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ABSTRACT

T oxicity  an d  b iosorption  o f  m etals b y  Saccharomyces cerevisiae, Amorphotheca
resinae a n d  Azolla filiculoides.

M .Sc . R esearch  T hesis 

R o b ert V . F o g arty , B .A . (M od.)

The value o f  H + efflux in assessing and understanding metal interactions with  
Saccharomyces cerevisiae  was investigated for its potential use as a rapid means o f  
toxicity assessm ent for a range o f  m etals T oxicity decreased in the order Cu2+ >  Cd2+ 
> Pb2+ > C o2+ > Sr2+ T oxic effects can be alleviated by external Ca2+ The effect o f  
Cu2+ and C o2+ on  S cerevisiae  growth, and the intracellular localisation o f  Cu2+, w ere 
studied in order to gain a better understanding o f  their toxicity

S cerevisiae, Amorphotheca resinae and Azolla filiculoides biosorbed various 
metals, with concomitant K+ and M g2+ release and pH change in certain situations S 
cerevisiae adsorbed Cu2+ and Cd2+ maximally to ca 150|jm ol g'1 and Sr2+ to ca 90|amol g"
1 2 1 2+ 2+ 1Cu , Cd and Sr were adsorbed maximally to ca 70, 40  and 45 |im ol g  respectively 
by A resinae The data were also fitted to the Langmuir and Scatchard adsorption models 

B oth  Cu2+ and Cd2+ w ere adsorbed to maximum uptake levels o f  350  and 245  
^m ol g ‘l respectively by native A filicu loides  (A zolla ) N ative m illed-sieved Azolla  
and epichlorhydrm-immobilised A zolla  exhibited Cu2+ uptake levels o f  ca  363 and 
320|jm ol g '1 respectively from solutions with an initial Cu2+ concentration o f  lOOmg I"1 

M illed-sieved Azolla  and epichlorhydrm-immobilised A zolla, along with the 
native A zolla, successfully biosorbed influent Cu2+ during colum n studies Packed bed 
biosorption colum ns containing 1 Og and 2 5g o f  epichlorhydrm-immobilised Azolla  
w ere capable o f  com plete removal o f  metal from ca 4  and 12 litres, respectively, o f  
influent 5m g I'1 Cu2+ Even after 22 litres o f  influent solution had passed through, the
2 5g  colum n w as still at less than 75%  saturation T hese colum ns w ere more efficient 
than those containing the same corresponding quantities o f  m illed-sieved Azolla (ca  3 
and 10 5 litres for 1 0  and 2 5g colum ns respectively), which in turn w ere more 
efficient than native A zolla (ca  3 -4  litres for a 2  5g  colum n) Selected  results w ere  
com pared to a com puter m odel used to predict colum n profile The biosorbed Cu2+ 
w as successfully  recovered using Chelaton 3
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CHAPTER 1: INTRODUCTION

M e ta ls : p o llu tio n , b io so rp tio n  a n d  tox ic ity  to w a rd s  m icro b es.

1.1 M eta l Pollution.

D eveloped  and developing countries are struggling w ith burdens o f  heavy  

metal pollution in water and soil, resulting from expanding industrial activities These  

polluted natural resources pose health hazards to the population and deteriorate 

environmental quality o f  both aquatic and terrestrial ecosystem s The term “heavy 

metal” refers to most metals with an atomic number greater than 20 and excludes alkali 

metals, alkaline earths, lanthanides and actinides (M ason, 1996) H eavy m etals can enter 

the aquatic environment either from (a) point sources such as industrial prem ises and 

sewage-treatm ent plants or (b) diffuse sources such as road and agricultural runoff 

and aerial deposition Electroplating and metal finishing operations, electronic circuit 

production, m ining and sm eltenng operations, paint and plastics production, steel and 

aluminium processes all produce large quantities o f  w aste containing m etals (E ccles, 

1995, M ason, 1996, V olesky, 1990 b ) A  significant proportion o f  the heavy metals 

present m sew age effluents also originate from diffuse sources including dom estic  

plumbing system s and road runoff (Zabel, 1993) H eavy metal pollution is well 

know n to have a detrimental effect on soil processes and plant grow th (Colpaert & 

Van Tichelen, 1996, Ernst et al, 1992, Gadd, 1993)

Cadmium, copper, zinc, nickel, mercury, thallium, tin, lead and arsenic are 

com m on examples o f  toxic elements, with cadmium being one o f  the m ost serious 

environmental pollutants (Hughes & Poole, 1989, Mason, 1996) and silver being probably



the m ost toxic element to microorganisms (Beveridge et a l , 1997, Trevors, 1987) 

Strontium is a trace element that has no known essential biological role (Avery & Tobin, 

1992) Concern has arisen over the fate o f  this radionuclide in the environment due to its 

continued discharge as a constituent o f  radioactive wastewaters from nuclear reactors and 

also because o f  the long half-life (ca 29 years) o f  the radioisotope 90Sr (Macaskie, 1991, 

W atson et a l , 1989) Furthermore, Sr2+ displays physicochemical properties similar to 

those o f  the biologically essential cations Ca2+, M g2+ and Na+ and com petes directly for 

the same sites on biological cell surfaces (Urrutia, 1997) This may lead to interference 

with cellular transport systems, enzyme catalysis, structure stabilisation and the control o f  

osmotic pressure

The European Union (EU) has compiled a “Black List” o f  pollutants (Mason,

1996) in Council Directive (76/464/EEC) on pollution caused by certain dangerous 

substances

(i) Organohalogen compounds and substances which may form such

compounds in the aquatic environment,

(u) Organophoshorous compounds,

(m) Organotin compounds,

( iv ) Substances having carcinogenic activity which is exhibited in or by 

the aquatic environment,

(v) Mercury and its compounds,

(vi) Cadmium and its compounds,

(vn) Persistent mineral oils and hydrocarbons o f  petroleum,

(vui) Persistent synthetic substances
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Less dangerous pollutants are placed on the E U  “Grey List” (M ason, 1996) in 

Council Directive (76/464/EEC) and include the following metals/metalloids and their 

compounds

1 Zinc 2 Copper 3 Nickel 4  Chromium 5 Lead

6 Selenium 7 Arsenic 8 Antimony 9 M olybdenum 10 Titanium

11 Tin 12 Barium 13 Beryllium 14 Boron 15 Uranium

16 Vanadium 17 Cobalt 18 Thallium 19 Tellenum 20 Silver

In recent years there has been considerable interest in the area o f  metal 

accumulation from aqueous solutions by yeasts, fungi and plants (Brady & Tobin, 1994, 

1995, L eusch et a l , 1995, Tel-O r et al, 1996, V olesky & H olan, 1995) D ue to their 

non-biodegradability, metals cannot be treated biologically "m-situ" and must instead be 

extracted from contaminated streams (Sahoo et al, 1992) Concerns over the significant 

and long-term  environmental hazards posed  by heavy metals has prompted research  

into developing novel processes for rem oval/recovery o f  such elem ents (B lackw ell et 

a l , 1995, D ostalek  e t a l , 1995, Leusch e t a l , 1995, M cH ale & M cH ale, 1994) T o  

decontam inate small amounts o f  concentrated w astew ater, the use o f  precipitation  

fo llow ed  by filtration or ultrafiltration is an option R everse osm osis or ion-exchange  

materials can also be used It may be uneconom ical, how ever, to apply these 

techniques to purify large volum es o f  w aste water containing a low  concentration o f  

contaminants
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Microbe-based adsorption has recently attracted much attention as a potential 

alternative to existing m ethods (B lackw ell et a l , 1995, Norris & K elly, 1979, de 

R om e & Gadd, 1991, Strandberg e t a l , 1981) M etal uptake by microbial biom ass 

consists o f  an initial non-m etabolic step follow ed, in certain circum stances, by a 

second m etabolism -dependent step, depending on the viability o f  the biom ass, and is 

influenced by a number o f  environmental and experimental factors (B lackw ell et a l , 

1995, Junghans & Straube, 1991) The nonm etabolic physico-chem ical interactions 

betw een m etals and microbial biom ass are com m only referred to as “biosorption” 

(Gadd, 1993, V eglio  & Beolchim , 1997) This initial biosorption step is often rapid 

(A very & Tobin, 1992, Brady & Duncan, 1994 a , W hite & Gadd, 1987 a) although  

rates w ill depend on factors such as the type and concentration o f  both metal ion and 

biom ass (Gadd, 1993) B iosorption is, how ever, independent o f  temperature (M ow ll 

& Gadd, 1984), m etabolic energy (de R om e & Gadd, 1987) and the presence o f  

m etabolic inhibitors (W hite & Gadd, 1987 a ) Binding is alm ost always thought to 

involve the microbial cell wall, the exception being biosorption by extracellular 

polym ers, and is attributed to ion-exchange, adsorption, com plexation, precipitation  

and crystallisation withm the multilaminate, microfibrillar cell wall structure (M ullen  

e t a l , 1992, R em ade, 1990, Tobin e t a l , 1984) M etabolism -dependent intracellular 

accum ulation, often termed “bioaccum ulation”, is slow er, but may lead to higher 

levels o f  uptake (Avery & Tobin, 1992), and is influenced by factors such as 

temperature, pH and the presence o f  metabolic inhibitors (M ow ll & Gadd, 1984, 

O korokov et a l , 1977, de R om e & Gadd, 1987, W hite & Gadd, 1995)

1.2 The role of Microorganisms.
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The cell wall, considered to be the primary site involved in metal binding, contains 

a variety o f  functional groups including carboxylate, phosphate, thiolate and amine 

groups These ligands serve as potential binding sites, with varying specificities, for the 

sequestration o f  metal ions (Tobin et a l , 1984) and each metal can exhibit a different 

affinity for individual wall biom olecules (Avery & Tobin, 1993) Pearson (1963)  

classified  m etallic ions according to a "hardness scale" defined by the strength o f  their 

binding w ith nonpolarisable (hard) or polansable (soft) ligands A  refinement o f  this 

classification w as described by N ieboer and Richardson (1980) by using the covalent 

index, Xm 2r, as an index to class B ("soft") behaviour, where X m  is the metal-ion 

electronegativity (Allred, 1961) and r its ionic radius (Shannon & Prewitt, 1969, Shannon 

& Prewitt, 1970) The principle predicts that hard m etals, w hich  are generally nontoxic 

and often essential macronutrients for microbial grow th, bind preferentially to  

oxygen-contam m g (hard) ligands, whereas soft metals, which often display greater 

toxicity, form more stable bonds with nitrogen- or sulphur-containing (soft) ligands 

The hard-and-soft principle also predicts that bonds formed betw een hard m etals and 

hard ligands are predominantly ionic, whereas those o f  soft m etal-ligand com plexes  

are more covalent m character (Pearson, 1963) Accordingly, the covalent index o f  

Cu2+ is greater than that o f  Cd2+ and the Cu2+ ion is expected to possess a greater degree 

o f  class B character and enhanced potential to form covalent bonds with biological 

ligands Similarly, Sr2+ is a class A  ("hard") ion with a lower covalent index than either 

Cu2+ or Cd2+ and is expected to form bonds that are principally ionic

A  range o f  microbes has proved successful for the extraction o f  metal ions from  

solution (Gadd, 1990), but these microbial-based biosorbents must be technologically  

and econom ically com petitive w ith existing processes if  they are to be used  on  an
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industrial scale (Bnerly et a l , 1986 a, Holan et a l , 1993) M ost proposed metal lon- 

sequesterm g processes using microbial or plant biom ass involve either a batch or 

colum n configuration incorporated into standard effluent treatment configurations 

(B edell & D am all, 1990) Column reactors are m ore readily adapted to continuous 

flow  and autom ation than batch reactors and may offer greater metal-binding capacity  

and higher efficiency ( i e higher purity effluents) (B edell & Darnall, 1990)

The use o f  these microbial-based biosorbents for industrial applications has 

been hindered by problems associated with the physical characteristics o f  the material 

(M cH ale & M cH ale, 1994) L ow  mechanical strength o f  the biom ass can cause  

difficulties associated with separation o f  the biom ass from effluents which, in turn, 

contribute to limitations in process design A  further problem is associated with  

fragmentation o f  the biom ass causing flow  restrictions in continuous-flow  contact 

vesse ls Cross-linking or immobilisation technologies, stiffening o f  the biom ass into a 

desirable particulate or granular form, may overcom e many o f  these problems 

(M cH ale & M cH ale, 1994, V olesky, 1990) by reinforcing the biom ass leading to 

im proved physical characteristics o f  the biom ass for process applications This may 

also enhance the sorption performance (Leusch et a l , 1995, Ting & T eo, 1994), 

assist its use in colum n reactors and the reusability should improve the process 

econom ics (V olesky, 1990 b)

T he developm ent o f  a process w hich generates significant quantities o f  

secondary w aste, or smaller quantities o f  w aste which is difficult to handle/dispose o f  

or m ore toxic, does not solve the problem (E ccles, 1995) Any novel effluent clean­

up process m ust com ply with several criteria and those that contribute directly to cost 

effectiveness and environmental considerations will have by far the m ost significant
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influence on the selection o f  the treatment process E ccles (1995) lists the major 

criteria for any clean-up process as

•  C o m p a tib ility  w ith existing operations, in particular w ith up-stream processes,

•  C o s t  E ffec tiv en ess  - environm ental processes add to overall production costs,

•  F lex ib ility  - to handle fluctuations m  quality and quantity o f  effluent feed,

•  R e liab ility  - as m ost effluent processes w ill operate continuously,

•  R o b u stn e ss  - to m inim ise supervision and m aintenance,

•  S im p lic ity  - to m inim ise the need for skilled operators and reduce costs,

•  S e lectiv ity  - to rem ove only the contaminants (m etals) under consideration

Y easts possess an acknow ledged potential for accumulating a range o f  metal 

cations (B lackw ell et a l , 1995) and large amounts o f  this metal can remain associated  

w ith the yeast cell wall (Murray & Kidby, 1975, Strandberg e t a l , 1981) Protein and

carbohydrate fractions o f  yeast cell walls have previously been show n to be involved

2+
in binding Cu2+, Cd and C o2+ ions (Brady & Duncan, 1994 b) Isolated com ponents 

o f  yeast cell walls (mannans, glucans and chitin) w ere also observed to accum ulate 

greater quantities o f  metal than intact cell w alls (Brady et a l , 1994)

Recently there has been considerable interest in the potential o f  magnetic 

immobilisation system s for biotechnology applications ranging from protein recovery  

to enzym e and D N A  purification (O ’B nan et a l , 1996) and im proved fermentation  

performances w ith m agnetically immobilised biocatalysts (Brady et a l , 1996, Ivanova  

e t a l , 1996) P rocesses for metal recovery from w aste streams using both  

m etabolising and non-m etabolising cultures in magnetic biosorbent system s have been
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described (E lw ood et a l , 1992, L loyd & M acaskie, 1996, Sly e t a l , 1993, Thom as & 

M acaskie, 1996, W ong & Fung, 1997) In m etabolising cell system s metal 

precipitation by reaction with metabolically liberated phosphate or sulphide ions has 

been observed to result in magnetically responsive biosorbent This approach has 

been show n to  be applicable to a w ide range o f  m etals and removal levels o f  up to  

200p m ol H g2+ g '1 cells have been achieved in large scale tests (E llw ood  et a l , 1992) 

although the application o f  this system  is limited to non-toxic effluents Alternative 

strategies have involved adsorption o f  cells to various oxide surfaces with relatively 

low  cell loadings o f  the order o f  10% w /w  (Shabtai & Fleminger, 1994, Sly et a l , 

1993, W ong & Fung, 1997) Thus, while good  metal binding to the cells has been  

achieved, overall biosorbent uptake levels w ere decreased and the durability o f  the 

biosorbent in large scale applications remains largely untested

Nonm agnetic particulates can be m agnetised through a process know n as 

seeding (Dauer & D unlop, 1991) This facilitates rapid and simple rem oval o f  

particulates, in this context the biosorbent, from solution using a m agnetic separator 

or a permanent m agnet For exam ple in high gradient m agnetic separation (H G M S) 

(K olm  et a l , 1975) m agnetic traction forces have been em ployed to capture magnetic 

particles on a m agnetised fibre filtration matrix (Dauer & D unlop, 1991)

T w o types o f  magnetic biosorbent w ere recently prepared by novel protocols 

from epichlorhydnn-cross-linked S cerevisiae  cell walls and their biosorption  

characteristics w ere com pared to those o f  non-m agnetic cell walls (Patzak e t a l ,

1997) The m agnetic biosorbents I and II w ere capable o f  binding Cu2+ maximally to  

215 and 50  |amol g '1, Cd2+ to 90  and 25|amol g '1 and A g+ to 80  and 45(amol g  1 

respectively T hese values com pare with 400 , 125 and 75 |im ol g"1, respectively, for
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non-m agnetic cell w alls The advantages o f  using m agnetic supports include both  

facile, selective recovery and recycling o f  magnetically im m obilised adsorbents 

(H ailing & Dunm ll, 1980, W ong & Fung, 1997)

Rather than being viewed as an alternative to conventional chemical methods for 

treating metal-polluted aqueous systems, microbe-based adsorption may be used in 

tandem with these techniques, possibly as an additional final purification step It may also 

prove economical to direct research towards the utilisation o f  waste fungal biomass from  

industrial sources, for example from the fermentation industry (Unz & Shuttleworth, 

1996)

M etal uptake processes are complex and dependent not only on specific surface 

properties o f  the organisms, but also on the cell physiology, chemistry o f  the metal ions 

and the physico-chemical influence o f  the cell's environment, for example metal 

concentration, pH and temperature (Gadd & de Rome, 1988, Gadd, 1993, Sag et a l ,

1995) A  given metal ion may also be accumulated by different mechanisms in different 

microorganisms (Sag et a l , 1995)

The source o f  the raw biom ass and the cost o f  an immobilisation process play 

a major role in determining the overall manufacturing cost o f  the biosorbent material 

(see Table 1 1) while the versatility, ease o f  use and other technology characteristics 

will also contribute to the overall process costs, both capital and operational (E ccles, 

1995, Kuyucak, 1990) It is difficult to obtain comparable cost data for different 

technologies in a liquid effluent clean-up system , and E ccles (1995) believes that any 

costs w ill be dependent on parameters such as

•  plant process capability (m 3 day'1),

•  concentration o f  m etals m solution,
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•  operational m ode o f  the equipment,

•  secondary treatments needed, such as regeneration o f  ion exchange resins,

•  selectivity o f  ion exchange resins, coupled with their respective capacities for 

given  m etal(s),

•  disposal o f  secondary w astes such as sludges

Source Price of sorbent

Byproduct of fermentations No cost or nominal plus drying and transportation

Activated sludge No cost or nominal plus drying and transportation

Specifically cultured biomass $1-$5/kg

e g fungi, yeast3

Marine algae3 $1-$2/kg

Specifically cultured algae3 $2-$ 16/kg

Ion-exchange resins $14-$28/kg

Activated carbon $2-$4/kg

a Dry weight

T a b le  1 .1 : Sorbent types and their corresponding prices (from  Kuyucak, 1990)

The microbial cell wall represents a key part o f  the microbe and offers 

protection against environmental toxicity The wall is in direct contact w ith the 

environm ent external to the cell and interacts with substances soluble in the liquid 

m edium  This interaction may be particularly pronounced in the case o f  metallic ions
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due to  the anionic characteristics o f  the cell wall (Rem acle, 1990) The com position  

o f  the cell wall can be characteristic o f  the fungal genera (Table 1 2) and effectively  

determines metal binding capacity

M etal uptake behaviour by biosorbents may be profoundly affected by the 

grow th conditions In a study o f  propagation and characterisation o f  Rhizopus 

biosorbents, the medium com position and grow th condition w ere shown to affect the 

uptake o f  copper, manganese and chromium by R javam cus  (Yerushalmi, 1990) 

