
3-D Animation and

Morphing using

RenderMan

A T h esis b y: Som hairle F oley B.Sc.

Supervisor: Dr. M ichael S c o tt Ph.D.

S u b m itted t o th e
School o f Com puter A p p licatio n s

Dublin C ity U n iversity
fo r th e d e g re e o f M a ste r o f S cien ce

July 1996

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Master of Science is entirely my own

work and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Signed: ^ ID Number: Date:

Acknowledgments

I’d like to thank the School of Computer Applications in DCU for initially funding my

research and for letting me complete it when it got delayed

The mam person responsible for letting me do this thesis in the first place and for

helping me get it finished is my supervisor Dr Michael Scott Thanks Mike

Thanks also to the technicians m the Computer Applications school, Jim Doyle and

Eamonn McGonigle, and to Tony Hevey m Computer Services

This thesis would have been impossible to write without the help of a number of

people from Pixar and other places via the Internet There are too many to name

individually, but I’d like to thank them all too

Finally, I’d like to thank my family and friends, and the postgrads in the lab, past and

present, for the more social side of being a postgrad

Table of Contents

1 1 T h e sis O u t l in e 1

1 2 A n In t r o d u c t io n t o R e n d e r in g 2

12 1 There are a number of types ofrenderer 3

122 Photorealism 11

1 3 In t r o d u c t io n t o M o d e l l in g 11

131 Objects 12

132 Lights 13

13 3 Camera 15

1 4 R e n d e r in g L ig h t a n d Sh a d o w s 15

141 Gouraud and Phong Shading 16

1 5 A n In t r o d u c t io n t o Re n d e r M a n 17

1 6 R e n d e r M a n a n d t h e R e n d e r M a n In t e r f a c e 18

1 7 G r a p h ic a l T e r m s e x p l a in e d 22

CHAPTER TWO : HISTORY OF ANIMATION... 24

2 1 In t r o d u c t io n 24

2 2 D o c u m e n t e d R e s e a r c h 27

2 2 1 Animation is well researched and documented 27

2 22 Research on morphing tends to be very specific 27

2 2 3 A lot of work on Facial Animation has beenfone 27

22 4 Collecting 3-D object data 28

2 3 C o m p u t e r A n im a t io n h a s b e e n im p l e m e n t e d in v a r io u s f o r m s 30

2 31 First use of computer animation in feature films 30

2 3 2 European Work 30

2 3 3 The Growth of Special Effects in Movies and Videos 31

2 3 4 Pixar’s new computer generated movie 31

2 3 5 Advertising 32

2 3 6 Desktop Animation 33

2 4 C o p y r ig h t a n d O w n e rs h ip P r o b le m s 34

2 5 A w o r d o r t w o a b o u t V isu a l iz a t io n 35

2 6 T r a d it io n a l T e c h n iq u e s a r e s t il l r e l e v a n t 3 8

2 7 T h e T w e l v e P r in c ip l e s o f A n im a t io n 39

CHAPTER ONE : INTRODUCTION ..1

3 1 F r a m e -b y -F r a m e 41

311 Modem Stop-Frame animation 41

3 2 K e y f r a m e s a n d In t e r po l a t io n 42

3 21 What are keyframes ? 42

3 22 Different methods of interpolating between keyframes 42

3 3 L in e a r v s Sp l in e In t e r po l a t io n 46

3 4 A WORD ABOUT SPLINES 48

3 5 P r o c e d u r a l In t e r po l a t io n 53

3 6 P a r a m e t r ic C o n t r o l 54

3 7 K in e m a t ic s 55

3 8 T r a c k in g 56

CHAPTER FOUR : MORPHING... 57

4 1 In t r o d u c t io n 57

4 2 T o p o l o g ic a l a p pr o a c h 59

421 Original Morphing Methods 59

42 2 Advanced Topological Morphing Methods 63

4 3 Im p l ic it Su r f a c e s 65

4 31 Blending Surfaces 68

4 3 2 Morphing soft objects 69

4 3 3 Using skeletal keyframes for animation 70

4 4 M o r p h in g c o m p le x o b j e c t s 72

441 Grouping Objects using Hierarchies 72

4 42 Cellular Matching 73

44 3 Morphing different size composite objects 75

4 4 4 Using Different Primitives 76

4 5 C o v e r in g t h e s e a m s 78

CHAPTER THREE ANIMATION... 40

5 1 O v e r v ie w 81

5 2 U s in g a t w o -p r o n g e d a p p r o a c h 82

5 3 In it ia l r e su l t s w it h pr o c e d u r a l a n im a t io n 83

5 3 1 Structuring RIB objects 87

5 32 Coordinate Systems in RenderMan 88

5 4 M o v in g t h e g o a l p o s t s 89

5 5 S o m h S im p l e - AN i n t e r f a c e f o r v ie w in g a n d a n im a t in g o b je c t s 91

5 6 Im p l e m e n t in g M o r p h in g 94

5 7 P r a c t ic a l Im p l e m e n t a t io n o f M o r ph in g 97

5 8 E x a m p l e s o f m o r p h in g im p l e m e n t e d w it h R e n d e r M a n 101

5 9 P h o t o r e a l is t ic Re n d e r M a n a n d t h e B l u e M o o n R e n d in g T o o l s 104

CHAPTER SIX : CONCLUSIONS AND THE FUTURE... 105

6 1 T o p ic a l C o n c l u sio n s 105

6 2 Im p l e m e n t a t io n C o n c l u sio n s 107

6 2 1 Implementation Difficulties 107

6 3 F u r t h e r a r e a s o f r e s e a r c h 109

63 1 Padding out the blanks 109

63 2 Transforming objects into different formats 110

63 3 A 3-D World-Wide Web Browser 110

6 3 4 An object oriented animation system 111

6 4 F in a l C o m m e n t s 112

APPENDICES..114

A p p e n d ix A B ib l io g r a p h y 114

A p p en d ix B 3-D O b je c t F i l e F o r m a t s 119

A p p e n d ix C T a b l e o f F ig u r e s 124

A p p e n d ix D P r o g r a m L is t in g s 126

CHAPTER FIVE . IMPLEMENTATION... 81

3-D Animation and Morphing using RenderMan Glossary

C o m p o site O b je c t

C S G

D O F

F F D

K e y fra m e s

M o d e llin g

M o rp h in g

N U R B S

P atc h

P atc h m e sh

P rim itiv e

P R M a n (prman)

R e n d e r in g

R e n d e rM a n
In te r fa c e

R E Y E S

R I B

S p lin e s

An object which consists of a number of primitives

Constructive Solid Geometry A modelling method which
allows objects to be combined using set operators

Degree of Freedom An independent variable that controls the
ability of an articulated object to move relative to another

Free Form Deformation A technique used to deform or warp
objects independent of the object type

Frames of an animation that delimit a simple movement or
action Using these the frames in-between can be created

The process of describing objects and lights in a 3-D scene

The process of transforming one object into another, usually
by changing the surface representation of the object

Non-Uniform Rational B-Splines A powerful type of object
which is used to model smooth curved surface objects

A smooth curved surface modelling object defined by the
combination of two splines Usually bi-cubic or bi-linear

A set of connecting patches which can represent a surface

Graphics object which cannot be split into component
objects Examples Sphere, Cylinder, Polygon, Patchmesh,
NURBS

Photorealistic RenderMan Pixar’s highest quality renderer It
is the original RenderMan Interface compliant renderer

The process of creating a computer generated image

The public specification issued by Pixar for the description of
3-D scenes, separating the modelling and rendering phases

The underlying algorithm at the heart of PRMan

RenderMan Interface Bytestream A file or datastream with
3-D descriptions conforming to the RenderMan Interface

Mathematical representations of smooth curves defined by a
set of points Can be used for interpolation or approximating
surfaces Bézier, Catmull-Rom and NURBS are all types

Glossary

Topology The surface of an object or combination of objects

3-D Animation and Morphing using RenderMan Abstract

Abstract

an~I~ma~te~\an~e~,mat\vt
(1538)

la to give life to
b to give vigour and zest to
2 to give spirit and support to ENCOURAGE
3 to move to action

4a to make or design in such a way as to create apparently spontaneous lifelike movement
preparation of animated cartoons

4b to produce in the form of an animated cartoon

meta~mor~pho~sis~\,met~e -'mo r~f<3~s3s\n, pi -pho-ses \,se z \
[L, fr Gk metamorpho sis, fr metamorph noun to transform, fr meta- + morphe form]
(1533)

la change of physical form, structure, or substance esp by supernatural means
b a striking alteration in appearance, character, or circumstances
2 a marked and more or less abrupt developmental change in the form or structure of an

animal (as a butterfly or a frog) occurring subsequent to birth or hatching

A Websters dictionary definition of the word ‘animate’ strikes to the heart of what

animation is about - the illusion of life Giving life to a sequence of pictures is the

purpose of animation This has been practised for over a century and nowadays

computers are being used to create animations faster and more accurately than ever

before Animations are no longer restricted to 'funnies', but can also be models of

real-life situations These are based on data not images, and the final images are

generated after the data has been processed for unambiguous visualization By

representing the data in three dimensions it can be viewed m any number of ways

according to the wishes of the 'end' user

RenderMan allows a scene to be viewed when defined m three dimensions This can

then be viewed as an animated sequence where special effects - such as the

metamorphosis of objects (morphing) - may take place to provide a photorealistic

animation This thesis will examine how 3-D computer animation in general, and

special effects such as morphing m particular, may be implemented using the

RenderMan Interface specification and the RenderMan rendering program

3-D Animation and Morphing using RenderMan Chapter 1

C h a p t e r O n e : I n t r o d u c t i o n

1.1 Thesis Outline
%

This thesis contains six chapters Chapter One is a general introduction to the area of

computer generated images and concepts such as modelling and rendering are

explained The RenderMan Interface specification and the REYES implementation of

it are discussed and some of the common phraseology interpreted, before a quick

overview of the subject topics of animation and morphing is be given

Chapter Two is a broad history of animation which highlights the significant stages m

its development along the way to modem computer animation It notes that the

important lessons learned from traditional animation are still relevant m today’s

high-tech productions

Chapter Three looks at animation and the current methods used to implement

computer animation An important part of this are the methods (such as interpolation)

used to control the movements of objects

Chapter Four is a discussion of morphing and the different approaches to it which

have been attempted It also looks at the subject of complex objects and suggests

methods for implementing a heuristic for morphing them

Chapter Five describes the process of implementing animation and morphing using

RIB files Some of the methods suggested in previous chapters were implemented

using two applications which were developed

Chapter Six contains the conclusions of the research which was carried out and

identifies problems which arose during implementation A number of areas for future

research are suggested and there is a brief look at the future

Page 1

3-D Animation and Morphing using RenderMan

1.2 An Introduction to Rendering

Chapter 1

Figure 1-1: Rendering is similar to compiling

This thesis is based on the creation of Computer Generated Images The process of

creating an image from a three-dimensional description is called Rendering and a

program that does this is called a Renderer In the same way that a compiler produces

an executable program from source code, a renderer takes 3-D source code, processes

it and outputs a 2-D image

Like a compiler, a renderer is a program that is generally supplied by a third party and

which is unchangeable, although new versions and alternative suppliers’ versions may

provide new features To produce an image, the 3-D code is created by hand or, more

commonly, by a program called a modeller Since rendering is usually a long and

time-consuming process, most modellers can provide draft or wire-frame renderings

in real-time or near real-time which allows a preview to be viewed without waiting for

a full rendering

Page 2

3-D Animation and Morphing using RenderMan Chapter 1

1.2.1 There are a number of types of renderer

There are an large number of Tenderers available these days - not all are compatible or

work the same way Many do the same thing slightly differently but work on different

formats or require different input sets The internal workings of a renderer can be

completely different For example, four different methods of rendering are

• Z-Buffer

• Ray-Tracing

• Radiosity

• REYES (RenderMan)

• Z-Buffer Rendering

Z-Buffer rendering is where objects in World Co-ordinates (the world the scene is

defined m) are transformed into Camera Co-ordmates This involves changing from a

perspective view to a parallel view in Camera Co-ordmates The Camera Plane is

usually implemented using a frame buffer which stores the colours that hit the plane at

each pixel Objects are not processed m order (from far to near), so the buffer needs to

store both the colour and the depth (the Z-coordmate) of the object The Z-coordmate

is used to determine if an object is in front of or behind the object that is currently in

view If it is m front, then the frame buffer for that pixel is updated and the new

Z-coordmate is put in the depth-buffer (called the Z-buffer)

Once all objects are m camera co-ordmates, the objects need only have their

Z-coordmate mapped to the buffer in order to project them onto the camera plane (the

screen) The need for a depth-buffer can be eliminated by working from the farthest

object from the camera plane to the nearest, all the objects will be correctly projected

onto the frame-buffer as the human eye would see them The nearest objects will be

‘in front’ of the farther objects, giving the correct picture

Page 3

3-D Animation and Morphing using RenderMan Chapter 1

Figure 1-2 : Simple Z-Buffer Rendering

The Z-Buffer method is used in a surprising number of Tenderers (usually for ‘draft’

rendering) because of its simplicity to implement and hence its speed of execution On

a number of systems, it has been implemented in hardware which allows real-time

processing and viewing

• Ray-Tracing

Ray-Tracing is one of the most popular methods for generating photorealistic images

Originally a hidden surface detection algorithm, it was developed into a full renderer

Ray Tracing involves following a ray of light from a light source to the camera or vice

versa

Forward Ray Tracing

Forward Ray Tracing is where each ray of light from a light source is followed until it

is absorbed or hits the camera ‘window’ This is very inefficient since there may be

millions of rays, none of which reach the camera but these would all have to be

calculated and checked to see if they hit the camera window

Page 4

3-D Animation and Morphing using RenderMan Chapter 1

Ray B

I
- n -

Point / I \ “
Light Source

I
Camera
Plane

Ray A

Figure 1-3 : Forward Ray Tracing

In the diagram, Ray A does

not hit anything

Ray B hits the object and

then reflected away

Ray C hits the camera

plane

Ray D hits the object and is

then reflected so it hits the

camera plane

Backward Ray Tracing

To improve the speed, a method called Backward Ray Tracing was developed

Backward Ray Tracing is where each pixel on the camera plane/window is considered

to be a ray of light and it is followed until it hits a light source Rays can be reflected,

refracted or transparency rays Also, illuminating and shadow rays can be followed

Ray X and Ray Y are the

outer rays that are

computed All the rays

m-between them will be

computed The reflection

off the object is calculated

by calculating the Ray Z

which is traced back to the

light source

Ray Z

Point / I \
Light Source

I
FOV (Field
Of View)

ìay X

Camera
Plane

Figure 1-4 : Backward Ray Tracing

Page 5

3-D Animation and Morphing using RenderMan Chapter 1

Backward Ray Tracing is much more efficient than Forward Ray Tracing since only

rays that hit the camera plane are computed However, proper reflection is quite

difficult to achieve since the reflected light may come from a number of sources and

depends on the texture of the surfaces that it is shining off Usually a recursive method

is used to calculate the colour of a ray which works back from the ray hitting the

camera plane until the ray hits a light source or has travelled so far that it has no

significant effect on the colour of the ray at the camera When there are a large

number of objects that reflect the rays, the ray tracer will be doing more recursive

loops for each ray, so that the speed of rendering is slowed

Ray Tracing gives a very accurate picture since it requires every ray of light to be

followed, giving better lighting and shading effects It is more computationally

expensive than Z-Buffermg, but it produces better results Examples of ray tracers are

POV-Ray, PolyRay, Moral Ray and the RendRIB renderer from the RenderMan-

Interface-compliant Blue Moon Rendering Tools

[FOLEY90][OREILL91] [MARRI092]

• Radiosity

Radiosity is a method of rendering which works by tracing rays of energy rather than

rays of light It was developed from the physics of thermodynamics to accurately

simulate the way in which rays create various types of shadows As the energy is

dispersed so the lighting/shading will change This is considered to be one of the most

realistic ways to render light and shading since it allows the umbra and penumbra

effects that other methods do not render accurately Radiosity rendering is more

computationally expensive that other Tenderers and using it to render an entire scene is

considered a waste since a lot of the scene will probably appear the same using a

simpler renderer Radiosity Tenderers tend to be included with ray-tracing Tenderers to

speed up rendering times The radiosity part is invoked only when required, leaving

the ray-tracer to render the rest of the scene

Page 6

3-D Animation and Morphing using RenderMan Chapter 1

• REYES (RenderMan)

The REYES algorithm was initially developed and used m 1981/82 by Loren

Carpenter at Lucasfilm’s Computer Animation Division for the computer simulation

of ‘The Genesis Effect’ in the film Star Trek II The Wrath of Khan Its successful use

caused more research and development (and the addition of Rob Cook and Ed

Catmull to the team) to be invested in REYES The Computer Animation Division

was purchased by Steve Jobs in 1986 and the company was named Pixar The REYES

algorithm was developed and revised over a number of years during which time it was

used in the creation of a number of landmark computer animations such as Luxo Jr

and Red’s Dream

In 1987, a paper on ‘The REYES Image Rendering Architecture’ was presented at the

SIGGRAPH’87 conference This outlined the objectives of the REYES renderer and

its implementation along with the advantages and disadvantages of using the new

algorithm [COOK87]

The goal was to be able to produce high quality - ‘photorealistic’ - images within a

reasonable time period for feature films To produce these images the models - scene

descriptions - needed to have large numbers of complex objects All of these objects

were reduced to a single type of object, micropolygons, upon which all functions were

carried out By working on the micropolygon level, difficulties with different types of

objects (geometric primitives, procedural models, fractals, etc) were eliminated and

the same process applied to all objects by breaking them down into smaller objects

recursively, and down to the micropolygon level which are smaller than the size of a

pixel This solves a number of interpolation problems including clipping and shading

A programmable shader was included to allow for different possible surface

characteristics - from different colours and reflection maps to bump maps, shadows

and refraction A C-like shading language (which was to be defined later) allowed

each point on a surface to be shaded/textured/coloured given the different types of

light and their intensity that are touching that point

Page 7

3-D Animation and Morphing using RenderMan Chapter 1

A number of design principles were laid out which were used m designing the

algorithm

- Natural Co-ordinates should be used wherever possible to save on conversions to

other co-ordinate systems

- Vectorization should be used to group similar calculations together

- Common Representation should be used - objects should be ‘diced’ into

micropolygons

- Locality should cause primitives to be rendered without reference to other objects

- Linearity should cause rendering time to be linearly proportional to complexity of

the objects being rendered

- A Back Door into the algorithm should allow other algorithms to have an input into

the final image

- Texture Maps should be used to define complex shading patterns

It was noted early on that minimal ray-tracmg was to be used in the algorithm It was

decided that tracing rays of light or energy would be too time-consuming for complex

models where a ray could be reflected and/or refracted any number of times Instead,

global light sources were seen as the mam method of illumination with environment

and shadow maps used as surfaces of reflective and hidden objects respectively

Programmable shaders would provide special reflection/refraction effects

Dicing is the term applied to the recursive sub-division of objects down to the

micropolygon level After objects have been diced into micropolygons and these are

shaded/texture mapped, they are sampled Micropolygons tend to have the

approximate dimension in screen space of V* the area of a pixel However, they are not

aligned with pixel boundaries so some form of sampling must be used to gam an

accurate value for the pixel

Page 8

3-D Animation and Morphing using RenderMan Chapter 1

In the REYES architecture, jittering (a type of stochastic sampling where a random

displacement factor is used) is used to sample micropolygons for each pixel This is

placed in a simple Z-Buffer where visibility is checked and if required amended

Once the model of the scene is

read in, objects are checked to

see if they are within the general

bounding-box for the view and

then the dice/cull/split occurs

Figure 1-5 : Flowchart for REYES Algorithm

If some part of an object is on­

screen then that part must be

diced into micropolygons By

splitting up objects repeatedly,

culling parts that don’t appear

and dicing the remaining (partial)

objects, the object is effectively

clipped

Micropolygons are texture

mapped and sampled to get pixel

values using jittering as

described earlier The visibility

of the sampled pixel is normally

checked using a simple Z-Buffer

However a ‘Back Door’ gives

extra options that can modify the

buffer if required

Features such as Field of View (Zooming), Motion Blur, Transparency and CSG

(Constructive Solid Geometry) were added to the REYES architecture which now

forms the core of the Photorealistic RenderMan (PRMan) renderer that Pixar sell

Page 9

3-D Animation and Morphing using RenderMan Chapter 1

The REYES architecture does have problems with certain types of primitive such as

particles and ‘blobs’ Particle rendering is the area related to the representation of

small non-opaic objects which can distort images and is usually related to something

such as the weather (mist, ram, fog) or fire While the RenderMan Interface does

allow Atmosphere custom-shaders to be written and used, only some of the above

have been implemented REYES also lacks a quick way of deciding if shading is to be

constant across large surfaces and these can be needlessly broken down into

micropolygons This has been rectified to a certain extent m the PRMan

implementation by the ability to explicitly specify that constant shading is to be used

It is difficult to optimise the dicing of texture-mapped polygons since they lack a

natural co-ordinate system (polygons always use the current co-ordmate system)

However, this is not a problem with most REYES/RenderMan models since they tend

to use the more flexible bi-cubic patchmeshes

The REYES architecture was (and still is) a radically different method of rendering

two-dimensional pictures from three-dimensional models The acronym REYES

stands for ‘Renders Everything You Ever Saw’ which is actually quite a good

description of how it works - it only concerns itself with viewable objects and renders

those, ignoring (“culling”) those that are not visible To a certain extent it does ‘cheat’

when posed some problems by using customised shaders to represent complex

surfaces which are difficult to model - for example the screw threads on a light bulb as

shown m chapter 5 - the light bulb’s threads are modelled using a cylinder with a

displacement shader However, it was designed on the basis of a number of principles

and goals and the algorithm was designed for those principles whereas many other

Tenderers are based on existing algorithms REYES removed a number of bottle-neck

calculations that traditional approaches suffer from and provided a baseline against

which other Tenderers are compared In keeping with the original goal of the

architecture, PRMan has proved to be a favourite amongst animators and special

effects companies when producing computer animations for feature films

Photorealistic RenderMan has recently been used in such movies as The Abyss,

Terminator 2, Jurassic Park and Toy Story

Page 10

3-D Animation and Morphing using RenderMan Chapter 1

1.2.2 Photorealism

"Photography is truth The cinema is truth twenty-four times per second " - Jean-Luc Godard

Photorealistic Tenderers are a specific type of Tenderer .that attempt to produce pictures

of a quality that is indistinguishable from a photograph Renderers of this quality used

to only be available to specialists with ultra-fast computers, but in recent years

photorealistic renderers have been appearing which work on more popular hardware

In some cases, a picture generated using a photorealistic renderer can be too ‘perfect’ -

sometimes they have to be ‘dirtied’ or have motion blur added (the blur of an object

moving fast enough to create multiple images of itself while the camera shutter is

open) In visualisation, a photorealistic renderer may produce an accurate picture, but

je to the ‘realism’ of the image For example, an accurate

there is little light and many shadows may not be what is

ay be removed and the lights ‘brightened’

lelling

10557?
j s s in itself and is the precursor to any animation or special

rk with a scene you must describe the scene completely in

p is only as good as the scene that was described - and a

i the data that its given The amount of data required to

ute large and it is much more efficient to handle this data

d a modeller On some platforms - such as NeXT and SGI -

all applications and can be called from all programs, which

■ion to create and manipulate a 3-D picture

e classified as three types of object

• Solid Objects

• Lights

• A Camera

Page 11

3-D Animation and Morphing using RenderMan Chapter 1

M odelling Phase Rendering Phase

Figure 1-6 : The Modelling and Rendering Phases

1.3.1 Objects

Objects are usually defined by their surfaces For example, a cube is defined as six

squares placed m the appropriate place There is nothing mside the cube All objects

are surfaces which are infinitely thin, l e they exist only in two dimensions The most

common buildmg-block object is the polygon This is a two-dimensional object which

has its boundaries defined by a series of points which are connected together

Most Tenderers allow other types of objects to be used such as quadratics (spheres,

cylinders, cones, etc) and parametncs (splines, spline meshes, special spline types)

Objects can be grouped together to create a single (composite) object One method of

combining objects is CSG - Constructive Solid Geometry This allows set operations -

union, intersection and difference - to be carried out on three dimensional objects So

it is possible to create a composite object by the union of two or more individual

objects It is also possible to define an object by defining ‘what is not there’ - for

example, a bowling ball could be defined as a sphere less three cylinders (for the

fmger holes)

Page 12

7

To declare where an object is situated in a scene (or in/on which part of another

object), geometric transformations such as Scale, Rotate and Transform are used For

example, to declare three lines which are perpendicular to each other (running along

the x-, y- and z-axes), the following sequence would be appropriate

Instance Line (along z-axxs)
Rotate X-90° Y 0° Z:0°
Instance Line (along z-axis)
Rotate X :0° Y:90° Z:0°
Instance Line (along z-axis)

Objects can have attributes such as colour and opacity Opacity allows objects to be

solid, see-through or somewhere in between, This makes objects such as coloured

glass much easier to model

Objects are usually defined in their own co-ordinate systems That means that the

numbers assigned to an object’s vertices are only valid as a representation of

proportion and do not relate to other objects in the scene These are called local co­

ordinates The co-ordmate system that represents the difference between different

objects is called the world co-ordmate system (WC)

1.3.2 Lights

To describe a scene correctly, the light sources in it must be added to the scene

description during the modelling phase There are usually four types of light source

allowed ambient, distant, point and spot

3-D Animation and Morphing using RenderMan Chapter 1

Page 13

3-D Animation and Morphing using RenderMan Chapter 1

Amhient Light

This is where the light shines equally on all

surfaces irrespective of the angle

Distant Light

S'

Figure 1-7 : Ambient Light

This is where the light shines equally

on surfaces visible from a certain

angle This could be viewed as a light

coming from a point an infinite

distance away - for example the Sun

Point Light

This is where light shmes equally in all

directions from a single point Surfaces are

illuminated if they are visible from that

point and within the falloff range of the

light beam - just like a houselamp

Spot Light

This is where light shmes from a point

m a given direction with a cone

specifying the direction and

distribution of the light beam Surfaces

within the cone and within range of the

beam will be illuminated if they are

visible from the point

Figure 1-8 : Distant Light

/ | \
Figure 1-9 : Point Light

cone delta

Figure 1-10 : Spot Light

Page 14

3-D Animation and Morphing using RenderMan Chapter 1

1.3.3 Camera

The camera is a ‘virtual camera’ - it has no actual

effect in the description of the scene, however it

does describe how the scene is to be viewed It can

be declared explicitly with a particular location

and orientation or it can be defined implicitly by

assuming all positions are relative to it (it is the

origin) Virtual cameras can also allow features

such as focusing, zoom, wide-angle lens and

motion blur Like the spotlight, the camera is

pointed m a given direction, but takes in all light

withm the cone The cone angle is called the field

of view (FOV) and by changing this, the effect of

‘zooming’ is given

1.4 Rendering Light and Shadows

Rendering can be a time-consummg process When creating an animation, a real-tme

preview is a useful function However, a full quality rendering would take too long, so

other, faster, Tenderers are used The simplest of these is a wireframe renderer This is

where only the edges of the objects are rendered Usually the Z-buffer method is used,

coupled with a hidden-surface removal algorithm

Wireframe graphics can be rendered quickly enough, but the lack of shading can make

it difficult to comprehend Two of the most popular ‘quick’ shading algorithms are

Gouraud and Phong shading Both of these methods are fast enough to work on

desktop computers, preferably with hardware acceleration

Figure 1-11 : Virtual Camera

Page 15

3-D Animation and Morphing using RenderMan Chapter 1

1.4.1 Gouraud and Phong Shading

Gouraud shading was developed by Henri Gouraud in 1971 for shading flat (planar)

surfaces He suggested that only a small number of points on a surface need actually

be calculated for the' surface to be reasonably shaded The light rays hitting the

vertices of the surface are calculated, then the edges of the surface are linearly

interpolated between the vertices The pixels on the surface are then also linearly

interpolated from the edges

This gives a surface where the edges define the surface they bound This will give a

faceted appearance to objects constructed from a number of Gouraud-shaded objects

A 3-D version of this, called ‘Smooth Gouraud’ shading tries to overcome this

problem with facets by averaging the surface normals for surfaces with shared

vertices This causes shared edges to be shaded identically, giving the impression of a
5

continuous surface over shared edges

While Gouraud shading is very fast and can be implemented using hardware

acceleration for graphics workstations, it does have a number of flaws If a spotlight

highlights an area entirely within the vertices, then there will be no highlighting at the

vertices and hence the interpolation will cause the spotlight to be ignored It also

assumes the surface is reflecting ambient and diffuse light only - the same amount of

light is reflected in all directions Ambient light is the light that falls on a surface from

any direction Diffuse light is light that falls on a surface from a specific direction

While these two can produce a satisfactory result, they cannot produce accurate

reflection of light for glossy or shiny surface This is where specular reflection is

introduced

Phong shading takes account of all three reflection models - ambient, diffuse and

specular Specular reflection differs from the other two in that it relates the position of

the eye (observer) to the light that is reflected Only when the angles are correct will

the light from a directional light be reflected off the object The shinmess of an object

will determine withm what angle directional light will be reflected

Page 16

3-D Animation and Morphing using RenderMan Chapter 1

In order to accurately render specular light, it is not sufficient to calculate the light at

the vertices of a surface and interpolate from them - the specular component needs to

be calculated for every pixel Computationally, this is much slower than Gouraud

shading In order to speed this up, the surface normal vector for each pixel is

interpolated from the surface normals at the vertices What this effectively does is say

that the surface curves linearly between the vertices, allowing non-planar surfaces to

be rendered The specular component is combined with the diffuse component and the

pixel is coloured with the combined light colour

There are a number of optimisations for Phong shading involving reducing the

number of pixels rendered and interpolating between them as well as numerical and

geometric optimisations Both Gouraud and Phong shading tend to be used for draft

rendering today, with the final image being generated by a photorealistic renderer like

RenderMan

1.5 An Introduction to RenderMan

In 1987, Pixar examined the impact of the formalisation and publication of PostScript

by Adobe Systems as a 2-D page description language had on the computer industry m

general and the graphics community in particular By describing the appearance of a

page without reference to what device it is to be represented on, page-creating

applications were separated from the different sets of options and command languages

available with different printers More importantly, the quality of the image was now

limited only by the printers abilities This virtually caused the explosion in the desktop

publishing industry

Pixar decided that the time would come when there would be a need for a similar

device-independent interface for the 3-D graphics industry and m consultation with

other 3-D graphics companies, they developed the formal specification for what is

now called the RenderMan Interface

Page 17

3-D Animation and Morphing using RenderMan Chapter 1

1.6 RenderMan and the RenderMan Interface

When referring to RenderMan, it is important to realise that there are two separate

entities involved RenderMan is a program which takes in 3-D scene description data

and produces an image (picture) as dictated by the input data The RenderMan

Interface is a specification for the format of the 3-D description data This states how a

RenderMan-compatible program expects a scene to be described The RenderMan

Interface is a public specification which is available at a nominal cost Pixar hope to

create a standard method of communication between modeller and renderer, The

render need not be RenderMan - at least 4 other Tenderers are available which are

RenderMan Compatible

The specification is bound to two formats function calls and bytestream This allows

a compatible renderer to take the form of either a library of routines or a separate

program working on a file/stream The RenderMan Interface Bytestream is the term

given to the stream used for input to a compatible renderer and hence these files are

known as RIB files

On NeXTSTEP platforms, two Tenderers are provided One is called Quick

RenderMan (qrman) and is interfaced via object-oriented messages or calls to the

3DKit object library which is bundled with NeXTSTEP The other renderer is

Photorealistic RenderMan (prman) which takes RIB files for input The two different

Tenderers provide different outputs - qrman is a draft renderer which only has some

features of the RenderMan Interface implemented and returns wireframe, faceted or

draft images whereas prman implements almost all parts of the specification and

outputs fully photorealistic image files with customised shading

The ability to use either renderer is an example of the flexibility that the RenderMan

Interface brings to computer graphics The Tenderers are interchangeable depending on

the quality required and the amount of time allowed for the pictures to be produced

Any other renderer could be used in place of these once it complies with one of the

bindings in the specification

Page 18

3-D Animation and Morphing using RenderMan Chapter 1

On the modelling side, modellers are also able to use the specification to output to

RenderMan (and compatible Tenderers) There are a number of formats for outputting

data, but they suffer from the problem of being constantly updated for proprietary

reasons This is where the renderer is changed (usually to include extra features) and

the modeller has to be changed in order to access these new features and to output this

new format This is the RenderMan Interface's strength - it is a public document

Introducing a new version is a large and lengthy event, which will only happen to

introduce a number of not-insigmficant features People want to use RenderMan

because it is widely regarded as the 'best' off-the-shelf renderer available and its C-like

shading language makes it incredibly flexible

In the past, RenderMan (and the REYES algorithm before it) has been used to produce

the images used m many films and television productions This has caused more

investment and research to be carried out, making it better and used more often and so

on It is available in a number of forms, from IBM PC and Apple Macintosh versions,

to UNIX workstations such as HP, Sun, IBM RS/6000, NeXT, SGI and DECstations

It even comes as standard with the NeXTSTEP operating system This allows

RenderMan to operate m a multi-platform environment even using distributed

processing across the different platforms

With the tumbling price of hardware, the cost of using a number of cheap machines as

a ‘farm’ for rendering is more appealing than having one super-fast machine A

number of special effects/animation companies have recently invested in a large

number of PowerPC-based Apple Macintoshes and multiple copies of

MacRenderMan with NetRenderMan This allows the Macs to be networked together

to render animations as a ‘back-end’ to whatever modelling and animation software is

being used on developers machine at a minimal cost

Page 19

3-D Animation and Morphing using RenderMan Chapter 1

This typifies what is probably one of the greatest impacts the RenderMan Interface has

had - the separation of the front-end modelling process from the back-end rendering

process Previously, this was all done at once on specialist hardware, which cost a lot

and limited what facilities were available By separating these actions, greater

flexibility and speed of production have been achieved The modelling process can be

completed using a draft renderer (faster but less detail) and the user-mteraction then

finished The output of the modeller can then be taken to the renderer This could be

on a different platform/machine at a different time

An example of this setup is where a number of users are using workstations to model

an animated sequence They use the workstations to do the modelling and then when

finishing up, they send the modeller output to a server which can work in the

background on creating the sequence When workstations become inactive (idle) they

too can be employed to work on the sequence in the background This speeds up the

process and is seamless to the users The machines need not all be the same The

workstations could be a combination of Apple Macintoshes, NeXTs and Silicon

Graphics machines while the server could be a Sun When you consider that a one

minute animation can contain over 900 individual images with some images taking 30

minutes to create, this is a considerable advantage

Another advantage of RenderMan is its shading language After the modelling phase,

the surfaces of an object in the scene can be changed by switching shaders This is the

same idea as using different sets of object libraries when linking a program This

provides flexibility and allows for third party shaders to be sold

There are five types of shaders defined in the RenderMan Surface, Displacement,

Interior, Exterior and Atmosphere The mam two are Surface, which describe how to

evaluate the colour of a ray of light hitting a surface, and Displacement shaders which

allow points on the surface of the object to be perturbed (moved), as shown later in

Chapter 5

Page 20

3-D Animation and Morphing using RenderMan Chapter 1

Figure 1-12 : RIB Processing vs. PostScript Processing

Another comparison can be made between RenderMan and Postscript In the same

way that Postscript is a 2-D Page Description Language, the RenderMan Interface is a

3-D Scene Description Language RenderMan is not required to be known by the user

of a 3-D modelling application, but when the scene is setup and a 'snapshot' taken (the

description code is processed by the renderer), an image is produced on the computer

m the same way that a page is printed once the PostScript code is processed by the

printer The Postscript code is usually sent straight to a Postscript-compatible printer,

which prints the page, but a RenderMan-Interface-compatible renderer usually creates

a picture which is stored for viewing or printing later

The implementation of various theories m this thesis are based on 'intercepting' the

