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Abstract

Abstract

Photoluminescence measurements of three cadmium related defects are 

presented in this thesis Group I consists of five zero-phonon lines with the 

minimum energy line observed at -1058 1 meV A second group of lines, 

labelled group II is found to be broadly similar to group I and is centred at ~ 

1068 meV Group III consists of three zero-phonon lines, labelled a-i, a2 and 0C3 

with ai observed at -1083 3 meV Temperature dependence, uniaxial stress, 

isotope substitution studies and Zeeman measurements were performed on the 

three defects reported

In the case of groups I and II, temperature measurements have shown 

excited state manifolds with thermalisation occurring to a single ground state 

For group III thermalisation data show that both the ground and excited states 

are manifolds of three levels each, with strong selection rules governing the 

transitions Uniaxial stress measurements reveal trigonal (C3V) symmetry for 

groups I and II Group III is assigned to monoclimc I symmetry

Cadmium isotope substitution experiments reveal that all three centres 

contain at least one cadmium atom The diffusion of lithium into cadmium- 

doped silicon enhances the luminescence of all three defects For group II, 

lithium isotope substitution studies indicate the involvement of two Li atoms in 

the defect

Zeeman measurements show the excited state manifolds consist of both 

singlet and triplet states for the three centres, with isotropic triplet state g values 

close to 2
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Overview

Overview

The number of transistors on a silicon chip has doubled every 18 

months, and many believe that conventional semiconductor technology will 

reach its limit in the next decade Integrated circuits (ICs) have evolved from 

large scale (LSI) to very large scale (VLSI) structures in the past few decades, 

while research in ultralarge scale integration (ULSI), where the interconnect 

features are in the sub-micron (<1 j^m) range, is being undertaken at present 

The majority of ICs are manufactured using silicon as the semiconducting 

material, and in the interest of device performance, reliability and reproducibility 

a basic understanding of the material, including the effects of host defects, 

foreign impurities and complexes involving both defects and impurities is 

necessary In 1995, 98% of the commercial electronics business was based on 

silicon technology and it is predicted that the interaction between dopants and 

silicon defects would “cause the breakdown of next-generation devices” (Poate,

1995) Only by the continued study of the properties of semiconductor materials 

can microelectronics progress as continued advances in the industry depend on 

the ability to further reduce the size of an IC

The work presented in this thesis is concerned with the characterisation 

of three defects produced in cadmium-implanted silicon Photoluminescence 

(PL) spectroscopy used in conjunction with the perturbation techniques of 

uniaxial stress and Zeeman measurements, and with isotope and temperature 

dependence experiments are used to investigate the properties of the defects

l



Overview

In chapter one the properties of silicon are introduced, with possible 

impurity configurations and recombination mechanisms Brief reviews of the 

Group I impurity lithium and Group II impurities beryllium, zinc and cadmium are 

given Three previously unreported PL systems are introduced and are 

tentatively assigned to Cd-Li complexes The theory governing the ‘tools’ of the 

investigation, i e spectroscopic and perturbation techniques, are presented in 

chapter two Three defects, labelled group I, II and III, which are the subject 

matter of this thesis, are introduced in detail in chapter three and their 

behaviour as a function of temperature studied Chapters four and five contain 

new data obtained during the course of this work, giving information on the 

symmetry, the spin states and chemical constituents of the defects 

Conclusions drawn from the data obtained and suggestions for further work are 

presented in chapter six
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Chapter One 

Introduction

1.1 Introduction

Impurities may be introduced into a semiconductor intentionally (by 

doping) or unintentionally (by contamination) During the crystal growth process, 

some trace impurities e g carbon and oxygen are always present in the starting 

material, as described in section 1 2 The conductivity type and electrical 

behaviour of the material can be controlled by the introduction of impurities 

The deliberate addition of chemical impurities such as boron or phosphorous 

during the growth process will produce p-type or n-type material respectively 

Silicon is one of the most heavily studied semiconductors due to the highly 

advanced state of silicon technology, which makes silicon available in large 

volumes with a range of controlled dopants During semiconductor device 

fabrication, silicon is subjected to various thermal anneals during which 

impurities can diffuse in from the surface Depending upon their concentration, 

these impurities can be beneficial or destructive, as they can give rise to defect 

structures, and it is the behaviour of these defects in silicon, which are of 

interest In this chapter the properties of silicon are introduced, with possible 

impurity configurations and recombination mechanisms The present state of 

knowledge of beryllium, zinc, cadmium and lithium related defect structures 

already characterised in silicon are presented In the final section, three 

cadmium-lithium defects, which are the subject matter of this thesis, are 

introduced
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1.2 Silicon

Silicon has a diamond crystal structure for which the space lattice is 

face-centred cubic (fee). The diamond structure can be viewed as two fee 

structures displaced from each other by one-quarter of a body diagonal. The 

basis of the lattice consists of two identical silicon atoms at (0 0 0 ) and ( X X X ) -  

The tetrahedral bonding characteristic of the silicon structure is shown in Figure 

1 .1 (a), where each atom has four nearest neighbours and 1 2  next nearest 

neighbours. At room temperature the interatomic spacing of silicon is 0.234 nm, 

the lattice parameter is 0.543 nm and the density is 2330 kg/m3.

Single-crystal silicon is generally grown from the molten state using the 

Czochralski (CZ) method. A seed crystal is dipped into a crucible of the molten 

silicon, then slowly withdrawn and new lattice layers solidify on the crystal 

surface. During the crystal growing process, impurities from the crucible, carbon 

and oxygen may contaminate the crystal. The impurity concentration can be 

reduced by using the float-zone (FZ) technique where a small region of 

polycrystalline rod is melted. Due to the higher solubility of impurities at high 

temperatures, they remain in the molten zone as it is moved through the rod. 

Thus, the impurities are swept to one end of the rod. This sweeping process is 

repeated several times resulting in very high purity material in the bulk of the 

sample. Typical concentrations of oxygen in CZ silicon are ~1018 atoms/cm3 

and < 1016 atoms/cm3 in FZ silicon.

Osl Os' # c o °
Figure 1.1(a) Crystal structure of silicon showing the te trahedral bond 
arrangem ent and (b) interstitial oxygen defect connected to two nearest neighbour 
silicon atoms and substitutional carbon (adjusted from  K irshan et al, 1990).
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An ideal silicon crystal contains no defects or imperfections, however a 

real crystal may contain dislocations, grain boundaries, strains and point 

defects Common point defects in real crystals are chemical impurities, vacant 

lattice sites (the removal of an atom from an atomic site) or atoms in interstitial 

sites (an extra atom in a non-regular atomic site) Impurity atoms in a crystal 

can either occupy a normal atomic site in the parent lattice (a substitutional 

impurity) or a non-regular atomic site (an interstitial impurity) Usually oxygen 

atoms in silicon occupy interstitial sites, while carbon atoms occupy lattice sites 

forming a substitutional carbon impurity, both types of impurity are shown in 

Figure 1 1(b) The presence of defects in a crystal usually introduces energy 

levels in the forbidden energy bandgap

1.3 Direct and Indirect Semiconductors

The energy gap is the energy difference between the upper edge of the 

filled valence band and the lower edge of the empty conduction band, with the 

zero of energy conventionally taken as the top of the valence band 

Semiconductors are classified into two types, according to whether the 

bandgap is direct or indirect In a direct gap semiconductor, e g GaAs, the 

lowest conduction band minimum and the highest valence band maximum are

at the same wavevector, k in the Brillouin zone Optical transitions across the 

bandgap conserve total crystal momentum Figure 1 2 (a) shows a direct 

transition where there is no appreciable change in k in going from the valence 

band to the conduction band Figure 1 2 (b) represents an indirect transition as 

the lowest point of the conduction band is separated in k space from the 

valence band edge This radiative transition only occurs if accompanied by the 

absorption or emission of a phonon (or other scattering mechanisms) in order 

to conserve momentum A phonon is a quantum of vibrational energy, heo, 

where co is the angular frequency of the phonon Since this process involves 

electron-radiation and electron-phonon interactions, it has a smaller transition 

probability than the direct transition
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CONDUCTION BAND

________________________ I_________________________________________ _
0  k

Figure 1.2 Optical transitions (a) direct transitions and (b) indirect transitions 
involving phonons to conserve momentum (Sze, 1981).

Silicon is an indirect gap semiconductor. The highest occupied valence 

band state lies at r  (k = 0 ) but the lowest unoccupied conduction band state is 

close to the X point (along the <100> axis), as shown in figure 1.3(a). Silicon 

thus has six equivalent conduction band minima corresponding to the six 

equivalent <100> directions. The energy gap Eg for silicon is 1.17 eV close to 0 

K, decreasing to 1.12 eV at room temperature. To excite an electron at the 

upper valence band at wavevector k = 0  to the conduction band minimum at 

k0, where k0 =0.80 (±0.05) k /k MAX for silicon along the <001 > axis as shown

in figure 1.3(b), only those phonons with the same wavevector k0 as the

conduction band minimum can take part in the process. The phonon dispersion 

relation for silicon in the [100] direction is shown in figure 1.3 (b). For each 

direction the dispersion relation contains two branches, known as the acoustic 

and optic branches. Labelled in the figure are the longitudinal LO and 

transverse optic TO modes, and longitudinal LA and transverse acoustic TA 

modes. Three luminescence bands are observed associated with the TO, LO 

and TA phonons. The first experimental observation, using a wavelength- 

derivative absorption technique, of the 55.3 meV LO phonon in silicon was by 

Shaklee et at. (1970). The emission of an 18.2 meV TA and 57.3 meV TO 

phonon were reported previously (McLean, 1960 and Dean et al., 1969).
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(a)  ̂ (b)

Figure 1.3(a) The energy band structure of silicon, an indirect semiconductor 
(Myers, 1997) and (b) the vibration spectrum  in [100] direction (Reynolds et al., 
1981).

1.4 Exciton Recom bination

The optical spectra studied in this thesis are produced by transitions 

between electronic states. In a semiconductor, the transition usually involves 

the recombination of electrons and holes, from an excited state to a lower 

energy state or from internal transitions at a defect. The excitation of silicon with 

photons of energy greater than the bandgap results in the formation of electron- 

hole pairs. The electrons and holes become bound together as pairs by their 

mutual Coulombic attraction and they represent a state of energy lower than the 

unbound electrons and holes, the electron-hole pair is known as a (free) 

exciton. As the excitation intensity increases the density of the electron-hole 

pairs increases and the number of excitons formed increases. The electron- 

hole pairs can recombine via several decay processes which can be radiative, 

giving rise to luminescence, or non-radiative where the energy goes into lattice 

vibrations. Lightowlers (1990) gives a detailed review of the possible decay 

processes. The Auger effect is a non-radiative process in which the exciton 

energy can be transferred to a third particle without the emission of light.

In an indirect gap semiconductor, momentum-conserving phonons with 

the same wavevector as the conduction band minimum are emitted with the 

recombination of the exciton. The energy of the transition, ET is:
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ET = Eg -  Ex ± hco (1.1)

where Eg is the energy gap of the indirect semiconductor, Ex is the exciton 

binding energy and ha> is the energy of the momentum conserving phonon. 

The + sign implies phonon absorption and the - sign implies phonon emission.

Excitons in a high purity material are free to move through the crystal 

and they are described as free excitons (FE). The FE is a hydrogen-like bound 

pair, the hole is from the top of the valence band and the electron from the 

bottom of the conduction band. The binding energy of the exciton, Ex is 14.7 ± 

0.04 meV (Shaklee et a!., 1970).

A bound-exciton (BE) complex is formed by the binding of a free exciton 

to a host lattice defect or to a chemical impurity atom(s). If the material contains 

donors and acceptors with concentrations >1 0 15 cm' 3 then at low temperatures 

nearly all of the free-excitons are captured giving rise to impurity specific BE 

luminescence. The BE spectral lines are impurity specific for silicon and can 

occur with or without the emission of phonons. The spectral lines are sharp with 

photon energy:

ET = Eg - E x - E B(±ho>) (1.2)

where EB is the binding energy of the exciton to the neutral donor or acceptor, 

and the other symbols are given as above. The ground state in the case of 

donors and acceptors already contains one bound particle, an electron in the 

case of a donor and the hole in the case of an acceptor. In the case of neutral 

centres (isoelectronic) the ground state of the excitation is the bare defect. The 

localisation of an additional electron-hole pair to the defect creates the BE 

excitation, which may be regarded as containing two electronic particles for a 

neutral defect and three particles for a donor or acceptor (if single donors or 

acceptors are considered). The binding energy of shallow BE donors and 

acceptors is weak compared to the FE binding energy and is impurity specific 

e.g. 3.8 meV for B and 4.7 meV for P (Davies, 1989 and ref. therein). The 

spectral lines are sharp in comparison to the FE line, which follows a Boltzmann 

distribution. It is this narrow line shape which allows small shifts in energy from
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isotope experiments, Zeeman and stress measurements to be observed 

thereby helping to identify the impurity involved in the defect Dean and Herbert 

(1979) and Monemar et al (1987) give detailed review papers on the structure 

of BEs

At increased excitation densities a series of sharp lines at energies 

below an associated BE luminescence can be observed The luminescence 

lines show a strong dependence on the excitation density and are due to the 

binding of more than one exciton at the donor or acceptor trap A detailed 

review of these so-called bound multi-exciton complexes (BMEC) is given by 

Thewalt (1977,1982a) and a review of the shell model by Kirczenow (1977)

1.4.1 Isoelectronic Bound Excitons

An isoelectronic centre has the same number of valence electrons as the 

atoms it replaces and is electrically neutral The neutral ground state of the 

defect possesses a local potential due to electronegativity differences or a local 

strain field about the defect site, which can tightly bind a particle (primary 

particle) with typical binding energies of a few hundred meV A second particle 

of the opposite charge is then bound via the Coulomb potential of the primary 

particle, with binding energies of a few tens of meV The secondary particle is in 

a shallow effective-mass orbit according to the Hopfield-Thomas-Lynch (1966) 

model The term isoelectronic bound exciton (IBE) is used to describe the 

excited state of the defect Isoelectronic centres can consist of substitutional 

impurity atoms with the same number of valence electrons as Si, e g Ge, C, or 

molecular type defects which consist of impurity-impurity and impurity-intrinsic 

defect complexes Weber et al (1979, 1980) first reported IBEs in silicon and 

Davies (1989) gives an extensive report of IBEs in silicon Isoelectronic defects 

can be classified as either acceptors or donors depending upon which particle, 

electron or hole, is bound to the defect first

The centre acts as an acceptor if the electron is the tightly bound particle 

which can now capture a hole by its Coulomb attraction The angular 

momentum of the electron is je = Y i, while the angular momentum of the hole is 

Jh = Yi The bound exciton state will split into a J = 1 and J = 2 state under the 

electron-hole exchange interaction Electron attractive core defects, such as the
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ABC centre (Weber et a l , 1980, Davies et a l , 1994) and the Be-pair (Thewalt 

et a l , 1982b) in silicon are isoelectromc acceptors A schematic diagram of an 

isoelectromc acceptor is shown in figure 1 4 (a)

In an isoelectromc donor the hole is the tightly bound particle and the 

electron is bound via the Coulomb attraction The angular momentum of the 

electron is je = Y i, and the angular momentum of the hole is quenched giving jh 

= y2 Thus both particles have s-like wavefunctions and the electron-hole 

exchange interaction will split the bound exciton state into S = 1 and S = 0, triplet 

and singlet states These electron attractive defects for example the C-line 

(Thonke et a l , 1985) and the P-line (Wagner et a l , 1985) in silicon are called 

isoelectromc donors and can be represented schematically, figure 1 4 (b)

(a) Electron attractive core

(b) Hole attractive core £
TJc

h* j . K  

e ' j = 'A

h+ s= % 

e ' s  = ^

J  = 1

J  = 2

S = 0

S = 1

Figure 1.4. (a) Isoelectromc acceptor and (b) isoelectronic donor defect centres.

Exciton recombination is highly efficient at an isoelectromc centre, as no 

particles are available for Auger-type non-radiative recombination processes 

The identification of donor and acceptor BE luminescence can be 

straightforward due to deliberate doping with various donors and acceptors 

When other impurities are introduced by contamination during growth or 

complexes are formed by radiation damage or thermal treatment the 

identification of the impurities responsible is complicated
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1.5 Electronic and Vibrational Elements of Optical Transitions

If an electron is excited from a low energy state to an excited state of an 

isolated atom, it will eventually undergo a transition from the higher energy 

state to the lower state, with the emission of radiation exactly equal to the 

energy difference of the two states As the atom is not isolated but is present in 

a crystal lattice, as a defect centre, the electronic and lattice systems are 

coupled together The transition of the electron from the higher energy state to 

the lower state may cause the lattice around the centre to relax to a new 

equilibrium position All optical centres have atomic vibrations about equilibrium 

positions in different electronic states, the coupling of the electronic states to 

the vibration of the centre is referred to as electron-phonon coupling Electron- 

phonon coupling was first considered by Born and Oppenheimer (1927) and 

Born and Huang (1954) It has been reviewed in detail recently by for example, 

Henderson et a l, (1989) and Davies (1999) In the following, the case of an 

optical centre with just one vibrational degree of freedom (configurational co­

ordinate) and non-degenerate electronic states which are well separated in 

energy from all other electronic states will be considered, in the case of linear 

electron-phonon coupling

To represent electronic coupling to a single vibrational mode a 

configurational co-ordinate (CC) diagram is drawn The diagram, as shown 

schematically in figure 1 5, relates the total energy of the centre to Q, the 

distance of the defect atom(s) to its nearest neighbour The centre in the 

ground state (g) vibrates harmonically around the equilibrium position Q = Qg = 0

with angular frequency, co = , where k is the effective “spring constant” and

m is the mass The angular frequency of the excited state (e) is the same as the 

ground state, but vibrates at equilibrium position Q = Qe, where Qe > Qg The 

difference in the average value of Q arises because of the difference in 

coupling, the larger the difference in coupling the larger Qg - Qe The relaxation 

energy Er defined in figure 1.5, is a measure of the difference in coupling

Er = Sho) (1 3)
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where S  the Huang-Rhys parameter, represents the difference in coupling 

between the initial and final states of a transition The Frank-Condon 

approximation states that the nuclei can be considered to be stationary during 

the course of transitions, as the timescale of the electronic transitions is short 

compared to that of nuclear vibrations On the CC diagram as shown in figure 

1 5 the electronic transitions can be represented by vertical lines

According to the Born-Oppenheimer approximation the total wave- 

function of a centre can be considered to consist of an electronic part (f>{r), 

which depends on the electronic co-ordinates r, and a vibrational part xi.Q) 

The total wavefunctions of the ground and excited electronic states are

where n, N  are the quantum states of the vibration in the ground and excited 

electronic states, respectively

In the ground state, the vibrational potential energy is

When the electrons are excited through energy E, the potential energy of the 

excited state is

=0g(r)Zn(Q-Qg)

Ve,N =<f>e{r)XN^Q-Qe)

(1 4) 

(1 5)

Vg = y 2 mo>2 ( Q - Q g ) 2 (1 6)

Ve = E  + / 2 mco2 ( Q - Q e) 2 - E r (1 7)
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a a Q

Figure 1.5 Configurational co-ordinate diagram showing ground (g) and excited (e) 
states of a defect. The line N=  0 to n = 0 is the zero-phonon line (ZPL) and the first 
two sidebands s/, N=  1 to n = 0 and S2, N=  2 to n = 0 are shown in the diagram.

The linear electron-phonon coupling term written in terms of the excited state 

equilibrium position is

a = -mco2(Qe - Q g) (18 )

The potential energy of the excited state can be rewritten in terms of a as

Ve = E  + y2ma)2( Q - Q J 2 + a ( Q - Q J (1 9)

The change in equilibrium position and relaxation energy Er are given by

a-a a
mao

(1 10)

E r =
a

r 2 m (o
(1 11)
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Absorption and emission transitions between states can be analysed 

from the CC diagram; the observed spectra will depend upon the difference in 

electron-phonon coupling between the two states. The probability of absorption 

from electronic-vibrational state g, n to electronic-vibrational state e, N  depends 

on (Davies 1999):

Introduction________________________________________________________________________Chapter One

=\\Ml{r)r<t>g{r^\dQxN(Q-Qe)xn[Q-Qĝ [ (1-12)

The first integral is the purely electronic transition probability, Pge and is the 

same for all vibrational states n, N. The second integral determines the overlap 

integral between states of the form Xn(Q -Q e) anc* Xn(Q~Qg) which are

generally non-zero. The transition probability Wgn.eN is then:

K -.»  = P ^ [!< iQ x A o -e .)x .(Q -Q ,)f (1-13)

At low temperatures, T ~ 0 K only the n = 0 vibrational state in the lower 

state is occupied. The probability of an absorption transition to the N*h 

vibrational level in the excited state varies as the square of the overlap integral, 

which is called the zero-temperature Frank-Condon factor, FN( 0) (Henderson 

eta!., 1989):

F„(0) = \\d Q x J Q -Q ,i X ,(Q -Q ,!\ = * ~ S> (1.14)

At T ~ OK the absorption band shape is given by:

¡« ( E t - h Y ,  eXP(~S,)S" K Eo + N hm -e ) (1.15)
N i V .

where E 0 is the energy of the transition between the zero vibrational levels of 

both final and initial states, this is the energy of the zero-phonon line (ZPL) and 

I0 is the intensity of the full band. The ZPL has intensity l 0 e xp (-S )  and if S = 0 

all the intensity is contained in the line. For S  = 0, Qg = Qe and the excited and
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ground state parabola are identical As S  increases the intensity of the zero- 

phonon line decreases with the appearance of vibrational sidebands which are 

observed at energies Nhco above the zero-phonon line. The intensity of the full 

band, I 0 is independent of S, thus the sideband intensity is obtained at the 

expense of zero-phonon line The zero-phonon transition, 0 -» 0 is a transition 

between pure electronic states and is expected to be a sharp line The other 

transitions 0 -*  N, occurring at higher energies involve the creation of n 

phonons, which appear as sidebands along with the zero-phonon line The 

bandshapes, which are drawn to have the same maximum intensity for different 

values of S, are shown in figure 1 6

s = o S = 4

_l i—

S = 1

1------r  i---------1------- 1—
0 4 8 12 16 20

energy m  u n it s  o f  fiw

S = 10

J-L i

0 4 8 12 16 20

energy in  u n its  o f  hoi

Figure 1.6 The variation of sideband intensity for various Huang-Rhys values 
(Henderson etal., 1989).