W hen K2H P 0 4 w as the only source o f  phosphate in the grown medium, both biom ass 

production and copper uptake increased as the salt concentration was increased from  

0 5 to 2 g I'1 (Yerushalm i, 1990)

Varying culture conditions and stages o f  the life cycle o f  the organism result in 

significant variations in fungal cell wall structures (Remacle, 1990) thereby influencing 

passive adsorption o f  test 10ns (Meikle et a l , 1990) Increasing biomass concentration has 

also been reported to reduce metal uptake per gram o f  biomass in a number o f  systems 

(Brady and Duncan, 1994 a, Fourest & Roux, 1992, Singleton and Simmons, 1996) This 

may be due to a number o f  factors including electrostatic interactions, interference 

between binding sites, limited availability o f  solute and reduced mixing at high biomass 

densities (Fourest & Roux, 1992, Meikle et al, 1990, Singleton and Simmons, 1996)

Fourest and Roux (1992) report that zinc uptake decreases when R arrhizus 

biomass concentration is increased They also report that reduction in biomass 

concentration in the suspension at a given metal concentration enhances the 

metal/biosorbent ratio, and thus increases metal uptake per gram o f  biosorbent, as long as 

the latter is not saturated
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C ell w all c a tego ry T a x o n o m ic  g ro u p R e p re se n ta tiv e  g e n e ra

I C ellu lose-glycogen Acrasiales Polysphondylium,

Dictyostahum

II C ellu lose -ß- O om ycetes Phytopthora, Pythmm,

glucan Saprolegnia

HI C ellulose-chitin H yphochytndiom yces Rhizidiomyces

IV Chitin-chitosan Z ygom ycetes Mucor, Phycomyces,

Zygorhynchus

C hytndiom ycetes Allomyces, Blastocladiella

V  Chitin -ß - glucan E uascom ycetes Aspergillus, Neurospora

H om obasidiom ycetes Schizophilum, Fomes

V I M annan-ß-glucan H em iascom ycetes Saccharomyces, Candida

VII Chitin-mannan H eterobasidiom ycetes Sporobolomyces, Rhodotorula

V il i  G alactosam ine - T nchom ycetes Amoebidium

galactose polym ers

T a b le  1 .2 : Cell W all Com position and Taxonom y o f  Fungi (from  Bartnicki-Garcia, 

1970)
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The process o f  metal recovery using microbial-based biosorbent materials is 

basically a solid-liquid contact process consisting o f  a metal uptake (sequestering) 

cycle and the metal desorption (elution) cycle  In its technological configuration, it 

w ould  be very similar to that used in the ion-exchange process or activated carbon  

applications The metal-laden solution is contacted with the solid sorbent phase in a 

batch, sem icontinuous, or continuous-flow  arrangement Appropriate contact 

betw een  the solution and the solid phase can be accom plished routinely in any 

m odification o f  the follow ing apparati batch-stirred tank contactor, continuous-flow  

stirred-tank contactor, fixed  packed-bed contactor, pulsating-bed’contactor, fluidised- 

bed contactor or m ultiple-bed contact arrangements

The metal-sequestering cycle which results in the metal being immobilised  

onto the solid  biosorbent material has to be fo llow ed  by a cycle which w ould  result in 

the release o f  the metal in a concentrated form This part o f  the process, similar to  

that o f  ion-exchange, is based on eluting the metal by a small volum e o f  an 

appropriate solution which should ideally regenerate the biosorbent for subsequent 

reuse Ashing o f  the metal-laden biosorbent material presents a possible process 

w here the biosorbent is not considered for reuse (V olesky 1990 b )
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1 .3  B io so rp tio n  b y  W aste  B io m a ss  fro m  the F e rm e n ta t io n  a n d  P h a rm a c e u tic a l 

In d u str ie s .

R ecovering or recycling metals follow ing w astew ater treatment can decrease 

the cost o f  the overall process W aste biom ass from fermentation industries 

represents an important potential resource and suggested  uses include ergosterol /  

ribonucleic acid isolation and the preparation o f  a biosorbent for heavy metal uptake

Conventional m ethods for treatment o f  m etal-loaded waters include 

evaporation, neutralisation/precipitation, carbon adsorption, ion exchange, dialysis, 

electrodialysis and reverse osm osis Effluent clean-up processes m ust be able to 

effectively deal with a feed stream which may vary in both quality and quantity 

D om estic and industrial w astes often exhibit variability in chem ical and physical 

parameters such as concentration o f  tox ic com ponent, pH  ranging from  strongly 

acidic to basic, simultaneous presence o f  inorganic and organic com ponents, 

dissolved  and volatile species, colloids and em ulsions (E ccles, 1995, Zhao & Duncan,

1998) Processes incapable o f  dealing with such variables require upstream  

buffering/treatment facilities which adds significantly to the overall treatment cost It 

is also important to consider recycling the recovered metals due to increasing costs o f  

solid  w aste disposal, with selective removal o f  metals subsequently being required 

(E ccles, 1995)

A  biom ass com posed  o f  Bacillus spp derived from a com m ercial 

fermentation process has been used for production o f  a granular biosorption agent 

(B nerley, 1990, Brierley e t a l , 1986 a , b) The system , called A M T  BIO C LA IM ™ , 

has proved very effective in the treatment o f  metal-bearing effluents both m fixed-bed
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canisters and fluid-bed reactor system s Several properties o f  this biosorbent make 

this a practical and an econom ically  feasible treatment process (see Table 1 3)

Ability of system to respond to variation in

Metal pH Suspended Other Other Expected

ion solids contaminants metal effluent

conc (oils) ions conc 

(mg I 1)

Hydroxide no some yes yes yes 2-5

precipitation

Sulfide no no yes yes yes 2-5

precipitation

Ion Exchange some some no no some <1

Reverse yes some no no some <1-5

osmosis

Ion transfer yes some no no some <1

Evaporation yes yes yes some yes 1-5

Electro-dialysis yes some no no some 2-5

AMT yes yes yes yes yes <1

BIOCLAIM™

T a b le  1 .3 : Performance characteristics o f  heavy metal w astew ater treatment 

technologies and com parison with the AM T BIO CLAIM ™  process derived from  

Bacillus spp (derived from B nerley  et a l , 1986 a and E ccles, 1995)
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A s a w aste by-product from alcohol production, brewing strains o f  

Saccharomyces are a readily available and cost effective biosorbent with the potential 

for high metal uptake capacity and metal recovery (Omar et a l , 1996, W ilhelmi and 

Duncan, 1996) Previously, the majority o f  biosorption studies have involved the use 

o f  laboratory cultured strains, but these may exhibit considerable differences from  

w aste fermentation yeast due mainly to variations in culture conditions (Omar et al,

1996) B iosorption o f  Sr2+ by an industrial strain o f  Saccharomyces cerevisiae  has 

previously been show n to exceed  that o f  a laboratory strain (A very & Tobin, 1992)

The raw material for the production o f  biosorbents, the microbial biom ass, 

can be produced by fermentation processes and is preferably obtained as a waste  

material from the fermentation industries B iosorbents have been exam ined which  

originate from

-the food  and beverage industry which produces beer and w ine using the yeast 

Saccharomyces cerevisiae  (M orley et a l , 1996, Yerushalm i, 1990),

-the pharmaceutical industry, the products o f  which include citric acid from the 

fungus Aspergillus m ger  (M orley et a l , 1996, Yerushalmi, 1990),

-the enzym e industry, using the fungi A m ger, Trichoderma reesu  and Rhizopus 

arrhizus and the Bacillus spp o f  bacteria (B nerley et a l , 1986 a, b, B nerley , 1990, 

Yerushalm i, 1990)
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1.4 Metal toxicity towards microorganisms.

Many metals are essential for cell growth and metabolism and consequently 

mechanisms exist for physiological uptake o f  metals including Cu, K, M g, Ca, Na, Mn, 

Fe, Zn, Ni, and Co (Ehrlich, 1997, Morley et a l , 1996) Toxicity results when a metal 

with no known biological function (cadmium or strontium for example) com petes with or 

replaces a functional metal (Hughes & Poole, 1989) Effects o f  toxic metals include the 

displacement and/or substitution o f  essential metal ions from biomolecules and functional 

cellular units, the blocking o f  functional groups o f  biologically important molecules (e g  

enzymes and transport systems for essential nutrients and ions), conformational 

modification, denaturation and inactivation o f  enzymes and disruption o f  cellular and 

organellar membrane integrity (Hughes & Poole, 1989, Ochiai, 1987)

The chemical state o f  metals is an important factor contributing to toxicity The 

toxicity o f  organometals, where the metal is bound to an organo group through a metal- 

carbon bond, is often much greater than that o f  the inorganic form (Gadd, 1992, Hughes 

& Poole, 1989, Zabel, 1993) as increased liposolubility results in greater uptake into the 

cell (Gadd, 1993) Toxicity varies both with the number and the identity o f  the organic 

groups (Cooney & Weurtz, 1989)

Cation release may be an indication o f  an ionic interaction between metal and 

biomass (Avery & Tobin, 1992) but is also frequently the result o f  membrane damage and 

resulting ion leakage from the cell interior (Belde et a l , 1988, Brady & Duncan, 1994 c, 

Gadd & M owll, 1983, Joho et a l , 1995, Passow & Rothstem, 1960) S cerevm ae  

cellular K+ levels have been observed to decrease after incubation in C d S 0 4 and C u S 0 4 

(Norris and Kelly, 1977) while Sr2+ uptake has been observed previously to cause little or
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no ion release for S cerevisiae (Avery & Tobin, 1992), but Sr2+-induced ion release has 

been observed for denatured R arrhizus (Brady & Tobin, 1994)

Brady and Tobin (1994) observed a H+ release o f  the order Cu2+>Cd2+>Sr2+ for R 

arrhizus and I f  displacement has been reported to be characteristic o f  covalent bonding 

(Avery & Tobin, 1992) This trend is in keeping with the hard and soft principle whereby 

softer ions will tend to interact with biological ligands predominantly through covalent 

bonding (Brady & Tobin, 1995, Shuman et a l , 1983) leading to H+ release and a 

reduction in pH

The presence or absence o f  a metal may exert a profound influence on the 

effects o f  other metals due to com petition betw een them  (H ughes & P oole, 1989) 

For exam ple M g2+ can prevent harmful effects o f  Cu2+ and C o2+ towards S cerevisiae  

(Karamushka & Gadd, 1994) and magnesium and calcium are reported to reduce the 

toxicity o f  a range o f  metals to microbes (Ainsworth et a l , 1980, Babich & Stotzky, 

1 9 81 ,1982 , 1983, Karamushka & Gadd, 1994, Karamushka et a l , 1996)

The plasm a membrane is an important initial site o f  b iological interaction  

betw een cells and their environment and is a selective barrier that can control both the 

influx and efflux o f  metal ions (Gadd, 1993, Karamushka & Gadd, 1994) The 

transport o f  a variety o f  solutes across yeast and fungal plasm a membranes is 

dependent on the plasm a membrane H+-A T Pase activity (Gadd, 1993, Jones & Gadd, 

1990) Three main classes o f  H+-pumping A TPases have been identified in fungi and 

yeasts (Serrano, 1984, 1985) in mitochondrial, vacuolar and plasma membranes, the 

latter tw o  being associated with ion transport, regulation o f  intracellular pH and 

intracellular compartmentation (Jones & Gadd, 1990)



The addition o f  a carbon source to an S cerevesiae  suspension leads to  

acidification o f  the external m edium This is thought to be mainly due to H+-efflux  

through a membrane bound H +-A TPase (Ram os, 1985) rather than due to release o f  

organic acids resulting from fermentation A s this plasm a membrane H +-A T Pase is 

responsive to external physico-chem ical factors, it may be a useful indicator o f  metal 

toxicity (Karamushka & Gadd, 1994) and has many potential applications both in 

toxicity  assessm ent and for investigations into m etal-m icrobe interactions

1.5 M e ta l b io so rp tio n  b y  p la n t  b io m ass .

Plants have the ability to extract and concentrate a range o f  m etals from  the 

environm ent (Salt et a l , 1995, Sela  et a l , 1988, Tel-O r et a l , 1996) M etals essential 

for the grow th and developm ent o f  plants include Cu, M g, M o, Zn, Fe, M n and 

possibly N i and these are accumulated from soil and water (Raskin et a l , 1994, Salt 

et a l , 1995) Som e metals with no know n biological function, such as Cd, C o, Pb, 

Cr, A g , and Se, can also be accumulated by certain plants although excessive  

accum ulation may lead to toxicity (Raskin et a l , 1994)

Plants have recently gained attention as potential metal biosorbents for use in 

the treatment o f  metal-bearing effluents (Baker et a l , 1988, Salt et a l , 1995, Sela et 

a l , 1989, Tel-O r et a l , 1996) Azolla filicu loides  is a floating water fern com m on in 

many parts o f  the world (Sela et a l , 1990) and may prove to be the m ost useful 

plant-based metal biosorbent The use o f  plants for environmental biorem ediation, 

termed phytorem ediation (Raskin et a l , 1997), may be divided into (l) 

phytoextraction - the transport and concentration o f  metals from the soil into the
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harvestable parts o f  roots and above-ground shoots by metal accumulating plants 

(Kumar et a l , 1995 Raskin e t a l , 1997), (11) rhizofiltration - the adsorption, 

precipitation and concentration o f  toxic metals from polluted effluents by plant roots 

(D ushenkov e t a l , 1995), (in) phytostabilization - the reduction o f  heavy metal 

mobility by metal tolerant plants, thereby reducing the n sk  o f  further environmental 

degradation by leaching into the ground water or airborne spread (Salt et a l , 1995), 

( i v )  plant assisted bioremediation - plant roots in conjunction with their rhizosphenc  

m icroorganism s used to remediate soils contam inated with orgam cs (W alton & 

Anderson, 1992, Anderson et a l , 1993)

1.6 F u n g a l M elan in s an d  their In teraction s with M eta ls

1.6.1 Introduction to fungal melanins

Melanins are high molecular mass dark brown or black pigments (Vidal-Cross et 

a l , 1994, W heeler & Bell, 1988) and are formed by the oxidative polymerization o f  

phenolic compounds They are found in animals, plants, fungi and bactena (Wheeler & 

Bell, 1988, Bell & Wheeler, 1986) and in fungi they are located either in cell walls or exist 

as extracellular polymers On electron micrographs they appear as electron dense granules 

(Gadd, 1993) Extracellular melanin arises from a number o f  different sources Wall- 

bound melanin may be released into the external environment, although this is generally 

identical to that located in the cell wall Melanins are more correctly defined as 

"extracellular" if  they are synthesised externally from the cell This may occur through 

secretion o f  either phenol compounds which are later oxidised or through secretion o f  the 

phenol oxidases to oxidise phenolics in the medium external to the fungus (Bell & 

Wheeler, 1988)
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Melanins are often poorly soluble in alkali and generally insoluble in water, 

aqueous acids and common organic solvents Conjugation with carbohydrates or proteins 

sometimes occurs, in which case the melanins becom e water soluble (Wheeler & Bell, 

1988)

Melanins may exist as free radicals (Longuet-Higgins, 1960, M ason et a l , 1960) 

which are easily formed under various conditions such as incubation at increased 

temperatures (Zhdanova et a l , 1980) irradiation with ultraviolet (U V ) rays or y-rays 

(Slawinska et a l , 1975, Zhdanova et a l , 1978) or reaction with chemical reductants 

They can act as proton receivers or donors (Lillie, 1969) and may be reduced by silver 

ions and oxidised by H2O2 (Wheeler & Bell, 1988)

Purification o f  melanins involves their dissolution in alkali and reprecipitation in 

acid Prolonged hydrolysis in aqueous acid removes associated proteins, carbohydrates 

and lipids Alternating cycles o f  organic solvents and hot acids provides additional 

purification (Wheeler & Bell, 1988, Ellis & Griffiths, 1974)

Melanins are not essential for fungal growth as both pigmented and albino strains 

o f  the same fungi exist Rather, the pigments bestow  upon the fungus an added advantage 

in certain environments Numerous pathogenic fungi synthesize melanin to increase 

virulence (Jacobsen & Emery, 1991, Jacobsen & Tinnel, 1993, Kubo et a l , 1985, 

W oloshuk et a l , 1980) Mutants o f  Verticillium dahliae, Cochhobolus miyabeanus and 

Magnaporthe grisea, which lack the ability to synthesize melanin, are unable to penetrate 

the host leaf and therefore lose their pathogenicity (Kubo et a l , 1985, W oloshuk et a l , 

1980, Lundqvist et a l , 1993)

Melanins also enhance the survival o f  fungi under environmental stress The 

melanin present in fungal corndia reduces damage due to U V  light (Durrell, 1964, W ang
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& Casadevall, 1994), solar radiation (Carlile & Watkinson, 1994), y-irradiation (Durrell, 

1964) and x-rays (Lukiewicz & Ablewicz, 1974) The degree o f  protection towards U V  

light is proportional to the melanin concentration in comdial walls (Durrell, 1964) 

Melamns may also play a role in fungal resistance to dessication and high temperatures, 

although no definitive work has been carried out in this area The inhibition o f  cellulase by 

melanin is time-dependent and results in the formation o f  an irreversible enzyme-melamn 

com plex Results point to a primary involvement o f  electrostatic bonding in formation o f  

these com plexes (Bull, 1970)

1.6.2. Interaction o f Melamns with Metals

1.6.2. (a) Functional groups

Melamns contain carboxyl, phenolic, hydroxyl and amine groups, which provide 

many potential binding or biosorption sites for metal ions (Haider et a l , 1975, Meuzelaar 

et a l , 1977, Schmtzer et a l , 1973, Schmtzer & Neyroud, 1975) Fungal melamns appear 

to be similar to soil humic acids with respect to volatile compounds released upon  

pyrolysis, amino acids released upon acid hydrolysis, IR and 13C N M R  spectra and ion 

exchange capacity (Saiz-Jiminez, 1983, Saiz-Jiminez et a l , 1975) Humic acid carboxyhc 

groups are known to bind metal ions by ion exchange, with release o f  H+ ions Reaction  

with Cu(II) involves chelation by o-hydroxycarboxylic acid and o-dicarboxylic acid 

ligands An alternative reaction may be that o f  metal ions complexing the same types o f  

oxygen-containing functional groups without forming a chelate ring (Boyd et a l , 1981) 

An electron spin resonance (ESR) study o f  copper binding to humic acids showed that the 

direct Cu2+-orgamc interactions are largely lomc and involve surface oxygen atoms 

(McBride, 1978)
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In melanms, it appears likely that, as in other biomass types (Tobin et a l , 1990), 

various functional groups may contribute in differing degrees to metal binding resulting in 

an array o f  multiple non-equivalent binding sites It has been reported that copper binds 

principally to carboxyl groups in catechol melanin at pH<5 but at pH>6 it is mainly 

phenolic hydroxyl groups which bind the copper (Froncisz et a l , 1980) In contrast, ESR  

studies o f  iron and copper uptake by fungal phenolic polymers have suggested that 

nitrogen-containing groups o f  the proteinaceous moiety are involved in binding (Saiz- 

Jiminez & Shafizadeh, 1984) whereas multiple quinone groups have been proposed as the 

coordination sites for uranium uptake (Sakaguchi & Nakajima, 1987)

The maximum binding capacity o f  fungal melanms has been reported to be in the 

order Cu>Ca>M g>Zn (Saiz-Jiminez & Shafizadeh, 1984, Zunino & Martin, 1977) The 

authors suggest that the preferential binding o f  Cu2+ may be due to its borderline status 

between classes A  and B which allows it to receive electrons from all functional groups 

present in fungal melanms (Saiz-Jiminez & Shafizadeh, 1984)