RenderMan Interface Bytestream (RIB) output from the modeller and using it provide

facilities - such as animation - without reverting to the modelling phase again

Page 21

3-D Animation and Morphing using RenderMan Chapter 1

1.7 Graphical Terms explained

The vocabulary of the world of computer graphics is one that seems to change on a

day-to-day basis This is a characteristic of the computing in general, given the rapid

development of new areas, but m computer graphics it is difficult to distinguish

between new fields and different ways of looking at more established fields This

causes significant difficulty in the researching of previous work and indeed when

trying to describe current work For example, the topic of morphing has been called a

number of names in the past - “Shape Distortion” , “Fluid Objects” , “Warpmg” ,

“Deformable Models” , “Blended Surfaces” , “Topological Merging” and “Soft

Objects” c

The word “Morphing” is an abbreviation of the word “Metamorphosing” which is

defined in the dictionary as “a change of physical form, structure or substance” In the

computer graphics world, the two words can have separate meanings At Industrial

Light and Magic, the custom has been developed to refer to two-dimensional changes

with the term “morphing” and three-dimensional changes with “metamorphosing”

When discussing both it is a useful way of differentiating between them, but it can be

cumbersome when using them all the time In this thesis, when the word “morphing”

is used, it is referring to three-dimensions not two, unless its specifically stated

It is important to note the difference between 2-D and 3-D Morphing (sometimes

referred to as Image and Object Morphing respectively) Image Morphmg has become

extremely popular recently and it is a relatively simple operation in comparison to

Object Morphmg That is not to say that it is no good, in fact a lot of the morphmg

algorithms for 3-D have been derived from their 2-D counterparts A number of recent

advertisements have used a motion-controlled camera to obtain two sets of images

which are taken from the same viewpoint and then use image morphmg to simulate a

change between them This gives the appearance of 3-D morphmg, but is actually a

combination of special effects and 2-D morphmg

Page 22

3-D Animation and Morphing using RenderMan Chapter 1

Image Morphing works simply by taking one image (picture) and transforming it into

another image There are a number of ways of doing this, the simplest being to

linearly interpolate the colour of each pixel over the number of frames required for the

transformation More imaginative image morphmg is done by creating a control grid

(mesh) over the original (source) picture and the final (target) picture By specifying

where each point (node) on the source grid is to go on the target grid, effects such as

one face transforming into another is given This would be done by specifying that the

nodes around the features (eyes, nose, mouth, chin, ears and hairline) on the source

move to the same features on the target

A certain amount of work has been done on this and a detailed paper on the making of

the Michael Jackson video Black or White was presented to the SIGGRAPH’92

conference The video made extensive use of facial image morphmg to change the

faces between men and women and different races [BEIER92]

Page 23

3-D Animation and Morphing using RenderMan Chapter 2

Chapter Two : History of Animation

2.1 Introduction

Since the earliest days of man on this planet, events have been visually described

Cave paintings depict great battles and deeds - showing a sequence of pictures which

relay a story When paper became available, we started to draw pictures on it, again

showing a sequence of pictures to relate a story By showing a number of these

pictures in short succession, the illusion of movement could be given Animation was

bom

Stick men could be animated by flicking between different pages and that is the basis

for all animation - moving from one image to another image to simulate

life/movement

More complex animation was achieved with the revolving carousel, called a zoetrope

A cylinder with pictures on the inside had corresponding slits which allowed only one

picture to be seen at a time When the carousel was spun, each picture would be

visible for a small, but equal, amount of time When it was spinning fast enough, it

gave the impression of seamless changes

The reason for this is that the human brain can only perceive about 25 different

images every second A picture that changes more rapidly than that will no longer

look like a series of individual images, but as a continuously changing image This is a

principle that governs what we see - called the persistence of vision Any image

updated slower than that loses its lifelikeness and becomes just another series of

images This is how televisions and cinemas give the illusion of constant movement -

although television actually works at a speed of 50 frames per second by displaying

every second line of a picture every / 50th of a second and then displaying the alternate

lines that it did not update in the next y50th of a second and hence the entire picture is

displayed in / 25 th of a second using this method (called interlacing)

Page 24

3-D Animation and Morphing using RenderMan Chapter 2

Cinema films are displayed at a rate of 72 frames per second, and this consists of the

same image being displayed 3 times each (only 24 different frames are displayed) and

a rotating disk blanking and un-blanking each actual frame 3 times every y24 th of a

second

Animation has been studied specifically since 1824 when a paper on ‘The Persistence

of Vision with regard to Moving Objects’ was presented to the Royal British Society

From then on, until the turn of the century, there were a number of developments -

including the zoetrope and phenakistoscope - which were the start of the film industry

Eadweard Muybridge initiated his photographic collection of animals in motion

(including humans) which is still used - and seen - today Thomas Edison created the

kinetoscope which displayed 50 feet of film in 13 seconds George Eastman (founder

of Kodak) created cellulose-based film and both the Lumière brothers and Thomas

Armat (working on Edison's design) produced projectors which were the forerunners

of today's projectors

The first animated film was created in 1906 and a number of animations were created

following that Walt Disney's first breakthrough came when he produced the film

Alice’s Wonderland which combined live-action with cartoon characters, and again in

1937 when Snow White was released A year later, the first cartoon with synchronised

sound was created It was called Mickey Mouse

Cartoons took over animation with hand-drawn 'funnies' until 1957 when John

Whitney used mechanical devices to create analog computer graphics During the 60's,

computers were starting to appear in numbers around the world By today's standards

they were very slow and simple, but computer graphics was established as an area for

further research In the 70's, many of the fundamental algorithms commonly used

today in computer graphics were developed

Page 25

3-D Animation and Morphing using RenderMan Chapter 2

In the 1980's, computers moved from large rooms in big institutions to the desktops of

individuals at work and at home This brought computer graphics into the home since

even the smallest and cheapest of computers could manage some form of graphics

Computers like the Sinclair ZX81 managed black and white graphics with only 3 5K

of RAM and this was followed by the Spectrum which brought colour computer

graphics into the home (usually in the form of games) As the power of computers

increased, graphics became less of an add-on and more of an essential Computers
i

started being used m engineering, architecture, design and layout (DTP) New terms

such as CAD and CAM appeared and computers began to be used for animation

Computer graphics were still always recognisable as being just that It couldn't be

mistaken for anything else until photorealistic rendering was developed This meant

that the computer generated image was indistinguishable from the real thing For this

to happen, settings such as lighting, surface texture and shape must be exactly the

same as in real life, Photorealism has only come about in the past 10 years or so, and

has only really been available ‘on the desktop’ in the 90's But it has made great

impact Incredible special effects and unbelievably lifelike animations have been

generated recently, and the higher quality quickly becomes the norm

On television, in science programs and news reports, it is common to see a 3-D

animation to explam/visualise some point or a geographic location Title sequences,

advertisements as well as programmes and films usually contain some sort of

animation In science-fiction, the use of photorealistic graphics has taken over, almost

entirely from physical model based animation For example, seaQuest DSV - a $16

million Speilberg-backed show based on the adventures of a submarine - is modelled

and created entirely on computer There is no submarine and no miniature model of

the submarine

This has changed the way that film-makers approach special effects George Lucas

recently said that he had to wait for the special effects technology to improve before

he could make the sequel to the Star Wars trilogy made in the late 70’s and early 80’s

He has now started work on this

Page 26

3-D Animation and Morphing using RenderMan Chapter 2

2.2 Documented Research

2.2.1 Animation is well researched and documented
i r

A large amount of research work has been done on animation, however high-quality

object morphmg is a ‘new area’ and research is only starting to be freely published

since the initial work was mostly carried out for commercial reasons The amount of

published research work available in these areas represents this, with research on

morphmg consisting mostly of commercial work (films, music videos and

advertising)

2.2.2 Research on morphing tends to be very specific

Most papers on morphmg are specific to particular objects formats or specific

problems There are not many ‘general’ morphmg algorithms, mostly because the

algorithms tend to be dependant on the models It is possible to transfer the ideas from

one model to another but it is not always successful For example, the Wyvills use

objects called Soft Objects which have a variable ‘field’ projected around them which

is their surface This is a quite radical method compared with conventional modelling

tools and there is no clear-cut solution to transferring their ideas to work on common

object types [WYVDLL86][WYVILL89]

2.2.3 A lot of work on Facial Animation has been done

Facial Animation is an area where a significant amount of research and

implementation has been done It is significant to this thesis not only because of its

historical value, but because it is/was one of the mam reasons that people started

looking into morphmg

Page 27

3-D Animation and Morphing using RenderMan Chapter 2

When constructing an animation of someone’s face, the mam requirements are quality

of detail and quality of expression A computer-generated face must look like a face

and act like a face, but it must also convey the meaning of a facial expression For

example, to give the impression of surprise or shock, a face’s eyebrow would go up,

but it must move like a human eyebrow, otherwise the animation won’t be ‘real’

[WATERS87][MAGNEN89][REEVES90]

2.2.4 Collecting 3-D object data

This is a good time to look at how the model of a 3-D object is created in the

computer There are no ‘definite’ methods of inputting a 3-D model and, almost

always, the model will required tweaking to suit its purpose, but inputting data by

hand is a very long and complex process so the function has been automated A

number of strategies haye been used when getting 3-D data about a subject

The simplest of these is to take photographs using cameras with tripods set up at

different angles to the subject The subject will usually have a grid of numbered points

drawn on its surface so that the points can be correlated later The cameras should

have a long focal length so that perspective does not distort the size of the grid The

photographs can then be scanned in and the points digitised (This is basically an

automation of a process done by Inter Cert students in Mechanical Drawing - given a

plan, front elevation and end elevation, to draw the object as viewed from a given

angle in three dimensions) This was originally conceived by Parke in 1975

[PARKE75b] and an example of its implementation is given in an Australian

University’s technical report from which the face that appears m this thesis is

generated [MARRI092]

There are a number of drawbacks to this method These can come from aberrations of

the camera lenses, incorrect digitising, improper physical setting of the camera height

or angle as well as movement of the subject which changes the grid - something which

can happen when modelling a human face The mam drawback is the length of time

and energy used to get the 3-D model Not surprisingly, faster and more accurate

methods have been designed

P age 28

3-D Animation and Morphing using RenderMan Chapter 2

The method preferred by most facial animators is to use the Cyberware 3D Scanner

This is a laser-scanning digitizer which rotates around its subject emitting a vertical

line of laser light Where this line hits the subject is measured by a camera which

moves with the scanner yielding a 3-D mesh of points which covers about a 250°

sweep of the object The quality of definition is better than is required for most

subjects For human actors, the resolution has to be decreased so that the small lines

and wrinkles on a face don’t show up [SHAY87]

During the making of The Abyss a major scene involving about 70 seconds of

photorealistic computer graphics was required The scene was that of an alien - a

pseudopod consisting of seawater - which explores an underwater station and meets

with some of the human inhabitants The final part of this had the creature taking the

shape of a human face and responding to real actors in the scene The actors were

scanned using the Cyberware scanner and this data was then used for the facial

mimicking sequence

Since this had never been done before, the special effects company Industrial Light

and Magic (ILM) adapted a method they had used before Image morphmg had been

pioneered in the film Willow in 1984 and the method they used for that was changed

to work for 3-D data as well as adding in the rippling effect of water [ANDERS90]

This was based on using the scientific principle developed independently by Schmitt,

Barskey and Du that was presented at SIGGRAPH’86 [SCHMIT86]

It is not just the surface structure of real-life objects that can be captured Trying to

animate an object so that it moves like something real is very difficult When Pixar

were making Tin Toy, they had to watch about ten babies very closely over a period of

time to ensure that they got the movements of their computer generated baby correct

It is possible to capture the motion of a real object (usually a human) using movement

sensors and a package such as Softimage’s Channels The sensors are strapped to the

subject m a number of locations and provide telemetry on location, speed and

direction These can then be applied to a computer generated model using Free Form

Deformations (FFD) as mentioned in chapter four

P age 2 9

3-D Animation and Morphing using RenderMan Chapter 2

2.3 C om pu ter Anim ation has been implemented in various form s

2.3.1 First use of computer animation in feature films

During the early ‘80s, a full length feature called Tron was produced by Disney

Studios This film combined computer animation with hand animation and live-action

The computer animation techniques were quite basic - mostly Evans and Sutherland

algorithms and Gouraud shading were used on the movie, which was state of the art

then It took five months to make just 55 seconds of animation

2.3.2 European Work

While most of the research in computer animation is carried out in the United States,

there are a growing number of ‘pockets’ working m the area around the world In

Geneva, Daniel Thalmann and Nadia Magnenat-Thalmann have done a lot of

pioneering work on computer generated ‘synthetic actors’ They are not only

concerned with the quality of the images and photorealism of surfaces, but with the

actions of the characters within their animations Their work, using models of Marilyn

Monroe and Humphrey Bogart, is to model human characteristics and be able to

reproduce them on demand - such as a woman blushing or a man drinking If

completely successful, we would be faced with the possibility of movies without

human actors, created entirely on computer While their worth is impressive -

Rendezvous À Montréal won a number of awards - the perfect ‘synthetic actor’ is still

sometime away [MAGNEN90]

London has a number of commercial companies working on 3-D graphics projects -

mostly for the games market The power of games consoles is ever increasing and this

allows very realistic images to be used Usually the images are rendered at full

photorealistic quality and are then reduced to suit the power of a specific console, but

the newer consoles can handle the highest quality images

P age 3 0

3-D Animation and Morphing using RenderMan Chapter 2

2.3.3 The Growth of Special Effects in Movies and Videos

Companies are falling over themselves to produce special effects for movies

RenderMan was used for the award-winning effects in The Abyss, Terminator 2,

Jurassic Park and The Mask At ILM, most of their 3-D work is done using

RenderMan at some stage RenderMan isn’t the only rendering system being used,

many different packages now exist and provide different cost-quality relationships

suited to different customers A quick look at MTV will demonstrate the enormous

use of computer graphics in the music video industry Different methods are used for

different types of videos and music Some feature only computer graphics since there

are no artists to star in the videos - the music is created by computer sampling m the

first place

Recently, SGI have announced that they will co-produce a computer generated movie

with Steven Spielberg’s Dreamworks company for 1998 However, by then a number

of computer generated movies will already have been produced

2.3.4 Pixar’s new computer generated movie

Pixar recently finished work on the first feature-length computer-animated movie,

called Toy Story, which was released in November 1995 in the US It was considered

an qualified sucess and after three months, it had made $150m at the box office This

figure is even before its European release m March 1996 It is a co-production with

Disney and stars the voices of Tom Hanks and Tim Allen with songs by Randy

Newman The story is of the adventures of two toys, a cowboy and a space superhero,

who vie for the attention of their owner, a boy called Andy

The film is 78 minutes long and comprises 112,000 frames covering 1,700 scenes

Over 1,000 gigabytes were needed to store the animation which took half a million

hours to render (spread over a number of computers) It differs from all other movies,

m the way that the computer animation is not used for special effects but for complete

character animation

Page 31

3-D Animation and Morphing using RenderMan Chapter 2

Pixar have been working with The Walt Disney Company since 1987, when they

created a 2-D computer animation package called CAPS - Computer Animated Paint

System This was first used in The Little Mermaid, and then m later Disney films

Beautwy and the Beast, The Lion King and Pocohantas CAPS won a Technical Oscar

in 1992 Pixar have won a number of Oscars, John Lasseter and Bill Reeves were

nominated for Best Animated Short Film in 1986 for Luxo Jr and they won that

category m 1988 with Tin Toy In 1993 nine of Pixar’s staff were awarded Scientific

and Technical Achievement Oscars for RenderMan “in recognition that computer

animation had come of age”

2.3.5 Advertising

Advertisements too have been increasingly using computer animation to get their

message across Computer animation allows washing powders to be seen working on

dirty clothes at the microscopic level and bacteria being killed by detergents While

the advertising message may not have changed, the method of conveying it has Using

computer graphics, companies can make their products move, jump, sing and dance in

order to get, and keep, the viewers attention They can also generate scenes that would

be too difficult or expensive to replicate in real life One advertising agency created a

commercial for washing powder that seemed to have a cast of hundreds and repeated

the famous British Airways ad that involved an enormous number of people forming a

face The washing powder ad was created mostly on computer and had a cast of

twenty These were duplicated, to give the effect of hundreds and the objects they

were supposedly carrying - socks and underwear - were super-imposed on top after

being deformed to give the ripple effect of being carried

Morphmg has also been used successfully a number of times m this field - there have

been at least two car ads that used morphmg (the one with the horse turning into a

Volvo and the Nissan ad that runs through the various models) Advertisements,

however, with smaller budgets and less output required, would normally use

much-simpler 2D morphmg (i e shoot a video of the cars turning with a

motion-controlled camera and then interpolate the shots)

Page 32

3-D Animation and Morphing using RenderMan Chapter 2

2.3.6 Desktop Animation

‘Desktop animation’ is the term given to the phenomenon of being able to create

production quality animations on a fairly standard desktop computer This is a result

of the explosion of the ability of hardware coupled with software packages such as

3D-Studio, Swivel Pro, TrueSpace, Simply 3D, Autodesk Animator and many others

which are flooding onto the market, making animation available to a much bigger user

base For a few hundred dollars now a system is available which would have cost ten's

of thousands Output to video is very easy now with video boards being

commonplace Even so-called 'home computers' are now used with to produce

animations The Amiga, with the addition of a 'Video Toaster' (a set of IBM RISC

chips) is as powerful as a lot of expensive animation systems and it is used m

seaQuest DSV and Babylon 5 where little or no difference can be seen from physical

models

Recently, a new development means that even a standard PC can now be turned into a

video editing machine with the installation of a PAR (Personal Animation Recorder)

card This consists of video compression and decompression hardware and a very

large and fast hard disk The hard disk is formatted so that each sector is the exact size

of a frame, usually stored in TGA (Targa) format The compression hardware works m

real-time so it is possible to record and playback video directly from the hard disk

The only limit on the length of the video segment is the size of the hard disk The

PAR hard disk appears as just another drive on the computer to other applications so

they can input and output to video easily

Page 33

3-D Animation and Morphing using RenderMan Chapter 2

2.4 Copyright and Ownership Problems

There is still a lot of discussion as to the legal problems that arise with using a

standard format such as RIB The output of a program belongs to the owner so the

RIB file is copyright the owner of the package However, since RIB files are usually

hierarchically ordered, parts of the hierarchy can be ‘grabbed’ and used in other

hierarchies And with a few minor changes the file is no longer the same one that is

copyrighted While this has, for the most part, been solved in the case of source code

for programs using the intellectual property laws, RIB files may not fall under this

category since they are usually created by modelling programs which can add a

significant amount to the work and may therefore not be seen as property of the owner

of the modelling program

The net result of all this is that most commercial organisations refuse to publicly

distribute RIB files When it comes to demonstrations, they tend to distribute images

rather than a 3-D scene, which would allow full ‘interactivity’ for prospective

customers While this is only really a problem in the 3-D graphics community right

now, it may grow as the technology appears that allows a more interactive relationship

with commercial companies The Geomview group at the University of Minnesota

have developed a 3-D browser tool called Cyberview-X which will allow 3-D

manipulation of objects over the World-Wide Web Recently, another product called

WebSpace has been released which aims to be a Virtual Reality Web Browser This

has the backing of SGI and is being released on a number of platforms This will have

the same problem as RIB m that 3-D data will have to be made freely available from

Internet sites The VRML - Virtual Reality Manipulation Language - file format used

by WebSpace is a cut-down version of the SGI Inventor format which only allows

polygonal shapes While this is adequate for simple objects, it does mean that

complex objects require more polygons and hence VRML files tend to be very large -

a drawback when the entire file has to be downloaded The use of only polygons does

limit the scope for using VRML, and is not very popular with companies within the

graphics area

Page 34

j 3-D Animation and Morphing using RenderMan Chapter 2

A similar problem existed with PostScript where ‘font-hackers’ were able to take

special fonts from a PostScript file and re-use them at will Companies that produce

special fonts were caught out by this and lost business as a result Shortly after this,

the Encapsulated PostScript format appeared What this does is embed the graphic

bitmap of the font into the PostScript document And since its only a bitmap, the font

cannot be smoothly scaled for different typefaces, thereby making it useless to a

potential font hacker

It has been suggested that some form of Encapsulated RIB format should be created,

but it is difficult to see how it would be implemented as an open interface One

solution for these ‘demo’ scenes to be freely available would be to have a

rendering/browsing application available which has private key decryption built-in

The RIB files could then be encrypted by public key by anyone and made available

The decrypted RIB file would only exist within the application, allowing the authors

to control access to the RIB file without hindering the viewing of the scene

2.5 A word or two about Visualization

Visualization has become a new buzzword in the computer graphics field recently,

however, it has been around since computer graphics were first produced

- and even before then What has happened recently though, is that the hardware and

software available have improved dramatically and the cost of these has also fallen

dramatically Visualization is basically where some concept or situation which is

difficult to describe is presented m a visual format to aide and ease understanding

Scientific Visualization is where some data is represented visually to demonstrate the

inter-relationships of the data and (preferably) the relationship that the data has to the

context from which it was created

Page 35

3-D Animation and Morphing using RenderMan Chapter 2

Until recently the visual representation of data would have been quite limited due to

the power of the computer that it is running on, however, computer processing power

and abilities have increased dramatically over the past few years in terms of graphics

capabilities Where a simulation which would have been created on the most powerful

computers in the world over a number of weeks in the past, this simulation can now

be done in a matter of hours using commonly available equipment and applications

Historically, visualization cannot be said to have been invented, but it grew out of

peoples need to use their eyes to interpret some problem or give them some insight

into something they didn’t understand The earliest examples of this could be said to

be astronomy and cartography In 1603 an amateur astronomer called Johann Beyer

printed the first modem set of star charts - ‘ Uranometria’ - which were actually based

on the observations of a Danish astronomer Tycho Brahe which were particularly

accurate Edmund Hailey (as m Hailey’s Comet) published the first meteorological

chart in 1686 and undertook the first ever purely-scientific-research-sea-voyage to the

South Atlantic to take magnetic compass readings which he translated into the first

magnetic charts and published them in 1701 National surveys of England, France and

Switzerland were taken during the mid-18th century and from these maps were drawn

showing the height of land m places using contour-lmes, then different shades of grey

and eventually colour These contour lines allowed the slopes of hills and mountains

to be visualised [COLLIN93]

To some people the entire purpose of computer graphics is visualization, but it can be

equally argued that visualization is an application of computer graphics This is a

circular argument given that the two are so heavily mter-linked Visualization is

dependant on the quality and abilities of computer graphics, but it is not the entire

process - the question of which data should be displayed It is a matter of

interpretation and is very important, quite often statistical methods determine the final

outcome

Page 36

3-D Animation and Morphing using RenderMan Chapter 2

The power of visualisation is the speed and clarity that it provides when it comes to

understanding numerical data In this case, the small tables are not too difficult to

interpret but imagine if the data was going back fifteen years not five and there were

six or seven social groups instead of three - the task of interpreting them would be

much more difficult, yet a graph would still be able to show the trends and differences

from over the fifteen years

Graph 2-1 : Simple Visualisation of tabular data

Table 2-1 : Data for Graph 2-1

Page 37

3-D Animation and Morphing using RenderMan Chapter 2

2.6 Traditional Techniques are still relevant

“Its the spectators that make the pictures" - Marcel Duchamp

While much of Computer animation is related to mathematical functions, recursive

sub-division and massive amounts of processing power, there is also the other side of

it all to be considered - what does the end-product represent ? How will the viewer

react to the animation ? These questions are not new ones - they have been considered

in many animations since 1920’s and 1930’s Modem animators can use the lessons

learned back then by applying some of the old techniques to new computer

animations

The purpose of an animation can be varied - it can be to entertain, inform or enlighten

Computer animation is still relatively new and there are no pre-defined methods

established - almost every major production has had a paper discussing the production

presented to scientific journals or conferences since there is usually some aspect of the

production that is new or unusual While 3-D animation is new, it is not without any

foundations - many of the ideas that are/were used m 2-D animation (also called Cel

animation) hold tme in some form for modem 3-D animation

John Lasseter, who is one of the best-known computer animators, analysed the

traditional methods of animation and pointed out how they can be applied to computer

animation in a paper presented at SIGGRAPH‘87 In particular, he pointed out how

these principles had been used in the design and production of Luxo Jr and The

Adventures o f Andre and Wally B - award-winning computer animations produced at

Pixar [LASSET87]

The principles were taken from a book that is widely regarded as the ‘bible’ of

animation - Disney Animation - The Illusion o f Life by Thomas and Johnston

[THOMAS81] This describes animation as practised by Disney Studios and is almost

a training manual for Disney animators They identified twelve principles that should

be used m the preparation of an animation

Page 38

3-D Animation and Morphing using RenderMan Chapter 2

2.7 The Twelve Principles of Animation

1 Squash and Stretch - Defining the rigidity and mass of an object by distorting its
shape during an action

2 Timing - Spacing actions to define the weight and size of objects and the
personality of characters

3 Anticipation - The preparation for an action

4 Staging - Presenting an idea so that it is unmistakably clear and keeping the
audience focused on that

5 Follow Through and Overlapping Action - The termination of an action and
establishing its relationship to the next action

6 Straight Ahead Action and Pose-To-Pose Action - The two contrasting approaches
to the creation of movement

7 Slow In and Out - The spacing of the in-between frames to achieve subtlety of
timing and movement

8 Arcs - The visual path of action for natural movement

9 Exaggeration - Accentuating the essence of an idea via the design and the action

10 Secondary action -The action of an object resulting from another action

11 Appeal - Creating a design or an action that the audience enjoys watching

12 Solid drawing - Areas should be drawn/shaded equally by hand (this does not
really apply to computer animation)

These principles which have been worked on over the past seventy years provide a

guide for anyone creating an animation today Staging is probably the most important

of the principles since it is concerned with directing the viewers attention A simple

stick animation can be more effective than an animation with the highest quality of

pictures if it is staged correctly Following the principles does not guarantee an

animation success, but it should ensure that its message is communicated to the

viewer

Page 39

3-D Animation and Morphing using RenderMan Chapter 3

Chapter Three: Animation

The word ‘animation’ comes from both Roman (amma) and Greek (ammos) both

relating to the bringing to life of something Animation is - literally - to bring to life

Probably the singly most important fact about life is that it is changing over time - if

something doesn’t change over time it is not alive In this thesis, the concern is more

with the simulation of life rather than the more medical aspect of animating things

The type of animation that is of concern here is where a sequence of images are shown

m succession giving an observer the impression of movement These images can be

sets of dots, lines, shaded drawings or the most detailed of photographs These images

will each be similar, but will contain slight changes from one to another

While current techniques are quite different from the past, the actual process involved

m creating an animation has remained mostly the same The older methods of

animation are still valid today whether using modem technology or not - which just

stresses a fundamental of animation Its the story that you are telling that matters

How you do the animation is secondary to that

In computer generated animation, interest is centred on the changes that occur

between frames and how to create and control them For computer generated

animation, there are generally considered to be three types of animation

1) Image-based Keyframe Animation (pomt-based)

2) Parametric Keyframe Animation

3) Algorithmic Animation

[THALMA89]

It is also important to look at different methods of animation to gain an insight into

what sort of actions and where computer animation can be used to improve it

Page 40

3-D Animation and Morphing using RenderMan Chapter 3

3.1 Frame-by-Frame

To create an animation requires each frame to contain a slight change from the

previous frame In traditional animation, this is called stop-frame animation

Examples of this would be The Wombles, Thunderbirds and Nick Park’s

Oscar-winning The Wrong Trousers These were made by physically creating the

situation using models and modelling clay and then photographed A small change to

the situation (including movement of the camera) is made and then another

photograph is taken This will be repeated for up to 25 times per second of film-time

This obviously is a lengthy process and requires that the models be made out of some

material that is suitably malleable and yet stable enough to allow it to hold its shape

and position after minute changes have been made

3.1.1 Modern Stop-Frame animation

For the most part, stop-frame animation is no longer the most popular method of

animation, although recently Nick Park’s work and Tim Burton’s film The Nightmare

before Christmas have caused stop-frame animation to be given new attention In the

case of The Nightmare before Christmas, computer technology was used m the

opposite way it is usually used in computer animation

The mam character ‘Jack’ had over 1800 heads with different facial expressions,

which was too much to be able to decide which heads to use to change an expression

A computer was used to choose the appropriate heads for a facial change given the

initial and final heads, and provided the director with a number of different ways to

get from initial to the final head The computer could then tell the director exactly

which of the 1800 heads to use and in what order

Stop-frame animation is the physical alternative to what is done with RenderMan, and

the animation could have been done with this, involving scanning in the heads in

three-dimensions and then morphing the initial head into the final head, but the

director chose the physical way

Page 41

3-D Animation and Morphing using RenderMan Chapter 3

3.2 Keyframes and Interpolation

3.2.1 What are keyframes ?

When an animation is developed, it is usually from a storyboard This is a sequence of

rough drawings of what will happen at different points in time during the animation It

gives a guide to what the camera should be looking at over these times From these,

the scenes can be set up and the views from the storyboards created These will be the

fcejframes - 1 e they are the most important More and more keyframes are developed

until the difference between frames is trivial (eg a simple movement) Then the

frames in-between can be created by a sub-ordinate or computer

This is a simple mathematical process that is quite vital when it comes to animation, it

is usually referred to as tweenmg when used in context with animation The word

‘tweenmg’ is a shortened version of ‘m-betweemng’ which refers to the process of

creating the frames that come in-between keyframes To interpolate, according to

Webster, means to insert between other things or parts, or to estimate values of a

function between two known values

In computer animation, keyframes are used to specify starting and ending

pictures/scenes The in-betweens are then worked out by the computer Different

methods of interpolation can be used to create different effects, both in 2-D and 3-D

3.2.2 Different methods of interpolating between keyframes

Interpolation is where values in the range between two known values are estimated

Counting to ten is an interpolation between zero and ten In animation, interpolation is

where values are obtained for a parameter with a range between two known values

For example, given the starting and finishing locations for an object and a requirement

to produce a one-second animation of its movement, values for 25 frames would be

required The starting and finishing positions would be used for the first and last

frames, so 23 frames would have to be made which interpolate positions between the

starting and finishing locations

Page 42

3-D Animation and Morphing using RenderMan Chapter 3

There are a number of approaches to this estimation process The choice of one

approach over another will determine the complexity and flexibility of the animation

linear spline procedural parametric

Figure 3-1: Different types of interpolation

Linear Interpolation

Linear interpolation is where the points between the two known values are

equi-distant This will cause objects to move at the same speed per frame This may

not be very life-like, but it can work well over short intervals and can give a good idea

of what is moving and where it is going m a scene

Linear interpolation is the simplest (although by no means the only) way to interpolate

and it is called linear because the solutions are all on a line A good example of this is

to take two simple 2-D frames, take the starting keyframe as the horizontal line in

frame one, and the ending keyframe to be a vertical line as in frame two

Figure 3-2 : Simple 2-D Linear Interpolation Keyframes

Page 43

3-D Animation and Morphing using RenderMan Chapter 3

Figure 3-3 : Midpoints of Interpolation between lines

Using linear interpolation, the two endpoints of the line segment take a straight path

from frame one to two, as shown by the dotted lines in Figure 3-3 Halfway between

the two, joining the midpoints of these paths (Mi and M2), is the line that is produced

halfway through the interpolation It is a diagonal line which is oriented at precisely

45° to both of the lines This assumes that we only want three frames in the animation

(Frame 1 at the start, followed by the interpolated frame and finishing with Frame 2),

but m most cases more than one interpolated frame would be required

In order to create the other frames, the above procedure can be repeated by

sub-dividmg between the interpolated line and the other lines on either side of it and

getting the line joined by their midpoints and so on until the required number of

frames have been created However, this does have a number of problems

Page 44

3-D Animation and Morphing using RenderMan Chapter 3

This recursive-bmary-linear-interpolation has the property of being very easy to

implement, however it can lead to discrepancies - when not requiring a power-of-two

number of frames (1 e 1,2,4,8,16) to be interpolated the animation will seem

uneven with the line moving further in some frames than in others

Figure 3-4 : Interpolation for Four-Frame Animation

A way of improving this method is to divide the path between the two lines to give

equi-distant points, one point for each of the frames that is to be interpolated instead

of recursively sub-dividing For example, if a total animation of four frames is

required, the starting and ending keyframes form two of the frames so only two more

frames are required to be interpolated This requires that the paths between the lines

be divided into three equal segments as m Figure 3-4 Note that the number of

segments is one less than the number of frames required

It should be noted that the lines in Figure 3-4 are not all the same length The

interpolation method outlined does not preserve the lengths of non-parallel lines

There are other interpolation methods which allow greater flexibility and control of

the interpolation process, such as spline interpolation

Page 45

3-D Animation and Morphing using RenderMan Chapter 3

Spline Interpolation

Interpolation using splines allows non-linear movement Splines are curves that

provide a smooth non-linear method to move objects over a number of frames This

allows much more natural movement to be created Phenomenon like acceleration and

deceleration can be easily represented and this usually suffices for most types of

movement

/
Splines are very important in computer graphics, not just for interpolation, but for

modelling too It is important to understand some of the fundamentals of spline curves

because they are useful at so many different levels

3.3 Linear vs. Spline Interpolation

Linear Interpolation Spline Interpolation

Figure 3-5 : Comparison of Linear and Spline Interpolation

Splme Interpolation is necessary because objects do not generally observe a linear

motion For example, when a car accelerates, it does so m a non-linear fashion If a

linear interpolation method was being used, then the resulting (four frame) animation

could look like this

Page 46

3-D Animation and Morphing using RenderMan Chapter 3

Frame 2

I— I
I O O I

J_____ I_____ I_____ L

Frame 4

, nI O - O-l
_l________ I________ L

Figure 3-6 : Linear Interpolation of a car moving from rest

Using the spline interpolation method, the car can exhibit more natural behaviour such

as constant acceleration shown in Figure 3-7 rather than the constant speed displayed

using linear interpolation shown in Figure 3-6

Figure 3-7 : Spline Interpolation of a car moving from rest

Page 47

3-D Animation and Morphing using RenderMan Chapter 3

3.4 A word about Splines...

Splines were originally used by draughtsmen to draw smooth curves A flexible piece

of metal had weights (called ducks) attached at various intervals which bent the metal,

providing a repeatable process which gave a smooth curve The term spline was

applied to the mathematical version during the Second World War when aeroplane

blueprints replaced models which were liable to damage during transit

Splines are parametric representations of curves Parametric representations are

desirable in computer graphics due to their ability to represent a surface using discrete

points rather than an implicit representation which would require defining and solving

quadratic, cubic and non-linear equations The use of parametric representation is

therefore much more flexible (and stable) than implicit representation and it tends to

be used for most complex surfaces in computer graphics

A parametric curve is usually some form of polynomial A polynomial of degree k+1

can be written as Q(u) = p0+ ptu + p2u2 +k+pkuk

It would be difficult to manipulate the coefficients pt m the above equation to

represent the curve, so the polynomial form is re-arranged into control points and

basis functions to provide a more ‘human’ approach to forming the curve The basis

functions are independent polynomials termed as bl(u) = u ‘ 0 < i < k

With the co-ordinates pt called control points, Q(u) can now be defined as

GO) = X PA (“)
1=0

P age 4 8

3-D Animation and Morphing using RenderMan Chapter 3

This gives a curve which can be manipulated by changing the location of the control

points The basis functions are also important in defining the spline If the basis

functions are non-negative and sum to 1, then the spline curve will be withm the

bounds of the control polygon made from joining the control points because any point

on the curve will be a weighted average of the control points This is a very useful

property for computer graphics rendering, allowing bounds to be checked without

actually calculating the curve

a In computer graphics, the most common type of
pO

spline is a Bezier curve as show in Figure 3-8

The curve is considered to be cubic (k = 3)
p3

because it is defined by three line segments

These are in turn defined by four control points

 ► (p0,pl,p2,p3) When the control points are

connected together the shape that results is called
Figure 3-8 : A Bezier curve

the control hull as illustrated with the doted lines

3

For Bezier curves, the basis functions are represented by Q{u) = ^ J P,BI 3(u)
1=0

The basis functions Bt 3 (u) are shown in Figure 3-9

The functions are

B03(u) = (l - u)3

Bl 3(u) = 3w(l — u) 2

B23(u) = 3m2 (1 - u)

B33(u) = w3

Figure 3-9 : The Bézier basis functions

3-D Animation and Morphing using RenderMan Chapter 3

What these functions do is determine the amount of ‘influence’ that a control point

has on the curve From Figure 3-9, it can be seen that the first control point will have

complete control over the start of the curve since B03(u) is at 1 and all the other

functions are aO A sh approaches 1, the influence of the first control point goes to 0