As the value of the Huang-Rhys parameter increases, sidebands appear 

as continuous bands with the relative intensities of the different transitions 

changing with the strength of the coupling Only sharp electronic zero-phonon 

transitions would occur if there were no lattice vibrations However, due to 

lattice vibrations, sidebands occur

When the electromc-vibrational system is raised to some higher 

vibrational level in the excited electronic state, g,  it decays quickly by 

multiphonon emission to the ground vibrational level of the excited state (N= 0) 

Radiative decay returns the system to the vibrational level, n, of the ground 

electronic state
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The shape of the emission band at low temperature, T = 0 K is

he(E) = I o T  eXP~ ~S)S(E0 -  nhco-E) (1 16)
n n

Absorption and emission transitions are shown in figure 1 7 The zero- 

phonon transitions for absorption and emission occur at the same frequency, 

with the emission band at lower energy The shapes of the emission and 

absorption bands are mirror images if the excited- and ground- state parabolas 

are identical, the energy separation between the peaks of the bands is known 

as the Stokes shift, and has a value (2S -  l)hco When the spring constant k 

differs in the excited and ground states, ha>e *  hag, the parabola are no longer

identical and the mirror symmetry does not occur, thus the energy shift between 

the zero-phonon line and the Stokes (emission) and anti-Stokes (absorption) 

shift will vary

Energy

Figure 1.7 Low temperature absorption and emission between two states. The zero- 
phonon line will occur at the same frequency in emission and absorption (adjusted 
from Henderson et aL, 1989). The energy axes are reversed for absorption and 
emission.
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Only electronic coupling to a single vibrational mode has been 

considered However, in a real system there are more than a single CC hence 

an optical centre has a large number of vibrational modes, and the potential 

energy of the ground and excited state for the ith mode are generalised as

r s = x i> . ® . 2( e - e s>? (117)

n = £ + K 2 >,®,2( 0 - o , ) 2+ I > - ( 2 - e s>< <118)

The vibrational modes do not mix in the linear coupling approximation and the 

multi-phonon sideband of any particular transition may be estimated provided 

an accurate one-phonon sideband is known The spectrum of the n-phonon 

sideband In(v) is given by (Davies 1999)

I„ (v) = \dxl\ {x)In-\ (v ~ *) n>  1 (119)
O

where com is the maximum vibrational frequency in the defect and I\(x) is the one 

phonon sideband

1.6 Group II in Silicon

The group II impurities on substitutional silicon sites, lacking two 

electrons to form four covalent bonds, behave as double acceptors When the 

group II impurities are incorporated on an interstitial site the two outer electrons 

are ionised and the impurity acts as a double donor The group II elements, 

which have received particular attention in previous studies, are Be, Cd and Zn 

A summary of the main findings of each of these elements will be discussed in 

the following sections
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1.6.1 Beryllium Doped Silicon

Beryllium doping produces p-type silicon and mobile interstitial atoms are 

believed to become trapped at vacancies thus producing substitutional acceptor 

impurities Crouch et a l , (1972) suggest that a line spectrum, which they 

labelled Be-I, is due to single beryllium atoms occupying substitutional silicon 

lattice sites with the ground state binding energy of 191 9 meV An acceptor 

level at Ev + 145 8 meV, labelled BE-H, is believed to involve two Be atoms on 

nearest neighbour sites with trigonal symmetry (Crouch et a l , 1972, Heyman et 

a l , 1991, 1992) The diffusion of lithium into beryllium-doped silicon produces 

two new acceptor levels at 106 and 81 meV above the valence band These 

new levels are due to lithium forming a complex with the defects responsible for 

the Be-I and n levels, respectively (Crouch et a l , 1972) Beryllium-doped silicon 

samples which were heated in an hydrogen environment revealed acceptor 

levels at about 91 and 73 meV These acceptor levels are due to beryllium- 

hydrogen pairs, a direct analogy to the beryllium-lithium pairs (Crouch et a l , 

1974)

Infrared absorption studies of the lines around 83 meV, labelled Be-IV, 

indicates the creation of the centres is due to the decomposition of the 

beryllium pairs, Be-n Two additional lines around 190 meV which are due to a 

different acceptor are labelled Be-m (Ho et a l , 1995) On the higher energy 

side of the Be-IV centres, several absorption lines have been identified and are 

due to another beryllium centre, labelled Be-V The Be-I and Be-n centres have 

been studied since the early '70s, however, the in  to V centres need further 

study to be fully understood (Ho et a l , 1997)

An isoelectronic centre observed at -1077 meV is identified as a double 

donor-double acceptor pair formed by a substitutional Be2' next to an interstitial 

Be2+ in a <111> geometry (Killoran et a l , 1982, Henry et a l , 1981, 1990, 

Thewalt e ta l, 1982)

A number of recombination centres with ZPLs at —1138 and ~1053 meV, 

are not exhibited by oxygen-lean FZ material and are attributed to the 

complexmg of O with Be (Gerasimenko et a l, 1985) Further PL studies have 

revealed the behaviour of the ~1138 meV line to be consistent with a pseudo­

donor model with rhombic I (C2v) symmetry (Daly et a l , 1996). A complicated 

band of lines was observed in the range 650-900 meV in silicon irradiated with
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beryllium ions annealed at 400-600°C. The energy positions of over thirty lines 

were in agreement with those calculated on the assumption that one 

component was a beryllium atom or pair at the nearest lattice sites (acceptors 

with EA = 191 and 145 meV, respectively) and the second in a donor site 

(Gerasimenko et al., 1985). Table 1.1 summarises the beryllium acceptor levels 

and PL centres.

Line (meV) Name Element(s)/
identity

Symmetry 
(if known)

Ref.

Acceptor Levels

Ev + 191.9 Be-I Be subs Crouch et al, 1972

Ev + 145.8 Be-II 2 Be n.n. Trigonal Crouch et al, 1972

Ev + 106 Be-I + Li Be subs + Li Crouch et al, 1974

Ev + 81 Be-II + Li 2 Be n.n. + Li Crouch etal, 1974

Ev + 91 Be-I + H Be subs + H Crouch etal, 1974

Ev + 73 Be-II + H 2 Be n.n. + H Crouch etal, 1974

Ev + 190 Be-III Ho etal., 1995

Ev + 83 Be-IV Ho etal., 1997

PL Centres

1076 Be pair Rhombic I Henry et al., 1981,1990

1138 BeA Be + O Rhombic I Daly et al., 1996

1052.8 Be + O Gerasimenko etal., 1985

Table 1.1 Be acceptor levels and PL centres (subs = substitutional, n.n. = nearest 
neighbour).

1.6.2 Zinc Doped Silicon

Zinc is firmly established as a substitutional double acceptor impurity, 

confirmed by Hall effect (Fuller et a!., 1957), photothermal ionisation 

(Grimmeiss et al., 1975) and infrared absorption experiments (Merk et al., 1989, 

Dornen et al., 1989). Infrared absorption studies have yielded the most 

accurate values for the ionisation of neutral zinc and are given as Eo/. = Ev + 

319.53 meV (Merk et al., 1989) or Ev + (319.1 ± 0.3) meV (Dornen et al., 1989).

An investigation of zinc-diffused CZ silicon that failed to produce any 

evidence of bound exciton recombination at zinc double acceptors revealed two 

systems with zero-phonon transitions observed at 1129.57 meV and 1090.47 

meV, labelled the ZnA and ZnB systems (Henry et al., 1989, 1994). In
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subsequent investigations two other zinc related systems were observed 

labelled Znc and ZnD. Znc consists of two thermalising lines at 1050.31 and 

1051.24 meV, and ZnD has a zero-phonon line at 1100.42 meV (McGuigan et 

al., 1996). The behaviour of all four zinc-related systems under uniaxial stress 

was almost identical. ZnA defects are found to possess rhombic I symmetry with 

ZnB, Znc and ZnD possessing monoclinic I symmetry. All four defects are 

believed to be due to the complexing of zinc with oxygen and are pseudo-donor 

in nature. A brief summary of zinc luminescence centres and acceptor levels is 

given in table 1 . 2  below.

Line (meV) Narine Elements)/ 
identity

Symmetry 
(if known)

Ref.

Acceptor Levels

Ev + 319.53 Merk eia/., 1989

Ev + 319.1 Dörnen et al., 1989

PL Centres

1129.57
<CN

Zn + O Rhombic I Henry et al., 1989,

1190.44 ZnB Zn + O Monoclinic I 1994

-1051 Znc Zn + O Monoclinic I McGuigan et al.,

1100.42 ZnD Zn + O Monoclinic I 1996

Table 1.2 Zinc acceptor levels and PL centres as described in the text.

1.6.3 Cadmium Doped Silicon

The substitutional single cadmium impurity in silicon introduces two 

acceptor levels. Hall effect and photoconductivity measurements place the 

levels at Ev + 550 meV for Cd0/' and Ec - 450 meV for Cd'/2' (Gulamova et al., 

1971). The technique of DLTS on Radioactive Impurities (DLTS-RI) has 

identified the singly and doubly charged state of the isolated Cd double 

acceptor in Si and placed the level for Cd0/' at Ev + 485 (± 27) meV and Cd'/2" at 

Ec - 450 (± 20) meV (Lang et al., 1991,1992). The level observed at Ev + 485 

meV is attributed to CdFe pairs (Lang et al., 1992) where interstitial Fe atoms 

slowly diffuse in the silicon lattice at room temperature and form pairs with 

isolated Cd atoms. Hall measurements have revealed two levels placed at Ec - 

330 and Ec - 540 meV (Dyunaidov et al., 1981). These two levels have been 

attributed to substitutional cadmium, which suggests a double acceptor nature 

in silicon similar to zinc. At high temperatures a third level was observed located
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between Ec - 330 and Ec - 540 meV Dyunaidov and his co-workers suggest this 

is the level at Ec - 450 meV observed previously In B- and Al-doped silicon two 

Cd-impurity related levels were observed, labelled Cd-B1 and Cd-AI1 Both 

centres act as a single acceptor and contain one Cd atom complexing with an 

unknown impurity Their ground states were located in the bandgap, Cd-B1 at 

Ev + 200 (+10) meV and Cd-AI1 at Ev + 205 (±10) meV The precise values and 

identification of Cd-related states observed in the band gap varies from one 

report to another

The structural and electronic properties of Cd were studied by Electron 

Paramagnetic Resonance (EPR) The Cd(1) centre was identified showing an 

angular dependence suggesting a single tetrahedrally co-ordinated Cd atom is 

involved A substitutional lattice site is suggested with the Cd(1) spectra due to 

the isolated Cd+ donor state with a singlet ground state (Naser et a l , 1998) 

Naser tentatively assigned Cd(1) to an energy level at Ev + 200 (±10) meV 

which is in disagreement with the acceptor-like Cd-B1 centre observed 

previously (Lang et a l , 1991)

Perturbed Angular Correlation spectroscopy (PAC) of Cd-H complexes in 

silicon have identified an acceptor energy level at E = Ev + 60 meV (Gebhard et 

a l , 1991) A first principles investigation of the possible neutral complexes of 

Cd-H in silicon revealed the energetically favourable configuration is one where 

the Cd atom and the nearest silicon suffer relaxation along the [111] direction 

(Caravaca et a l, 1998)

Three pseudo-donor type Cd-related defects in CZ Si were observed in 

photoluminescence studies with zero-phonon lines at 935, 983 and 1026 meV, 

labelled Cde, CdA and the 1026 meV defect, respectively (McGlynn et aI,

1996) Isotope substitution experiments show all three defects contain one Cd 

atom and probably involve one or more impurity atoms McGlynn and his co­

workers reported no definite links between the defects observed in DLTS and 

PL could be established due to the low thermal binding energy found in the PL 

measurements CdA defects have rhombic I symmetry with very similar stress 

parameters as the ZnA defects, as are the stress parameters of the monoclinic I 

Cde and ZnB defects Regardless of the chemical identities of the impurities in 

the defects, the basic symmetry and geometry is similar in all cases Due to the 

close parallels with zinc and beryllium, the pairing of cadmium with oxygen was 

proposed to account for these defects Table 1 3 compares the acceptor levels
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and summarises the information known to date on cadmium related 

luminescence centres

Line (meV) Name Element(s)/
identity

Symmetry 
(if known)

Ref

Acceptor Levels

Ev +550 o CL o Gulamova et a l ,

Ec - 450 Cd'/2‘ 1971

Ev + 485 o Q. © CdFe pairs Lang et a l , 1991,

Ec - 450 Cd'/2' 1992

Ec - 330 Cd subs Dyunaidov ef a l , 1981

oto1oLU Cd subs Dyunaidov et a l , 1981

Ev + 200 Cd-B1 Cd + B? Lang et a l , 1991

Ev + 205 Cd-AI1 Cd + Al ? Lang ef a l , 1991

Ev + 200 Cd1 Cd subs Nâser ef a l , 1998

Ev + 60 Cd-H Gebhard ef a l , 1991

PL Centres

935 CdB Cd + O monoclmic I McGlynn ef a l , 1996

983 o Q_ > Cd + 0 rhombic I McGlynn e ta l , 1996

1026 Cd + O rhombic I McGlynn ef a/, 1996

Table 1.3 Previously reported luminescence centres and acceptor levels of 
cadmium related centres.

A comparative study of PL spectra of silicon doped with group II 

impurities Be, Cd and Zn in oxygen-rich and oxygen-lean silicon have shown 

the defects are not observed in oxygen-lean silicon (Daly et a l , 1995a, b) The 

defects are attributed to the complexing of the impurities with oxygen Under 

uniaxial stress and Zeeman measurements the zero phonon lines have shown 

near identical behaviour and are all believed to be pseudo-donor in nature
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1.7 Lithium  in Silicon

The process of passivation is important in the development of devices as 

it suppresses the concentration of deep level impurities in the active region of 

the device. Previous work has concentrated on the passivation of shallow 

impurities with hydrogen. The introduction of hydrogen during silicon device 

processing forms complexes with defects and impurities. It is traditionally 

thought of as a passivating element, able to diffuse rapidly through the lattice 

and terminate dangling bonds associated with other point defects resulting in 

electrically inactive complexes. Lithium, another group I impurity has received 

much attention in recent years due to its ability to passivate defects and 

impurities. A detailed comparison of the passivation of impurities by hydrogen 

and lithium shows similarities for shallow acceptor passivation. However, while 

shallow donors in Si and GaAs are not passivated by lithium, deep donor levels 

are passivated (Gislason, 1997).

The excitation spectra of lithium were studied by far infra-red techniques 

and the spectra revealed both isolated lithium and lithium-oxygen complexes 

(Aggarwal et a/., 1965). Lithium, a fast interstitial diffuser, as a singly ionised 

donor is normally observed at the tetrahedral interstitial site acting as a shallow 

donor with a level at Ec-33.8meV (Watkins etal., 1970, Aggarwal eta!., 1965). 

The general behaviour of shallow donors can be described by effective mass 

theory (EMT) (Kohn 1957). If an impurity centre has a sufficiently delocalised 

wavefunction the energy of an eigenstate can be calculated by a hydrogenic 

model where the macroscopic properties of the host lattice dominate. The 

conduction band edge of silicon has six equivalent minima along the <1 0 0 > axis 

in k-space and for simple substitutional donors of Td symmetry this leads to a 

reduction for the so and p0 states into the A^ E and T2  irreducible 

representations of Td- The valley orbit-splitting of the shallow Td donor ground 

state is expected to lead to a lowering of the (singlet) with respect to the T2 

(triplet) and E (doublet) states. However, for the interstitial lithium donor the A1 

state was found to lie above the (E+T2) state, Aggrawal proposed the interstitial 

lithium donor must have “inverted valley-orbit splitting”. The ground state of the 

lithium donor is unusual, as it is five-fold degenerate, the singlet state is 1 . 8  ±
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0 1 meV above the (E+T2) ground state This unusual ground state has 

prompted detailed studies of lithium and lithium-related defects

Photoluminescence spectra due to lithium interstitial donors in oxygen- 

rich and -lean silicon were first reported by Kosai et a l , (1974) At least seven 

lithium related lines were observed and they were attributed to recombination 

within complexes of several excitons bound to a single impurity, a bound multi- 

exciton complex High resolution spectra reported a number of new lines and 

were interpreted as excited states of the BE and BMEC (Lyon et a l , 1978, 

Thewalt 1978) Figure 1 8 shows the TO and LO phonon assisted lines at 4 2K 

which are accompanied by multi-exciton lines The 1093 2 meV no-phonon line 

(labelled BET0) is associated with emission from an exciton bound to a Li donor 

with the creation of one TO phonon The lines labelled b, are accepted as being 

due to electron-hole recombination in complexes containing more than one 

electron-hole pair bound to neutral impurities as reported previously by Kosai 

The lines labelled BE-i*, b /  and b3* are excited states of the BE and BMEC, 

m=2 and m=4, respectively

ENERGY (eV)

Figure 1.8 Photoluminescence spectra of Si:Li in the TO and LO phonon assisted 
spectral region. The lines labelled BEi*, bi* and b3* are excited states of the BE and 
m=2 and m=4 BMEC, respectively (Lyon et al., 1978).
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Isotope substitution experiments (section 2.6) have proven to be crucial 

in the identification and determination of the number of Li-atoms present in 

defects. The lithium saturated vacancy, U4-V, also known as the Q centre, with 

three thermalising lines at -1045 meV is observed in irradiation damaged 

lithium-doped silicon. Isotope substitution data and uniaxial stress 

measurements indicate four-Li atoms replace a single silicon atom at a 

substitutional site, producing a molecular isoelectronic trap with a trigonal 

distortion (Davies et al., 1984, Lightowlers et a/., 1984). A centre known as the 

S centre with ZPLs at -1082 meV is enhanced in FZ silicon with a high carbon 

concentration. This centre is similar to the Q centre, with four-Li atoms 

replacing the substitutional silicon atom and complexing with a near-neighbour 

carbon atom. Zeeman measurements suggest both centres are isoelectronic 

donors (Lightowlers et al., 1984).

Two gold-lithium centres, identified as an orthorhombic Au-Li pair and a 

trigonal Au-Lb complex have been identified from EPR and double ENDOR 

studies. The Au-Lh complex has a single donor level within the bandgap above 

Ec - 400 meV (Alteheld et al., 1994). Using DLTS two different complexes 

between gold acceptors and lithium were observed (Sveinbjornsson et al., 

1995). One is most likely an electrically passive Au-Li pair while the other 

complex, labelled L1, contains one gold atom and one or more lithium atoms, 

has a deep level within the silicon bandgap and is possibly the Au-Li3 complex 

previously reported by Alteheld. The passivation of the Au-Li complex in n-type 

silicon can be reversed provided there is enough lithium present in the crystal. 

A comparison of the concentration of electrically inactive Au-Li complexes and 

the intensity of a zero-phonon line observed at 1122.3 meV suggests the two 

are correlated (Gislason et al., 1995). Thus the 1122.3 meV line can be 

attributed to an exciton bound to an electrically inactive complex of Li and Au, 

the product of lithium passivation of the Au acceptor. Gislason and his co­

workers suggest that the centre which produces a PL spectrum with two zero 

phonon lines at 765.4 and 766.4 meV are due to transitions from a split excited 

state to a single ground state of a neutral Au-Li related acceptor at Ev + 760 

meV observed from DLTS.

Recent PL work on Au-Li doped silicon has concentrated on three 

complexes known as the L, H and O systems. The L system involves one or 

more Au atoms with at least two atoms in inequivalent sites, suggesting a

25



Introduction Chapter One

trigonal symmetry or three lithium atoms in equivalent sites with a lower 

symmetry Both the H and O system have been shown from isotopic shifts to be 

lithium-related, however, other impurities are, at present, unidentified (Zhu, 

1998)

Trigonal A u-L i3 and orthorhombic Pt-Li centres were investigated by EPR 

and ENDOR techniques From total energy calculations only trigonal defect 

clusters with the lithium interstitial at the nearest neighbour or next-nearest 

neighbour positions agrees with experimental results (Alteheld e ta l, 1994)

The formation of centres in lithium-doped silicon by variation of lithium 

concentration and annealing temperature studied by PL, can reveal the 

passivation processes of centres The C centre at 789 6 meV, involving a 

carbon and oxygen interstitial is passivated by lithium (Rodriguez et a l , 1997a) 

In the same study, ZPLs D1 and D2 at 1106 9 and 1107 7 meV respectively, 

known to be due to an isoelectromc centre of trigonal symmetry, (Canham, 

1983), are shown to be very efficiently passivated at a concentration of lithium 

lower than required to passivate the C centre

The isotope structure of a new lithium complex with zero-phonon line at 

1133 meV reveals seven non-thermalising lines with a large isotope shift A 

tentative model to explain the isotope data, suggests a four-atom Li defect with 

two inequivalent sites (Rodriguez et a l , 1997a) A new deep centre at 879 3 

meV in irradiated FZ C- and Li-doped silicon appears to be passivated upon 

prolonged annealing at room temperature (Rodriguez et a l , 1997b) The 

presence of oxygen inhibits the formation of the defect and the intensity 

dependence of the line with variations in carbon concentration suggests it is 

involved in the defect Lithium isotope substitution experiments reveal only one 

Li-atom is involved in the complex Recently the symmetry of the defect has 

been determined as monoclimc I (Rodriguez et a!, 2000) Table 14 

summarises the main findings of the lithium acceptor and photoluminescence 

centres
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Line (meV) Name Element(s)/
identity

Symmetry 
(if known)

Ref.

Acceptor Levels

Ev + 760 Au + Li Gislason et al., 1995

PL Centres

1093.2 BEto Kosai ef al., 1974

BMEC Lyon etal., 1978

1045 Q Li4-V trigonal Davies et al., 1984

1082 S Li4-C trigonal Lightowlers et al., 1984

1122.3 Au-Li Au + Li Gislason etal., 1995

-766 Au + Li Gislason et al., 1995

1133 Li4 - related Rodriguez ef al., 1997a,

879.3 Li + C 1997b

763.6 0 , Li-related Zhu., 1998

764.2 L Au-Li3 or 2 trigonal Zhu., 1998

1121.2 H X-Lin Zhu., 1998

Table 1.4 Sum m ary of the main lithium  acceptor levels and PL centres.

1.8 Cadm ium -Lithium  related defects in Silicon

Substitution of stable isotopes enables the chemical identity of defect 

impurities to be determined. Different isotopes of an element have the same 

number of protons, however they are distinguished by their nuclear mass and 

some isotopes have different nuclear spins. When the effect of different 

isotopes of a suspected impurity are observed in an associated line shift or 

broadening of the line the chemical identity and the number of atoms present in 

the defect can be estimated (this technique is described in detail in the next 

chapter). In the absence of stable isotopes the availability of radioactive 

isotopes where the disappearance or appearance of a spectral feature at a rate 

equal to the half-life of the isotope can help identify the constituent of a defect. 