1.6.2. (b) M etal binding and desorption

Melanms from a variety o f  fungal sources exhibit biosorption behaviour (see Table 

1 4) In a comprehensive study o f  Cu2+ binding by extracellular melanin and intact biomass 

o f  albino and melamzed strains o f  Cladosporium resinae (now  Amorphotheca resinae) 

and Aureobasidium pullulans, the amount o f  copper adsorbed per unit weight o f  

adsorbate was observed to mcrease with mcreasmg copper concentration in the solution 

(Gadd & de Rome, 1988) Extracellular melanin o f  A pullulans was found to bmd 

significantly more Cu2+ than either the pigmented or albino biomass Also, the pigmented 

biomass had a significantly higher Cu2+ uptake capacity than the albino biomass indicating
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Adsorbent Metal Initial / Equilibrium 
metal concentration3

Metal uptake (nmol 
mg 1 dry wt)

Source

Albino C resinae Cu C = 80nM 120 Gadd & de Rome,
Pigmented C resinae 180 1988
C resinae melanin 350

Albino A pullulans Cu C = 2(% M 45 Gadd & de Rome,
Pigmented A pullulans 80 1988
A pullulans melanin 115

Commercially prepared melanin U I = 42|jM 84 Sakaguchi &
Nakajima, 1987

Pigmented A pullulans TBTC«rt 1= 1 OmM 240 Gadd et a l , 1990
Non-pigmented A pullulans C = 2 5 mM 700
Pigmented A pullulans C = 2 5mM 900
A Pullulans melanin C = 0 4mM 22000

Albino P digitatum Cd Not Available 7 4 Siegel et a l ,
Albino C cladosporoides 88 1986, Siegel et
Pigmented C cladosporoides 21 5 a l , 1990

Albino P digitatum Cd Not Available 4 9<=> Siegel et a l ,
Albino C cladosporoides 5 0w 1986, Siegel et
Pigmented C cladosporoides 17 0(e) al 1990
C cladosporoides + 2 5mM PABA<C) 8 6(e)
C cladosporoides + 2 5mM PTU<d) 9 l (e)

Albino P  digitatum Ni 1= 150(jM 10 5<e) Siegel et a l ,
Cu 1= 150MM 10 6(e) 1986
Zn I = 150|jM 9 4w
Pb 1= 90mM 8 5<e)

Pigmented C cladosporoides Ni 1= 150mM 52 0(e) Siegel et al
Cu I = 150pM 58 l<e) 1986
Zn I = 150|iM 51 7(e)
Pb 1= 90mM 23 2W

Albino P digitatum Ni I = 350|jM 35 0 Siegel et a l ,
Cu 39 0 1986
Zn 38 0
Cd 30 0
Pb 32 0

Pigmented C cladosporoides Ni I = 330mM 155 0
Cu 140 0 Siegel et a l ,
Zn 90 0 1986
Cd 1100
Pb 165 0

aI = Initial metal concentration, C = Equilibrium metal concentration (see text) 
bTBTC = Tributyltin chloride
PABA = p -Amino Benzoic Acid, inhibits melanin synthesis 

dPTU = Phenylthiourea, inhibits melanin synthesis 
eRate of metal uptake (nmol mg 1 h ')

T able 1.4: Biosorption by albino and pigmented biomass and purified melanin (From  
Fogarty & Tobin, 1996)
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the significant role o f  melanin in biosorption In the case o f  C resinae there was a much 

greater difference in uptake between the melanin and intact biomass, with the melanin 

adsorbing almost double the amount o f  Cu2+ (ca 350 nmol mg ‘) as compared with the 

pigmented biomass (ca 180 nmol m g'1) and almost three times that o f  the albino (ca 120 

nmol mg'1) at an equilibrium Cu2+ solution concentration o f  80 |lM

M etal desorption by dilute mineral acids was observed to increase with 

decreasing pH and the percentage desorption was lowest for extracellular melanin when  

compared with the intact biomass o f  both fungal types (Gadd & de Rome, 1988) At the 

lowest pH level (pH 2 3) only ca 20% o f  the total adsorbed Cu2+ was desorbed from the 

melanin o f  C resinae in comparison with ca 47% from melanin o f  A pullulans These 

values are significantly lower than those for intact biomass, where desorption from the 

pigmented strains was lower than from the albino strains Similarly, less than 20% o f  total 

Cu2+ w as desorbed from Cu2+-loaded extracellular melanin o f  C resinae by metal 

sulphates at cation concentrations up to 250 |iM  while Cu2+ desorption from pigmented 

and albino cells ranged from 40-80%  A pullulans cells were reported to exhibit similar 

behaviour

In the presence o f  copper, melanin production by both C resinae and A pullulans 

increased (Gadd & de Rome, 1988, Gadd & Griffiths, 1980) For pigmented C resinae 

extracellular melanin production increased from 22 to 25 |ig  mg'1 in the presence o f  5 mM  

C u S 0 4, although the final yield o f  biomass for both pigmented and albino strains was 

reduced by 30% The melanin was also produced earlier in the presence o f  copper (after 

24 h compared to 36 h in the absence o f  copper) (Gadd & de Rome, 1988) This may be 

due to the fact that D H N  melanin polymerization is thought to be controlled by a copper- 

containmg laccase so copper deficiency blocks melanin synthesis (Bell & Wheeler, 1986)
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A  slight decrease in toxicity as evidenced by increased growth rate and biomass yield upon  

addition o f  melanin to the growth medium may be attributed to melanin metal binding and 

sequestration

Sakaguchi and Nakajima (1987) observed that commercially-prepared melanin 

absorbed uranium from seawater almost quantitatively and in batch experiments maximum  

uptake levels o f  84 nmol mg'1 were observed from seawater supplemented to 10 mg 

uranium I'1 In similar batch studies, pigmented C cladosporoides biosorbed 2 5 to 4-fold  

more Ni, Cu, Zn, Cd and Pb and at 4  to 6-fold higher rates than albino Pemcillium  

digitatum  (Siegel et a l , 1986, Siegel et a l , 1990) B oth P  digitatum  and C 

cladosporoides are non-pigmented after 4  and 2 days growth respectively and capable o f  

removing ca 1 4  and 8 8 mM  kg'1 o f  Cd2+ from solution After 4  days growth, however, 

C cladosporoides is green-black in colour typical o f  early melamzation and is capable o f  

removing ca  21 5 mM  kg'1 o f  Cd2+

Phenylthiourea (PTU) and p-amino benzoic acid (PA BA) are inhibitors o f  melanin 

synthesis and provide additional evidence for the role o f  melanin in Cd2+ uptake P  

digitatum  after 4  days and C cladosporoides after 2 and 4  days growth had relative 

melanin levels o f  0, 10 and 190 and Cd2+ uptake rates ca 4  9, 5 0  and 17 0  nmol mg'1 h 1 

respectively However, after 4  days growth in the presence o f  2 5mM o f  (i) PTU  or (n) 

PABA , the C cladosporoides had relative melanin levels o f  121 and 97 and Cd2+ uptake 

rates o f  9 1 and 8 6 nmol mg"1 h'1 respectively Also, cultures grown in the presence o f  

PTU or P A B A  were green compared to the green-black colour o f  inhibitor-free cultures 

containing higher levels o f  melanin

This enhanced capacity o f  melamzed C cladosporoides to remove more metal ion  

than non-pigmented P  digitatum  was also observed for Ni, Cu, Zn and Pb with uptake

43



rates o f  ca 52 0, 58 1, 51 7 and 23 2  nmol mg"1 h'1 for C cladosporoides compared to ca 

10 5, 10 6, 9 4  and 8 5 nmol mg'1 h'1 for P digitatum  Equilibrium loads o f  Ni, Cu, Zn, Cd 

and Pb at differing initial metal concentrations were also significantly greater for C 

cladosporoides

Rhizomorphs o f  Arm illana  sp consist o f  an inner core, the medulla, and the 

cortex, which may contain up to three layers The cells o f  the cortex are melamzed, with 

melanin also present in the intercellular spaces Rhizomorphs o f  four Arm illana  species 

from three geographic locations had elevated levels o f  metal ions associated with the outer 

surfaces compared to the surrounding soil Mean concentrations o f  Zn, Al, Cu, and Cd 

from one particular site were, respectively, 96, 24, 30 and 40  times higher in rhizomorphs 

than in the associated soil Energy dispersive X-ray microanalysis o f  the rhizomorphs from  

this site demonstrated that the high concentrations o f  metal ions were located on the 

melamzed outer surfaces and not in the medulla (Rizzo et a l , 1992)

Fungal melanin has also a significant role to play in the biosorption o f  tnbutyltin 

chloride (TBTC), an organotin compound used in a variety o f  industrial processes 

(Cooney & Weurtz, 1989, Thayer, 1984) The melamc strain o f  A pullulans has been 

shown to adapt much more quickly to growth in the presence o f  0  3 |iM  TBTC, when  

compared to the albino strain Growth o f  the pigmented strain in the presence o f  an 

external concentration o f  Im M  TBTC resulted in the biosorption o f  ca 0  24m m ol TBTC  

(g dry wt)'1 (Gadd et a l , 1990) Adsorption isotherms o f TBTC adsorbed per umt weight 

o f  biomass at various concentrations revealed that pigmented A pullulans removed more 

TBTC from solution than the albino strain (see Table 1 4) Extracellular melanin purified 

from the pigmented strain exhibited uptake levels o f  ca 22|amol TBTC (mg dry wt)"1 at 

an equilibrium concentration o f  only 0  4mM  (Gadd et a l , 1990)
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Fungal melanms have a high biosorptive capacity for a variety o f  metal ions The 

presence o f  melanin m pigmented cell walls is certainly responsible for the higher levels o f  

biosorption in comparison with albino cells, with purified extracellular melanin showing 

greater biosorption than intact biomass Metal desorption is also o f  the order albino 

biomass >  pigmented biomass >  extracellular melanin, indicating the strength o f  the 

melamn-metal bond

Melanms have a significant role in reducing levels o f  toxic metal ions external to 

the fungal cell, leading to better growth in toxic environments Adsorption o f  metal ions 

by melamzed outer surfaces may also protect fungi from antagonistic microbes (Rizzo et 

a l , 1992) High concentrations o f  metal ions on outer surfaces o f  fungi may be directly 

toxic to antagonists or may interfere with the activity o f  extracellular hydrolytic enzymes 

Complexation o f  metal ions may also reduce the availability o f  essential microelements to 

antagonistic microorganisms (Bell & Wheeler, 1986, Rizzo et a l , 1992) M ost fungal 

biomass in soils is melamzed (Bell & Wheeler, 1986) so melamn-metal ion interactions are 

also ecologically significant in terms o f  soil pollution and plant nutrition (Senesi et a l , 

1987) The use o f  purified melanin and pigmented biomass for the removal o f  toxic and/or 

strategic ions from polluted waters, and recovery o f  precious metal ions from solution, 

warrants further study

1.6.3. Conclusion
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1.7 Research overview.

The initial phase o f  this research was concerned with interactions between a range

o f  metals and the yeast S cerevisiae The value o f  H+ extrusion in assessing and

understanding metal interactions with yeast w as exam ined for a range o f  metals,

namely Cu2+, Cd2+, C o2+, Pb2+ and Sr2+ On account o f  its role in possibly stabilising

membrane structure and also its similar functions to M g2+ which has previously been

observed to reduce harmful effects o f  Cu2+ and C o2+ toxicity towards S cerevisiae

(A oyam a et a l , 1986, Karamushka & Gadd, 1994), interactive effects with Ca2+ for

possible alleviation o f  metal toxicity was also exam ined The effect o f  Cu2+ and C o2+

on S cerevisiae  grow th w as studied in order to gain a better understanding o f  their

toxicity, and the findings related to the H+ extrusion results Intracellular localisation

o f  Cu2+ w as exam ined at concentrations o f  25 and lOOpM to further understand the

m etal-yeast interactions

Subsequent work involved examining the abilities o f  S cerevisiae, Amorphotheca

resinae and Azolla filiculoides to biosorb various metals and also the concomitant K+ and 

2+
M g release and pH change in certain situations Reactors employing a column 

configuration may offer greater metal binding capacity, higher purity effluents and are 

more readily adapted to automation than batch reactors (Bedell & Damall, 1990) 

Consequently, biomass with the greatest biosorption characteristics was selected for use m 

packed bed column studies both in native form and after immobilisation

46



CHAPTER 2
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CHAPTER 2: MATERIALS AND METHODS.

2.1 O rg an ism s, m ed ia  an d  culture conditions.

2.1.1 Saccharomyces cerevisiae: M ain ten an ce, grow th a n d  p rep ara tio n  fo r  

b a tch  stu d ies

S cerevisiae was maintained on malt extract agar (Oxoid) at 28°C and grown in 

liquid medium comprising (g 1') D-glucose, 20, KH2PO4, 2 72, K2HPO4, 3 98, 

(NH4)2S0 4, 2, M g S 0 4 7H 20 ,  0  5, F e S 0 4 7H 20 ,  0 0 0 2 2 , Z n S 0 4 7H 20 ,  0 0 0 4 ,  

M nS04 7H20, 0  004, Q 1SO45H2O, 0  004, yeast extract, 1 A  10ml quantity o f  this 

medium was loop inoculated and grown at 28°C on an orbital shaker at 100 rpm for 48 h 

Experimental flasks were inoculated with these starter cultures and grown for a further 20  

h The biomass was harvested by filtration through Whatman N o  1 filter paper, washed  

several times with deionized, distilled water (D D H2O) and pressed dry between sheets o f  

Whatman N o  1 filter paper Samples o f  biomass were dried at 60°C overnight for dry 

weight measurement

2.1 .2  Amorphotheca resmae P arb erry : M ain ten an ce , grow th a n d  p rep ara tio n  

fo r  b a tch  studies.

Amorphotheca resinae Parberry (LVH 296262) was maintained on malt extract agar 

at 28°C and grown in liquid culture comprising (g I'1) D -glucose, 20, (NH4)2S 0 4, 5, 

KH2PO4, 0  5, M g S 0 4 7H 20, 0  2, CaCl2 6H20, 0  05, NaCl, 0  1, FeCl3 6H20, 0  0025, 

ZnSC>4 7H2O, 0  004, MnSC>4 4H20 ,  0  004, G 1SO4 5H2O, 0  0004  Cultures were grown at 

28°C on an orbital shaker at 100 rpm for 7 days The biomass was harvested as described 

for S cerevisiae and mildly homogenised using a Sorvall Omni-Mixer (Du Pont
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Instruments, Connecticut, U SA ) Samples o f  biomass were dried at 60°C overnight for dry 

weight measurement

2.1 .3  Azolla filiculoides L a m a rc k : P rep aratio n  fo r  b a tch  studies.

A zolla filicu lo ides  Lamarck used was obtained from Dr Elisha Tel-Or, 

Departm ent o f  Agricultural B otany, The Hebrew University o f  Jerusalem, R ehovot 

7 61 0 0 , Israel This biom ass w as used in a range o f  different forms either in its native 

state or follow ing immobilisation Prior to use the A zolla  w as w ashed extensively with  

deionized, distilled water, oven-dried at 60°C overnight and milled to uniform particle size 

The resulting particles were then sieved to a size range o f  between 0  1 and 0  5 mm in 

diameter (denoted milled-sieved Azolla in the following sections) The biosorbent was then 

either used in this form or immobilised using one o f  the following methods

(I) Imm obilisation with tetraethoxysilane (TEOS) A  procedure m odified from  

Braun et a l , (1990) w as em ployed using a TEO S M ethanol H 20  w eight ratio o f  9 5

20  6 73 These com ponents w ere m ixed for 2 h and the methanol w as allow ed to  

evaporate during 2 days at 25°C, until the mixture reached a consistency o f  oil M illed- 

sieved  A zolla  biom ass was then added to a concentration o f  either 5g or 2g  per 100ml 

(classified  as TEOS (l) and TEOS (11) respectively) and the solution dried at 90°C for 5 

h

(II) Imm obilisation with tetramethoxysilane (TMOS) A  procedure again 

m odified from Braun et al (1990) w as em ployed using a TM O S M ethanol H 20  

N aO H  w eight ratio o f  6 84 4  74  2 4  10’4 T hese com ponents w ere m ixed and

co o led  to -5°C A  lOg quantity o f  m illed-sieved A zolla  per 100ml w as then added and 

the biosorbent dried at 90°C for 24  h
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(m) Immobilisation with epichlorhydrin A procedure modified from Dostalek 

et a l , (1994) and Patzak et a l , (1997) was employed Milled-sieved Azolla (2g) was 

added to 10ml of deionized, distilled water After 10 min, 1ml of 40% NaOH was added, 

followed 20 min later by 0 75 ml of epichlorhydrin, with mixing after each addition The 

suspension was left in a closed vessel for 60 min and then heated to 50°C for 60 min 

Following this, the suspension was neutralised in 0 35M acetic acid and washed several 

times with deionized, distilled water The biosorbent particles were then mixed with water 

in a high speed homogemser, filtered and rinsed successively with methanol, acetone and 

diethyl ether The biomass was finally dried at room temperature for 24 h

Each of the above-mentioned biomass types were then milled to uniform 

particle size and filtered to a size range of between 0 1 and 0 5mm These immobilised 

biosorbents were subsequently examined for their Cu2+ uptake

2.2  M e ta l A n a ly s is

2 .2 .1  M e ta l A n a ly s is  b y  A n o d e  S tr ip p in g  V o ltam m e try  (A S V ).

Concentrations of Cu2+ and Cd2+ were determined by Anode Stripping 

Voltammetry (ASV) using a Polarographic Analyser PA3 connected to a Static 

Mercury Drop Electrode SMDE1 with electrolysis time of 40 s, scan rate of 20 mV s 1 

and modulation amplitude of 50mV Duplicate readings were taken and the mean 

value determined

2 .2 .2  M e ta l a n a ly s is  b y  A tom ic  A b so rp tio n  S p e c tro p h o to m e try  (A A S ).

Concentrations of Cu2+, Cd2+, Sr2+, K+ and Mg2+ were determined by Atomic 

Absorption Spectrophotometry (AAS) using a Perkin Elmer 3100 AAS with reference
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to appropriate standards prepared from commercial solutions and from the appropriate 

metal salts

2.3  M e a su re m e n t o f  p H .

A WTW pMX 3000 Microprocessor pH/ION Meter was used to determine pH

2 .4  M e a su re m e n t o f  O p tic a l D en sity  (O D ) d u r in g  S. cerevisiae cell gro w th .

A Umcam 8625 UV/VIS Spectrometer was used to measure optical density at 

550nm (OD550) of S cerevisiae cultures

2.5 T oxicity  o f  m etals tow ard s S . cerevisiae.

2 .5.1 O rg an ism  an d  culture conditions: A brewing strain of Saccharomyces 

cerevisiae was routinely maintained on malt extract agar and grown in defined medium as 

described in Section 2.1.1 A 10ml quantity of this medium was loop inoculated and grown 

as a starter culture at 28°C on an orbital shaker at 100 rpm for 48 h

2.5 .2  H + release a fte r  glucose u p tak e  by  S. cerevisiae. Inh ib ition  by C u 2+, 

C d 2+, C o2+, S r 2+ a n d  P b 2+ a n d  an d  exam in ation  o f  the protective effect o f  C a 2+.