Likewise the second control point has most influence at the peak of B{ 3 (u) , around

u = y3, the third control point has most influence around u - 2/ 3 and the last control

point influences the end of the curve The basis functions of a Bezier curve cause all

control points to have some (even if minimal) effect on the curve at every point

Because of this, they are sometimes referred to as blending functions

Figure 3-10 : The de Casteljau

representation of a Bezier curve

One of the advantages of using Bezier curves in

computer graphics is their ability to be

implemented using a recursive linear

interpolation algorithm - the de Casteljau

representation Linear interpolation is quite

simple on a computer and this allows the curve to

be drawn quickly with a variable level of detail

depending on the required quality/speed trade-off

The de Casteljau representation generates points on the curve by repeating a linear

interpolation The control points of the curve are p0,px,K ,pn and the curve can be

defined recursively as

p\ («) = (1 - u)pr~l (u) + upr~l (u) where r = 1, , n i = 0, , n - r p°(u) = pt

In Figure 3-10 above, the point pi is calculated for u = 06

Page 50

3-D Animation and Morphing using RenderMan Chapter 3

A point on the curve is now given by p i (u) where u is between 0 and 1 A sequence

of points on the curve can now be obtained by evaluating u at a range of values This

is the ratio for division of the lines formed by the control points Recursion brings it

down to a single line segment which is then sub-divided and the resulting point is a

point on the curve By evaluating u at an appropriate step size, the points will form a

continuous curve

For example, in Figure 3-10 the three line segments made by connecting the control

points is divided in the ratio for sub-division of 0 6 This yields three points on those

line segments which, when connected, form two line segments When these are sub­

divided, and the points connected and sub-divided again, will give a single point on

the curve By repeating this process for u = 0,01, ,09,1a total of 11 points on the

curve will be calculated

Bezier splines are not the only type of splines Other types include B-splines, Beta(B)

Splines, Catmull-Rom and Hermite splines Of these, B-splines and Catmull-Rom

splines are probably used the most in computer graphics It is possible to convert

between these different forms of spline, using matrices Once the different forms are

expressed in matrix form, it is relatively simple to convert between spline curve types

using matrix multiplication While the modelling and animation may be done with any

of these types, they are usually converted to Bezier form at the rendering stage

because it has useful properties (such as the convex hull test) which allow for better

efficiency m a renderer

Bezier splines are known as approximating splines because only the first and last

control points are on the curve - all the other points are approximated The opposite of

this is an interpolating spline, like a Catmull-Rom splme This is where the spline

curve intersects all of the control points except the first and last points This is very

useful in computer graphics for controlling animations Specific points, called

waypoints, can be set so that the curve (and hence any parameter the curve controls)

will intersect that point, causing that parameter to have a specific value at a specific

time

Page 51

3-D Animation and Morphing using RenderMan Chapter 3

Figure 3-11 : A Catmull-Rom

Interpolating Spline

pi

■ p3

p2

The first and last points are important for

specifying the tension and bias of the splme at the

interpolated points A Catmull-Rom curve is

constructed by making the curve at pn parallel to

a line drawn between pn_x and pn+1 The lines

adjoining pn can be thought of as vectors - their

scalar values denote tension and direction values

denote bias Tension defines the ‘sharpness’ of a

curve and bias affects where pn is on the curve

An example of how tension and bias are used to control a Catmull-Rom splme which

is being used to control parameters over time can be seen in the example of parameter

tracking shown in Figure 3-13

The third mam type of splme used in computer graphics is the B-spline They are a lot

more complex and more powerful than either Bezier or Catmull-Rom splines and have

a number of useful qualities for modelling One of the most important of these

features is that not all control points influence the curve at every point At each

parameter evaluation - called a ‘knot’ (in Figure 3-10 the knots were at

u = 0,01, ,09,1), the control points required to influence the splme can be specified

The knot interval need not even be uniform - the spline could be evaluated at

u - 0 35,051,088 In this case the splme is said to be non-uniform These are the

most powerful of splme modelling tools and are called NURBS - Non Uniform

Rational B-Splines A full explanation of B-sphnes and NURBS is not necessary for

the scope of this thesis, but they will be used later when implementing morphing,

where they will be used to approximate the surface of quadratic objects such as

spheres and hyperboloids

[CATMUL74] [TILLER83] [BARSKEY87] [PEIGL85] [PEIGL87] [FARIN90]

[UPSTILL90] [VINCE92] [WATT92]

Page 52

3-D Animation and Morphing using RenderMan Chapter 3

3.5 Procedural Interpolation

Procedural interpolation (also known as Algorithmic interpolation) is where a

sequence of commands is used to interpolate between values Situations where

procedural interpolation is suited are ones where complex control is required For

example, m an animation of a car driving along a road with bumps, the wheel of the

car must be kept in contact with the road Some algorithm must calculate the rotation

and movement of the wheel given the roads details and speed of the car, so that the

wheel moves to keep in contact with the road and it rotates to cover the distance that

the car has travelled in a frame In this example, it is obviously not just a matter of

interpolating between two points, but this too could be controlled algorithmically

The ability to use recursion or external routines makes procedural animation very

useful When used as in the above example, it is not simply a matter of simple

interpolation, but one of control of a number of objects There are a number of

graphical languages and animation scripting systems that allow this sort of procedural

control In order to control objects in a scene, there must be some sort of ‘higher

knowledge’ about the objects and how they relate to each other This ‘knowledge’ is

usually in the form of how far and in what directions an object can move, what objects

it effects and in what way does it effect them This is still quite high-level in terms of

control, so the use of parameters is introduced so that low-level transformations and

rotations can be referred to as a simple parameter

For example, to describe an object m orbit around another static object, its exact

location could be used Instead the situation can be described using two parameters -

the distance from the static object and the angle of rotation These two parameters

provide a much more useful form of control and allow some understanding of the

behaviour of the objects Procedural animation usually will be implemented with

objects controlled by parameters rather than low-level commands, and is commonly

used as a form of control

Page 53

3-D Animation and Morphing using RenderMan Chapter 3

3.6 Parametric Control

Parametric control allows objects to be controlled m a manner consistent with what

the objects represent rather than how they are modelled When an object is modelled,

3-D building-block objects are used, such as spheres, cylinders, cones, polygons and

patchmeshes While these may represent an object, they do not actually describe its

behaviour Parameters are used to describe the behaviour of an object

Parameters are usually used at the lowest level of

abstraction from the modelling specification This

allows maximum control without resorting to the

model and hence the details that it entails An excellent

example of this is when animating the movement of

the human leg By using parameters for the joints at the

top of the leg, the knee, the ankle and the toes, all

aspects of the movement can be animated The

parameters themselves can be controlled by linear,

spline or algonthmical interpolation [BURTNY76]

It is obvious that having a parameter for each individual joint allows great control,

however it should be noted that not all parameters are completely independent of each

other For example, in Figure 3-12 some part of the ‘foot’ should always be m contact

with the ‘ground’, which is not true in the case of the middle leg These issues have

led to a lot of effort being put into areas like kinematics which allow inter-dependent

control of complex objects

Having to control a large number of individual parameters can be confusing for an

animator and it is here that an object-oriented approach can be applied This would

allow complex commands such as ‘track’ (rotate in order to face another object) to be

implemented without the individual parameters having to be specified

F ig u r e 3 -12 : P a ra m e te r s

fo r r e p re se n tin g th e jo in ts

on a leg

Page 54

3-D Animation and Morphing using RenderMan Chapter 3

3.7 Kinematics

Kinematics is the term given to the area of study of motion independent of the force(s)

that produced the motion It is concerned with movement and energy and how objects

that are linked will react Kinematics is used for modelling the movement of

articulated objects such as the human body and other complex objects that have a

certain freedom of movement while remaining connected to other objects Usually,

this is represented using state vectors with each element of the vector representing a

degree of freedom (DOF)

A DOF is an independent position variable which specifies the state of a structure

The number of DOF required is the number of independent variables required to

completely describe the position of the structure - there is usually one for every ‘joint’

For a completely free object, there are six degrees of freedom - three for translation

and three for rotation For a more constrained object there will be less DOF but there

will be a minimum of one - otherwise, the object will not be independent and will just

be considered part of another object

F o r w a r d a n d In v e rse K in e m a tic s

Forward kinematics is where the movements of all joints - all position variables - are

specified explicitly While this may seem cumbersome, it does allow motion to

accumulate so that movements of are implicitly calculated For example, the

transformation applied to a foot is the accumulation of the transformations applied to

the hip, knee and ankle

Inverse kinematics is where the movements of joints are computed after the required

end-movement (“put the hand on the table”) is specified This form of goal-directed

motion allows relatively high-level commands to create a sequence of movements

The movements required to carry this operation out are calculated by the computer

Hence it is a matter of working backwards

Page 55

3-D Animation and Morphing using RenderMan Chapter 3

3.8 Tracking

When a number of parameters are being used, it can be difficult to keep track of their

values from frame to frame If a parameter has a number of key values (derived from

keyframes) then it is important that the changes in certain related parameters are kept

m synchronisation A simple graphical way of representing the parameter values over

time is called tracking This is where the values are graphed side by side, representing

the changes over time

F ig u r e 3-13 : P a r a m e te r tra c k in g u s in g sp lin e in te rp o la tio n

In Figure 3-13 the key values are represented with white circles at the start and end of

the ten-frame animation The top parameter is the X-axis component of a splines

control point (referred to as (0,3) X above) This has an additional key value as

represented by the black circle The points indicated by the extra lines around this key

point control the tension and bias of the Catmull-Rom spline interpolation Since both

of the lines are relatively short, the curve of the spline is smooth The direction of the

lines causes the curve to dip before the key point and to rise slightly just after the key

point

Page 56

Chapter Four: Morphing

3-D Animation and Morphing using RenderMan Chapter 4

4.1 Introduction

"As Gregor Samsa awoke one morning from uneasy dreams he found himself transformed in

his bed into a gigantic insect" - Franz Kafka, Die Verwandlung

This quotation from Die Verwandlung (Metamorphosis) has been the topic of many a

philosophical discussion and poses the question of whether things are what they seem

A metamorphosis is where a transformation between two states occurs and the idea of

showing such a transformation of something on film is not a new one In early horror

films such as The Wolfman and Dr Jekyll and Mr Hyde transformations had a very

important role Though implemented with effects that would be considered quite basic

by today’s standards, they instilled a great sense of fear where a man turns into a

monster This theme is timeless - a direct modem day version of this is the cyborg

from the future in Terminator 2 which can impersonate anyone or anything

This chapter is concerned with the three-dimensional metamorphosis of graphics

objects, which is called morphing It can be difficult to separate between animating an

object and morphing an object - especially in cases such as kinematics However,

there is a difference Morphing is where the object concerned is having its surface

structure changed in some way, whereas animation is where the relationship with

other objects is changing Morphing and animating an object are not mutually

exclusive operations, an object’s structure can be changing while it is interacting with

other objects A specific case where the object’s interaction causes its surface to

change is called deformation

In much the same way that keyframes in an animation specify the starting and

finishing locations and orientations of objects, an object that is being morphed usually

has two states its beginning state (source) and its final state (target) The goal is then

to transform the source object into the target object while fulfilling any criteria

required by the context This usually entails the object keeping some cohesive form

during the transformation

Page 57

3-D Animation and Morphing using RenderMan Chapter 4

The process of morphing the source object to the target object can usually be divided

into two steps the correspondence or mapping step and the interpolation step

The mapping step is where the structure of the source object are mapped onto the

structure of the target object This is probably the more important step of the two since

the effectiveness of the interpolation step will depend entirely on the mapping

correspondences created during this step In the simplest situation, where the objects

are defined using equal-sized sets of polygons, the mapping step would establish a

one-to-one relationship between each individual point

F ig u r e 4 - 1 : M o rp h in g a s a tw o-step p ro c e ss

The second step is that of interpolating between the source and target objects using the

correspondences established in the previous step There are a number of methods of

interpolation as outlined in the previous chapter, and the principles used to make a

convincing animation can be used here When talking about interpolation, the most

important principle would be ‘slow in and out’ During morphmg, the object will

usually change from a recognisable source object to an unrecognisable ‘in-transit’

object and then to a recognisable target object Since the ‘in-transit’ object can be

unpredictable, the most important parts of the morphmg scene are the initial frames as

the object starts to morph, and the final frames as the morph ends Usually, the

interpolation will not be linear and will speed up or slow down depending on how

close it is to start or end of the transformation

Page 58

3-D Animation and Morphing using RenderMan Chapter 4

A number of strategies have been developed for morphmg They are mostly based on

different proprietary formats for objects which the designers are working with So

while there are various strategies that can be used, they tend to suit a particular type of

object, which makes it more difficult to implement with other types of objects This is

one reason why RenderMan can be so valuable m this area - it is a standard format

encompassing a large number of methods for defining objects

4.2 Topological approach

The topological approach is where the object is considered in terms of its surface An

example of this could be where a sphere is represented with hundreds of small

polygons Implicit surfaces are based on the idea of an object with a skeleton frame

which has a field surrounding it forming its surface An example of an implicit surface

could be a sphere defined by its location and radius - no points on the surface are

actually used (and all objects in computer graphics are, by default, hollow) Implicit

surfaces will be examined in more detail later in this chapter

4 .2 .1 O rig in a l M o rp h in g M e th o d s

It is difficult to say exactly where morphmg first started because in the course of

animating most objects, some deformation will usually be carried out The first time

morphmg emerged as a separate phase was when TIM created a number of

transformations for the film Willow This was still only 2-D image morphmg, but m

1986, ILM were working on Star Trek IV The Voyage Home when a special sequence

was required The heads of the crew of the Enterprise were to be transformed between

each other during a time-warp and to give this scene a completely different look,

computer generated imagery was required The heads of the crew had to rotate while

they were being transformed, so the 2-D approach would not work The special effects

team decided to try something new

Page 59

3-D Animation and Morphing using RenderMan Chapter 4

The heads of the actors were scanned m three dimensions using the Cyberware

scanner which yielded a 256x512 grid of 3-D points representing the surface of the

actors heads This resolution was coarse enough so that the creases and wrinkles of the

actors were not visible However, the grid data was of the actors entire head including

their hair Since hair is not a solid surface and some of the actors had radically

different hairstyles, this caused problems when mapping In the end, hair was treated

like a solid surface and the heads resembled sculptures The mappings were relatively

straightforward since they all used the same 256x512 grid, but getting an aesthetically

pleasing look required some extra work - some tweaking was required to stop Mr

Spock’s nose from sticking out' While the entire scene only lasted about thirty

seconds on screen and would be considered standard today, it was revolutionary then

and was the first time 3-D data had been used for morphmg It took over a month of

design and rendering time [SHAY87]

In 1989, ILM was again working on another film which required computer generated

imagery, The Abyss Set on a deep-sea mining plant, one of the themes of the film is

the discovery by the crew that there are aliens living on the sea bed The aliens can

manipulate water to form any shape they want which allows them to take a corporeal

form and m the most memorable scene, an alien explores the underwater vessel m the

form of a pseudopod - a long snake-like column of water The scene lasted about five

minutes and contained 70 seconds of computer animation

The pseudopod was created on computers using Alias and RenderMan and it was later

merged with the live-action film where the actors were interacting with the

pseudopod Since the pseudopod was made of water, it had to be partially transparent

giving the effect of refracting the scenery behind where it travelled, even hidden

beams in the ceiling which were not visible to the camera were refracted The rippling

effect of water was generated by assigning a number of sine wave generators to

calculate the surface displacement

Page 60

3-D Animation and Morphing using RenderMan Chapter 4

During the pseudopod’s exploration, it meets two members of the crew, a man and a

woman, who it closely inspects and then mimics their faces like a 3-D mirror This

required two facial morphs, from the initial ‘head’ of the pseudopod to the woman’s

face and from the woman’s face to the man’s The heads of the actors were scanned m

as before using the Cyberware scanner The ILM team then used a method they termed

the hybrid method This involved using 2-D parametric interpolation in a 3-D

keyframe interpolation sequence

The 3-D data collected from the scanner formed a cylinder which went right around

the head The front 180° of the 3-D data (the front of the face) was mapped to a 2-D

depth map which allowed the features on the faces to be viewed as an image The

morphmg was then implemented using the morf program for the same 2-D parametric

interpolation that had been used in Willow The image morphmg program allows a

parametric grid to be placed over the two images (in this case depth maps) Each

region in the grid on the source image is mapped to the corresponding region on the

target image, allowing regions to be grouped together or resized depending on the

image This method, as shown m Figure 4-2 is sometimes referred to as mesh

warping

Using 2-D image morphmg on the depth maps allowed the features on a face to be

identified and interpolated separately Different features were visually identified in the

depth map by the differences in their colour - the eyes were dark, the tip of the nose

was bright and the mouth was slightly darker than the nose These features were

separated using different grid regions The scanning process took about 30 seconds

and hence was unable to capture data for actors blinking Instead, keyframe scans

were taken with the actors smiling, frowning and with their eyes shut These

keyframes were converted to depth maps and then interpolated using morf The

blinking eyes depth maps were then cut and pasted m to the appropriate regions of the

grid for all the sequences where it was required This meant that the smiling, blinking

and other facial expressions (including sticking out its tongue) could be implemented

separately, in synchronisation with the actors facial movements on the live-action

film

Page 61

3-D Animation and Morphing using RenderMan Chapter 4

F ig u r e 4-2 : M e sh W a rp in g in T w o D im en sio n s

The hybrid method works very well for facial animation and facial morphmg Its mam

appeal lies in the ability to use simple 2-D images to control complex 3-D models It

was devised when there was neither the hardware nor the software available to

manage all the complexities required in three dimensions, so it is limited to objects

which can be represented with depth maps This can be partially overcome by having

more than one depth map or splitting the object up into different sections, but

problems can occur where the objects and depth maps overlap

The director of The Abyss, James Cameron, was pleased with the effects (and the fact

that they came m under budget) and this helped to convince him to go ahead with his

next project - Terminator 2 - m 1991 The movie was based on a cyborg from the

future which could transform itself into anything Naturally, the special effects

involved morphmg the cyborg almost continually throughout the movie This became

the most technologically advanced movie of the time and remained so for a number of

years Over an hour of computer generated imagery was used m the film with the

human actor, playing the evil cyborg, appearing undoctored by computers only half

the time The special effects were once again created at TIM using the various

methods they pioneered The movie was an instant success and set the standards for

computerised special effects by which films and animations are still judged today

[WOLBER9Q] [ANDERS 90] [ANDERS93]

Page 62

3-D Animation and Morphing using RenderMan Chapter 4

4 .2 .2 A d v a n c e d T o p o lo g ic a l M o rp h in g M e th o d s

When a section of SIGGRAPH’92 was dedicated to the area, it signalled that

morphing had become a mainstream topic of discussion for the graphics community

Three papers were presented at the conference on feature-based image morphmg,

Fourier volume morphmg and shape transformation for polyhedral objects

The feature-based image morphmg paper documented the methods used to create the

video for Michael Jackson’s Black or White The problem was that conventional mesh

warping algorithms did not work very well for faces that were moving and the video

required the actors to be dancing The solution involved modifying the mesh warping

algorithm to use line segments drawn to indicate specific features (eyes, nose, mouth,

ears and hairline) as the basis for the transformation rather than deformed meshes The

results were the undetectable changes between the images which make up the video

One of the mam advantages of this method was the ease of use - all that was required

was to draw the line segments over the appropriate features in the keyframes

However, it is much more difficult to convert this method to 3-D since it is not a

trivial matter drawing a line in three dimensions It would be very difficult to draw an

arbitrary line in 3-D which relates to the objects in its proximity since this would

depend of the viewing angle While it is possible, all the advantages of simplicity and

ease of use would be lost to a complex and difficult process [BEIER92]

The second paper, on scheduled Fourier volume morphmg, is related to the topic of

implicit surfaces which are radically different to the topological approach Volume

morphmg is a specific type of morphmg where the primary concern is to keep the

enclosed space (volume) of an object constant during the morphmg process This is

useful in areas such as CAD and visualization of liquids where keeping a constant

volume is important

Page 63

3-D Animation and Morphing using RenderMan Chapter 4

The final paper on morphing from SIGGRAPH’92 is very relevant for 3-D topological

morphmg A previous paper by the authors had already outlined a method for star­

shaped, genus zero objects* This stated that the morphmg process can be divided up

into two steps as shown in Figure 4-1 Firstly, all points are mapped from the source

to the target and then the interpolation for each of these points is executed, with

frames being generated during this interpolation phase The reason for using star­

shaped objects was that they allowed the mapping of all points on the surface from a

single point From such a point (usually the centre point), every point on the surface of

the source object is projected onto the mside of the unit sphere which encompasses the

object and has its centre at the same point of the object This effectively ‘blows-up’

the object like a balloon until it is spherical The same process is applied to the target

object and the points are matched on the spheres All points on the source object

sphere are tagged to go to the nearest point on the target object sphere and this is used

to map points from the source object to the target object

By restricting the object range to star-shaped objects, the algorithm was quite limited,

so in the paper presented at SIGGRAPH’92 the authors outlined an updated version of

the algorithm which allowed complex polyhedral objects to be morphed Since the

original algorithm worked quite well, but only for star-shaped objects, they focused

their attention on some way to convert non-star-shaped objects into star-shaped ones

They did this by ‘snapping’ the object to a ‘convex hull’ What this meant was that

complex objects were treated as simple ones during the mapping phase by using a

recursive dividing/projecting method In one example they give, this allows a wine

glass to be mapped to a cylinder which is then projected onto the unit sphere This

does not cause the glass to be turned into a cylinder, since it is only treated as such for

the purpose of finding a mapping for the points between the source and target objects

[KENT92]

A star-shaped object is one which has all points visible from one point (usually the centre point) A

genus zero object is one which has no ‘holes’ - for example a donut (torus) is genus one

Page 64

3-D Animation and Morphing using RenderMan Chapter 4

4.3 Implicit Surfaces

All of the methods discussed up to now use surface topologies as their basis This

means that the surface of an object is the only aspect that is considered when

morphmg While spline-based patches do cause the surface to be interpolated from a

series of control points, the individual patch is usually a small part of the object and is

considered to be part of the surface Surface topologies are also widely used because

of the ability to represent real-world objects, whether through 3-D digitizers, laser

scanners or CAD programs

There is another method of implementing morphmg that uses a different type of

object, called an implicit surface object This type of object does not have a surface

defined by a series of points, but by an underlying structure and a set of rules

governing how a surface is calculated based on the structure Implicit surface objects

make morphmg easier and allow more creative effects to be applied when morphmg,

but they tend not to have analogies for solid objects They are of use in describing

phenomenon which are otherwise difficult to represent using surface topologies such

as liquids, gases, ram, fog, clouds and smoke These phenomenon can cause real

problems when modelling and animating, since they cannot be treated as a single

object, but rather a collection of individual objects that can split or join with others

during motion Implicit surface objects have been designed and used over the years

under a number of different names such as blobby objects, soft objects, skeletal

keyframes and blending iso-surfaces

Most of the work on implicit structures has been carried out by Brian and Geoff

Wyvill They started out in the mid-’80s by designing a new type of object called a

soft object which could be mixed with other common objects such as polygons and

fractals They defined a soft object as one whose shape changes constantly due to the

forces exerted on it by its surroundings Some research had been done with ‘blobby

objects’ by James Blinn in 1982 and fuzzy objects (particles) by William Reeves in

1983, but these were concerned with the modelling and rendering of such objects and

neither of these dealt with animating interaction with other objects

Page 65

3-D Animation and Morphing using RenderMan Chapter 4

The mam feature of a soft object is that its surface, called an iso-surface, is a field

projected around the key points that make up the base shape of the object There can

be thousands of key points used in constructing each object If these points had their

field/surfaces created separately then it would just appear as a large number of spheres

in close proximity to each other and there would be no sense of a continuous surface

Using the Wyvills’ method allows all of these individual surfaces to be joined

together to make a smooth surface (hence ‘iso-surface’) The key points form an

underlying skeleton which is ‘covered’ by the iso-surface To create the iso-surface,

key points must be able to combine with their neighbours to keep the surface

continuous

F ig u r e 4-3 : F u n c tio n fo r

F ie ld C o n tr ib u tio n s fo r

a n I so -S u r fa c e

A function is defined to allow neighbouring key points

to contribute to the field/surface The field value at any

point is a function of the distance from that point to

nearby key points Using a function, like that in

Figure 4-3, allows a seamless field to be constructed at

different resolutions It can be seen that c (contribution

to the field/surface) decreases as t (distance from key

point) increases up to the radius of influence R This

allows key points to contribute to any surfaces within

their radii of influence

It is important to choose a field function which goes to zero beyond a certain distance

(l e having a radius of influence for each control point) The field will have to be

calculated at a large number of points in space, so the number of calculations required

for each point must be minimised Only key points that are within their radius of

influence need have their contribution to the field calculated This ensures that key

points do not have an undue influence on the iso-surface - each key point will only

influence the iso-surface in its locality.

P age 66

3-D Animation and Morphing using RenderMan Chapter 4

In practice, building a model with individual (key) points is a labour intensive

proposition and even simple shapes will require a large number of points Instead of

using points as the key to constructing the iso-surface, line segments can be used

These can be instanced into a set of points when calculating the field, but more

commonly, they will be used as whole line segments since a number of them will be

interacting with each other to contribute to an iso-surface When working with line

segments rather than points, it is necessary use a different equation for describing the

field The field/surface created by a single key point is a sphere, but the iso-surface

created by a line segment is an ellipsoid, so the field function will describe an

ellipsoid

The actual iso-surface is defined by picking a field contribution value c for the field

function and plotting the iso-surface by connecting all points whose field value equals

the chosen value This is calculated by working backwards though the field function

For example, defining a field due to a single key point will result m an iso-surface that

is a sphere around that point By increasing the field contribution value required, the

radius of the sphere will decrease and by decreasing the field value, the radius of the

sphere will increase up to a maximum of R

A Large Iso-Surface

B Iso-Surface Shnnks
as Key Pomts Move

m
If two key pomts are in exactly the same place

The contribution to the field for both pomts is

F ig u r e 4-4 : A D ro p le t S p lit s U p

c Sepemte Key Pomts added together, so the radius of the iso-surface
Smaller Iso-Surface r r . . . , ,for the same field contribution value c is

increased An example of how the iso-surface

changes is given in Figure 4-4 As the key

pomts separate, the iso-surface shrinks,

remaining joined until one point is too distant

to influence the other

D Two Sepeiate
Iso-Surfaces

Page 67

3-D Animation and Morphing using RenderMan Chapter 4

The field function for this example is suitable for modelling liquids - when two

droplets combine into one, the volume of the droplet is increased Other choices of

field function will suit other types of objects

[BLINN82] [REEVES 83] [WYVILL86a] [WYVILL86b] [WYVILL90]

4.3 .1 B le n d in g S u r fa c e s

Another type of object which combines aspects of both topological models and

implicit surface models is a blended surface object This tends to be used to model

solid objects which are created using CSG (Constructive Solid Geometry) operations

like union, intersection and difference The objects involved in the operations have

implicit functions assigned to them, which defines how their surface re-acts when

involved in a CSG operation

The blended surface forms a smooth transition between different but intersecting

surfaces and hence smoothing out comers, kmks and creases where the surfaces meet

Among other things, blending surfaces are used m mechanical design to diminish

stress concentrations, enhance liquid flow and improve aerodynamics Also,

manufacturing processes such as high pressure moulding have great difficulty m

producing precise sharp edges and comers Blending surfaces in terms of computer

animation are usually used for giving smooth edges to objects constructed with CSG

Cylinder For example, the union of a cylinder and a Cylinder

sphere using CSG will appear as m

Figure 4-5 if no blending is applied There

is no smoothing where they intersect When

blending is applied to the surfaces, a

smooth surface will appear to join them as
F ig u r e 4-5 . U n- m p1gUre4 _6 j giving a stronger, more F ig u r e 4-6 : A

blended surfaces realistic join of the two objects blended surface

Page 68

3-D Animation and Morphing using RenderMan Chapter 4

Blended surfaces are not generally used in computer animation and special effects

because of the overheads required to design suitable functions and compute the new

surface. However, in the area of design, there is considerably more re-use of objects

than in animation. Once a suitable function has been established for an object, the

object can be used repeatedly in CSG work.

[R0CKW089]

4.3.2 Morphing soft objects

During just about any motion of a soft object in an animation, it will be changing its

structure. As defined earlier - in relation to topologically modelled objects - this

constitutes morphing. However, the surface of soft objects are, by their nature,

deformable and the deformation of soft objects happens automatically when they

interact with other soft objects. So the previous definition of morphing is not really

accurate for soft objects.

When talking about soft objects, morphing can be considered to be where one

underlying model transforms into a different model, while maintaining a smooth

continuous iso-surface. Morphing using iso-surfaces has the advantage over

topological methods since the surface will never break up into unmatched primitives.

When morphing the underlying objects, many of the same problems of matching and

sorting that occur with topological objects occur with implicit surface objects. These

problems will be examined later. The only advantage is that there tend to be less

primitives in the underlying skeleton of an implicit surface object than there are in a

topologically modelled object.

One method of morphing which is unique to soft objects is surface in-betweening.

This involves changing the field contribution value for the source and target objects.

The field values are weighted so that the source object will have a weighting of 1 at

the start and 0 at the end. Likewise the target object’s weighting go from 0 to 1. This

causes the source object to ‘deflate’ while the target smoothly ‘inflates’ from inside it.

P age 6 9

3-D Animation and Morphing using RenderMan Chapter 4

Linearly interpolating the weights tends to over-emphasise the mflating/deflatmg

process A solution to this is to use a cosine function for interpolating the source

weighting and a sine function for the target as shown in Figure 4-7 The field now

changes more slowly and smoothly as the source object dissipates and the target

object emerges

Figure 4-7 : Alternative methods for interpolating field

contributions during morphing

Using sine and cosine functions as a method of interpolating weightings is an elegant

evasion of the problem when attempting surface in-betweening While the procedure

provides a relatively quick method of morphing implicit surface objects, it is not

perfect It is best suited to objects which have similar underlying shapes Since there

are no actual changes in position of the underlying key points during the process, it

can leave spheres and ellipses unattached (in ‘mid-air’) if the source and target objects

have key points or line segments which are not m the same position or hidden by the

expanding or contracting iso-surfaces

4.3.3 Using skeletal keyframes for animation

When creating the iso-surfaces on soft objects, polygons can be used, but polygon

meshes are a poor choice for representing curved surfaces Spline-based patches and

patchmeshes are an much better way of representing the curved iso-surfaces Patches

are controlled by a matrix of control points called the control hull However, when

animating a soft object, great care must be taken with the control hull to ensure that

patches remain a closed surface and do not intersect each other

Page 70

3-D Animation and Morphing using RenderMan Chapter 4

Like the spline-based patches, a soft object is defined by a set of key points, but unlike

patches, the soft object’s control points form a skeleton of the model The skeleton

provides a much more intuitive idea of the shape of the object than the control hulls of

patches In most cases, the number of control points required for a model will be

considerably less for an iso-surface based model than a’ spline-based patch model

Using the skeleton to animate objects gives the animator the ability to control

complex animations with simple tools - the underlying motion of the object will

always be shown by the skeleton of control points Specifying the status of the

skeleton in two different positions allows them to be used as keyframes and the

movement can be interpolated Skeletal keyframes allow special animation rules such

as hierarchies and inverse kinematics to be applied to add reality to the movements

Using a skeleton also allows an animation with a number of moving objects to be

created and displayed m real-time using wireframe graphics Almost all animations

involving human or animal movement will have been initially planned using skeletal

keyframes

It is not always necessary to use implicit surface objects with skeletal keyframes

When making the pseudopod sequence for The Abyss, skeletal keyframes were used,

but a cylinder was modelled around the skeleton The smooth watery look was then

obtained by applying a customised RenderMan displacement shader This method of

attaching a customised shader to a simple object in order to make it appear as

something different is a common occurrence when creating animations and effects -

its not how its constructed, its what it looks like in the end This will be looked at in

greater detail later on

Page 71

3-D Animation and Morphing using RenderMan

à

Chapter 4

4.4 Morphing complex objects

In most cases of morphing, a non-simple object is involved This is an object which is

created using any number of different smaller objects of potentially different types and

usually referred to as a complex or composite object These objects will usually be

grouped together for reasons of modelling (using CSG) or animation These groupings

are also useful for implementing morphing

4.4.1 Grouping Objects using Hierarchies

Objects are rarely constructed with only one simple object (called a primitive)

Usually it will take a number of different primitives of different types to made up one

object It is difficult for the computer to decide on which primitives make up which

objects without the help of a human who can look at the screen and see the groupings

Since this may not always be possible and is usually quite time-consummg, the

primitives are usually grouped together in hierarchies

A composite object’s

hierarchical system

can be used to

determine mappings

for component parts

of one object onto

parts of another

For example, as in Figure 4-8, hierarchies can be used to map a human onto a chair

The arms and legs of the human could map to the legs of the chair, the torso could

map to the seat and the head could map to the back of the chair Treating the arms and

legs in a similar way may cause problems - they may be detached from the mam body

Body Chair

Arm 1 Arm 2 Leg 1 Leg 2 Leg 1 Leg 2 Leg 3 Leg 4

Figure 4-8 : Object hierarchies for a body and a chair

Page 72

3-D Animation and Morphing using RenderMan Chapter 4

In general, each node m a hierarchy will have a number of sibling nodes (of the same

level) and possibly some child nodes There are two mam rules followed for matching

nodes on the source hierarchy to nodes on the target hierarchy

• Nodes on the source are matched to nodes of the same level on the target

• On each level, nodes are matched according to the number of child nodes they have

These rules usually operate in ascending order, so that they start with terminal nodes

(those nodes that have zero child nodes - 1 e primitives) These are matched to those

with the least (if any) child nodes Then those nodes with one child node are matched

to remaining target nodes with the least child nodes and so on

Hierarchical matching tends to be quite useful in cases where the objects are similar -

between animals, it is a relatively simple process However, the complexity and

structure of the hierarchy are the keys to using it and these tend to be defined by the

modeller (human or computer program) There is no guarantee that the hierarchies

will be suitable for hierarchical matching and they may require a certain amount of

adjustment For the above heuristic rules to function, there must be the same number

of levels in the hierarchies, while this is relatively easy to ensure when a small number

of nodes are concerned it can be time consuming for a large number

4.4.2 Cellular Matching

Assuming correctly adjusted hierarchies, hierarchical matching can still create

unwanted effects since it has no concept of where objects are located Objects can be

required to move over a considerable distance m order to morph into a hierarchically

assigned object For example, if the arms of the body in the previous example were m

the air, they would have to travel ‘through’ the body to get in place as the chairs’ legs

While such a transformation is possible, any concept of object coherence would be

lost during the transformation Object coherence refers to the state of the object during

the morphing process - objects should look like something, even if its not identifiable

Page 73

3-D Animation and Morphing using RenderMan Chapter 4

Another method for matching objects which does take account of their location is

called cellular matching In this technique, the primitives are matched corresponding

to the space they occupy The space that the composite objects are in is divided up

into a 3-D grid of cells This is done by finding the extents of each composite object

and creating a corresponding rectangular bounding box Each bounding box is then

divided along the x-,y- and z-axes by some user-defined amount into cells

The bounding boxes of the source and target composite objects are different shapes,

but they have been divided into an equal number of cells This gives a one-to-one

correlation between the cells in the source and the cells in the target Each primitive is

then evaluated (solving for different co-ordinate systems and transformations) to

establish which cell it is located m Primitives are then mapped from the source cell to

primitives in the corresponding target cell

While the composite objects can be of radically different sizes and shapes, this

method of matching primitives maintains some position coherence between the source

and target objects This method also has the advantage of not requiring intricate

hierarchies to be established before morphing is initiated It also allows ‘rough’

versions of the morph to be previewed by allowing the number of cells to be created

to be set dynamically by the user

It is possible to use cellular matching in combination with hierarchies Hierarchical

matching can provide a number of terminal nodes (primitives) to be matched using the

cellular method Using the previous example, the hierarchical method would resolve

that the arms and legs of the body are to be matched with the legs of the chair The

cellular method would then decide which arms and legs become which chair legs

In the example, the arms and legs are considered to be primitives, but in actual use

they would be defined as composite objects Cellular matching could be applied to

them recursively, which would determine which source primitives should map to

which target primitives However, problems can occur when source cells contain no

primitives and the target cells do.