A study of a high purity FZ silicon sample implanted with the radioactive isotope 

111ln was undertaken to determine the feasibility of using radioactive isotopes in 

photoluminescence spectroscopy (Daly et al., 1994, 1995c). 111ln was chosen 

as it has a half-life of 2.8 d and the PQR centre, which has one of the most 

intense PL emissions for silicon, was chosen to produce good quality data
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(Thewalt et a l , 1981, Weber et a l , 1981) Three days after implantation the 

samples received a rapid thermal anneal, 10 s at ~ 1100°C and a rapid quench 

to room temperature which produced the PQR luminescence The free-exciton 

(FE), boron bound-exciton line (B) and the neutral In acceptor bound-exciton 

line were also observed in the spectrum which was dominated by the P line 

Spectra were recorded approximately every eight hours and after only one day 

the P line was no longer observed The P line and its associated sidebands, 

which dominate the spectrum, recorded two hours after quenching is shown in 

figure 1 9 (a)

Figure 1.9 (a) PQR In related spectrum, (b) PQR system as it evolved over 16 day 
period. Two new systems were observed at 5.5 K after 16 days (Daly et al., 1994).
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The decay of the P line which occurs rapidly compared to the decay of 

the of the In acceptor BE line is clear in figure 1 9 (b) The acceptor bound- 

exciton intensity decayed as expected, with a 2 8 d half-life The luminescence 

intensity of the PQR centre decayed non-exponentially at a higher rate than the 

expected half-life of 111ln

The most interesting result of the experiment was the observation of a 

number of previously unreported spectral lines The lines can be divided into 

three groups, the first group centred near 8550 cm'1 (-1060 meV) appeared 

after one half-life, while the second centred near 8610 cm'1 (-1070 meV) 

appeared clearly after ten days Both of these groups are shown clearly in 

figure 1 9 (b) 380 hours after annealing The third system, in the range 8680 - 

8780 cm'1 (1070 -1090 meV) were not observed in spectra recorded at -  5 5 K 

but were evident at temperatures of 10 K and above From figure 1 10, the 

complexity of the line structure is evident and due to inadequate signal levels 

reliable thermalisation data could not be developed A comparison of the rate of 

growth of the new lines with the rate of decay of 111 In suggested the rate of 

evolution was below that expected for the direct indium to cadmium transition 

The relative intensities of the three groups indicates the three are unrelated, 

thus suggesting different defects are involved

Daly et al (1994) attributed these centres to the complexing of cadmium 

atoms in the crystal when stored at room temperature Substitutional cadmium 

is expected to produce double acceptor bound exciton recombination which is 

unobserved in silicon and the complexity of the line structure may be consistent 

with such recombination However, no two-hole or two-electron satellites were 

observed due to weak PL signals and the assignment could not be confirmed 

Cd-diffused and implanted samples which were annealed by a similar method 

to produce the PQR centre revealed the three groups of lines and a subsequent 

anneal in the temperature range 100 - 200°C for 30 min was found to enhance 

defect production This indicated a fast diffusing impurity, possibly a transition 

element was also involved in the formation of the defects These three defect 

systems have formed the basis of this research and results confirming the 

identity, temperature dependence, symmetry and spin states are reported for 

the first time in this thesis
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Wavenumbers ( c m 1)

Figure 1.10 Preliminary temperature dependence of the new PL spectra observed 
in Si:n iIn following the decay of in In to m Cd (Daly et al., 1994).

1.9 Conclusion

The introduction of defects in silicon can introduce energy levels in the 

forbidden energy gap which can allow control of the optical and electronic 

properties of the host material which may be tailored for specific technological 

purposes The details of the electronic and optical properties of the beryllium, 

zinc and cadmium, group II elements and of lithium, a group I element in silicon 

were presented Three defect structures likely to contain cadmium and lithium 

were introduced and are the subject of this thesis The optical technique of 

photoluminescence is the primary tool used to probe these defects, and in the 

next chapter perturbation techniques of uniaxial stress, Zeeman and isotope 

experiments are described However, in the first section of chapter two, the 

effect of temperature variation on optical spectra is described
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Chapter Two 

Perturbation Techniques

2.1 Introduction

The relevant theoretical and experimental techniques that are used in 

the analysis of the defects are outlined in this chapter. The technique of 

photoluminescence is used in association with perturbation techniques of 

temperature dependence, uniaxial stress and magnetic field perturbations and 

isotope substitution experiments to discover the symmetry, electronic structure, 

spin states and chemical constituents of the defects under study. The technique 

of PL spectroscopy is outlined in the first section. The second section explains 

the wealth of information available about the energy levels from temperature 

dependence experiments. In the third section the experimental technique and 

the effect of applying stress to defects in crystals is discussed. The two main 

symmetry types of interest in this thesis are monoclinic I (Cih) and trigonal 

(C3V). The relevant equations and the expected number of stress split 

components for monoclinic I symmetry will be considered. In the fourth section, 

magnetic field perturbation effects will be discussed and in the final section a 

discussion of the method of chemical identification of defect constituents by 

isotope substitution is outlined.

2.2 Photolum inescence M easurem ent

All of the spectroscopic measurements in this thesis are carried out at 

low temperatures. Illumination by light with photon energies greater than the 

bandgap creates excitons, which can be captured at defect centres, and their 

recombination may subsequently produce luminescence. The measurements
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are performed at low temperatures to prevent excitons being thermally 

dissociated from defect centres, to reduce thermal broadening of the 

luminescence features due to lattice vibrations and also to reduce the role of 

non-radiative paths for recombination The optical transition occurs from an 

excited electronic state to a lower electronic state, which is usually the ground 

state Only a transition from the lowest lying excited states to the ground state 

are observed at low temperatures, and as the temperature is increased higher 

energy excited states can become populated as will be explained in detail in the 

next section

The source of excitation used for the work in this thesis was an argon ion 

laser operating on its (green) 514 nm line Silicon, which is an indirect gap 

semiconductor has poor PL efficiency and laser powers of typically 100 mW are 

necessary in order to observe PL signals with reasonable signal to noise ratio 

During temperature dependence measurements a major problem is heating of 

the sample due to the heating effect of the laser beam A high intensity focused 

beam can cause damage and annealing of the sample An unfocussed laser 

beam of diameter ~ 3 mm which caused negligible heating was used Figure 

2 1 shows schematically the main elements of the experimental set-up

J Flowmeter

BOMEMDA8
Siphon

Î

Pressure Gauge 

Manostat

I

Sample. • /

_ Liquid Helium
ITC4 Temperature 
Controller

>>L- Laser 
^  Excitati

Cryostat
Excitation
Source

Parobolic Mirrors

Figure 2.1 Schematic diagram of apparatus to achieve 4.2 - 300K temperature 
range.
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The PL signal from the sample passes via two parabolic mirrors through 

a BOMEM DA8 Fourier transform spectrometer to the detector The Michelson 

interferometer is the main element of a Fourier transform (FT) spectrometer, 

shown in figure 2 2 The ultimate resolution of the system is determined by the 

range of the moving mirror of the Michelson interferometer and by the size of 

the aperture The maximum optical path difference of the mirror is 2 5 m 

corresponding to a maximum resolution of 0 004 cm'1, for this work typical 

resolutions of 1 cm'1 and 0 15 cm'1 were used The beamsplitter of the 

interferometer was BK5 glass, which had a transmission curve of 3,500 to

30,000 cm'1 Several accounts of the advantages and disadvantages of FT 

spectroscopy have been compiled (Horlick 1968, Thewalt et a l, 1990, Birch et 

a l , 1995 and Lightowlers 1990)

Fixed
Minor

JiVAX
2000

*
PL Source

Figure 2.2 Schematic diagram of a Michelson interferometer based Fourier 
transform spectrometer.

The detector used was a North Coast cooled germanium diode detector 

(model E0817L-ED2) which set the limits of the spectral range as 6,000 to

10,000 cm'1 The germanium detector, the feedback resistor and the FET of the 

preamplifier were cooled to 77 K using liquid nitrogen This provided a highly 

sensitive, low noise performance detector in the 0 8 fxm to 1 8 |iim wavelength 

range In operation, the output from the detector is not a spectrum, but an 

interferogram, by performing a Fourier transform on the interferogram the 

spectrum is obtained The data handling, control and monitoring of the stability 

of the instrument was managed by a DEC |aVAX 2000
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To achieve the low temperatures necessary to acquire high resolution 

spectra three different types of cryostat were used to cool the samples In 

preliminary measurements, temperatures of 10 to 20 K were sufficiently low and 

a JANIS closed cycle refrigeration cryostat (model CCS-500) was used The 

samples were cooled by mounting them on a sample rod which was suspended 

inside the exchange gas tube, helium exchange gas was used as the thermal 

link between the samples and the refrigerator For temperature measurements 

in the range 4 2 to 300 K, the samples were cooled in an Oxford Instruments 

flow cryostat (model CF 1204) To obtain a temperature of 4 2 K the samples 

were immersed in liquid helium Changing the liquid helium or helium gas flow 

rate and using a heater on the sample holder the temperature within the 

cryostat can be varied An Oxford Instruments ITC4 temperature controller was 

used to monitor the temperature and the power supplied to the heater within the 

cryostat An Oxford Instruments germanium resistance temperature sensor was 

used for accurate temperature control below 40 K An Oxford Instruments 

manostat was used to control the flow of coolant from the dewar to the cryostat 

and to maintain a constant pressure within the cryostat

In the temperature dependence experiment, the temperature of the 

sample was reduced to ~2 K by reducing the vapour pressure over the liquid 

helium in an Oxford Instrument bath cryostat (model MD3) The bubbling of the 

helium was eliminated below the lambda point and the temperature of the 

sample was estimated from the pressure in the cryostat as no sensor was 

available on the sample holder The thermal broadening of the lines was 

expected to be of the order of only ~ 0 15 meV at ~ 2 K (Perkowitz 1993)

2.3 Temperature Dependence

Information about the energy level structure of a defect and the exciton 

binding energy to the defect may be obtained by studying the luminescence 

intensity of the defect as a function of temperature The total luminescence 

increases with temperature up to a maximum and above this temperature the 

luminescence is rapidly quenched At low temperatures excitons are trapped in 

the lowest energy excited states and transitions are only possible from these 

low energy excited states to the ground states As the temperature increases
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new lines may be observed in the spectra as their associated states are 

populated by excitons freed from other traps in the sample

Figure 2.3 Energy level diagram of two zero-phonon lines thermalising to the same 
ground state, w h ere/ is the probability of radiative recombination and AEsp is the 
spectral separation of the two lines.

The energy level diagram in figure 2 3 describes a PL centre consisting 

of two zero-phonon lines At low temperature only the transition from the lowest 

energy excited state to the ground state is observed, T-i, and its intensity can be 

expressed as

1,0, = N ,((>)/, (2 1)

where #,(0) is the population of the first excited state at T~ OK and / ,  is the 

probability of radiative recombination As the temperature is increased a second 

line may be observed and the total intensity of the two transitions, Ti and T2 is

I m( f)  = JV,(r)/,[l + exp(- A £ „ /f f) ]  (2 2)

Rearrangement of the equation, assuming jV,(o) = Nt(T) + N2(t) , leads to

. I ( ° )1 + ( f2/l)g2 i exp(~ ^sp/kT) 1

[ l + g2,exp(-A£s/,/fcr)]
(2 3)
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The natural log of the relative intensities of the two zero phonon lines as 

a function of inverse temperature yields a graph of slope -AEth/k and intercept 

ln(%2i//i) &Eth is the activation energy calculated from the graph and a linear 

graph indicates two thermalising lines A calculated activation energy in good 

agreement with the spectral separation (AEsp) of the two lines indicates that 

both excited states depopulate into the same ground state as shown in figure 

2 3 If the calculated activation energy does not equal the spectral separation 

this indicates transitions are from excited states to a split ground state The 

total luminescence intensity arising from impurity levels created by the defect as 

a function of temperature can be rewritten as

/ ( o ) 1 +  Z ( / . / ' / i ) £ i « p ( -
l> 1

/ « ■ )

l  +  Z g . i ^ -  Æ v / kT)
i>l

(2 4)

where the / h level is thermalising with respect to the first excited state and AElsp

is the spectral separation between the levels assuming a common ground state 

The increase in luminescence as a function of temperature can vary in 

different samples due to different concentrations of traps and different 

impurities introduced into the samples during defect production processes 

These shallow traps may have excitons weakly bound to them and as the 

temperature increases the excitons, which decay from these traps become 

available for capture at the defect This will cause an increase in luminescence 

as the temperature rises, dependent upon the energy position and the number 

of shallow traps, which will vary from sample to sample Schematically these 

shallow traps can be represented by a single trap, with population Nt and a 

binding energy of AEt, as shown in figure 2 4 The conduction band acts as a 

source of excitons available for capture at either the shallow traps or at the 

deeper defect levels As the temperature increases the fraction of excitons 

trapped at the shallow traps decreases as the excitons are released almost 

immediately and are available for capture at the deeper defect The fraction of 

traps, which can compete with the deeper, centres for the capture of the 

available excitons is (Davies 1989)
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/  = l / [ l  + G,TVl e x p (- AEt / kT)] (2 5)

where the G,Tr2 term describes the temperature dependent ratio of the band 

state concentration to the trap concentration The total luminescence resulting 

from the release of excitons and their capture as a function of temperature can 

be written as

1(0) 
l + r f

(2 6)

where r is the branching ratio of capture at trap centres relative to capture at 

the defect centre of interest

Conduction Band

AE

G tT%exp(- AEt/£T)

AE.

Nt Shallow Trap

Defect Centre

f , f 2

L J

.n 2
' N ,

Excited States

Ground State

Figure 2.4 Shallow trap and defect centres compete for excitons.

At higher temperatures the luminescence is quenched rapidly The 

excitons may dissociate to the band, with dissociation energy E, before they 

recombine at the defect centre The luminescence in this high temperature 

regime can be described by

h iT ) =
/(o)

i + Gdf /2 exp(- AEt /kT)
(2 7)
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where Gd is the ratio of the conduction band density of states to the defect 

density of states The total luminescence of the defect centre as a function of 

temperature can be described by

i tot{t) = /(o) / ,( r )  i 2{t) / 3(r)  (2 8)

This equation when fitted to the experimental data will yield values for E„ 

Et, r, Gh Gd and AEsp E, provides information about the thermal dissociation 

energy of the defect and can be compared to the spectroscopic binding energy 

of the defect

2.4 Uniaxial Stress Technique

The technique of applying stress to solids, which may cause any defect 

or impurity zero-phonon lines to split or shift in energy, is widely used to 

determine the symmetry of the defect or impurity A perfect silicon lattice has 

cubic symmetry and defects or impurities can only be arranged in the crystal in 

a certain number of inequivalent ways Applying a compression along the major 

symmetry axes of the crystal may remove the degeneracy of the defect states, 

this degeneracy may be orientational and/or electronic which will cause the 

lines to split The symmetry of the defect and the electronic nature of the 

transition can then be determined from the number, shift rate and polarisation 

intensities of the stress-split components The theory concerning the 

interpretation of stress splitting patterns and the number of expected lines has 

been well documented,by Kaplyanskn (1964a, 1964b), Hughes and Runciman 

(1967) and Mohammed et al (1982) Once the symmetry of the defect has 

been determined, a model of the defect can be proposed, as there is a limit to 

the number of inequivalent orientations of the defect for each particular 

symmetry

For uniaxial stress measurements the samples are cut into rectangular 

parallelepipeds (12 x 4 x 2 mm) with the long axis along <001 >, <111> and 

<110> directions The stress apparatus used and experimental set-up are 

outlined in appendix A There are a number of difficulties involved in taking
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reliable stress measurements. Great care must be taken when aligning the 

samples, as misalignment of the sample or applied stress will result in 

additional line splitting complicating the assignment of shift rate equations. To 

reduce the possibly of errors due to sample misalignment great care was taken 

during the alignment and measurements for each stress direction were 

repeated at least twice, both in Kings College London and Dublin City 

University. The most reliable data is presented in this thesis. The expected 

number of components under an applied stress is identical for several 

symmetries, further complicating the stress analysis. Both trigonal A-E and 

monoclinic I defects have a splitting pattern with two components in <001 >, 

three in <111> and four in <110> stress directions (Mohammed et al., 1982). 

Polarisation intensities of the stress components can help in identifying the 

symmetry but in PL measurements polarisation data is often very poor due to 

multiple internal reflections which depolarise the PL signal. In the absence of 

polarisation data, absolute intensities can aid the symmetry identification, 

however, this can also be complicated due to other stress induced effects; for 

example interactions with higher excited states may cause the component 

intensities to change (Mohammed et al., 1982, McGuigan et al., 2000). Three 

defects are considered in this thesis, groups I and II will be shown to have 

trigonal symmetry with transitions between A and E states and group III will be 

shown to exhibit monoclinic I symmetry. The application of stress to a 

monoclinic I centre results in the removal of orientation degeneracy only. For 

transitions between a doubly degenerate E state and a single A state in trigonal 

defects both the orientational and electronic degeneracy may be removed. The 

addition of electronic degeneracy further complicates the stress splitting 

pattern. Hughes and Runciman (1967) have treated this electronic degeneracy 

for trigonal centres in detail. The shift rate equations relevant to monoclinic I 

centres are considered in the next section.

2.4.1 Uniaxial Stress Technique - Monoclinic I Centres

Monoclinic centres have one C2 axis or symmetry plane ah giving rise to 

two possible classifications. For monoclinic centres of type I, C2 coincides with 

<110> or ah with {110}, for centres of type II the C2 axis coincides with <100> or 

ah with {100} (Mohammed et al., 1982). Monoclinic centres of type I are
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discussed here as they are relevant to this thesis. The symmetry operations of 

a monoclinic centre are the identity operation E, which corresponds to doing 

nothing to the defect, and a reflection plane ah. The primary axis (Z) of the 

optical centre is chosen normal to the reflection plane and is directed along a 

<110> direction in the lattice. A typical monoclinic defect is shown in figure 2.5.

Figure 2.5 Schematic diagram  of a monoclinic I defect.

The point group of the monoclinic centre in silicon is Cih and the 

character table is shown in table 2.1 where the columns are labelled according 

to the number and type of operations forming each class. The labels of the 

irreducible representations are A and B for non-degenerate irreducible 

representations. Electric dipole transitions can occur between different A states, 

different B states or between an A and B state. For more details of character 

tables see Tinkham (1964).

Cih E ah
A 1 1 x2, y2, z2, xy, x, y
B 1 -1 xz, yz, z

Table 2.1 C haracter table of a monoclinic I (C ]h) centre.

The number of inequivalent orientations N, of a monoclinic defect, or of 

any defect is given by N = G/g where G is the order of the point group of the 

host lattice and g is the order of the defect group. The point group of silicon is 

octahedral of order 48, but each element is paired with another by the inversion 

operator of the silicon lattice. Uniaxial stress cannot distinguish between these 

pairs and the point group of silicon is effectively tetrahedral with G = 24. In the
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case of monoclinic I, g = 2 and there are twelve inequivalent orientations of a 

monoclimc defect and these inequivalent orientations are listed in table 2 2

Orientation Number X axis Y axis Z axis

1 001 110 110

2 100 011 011

3 010 101 101

4 001 110 110

5 100 011 011

6 010 101 101

7 010 101 101

8 001 110 110

9 100 011 O il

10 100 O il O il

11 001 110 110

12 010 101 101

Table 2.2 Twelve possible orientations of a monoclinic I centre where the bold font 
indicates -1.

In the absence of stress the energy levels that arise about a defect 

correspond to the wavefunctions that will satisfy the Schrodinger wave 

equation

= E>¥ (2 9)
where

H0 = HC + H, (210)

Hc is the Hamiltonian operator of the pure crystal and H, is the perturbation 

operator of the Hamiltonian due to the impurities in the crystal A transition 

between two energy levels about an axial defect with group symmetry g in a 

crystal of symmetry G has a transition energy ET

Et  = E2-E , (2 11)
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where E2 and Et are the energies of the excited state and ground state 

respectively By applying a stress, the energy of the transition, ET may change 

as shown in figure 2 6 and the energy of the perturbed transition, Es is

Es = E 2-E ,+ A E  (2 12)

where the shift rate, AE of the transition is the difference of two terms, 

(e 2 |Fs| E2)- (e x |Ps|-E,) For the application of stress which is significantly small, 

first order perturbation theory is used and the Hamiltonian can be re-written as

H = H0+VS (213)

where H0 is the Hamiltonian for zero stress and Vs is the stress operator

y
yyy

Et Es

y1
N.

T  (e\v\ e)S s >

Zero Stress Applied Stress

Figure 2.6 When stress is applied to a transition E t the energy levels may shift 
giving new transition energy Es

Following the notation of Kaplyanskn (1964) the stress operator is

^ = 2 > . S ,  ' (2 14)
IJ

where i , j  =X, Y, Z are the defect co-ordinates,^ is the strain tensor and ak (k= 

1, , 6), are sub-operators of the stress operator Vs, such that

Vs — axSxx +a2SYY +a3Szz +a4SXY +o5iS'xz +a6SYZ (2 15)
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From group theory, the only elements of the potential Vs which contribute 

to the shift in energy, AE are those elements transforming as the A irreducible 

representation. Further details of this general theorem for non-degenerate 

states can be found in Tinkham (1964). For a monoclinic centre only the terms 

XX, YY, ZZ and XY will be retained in equation 2.15, and the stress operator 

Vs for a monoclinic defect has the form:

Substituting this equation into equation (2.13), solutions for each term

parameters, ax where x € 1,2,3,4. Thus a general expression for the shift rate is 

obtained:

Solving for two defects, each with different chemical configurations, we would 

expect the stress parameters a\t a2, a3 and a4 to be different for each type of 

monoclinic defect; thus, the defect dependent stress parameters can be used 

as a tool to identify defects.

The shift in energy due to an applied stress for the twelve orientations can 

be derived. To meet the experimental conditions the defect co-ordinates must 

be transformed to crystal co-ordinates. Defining the crystal co-ordinates as:

Vs — +a2SyY + ûf4‘̂ XY (2.16)

(E2\ax\E2) + (El \ax\E]) are found to be real constants and are termed stress

AE  — £li S x)i +  C12Syy +  ^3*^ZZ + (2.17)

x = (100) y = (010) z = (001) (2.18)

and considering defect 1 in table 2 .2 :

X = 001 Y=110 Z=110

The defect co-ordinates in terms of crystal co-ordinates are

X = .y (2.19)
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The tensors Sy from equation (2.17) can now be re-written in terms of crystal 

co-ordinates as:

S „= X (S „+ S „ -2 S „ )  (2.20)

S2Z= ^ (S „  + S„ + 2S,)

S « = /V 5 (S „-S ,)

By defining the stress parameters as Aj = a\, 2A2 = a2 + a3, 2A3 = a2- a3 and 2 A4 

=a4 /V 2  and by substitution into equation (2.17) the shift rate can be written as:

A£ = A , S .  + 4 (S „  + S „ ) -2 A ,S v +2Ai (Sm - S „ )  (2.21)

The shift in energy for the twelve orientations can be re-written in the form given 

by Kaplyanskii (1964), and are summarised in table 2.3.