Cells from a 48 h starter culture were used to inoculate growth cultures which 

were grown in defined medium, as described in Section 2.1.1, at 28°C for 20 h in 250ml 

flasks on an orbital shaker at 100 rpm These cells were then harvested by centrifugation, 

washed twice with, and finally resuspended in, PIPES buffer, pH 6 5 A 1ml quantity of this 

S cerevisiae suspension was added to a 250ml flask containing 100ml of 0 5mM PIPES 

buffer, pH 6 5 The cells were allowed to equilibrate for 20 mm with magnetic stirring at
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25°C after which time glucose was added to a final concentration of 1% Stock solutions of 

Cu2+, Cd2+, Sr2+, Pb2+ and Co2+ were prepared from Cu(N03)2 3H20, Cd(N03)2 4H20, 

Sr(N03)2, Pb(N03)2 and CoCl2 6H20  respectively The appropriate volumes of metal were 

added from stock solutions 5 min pnor to glucose addition to give final concentrations of 

10, 25 and lOOpM Cu2+, 50, 100 and 500^M Cd2+, 0 1, 0 5 and lOOmM Sr2+, 0 1 and 

0 5mM Pb2+ and 0 1, 10 and 5 OmM Co2+ Ca2+ was added from stock solution of 

CaCl2 6H20, where required, either 1 min or 5 min prior to metal addition The cell 

suspensions were stirred continuously at 25°C and the pH was recorded using the WTW 

pH meter (see Section 2.3) connected to a computer Data was stored via Multi-Achat 

software and transferred to sigma plot for processing and graphing

2.5 .3  E ffect o f  C o 2+ an d  C a 2+ on  grow th o f  S. cerevisiae.

A series of 250ml experimental flasks was prepared containing 100ml of defined 

medium (described in Section 2.1.1) to which Co2+ was added to concentrations of lOOpM, 

500pM, ImM and 5mM The protective effect of 0 5 and 5mM Ca2+ (from stock solution 

of CaCl2 6H20) towards Co2+ toxicity was also examined by adding Ca2+ to each of two 

series of experimental flasks containing Co2+ All flasks were inoculated with starter culture 

to an initial OD550 of 0 1 and grown on an orbital shaker at 100 rpm and 28°C for 21 h 

during which time samples were removed from each flask and OD550 recorded with 

reference to appropriate blanks comprising unmoculated medium A set of control flasks 

was also included
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2.6.1 O rg an ism  an d  culture conditions: A brewing strain of Saccharomyces 

cerevisiae was routinely maintained on malt extract agar and grown in defined medium as 

described in Section 2.1.1 Cells from a 48 h starter culture were used to inoculate growth 

media to the required cell density (OD550 = 0 1)

2.6 .2  E ffect o f  C u 2+ on  grow th o f  S. cerevisiae.

A series of experimental flasks was prepared containing 100ml of defined medium 

to which Cu2+ was added to concentrations of 1, 10, 50, 100 and 500|iM All flasks were 

inoculated with starter culture to an initial OD550 of 0 1 and grown for 30 h during which 

time samples were removed from each flask and OD55o recorded with reference to 

appropriate blanks A set of control flasks was also included

2 .6 .3  Su b ce llu lar localisation  o f  C u 2+: Cells were harvested by centrifugation 

after 20 h growth and were subsequently washed twice with, and finally resuspended in 5ml 

of, lOmM MES buffer pH 5 5 A quantity of 1 ml of biomass suspension was added to 

100ml of lOmM MES, pH 5 5 After preincubation for 20 min with rotary shaking (150 

rpm), Cu2+ was added to the cell suspensions, to the desired final concentrations, from 

stock solution After 10 min and 2 h, three types of samples were removed (i) 2 x 15ml 

samples were removed into universal containers, centrifuged, washed twice with lOmM 

MES and the pellets retained for analysis of intracellular Cu2+ levels (supernatant was 

retained for K+ analysis), (n) 1ml was removed, centrifuged, washed and resuspended in 

lOmM MES for methylene blue staining (see Section 2.6.4.), (in) 2 x lOOpl samples were

2.6 Toxicity and localisation of Cu2+ in S. cerevisiae.
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diluted 1 / 100 twice in MES, 100|_il plated in triplicate onto malt extract agar and 

incubated for 48 h at 25°C

The two cell pellets at each time point were resuspended in 4 5ml of lOmM 

Tris/MES buffer, pH 6 0, and combined Subsequently, 1 5ml of this cell suspension was 

placed into each of 6 eppendorfs 3 for extracts and 3 for total digests ‘Total digest’ pellets 

were digested for lh in 0 5ml of 6M HN03 at 100°C followed by addition of 3ml of 

distilled, deionised water Solutions were retained for Cu2+ determination

The subcellular compartmentation of Cu2+ was determined using procedues 

described by White & Gadd (1987 a) which were modified from Huber-Walchli & 

Wiemken (1979)

The level of Cu2+ in the wash fraction was determined by centrifuging each extract 

sample at 13,000 rpm for 3 min, removing and retaining the supernatant and resuspending 

in 1 5ml of Tns/MES buffer, pH 6 0 at 0 to 4°C, followed again by centrifugation These 

two supernatants were combined and retained for Cu2+ analysis

The cytoplasmic membrane of the cell pellets was permeabihsed by resuspending 

the pellets in 1ml of lOmM Tris-MES buffer, pH 6 0, with 0 7M sorbitol at 25°C DEAE- 

dextran (40|il, lOmg ml1) was added, mixed and incubated for 30s at 25°C After 

centrifugation (13,000 rpm, 30s) the supernatant was removed and retained The cells were 

subsequently washed 3 times with 0 7M sorbitol in lOmM Tris-MES buffer, pH 6 0, at 0 to 

4°C, with incubation for 1 min at each wash Supernatants were removed and retained after 

centrifugation at each wash and were combined with that from the initial permeabilisation 

step

The vacuolar membrane was permeabihsed by suspending the pellet in 1ml of 60% 

(v/v) methanol at 0°C to 4°C After incubation for 30s, the solution was centrifuged
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(13,000 rpm, 30s) and the supernatant removed and retamed This process was repeated 

twice and the supernatants from the three steps retamed and combmed The pellet was then 

resuspended m 1ml of Tns-MES buffer, pH 6 0 at 0 to 4°C, mcubated for 1 mm, 

centrifuged (13,000 rpm, 30s) and the supernatant removed and retamed This was 

repeated twice more and the three supernatants combmed with the three from the initial 

permeabilisation steps

The resultant cell debris was digested in HNO3 as described earlier, to release 

remaining bound Cu2+ Wash, cytoplasmic, vacuolar and “bound” fractions were 

subsequently analysed for Cu2+ content

2.6.4. V iability  determ in ation  u sin g  M ethylene B lu e  stain ing.

The citrate methylene blue staining technique was used to determine cell viability 

(Pierce, 1971) A quantity of 0 Olg methylene blue (BDH, Poole, England) was dissolved 

m 10ml of DDH20, followed by the addition of lg of tn-sodium citrate (BDH, Poole, 

England) A further 60 ml of DDH2 O was added, the resultant solution stirred until 

dissolved, filtered through Whatman no 1 filter paper and made up to 100 ml with 

DDH20  Cells were diluted where necessary to give a countable number of cells and a 1 ml 

quantity of this solution was then mixed with an equal volume of the appropriate cell 

suspension and allowed to mcubate for 5 mm Viable cells appeared colourless whereas 

dead cells stained blue havmg taken up the stain The cells were counted usmg a 

haemocytometer and the number of colourless cells to total number of cells was then 

expressed as a percentage viability
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2.7 T oxicity  o f M n 2+ tow ard s Saccharomyces cerevisme.

A starter culture of S cerevisiae was loop inoculated and grown at 25°C for 48 h 

This culture was used to inoculate two growth flasks to OD55onm 0 1 Biomass was 

harvested aseptically after 18 h by centrifugation in sterile tubes This was subsequently 

washed twice with, and finally resuspended in, sterile DDH2 O A quantity of 1 5ml of 

biomass was added aseptically to three experimental flasks containing 100ml DDH20 

Before adding metal, at time t.5 min, lOOpl was removed from each flask, diluted twice by 

1/100 to 103 cells per ml and 0 1ml plated out in triplicate onto malt extract agar and 

incubated for 48 h at 25°C Two 5ml samples were also removed for K+ analysis by AAS 

At t0, Mn2+ was added from 1M stock to 2 flasks to final concentrations of 1 and lOmM 

After 5, 70 and 160 min 5ml samples were removed, for K+ analysis by AAS, and lOOjal 

samples for dilution and plating

A haemocytometer was used to calculate the number of cells in each flask so K+ 

release per 109 cells could be calculated

2.8  M eta l ad sorp tion .

2.8.1 E ffect o f  b iom ass concentration  on  n ati\e  A. filiculoides biosorption .

A series of batch solutions was prepared in duplicate from Cu2+, Cd2+ or Pb2+ stock 

solutions and deionised water with an initial metal concentration of 5 mg 11 After pH 

adjustment to 5 50 + 0 05 using dilute HN03 or NaOH, quantities of 0 1, 0 5 or 1 Og (dry 

weight, corresponding to 1, 5 and lOg I'1 respectively) of Azolla was added to each 

flask The Azolla systems were left shaking overnight (ca 16 h) by which time 

complete saturation of the biomass with test ion was expected At equilibrium, 

duplicate 5ml samples were removed from each flask and mixed with 5 ml of either

56



0 5M HN03 for Cu2+ analysis or 0 5M HC1 for Cd2+ and Pb2+ analysis Metal 

concentrations were determined using ASV A set of biomass-free flasks was also 

prepared and samples were removed and analysed in a similar fashion to determine 

initial metal concentrations Metal uptake was expressed for biomass dry weight in all 

cases

2.8 .2  A dsorp tion  iso therm s u sin g  S. cerevisiae, A. resinae an d  A. filiculoides 

L a m a r c k .

A series of batch solutions was prepared m duplicate from Cd2+, Cu2+ or Sr2+ stock 

solutions and deionised water with initial metal concentrations ranging from 0-200 mg I"1 

After pH adjustment to 5 50 + 0 05 using dilute HC1, HNO3 or NaOH, 0 3g (wet weight) 

of S cerevisiae, 0 5g (wet weight) of A resinae or 0 lg (dry weight) of Azolla was 

added to each flask Wet weight quantities of 0 3g for S cerevisiae and 0 5g for A resinae 

correspond to dry weights of ca 0 lg so biomass concentrations were the same for all 

three biosorbents The 5 cerevisiae and A resinae systems were allowed to contact for 60 

min on an orbital shaker at 150 rpm at room temperature after which time a sample was 

removed from each flask and centrifuged at 5,000 rpm for 15 min and the pH values noted 

The final metal concentrations of the supernatants were analysed using a Perkin-Elmer 

3100 AAS, which was also used to determine supernatant K+ and Mg2+ concentration The 

Azolla systems were left shaking overnight (ca 16 h) after which time 5ml samples 

were removed from each flask and mixed with 5 ml of either 0 5M HNO3 for Cu2+ 

analysis or 0 5M HC1 for Cd2+ analysis Metal concentrations were determined using 

ASV Metal uptake was expressed for biomass dry weight in all cases
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A series of biomass-free flasks was also set up for each isotherm, and samples 

were removed and analysed in a similar fashion to determine initial metal 

concentrations

2 .8 .3  C u 2+ a d so rp tio n  u s in g  im m o b ilised  a n d  n on -im m o b ilised  m illed- 

s ie v ed  A. filiculoides  L a m a r c k .

A series of flasks was prepared with 100ml of Cu2+ at concentrations of 50 and 

100 mg I'1 Cu2+ Metal-free flasks were also prepared The initial pH was adjusted to 

5 50 ± 0 05 using dilute solutions of HNO3 and NaOH Immobilised or non- 

îmmobilised milled-sieved Azolla (0 lg) was added to each flask and left shaking 

overnight (ca 16 h) Duplicate samples were removed from each flask and metal 

concentrations were determined by AAS Biomass-free flasks were also included in all 

cases Metal uptake was expressed for biomass dry weight in all cases

2 .8 .4  M e ta l tim e-co u rse  u p ta k e  u s in g  A. filiculoides  L a m a r c k .

To examine kinetics of uptake, 0 2g of dried Azolla was added to a 1 litre flask 

containing 199ml of deionised, distilled water, and agitated for 60 min to ensure 

complete wetting A 1 ml volume of 1000 mg 11 test ion (Cu2+ or Cd2+) was then 

added to the flask to give a metal concentration of 5 mg I1 At various time intervals, 

lml samples were removed and mixed with 10ml of either 0 5M HN03 or 0 5M HC1 

for Cu2+ or Cd2+ analysis respectively using ASV Metal uptake was expressed for 

biomass dry weight in all cases
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2 .9 .1  C o lu m n  S e t-U p  fo r  n ative , m illed-sieved  a n d  ep ich lo rh y d rin - 

im m o b ilised  Azolla.

Initially all columns and fittings were thoroughly acid-washed in 10% HN03 

and rinsed with deionised distilled water A 2 5g quantity of native Azolla was packed 

lightly into columns 50cm in length with an internal diameter of 1cm Due to their Cu2+ 

binding capacity, milled-sieved Azolla and epichlorhydrin-immobilised milled-sieved 

Azolla were also selected for use in column studies and quantities of either 1 or 2 5g of 

each were packed lightly into columns The dimensions of these columns were 22cm in 

length for the lg columns and 40cm in length for the 2 5g columns, each with an 

internal diameter of 1cm A quantity of 2 1 of DDH20  was pumped through each 

column prior to use in order to wash the biomass and also to reduce the risk of air 

pockets forming during pumping of metal ion This ensured the maximum biomass 

surface area was available for interaction with the influent metal solution Influent test 

ion solutions of concentration 5mg I'1 Cu2+ or Cd2+ were prepared using deionised, 

distilled water with the pH adjusted to 5 50 ± 0 05 using dilute HN03 or NaOH Feed 

solutions were pumped through the columns in a downflow direction in the case of 

native Azolla and in an upflow direction for milled-sieved and epichlorhydrin- 

lmmobilised Azolla Flow rates were either 1 or 3 5ml min1 and samples were 

collected at regular intervals for metal analysis

2.9 Column Study with A. filiculoides
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Chelaton 3 (CioHi4 0 gN2 Na2  2H20), pH 5 50 ± 0 05, at a concentration of 

5mM was used to desorb the accumulated Cu2+ from a column containing 1 g of 

milled-sieved Azolla through which 18 95 1 of 5mg I'1 Cu2+ solution had previously 

been passed The eluting agent was pumped through the columns by a peristaltic pump 

at a flow rate of 1 ml min'1 and samples were collected at regular intervals for metal 

analysis

2 .9 .3  D e te rm in atio n  o f  n ativ e  Azolla  b io so rb e n t c h a ra c te r is t ic s

(W et D en sity , V o id  V o lu m e F ra c t io n  a n d  S o rb e n t  B u lk  D en sity ).

Swelling Volume of Biosorbent A quantity of 2 5g of native Azolla was placed 

into a 100ml graduated cylinder and weighed (weight = a) The cylinder was then filled 

with water and allowed to soak for 3 h with slight mixing Excess water was poured 

off and the cylinder + wet biomass weighed (weight = b) Weight of accumulated 

water, m = b - a

100ml volumetric flask filled with water, weight = Mi

Wet biomass was placed into flask and filled to 100ml mark with water, weight = M2

Wet Density of Biosorbent

p = pv m/(m + (Mi-M2))

where m, Mi and M2 are as defined earlier and

p = wet density of Azolla

pv = density of water at 20°C

Void Volume Fraction, e = 1 - ((m/Vs) / p)

2.9.2 Desorption of Cu2+ from milled-sieved Azolla column using Chelaton 3.

w h ere m  and p are as d efin ed  earlier and
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e = Void Volume Fraction 

Vs = Bed Volume = 7ir2h 

Sorbent Bulk Density 

G / V = (dry weight / Vs) 1000

2 .9 .4  M a th e m a tic a l m od el fo r  p red ic tio n  o f  co lu m n  b re a k th ro u g h  cu rv es 

fo r  C u 2+ a n d  C d 2+ u sin g  n a tiv e  Azolla.

A mathematical model for prediction of column breakthrough was developed 

by Dr J  Votruba at the Academy of Sciences, Prague, Czech Republic This model 

was utilised in the present study and the results compared with present experimental 

data

Mathematical description of column type biosorber dynamics can be shown by 

mass balance

Balance of substance in liquid phase e (8c/8t) = (-F/V) 5c/5£, + (3(C*-c) G/V (1) 

where (§c/§t) represents the change in concentration of metal with respect to

time,

(-F/V) 5c/8£ represents the change in concentration of metal at various stages 

in the column as it flows through,

(3(C*-c) G/V represents the adsorption of metal onto the biomass 

Consequently, the balance of substance in solid phase may be shown by 

8q / 5t = -p(C*-c) (2)

where 5q /  5i is dependent only on the adsorption of metal onto the surface of 

the biomass
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t > 0, c(0) = c0

F = Volume flowrate, C* = Equilibrium concentration of metal m solution 

calculated from Freundlich sorption isotherm, (3 = mass transfer coefficient, G/V = 

sorbent bulk density, c = concentration of metal in solution, V = bed volume, £, = 

dimensionless length coordinate, q = concentration of metal based on sorbent mass, e 

= void volume fraction, c0 = input concentration of metal in solution

The experimental sorbent characteristics and adsorption isotherms were used 

by Dr Pavel Dostalek at the Institute of Chemical Technology, Prague, Czech 

Republic to develop a computer model for predictive calculation of metal sorption 

The programming and simulation language PSI/c was used for these calculations The 

original set of partial differential equations (Eqs 1 and 2) was discretized in length 

coordinate by means of finite differences The resulting set of ordinary differential 

equations was integrated using the 4th order Runge-Kutta method implemented in 

PSI/c and is shown m Appendix A The data obtained using this computer model were 

graphed and compared with results obtained experimentally

Initial and boundary con d ition s t =  0 , c =  q =  0  for  £  e  <  0 ,1  >
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CHAPTER 3: RESULTS

3.1  T o x ic ity  o f  m e ta ls  to w a rd s  S. cerevisiae.

3 .1 .1  H + re lease  a f te r  g lu co se  u p ta k e  b y  S. cerevisiae. E ffe c t  o f  toxic 

m e ta ls  a n d  p ro tec tio n  b y  C a 2+.