Page 74

3-D Animation and Morphing using RenderMan Chapter 4

4.4.3 Morphing different size composite objects

When looking at the problem of morphing composite objects, it is obvious that there

will be a problem when there are a different number of primitives in each of the

composite source and target objects The problem can generally be addressed m two

ways, which derive from old concepts initially done in the early days of video effects

for television [BURTNY71]

The first and simplest way to deal with the problem, is to use ‘invisible objects’

These are objects that can be infinitely small and allow a composite object to have

more objects than it really has for accounting purposes For example, if the source

composite consists of three objects and the target composite has five objects, two

extra invisible zero-sized objects can be added to the source composite There can

now be a one-to-one relationship between the objects inside the source and target

composites

The second way to deal with the problem, which is usually more desirable, is to split

the existing objects in a composite object up until there are an equal number of objects

in the source and target Applying this method to the previous example, the first object

in the source composite will split into two objects using some pre-defmed method

Then the second object m the source composite will split and this will leave the source

composite with the same number of objects as the target

While the examples given are only concerned with the case where there are more

objects in a target composite that a source composite, the two methods can be applied

in reverse if the number of objects in a composite needs to be reduced there can be

invisible objects in the target composite and the objects in the source composite can

merge together to form fewer objects It is important to note that it would not be

correct to split the objects m the target composite since the target is always fixed -

only the source can ‘change’ since the composite is supposed to be changing during

the morph

Page 75

3-D Animation and Morphing using RenderMan Chapter 4

4.4.4 Using Different Primitives

Morphing an object requires changing the set of 3-D primitives that describe an object

to a new set of primitives so that they describe a new object After the mapping or

correspondence stage in morphing, all source object primitives should have a target

assigned While it can be relatively simple if there is only one primitive and it is of the

same type, complications occur when interpolating between different types of

primitives and indeed different numbers of primitives

Morphing primitives of the same type is quite simple in terms of the interpolation

stage since the format will be the same, only the points and/or parameters used need

be interpolated using some of the interpolation techniques outlined previously

However, assuming that all primitives will be of the same type is quite restrictive and

inflexible For example, a sphere can be divided into wedges, quarters and pie slices

using clipping planes and sweep angles, but it still can’t be made to model something

inherently different, say, a cylinder

To address the problem of different types of primitive being assigned to transform into

one another, there are two solutions one is to have multiple converters from every

type to every other type, the other is to have converters for every object type to and

from just one specific type

The second option is more elegant and adaptable, so a specific object type will be

required which can represent objects of all types of objects Obviously a sphere can’t

represent all types of object so some other type will be needed The same problem will

occur with other quadratic objects, so some other type is required

Using polygons, an approximation of the surface of such quadratics could be obtained

The surface of objects can be instanced by solving the appropriate equation at discrete

intervals However, this format will have to be able to model the surface of a sphere, a

cylinder and other curved objects, a polygon will not provide a completely smooth

surface

Page 76

3-D Animation and Morphing using RenderMan Chapter 4

Polygons are planar (flat) and an object will resemble a number of flat surfaces rather

than a single smooth surface This can be solved by reducing the size of the polygons

to a point where they are smaller (when rendered) than a pixel But this will require an

enormous number of polygons to be modelled which is undesirable because of the

increase in size and time that is needed to render and the fact that moving closer to the

object will require even more polygons to be used

The use of polygons is obviously not ideal so some other way of representing the

surface of an object is required A good solution to this is to use splme-based patches

and patchmeshes A patchmesh is where a sequence of touching patches is grouped

together to reduce storage space and provide smooth inter-patch interpolation This

guarantees that the edges of a patch in the mesh meet the edges of neighbouring

patches smoothly providing a constant surface Using spline interpolation, patches and

patchmeshes provide smoothly interpolated curved 3-D surfaces For objects which

are particularly difficult to model using patchmeshes - such as spheres and complex

hyperbolic objects - NURBS (Non-Uniform Rational B-Splines) can be used, but for

most objects a patchmesh or group of patchmeshes can be used

Choosing a bicubic patchmesh as the primitive object type to convert all other objects

to when morphing, means that the topological approach is the being used and the

implicit surface approach is abandoned This means that the surface in-betweening

method is no longer available, however hierarchical mapping and cellular matching

are both still operational since they operate at higher (object structure) and lower

(world co-ordinates) levels, respectively

All that is required now is a number of converters for each type of primitive object

that is likely to occur, to convert that object into a patchmesh or set of patchmeshes

which represents the object This will be looked at in more detail in Chapter 5

Page 77

3-D Animation and Morphing using RenderMan Chapter 4

4.5 Covering the seams

Coherence has been mentioned a number of times when discussing morphing There

are two aspects to this, object coherence and surface coherence Object coherence

refers to the need to keep the object that is undergoing the transformation in one solid

form so that it doesn’t split up into multiple objects or unwanted shapes This is

generally controlled by the correspondence heuristic chosen, such as hierarchical

mapping or cellular matching

Surface coherence refers to the need to keep the surface constant and unbroken during

the morphing process When using topological objects, it is possible that the

underlying primitives, which have been evenly matched m the source and target object

descriptions, will become unmatched during the morphing process Using a

patchmesh ensures that all the patches in the mesh are evenly matched, but not every

object can be described using a single patchmesh There can be problems where

objects join each other as with blending surfaces and some objects (like a sphere)

cannot be represented using a bicubic patchmesh

The surface of an object being morphed may need to change m order to cover for

‘mistakes’ like those mentioned above It can also change the ‘look’ of the object, so it

highlights the fact that the object is undergoing a transformation Usually, objects

being changed will take on a liquid-like look, becoming an unrecognisable rippling

body Examples of this are the pseudopod in The Abyss and the shape-shiftmg

character ‘Odo’ m the television series Star Trek Deep Space Nine

One of the mam features of RenderMan is the customisable shading language This

allows small C-like routines, called shaders, to be written These shaders control how

objects in a scene are to be shaded One type of shader is a displacement shader,

which allows the surface of an object to be perturbed slightly Using a displacement

shader, any surface can be made to look as if it is turning into a liquid with a rippling

effect added to it A displacement shader and its effect on a smooth sphere can be seen

m Figure 4-9

Page 78

3-D Animation and Morphing using RenderMan Chapter 4

The RenderMan Shading Language is based on C Shaders take the form of functions

which allow parameters to be passed from the RIB file, overriding any default values

specified for the parameters Local variables are allowed to be declared There are also

a number of global variables and global functions available to the shader and m the

end, it is these global values that control the shading

The mam global variables are the colours Cs, Os, Cl, Ci and the points /, P, N, Ng, E

The colours represent the input surface colour, surface opacity, light colour and output

surface colour, respectively The points represent the viewing direction, the surface

position, the surface shading normal, the surface geometric normal and the camera

position

Some of the mam global functions are noise(), transform(), faceforward(),

normalize() and calculatenormal() as well as the common maths functions like sin(),

cos(), abs() and pow() The transform() function returns the value of a given point in

the coordinate system specified The noise() function returns semi-random numbers

based on the values passed to it The normalize() function returns a vector for the

given point The faceforward() function returns a vector which points in the opposite

direction to the specified vector and at the point specified This is usually used to

ensure that a surface normal points at the viewpoint (camera) The calculatenormal()

function returns the normal to a surface for a specified point

The sphere with the ‘bumpy’ surface that is shown in Figure 4-9 was created using the

displacement shader shown in Figure 4-10 This shader works by moving the point on

the surface being shaded (P) a variable distance each time the shader is called The

surface normal (TV) is then adjusted to reflect the new position of the surface Once the

displacement shader finishes, the normal colouring/shading process continues and any

other customised shaders are run, using the new (displaced) surface position This

effectively changes the topology of the object without changing the underlying

structure - a form of morphing in itself

Page 79

3-D Animation and Morphing using RenderMan Chapter 4

Figure 4-9 : Spheres with smooth and displaced surfaces

/*
* waterbump s i
*
* Fractal Brownian Noise displacement shader
*/

displacement
waterbump(

f lo a t freq = 1 , /* in i t ia l noise frequency */
f lo a t octaves = 8 , /* # octaves of noise */
f lo a t lacunarity - 2 , /* noise freq s h if t factor */
f lo a t freq_exp = 1 , /* freq exponent */
f lo a t Kscale = 1,)

{
point PtShade,
f lo a t frequency,
f lo a t var,
f lo a t i ,

PtShade = transform("shader" ,P) ,
frequency = freq,
var = 0,
for (i=0, K octaves, i+=l)
{

var += ((noise(PtShade)*2)-1) *
pow(frequency.-freq exp),

PtShade *= 2,
frequency *= lacunarity,

}

P += Kscale * var * faceforward(normalize(N) , I) ,
N = calculatenormal(P) ,

}

Figure 4-10 : Waterbump displacement shader

Page 80

3-D Animation and Morphing using RenderMan Chapter 5

Chapter Five: Implementation
5.1 Overview

The RenderMan Interface describes two bindings for 3-D scene description data - one

in the form of function calls in the C language and the other in the RenderMan

Interface Bytestream (RIB) format The C binding is a useful way of building up a set

of objects and allows programming fundamentals such as iteration, recursion and

condition checking to be used Unfortunately, it has a number of drawbacks too These

are caused by the need to recompile every time there are any changes made, which

makes the process inflexible and potentially incompatible with different systems

Using the RIB binding allows much more flexibility since it is an ASCII text

file/stream which is processed by the renderer The obvious disadvantage of the RIB

binding is that it does not allow the use of programming constructs - every object or

attribute is explicitly instanced However, this does mean that every part in the scene

can be changed and re-rendered by simply editing ASCII text It is this process of

manipulating the ASCII text in a RIB file that forms the basis for the implementation

of the concepts examined in this thesis

The difference between the C binding and the RIB binding can be seen below

RIB output requires all calls and variables to be instanced individually, effectively

‘unrolling’ any iterative loops, conditional statements or recursive functions RIB files

are usually larger than the C-code required to produce the same scene

C Binding RIB Binding

RtColor aColour={0 1,0 1,0 9},
RiAttnbuteBegin () ,
RiSurface(" p lastic",RI_NULL),
RiColor(aColour),
R iScale(1 ,1 ,1 75),
RiSphere(0 6 ,0 ,0 6, 3 60,RI_NULL),
RiAttnbuteEnd () ,

#No variables m RIB
AttnbuteBegm
Surface "plastic"
Color [0 1 0 1 0 9]
Scale 1 1 1 75
Sphere 0 6 0 0 6 3 6 0
AttributeEnd

fo r (i= l , i<=3, i++) Translate 1 0 0
Cone 1 0 5 3 60
Translate 1 0 0
Cone 2 0 5 3 60
Translate 1 0 0
Cone 3 0 5 3 60

RiTranslate(1 ,0 ,0) ,
RiCone(i,0 5 ,360 ,R1_NULL),

}

Page 81

3-D Animation and Morphing using RenderMan Chapter 5

5.2 Using a two-pronged approach

There were two angles of approach for the practical implementation of methods

discussed in this thesis This was due to the constraints of hardware and software

available and the time required to develop and test the differing aspects of computer

generated imagery It was apparent that all operations would be carried out on RIB

files rather than the C-language binding Initially, the NeXT hardware (and built-m

Tenderer) was not available, so a set of ANSI C routines for RIB files was developed

To create an animated scene using RIB files, a RIB file is created for each frame This

requires that the ‘invasive’ method of editing a file be repeated for every frame in an

animation With each frame requiring a slight difference m the values specified m the

file and no way to tell if they correctly produced the desired visual effect without

waiting for a complete rendering, it became evident that some method for quickly

previewing a sequence of RIB files without having to render them would greatly speed

up the process of development and testing From this previewing application, extra

features were added so that it allowed non-lmear previewing and control over some of

the animation such as camera positions and attributes and thus became a second area

for development and testing

The back-end RIB file processing program was known as Morphit This was written in

ANSI C so that it could be ported and run on either UNIX (any type) or PC systems

The front-end previewing and interface program was adapted from the NeXTSTEP

3 0 3DKit demonstration program Simple, and this was known as SomhSimple It was

written m ANSI standard Objective-C and runs on any computer running NeXTSTEP

3 0 or higher This allows the use of the 3DKit class libraries to access the built-in

Quick RenderMan renderer which allows near-realtime draft renderings in the form of

pomt-cloud, wireframe, faceted or smooth surfaced graphics It also allows

photorealistic rendering using PhotoRealistic RenderMan All development m

NeXTSTEP was carried out on a monochrome NeXTstation ‘pizza box’ with a

Motorola 68040 processor running at 25Mhz and 32Mb of RAM

Page 82

3-D Animation and Morphing using RenderMan Chapter 5

5.3 Initial results with procedural animation

The most basic requirement for an animation is where the object or objects m a scene

move from one location m the scene to another This requires a number of frames be

created with the same object(s) definition but with a slowly changing location In a

properly structured RIB file the location of objects is set by placing a Translate

command before the objects’ definition details Therefore, to create an animation

requires a set of RIB files, each with a slightly modified Translate command

The Morphit application was developed gradually over the course of this thesis This

allowed simple methods such as procedural animation to be tested and refined before

moving on to the more complicated methods such as keyframe interpolation as

outlined in Chapter 3 Initially Morphit allowed RIB files to be modified to allow

values to vary over a sequence of frames The values varied according to the number

of the frame - in effect, procedural animation

Initial versions of Morphit used an existing RIB file which was edited to have the

characters %f in the output file name and %t in the parameters of a Translate

command The percent symbol was chosen because it does not normally appear in

RIB files The Morphit application was then run with the number of frames required

specified at the command line This copied the RIB file, character by character, to

sequentially numbered RIB files replacing only the %f with the frame number and %t

with a value based on the frame number This resulted m numbered RIB files which

were then rendered and the image files viewed sequentially

The RIB command parameters that could be varied were extended to include the

Rotate and sca le commands and to allow features such as including other RIB files

and specifying offsets for the values being used These allowed the control of small

details such as the propeller rotating on an aeroplane but they were not particularly

convincing for creating life-like animation

An example of the type of animation possible with these controls is shown in

Figure 5-1 Note the slowly rotating propeller which was animated procedurally

P age 83

3-D Animation and Morphing using RenderMan Chapter 5

In order to create a very simple animation, - for example a 360° rotation of some

object like the propeller shown in Figure 5-1 - it is only necessary to change one lines

before the actual instancing of the object In this case it would be a matter of Rotate

%r 0 0 l where %r is the number of degrees to rotate, which depends on the number

of frames required in the animation

In order to have an animation'with 20 frames, a rotation step of %r = 18° would

represent a 360° rotation Then 20 frames, identical except for %r which varies from 0

to 342 These frames, when rendered, will display the object and rotate it 360° around

the z-axis It is important to note that the z-axis may not actually be what it should be -

there may be any number of rotate commands before the one used for the animation

and what is currently the z-axis may be in a completely different axis - i e the

coordinates are not expressed in camera coordinates and possibly not even m world

coordinates

During the implementation of basic animation, two problems arose which did not

have simple solutions The first problem was that the structuring conventions used in

sample RIB files differed, depending on the source of the RIB file For example, some

of the RIB files used the objectBegm objectEnd block declaration outside of the

hierarchies which allowed a constant set of object statements to be instanced a number

of times within the hierarchy However, some of the files used the

MacroBegm MacroEnd block declaration instead which allowed varying parameters

inside the block, and is not part of the RenderMan Interface specification, but which

was implemented in the NeXT versions of PRMan

P age 84

3-D Animation and Morphing using RenderMan Chapter 5

H P *

f f i t

h r

Figure 5-1 : A simple animation generated by Morphit

P age 85

3-D Animation and Morphing using RenderMan Chapter 5

Sample RIB files came from a number of different sources including Pixar’s

MacRenderMan/Showplace, NeXT’s 3DKit sample files, Stone Design’s 3DReality

and BMRT sample files as well as those created manually The applications used were

written over a number of years starting in 1990, and the RenderMan Interface

specification was not well established during their creation The specification has a

number of guidelines on the structuring conventions used for RIB files, but the

PRMan implementation has backward-compatibility with older versions so it does not

enforce these conventions RIB files from commercial modelling packages were not

available due to the expense of these packages and the lack of operating systems and

hardware to run them RIB files are also quite difficult to obtain freely due to the

copyright problems that were mentioned in Chapter 1

The second major difficulty encountered during implementation was the difficulty in

determining the direction of the axes of objects in RIB files These depend on the

coordinate systems being used and the method in which the objects were modelled

While many applications use coordinate systems similar to those in RenderMan, a

number (such as Autodesk’s 3DStudio) use different (and possibly non-hierarchical)

co-ordinate systems, for reasons just as having their own built-in renderer Even m

modellers with compatible coordinate systems, problems can occur where the person

creates an object which can be interpreted in a number of ways For example, an ovoid

(egg shape) can be seen as a squashed sphere from one axis and as a stretched sphere

from another RenderMan does allow names and details to be assigned to objects, so it

is possible to have some customised method of identifying difficult objects, but

generally, trial and error are required

P age 86

3-D Animation and Morphing using RenderMan Chapter 5

5.3.1 Structuring RIB objects

Within the RenderMan Interface specification, not only is the Bytestream binding

declared, there are guidelines on creating a properly structured RIB file A properly

structured RIB file has hierarchies laid out within it and while it is not exactly

necessary, it does allow for more efficient processing While this is not always

implemented in modelling programs, it is getting better, with more and more

applications structuring the RIB files For example, if modelling a table and chair in a

room, the topmost node should be the room, with two leaves of table and chair The

table could then be made up from a combination of a polygon for the top and four

cylinders for the legs

This allows objects to be manipulated as a whole, rather than as individual parts This

saves on the number of manipulations required - one command will work on an entire

sub-hierarchy and keeps objects coherent It also provides for greater clarity and

understanding in the file An object’s location and orientation can be changed by

modifying the structure within the which the object will be instanced

Assuming a properly structured file, it is possible to ‘parse’ the RIB file and reduce it

to a number of positioning statements and objects By noting the occurrence of

A ttnbuteBegm and AttnbuteEnd statements, the topmost hierarchy can be

obtained and as the statements become nested, the lower parts of the hierarchy can be

obtained After each AttnbuteBegm statement, the RenderMan Interface

specification guidelines recommend the statement A ttribute "identifier"

"name" "objectname" which declares the name of the object about to be specified

The objects’ names should correspond to the objects visible on screen and their

constituent parts, allowing the RIB file to be more easily read

P age 87

3-D Animation and Morphing using RenderMan Chapter 5

5.3.2 Coordinate Systems in RenderMan

The RenderMan Interface uses a number of coordinate systems which allow objects to

be grouped together in hierarchical order It uses a type of stack system where

graphics transformation commands are pushed on top of a stack, with markers placed

to denote where an xtBegm block starts and when a matching xxEnd is found, the

commands issued within that block are popped off the stack This is how graphics

states are preserved throughout complex definitions

In RenderMan, there are five predefined coordinate systems - raster, screen, camera,

world and object Raster coordinates are in the output image which start at 0,0 in the

top left-hand comer of the image and pixels lie at non-negative integer locations

Screen coordinates are on the viewing plane, where the output image usually is taken

from the range [-1,+1] in screen space, but this is customisable as is the type of

projection used to transform camera coordinates onto the viewing plane

Camera coordinates are the coordinates used in the three dimensional space where the

viewpoint is considered the origin and the direction of the view is along the positive

side of the z-axis Camera coordinates are stated before the woridBegm woridEnd

block, allowing some transformations between the location of the world and the

location of the camera World coordinates are the ‘global’ coordinate system that

objects are declared in and are independent of the camera World coordinates are the

“top-level” coordinates inside the woridBegm WoridEnd block

Objects declared will have their parameters (declared in object coordinates) translated

into world coordinates by applying the transformation that is current inside that block

There is no limit on the number of object coordinate transforms preceding any given

object instance Each time an AttnbuteBegm or TransformBegm statement is

reached, a new object coordinate system is defined And inside each of these blocks

there may be multiple Rotate, Scale and Translate commands which transform the

current coordinate system These transformations remain part of the current coordinate

system until they are popped off the stack when an AttnbuteEnd or Trans formEnd

statement is reached

P age 88

3-D Animation and Morphing using RenderMan Chapter 5

When creating a properly structured RIB file, this means that even the simplest of

objects should really be nested inside a Trans formBegin Trans formEnd block or

more correctly inside an AttnbuteBegm AttnbuteEnd block with an

A ttribute "identifier" statement giving the object’s name Unfortunately, very

few modellers go into such detail, making the identification of individual objects and

coordinate transformation systems difficult

Using two coordinate systems (Camera and World) at the highest 3-D levels means

that the virtual camera can have characteristics such as orientation, zoom and focus

which are completely unrelated to the objects characteristics m a scene Hence an

animation which is solely about camera moves and changes will have the exact same

contents of the woridBegm woridEnd block throughout all frames

5.4 Moving the goalposts

At the initial stages of this thesis, the possibility was explored of using two RIB files

and a command-line program which produced a sequence of frames containing the

in-between movements of all the objects in the files and morphing objects where

required After initial experimentation, it became clear that this was not really possible

except for the simplest of scenes The uncertainty created by using multiple coordinate

systems and the varying structures of RIB files make it too difficult to make any

decisions blindly - a human pair of eyes is really required to make the decisions

The trial and error method of editing the base RIB file on a ‘lets see what this does’

basis was clumsy and slow - a user interface was really required NeXTSTEP was

chosen to implement this interface because it allowed the qrman renderer to be used to

provide near-realtime draft rendering of RIB files An added bonus was the ability to

use the object-oriented N3DKit class hierarchies to manipulate the scenes created by

the RIB files The NeXTSTEP class hierarchies allow rapid development of user

interfaces and provide considerable time-savmg when compared to other systems The

disadvantage is that the user interface will only run on NeXTSTEP/OpenStep systems

P age 89

3-D Animation and Morphing using RenderMan Chapter 5

At the time, the only RenderMan Interface compatible Tenderers available were on the

(black and white) NeXT computers and very slow Apple Macintoshes The speed and

ease of development of the user interface were deemed to outweigh the disadvantages

of using the NeXTSTEP system Development of the user interface started by

examining the demonstration programs for the 3DKit hierarchies to see if they could

be modified to allow the previewing of multiple RIB files m sequence The Simple

program allowed the user to view and rotate the famous Utah teapot in three

dimensions Using the source code from this program’s window interface, it was

possible to create a user-interface program called SomhSimple which allowed multiple

RIB files to be viewed This program became the mam previewing tool for the

research in this thesis

The SomhSimple program allows the objects in a RIB file to be viewed in draft mode

All commands outside the WoridBegm WoridEnd block are ignored in this mode,

so all camera operations are controlled interactively Usually all camera

transformations are embedded in a single ConcatTransform statement before the

woridBegm statement which makes the actual combination of commands difficult to

recreate For this reason, SomhSimple always has no pre-applied camera

transformations The camera transformations are controlled either by clicking and

dragging with the mouse or using various sliders in the panels which surround the

preview image as shown in Figure 5-3 These can be changed for each frame and

saved if a new view is required, but more commonly, only the starting and finishing

camera transformations are obtained and then placed in the base RIB file and marked

for interpolation

Effectively this means that the entire animation is based on a single base RIB file

which has all the values required for animating the scene embedded in it All that is

required is a program that will expand the base RIB file into the appropriate number

of frames - the back-end RIB processing file Extra features for keyframe interpolation

were added to Morphit so that values need not be strictly related to the frame number

This allowed %Kx y to specify interpolation between x and y

P age 9 0

}
3-D Animation and Morphing using RenderMan Chapter 5

5.5 SomhSimple - an interface for viewing and animating objects

As mentioned previously SomhSimple is a (heavily) modified version of a

demonstration program which allows users to view a sequence of RIB files Camera

positions and attributes can be saved and applied to the sequence for photorealistic

rendering Objects in the RIB files are displayed and the display can be updated for

any changes made to the RIB files All the code for this program is in two modules

The modules relate directly to the classes available in the 3DKit - there a number of

classes, but the basic two are N3DCamera and N3DShape These provide the ability to

define and view 3-D objects The screen window is of class N3DCameraView, a

subclass of N3DCamera This class allows the use of single Objective-C messages to

change aspects of the current camera settings independent of the shape’s definition

The second module is an instance of the N3DShape class This allows RenderMan

primitives to be specified in C binding and imported from a stream using the non­

standard RiResource function There can be multiple instances and hierarchies of

N3DShape, but when importing a RIB file directly and there are no objects other than

that, it is only necessary to have one N3DShape instance

fir<Yi0 us P e«r

«ri dì Jit »»(«stori id «¡(end wit

N3DShapa gjjjj NJDShaps .

Figure 5-2 : The NeXT 3DKit Objects (N3DCamera and N3DShape) Hierarchies

P age 91

3-D Animation and Morphing using RenderMan Chapter 5

There are five panels surrounding the main camera window, four of which allow

different aspects of the previewed scene to be controlled, the final panel allows

different frames (RIB files) to be chosen individually or played in sequence The

camera control panels are for axes control (x-axis and/or y-axis and/or z-axis), quality

control (point cloud, wireframe, faceted or smooth), camera attributes (from-to vector,

camera roll, field of view) and transformation control (rotate, scale and translate)

Figure 5-3 : Screen Shot of SomhSimple.app

As shown in Figure 5-5, the current details are displayed at the bottom of the camera

window - the frame number, the field of view and the current transformations Other

options are provided in the menu in the top left-hand corner The 3-D data for the face

displayed came originally from a face-scanning project in Australia [MARRI092] A

converter was written to transform the triangular polygons into RenderMan Polygon

format

Page 92

3-D Animation and Morphing using RenderMan Chapter 5

Apart from the normal NeXTSTEP application options, three

other mam menu options are provided Name RIB File allows a

sequence of RIB Files to be chosen, Save RIB allows the current

camera position and settings to be written to a RIB file The

final option, Render It Now, will photorealistically render the

objects in the camera window at a chosen quality level and

update the camera window with the photorealistic image when it

has finished rendering, also allowing the image to be saved

Figure 5-4 : Menu

F r a m e N u m b e r . i \ i l l a t io n o X-Scolc 0 X ■ Translation $

F i e l d O f V i e w . 3 7 V 'R otation 0 Y -Seale ¥ -Translation 0

— , -
2 -Rotation 0 3 -Scalo 0

Translation ,

Figure 5-5 : Screen shot of SomhSimple.app camera window

P age 93

3-D Animation and Morphing using RenderMan Chapter 5

An interface to the RIB file(s) when animating is quite important The difficulties m

visualising the effect of even the simplest changes make it essential to have some

method of previewing animations What SomhSimple does is provide a basic non­

linear previewer for RIB files and allows different camera angles and settings to be

viewed For simple (linear) previews of a sequence of RIB files, the wireframe

renderer rendribv (part of the BMRT) was used When an SGI machine was available,

the BMRT Tenderer rgb allowed Gouraud shaded previews

SomhSimple became a very useful tool in assessing the effectiveness of various

morphing routines when they were being attempted During the development of

morphing functions, bizarre and unexpected effects can occur, creating complex

shapes which would require considerable amounts of processing time to render

photorealistically Since SomhSimple allows the user to control the camera, it was

possible to view the effects of morphing on different sections of objects which would

normally be hidden to the camera

5.6 Implementing Morphing

The RenderMan Interface has bindings for a total o f, 17 object instancing statements

These can be broken down into different types four polygon, three spline, seven

quadratic and three special objects The four polygon types are for a convex polygon,

an irregular polygon, a group of convex polygons and a group of irregular polygons

The three spline types are for a uniform splme patch, a group of uniform spline

patches and a non-uniform splme patch These seven object statements allow the

object to be defined using a vanable-length list of points

The seven quadratics (sphere, cone, cylinder, hyperboloid, paraboloid, disk and torus)

all take a small list of parameters which differs for each object type The final three

special type of objects are related to previously defined objects or objects built into the

renderer and are not able to be accessed in any way

P age 9 4

3-D Animation and Morphing using RenderMan Chapter 5

This leaves three different types of object which will have to be morphed into each

other polygons, splines and quadratics There is also the problem of morphing groups

of these and groups of all types into each other

Leaving the issue of groups of objects to one side for the moment, it can be seen that

the three types of objects will require some method of being translated between their

different forms if they are required to morph into a different type Its is possible to

define a specific method for each object to transform into each different object type

Simple calculations show that this would require a minimum of 14x13 (182) methods

While creating this many methods is quite possible, it is beyond the breadth of this

thesis, and is also a rather inefficient way of dealing with the problem Usually, RIB

files contain instances of quadratics and bi-cubic Patches or Patchmeshes (a

Patchmesh is a set of Patches defined and grouped together so their touching edges

are smooth, giving the effect of a continuous surface) Some occasionally contain

polygons (usually these have been converted over from other file formats) This meant

that only eleven object types needed to be considered

In order to further cut down on the number of types of objects that methods needed to

be provided for, it was decided that Patchmeshes would become a ‘base’ format into

which all the other object types would be converted so that morphing operations

would only need to be carried out on one object type

This meant that there had to be ten conversion methods to convert objects into

Patchmeshes For (convex) Polygons this was trivial, since a Patchmesh requires

only that the same points for the polygon be instanced For groups of Polygons (called

a Points Polygon) the conversion was less trivial While the polygons in a

Points Polygon are instanced in any order, a Patchmesh requires a grid-like

formation in the control hull If the polygons do not fit into a grid-like formation, it

may be necessary to split the group up into a number of separate Patchmesh instances

Page 95

3-D Animation and Morphing using RenderMan Chapter 5

Converting a Patch into a Patchmesh is exceedingly simple since a Patch is just a

Patchmesh of grid size lx l , with the same point list following Since both splme

objects and polygon objects are instanced with pointlists, representing them with

Patchmeshes is a matter of instancing points in their pomtlists in the appropriate

order However, this is not the case with quadratic objects which have no point lists

The instancing commands for the seven quadratic objects all take different

parameters These parameters vary from being the height of a cone or the outer radius

of a torus to being the sweep angle for the entire object In order to represent the

quadratics as Patchmeshes, it is important to remember that the Patch and Patchmesh

can be thought of as pieces of paper They can be either bi-linear or bi-cubic, 1 e they

can represent a surface defined using two linear or cubic equations This accurately

defines a Hyperboloid and hence its derivatives cones and cylinders

This leaves the sphere, Paraboloid, Disk and Torus It is clear that none of these

can be represented 100% accurately by either a bi-hnear or bi-cubic functions Most of

the research into representing quadratics with spline-based objects has been carried

out on spheres The upshot of this is that a sphere can be represented using a bi-quartic

splme-based patch such as a NURBS (an NuPatch in RenderMan)

[TILLER83] [PIEGL85] [PIEGL86] [PIEGL87] [COBB88] [FARIN88] [FARIN90]

Figure 5-6 : A sphere and an approximated sphere

P age 9 6

3-D Animation and Morphing using RenderMan Chapter 5

5.7 Practical Implementation of Morphing

The practical implementation of morphing was executed by the Morphit program As

with the animation process, a base RIB file was used and the morphing commands

were accessed in a separate file which was specified by a %Mtarget rib command m

the base RIB file The object(s) following the %m were considered the source object(s)

and those m the external file were the target object(s) The objects were parsed and

their details recorded (mesh size, sweep angle, height, etc)

At this stage, the objects were matched and ordered into source and target objects

Where there were more source objects than target objects, some of the source objects

were allocated the same target object This matching process was the subject of

experimentation with hierarchical and cellular matching as mentioned later Once they

were matched, the source objects were mapped to the target objects (in the case of

Patchmeshes this meant making the mesh sizes equal) and then interpolated as

described in Chapter 4 Due to time limitations, it was decided to concentrate mostly

on one particular type of object For flexibility, the choice had to be one of the spline-

based patches (either a Patchmesh, a Patch or a NURBS)

Working with NURBS instead of Patchmeshes will require that all patches are

individually declared instead of being declared en masse as a mesh This will actually

create a number of problems by breaking up one Patchmesh statement into a large

number of smaller statements For the ease of implementation in this thesis, it was

decided to leave the base object type as Patchmesh and to approximate the sphere,

Paraboloid, Disk and Torus objects using Patchmesh statements

This can be achieved by splitting the object up into smaller sections (usually eight

pieces will do) and then adding a custom shader which will disguise the imperfections

m the approximation

P age 97

3-D Animation and Morphing using RenderMan Chapter 5

The translations and approximations will be executed on both the source and target

objects which will now consist solely of Patchmesh objects These will still be all of

different sizes and (hopefully) grouped in hierarchies Now some methodology must

be used to determine which groups in the source are to morph into which groups in the

target The hierarchical and cellular matching procedures mentioned in Chapter 4 are

used The hierarchies can be very complicated so no automatic matching is carried

out Using an interface, the user can specify which named groups morph mto each

other To simplify matters these groups are split up and separated mto different files

Once separated mto different files, it can be assumed that there will now be two files

for each group to be morphed - a source and a target Each will contain a number of

Patchmesh statements In order to decide which Patchmesh statements in the source

are to map to which Patchmesh statements in the target, cellular matching is used A

bounding box for each of the Patchmesh statements m the target is created and the

Patchmesh statements m the source are matched to the nearest corresponding box

However, all the Patchmesh statements in the target must get at least one Patchmesh

from the source, so the nearest Patchmesh m the source is mapped to a target

Patchmesh which has no source Patchmeshes already assigned

This leaves a situation where every Patchmesh statement m the target has at least one

Patchmesh in the source assigned to it It is not yet at the final stage where the

Patchmeshes pomtlists can be interpolated because the Patchmeshes can be of

different size meshes A Patchmesh is generally of the form
Patchmesh "bicubic" 10 "nonperiodic" 12 "nonperiodic" "P" []

What this states is that a mesh of bicubic patches, whose end points in u or v do not

meet, approximated over a grid of 10x12 of points is required So for one Patchmesh

to morph into another in a sensible fashion, the size of the gnd/mesh must be the

same

P age 98

3-D Animation and Morphing using RenderMan Chapter 5

The implementation of the changing of the mesh size proved to be one of the more

complex aspects of the code written m the course of this thesis A quick overview

seems to indicate that the process is just a matter of interpolating values in a 2-D array

to approximate the values in a different size 2-D array

However, it is not that simple - the values in the arrays are actually specifying the

control hulls for a series of splme-based Patches Any changes made (such as adding

an extra row of points) can cause between two and six Patches to be changed for each

point on the row A number of different approaches were tried to find a solution to

this problem While it is possible to have one Patchmesh approximate another, it

requires complex recalculation of every single point on the control hull, and even then

it is unlikely to be an exact replica - if it has less control points it may be impossible

It must be remembered that this change of mesh size is all part of the correspondence

phase of morphing (as mentioned in Chapter 4) The (source) Patchmesh with a

different mesh size only exists to create a one-to-one mapping with the target for the

interpolation phase This mesh will never be used m place of the original source

object, only for calculation purposes and so it is not vital that it is an exact replica

P age 99

3-D Animation and Morphing using RenderMan Chapter 5

With this m mind, a simpler approach to the mesh size problem

was adopted Through experimentation, it was discovered that

mesh sizes could be changed relatively seamlessly by simply

adding or removing rows or columns of points at the edges of

the mesh Adding rows/columns was implemented by

duplicating the values m the last row/column as many times as

was required Removing rows/columns was implemented

slightly differently, because existing rows/columns were

removed and replaced by one row/column with values which

contained an average of the values in the removed

rows/columns This can be seen in Figure 5-8, which shows the

transformation between a five element mesh and a nine element

mesh

This leaves two Patchmeshes of the same size, requiring only

the interpolation of their values for each frame This can be

carried out using the various interpolation methods outlined in

Chapter 3 The entire process is repeat for every frame in the

animated sequence This produces a number of RIB files

containing the 3-D object descriptions and camera positions

and settings for the entire scene These can then be rendered at

the appropriate level of quality by any RenderMan Interface

compatible Tenderer

Figure 5-7 : The

morphing pipeline

using RenderMan

Page 100

3-D Animation and Morphing using RenderMan Chapter 5

5.8 Examples of morphing implemented with RenderMan

Initial Mesh Approximation using Morvhit

Figure 5-8 : Morphing the underlying meshes

The source five-element mesh (above) is not approximated as well as the target

nine-element mesh (below) because Morphit uses the target mesh size for all of the

instances during the transformation While the difference between the top left and top

right images is noticeable, this is a wireframe representation of the mesh and will be

less obvious when rendered as a solid surface If the discrepancies are still visible they

can be disguised in a number of ways such as speeding up that part of the

transformation, motion blurring or using a displacement shader

The mesh sizes of five and nine were chosen for demonstration purposes Normal

mesh sizes vary, but most are in the range of 10-20 They are also usually different

sizes in the u and v directions (l e 14x11 mesh sizes are common)

