}
\end{align*}
$$

by Equation 44 and Equation 5112
For convemence write $u=L\left(e^{\gamma / L}-1\right)$ Then the above is,

$$
\begin{equation*}
\frac{1}{1+u(1-\sigma)}>\frac{\alpha u+\tau}{u+\tau} \tag{5124}
\end{equation*}
$$

Thus rearranging we get,

$$
u(u(1-\sigma)-(1-\alpha-\tau(1-\sigma))<0
$$

which imples,

$$
\begin{equation*}
u(1-\sigma)-(1-\alpha-\tau(1-\sigma)<0 \tag{5126}
\end{equation*}
$$

since $u>0$ Thus,

$$
\begin{equation*}
u<\frac{(1-\alpha-\tau(1-\sigma)}{(1-\sigma)} \tag{5127}
\end{equation*}
$$

Thus, replacing u with $L\left(e^{\gamma / L}-1\right)$ and dividing the right hand side above and below by τ and replacing $\frac{1-\alpha}{\tau}+\sigma$ with $\frac{1}{\rho}$ we get in conclusion,

$$
\begin{align*}
\frac{L\left(e^{\gamma / L}-1\right)}{\tau} & <\frac{\frac{1-\alpha}{\tau}+\sigma-1}{\alpha(1-\sigma)} \tag{5128}\\
& =\frac{\frac{1}{\rho}-1}{\alpha(1-\sigma)} \tag{5129}
\end{align*}
$$

Returning to Equation 546 and Equation 579

$$
\left(\frac{v(s-1)}{v(s)}\right)^{\sigma} v(s)=\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(\frac{L\left(e^{\gamma / L}-1\right)+\tau}{\tau}\right)^{\sigma}}{\left(\sigma+\frac{e^{\gamma \gamma(\sigma-1-1 / L)}-1}{L}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)+\frac{1-\alpha}{\tau}}
$$

Consider the following We know $\sigma \leq 1$ thus,

$$
e^{\gamma(\sigma-1-1 / L)}<1
$$

which imples,

$$
\sigma+\frac{e^{\gamma(\sigma-1-1 / L)}-1}{L}<\sigma
$$

Thus,

$$
v(s)>\frac{\sigma+\frac{1-\alpha}{\tau}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}
$$

and recall that

$$
\begin{equation*}
\left(\frac{v(s-1)}{v(s)}\right)=1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau} \tag{5130}
\end{equation*}
$$

Thus,

$$
\left(\frac{v(s-1)}{v(s)}\right)^{\sigma} v(s)>\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}
$$

Now we want to prove that the right hand side of this equation is greater than 1 We can prove this for $\sigma=1 / 2$ and $\rho \leq \alpha$ To do this we first assume,

$$
\begin{equation*}
\frac{1-\alpha}{\tau}>\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma} \tag{5132}
\end{equation*}
$$

then,

$$
\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}>0
$$

ımplyıng,

$$
\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma}>0
$$

for $\sigma=1 / 2$ But since $1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}>0$ this imples,

$$
\begin{aligned}
\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}\left(\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma}\right) & >\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma} \\
& =\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}
\end{aligned}
$$

Hence,

$$
\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}\left(\frac{1-\alpha}{\tau}\right)-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)>\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}
$$

Thus,

$$
\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}\left(\frac{1-\alpha}{\tau}\right)+\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}>\frac{1-\alpha}{\tau}+\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)
$$

ımplyıng,

$$
\begin{equation*}
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}>1 \tag{5133}
\end{equation*}
$$

for σ under the assumption in Equation 5132 Now assume the contrary to assumption Equation 5132 That is, assume

$$
\begin{equation*}
\frac{1-\alpha}{\tau} \leq \sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma} \tag{5134}
\end{equation*}
$$

and further, assume

$$
\begin{equation*}
\rho \leq \alpha \tag{5135}
\end{equation*}
$$

We will now prove that both of the assumptions 5134 and 5135 cannot hold at the same time This will allow us to imply that if 5135 is true then Equation 5132 must be true implying Equation 5133 for $\sigma=1 / 2$ and 5135 as we claimed Assumption 5134 mples

$$
\begin{equation*}
\frac{1-\alpha}{\tau} \leq(1-\sigma)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \tag{5136}
\end{equation*}
$$

for $\sigma=1 / 2$ Thus,

$$
\begin{equation*}
\frac{1-\alpha}{\tau}+(\sigma)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \leq 1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau} \tag{5137}
\end{equation*}
$$

hence,

$$
\begin{align*}
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} & \geq \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)} \tag{5138}\\
& =\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma-1} \tag{5139}\\
& =\frac{1}{\rho}\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma-1} \tag{5140}
\end{align*}
$$

Thus,

$$
\begin{equation*}
\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma} \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}>\frac{1}{\rho} \tag{5141}
\end{equation*}
$$

Now at $\sigma=1 / 2$,

$$
\begin{equation*}
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L(e \gamma / L-1)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} \tag{5142}
\end{equation*}
$$

is equal to,

$$
\left(\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma} \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\right)^{\sigma}
$$

because,

$$
\left(\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma} \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\right)^{\sigma}
$$

1s,

$$
\left(\left(\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\right)^{2}\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)\right)^{\sigma}
$$

which is,

$$
\left(\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\right)^{2 \sigma}\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}
$$

and when $\sigma=1 / 2$ we have $2 \sigma=1$ and the above is then,

$$
\left(\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}
$$

But, by 5 141,

$$
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma} \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}
$$

is,

$$
\begin{aligned}
& \geq \frac{1}{\rho} \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} \\
& =\frac{1}{\rho} \frac{\frac{1}{\rho}}{\rho}+\sigma \frac{L\left(e^{\gamma / L}-1\right)}{\tau} \\
& =\frac{1}{\rho+\rho^{2} \sigma \frac{L\left(e^{\gamma / L}-1\right)}{\tau}}
\end{aligned}
$$

But by Equation 5 120,

$$
\begin{aligned}
\rho+\rho^{2} \sigma \frac{L\left(e^{\gamma / L}-1\right)}{\tau} & <\rho+\rho^{2} \sigma \frac{\frac{1}{\rho}-1}{\alpha(1-\sigma)} \\
& =\rho+\rho^{2} \frac{\frac{1}{\rho}-1}{\alpha} \\
& =\frac{\rho \alpha+\rho-\rho^{2}}{\alpha}
\end{aligned}
$$

where the second equation is due to $\sigma=1 / 2$ Now it is a simple matter to show that the right hand side of the second equation is less than 1 under our assumption 5135 Subtracting it from 1 we get,

$$
\begin{aligned}
1-\frac{\rho \alpha+\rho-\rho^{2}}{\alpha} & =\frac{\alpha-\rho \alpha-\rho+\rho^{2}}{\alpha} \\
& =\frac{(\rho-\alpha)(\rho-1)}{\alpha}
\end{aligned}
$$

Now $\rho<1$ so this is positive for $\rho \leq \alpha$ which we have assumed in Equation 5135 This then implies, for $\rho \leq \alpha$ and $\sigma=1 / 2$,

$$
\begin{aligned}
\rho+\rho^{2} \sigma L\left(e^{\gamma / L}-1\right) & <\rho+\rho^{2} \sigma \frac{\frac{1}{\rho}-1}{\alpha(1-\sigma)} \\
& <1
\end{aligned}
$$

which imples,

$$
\frac{1}{\rho+\rho^{2} \sigma \frac{L\left(e^{\gamma / L}-1\right)}{\tau}}>1
$$

Thus for $\sigma=1 / 2$

$$
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma} \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}
$$

1s,

$$
\begin{aligned}
& \geq \frac{1}{\rho} \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} \\
& >1
\end{aligned}
$$

and hence, for $\sigma=1 / 2$

$$
\left(\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma} \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\right.
$$

1s,

$$
\begin{aligned}
& \left.\geq \frac{1}{\rho} \frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}\right)^{\sigma} \\
& >1
\end{aligned}
$$

Thus, by Equation 5 142, for $\sigma=1 / 2$,

$$
\begin{equation*}
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}>1 \tag{5143}
\end{equation*}
$$

But, returnng to our first assumption in Equation 5134

$$
\frac{1-\alpha}{\tau} \leq \sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}
$$

then,

$$
\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma} \leq 0
$$

ımplyıng,

$$
\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma} \leq 0
$$

for $\sigma=1 / 2$ But sunce $1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}>0$ this imples,

$$
\begin{aligned}
\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}\left(\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma}\right) & \leq \frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{1-\sigma} \\
& =\frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}
\end{aligned}
$$

Hence,

$$
\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}\left(\frac{1-\alpha}{\tau}\right)-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \leq \frac{1-\alpha}{\tau}-\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}
$$

Thus,

$$
\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}\left(\frac{1-\alpha}{\tau}\right)+\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma} \leq \frac{1-\alpha}{\tau}+\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)
$$

ımplyıng,

$$
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} \leq 1
$$

contradicting Equation 5143 Hence our two assumptions 5134 and 5135 cannot both be true at the same time

Thus we can say the following If we choose $\rho \leq \alpha$ then

$$
\frac{1-\alpha}{\tau}>\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}
$$

for $\sigma=1 / 2$ And then by Equation 5133

$$
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}>1
$$

Hence finally by Equation 5131

$$
\begin{equation*}
\left(\frac{v(s-1)}{v(s)}\right)^{\sigma} v(s)>1 \tag{5144}
\end{equation*}
$$

for $\sigma=1 / 2$ and $\rho \leq \alpha$
This tells us, that the upper bound is an improvement over the effective bandwidth approximation at least for this set of parameter values We would also like to know If,

$$
\begin{align*}
\left(\frac{v(s-1)}{v(s)}\right)^{\sigma} v(s) & >k \tag{5145}\\
& >1 \tag{5146}
\end{align*}
$$

where k is independent of L, as this would tell us something about economies of scale To this end consider the following

Recall from Equations 44, 46 and 45

$$
\begin{aligned}
e^{(\sigma-1) \gamma(L)} & =\frac{\alpha\left(e^{\gamma / L}-1\right)+\frac{\tau}{L}}{\left(e^{\gamma / L}-1\right)+\frac{\tau}{L}} \\
& =\frac{\alpha L\left(e^{\gamma / L}-1\right)+\tau}{L\left(e^{\gamma / L}-1\right)+\tau} \\
& <\frac{\alpha \gamma(L)+\tau}{\gamma(L)+\tau}
\end{aligned}
$$

Thus upon rearrangement we have,

$$
\begin{equation*}
\sigma<1+\frac{1}{\gamma(L)} \log \left(\frac{\alpha \gamma(L)+\tau}{\gamma(L)+\tau}\right) \tag{5.147}
\end{equation*}
$$

Now consider the derivative of the right hand side of this equation with respect to $\gamma(L)$ This is,

$$
-\frac{1}{\gamma(L)^{2}} \log \left(\frac{\alpha \gamma(L)+\tau}{\gamma(L)+\tau}\right)-\frac{1}{\gamma(L)} \frac{\gamma(L)+\tau}{\alpha \gamma(L)+\tau} \frac{(1-\alpha) \tau}{(\gamma(L)+\tau)^{2}}
$$

We want to know if this is positive or otherwise Now rearranging and multiplying across by $\alpha \gamma(L)+\tau>0$ and $\gamma(L)^{2}>0$ and simplifying we get,

$$
-(\alpha \gamma(L)+\tau) \log \left(\frac{\alpha \gamma(L)+\tau}{\gamma(L)+\tau}\right)-\gamma(L) \frac{(1-\alpha) \tau}{(\gamma(L)+\tau)}
$$

Now consider,

$$
-(\alpha u+\tau) \log \left(\frac{\alpha u+\tau}{+\tau}\right)-u \frac{(1-\alpha) \tau}{(u+\tau)}
$$

at $u=0$ this is zero, and its derivative with respect to u is,

$$
-\alpha \log \left(\frac{\alpha u+\tau}{u+\tau}\right)+(\alpha u+\tau) \frac{u+\tau}{\alpha u+\tau} \frac{(1-\alpha) \tau}{(u+\tau)^{2}}-\frac{(1-\alpha) \tau}{(u+\tau)}+u \frac{(1-\alpha) \tau}{(u+\tau)^{2}}
$$

which is,

$$
-\alpha \log \left(\frac{\alpha u+\tau}{u+\tau}\right)+u \frac{(1-\alpha) \tau}{(u+\tau)^{2}}>0
$$

for all $u>0$ since $\frac{\alpha u+\tau}{u+\tau}<1$ Thus the derivative of the right hand side of equation 5147 with respect to $\gamma(L)$ is positive for all $\gamma(L)>0$ Now consider,

$$
\begin{equation*}
\sigma=1+\frac{1}{\gamma} \log \left(\frac{\alpha \gamma+\tau}{\gamma+\tau}\right) \tag{5148}
\end{equation*}
$$

The solution of this is independent of L and the derivative of the right hand side with respect to γ is positive for all $\gamma>0$ Thus we have,

$$
\begin{align*}
1+\frac{1}{\gamma} \log \left(\frac{\alpha \gamma+\tau}{\gamma+\tau}\right) & =\sigma \tag{5149}\\
& <1+\frac{1}{\gamma(L)} \log \left(\frac{\alpha \gamma(L)+\tau}{\gamma(L)+\tau}\right) \tag{5150}
\end{align*}
$$

ımplyıng,

$$
\begin{equation*}
\gamma(L)>\gamma \tag{5151}
\end{equation*}
$$

Thus we have,

$$
\begin{align*}
1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau} & >1+\frac{\gamma(L)}{\tau} \tag{5.152}\\
& >1+\frac{\gamma}{\tau} \tag{5.153}
\end{align*}
$$

Now consider,

$$
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma(L) / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L(e \gamma(L) / L-1)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}
$$

Replace $1+\frac{L\left(e^{\gamma(L) / L}-1\right)}{\tau}$ by x everywhere in this quotient. This becomes,

$$
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right) x^{\sigma}}{x \sigma+\frac{1-\alpha}{\tau}}
$$

Now differentiate this with respect to x. This gives us,

$$
\frac{\left(x \sigma+\frac{1-\alpha}{\tau}\right) \sigma\left(\sigma+\frac{1-\alpha}{\tau}\right) x^{\sigma-1}-\left(\sigma+\frac{1-\alpha}{\tau}\right) \sigma x^{\sigma}}{\left(x \sigma+\frac{1-\alpha}{\tau}\right)^{2}}=\frac{x^{\sigma-1} \sigma\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(\frac{1-\alpha}{\tau}-(1-\sigma) x\right)}{\left(x \sigma+\frac{1-\alpha}{\tau}\right)^{2}}
$$