Addition of glucose to a solution of S cerevisiae cells led to a progressive pH 

drop from 6 50 to ca 4 25, 90 min after the addition of glucose (Figure 3 11) Addition 

of Cu2+ inhibits this glucose-dependent H+ efflux which is observed as a reduction in the 

pH drop (Figure 3 12) Higher concentrations of Cu2+ led to corresponding larger 

inhibitions in change of pH (Figure 3 12) After addition of 25, 50 and 100|_iM Cu2+, the 

pH dropped to ca 4 9, 5 35 and 6 4, respectively, 90 min after glucose addition The 

effect of Ca2+ on Cu2+ toxicity was subsequently examined Addition of 0 5mM Ca2+ 1 min 

before 100pM Cu2+ led to a H+ release once again as the pH drops to ca 5 85, 10 mm 

after glucose addition (Figure 3 12) This H+ efflux is then followed by a slight gradual 

influx during the following 40 mm, resultmg m a small pH mcrease to ca 6 0 The 

significance of mcreasmg the time between Ca2+ addition and addition of Cu2+ was 

examined to see if it mcreased the protective effect, leadmg to greater metabolic activity as 

manifest by H+ efflux A quantity of 0 5mM Ca2+ added 5 mm before lOOpM Cu2+ 

addition results m a slight mcrease m H+ release to ca pH 5 75, before gradually rising 

once again over the following 40 mm to ca 5 85 (Figure 3 12)
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7 0

Time (mins)

F ig u r e  3 .1 .1  H+ release after glucose uptake by S cerevisiae Glucose added at t2o

Time (mins)

F ig u r e  3 .1 .2  Toxicity of Cu2+ towards H+ release by S cerevisiae H + release after 

addition of (1) 1% glucose, (2) 10pM Cu2+, (3) 25pM Cu2+, (4) 1 00(jM C u 2+, (5) 

0 5mM Ca2+ followed 1 min later by lOOpM Cu2+, (6) 0 5mM Ca2+ followed 5 mm 

later by lOOpM Cu2+ All Cu2+ additions 5 min before 1% glucose Glucose added at

ho
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The toxicity of Cd2+ was also demonstrated, with concentrations of 50, 

100 and 500|iM inhibiting the H+ release (Figure 3 13) The decrease in pH was inhibited 

with pH dropping to ca 5 26, 5 69 and 5 98 after contact with 50, 100 and 500pM Cd2+ 

respectively The effect of 0 5mM Ca2+ on this toxicity was subsequently examined with 

the results shown in Figures 3 1 4 to 3 1 6 Addition of Ca2+, to a concentration of 

0 5mM, 5 min before 50|iM Cd2+ was observed to reduce the toxic effect of the Cd2+, 

with the pH decreasing to ca 4 94 after 90 min compared to ca 5 26 in the absence of 

Ca2+ (see Figure 3 1 4) A similar response was observed upon addition of 0 5mM Ca2+ 5 

min before 100(iM Cd2+ with the pH decreasing to 4 67 after 90 min compared to 5 69 in 

the absence of Ca2+ (see Figure 3 15) The pH was observed to decrease to ca 5 42 after 

90 min when 0 5mM Ca2+ was added 5 min before 0 5mM Cd2+ compared to pH 5 98 in 

the absence of Ca2+ (see Figure 3 16)

Time (mins)

F ig u re  3 .1 .3  Toxicity of Cd2+ towards H+ release after glucose uptake by S 

cerevisiae H+ release after addition of (1) 1% glucose, (2) 50|iM Cd2+ followed 5 

min later by 1% glucose, (3) 100|iM Cd2+ followed 5 min later by 1% glucose, (4) 

0 5mM Cd2+ followed 5 min later by 1% glucose Glucose added at t20 mm
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Time (mms)

F ig u re  3 .1 .4  Toxicity of 50(jM Cd2+ towards H+ release by S cerevisiae and the 

protective effect of 0 5mM Ca2+ H+release after addition of (1) 1% glucose, (2) 

50pM Cd2+ followed 5 min later by 1% glucose, (3) 0 5mM Ca2+ followed at 5 min 

intervals by firstly 50pM Cd2+ and then 1% glucose Glucose added at t2o nun

Time (min)

F ig u re  3 .1 .5  Toxicity of 100(aM Cd2+ towards H+ release by S cerevisiae and the 

protective effect of 0 5mM Ca2+ H+release after addition of (1) 1% glucose, (2) 

lOOpM Cd2+ followed 5 min later by 1% glucose, (3) 0 5mM Ca2+ followed at 5 min 

intervals by firstly lOOpM Cd2+ and then 1% glucose Glucose added at t2o min
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Time (min)

Figure 3.1.6 Toxicity of 0 5mM Cd2+ towards H+ release by S cerevisiae and the 

protective effect of 0 5mM Ca2+ H+release after addition of (1) 1% glucose, (2) 

0 5mM Cd2+ followed 5 min later by 1% glucose, (3) 0 5mM Ca2+ followed at 5 min 

intervals by firstly 0 5mM Cd2+ and then 1% glucose Glucose added at t2o min
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Figure 3 17 shows results of the effect of Co2+ on S cerevisiae membrane 

function and the protective effect of Ca2+ Initially lOOpM Co2+ was added and led to a 

corresponding pH drop to ca 4 31 after 90 nun (Figure 3 17, plot 2) which was very 

similar to the control value of ca 4 25 in the absence of metal (Figure 3 17 plot 1) 

The corresponding viability after 90 mm was 96 3% which again mdicated the low 

toxicity of lOOpM Co2+

Increasing the Co2+ concentration to ImM, however, leads to a reduction in H+ 

release with the pH decreasmg to ca 5 47, 75 mm after glucose addition (Figure 3 17, 

plot 3) Viability decreased to 52 4% after 75 mm which also indicates higher toxicity 

of Co2+ at ImM

The possible protective effect of Ca2+ towards Co2+ toxicity was subsequently 

examined Ca2+ added to a final concentration of 0 5mM 5 mm before addition of ImM 

Co2+ leads to a cell viability of 96 0% and a pH decrease to ca 4 35, 90 mm after 

glucose addition (Figure 3 17, plot 4)

Increasing the concentration of Co2+ to 5mM leads to a subsequent decrease m 

H+ release leadmg to a pH of only 5 79, 90 mm after glucose addition (Figure 3 17, 

plot 5) and a viability of 50 6% Addition of 0 5mM Ca2+ 5 mm before the 5mM Co2+ 

appears once again to protect the cells against the toxic effects of Co2+, with the pH 

dropping to ca 4 28 once again after 80 mm (Figure 3 17, plot 6) and cell viability 

mcreasmg to 98 2% The profile of the plot is almost identical to that of the H+ efflux 

after addition of 100pM Co2+

Toxicity of Pb2+ was also examined and at a concentration of lOOpM Pb2+ 

reduced the IT- release, with pH decreasmg to ca 4 95 after 90 mm (Figure 3 1 8) Pb2+ 

at a concentration of lOOpM consequently appears to be toxic by slowmg down 

transport by the plasma-membrane After 90 mm the cell viability had decreased to 

58 6% of the original viability at time zero, again mdicatmg the toxic effect of the Pb2+ 

at a concentration of lOOpM The Pb2+ concentration was then increased to 500pM 

resultmg in a greater reduction m H+ efflux, the pH decreasmg to only ca 5 59 after 90 

mm
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Time (mins)

Figure 3.1.7 Toxicity of Co2+ towards H+ release by S cerevisiae H+ release after 

addition of (1) 1% glucose, (2) 100(aM Co2+, (3) ImM Co2+, (4) 0 5mM Ca2+ followed 

5 min later by ImM Co2+, (5) 5mM Co2+, (6) 0 5mM Ca2+ followed 5 min later by 

5mM Co2+ Co2+ additions followed 5 min later by 1% glucose Glucose added at t2o 

min

Time (mins)

Figure 3.1.8 Toxicity of Pb2+ towards H* release by S cerevisiae H+ release after 

addition of (1) 1% glucose, (2) lOOjiM Pb2+, (3) 500|jM Pb2+ Pb2+ additions followed 

5 min later by 1% glucose Glucose added at t2o mm
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Sr2+ at concentrations of 100 and 500|iM exhibits negligible toxicity towards the 

H+ release from S cerevisiae with pH values of ca 4 44 and 4 42 after 90 mm 

respectively, compared to the control value of ca 4 26 (see Figure 3 19) Similarly 

lOOmM Sr2+ does not appear to affect H+ release, leadmg to a pH of ca 4 27, 90 mm after 

the addition of Sr2+ The corresponding cell viabilities after 90 mm were ca 96 9%, 93 8% 

and 91 5% after contact with the lOOpM, 500pM and lOOmM Sr2+ respectively, again 

mdicatmg the low toxicity of Sr2+ at these concentrations

Time (min)

Figure 3.1.9 Toxicity of Sr2+ towards H+release by S cerevisiae H+release after 

addition of (1) 1% glucose, (2) lOÔ M Sr2+, (3) 500pM Sr2+, (4) lOOmM Sr2+ Sr2+ 

additions followed 5 min later by 1% glucose Glucose added at t20 min
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The effect of Co2+ on the growth of S cerevisiae was also examined (Figure 

3 1 10 (a-c)) All four Co2+ concentrations studied inhibited cell growth (Figure 3 1 10

(a)) Toxicity increased with increasing Co2+ concentration, with growth after 21 h being 

reduced to 29 6, 17 5, 17 4 and 9 5% of the control value in the presence of 100pM, 

500|jM, lmM and 5mM Co2+ respectively This is interesting as in Figure 3 1 7 no toxic 

effect was observed due to lOOpM Co2+ Consequently, it appears that in the presence of 

lOOpM Co2+ the cell membrane transport system in S cerevisiae is able to continue 

functioning, but actual cell growth is inhibited At concentrations of 1 and 5mM, however, 

both membrane function and cell growth are inhibited by Co2+

Ca2+ at concentrations of 0 5mM and 5mM had a noticeable effect on the toxicity 

of Co2+ (Figure 3 1 10 (b) and (c)) The presence of 0 5mM Ca2+ increased cell growth 

after 21 h to ca 36 8, 22 5, 21 2 and 10 5% of the control after contact with 100, 500jjM, 

1 and 5mM Co2+ respectively which represent increases of ca 24 4, 28 6, 21 5 and 10 0% 

compared to corresponding growth in the presence of the same concentrations of Co2+ but 

in the absence of Ca2+ Addition of 5mM Ca2+ reduced Co2+ toxicity even further with 

growth after 21 h representing ca 36 9, 35 7, 36 7 and 20 0% of the control after contact 

with 100, 500|iM, 1 and 5mM Co2+ respectively which represent increases of ca 24 6, 

104 2, 110 7 and 110 4% compared to corresponding growth in the absence of Ca2+

f
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Time (hrs)
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Control, •  

500|iM Co21 

5mM Co2+

100|iM Co'+,
■ ImM Co2'

(b)

Time (h)

o Control, Control + 0 5mM Ca
100|jM Co2+ + 0 5mM Ca2+, 
500|jM Co2+ + 0 5mM Ca2+, 
1 mM Co2+ + 0 5mM Ca2+, 
5mM Co2+ + 0 5mM Ca2+

(c)

0 5 10 15 20 25

Time (h)

0 Control, D Control + 5mM Ca2+, 

•  100pM Co2+ + 5mM Ca2+,

T 500(jM Co2+ + 5mM Ca2+,

■  1 mM Co2+ + 5mM Ca2+,

A 5mM Co2+ + 5mM Ca2+

Figure 3.1.10 Effect of Co2+ on growth of S cerevisiae (a) and the possible 

protective effect of Ca2+ ((b) and (c))
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3.1.2 Toxicity of Cu2+ and Mn2+ and localisation of Cu2+ in S. cerevisiae.

The effect of Cu2+ on the growth of S cerevisiae was examined and is shown in 

Figure 3 111 Growth was not inhibited in the presence of 1, 10 or 50|iM Cu2+ 

However, Cu2+ at a concentration of 100(iM causes a reduction in growth of 25 8% and 

29 3% after 22 and 30 h respectively A concentration of 500pM Cu2+ has an even 

greater inhibitory effect, leading to a reduction in growth of 75 8% after 22 h and 79 6% 

after 30 h

Eco
LO
LO

Q
o

Time (hours)

°  Control, Cu2+ •  1|jM, ▼  10|j M,
■  50|jM , a  100|jM, a  500mM

Figure 3.1.11 Effect of Cu2+ on growth of S cerevisiae

The intracellular localisation of sub-toxic and toxic cencentrations (25 and 

lOOpM respectively) of Cu2+, as determined from the S cerevisiae growth curve in 

Figure 3 111, was subsequently examined Results indicate that m the control cells there 

was no Cu2+ present in either the cytosol or vacuolar fractions after 10 mm or 2 h (see
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Table 3 11) The vast majority of Cu2+ was located in the membrane bound fraction (ca 

695 and 445 nmol/109 cells after 10 min and 2 h respectively) This Cu2+ is that which 

was available in the unamended growth medium which was determined to be at a 

concentration of ca 15 ¡jM

For cells contacted with 25pM Cu2+ the majority of the ions was once again 

found in the membrane fraction at concentrations of ca 1257 and 979 nmol/109 cells 

after 10 min and 2 h respectively (Table 3 11) There was also an increase in the amount 

of Cu2+ in the wash fraction with ca 89 and 193 nmol/109 cells after 10 min and 2 h 

respectively No Cu2+ was detected in the vacuolar fraction at either time point A trace 

amount of Cu2+ was detected in the cytosol fraction after 10 min but was not present 

after 2 h For cells contacted with 100pM Cu2+ however, the levels of Cu2+ increased in 

all four fractions with the majority still being present in the membrane fraction The total 

Cu2+ levels were within 0 2 and 3 0% of those for intact cells after 10 min and 2 h 

respectively
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Compartment Cu2+ content (nmol/109 cells)

Control
10 min_____________ 2h

Wash 10 2 ±6  2 24 6 ± 9 5
Cytosol 00 00
Vacuole 00 00
Membrane bound 695 3 ±47 9 444 8 ±19 5

Total 705 5 469 4
Intact Cells 610 55 ±16 1 367 4 ±51 1

10 min
25|uM

2 h
Wash 89 0 ± 3 6 192 9 ± 0 0
Cytosol 8 7 ± 0 0 00
Vacuole 00 00
Membrane bound 1257 3 ±70 7 978 8 ± 6 4

Total 1355 0 1171 7
Intact Cells 1160 7 ±30 4 1093 9 ± 3 1

10 min
IOOjiM

2 h
Wash 536 4 ± 0  0 3934±3 6
Cytosol 239 2 ± 6 1 278 6 ± 3 0
Vacuole 42 9 ± 0 0  78 7 ±7 2
Membrane bound 2208 2 ± 61 2 2682 \ ± 9 1

Total 2983 8 3181 8
Intact Cells 2979 7 ± 38 4 3277 4 ± 19 4

Table 3.1.1 Intracellular Cu2+ levels in S cerevisiae in the absence of Cu2+ or in the 

presence of 25(jM or 100pM Cu2+ Mean values ± standard error of the mean from 

three determinations are shown
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After contacting the S cerevisiae cells with 10, 25 and 100pM Cu2+, K+ release 

was observed to increase with increasing Cu2+ concentration and with time (Table 3 12) 

Toxicity was also examined by plate counts (Table 3 13) but there does not appear to be 

a significant drop in viability after addition of lOpM Cu2+ Viability as a % of the control 

subsequently decreased with both increasing Cu2+ concentration and time of contact for 

25 and 100pM Cu2+ After contact with 25(jM Cu2+, viability decreased to ca 65 and 

39% after 10 mm and 2 h respectively and in the presence of 100|iM Cu2+ decreased to 

ca 8 and 2%

Methylene blue staining however, indicated much greater reductions in viability 

In the presence of 10pM Cu2+ viability was reduced to 78 6 and 76 1% of the controls 

after 20 mm and 2 h respectively (Table 3 1 4) A Cu2+ concentration of 25|iM caused 

the viability to be reduced to 38 3 and 27 5% after 10 mm and 2 h respectively while 

100pM Cu2+ caused total loss of viability

The results of the K+ release after contact with Mn2+ are shown in Table 3 1 5 As 

observed m the Cu2+ studies, an mcrease m Mn2+ gave rise to mcreased K+ release After 

mcubation for 48 h at 25°C the colonies on the malt extract plates were counted to give 

colony forming units (c fu )  per ml (Table 3 1 6) Mn2+ at a concentration of lOmM 

caused a significant reduction m viability to ca 710 and 79 6% after 70 and 160 mm 

respectively
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K+ release (pmol/109 cells)

Time Control 10(jM 25pM lOOpM

10mm 5 0 2 ± 0 11 8 81 ± 0 19 2063 23 44

2 hours 5 70 ± 0  78 1042±030 21 67 2546

Table 3.1.2 Effect of Cu2+ on release of K+ by S cerevisiae

Viability (% of control)

Time Control 10pM 25pM lOOpM

10mm 100% 93 5% 64 9% 84%

2 hours 100% 1016% 39 0% 15%

Table 3.1.3 Viability of S cerevisiae, from plate counts (c f u x 107 ml'1), after contact 

with Cu2+at concentrations of 10, 25 and lOOpM

Viability (% of control)

Time Control 10(aM 25pM lOOpM

10mm 100% 78 59 % 38 25 % 00%

2 hours 100% 7610% 27 47% 00%

Table 3.1.4 Viability determination by methylene blue staining for S cerevisiae after 

contact with Cu2+at concentrations of 10, 25 and 100pM
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K+ release (pmol/lO9 cells)

Time (min) Control ImM Mn2+ lOmM Mn2+

-5 5 33 5 50 7 01

70 5 37 12 61 15 88

160 5 29 11 66 16 67

Table 3.1.5 Effect of Mn2+ on release of K4- by S cerevisiae

Control ImM Mn2+ lOmM Mn2+

Time cfu xlO7 per ml cfu xlO7 per ml % viability cfu xlO7 per ml % viability 

(min)

-5 10667 0 9900 92 8% 10433 97 8%

70 1 2340 1 1167 90 5% 0 8767 71 0%

160 1 2433 1 1733 94 4% 0 9900 79 6%

Table 3.1.6 Viability of S cerevisiae after contact with 1 and lOmM Mn2+
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3.2 Metal Adsorption.

Increasing biomass concentration in solution caused a corresponding decrease in

Cu2+, Cd2+ and Pb2+ biosorption (Figure 3.2.1). As Azolla concentration was increased
1 2+from 1 to 5 to 10 g 1", Cu biosorption per g (dry wt) of biomass decreased from 80.8

-I 1 2+(imol g" to 17.9 and 9.0 (imol g' , biosorption of Cd decreased from 51.6 to 10.5 and
1 2+  • 15.3 jamol g and Pb biosorption decreased from 10.1 to 2.8 and 2.1 jxmol g’

respectively. Total test ion removal (expressed as a %) increased from 89.9 to 99.8 and

99.9% for Cu2+, from 96.4 to 98.2 and 98.5% for Cd2+ and from 36.4 to 49.9 and 73.9%
2+ | 

for Pb as biomass concentration in solution was increased from 1 to 5 to 10 g 1'

respectively.

3.2.1 Effect of biomass concentration on native A. Jiliculoides biosorption.

Figure 3.2.1 Biosorption of Cu2+, Cd2+ and Pb2+ by native Azolla at biomass 

concentrations of 1 (red), 5 (blue) and 10 g I"1 (green). Initial test ion conc. = 5 mg I"1.
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3.2.2 Metal adsorption isotherms with S. cerevisiae, A. resinae and A. 

filiculoides.

Both S cerevisiae and A resinae exhibited uptake of Cu2+, Cd2+ and Sr2+ from 

solution Cation adsorption levels were greater for S cerevisiae in each case Plotting 

uptake (q) against the final solution concentration (Cf) yields curvilinear isotherms, 

indicating saturation at higher cation levels (Figures 3 2 2 and 3 2 3) Sorption isotherms 

were also plotted for Cu2+ and Cd2+ uptake by Azolla and are shown in Figure 3 2 4 

In the case of S cerevisiae, Cu2+ and Cd2+ were adsorbed to the highest levels, 

with maximum uptake levels of ca 150pmol g'1 Sr2+ was adsorbed to a maximum level 

of ca 90pmol g 1 Uptake levels of all three cations for A resinae were significantly 

lower than for S cerevisiae, with Cu2+, Cd2+ and Sr2+ being adsorbed to maximum levels 

of ca 70, 40 and 45|jmol g 1 respectively Of the three biomass types, Azolla exhibited 

the greatest adsorption with Cu2+ and Cd2+ being bound to maximum adsorption 

levels of ca 350 and 245|imol g'1 respectively

The uptake data were also tested for fit to the Langmuir adsorption model 

(Langmuir, 1918) q = q0bCf/l+bCf

where q0 = maximum adsorption capacity at saturation 

and b = Langmuir binding strength coefficient

Data conforming to Langmuir adsorption exhibit a straight-line relationship when 

plotted in the form 1/q versus 1/Cf A linear relationship was observed for all three test 

ions for S cerevisiae with r2 values of 0 9863, 0 9947 and 0 9923 for Cd2+, Cu2+ and Sr2+ 

respectively However, for A resinae a linear relationship was observed only for the Sr2+ 

data (r2 value of 0 9782) and not for Cu2+ or Cd2+ (r2 values of 0 8717 and 08629 

respectively) The Scatchard transformation of the Langmuir model (Scatchard, 1949) is 

also useful for characterising metal-ligand interactions (Figures 3 2 5 (a) and (b)) Curved 

plots of q/Cf versus q resulted for Cu2+ and Cd2+ binding by A resinae However, a linear 

relationship was observed for both Cu2+ and Cd2+ binding by S cerevisiae and Sr2+ 

binding by A resinae, with a more scattered plot for S cerevisiae Sr2+ binding
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Cf ((imol I’1)

Figure 3.2.2 Isotherms for Cu2+, Cd2+ and Sr2+ using S cerevisiae •  Copper, T  

Cadmium, ■  Strontium

Cf (nmol T1)

Figure 3.2.3 Isotherms for Cu2+, Cd2+ and Sr2+ using A resinae •  Copper, T  

Cadmium, ■  Strontium
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Cf (nmol 1 *)

Figure 3.2.4 Equilibnum sorption isotherms for Cu2+ ( • )  and Cd2+ ( ♦ )  using native 

Azolla



Figure 3.2.5 Scatchard plots for Cu2+, Cd2+ and Sr2+ adsorption by (a) S cerevisiae and

(b) A resinae •  Copper, ▼ Cadmium, ■  Strontium
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Concomitant to cation uptake was a release of K+ and Mg2+ ions, with greatest 

ion release at higher cation adsorption levels (Figures 3.2.6 (a), (b) and Table 3.2.1). For 

S. cerevisiae Sr2+, Cd2+ and Cu2+ displaced Mg2+ to maximum levels of 8.7, 156.3 and 

176.1|imol g'1 respectively. The same test ions displaced K+ maximally to 5.4, 497.1 and 

531.6|jmol g"1 respectively. Ion release was also observed for A. resinae with the test ions 

displacing Mg2+ maximally to 9.1, 7.0 and 11.3|amol g’1 respectively and K+ to 11.0, 35.4 

and 86.9|amol g"1 respectively.