Page 101

3-D Animation and Morphing using RenderMan Chapter 5

As mentioned in the previous section, objects need to be transformed into

Patchmeshes before any morphing may be done There are a number of different

approaches to transforming an object into a set of Patchmeshes One of the methods

used for splitting a sphere up is the cubic method This involves placing a cube inside

a unit sphere so that its vertices touch the sphere and dividing the sphere into six

separate segments as shown on the right of Figure 5-9 These segments can be

approximated using identical Patchmeshes

Figure 5-9 : A sphere and a cubic-replica using six P a t c h m e s h e s

The Patchmeshes can then be used to morph from another object, such as a cube, into

a sphere While the representation may not be exact, using a shader can ‘cover the

seams’ and m the case of solid objects, the true target object may be hidden inside the

Patchmesh representation and scaled up to its true size and the representation scaled

down at the end of the transformation

Page 102

3-D Animation and Morphing using RenderMan Chapter 5

Figure 5-10 : A cube morphing into a sphere (no shader)

The transformation seen above in Figure 5-10 can be also be seen in Colour Plate 1

with the waterbump shader (from Chapter 4) used to hide the facets

Page 103

3-D Animation and Morphing using RenderMan Chapter 5

5.9 PhotoRealistic RenderMan and the Blue Moon Rending Tools

For this thesis, all rendering was carried out using Pixar’s Photorealistic RenderMan

(referred to as PRMan) and a renderer called RendRIB which is part of the Blue Moon

Rendering Tools (BMRT) package written by Larry Gntz They are both RenderMan

Interface compatible Tenderers and hence use RIB files as their main input Both are

compatible with the RenderMan Shading Language Interface which is a part of the

RenderMan Interface specification that deals with writing customisable shaders

The main difference between them is that PRMan uses a version of the REYES

algorithm for rendering and RendRIB uses a ray-tracmg with radiosity algorithm

Using RendRIB allows shadow casting and reflections without having to use shadow

or environment maps The RIB files that each accept are different in that one will not

process shadow map commands and the other will not process extra lighting

attributes However, the files are still parseable and acceptable and will be rendered in

full except that shadows will not be processed

This is the idea of the RenderMan Interface’s ability to deal with future options and

upgrades - the RIB binding is parseable even if individual commands are not

implemented or understood This gives it a certain amount of flexibility when it comes

to new methods and commands - older Tenderers will be able to process new RIB files

to the best of their abilities

P age 104

3-D Animation and Morphing using RenderMan Chapter 6 Conclusions and The Future

Chapter Six : Conclusions and The Future

6.1 Topical Conclusions

The topics of this thesis cover a broad range of subjects modelling objects in three

dimensions, animation and computer animation, morphing and implementing these

with the RenderMan Interface While the first two topics (3-D and animation) are

quite general and are relatively ‘old’ concepts which will continue to be refined, the

final two (morphing and RenderMan) are more recent developments and as such it is

difficult to predict their final status

After being the favourite special effect for some time, morphing has become just one

of a number of effects available to animators It is still a trying problem for

implementors because of the need for radically different approaches to the same

problem to provide different effects The key to simplifying morphing is to ensure that

all the objects are modelled using the same building blocks (object types and

structures) Once the problem has been reduced to one of interpolation, the

implementation of different effects is significantly eased

The RenderMan Interface was initially designed to provide a common interface

between modellers and Tenderers, usually in the RIB binding RIB has become one of

many file formats used in 3-D graphics as can be seen in Appendix B The explosion

in computer graphics and animation has seen the number of packages explode, but as

yet only the very high quality sector requires file format compatibility The area is still

so new that the best selling packages such as Softimage and 3-D Studio provide

sufficient Tenderers that most customers don’t need (or indeed want to bother with)

other Tenderers

Page 105

3-D Animation and Morphing using RenderMan Chapter 6 Conclusions and The Future

It is difficult to see exactly what the future is for RenderMan Pixar have changed their

focus from software to producing animations and have decided to stop producing

software except for the SGI platform While this may seem difficult to comprehend at

a time of such expansion in the area, it is typical of the computer industry as a whole

The market leaders in the computer animation area are Microsoft-owned Softimage,

SGI-owned Alias Research and Autodesk (makers of AutoCAD and 3-D Studio) The

room for a small independent company is getting smaller and smaller as these three

giants compete, so Pixar’s focusing on computer animated feature films is

understandable However, after the success of Toy Story, this area too will start to be

filled with competition in the next five years

Page 106

3-D Animation and Morphing using RenderMan Chapter 6 Conclusions and The Future

6.2 Implementation Conclusions

The purpose of the programs implemented in the course of this thesis was to discover

if and how the concepts discussed could be applied In general, the concepts were

implementable using RenderMan, but a few were found to require lengthy coding and

were difficult to implement

6.2.1 Implementation Difficulties

Animation in general is a very interactive type of process and it was not really suited

to the initial back-end implementation As mentioned m Chapter 5 problems arose

with multiple coordinate systems and the ‘human understanding’ of an object While

the coordinate system problems could be overcome with an extremely intelligent AI

parsing program, it is difficult to see how a program could understand what an object

‘is’ and how it should behave Animation is ultimately for viewing by humans and

attempting to entirely remove the human element from the animation process is never

likely to succeed

After this initial experimentation, it became clear that a user interface would be

required to allow anything but the simplest of animations as outlined in Chapter 5

The more powerful the front-end, the better, was the conclusion of experimentation

The best type of interface allowed all 3-D commands and objects to be viewed both

visually and in RIB format, allowing them to be edited and controlled by using a

mouse or graphics tablet

Page 107

3-D Animation and Morphing using RenderMan Chapter 6 Conclusions and The Future

Morphing complex objects (objects consisting of groups of smaller objects) was much

more difficult than initially thought The simple AI heuristic for hierarchical matching

that was described in Chapter 4 was not able to handle large hierarchies Obviously, it

was dependent on the hierarchies being similarly arranged on the source and target

objects, but even then bizarre effects occurred For example, the handles of a shopping

bag would have been suited for morphing into the (single) handle of a coffee mug But

designing a heuristic that says ‘similar objects should be matched’ is almost

impossible to program m a generic manner In the end, the best way was to let the

heuristic display its results in an advisory capacity and allow a human to make the

ultimate decisions on matching issues

As mentioned in Chapter 5, the choice of the Patchmesh command as the standard

format for all objects did exclude the exact replication of some of the quadratic

objects The most flexible spline-based patch available in the RenderMan Interface is

the NuPatch - a NURBS However, this would have required the splitting up of all

patchmeshes and hence increasing the number of individual objects almost one

hundred times on average

The ease of morphing allowed by using the soft objects (from chapter 4) was counter­

balanced by the difficulty m implementing them with a ‘hard object’ rendering system

like RenderMan While the flexibility soft objects provide is amazing, it would require

another application to control and animate the soft objects which would then translate

the object shapes into RIB format and ensure their correct location within a scene To

a certain extent, the flexibility provided by soft objects are available in most modem

animation packages as free-form deformations

Page 108

3-D Animation and Morphing using RenderMan Chapter 6 Conclusions and The Future

It is possib le that the RenderM an Interface and the RIB binding are not the best

form ats for the operations attem pted m the course o f this thesis It is im portant to

rem em ber that RIB is not intended to be a scripting language for anim ation The

R enderM an Interface and RIB are designed for a m uch low er level o f operation, bu t in

the course o f this thesis, it has been dem onstrated that properly structured,

h ierarchically ordered RIB files can allow alm ost all the functionality required for

h igher-level anim ation system s while including all the detail for low er level access

6.3 Further areas of research.

A num ber o f areas that w ere only briefly m entioned in this thesis bare up to a deeper

analysis In addition, som e parts o f the im plem entation for this thesis were cut short

for tim e reasons

6.3.1 Padding out the blanks

There were a num ber o f areas under discussion m this thesis and it was not possib le to

im plem ent them due a num ber o f reasons The prim e factors in deciding on coding an

im plem entation w ere the tim e required to create any such program s, the results

produced by the program s and the overall know ledge accruing from the

im plem entation For these reasons, parts o f the code for the tw o m am applications that

w ere im plem ented - Morphit and SomhSimple - have blank functions or b lank areas m

functions These blanks were created because the actual program s were designed as

tem plates Functions and m ethods that were required to carry out the m ost necessary

operations w ere coded, w hile other functions (usually dealing w ith the quadratic

objects) were left It w ould be possible to extend the abilities o f the applications by

coding the blanks

Page 109

3-D Animation and Morphing using RenderMan Chapter 6 Conclusions and The Future

6.3.2 Transforming objects into different formats

The large num ber o f file form ats (see A ppendix B) w hich can actually represent the

sam e object is astonishing As the num ber o f packages (and hence file form ats)

increases and w ithout the adoption o f a com m on standard, the need to transform

objects betw een file form ats will increase

A com m on problem is that m any packages will only output to standard form ats in

polygonal form An interesting area o f research w ould be to investigate m ethods for

transform ing polygonal objects into sm ooth curved surfaces (e g NU RBS)

6.3.3 A 3-D World-Wide Web Browser

The W orld-W ide W eb is one o f the popular form ats for Internet com m unication these

days Its successor is seen by som e as a 3-D brow ser and eventually a V R /Sim ulation

environm ent W hatever about the later, the 3-D brow ser idea is already available in

the form of SG I’s W ebSpace program This is based on V R M L, a polygon-only

version o f SG I’s Inventor form at

A num ber o f other com panies are pushing their own form ats and brow sers, bu t since

the am ount o f data required for a decent 3-D scene requires a large am ount o f

bandw idth, the 3-D W W W brow ser m arket is still em bryonic The issues involved in

a 3-D W orld-W ide W eb cover a broad range o f topics from netw orking and data

com pression to 3-D m odelling and desktop V irtual Reality

Page 110

3-D Animation and Morphing using RenderMan Chapter 6 Conclusions and The Future

6.3.4 An object oriented animation system

O bject orientation is a key term these days and in 3-D anim ation it is literally

applicable W hile im plem enting the SomhSimple application on the N eX T using the

object oriented 3DK it, it becam e apparent that a hierarchically structured object

oriented anim ation system w ould be flexible enough to allow even non-program m ers

to w rite ‘m acros’ to allow the pow erful m anipulation o f objects in a scene The ideal

system for anim ation w ould have all the abilities and features that have been

m entioned A high level scripting system controlled by a pow erful user interface for

objects hierarchically m odelled Fram es and objects could ‘opt-out’ (using subclasses)

or get a derogation from the overall system /hierarchy and be tinkered with

individually By treating (graphics) objects as (OOP) objects, they can be controlled

by being connected to a controller-class object - be that a script, a m acro or a user

interface control The first generation o f com m ercial applications using object

orientation have already started to appear, w ith 3-D Studio MAX leading the way, and

others quickly follow ing in their path

Page 111

3-D Animation and Morphing using RenderMan Chapter 6 Conclusions and The Future

6.4 Final Comments

O bserving the com puter graphics industry over the past four years has been quite like

w atching a rocket lift o ff - you can see its m oving very fast, but the dust cloud

obscures ju s t about everything else The frontiers in com puter graphics are being

pushed back all the tim e - w ith film s like Jurassic Park and Toy Story - bu t how

exactly this im pacts m ore com m on applications is not exactly clear

M any people liken the explosion in com puter graphics and anim ation w ith the desktop

publish ing revolution If this analogy holds it could have a num ber o f consequences

the top-quality anim ations will excel and becom e m ore popular w ith producers and

audiences, large-sized com panies and agencies will create visualisation preview s and

V R sim ulations for m any projects w ith these becom ing as com m on as m ission

statem ents are today, the entertainm ent industry w ill be creating m ore and m ore life­

like gam es and special effects and finally, the quality and range o f anim ation products

available to the average (am ateur) anim ator will be dram atically increased, allow ing

natural talent to be revealed

From a technical view point, com puter graphics used to be an area w here a lot o f

specialised know ledge was required to produce even m inim al results and now this has

been reversed A t Pixar, they have redefined them selves as P ixar A nim ation Studios

In creating anim ations, now traditional anim ators w ork on the initial stages o f creating

an anim ation - storyboardm g, layout, blocking and anim ation - and the later stages are

w orked m ore on by the technical people - m apping surfaces and textures and adding

lighting and reflections In effect, the old m ovie breakdow n betw een artist (w riter/

director/actor) and technician (cam eram an/editor/stuntm an) has been transferred into

the new com puter anim ation industry where the anim ators are the actors providing the

action, em otion and effects and the com puter specialists provide the realism and the

detail P ixar have found the best results com e from a m arriage o f both the anim ators

and the technical specialists

Page 112

3-D Animation and Morphing using RenderMan Chapter 6 Conclusions and The Future

The old saying ‘the cam era never lies’ has becom e redundant The quality o f com puter

generated graphics has increased dram atically over the past few years W hat w as once

deem ed im possible is now com m onplace - for exam ple, w hile everyone knew that the

dinosaurs in Jurassic Park were com puter generated, few w ere able to detect that the

jeeps that w ere being crushed by a dinosaur were actually com puter generated too

Photorealism m ay not ju s t yet be com m onplace, bu t in m any film s, if not specifically

looking for com puter generated effects it is quite easy to accept them as real Sir

D avid Pu tnam ’s recent com m ent best sum m ed this up

" I ts tw enty-four whoppers per second ”

Page 113

PLATE 1 : MORPHING R CURE INTO R SPHERE USING R DISPLRCEMENT SHRDER

3-D Animation and Morphing using RenderMan Appendix A Bibliography

A p p e n d i x A : B i b l i o g r a p h y

[AMMERA88]

[ANDERS90]

[ANDERS93]

[APODAC87]

[BARSKY87]

[BEIER92]

[BETHEL89]

[BLINN82]

[BREENE93]

[BURTNY71]

[BURTNY76]

[CATMUL74]

[CGINTE89]

[COBB88]

[COLLIN93]

A m m eraal, Leendert "Interactive 3D Computer Graphics "
C hichester W iley 1988

A nderson, Scott E "Making a Pseudopod An Application o f
Computer Graphics Imagery " Proceedings o f A U SG R A PH '90
pp 303-311 M elbourne, A ustralia 1990

A nderson, Scott "Morphing Magic " Carm el, Indiana Sam s 1993

A podaca, A nthony A , and M antle, W illiam "RenderMan Pursuing
the Future o f Graphics " IEEE C om puter G raphics and A pplications
voi 10, no 4, pp 44-49 Jul 1987

Barsky, Brian "Computer Graphics and Geometric Modeling using
Beta-Splines " Tokyo, N ew Y ork Springer-V erlag 1987

Beier, Thadius and Neely, Shaun "Feature-Based Image
Metamorphosis " Proceedings o f SIG G R A PH ‘92 - Com puter
G raphics voi 26, no 2, pp 36-42 Jul 1992

Bethel, E W esley and Uselton, Sam uel P "Shape Distortion in
Computer-Assisted Keyframe Animation ” Proceedings o f C om puter
A nim ation '89 Jun 1989

Blinn, Jam es "A Generalization o f Algebraic Surface Drawing "
A C M Transactions on G raphics voi l , p p 235-256 1993

Breene, Bryant "Image Warping by Scanline Operations "
Com puters & G raphics voi 17, no 2, pp 127-130 M ar 1993

Burtnyk, N and W ein, M "Computer-Generated Key-Frame
Animation " Journal o f the SM PTE voi 80, pp 149-153 M ar 1971

Burtnyk, N and W ein, M "Interactive Skeleton Techniques fo r
Enhancing Motion Dynamics in Key-Frame Animation " CA CM
voi 19 no 10, pp 564-569 O ct 1976

Catm ull, E d "Subdivision Algorithm fo r the Display o f Curved
Surfaces " PhD Thesis, U niversity o f U tah 1974

C G International '89 w ith Eam shaw , R ae and W y vili, B rian (Editors)
"New Advances in Computer Graphics - proceedings o f CG
International '89 ” Tokyo Springer-V erlag 1989

Cobb, J "Tiling the Sphere with Rational Bezier Patches " Technical
Report U U CS-88-009, C om puter Science, U o f U tah 1988

C ollins, B rian M "Data Visualisation - Has It All Been Seen
Before 'A nim ation and Scientific V isualisation - Tools and
A pplications' pp 3-28 1993

Page 114

3-D Animation and Morphing using RenderMan Appendix A: Bibliography

[COOK87]

[CORRIE93]

[EARNSH93]

[ENCARN93]

[FARIN88]

[FARIN90]

[FOLEY90]

[FRIEDH89]

[GARFIN93]

[GONZAL93]

[GUDUKB93]

[G U 093]

[HUGHES92]

[KAUFMA91]

[KAUL91]

Cook, Robert; Carpenter, Loren and Catm ull, Ed. "The Reyes
Imaging Rendering Architecture." Proceedings o f SIG G RA PH ‘87 -
C om puter G raphics, pp. 95-102. A naheim , California, U SA . Jul 1987

Corrie, Brian and M acK erras, Paul. "Data Shaders." Proceedings o f
V isualization '93. pp. 275-282. San Jose, California, USA. Oct 1993

E am shaw , Rae A. and W atson, D avid F. (Editors). "Animation and
Scientific Visualization - Tools and Applications." London :
Academ ic. 1993

E ncam acao, Jose et al. "Advanced Research and Development Topics
in Animation and Scientific Visualization." book 'A nim ation and
Scientific V isualization - Tools and A pplications', pp. 37-73. 1993

Farin, Gerald; Piper, B. and W orsey, A.J. "The Octant o f a Sphere as
a Non-Degenerate Triangular Bezier Patch." C om puter A ided
G eom etric Design, vol. 4, no. 4, pp. 329-332. 1988

Farin, Gerald. "Rational B-splines." G eom etric M odelling M ethods
and A pplications'. 1990

Foley, Jam es D.; vanDam , Andries; Feiner, Steven K. and H ughes,
John F. "Computer Graphics - Principles and Practice." Reading,
M assachusetts : A ddison-W esley. 1990

Friedhoff, R ichard M ark and Benzon, W illiam . "Visualization - The
Second Computer Revolution." New Y ork : A bram s. 1989

G arfinkel, Sim son L. and M ahoney, M ichael K. "NeXTSTEP
Programming - Step One : Object-Oriented Applications." New Y ork
: Springer-V erlag. 1993

G onzalez, R. E. "An Object-Oriented Library fo r Hierarchical
Animation Sequences." C om puter G raphics, on-line issue . M ay 1993

Gudukbay, Ozguc. "An Animation System fo r Rigid and Deformable
Models." Com puters & G raphics, vol. 17, no. 1, pp. 71-77. 1993

G uo,Shang; Roberge, Jam es and G race,Thom . "Controlling
Movement using Parametric Frame Space Interpolation."
Proceedings o f C om puter A m ination ‘93. Geneva, Sw itzerland,
pp. 216-227. Jun 1993

Hughes, John F. "Scheduled Fourier Volume M orphing."
Proceedings o f SIG G RA PH ‘92 - C om puter G raphics, vol. 26, no. 2,
pp. 43-46. Jul 1992

K aufm an, Arie. "Volume Visualization." W ashington: IEEE
C om puter Society Press. 1991

Kaul, and Rosssignac. "Solid-Interpolating Deformations:
Construction and Animation o f PIP s ." Proceedings o f
Eurographics ’91. Sep 1991

Page 115

3-D Animation and Morphing using RenderMan Appendix A Bibliography

[KENT91]

[KENT92]

[LASSET87]

[MAGNEN89]

[MAGNEN90]

[MAGNEN93]

[MARRI092]

[MEALIN94]

[OREILL91]

[OSTBY89]

[PARKE75a]

[PARKE75b]

[PIEGL85]

[PIEGL86]

K ent, Parent, and Carlson "Establishing Correspondences by
Topological Merging A new approach to 3-D Shape
Transformation " Proceedings o f G raphics Interface 91 Calgary,
A lberta, C anada Jun 1991

K ent, W ayne, R ichard "Shape Transformation fo r Polyhedral
Objects " Proceedings o f SIG G RA PH ‘92 - C om puter Graphics
vol 26, no 2, pp 47-54 Jul 1992

Lasseter, John "Principles o f Traditional Animation applied to 3-D
Computer Animation " P roceedings o f SIG G R A PH ‘87 - C om puter
G raphics pp 35-44 A naheim , California, U SA Jul 1987

M agnenat-Thalm ann, N adia "The Problematics o f Facial
Animation " Proceedings o f C om puter A nim ation '89 Jun 1989

M agnenat-Thalm ann, N adia and Thalm ann, D aniel "Synthetic Actors
in Computer-Generated 3D Films " B erlin, N ew Y ork
Springer-V erlag 1990

M agnenat-Thalm ann, N adia and Thalm ann, D aniel "Models and
Techniques in Computer Animation " Tokyo Springer-V erlag 1993

M am ot, A ndrew "Face Mapping fo r Character Animation "
Technical R eport no 14, Curtin U niversity o f Technology, Perth,
A ustralia 1992

M ealing, Stuart "Three Dimensional Modelling and Rendering on
the Macintosh " Oxford Intellect 1994

O'Reilly, D erek "Computer Generation o f Photorealistic Images
using Ray Tracing " M Sc in C om puter A pplications Thesis, D ublin
City U niversity, D ublin, Ireland 1991

Ostby, Eben F "Simplified Control o f Complex Animation "
Proceedings o f Com puter A nim ation '89 Jun 1989

Parke, Frederic I "A Model fo r Human Faces that allows speech
synchronized animation " Com puters & G raphics vol l , p p 3-4
1975

Parke, Frederic I " Measuring Three-Dimensional Surfaces with a
Two-Dimensional Tablet " C om puters & G raphics vol 1, pp 5-7
1975

Piegl, Laszlo "Representation o f Quadratic Primitives by Rational
Polynomials " C om puter A ided G eom etric D esign vol 2,
pp 151-155 1985

Piegl, Leslie "The Sphere as a Rational Bezier Surface " C om puter
A ided G eom etric D esign vol 3, no l , p p 45-52 1986

Page 116

3-D Animation and Morphing using RenderMan Appendix A: Bibliography

[PIEGL87]

[PIXAR89]

[REVEES83]

[REVEES90]

[R 0C K W 089]

[SACKS93]

[SCHMIT86]

[SEGAL92]

[SHAY87]

[SIGGRA92]

[THALMA89]

[THOMAS81]

[TILLER83]

[UPSTIL90]

[VINCE92]

Piegl, Leslie and Tiller, W ayne. "Curve and Surface Constructions
using Rational B-Splines." C om puter A ided D esign, vol. 19, no. 9,
pp. 485-498. 1987

Pixar. "RenderMan Interface Specification v. 3.1." C alifornia : P ixar
A nim ation Studios. 1989

Revees, W illiam T. "Particle Systems - A Technique fo r Modelling a
Class o f Fuzzy Objects." ACM Transactions on G raphics, vol. 2,
pp. 91-108. 1990

R evees, W illiam T. "Simple and Complex Facial Animation: Case
Studies." Proceedings o f A U SG R A PH '90. M elbourne, Australia.
1990

R ockw ood, Alyn P. "The Displacement Method fo r Implicit Blending
Surfaces in Solid M odels." A CM Transactions on Graphics, vol. 8,
no. 4, pp. 279-297. Oct 1989

Sacks, and Joskw icz. "Automated Modelling and Kinematic
Simulation o f Mechanisms." C om puter-A ided Design, vol. 25, no. 2,
pp. 106-118. 1993

Schm itt; Barskey, Brian; and Du. "An Adaptive Method fo r Surface-
Fitting from Sampled D ata ." Com puter G raphics, vol. 20, no. 4,
pp. 179-188. A ug 1986

Segal; Korobkin; vanW idenfelt; Foran; and Hoaerberli. "Fast
Shadows and Lighting Effects using Texture M apping." Proceedings
o f SIG G RA PH ‘92 - C om puter G raphics, vol. 26, no. 2, pp. 249-252.
Jul 1992

Shay, J.D. "Humpback to the Future." CINEFEX. 29. Feb 1987

SIG G RA PH . "3D Graphics Standards Debate: PEX versus
OpenGL." Proceedings o f SIG G RA PH ‘92 - C om puter Graphics,
vol. 26, no. 2, pp. 408-409. Jul 1992

Thalm ann, Daniel. "Motion Control: From Keyframe to Task-Level
Animation." Proceedings o f Com puter A nim ation '89. Jun 1989

Thom as and Johnston. "Disney Animation - The Illusion o f Life."
N ew York : A bbeville Press. 1981

Tiller, W ayne. "Rational B-Splines fo r Curve and Surface
Representation." IEEE Com puter. Society C om puter G raphics and
A pplications, vol. 3, no. 6. Sep 1983

U pstill, Steve. "The RenderMan Companion." Reading,
M assachusetts : A ddison-W esley. 1990

V ince, John. "3-D Computer Animation." W okingham , England;
Reading, M assachusetts : A ddison-W eslcy. 1992

Page 117

3-D Animation and Morphing using RenderMan Appendix A Bibliography

[VVEDEN92]

[WATERS87]

[WATT92]

[WOLBER90]

[WYVILL86a]

[WYVILL86b]

[WYYILL89]

[WYVILL90]

[WYYILL92]

V vedensky, D im itn D and H ollow ay, S tephen "Graphics and
Animation in Surface Science " B r is to l ,E ngland A H ilger 1992

W aters, Keith "A Muscle Model fo r Animating Three-Dimensional
Facial Expressions " Proceedings o f SIG G RA PH '87 - C om puter
G raphics pp 17-24 Jul 1987

W att, A lan and W att, M ark "Advanced Animation and Rendering
Techniques - Theory and Practice " N ew Y ork ACM Press ,
W okingham , England A ddison-W esley 1992

W olberg, G "Digital Image Warping” IEEE C om puter Society Press
1990

W yvill, G eoff, M cPheeters, Craig and W yvill, Brian "Data Structure
fo r Soft Objects " V isual C om puter vol 2, no 4, pp 227-234 1986

W yvill, B rian, M cPheeters, C raig and W yvill, G eoff "Animating Soft
Objects " V isual C om puter vol 2, no 4, pp 235-242 1986

W yvill, Brian and W yvill, G eoff "Using Soft Objects in Computer
Generated Character Animation " Com puters in Art, D esign and
A nim ation pp 283-297 1989

W yvill, Brian "Metamorphosis o f Implicit Surfaces " N otes from
SIG G RA PH ‘90, Course 23 - M odelling and A nim ation D allas,
Texas, U SA A ug 1990

W yvill, Brian "Warping Implicit Surfaces fo r Animation Effects "
Proceedings o f 1992 W estern C om puter G raphics Sym posium
A pr 1992

Page 118

3-D Animation and Morphing using RenderMan Appendix B 3-D Object File Formats

A p p e n d i x B : 3 - D O b j e c t F i l e F o r m a t s

This is a list o f som e of the file form ats that can define 3-D objects It show s the
difficulties involved in w orking with 3-D objects since objects can be in ju s t about
any form at and the form ats are not static - they change w ith new er releases o f
software

Center for Innovative Computer Applications 3D Obiect File Formats

This document contains information on various 3D object file formats
and how to view them from Mosaic Some of the formats have detailed
format specifications available by clicking on them If you know of
any other 3D object file formats, or have descriptions or pointers to
any of the formats that are here, please send email to
brian@ cica Indiana edu and let us know

Note: Some object file formats are being revised constantly
Where possible, links to the original sites of the file formats are
given to allow you to view the most recent version You are more
likely to find the most recent version of a format by following the
link to the original site rather than viewing the local copy

3D Object File Formats

ART (Another Ray Tracer)
Used by the ART ray tracer which comes with the public domain VORT package for Unix
Extensions art

AVS (Application Visualization System)
Used by the AVS commercial high-end visualization environment
Extensions geom, prop, scr

BYU
Used by the M ovie BYU program
Extensions byu

DKB
Used by the public domain DKB-Trace ray tracer The POV-Ray ray tracer (see below) is
an extension of DKB-Trace, however they use somewhat different object file formats
Extensions dkb

DXF (Drawing Interchange File)
Used by AutoCAD and other CAD packages There is also a minimal format specification
to help you create DXF 3D object files
Extensions dxf

IGES (Initial Graphics Exchange Standard)
Format used by many commercial programs including Autocad and Alias
Extensions lges

Infim-D
Used by the Infim-D package on the Macintosh
Extensions

Page 119

3-D Animation and Morphing using RenderMan Appendix B 3-D Object File Formats

Inventor
Used by SGI's Inventor graphics programming package There is a very nice program called
ivview that is available on SGI machines and is written using Inventor libraries
Extensions iv

LightWave
Used by the LightWave on the Amiga
Extensions 777

MGF (Materials and Geometry Format)
MGF documentation and examples are available at
ftp //hobbes Ibl gov/www/mgf/HOM E html
Extensions mgf

MSDL (Manchester Scene Description Language)
An mtro to MSDL is available from the Computer Graphics Unit at the University of
Manchester Libraries and filters are also available via ftp at f tp mcc ac uk pub/cgu/M SDL
Extensions msdl

NFF and ENFF (Neutral File Format)
Used by a variety of programs including several public domain raytracers There is at least
one NFF preview er program written using the VOGLE graphics library, but it doesn't allow
you to rotate or move the object, and only displays the scene as a wireframe ENFF is the
Extended Neutral File Format
Extensions nff, enff

NURBS (Non-lmear Uniform Rational B-Splines)
Spline surface format These models were created using the Alpha_I geometric modeling
system at the Computer Science Department, University of Utah
Extensions txt, nurbs

OBJ
Used by the Wavefront suite of commercial high-end animation packages
Extensions obj (for ASCII), mod (for binary)

OFF (Object File Format)
Mesh format used by several programs including some public domain raytracers
Extensions off

OOGL (Object Oriented Graphics Library)
These files can be displayed using the public domain Geomview program on SGI There is
now a Beta version using standard X for a variety of platforms, and a version running under
NeXTSTEP A tutorial of the OOGL format is also available An extension of the MESH
and OFF files are used by the M eshview program developed at Indiana University
Extensions oogl, off, list, tlist, grp, quad, mesh, inst, bez, vect

PLY
Used by the ZipPack polygon mesh "zippermg" package on the SGI The zipper program
and code for reading and writing the PLY format can be found at
ftp //graphics Stanford edu/pub/zippack More information about ZipPack can be found at
http //www-graphics Stanford edu/software/zippack
Extensions ply

Page 120

3-D Animation and Morphing using RenderMan Appendix B 3-D Object File Formats

POV (Persistence of Vision)
Used by the POV-Ray ray tracer for the Mac, PC, Amiga, and Unix A tutorial is also
available
Extensions pov

Radiance
Used by the Radiance public domain radiosity renderer for Unix The ASCII files are
converted into an octree format for rendering Documentation of the scene description files
and the Randiance package are available at
f tp //hobbes Ibl gov/www/radiance/radiance html
Extensions rad, oct

Rayshade
Used by the Rayshade public domain ray tracer for Unix
Extensions ray,, shade

RIB (RenderMan Interface Bytestream)
Used by the RenderMan commercial renderer by Pixar
Extensions nb

RWX (MEME Shape file)
Used by the MEME commencal virtual reality system for the IBM PC by Immersive
Systems
Extensions rwx

SCENE
The SCENE format is for the storage and interchange of 3D geometric information The
format is under construction Comments are being called for from interested parties, these
can be emaied to pdbourke@ ccul auckland ac nz The draft document is available through
Mosaic from http //archpropplan auckland ac nz/graphics/scene/scene html and is located
in the "Computer Graphics" directory
Extensions scene

SCN (SCeNe)
This format was designed to replace a very simple format called SFF used by the RTrace
raytracer There is a filter that converts SFF to SCN Many other converters are available to
convert to and from this format available via anonymous ftp from
asterix inescn p t pub/RTrace For more information about the RTrace package and
information about its author, see http //diana inescn pt/acc/acc html
Extensions sen

Sculpt
Used by Sculpt3D on the Amiga
Extensions scene

SDL (Scene Description Language)
Used by the Alias suite of commercial high-end animation packages SDL is actually a
language, and as such is very tricky to convert to other formats
Extensions sdl

Page 121

3-D Animation and Morphing using RenderMan Appendix B : 3-D Object File Formats

SDML (Spacial Data Modeling Language)
Used by the CLRMosaic package for Silicon Graphics workstations. The updated version of
the SDML format can be obtained from
http://www.clr.toronto.edu:1080/CLRMOSAIC/SDML.html. More information about
CLRMosaic can be found at http://www.clr.toronto.edu. lO8O/CLRMOSAIC/help-
about.html.
Extensions: sdml

SGO and Flip File (Silicon Graphics Object)
Used by the IRIS Showcase package for Silicon Graphics workstations. The Flip File format
is a very simple format which supports only quadrilaterals (four-sided polygons).
Extensions: sgo

Strata
Used by the StrataVision package on the Macintosh.
Extensions: ???