This is positive if,

$$
\begin{equation*}
\frac{1-\alpha}{\tau}>(1-\sigma) x \tag{5.154}
\end{equation*}
$$

Now assume,

$$
\begin{equation*}
\frac{1-\alpha}{\tau}>(1-\sigma)\left(1+\frac{L\left(e^{\gamma(L) / L}-1\right)}{\tau}\right) \tag{5.155}
\end{equation*}
$$

Then

$$
\begin{equation*}
\frac{1-\alpha}{\tau}>(1-\sigma) x \tag{5.156}
\end{equation*}
$$

for all $x<1+\frac{L\left(e^{\gamma(L) / L}-1\right)}{\tau}$. Thus,

$$
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)(x)^{\sigma}}{x \sigma+\frac{1-\alpha}{\tau}}
$$

is increasing for all $x<1+\frac{L\left(e^{\gamma(L) / L}-1\right)}{\tau}$. Thus by Equation 5.152 we have,

$$
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}>\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{\gamma}{\tau}\right)^{\sigma}}{\left(1+\frac{\gamma}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}
$$

But of $\sigma=1 / 2$ and $\rho \leq \alpha$ then, we have by Equation 5144

$$
\begin{aligned}
\frac{1-\alpha}{\tau} & >\sigma\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma} \\
& >\sigma\left(1+\frac{\gamma}{\tau}\right)^{\sigma}
\end{aligned}
$$

and the same argument as that used in Equation 5132 to Equation 5133 can be used to show,

$$
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{\gamma}{\tau}\right)^{\sigma}}{\left(1+\frac{\gamma}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}>1
$$

with the left hand side independent of L Thus we have,

$$
\begin{aligned}
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} & >\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{\gamma}{\tau}\right)^{\sigma}}{\left(1+\frac{\gamma}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} \\
& >1
\end{aligned}
$$

Now assume the contrary to Equation 5155 that is assume,

$$
\begin{equation*}
\frac{1-\alpha}{\tau} \leq(1-\sigma)\left(1+\frac{L\left(e^{\gamma(L) / L}-1\right)}{\tau}\right) \tag{5157}
\end{equation*}
$$

and let $\sigma=1 / 2$ and $\rho \leq \alpha$ then the argument in 5157 to 5143 gives us,

$$
\begin{aligned}
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} & >\frac{1}{\rho+\rho^{2} \sigma \frac{\frac{1}{\rho}-1}{\alpha(1-\sigma)}} \\
& >1
\end{aligned}
$$

where the second of the quotients is independent of L Note that we have not assumed here that

$$
\begin{equation*}
\frac{1-\alpha}{\tau} \leq \sigma\left(1+\frac{L\left(e^{\gamma(L) / L}-1\right)}{\tau}\right)^{\sigma} \tag{5158}
\end{equation*}
$$

so we couldn't have used the contradiction argument used in Equations 5134 to 5144 Thus we have proved that if $\sigma=1$ and $\rho \leq \alpha$ then,

$$
\begin{align*}
\left(\frac{v(s-1)}{v(s)}\right)^{\sigma} v(s) & >k \tag{5159}\\
& >1 \tag{5160}
\end{align*}
$$

where k is independent of L

In conclusion then, for $\sigma=1 / 2$ and $\rho \leq \alpha$ we, have

$$
\begin{equation*}
\mathbf{P}\left[q_{s}^{L}>b\right]<\Phi^{L} e^{-\gamma b} \tag{5161}
\end{equation*}
$$

where $\Phi<1$ is independent of L We can say that,

$$
\begin{equation*}
\Phi=\max \left\{\rho+\rho^{2} \sigma \frac{\frac{1}{\rho}-1}{\alpha(1-\sigma)}, \frac{\left(1+\frac{\gamma}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{\gamma}{\tau}\right)^{\sigma}}\right\} \tag{5162}
\end{equation*}
$$

more generally we have,

$$
\begin{align*}
\mathbf{P}\left[q_{s}^{L}>b\right] & \leq\left(\frac{v(s) e^{\gamma}}{v(s-1)}\right) \frac{v(s)}{v(s-1)}\left(\left(\frac{v(s)}{v(s-1)}\right)^{\sigma} \frac{1}{v(s)}\right)^{L} e^{-\gamma b} \tag{5163}\\
& =e^{\gamma}\left(\frac{\tau}{L\left(e^{\gamma / L}-1\right)+\tau}\right)^{2}\left(\frac{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}\right)^{L} e^{-\gamma b} \tag{5164}
\end{align*}
$$

for all parameter values But it has to be determıned if this is less than 1 for $\sigma \neq 1 / 2$ or $\rho>\alpha$ and $\mathbf{~ f ~}$

$$
\begin{equation*}
\left(\frac{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}\right)<1 \tag{5165}
\end{equation*}
$$

which would imply economies of scale exist for the particular values of σ and α and τ Finally we note that the condition, $\rho>\alpha$, is the same as,

$$
\begin{equation*}
\tau<\frac{\alpha(1-\alpha)}{1-\sigma \alpha} \tag{5166}
\end{equation*}
$$

Chapter 6

Large Deviations Approximations

6.1 Large deviations

The development of large deviation theory began with Cramer who proved the theorem that bears his name for the large deviations of the empirical mean of a sequence of i.i.d. random variables. Chernoff subsequently discovered a general method for calculating the rate function from the cumulant generating function of the i.i.d. random variables. Gartner and Ellis generalised Cramer's theorem for the case when the random variables are not i.i.d. and, from a major result of Varadhan, a generalisation of the method of Chernoff for calculating the rate function was shown to apply to the case of non-i.i.d random variables. This obtains the rate function from the LegendreFenchel transform of the scaled cumulant generating function [2]. In this chapter we apply the work of Botvich and Duffield [20] to our new cell level model in order to find (what they called) the Shape Function for this model. We also prove some new results on the shape function in the case of non-negatively associated workload increments that flow from the definition of the shape function and from the sub-additivity theorem (Lemma 6.1.11 of [21]). We begin in this Section with the definitions of a Large Deviation Principle, the rate function and the cumulant generating function. In Section 6.2 we describe the work of Botvich and Duffield from [20]. In Section 6.3 we describe some of the properties of the Legendre-Fenchel Transform giving a number of well known results and some consequences not previously outlined for the
shape function We also prove some new theorems on the shape function in the case of non-negatively associated workload increments in subsection 633 In Section 64 we apply the results of Botvich and Duffield [20] to find the shape function for the cell level model We relate this to the smulations of [9] This is also related to the work we carried out in [22] In Section 65 we describe the relationship between the shape function and economies of scale, this is from work we carried out in [22] We will now state formally what is meant by Large Deviation Principle, rate function and cumulant generating function

Definition 4 Let $\left\{\mathbf{P}_{n}\right\}$ be a sequence of probabiluty measures on the real numbers Then $\left\{\mathbf{P}_{n}\right\}$ is said to satusfy a Large Deviatıon Princıple with rate function I and constants V_{n} of there is a function $I \quad \mathbf{R} \rightarrow[0, \infty]$ and a sequence of positive numbers $\left\{V_{n}\right\}$ diverging to $+\infty$ and,

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \frac{1}{V_{n}} \log P_{n}[C] \leq-\operatorname{mif}_{x \in C} I(x) \tag{61}
\end{equation*}
$$

for C closed and,

$$
\begin{equation*}
\liminf _{n \rightarrow \infty} \frac{1}{V_{n}} \log \mathbf{P}_{n}[G] \geq-\operatorname{mif}_{x \in G} I(x) \tag{62}
\end{equation*}
$$

for G open
Now note that if A is a set with,

$$
\begin{aligned}
\operatorname{mf}_{x \in A^{\prime}} I(x) & =\operatorname{mff}_{x \in A} I(x) \\
& =\inf _{x \in A} I(x)
\end{aligned}
$$

where A^{\prime} is the interior of A and \bar{A} is the closure of A, then

$$
\liminf _{n \rightarrow \infty} \frac{1}{V_{n}} \log \mathbf{P}_{n}[A]=-\operatorname{mf}_{x \in A} I(x)
$$

and we write,

$$
\mathbf{P}_{n}[A] \approx e^{-V_{n} \operatorname{lnf}_{x \in A} I(x)}
$$

For a sequence of random varables, $\left\{X_{t}\right\}$ the cumulant generating function is defined by,

Definition 5 The cumulant generating function of the sequence of random varıables, $\left\{X_{t}\right\}$ as, the real function of real θ

$$
\begin{equation*}
g(\theta)=\log \mathbf{E}\left[e^{\theta X_{t}}\right] \tag{63}
\end{equation*}
$$

This can be used to obtain the rate function I and both I and g are convex Thus, for example, if $A=\left[x_{0}, \infty\right]$ then,

$$
\begin{aligned}
\liminf _{n \rightarrow \infty} \frac{1}{V_{n}} \log \mathbf{P}_{n}[A] & =-\operatorname{mif}_{x \in\left[x_{0}, \infty\right]} I(x) \\
& =-I\left(x_{0}\right)
\end{aligned}
$$

6.2 Large deviations and Queues

Let W_{t} be the workload process for a general single server queue, where t is discrete or real time That is let, A_{t} be the arrivals to be served in the interval $[-t, 0)$ and let S_{t} be the service that can be completed in the same time interval Then of the workload has stationary increments and the queue has a FCFS service discipline the queue length will have a unique stationary distribution [14], and the equilibrium queue length wall be given by,

$$
\begin{equation*}
q=\sup _{t \geq 0} W_{t} \tag{64}
\end{equation*}
$$

For such a general single server queue Glynn and Whitt [12] showed that under very general conditions if the pair $\left(\frac{W_{t}}{t}, t\right)$ with $t \in Z^{+}$satisfies a Large Deviation Princıple with rate function $I, 1 \mathrm{e}$,

$$
\begin{equation*}
\mathbf{P}\left[\frac{W_{t}}{t} \geq w\right] \approx e^{-t I(w)} \tag{65}
\end{equation*}
$$

then,

$$
\begin{equation*}
\mathbf{P}[q \geq b] \approx e^{-\gamma b} \tag{66}
\end{equation*}
$$

where,

$$
\begin{equation*}
\gamma=\inf _{w} \frac{I(w)}{w} \tag{67}
\end{equation*}
$$

This was generalised in [23] for $t \in R$ and more general scaling functions than t.
Now we are interested in the queue q^{L} in an infinite buffer generated by the L fold homogeneous superposition of independent sources served at a constant service rate and modelled by the cell level model. Let the superposed workload process be W_{t}^{L} and let $W_{0}^{L}=0$. The simulations of Corcoran [9] demonstrate that the broad features of the queue length distribution of this queue remain essentially unchanged when L and the queue length b are jointly scaled. Thus we are led to consider the large deviation properties of the queue length distribution in L.

It was proved in [20] for more general situations than ours, under hypotheses that follow, that

Theorem 3 For $b \geq 0$,

$$
\lim _{L \rightarrow \infty} \frac{1}{L} \log \mathbf{P}\left[q^{L}>L b\right]=-I(b)
$$

Where the function I, termed the shape function, is related to the cumulant generating function of the workload process W_{t}^{L}.

The hypotheses under which this result holds are,
Hypothesis 1 Let, the rescaled cumulant generating function for the workload process W_{t}^{L} be,

$$
\begin{equation*}
\lambda_{t}^{L}(\theta)=\frac{1}{L t} \lim _{L \rightarrow \infty} \log \mathbf{E}\left[e^{\theta W_{t}^{L}}\right] \tag{6.8}
\end{equation*}
$$

then,

- For each real θ the limits,

$$
\begin{aligned}
\lambda_{t}(\theta) & =\lim _{L \rightarrow \infty} \lambda_{t}^{L}(\theta) \\
\lambda(\theta) & =\lim _{t \rightarrow \infty} \lambda_{t}(\theta)
\end{aligned}
$$

exist as extended real numbers. With the first limit existing uniformly for all t sufficiently large.

- The functions λ and λ_{t} are both differentiable on the regions where they are finite (effective domain) and $\lim _{n \rightarrow \infty}\left|\lambda^{\prime}\left(\theta_{n}\right)\right|=+\infty$ for any sequence $\left\{\theta_{n}\right\}_{n}$, in the effective domain, which converges to a point on its boundary.
- There exists $\theta>0$ for which $\lambda_{t}(\theta)<0$ for all t.
- For real t, We define $\hat{W}_{t, r}^{L}=\sup _{0<r^{\prime}<r} W_{t-r^{\prime}}^{L}-W_{t}^{L}$ for $t \geq r \geq 0$. Then for all real θ,

$$
\lim \sup _{r \rightarrow 0} \lim \sup _{L \rightarrow \infty} \frac{1}{L} \sup _{t \geq 0} \log E\left[e^{\theta \hat{W}_{t, r}^{L}}\right] \leq 0
$$

The function I called the shape function is,

$$
I(b)=\inf _{t>0} t \lambda_{t}^{*}(b / t)
$$

Comparing these hypotheses to the conditions in the Gartner-Ellis theorem, Duffield and Botvich [20] note that the first two hypotheses mean that for each fixed t the pair $\left(W_{t}^{L}, L\right)$ satisfies a Large Deviation Principle with rate function $\left(t \lambda_{t}\right)^{*}$. That is,

$$
\begin{aligned}
& \lim \sup _{L \rightarrow \infty} \frac{1}{L} \log \mathbf{P}\left[\frac{W_{t}^{L}}{L} \in A\right] \leq-\inf _{w \in \bar{A}}\left(t \lambda_{t}\right)^{*}(w) \\
& \lim \inf _{L \rightarrow \infty} \frac{1}{L} \log \mathbf{P}\left[\frac{W_{t}^{L}}{L} \in A\right] \geq-\inf _{w \in A^{0}}\left(t \lambda_{t}\right)^{*}(w)
\end{aligned}
$$

Now $\left(t \lambda_{t}\right)^{*}(w)=t\left(\lambda_{t}^{*}\right)(w / t)$, thus, the third hypothesis means that any root w_{t}^{*} of $\left(t \lambda_{t}\right)^{*}(w)$ is negative, and we then have, for $w \geq w_{t}^{*}$,

$$
\begin{aligned}
\lim \sup _{L \rightarrow \infty} \frac{1}{L} \log \mathbf{P}\left[\frac{W_{t}^{L}}{L}>w\right] & \leq-\left(t \lambda_{t}\right)^{*}(w) \\
\inf _{L \rightarrow \infty} \frac{1}{L} \log \mathbf{P}\left[\frac{W_{t}^{L}}{L}>w\right] & \geq-\lim _{t \downarrow w}\left(t \lambda_{t}\right)^{*}(w)
\end{aligned}
$$

It is noted in [20] that the third hypothesis also guarantees the existence of a strictly positive solution γ of the equation $\lambda(\theta)=0$ which is the asymptotic decay rate of the queue length distribution (recall chapter 4). The fourth hypothesis is a local regularity condition on the sample paths of the workload process.