Orientation

Num ber
Shift in  Energy

1 AE = a ,s z2 + ^ ( s . 2A 3 Sxy + 2 A4 s n ~ S, )
2 AE = + 4 s » + 5 a ) - 2 ^ + 2A4 S * - S . )

3 A E  = + S - ) - 2  A3s a + 2A 4 S , ~ SJ ]
4 AE  = A>Sm + A2(s xi + 2 ^ + 2 A4 S . + s J
5 AE  = + S .) + 2 V „ + 2A4 Sxy + i . )
6 AE  = + + S .) + 2A3S „ + 2A4 S * + s » )
7 AE - + Al ( s « + S . ) - 2  A3S „ + 2A4 S , ~ s » )
8 AE = a xs zz + S ») -2 A ,S V + 2A4 Sy. - s . )
9 AE  = a ,sm + + s - i - 2 A 3S „ + 2A4 S „

10 AE = + S .) + 2A 3Syz - 2  A4 Sv + S - )

11 AE = A S . + ^ ( s „ + 2 Ai Sv - 2 A 4 S „

12 AE = A,Syy + + s . ) + 2 A3S „ - 2  A4 $xy + s „ )

Table 2.3 The shift rates of the twelve orientations of a monoclinic I defect in terms 
of crystal co-ordinates. The four param eters A t, Az, A 3 and A 4 give the 
perturbations of the centres.
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The strain tensors S',, are calculated along the three principal crystal 

directions The strain tensor is

where (p ,i) is the angle between the stress direction Pand the f h axis, |p| is 

the magnitude of the applied stress Since StJ = SJt there are only six 

components of the stress tensor, S^, Syy and Ss are the normal components 

while 5^,5^  and Sxz are the shear components 

For example a stress applied down the <111 > axis of a cubic crystal gives

All the tensor components for each direction of stress can be calculated and 

are listed below (P = 1)

Sv = \p \Cos{ p , i )C os( p ,j ) (2 22)

Sxx = |p|Cos((100) (lll))Cos((lOO) ( i l l ) )

_ L J _ _  p  

-s/3 -J3 3

P < 001 > ^ ■= 1
s „ = s xx= s xy= s yz= s X2= 0

(2 23)

P < 111 > (2 24)

P < 110>
s „  = sxy^ s v =y2

z = Sxz = 5 ^ = 0
(2 25)

By substituting these strain tensor, Sy values into the twelve shift rate

equations for each orientation of a monoclinic I defect, the shift rates for each 

direction of applied stress are obtained as in table 2.4, below.
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Onentation
Number

P||< 001 > 
AE

p | < i i i >
AE

P|<  110 > 
AE

1 A (Ax + 2A2 - 2 ^ 3)/3 A2 ~ A3

2 A2 (Ax +2A2 - 2 ^ ) / 3 (a , +2 A2 +2A4)/2

3 a 2 (/f, +2A2 - 2 ^ 3)/3 (Ai +2A1 - 2 A 4)/2

4 A (Ax +2 A2 +2A3 + 4A4)/3 1 A2 + A3

5 a 2 (A{ +2A2 +2A, +44,)/3 (Al +2A2 +2A4}/2
6 a 2 (4 +2 A2 +2 A, + 4A4)/3 (At +2A2 +2A4)/2
7 a 2 (A, +2A2 -2v43)/3 (A{ +2 A2 +2A4)/2
8 A (Ax + 2A2 - 2 ^ 3)/3 A2 — A3

9 a 2 (A, +2A2 - 2 A 3)/3 (a , +2A2 - 2 A 4)/2
10 a 2 (a x +2A2 +2A3 - 4 A 4) / l ( A, + 2A2 - 2 A 4)/2
11 A ( A  +2A2 +2A3 - A A 4)/3 A-2 + A-2

12 A [A, +2A2 +2A, - 4 A a)/3 (a , +2A2 - 2 A 4)/2

Table 2.4 Shift in energy for each of the twelve orientations of a monoclinic centres 
for stress applied in the <0 0 1 >, <1 1 1> and <1 1 0 > directions.

From the above table, under a <001 > applied stress the zero-phonon

line is expected to split into two components with shift rates described by stress 

parameters A1 and A2 A <111 > stress will split the zero-phonon line into three 

components with shift rates given in the above table while a stress applied 

parallel to the <110> direction will split the zero-phonon line into four 

components The intensity ratio and polarisation content of each stress-split 

component can be calculated This additional data allows one to identify a

particular stress split component with a particular equation

2.4.2 Intensity and Polarisation

The relative intensities and polarisation of the components can be 

calculated by assuming the electric dipole of the transition lies along a particular 

direction This is usually along the defect axis of highest symmetry, the defect 

Z-axis The intensity observed is proportional to the square of the projection of 

the electric dipole vector (E ) of the luminescence onto the direction ( ^ )  

parallel or perpendicular to the stress direction, in a plane perpendicular to the 

viewing direction, thus

/oc |cos(£  ^ )|2 (2 26)
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n polarised luminescence is emitted when the electric vector is parallel to the 

stress direction, whereas, a polarised luminescence has the electric vector 

perpendicular to the stress direction

For [110] stress, there are two inequivalent perpendicular viewing axes, 

<001 > and <110> that will give two sets of inequivalent a polarisation data The 

polarisation intensities and shift rates for monoclimc I symmetry are 

summarised in table 2 5 Each shift rate equation for each stress direction can 

be identified from the polarisation intensities If the predicted intensities do not 

match the experimental results then possibly the choice of dipole vector is 

incorrect, for example the electric dipole could be aligned perpendicular to the 

Z-axis of the defect. Fitting of the nine shift rate equations for monoclimc 

symmetry to experimental data will yield values the four stress parameters Au 

A2, A3 and A4.

Stress
Direction

( P )

Energy Shift A to B 
Intensity and Polarisation 

E\\p(7t) e \\p (o)

A to A, B to B 
Intensity and Polarisation

e \\p U ) e \\p (<t)
<001> A 0 1 0 1

A 2 1 2 1

< 111> (a i + 2A2 - 2 A })/3 8 2 0 6

(a , + 2 A 2 +2A3 - 4 A 4)/3 0 3 4 1

( a , + 2 A 2 +2A3 +4A4)/3 0 3 4 1

< 110> E \p {n ) e \p„ (a) £  7>To(<t) E\ p { x )  E\pm [a) £ |p iT> )

A 2 — A } 2 0 0 0 0 2

( A , + 2 A2 + 2 A 4) / 2 1 2 1 1 2 1

( A x + 2 A2 - 2 A 4) / 2 1 2 1 1 2 1

A 2 +  A 3 0 0 2 2 0 0

Table 2.5 Intensity, polarisation and energy shift rate equations of zero-phonon 
lines in a monoclinic I centre.
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2.4.3 In te ra c tio n  o f S tates

In the previous section the shift rate equations to describe the effect of 

an applied stress on transitions between non-degenerate states in a monoclinic 

I defect were outlined. In the discussion above it was assumed that the shift 

rates were linear as a function of stress, however at high stresses non-linear 

shift rates are often observed and can be due to excited states interacting with 

the observed transition. Many defects have a series of closely spaced excited 

states and under the application of a uniaxial stress these states can interact 

with each other, causing a non-linear shift rate. Due to selection rules, 

transitions from the excited state causing the interaction may be forbidden and 

not observed in the photoluminescence measurement. Consider the case of a 

monoclinic I centre consisting of two closely spaced excited states and an 

isolated ground state. The interaction matrix for the two excited states, labelled 

E] and E2, can be written in the form of a secular matrix as:

Vs Ex Ei

Ex {e ,\vs\e x) t e  fa te )
Ei t e l  v, \e ) t e f c k )

If the levels interact, the off-diagonal elements will be non-zero and a non-linear 

shift rate will be observed. The matrix elements [1,1] and [2,2] may be replaced 

by terms, which are similar to the terms describing non-degenerate states:

[1 .1 ] + <225Yy + + u4SXY (2-27)

[2.2] +b2SyY + b3Szz +bASXY + A E (2.28)

where a\, b\ are the stress parameters and AE is the energy separation between 

the interacting levels. The form of the off-diagonal elements will depend on the 

transformation properties of the interacting states. Figure 2.7 shows four 

possible cases for a defect of monoclinic I symmetry, with all transitions to a 

ground A state. Similar transitions are also possible to a ground B state.
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Figure 2.7 Possible excited state structures for A to A and B to A transitions at a 
monoclinic I defect. The black line indicates an allowed transition while the grey 
line represents a forbidden transition.

Using the Wigner-Eckhart theorem (Tinkham 1964) the elements of the 

stress potential can be determined and are summarised in table 2 6 There are 

only two interaction elements necessary to describe all eight possible cases as

{A\VS\B) = {B\VS\A)

Interacting States M atnx Element

Ei e 2

A (B) A (B) C\SXX + c2Syy + C3*̂ ZZ +C4S XY

A B C\SXZ C2^YZ

Table 2.6 The possible interaction elements for a monoclinic I symmetry.

The matrix must be diagonalised to fit the data to the theoretical model 

allowing the stress parameters a,, b„ c, and the energy separation AE to vary A 

custom-built optimisation tool TRANID (McCarren et a l, 1994) which 

determines the elements of the matrix by performing a least squares fit to the 

data is used in the analysis of the stress data in this thesis Analysis of the 

stress data in the low stress regime can aid in the fitting procedure, as initial 

values for a, can be determined For certain stress directions the interaction 

may have no effect on the shift rates, that is the shift rate is linear even in the 

high stress regime Thus the off-diagonal elements of the matnx are equal to 

zero in the direction of the linear shift rate This information can help in the 

identification of the transitions as shown in chapter four for the monoclimc I 

defect studied in this thesis
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2.5 Magnetic Field Perturbation (

A magnetic field perturbation reveals information about the spin states 

and possibly the symmetry of the defect under consideration, in contrast to a 

uniaxial stress perturbation, which gives information only about the symmetry 

The behaviour of the zero phonon lines as a function of an applied external 

magnetic field along each crystallographic direction is studied The rate of 

splitting and the number of split components of a line gives information about 

the spin states, energy level structure and the binding of the excitons to the 

defect

In the case of an isoelectromc donor (pseudo-donor), the hole is the 

primary bound particle and the electron is loosely bound The electron, from the 

bottom of the conduction band has angular momentum j  = XA , and the hole, 

from the top of the valence band has angular momentum j  = Y2 The localised 

nature of the bound hole makes it very sensitive to the symmetry of the local 

defect potential In the case of a compressive axial strain the angular 

momentum of the hole is quenched, thus changing the hole from p-like, to s- 

like, behaving to a good approximation as an isotropic j  -  XA particle The 

electron remains spin-like as it is weakly perturbed by the local field These two 

states couple, resulting in a J = 1 triplet and a J = 0 singlet state with the J = 1 

state usually lower in energy As the orbital angular momentum is quenched, 

the observed splitting involves only pure spin states, under the application of an 

applied magnetic field the S = 1 triplet state splits into three components, as 

shown in figure 2 8, whereas the S = 0 singlet state is unaffected by the 

magnetic field The energy shift due to the magnetic field is

AEj = IJBmjgB (2 29)

where nB is the Bohr magnetron, B is the applied magnetic field and g is the 

Lande g-factor

The selection rule AS = 0 ensures transitions from the triplet state to the 

crystal ground state are dipole forbidden when the particles are purely spin like 

Several reports have revealed isotropic triplet splitting of the exciton ground
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state to the crystal ground state (Jeyanathan et a l , 1995, Lightowlers et a l, 

1984) For transitions between triplet-singlet states, the Landé g-factor is 2 A g- 

factor, g *  2 suggests the hole angular momentum is not completely quenched, 

thus the states are not purely spin-like and the (0 to 0 forbidden) selection

rule is relaxed and the transition becomes weakly allowed

S = 0 ntj= o  ̂ g

e-h coupling crystal field magnetic
field

Figure 2.8 Schematic of the energy level structure of a triplet-singlet bound exciton 
system. The axial field is compressive and as the hole is the tightly bound particle it 
is more sensitive to the local symmetry field.

If the j  = y2 electron is the tightly bound particle, as in the pseudo­

acceptor model, and the j  = V2 hole the secondary bound particle, in the 

absence of an internal strain they can couple to form excitomc states of total 

angular momentum of J = 1 or J = 2, with the J = 2 level lying lower in energy In 

the presence of an tensile axial strain the J = 2 exciton level splits into = ± 2, 

± 1 and 0 sublevels and the J = 1 level splits into m} =± 1 and 0 The application 

of a magnetic field removes the remaining degeneracy of the levels The optical 

selection rules apply and transitions from one state to another are only allowed 

if the change in the orbital angular momentum number, /, increases or 

decreases by 1, while the orbital magnetic quantum number, mJt remains 

constant or increases or decreases by 1 Thus, transitions from the m} -  ± 2 and 

rttj = 0 sublevels to the crystal ground state remain dipole forbidden and the m} 

= ± 1 are allowed The application of a magnetic field on a pseudo-acceptor 

model is shown in figure 2 9 Examples of an electron attractive neutral IBE 

exhibiting quintet-triplet transitions include the p Cu* line (McGuigan, 1989) and 

the Tl system in silicon (Watkins, 1985)
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h y = £

J = 1

J = 2   ►

mj — 0
mj = ±1
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mj = ±2

+ 1

-1

+ 2 
+ 1

■1
-2

e-h coupling crystal field magnetic
field

Figure 2.9 Schematic of the energy level structure of quintet-triplet system due to a 
tensile axial strain and magnetic field acting on an exciton with the electron as the 
tightly bound particle.

Observing the splitting of the spectral lines as the defect centre is rotated 

in the magnetic field can reveal centres with anisotropic behaviour. By rotation 

of the sample the differently oriented centres in the crystal will make different 

angles relative to the magnetic field and experience different perturbations thus 

revealing any anisotropy. As we will see in chapter five the defects studied 

within this thesis do not reveal any anisotropy.

2.6 Isotope Substitution Experim ents

The chemical make-up of a defect is of interest and may be predicted 

from circumstantial evidence, such as controlling the concentration of the 

suspect impurity and correlation of the optical signal with the measured 

concentration. One major drawback is an internal calibration of the intensity is 

necessary as the luminescence signal is not absolute and varies with position 

of the sample with respect to the spectrometer, excitation power etc. However, 

isotope substitution experiments, where the effects of different isotopes of a 

suspected impurity are observed, can determine the defect constituents 

unambiguously. Different isotopes of an element have the same number of 

electrons, however they are distinguished by their nuclear mass and some 

isotopes have different nuclear spins. As the electronic states of the defect are 

influenced by the components of the defect and its surrounding lattice, there 

are two possibilities, either the isotopic mass of the constituent impurity can be
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varied or the isotopic mass of the host crystal can be varied Changing the 

isotope of a constituent of the defect and its effect on the associated zero- 

phonon transitions will be outlined as this method is relevant to the work 

presented in this thesis

As shown in section 1 5, the vibrational potential energy of the ground 

state, Vg, and the potential energy of the excited state, Ve are

V! =y2ma2(Q -Q sŸ (2 30)

Ve =E + y2ma>2(Q -Q s f  + a (Q -Q t ) (2 31)

and may be represented by a CC diagram as shown in figure 2 10 The zero- 

phonon line is defined as the transition from the lowest vibrational level N -  0 of 

the excited state to the n -  0 state of the ground state

Defect - Isotope mass m Defect isotope mass m + Am

Figure 2.10 Comparison of the configuration co-ordinate models for an isotope of 
mass m and mass m+Am.

If it is assumed the vibrational mode of the defect is due to the vibration 

of the atomic species of interest of mass m, against a restoring force of effective 

spring constant, k, (i = e, g for the excited and ground state respectively), the 

normal vibration frequency of the mode neglecting vibrations of other defect 

constituents is
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Replacing the impurity of mass m with an isotope of the impurity with mass m + 

Am, the vibrational frequency will be

CO.
m+Am

m + Am
(2 33)

The frequency shift for the excited state will be

A co„ =  cùl -  co.m+Am

m + Am

1--
m

m + Am,
(2 34)

Following the same method, the frequency shift of the ground state is

Aco = , —  I - -
m

m + Am
(2 35)

The ZPL energy shift between the two isotopes, in terms of frequency change 

is

A =  A coe -  A cog = 1- .
m

m + Am
(2 36)

and the shift in zero-phonon line energy can be written as

Em -Em+dm = /2[hcog -hcoe 1 - .
m

m + Am
(2 37)

The magnitude of the isotope shift depends on Am and the difference 

between the effective spring constant for the ground and excited state, ke -  kg

The greater the difference in mass Am, the better resolved the isotope shift 

would be Depending on the magnitude and sign of ke -  kg the isotope shift is
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in the positive or negative direction. As ke - k g tends to zero, the isotope shift

tends to zero. Consequently, in this model there is no change in zero-phonon 

energy when the isotopes are changed.

To obtain isotope effects, higher order electron-phonon coupling and 

anharmonic vibrational potentials must be considered. To allow for a different 

frequency in the excited state we rewrite equation (2.31) as:

Information on the chemical constituents of the defect can also be 

obtained from the isotope shift of the phonon sideband. The ratio of the 

frequency shift to the normal vibration frequency of the excited state (equations 

2.23 and 2.34) may be written as:

Thus, the phonon energy shift only depends on the change of the mass and is 

independent of the coupling states and the electronic states with which the 

mode is coupled. Defects can show isotope shifts in their phonon sidebands 

with are not present in the ZPL (Kurner et al., 1989).

For nearly all of the experimentally reported isotope shifts of zero- 

phonon lines, the lower mass line falls at lower energy, indicative of a negative

Ve=E + y2mco2(Q -Q g)2+a(Q -Q g) + b(Q-Qg)2 (2.38)

= E + y2m{co2g + - ) ( Q - Q Ÿ  + a(Q -Q g) 
m *

(2.39)

The vibrational frequency of the excited state is:

(2.40)

and the shift in energy of the zero-phonon line can be expressed as:

A £  = yti[( ] -y 2h [c o :^ -co m+àm

8 (2.41)

(2.42)
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value for ke- k g, ke< kg For these cases, the spring constant of the excited

state is smaller than the ground state, indicating the excited state mode has 

been softened However, there are exceptions to this general trend, as we will 

see in chapter five

Isotope studies on the energy shift of zero-phonon lines may provide 

proof, not only of the involvement of a given impurity, but also on the number of 

impurity atoms present Considering the case of a single cadmium atom, 

samples implanted with 106Cd are expected to show zero-phonon lines at lower 

energies than samples implanted with 116Cd In a dual implant sample, the zero- 

phonon line will be expected to split into two components Depending upon the 

resolution, no splitting of the zero-phonon line may be observed, the line may 

only be broadened

The splitting of zero-phonon lines and their relative intensities in dual 

implant samples can provide information on the number of constituent atoms in 

defects If more than one atom is present the number of split components 

observed depends upon whether the atoms occupy equivalent or inequivalent 

sites in the centre Consider a centre containing two cadmium atoms which 

occupy equivalent sites, three types of centre will be produced when doped with 

both isotopes as the atoms can be interchanged Considering a centre 

containing two cadmium atoms occupying inequivalent sites, since the 116Cd 

and the 106Cd isotopes have different vibrational energies, due to their mass 

dependence, they are not interchangeable, thus four different types of centre 

can be produced

In this thesis, the results of lithium and cadmium isotope substitution 

experiments are described Since the defects are produced in cadmium 

implanted silicon, cadmium is the primary defect candidate Samples are 

implanted with 106Cd, 116Cd or a mixture of 106Cd and 116Cd isotopes to 

determine if cadmium is a constituent of the defects Lithium may be a catalyst 

in the formation of the defects or a constituent element, and it is shown in 

chapter three that introducing lithium during defect production enhances the 

defect luminescence The two stable isotopes of 7Li and 6Li were used for 

isotope studies
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2.7 Summary and Conclusion

In this chapter the techniques and experimental apparatus used to 

investigate the defects presented in this thesis were outlined The main 

perturbation techniques of uniaxial stress, Zeeman and isotope substitution 

experiments were outlined The primary aim of chapter three is to introduce 

each of the defects in detail, provide details of their formation techniques and 

discuss the behaviour of the zero-phonon lines of each defect as a function of 

temperature The results for each perturbation technique applied to each defect 

are reported in chapters four and five
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Chapter Three

Novel Luminescence Defects in Cadmium Doped Silicon

3.1 Introduction

As highlighted in section 1 8, the implantation of 111ln ions in silicon led 

to the observation of three previously unreported defects after several half-lives 

The decay o f111 In to its 111Cd daughter atom was suspected to contribute to the 

formation of these new defects which were first reported by (Daly et a l , 1994) 

This chapter is concerned with the detailed introduction of these three defects, 

labelled group I, II and III The term ‘group’ is used as each defect contains 

several zero-phonon lines and associated sidebands It will be shown in section 

3 2 that cadmium is involved in the formation of these defects and the defects 

can be produced in non-radloactive samples Thus, the problems associated 

with using radioactive isotopes, such as the relatively short lived half life of the 

radioactive samples, (111ln has a 2 8 day half-life), and their hazardous nature 

can be overcome A detailed spectroscopic description of each defect and its 

associated phonon sidebands is given in section 3 3 The temperature 

dependence of each defect is discussed in subsequent sections An initial 

comparison of the defects indicates that defects I and II are similar in nature 

while group III must be treated separately

A typical photoluminescence spectrum of cadmium implanted FZ silicon 

obtained at 13 K, using 514 5 nm Ar+ laser excitation is shown in figure 3 1 

Three very strong luminescence systems are observed in the range 1055-1090 

meV These systems are observed in samples implanted with cadmium only, 

which received a high temperature anneal at ~1100°C and quench with a 

subsequent anneal for 30 min at 100°C The cadmium implantation energy and 

dose were 200 keV and 1x1014 cm'2 Lithium contamination very likely came
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from the quartz tubing during the high temperature treatment, and indeed this 

will be shown to be the case in the subsequent section Similar lithium 

contamination has been reported in the formation of Au-Li defects (Zhu, 1997) 

The insets in figure 3 1 shows groups I, II and III Group I is centred at -  1061 

meV, group II is centred at ~ 1068 meV and the lowest energy zero-phonon line 

of group III is at 1083 3 meV The spectral features of each group will be 

outlined in section 3 4 Two Cu-related lines at 943 7 and 944 2 (±0 1) meV, 

labelled *Cu0° and *Cui° (McGuigan et a l , 1988), and their Stokes sidebands 

are also observed Two low intensity zero-phonon lines observed at ~ 778 9 and 

779 8 (±0 1) meV are attributed to a silver-related centre in the literature (Olajos 

et a l , 1988, Zhu et a l , 1997) A very weak zero-phonon line is observed at ~ 

920 meV, which is a radiation damage centre involving C (Davies et a l, 1984) 

Zero-phonon lines are observed at ~ 880 8, 825 4 and 813 7 (±0 1) meV and 

another doublet is observed at 867 28 and 868 21 (±0 1) meV, these lines have 

not been reported in the literature to date A previously unreported series of 

very closely spaced zero-phonon lines have been observed very close to the 

group I lines, not shown in figure 3 1 The principal lines are at energies 

1055 06, 1055 5, 1055 94 and 1056 69 meV and may be silver-related lithium 

defects as the ~779 meV silver centre is also observed in the spectrum A 

series of lines with the principal zero-phonon line at ~ 996 meV has been 

observed in samples with groups I, II and III, this series of lines is not observed 

in the spectra shown in figure 3 1 No further study of this system has been 

reported, however, this centre has been observed previously in annealed CZ 

Cd-doped material (McGlynn et a l , 1996)
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3.2 Defect Production

Samples used in preliminary experiments, temperature dependence 

experiments and isotope studies were all produced in cadmium implanted 

material by a high temperature anneal and rapid quench followed by a low 

temperature anneal, which is discussed in detail in this section The samples 

used in uniaxial stress measurements and magnetic field perturbation studies, 

which were prepared by cadmium diffusion, are described in chapter four, 

section 4 1

A number of samples were prepared by cadmium implantation or 

diffusion into high resistivity silicon, both oxygen-rich and oxygen-lean, and of 

both conductivity types For implantation, the typical ion implantation energy 

and dose were 200 keV and 1x1014 ions cm'2, respectively To remove surface 

orgamcs and metal contamination the samples were RCA cleaned before all 

heat treatments The RCA clean is the most widely used wet chemical clean in 

the IC industry and was initially developed by Kern et a l, (1970) An outline of 

an RCA clean is given in Appendix B The RCA cleaned samples were placed 

in an RCA cleaned quartz tube which was heated rapidly to ~ 1100°C for 10s 

and quenched to room temperature in an isopropanol water (6 4) mixture The 

isopropanol and water mixture gives a slower quench rate than water alone, this 

reduces the risk of sample fracture The defect centres were produced by a 

subsequent anneal All subsequent isochronal annealing treatments were 

carried out in a furnace, where the samples were placed in a quartz tube in a 

flowing Ar atmosphere The samples were withdrawn slowly from the furnace 

and allowed to cool to room temperature without any quenching process to 

optimise the signal to noise ratio

Figure 3 2 shows spectra obtained from a Cd-implanted FZ p-type silicon 

sample which received a high temperature anneal at ~ 1100°C for 10 s and 

rapidly quenched followed by successive isochronal anneals for a duration of 

15 min From this series of heat treatments the optimum defect formation 

conditions were obtained In figure 3 3 the photoluminescence intensity 

normalised to the maximum intensity for each group as a function of anneal 

temperature is illustrated The most favourable annealing temperature after the 

high temperature anneal and quench for each defect is evident
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Figure 3.2 Effect of isochronal anneals on Si:116Cd FZ p-type sample subsequent to 
a high temperature anneal and quench. The spectra were recorded at a nominal 
temperature of 15K.