TDDD (3D Data Description)
Used by the Impulse's Imagine and Turbo Silver 3 .0 raytracers for the Amiga.
Extensions: tddd

TPoly (Triangulated Polygon)
Triangulated polygon files.
Extensions: tpoly, tnpoly

VID
Amiga VideoScape format.
Extensions: vid

YAODL (Yet Another Object Description Language)
Used by Silicon Graphics Powerflip program.
Extensions: ydl, yaodl

X3D
Used by x3d 2 .0 and the xdart renderer, both available via ftp from
dpls. dacc. wise, edu./graphics.
Extensions: x3d, obj

3DMF (3D Metafile)
Used by the Quickdraw 3D package from Apple. Additional documentation of the 3DMF
format can be found at http://www.info.apple.com/qd3d/3DM Fspec.HTM L.
Extensions

3DS
Used by the AutoDesk 3D-Studio package on the Macintosh.
Extensions: 3ds

3D2
Used by the Stereo CAD-3D 2.0 package for the Atari ST.
Extensions: 3d2

Page 122

http://www.clr.toronto.edu:1080/CLRMOSAIC/SDML.html
http://www.clr.toronto.edu
http://www.info.apple.com/qd3d/3DMFspec.HTML

3-D Animation and Morphing using RenderMan Appendix B 3-D Object File Formats

Virtual Reality Modeling Language Object File Formats
Virtual Reality Modeling Language (VRML) is a platform-independent language for virtual
reality scene design A standard format is being devised which will allow Web users to share
and link 3D objects and scenes with each other, in much the same way that HTML
documents can now be linked together Clicking on an object in a virtual world could jump
you to another virtual world on the Web Several proposals for such a format have been
submitted This section lists some of those formats

CDF (Cyberspace Description Format)
The purpose of the CDF is to provide a standard framework to store, retrieve, modify and
exchange descriptions of cyberspace objects These descriptions encompass object
initialization, object state and object scheduling within a cyberspace simulation The original
source for this document can be found at http //vrm l w ired com /proposals/cdf/cdf html
Extensions cdf

FFIVW (File Format for the Interchange of Virtual Worlds)
A proposal for a standard file format for storing descriptions of both individual objects and
entire worlds The original source for this document can be found at
http //vrm l w ired com/proposals/ffivw html
Extensions ffivw

IV-VRML (Inventor VRML Format)
A proposal for a VRML standard using SGI Inventor format as a basis This proposal
evolved into the VRML specification The original source for this document can be found at
http //w w w sgi com/tech/lnventor/VRM UVRMLDesign html
Extensions iv

Labyrinth-VRML (Labyrinth Virtual Reality Markup Language Format)
A proposal for a VRML standard for distributing virtual reality worlds over the World Wide
Web The original source for this document can be found at
http //vrm l w ired com /proposals/labspec html
Extensions vrml

SDML (Spacial Data Modeling Language)
Used by the CLRMosaic package for Silicon Graphics workstations The updated version of
the SDML format can be obtained from
http //w w w clr toronto edu IO8O/CLRMOSAIC/SDML html More information about
CLRMosaic can be found at http //w w w clr toronto edu 1080/CLRMC)SAIC/help-
about html
Extensions sdml

VRML (VRML Format)
A proposal for a VRML standard based on SGI Inventor format The original source for this
document can be found at http //w w w eit com/vrml/vrmlspec html
Extensions vrml

WebOOGL (Web Object Oriented Graphics Library Format)
WebOOGL is an extension of the OOGL format which allows URL links to be imbedded
within 3D objects, and allows multiple WebOOGL objects from different locations on the
Web to be combined into a single scene The original source for this document can be found
at http //w w w geom umn edu/docs/weboogl/weboogl html More information about how
OOGL can be used as a geometry format for VRML can be found at
http //vrm l w ired com /proposals/oogl html

Extensions oogl

Page 123

A p p e n d i x C : T a b l e o f F i g u r e s

3-D Animation and Morphing using RenderMan Appendix C Table of Figures

F igure 1 -1 Rendering is sim ilar to compiling 2

F igure 1-2 Sim ple Z-B uffer Rendering 4

F igure 1-3 Forw ard Ra y T racing 5

F igure 1-4 B ackw ard Ra y Tracing 5

F igure 1 -5 Flow chart for REYES A lgorithm 9

F igure 1-6 T he M odel l in g and Rendering Phases 12

F igure 1-7 A m b ien t L ight 14

F igure 1-8 D istant L ight 14

F igure 1-9 D istant L ight 14

F igure 1-10 Sp o t lig h t 14

F igure 1-11 V ir tu a l Cam era J 5

F igure 1-12 RIB Processing vs PostScript Processing 21

Graph 2-1 Sim ple V isualisation of tabu lar d ata 37

T a ble 2-1 D a t a for Graph 2-1 37

Figure 3-1 D ifferent types of interpolation 43

F igure 3-2 Sim ple 2-D L inear Interpolation K eyframes 43

F igure 3-3 M idpoints of I nterpolation between lines 44

F igure 3-4 I nterpolation for Four-Fram e A n im a tio n 45

F igure 3-5 Comparison of L inear a n d Spline I nterpolation 46

F igure 3-6 L inear Interpolation of a car m o ving from rest 47

F igure 3-7 Spline Interpolation of a car m o ving from rest 47

F igure 3-8 A B ézier curve 49

F igure 3-9 The B ezier basis functions 49

F igure 3-10 T he de Ca s te u a u representation of a B ézier curve 50

F igure 3-11 A Ca t m u ll -Rom Interpolating Spline 52

F igure 3-12 Parameters for representing the joints on a leg 54

F igure 3-13 Parameter tracking using spline interpolation 56

Page 124

3-D Animation and Morphing using RenderMan Appendix C Table of Figures

F igure 4-1 M orphing as a tw o -step process 5 8

Figure 4-2 M esh W arping in Tw o D imensions 62

Figure 4-3 Function for Field Contributions for a n I so-Surface 66

F igure 4-4 A Droplet Splits Up 67

Figure 4-5 Unblended surfaces 68

Figure 4-6 A blended surface 68

Figure 4-7 A lter native methods for interpolating field contributions during morphing 70

Figure 4-8 Object hierarchies for a body a nd a chair 72

F igure 4-9 Spheres w ith smooth a n d displaced surfaces 80

Figure 4-10 W aterbump D isplacement Shader 80

F ig u re 5-1 A simple a n im a tio n gene ra ted by Morphit 85

Figure 5-2 The N eX T 3DK it Objects (N3DCam era a n d N3DShape) H ierarchies 91

F ig u re 5-3 Screen S h o t o f SomhSimple app 92

F igure 5-4 M enu 93

F ig u re 5-5 Screen s h o t o f SomhSimple app cam era w indow 93

Figure 5-6 A sphere a n d a n approximated sphere 96

Figure 5-7 The morphing pipeline using RenderM an 100

F igure 5-8 M orphing the underlying meshes 101

Figure 5-9 A sphere a n d a cubic-replica using six Patchmeshes 102

F igure 5-10 A cube morphing into a sphere (no shader) 103

Page 125

3-D Animation and Morphing using RenderMan Appendix D Program Listings

A p p e n d i x D : P r o g r a m L i s t i n g s

Morphit

copyit c
m orphit c

SomhSimple app

Sim pleC am era h
S im pleC am era m
S im pleShape h
S im pleShape m

O ther Program s

jo in n b s c

Page 126

/ ' ,
C opyit c

/ * c o p y it c - - the program th a t w i l l make a number o f copies o f a g iven RIB
f i l e in s e r t in g d i f fe r e n t va lues m the f i l e a t each instance

Somhairle Foley 14th May 1993 - 31 Oct 1995

example

>m orphit 145 r b a l l -72

th is w i l l take the r b a l l r ib f i l e and make 145 copies o f i t
w ith f i l e names from rba llO O l r ib to rb a ll l4 5 r ib

the -72 p a r t t e l l s the program to s ta r t using the coord inates
a t -72 i e va lues are to be tre a te d as i f from -72 to +72
a to ta l o f 145 frames (remember th a t 0 is a va lue too)

the -72 p a r t is o p tio n a l I f i t is l e f t o u t, then the i n i t i a l
va lue is taken to be 1

16/06/93

C urrent assignments are
%I - inc lude another f i l e
% Ja b - In te rp o la te (m ts) a+((b -a)/n u m _ flie s)
%Ka b - In te rp o la te (f lo a ts) a+((b -a)/n u m _ flie s ’
%M - morphing the fo llo w in g Patchmes
%R - the number o f the f i l e l-n u m _ file s
%S - the count + /- the o f fs e t
%T - %S * 5
%U - %S * 10
%V - %S / 16
%W - %S * 2 5
%X - %S / 2
%Y - %S / 5

* /
#inc lude < s td io h>
#m clude < s td lib h>
#m clude < s tn n g h>

»define TRUE 0
(d e fin e FALSE 1

/* For adding morphing * /
exte rn m t m o rp h itl cha r*, FILE*, FILE*, m t , i n t),

/ * exte rn char m _char, cur_word[40],
ex te rn in t le t t e r ,
* /

char keyword[10] = "%S\0" ,

FILE *m _ fp , *copy_fp,
FILE *save_fp,

in t m a in lin t argc, char* a rg v [])
{

char m _char, m _ flle n a m e [5 0], copy_fllenam e[5 0], copy_file_num ber[50],
in t f i le _ c o u n t, by_ten_count,
in t num_frames, start_num ,
in t file_nam e_count = 0, in c lu d in g _ f l ie = FALSE,
char m c lu d e _ f i le [5 0], m o rp h _ flie [50],
f lo a t s ta rt_ v a lu e , end_value, cur_va lue, s c a le _ fa c to r ,
char s trm g _ va lu e [32] ,
in t s trm g_va lue_coun t,

i f (argc 1= 3 && argc 1= 4)
{
f p r m t f (s td e r r , "Usage m orph it <number o f frames> <RIB filenam e> + / - [s ta r t number] \n ") ,
e x i t (1),

}

i f (argc == 4 && a rg v [3] [0] '= && a rg v [3] [0] '= '+ ')
{
fp r m t f (s td e r r , "Usage m orph it <number o f frames> <RIB filenam e> + / - [s ta r t number] \n ") ,
e x i t (1),

}

num_frames = a t o i (a rg v [l]),
i f (num_frames < 1 j j num_frames > 199)
{
fp r m t f (s td e r r , "m orph it number o f frames must be between 1 and 199 \n ") ,
e x i t (1),

}

s trc p y l m _filenam e, a rg v [2]),

P a g e 1

C o p y i t c

s t r c a t (m _fllenam e, " r ib "),
i f ((m _ fp = f open (m _ f llename, " r ")) == NULL)
{
f p r m t f (s td e rr , "m orphit Cannot open in p u t ' f i l e % s\n", m _fllenam e),
e x i t (1),

}

i f (argc == 4)
{
start_num = a to i(a r g v [3]) ,
i f ((start_num < 1 && start_num < (-num_frames/2)) | | (start_num > 1))

f p r m t f (s td e rr , “m orph it Warning Number o f frames is unbalanced I t w i l l run from %03d to %3d \n " , s t a r t
num, start_num +num _fram es-l),

}
e lse
start_num = 1,

fo r (f i le _ c o u n t = 1, f i le _ c o u n t <= num_frames , file_ co un t+ +)
{
rewind (m _ fp) ,
s p r m t f (copy_fllenam e, "%s%03d r ib \0 " , a rg v [2], f ile _ c o u n t),

i f ((copy_fp = fopen(copy_fllenam e, "w")) == NULL)
{

f p r m t f (s td e r r , "m orphit Cannot open ou tpu t f i l e % s\n", copy_fllenam e),
e x i t (1),

}

p n n t f ("%03d Making Frame F ile %s c u rre n t t ra n s la t io n s are %03d\n", f ile _ c o u n t, c o p y _ fileñame, s ta rt_n u
m + file _ c o u n t-l),

w h ile (1 fe o f (m _ fp) | | in c lu d m g _ fi l e == TRUE)
{

/ * Check i f we are in c lu d in g a f i l e and i t has come to the eof * /

i f (in c lu d in g _ f l ie == TRUE && fe o f(m _ fp))
{

fc lo s e (m _ fp) ,
m _ fp = save_fp,
m c lu d m g _ f l i e = FALSE,

}

m _char = fg e tc (m _ fp) ,
i f (m _char == '%')
{

m _char = fg e tc (m _ fp),

i f (m _char == ' I ')
{
file_nam e_count = 0,
s trn c p y t m c lu d e _ f l ie , " \0 " , 30),
w h ile ((m _char = fg e tc (m _ fp)) '= ' \ n ' && f ile_name_count < 30)
{

m c lu d e _ f l ie [file_name_count++] = m _char,
}

save_fp = m _ fp ,
i f ((m _ fp = fopen(m c lu d e _ f l ie , " r “)) == NULL)
{

fp rm t f (s td e r r , " m o r p h it Warning - cannot open inc lude f i l e %s \ n " , m c lu d e _ f l ie) ,
m _ fp = save_fp,
m c lu d m g _ f ile = FALSE, / * th is l in e s h o u ld n 't be necessary * /

}
e lse

m c lu d in g _ f i le = TRUE,

}
e lse i f (m _char == 'J ')

{
/ * For in te g e r key-va lue in te rp o la t io n , read m the re s t o f l in e

as s ta r t va lu e , co lon, end value
* /

s ta rt_ v a lu e = -999, end_value = -999,
/ * Read m S ta r t Value * /

s trm g_va lue_coun t = 0,
s trn cp y (s trm g _ v a lu e , "NO", 30),
w h ile ((m _char = fg e tc (m _ fp)) '= ' \n ' && m _char '= ' ' && m _char '= ' ' && s trm g_va lue_coun t < 30

)
{

s trm g _ v a lu e [s trm g_va lue_coun t+ +] = m _char,
}

i f (s trm g_va lue_coun t >= 30)

P a g e 2

{
f p r m t f (s t d e r r , “E rro r reading \045K Keyframe s ta r t va lueN n"),
break,

}
s ta rt_ v a lu e = a to f (s tn n g _ va lu e) ,

i f (m _char == ' \ n ')
{

f p r m t f (s t d e r r , "E rro r reading \045K Keyframe no colon or end v a lu e \n ") ,
break,

}

/ * Read m End Value * /
s trm g_va lue_coun t = 0,
s trn c p y l s trm g _ v a lu e , " \0 " , 30),
w h ile ((m _char = fg e tc (m _ fp)) '= ' \ n ' && m _char '= 1 1 && s trm g_va lue_coun t < 30)
{

s trm g _ va lu e [strm g_va lue_count++] = m _char,
}

i f (s tring_va lue_coun t >= 30)
{

fp r m t f (s td e r r , " E r r o r reading \045K Keyframe end v a lu e \n ") ,
break,

}
end_value = a to f (s trm g _ va lu e) ,

p rm tf("R e a d Keyframe values s ta r t %f end %f ", s ta rt_ v a lu e , end_value),
/ * DO SOMETHING * /

sca le _ fac to r= ((f lo a t) f i le _ c o u n t - l) / ((f l o a t)num_frames-1),
cur_value = s ta rt_ v a lu e + ((e n d _ v a lu e -s ta rt_ v a lu e)*s c a le _ fa c to r),

p n n t f (" cur_value (in te g e r) is %d \n " , (m t) cur_value) ,
f p r m t f (copy_fp, " %d ", (in t)c u r_ v a lu e) ,

/ * I f %J is la s t va lue on l in e , ou tpu t a new line charac te r * /
i f (m _char == ' \ n ')

fp u tc (' \ n ' , co py_ fp),

}
e lse i f (m _char == 'K ')

{
/ * For f lo a t in g -p o in t key-va lue in te rp o la t io n , read m the re s t

o f l in e as s ta r t va lue, co lon, end va lue Values are f lo a ts
* /

s ta rt_ v a lu e = -999, end_value = -999,
/ * Read m S ta r t Value * /

s tring _va lue _cou n t = 0,
s trncp y(s trm g _ v a lu e , " \0 " , 30),
w h ile ((m _char = fg e tc (m _fp)) '= ' \ n ' && m _char '= 1 ' && m _char '= ' ' && strm g_va lue_coun t < 30

)
{

s trm g _ va lu e [s trm g_va lue_coun t+ +] = m _char,
}

i f (s trm g_va lue_coun t >= 3 0)
{

f p r m t f (s t d e r r , “E rro r reading \045K Keyframe s ta r t v a lu e \n ") ,
break,

}
s ta rt_ v a lu e = a to f (s trm g _va lu e) ,

i f (m _char == ' \ n ')
{

f p r m t f (s t d e r r , "E rro r reading \045K Keyframe no colon o r end v a lu e \n ") ,
break,

)

/ * Read m End Value * /
s trm g_va lue_coun t = 0,
s trncp y(s trm g _ v a lu e , " \0 " , 30),
w h ile ((m _char = fg e tc (m _ fp)) ' = ' \ n ' && m _char '= ' ' s trm g_va lue_coun t < 30)
{

s trm g _ v a lu e [s trm g_va lue_coun t+ +] = m _char,
}

i f (s tr ing _va lue _cou n t >= 30)
{

fp r m t f (s td e r r , " E r r o r reading \045K Keyframe end valueNn”),
break,

}
end_value = a to f (s trm g _ va lu e) ,

p n n tf("R e a d Keyframe values s ta r t %f end %f ", s ta rt_ v a lu e , end_value),
/ * DO SOMETHING * /

C o p y i t c

P a g e 3

C o p y i t c

s ca le _ fac to r= ({ f lo a t) f i le _ c o u n t - l) / ((floa t)num _fram es-1),
cur_value = s ta rt_ v a lu e + ((e n d _ v a lu e -s ta rt_ v a lu e)*s c a le _ fa c to r) ,

p r i n t f ("cur_va lue is %f \ n " , cu r_ va lu e),
f p n n t f (copy_fp, " %f ” , cur_value) ,

/ * I f %K is la s t va lue on l in e , ou tpu t a new line charac te r * /
i f (m _char == ' \ n ')

fp u tc (' \ n 1, co p y_ fp),

}
e lse i f (m _char == 'M')

{
/ * For morphing, read m the re s t o f l in e as morph f i l e name

and send i t to m o rp h it() This should leave the fp back
a t the s ta r t o f the l in e fo llo w in g the next RIB p rim a tiv e

* /

file_nam e_count = 0,
s trn c p y t m orph _ file , " \0\0\0\0\0\0\0\0\0\0\0\0\0\0\0" , 30) ,
w h ile ((m _char = fg e tc (m _fp)) '= ' \ n ' && f ile_name_count < 30)
{

m orph_flie [file_nam e_count++] = m _char,
}

/ * C a ll the m o rp h it() fu n c tio n m m orph it c f i l e * /
m o rp h it(m o rp h _ file , m _ fp , copy_fp, f i le _ c o u n t, num_frames),

}
e lse i f (m _char == 'R ')

{
s p n n t f (copy_f ile_num ber,
fp u tc (copy_file_num ber[0]
fp u tc (copy_f ile__number [1]
fp u tc (copy_file_num ber[2]

}
e lse i f (m _char == 'S ')
{

s p n n t f (copy_file_num ber, "%03d\0"
fp u tc (copy_file_num ber[0], copy_fp),

fp u tc (copy_file_num ber[1], copy_fp

"%03d\0", f ile _ c o u n t
copy_fp),
copy_fp),
copy_fp),

s ta rt_ n u m + file _ c o u n t- l),

) ,

fp u tc (copy_file_num ber[2], copy_fp) ;
}
e lse i f

{
(m _char == ' T')

s p n n t f (copy_f ile_num ber,
fp u tc (copy_file_num ber[0] ,
fp u tc (copy_flle_num ber[1],
fp u tc (copy_flle_num ber[2] ,

"%04d\0” ,
copy_fp
copy_fp
copy_fp

(s ta r t_ n u m + file _ c o u n t- l)*5) ,

fp u tc (copy_file_num ber[3], copy_fp),
}
e lse i f (m _char == 'U ')
{
by_ten_count (s ta rt_ n u m + flle _ c o u n t-1) 10,
w h ile (by_ten_count > 360

by_ten_count -= 3 60,
s p n n t f (copy_f ile_num ber,
fp u tc (copy_file_num ber[0],
fp u tc (copy_flle_num ber[1],
fp u tc (copy_file_num ber[2],
fp u tc (copy_file_num ber[3],
}
e lse i f (m _char == 'V ‘)
{
s trn c p y (copy_fi le_number,
s p n n t f (copy_f ile_number

)

"%04d\0“
copy_fp)
copy_fp)
copy_fp)
copy_fp)

by_ten_count)

copy_flle_num ber[0]
copy_flle_num ber[1]
copy_flle_num ber[2]
copy_file_num ber[3]
copy_flle_num ber[4]
copy_flle_num ber[5]
copy_flle_num ber[6]
copy_flle_num ber[7]

" \0 " , 10),
"%0 4 f\0 " , (start_num+

i f
i f
i f
i f
i f
i f
i f
i f

}
e lse i f (m _char == ' W')

{
s p n n t f (copy_f ile_num ber,
fp u tc < copy_file_num ber[0]
fp u tc (copy_file_num ber[1],
fp u tc (copy_file_num ber[2] ,
fp u tc (copy_file_num ber[3] ,
)
e lse i f (m _char == 'X ')
{
s trncp y(copy_file_num ber,
s p n n t f (copy_file_num ber,

1 \0 ■
‘ \0 ■
■ \o ■
' \o •
' \o-
■ \o ■
■ \o ■
■ \o ■

fp u tc (co py_ fi
fp u tc (copy_ fi
fp u tc (copy_ fi
fp u tc (copy_ fi
fp u tc (co py_ fi
fp u tc (co py_ fi
fp u tc (co py_ fi
fp u tc (copy_ fi

f i le _ c o u n t - l)
le_number[0]
le_number[1]
le_number[2]
le_number[3]
le_number[4]
le_number[5]
le_number[6]
le_number[7]

/ 16 0),
copy_fp)
copy_fp)
copy_fp)
copy_fp)
copy_fp)
copy_fp)
copy_fp)
copy_fp)

%4 l f \ 0 "
copy_fp)
copy_fp)
copy_fp)
copy_fp)

■ \ 0 " , 10
■%0 4f \ 0"

(s ta r t_ n u m + file _ c o u n t- l)*2 5

(s ta rt_ n u m + file _ c o u n t- l) / 2 0),

P a g e 4

C o p y i t c

i f copy_file_num ber[0] i= >\0' fp u tc (copy_file_num ber[0], copy_fp
i f copy_file_num ber[1] .= ■ \ 0 ■ fp u tc (copy_file_num ber[1], copy_fp
i f c opy_f11e_number[2] i= ' \ 0 ' fp u tc (copy_file_num ber[2], copy_fp
i f c o p y _ fl1e_number[3] i= ■ \ 0 ■ fp u tc (copy_file_num ber[3] , copy_fp
i f copy_flle_num ber[4] '= ■ \ o ■ fp u tc (copy_file_:number [4] , copy_fp
i f copy_file_num ber[5] i= . \0 ' fp u tc (copy_flle_num ber[5], copy_fp
i f c o p y _ fl1e_number[6] '= ■ \ o ■ fp u tc (copy_file_num ber[6], copy_fp
i f c opy_f11e_number[7] 1= ' \ 0 ' fp u tc (copy_file_num ber[7] , copy_fp

}
e lse i f (m _char == 'Y ')
{
s trncp y(copy_file_num ber, " \0 " , 10),
s p n n t f (copy_f ile_number
i f (copy_f11e_number[0]
i f (copy_file_num ber[1]
i f (copy_file_num ber[2]
i f (copy_file_num ber[3]
i f (copy_file_num ber[4]
i f '(copy_file_num ber[5]
i f (copy_file_num ber[6]
i f (copy_file_num ber[7]

}
e lse

{

fp u tc (, copy_fp),
fp u tc (m _char, copy_fp) ,
}

}
e lse i f (' fe o f(in _ fp)) / * Stops the e n d -o f - f i le markers being w r it te n * /

fp u tc (in_char, copy_fp) , / * w r ite out the char * /

} / * end w h ile 'fe o f(m _ fp) * /
fc lo s e t copy_fp),

} / * end fo r * /

p n n t f ("===\n"),
p n n t f ("m orphit F in ished Ok %s r ib %d fram e s\n \n ” , a rg v [2] , num_frames),

r e tu rn (fc lo s e t in _ fp)),

1\ 0') fp u tc (copy_file_num ber[0], copy_fp)
' \ 0') fp u tc (copy_file_num ber[1], copy_fp)
' \ 0') fp u tc (copy_file_num ber[2], copy_fp
' \ 0') fp u tc (copy_file_num ber[3], copy_fp
' \ 0') fp u tc (copy_file_num ber[4], copy_fp)
' \ 0') fp u tc (copy_file_num ber[5], copy_fp
' \ 0 ') fp u tc (copy_file_num ber[6], copy_fp)
1\ 0 1) fp u tc (copy_file_num ber[7], copy_fp)

P a g e 5

M o r p h i t c

/ * * * * * This f i l e must be lin k e d w ith c o p y it c to run p ro p e rly **
/ *
/ * m orph it c - does the o b je c t ana lys is /m orph ing when req u ired
/ *
/ * Somhairle Foley Created June 1994
/ * M od ified up to J u ly 1996 fo r bugs and upgrades

#m clude < s td io h>
♦in c lu d e < s td l ib h>
#in c lu d e <ctype h>
fm c lu d e < s tn n g h>

fd e fin e TRUE 1
td e fin e FALSE 0

td e fin e Copy3DPomts (dest, s rc) (dest) p o in t [0] = (src) p o in t [0], (dest) p o in t [1]= (src) p o in t [1], (dest) p o m t[2]
= (src) p o in t [2],

#define NUM_KEYWORDS 21

fd e fin e MAX_3D_P0INTS 13 0
/ * This is set to 13 0 o r 4 00 beecause the PC c a n 't handle anyth ing b igge r

I t needs to be re s e t fo r UNIX Meshes o f 41x11 are too b ig fo r PC
* /

td e fin e NOTHING -1

fd e fin e SPHERE 0
#defin e CYLINDER 1
#defin e CONE 2
fd e fin e DISK 3
fd e fin e POLYGON 4
fd e fin e GEN_POLYGON 5
fd e fin e TORUS 6
td e fin e HYPERBOLOID 7
td e fin e PATCH 8
td e fin e PATCHMESH 9
td e fin e PARABOLOID 10
td e fin e ROTATE 11
fd e fin e SCALE 12
td e fin e TRANSLATE 13
td e fin e ATTRIBUTEBEGIN 14
td e fin e ATTRIBUTEEND 15
td e fin e TRANSFORMBEGIN 16
fd e fin e TRANSFORMEND 17
td e fin e COLOR 18
fd e fin e ATTRIBUTE 19
td e fin e GEOMETRIC_REP 20

/* fo r s to r in g a whole o b je c t as a l i s t o f p o in ts fo r in te rp o la te * /

typedef s t ru c t
{

/ * Tem porarily t re a t in g th is as a f lo a t double p o in t [3], * /
f lo a t p o in t [3],
) p o in t l i s t ,

/ * fo r s to r in g the d e ta i ls a t the s ta r t o f a Patchmesh d e s c r ip tio n * /
typedef s t ru c t

{
char meshtype[1 4], / * 'b ic u b ic ' o r 'b i l in e a r ' * /
in t numl,
char p e r io d l[1 6], / * 'p e r io d ic ' o r 'n o n p e rio d ic ' * /
in t num2,
char p e rio d 2 [1 6],
char p o in t ty p e [4], / * Always "P" * /
) patchmesh_record,

/ * fo r s to r in g the d e ta i ls a t the s ta r t o f a Patch d e s c r ip tio n * /
typedef s tru c t

{
in t meshtype,
in t p o in tty p e ,
} patch_record,

/ * fo r s to r in g the d e ta i ls
typedef s t ru c t

{
f lo a t ra d iu s ,
f lo a t zp lus,
f lo a t zmmus,
f lo a t z_sweep,
} sphere_record,

o f a Sphere * /

/ * rad iu s o f Sphere * /
/ * pos d is tance fo r z -a x is 's l ic e ' * /
/ * neg d is tance fo r z -a x is 's l ic e ' * /
/ * degree o f sweep o f o b je c t <= 360 * /

★ * ★ I
*/
*/
*/
*/
* /

* * * /

P a g e 1

M o r p h i t c

typedef union
{
patchmesh_record mesh,
patch_record patch,
sphere_record sphere,
} o b jec t_ record ,

char keywords[NUM_KEYWORDS][24] = {
"Sphere", "C y lin d e r", "Cone", "D isk “ , "Polygon", "G eneralPolygon",
"Torus", "H yperbo lo id ", "Patch", "PatchMesh",
"P a rabo lo id ", "R o ta te", "S ca le", "T ra n s la te ",
"A ttn b u te B e g m ", " A ttn b u te E n d ",
11 Transform Begm ", "TransformEnd",
"C o lo r", "A t t r ib u te " , “Geom etncRepresentation"

char cont, / * used to a llo w users to press 'QQQ' once * /

/ * These 'a n a l' v a r ia b le s are to a llo w someone to decide no t to see any more
a n a lys is o f A t t r ib u te , Patch and Patchmesh statements re s p e c tiv e ly
They have to be g lo b a l because the fu n c tio n s th a t they are used m would
no t keep tra c k o f th e ir va lues (as lo c a l vars)

* /

in t name_anal = TRUE,
in t patch_anal = TRUE,
in t mesh_anal = TRUE,

in t re a d _ p rim a tive (FILE* fp , in t * p nm ative _ type , p o in t l is t * th e _ p o m tl is t , o b jec t_ record* d e ta i ls),
i n t w n te _ p r im a tiv e (FILE* fp , i n t p nm ative _ type , p o in t l is t * th e _ p o m tl is t , ob jec t_ re co rd* d e ta i ls),
in t a d d e x tra p o m ts (ob jec t_ re co rd* source j b j , p o in t l i s t * s ta r t_ p o m ts , o b je c t je c o rd * ta rg e t j b j) ,

/ * You c a n 't w in 1 When someone says they want 5 frames That means th a t
they want to have the s ta r t p o in ts m Frame 1 and the end p o in ts m
Frame 5 This d oe sn 't add up This leaves o n ly Frames 2,3 and 4
A to ta l o f 3 frames Since we are a c tu a lly o n ly in te re s te d m changes
m th is fu n c tio n , th is means th a t we have 4 d if fe r e n t sets
l -> 2 , 2->3, 3->4, 4->5

This means th a t we d o n 't use m u lt /d iv (the c u rre n t frame / to ta l number
o f frames) We use (m u lt-1) / (d iv -1)

* /

vo id in te rp o la te (p o in t l i s t * s ta r t , p o in t l i s t *end, p o in t l is t * in te rp , i n t m u lt, in t d iv)
{

in t cu r_ p o in t = 0,
f lo a t s c a le _ fa c to r ,

sc a le _ fa c to r = m u lt-1 ,
sc a le _ fa c to r /= (d iv - 1) ,

/ * In te rp o la t io n is c a rr ie d ou t u n t i l the same p o in t m the p o in t l is t s
are equal to 0 - th is may have to be changed to ge t the s ize o f a l i s t

from the ob jec t_ re co rd o f the o b jec ts
* /

w h ile (' (s ta r t [c u r j o in t] p o in tlO] == 0 && end[cur j o i n t] p o m t[0] == 0 &&
s ta r t [cu r_ p o m t] p o in t [1] == 0 && end [c u r jo in t] p o in t [1] == 0 &&
s ta r t [c u r j o in t] p o in t [2] == 0 && end [cu r j o i n t] p o in t [2] = = 0))

{
in te rp [cu r j o i n t] p o m t[0] = s ta r t [cu r j o i n t] p o in t [0] + ((end [c u r jo in t] p o in t [0] - s t a r t [cu r j o i n t] p o in t [

0]) *s c a le _ fa c to r),
in te rp [cu r j o i n t] p o m t [l] = s ta r t [cu r j o i n t] p o in t [l] + ((end [c u r jo in t] p o in t [1] - s ta r t [cu r j o i n t] p o m t[

1]) *s c a le _ fa c to r),
in te rp [cu r j o i n t] p o in t [2] = s ta r t [cu r j o i n t] p o in t [2] + ((end [c u r jo in t] p o in t [2] - s ta r t [cu r j o i n t] p o in t [

2]) *s c a le _ fa c to r) ,
c u r jo m t + t ,

}

/ * p r i n t f (" ") ,
* /
}

/ * This a l l assumes th e re are more ta rg e t p o in ts than source p o in ts * /
/ * We want to have th is fu n c tio n take m the p o in t l i s t and f in d out how

much the d i f fe r e n t is between the source and ta rg e t is when i t comes to
p o in ts per row/colomn

The i n i t i a l a lg o rith m w i l l be
m u t l ip ly source numl*num2 and take th a t away from ta rg e t numl*num2
Decide how many tim es the d if fe re n c e can cover the source
(i e d o u b le , t r ip le ,e tc the source p o in ts)

P a g e 2

M o r p h i t c

Add the l e f t over p o in ts to the s ta r t p o in ts
Double, T r ip le , Quadruple, e tc , a l l the p o in ts

Reset the la s t p o in t to 0 ,0 ,0

This means th a t p o in ts w i l l o n ly be d u p lic a te d - no in te rp o la t io n
happens
11/08/94
This is a b ru te - fo rc e answer to the problem But d u p lic a tin g
the p o in ts is a complex problem You must be s e n s it iv e to what
p o in ts you are changing

To change a 13x10 patchmesh to a 14*10 patchmesh,
d u p lic a te every 13th p o in t

To change a 14x10 patchmesh to a 14*11 patchmesh,
d u p lic a te the la s t 14 p o in ts

=> To change a 13x10 to a 41x11
p u tt in g them a l l a t the s ta r t /e n d p o in ts

d u p lic a te every 13th p o in t 28 times and
d u p lic a te the la s t 41 p o in ts 1 time

th is g ives us d u p lic a te every source numl p o in t
(ta rg e t numl-source numl) times

and d u p lic a te the la s t ta rg e t numl p o in ts
(ta rg e t num2-source num2) times

and we do th is by
copying the f i r s t source numl p o in ts over
d u p lic a tin g the source num lth p o in t d iff_ n u m l times
rep ea ting the above procedure source num2-l times
on the source num2th tim e, record the v a lu e s (ta rg e t numl o f them)
d u p lic a te the ta rg e t numl values diff_num2 times

* /

in t addextracolum ns(ob jec t_ re co rd* source_obj, p o in t l i s t * s ta r t_ p o in ts , ob jec t_ re co rd* ta rg e t_ ob])
{

in t d iff_ n u m l, s rc _ o ffs e t,
p o in t l i s t temp_pomts [(2*MAX_3D_POINTS)] ,
p o in t l i s t dup_pom t,
in t temp_count, src_count, row_count,

/ * Remember NUM1 is columns, NUM2 is rows * /

d iff_ n u m l = ((ta rg e t_ o b 3->mesh) numl - (source_ob]->mesh) numl),

temp_count = 0, / * This is the counter fo r temp_pomts * /
row_count = 0 , / * This counts how many rows are processed * /

/ * Repeat fo r a l l the rows m the source mesh * /

w h ile (row_count < (source_ob]->mesh) num2)
{

/ * F i r s t copy the source 'row ' over to temp * /
fo r (src_count=0, src_count < (source_obj->mesh) numl, src_count++)
{

s rc _ o ffs e t = (row_count * (source_ob;)->mesh) numl) + src_count,

Copy3DPomts (temp_pomts [temp_count] , s ta r t_ p o in ts [s rc_ o f fs e t]) ,
temp_count++,

}

/ * Save the la s t p o in t m the row * /
Copy3DPomts (dup_point, s ta rt_ p o m ts [s rc _ o ffs e t]) ,

/ * Now add the p o in ts to the end o f the row * /
fo r (src_count=0, src_count < d iff_ n u m l, src_count++)
{

Copy3DPomts (temp_pomts [temp_count] , dup_point) ,
t emp_c oun t ++,

}

row_count++,
}

/ * Check th a t the r ig h t number o f p o in ts are generated * /
i f (temp_count '= (target_ob]->m esh) numl * (source_ob3->mesh) num2)
{

f p r m t f (s td e r r , \7 \7 \7 m o rp h it addextracolumns count e rro r \ n \ t temp_count is %d, and " , tem p_count),
f p r m t f (s t d e r r , " ta rg e t fo r p o in ts is %d\n", (target_obj->m esh) numl * (source_ob]->mesh) num2),
r e tu r n (0),

)

/ * Copy temp_pomts in to s ta r t j o i n t s * /
fo r (src_count=0, src_count<temp_count, src_count++)
{

Copy3DPomts (s ta r t_ p o m ts [src_count] , temp_points [src_count]) ,

P a g e 3

M o r p h i t c

/ * A P o in t {0 ,0 ,0 } marks the end o f the p o in t l i s t * /
s ta r t_ p o in ts [s rc _ c o u n t] p o in t [0] = 0,
s t a r t jo m t s [src_count] p o in t [1] = 0,
s ta rt_ p o in ts [s rc _ c o u n t] p o in t [2] = 0,

/ * Update mesh s ize m o b je c t record * /
(source_obj->mesh) numl = (target_obj->m esh) numl,

r e tu r n (1),

in t addextrarow s(ob jec t_ re co rd* s o u r c e jb j , p o in t l i s t * s ta r t_ p o in ts , ob jec t_ re co rd* ta rg e t j b j)
{

in t d iff_num 2, s rc _ o ffs e t,
p o in t l i s t tem p_po in ts[(2*MAX_3D_POINTS)] ,
p o in t l i s t dup_lme[MAX_3D_POINTS] ,
in t temp_count, src_count, loc_ las t_ ro w , dup_count, row_count,

/ * Remember NUM1 is columns, NUM2 is rows * /

diff_num2 = ((ta rg e t jb j-> m e s h) num2 - (so urce jb j-> m esh) num2),
temp_count = 0, / * This is the counter fo r temp_pomts * /
ro w jo u n t = 0 , / * This counts how many rows are processed * /

/ * Repeat fo r a l l the rows m the source raesh * /

w h ile (row_count < (so u rce jb j-> m esh) num2)
{

/ * F i r s t copy the source 'row ' over to temp * /
fo r (src_count=0, src_count < (so urce jb j-> m esh) numl, src_count++)
{

s rc _ o ffs e t = (row_count * (source jb j-> m e s h) numl) + src_count,

Copy3DPomts (tem p_points [temp_count] , s ta rt_ p o m ts [s rc j f f s e t]) ,
temp_count++,

}

row_count++,

/ * Check i f th is is s ta r t in g the la s t row * /
i f (row_count == (source jb j-> m e s h) num2 - 1)

loc_ las t_ ro w = temp_count,
>

/ * Now save the e n t ire la s t row o f the m od ified source * /
fo r (dup_count=0, d u p jo u n t< (sou rce jb j-> m e sh) numl, dup_count++)
{

Copy3DPomts (dup_lm e [dup_count] , temp_points [loc_last_row+dup_count]) ,
)