Note that the result proved in [20] does not assume that the superposition is of i.i.d sources or that the sources are independent at all. We note that in the case of a homogeneous superposition of i.i.d workload processes the $\lambda_{t}(\theta)=\lim _{L \rightarrow \infty} \lambda_{t}^{L}(\theta)$ condition is redundant, as then Cramer's Theorem guarantees that the superposed workload process satisfies a Large Deviation Principle with rate function as described above [15].

It was also noted in [20] that the differentiability condition guarantees that there is a unique w_{t}^{*} for which $\left(t \lambda_{t}\right)^{*}\left(w_{t}^{*}\right)=0$ This number is such that,

$$
\frac{\mathbf{E}\left[W_{t}^{L}\right]}{L} \xrightarrow{L} w_{t}^{*}
$$

and in fact, $\frac{W_{t}^{L}}{L}$ converges exponentially to w_{t}^{*} as L tends to infinity [15],

$$
\frac{W_{t}^{L}}{L} \xrightarrow{\exp } w_{t}^{*}
$$

that is, for any $\epsilon>0$ there exists a number $N>0$, dependent on ϵ, such that, for all L sufficiently large,

$$
\mathbf{P}\left[\left|\frac{W_{t}^{L}}{L}-w_{t}^{*}\right| \geq \epsilon\right] \leq e^{-L N}
$$

It was noted in [20] that in the case of a homogeneous superposition of independent sources, with single source workload W_{t},

$$
w_{t}^{*}=\mathbf{E}\left[W_{t}\right]
$$

and $\frac{W_{t}^{L}}{L}$ converges exponentially to $\mathbf{E}\left[W_{t}\right]$ as L tends to infinity Further, since $\sum_{L=1}^{\infty} e^{-L N}$ is finite, the Borel-Cantellh Lemma imples that $\frac{W_{L}^{L}}{L}$ satısfies the Strong Law of Large Numbers, that is,

$$
\frac{W_{t}^{L}}{L} \rightarrow \mathbf{E}\left[W_{t}\right] \quad \text { as }
$$

The reason why the result proved in [20] works is roughly the following

$$
\begin{aligned}
\mathbf{P}\left[q^{L}>L b\right] & =\mathbf{P}\left[\sup _{t \geq 0} W_{t}^{L}>L b\right] \\
& =\mathbf{P}\left[\bigcup_{t \geq 0}\left\{W_{t}^{L}>L b\right\}\right]
\end{aligned}
$$

The probability of each event in the union is exponentially small for large L Thus the probability is dominated by the largest of the probabilities of each of the events in the union, in other words by the probability of the most likely event This is,

$$
\sup _{t \geq 0} \mathbf{P}\left[W_{t}^{L}>L b\right]
$$

Now if for each fixed t, (W_{t}^{L}, L) satisfies a Large Deviation Principle with rate function $\left(t \lambda_{t}\right)^{*}$ then,

$$
\mathbf{P}\left[W_{t}^{L}>L b\right] \approx e^{-L\left(t \lambda_{t}\right)^{*}(b)}
$$

In other words we have roughly the following,

$$
\begin{aligned}
\mathbf{P}\left[q^{L}>L b\right] & \approx \sup _{t \geq 0} \mathbf{P}\left[W_{t}^{L}>L b\right] \\
& \approx \sup _{t \geq 0} e^{-L\left(t \lambda_{t}\right)^{*}(b)} \\
& \approx e^{-L \operatorname{lnf} f_{t \geq 0}\left(t \lambda_{t}\right)^{*}(b)} \\
& =e^{-L I(b)}
\end{aligned}
$$

It was also proved in [20] that the asymptotics of $I(b)$ are,

$$
\begin{equation*}
\lim _{b \rightarrow \infty}(I(b)-b \gamma)=\nu \tag{69}
\end{equation*}
$$

where,

$$
\begin{equation*}
\nu=-\lim _{t \rightarrow \infty} t \lambda_{t}(\gamma) \tag{610}
\end{equation*}
$$

provided this limit exasts, and subject to some regularity requirements m the case of discrete t For large b we can approximate $I(b)$ by [20, 22],

$$
\begin{equation*}
I(b) \approx \nu+b \gamma \tag{611}
\end{equation*}
$$

Thus for large b and large L we have,

$$
\begin{align*}
\mathbf{P}\left[q^{L}>b\right] & \approx e^{-L I(b / L)} \\
& \approx e^{-(L \nu+b \gamma)} \\
& =e^{-L \nu} e^{-b \gamma} \tag{612}
\end{align*}
$$

Thus we can see from 612 that in multiplexer models ν determines the economies of scale [22] that can be obtaned from statistically multiplexing large numbers of sources Note that, $\nu=0$ for uncorrelated arrivals as then $\lambda_{t}(\gamma)=\lambda(\gamma)=0$ Therefore there are no economies of scale to be obtained from multiplexing large numbers of sources with uncorrelated arrivals If, however the increments of the workloads on disjoint intervals are positively associated then $\nu \geq 0[20,22]$

For $t>0$, if we define $\Lambda_{t}(\theta)=t \lambda_{t}(\theta / t)$ and we assume that the workload W_{t}^{L} has stationary merements and we define $\Lambda(\theta)=\lim _{t \rightarrow 0} \Lambda_{t}(\theta)$ for real t and assume that
the limit exists as an extended real number for all real θ and we make one further assumption, namely, that 0 is in the effective domain of Λ^{*} Then,

$$
I(0)=\lambda_{1}(0)
$$

for discrete t, and

$$
\begin{equation*}
I(0)=\Lambda^{*}(0) \tag{613}
\end{equation*}
$$

for real t This tells us that for large L (under the conditions given) the workload is most likely to exceed 0 at the smallest times [20]

6.3 The Legendre-Fenchel Transform and the Shape Function

In this section we will define the Legendre-Fenchel Transform f^{*} of a function f and describe some of its general properties [15] We describe how to calculate the shape function $I(b)$ form the Legendre transform of the cumulant generating function of the workload process W_{t}^{L} We show how the derivative of the shape function with respect to b is related to the cumulant generating function In subsection 632 we prove the new result that the shape function is sub-additive if the increments of the workload are non-negatively associated This has consequences for the shape of the shape function which we demonstrate Under this condition on the workload increments, and assuming $I(0)=0$, the shape function cannot be convex

6.3.1 The Legendre Transform

Definition 6 [15] Let $f \quad R \rightarrow R$ be a strıctly convex function The LegendreFenchel transform of f, denoted by f^{*} थs defined by,

$$
f^{*}(y)=\sup _{x \in R}\{x y-f(x)\} \text { for } y \in R
$$

Lemma 1 [15] Let $f \quad R \rightarrow R$ be a convex function Then,
$1\left(f^{*}\right)^{\prime}=\left(f^{\prime}\right)^{-1}$
$2 f(x)=\sup _{y \in R}\left\{x y-f^{*}(y)\right\}$
$3\left(f^{*}\right)^{*}=f$ 亿f f is closed
$4 f^{*}$ is a convex function also known as the conjugate of f

6.3.2 Some Generalities

Most of the following lemmas and definitions are used either to prove further more useful lemmas or are used in section 632 Lemma 3 is used to prove Lemma 4 which
in turn is used to prove Lemma 5 which is itself used to prove Theorem 4 in Section 633 Lemma 6 tells us how to calculate the rate function $f_{t}^{*}(b)$ from the cumulant generating function $f(t, \theta)$ The proofs of well known results are brief and so are provided for completeness We begin with some definitions

Definition 7 Let $\theta_{t, b}$ be the θ at which $\sup _{\theta}\left\{b \theta-t \lambda_{t}(\theta)\right\}$ occurs of such a θ exists

Definition 8 Let t_{b} be the unıque t at which the $\operatorname{lnf}_{t>0} t \lambda_{t}^{*}(b / t)$ occurs if such a t exusts

Definition 9 Let $f(t, \theta)=t \lambda_{t}(\theta)$

This simplifies the notation slightly as we can now write

Definition 10

$$
I(b)=\operatorname{mf}_{t>0} f_{t}^{*}(b)
$$

The following Lemma is well known and is used later to prove Lemma 6,
Lemma $2 f(t, \theta)$ is convex as a functzon of θ for $\theta>0$ implyıng $f^{\prime \prime}(t, \theta)>0$ for all θ and all $t \geq 0$

Proof

From Defimtion6 we have $f(t, \theta)=\log \mathbf{E}\left[e^{\theta W_{t}}\right]$ Now by Schwarz inequality we have,

$$
\left(\mathbf{E}\left[e^{\theta W_{t}}\right]\right)^{2} \leq \mathbf{E}\left[e^{(\theta+\zeta) W_{t}}\right] \mathbf{E}\left[e^{(\theta-\zeta) W_{t}}\right]
$$

where $0 \leq \zeta \leq \theta$ Thus letting $\theta_{1}=\theta-\zeta$ and $\theta_{2}=\theta+\zeta$ we get

$$
\log \left[\mathbf{E}\left[e^{\frac{\left(\theta_{1}+\theta_{2}\right)}{2} W_{t}}\right]\right] \leq \frac{\log \left[\mathbf{E}\left[e^{\theta_{1} W_{t}}\right]\right]+\log \left[\mathbf{E}\left[e^{\theta_{2} W_{t}}\right]\right]}{2}
$$

proving that $f(t, \theta)$ is convex as a function of $\theta \geq 0$ for all $t \geq 0$ hence,

$$
f^{\prime \prime}(t, \theta) \geq 0
$$

for $\theta \geq 0$ and $t \geq 0$

We can show the known fact that $f_{t}^{*}(b)$ is non-negative as follows,

Lemma 3 Let $f(t, \theta)$ be defined as in Defination 9 and $f_{t}^{*}(b)$ be the Legendre transform of f Then $f_{t}^{*}(b) \geq 0$

Proof

It is obvious that,

$$
b \theta-f(t, \theta)=0
$$

for $\theta=0$ for all $t \geq 0$ and all real b
Thus,

$$
\sup _{\theta}\{b \theta-f(t, \theta)\} \geq 0
$$

We can also prove the known fact,
Lemma 4 Let $f(t, \theta)$ be defined as in Defination 9 and $f_{t}^{*}(b)$ be the Legendre transform of f Then, $f_{t}^{*}\left(\mathbf{E}\left[W_{t}\right]\right)=0$

Proof

For all θ we have by Jensens inequality [8],

$$
\begin{aligned}
f(t, \theta) & =\log \mathbf{E}\left[e^{\theta W_{t}}\right] \\
& \geq \log e^{\theta \mathrm{E}\left[W_{t}\right]} \\
& =\theta \mathbf{E}\left[W_{t}\right]
\end{aligned}
$$

Thus,

$$
\mathbf{E}\left[W_{t}\right] \theta-f(t, \theta) \leq 0
$$

But this implies,

$$
f_{t}^{*}\left(\mathbf{E}\left[W_{t}\right]\right) \leq 0
$$

Implying by Lemma 3 that,

$$
f_{t}^{*}\left(\mathbf{E}\left[W_{t}\right]\right)=0
$$

The next three lemma's are also known results supplied only because they are usedlater. The following Lemma is used in the proof of Theorem 4,

Lemma 5 Let $f(t, \theta)$ be defined as in Definition 9. Then, for $b \geq \mathbf{E}\left[W_{t}\right]$

$$
\sup _{\theta}\{b \theta-f(t, \theta)\}=\sup _{\theta \geq 0}\{b \theta-f(t, \theta)\}
$$

Proof

For $\theta<0$ and $b>\mathrm{E}\left[W_{t}\right]$

$$
\begin{aligned}
b \theta-f(t, \theta) & <\mathbf{E}\left[W_{t}\right] \theta-f(t, \theta) \\
& \leq 0
\end{aligned}
$$

But

$$
\sup _{\theta}\{b \theta-f(t, \theta)\} \geq 0
$$

Thus,

$$
\sup _{\theta}\{b \theta-f(t, \theta)\}=\sup _{\theta \geq 0}\{b \theta-f(t, \theta)\}
$$

The following Lemma tells us how to calculate the rate function $f_{t}^{*}(b)$ from the cumulant generating function $f(t, \theta)$.

Lemma 6 Let $f(t, \theta)$ be defined as in Definition 9 and $f_{t}^{*}(b)$ be the Legendre transform of f. Then,

$$
f_{t}^{*}(b)=b \theta_{t, b}-f\left(t, \theta_{t, b}\right)
$$

where $\theta_{t, b}$ is the unique $\theta \geq 0$ such that, for fixed t and b

$$
f^{\prime}(t, \theta)=b
$$

if this equation has a solution for θ.
If on the other hand no such solution exists then, the supremum is only attained at infinity.