An anneal temperature of ~ 150°C optimises group I, for group II the 

optimal defect production temperature is ~ 100°C, whereas annealing at ~ 

375°C optimises group III Annealing above 425°C causes all three groups of 

spectra to vanish

The production of the three defects was found to be dependant upon the 

cooling rate during the rapid quench to room temperature, which can be 

affected by the sample dimensions The smaller the sample dimensions the 

faster the rapid cool from -  1100°C to room temperature, resulting in optimal 

signals, while in a large sample with a slower cooling rate the intensity of the 

luminescence from the defects diminishes

On leaving the samples at room temperature for several weeks, the 

relative intensity of the defect photoluminescence was reduced or had 

completely vanished Subsequent to this discovery, all samples were stored at 

liquid nitrogen temperatures
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Anneal Tem perature  ( °C )

Figure 3.3 Normalised photoluminescence intensity of detects annealed in the 
range 0 - 425°C.

Four representative spectra are shown in figure 3.4 from four different 

samples. All samples were treated by a high temperature anneal and rapid 

quench to room temperature. Groups I and III are observed in (a) where the 

sample received a subsequent anneal at 200°C whereas in (b) that was 

annealed at 125°C, group II dominates the spectrum and in (c) annealed at 

225°C, group III dominates. The relative intensity of each group is dependent 

upon the annealing conditions. The observation of each defect independently 

and the variation in the relative intensity between defects suggests they are not 

related directly. Thus, depending upon the annealing all three defects (d) or any 

one defect can be observed. The spectrum shown in (d) where all three defects 

are observed was obtained from a sample which received a subsequent anneal 

at 275°C. The observation of all three defects after annealing at 275°C was 

unexpected. Group II is not expected to be observed above an anneal of 200°C 

as shown in figure 3.3. This highlights the important role the size of the sample 

plays in the formation of the defects. The quench rate of the sample after the 

high temperature anneal will be reduced in a large sample. Due to the difficulty 

involved in actually measuring the quench rate a quantitative analysis of the
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effect of sample size on the quench rate and defect formation was not 

undertaken

Energy (meV)

Figure 3.4 Photoluminescence spectra from FZ Si implanted with Cd showing: (a) 
Group I and III, (b) Group II, (c) Group I I I  and (d) all three groups. Four 
different samples were used which indicates that the three groups are independent. 
All spectra were recorded at a nominal temperature of ~ 15 K.

Annealing an FZ silicon sample implanted with cadmium by flame 

heating at ~ 950°C and rapid quench did not create the three defects of interest 

A centre at 1093 2 meV was observed as shown in figure 3 5(a), which is 

assigned by Thewalt (1978) as emission from exciton bound to the lithium 

donor, thus suggesting the involvement of lithium in the defect production A 

Cu-related line at 943 7 meV is observed and is attributed to an isoelectromc 

Cu-Cu defect (McGuigan et a l , 1988) Cu, one of the transition metals (TMs), 

has a large diffusion coefficient in silicon at high temperatures. Like other TM
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defects, the defects may impair the electric and optical properties of silicon and 

may impair the formation of any defects of interest. When preparing a sample 

that requires heating, care must be taken to prevent Cu contamination if 

possible.

The lithium contamination may be due to the out-diffusion of lithium from 

the quartz tubing during the high temperature anneal. The involvement of 

lithium in the generation of the three defects or as a catalyst in the creation of 

the defects was confirmed by placing lithium pellets in the quartz tube in the 

proximity of the samples which were annealed at ~ 1100°C and quenched. The 

luminescence from the three defects was enhanced greatly, as shown in figure 

3.5(b). A line at ~ 919 meV was observed and is a radiation damage centre 

involving C (Davies et a!., 1984). A lithium pellet was placed in the quartz tube 

during the high temperature anneal and quench of all subsequent samples to 

optimise defect photoluminescence.

Energy (meV)
Figure 3.5 (a) Lithium  bound exciton luminescence created by a high tem perature 
anneal and quench of Si:ll6Cd sample (b) Luminescence from  the three defects is 
enhanced by the introduction of a lithium pellet in the quenching process.

Samples of CZ material that has a high oxygen concentration and FZ 

material that has a relatively low oxygen concentration were prepared. Both 

samples received the same heat treatment and figure 3.6 shows all three 

groups are observed in both spectra. The relative intensity of group III in (b) is 

low compared to the other two groups, this is believed to be due to the heat
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treatment and sample size rather than the oxygen content of the sample This 

evidence, although circumstantial, suggests oxygen is not involved in these 

defects as the groups are observed in FZ samples

Energy (meV)

Figure 3.6 Comparison of (a) CZ and (b) FZ Cd implanted silicon samples, which 
received the same heat treatments to produce, group I, II and III. The spectra were 
recorded at T ~ 10 K.

In an effort to maximise the luminescence of the defects a series of 

samples of both conductivity types, p-type and n-type, were prepared by 

cadmium diffusion All samples were FZ material and RCA cleaned before each 

treatment and the samples and treatments are listed in table 3 1 Cadmium was 

diffused into the samples either in vacuum, air or at a pressure of 500 mbar in a 

helium atmosphere Several samples were subjected to post diffusion 

treatments as either hydrogen or lithium were introduced into the quartz tubing 

during the subsequent anneal For hydrogen diffusion the samples were 

annealed at 200°C for 10 min while samples with lithium diffusion were 

subjected to an anneal at 415°C for 10 min Table 3 1 lists which of the three 

groups, if any, were observed in the luminescence spectra Also included is the 

observation of a cadmium-related line at 1026 meV (McGlynn et al., 1996) and 

the 1014 meV Cu related centre, indicating copper contamination Group III has 

been observed in cadmium diffused samples regardless of conductivity type,
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with and without hydrogen and lithium diffusion It is difficult to identify which 

conductivity type material favours the production of the defect However, groups 

I and II are only observed in samples which are lithium diffused Figure 3 7 

shows spectra of p-type and n-type Cd- and Li-diffused material The 

production of groups I and II is favoured in p-type material Ratioing the 

intensities associated with group II zero-phonon lines and the W line at ~ 1018 

meV, in both types of material revealed a ratio of ~ 24 in p-type material and ~ 

0 5 in n-type material

and subsequent treatments. The observation of each group, the 1026 meV Cd 
centre and the 1014 meV Cu centre is indicated for each sample
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Energy (meV)

Figure 3.7 Comparison of groups I and II in p-type and n-type material. The 
labelled lines, W, X (or 13) and 12 are all damage related lines (Davies 1989). The 
cadmium related 1026 meV line and its first local mode at ~ 1020 meV (McGlynn et 
al., 1996) were also observed

3.3 Spectral Features

3.3.1 Group I

A luminescence spectrum obtained at ~ 18 K of FZ silicon implanted with 

116Cd, which received a high temperature anneal and quench, followed by a 

50°C anneal for 30 min is shown in figure 3 8 The spectrum consisting of the 

three defects is dominated by group I and a detailed sideband is observed 

Group I consists of zero-phonon transitions, labelled A to E*, in the range 1058- 

1064 meV, the details of which shall be given in the next section The zero- 

phonon lines couple to an in-band local mode phonon of energy ~ 7 8 (±0 1) 

meV, with one phonon replicas labelled A1 E*1 in the spectrum A two phonon 

sideband, D2 at energy ~ 15 5 (±0 1) meV from the most intense line, D, is 

observed Unfortunately this assignment cannot be fully confirmed by the 

observation of any other two-phonon features due to overlap with the 

transverse acoustic (TA) mode of the zero-phonon lines Additional peaks are 

observed in the sideband at ~ 1037 8 and 1023 4 (±0 2) meV which coincide
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with a local mode of group II (L3Gii) and a density of states peak (DOSGn), 

identified with group II as will be discussed below The Or cut-off of group I can 

be seen at ~ 995 9 (±0 1) meV

Energy (meV)

Figure 3.8 Photoluminescence spectrum showing position of group I and sideband.

At low temperature, T ~ 4 K, only the zero-phonon line A and its local 

mode A1 are observed and the Huang-Rhys factor can be estimated from the 

luminescence spectrum using the equation

I(localmode)
S = — ------------ - (3 1 )

I(ZPL) K 1

where /  is the intensity The estimated Huang-Rhys parameter, SA is 0 356 This 

compares favourably with a value of 0 31 calculated from
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As the temperature is increased, the local modes of lines B to D appear and 

their S values can be estimated For example at 10 K, SA ~ 0 55, SB ~ 1 37, Sc~ 

0 27 and SD ~ 0 56 A Huang-Rhys value, S~ 0 43 was estimated from the ratio 

of the total band area to the zero-phonon line area The high value of SB when 

compared to the other Huang-Rhys values may be attributed to the broad 

nature of the B1 local mode and any error in estimating the underlying baseline 

will contribute a large experimental error to S SE was not estimated as the area 

of the E1 mode is unreliable due to its low intensity The relative intensity of the 

nth local mode is given by

(3 3)

Using SA estimated from the spectrum the estimated value for a second local 

mode is 0 035, this relatively small value can account for the difficulty in 

confirming the existence of any second local mode

For a weakly bound exciton, the luminescence spectrum is expected to 

be characterised mainly by contributions from wavevector conserving, TA, LO 

and TO phonons This is not the case for group I defects When luminescence 

occurs the exciton is annihilated and this induces a relaxation of the defect with 

the lattice The concept of a relaxation energy was introduced in section 1 5 

The relaxation energy can be defined as the difference between the zero- 

phonon energy Ez and the energy Ec of the centroid of the luminescence band

Er = E z- E c (3 4)

The centroid energy obtained by integration of the entire luminescence band, 

while ignoring features not related to group I is Ec ~ 979 meV Taking Ez ~ 

1065 9 meV, as the average zero-phonon line energy, the relaxation energy is 

Er ~ 86 9 meV Several sources of error which limit the reliability of the value 

obtained for the relaxation energy must be taken into account The largest 

source of error to be considered is the estimation of all features of the band 

which are unrelated to group I, including the background luminescence and 

water absorption features. The resolution of the spectrum and the system 

response must also be considered Including these errors the relaxation and
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centroid energy, ~ 87 and 979 meV respectively can only be estimated within ± 

20 meV (McGlynn 1996) What is important is from a comparison of the 

relaxation energy and the spectroscopic binding energy, which is calculated 

from the energy gap of silicon and the position of the minimum energy zero- 

phonon line, — 1169 9 - 1058 16 meV i e -  111.74 meV the relaxation energy 

accounts for ~ 77% of the binding energy This indicates a self binding exciton 

similar to the ABC centre (Iqbal et al 1994, Davies et a l , 1994) and Li-related 

centres (Lightowlers etal, 1984)

3.3.2 Group II

A low resolution spectrum at ~ 4 2 K dominated by three group II zero- 

phonon lines labelled F, H and J, is shown in figure 3 9 Two Local modes are 

identified, L1 at ~ 7 3 (±0 1) meV and L3 at -  30 meV below the zero-phonon 

lines The feature marked H2, ~ 15 8 meV below the H line, is possibly another 

local mode of line H However, this cannot be confirmed due to the overlap of 

the transverse acoustic (TA) mode with the lower energy phonons A peak in 

the phonon sideband at ~ 1024 meV labelled DOS in the figure, can be 

identified with a peak in the phonon density of states for silicon The lines 

labelled Cu and Cu1 are due to copper contamination The TO, LO DOS peaks 

and the Or cut-off are clearly identified in the spectrum

At 4 2 K, ratioing the intensity of F1 with the corresponding zero-phonon 

line F gives a Huang-Rhys factor SF of ~ 0 03 which is confirmed by relating the 

total area of the band to the total area of the zero-phonon lines The estimated 

values of SH and Sj are ~ 0 02 and 0 05, respectively

The centroid energy was obtained from the luminescence spectrum 

following the method outlined as for group I and is estimated to be ~ 944 meV 

Figure 3 10 (a) shows the luminescence spectrum of group II while (b) shows 

the corrected spectrum Corrections have been made for water vapour 

absorption, unrelated luminescence features and background intensity Using 

an average zero-phonon line energy of 1067 4 meV the relaxation energy is 

estimated to be ~ 73 meV With the number of corrections made to the 

spectrum, the effects of resolution and system response these values are only 

approximations From the similarity of the binding energy ~ 87 meV and the
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relaxation energy, at least a large fraction of the binding energy arises from the 

relaxation energy and the exciton is self-trapped

Energy (meV)

Figure 3.9 Photoluminescence spectra showing group II and its related sideband. 
The sample was prepared by a high temperature anneal and quench, followed by a 
175°C anneal for 30 min.

850  900  950  1000  1050

Energy (meV)

Figure 3.10(a) Group II and its related sideband and (b) corrected spectrum 
indicating the estimated centroid energy.
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The energy shift from the zero-phonon line and the identification of the 

spectral features of groups I and II are compared in figure 3.11. The Or cut-off 

in each spectrum has been aligned to coincide. The group II local mode and 

associated sideband are readily identified as intense group II luminescence was 

observed with a H line signal to noise ratio > 1000. Both group I and II are 

present in the lower spectrum, with group I dominating, however both L3 and 

DOSgii due to group II are observed in the sideband. The second local mode of 

each group has not been labelled in figure 3.11 due to the tentative nature of 

the assignments.

1000 1010 1020 1030 1040 1050 1060

Energy (meV)

Figure 3.11 Comparison of group I and II phonon sidebands, with the group I 
sideband shown on the bottom. The group II local modes at ~ 7.3 meV are expected 
to coincide with the group I zero-phonon lines which will effect temperature 
dependence measurements.

3.3.3 Group III

Representative spectra of group III at various temperatures recorded 

using a Fourier transform spectrometer are shown in figure 3.12. At 4.2 K only 

the lowest energy zero-phonon line at 1083.32 (±0.05) meV, labelled ai and its 

sidebands are observed. Three local modes can be identified, Pi at a lower 

energy of 1078.48 (±0.05) meV, yi at 1073.97 (±0.05) meV and 5i at 1069.83 

(±0.05) meV. From the line energies values of 4.84, 9.35 and 13.49 (±0.07) 

meV are associated with the emission of one, two and three phonons, 

respectively indicating the frequency mode of the vibronic series is slightly
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anharmonic The successive phonon replica energy decreases with increasing 

number These phonon energies simplify the analysis and interpretation of the 

higher temperature spectra

Energy (meV)

Figure 3.12 Representative spectra of group III at 4.2,7.5 and 10 K at a resolution 
of 1 cm"1.

A similar luminescence spectrum dominated by a single vibrational mode 

of ~ 7 meV has been reported (Canham et a l , 1985) Up to 11 phonon replicas 

were observed related to an optical centre thought to be an intrinsic defect that 

has complexed with lithium and possibly carbon Figure 3 13 shows the first five 

replicas labelled L1 to L5 of the zero-phonon line LO Similar to group III the 

frequency mode is anharmonic but in this case the successive phonon replica 

energies increase with quantum number

As the temperature is increased there is a dramatic change in the 

spectrum, a second zero-phonon line labelled as ot2 at 1086 02 (±0 05) meV 

and its related sideband appears At higher temperatures a third zero-phonon 

line, a3 at 1088 53 (±0 05) meV and its associated sideband are observed The 

separations of the zero-phonon lines are close to the phonon energy, which 

accounts for the complexity seen in the spectrum
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Photon energy (meV J

Figure 3.13 Photoluminescence from FZ silicon containing 2xl017 cm"3 Li and [C] ~ 
2xl017 cm'3 and [O] < 1016 cm'3. The zero-phonon line, LO lies at 1037.3 ±0.1 meV. 
The phonon frequencies of LI to L5 increase with quantum number (Canham et 
al., 1985)

At low temperatures the Huang-Rhys parameter, Si associated with the 

emission of one phonon is estimated to be ~ 1 by obtaining the ratio of the area 

of pi to the zero-phonon line area, ai By the same method the second and 

third Huang-Rhys parameters for 0,2 and 0 ,3, S2 and S3 are calculated to be ~ 0 7 

and - 0 6  respectively The Huang-Rhys parameter S, can also be calculated 

from obtaining the natural log of the ratio of the total luminescence intensity of 

the band to the intensity of the zero-phonon lines and the calculated 

parameters for S‘ ¡, S‘ 2 and SJ3 are ~ 1 2, 0 7 and 0 3 The values for the one- 

and two- phonon Huang-Rhys parameters are in agreement within experimental 

error, however a large discrepancy exists between the two values of S3 and 

This may be attributed to the background and the increasing width of the 8 

phonon-line making a reliable estimate of the intensity of the line difficult The 

total calculated value of the Huang-Rhys parameters yields a value of ~ 2 1 

which is almost in agreement with the sum of individual modes, Si + S2 + S3, of ~ 

23

Using two sets of Huang-Rhys parameters at T ~ 8 K, estimated as 

outlined above and the full-width of the lines at half maximum (FWHM) from the 

observed spectrum the predicted band shapes for group III are shown in figure 

3 14 In (a) using S1! S!2 and s’ 3 = 1 2, 0 7 and 0 3 respectively, the band shape 

agrees well with the experimental spectrum (c) for the third-phonon sideband, 

however for the one- and two-phonon region it underestimates the ratio of
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intensities The opposite case is observed in (b) where the expenmentally 

obtained values of Si S2 S3 = 1 , 0 7  and 0 7 respectively, were used

Energy (meV)

Figure 3.14 Comparison of the estimated group 111 phonon sideband with Huang- 
Rhys factor, S calculated by (a) ratio of areas (S1 ¡j,3), (b) ratio of total sideband 
area (S 1,2,3) and (c) experimental spectra observed at T ~ 8  K.

The centroid energy of group III is estimated to be -  993 5 meV with a 

relaxation energy of ~ 83 meV using an average zero-phonon line energy of 

1076 5 meV Corrections were made to the spectrum for background intensity, 

water vapour absorption and non-related spectral features These corrections 

introduce errors in the estimation of the centroid and relaxation energy ~ ± 20 

meV The relaxation energy, 83 (± 20) meV is comparable to the binding energy 

of group III, ~ 74 meV indicating most if not all of the spectroscopic binding 

energy is accounted for by the relaxation energy

81



Novel Luminescence Defects in Cadmium Doped Silicon Chapter Three

3.4 Temperature Dependence of Group I

The photoluminescence spectrum of the 1061 meV centred 

luminescence band, labelled group I in this work, and its associated sideband, 

as a function of temperature is shown in figure 3 15 At low temperatures, - 4 2  

K a single zero-phonon line, A, at 1058 16 (±0 05) meV and its related local 

mode phonon, A1 at ~ 7 75 (±0 1) meV is observed with a band extending to 

lower energies As the temperature is increased the growth of several new 

lines, labelled B to E, and their related phonon modes are observed in the 

spectrum

Energy (meV)

Figure 3.15 Photoluminescence spectrum of group I and phonon sideband as a 
function of temperature (resolution: 1cm'1).

At high temperatures group I is composed of at least five zero phonon 

transitions, the labels and energies of the principal zero-phonon lines are given 

in table 3 2 with their shift from the minimum energy zero-phonon line At 

temperatures above 15 K a zero-phonon line labelled E* is observed and is 

attributed to group I, however, due to its low relative intensity, no further work 

has been undertaken to confirm this identification A plot of the natural log of 

the intensity ratios of the principal thermally activated lines relative to the
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minimum energy zero-phonon line versus inverse temperature is shown in 

figure 3.16.