During test ion uptake the solution pH decreased in the order Sr2+ < Cd2+ «  

Cu2+ for S. cerevisiae and Sr2+ < Cd2+ < Cu2+ for A. resinae (Figure 3.2.7). During Cu2+ 

uptake pH decreased from initial values of 5.50 to final values of 4.31 and 4.42 for S. 

cerevisiae and A. resinae respectively. While the change in solution pH for S. cerevisiae 

uptake of Cd2+ and Sr2+ was negligible, during uptake by A. resinae the pH dropped by 

0.54 and 0.29 pH units respectively. Maximum H+ displacement levels for Cu2+, Cd2+ and 

Sr2+ were ca. 67.3, 1.3 and 0.5 pmol g'1 respectively for S. cerevisiae and 24.1, 6.7 and

5.6 pmol/g respectively for A. resinae.

For S. cerevisiae, K+ was the main exchangeable cation during Cu2+ binding. At 

the lowest initial Cu2+ concentration relative percentages of K+ and Mg2+ released (of the 

total exchanged cations) were ca. 95.9 and 4.1% respectively, with a slight decrease in 

IT- ions. The relative percentages of released K+ ions decreased to ca. 68.6% at the 

highest initial Cu2+ concentration, with Mg2+ and H+ release accounting for ca. 22.7 and 

8.7% respectively. Total ion release levels for A. resinae during Cu2+ uptake were ca. 

52.9 and 122.3 pmol g’1 at the lowest and highest initial Cu2+ concentrations respectively, 

compared to ca. 487.6 and 774.9 (amol g'1 for S. cerevisiae. A decrease in the relative 

percentage of K+ ions released, from ca. 88.9 to 71.1%, between the lowest and highest 

initial Cu2+ concentrations was also observed for A. resinae. The relative percentages of 

Mg2+ and H+ also increased from ca. 5.4 to 9.2% and from ca. 5.7 to 19.7% for Mg2+ and 

H+ respectively.

Total ion release increased from ca. 74.1 to 654.7 pmol g"1 for S. cerevisiae and 

from ca. 25.4 to 49.1 pmol g'1 for A. resinae for the lowest and highest Cd2+ 

concentrations. Once again, as observed for Cu2+, for both organisms the relative 

percentages of released K+ decreased and those of Mg"+ increased, albeit to lower degrees 

than for Cu2+. The relative percentages of released H+ ions also increased for both 

organisms at the highest initial Cd2+ concentration.
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(a) Test ion uptake (jimol g'1)

Test ion uptake (nmol g'1)

Figure 3.2.6 K+ (open symbols) and Mg2+ (closed symbols) displacement resulting from 

Cu2+( 0  • ) ,  Cd2+(V ▼) and Sr2+(D ■) adsorption by (a) S cerevisiae and (b) A resinae
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Initial Test Ion conc 
(pmol I'1)

Ion S cerevisiae 
Uptake/release
(pmol g'1)

A resinae 
Uptake/release
(pmol g 1)

78 290 Cu2+ 62 078 19 142

i f 467 439 47 013

Mg2+ 20 151 2 848

IT -1 736 3 030

2622 773 Cu2+ 142 519 68 475

iC 531 561 86 940

Mg2+ 176 130 11 291

IT 67 256 24 076

44 258 Cd2+ 23 509 15 917

Ì? 58 086 21 874

Mg2+ 15 995 3 043

IT 0020 0482

1482 668 Cd2+ 161 858 39 681

K" 497 080 35 414

Mg2+ 156 335 6 971

i r 1 287 6718

56 779 Sr2+ 17 329 20416

IC 5 157

Mg2+ 2 621 5 946

IT 0 480 0 352

1902 154 Sr2+ 81 771 46 224

IC 5 430 11006

Mg2+ 8 682 9 082

IT 0470 5 572

Table 3.2.1 Test ion uptake and resulting K+, Mg2+ and H+ displacement at minimum and 

maximum initial test ion concentrations for S cerevisiae and A resinae
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(a) q (Mmol g'1)

(b) <1 (Mmol g ' 1)

Figure 3.2.7 Equilibrium pH values after Cu2+, Cd2+ and Sr2+ adsorption by (a) S 

cerevisiae and (b) A resinae •  Copper, ▼ Cadmium, ■  Strontium
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When Sr2+ uptake by both organisms is examined the levels of total ion release are 

lower than those observed for both Cu2+ and Cd2+ uptake At the lowest initial Sr2+ 

concentration, no K* release was observed from S cerevisiae and levels of Mg2+ and H+ 

release were very low (ca 2 62 and 0 48 (imol g 1 respectively) Even at the highest initial 

Sr2+ concentration the amount of total ion release was only ca 14 6 (amol g 1 Total ion 

release for A resinae was ca 115 and 25 7 |_imol g'1 at the lowest and highest initial Sr2+ 

concentrations respectively
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3.2.3 Metal time-course uptake using A. filiculoides.

Investigation of the kinetics of Cu2+ and Cd2+ uptake m batch systems 

revealed that 87% of Cu2+ was removed from solution after only 4 min, with uptake 

of Cd2+ being considerably slower taking 30 mm for 67% removal (see Figure 3 2 8 

(a) and (b)) A value for characteristic time x was obtained from the first three points 

of each data set using linear regression to calculate the intercept with the x-axis 

(Volesky & Votruba, 1992) This value was applied to the computer model for 

prediction of breakthrough For Cu2+ and Cd2+ the x values are 9 47 and 19 65 nun 

respectively

50 100 150 200 250 300 

Time (mins)

Time (mins)

Figure 3.2.8 K in etics o f  (a) C u2+ and (b) C d2+ uptake b y  A zo lla

9 0



3.2.4 Cu2+ adsorption using immobilised and non-immobilised milled-sieved A. 

filiculoides Lamarck.

Immobilisation had differing effects on the biosorption of Cu2+ by milled- 

sieved Azolla In batch studies using solutions with initial Cu2+ concentrations of 50 

and lOOmg 1', native milled-sieved Azolla exhibited the greatest uptake, with uptake 

levels of ca 297 and 363 |jmol g"1 respectively, while epichlorhydnn-immobilised 

Azolla exhibited uptake of ca 287 and 320 |jmol g'1 respectively (see Table 3 2 2) 

Consequently these two biomass types were selected and subsequently examined for 

their use m column removal of Cu2+ TEOS (l) biosorbent, by comparison, exhibited 

much lower uptakes of ca 121 and 155pmol g'1 from 50 and lOOmg 11 solutions of 

Cu2+ while TEOS (11) biosorbent exhibited extremely low biosorption levels of ca 64 

and 68 pmol g'1 from similar solution concentrations TMOS biosorbent was capable 

of removing ca 106 and 121|_imol g'1 from the 50 and lOOmg I'1 solution respectively
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c50 clOO

Milled-sieved Azolla 18 9

Epichlorhydnn Azolla 18 2

TEOS (1) 7 7

TEOS (11) 4 1

TMOS 6 8

Biomass Type mg g'1 |imol g' mg g |amol g

296 9 23 1 363 3

286 9 20 4 320 2

1214 99 155 3

64 3 43 67 7

106 4 7 7 120 5

Table 3.2.2 Uptake of Cu2+ by native and immobilised milled-sieved Azolla c50 and 

clOO = uptake from an initial Cu2+ solution of 50 or lOOmg I'1 respectively, TEOS (i) 

= 5g Azolla per lOOml TEOS solution, TEOS (u) = 2g Azolla per 100ml TEOS 

solution Initial solution pH = 5 50 + 0 05
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3.2.5 Column study using A. filiculoides.

The Azolla isotherm data from Section 3 2 2 (see Figure 3 2 4) were fitted to 

the Freundlich sorption model (Freundhch, 1926) using the Enzfitter program The 

Freundlich model takes the general form

q = KCf(1/n)

where q and Cf are as defined earlier and K and n are constants This can be 

linearised to give the form

In q = In K + 1/n In Cf

Enzfitter was used to calculate values for K and n For Cu2+ K = 7 6026 and 

n = 0 2298 while for Cd2+ K = 0 1064 and n = 0 1977 These values, along with 

those for the experimental sorbent characteristics (see section 2 9 3), were used with 

a previously written computer model for predictive calculation of metal sorption and 

the resultant breakthrough curves compared with results obtained experimentally 

The programming and simulation language PSI/c was used and the full program is 

listed in Appendix A

Experimental and predicted breakthrough curves for Cu2+ are shown in 

Figure 3 2 9 The computer predicted profile exhibits breakthrough starting after ca 

5 5 litres of influent Cu2+ solution had passed through the column, with complete 

saturation of biomass predicted after ca 7 litres of Cu2+ Breakthrough in the 

experimental profile was initially very gradual until ca 5 litres and increased until ca 

11 litres when the profile began to level off indicating approach of biomass 

saturation Complete saturation of the biomass did not take place until ca 19 litres

Figure 3 2 10 shows the corresponding experimental and predicted 

breakthrough curves for Cd2+ The model profile predicts breakthrough starting later 

than that for Cu2+, at ca 6 5 litres, reaching saturation after ca 10 litres of influent 

Cd2+ Initial breakthrough of the experimental profile takes place much earlier than 

that for the predicted profile and, as in the case of Cu2+, exhibits a much more 

gradual slope, not reaching saturation until ca 15 litres
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Volume passed through column (I)

Figure 3.2.9 Computer predicted ( )and experimental ( ♦ ) breakthrough curves

for Cu2+ from column containing 2 5g of native Azolla Influent conc = 5mg I'1 , 

influent pH = 5 50 + 0 05

Volume passed through column (litres)

Figure 3.2.10 Computer predicted (-------) and experimental ( ♦ ) breakthrough

curves for Cd2+ from column containing 2 5g of native Azolla Influent conc = 5mg 

I'1 , influent pH = 5 50 + 0 05
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Breakthrough curves for columns containing lg of rmlled-sieved Azolla and 

epichlorhydnn-immobihsed Azolla are shown in Figures 3 2 11 and 3 2 12 

respectively Initially the rmlled-sieved Azolla column was efficient at removing Cu2+ 

from the influent solution with breakthrough not starting until ca 3 litres 

Breakthrough increased thereafter until ca 8 litres when the profile began to level 

off In the case of the epichlorhydrin-immobilised column, breakthrough started 

slightly later at ca 4 litres and was capable of removing Cu2+ from the influent 

solution until over 12 litres had passed through the column

The corresponding breakthrough curves for columns containing 2 5g of 

milled-sieved Azolla and epichlorhydnn-immobihsed Azolla are shown in Figures 

3 2 13 and 3 2 14 respectively As expected, breakthrough in these systems starts 

much later than previously observed due to an increased amount of biomass in the 

columns, as is evident from curves plotted with respect to effluent volume Initially 

the rmlled-sieved Azolla column was efficiently removing Cu2+ from the influent 

solution with breakthrough not starting until ca 10 5 litres (Figure 3 2 13) The 

situation is similar for the epichlorhydnn-immobihsed Azolla column in the early 

stages of the curve with initial breakthrough at ca 12 litres (Figure 3 2 14) The 

effects of biomass pre-treatment and quantity in each column can be observed more 

clearly in Figure 3 2 15 where each curve is plotted

Cu2+ was effectively desorbed from the column containing lg of rmlled-sieved 

Azolla using 5mM Chelaton 3 (Figure 3 2 16) A quantity of 18 95 litres of 5mg 11 

Cu2+ was previously passed through the column (see Fig 3 2 11) and following 

desorption was concentrated into a volume of 345ml
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0 2 4 6 8 10 12 14 16 18 20

Effluent volume (I)

Figure 3.2.11 Experimental Cu2+ breakthrough curve for column containing lg of 

milled-sieved Azolla Influent conc = 5mg I'1 Influent pH = 5 50 ± 0 05

0 2 4 6 8 10 12 14 16 18

Effluent volume (I)

Figure 3.2.12 Experimental Cu2+ breakthrough curve for column containing 1 Og of 

epichlorhydnn immobilised Azolla Influent conc = 5mg I'1 Influent pH = 5 50 ± 

0 05
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0 2 4 6 8 10 12 14 16 18

Effluent volume (I)

Figure 3.2.13 Experimental Cu2+ breakthrough curve for column containing 2 5g of 

milled-sieved Azolla Influent conc = 5mg I'1 Influent pH = 5 50 ± 0 05

Effluent volume (I)

Figure 3.2.14 Experimental Cu2+ breakthrough curve for column containing 2 5g of 

epichlorhydrin immobilised Azolla Influent conc = 5mg I'1 Influent pH = 5 50 ± 

0 05
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Figure 3.2.15 Experimental Cu2+ breakthrough curves for columns containing ♦  = 

2 5g of native Azolla, •  = 1 Og of rmlled-sieved Azolla, O = 1 Og of epichlorhydnn 

immobilised Azolla, ■ = 2 5g of milled-sieved Azolla, □ = 2 5g of epichlorhydnn 

immobilised Azolla Influent conc = 5mg I'1 Influent pH = 5 50 + 0 05
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Figure 3.2.16 Desorption of Cu2+ from column using 5mM Chelaton 3 A quantity of 

18 95 litres of 5mg I"1 Cu2+ was previously passed through the column which 

contained lg of milled-sieved Azolla (see Fig 3 2 11)
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CHAPTER 4: DISCUSSION

4.1 Toxicity of heavy metals towards S. cerevisiae.

4.1.1 H+ release after glucose uptake by S. cerevisiae. Effect of toxic 

metals and protection by Ca2+.

The aim of the work in this section was to analyse the value of H+ extrusion 

in assessing and understanding metal interactions with fungi The influence of a 

range of metals on growth and H* efflux in S cerevisiae was examined with the 

purpose of investigating the relationship with metal toxicity The interactive effects 

with Ca2+, to possibly alleviate metal toxicity, were also examined

The plasma membrane is a selective barrier that can control both the influx and 

efflux of metal ions and is an important initial site of biological interaction between 

cells and external metal ions (Gadd, 1993, Karamushka & Gadd, 1994) The transport 

of a variety of organic and inorganic solutes across yeast and fungal plasma 

membranes is dependent on the plasma membrane H+-ATPase activity which creates a 

transmembrane electrochemical proton gradient (AjaH+) which is negative and alkaline 

inside (Gadd, 1993, Jones & Gadd, 1990) This electrochemical gradient has an 

electrical and a chemical component, the membrane potential (Av|/) and the pH 

gradient (ApH) respectively, which drive the transport of lomsable substances across 

membranes These secondary gradient-coupled transport systems are energized by
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coupling with passive reflux of H+ The solute and proton fluxes may be in the same 

(symport) or opposing (antiport) directions (Sanders, 1990)

Three main classes of H+-pumping ATPases have been identified in fungi and 

yeasts (Serrano, 1984, 1985) in mitochondrial, vacuolar and plasma membranes, 

although a Ca2+-ATPase located on the endoplasmic reticulum has now also been 

identified (Goffeau et a l , 1990) The vacuolar and plasma membrane ATPases are 

associated with ion transport, regulation of intracellular pH and intracellular 

compartmentation (Jones & Gadd, 1990)

The addition of a carbon source to an 5 cerevesiae suspension leads to 

acidification of the external medium This is believed to be mainly due to H+-efflux 

through a membrane bound H+-ATPase (Ramos, 1985) rather than due to release of 

organic acids resulting from fermentation

The plasma membrane H+-ATPase is a useful indicator of environmental 

stress, including that caused by potentially toxic metal concentrations, as it is clearly 

responsive to external physico-chemical factors (Gadd et a l , 1986, White & Gadd, 

1987 b) Consequently, it has many potential applications both in toxicity assessment 

and investigation into methods for the alleviation of such toxicity i e the interactions 

between different metals in the cell’s environment

Upon addition of 1% glucose to the suspension of S cerevisiae cells the pH 

was observed to steadily decrease, reaching ca 4 25, 90 min after glucose addition 

(Figure 3 11) This glucose-dependent H+ efflux results primarily from the proton 

pumping activity of the plasma-membrane bound ATPase (Serrano, 1980) This 

process depends upon the stability of both the plasma membranes and the ATPase
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enzyme and also upon the presence of sufficient ATP as substrate Variations in the 

H+ efflux may accordingly be connected with irregularities m membrane integrity, 

permeability and, ultimately, functionality

In the presence of 10, 25 and 100|iM Cu2+, H+ efflux was reduced in 

proportion to the Cu2+ concentration, with almost total inhibition at 100|aM Cu2+ 

(Figure 3 12) Cu2+ is toxic towards S cerevisiae by interfering with the glucose 

dependent H+ efflux and it has previously been observed that Cu2+ may cause damage 

to the plasma membrane leading to dissipation of the transmembrane electrochemical 

proton gradient (A|0,H+) (White & Gadd, 1987 b) Cu2+ is known to be a powerful 

inhibitor of plasma membrane H+-ATPases and complete inhibition has been observed 

in S cerevisiae at 10-50|iM (Vara & Serrano, 1982, Serrano et a l , 1985)

The toxicity of heavy metals to microbes can be influenced by the presence of 

other cations in the environment, as a result of competition with the cationic forms of the 

metals for anionic sites on cell surfaces (Hughes & Poole, 1989) Magnesium and calcium 

reduce the toxicity of a range of metals to microbes for example magnesium reduced the 

toxicity of nickel towards various filamentous fungi (Babich & Stotzky, 1981, 1982, 

1983), the yeast Torula utilis (Abelson & Aldous, 1950) and Bacillus subtilis (Webb, 

1970 a, 1970 b) Increasing levels of magnesium also decreased the toxicity of manganese 

to S cerevisiae (Blackwell et a l , 1997), copper and cobalt to S cerevisiae (Aoyama et 

a l , 1986, Karamushka & Gadd, 1994), cadmium and zinc to E coli (Abelson & Aldous, 

1950) and of zinc to Anacystis mdulans (Shehata & Whitton, 1982), and Klebsiella 

pneumoniae (Ainsworth et a l , 1980)

On account of its similar functions to Mg2+, and also its role in possibly 

stabilising membrane structure (Karamushka & Gadd, 1994), Ca2+ was examined in
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the present study to determine its ability to alleviate metal toxicity Addition of 