Proof

By definition,

$$
f_{t}^{*}(b)=\sup _{\theta}\{b \theta-f(t, \theta)\}
$$

Then by Lemma 5 ,

$$
f_{t}^{*}(b)=\sup _{\theta \geq 0}\{b \theta-f(t, \theta)\}
$$

But by Lemma $2 f(t, \theta)$ is convex as a function of θ Thus $b \theta-f(t, \theta)$ is concave as function of θ Hence, if

$$
f^{\prime}(t, \theta)=b
$$

for some $\theta=\theta_{t, b}$ Then,

$$
f_{t}^{*}(b)=b \theta_{t, b}-f\left(t, \theta_{t, b}\right)
$$

and $\theta_{t, b} \geq 0$
On the other hand if,

$$
f^{\prime}(t, \theta) \neq b
$$

for any θ Then,

$$
b-f^{\prime}(t, \theta) \neq 0
$$

for any θ Thus as $b \theta-f(t, \theta)$ is concave,

$$
b-f^{\prime}(t, \theta)>0
$$

for all $\theta>0$ and therefore, since $b \theta-f(t, \theta)$ is strictly increasing,

$$
f_{t}^{*}(b)=\lim _{\theta \rightarrow \infty}(b \theta-f(t, \theta))
$$

The next Lemma is used in the proof of Lemma 8,

Lemma 7 Let $f(t, \theta)$ be defined as in Definitıon 9 and $f_{t}^{*}(b)$ be defined as in Definition 6 and $\theta_{t, b}$ be defined as in Definttion 7 Then,

$$
\left(f_{t}^{*}\right)^{\prime}(b)=\theta_{t, b}
$$

Proof
By Lemma 6,

$$
f_{t}^{*}(b)=b \theta_{t, b}-f\left(t, \theta_{t, b}\right)
$$

Thus, from Lemma 2 we have,

$$
\begin{aligned}
\left(f_{t}^{*}\right)^{\prime}(b) & =\theta_{t, b}+b \frac{\partial \theta_{t, b}}{\partial b}-\left.f^{\prime}(t, \theta)\right|_{\theta=\theta_{t, b}} \frac{\partial \theta_{t, b}}{\partial b} \\
& =\theta_{t, b}+b \frac{\partial \theta_{t, b}}{\partial b}-b \frac{\partial \theta_{t, b}}{\partial b} \\
& =\theta_{t, b}
\end{aligned}
$$

With t_{b} defined as in Definition 8 we can write the following equation for the shape function $I(b)$,

$$
\begin{equation*}
I(b)=f_{t_{b}}^{*}(b) \tag{614}
\end{equation*}
$$

And we have the following for the slope of $I(b)$ at any b,
Lemma 8 Let t_{b} be defined as in Definition 8 and be finte and non-zero Let $\theta_{t, b}$ be defined as in Definıtıon 7 Let $\left(t_{b}, f_{t_{b}}^{*}(b)\right)$ be a local mınımum point for $f_{t_{b}}^{*}(b)$ Then,

$$
I^{\prime}(b)=\theta_{t_{b}, b}
$$

Proof

By Equation 65 ,

$$
I(b)=f_{t_{b}}^{*}(b)
$$

thus,

$$
I^{\prime}(b)=\frac{d f_{t_{b}}^{*}(b)}{d b}
$$

$$
\begin{aligned}
& =\left.f_{t}^{*}(b)\right|_{t_{b}} \frac{d t_{b}}{d b}+\left(f_{t_{b}}^{*}\right)^{\prime}(b) \\
& =0+\left(f_{t_{b}}^{*}\right)^{\prime}(b) \\
& =\left(f_{t_{b}}^{*}\right)^{\prime}(b) \\
& =\theta_{t_{b}, b}
\end{aligned}
$$

where the thrrd equality follows from the fact that $\left(t_{b}, f_{t_{b}}^{*}(b)\right)$ is a local minmum point The last equality follows from Lemma 7

The implications of Lemmas 3 to 8 can be summarised by the following diagram, where we have assumed for the purposes of illustration that $I(b)$ is concave (Diagram Over-leaf)

Figure 6-1 illustration

The next Lemma tells us that $\frac{\partial \theta_{t, b}}{\partial b}>0$ for all b When we combine that with Lemma 10 we see that the sign of $I^{\prime \prime}(b)=\frac{d \theta_{t(b), b}}{d b}$ depends on $f^{\prime}\left(t(b), \theta_{t, b} \frac{d t(b)}{d b}\right.$

Lemma 9 Let $f(t, \theta)$ be defined as in Definition 9 and $\theta_{t, b}$ be defined as in Defintiton 7 be the unique finte θ such that $f^{\prime}(t, \theta)=b$ for all b on some interval Let $f^{\prime \prime}\left(t, \theta_{t, b}\right)>$ 0 on this interval Then,

$$
\frac{\partial \theta_{t, b}}{\partial b}=1 / f^{\prime \prime}\left(t, \theta_{t, b}\right)
$$

Proof

We have $f^{\prime}\left(t, \theta_{t, b}\right)=b$ Thus, differentiating both sides of this equation wr $\mathrm{t} b$ gives,

$$
f^{\prime \prime}\left(t, \theta_{t, b}\right) \frac{\partial \theta_{t, b}}{\partial b}=1
$$

and the result follows

Lemma 10 Let $f(t, \theta)$ be defined as in Definıtion 9 and $\theta_{t, b}$ be defined as in Definttion 7 Then,

$$
\frac{\partial \theta_{t, b}}{\partial t}=-\frac{f^{\prime}\left(t, \theta_{t, b}\right)}{f^{\prime \prime}\left(t, \theta_{t, b}\right)}
$$

Proof

we prove this as follows,

$$
\frac{\partial^{2}\left(f^{*}\right)(t, b)}{\partial t \partial b}=\frac{\partial \theta_{t, b}}{\partial t}
$$

Hence under the assumption,

$$
\frac{\partial^{2}\left(f^{*}\right)(t, b)}{\partial b \partial t}=\frac{\partial \theta_{t, b}}{\partial t}
$$

But

$$
f_{t}^{*}(b)=b \theta_{t, b}-f\left(t, \theta_{t, b}\right)
$$

hence,

$$
\begin{aligned}
\frac{\partial\left(f^{*}\right)(t, b)}{\partial t} & =b \frac{\partial \theta_{t, b}}{\partial t}-f^{\prime}\left(t, \theta_{t, b}\right) \frac{\partial \theta_{t, b}}{\partial t}-f\left(t, \theta_{t, b}\right) \\
& =b \frac{\partial \theta_{t, b}}{\partial t}-b \frac{\partial \theta_{t, b}}{\partial t}-f\left(t, \theta_{t, b}\right) \\
& =-f\left(t, \theta_{t, b}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\frac{\partial^{2}\left(f^{*}\right)(t, b)}{\partial b \partial t} & =-\frac{\partial f\left(t, \theta_{t, b}\right)}{\partial b} \\
& =-f^{\prime}\left(t, \theta_{t, b}\right) \frac{\partial \theta t, b}{\partial b}
\end{aligned}
$$

Which by Lemma 9 gives,

$$
\frac{\partial^{2}\left(f^{*}\right)(t, b)}{\partial b \partial t}=-\frac{f^{\prime}\left(t, \theta_{t, b}\right)}{f^{\prime \prime}\left(t, \theta_{t, b}\right)}
$$

Hence we have the result

6.3.3 Theorems

Recall that the Shape function is defined in terms of the Legendre Fenchel transform of the cumulant generating function of the workload process by [20],

$$
I(b)=\operatorname{mif}_{t>0} t \lambda_{t}^{*}(b / t)
$$

Which can be rewritten as,

$$
I(b)=\operatorname{mff}_{t>0} f_{t}^{*}(b)
$$

Where f is defined as in definition 9 We will now prove three new results for the Shape function for the case where the workload process has non-negatively associated and stationary increments These follow very simply from the definition of the Legendre Fenchel transform, the definition of the Shape function, the Sub-additivity Theorem and a simple consequence of the Sub-additivity Theorem We prove that in the case of non-negatively associated and stationary workload increments the Shape function will be sub-additive and as a consequence a certain limit exists and further that the shape function cannot be convex on any interval which contains the origin

We do not use these results again, but they are included here because they follow simply from definitions and are quite general

It was proved in [20] that for workload processes with non-negatively assoclated and stationary increments $\nu=-\lim _{t \rightarrow \infty} t \lambda(t, \theta)$ is non-negative, to this we now add,

Theorem 4 Let the increments of the workload processes W_{t}^{L} be non-negatively assocıated and stationary Let $f(t, \theta)$ be defined as in Definition 9 Let $f_{t}^{*}(b)$ be tts Legendre transform Then $I(b)$ is sub-addıtıve $\imath e$ the following conclusıon holds

$$
I\left(b_{1}+b_{2}\right) \leq I\left(b_{1}\right)+I\left(b_{2}\right)
$$

for all $b_{1}, b_{2} \geq 0$
Proof
Firstly

$$
f\left(t_{1}+t_{2}, \theta\right) \geq f\left(t_{1}, \theta\right)+f\left(t_{2}, \theta\right) \text { for all } t_{1}, t_{2} \geq 0
$$

thus,

$$
\begin{aligned}
\left(b_{1}+b_{2}\right) \theta-f\left(t_{1}+t_{2}, \theta\right) & \leq\left(b_{1}+b_{2}\right) \theta-f\left(t_{1}, \theta\right)-f\left(t_{2}, \theta\right) \\
& =b_{1} \theta-f\left(t_{1}, \theta\right)+b_{2} \theta-f\left(t_{2}, \theta\right) \text { for all } b, \theta>0
\end{aligned}
$$

By Lemma 5 ,

$$
\sup _{\theta>0}\{b \theta-f(\bar{t}, \theta)\}=\sup _{\theta}\{b \theta-f(t, \theta)\}
$$

thus,

$$
\begin{aligned}
\sup _{\theta}\left\{\left(b_{1}+b_{2}\right) \theta-f\left(t_{1}+t_{2}, \theta\right)\right\} & \leq \sup _{\theta}\left\{b_{1} \theta-f\left(t_{1}, \theta\right)+b_{2} \theta-f\left(t_{2}, \theta\right)\right\} \\
& \leq \sup _{\theta}\left\{b_{1} \theta-f\left(t_{1}, \theta\right)\right\}+\sup _{\theta}\left\{b_{2} \theta-f\left(t_{2}, \theta\right)\right\}
\end{aligned}
$$

and hence,

$$
f_{t_{1}+t_{2}}^{*}\left(b_{1}+b_{2}\right) \leq f_{t_{1}}^{*}\left(b_{1}\right)+f_{t_{2}}^{*}\left(b_{2}\right)
$$

Then, by Lemma 3

$$
\begin{aligned}
\operatorname{mff}_{t>0} f_{t}^{*}\left(b_{1}+b_{2}\right) & =\operatorname{mf}_{\left\{t_{1}>0, t_{2}>0\right\}} f_{t_{1}+t_{2}}^{*}\left(b_{1}+b_{2}\right) \\
& \leq \min _{\left\{t_{1}, t_{2}>0\right\}}\left(f_{t_{1}}^{*}\left(b_{1}\right)+f_{t_{2}}^{*}\left(b_{2}\right)\right) \\
& =\inf _{t_{1}>0} f_{t_{1}}^{*}\left(b_{1}\right)+\operatorname{mnf}_{t_{2}>0} f_{t_{2}}^{*}\left(b_{1}\right)
\end{aligned}
$$

with the last equality due to Lemma 3 , that is $f_{t}^{*}(b) \geq 0$ Thus,

$$
I\left(b_{1}+b_{2}\right) \leq I\left(b_{1}\right)+I\left(b_{2}\right)
$$

This result tells us something about the shape of the Shape Function as Theorem 7 will show Note that we have equality here for stationary and non-associated arrivals since in that case

$$
f\left(t_{1}+t_{2}, \theta\right)=f\left(t_{1}, \theta\right)+f\left(t_{2}, \theta\right)
$$

But,

$$
I\left(b_{1}+b_{2}\right)=I\left(b_{1}\right)+I\left(b_{2}\right)
$$

Imphes,

$$
I(b)=b I(1)
$$

by a result due to Cauchy Further

$$
f\left(t_{1}+t_{2}, \theta\right)=f\left(t_{1}, \theta\right)+f\left(t_{2}, \theta\right)
$$

the same result of Cauchy also implies,

$$
\begin{aligned}
f(t, \theta) & =t f(1, \theta) \\
& =t \lambda_{1}(\theta)
\end{aligned}
$$

which imples,

$$
\begin{aligned}
\lambda_{t}(\theta) & =\lambda_{1}(\theta) \\
& =\lambda(\theta)
\end{aligned}
$$

which m turn implies,

$$
\begin{aligned}
I(1) & =\operatorname{mff}_{t>0} \lambda^{*}(1 / t) \\
& =\gamma
\end{aligned}
$$

Thus we can say,
Theorem 5 Let the increments of the workload processes W_{t}^{L} over disjoint time intervals be stationary and non-assocuated Then the the following conclusion holds

$$
\begin{aligned}
I(b) & =b I(1) \\
& =b \gamma
\end{aligned}
$$

Theorem 6 Let the increments of the workload processes W_{t}^{L} over disjoint time intervals be stationary and non-negatively assoczated Then the the followng conclusion holds

$$
\lim _{b \rightarrow \infty} \frac{I(b)}{b} \text { extsts }
$$

and,

$$
\lim _{b \rightarrow \infty} \frac{I(b)}{b}=\operatorname{mf}_{b>0} \frac{I(b)}{b}
$$

Proof

By Theorem 4

$$
I\left(b_{1}+b_{2}\right) \leq I\left(b_{1}\right)+I\left(b_{2}\right)
$$

for all $b_{1}, b_{2} \geq 0$ Then the exsstence of the limit and its equality with the infimum follows from the sub-additivity theorem (Lemma 6111 of [21])

Theorem 7 Let the increments of the workload processes W_{t}^{L} over disjoint time intervals be non-negatively associated and statıonary Let $I(b)$ be defined as in Definitıon 10 Let $I(0)=0 \quad$ Let K be an interval on the real line containing zero Then

$$
I(b) \text { cannot be convex on } K
$$

Proof of Theorem

By Theorem 4 ,

$$
I\left(b_{1}+b_{2}\right) \leq I\left(b_{1}\right)+I\left(b_{2}\right)
$$

for all $b_{1}, b_{2} \geq 0$, wrth equality of ether b_{1} or b_{2} are zero Hence,

$$
I\left(b_{1}+b_{2}\right)-I\left(b_{1}\right) \leq I\left(b_{2}\right)
$$

for all $b_{1}, b_{2} \geq 0$ Hence, since $I(0)=0$ we have,

$$
I\left(b_{1}+b_{2}\right)-I\left(b_{1}\right) \leq I\left(b_{2}\right)-I(0)
$$

for all $b_{1}, b_{2} \geq 0$ Thus,

$$
\frac{I\left(b_{1}+b_{2}\right)-I\left(b_{1}\right)}{b_{2}} \leq \frac{I\left(b_{2}\right)-I(0)}{b_{2}}
$$

for all $b_{1} \geq 0$ and $b_{2}>0$. Thus,

$$
\lim _{b_{2} \rightarrow 0} \frac{I\left(b_{1}+b_{2}\right)-I\left(b_{1}\right)}{b_{2}} \leq \lim _{b_{2} \rightarrow 0} \frac{I\left(b_{2}\right)-I(0)}{b_{2}}
$$

for all $b_{1} \geq 0$ and hence,

$$
I^{\prime}\left(b_{1}\right) \leq I^{\prime}(0)
$$

for all $b_{1} \geq 0$.
Hence,

$$
I(b) \text { is not convex on } K \text {. }
$$

This concludes this section devoted to more general discussion of the shape function. In the next section we will return to the shape function for the cell level model.

6.4 The Shape function for the cell level model

We intend, for reasons outlined in Subsection 6.4.1, to look at the behaviour of the cell level model as we scale the number of sources L and the packetization period s while keeping the traffic characteristics constant. In order to do this we rescale the time scale on which the multiplexer operates so that it operates on a scale that is proportional to L. We calculate the cumulant generating function for the time rescaled workload process and from this we plot the Shape function. We then use the Shape function to plot a graph of an approximation to $\log \mathbf{P}\left[q^{L} \geq b\right]$ against b for finite L.