Spectral
Feature

Position (meV) 
(±0.05)

Energy Shift 
(meV) 

A£w(±0.1)

Energy Shift 
(meV)
AEth

A 1058.16 0.00
B 1059.52 1.36 1.27 ±0.12
C 1060.65 2.49 2.38 ± 0.24
D 1061.64 3.48 2.99 ±0.31
E 1062.48 4.32 4.01 ±0.35
E* 1063.74 5.58 unknown

Table 3.2 Spectral features of group I zero-phonon lines.

T (K)

50 25 10 5

1/T (K‘ 1)

Figure 3.16 Arrhenius plot of the In of intensities of the principal group I lines with 
respect to the minimum energy zero-phonon line, A, as a function of reciprocal 
temperature.

A linear fit to the data for lines B, C, D and E, with respect to A, yields 

activation energies (AEth) of 1.27, 2.38, 2.99 and 4.01 meV, respectively. The 

deviation from a linear relationship above 17 K and below 8 K is probably due to
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errors in obtaining the relative intensities due to weak transitions, these 

intensities are difficult to obtain as they are just above noise levels The 

appearance of the local mode phonons of group II at the group I line energies, 

as shown previously in figure 3 9, will contribute to the errors in the intensity 

ratios, especially at high temperatures The observed spectroscopic 

separations (AEsp) are 1 36, 2 49, 3 48 and 4 32 (±0 1) meV from the A line, 

respectively, and a comparison of these values to the experimental activation 

energies indicates these are transitions from five excited state levels to the 

same final ground state, as illustrated in figure 3 17 The figures indicated 

below the energy level diagram correspond to the approximate infinite 

temperature intensity ratios,f,g u/ f A, where /, is the probability of radiative 

recombination of the ith excited state level

---------------------- 1— 1062 48 meV

-----------------   1061 64 meV

------------  1060 65 meV

 ------------------  1059 52 meV

-------------------------  1058 16 meV

h I H  0 meV
1 1 5 17 29 15

Figure 3.17 Schematic of the predicted energy level diagram of group I. The 
estimated infinite temperature intensity ratios are indicated below the transitions.

With increasing temperature the total luminescence intensity from the 

band increases as the higher energy lines become populated, with the intensity 

growing to a maximum at 14 K Figure 319 shows the temperature 

dependence of the total luminescence from the band At higher temperatures, 

the intensity decreases by thermal dissociation of the excited states and the 

intensity becomes undetectable at temperatures >40 K This temperature 

dependence is not uncommon and has been reported previously for 

luminescence bands (Nazare et a l , 1989, McGlynn et a l , 1996) First, only the 

rate of decay in the temperature range above 14 K will be considered and an 

initial value for the thermal dissociation energy will be calculated. The 

temperature dependence of the decay in luminescence intensity is given by.
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1 + Gd f A exp{- AE, / kT) ^

where Gd is the ratio of the conduction band density of states to the defect 

density of states and E, is the dissociation energy of the bound complex The 

intensity data for T > 14 K is shown in figure 3 18 where the line represents the 

best fit with a dissociation energy of ~ 10 5 (±2) meV

Tem perature (K)

Figure 3.18 Temperature dependence of the luminescence intensity of group 1 lines 
above 14 K. The line is the best fit line with a dissociation energy E, = 10.5 meV and 
<7d = 0.896.

The thermal dissociation energy is much less than the spectroscopic 

binding energy ~ 111 74 meV The calculated value of ~ 10 5 (+2) meV is 

comparable to the binding energy of the exciton, 14 7 ± 0 04 meV (Shaklee et 

a l , 1970) suggesting the exciton was captured by the centres through a weak 

interaction and then relaxes to be localised to the centre If the excited state is 

a bound exciton, the primary particle is tightly bound, ~ 101 2 (±2) meV and the 

secondary particle is weakly bound (-10 5 (±2) meV)
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Tem perature (K)

Figure 3.19 Intensity of group I zero phonon lines as a function of temperature 
with fit parameters: r = 0.858, G, = 0.0474, G j=0.896, E, = 10.5 meV and Et -  3 meV.

The total luminescence of the band as a function of temperature is ' 

described by equation 2 8, and using the values of E, and Gd found above as

starting values and the observed activation energies, AEsp given in table 3 2, the 

best fit line shown in figure 3 19 was obtained The shallow traps were found to 

have a binding energy Et of ~ 3 meV, and excitons may be released from these 

shallow traps as the temperature is increased and captured at the group I 

defect, thus contributing to the increase in luminescence Typically, shallow 

traps have a binding energy of ~ 4 meV and to date the origin of shallow traps is 

unknown (Davies, 1999) Figure 3 19 suggests the intensity of group I, has not 

fully stabilised at 4 2 K suggesting the existence of an energy level below the 

observed A line from which transitions may be forbidden

Spectra at high resolution have revealed a zero-phonon line on the low 

energy side of the A line, labelled A* in figure 3 20 This line at ~ 1058 05 meV, 

which was not observed in the temperature dependence data detailed above 

due to the relatively low resolution of the spectra, was investigated further in the 

temperature range -  2 - 4 2 K at high resolution (0 15 cm"1) The expected 

change in relative intensities between 2 and 4 2 K is ~25% Unfortunately, 

within the signal-to-noise ratio achieved, no thermalisation was observed when 

the liquid-helium bath temperature was decreased from 4 2 to 2 K, even when 

the excitation power was reduced to very low levels to avoid sample heating.

No local modes of A* or A were observed at these low temperatures and at
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present, A* is not included as part of the group I energy level system Further 

investigation of the A* line is necessary to determine if it is a lower energy line 

of the group I system as the low temperature data are inconclusive

Energy (meV)

Figure 3.20 At high resolution (0.15 cm'1) A* is observed on the shoulder of the 
minimum energy A line at 4.2 K.

To summarise, from the thermal data, group I consists of at least five 

zero-phonon lines due to transitions from a set of thermalising excited states to 

a single ground state The temperature dependence of the group I 

luminescence is characteristic of an isoelectronic centre The calculated 

dissociation energy of ~ 10 5 (±2) meV for group I suggests the exciton was 

captured by the centres and subsequently relaxes to be localised to the centre
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3 .5  T e m p e r a t u r e  D e p e n d e n c e  o f  G r o u p  I I

A second group of lines, labelled group II is found to be broadly similar to 

group I and is centred at ~ 1068 meV The minimum energy zero-phonon line, 

labelled F is at 1066 84 ± 0 05 meV and high-resolution spectra, as shown in 

figure 3 21(b), reveal at least eight lines, labelled G to M, within a range of 2 4 

meV. PL measurements at 4 2 K and below were carried out in a liquid He bath 

cryostat, with the temperature determined from the He vapour pressure

Energy (meV)

Figure 3.21 The zero-phonon lines of the group II system recorded from a sample 
at ~5 K with (a) resolution of 1 cm"1 and (b) higher resolution of 0.15 cm'1.

As shown in figure 3 22 the minimum energy zero-phonon line is most 

clearly observed at ~ 2 K with rapid thermalisation of higher energy zero-phonon 

lines as the temperature is increased At high resolution there is overlapping of 

different components and using purpose built code (Cafolla, 1998), the 

overlapping lines were deconvolved using gaussian lineshapes

The intensity ratios of the excited states to the minimum energy state (F) 

follow an exponential law versus reciprocal temperature, and according to the 

Arrhenius plots shown in figure 3 23, these lines are interpreted as zero-phonon 

transitions between excited states of the same defect
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E n e rg y  (m e V )

Figure 3.22 Group II as a function of temperature.

T(K)
20 5 2.5 2

1/T (K'1)

Figure 3.23 Arrhenius plot of the group II zero-phonon lines. The solid lines are 
the best-fit lines used to calculate the activation energies.
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A comparison of the spectroscopic energy splitting, AEsp, and the 

calculated splitting, AEth, for each zero phonon line is shown in table 3 3

Spectral
Feature

Position 
(meV) (±0 05)

AEsp (meV) 
(±0 10)

AEth (meV)

F 1066 84 0 00
G 1067 31 0 47 0 44 + 0 16
H 1067 45 0 61 0 49±0  17
I 1067 78 0 94 0 91 ±0 20
J 1068 04 1 20 0 96 ± 0 32
K 1068 18 1 34 1 12 ±0 37
L 1068 28 1 44 1 22 ± 0 37
M 1069 21 2 37 1 45 ± 0 28

Table 3.3 Labelling and energy positions for group II zero-phonon lines.

1069 21 meV

1068 28 meV 
106818 meV 
1068 04 meV
1067 78 meV 
1067 45 meV 
1067 31 meV
1066.84 meV

0 meV
12 11 12 19 12 8 5

Figure 3.24 Energy level diagram for group II zero-phonon lines thermalising to a 
single ground state. The infinite temperature ratios are indicated in the diagram.

As indicated in figure 3 24, it is possible that these transitions are from 

excited state levels to the same final ground state, as the discrepancy in the 

calculated activation energy (AEth) and the spectroscopically determined energy 

splitting (AEsp) is within error limits It is clear from table 3.3 that the activation 

energy for the highest energy line, M does not agree with the spectroscopic 

splitting The very broad nature and low intensity of the line, (the full width at 

half maximum is ~ 0 25 meV compared to ~ 0 12 meV of the F line at ~ 10 K),
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will contribute large errors in the estimation of the relative intensities of the 

lines Studying the intensity ratio of the M line with the lowest energy line, F in 

several samples has revealed that the ratio is independent of sample indicating 

the zero-phonon line is a group II transition Tentatively the line is included in 

the energy level diagram as an excited state transition to the same single 

ground state

The intensity of all eight energy levels were combined together and the 

total group II intensity shown in figure 3 25 grows rapidly to a maximum at -  5 5 

K and decays until the luminescence finally disappears at -  30 K An initial 

value for E, was obtained by a fit to the data in the temperature range 5 5 to 30 

K and was used as a starting value to obtain the best fit line shown in figure 

3 25 A thermal dissociation energy of -  15 (±2) meV and trap energy Et of -  4 

meV were calculated This dissociation energy is very close to the energy of the 

free exciton indicating that an exciton was captured by the centre and is now 

localised to the centre with energy 88 meV The dissociation energy accounts 

for approximately one-fifth of the localisation energy At temperatures below 3 K 

the fit to experimental data is unsatisfactory and values for the dissociation 

energy, the ratio of the conduction band density of states to the defect density 

of states and the trap density of states were varied Similar fits were achieved 

with different values for these three parameters to the best fit shown in figure 

3 25 The ability to obtain reasonable fits to the total luminescence data with 

differing set of parameters indicates there are still some uncertainties

Comparing groups I and II, the total luminescence of each group as a 

function of temperature are very different (figures 3 19 and 3 25) Group I and 

(as will be shown in the next section) group III follow the trend which is usually 

reported in the literature for isoelectromc centres with a maximum at -1 5  K and 

with the luminescence observed until -  40 K Previously reported cadmium- 

related defects, CdA and Cds luminescence intensity reaches a maximum at -  

13 and 15 K, respectively, and are completely gone at temperatures above 50 K 

(McGlynn et a t , 1996) Group II is unusual as it reaches a maximum at 5 5 K 

and above 25 K the system is no longer observed No explanation can be 

offered at present for this unusual result However, the calculated thermal 

dissociation energy of -  15 (±2) meV is comparable to the dissociation energy 

of the free exciton, indicating an isoelectromc centre, where the exciton is 

captured by the centre and then relaxes and is localised to the centre
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Temperature (K)

Figure 3.25 Group II intensity as a function of temperature. Best fit line with 
thermal activation energy E ,~  15 meV and Et ~ 4 meV.

Group II, consists of at least eight zero phonon lines which are 

tentatively assigned to transitions from thermalising excited states to a single 

ground state The variation of the total luminescence with temperature indicates 

the centre is isoelectromc The thermal dissociation energy is estimated to be ~ 

15 (±2) meV

3.6 Temperature Dependence of Group III

A typical detailed spectrum of group III is shown below in figure 3 26 at T 

~ 15 K Three zero-phonon lines are observed, labelled ai, a* and 013 As shown 

previously a complicated sideband structure is observed consisting of three 

local modes, labelled p, y and 8 Emission is observed from the free exciton 

(FE) and multi-bound exciton emission involving two excitons on Li donor and 

TO phonon creation and emission from exciton bound to B acceptor with TO 

phonon emission, labelled bi and BTO respectively (Davies, 1989) Three group 

I lines, A, C and D are observed and three lines labelled Xit X2 and X3 which 

coincide with group II line energies are observed, at present these lines appear 

to be unrelated to group III The remainder of the lines labelled in figure 3 25 

will be discussed in detail after initial temperature dependence results are 

presented
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Energy (meV)

Figure 3.26 The group III zero-phonon lines and complicated sideband structure at 
T ~ 14 K with labels as explained in the text.

The logarithm of the intensity ratios of a2 to on and a3 to ai as a function 

of reciprocal temperature are shown in figure 3.27. A linear fit to the data yields 

thermal activation energies of 1.49 (± 0.18) and 3.35 (± 0.32) meV for a2 to ai 

and 0C3 to a-i, respectively. These experimental thermal activation energies do 

not agree with the spectroscopic splitting of the lines, 2.70 and 5.21 (± 0.10) 

meV, respectively, indicating that both the initial and final electronic states are 

split. The proposed energy level diagram is shown in figure 3.28 with the infinite 

temperature ratios relative to ai shown below the transitions. Centres where 

both the initial and final states are split are uncommon for defects that are 

believed to be electrically neutral. Exceptions to this general rule include the 

ZnA and ZnB defects, which have split ground and excited states (Henry et al., 

1994); and the Au-Li at ~ 765 meV and ~ 1121 meV defects (Zhu, 1998). Two 

well-characterised centres with split states are centres involving In and Tl 

acceptors in silicon (Thewalt et al., 1982).
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Figure 3.27 Logarithm of the intensities of the a 2/a\ lines and the a  3/ai lines as a 
function of inverse temperature. Thermal activation energies of ~ 1.49 and ~3.35 
meV are indicated.
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1087 23 meV 

1085 18 meV

— ------------------ 1 86 meV
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____________ iL- 0 meV

1 7 50
Figure 3.28 Proposed energy level diagram for group III system, the infinite 
temperature ratios for the a  lines are shown.

From the proposed energy level scheme additional features of group III 

can be identified as (partially allowed) forbidden transitions A complete listing 

of the zero-phonon lines, phonon sideband, unidentified lines and some largely 

forbidden transitions are given in table 3 4 and are labelled as shown in figure 

3 25 Other forbidden transitions cannot be assigned due to their low intensity 

and their expected position overlaps with main zero-phonon lines and phonon 

sideband features
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Label Energy (meV) Assignment
(Xi 1083 32 zero-phonon
a 2 1086 04 lme
a 3 1088 53

Pi 1078 50 one
h 1081 22 phonon

h 1083 72

Yi 1074 01 two

Y2 1076 02 phonon
Y3 1079 21
5, 1069 80 three
82 1072 59 phonon
83 1075 07
Xi 1064 46 unknown
X2 1066 82
X3 1068 54

ß*. 1080 47 forbidden

Y 3 1077 95 transitions

Y 1 1075 87
8*3 1073 21
8*. 1071 45
a , 1083 97
a  2 1085 40
a*3 1086 67

Table 3.4 Listing of the main lines of the group III system and some very low 
intensity forbidden transitions observed in figure 3.25.

The total intensity of the group III system (zero-phonon lines and 

sidebands) as a function of temperature increases to a maximum at -2 0  K, and 

then decreases until the luminescence is quenched at temperatures > 40 K The 

calculated thermal binding energy of the defect centre is -1 3  (±2) meV deduced 

from the best fit line obtained, shown in figure 3 29 A shallow trap at energy Ef 

of -  3 meV acts as a trap for luminescence and as the temperature is increased 

excitons may be released from the shallow level and captured at the defect 

centre of interest The calculated thermal binding energy accounts for -  17% of 

the spectroscopic binding energy of 73 6 (±2) meV Group III is an isoelectromc 

centre as in the case of groups I and II
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Tem perature (K)

Figure 3.29 Total Intensity of group III zero-phonon lines as a function of 
temperature. The best-fit line is shown with fit parameters : r = 1.79, G\ = 4.81, £,• 
= 12.97 meV and E, = 2.89 meV.

3.7 Conclusions

A detailed introduction has been given of three defects created in Cd 

doped silicon, labelled groups I, II and III. Although it was initially thought the 

three defects were related, subsequently it was found that each group of lines 

can be produced alone or all three defects can be created in the one sample 

depending upon the heat treatment after the high temperature anneal and 

quench. The optimum condition for the creation of group I is an anneal at ~ 

150°C for about 15 min. The system consists of five zero-phonon transitions 

with a local mode at ~ 7.8 (±0.1) meV. Temperature dependence shows these 

are transitions from five excited state levels to the same final ground state. 

There is a decrease in luminescence intensity above 15 K with a calculated 

thermal dissociation energy of ~ 10.5 (±2) meV. The low dissociation energy 

compared to the difference in energy between the zero-phonon line energy and 

the silicon band gap indicates the self-trapped exciton is captured as a pair and 

then relaxes after localisation where the primary particle is tightly bound (~

101.2 (±2) meV). High resolution reveals a zero-phonon line, A on the low 

energy side of the minimum energy line A. This zero-phonon line requires 

special consideration and further experimental work must be undertaken to 

determine its origin.
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The temperature dependence of group II is complicated as there are at 

least eight lines within a range of 2 4 meV Evidence is seen of thermalising 

states and a tentative model suggests all zero-phonon lines are due to 

transitions from thermalising excited states to a single ground state The 

intensity grows rapidly to a maximum at ~ 5 5 K and decreases rapidly above 

this temperature As with group I, the exciton, captured through a weak 

interaction is then localised at the centre, which relaxes The optimum condition 

for creating group II is an anneal at ~ 100°C for 15 min following the high 

temperature anneal and quench The luminescence spectrum contains, as for 

group I, a detailed phonon sideband on the low energy side of the zero-phonon 

lines

A comparison of groups I and II shows similar defect formation 

conditions and similar temperature dependence results, with transitions from 

thermalising excited states to single ground states Due to their apparently 

similar nature, it can be suggested that the defect that produces the group I 

lines are possibly a perturbed version of the group II defect The full nature of 

this possible link has yet to be studied

Temperature dependence of group III shows three zero-phonon lines 

with both the initial and final ground states split One, two and three phonon- 

assisted lines are identified and additional sideband structure is observed from 

which several lines can be identified as (partially allowed) forbidden transitions 

The luminescence increases to a maximum at ~ 20 K and decreases above this 

temperature The calculated thermal binding energy of the centre is ~ 13 (±2) 

meV indicating a third isoelectromc defect A summary of the main findings of 

this chapter are compiled in table 3 5

Chapter four will concentrate on further analysis and comparisons of the 

three defects by uniaxial stress Isotope measurements and magnetic field 

perturbation studies for each of the defects are considered in chapter five
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Group 1 Group II Group III

Minimum energy ZPL label A label F label ai

(±0 05) meV 1058 16 1066 84 1083 32

No ofZPLs - 5 - 8 -3

Ground State singlet singlet multiple

Post Quench Anneal 150°C 30 mtn 100°C 30 min 375°C 30 min

local modes - 7 8 - 7 3

-3 0

- 4 8

anharmomc

Thermal Binding Energy 

(± 2 meV)

105 150 130

Spectroscopic Binding 

Energy (± 2 meV)

101 2 87 2 73 6

Proposed Model Isoelectromc Centre Isoelectromc Centre Isoelectromc Centre

Table 3.5 Comparison of the main findings from the temperature dependence 
measurements and analysis of spectral features for the three groups.
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Chapter Four 

Uniaxial Stress Perturbation

4.1 Introduction

Uniaxial stress measurements were recorded along the three major 

symmetry directions of the crystal <001 >, <111> and <110> to reveal the 

symmetry information of the three defects under study. The interaction of 

adjacent states at the same centre complicates the splitting patterns of the 

zero-phonon lines. By studying the stress split patterns and measuring the 

intensity ratios at low temperatures where only the minimum energy zero- 

phonon line is observed and at low stresses where the level mixing and 

thermalisation effects are relatively small it may be possible to identify the 

transition type. Polarisation data of the stress-split components can be very 

useful in identifying components with the theoretically derived shift rate 

equations. Unfortunately, the polarisation of the luminescence signal is 

generally mixed by internal reflections in the samples and by stress-induced 

interactions and as a result polarisation intensity measurements were not 

obtained during the stress measurements reported here.

Possible errors may arise in uniaxial stress measurements in the form of 

additional lines and stress components, which become broadened with 

increasing stress. To avoid spurious results, care must be taken to avoid 

misalignment of the samples in the stress rig and to prepare samples with a 

uniform cross-sectional area. The uniaxial stress and Zeeman measurements 

were carried out on x-ray orientated rectangular parallelepipeds, with the 

sample long axis parallel to one of the crystal axes <001>, <111> and <110>. 

These stress samples were prepared by diffusion. A cadmium pellet was placed
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together with samples of orientated ultra high pure silicon of resistivity 3 kQcm 

in a quartz ampoule at 0 5 atm of helium and heated to 1100°C typically for two 

hours The cadmium diffused samples were then subsequently annealed in an 

ampoule containing a lithium pellet and heated to 850°C for 5 min at 0 5 atm of 

helium To achieve a rapid quench to room temperature the ampoules were 

plunged into water To optimise group II without destroying groups I and III, the 

samples were annealed at 100°C in an Ar atmosphere for 10 min and allowed 

to cool slowly

In this chapter the variation of the energy and relative intensity of the 

stress split components with applied stress for group I will be reported first Due 

to the number of closely spaced zero-phonon lines, group I was studied at low 

temperature where the symmetry of the minimum energy line A was determined 

as an A to E transition at a trigonal site Having identified the symmetry of the 

minimum energy zero-phonon line at low temperatures, the higher energy zero- 

phonon lines were studied at higher temperatures The number of stress-split 

components for group II is unambiguous due to the large number of closely 

spaced zero-phonon lines Preliminary measurements presented below indicate 

the symmetry is due to A to E transition at a trigonal site Future uniaxial stress 

measurements at 2 K where only the minimum energy zero-phonon line is 

observed should confirm this symmetry assignment The behaviour of the group 

III lines under stress is unusual The number of stress components for the two 

zero-phonon lines studied varies and in section 4 4 the zero-phonon lines are 

assigned as an A to B transition at a monoclimc I site

4.2 Group I

The stress data for group I were recorded at both low and high 

temperatures At low temperatures it was possible to follow the shift and split 

rates of the minimum energy zero-phonon line A, without the confusion of the 

higher energy lines Once the symmetry and stress parameters had been 

determined for the A line at low temperatures the higher temperature data were 

analysed From this data the shift rates and components of all the group I zero- 

phonon lines were obtained at low stresses
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4.2.1 Low Stress Regime

When stress was applied in the <111> direction the A zero-phonon line 

split into three components Representative spectra showing the splitting of the 

line with different values of applied stress are shown in figure 4 1 The higher 

energy lines B, C and D are also observed in the spectra but will not be 

analysed in the low temperature regime as reliable data could not be obtained 

for all three stress directions A fan diagram showing a graph of the shift in 

energy of the three stress split components of the A line as a function of applied 

stress is shown in figure 4 2 From the fan diagram it can be seen that the shift 

rates of the stress-split components for stress applied in the <111> direction 

are linear

The A zero-phonon line splits into four components for stress applied in 

the <110> direction Spectra recorded for different values of applied stress are 

shown in figure 4 3 As in the case of the <111 > direction the shift rates for the 

stress split components for the <110> direction appear to be linear However at 

high stresses above ~ 80 MPa the shift rates of the two higher energy stress 

split components are slightly non-linear as observed from the fan diagram 

shown in figure 4 4

Stress applied in the <100> direction did not split the line, however the 

line did shift to lower energies and broaden with increasing applied stress 

Figure 4 5 shows spectra of the A zero-phonon line as a function of applied 

stress in the <001 > direction The fan diagram, figure 4 6, shows the non- 

linearity of the shift rate for stress applied in the <100> direction above 70 MPa

At low stresses, the response of the components is linear, while at higher 

stresses the non-linear data dominates These non-linear effects are produced 

by interactions between nearly degenerate states and both the <001 > and 

<110> data show clear evidence of an interaction effect Because of the 

interacting states, the predicted shift rates of the lines under stress are no 

longer described by simple linear relationships
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Energy (meV)

Figure 4.1 Photoluminescence spectra taken at different values of stress in the 
<111> direction at T ~ 8  K.