/ * D up lica te the la s t row diff_num2 times * /
fo r (row_count=0, row_count < diff_num 2, row_count++)

fo r (dup_count=0, d u p jo u n t< (sou rce jb j-> m esh) numl, dup_count++)
{

Copy3DPomts (temp_pomts [temp_count] , dup_line [dup_count]) ,
temp_count++,

}

/ * Check th a t the r ig h t number o f p o in ts are generated * /
i f (temp_count '= (source_ob]->mesh) numl * (target_ob]->mesh) num2)
{

f p r m t f (s t d e r r , " \7 \7 \7 m o rp h it addextrarows count e rro r \ n \ t temp_count is %d, and “ , tem p_count),
f p r m t f (s td e r r , " ta r g e t fo r p o in ts is %d\n", (source_ob]->mesh) numl * (target_obj->m esh) num2),
r e tu r n (0),

>

/ * Copy temp_pouits in to s ta rt_ p o m ts * /
fo r (src_count=0, src_count<temp_count, src_count++)
{

C o p y3 D P o in ts (s ta rt^p o in ts [s rc_ co u n t], tem p_points[src_count]) ,
)

/ * A P o in t {0 ,0 ,0 } marks the end o f the p o in t l i s t * /
s ta r t jo in ts [s r c _ c o u n t] p o in t [0] = 0,
s ta r t j o i n t s [s rc_coun t] p o in t [1] = 0,
s t a r t j o i n t s [src_count] p o in t [2] = 0,

/ * Update mesh s iz e m o b je c t record * /
(so u rce jb j-> m esh) num2 = (ta rg e tjb j-> m e s h) num2,

r e tu r n (1),

/* REMOVEEXTRAPOINTS is a fu n c t io n which takes the d e ta ils o f two ob jec ts and a l i s t o f
3D p o in ts as i t s parameters The l i s t o f 3D p o in ts is in the form s p e c ifie d m the

P a g e 4

M o r p h i t c

o b je c t record CURRENT I t s goal is to remove e x tra rows and columns o f 3D p o in ts so
th a t the 3D p o in t l i s t is m the form s p e c ifie d in the o b je c t record REQUIRED

The p o in t l i s t is a 2D a rra y o f 3D p o in ts which s p e c ify a patchmesh The dimensions
o f the 2D a rra y are g iven m an o b je c t record (patchmesh record) as NUM1 and NUM2
NUM1 re fe rs to the U v e c to r and NUM2 re fe rs to the V v e c to r For the purposes o f th is
code, NUM1 is columns and NUM2 is rows

This fu n c tio n has a number o f la rg e problems

I t assumes th a t the re q u ire d mesh has both less rows and less columns than the c u rre n t
mesh 1 e a 41x11 -> 13x10 is f in e , bu t a 13x10 -> 10x13 causes problems

I t removes rows and columns by d u p lic a tin g a l l bu t the la s t row and column m the
re q u ire d mesh w ith the m d e n tic a l p o in ts from the row/columns m the c u rre n t The
la s t p o in t on each row o f the re q u ire d mesh is se t to be an average o f a l l the
a d d it io n a l p o in ts on th a t row m the c u rre n t mesh S im ila r ly , the la s t row o f the
re q u ire d mesh is se t to be an average o f a l l the rem aining rows on the c u rre n t

cu rre n t mesh 41x11 -> remove e x tra columns 13x11

1,1 2,1 3,1 40, 1 41,1 -> 1,1 2,1 3,1 12,1 avg(13,1-41,1)
1,2 2,2 3,2 40, 2 41,2 -> 1,2 2,2 3,2 12,2 avg(13,2-41,2)
1,3 2,3 3,3 40,3 41,3 ->

->
1,3 2,3 3,3 12,3 avg(13,3-41,3)

1,10 2,10 3,10 40, 10
->

41,10 -> 1,10 2,10 3,10 12, 10 a vg(13 ,10-41,10)
1,11 2,11 3,11 40,11 41,11 -> 1,11 2,11 3,11 12,11 avg(13 ,11-41,11)

remove e x tra rows 13x7

1,1 2,1 3,1 12,1 a vg(13 ,1-41,1)
1,2 2,2 3,2 12, 2 avg(13,2-41,2)
1,3 2,3 3,3 12, 3 avg(13,3-41,3)

1,6 2,6 3,6 12, 6 a vg(13 ,6-41,6)
avg(1 ,7 -1 ,11) avg(2 ,7 -2 ,1 1) avg(3 ,7 -3 ,11) avg(12,7-12,11) avg(avg(1 3 ,7 -4 1 ,7)-a vg (13,11-41,11) :

I t is obvious th a t the reduced s ize mesh w i l l alm ost d e f in i t e ly no t look l ik e the o r ig in a l
except fo r meshes whose la s t rows and columns o f c o n tro l p o in ts are p o s itio n e d ve ry c lose
to eachother Some method o f approxim ating a la rg e r mesh w ith a sm a lle r mesh is re q u ire d
OR how about always using the la rg e r mesh 7 But what about morphing 7

This why th is method can be used The mesh s ize should no t "jump" I t , l ik e e very th in g
e lse should be lin k e d to the in te rp o la t io n phase o f morphing The mesh s ize should
be d if fe r e n t fo r each frame and hence each mesh s ize would o n ly change s l ig h t ly
Which is what th is method is good a t 1111
But w i l l th is work 777

* /

in t removeextracolumns(ob jec t_ re co rd * c u rre n t, o b jec t_ record* req u ire d , p o m t l is t * the_mesh
{

in t d if f_ c o ls , row _ o ffse t,
in t row_count, co l_count, temp_count, src_count,
p o m t l is t temp_pomts [(2*MAX_3D_POINTS)] ,
p o m t l is t la s t_ p o in t,

/ * Remember NUM1 is columns, NUM2 is rows * /
d if f_ c o ls = (current->mesh) numl - (required->mesh) numl + 1,

/ * Do the columns f i r s t * /
row_count = 0, / * This counts how many rows are processed * /
temp_count = 0,

/ * Repeat fo r a l l the rows m the source mesh * /

w h ile (row_count < (current->mesh) num2)
{

/ * F i r s t copy a l l the p o in ts on each row except the la s t p o in t th a ts re q u ire d * /
fo r (col_count=0, co l_count < ((required->mesh) numl - 1), col_count++)
{

ro w _ o ffse t = row_count * ((current->mesh) numl),
Copy3DPomts (temp_pomts [temp_count] ,

the_m esh [row _offse t+co l_coun t]) ,
temp_count++,

}

/ * Now c a lc u la te the average o f the rem aining p o in ts on th is row * /

la s t_ p o in t p o in t [0] = la s t_ p o m t p o in t [1] = la s t_ p o m t p o in t [2] = 0 0,

fo r (co l_count = ((required->mesh) num l-1), co l_count < (current->mesh) numl, col_count++)
{

C opy3D P oin ts(last_pom t,the_m esh [row _offse t+co l_count]) ,
la s t_ p o in t p o in t [0] += the_m esh[row _offset+col_count] p o m t[0] ,

P a g e 5

M o r p h i t c

la s t_ p o m t p o in t l l] += the_m esh[row_offset+col_count] p o in t [l] ,
la s t_ p o in t p o in t [2] += the_m esh[row_offset+col_count] p o in t [2],

}

i f (d if f_ c o ls 1= 0)
{

la s t_ p o m t p o in t [0]
la s t_ p o m t p o in t [1]
la s t_ p o in t p o in t [2]

}

/ * Set the la s t p o in t on the row to the average o f a l l the o the rs * /

Copy3DPom ts(tem p_points[tem p_count], la s t_ p o in t) ,
temp_count++,

/ * Copy3DPoints(tem p_pom ts[row _offset+(required->m esh) n u m l-1],
la s t_ p o m t) ,

* /
/ * Thats th is row completed Now continue w h ile loop fo r each row * /
row_count++,

/ * Check th a t the r ig h t number o f p o in ts are generated * /
i f (temp_count ' = (required->mesh) numl * (current->mesh) num2)
{

f p n n t f (s t d e r r , " \7 \7 \7 m o rp h it removeextracolumnss count e r ro r \ n \ t temp_count is %d, and " , temp_count),
f p r in t f (s t d e r r , " ta rg e t fo r p o in ts is %d\n", (required->mesh) numl * (current->mesh) num2),
r e tu r n (0),

}

/ * Copy temp_points back in to the_mesh * /
fo r (src_count=0, src_count<temp_count, src_count++)
{

Copy3DPomts (the_mesh [src_count] , temp_pomts [src_count]) ,
}

/ * A P o in t {0 ,0 ,0 } marks the end o f the p o m t l is t * /
the_mesh[src_count] p o in t [0] = 0 0,
the_mesh[src_count] p o in t [1] = 0 0,
the_mesh[src_count] p o in t [2] = 0 0,

/ * Update mesh s ize m o b je c t record * /
(current->mesh) numl = (required->mesh) numl,t
r e tu rn (1),

/ * VIP - In case o f d iv is io n by zero (NAN) * /

= la s t_ p o m t p o in t [0] / (f lo a t) d i f f _ c o ls ,
= la s t_ p o m t p o in t [1] / (f lo a t) d if f_ c o ls ,
= la s t_ p o in t p o in t [2] / (f lo a t) d i f f _ c o ls ,

in t rem oveextrarows(ob jec t_ re co rd* c u rre n t, ob jec t_record* req u ire d , p o m t l is t * the_mesh)
{

in t d iff_ ro w s , row _ o ffse t,
in t row_count, co l_count, src_count, temp_count,
p o m t l is t temp_points [(2*MAX_3D_POINTS)] ,
p o m t l is t last_row[MAX_3D_POINTS] ,

/ * Remember NUM1 is columns, NUM2 is rows * /
d iff_ ro w s = (current->mesh) num2 - (required->mesh) num2 + 1,

/ * Do the columns f i r s t * /
row_count = 0 , / * This counts how many rows are processed * /
temp_count = 0

/ * Repeat fo r a l l the rows m the ta rg e t mesh except the la s t row * /

w h ile (row_count < ((required->mesh) num2 - 1))
{

/ * F i r s t copy a l l the p o in ts on each row * /
fo r (col_count=0, co l_count < (current->mesh) numl, col_count++)
{

ro w _ o ffse t = row_count * ((current->mesh) numl),
Copy3DPomts (temp_pomts [temp_count] , the_mesh[row_of f se t+co l_count]) ,
temp_count++,

}

/ * Thats th is row completed Now continue w h ile loop fo r next row * /
row_count++,

}

/ * Now the TEMP_POINTS a rra y is f i l l e d , the e x tra rows need to be
e lim in a te d and averaged out m the la s t row

* /

/ * C lear the LAST_ROW a rra y be fo re c a lc u la tin g averages * /
fo r (co l_count = 0, co l_count < (required->mesh) numl, col_count++)
{

la s t_ ro w [co l_ co u n t] p o in t [0] = 0 0,
la s t_ ro w [co l_ co u n t] p o in t l l] = 0 0,

P a g e 6

M o r p h i t c

la s t_ ro w [co l_ co u n t] p o in t [2] = 0 0,
}

/ * Now get the sum per column o f the p o in ts on the rem aining rows * /

fo r (row_count = ((required->mesh) n um 2-l), row_count < (current->mesh) num2, row_count++)
{

row _o ffse t = row_count * (required->mesh) numl,
/ * This causes a f lo a t in g p o in t e r ro r - c a lc u la t in g the not-needed b i t maybe
* /

fo r (co l_count = 0, co l_count < (required->mesh) numl, col_count++)
{

la s t_ ro w [co l_ co u n t] p o in tlO] += the_m esh[row _offset+col_count] p o in t [0],
la s t_ ro w [co l_ co u n t] p o m t [l] += the_m esh[row _offset+col_count] p o in t l l] ,
la s t_ ro w [co l_ co u n t] p o in t [2] += the_m esh[row _offset+col_count] p o in t [2],

}
}

/ * Put the average o f the rem aining rows in to la s t row o f SECOND_TEMP_POINTS * /
fo r (co l_count = 0, co l_count < (required->mesh) numl, col_count++)
{

/ * tem p_pom ts[(((required->mesh) num 2-l)* (required->mesh) numl) +col_count] p o in t [0] = las t_ ro w [co l_ co u n t]
p o in tlO] / (f lo a t)d if f_ ro w s ,

tem p_pom ts[(((required->mesh) num 2-l)* (required->mesh) num l)+col_count] p o in t l l] = la s t_ ro w [co l_ co u n t] po
i n t l l] / (f lo a t)d if f_ ro w s ,

tem p_pom ts[(((required->mesh) num 2-l)* (required->mesh) num l)+col_count] p o in t [2] = la s t_ ro w [co l_ co u n t] po
m t [2] / (f lo a t)d if f_ ro w s ,
* /

i f (d iff_ ro w s '= 0) / * VIP to check fo r d iv id e by zero = NAN e rro rs * /
{

temp_pom ts[tem p_count] p o in tlO] = las t_ ro w [co l_ co u n t] p o in tlO] / (f lo a t)d if f_ ro w s ,
temp_pomts[temp_count] p o in t l l] = las t_ row [co l_ cou n t] p o in t l l] / (f lo a t)d if f_ ro w s ,
tem p_po ints[temp_count] p o m t[2] = las t_ row [co l_ cou n t] p o in t [2] / (f l o a t)d iff_ ro w s ,
temp_count++,

}
}

/ * Check th a t the r ig h t number o f p o in ts are generated * /
i f (temp_count 1= (required->mesh) num2 * (current->mesh) numl)
{

f p r in t f (s t d e r r , "\7 \7 \7 m o rp h it removeextrarows count e rro r \ n \ t temp_count is %d, and " , temp_count),
f p r m t f (s td e r r , " ta r g e t fo r p o in ts is %d\n” , (required->mesh) num2 * (current->mesh) num l),
r e tu r n (0),

/ * Temp_Points is now a mesh o f the a pp ro p ria te s ize I t needs to
be copied back to The_Mesh, so i t can be accessed from outs ide

* /

fo r (src_count=0, src_count<temp_count, src_count++)
{

Copy3DPom ts(the_m esh[src_count], te m p _po in ts [s rc_co un t]),
}

/ * A P o in t {0 ,0 ,0 } marks the end o f the p o m t l is t * /
the_mesh[src_count] p o in t [0] = 0 0,
the_mesh[src_count] p o in t l l] = 0 0,
the_mesh[src_count] p o in t [2] = 0 0,

/ * Update mesh s ize m o b je c t reco rd * /
(current->mesh) num2 = (required->mesh) num2,

r e tu r n (1),
}

in t read_patchmesh(FILE* fp , p o m t l is t * th e _ p o in t l is t , o b jec t_ re cord* th e _ d e ta ils)
{

unsigned char ch,
in t meshopen = FALSE,
in t pom t_count = 0, num_pomts = 0,
char d e ta i l_ s trm g [20] , num _strm g [20] ,
m t s tr_ m d e x , d e ta il_ c o u n t = 1,
in t numl, num2,
double the_pom t [3] ,

/ * m t p l_m dex = 0, / * index fo r p o m t_ l is t * /

i f (mesh_anal == TRUE)
{

/ * p n n t f ("Found a PatchMesh\n") ,
* / ch = fg e tc (fp) , numl = 0, num2 = 0, s tr_ m d e x = 0,

w h ile (meshopen '= TRUE) / * Repeat U n t i l a ' [' is found * /
{

P a g e 7

/ * p n n t f ("%c", ch),
* / i f (ch == ' [•)

{
meshopen = TRUE,

/ * p n n t f (" \ n ") ,
* / }

e lse i f (ch == ' ')
{

/ * Assumes th a t is always l ik e "b ic u b ic 10 p e r io d ic 13 p e r io d ic P" * /
d e ta i l_ s trm g [s tr_ m d e x] = ' \ 0 ' ,
sw itch (d e ta il_ c o u n t)
{
case 1 s t r c p y ((the_deta ils->m esh) meshtype, d e ta il_ s trm g),

break,
case 2 numl = (the_deta ils->m esh) numl = a t o i (d e ta i l_ s tn n g),

break,
case 3 s trc p y ((the_deta ils->m esh) p e n o d l, d e ta i l_ s tn n g) ,

break,
case 4 num2 = (the_deta ils->m esh) num2 = a t o i (d e ta i l_ s tn n g),

break,
case 5 s t r c p y ((the_deta ils->m esh) penod2, d e ta il_ s trm g),

break,
case 6 s t r c p y ((the_deta ils->m esh) p o m tty p e , d e ta i l_ s tn n g),

/ * (the_deta ils->m esh) p o in tty p e = 1\ 0 1, * /
break,

}

d e ta il_ co u n t+ + ,
s tr_ in d e x = 0,

}
e lse

d e ta il_ s tn n g [s tr_ m d e x + +] = ch, / * End o f Repeat u n t i l ' [' * /

ch = fg e tc (fp) ,
}

/ * p n n t f (" \n Numl is %d, Num2 is %d \ n " , numl, num2) ,
* /

num _string[0] = 'NO', s tr_ in d e x = 0,
w h ile) meshopen == TRUE) / * Repeat U n t i l a '] ' is found * /
{

i f (ch '= ' \ n ' ScSc ch '= ' \ t ' && ch '= '] ' && ch '= ' ')
num _stnng [s tr_m dex++] = ch,

i f (ch == ' ' | | ch == ' \ t ' | | ch == ' \n ' || ch == '] ■)
{

i f (s tr_ m d e x 1 = 0)
{

pom t_count+ + ,
num _stnng [s tr_ in d e x] = ' \ 0 1 ,
th e_ p o in t [po in t_coun t - 1] = a to f (num_stnng) ,
s tr_ m d e x = 0,
num _stnng [s tr_ in d e x] = ' \ 0 ' ,

i f (p o in t_co u n t >= 3) / * We've read in one 3D p o in t * /
{
i f (num_points > MAX_3D_POINTS)

{
p n n t f (" \nToo many 3D Po ints encountered\n") ,
e x i t (2),

}

fo r (pom t_count = 0, pom t_count < 3, pom t_count++)
{
th e _ p o in t l is t [num_pomts] p o in t [pom t_coun t] = th e_ p o in t [p o in t_coun t]

}

po in t_coun t = 0,
num_pomts + +,
th e _ p o in t[0] = th e _ p o m t[l] = the__pomt[2] = 0,

}

}

i f (ch == '] ')
{

meshopen = FALSE,
th e _ p o m t l is t [n u m jo in ts] p o m t[0] = 0 0,
th e _ p o m tl is t [num_points] p o in t l l] = 0 0,
t h e jo m t l i s t [n u m jo in t s] p o in t [2] = 0 0,

}
}

ch = fg e tc (f p) ,
}

/ * fo r (p l_m dex = 0, p l_m dex < num_points, pl_m dex++)

M o r p h i t c

P a g e 8

M o r p h i t . c

{
p r in t f (" %0.8f %0.8f % 0.8f\n ” , th e _ p o in t l is t [p l_ in de x] .p o in t [0] , th e _ p o in t l is t [p l_ in d e x] .p o in t [1], the_p

o in t l is t [p l_ in d e x] .p o in t [2]) ;
}

* /
/ * We've read in the e n t ire PatchMesh * /

/ * p r i n t f ("] Number o f 3D Po ints counted: % d\n",num _points);
* / i f (num_points != (numl*num2))

{
p r i n t f (" \7 \7 \7 \7 E rro r : in c o rre c t number o f 3D Po ints c o u n te d .\n ") ;
p r i n t f (■ i t should be %d * %d = %d \n " , numl, num2, numl*num2) ;
r e tu r n (-1) ;

}
/ * i f ((cont = g e tch a rO) == 'q ' || cont == 'Q')

mesh_anal = FALSE;
* / }

r e tu r n (num_points) ;
}

write_patchmesh(FILE* fp , p o in t l i s t * th e _ p o in t l is t , o b jec t_ record* th e _ d e ta ils)
{

i n t num_points, p o in t_ co u n t;

f p r i n t f (fp , "%s %d %s %d %s %s [\ n " ,
(the_deta ils->m esh).m eshtype, (the_deta ils->m esh).num l,
(the_deta ils->m esh) .p e r io d i, (the_deta ils->m esh) .num2,
(th e _ d e ta ils -> m e sh).p e rio d 2 , (the _ de ta ils -> m esh).po in ttyp e) ;

num_points = (the_deta ils->m esh).num l * (the_details->m esh).num 2;

fo r (p o in t_coun t = 0; p o in t_coun t < num_points; point_count++)
{
f p r i n t f (fp , "%0.8f %0.8f %0.8f ", th e _ p o in t l is t [p o in t_ c o u n t] .p o in t [0],

th e _ p o in t l is t [p o in t_ c o u n t] .p o in t [1],
th e _ p o in t l is t [p o in t_ c o u n t] .p o in t [2]) ;

i f (((p o in t_ c o u n t/4) == (p o in t_ c o u n t/4 .0)) && po in t_count != num _poin ts-l)
f p r i n t f (fp , " \n ") ;

}

f p r i n t f (fp , "] \ n ") ;

r e tu r n (1);
}

/ * m orph itO is re q u ire d to leave the f i l e p o in te r in the in p u t f i l e a t the
s ta r t o f the l in e fo llo w in g the p rim a tiv e th a t s ta r ts a t the c u rre n t
f i l e p o in te r , i . e . i t must scan in the p rim a tive

I t must a lso w r ite the p rim a tiv e ou t to the ou tpu t f i l e , making the
d iif fe re n c e s in the p rim a tiv e s p o in ts fo r the a pp ro p ria te frame number

* /

in t re a d _ p rim a tive (FILE* fp , in t * p rim a tive _ type , p o in t l i s t * th e _ p o in t l is t , ob jec t_ re co rd * th e _ d e ta ils)
{

char in_char;
in t c u r_ le t = 0, count;
char cur_word[4 0];

in_char = fg e tc (fp) ;
*p rim a tive _ type = NOTHING;

/ * Read in a word from c u rre n t l in e * /
w h ile (in_char != ' ' && in_char != ' \ n ' && ! fe o f(fp) && c u r_ le t < 30)
{
cu r_w ord [cur_ le t++] = in_char;
in_char = fg e tc (fp) ;
}

/ * Check i f word matches a keyword * /
i f (c u r_ le t < 30 >
{
cur_word[c u r_ le t] = ' \ 0 1 ;
fo r (count=0 ; count< NUM_KEYWORDS; count++)
(
i f (! (s trcm p(cur_word, keyw ords[coun t]))) / * compare word w ith keyword*/
{

*p rim a tive _ type = count; / * count is the code fo r a p rim a tiv e * /
count = NUM_KEYWORDS; / * break out o f fo r loop * /

P a g e 9

}
}

}

sw itch (*p nm ative _ typ e)
{
case PATCHMESH reacLpatchmesh(fp , th e _ p o m tl is t , th e _ d e ta ils),

break,
/ * case PATCH patch_pom ts (th e _ p o in t l is t),

break,
case POLYGON polygon_poin ts (th e _ p o m tl is t),

break,
* / d e fa u lt re tu rn (O),

}

r e tu r n (1),
}

w n te _ p n m a tiv e (FILE* fp , i n t p nm ative _ type , p o m t l is t * th e _ p o m tl is t , o b jec t_ record* th e _ d e ta ils)
{

char prim ative_nam e[2 4],
i n t c u r_ le t = 0,

/ * P r in t out the name o f the p rim a tiv e and a space a f te r i t * /

/ * s trn cp y t primative_name, " \0 " , 24),
s trc p y (pnmative_name, keywords [p nm ative _ typ e]),

* /
s p rm t f (pnmative_name, "%s \0 \0 " , keywords [p rim a tive _ type]),
w h ile (p rim a tive _n a m e [cur_ le t] '= ' \ 0')
{

fp u tc (pnm ative_nam e[cur_ le t+ +] , fp),
}

/ * P r in t ou t any d e ta i ls * /

sw itch (p rim a tive_ type)
{

case SPHERE break,
case PATCH break,
case PATCHMESH wnte_patchmesh(fp , th e _ p o m tlis t , th e _ d e ta ils),

break,
case CYLINDER break,
case POLYGON break,

}

r e tu r n (1),
}

M o r p h i t c

i n t m o rp h it(char* morph_fllename, FILE* in _ fp , FILE* copy_fp, m t frame_no, m t max_frames
{
/ * Gets as parameters

morph_fllename name o f f i l e co n ta in in g ta rg e t(s) Patchmesh statements
m _ fp fp fo r s ta r t o f source p r im it iv e s
copy_fp fp fo r c u rre n t p o in t o f ou tpu t f i l e
frame_.no the number o f the c u rre n t frame l-max_frames
max_frames the to ta l number o f frames

Purpose
To read m as many p r im it iv e s m the source (m _ fp) u n t i l an end_of_morph
b lock marker is found For the moment, le ts ju s t make i t m another f i l e
c a lle d SRC_PRIM RIB I t ju s t a lso read m the p r im it iv e s in the ta rg e t
f i l e (morph_fllename)
Each p r im it iv e m the ta rg e t must have a t le a s t one p r im it iv e from the
source mapped to i t Other source p r im it iv e s are mapped to the nearest
ta rg e t p r im it iv e
Every source p r im it iv e is then morphed to the app ro pria te ta rg e t p r im itv e
even though th is means d u p lic a tin g the ta rg e t p r im it iv e s a number o f times
These can be e lim ita te d when frame_no == max_frames

/ * These were a l l d e fin ed as s ta t ic * /
FILE *morph_fp, *s rc _ fp ,
m t prim _type, src_count, ta rg_count, src_pnm , ta rg_prim ,
s ta t ic p o m t l is t ta rg_ j?o in ts [10] [MAX_3D_P0INTS] ,
s ta t ic p o m t l is t s ta r t_ p o m ts [10] [MAX_3D_P0INTS] ,
s ta t ic p o m t l is t morphed_pomts [MAX_3D_P0INTS] ,
s ta t ic o b jec t_ re co rd s ta r t_ o b j_ d e ta i ls [1 0], ta rg _ o b j_ d e ta ils [10],
m t src_targ_map [10] ,
char m _char,

pnm _type = NOTHING,

i f ((morph_fp = fo pen(m orph_ filenam e,"r”)) == NULL)
{

f p r in t f (s t d e r r , “c o p y it Warning - cannot open morph ta rg e t f i l e %s \ n " ,m orph_fllenam e),
re tu r n (0),

P a g e 10

M o r p h i t . c

i f ((s rc_ fp = fopen(”SRC_PRIM.RIB" , ” r ")) == NULL)
{

f p r in t f (s td e r r , " c o p y i t : Warning - cannot open morph ta rg e t f i l e SRC_PRIM.RIB\n") ;
r e tu r n (0);

}

rew ind(m orph_fp);
re w in d (s rc _ fp);

/ * Read in the Target P rim atives from the e x te rn a l 'morph' f i l e * /
fo r (ta rg_count=0; targ_count<10; targ_count++)
{

i f (! re a d _ p rim a tive (morph_fp, &prim_type, ta rg _ p o in ts [ta rg _ c o u n t], & ta rg _ o b j_ d e ta ils [ta rg _ c o u n t]))
{

f p r i n t f (s t d e r r , “m orph it: Warning - problem reading Target morph p rim a tiv e number %d in f i l e % s .\n " ,ta rg _
coun t+ l,m orph_ filenam e);

r e tu r n (0) ;
}
in_char = fg e tc (m orph _ fp);
i f (feof(m orph_fp))

break;
e lse

unge tc(in_char,m orph_ fp);
}
i f (targ_count >= 9)

f p r in t f (s t d e r r , “m orph it: 9 o r more ta rg e t p r im it iv e s counted fo r m orph ing ... c o n tin u in g \n ") ;

ta rg_prim = ta rg_coun t;

/ * Read in the Source P r im it iv e from the c u rre n t f i l e * /
fo r (src_count=0; src_count<10; src_count++)
{

i f (! re a d _ p rim a tiv e (s rc_ fp , &prim_type, s ta r t_ p o in ts [s rc _ c o u n t], & s ta rt_ o b j_ d e ta ils [s rc _ c o u n t]))
{

fp r in t f (s td e r r , " c o p y i t : Warning - cannot read Source morph p rim a tiv e number % d .\n ", s rc _ c o u n t+ l) ;
r e tu r n (0);

}
in_char = fg e tc (s rc _ fp) ;
i f (fe o f(s rc _ fp))

break;
e lse

u nge tc(in _ c h a r, s rc _ fp) ;
}
i f (src_count >= 9)

fp r in t f (s td e r r , " m o r p h it : 9 o r more source p r im it iv e s counted fo r m orph ing ... c o n tin u in g \n ") ;

src_prim = src_count;

/ * There should now be up to 9 source and ta rg e t Patchmeshes w ith d e ta ils
and p o in t l is t s in memory.

* /

fo r (ta rg_count=0; targ_count<=targ_prim ;targ_count++)
{

/ * Assign best-m atch source patchmeshes to ta rg e ts ensuring a t
a t le a s t one Patchmesh fo r every ta rg e t * /
src_targ_m ap[targ_count] = ta rg_count;

}

fo r (src_count=targ_prim ;src_count<=src_prim ;src_count++)
{

/ * Assign rem aining source patchmeshes to ta rg e ts * /
src_targ_m ap[src_count] = src_count;

}

i f (src_count<=9)
src_targ_m ap[src_coun t] = -1 ;

/ * Ju s t to te s t th in g s o u t. Assign d i f f p r im it iv e s here * /

/ * Now ensure th a t the g r id s izes are the same fo r each src p r im it iv e * /

fo r (src_count=0; src_count<=src_prim ;src_count++)
{

/ * Check i f th e re are too many o r too few columns * /
i f ((s ta rt_ o b j_ d e ta iIs [s rc_ co u n t].m e sh .n u m l) < (ta rg _ o b j_ d e ta ils [s rc _ ta rg _ m a p [s rc _ c o u n t]] .mesh.numl))

addextracolum ns(& s ta r t_ o b j_ d e ta ils [s rc _ c o u n t], s ta r t_ p o in ts [s rc _ c o u n t], & ta rg _ o b j_ d e ta ils [s rc_ ta rg _ m a p [
s rc _ c o u n t]]) ;

e lse i f ((s ta rt_ o b j_ d e ta ils [s rc_ co u n t].m e sh .n u m l) > (ta rg _ o b j_ d e ta ils [s rc _ ta rg _ m a p [s rc _ c o u n t]] .mesh.numl)
)

removeextracolumns(& s ta r t_ o b j_ d e ta ils [s rc _ c o u n t], & ta rg _ o b j_ d e ta ils [s rc_ ta rg _ m a p [s rc_ co u n t]] , s ta r t_ p o i
n ts [s rc _ c o u n t]) ;

P a g e 11

M o r p h i t c

/ * Check i f th e re are too many o r too few rows * /
i f ((s ta r t_ o b]_ d e ta ils ts rc _ c o u n t] mesh num2) < (ta rg _ o b]_ d e ta ils [src_ta rg_m ap[src_count]] mesh num2))

addextrarows (& s ta rt_ ob ;)_ de ta ils [src_count] , s t a r t jo m t s [src_count] , & targ_ob;)_deta ils [src_targ_map [src
_ c o u n t]]) ,

e lse i f ((s ta r t_ o b j_ d e ta ils [s rc _ c o u n t] mesh num2) > (ta rg _ o b]_ d e ta ils [src_targ_m ap[src_count]] mesh num2)
)

removeextrarows (& s ta rt_ o b ;j_ d e ta ils [src_count] , & targ_ob;i_deta ils [src_targ_map [src_count]] , s ta r t_ p o in ts
[src_count]) ,

/ * {
/ * Expand the number o f p o in ts on the source to the number on the ta rg e t * /

/ * a d d e x tra p o m ts (& s ta r t_ o b]_ d e ta ils [s rc _ c o u n t], s ta r t_ p o in ts [s rc _ c o u n t], & targ_ob;)_deta ils[src_targ_m ap
[s rc _ c o u n t]]),

}
e lse i f ((s ta r t_ o b ;j_ d e ta ils [src_count] mesh numl * s ta rt_ o b 3_ d e ta ils [src_count] mesh num2) > (targ_ob;j_de

ta ils [s rc _ ta rg _ m a p [s rc _ c o u n t]] mesh numl * targ_ob3_ d e ta ils [s rc _ ta rg _ m a p [s rc _ c o u n t]] mesh num2))
{

/ * Remove e x tra p o in ts on the source to the number on the ta rg e t * /
/ * rem oveextrapo in ts(&end_obj_deta ils, & s ta r t_ o b]_ d e ta ils , end_points) ,
* / /*XX rem oveextrapoints (& s ta r t_ o b]_ d e ta ils [src_count] , & ta rg_ob;j_deta ils [src_targ_map [src_count]] , s t

a rt_ p o in ts [s rc _ c o u n t]),
}

/ * Gives a l in e a r in te rp o la t io n between two same-length p o in t l is t s
and re tu rn s i t in morphed_pomts * /

in te rp o la te (s ta r t_ p o m ts [s rc _ c o u n t], ta rg _ p o in ts [s rc_ ta rg _ m a p [s rc_ co u n t]] , morphed_pomts, frame_no, max_
frames),

/ * s trc p y ((& ta rg _ o b j_ d e ta ils [s rc_ ta rg _ m a p [s rc_ co u n t]] mesh)->meshtype, (ts ta r t_ o b 3_ d e ta ils [s rc _ c o u n t] mes
h)->meshtype),
* /

w r ite _ p n m a tiv e (copy_fp, prim _type, morphed_pomts, & ta rg _ o b]_ d e ta ils [s rc_ ta rg _ m a p [s rc_co u n t]]),

}

fc lo s e t s rc_ fp),
fc lo s e (morph_fp),
return(TRUE),

}

P a g e 12

SIMPLECA H

(d e fin e TO_CAMERA 0
(d e fin e TO_WORLD 1

© in te rfa ce SimpleCamera N3DCamera
{

i m p o r t < 3 D k i t / 3 D k i t h>

id th e R o ta to r,
id ro to M a tr ix ,

id q u a lity M a tr ix ,
id fra m e S lid e r,
id mmFrameBox,
id maxFrameBox,

id m fo P a n e l,
id frameDisp,

id ro tD isp ,
id scaleD isp,
id transD isp ,

id ro ta t io n S l id e r ,
id fo v S lid e r ,
id tra n s la te s], id e r
id s c a le rS lid e r ,

id tWaveCheckBox,

id formatBox,
id fo rm a tM a trix ,

id cameraRollBox,
}

- worldBegm (RtToken)context,
- dumpRib sender,
- s e tQ u a lity sender,
- changeFrameNumber sender,
- setNewFrameNumber sender,
- showlnfo sender,
- playStepOne sender,
- p layA H S tepF ive sender,
- ro ta te O b je c t sender,
- setCameraRoll sender,
- se tF ie ldO fV iew sender,
- renderP ic sender,
- camera sender didRenderStream (NXStream *)s tag (m t)a ta g frameNumber (in t) n ,
- moveTowards sender,
- reScale sender,
- sta rtAn im ationKey sender,
- endAnimationKey sender,
- showTWave sender,
- p r in t sender,
- setFormat sender,
- nameRIBFile sender,
- setStartNumberOfFrames sender,
- setEndNumberOfFrames sender,

@end

P a g e 1

SIMPLECA M

#im port < a p p k it/a p p k it h>
ftim port < a p p k it/C o n tro l h>
(timport "SimpleCamera h"
tim p o rt "SimpleShape h"

/ * Arsed around w ith from May 1993 by Somhairle Foley * /

/ * SimpleCamera - - by B i l l Bumgarner 6/1/92
* w ith assistance from Dave Springer
*
* SimpleCamera demonstrates the c re a tio n o f a ve ry simple 3D kit scene
* th a t has mouse c o n tro l v ia the N3DRotator c lass , supports dumping RIB
* code to a f i l e , con ta ins l ig h t sources (ambient l ig h t and a p o in t l i g h t) ,
* has a surface shader, supports both WireFrame and SmoothSolid rendering ,
* and has a s in g le custom N3DShape th a t generates a Torus (or teapot)
*
* Simple app was crea ted as an example o f us ing the 3D kit Parts o f i t
* come from Teapot app by Dave Springer (see SimpleShape m)
*
* You may f r e e ly copy, d is t r ib u te and reuse the code m th is example
* NeXT d isc la im s any w arran ty o f any k ind , expressed or im p lie d ,
* as to i t s f i tn e s s fo r any p a r t ic u la r use
* /