6.4.1 Time rescaling

In applications s, the packetization period, is expected to be very large as the transmission rate of the multiplexer is much faster than the the sampling rate of the individual sources during periods of speech activity. The number of multiplexed sources L will also be large. Thus we are interested in the behaviour of the cell level model for very large s and L. Again we have $s=\sigma L$ for some fixed σ, we have $1-\beta=\tau / L$ for some fixed τ and we have α independent of L. Then the mean burst
period length is,

$$
\frac{s}{1-\alpha}=\frac{L \sigma}{1-\alpha}
$$

measured in units of the multiplexer transmission period The mean silence length is

$$
\frac{1}{1-\beta}=\frac{L}{\tau}
$$

also measured m units of the multiplexer transmission penod Both the mean burst period length and the mean silence length are thus invariant (mdependent of L) on a time scale which is proportional to $L[22]$ Rescaling the time in this manner is equivalent to reducing the multiplexer transmission period or scaling the service rate proportional to L If we double the size of the superposition the server operates twice as fast As before the offered load is independent of L The characteristics of the arrivals from each indıvidual source are kept constant modulo discretisation wrt as is the offered load but the service rate or transmission capacity increases proportional to L For example, in the simulations of Corcoran [9] the actual mean burst period length is maintained at 352 ms , the actual mean silence length then depends on the offered load only, and with an offered load of 082 the mean slence length is roughly invariant as L is scaled, varying between 712 and 739 ms over the range of values of L used in the simulation

We are interested in the the behaviour of the cell level model as we scale L, keeping the traffic constant The ratio of the source sampling period to the multiplexer transmission period, the transmission capacity (server speed) and the size of the superposition are all scaled For the model this means that the single source arrivals process A_{t}^{L} is replaced by the time rescaled process $A_{L t}^{L}$ which is convergent m distrıbution to some process A_{t} as $L \rightarrow \infty$ Large L scaling limits were first investigated for modulated fluid processes by Weiss [24] and time rescaled renewal processes were studied by Sriram and Whitt [11] What does Theorem 3 mean in the case of the time rescaled arrival process? Well for a given superposition size L the single source reversed arrival process is A_{t}^{L} We define $A_{0}^{L}=0$ The service rate is r which in the case of the cell level model is 1 The superposition of L independent copies of the arrivals generated by each source is denoted by $\sum_{L} A_{t}^{L}$ Then the queue length at
time 0 is,

$$
q^{L}=\sup _{t \geq 0}\left(\sum_{L} A_{t}^{L}-r t\right)
$$

This is invariant under time rescaling where we replace t by $L t$, thus,

$$
q^{L}=\sup _{t \geq 0}\left(\sum_{L} A_{L t}^{L}-r L t\right)
$$

Hence we have,

$$
\begin{aligned}
\mathbf{P}\left[q^{L}>L b\right] & =\mathbf{P}\left[\sup _{t \geq 0}\left(\sum_{L} A_{L t}^{L}-r L t\right)>L b\right] \\
& =\mathbf{P}\left[\bigcup_{t \geq 0}\left\{\sum_{L} A_{L t}^{L}-r L t>L b\right\}\right]
\end{aligned}
$$

For large L the probability of each event in the union becomes exponentially small in L. Hence the probability of the union is dominated by the largest probability among the events of the union. Thus,

$$
\mathbf{P}\left[q^{L}>L b\right] \approx \sup _{t \geq 0} \mathbf{P}\left[\sum_{L} A_{L t}^{L}-r L t>L b\right]
$$

Now for any fixed t the single source arrival processes are mutually independent. Thus by Chernoff's theorem [4] we have for large L,

$$
\mathbf{P}\left[\sum_{L} A_{L t}^{L}-r L t>L b\right] \approx \inf _{\theta>0} e^{-\theta L b} \mathbf{E}\left[e^{\theta\left(A_{L t}^{L}-r t\right)}\right]^{L}
$$

Define the cumulant generating function $\lambda_{t}^{L}(\theta)$ by,

$$
\lambda_{t}^{L}(\theta)=\frac{1}{t} \log \mathrm{E}\left[e^{\theta\left(A_{L t}^{L}-r t\right)}\right]
$$

Then we can write,

$$
\mathbf{P}\left[\sum_{L} A_{L t}^{L}-r L t>L b\right] \approx e^{-L\left(t \lambda_{t}^{L}\right)^{*}(b)}
$$

Thus,

$$
\mathbf{P}\left[q^{L}>L b\right] \approx e^{-L \inf _{t \geq 0}\left(t \lambda_{t}^{L}\right)^{*}(b)}
$$

Now $A_{L t}^{L}$ approximates A_{t} for large L hence $\lambda_{t}^{L}(\theta)$ approximates $\lambda_{t}(\theta)=\frac{1}{t} \log \mathrm{E}\left[e^{\theta\left(A_{t}-r t\right)}\right]$ for large L. This is made rigourous in Theorem 3 by requiring that,

$$
\begin{aligned}
\lambda_{t}(\theta) & =\lim _{L \rightarrow \infty} \lambda_{t}^{L}(\theta) \\
\lambda(\theta) & =\lim _{t \rightarrow \infty} \lambda_{t}(\theta)
\end{aligned}
$$

This explains the basis of Theorem 3 for the case of the time rescaled process [22].

6.4.2 The Time Rescaled Cell level Model

The limiting reversed arrival process A_{t} for a single source has bursts of periodic arrivals separated by a fixed period σ The number of arrivals in a burst is geometrically distrıbuted with mean $\frac{1}{1-\alpha}$ Bursts are separated by exponentially distributed slences with mean length $\frac{1}{\tau}$ The arrival process A_{t} is a function of the contmnuous time Markov process X_{t} The process X_{t} has state space $E=[0, \sigma) \times\{\sigma\}$ The process X_{t} moves determimstically at unit rate from σ to 0 From 0 it jumps to σ, from where with probability α it moves as before to 0 Alternatively upon reaching σ from 0 it can with probability $1-\alpha$ remain at σ for an exponentially distributed time with mean $\frac{1}{\tau}$ The arrival process A_{t} is incremented by one arrvval each time X_{t} passes through the state 0 [22] Thus we write,

$$
X_{t}=\min \{\sigma, \text { time to next arrival }\}
$$

We will define $\rho=\frac{1}{\sigma+\frac{1-\alpha}{\tau}}$
The kernel for the limiting rescaled Markov process X_{t} is,

$$
\mathbf{P}_{t}(x, d y)=\left\{\begin{array}{cc}
(1-\alpha) e^{-\tau(t-x)} \delta_{\sigma}(d y)+(1-\alpha) \tau e^{-\tau(t-x-\sigma+y)} d y+\alpha \delta_{\sigma-t+x}(d y) & 0 \leq x<t \\
\delta_{x-t}(d y) & \sigma>x \geq t \\
e^{-\tau t} \delta_{\sigma}(d y)+\tau e^{-\tau(t-\sigma+y)} d y & x=\sigma
\end{array}\right.
$$

This has stationary measure,

$$
\mathbf{Q}(d x)=\rho\left(d x+\frac{(1-\alpha)}{\tau} \delta_{\sigma}(d x)\right)
$$

Where $d x$ is the Lebesgue measure on $[0, \sigma)$ and δ_{σ} is the unt measure at $\{\sigma\}$ This is the unique distribution on $[0, \sigma]$ which governs the steady state to which $\left\{X_{t}\right\}$ tends That this is the stationary distribution is verfied by the following The defining equation for the stationary measure is,

$$
\begin{equation*}
\int_{0}^{\sigma} \mathbf{P}_{t}(x, d y) \mathbf{Q}(d x)=\mathbf{Q}(d y) \tag{615}
\end{equation*}
$$

We will wrate $U_{\{a, b\}}(d x)$ for the unform measure on $[a, b]$ with density 1 i e $U(A)=$ $\int_{A} 1 d x$ for $A \subset[a, b]$ Putting our expression for $\mathbf{Q}(d x)$ (up to a multiplicative
constant) into this equation 615 we have,

$$
\begin{aligned}
\frac{1}{\rho} \int_{x} \mathbf{P}_{t}(x, d y) \mathbf{Q}(d x) & =\int_{x} \mathbf{P}_{t}(x, d y)\left(d x+\frac{(1-\alpha)}{\tau} \delta_{\sigma}(d x)\right. \\
& \left.=\int_{0}^{\sigma} \mathbf{P}_{t}(x, d y) d x+\frac{(1-\alpha)}{\tau} \int_{x} \mathbf{P}_{t}(x, d y) \delta_{\sigma}(d x)\right)
\end{aligned}
$$

The first term here is,

$$
\begin{aligned}
\int_{0}^{\sigma} \mathbf{P}_{t}(x, d y) d x= & \int_{0}^{t}\left((1-\alpha) e^{-\tau(t-x)} \delta_{\sigma}(d y)+(1-\alpha) \tau e^{-\tau(t-x-\sigma+y)} d y+\alpha \delta_{\sigma-t+x}(d y)\right) d x \\
& +\int_{t}^{\sigma} \delta_{x-t}(d y) d x \\
= & \left.\frac{(1-\alpha)}{\tau} e^{-\tau(t-x)} \delta_{\sigma}(d y)\right|_{x=0} ^{t}+\left.(1-\alpha) e^{-\tau(t-x-\sigma+y)} d y\right|_{x=0} ^{y-\sigma+t}+\alpha U_{\{\sigma-t, \sigma\}}(d y) \\
& +U_{\{0, \sigma-t\}}(d y) \\
= & \frac{(1-\alpha)}{\tau} \delta_{\sigma}(d y)-\frac{(1-\alpha)}{\tau} e^{-\tau t} \delta_{\sigma}(d y)+(1-\alpha) U_{\{\sigma-t, \sigma\}}(d y) \\
& -(1-\alpha) e^{-\tau(t-\sigma+y)} d y \\
& +\alpha U_{\{\sigma-t, \sigma\}}(d y)+U_{\{0, \sigma-t\}}(d y)
\end{aligned}
$$

The second term is,

$$
\left.\frac{(1-\alpha)}{\tau} \int_{x} \mathbf{P}_{t}(x, d y) \delta_{\sigma}(d x)\right)=\frac{(1-\alpha)}{\tau} e^{-\tau t} \delta_{\sigma}(d y)+(1-\alpha) e^{-\tau(t-\sigma+y)} d y
$$

Combining the two we get,

$$
\begin{aligned}
\frac{1}{\rho} \int_{0}^{\sigma} \mathbf{P}_{t}(x, d y) \mathbf{Q}(d x) & =\int_{0}^{\sigma} \mathbf{P}_{t}(x, d y) d x+\frac{(1-\alpha)}{\tau} \int_{x} \mathbf{P}_{t}(x, d y) \delta_{\sigma}(d x) \\
& =\frac{(1-\alpha)}{\tau} \delta_{\sigma}(d y)+(1-\alpha) U_{\{\sigma-t, \sigma\}}(d y)+U_{\{0, \sigma-t\}}(d y)+\alpha U_{\{\sigma-t, \sigma\}}(d y) \\
& =d y+\frac{1-\alpha}{\tau} \delta_{\sigma}(d y) \\
& =\frac{1}{\rho} \mathbf{Q}(d y)
\end{aligned}
$$

Thus,

$$
\int_{0}^{\sigma} \mathbf{P}_{t}(x, d y) \mathbf{Q}(d x)=\mathbf{Q}(d y)
$$

as required

6.4.3 Calculating The Cumulant Generating Function

In fact the arrival epochs of the process A_{t} form a delayed renewal process In other words, let T_{0} be the time of the first arrival (renewal) and let $\left\{S_{n}\right\}_{n \geq 1}$ be the times between successive arrivals, let $\left\{T_{n}\right\}_{n \geq 1}$ be the times of successive arrivals Then,

$$
T_{n}=T_{0}+\sum_{i=1}^{n} S_{i}
$$

and $\left\{T_{n}-T_{0}=\sum_{z=1}^{n} S_{\imath}\right\}_{n} \overbrace{1}$ is a Renewal process Renewal theory which we apply here is described in detail in $[25]$ We will give the label G to the distribution function of the time of the first arrival T_{0} And we will give the label F to the common distribution of $\left\{S_{n}\right\}_{n \geq 1}$ Then F will be given by,

$$
F(d t)=\alpha \delta_{\sigma}(d t)+(1-\alpha) \int_{0}^{\infty} \tau e^{-\tau y} \delta_{\sigma+y}(d t) d y
$$

We do not immediately have an expression for G but we can derive it from the distribution of T_{0} conditioned on the initial state of the underlying Markov Process X For this distribution which we will call G_{x} we have,

$$
G_{x}(d t)=\delta_{x}(d t) \delta_{x}((0, \sigma))+\delta_{x}(\{\sigma\}) \int_{0}^{\infty} \tau e^{-\tau y} \delta_{\sigma+y}(d t) d y
$$

From this we can derive G as follows Recall that the stationary distribution of the Markov process X is,

$$
Q(d x)=\rho d x+\rho \frac{(1-\alpha)}{\tau} \delta_{\sigma}(d x)
$$

Thus the distribution of T_{0} is,

$$
G(d t)=\int_{0}^{\infty} G_{x}(d t) Q(d x)
$$

Thus,

$$
\begin{aligned}
G(d t) & =\rho \int_{0}^{\sigma} G_{x}(d t) d x+\rho \frac{(1-\alpha)}{\tau} \int_{0}^{\sigma} G_{x}(d t) \delta_{\sigma}(d x) \\
& =\rho \delta_{t}((0, \sigma)) d t+\rho \frac{(1-\alpha)}{\tau} G_{\sigma}(d t)
\end{aligned}
$$

We can now derive an expression for the distribution function G as follows,

$$
\begin{aligned}
G(t) & =\int_{0}^{t} G(d y) \\
& =\rho \int_{0}^{t} \delta_{y}((0, \sigma)) d y+\rho \frac{(1-\alpha)}{\tau} \int_{0}^{t} G_{\sigma}(d y) \\
& =\rho t \delta_{t}((0, \sigma))+\rho \sigma \delta_{t}([\sigma, \infty))+\rho \frac{(1-\alpha)}{\tau} \int_{0}^{\infty} \tau e^{-\tau x} \int_{0}^{t} \delta_{\sigma+x}(d y) d x \\
& =\rho t \delta_{t}((0, \sigma))+\rho \sigma \delta_{t}([\sigma, \infty))+\rho \frac{(1-\alpha)}{\tau} \int_{0}^{\infty} \tau e^{-\tau x} \delta_{x}((0, t-\sigma)) \delta_{t}((\sigma, \infty)) d x \\
& =\rho t \delta_{t}((0, \sigma))+\rho \sigma \delta_{t}([\sigma, \infty))+\rho \frac{(1-\alpha)}{\tau}\left(1-e^{-\tau(t-\sigma)}\right) \delta_{t}((\sigma, \infty))
\end{aligned}
$$