0 5mM Ca2+ before lOOpM Cu2+ partially alleviated the inhibitory effect of the Cu2+, 

with an interval of 5 min between Ca2+ and Cu2+ additions leading to a greater H+ 

release than that for a 1 mm interval (Figure 3 12) Previously Karamushka and Gadd 

(1994) observed that 0 5mM Ca2+ completely alleviated the inhibitory effect of Cu2+ at 

concentrations of 5, 10 and 50|jM and considerably reduced it at 100|iM, where the 

effect was greater than that observed in the present study

Calcium has been shown to reduce the toxicity of copper to S cerevisiae 

(Karamushka & Gadd, 1994), zinc and mercury to Chlorella vulgaris (Rai et a l , 1981) 

and zinc to Hormidium nvulare (Say & Whitton, 1977) and Anacystis nidulans (Shehata 

& Whitton, 1982) while zinc reduces the toxicity of nickel to Achyla species (Babich & 

Stotzky, 1982) In the presence of calcium the uptake of copper and lead by Nostoc 

muscorum was reduced as a result of competition for sites on the cell surface (Schecher & 

Driscoll, 1985)

Both Mg2+ and Ca2+ may interact with negatively charged functional groups 

and cross-link carboxylated and phosphorylated anionic polymers on cell surfaces and, 

like other metals, alter electrosurface properties of microbial cells (such as magnitude 

and distribution of surface charge, the structure of electric double layer e tc ) (Collins 

& Stotzky, 1992) At high Ca2+ concentrations, the cell surface becomes increasingly 

less electronegative leading to reduced interaction with Cu2+ and other metal ions 

(Gadd, 1993) Aoyama et a l , (1986) reported that alleviation of Co2+ toxicity is due 

to the repression of Co2+ uptake by Mg2+ and, similarly, Gadd and Mowll (1985) 

observed Ca2+ to cause a reduction of up to 83% in the surface binding of Cu2+ to 

Aureobasium pullulans
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A similar inhibition of H+ efflux was also observed due to the presence of 

50|iM, 100|iM and 0 5mM Cd2+, with the reduction m H+ efflux again proportional to 

the concentration of Cd2+ (Figure 3 13) However, unlike Cu2+, 100|iM Cd2+ did not 

completely inhibit the efflux of H+, with the pH dropping to ca 5 69 after 90 min 

indicating the higher toxicity of Cu2+ towards the S cerevisiae plasma membrane 

Even m the presence of 0 5mM Cd2+ H+ efflux was observed, with pH dropping to 

5 98 after 90 min As in the Cu2+ studies, the presence of 0 5mM Ca2+ alleviated the 

toxic effects of the Cd2+ at all three Cd2+ concentrations examined (Figures 3 1 4 -  

3 1 6)

The effect of Co2+ on H+ efflux was subsequently examined at concentrations of 

100(jM, lmM and 5mM (Figure 3 1 7) A concentration of 100|jM Co2+ proved to be 

relatively non-toxic, leading to a corresponding pH drop to ca 4 31 after 90 min (Figure 

3 17, plot 2) The H+ release is almost identical to that observed in the absence of metal, 

where the pH after 90 min is ca 4 29 (Figure 3 17, plot 1) However, the initial slope of 

H+ release in the presence of 100|iM Co2+ is less steep which may indicate a certain degree 

of toxicity Viability after 90 mm was 96 3%, also indicating only a very slight toxicity of 

Co2+ at 100|iM

Increasing the Co2+ concentration to lmM, however, does lead to a reduction in 

H+ release with the pH decreasing to ca 5 47, 75 min after glucose addition (Figure 3 17, 

plot 3) Viability decreased to 52 4% which also indicates toxicity of Co2+ at lmM A 

concentration of 5mM leads to a further decrease in H+ release leading to a pH decrease to 

only 5 79,90 min after glucose addition (Figure 3 1 7, plot 5) and a viability of 50 6%

The possible protective effect of Ca2+ towards Co2+ toxicity was subsequently 

examined Ca2+ added to a final concentration of 0 5mM 5 min before addition of lmM
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Co2+ leads to a pH decrease to ca 4 35, 90 min after glucose addition (Figure 3 17, plot 

4) which is similar to the levels observed both m the absence of Co2+ and for lOOpM Co2+ 

(Figure 3 17, plots 1 and 2 respectively) Viability increased to 96 0% compared to 

52 4% in the absence of 0 5mM Ca2+

Addition of 0 5mM Ca2+ 5 mm before the 5mM Co2+ once again protects the cells 

against the toxic effects of Co2+, with the pH dropping to ca 4 28 after 80 mm (Figure 

3 17, plot 6) and the viability increasing from 50 6% m the absence of Ca2+ to 98 2% The 

profile of the H+ efflux m this case is almost identical to that after addition of 100|iM Co2+ 

Consequently, Ca2+ at a concentration of 0 5mM appears to alleviate toxicity from Co2+, at 

concentrations of 1 and 5mM, towards the S cerevisiae plasma membrane and preserves 

cell viability

Toxicity of Pb2+was also examined and was observed to reduce the H+ efflux, the 

effect being greater for the higher Pb2+ concentration At concentrations of 100|jM and 

0 5mM Pb2+ the pH’s decreased to ca 4 95 and 5 59, respectively, 90 mm after the 

addition of glucose (Figure 3 18)

Of all the metals examined, Sr2+ appeared to be the least toxic towards the S 

cerevisiae plasma membrane Concentrations of 100|jM, 0 5mM and lOOmM Sr2+ 

exhibit negligible effects towards the H+ efflux and (Figure 3 1 9) Cell viabilities after 

contact with all three concentrations were also very high, though decreasing with 

increasing metal concentration, again indicating the low toxicity of Sr2+ towards S 

cerevisiae at these concentrations

Growth of S cerevisiae was inhibited by Co2+ at concentrations of 100(aM, 

500|jM, ImM and 5mM with toxicity mcreased with mcreasmg Co2+ concentration 

(Figure 3 110 (a)) Smce 100|jM Co2+ reduced cell growth by 70 4% (Figure (3 1 10 (a))

105



but had a lesser effect on the glucose-dependent H+ efflux (Figure 3 17, plot 2), it 

appears that Co2+ at this concentration is toxic towards cell growth but causes only 

slight damage to the plasma membrane Having previously observed that the presence 

of 0 5mM Ca2+ alleviated the toxic effects of Cu2+ and Cd2+ towards H+ efflux 

(Figures 3 1 2 - 3 1 6), it was also examined for a protective effect towards Co2+- 

mhibited cell growth Ca2+ at a concentration of 0 5mM was observed to significantly 

reduce Co2+ toxicity towards cell growth at all four Co2+ concentrations, with an even 

greater effect observed for 5mM Ca2+ (Figure 3 1 10 (b) and (c))

This chapter has examined the effect of various metal ions on the H+ efflux 

from metabolising S cerevisiae as a rapid means of toxicity assessment, and 

demonstrated that toxic effects can be alleviated by external Ca2+ The reduction in 

metal toxicity is due mainly to competitive and stabilising interactions at the cell 

surface (Gadd, 1993) The extent of the toxicity for the range of metals examined in 

the present study appears quite different due to the chemical differences of the metal 

ions, with toxicity being of the order Cu2+ > Cd2+ > Pb2+ > Co2+ > Sr2+
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4.1.2 Toxicity of Cu2+ and Mn2+ and localisation of Cu2+ in S. cerevisiae.

Growth of S cerevisiae was not inhibited in the presence of 1, 10 or 50|jM Cu2+ 

(Figure 3 111) However, Cu2+ at a concentration of 100|iM does appear to inhibit 

growth and at a concentration of 500(iM, Cu2+ has an even greater inhibitory effect

Intracellular localisation of a toxic (100|iM) and sub-toxic (25|jM) concentration 

of Cu2+, as determined from growth of S cerevisiae in the presence of Cu2+ (Figure 

3 1 11), was examined The vast majority of Cu2+ in the control cells was located in the 

membrane bound fraction (ca 695 and 445 nmol/109 cells after 10 min and 2 h 

respectively) (see Table 3 11) This Cu2+ is that which was available in the unamended 

growth medium at a concentration of ca 15 |aM There was no Cu2+present in either the 

cytosol or vacuole fractions at either time point The Cu2+ levels in intact cells after acid 

digestion (ca 610 and 367 nmol/109 cells) were ca 87 and 78% of those for the sum of 

Cu2+ in the four fractions after 10 min and 2 h respectively

In the presence of 25|iM Cu2+ the majority of the ions is once again present in the 

membrane fraction (ca 93 and 84% of total ions present after 10 mm and 2 h 

respectively) Cu2+ was detected m the wash fraction after 10 mm with more than twice 

the amount present after 2h (ca 89 and 193 nmol/109 cells respectively) In the presence 

of 100|iM Cu2+ however, the levels of Cu2+ mcreased m all four fractions with the majority 

still being present m the membrane fraction The amount of membrane-bound Cu2+ 

represented ca 74 0 and 84 3 % of the total Cu2+ present m the S cerevisiae cells (ca 

2984 and 3182 nmol/109 cells after 10 mm and 2h respectively) The total Cu2+ levels were 

within 0 2 and 3 0% of those for intact cells after 10 mm and 2 h respectively
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K+ release was observed to increase with increasing Cu2+ concentration and with 

time after the S cerevisiae cells were contacted with 10, 25 and lOOjjM Cu2+ (Table 

3 12) After contact with 10|iM Cu2+ there does not appear to be a significant drop in 

viability (Table 3 13) However, methylene blue staining indicates a reduction in viability 

for cells in the presence of 10|iM Cu2+ to 78 6 and 76 1% of the controls after 20 min and 

2 h respectively (Table 3 14) This may be correlated with the increase in K+ release from 

the same cells Viability (cfu x 106 per ml) decreased with both increasing Cu2+ 

concentration and time of contact with the 25 and 100|iM Cu2+ (Table 3 13) After 

contact with 25|_iM Cu2+, plate-count-viability (as percentage of control) decreased to ca 

65 and 39% after 10 min and 2 h respectively Methylene blue staining also indicated a 

drop in viability to ca 38 and 27% after 10 min and 2 h respectively This may be 

compared to the K+ release which also increased considerably in the presence of 25pM 

Cu2+ (Figure 3 1 2) In the presence of 100|jM Cu2+ viability decreased to ca 8 and 2% 

after 10 min and 2 h respectively which correlates well with earlier observations where 

lOOpM Cu2+ significantly reduced growth of S cerevisiae (Figure 3 11) Viability as 

determined by methylene blue staining indicates zero viabilities at both time points

Since the concentrations of Cu2+ were low i e 25 and IOOjjM, detection by 

A A S was difficult Cu2+ was not observed in the vacuolar fraction after contact with 

25(aM Cu2+ Increasing the concentration of Cu2+ to lOOpM increased the amount located 

in the cytosol and vacuole but, as seen in the previous experiments (Section 3 1 1 ), 

increasing the Cu2+ concentration causes toxicity by damaging the plasma-membrane 

leading to little Cu2+ being located in the vacuole Cu2+ has proved to be very difficult to 

examine intracellularly due to its toxicity, with the majority of Cu2+ being membrane

108



bound Protection from this toxicity using Ca2+ and Mg2+ may be possible, leading to 

higher Cu2+ levels being detected in the cytosol and vacuole fractions

As observed in the Cu2+ studies, an increase in Mn2+ concentration also gave rise 

to increased K+ release (Table 3 15) The amount of K+ released after contact with 1 and 

lOmM Mn2+ (ca 117 and 16 7 |amol/109 cells after 160 min) (Table 3 16) was 

considerably less than that released after contact with 25 and 100|iM Cu2+ (ca 217 and 

25 5 ! (imol/109 cells respectively) indicating the higher toxicity of Cu2+ towards S
i

cerevisiae At a concentration of lOmM, Mn2+ caused a significant reduction in viability to 

ca 7i 0 and 79 6% after 70 and 160 min respectively However, as in the K+ study, these
i

values show that Mn2+ is not as toxic towards S cerevisiae cells as Cu2+ where viability
II

was reduced to ca 39 and 1 5 % after 2 h contact with 25 and 100|iM respectively



4.2 Metal Adsorption.

Biomass concentration affected the amount of test ion recovered from solution, 

with uptake (expressed as (jmol g'1) of Cu2+, Cd2+ and Pb2+ decreasing as Azolla 

concentration m suspension was increased from 1 to 5 to 10 g 11 The corresponding total 

ion removal (expressed as % removal) increased with increasing biomass concentration 

Increasing biomass concentration has been reported to reduce metal uptake per gram of 

biomass in a number of systems (Brady & Duncan, 1994 a, Fourest & Roux, 1992, 

Singleton & Simmons, 1996) Increasing the biomass concentration in solution from 1 to 8 

mg cm’3 was previously reported to decrease silver biosorption by 60 2% (Singleton & 

Simmons, 1996) Fourest and Roux (1992) report that zinc uptake decreases when R 

arrhizus biomass concentration is increased They also comment that reduction in biomass 

concentration in the suspension at a given metal concentration enhances the 

metal/biosorbent ratio, and increases metal uptake per g of biosorbent, as long as the latter 

is not saturated Electrostatic interactions and interferences between binding sites will also 

be reduced at lower biomass concentrations, leading to increased biosorption (Fourest & 

Roux, 1992, Meikle et a l , 1990)

4.2.1 Effect of biomass concentration on native A. fikculoides biosorption.
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4.2.2 Metal adsorption isotherms with S. cerevisiae, A. resinae and A. 

filiculoides.

The metal adsorption characteristics of S cerevisiae and A resinae differ 

considerably in terms of both uptake of the test ions and also the degree of ion exchange 

exhibited For S cerevisiae, uptake was generally of the order Sr2+ < Cd2+ = Cu2+ and it 

was noticeable that at the lower concentrations examined Cu2+ uptake exceeded that of 

Cd2+ considerably, although their saturation uptake values were similar

These trends are consistent with previous work which found the order of binding 

to be Sr2+ < Cd2+ < Cu2+ for S cerevisiae metal binding in 50|iM solutions, with uptake 

levels of 14 9, 23 4 and 26 7|amol g'1 for Sr2+, Cd2+ and Cu2+ respectively (Avery & Tobin,

1993) Earlier work by Noms and Kelly (1977) reported yeast Cd2+ uptake levels of ca 

22|amol g 1 from 200¡jM CdSC>4 which is significantly lower than the present uptake (ca 

35|jmol g'1 from 89 3|_iM Cd2+) Brady and Duncan (1994 a) report Cu2+ uptake of ca 

700(umol g4 at pH 65, while Gadd and Mowll (1983) observed Cd2+ uptake of ca 

310|imol g'1

Amorphotheca resinae (formerly called Cladosporium resinae) is a filamentous 

fungus that has been isolated from soil (Parberry, 1968), air (Parberry, 1969), fresh, 

estuarine and marine waters (Aheam & Meyers, 1972) and hydrocarbon-rich 

environments (Parberry, 1969) and grows on glucose or any of several hydrocarbons as its 

sole carbon source (Carson & Cooney, 1989) The organism is a contaminant of light 

hydrocarbon fuels (Edmonds & Cooney, 1967) and is a potential source of operational 

problems in the fuel system of jet aircraft due to corrosion (Parberry, 1969, 1971) Uptake 

values for A resinae followed the same general order Sr2+ < Cd2+ < Cu2+ although the
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saturation uptake values for Sr2+ and Cd2+ were very similar As above this is in keeping 

with literature reports of biosorption of these metals by a number of fungal biomasses such 

as Rhizopus arhizus biomass, which also exhibits a Sr2+ < Cd2+ < Cu2+ binding order 

(Brady & Tobin, 1994, 1995) However, the level of uptake of all three metals is in 

marked contrast with the present findings for S cerevisiae and also with earlier published 

studies For example, the maximum Cu2+ uptake exhibited by A resinae was ca 70|j mol 

g'1 as compared to sequestration levels of ca 200 pmol g 1 at a final solution concentration 

of ca 90uM reported by Gadd and de Rome (1988) Similarly, the present uptake values 

are considerably lower than those observed for R arrhizus where Sr2+, Cd2+ and Cu2+ 

were adsorbed maximally to 174, 246, and 357pmol g'1 respectively (Brady & Tobin,

1994) and Cd2+ to ca 225|imol g4 for inactive R arrhizus biomass (Fourest & Roux, 

1992)

Metabolically, it seems that the filamentous fungus Amorphotheca resinae may be 

unique as it has the ability to utilise a number of unusual substrates which are restrictive 

because of their toxicity and/or their chemical complexity (Parberry, 1971) This, possibly 

environmentally significant ability (Parberry, 1969, Parberry 1971), may be a significant 

factor when comparing the biosorption of toxic metals Cu2+, Cd2+ and Sr2+ with that of S 

cerevisiae Furthermore, the presence of the pigment melanin in the cell walls of A 

resinae has previously been shown to increase its biosorptive capacity (Gadd & de Rome, 

1988)

As the pH and contact conditions of the present work were of the range and type 

usually considered optimum for metal biosorption, it is likely that the differences in uptake 

levels are attributable to different culture conditions which results in significant variations 

in cell wall structures (Remade, 1990) thereby influencing passive adsorption of test ions
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(Meikle, 1990, White & Gadd, 1995) The presence of carboxylate, thiolate, phosphate 

and amine groups results in the cell wall being net negatively charged under physiological 

conditions, (Collins and Stotzky, 1989, Chen and Ting, 1995) which is significant in terms 

of interactions with metal cations This charge varies depending on species of micro­

organism, with those possessing a greater net negative charge also possessing a potentially 

greater ability to bind charged species, including metal cations This may be one reason 

why S cerevisiae binds Cu2+, Cd2+ and Sr2+ to a greater degree than A resinae in the 

present study

Furthermore, the concentration of A resinae per flask was higher than previous 

studies involving this biosorbent (Gadd & de Rome, 1988, de Rome & Gadd, 1987) 

Increasing biomass concentration has been reported to reduce metal uptake per gram of 

biomass in a number of systems (Brady & Duncan, 1994 a, Fourest & Roux, 1992, 

Singleton & Simmons, 1996) as was discussed in section 4 2 1

Azolla filiculoides is a floating water fern common in many parts of the world 

and has recently gained attention as a potential metal biosorbent for use in the 

treatment of metal-bearing effluents (Sela et a l , 1990, Tel-Or et a l , 1996, Zhao & 

Duncan, 1997, 1998) In this work the characteristics of biosorption of Cu2+ and Cd2+ 

by Azolla were examined m terms of kinetics of uptake, equilibrium isotherms and 

column performance

Both Cu2+ and Cd2+ were adsorbed to high levels by A filiculoides, with 

maximum uptake levels of ca 350 and 245 ¡amol g'1, respectively (Figure 3 2 4) 

These uptake values are significantly greater than those exhibited by either S 

cerevisiae (ca 150|amol g'1 for both test ions) or A resinae (ca 70 and 40 |amol g'1 

for Cu2+ and Cd2+ respectively) The initial slopes of the Azolla isotherm curves were
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steep indicating high Cu2+ and Cd2+ removal at the lower metal concentrations This 

trend of Cu2+ uptake being greater than that of Cd2+ has been previously observed for 

fungal/yeast systems both in this study for S cerevmae and A resinae, and also by 

Avery and Tobin (1993) for S cerevmae and by Brady and Tobin (1994, 1995) for R 

arrhizus Brady and Tobin (1994) observed maximal uptake levels of 357 and 

246|_imol g'1 for Cu2+ and Cd2+ by R arrhizus which are very similar to the levels 

observed in the present study Tel-Or et a l , (1996) propose the major heavy metal 

binding groups for Cu, Cd, Ni, Zn and Pb m Azolla to be pectin, polyphosphates and 

metal binding peptides

Using reciprocal Langmuir plots to further examine metal binding by S cerevmae 

and A resinae, the better fit of the S cerevmae data, as evidenced by the higher r2 values, 

is indicative that the binding conforms more closely to the monolayer, single-site type 

adsorption underlying the Langmuir model (Langmuir, 1918) However, the wider 

applicability of the model to various other kinds of sorption phenomena has been also 

recognised (Weber, 1972) The results suggest in general a more complex form of binding 

for A resinae

Scatchard analysis may be used to elucidate the mechanisms underlying microbial 

metal binding (Scatchard, 1949), although the limitations of the technique are well known 