1054 1055 1056 1057 1058 1059

Energy (meV)

Figure 4.2 Fan diagram for <111> stress of group I A zero-phonon line at T ~ 8  K. 
The error bars indicate the width of the spectral lines.
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Energy (meV)

Figure 4.3 Photoluminescence spectra taken at different values of stress in the 
<110> direction at T~5.5K .

I I 'I

1058 1059

Energy (meV)

Figure 4.4 Fan diagram for <110> stress of group IA  zero-phonon line at T ~ 5.5 K. 
The error bars indicate the width of the spectral lines.
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Energy (meV)

Figure 4.5 Representative spectra taken at different values of stress in the <001> 
direction for group I minimum energy zero-phonon lines at T ~ 5.5 K.

1054 1055 1056 1057 1058 1059

Energy (meV)

Figure 4.6 Fan diagram for stress in the <100> direction of group I A zero-phonon 
line at T ~ 5.5 K. The error bars indicate the width of the spectral lines.
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In the first instance, the data will be analysed in the low stress regime 

where the response of the components is linear and can be described by linear 

equations Once the symmetry and stress parameters have been determined 

for the linear region the high stress region can be studied by including an 

interaction to account for non-linear shift rates

A summary of the number of stress split components observed for each 

stress direction is given in table 4 1 Comparing the number of stress split 

components - one, three and four for stress parallel to the <001 >, <111> and 

<110> directions - of the A zero-phonon line with the number of components 

expected for any of the eight possible symmetry types of the cubic crystal, the 

numbers observed are not consistent with any one of the symmetry structures 

(Mohammed e ta l, 1982, Kaplyanskn 1964)

Number o f 
Components

<001> <111> <110>

A zero-phonon line 1 3 4
Trigonal A to A 1 2 2
Trigonal A to E 2 3 4

Monoclimc I 2 3 4

Table 4.1 Comparison of the number of stress split components observed for each 
direction of the group I A line with the number of components expected for 
trigonal and monoclinic I symmetry.

For <100> applied stress, the only symmetry for which the zero-phonon 

line is not expected to split is trigonal A to A, but the zero-phonon line is 

expected to split into two components under both <111 > and <110> stress The 

observed number of stress split components, three and four for <111> and 

<110> directions respectively, rule out trigonal A to A as the symmetry and 

transition type of the defect Zero-phonon lines of both monoclinic I and trigonal 

A to E symmetry are expected to split into three components under <111> 

stress and four components under <110> stress, which are in agreement with 

the observed number of components for the A line However, as shown in table 

4 1 under <001 > stress the zero-phonon line is expected to split into two 

components, which is not observed for the A line

Examining the intensities of the stress-split components should help 

identify the symmetry of the defect and transition type A comparison of the 

experimentally observed intensity ratios of the stress-split components in
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different directions with the expected intensity ratios for an A to A type transition 

(dipole direction parallel to <110>) and an A to B transition at monoclimc I site 

and an A to E transition at a trigonal site are listed in table 4 2 An examination 

of the intensity ratios under <111> stress direction at low stress shows 

acceptable agreement with both monoclimc I, A to B and trigonal, A to E 

symmetry In the <110> direction the expected intensity ratios are similar for 

both symmetries The direction of the electric dipole was varied and the 

intensity ratio of the stress-split components estimated The best agreement 

was found with the dipole direction aligned parallel to <110> Due to the 

absence of polarisation data a symmetry identification based on intensity 

comparisons alone is unreliable and both symmetries must be considered First 

the trigonal case shall be examined

<0 0 1 > <1 1 0 > <1 1 1 >

Stress

(MPa)

10

35

Ratio

No splitting 

observed

Stress

(MPa)

20

40

56

89

Experimental

1 15

2 2 3 

2 1 2  3

2 05 2 3

Stress

(MPa)

16

49

66

82

Experimental

1 3 

1 4 2 

1 4 2 

1 45 2

Monoclinic 

A <-» A 

A <-» B 

Trigonal 

A E

Theoretical

1 3 

1 3

3 5

Theoretical

4 2 2 4 

4 2 2 4

4 2 2 4

Theoretical

5 6 5 

3 10 3

6 17 9

Table 4.2 Comparison of the experimental A zero-phonon line and theoretical 
intensity ratios for <110> and <111> stress. No polarisation data was obtained and 
the theoretical intensity components are the sum of the individual components for 
the % and a  luminescence directions.
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4.2.2 Trigonal fit to Group I

Hughes and Runciman (1967) have described the basic theory for a 

transition between E and A states at a trigonal centre in detail The stress 

operator Fsfor a trigonal defect has the form

The standard basis vectors for the irreducible E representation are x and y, thus 

a solution to the secular matrix denoting the effect of Vs on Ex and Ey will reveal 

the allowed eigenvalues which will describe the allowed splitting and expected 

energy shift of the zero-phonon lines under stress The ai and a2 symmetry 

operators cause shifts of the level while the Ex E'y operators remove the

electronic degeneracy The secular matrix that describes the stress perturbation 

takes the form

where the eigenvalues are obtained from the roots of the matrix a, p and y 

describe the first order perturbations of Ex and Ey and are defined in terms of 

stress tensor components StJ as

V S + S y y  +  *S’Zz) +  + S 2X + 5 j  +  £ ' 4 2 'S'zz ~ S xx ~  S y y )

+ V3E,(S„  -  S j  + E'X(2SV -  S„ -  + V3E'y(s„ -  5„) (4 1 )

Vs Ex Ey

Ex a - p

Ey r

r

a + p

a ~  + Syy +  $ zz) +  2 A 2 [ s ^  + 5^  + 5^ (4 2)

(4 3)

(4 4)
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The stress parameters A/, A2, B and C are defined in terms of the matrix 

elements of the operators a u a2, Ex and Ey and from Hughes and Runciman 

(1967) are of the form:

{Ex \a \E x) = A, (4.5)

(Ex V i \Ex) = 2A2 (4.6)

(e x \e x\e x) = - b (4.7)

{e x \e : \ e x) = ~ c (4.8)

Calculating the Si} strain tensors for stress applied along each direction

the shift rates in the notation of Kaplyanskii (1964 b) are obtained and are listed 

in table 4.3.

Stress Axis Eigenvalues

[001] A\-2B

[001] A\+2B

[111] A\+2A2

[111] X (3A\-2A2-4C)

[111] Yí (3A\-2A2+4C)

[110] A\+A2+C-B

[110] A]+A2-C+B

[110] A\-A2+C+B

[110] A\-A2-C-B

Table 4.3 The results for an A to £  transition at a trigonal centre in a cubic crystal 
(Hughes and Runciman 1967). The bold font indicates -1.

Under <001 > stress the zero-phonon line does not split (figures 4.5 and 

4.6), however, in the case of an A to E transition at a trigonal centre the zero- 

phonon line is expected to split into two components with shift rates A-\±2B. 

Setting stress parameter B equal to zero will result in the observation of only 

one component with shift rate A1. The A zero-phonon line shifts linearly only for 

stresses less than 70 MPa in the <001 > direction and the shift rate is set equal 

to A1. From a linear least squares fit of the stress versus energy data for the
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<110> case, initial values of the stress parameters A2 and C were obtained By 

substituting these values into the shift rate equations for stress along the <111 > 

direction and comparing the calculated and actual values the parameter 

assignments were checked As no polarisation data was available to help 

identify the stress split components with different shift rate equations several 

iterations were necessary before a reasonable fit was obtained for the low 

stress regime The best fit obtained using the stress parameters, A-\ = -6 2, A2 = 

-11 8, C = 2 0 and B = 0 meV/GPa is represented by the solid lines of figure 4 7 

The experimental shift rates are compared to the estimated shift rates in table 

44

Stress Component Shift Rate (meV/GPa) Shift Rate (meV/GPa)

Direction Experimental (± 0.5) Calculated (±1.0)

<001 > Zi -6 3 -6 2

Zi -6 3 -6 2

<1 11> Z2 -29 1 -29 7

z3 0 0 -0 1

Z4 54 43

<110> Z5 -23 9 -19 9

z6 -19 6 -16 0

z7 09 36

z8 3 1 76

Table 4.4 The experimental and least square 'shift rates' of the A zero-phonon line 
at low stresses, where Z, is the observed component as labelled in the diagrams.

A reasonable fit has been obtained for trigonal A to E symmetry in the 

low stress regime The analysis was complicated as there was no reliable 

polarisation data to assist in the assignment of stress components to shift rate 

equations In the absence of reliable polarisation data the possibility that the 

centre could be monoclimc I cannot be excluded The possibility of an A to B 

transition at a monoclimc I centre is considered in the next section
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Energy (meV)

Figure 4.7 Fan diagrams for A zero-phonon line in the linear regime. A trigonal 
fits using stress parameters A\ = -6.2, A 2 = -11.8, C = 2  and B = 0 meV/GPa is 
represented by solid lines.
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4.2.3 Monoclinic I fit to Group I

Under <001 > stress the zero-phonon line is expected to split into two 

components for a monoclinic I site described by parameters A1 and A2 The 

observation of only one line under <001 > stress is a problem which will be 

discussed in more detail below A global fit to the data for all three directions 

was attempted by selecting the observed shift rate under <001 > stress as the 

initial value for A-i or A2 , with no constraints on any of the other parameters 

The best fit was obtained for the following stress parameter values A-i = -35 4, 

A2 = -7 6, A3 = -7 4 and A* = 27 1 meV/GPa The solid lines in figure 4 8 illustrate 

the quality of the fit to the experimental data

Energy (meV)

Figure 4.8 Fan diagrams for A zero-phonon line in the linear regime. Fits using the 
stress parameters A\ = -35.4, A 2 = -7.6, Ay = -7.4 and A 4 = 27.1 meV/GPa are 
represented by solid lines.
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The obtained fit is in reasonable agreement with the experimentally 

observed shift rates in the <111> and <110> directions The line shift observed 

for the <001 > corresponds to the stress parameter A2 No other assignment of 

the theoretical expressions to the measured shift rates yields as good a fit A 

major difficulty with this fit is the absence of any data to support the prediction 

of two components under <001 > stress In particular, the absence of the lower 

energy component, which would normally be the component observed, 

presents a challenge to the fit To our knowledge, no centre with an unobserved 

lowest energy component under <001 > stress has been reported The absence 

of a stress-split component described by shift rate A\ could arise if the 

corresponding defects reorient under the application of a <001 > stress 

Orientations 1, 4, 8 and 11 (z-axis is parallel to <001 > stress) of the twelve 

possible orientations of a monoclimc I defect given in table 2 2 contribute to the 

shift rate A1 In contrast, the decrease in intensity of components shifting to 

higher energy, particularly under <001 > stress, has been observed for several 

centres Henry and his co-workers attributed the loss in intensity to a stress- 

dependant decrease in the excited state binding energy of Zn-related defects 

(Henry et a l , 1994) The observed loss in intensity of the ZnA and Zne stress 

components was in proportion to the shift rate, the components with a higher 

shift rate showing a more rapid decrease in intensity In the case of Cd-related 

centres the decrease in intensity was attributed to a stress-induced change in 

the ability of orientationally inequivalent defects to bind one or both particles at 

the centre (McGlynn et at, 1996) However, the arguments of Henry and 

McGlynn do not apply to the situation where the stress component is shifting 

downwards in energy (Henry et a l , 1994, McGlynn et a l , 1996)

If we consider the case where the defects are reorientating under stress, 

we would expect to observe two stress-split components at very low stress As 

the stress is increased the relative intensity of one component will diminish as 

the defects reorient In the case of group I under <001 > stress the line does not 

split and the expected lower energy component was not observed even at very 

low stress In conclusion, the fit to monoclimc I is not adequate to describe the 

shift rates and number of components of group I Therefore the symmetry 

assigned is trigonal
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4.2.4 High Stress and High Temperature Regime - Trigonal Fit

By considering the low stress regime, an A to E transition at a trigonal 

centre has been assigned to group I The stress parameters determined yield a 

set of linear equations which are inadequate to describe the high stress data 

From the fan diagrams (figures 4 4 and 4 6), under <110> and <001> stress 

there is evidence of an interaction due to the non-linear shift rate of the data 

which shall be considered in this section

The downward curvature observed suggests an interaction with an 

additional excited state at higher energy than the initial state for the observed A 

zero-phonon line Transitions from a higher energy state will not be observed at 

low temperatures if the energy separation between the two states is larger than 

~ kT since in thermal equilibrium it is not populated When the interacting state 

is not observed there are more stress parameters than observables and a large 

number of parameters are required to describe the interaction To avoid 

unnecessary parameters group I was studied at high temperatures to help 

identify the interaction state

At high temperatures, ~ 12 K the higher energy zero-phonon lines, 

dominated by zero-phonon lines labelled C and D were observed in the spectra 

Applying stress along the <111>, <110> and <001> stress directions all the 

higher energy lines showed very similar stress splitting data as observed for the 

minimum energy zero-phonon line at low temperature Figures 4 9 to 4 14 show 

representative spectra and fan diagrams of all the group I zero-phonon lines

Under <111> stress, zero-phonon lines A, B, C and D split into three 

stress components with linear shift rates Due to the relatively low intensity of 

the highest energy zero-phonon line E, it was not possible to observe or confirm 

the number of stress-split components of this line

Under <110> stress four stress-split components are observed for both 

the C and D zero-phonon lines Three components instead of four were 

observed for both A and B zero-phonon lines, this may be attributed to the 

overlap of lines The energy of the E zero-phonon line shifts to lower energy as 

the stress increases and no stress-split components were identified due to the 

low intensity of the line

Figure 4 13 shows representative spectra of the zero-phonon lines under 

<001 > stress Similar to the spectra recorded at low temperatures, the lines do
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not split but shift with a rapid non-linear shift rate. The lower energy lines A to D 

shift to lower energy while the highest energy zero-phonon line, E, shifts to 

higher energy indicating an interaction between the zero-phonon lines. In 

addition to the group I zero-phonon lines, Z * shifting to higher energy (figure 

4.13) was observed. This line may be a stress-induced zero-phonon line of 

group I which was not observed during temperature dependence analysis due 

to the broad nature of the D zero-phonon line. This identification cannot be 

confirmed at present.

A least squares fit to the data in the linear region is represented in the 

fan diagrams by the solid lines and the shift rates obtained for each component 

are listed in table 4.5. Comparing the shift rates of the minimum energy zero- 

phonon line, A, for both high and low temperatures (table 4.4 and 4.5) the shift 

rates are compatible within experimental error. In all three stress directions, 

zero-phonon lines A to D show very similar splitting patterns indicating they are 

due to transitions at trigonal centres. From temperature dependence 

measurements zero-phonon line E is an excited level of group I and it can be 

accredited to an A to E transition at a trigonal site. Under <001 > stress the E 

zero-phonon line shifts to higher energy indicating an interaction with the lower 

energy zero-phonon lines. The matrix to describe the stress perturbation at a 

trigonal centre given in section 4.2.2 must be extended to include all five zero- 

phonon lines.

Shift rates 

<001>

meV/GPa

A

meV/GPa

B

meV/GPa

C

meV/GPa

D

meV/GPa

E

meV/GPa
*

z, -6.8' -6.6" -13.1" -18.41 1.36"

OOO

<111>

z  2 -27.7 -27.5 -27.0 -27.0

Z3 0.8 0.6 -0.6 0.1 -0.5

Z4 6.1 4.5 4.7 4.5

<110>

Z5 -25.3 -25.9 -29.5 -30.7

Z6 -20.1 -20.3' -23.1" -24.8

Z7 -5.24" -8.27" -6.21

Z8 5.94'" 5.48'" 3.011,1 -2.11"'

Table 4.5 Least squares fit to group I zero-phonon lines at high temperature in the 
linear regime as indicated in figures 4.10, 4.12 and 4.14. Unless indicated linear 
region extends above 90 MPa, 1 up to 90 MPa, “ up to 72 M Pa,Hi below 60 MPa.
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Energy (meV)

Figure 4.9 Representative spectra taken at different values of stress in the <111> 
direction for group I zero-phonon lines at T ~ 13 K.

Energy (meV)

Figure 4.10 Fan diagram for stress in the <111> direction of group I zero-phonon 
lines at T ~ 13 K. The error bars indicate the width of the spectral lines.
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Energy (meV)

Figure 4.11 Spectra for group I zero-phonon lines under <110> stress at T ~ 12.5K.

1054 1056 1058 1060 1062

Energy (meV)

Figure 4.12 Fan diagram of group I zero-phonon lines for stress in <110> direction. 
The error bars indicate the width of the spectral lines.
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Energy (meV)

Figure 4.13 Spectra of group 1 zero-phonon lines taken at different values of stress 
under <100> stress T ~ 10 K.

Energy (meV)

Figure 4.14 <001> fan diagram of group I zero-phonon lines at T ~ 10 K. The error 
bars indicate the width of the spectral lines.
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Expanding this matrix to describe a situation to include all five zero- 

phonon lines as A to E transitions of trigonal symmetry the matrix would have 

dimension ten and be expressed in terms of nineteen variables This assumes 

the interaction is only due to the highest energy zero-phonon line E and there 

are no interactions between the other four zero-phonon lines At present only 

three variables are known associated with the transition of the minimum energy 

zero-phonon line Variables attributed to the higher energy zero-phonon lines 

are unreliable due to interactions under <001 > and <110> at low stresses The 

signal levels obtained during stress measurements were insufficient for any 

useful variables to be obtained for the interaction level Further stress 

measurements should confirm the identification of zero-phonon line E as the 

interaction state and stress parameters should be obtained

The results described above show that a reasonable fit to trigonal 

symmetry for group I in the low temperature regime was obtained The 

existence of an interaction state was particularly evident from the <001 > data at 

high stress where a non-linear shift rate was observed In the high temperature 

regime, the zero-phonon lines followed the same splitting pattern as the 

minimum energy line observed at low temperatures This is expected for 

transitions of the same centre The interaction state was identified as the 

highest energy zero-phonon line E Due to the complexity of the secular matrix 

to describe the stress perturbation of all zero-phonon lines and the absence of 

reliable initial parameter values a reasonable fit was not found for the high 

temperature data

4 .3  G r o u p  I I

From temperature dependence measurements, group II consists of at 

least eight zero-phonon lines thermalising to a single ground state These zero- 

phonon lines are very closely spaced and at -  2 K only the lowest energy zero- 

phonon line is observed Uniaxial stress experiments were performed at ~ 6 K 

and above Zero-phonon lines labelled F, H and J dominate the spectra 

recorded The stress-split components of the low intensity G and I zero-phonon 

lines were not observed in all stress directions The small separation of lines J 

and K made identification of their stress-split components difficult Indeed, the
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close proximity of all group II zero-phonon lines made assignment of the stress- 

split components complicated

4.3.1 Overview of uniaxial stress data

Stresses were applied along the <001 >, <111 > and <110> directions at ~ 

6 and 12 5 K Figure 4 15 shows representative spectra of group II at 12 K 

under increasing <001 > stress The zero-phonon lines split into two

components, labelled Xx‘ and X2', where i is zero-phonon line, F M The higher 

energy component of the minimum energy line, X2F was only observed at very 

low stress, as the stress increased it overlapped with X iH At -  13 MPa both 

stress-split components were observed for line J while the higher energy

component of H, X2H, overlaps with X /  Only the higher energy split

components of lines K, L and M, X21C, X2L and X2L were observed A line,

labelled X29 was observed shifting to higher energy, this line was not observed 

at zero-stress and may be a stress induced line of group II Above 18 MPa the 

data was unreliable due to broadening of the stress components possibly due 

to sample misalignment Spectra recorded at ~ 6 K for stress above 20 MPa are 

shown in figure 4 16 The splitting and shift rates were confirmed by repeating 

the experiments and figure 4 17 shows the shift in zero-phonon line energy as a 

function of stress For increasing <001 > stress the luminescence from X2K, X2L 

and X2M became weaker and above a certain stress could no longer be 

distinguished from the broad luminescence band

Figure 4 18 shows representative spectra for group II under <111 > stress 

at ~ 6 K The principal zero-phonon lines are seen clearly to split into two 

components, labelled X3' and XV At high stress the high energy components of 

the low intensity lines, G and I are observed The shift rates of all the stress 

induced components are linear, as shown in figure 4 19 indicating no interaction 

between the lines Spectra recorded at 12 K show similar shift rates and stress 

splitting pattern

Due to the very closely spaced zero-phonon lines the number and 

assignment of stress-split components was very difficult under <110> stress
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Figure 4 20 shows representative spectra recorded at T ~ 12 K for increasing 

stress and the splitting pattern is shown in figure 4 21 Despite the total number 

of components observed, the H line was observed to split into three 

components, labelled X5H, X6H and X7H Both the J and K lines split into three 

components, however due to the separation of the lines (~ 0 1 meV) the 

assignment of stress-split components is unambiguous Only two stress-split 

components were observed for the F line, this was attributed to the low intensity 

nature of the stress-split components and inability to resolve these 

components The stress induced line observed in the <001 > data is observed in 

the <110> spectra, labelled X79 Only one component of line M, X7M is observed 

shifting to higher energy at the same rate as X79 The high stress component of 

the minimum energy line F, X7F shifts to lower energy at a non-linear shift rate 

The curvature of the stress components from the centre of the observed zero- 

phonon lines indicates that the levels are interacting with a level of the centre

Energy (meV)

Figure 4.15 Representative spectra of group II at ~ 12 K in the low stress regime 
under <0 0 1 > stress.