Thus, we now have expressions for both G, the distribution of the time T_{0} to the first renewal, and F, the common distribution of the inter-renewal times $\left\{S_{n}\right\}_{n \geq 1}$ These are all we need to derive an expression for the cumulant generating function of the workload process W_{t}

Before that, we can prove that the arrival process A_{t} has stationary increments and constant renewal rate ρ To do this, we first calculate the mean inter-arrival time as follows,

$$
\begin{aligned}
\mathbf{E}\left[S_{n}\right] & =\int_{0}^{\infty} y F(d y) \\
& =\alpha \int_{0}^{\infty} y \delta_{\sigma}(d y)+(1-\alpha) \int_{0}^{\infty} \int_{0}^{\infty} \tau e^{-\tau t} \delta_{\sigma+t}(d y) d t \\
& =\alpha \sigma+(1-\alpha) \int_{0}^{\infty} \tau e^{-\tau t}(\sigma+t) d t \\
& =\alpha \sigma+(1-\alpha) \sigma+\frac{(1-\alpha)}{\tau} \\
& =\sigma+\frac{(1-\alpha)}{\tau} \\
& =\frac{1}{\rho}
\end{aligned}
$$

And we know $\frac{1}{\rho}<\infty$
We want an expression for $\mathbf{E}\left[A_{t}\right]$ We can write, A_{t} in terms of the renewal epochs $\left\{T_{n}\right\}_{n \geq 0}$ as follows,

$$
A_{t}=\sum_{n=0}^{\infty} I_{[0, t]}\left(T_{n}\right)
$$

and hence, we have the following expression for $\mathbf{E}\left[A_{t}\right]$ in terms of G and F,

$$
\mathbf{E}\left[A_{t}\right]=\sum_{n=0}^{\infty} \mathbf{P}\left[T_{n} \leq t\right]
$$

$$
=\sum_{n=0}^{\infty}\left(G \star F^{n}(t)\right)
$$

But this last expression can be rewritten as,

$$
\begin{aligned}
\sum_{n=0}^{\infty}\left(G \star F^{n}(t)\right) & =G+\sum_{n=1}^{\infty}\left(G \star F^{n}(t)\right) \\
& =G+\left(\sum_{n=1}^{\infty} F^{n}(t)\right) \star G \\
& =G+F \star\left(\sum_{n=0}^{\infty} F^{n}(t)\right) \star G \\
& =G+F \star \sum_{n=0}^{\infty}\left(G \star F^{n}(t)\right) \\
& =G+F \star \mathrm{E}\left[A_{t}\right]
\end{aligned}
$$

That is, $\mathbf{E}\left[A_{t}\right]$ satisfies, the renewal equation,

$$
\mathbf{E}\left[A_{t}\right]=G+F \star \mathbf{E}\left[A_{t}\right]
$$

or, on rearranging, we have for G,

$$
G=\mathbf{E}\left[A_{t}\right]-F \star \mathbf{E}\left[A_{t}\right]
$$

Thus we have $\mathrm{E}\left[A_{t}\right]=\rho t$ iff,

$$
G=\rho t-F \star \rho t
$$

And in fact this is easily proved as follows,

$$
\begin{aligned}
F \star \rho t & =\rho \int_{0}^{t}(t-x) F(d x) \\
& =\rho \int_{0}^{t}(t-x) \alpha \delta_{\sigma}(d x)+\rho \int_{0}^{t}(t-x)(1-\alpha) \int_{0}^{\infty} \tau e^{-\tau y} \delta_{\sigma+y}(d x) d y \\
& =\delta_{t}((\sigma, \infty))\left(\rho(t-\sigma) \alpha+\rho(1-\alpha) \int_{0}^{\infty}(t-\sigma-y) \tau e^{-\tau y} \delta_{y}((0, t-\sigma)) d y\right) \\
& =\rho(t-\sigma) \delta_{t}((\sigma, \infty))-\rho \delta_{t}((\sigma, \infty)) \frac{(1-\alpha)}{\tau}+\rho \delta_{t}((\sigma, \infty)) \frac{(1-\alpha)}{\tau} e^{-\tau(t-\sigma)}
\end{aligned}
$$

Thus we have,

$$
\begin{aligned}
\rho t-F \star \rho t & =\rho t-\rho\left((t-\sigma)-\frac{(1-\alpha)}{\tau}\left(1-e^{-\tau(t-\sigma)}\right)\right) \delta_{t}((\sigma, \infty)) \\
& = \begin{cases}\rho t & \text { for } t \leq \sigma \\
\rho \sigma+\rho \frac{(1-\alpha)}{\tau}\left(1-e^{-\tau(t-\sigma)}\right) & \text { for } t>\sigma\end{cases} \\
& =G(t)
\end{aligned}
$$

Thus we have proved,

$$
\begin{equation*}
\mathbf{E}\left[A_{t}\right]=\rho t \quad \text { for all } t \geq 0 \tag{616}
\end{equation*}
$$

Hence A_{t} has stationary increments and the renewal rate is constant
We return to calculating the cumulant generating function for the workload process In order to calculate the cumulant generating function we need the distribution of the arrivals process We can determine this distribution from the distributions of the renewal epochs First we will write $\left\{A_{t}=n\right\}$ in terms of renewal epoch events

$$
\begin{aligned}
\left\{A_{t}=n\right\} & =\left\{T_{n-1} \leq t, T_{n}>t\right\} \\
& =\left\{T_{n-1} \leq t\right\} \bigcap\left\{T_{n} \leq t\right\}^{c}
\end{aligned}
$$

But,

$$
\left\{T_{n} \leq t\right\} \subset\left\{T_{n-1} \leq t\right\}
$$

Hence the distribution of the arrivals process is, for $n \geq 1$

$$
\begin{aligned}
\mathbf{P}\left[A_{t}=n\right] & =\mathbf{P}\left[T_{n-1} \leq t\right]-\mathbf{P}\left[T_{n} \leq t\right] \\
& =G \star F^{n-1}(t)-G \star F^{n}(t) \\
& =F^{n-1} \star \rho t-2 F^{n} \star \rho t+F^{n+1} \star \rho t
\end{aligned}
$$

and for $n=0$,

$$
\begin{aligned}
\mathbf{P}\left[A_{t}=0\right] & =\mathbf{P}\left[T_{0}>t\right] \\
& =1-\mathbf{P}\left[T_{0} \leq t\right] \\
& =1-G(t) \\
& =1-\rho t+F \star \rho t
\end{aligned}
$$

These equations allow us to write the following expression for $\mathbf{E}\left[e^{\theta A_{t}}\right]$

$$
\mathbf{E}\left[e^{\theta A_{t}}\right]=1-\rho t+F \star \rho t+\sum_{n=1}^{[t / \sigma]-}\left(F^{n-1} \star \rho t-2 F^{n} \star \rho t+F^{n+1} \star \rho t\right) e^{\theta n}
$$

Where $F^{0} \star \rho t$ is defined to be ρt and $[t / \sigma]_{-}=\max \left\{m \in \mathbf{Z}^{+} \mid t / \sigma>m\right\}$

We have, then, the following expression for the cumulant generating function for the time rescaled workload process for the cell level model, with deterministic service rate of one cell per unit time

$$
\lambda_{t}(\theta)=\frac{1}{t} \log \left[1-\rho t+F \star \rho t+\sum_{n=1}^{[t / \sigma]-}\left(F^{n-1} \star \rho t-2 F^{n} \star \rho t+F^{n+1} \star \rho t\right) e^{\theta n}\right]-\theta
$$

It is then a simple matter to prove that,

$$
\begin{equation*}
\lambda_{t}(\theta)=\frac{1}{t} \log \left[1+\rho t\left(e^{\theta}-1\right)+\sum_{n=1}^{[t / \sigma]-} F^{n} \star \rho t e^{\theta(n-1)}\left(e^{\theta}-1\right)^{2}\right]-\theta \tag{617}
\end{equation*}
$$

Now we need only calculate $F^{n}(d x)$ and the convolution with ρt in order to find $\lambda_{t}(\theta)$ We use Laplace transforms to derive an expression for $F^{n}(d x)$ We will use the notation L [] for the Laplace transform

First we find the Laplace transform of the distribution F

$$
\begin{aligned}
\mathbf{L}[F] & =\int_{0}^{\infty} e^{-\beta x} F(d x) \\
& =\int_{0}^{\infty} e^{-\beta x}\left(\alpha \delta_{\sigma}(d x)+(1-\alpha) \int_{0}^{\infty} \tau e^{-\tau y} \delta_{\sigma+y}(d x) d y\right. \\
& =\alpha \int_{0}^{\infty} e^{-\beta x} \delta_{\sigma}(d x)+(1-\alpha) \int_{0}^{\infty} \int_{0}^{\infty} e^{-\beta x} \tau e^{-\tau y} \delta_{\sigma+y}(d x) d y
\end{aligned}
$$

The first term is,

$$
\alpha \int_{0}^{\infty} e^{-\beta x} \delta_{\sigma}(d x)=\alpha e^{-\beta \sigma}
$$

The second term is,

$$
\begin{aligned}
(1-\alpha) \int_{0}^{\infty} \int_{0}^{\infty} e^{-\beta x} \tau e^{-\tau y} \delta_{\sigma+y}(d x) d y & =(1-\alpha) \int_{0}^{\infty} \tau e^{-\beta(\sigma+y)} e^{-\tau y} d y \\
& =(1-\alpha) e^{-\beta \sigma} \tau \int_{0}^{\infty} e^{-(\tau+\beta) y} d y \\
& =(1-\alpha) e^{-\beta \sigma}\left(\frac{\tau}{\beta+\tau}\right)
\end{aligned}
$$

The two combined are,

$$
\mathbf{L}[F]=\left(\alpha+(1-\alpha)\left(\frac{\tau}{\beta+\tau}\right)\right) e^{-\beta \sigma}
$$

We now use the fact that the Laplace transform of a convolution is the product of the Laplace transforms, that is,

$$
\mathbf{L}\left[F^{n}\right]=(\mathrm{L}[F])^{n}
$$

Hence,

$$
\mathbf{L}\left[F^{n}\right]=\left(\alpha+(1-\alpha)\left(\frac{\tau}{\beta+\tau}\right)\right)^{n} e^{-n \beta \sigma}
$$

Then expanding binomially we get,

$$
\mathrm{L}\left[F^{n}\right]=\sum_{r=0}^{n}(r) \alpha^{n-\tau}(1-\alpha)^{r}\left(\frac{\tau}{\beta+\tau}\right)^{r} e^{-n \beta \sigma}
$$

We can rewrite this as,

$$
\mathbf{L}\left[F^{n}\right]=\alpha^{n} e^{-n \beta \sigma}+\sum_{r=1}^{n}(\stackrel{n}{r}) \alpha^{n-r}(1-\alpha)^{r}\left(\frac{\tau}{\beta+\tau}\right)^{r} e^{-n \beta \sigma}
$$

Now we need only take the inverse transform of this to find F^{n} We use the fact that the inverse transform of the sum is the sum of the inverse transforms And we again use the fact that the transform of a convolution is the product of the Laplace transforms to deduce that, the inverse transform of $\left(\frac{\tau}{\beta+\tau}\right)^{r} e^{-n \beta \sigma}$ is the convolution of the inverse transform of $\left(\frac{\tau}{\beta+\tau}\right)^{r}$ with the inverse transform of $e^{-n \beta \sigma}$ The inverse transform of $\left(\frac{\tau}{\beta+\tau}\right)^{r}$ is itself just the r-fold convolution of the inverse transform of $\left(\frac{\tau}{\beta+\tau}\right)$ with itself The inverse transform of $\left(\frac{\tau}{\beta+\tau}\right)$ has the density $\tau e^{-\tau x}$ and the r fold convolution of this with itself has the gamma density $\tau \frac{(\tau x)^{r-1}}{(r-1)^{1}} e^{-\tau x}$ The inverse Laplace transform of $e^{-n \beta \sigma}$ is the measure $\delta_{n \sigma}(d x)$ The convolution of this with $\tau \frac{(\tau x)^{r-1}}{(r-1)^{\prime}} e^{-\tau x} 1 \mathrm{~s}$,

$$
\int_{0}^{x} \tau \frac{(\tau(x-y))^{r-1}}{(r-1)^{\prime}} e^{-\tau(x-y)} \delta_{n \sigma}(d y)=\left\{\begin{array}{cc}
\tau \frac{(\tau(x-n \sigma))^{r-1}}{(r-1)^{\prime}} e^{-\tau(x-n \sigma)} & \text { for } x \geq n \sigma \\
0 & \text { otherwise }
\end{array}\right.
$$

Thus we have the following for the distribution F^{n},

$$
F^{n}(d x)=\delta_{x}((n \sigma, \infty)) \sum_{r=1}^{n}(r) \alpha^{n-r}(1-\alpha)^{r} \tau \frac{(\tau(x-n \sigma))^{r-1}}{(r-1)^{\prime}} e^{-\tau(x-n \sigma)} d x+\alpha^{n} \delta_{n \sigma}(d x)
$$

In order to calculate $\lambda_{t}(\theta)$ we need $F^{n} \star \rho t$ The convolution with a sum is just the sum of the convolutions, hence we need to get

$$
\int_{0}^{t} \delta_{x}((n \sigma, \infty)) \tau \frac{(\tau(x-n \sigma))^{r-1}}{(r-1)^{\prime}} e^{-\tau(x-n \sigma)} \rho(t-x) d x
$$

This is,

$$
\delta_{t}((n \sigma, \infty))\left(\int_{n \sigma}^{t} \tau \frac{(\tau(x-n \sigma))^{r-1}}{(r-1)^{\prime}} e^{-\tau(x-n \sigma)} \rho(t-x) d x\right)
$$

Which becomes after integration by parts, and some rearrangement,

$$
\delta_{t}((n \sigma, \infty)) \frac{\rho}{\tau} e^{-\tau(t-n \sigma)} \sum_{l=r+1}^{\infty} \frac{(\tau(t-n \sigma))^{l}}{l^{\prime}}(l-r)
$$