(Alberts & Gresey, 1983, Perdue & Lytle, 1983, Shuman et a l , 1983) In the present 

work, the clearly curved nature of the Scatchard plots for Cu2+ and Cd2+ uptake data for 

A resinae suggests binding to multiple, non-equivalent sites in the biomass In contrast, 

the linear/scattered plots for uptake of all three test ions by S cerevmae, and Sr2+ uptake 

by A resinae, indicate a more simple mechanism likely comprising a single binding site or 

type (Brady & Tobin, 1994, Scatchard, 1949; Tobin et a l , 1990) These observations are
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consistent with the reciprocal Langmuir plots, with both models suggesting a single 

binding site or type for S cerevisiae adsorption and Sr2+ uptake by A resinae but a more 

complex type of binding for A resinae Cu2+ and Cd2+ adsorption

Nierboer and Richardson (1980) use the covalent index (Xm2r) as an index of the 

degree of class B ("soft") behaviour to be expected, where Xm is the metal-ion 

electronegativity (Allred, 1961) and r its ionic radius (Shannon & Prewitt, 1969, 1970) 

Accordingly, the covalent index of Cu2+ is greater than that of Cd2+ and the Cu2+ ion is 

expected to possess a greater degree of class B character and enhanced potential to form 

covalent bonds with biological ligands Sr2+ is a class A ("hard") ion with a lower covalent 

index than either Cu2+ or Cd2+ and is predicted to form bonds that are principally ionic In 

the present study, the "softer" Cu2+ was bound to higher levels than the "hard" Sr2+ for 

both organisms, with Cd2+ bound to an intermediate level for S cerevisiae but to the least 

extent for A resinae Similarly, the “softer” Cu2+ was bound to greater levels than Cd2+ by 

Azolla This trend has been previously observed for S cerevisiae (Avery & Tobin, 1993) 

and R arrhizus (Brady & Tobin, 1994,1995) where uptake in both cases was of the order 

Cu2+ > Cd2+ > Sr2+

Cation release is an indication of an ionic interaction between metal and biomass 

(Avery & Tobin, 1992) However, ion release into the surrounding environment is 

frequently also the result of membrane damage and resulting ion leakage from the cell 

interior (Brady & Duncan, 1994 c, Gadd & Mowll, 1983, Passow & Rothstein, 1960) In 

this work both Cu2+ and Cd2+ uptake caused K+ release which was generally greatly in 

excess of stoichiometric amounts for both organisms Similarly, Norris and Kelly (1977) 

observed S cerevisiae cellular K+ levels decrease to 339 and 122|umol g'1 after incubation 

in 0 2mM CdS04 and CuS04 respectively Cellular K+ levels of ca 550|imol g 1 have
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previously been reported for S cerevisiae (Blackwell, 1998) Furthermore, as seen in 

Figures 3 2 6 (a) and (b), K+ release is independent or only weakly dependent on the level 

of Cu2+ or Cd2+ adsorbed which suggests that ion release is due not to sorption directly but 

probably to damage resulting from sorption (Belde et a l , 1988, Brady & Duncan, 1994 c, 

Gadd & Mowll, 1983, Joho et a l , 1995, Passow & Rothstein, 1960) When Cu2+ and 

Cd2+ uptake is examined in both organisms, the relative percentage of released K+ 

decreases as test ion concentration increases, with a concurrent increase in the relative 

percentages of Mg2+ and H+ (Table 3 2 1)

In contrast, Sr2+ uptake causes little or no ion release in either organism While this 

is consistent with the generally lower uptake of Sr2+ by both organisms and has been 

observed previously for S cerevisiae (Avery & Tobin, 1992), it contrasts with the 

behaviour reported recently for denatured R arrhizus (Brady & Tobin, 1994)

Brady & Tobin (1994) observed a H+ release of the order Cu2+>Cd2+>Sr2+ for R 

arrhizus which is comparable with the present study and I f  displacement has been 

reported to be characteristic of covalent bonding (Avery & Tobin, 1992) Again, this trend 

is in keeping with the hard and soft principle whereby softer ions will tend to interact with 

biological ligands predominantly through covalent bonding (Brady & Tobin, 1995, 

Shuman et a l , 1983), leading to a reduction in pH

Under the present experimental conditions, S cerevisiae proved to be a more 

efficient biosorbent of the test ions examined than A resinae However, literature studies 

indicate that by varying culture conditions and biomass concentrations, metal uptake g 1 of 

A resinae may be increased to the levels observed for other biomass types (Brady & 

Duncan 1994 c, Brady & Tobin, 1994, Fourest & Roux, 1992, Gadd & Mowll, 1983, 

Gadd & de Rome, 1988) Biosorption of Cu2+ and Cd2+ was significantly greater for
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Azolla than either S cerevisiae or A resinae and for this reason Azolla was subsequently 

selected for further study to examine uptake kinetics, immobilisation and column 

performance

4.2.3 Time-course uptake using Azolla fihculoides.

Results of the time-course studies illustrate the rapid removal of Cu2+ from 

solution by A fihculoides, with 87% adsorption after 4 min (Figure 3 2 8 (a)) Cd2+ 

removal was much slower, with only 60% removal after 30 min (Figure 3 2 8 (b)) 

This order is similar to that observed for the equilibrium adsorption isotherms (Figure 

3 2 4) where maximum Cd2+ adsorption was only 70% that of Cu2+

4.2.4 Cu2+ adsorption using immobilised and non-immobilised milled- 

sieved A. fihculoides Lamarck.

Immobilisation had a profound effect on the biosorption of Cu2+ by milled- 

sieved Azolla In batch studies native milled-sieved Azolla and epichlorhydnn- 

lmmobilised Azolla exhibited the greatest Cu2+ uptake, with uptake levels of ca 363 

and 320 |imol g 1 respectively from solutions with an initial Cu2+ concentration of 

lOOmg I'1 (see Table 3 2 2) These biomass types exhibited higher Cu2+ uptake levels 

than either S cerevisiae or A resinae (uptake levels of ca 153 and 75|amol g"1 

respectively from lOOmg I'1 Cu2+ solutions) and were comparable to native Azolla 

which exhibited uptake of ca 327|_imol g'1 (Figures 3 2 2 - 3 24) Consequently the 

native milled-sieved Azolla and epichlorhydrin-immobilised Azolla, along with the
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native Azolla, were selected and subsequently examined for their use m column 

removal of Cu2+ TEOS (1 ), TEOS (1 1 ) and TMOS biosorbents, by comparison, 

exhibited much lower uptakes of ca 155, 68 and 121(amol g'1 from lOOmg I'1 

solutions of Cu2+

4.2.5 Column studies using Azolla filiculoides.

The computer model used to predict continuous fixed-bed adsorption was not 

entirely successful in predicting the experimental breakthrough curves The initial 

computer-predicted breakthrough for the Cu2+ column corresponds closely to the 

actual experimental situation for the early section of the experimental profile with 

breakthrough starting after ca 5 5 litres had passed through the column, reaching 

complete saturation after ca 7 litres (Figure 3 2 9) Breakthrough in the experimental 

profile was initially very gradual until ca 5 litres, after which the breakthrough was 

more rapid until ca 11 litres when the profile began to level off indicating initiation of 

biomass saturation Complete saturation of the biomass did not take place until ca 19 

litres The slope of the experimental breakthrough was not as great as that predicted 

by the model indicating that the biomass was able to continue removing Cu2+ ions 

from solution, not saturating until at least ca 19 litres of Cu2+ solution had passed 

through, as mentioned earlier

For Cd2+ the model predicts breakthrough starting later than that for Cu2+, at 

ca 6 5 litres, reaching saturation after ca 10 litres of influent Cd2+ (Figure 3 2 10) 

The initial breakthrough of the experimental profile takes place much earlier than that 

for the predicted profile, after ca 3-4 litres, and also, similar to the Cu2+ experimental
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column, exhibits a much more gradual slope, not reaching saturation until ca 15 

litres

The main breakthrough for Cu2+ takes place later than that for Cd2+ indicating 

that the Azolla is able to remove more Cu2+ than Cd2+ from the influent solution 

These results agree with the batch studies where native Azolla was capable of higher 

maximum adsorption levels of Cu2+ (ca 350 |amol g'1) than Cd2+ (ca 245 |imol g"1) 

(Figure 3 2 4)

In contrast, the biosorption column containing 1 Og of milled-sieved Azolla 

(Fig 3 2 11) was the least successful column in removing Cu2+ ions from solution in a 

continuous system However, upon increasing the quantity of biomass in the column 

to 2 5g the performance was, as expected, greatly improved and was capable of 

continually removing Cu2+ much more efficiently than the native Azolla column (Fig 

3 2 9) which contained the same quantity of biomass The 1 Og milled-sieved Azolla 

column was capable of complete biosorption of Cu2+ from ca 3 litres of influent 

solution whereas upon increasing the quantity of biomass to 2 5g, complete 

sequestration of test ion from ca 10 5 litres was possible (Figure 3 2 13) This 

compares to a breakthrough of ca 3-4 litres for the 2 5g native Azolla column 

Breakthrough increased thereafter until the profiles began to level off after ca 8 litres 

for the 1 Og milled-sieved Azolla and ca 11 litres for the 2 5g native Azolla column 

Even after ca 16 litres of influent solution had passed through the 2 5g milled-sieved 

Azolla column it was still at less than 80% saturation Clearly the pre-treatment 

utilised in this situation had a profound effect on the column performance and greatly 

enhanced its potential use for large scale effluent clean-up

119



The column containing 1 Og of epichlorhydrm-immobilised Azolla (Fig 

3 2 12) was capable of removing Cu2+ to a similar level to that exhibited by the native 

Azolla column, which contained a much greater amount of biomass (2 5g) Initially 

both columns were efficient at continuously removing influent metal from solution, 

with breakthrough not starting until ca 4 litres for the epichlorhydrm-immobilised 

column compared to ca 3-4 litres for the column containing 2 5g of native Azolla 

Breakthrough increased thereafter in both columns until the profile began to level off 

after ca 11 litres for the native Azolla column whereas the 1 Og epichlorhydrm- 

immobilised Azolla column was capable of removing Cu2+ from ca 12 litres of 

influent solution

Upon increasing the quantity of biomass in the column to 2 5g the 

performance was once again greatly improved, as expected and observed earlier for 

the milled-sieved Azolla columns Continuous fixed bed adsorption of Cu2+ ions by a 

column containing 2 5g of epichlorhydrm-immobilised Azolla (Figure 3 2 14) was 

greater than m any of the previously examined systems This column was capable of 

complete sequestration of Cu2+ ions from ca 12 litres of influent solution Even after 

22 litres of influent solution had passed through, the epichlorhydrm-immobilised 

Azolla column was still at less than 75% saturation

The effects of biomass pre-treatment and quantity in each column can be 

observed more clearly in Figure 3 2 15 where each curve is plotted Biomass pre­

treatment and immobilisation was observed to have a significant effect on column 

sorption performance Both of the columns containing epichlorhydrm-immobilised 

Azolla were more efficient at removing influent Cu2+ from solution than those 

containing the same corresponding quantity of milled-sieved Azolla, which m turn

120



were more efficient than the native Azolla column Increasing the quantity of biomass 

in each case led to a corresponding and expected increase m column performance as 

continuous fixed bed adsorption of Cu2+ ions was greatest for columns containing

2 5g of epichlorhydnn-immobilised Azolla and milled-sieved Azolla An earlier study 

by Zhao and Duncan (1998) examined column removal of Zn2+ by Azolla from an 

influent Zn2+ concentration of lOOmg I'1 and pH of 6 2 Breakthrough started at ca 

0 4, 1 0 and 1 8 litres for columns containing biomass quantities of 2 5, 5 0 and 7 5g, 

and reached saturation after ca 2 0, 2 1 and 3 6 litres

In order to reduce operational costs of any continuous fixed-bed adsorption 

system, the biomass utilised should demonstrate potential for metal recovery once the 

metal has been removed from solution Cu2+ was effectively desorbed from the 

column containing 1 0 g of milled-sieved Azolla using 5mM Chelaton 3 (Figure

3 2 16) A quantity of 18 95 litres of 5mg I'1 Cu2+ was previously passed through the 

column (see Fig 3 2 11) and following desorption was concentrated into 345ml 

representing a ca 55-fold reduction in volume The desorption protocol utilised a 

minimum quantity of Chelaton 3 to yield a concentrated, low volume metal effluent 

This procedure should improve the process economics of a fixed-bed biosorption 

system (Volesky, 1990 a) Consideration of recycling the recovered metals is 

important due to increasing costs of solid waste disposal, with selective removal of 

metals from the metal-loaded biomass possibly being required (Eccles, 1995)

Silver ions have previously been desorbed from Aspergillus niger biomass 

using dilute HN03 (Akthar et a l , 1995) Similarly acid elution using 0 1M HC1 has 

been used to efficiently remove Cu2+, Co2+, Cd2+, Ni2+ and Zn2+ from S cerevisiae 

biosorption columns (Wilhelmi & Duncan, 1995) The high recovery of these metals

121



by mild acid elution suggests accumulation by passive binding to the yeast cell walls 

As in the present study, the recovered metals were concentrated in small volumes, 

which for Cu, Zn, and Co represented a 50 fold reduction from the initial volume 

Chromium was not eluted by 0 1 M HC1 however, but when the concentration of HC1 

was increased to 1 M, 34% chromium recovery was achieved These differences may 

allow selective desorption of chromium and the other metals examined using HC1 of 

differing concentrations, and the same principle could also apply to the use of 

different concentrations of Chelaton 3 in the present study Biosorbent reusability and 

selective recovery of metals are considered to be critical in the development of a 

viable, cost effective metal bioremediation technology (Wilhelmi & Duncan, 1995)
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CONCLUSION
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CHAPTER 5: CONCLUSION

This present study investigated the toxicity and biosorption of a range of heavy 

metals for Saccharomyces cerevisiae, Amorphotheca resinae and Az.olla filiculoides

The H+ efflux from S cerevisiae was successfully used to assess the toxicity 

of a range of metals The extent of the toxicity for the range of metals examined 

appears quite different, with toxicity being of the order Cu2+ > Cd2+ > Pb2+ > Co2+ > 

Sr2+ The toxic effects were alleviated by external Ca2+ Cu2+ and Co2+ had detrimental 

effects on S cerevisiae growth at concentrations of 100|_iM Future work could look at 

lower, less toxic Cu2+ concentrations, increasing the Ca2+ concentration while also 

increasing the time between addition of Ca2+ and Cu2+ The protective effect of other 

metal cations may also be considered

S cerevisiae, A resinae and A filiculoides all biosorbed various metals in batch 

studies, with A filiculoides exhibiting the highest uptake levels Both Cu2+ and Cd2+ 

were adsorbed by S cerevisiae to maximum levels of ca 150(amol g'1 and by Azolla 

to ca 350 and 245 |jmol g’1 respectively Milled-sieved Azolla and epichlorhydrin- 

lmmobilised Azolla exhibited Cu2+ uptake levels of ca 363 and 320 fjmol g 1 

respectively from solutions with an initial Cu2+ concentration of lOOmg 11

Consequently the native Azolla, milled-sieved Azolla and epichlorhydrm- 

lmmobilised Azolla were selected for use in packed bed biosorption columns and 

effectively removed metals from aqueous solution Epichlorhydrin-immobilised Azolla 

exhibited the greatest column performance with complete metal sequestration from 

ca 4 and 12 litres of influent 5mg I 1 Cu2+ by columns containing 1 Og and 2 5g of 

biomass respectively The 2 5g column was still at less than 75% saturation even after
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22 litres of influent solution had passed through Chelaton 3 was successfully used to 

desorb and recover the biosorbed Cu2+ from a milled-sieved Azolla column, with a 

corresponding ca 55-fold reduction in volume Columns containing epichlorhydrin- 

lmmobilised Azolla possess potential for use in large scale effluent treatment Mixed 

metal influent solutions and columns set up m series would further determine the 

suitability of this process for effluent clean-up

The use of microbial- or plant-based biosorbents for industrial applications has 

been hindered by problems associated with the physical characteristics of the material 

(McHale & McHale, 1994) Low mechanical strength of the biomass can cause 

difficulties associated with separation of the biomass from effluents which, in turn, 

contribute to limitations in process design A further problem is associated with 

fragmentation of the biomass causing flow restrictions in continuous-flow contact 

vessels Immobilisation of the biosorbent, for example with epichlorhydrm which was 

utilised in the current work, may overcome many of these problems by improving the 

physical characteristics of the biomass (McHale & McHale, 1994, Tobin et a l , 1993, 

Volesky, 1990 a) and may also enhance the sorption performance (Leusch et a l , 

1995, Ting & Teo, 1994) Biomass immobilisation will also facilitate its use in column 

reactors and the reusability should improve the process economics (Volesky, 1990 b) 

Reactors employing a column configuration may offer greater metal-binding capacity 

and higher efficiency (i e , higher purity effluents) and are more readily adapted to 

automation than batch reactors (Bedell & Damall, 1990)

Rather than being viewed as an alternative to conventional chemical methods for 

treating metal-polluted aqueous systems, plant- or microbe-based adsorption may be used 

in tandem with these techniques, possibly as an additional final purification step It may



also prove economical to direct research towards the utilisation of waste fungal biomass 

from industrial sources
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2 1 2+PSI/c model used for prediction of column breakthrough curves for Cu and Cd

f=3 3466 

ep=0 1679 

gv=96 4577

k=7 6026 for Cu, 10 6494 for Cd 

a=0 2298 for Cu, 0 1977 for Cd 

n=l/a

tau=9 4622 for Cu, 19 6492 for Cd 

d=l

c0=4 8291 for Cu, 4 752 for Cd 

1=33

v=3 1415*dA2/4*l

fv=f/v

h=0 2*ep

cr 1 =var((qr 1/k) An),

cr2=var( (qr2/k) An),

cr3=var((qr3/k) An),

cr4=var((qr4/k) An),

cr5=var((qr5/k) An),

qr 1=relay (q 1,0 0001 ,q 1),

qr2=relay(q2,0 0001,q2),

qr3=relay(q3,0 0001,q3),

qr4=relay(q4,0 0001,q4),

qr5=relay(q5,0 0001,q5),

ql=int((cl-crl)/tau par 0 0001),

q2=int((c2-cr2)/tau par 0 0001),

q3=int((c3-cr3)/tau par 0 0001),

q4=int((c4-cr4)/tau par 0 0001),

q5=int((c5-cr5)/tau par 0 0001),

cl=int(-fv*(cl-cO)/h-gv*(cl-crl)/ep/tau par 0 0),

Appendix A
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c2=int(-fv*(c2-cl)/h-gv*(c2-cr2)/ep/tau par 0 0), 

c3=mt(-fv*(c3-c2)/h-gv*(c3-cr3)/ep/tau par 0 0), 

c4=mt(-fv*(c4-c3)/h-gv*(c4-cr4)/ep/tau par 0 0), 

c5=int(-fv*(c5-c4)/h-gv*(c5-cr5)/ep/tau par 0 0),

where f = flow rate, ep = void volume fraction = e, gv = sorbent bulk density, 

k and n are constants generated from mathematical modelling of isotherm data using 

the Freundlich model q=KfC(1/n), tau = 1/(3, d = diameter of column = 1cm, cO = initial 

concentration of influent metal ion, 1 = length of column, v = volume of column

150