/ * * * * * * These are v a r ia b le s used m when d is p la y in g m SimpleShape m * * * * * * /

i n t theFrameNumber,
f lo a t xR o ta tion , yR o ta tio n , zR ota tion,
f lo a t xT ra n s la te , yT ra n s la te , zT ransla te ,
f lo a t xScale = 1 0 , yScale = 1 0 , zScale = 1 0 ,
in t theFOV,
in t showTWaveFlag = FALSE,
f lo a t cameraRollAngle,

f lo a t s ta rt_ x R o ta tio n , s ta r t yR o ta tio n , s ta rt_ z R o ta tio n ,
f lo a t s ta rt_ x T ra n s la te , s ta rt_ y T ra n s la te , s ta rt_ z T ra n s la te ,
f lo a t s ta rt_xS ca le , s ta rt_ yS ca le , s ta rt_zS ca le ,
in t start_theFOV,

j

©implementation SimpleCamera
- m itFram e (const NXRect *) theRect
{

/ / camera p o s it io n p o in ts
R tP o in t fromP = {0 ,0 ,5 0 }, toP = {0 ,0 ,0 } ,

/ / l ig h t p o s it io n p o in t
R tP o in t lFromP = {0 5,0 5,0 75},

/ / the va riou s 3 D k it o b je c t i d ' ' s th a t we w i l l i n i t i a l i z e here
id am bien tL ight,
id a L igh t,
id aShader,
id aShape,

/ / i n i t i a l i z e camera and p u t i t a t (0 ,0 ,5 0) lo o k in g a t the o r ig in (0 ,0 ,0)
/ / r o l l s p e c if ie s the r o l l angle o f the camera
[super m itFram e th e R e c t],
[s e l f setEyeAt fromP toward toP r o l l 0 0] ,

/ / c rea te a shader th a t w i l l shade surfaces w ith a simple matte surface
aShader=[[N3DShader a llo c] m i t] ,
/ / uncomment the fo llo w in g lin e s to generate a b lue matte surface
/ / This is slow on a monochrome system

[aShader setUseColor NO], / / SF 21/4/94
/ / [aShader setUseColor YES],
/ / [aShader se tC o lor NX_COLORBLUE],
[(N3DShader *) aShader setShader "m a tte "],

/ / i n i t i a l i z e the w orld shape and se t i t s shader to be aShader
aShape=[[SimpleShape a llo c] m i t] ,
[(N3DShape *) aShape setShader aShader],
[[s e lf setWorldShape aShape] f r e e] , / / fre e the d e fa u lt w orld shape

/ / c rea te an a m b ie n tlig h t source
am b ien tL igh t= [[N3DLight a llo c] m i t] ,
[am bientL ight m akeAm bientW ithlntensity 0 1],
[s e l f addLight a m b ie n tL ig h t],

/ / c rea te a P o in t l ig h t and pu t i t a t (0 5, 0 5, 0 75) a t
/ / f u l l in te n s ity (1 0)
a L ig h t= [[N3DLight a llo c] m i t] ,
[a L ig h t makePomtFrom lFromP in te n s ity 1 0] ,
[s e l f addLight a L ig h t] ,

/ / se t the surface type to generate smooth s o lid s The mouseDown

P a g e 1

/ / method a u to m a tic a lly drops to N3D_WireFrame whenever the user m anipulates
/ / the scene v ia the mouse (see the mouseDown im plem entation below)
/ / This must be done a f te r the setWorldShape method (or a f te r any new shape
/ / is added to the h ie ra rchy)
[s e l f setSurfaceTypeForA ll N3D_SmoothSolids chooseHider YES],

/ / a llo c a te and i n i t i a l i z e the N3DRotator o b je c t th a t governs
/ / r o ta t io n a l c o n tro l v ia the mouseDown method
th eR o ta to r= [[N3DRotator a llo c] m itW ithCam era s e l f] ,

re tu rn s e lf ,
}

- worldBegm (RtToken) con tex t
{

s ta t ic R t ln t c lip o n = 1, / / , c l ip o f f = 0,

/ / R iDepthOfField(myFstop, myFocalLength, m yFocalD istance),

/ * s e le c t c l ip o b je c t mode and read a RIB f i l e * /
RlOption(RI_ARCHIVE, " c l ip o b je c t " , & clipon , RI_NULL),
[super worldBegm co n te x t] ,

/ / R iO ption (RI_ARCHIVE, " c l ip o b je c t" , S cd ip o ff, RI_NULL) ,

re tu rn s e lf ,
}

- dumpRib sender
{

s ta t ic id saveP ane l= n il,
NXStream * ts ,
char buf[MAXPATHLEN+1],

/ / i n i t i a l i z e the savePanel, i f i t h a s n '' t been done so p re v io u s ly
i f ('savePanel) {

savePanel=[SavePanel new],
[savePanel setR equiredFileType " r ib "] ,

}

/ / run the savepanel
i f ([savePanel runM odal]) {

/ / re tu rne d w/pathname, open a stream and
tS=NXOpenMemory(NULL, 0, NX_WRITEONLY),
/ / process the f i l e name fo r a custom d is p la y l in e such th a t
I I "prman <<filename>> r ib " w i l l p u t the re s u lt in g image somewhere
I I p re d ic ta b ly u s e fu l
s trc p y (b u f, [savePanel f ile n a m e]),
I I remove the r ib extension from the path re tu rned by the SavePanel
s t r r c h r (b u f , ' i) [0] = ' \ 0 ' ,
/ / feed to N X P rm tf to p u t m the custom D isp lay command
N X P rm tf(ts , “D isp lay \"%s t i f f \ " V ' f i l e V \ " rg b a \" \n " , b u f) ,
I I then feed the r ib code to the stream and
[s e l f copyRIBCode t s] ,
I I save the stream to the f i l e se lec ted m the savepanel
NXSaveToFile(ts, [savePanel f ile n a m e]),
I I and close the stream (which a lso flushes i t) , a lso making sure
/ / th a t the a llo c a te d memory is freed
NXCloseMemory(t s ,NX_FREEBUFFER),

}
re tu rn s e lf ,

SIMPLECA M

(d e fin e ACTIVEBUTTONMASK (NX_MOUSEUPMASK|NX_MOUSEDRAGGEDMASK)
(d e fin e POINTS, break,
(d e fin e WIREFRAME, break,
(d e fin e SHADEDWIRE, break,
(d e fin e FACETED, break,
(d e fin e SMOOTH, break,

- mouseDown (NXEvent *)theE vent
{

in t oldMask,
NXPoint oldMouse, newMouse, dMouse,
R tM atn x rmat, irm a t,

I I f in d out what a x is o f ro ta t io n the ro ta to r should be constra ined to
sw itch ! [ro to M a tn x selectedRow]) {
case 0 [th e R o ta to r se tR o ta tion A x is N3D_AllAxes], break,
case 1 [th e R o ta to r se tR o ta tion A x is N3D_XAxis], break,
case 2 [th e R o ta to r se tR o ta tion A x is N3D_YAxis], break,
case 3 [th e R o ta to r se tR o ta tion A x is N3D_ZAxis], break,
case 4 [th e R o ta to r se tR o ta tion A x is N3D_XYAxes], break,
case 5 [th e R o ta to r se tR o ta tion A x is N3D_XZAxes], break,
case 6 [th e R o ta to r se tR o ta tion A x is N3D_YZAxes], break,
}

P a g e 2

SIMPLECA M

/ / tra c k the mouse u n t i l a mouseUp event occurs, updating the d is p la y
/ / as tra c k in g happens

[s e lf lockF ocus],
oldMask = [window addToEventMask ACTIVEBUTTONMASK],

/ / sw itch to the N3D_WireFrame surface type
/ / [s e l f setSurfaceTypeForA ll surfaceType chooseHider YES],

oldMouse = th eE ve n t-> lo ca tio n ,
[s e l f co nve rtP o in t &oldMouse fromView n i l] ,
w h ile (1)
{

newMouse = th eE ven t-> loca tion ,
[s e lf co nve rtP o in t knewMouse fromView n i l] ,
dMouse x = newMouse x - oldMouse x,
dMouse y = newMouse y - oldMouse y,
i f (dMouse x '= 0 0 | | dMouse y '= 0 0) {

[th e R o ta to r trackMouseFrom &oldMouse to fcnewMouse
ro ta t io n M a tn x rmat andlnverse irm a t] ,

[worldshape concatTransform M atnx rmat p re m u lt ip ly NO],
[s e l f d is p la y] ,

}
theEvent = [NXApp getNextEvent ACTIVEBUTTONMASK],
i f (theEvent->type == NX_MOUSEUP)

break,
oldMouse = newMouse,

}
/ / sw itch back to the N3D_SmoothSolids surface type

/ / [s e l f setSurfaceTypeForA ll N3D_SmoothSolids chooseHider YES],
[s e l f d is p la y] ,
[s e l f un lockF ocus],

[window setEventMask o ldM ask],
re tu rn s e lf ,

}

-s e tQ u a lity sender
{

in t surfaceType = N3D_WireFrame,

p n n t f (" s e tQ u a lity Selected %d\n” , [[q u a lity M a tn x se le c te d C e ll] ta g]) ,
s w itc h ([[q u a lity M a tn x s e le c te d C e ll] ta g])
{

case 0 p n n t f ("0 SelectedNn") , surfaceType = N3D_PomtCloud, break,
case 1 p r i n t f (" l SelectedNn") , surfaceType = N3D_WireFrame, break,
case 2 p n n t f ("2 SelectedNn") , surfaceType = N3D_ShadedWireFrame, break,
case 3 p n n t f (“ 3 SelectedNn") , surfaceType = N3D_FacetedSolids, break,
case 4 p n n t f ("4 SelectedNn") , surfaceType = N3D_SmoothSolids, break,

}

/ / sw itch to the N3D_WireFrame surface type
[s e lf setSurfaceTypeForA ll surfaceType chooseHider YES],
[s e l f d is p la y] ,

re tu rn s e lf ,
}

/ / p robably dont need th is * * * * * * *
- changeFrameNumber sender
{

in t frameNumber,

frameNumber = [fra m e S lide r m tV a lu e],
/ * p n n t f (" I n getFrameNumber method, frameNumber is %dNn", frameNumber),
* / re tu rn s e lf ,
}

- setNewFrameNumber sender
{

in t nextFrameNumber,

nextFrameNumber = [fra m e S lide r m tV a lu e],
i f (nextFrameNumber '= theFrameNumber)

{
theFrameNumber = nextFrameNumber,

/ * p n n t f ("The Frame Number is %dNn", theFrameNumber),
* / [frameDisp s e tln tV a lu e theFrameNumber],

[s e l f d is p la y] ,
}

re tu rn s e lf ,
}

- showlnfo sender
{

i f (m foP ane l == n i l)

P a g e 3

SIM PLECA.M

i f (! [NXApp loadN ibS ection : " in fo .n ib " owner-.self withNames:NO])
re tu rn n i l ;

[in foP an e l makeKeyAndOrderFront: s e l f] ;
re tu rn s e lf ;

}

- playStepOne: sender
{

in t count, maxval;

maxval = [maxFrameBox in tV a lu e];

fo r (co un t= [fra m e S lide r in tV a lu e]; count<=maxval; count++)
{

[fra m e S lide r s e t ln tV a lu e :c o u n t];
[s e l f setNewFrameNumber: s e l f] ;

}
re tu rn s e lf ;

- p la y A llS te p F iv e : sender
{

i n t count, maxval;

maxval = [maxFrameBox in tV a lu e];

fo r (count=[minFrameBox in tV a lu e]; count<=maxval; count+=5)
{

[fra m e S lide r s e tln tV a lu e : c o u n t];
[s e l f setNewFrameNumber: s e l f] ;

}
re tu rn s e lf ;

- ro ta te O b je c t: sender
{
/ * p r i n t f (" ro ta te O b je c t: S lid e r No: %d\n", [[ro ta t io n S lid e r s e le c te d C e ll] ta g]) ;
* /

s w itc h) [[ro ta t io n S lid e r se le c te d C e ll] ta g])
{

case 0: xR o ta tion = [[r o ta t io n S lid e r se le c te d C e ll] f lo a tV a lu e]; break;
case 1: yR o ta tio n = [[r o ta t io n S lid e r s e le c te d C e ll] f lo a tV a lu e]; break;
case 2: zR ota tion = [[r o ta t io n S l id e r se le c te d C e ll] f lo a tV a lu e]; break;

}

[[ro tD is p se le c tC e llW ith T ag : [[ro ta t io n S lid e r se le c te d C e ll] ta g]] s e tF lo a tV a lu e :[[ro ta t io n S lid e r selectedC
e l l] f lo a tV a lu e]] ;

/ * [[ro tD is p s e le c tC e llW ith T a g :0] se tF lo a tV a lu e :x R o ta tio n];
[[ro tD is p se le c tC e llW ith T a g :1] s e tF lo a tV a lu e :y R o ta tio n];
[[ro tD is p se le c tC e llW ith T a g :2] s e tF lo a tV a lu e :z R o ta tio n];

* / [s e l f d is p la y] ;
re tu rn s e lf ;

-setCam eraRoll: sender
{

/ / camera p o s it io n p o in ts
R tP o in t fromP = {0 ,0 ,5 .0 } , toP = {0 ,0 ,0 } ;

cameraRollAngle = [cameraRollBox f lo a tV a lu e];
p r i n t f ("cameraRollAngle is % f\n ", cam eraRollAngle);
[s e l f setEyeAt:from P tow ard:toP r o l l : cam eraR ollAngle];
[s e l f d is p la y] ;
re tu rn s e lf ;

- se tF ie ldO fV iew :sender
{

theFOV = [fo v S lid e r in tV a lu e];
[s e lf setFie ldO fViewByAngle:theFO V];
[s e l f d is p la y] ;
re tu rn s e lf ;

- renderP ic : sender / / INVOKED BY A MENU ITEM
{

{ s e lf se tD e le g a tQ :s e lf] ; / / SET THE CAMERA'S DELEGATE
{ s e lf renderAsTIFF]; / / INVOKE THE RENDER PANEL

/ / [s e l f renderAsEPS]; / / INVOKE THE RENDER PANEL
re tu rn s e lf ;

- camera:sender didRenderStream:(NXStream *)s ta g : (in t)a ta g fram eNum ber:(int)n
{

N X Im ag e * r e n d e r P i c ;

P a g e 4

SIMPLECA M

NXPomt photoPicPos= {0 0, 0 0 },
NXStream *theStream,

/ / i n t fd ,
id save = [SavePanel new],

ren de rP ic= [[NXImage a llo c] m itFrom Stream s] ,

[s e l f setFormat fo rm a tM a tr ix],
[save setAccessoryView fo rm atB ox],
i f ([save runModal] == 1)
{

theStream = NXOpenMemory(0 ,0 ,NX_WRITEONLY),
[renderP ic w n teT IF F theStream] ,
NXSaveToFile(theStream, [save filenam e]),
NXCloseMemory(theStream, NX_FREEBUFFER),

}

/ / fd = open(" tes tqqq p s", 0_CREAT | 0_WR0NLY | 0_TRUNC, 0666),
/ / theStream = NXOpenFile(fd , NX_WRITEONLY),
/ / [renderP ic w n teT IF F theStream] ,
/ / NXClose(theS tream),
/ / c lo s e (f d) ,

[sender lockF ocus],
[renderP ic composite NX_COPY to P o in t kphotoP icPos],
[sender un lockF ocus],
[[sender window] flushWmdow] ,
re tu rn s e lf ,

- moveTowards sender,
{

xT ra n s la te = [[t ra n s la te S lid e r se lectC ellW ithTag 0] in tV a lu e],
yT ra n s la te = [[t ra n s la te S lid e r se lectC ellW ithTag 1] m tV a lu e],
zT rans la te = [[t ra n s la te S lid e r se lectC ellW ithTag 2} m tV a lu e],

[[transD isp se lectC ellW ithTag 0] se tF loatV a lue x T ra n s la te],
[[transD isp se lectC ellW ithTag 1] se tF loatV a lue y T ra n s la te],
[[tra n s D is p se lectC ellW ithTag 2] se tF loatV a lue z T ra n s la te],

[s e l f d is p la y]
re tu rn s e lf ,

}

- reScale sender,
{

s w itc h ([[s c a le rS lid e r se le c te d C e ll] ta g])
{

case 0 xScale = [[s c a le rS lid e r se le c te d C e ll] f lo a tV a lu e], break,
case 1 yScale = [[s c a le rS lid e r se le c te d C e ll] f lo a tV a lu e], break,
case 2 zScale = [[s c a le rS lid e r se le c te d C e ll] f lo a tV a lu e], break,

[[sca leD isp se lectC e llW ithT ag [[s c a le rS lid e r se le c te d C e ll] ta g]] se tF loatV a lue [[s c a le rS lid e r se lectedC el
1] f lo a tV a lu e]] ,

[s e l f d is p la y] ,
re tu rn s e lf ,

- startAn im ationKey sender
{

s ta rt_ x R o ta tio n = xR ota tion ,
s ta rt_ y R o ta tio n = yR o ta tio n ,
s ta rt_ z R o ta tio n = zR otation,
s ta rt_ x T ra n s la te = xT ra n s la te ,
s ta rt_ y T ra n s la te = yT ra n s la te ,
s ta rt_ z T ra n s la te = zT rans la te ,
s ta rt_xS ca le = xScale,
s ta r t jrS c a le = yScale,
s ta rt_zS ca le = zScale,
start_theFOV = theFOV,

[fra m e S lide r se tln tV a lu e [mmFrameBox m tV a lue]] ,
[s e l f d is p la y] ,

re tu rn s e lf ,

- endAnimationKey sender
{
/ * f lo a t end_xRotation, end_yRotation, end_zRotation,

f lo a t end_xTranslate, end_yTranslate, end_zTranslate,
f lo a t end_xScale, end_yScale end_zScale,
in t end_theFOV,

end_xRotation = xR o ta tion ,
end_yRotation = yR o ta tio n ,
end_zRotation = zR ota tion ,

P a g e 5

SIMPLECA M

end_xTranslate = xT ra n s la te ,
end_yTranslate = yT ra n s la te ,
end_zTranslate = zT rans la te ,
end_xScale = xScale,
end_yScale = yScale,
end_zScale = zScale,
end_theFOV = theFOV,

* /
xR ota tion = s ta rt_ x R o ta tio n ,
yR o ta tio n = s ta rt_ y R o ta tio n ,
zR ota tion = s ta rt_ z R o ta tio n ,
xT rans la te = s ta rt_ x T ra n s la te ,
yT ra n s la te = s ta rt_ y T ra n s la te ,
zT ransla te = s ta rt_ z T ra n s la te ,
xScale = s ta rt_ xS ca le ,
yScale = s ta rt_ yS ca le ,
zScale = s ta rt_ zS ca le ,
theFOV = start_theFOV,

[fra m e S lide r se tln tV a lu e [maxFrameBox m tV a lu e]] ,
[s e l f d is p la y] ,
re tu rn s e lf ,

- showTWave sender
{

i f ([tWaveCheckBox m tV a lu e] == 0)
showTWaveFlag = FALSE,

e lse
showTWaveFlag = TRUE,

[s e lf d is p la y] ,
re tu rn s e lf ,

}

- p r in t sender
{

re tu rn [s e l f prmtPSCode sender] ,
}

- setFormat sender,
{

char ‘ fo rm at,
char *cc,

form at = N XC opyStnngBuffer([[sender se le c te d C e ll] t i t l e]),
fo r (cc = form at, *cc, cc++)
{

*cc = NXToLower(* c c) ,
}
[[SavePanel new] setR equiredFileType fo rm a t],
fre e (form at),
re tu rn s e lf ,

/ * a c tio n method, c a lle d when the user chooses open m the menu * /
- nameRIBFile sender
{

const char *const * f i le s ,
s ta t ic const char *const f i le T y p e [2] = { " r ib " , NULL},
OpenPanel *openPanel,
char fullName[MAXPATHLEN], nameNoExt[MAXPATHLEN],
char *p trE x te ns io n ,

FILE* fp ,

/ *
* Declare th a t the user can s e le c t m u lt ip le f i l e s to be opened m the
* Open Panel A l l apps should do th is , s ince i t s so easy
* /
openPanel = [[OpenPanel new] a llo w M u lt ip le F ile s NO],

/ * run the open panel, f i l t e r i n g fo r out types o f our documents * /
i f ([openPanel runModalForTypes f i le T y p e])

{
/ * open a l l the f i l e s re tu rne d by the open panel * /

f i l e s = [openPanel f ile n a m e s],
fo r (f i le s = [openPanel file n a m e s], f i l e s && * f i le s , f ile s + +)
{

s trcpy(fu llN a m e , [openPanel d ir e c to r y]) ,
s t r c a t (fullNam e, " / ") ,
s trc a t(fu llN a m e , * f i le s) ,

p trE x te n s io n = s t r c h r (fullName, ')
s trncpy(nam eN oE xt,fu llN am e,(p trE xtens ion-fu llN am e)),
nam eN oExt[p trExtension-fu llN am e]= ' \ 0 1,

i f ((fp= fopen("THENAME TXT" , "w ")) ==NULL)
p r i n t f ("e r ro r opening THENAME TXT"),

P a g e 6

SIMPLECA M

e lse
{

f p r i n t f (f p , "%s", nameNoExt),
fc lo s e (f p) ,

}
}
}
re tu rn s e lf ,

}

- setStartNumberOfFrames sender
{

in t m inva l,

m inval = [mmFrameBox m tV a lu e] ,
[fra m e S lide r setMinValue m in v a l] ,

re tu rn s e lf ,
}

- setEndNumberOfFrames sender
{

m t maxval,

maxval = [maxFrameBox m tV a lu e],

[fra m e S lide r setMaxValue m axva l],
re tu rn s e lf ,

}

Send

P a g e 7

SIM PLESH H

S in te rfa c e SimpleShape N3DShape
{
}
- read lnR IB F ile (c h a r*) RIBFilename returnMemoryLocationTo (cha r**)flle ln M e m Lo ca tio n ,
- re n d e rs e li (R tToken)context,

@end

i m p o r t < 3 D k i t / 3 D k i t h>

P a g e 1

SIM PLESH M

#im port < a p p k it/a p p k it h>
#im port "SimpleCamera h ”
#im port ” SimpleShape h"
#im port < r i / r i h>
#im port <sys/param h>
#im port < s td io h>

/ *
* You may f r e e ly copy, d is t r ib u te and reuse the code m th is example
* NeXT d isc la im s any w arran ty o f any k ind , expressed o r im p lie d ,
* as to i t s f i tn e s s fo r any p a r t ic u la r use
* /

exte rn v o id G o(vo id),
e x te rn v o id Bow lm gBall (vo id) ,

e x te rn in t theFrameNumber,
e x te rn f lo a t xR o ta tio n , yR o ta tio n , zR ota tion,
e x te rn f lo a t xT ra n s la te , yT ra n s la te , zT rans la te ,
e x te rn f lo a t xScale, yScale, zScale,
e x te rn in t theFOV,
e x te rn in t showTWaveFlag,

e x te rn f lo a t s ta rt_ x R o ta tio n , s ta rt_ y R o ta tio n , s ta rt_ z R o ta tio n ,
e x te rn f lo a t s ta rt_ x T ra n s la te , s ta rt_ y T ra n s la te , s ta rt_ z T ra n s la te ,
e x te rn f lo a t s ta rt_ xS ca le , s ta rt_ yS ca le , s ta rt_zS ca le ,
exte rn in t start_theFOV,

/ / Id e f in e NOTFOUND 1
//# d e fin e FOUND 0

/*
char* ge tS tartO fW orld (char** flle lnM em Location, in t n b F ile S iz e)
{

in t le t t e r , o ffs e t= 0 , found = NOTFOUND,
char *next_char,
char the_char,
char cur_word[3 0],

next_char = *flle lnM em Location ,

w h ile (o f fs e t <= n b F ile S iz e && found == NOTFOUND)
{

le t t e r = 0,
the_char = *nex t_char,
next_char++,

w h ile (the_char '= ' ’ && the_char '= ' \ n ’ && o f fs e t <= n b F ile S iz e && le t t e r < 30)
{

c u r_ w o rd [le tte r+ +] = the_char,
the_char = *next__char++,

}

i f (le t t e r < 30)
{

c u r_ w o rd [le tte r] = ' \ 0 ' ,
i f (strcmp(cur_word, "W orldBegm ") == 0)

found = FOUND,
}
o ffs e t+ + ,

}

i f (found == FOUND)
r e tu r n (next_char) ,

e lse
r e tu r n (NULL),

},
* /

©implementation SimpleShape N3DShape

- read lnR IB F ile (c h a r*)RIBFilename returnMemoryLocationTo (cha r**)flle ln M e m Lo ca tio n
{
/ * get the f i le s iz e , m alloc i t , read in the f i l e in to ASCIIZ,

use the form fo r ReadArchive fo r using memory
* /

in t error_check=0,
in t mem_loc=0,
FILE* R IB F lle_ fp ,
char C u rren tD ire c to ryF ile na m e [255],
long f i le s iz e ,
s ta t ic in t *test=NULL,

p r i n t f ("e r ro r check=%d , mem_loc = %d\n” , error_check,mem_loc),

P a g e 1

SIM PLESH M

R IB F ile_ fp = fopent RIBFilename, " r ”),
i f (R IB F ile_ fp == NULL)
{

i f ('getwd(C urren tD irectoryF ilenam e))
e x i t (1),

p r i n t f ("E rro r C an 't f in d %s and the c u rre n t d i r is %s\n", RIBFilename, C urren tD irectoryF ilenam e),
r e tu r n (-1) ,

}

fs e e k (R IB F ile_ fp , OL, SEEK_END),
f i le s iz e = f t e l l (R IB F ile_ fp),
rew ind! R IB F ile_ fp) ,

te s t = (in t *)m a llo c (s iz e o f (in t)) ,
f re e (te s t) ,

* flle lnM em Location
= (c h a r*)c a llo c (1 , (s iz e _ t) f i le s iz e + 1) ,

e rror_check = frea d (*flle lnM em Location , 1, f i le s iz e , R IB F ile_ fp),
p r i n t f ("e r ro r check=%d , mem_loc = %d\n", error_check,mem_loc),

fc lo s e (R IB F ile_ fp) ,

/ / *flle lnM em Location = g e tS ta rtO fW o rld (flle lnM em Location, e rror_check),

/ * fo r (mem_loc = 0, mem_loc <= f i le s iz e , mem_loc++)
{

i f (* (*fileInM em Location+m em _loc)== ' \ n ')
* (*fileInMemLocation+mem_loc) = 0,

}
* /

re tu rn s e lf .

- rende rS e lf (R tToken)context

char m Filenam e[255] = " \0 " ,
FILE* fn _ fp ,
i n t count = 0,
char ch = ' a ',
char* fileInMemLoc=NULL,
RtToken myname,
char *m ynb = "C y lin d e r 5 2 1 3 60",
char *nbF ilenam e,

ribF ilenam e = (c h a r*)m a llo c ((s iz e _ t)255),

/ / generate a Torus
/ / R iTorus(0 8, 0 3, 0 0, 360 0, 360 0, RI_NULL),

/ / comment out the above and uncomment the fo llo w in g lin e s to render a Teapot
/ / R iS ca le (0 4, 0 4, 0 4),
/ / RiGeometry(" te a p o t" , RI_NULL),

/ /ShowQuads() ,
//B o w lm g B a ll () ,

/ / RiResource(“myres", RI_ARCHIVE, RI_FILEPATH, “ /NextDeveloper/Examples/RenderMan/Airplane r ib " , RI_NULL)

//R iG e o m e tn c R e p re s e n ta tio n ("p rim it iv e ") ,

count = 0,
fn _ fp = fopent "THENAME TXT", " r "),

i f (fn _ fp == NULL)
{

i f ('getwd(mFilename))
e x i t (1),

p r i n t f ("E rro r C an 't f in d THENAME TXT and he cuurent d i r is % s\n", mFilename),
}

ch = fg e tc (fn _ fp) ,
w h ile (ch '= ' ' && ch '= ' \ n ' && 'fe o f(fn _ fp) && count < 255)
{

m Filenam e[count++] = ch,
ch = fg e tc (fn _ fp) ,

P a g e 2

}

mFilename [count] = ' \ 0 ‘ ,
/ * p r i n t f ("The IN f i l e name is %s \n " , mFilename),
*/ s p r m t f (ribF ilenam e, "%s%03d r ib " , mFilename, theFrameNumber) ,

p r i n t f ("The RIB f i l e name is %s \ n ” , ribF ilenam e),

/ * To se t the f i l e up so the b i t s ou ts ide o f WorldBegm/WorldEnd are
ignored

* /

/ * Take out becuase o f ' rfW riteP aram eters bad typ e ' e r ro r * /
/ / [s e l f read lnR IB F ile ribF ilenam e returnMemoryLocationTo & flle lnM em Loc],

p r m t f (" th e f ie ld o f view is %d\n", theFOV),
i f (theFOV < 5 5)

theFOV = 55,

/ /R iP ro je c t io n ("p e rs p e c tiv e ", " fo v " , theFOV, RI_NULL),

R iT ra n s la te t xT ra n s la te , yT ra n s la te , zT ransla te),
R iR otatet xR o ta tion , yR o ta tio n , zR otation, 1 0) ,
R iScalet xScale, yScale, zScale),

R iT ra ns la te t 1 ,1 ,1),
R iSphere(2, 2, - 2, 360, RI_NULL),

/ / Check i f the T o n d a l Wave is to be shown
i f (showTWaveFlag)
{

Go() ,
/ * R tPom t h y p e rp t l, hype rp t2 ,

h y p e rp tl[0] = 0,

h y p e rp t l[1] = 0,

h y p e rp t l[2] = 5,

hype rp t2 [0] = 0 3,

h y p e rp t2 [l] = 0 ,

hype rp t2 [2] = 4 7,

PolyBoid(h y p e rp tl, hyperpt2 , 5, 1),
h y p e rp t l[0] = 0 3,

h y p e rp t l[1] = 0,

h y p e rp t l[2] = 4 7,

h ype rp t2 [0] = 0 7,

h ype rp t2 [1] = 0 ,

hype rp t2 [2] = 4,

PolyBoid(h y p e rp tl, hyperpt2, 5, 1),
h y p e rp t l [0] = 0 7,

h y p e rp tl [1] = 0,

h y p e rp t l[2] = 4,

h ype rp t2 [0] = 0 5,

h y p e rp t2 [l] = 0 ,

hype rp t2 [2] = 2,

PolyBoidt h y p e rp tl, hyperpt2 , 5, 1),
h y p e rp t l[0] = 0 5,

h y p e rp t l[1] = 0,

h y p e rp t l[2] = 2,

h ype rp t2 [0] = 1 5 ,

h y p e rp t2 [l] = 0 ,

SIM PLESH M

P a g e 3

SIM PLESH M

h y p e r p t 2 [2 = 5 ,

PolyBoid(h y p e rp tl, h ype rp t2 , 5, 1),
h y p e rp t l[0] = 1 5 ,

\
h y p e rp t l[1] = 0,

h y p e rp t l[2] = 5,

h ype rp t2 [0] = 1 4 ,

h y p e rp t2 [l] = 0 ,

hype rp t2 [2] = -3,

Po lyBo id i h y p e rp tl, h ype rp t2 , 5, 1),
h y p e rp t l[0] = 1 4 ,

h y p e rp t l[1] = 0,

h y p e rp t l[2] = -3,

h ype rp t2 [0] = 0 3,

h ype rp t2 [1] = 0 ,

hyperp t2 [2] = -4 ,

Po lyBoid i h y p e rp tl, hyperpt2 , 5, 1),
h y p e rp t l[0] = 0 3,

h y p e rp t l[1] = 0,

h y p e rp t l[2] = -4 ,

h yp e rp t2 [0] = 0,

h y p e rp t2 [l] = 0 ,

hype rp t2 [2] = -4 2,

PolyBoid i h y p e rp tl, h ype rp t2 , 5, 1),
* /
}
RiTransformBegm () ,

&
/ / j u s t use filenam es u n t i l ' rfW nteParam eters bad typ e ' e r ro r is fix e d
//myname = RiResource("myres", RI_ARCHIVE,
/ / RI_ADDRESS, &flle lnM em Loc, RI_NULL),
/*myname = RiResource("myres", RI_ARCHIVE,

RI_ADDRESS, Stmyrib, RI_HULL) ,
* /

R iT ra n s la te (0 , 0, -2 0) ,
myname = RiResource("myres", RI_ARCHIVE,

RI_FILEPATH, kribF ilenam e, RI_NULL),
RiReadArchive(myname, NULL, RI_NULL) ,

RiTransformEnd(),

/ / f r e e ! filelnMemLoc) ,
fc lo s e (fn _ fp) ,

re tu rn s e lf ,
}

@end

P a g e 4

JOINRIBS C

/*]o in r ib s c - - the program th a t w i l l concatenate a number o f RIB f i l e s
to make one "BIG" RIB f i l e s th a t uses FrameBegm and
FrameEnd to seperate d if fe r e n t Frames

Somhairle Foley 18th February 1995

example

>]o in n b s 145 r b a l l

th is w i l l take the f i l e s c a lle d rballXXX r ib f i l e where the
XXX is from 001 to 145 and make one f i l e c a lle d B IG rb a ll r ib
which con ta ins a l l o f the frames in i t

Note the r ib f i l e extension is no t s p e c ifie d

16/06/93

C urren t assignments are

%I - inc lu de another f i l e
%M - morph the fo llo w in g o b je c t w ith a f i l e

* /

#m clude < s td io h>
#inc lude < s td l ib h>
(in c lu d e < s tr in g h>
#inc lude <ctype h>

(d e fin e TRUE 0
(d e fin e FALSE 1 5

FILE *o u t_ fp , * l i t t l e _ f p ,

in t m a in lin t a rgc, char* a rg v [])
{

char o u t_ flle n a m e [5 0], l i t t le _ f l le n a m e [50],
char the_char,
in t f i le _ c o u n t,
in t num_frames, start_num ,

i f (argc '= 3)
<
f p r m t f (s td e r r , "Usage jo m r ib s <number o f frames> <RIB f ilenam es> \n") ,
e x i t (1) ,

}

num_frames = a t o i (a rg v [l]),
i f (num_frames < 1 j | num_frames > 199)
{

f p r m t f (s td e r r , " jo m n b s number o f frames must be between 1 and 199 \n ") ,
e x i t (1) ,

}
<5

s p r in t f (ou t_ fllenam e, "BIG%s r ib " , a rg v [2]),
i f ((ou t_ fp = fopen(out_ fllenam e, "w ")) == NULL)
{

f p r m t f (s td e rr , " jo in n b s Cannot open ou tpu t f i l e % s\n", out_ fllenam e),
e x i t (1),

}

start_num = 1,
rew ind (o u t_ fp),

fo r (f i le _ c o u n t = 1, f i le _ c o u n t <= num_frames , file_ co un t+ +)
{

f p r m t f (o u t_ fp , "FrameBegm %03d\n", f ile _ c o u n t),

/ * Put th is ins tance o f the filenam e m the l i t t le _ f l le n a m e s tr in g * /
s p r i n t f (l i t t le _ f l le n a m e , "%s%03d r ib \0 " , a rg v [2], f i le _ c o u n t),

i f ((l i t t l e _ f p = fopen(l i t t le _ f l le n a m e , " r ")) == NULL)
{
f p r m t f (s td e r r , " jo m n b s Cannot open in p u t f i l e % s\n", l i t t l e _ f llename),
e x i t (1) ,

}

p r i n t f ("Making Jo ined Frame F ile %s c u rre n t tra n s la tio n s are %03d\n",
out_ fllenam e, s ta rt_ n u m + file _ c o u n t- l),

w h ile (1f e o f (l i t t le _ f p))
{

the_char = fg e tc (l i t t l e _ f p) ,
i f is a s c ii(th e _ c h a r)

fp u tc (the_char, o u t_ fp),
}

P a g e 1

V JOINRIBS C

fc lo s e (l i t t l e _ f p),

f p r m t f (o u t_ fp , "XnFrameEnd \n # \n ") ,

} / * end fo r * /

p r i n t f (" XnFinished Jo in in g a RIB c a lle d '%s I Think \n " ,a rg v [2]),
p r i n t f ("===\n\n"} ,

| r e tu r n (fc lo s e (o u t_ fp)),
%
}

¿

P a g e 2