We also need,

$$
\int_{0}^{t} \rho(t-x) \alpha^{n} \delta_{n \sigma}(d x)
$$

Which is,

$$
\delta_{t}((n \sigma, \infty)) \alpha^{n} \rho(t-n \sigma)
$$

Putting the convolutions back into the sum we get,
$F^{n} \star \rho t=\delta_{t}((n \sigma, \infty))\left(\sum_{r=1}^{n}(r) \alpha^{n-r}(1-\alpha)^{r} \frac{\rho}{\tau} e^{-\tau(t-n \sigma)} \sum_{l=r+1}^{\infty} \frac{(\tau(t-n \sigma))^{l}}{l^{\prime}}(l-r)+\alpha^{n} \rho(t-n \sigma)\right)$
Which can be rewritten as,

$$
F^{n} \star \rho t=\delta_{t}((n \sigma, \infty))\left(\sum_{r=0}^{n}(r) \alpha^{n-\tau}(1-\alpha)^{r} \frac{\rho}{\tau} e^{-\tau(t-n \sigma)} \sum_{l=r+1}^{\infty} \frac{(\tau(t-n \sigma))^{l}}{l^{\prime}}(l-r)\right)
$$

We will write,

$$
b(n, r, \alpha)=\frac{n^{\prime}}{r^{\prime}(n-r)^{\prime}} \alpha^{n-r}(1-\alpha)^{r}
$$

Now we have the following expression for $\lambda_{t}(\theta)$ the cumulant generating function of the time rescaled workload process, $t \lambda_{t}(\theta)$ is,
$\log \left[1+\rho t\left(e^{\theta}-1\right)+\frac{\rho}{\tau} \sum_{n=1}^{[t / \sigma]-} \sum_{r=0}^{n} b(n, r, \alpha) e^{-\tau(t-n \sigma)} \sum_{l=r+1}^{\infty} \frac{(\tau(t-n \sigma))^{l}}{l^{l}}(l-r) e^{\theta(n-1)}\left(e^{\theta}-1\right)^{2}\right]-t \theta$

6.4.4 The Shape Function For The Time Rescaled Cell Level Model

We begin by using Equation $65[20]$ to find $I(0)$ for the cell level model For $t \leq \sigma$ we have,

$$
t \lambda_{t}(\theta)=\log \left[1+\rho t\left(e^{\theta}-1\right)\right]-\theta t
$$

Thus,

$$
\begin{aligned}
\Lambda_{t}(\theta) & =t \lambda_{t}(\theta / t) \\
& =\log \left[1+\rho t\left(e^{\theta / t}-1\right)\right]-\theta
\end{aligned}
$$

Thus we have,

$$
\begin{aligned}
\Lambda(\theta) & =\lim _{t \rightarrow 0} \Lambda_{t}(\theta) \\
& =\left\{\begin{array}{cc}
-\theta & \text { rf } \theta \leq 0 \\
+\infty & \text { if } \theta>0
\end{array}\right.
\end{aligned}
$$

Hence we have, the following for $I(0)$

$$
\begin{aligned}
I(0) & =\Lambda^{*}(0) \\
& =\sup _{\theta}\{-\Lambda(\theta)\} \\
& =\sup _{\theta \leq 0}\{\theta\} \\
& =0
\end{aligned}
$$

Next we will calculate the rate function $f_{t}^{*}(b)$ for $t \leq \sigma$ For $t \leq \sigma$ we have,

$$
f(t, \theta)=\log \left[1+\rho t\left(e^{\theta}-1\right)\right]-\theta t
$$

Recall,

$$
f_{t}^{*}(b)=\sup _{\theta}\{b \theta-f(t, \theta)\}
$$

Now $f(t, \theta)$ is convex as a function of θ, hence $b \theta-f(t, \theta)$ is concave as a function of θ Thus the supremum occurs for $\theta=\theta_{t, b}$ such that,

$$
f^{\prime}\left(t, \theta_{t, b}\right)=b
$$

For $t \leq \sigma$ this gives us,

$$
\frac{\rho t e^{\theta_{t, b}}}{1+\rho t\left(e^{\theta_{t, b}}-1\right)}=b+t
$$

which imples,

$$
\theta_{t, b}=\log \left[\frac{b+t}{\rho t}\right]-\log \left[\frac{1-(b+t)}{1-\rho t}\right]
$$

Then,

$$
f_{t}^{*}(b)=b \theta_{t, b}-f\left(t, \theta_{t, b}\right)
$$

Hence,

$$
f_{t}^{*}(b)=(b+t) \log \left[\frac{b+t}{\rho t}\right]+(1-(b+t)) \log \left[\frac{1-(b+t)}{1-\rho t}\right]
$$

The derivative of $f_{t}^{*}(b) \mathrm{wrt} t$ for $t \leq \sigma \mathrm{ls}$,

$$
f_{t}^{*}(b)=\log \left[\frac{b+t}{\rho t}\right]-\log \left[\frac{1-(b+t)}{1-\rho t}\right]-\frac{b}{t}-\frac{1-\rho(1-b)}{1-\rho t}
$$

Thus the second derivative of $f_{t}^{*}(b) \mathrm{wrt} t$ for $t \leq \sigma$ is,

$$
f_{t}^{*}(b)=\frac{b}{t^{2}}-\frac{b}{b t+t^{2}}+\frac{(1-\rho)^{2}+\rho^{2} b^{2}+2 \rho b(1-\rho)}{(1-(b+t))(1-\rho t)} s
$$

For $b+t<1$ this is positive Thus $f_{t}^{*}(b)$ is convex on ($\left.0, \sigma\right]$ But examples also show that $f_{t}^{*}(b)$ is not convex on $\left(0, t_{0}\right)$ as a function of t for $t_{0}>\sigma$ This is shown by Figures 6-2 and 6-3

In order to plot the shape function for a given set of parameter values we numercally determıne the $\operatorname{mff}_{t>0} f_{t}^{*}(b)$ for a range of values of b We do this by first fixing b and $t=\sigma$ then calculating $f_{t}^{*}(b)$ for these values of b and t Then we increment t by σ and repeat the procedure untıl we have found $\operatorname{mf}_{t>0} f_{t}^{*}(b)$ for the particular value of b We then increment b and repeat the whole procedure This is carried out by a program written in C The $\operatorname{mf}_{t>0} f_{t}^{*}(b)$ values are then plotted against the corresponding values of b giving us the graph of the shape function for these values and the model parameter values chosen The graph of the shape function for $\sigma=035696$, $\rho=085, \alpha=0995466$ and $\tau=000553175$ is shown in Figure 6-4 All graphs were plotted using "gnuplot" The graph of the approximation to $\log \mathbf{P}\left[q^{L}>b\right]$ obtained using the shape function plotted against b for these parameter values and $L=400$ is shown in Figure 6-5

Figure 6-2 The Legendre-Fenchel transform, $f_{t}^{*}(b)$, for $b=0015$ as a functıon of t

Figure 6-3 The Legendre-Fenchel transform, $f_{t}^{*}(b)$, for $b=0038$ as a functıon of t

Fıgure 6-4 The Shape function, $I(b)$

Figure 6-5 A plot of the approximation to $\log \mathbf{P}\left[q^{L}>b\right]$ obtained using the Shape function against b with $L=400$

Figure 6-6 A Plot of The steep portıon of fig 6-5

6.5 Economies of Scale

We mentioned in 6 9-6 12 that for a very large class of models the asymptotic form of the shape function I for large b is [20,22],

$$
\begin{equation*}
I(b) \approx \gamma b+\nu \tag{618}
\end{equation*}
$$

and that ν can be seen to determine the economes of scale [22] obtanable by multıplexing large numbers of sources through,

$$
\begin{align*}
\mathbf{P}\left[q^{L}>b\right] & \approx e^{-L I(b / L)} \\
& \approx e^{-\gamma b-L \nu} \tag{620}
\end{align*}
$$

For Markov Models it is possible to calculate ν in the following manner [20, 22], Each source is described by a Markov Process X_{t}, c is the service rate and arrival norements A_{t} are described by a famuly of transition kernels $P_{t}(x, d y \times d z)$, 1 e

$$
\begin{equation*}
P_{t}(x, Y \times Z)=\mathbf{P}\left[X_{t} \in Y, A_{t} \in Z \mid X_{0}=x\right] \tag{621}
\end{equation*}
$$

The transformed kernel $\hat{P}_{t}(\theta)$ is given by,

$$
\begin{equation*}
\hat{P}_{t}(x, d y, \theta)=\int_{z} P_{t}(x, d y \times d z) e^{\theta z} \tag{622}
\end{equation*}
$$

Then γ is the value of $\theta>0$ for which the largest eigenvalue of $\hat{P}_{1}(\theta)$ is 1 The value of ν is got from,

$$
\begin{equation*}
e^{\nu}=\frac{\int Q(d x) v(x) \int u(d x)}{\int u(d x) v(x)} \tag{623}
\end{equation*}
$$

where X_{t} the underlying Markov chan has stationary distribution $Q(d x)$ and u and v are respectively the left elgenmeasure and right eigenfunction of $\hat{P}_{1}(\theta)$ with eigenvalue 1 [22]

6.5.1 Calculating ν and γ for the rescaled cell level model

Firstly for the rescaled cell level model the arrival increment A_{t} for $t \leq \sigma$ is a deterministic function of X_{t} and X_{0} In fact it is a deterministic function of t and X_{0} Thus for $t \leq \sigma$ the kernel $P_{t}(x, Y \times Z)$ is,

$$
\begin{equation*}
P_{t}(x, d y \times d z)=P_{t}(x, d y) \delta_{h_{t}(x)}(d z) \tag{624}
\end{equation*}
$$

where h is the deterministic function We have,

$$
h_{t}(x)= \begin{cases}1-t & \text { if } t \geq x \text { and } x \neq 0 \tag{625}\\ -t & \text { if } t \leq x \\ -t & \text { if } x=\sigma \text { or } 0\end{cases}
$$

Thus the transformed kernel is,

$$
\begin{align*}
\hat{P}_{t}(x, d y, \theta) & =\int_{z} P_{t}(x, d y) \delta_{h_{t}(x)}(d z) e^{\theta z} \tag{626}\\
& =P_{t}(x, d y) e^{\theta h_{t}(x)} \tag{627}
\end{align*}
$$

and this is just,

$$
\hat{P}_{t}(x, d y, \theta)= \begin{cases}P_{t}(x, d y) e^{\theta(1-t)} & \text { if } t \geq x \text { and } x \neq 0 \tag{628}\\ P_{t}(x, d y) e^{-\theta t} & \text { if } t \leq x \\ P_{t}(x, d y) e^{-\theta t} & \text { if } x=\sigma \text { or } 0\end{cases}
$$

Now the nght eigenfunction v and left elgenmeasure u with elgenvalue 1 of $P_{1}(\theta)$ are the right eigenfunction and left elgenmeasure of $P_{t}(\theta)$ because convolution preserves such night eigenfunctions and left eigenmeasures thus, we need only solve,

$$
\begin{equation*}
\int_{x} u(d x) P_{t}(x, d y) e^{\theta h_{t}(x)}=u(d y) \tag{629}
\end{equation*}
$$

to find u and,

$$
\begin{equation*}
\int_{x} v(y) P_{t}(x, d y) e^{\theta h_{t}(x)}=v(x) \tag{630}
\end{equation*}
$$

to find v
So let $u(d x)=e^{\gamma x} d x+k_{1} \delta_{\sigma}(d x)$ and let $v(y)=\left(e^{-\gamma y}, k_{2}\right)$ on $[0, \sigma) \times\{\sigma\} \quad$ Then performing the integration and equating the relevant sides we can solve for k_{1} and k_{2} This gives us, for u,

$$
\begin{equation*}
k_{1}=e^{\gamma} \frac{1-\alpha}{\gamma+\tau} \tag{631}
\end{equation*}
$$

and, for v,

$$
\begin{equation*}
k_{2}=\frac{\gamma e^{-\gamma \sigma}}{\gamma+\tau} \tag{632}
\end{equation*}
$$

and further we find, in solving for u that,

$$
\begin{equation*}
e^{\gamma(1-\sigma)}\left(\frac{1-\alpha}{\gamma+\tau}+\alpha\right)=1 \tag{633}
\end{equation*}
$$

which we recall is Equation 44 where $L \rightarrow \infty$ and $\gamma(L) \rightarrow \gamma$ Thus for u we have,

$$
\begin{equation*}
u(d x)=e^{\gamma x} d x+e^{\gamma} \frac{1-\alpha}{\gamma+\tau} \delta_{\sigma}(d x) \tag{634}
\end{equation*}
$$

and for v we have,

$$
\begin{equation*}
v(y)=\left(e^{-\gamma y}, \frac{\gamma e^{-\gamma \sigma}}{\gamma+\tau}\right) \tag{635}
\end{equation*}
$$

Thus for ν we now have,

$$
\begin{equation*}
e^{-\nu}=\frac{\int Q(d x) v(x) \int u(d x)}{\int u(d x) v(x)} \tag{636}
\end{equation*}
$$

putting u and v into this equation gives us,

$$
\begin{equation*}
e^{-\nu}=\frac{1}{\gamma^{2}} \frac{e^{\gamma}-1}{\sigma+\frac{1-\alpha}{\tau}} \frac{(\gamma+\tau)(\alpha \gamma+\tau)}{(1-\alpha) \tau+\sigma} \tag{637}
\end{equation*}
$$

Chapter 7

Conclusions and Suggestions for

Future Study

In this chapter we give our conclusions from the work described in this thesis, and discuss future work that could be undertaken We divide this chapter according to the chapters of the thesis itself

7.1 Conclusions

7.1.1 The Models

We have studied a new model for packetized voice traffic which we have called the cell level model The model consists of the homogeneous superposition of the traffic generated by L independent sources The traffic from each source is modelled by a Markov Chain with a finte state space The states form an irreducible closed set and are recurrent non-null aperiodic (ergodic) having as a result a unique stationary distribution The only assumptions we make about the traffic from a single source is that the duration of talk spurts and in active periods are both exponentially distributed (an assumption made by others [10]) and that as a result bursts and silences are geometrically distributed The model is thus a very accurate representation of packetized voice traffic from a single source We also mention a model that has been studied previously by Buffet and Duffield [3] which is simpler than the cell
level model and which is called the block level model and we point out where the connection between the two models breaks down

7.1.2 The Effective Bandwidth Approximation

We calculated approximations to the decay constant γ of the effective bandwidth approximations [2]

$$
\mathbf{P}[q \geq b] \approx e^{-\gamma b}
$$

for each of the cell level and block level models labeling the two resulting constants $\gamma_{\text {Cell }}$ and $\gamma_{\text {Block }}$ respectively We showed that,

$$
\begin{equation*}
\gamma_{\text {Block }}>\gamma_{\text {Cell }} \tag{71}
\end{equation*}
$$

and can conclude from this that the upper bound on buffer overflow obtained from the block level effective bandwidth approximation is less conservative than that obtained from the cell level effective bandwidth approximation $1 e$ the former upper bound could underestımate the probability of buffer overflow obtained using the latter upper bound

7.1.3 An Upper Bound Via Martingales

We proved an upper bound can be obtaned of the form,

$$
\mathbf{P}[q \geq b] \leq \phi e^{-b \gamma}
$$

on the tail of the queue length distribution for the queue in an infinite buffer When the workload process is a Markov Addıtive Process (MAP). The cell level model workload process has increments which are controlled by an underlying Markov Process and it is an example of a MAP We calculated the prefactor ϕ for the cell level model and showed that,

$$
\phi=e^{\gamma}\left(e^{-\gamma \sigma} e^{2 \gamma / L} \frac{1}{\left(\frac{L\left(e^{\gamma / L}-1\right)}{\tau}+1\right)}\right)^{3}\left(\frac{\left(\sigma+\frac{e^{\gamma(\sigma-1-1 / L)}-1}{L}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)+\frac{1-\alpha}{\tau}}{\sigma+\frac{1-\alpha}{\tau}}\right)^{L}
$$

and we showed that asymptotically in L,

$$
\begin{align*}
\lim _{L \rightarrow \infty} \frac{1}{L} \log \phi & =\log \left(\frac{\sigma\left(1+\frac{\gamma}{\tau}\right)+\frac{1-\alpha}{\tau}}{\sigma+\frac{1-\alpha}{\tau}}\right) \tag{72}\\
& >0 \tag{73}
\end{align*}
$$

From which we conclude that for large L the bound,

$$
\begin{equation*}
\mathbf{P}\left[q^{L} \geq b\right] \leq \phi e^{-\gamma b} \tag{74}
\end{equation*}
$$

does not exhibit the economies of scale seen for example in the upper bound obtained using a different Martıngale for the block level model by Buffet and Duffield [3] These economies of scale are seen in the sımulations of Corcoran [9] for the rescaled cell level model This is not surprising since this upper bound has to bound the full queue including the cell level queue which is due to short term fluctuations in the arrival rate over time periods smaller than the packetization period s These fluctuations result in short queues and this is exhibited in the graphs of $\log \mathbf{P}\left[q^{L}>b\right]$ versus b by the almost straught steep portion of the graph The slope and intercept of this part of the graph remain invariant as L is changed in the simulations carried out in [9]

However the upper bound obtained for what we term the burst level queue the queue resulting from arrivals over longer intervals of time than s, can exhibit these economies of scale since it does not bound the cell level queue We obtaned such a bound and we proved for parameter values $\sigma=1 / 2$ and $\rho \leq \alpha$ it does exhibit economies of scale and is an improvement over the effective bandwidth approximation in terms of bounding the queue length distribution of this burst level queue Note, the condition $\rho \leq \alpha$ can be rewritten as,

$$
\begin{equation*}
\frac{1}{\sigma+\frac{1-\alpha}{\tau}} \leq \alpha \tag{75}
\end{equation*}
$$

but this is the same as,

$$
\begin{equation*}
\tau \leq \frac{\alpha(1-\alpha)}{1-\alpha \sigma} \tag{76}
\end{equation*}
$$

which for $\sigma=1 / 2$ is,

$$
\begin{equation*}
\tau \leq \frac{2 \alpha(1-\alpha)}{2-\alpha} \tag{77}
\end{equation*}
$$

and since $\sigma>0$ Equation 7.6 is true, for all σ if,

$$
\begin{equation*}
\tau<\alpha(1-\alpha) \tag{7.8}
\end{equation*}
$$

For $\sigma=1 / 2$ and $\rho \leq \alpha$ we, have

$$
\begin{equation*}
\mathbf{P}\left[q_{s}^{L}>b\right]<\Phi^{L} e^{-\gamma b} \tag{7.9}
\end{equation*}
$$

where $\Phi<1$ is independent of L. We can say that,

$$
\begin{equation*}
\Phi=\max \left\{\rho+\rho^{2} \sigma \frac{\frac{1}{\rho}-1}{\alpha(1-\sigma)}, \frac{\left(1+\frac{\gamma}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{\gamma}{\tau}\right)^{\sigma}}\right\} \tag{7.10}
\end{equation*}
$$

more generally we have,

$$
\begin{align*}
\mathbf{P}\left[q_{s}^{L}>b\right] & \leq\left(\frac{v(s) e^{\gamma}}{v(s-1)}\right) \frac{v(s)}{v(s-1)}\left(\left(\frac{v(s)}{v(s-1)}\right)^{\sigma} \frac{1}{v(s)}\right)^{L} e^{-\gamma b} \tag{7.11}\\
& =e^{\gamma}\left(\frac{\tau}{L\left(e^{\gamma / L}-1\right)+\tau}\right)^{2}\left(\frac{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}\right)^{L} e^{-\gamma b} \tag{7.12}
\end{align*}
$$

for all parameter values. But it has to be determined if this is less than 1 for $\sigma \neq 1 / 2$ or $\rho>\alpha$ and if

$$
\begin{equation*}
\left(\frac{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}}{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}\right)<1 \tag{7.13}
\end{equation*}
$$

which would imply economies of scale exist for the particular values of σ, α and τ.
It appears to be extremely difficult to prove (in a manner other than numerically) that the bound exhibits economies of scale for other parameter values. One can for example show that,

$$
\begin{equation*}
\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L} / L-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} \tag{7.14}
\end{equation*}
$$

is, for fixed $\frac{1-\alpha}{\tau}$ an increasing function of σ for $\sigma \geq \frac{1-\alpha}{\tau}$ but this implies $\sigma>1 / 2$, that is it doesn't hold at $\sigma=1 / 2$. Now since,

$$
\begin{equation*}
h(\sigma)=\frac{\left(\sigma+\frac{1-\alpha}{\tau}\right)\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right)^{\sigma}}{\left(1+\frac{L\left(e^{\gamma / L}-1\right)}{\tau}\right) \sigma+\frac{1-\alpha}{\tau}} \tag{7.15}
\end{equation*}
$$

at $\sigma=1 / 2$ for $\rho \leq \alpha$ the same must be true for values of σ on some interval centered on $1 / 2$ but $h(\sigma)$ may be decreasing on this interval i.e. $\frac{1-a}{\tau}$ may not be in this interval. If it were then for all $\sigma \geq 1 / 2$ we would have $h(\sigma)>1$

7.1.4 Large Deviations Approximations

Botvich and Duffield proved in [20] that,

Theorem 8 For $b \geq 0$,

$$
\lim _{L \rightarrow \infty} \frac{1}{L} \log \mathrm{P}\left[q^{L}>L b\right]=-I(b)
$$

Where the function I, termed the shape function, is related to the cumulant generating function of the workload process

They also proved that for workload processes with non-negatively associated and stationary increments $\nu=-\lim _{t \rightarrow \infty} t \lambda(t, \theta)$ is non-negative (provided the limit exists) We prove,

Theorem 9 We added the following Let the increments of the workload processes W_{t}^{L} be non-negatively assocıated and stationary Let $f(t, \theta)$ be defined as in Definition 9 Let $f_{t}^{*}(b)$ be ats Legendre transform Then $I(b)$ as sub-addıtive ъe the following conclusion holds

$$
I\left(b_{1}+b_{2}\right) \leq I\left(b_{1}\right)+I\left(b_{2}\right)
$$

for all $b_{1}, b_{2} \geq 0$
and as a result,
Theorem 10 Let the increments of the workload processes W_{t}^{L} over disjoint time intervals be statıonary and non-associated Then the the following conclusion holds

$$
\begin{aligned}
I(b) & =b I(1) \\
& =b \gamma
\end{aligned}
$$

Note that $I(b)=b I(1)$ means there are no economies of scale to be had from multrplexing large numbers of sources generating a workload process with stationary and non-associated increments over disjoint tıme intervals We also have,

Theorem 11 Let the increments of the workload processes W_{t}^{L} over disjoint time intervals be stationary and non-negatively associated. Then the the following conclusion holds.

$$
\lim _{b \rightarrow \infty} \frac{I(b)}{b} \text { exists }
$$

and,

$$
\lim _{b \rightarrow \infty} \frac{I(b)}{b}=\inf _{b>0} \frac{I(b)}{b}
$$

We make no assumptions here about the existence of ν. We also proved,
Theorem 12 Let the increments of the workload processes W_{t}^{L} over disjoint time intervals be non-negatively associated and stationary. Let $I(b)$ be defined as in Definition 10. Let $I(0)=0$. Let K be an interval on the real line containing zero. Then

$$
I(b) \text { cannot be convex on } K
$$

These results do not directly bear on the cell level model but follow so simply from the definition of the shape function that we included them.

The simulations of Corcoran [9] demonstrate that the broad features of the queue length distribution remain essentially unchanged when L and the queue length b are jointly scaled. Thus we were led to consider the large deviation properties of the queue length distribution in L. We calculate,

$$
\lambda_{t}(\theta)=\lim _{L \rightarrow \infty} \frac{1}{t} \log \mathbf{E}\left[e^{\theta\left(A_{L t}^{L}-r t\right)}\right]
$$

for the time rescaled cell level model where $A_{L t}^{L}$ is the time rescaled single source arrival process. We then obtained numerically the shape function for the queue generated by the rescaled workload process for a set of model parameter values previously used in the simulations in this was then used to obtain graph of an approximation to $\log \mathbf{P}\left[q^{L} \geq b\right]$ versus b for $L=400$.

7.2 Future Work

We have only studied here the situation arising from homogeneous superpositions of the cell level model arrivals. Similar techniques could be applied to heterogeneous
superpositions of cell level model arrivals For examples with other models see Botvich and Duffield [20] The model itself could be altered to include more than one type of sslence, for example

It may be possible to prove an upper bound via Martingales for the burst level queue for the cell level model for which the prefactor is such that it exhibits economies of scale That is,

$$
\begin{equation*}
\phi \leq k^{L} \tag{717}
\end{equation*}
$$

where $k<1$ and independent of L for parameter values other than $\sigma=1 / 2$ and $\rho \leq \alpha\left(1\right.$ e $\left.\tau \leq \frac{2 \alpha(1-\alpha}{2-\alpha}\right)$

The initial steep portion of the graph in chapter 6 for the shape function approximation to $\log \mathrm{P}\left[q^{L}>b\right]$ which are due to cell level queueng should be sımılar to that obtanned for a queue with Poisson arrivals at the same mean rate It may be possible to substantiate this theoretically and/or by simulation

The theorem on the sub-additivity of the shape function in the case of nonnegatively associated workload increments may be of some use in proving that the shape function is always concave in some case/cases

Bibliography

[1] N G Duffield, J T Lewis, N O' Connell, R Russell, and F Toomey The entropy of an arrivals process A tool for estimating qos parameters of atm traffic Proc of 11th IEE UK Teletraffic Symp Cambridge, 25 March 1994
[2] J T Lewis and R Russell An introduction to large deviations for teletraffic engineers Performance, Lausanne, 1996
[3] E Buffet and N G Duffield Exponential upper bounds via martingales for multıplexers with markovian arrvals J Applıed Prob, 31 1049-1061, 1994
[4] J Y Huı Switching and Traffic Theory for Integrated Broadband Networks Kluwer Academic Publishers, 1991
[5] M De Prycker Asynchronous Transfer Mode Prentıce Hall, 1995
[6] N G Duffield, J T Lewis, N O' Connell, R Russell, and F Toomey Estımating qos parameters for atm traffic using its entropy Proc IFIP Workshop on Performance Modelling and Evaluation of ATM Networks, Bradford, 4-6 July 1994
[7] E Cinlar Introductıon to Stochastıc Processes Prentice-Hall, 1975
[8] W Feller An Introductıon to Probabılıty Theory and ats Applıcatıons, Volume 1 John Wıley and Sons, 1950
[9] T Corcoran Predıction of multiplexer performance by simulation and analysis of a model of packetized voice traffic MSc Thesis, Dublin City University, 1994
[10] J. N. Daigle and J. D. Langford. Models for analysis of packet voice communications systems. IEEE J. Select. Areas Commun., 4 No. 6:847-855, 1986.
[11] K. Sriram and W. Whitt. Characterizing superposition arrival processes in packet multiplexers for voice and data. IEEE J. Select. Areas Commun., 4 No. 6:833-846, 1986.
[12] P. W. Glynn and W. Whitt. Logarithmic asymptotics for steady-state tail probabilities in a single-server queue. J. Appl. Prob., 31A:131-159, 1994.
[13] N. G. Duffield, M. Huggard, R. Russell, F. Toomey, and C. Walsh. Fast bounds for atm quality of service parameters. Proc. of 12th IEE UK Teletraffic Symp., Old Windsor, 15-17 March 1995.
[14] R. M. Loynes. The stability of a queue with non-independent inter-arrival and service times. Proc. Camb. Phil. Soc., 58:497-520, 1962.
[15] R. S. Ellis. Entropy, Large Deviations, and Statistical Mechanics. SpringerVerlag, 1985.
[16] S. Karlin and H. M. Taylor. A First Course in Stochastic Processes. Academic Press, 1975.
[17] D. Williams. Probability with Martingales. Cambridge University Press, 1991.
[18] J. F. C. Kingman. A martingale inequality in the theory of queues. Proc. Camb. Phil. Soc., 59:359-361, 1964.
[19] N. G. Duffield. Exponential bounds for queues with markovian arrivals. Queueing Systems, 17:413-430, 1994.
[20] D. D. Botvich and N. G. Duffield. Large deviations, economies of scale and the shape of the loss curve in large multiplexers. Queueing Systems, 20:293-320, 1995.
[21] A. Dembo and O. Zeitouni. Large Deviation Techniques and Applications. Jones and Bartlett, Boston-London, 1993.
[22] D D Botvich, T J Corcoran, N G Duffield, and P Farrell Economies of scale in long and short buffers of large multiplexers Proc 12th IEE UK Teletraffic Symp, Windsor, IEE London (1995), 15-17 March 1995
[23] N G Duffield and N O'Connell Large deviations and overflow probabilities for the general single server queue, with applications Math Proc Camb Phal Soc , 118 363-374, 1995
[24] A Weiss A new technique for analysing large traffic systems Adv Appl Prob , 18 506-532, 1986
[25] W Feller An Introduction to Probability Theory and its Applications, Volume 2 John Wıley and Sons, 1966