1 2 2



Uniaxial Stress Perturbation Chapter Four

Energy (meV)

Figure 4.16 Representative spectra of group II under <001 > stress above 20 MPa at 
T ~ 6  K.
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Figure 4.17 A fan diagram of the stress induced splitting of the group II zero- 
phonon lines under <001> uniaxial stress. Data at -6 .5  and 12 K are combined.
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Energy (meV)

Figure 4.18 Representative spectra of the stress induced splitting for <111> stress 
at T ~ 6.5 K.

Energy (meV)

Figure 4.19 Fan diagram  showing the <111> stress induced splitting of the group II 
zero-phonon lines at T ~ 6.5 K.
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Energy (meV)

Figure 4.20 Representative spectra of group II  zero-pbonon line splitting for <110> 
stress recorded at 12 K.

Energy (meV)

Figure 4.21 A fan diagram  of the stress induced splitting of the group I I  zero- 
phonon lines under <110> stress.
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4.3.2 Analysis of the stress data

If the number of observed splitting are compared with the theoretical 

splitting calculated by Mohammed et a l , (1982) and Kaplayanskn (1964) the 

number of components for several different defect symmetries are identical 

Taking into account the possibility that some of the stress parameters for the 

defects are zero then the number of possible symmetries for group II increases 

There are three candidates, rhombic I, trigonal, and tetrahedral The theoretical 

shift rate equations for an A to E transition at a trigonal site are given in table 

4 3 and the theoretical shift rate equations for rhombic I and tetrahedral are 

given below in table 4 6

Tetrahedral T to A Rhombic I

<001> A X+2B Ax

Ai-B a 2

<111> A\+YiC y(Ax+2A 2+2A3)

A x-t iC y3 (Ax+2A2-2A3)

<110> Ax-B a 2+a3

Ax + y2 (B+C) y2 (Ax+A2)

Ax + y2 (B-C) Ax-A3

Table 4.6 Theoretical shift rate equations for a tetrahedral T to A and rhombic I, 
transitions as calculated by Kaplayanskii (1964) and Mohammed et al., (1982).

In the absence of polarisation data and due to the high number of 

components observed the splitting cannot be attributed unambiguously to 

orientational, electronic or both types of degeneracy If the splittings are due 

entirely to orientational degeneracy the highest symmetry designation that can 

fit the observed splitting is rhombic I A least squares fit to the experimental 

data for the H line using a rhombic I model was made The fit while reasonable 

for both the <001> and <111> direction yielded a large error in the <110> 

direction The least squares fit of the tetrahedral shift rates yielded a fit which 

was significantly worse than for the rhombic case

Figure 4 22 shows a least squares for the H zero-phonon line using the 

shift rate equations for an A to E transition at a trigonal centre Three stress-
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split components are expected under <111> stress and each group II zero- 

phonon line splits into two components under <111> stress (figure 4 19) In 

order for the trigonal model to be correct one of the stress parameters (C) is set 

equal to zero Four components are expected for this type of transition under 

<110> stress Due to the bi-axial nature of trigonal centres it is possible for a 

stress split component not to be observed in photoluminescence under <110> 

stress (Mohammed et a l , 1982) The theoretical shift rates and experimental 

data show good agreement in the <001 > and <111> stress directions Under 

<110> stress interaction effects are observed but were not included in the fitting 

procedure A trigonal fit which includes interaction effects would be an ideal 

situation Due to the number of zero-phonon lines - at least eight - the secular 

matrix would have dimension sixteen The position of the interaction level is 

unknown The shift rates of both F and M lines indicate the interaction is 

possibly the H or J zero-phonon line Due to the low relative intensity of several 

of the zero-phonon lines not all stress split components were observed for each 

direction These factors contribute to the lack of initial starting values for the 

stress parameters and experiments where all stress components are resolved 

are necessary before the matrix could be solved
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Energy (meV)

Figure 4.22 Uniaxial stress splitting of H zero-phonon line. The solid lines are 
theoretical fits to the data for a trigonal (A to E transition) with stress param eters 
A\ = -15.5, Ai = 9.1, B  = -10.3 and C = 0 meV/GPa. The fourth component under 
<110> stress predicted from theory is represented by the dotted line.
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4.4 Group III

In this section, information about the symmetry of the group III defect 

complex is discussed The group III luminescence was very weak in all three 

orientated samples, however, preliminary measurements were made and a 

symmetry orientation for the defect is presented

4.4.1 Overview of uniaxial stress data

The effect of stress along the three principal crystal (<001 >, <111> and 

<110>) directions on the a  zero-phonon lines at ~ 12 K are shown in figures 

4 23, 4 25 and 4 27 Unfortunately, the ai line cannot be studied as readily as 

the a2 and a 3 lines a i is observed beside the phonon assisted replica p3 where 

even in the absence of stress at high temperatures the stronger p3 line causes 

considerable interference This problem is further complicated by phonon 

broadening and when stress is applied the lines split and it becomes difficult to 

locate the stress split components This analysis focuses on the higher energy 

zero-phonon lines a2 and a 3

Figures 4 24, 4 26 and 4 28 show how the zero-phonon line components 

vary with increasing stress along <001 >, <111> and <110> directions 

respectively, where the points are the experimental data and the lines represent 

a least squares fit to the data in the linear region Both a2 and a 3 split into three 

components with linear shift rates along the <111> and <110> direction The 

shift rates of the stress-components in the linear region are listed in table 4 7 

The observed splitting under <001 > stress appears complicated The a 3 zero- 

phonon line splits into two components with linear shift rates to ~ 90 MPa, 

above this the shift rate is highly non-linear Under <001 > stress a2 does not 

split Similar to the a 3 zero-phonon line, the shift rate of a2 is linear to ~ 90 MPa 

before the line shifts rapidly to lower energy with a non-linear shift rate The 

relative intensity of the zero-phonon lines a2 to a3 remained constant as the 

stress was increased This suggested the intensity of a2 is due to at least two 

stress induced components with identical shift rates and thus the components 

overlap under <001 > stress Examining ai under <001 > stress at 4 2 K at low 

stress (< 20 MPa) the line splits into two components, similar to the a 3 line As 

the stress was increased the intensity of the ai stress-split components
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decreased and with the signal to noise ratio achieved the shift rates could not 

be determined

The non-linear shift rates evident under <001 > stress are not caused by 

a zero-phonon line repulsion but from an unobserved excited state Due to the 

downward curvature of the components under <001 > stress, the additional 

excited must be assumed to exist at a higher energy than the observed state

Stress Direction Label Shift Rate
meV/GPa (±0 5)_

Label Shift Rate
meV/GPa (±0 5)

<001> 
upto 90 MPa CL 2 "6 1

cx23 -15.4 
a 13 -110

<111> oc32 -17 8 
a 22 3 2 
CL 2 114

a 33 -17 4 
a 23 3 8 
<x13 113

<110> a 32 -35 3 
CL 2 -13 0 
CL 2 -7 3

a 33 -412 
a 23 -15 3 
a 13 -9 7

Table 4.7 The shift rates of the stress split components in the linear regime by least 
squares fit, as represented by lines in the fan diagrams for stresses along the 
<0 0 1 >, <1 1 1> and <1 1 0 > directions.
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Energy (meV)

Figure 4.23 Group III a  zero-phonon lines under <001> stress at T = ~ 11 K. The 
higher energy line, (X3 splits into two components under the influence of stress, 
while the a.2 line does not split.

Energy (meV)

Figure 4.24 Fan diagram of group III a 2 and 0,3 splitting under <001> stress. The 
error bars represent the width of the lines.
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Energy (meV)

Figure 4.25 Both the cli and otj lines split into three components under <111> stress 
at T = ~ 13 K.

Energy (meV)

Figure 4.26 Fan diagram of cli and 013 under <111> stress. Each zero-phonon line 
splits into three components. The error bars indicate the width of the lines.
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Energy (meV)

Figure 4.27 Both 013 and a t zero-phonon lines split into three components under 
<110> stress. Spectra recorded at T = ~12.5 K.

Energy Shift (meV)

Figure 4.28 Fan diagram of 012 and 013 stress-split components under <110> stress. 
The error bars indicate the width of the lines.
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The number of stress split components for either a2 or 013 are not 

consistent with any one symmetry orientation (Mohammed et al., 1982, 

Kaplyanskii 1964). Under <111> stress zero-phonon lines of both monoclinic I 

and trigonal (A to E) symmetry are expected to split into three components and 

into four components under <110> stress. In photoluminescence depending 

upon polarisation effects only three stress-split components may be observed 

under <110> stress for both symmetries (Mohammed et al., 1982).

In table 4.2. the expected intensity ratio of each stress-split component 

for monoclinic I, (A to A and A to B transitions) and trigonal (A to E transition) 

centres are listed. Comparing the expected intensities with the observed 

intensities as listed in table 4.8, for both the <111> and <110> directions 

monoclinic I (A to B) shows good agreement. Applying a stress to monoclinic I 

centres removes orientational degeneracy only and the intensities of the stress 

split components are expected to be independent of temperature. The 

temperature independence of the components cannot be confirmed at present. 

Only the a 1 line is observed at 4.2 K and at higher temperatures due to overlap 

of the line with p3 the intensity of the stress-split components cannot be 

obtained. In the absence of polarisation data and the temperature dependence 

of the stress-split components both monoclinic I and trigonal symmetry must be 

considered. Trigonal symmetry shall be considered in the following section.

Stress
Direction

Stress
(MPa)

Relative 
Intensity Ratio

Relative 
Intensity Ratio

<0 0 1 >
0

30.26
50.43
70.60

a V

No splitting 
observed

2 1 a 3 : a 3

1
1

1 : 1.2 
1 : 1

<1 1 1 >
0

32.87
65.74

3 1 ^
a 2 : a 2 : a 2

1
3 : 1 : 1  

2.5 : 1.4 : 1

3 2 1 
a  3 : a  3 : a  3

1
2.7 : 1.1 : 1 
2.5 : 1 : 1

<1 1 0 >
0

12.07
56.32

3 2 1
a 2 : a 2 : a 2 

1
1 : 2.5 

1 : 2 : 1.5

3 2 1 
a  3 : a  3 : a  3

1

1 : 3 
1 : 3 : 3

Table 4.8 Experimental intensity ratios of a i  and 013 stress components as a 
function of applied stress.
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4.4.2 Trigonal fit to Group III

In the first instance the shift rates in the linear regime of the data were 

considered. The shift rates of the a3 zero-phonon line were considered as two 

stress-split components were observed under <001 > stress as expected for 

trigonal symmetry. The fit to the trigonal model did not yield a reasonable fit for 

all three stress directions. Similar results were obtained for a2. The shift rates of 

the stress-split components calculated at low stress do not satisfy the shift rate 

equations of trigonal symmetry. As no reasonable fit was found in the low stress 

regime the analysis was not extended to include the higher stress data. This 

analysis indicated the defect symmetry was monoclinic I and the fit obtained in 

the next section confirms this assignment.

4.4.3 Monoclinic I fit to Group III

First, the appropriate shift rate equations of an A to B transition at a 

monoclinic I centre were identified with corresponding stress-split components 

in the low stress regime where interaction effects are negligible. Initial values 

for the stress parameters, which yield a set of linear equations, were obtained. 

The downward curvature observed under <001 > stress suggests an 

unobserved additional excited state exists at a higher energy than the observed 

zero-phonon lines. Based on the assumption that the observed transition is 

monoclinic I it is possible to determine the irreducible representation of the 

interacting excited state. There are several possible transitions which are valid 

and these were introduced in section 2.4.3.

At zero stress, transitions from the upper excited state are negligible, 

however as the stress increases the transition is observed through mixing with 

the observed state. Information from the observed interaction can help in 

identifying the irreducible representation of the unseen excited state. No 

interaction was observed under <111> stress, but, it was clearly observed from 

the non-linear shift rate under <001> stress. In the <110> case at very high 

stress the shift rates are non-linear. Consider the case where the ground state 

of the transition is a B state with the observed transition from a higher energy A 

state. Introducing an additional B state as the unobserved interaction state; the 

interaction matrix between the two upper levels, will take the form:
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Vs A B

A (a \vs\a ) {A\vs\B)
B {B\Vs\a ) {b \vs\b )

where the perturbation Vs associated with a monoclimc I defect was determined 

in section 2 4 1 The diagonal elements of the secular matrix will take the form

{^\Vs \a)  = A,sb + A 2(Sxx +syy) + 2A ,Sxy + 2A ,(syz- s zx) (4 9)

(b \7s \b ) = B,s22 + £2 ( ^  + ̂ ) + 2B ,Sxy + 2B4 (5̂  -  sa ) + A (410)

where A is the energy separation between the observed excited state, A and 

the unobserved excited state, B From the character table for monoclimc I, the 

only terms of the Hamiltonian which can mix A and B states are those which 

transform with only Syz and Sxz terms (table 2 6) Calculating all the StJ values for 

the twelve possible orientations in monoclimc I symmetry (Appendix C) reveals 

only the Syz tensor component is zero for stress applied in the <111> direction 

and non-zero for stress applied in the <001 > and <110> direction Therefore it 

can be concluded that the upper excited state is B as the mixing of the A and B 

states is zero under <111 > stress and the interaction terms of the matrix are of 

the form Syz This stress tensor must be transformed from defect co-ordinates 

to crystal co-ordinates to determine the off-diagonal elements of the matrix 

Considering defect 1 in table 2 2

x  = ooT r  = T i o  z  = 110 (4 11)

the crystal co-ordinates are

*= 100  >> = 010 z = 001 (4 12)

and the defect co-ordinates expressed in terms of crystal co-ordinates are

- x  + y x + y  , „

J f = - 2  z = i f  ( 4 1 3 )
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The tensor Syz can now be rewritten as

(414)

and the interacting terms of the matrix are

ur!ifi)=(Br,u)=»{s„-s,) (415)

The general form of the matrix for an A to B transition at a monoclinic I 

site with an unobserved interaction B state has been discussed This matrix 

was extended to include both the a2 and a3 zero-phonon lines as A to B 

transitions with an unobserved higher energy B state This matrix takes the 

form

a 2 a 3 C(FL

a 2 ( a 2 \Vs \ a 2 ) { a 2 \vs\as) ( a 2 K l  & F L )

a 3 { a 3 \Vs \ a 2 ) ( f f 3 | ^ k )

CCf L
( a FL Y s W ) ( a FL k k ) { a FL

where the diagonal elements take the form

( ^ K k )  =  A S22 +  A ^ x x  “v )  +  ^ " A Sxy “̂ZJC) (4  1 6 )

(« s l^ k )  = A \ s 22 + Al(sxx+syy) + 2A\sxy + 2A\[Sy2 - Szx) + A (4 17)

(aFL\vs\aFi)  = B,szz + 5 ^  + Syy) + 2B,Sxy + 2B4(Sy2 -  + A (4 18)

A is the energy separation between the zero-phonon line and the minimum

energy line a2 The interaction terms equal - s j ,  where W is the

interaction element between the forbidden level and the zero-phonon lines

There are no interactions between a2 and a3, thus (a2\vs\a3) and (a3Ys\a2)

are set equal to zero From the low stress regime initial values for the 

parameters A\,A\ of the observed states were calculated No initial values for 

the parameters B\, B2, B3 and B4 of the unobserved state were obtained from
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the experimental data, but as a first approximation they were initialised to 

similar parameter values as for the ct3 zero-phonon line The parameters of the 

matrix were optimised using TRANID (McCarren et a l , 1994) and figure 4 29 

shows the data points and theoretical fit to the lines using the stress 

parameters listed in table 4 9 The fit obtained where the unobserved level is 

placed 6 meV above the a2 zero-phonon line is in good agreement with the 

observed splitting of the zero-phonon lines

In the <001 > direction the a2 zero-phonon line did not split Intensity 

measurements indicated that two stress induced components could potentially 

overlap From the best fit, stress parameters A} and A2 are equal such that only 

one line is observed at low stresses As the stress increases the lines begin to 

split due to their interaction with the unobserved excited level The two split 

components are close together, a line separation of ~ 0 6 meV compared with a 

line width of ~ 0 5 meV at 150 MPa The stress parameters of the forbidden 

state cannot be confirmed as no experimental data was available for the state

0.2
Stress Parameter 

(meV/GPa)

a 3
Stress Parameter 

(meV/GPa)

O-FL
Stress Parameter 

(meV/GPa)
A i -10 0 A -20 0 -35 0

A2 -10 0 A -9 5 b 2 -20 0
A3 -24 4 A -26 3 Bi -21A

A4 5 5 Al 6 4 B4 7 0

Table 4.9 Stress Parameters for group III, 012 and 013 zero-phonon lines obtained 
using TRANID. The unobserved level is estimated to be ~ 6  meV above the ct2 line 
and the interaction term, W= 10 meV/GPa.
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Figure 4.29 Splitting of a i  and (X3 under <001>, <111> and <110> stress. Points 
show data, lines are fits to the data with parameters listed in table with an 
interaction at ~ 6  meV above 0C2 line. The dotted line under <110> stress is the 
unobserved fourth stress-component obtained from the fit.
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4.5 Conclusions

In the preceding sections we have shown that almost all of the stress- 

induced effects in the luminescence spectrum of groups I, II and III can be 

explained by trigonal and monoclinic I symmetry Spectra recorded at low 

temperatures indicate that the group I, A zero-phonon line is due to transitions 

between A and E states at a trigonal defect In the <100> direction at high 

stress, the shift rate of the line was no longer linear indicating an interaction 

with a higher energy state Spectra recorded at higher temperatures indicate 

this interaction is probably due to the highest energy zero-phonon line E For all 

the directions of stress all of the luminescence lines show splitting which is 

characteristic of an A to E transition at a trigonal centre Due to the limited data 

available to describe the upper excited states there is at present no estimation 

of their stress parameters However, at low stresses the shift rates of zero- 

phonon lines B, C and D are similar to the shift rates of A indicating the stress 

parameters should be equivalent

The high number of adjacent zero-phonon lines of group II has led to 

difficulties in determining the symmetry of the defect Since the spectra can 

become very complicated when stress is applied it is not always possible to 

identify the many components and in the <110> case it became very difficult to 

unambiguously identity the components A fit to one of the most intense zero- 

phonon lines H has revealed the transition can be tentatively assigned as due 

to a transition between A and E states at a trigonal defect To establish this 

symmetry assignment firmly, experiments at ~ 2 K should confirm the number of 

components for each stress direction This will be one important future study, 

but several problems associated with this very low temperature must be taken 

into consideration At 2 K only the lowest energy zero-phonon line will be 

observed, but at this temperature the intensity of the line is weak As stress is 

applied the line will split into several components with very low intensity and 

very high resolution spectra to reduce background luminescence and noise 

considerations will be necessary At present from the data obtained interaction 

effects appear to be due to zero-phonon lines H or J The limited data available 

to describe the curvature of the stress components and excited states means at 

present the matrix to describe all components of group II cannot be solved
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The stress-split components of the higher energy zero-phonon lines a2 

and 0C3 of group III were studied and measurements indicate the transitions are 

A to B transitions at a monoclimc I defect The ai line could not be studied due 

to overlap with fb at high temperatures and due to the low intensity of the 

stress-split components at low temperatures While the fits obtained are in 

agreement with the experimental data there are several unanswered questions 

The shift rates and splitting of a2 and 013 are equivalent in the <111 > and <110> 

directions Why should the a2 components under <001 > stress be so different 

from the 003 components'? The fit in the low stress regime is consistent with the 

observation of two components for 013 and only one line for a2 under <001 > 

stress Preliminary measurements of ai at very low stress indicate the line splits 

into two under <001 > stress, only when there is conclusive data to confirm the 

behaviour of this zero-phonon line as a function of stress can we identify the 

symmetry of this defect unambiguously There is clear experimental evidence of 

the excited states of the defect interacting with another higher-lying state The 

absence of any stress induced interaction in the <111> direction indicates the 

unobserved interaction state is a higher energy B state Table 4 10 summarises 

the stress parameters found for each defect

Group 1 Group II Group III

Stress Parameter 

(meV/GPa)

A F Stress Parameter 

(meV/GPa)
CC2 <X3

A, -6 2 -15 5 A, -10 -20

Ai -11 8 91 a2 -10 -9 5

B 0 -10 3 A3 -24 4 -26 3

C 2 0 A4 55 64

Table 4.10 Stress parameters for the minimum energy lines of groups I and II for 
trigonal symmetry and for monoclinic I group III zero-phonon lines, 0C2 and a 3.
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Chapter Five

Isotope Substitution and Magnetic Field Perturbation

5.1 Introduction

In the previous chapter, the symmetry of groups I, II and III were 

determined In this chapter, the three groups will be investigated further by 

isotope substitution and magnetic field perturbation experiments To gain an 

insight of the actual chemical constituents of the defect isotope substitution 

experiments of the most likely candidates, cadmium and lithium were 

undertaken The results presented below have established the involvement of 

cadmium in all three groups and the involvement of lithium in group II The 

second part of this chapter examines magnetic field perturbation studies, which 

can reveal information about the spin states of defects The magnetic field 

perturbations have indicated spin triplet and singlet states for all three groups

5.2 Isotope Studies

Cadmium was suggested as one of the most likely candidates of the 

three defects as they were first reported after a study of the decay 

characteristics of radioactive 111ln, of which cadmium is the daughter product 

(Daly et a l , 1994) Annealing investigations, with a high temperature anneal of 

cadmium doped silicon in close proximity to a lithium pellet seems to indicate 

that lithium is favourable for the defects, enhancing their formation Direct proof 

that cadmium and lithium are incorporated in the centres can be obtained by a 

corresponding isotope shift

For cadmium isotope substitution studies, isotopes samples of 106Cd and 

116Cd were used, implanted either separately into different wafers or together
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for dual implant studies The total dose of the single isotope samples was ~1 x 

1014 cm'3 while the total dose of the dual implanted samples was 2 x 1013 cm'3 

The lithium isotope samples were prepared in King’s College London Four 

different types of starting materials were prepared

1 lOOOQcm FZ silicon with low [O] and [C] which had been gettered

2 ~60Qcm n-type FZ silicon with low [O] and [C] ~2x  1017 cm'3

3 ~40Qcm p-type CZ silicon with [O] ~ 1 x 1018 and [C] ~ 1 x 1015 cm'3

4 ~100Qcm n-type CZ silicon with [O] ~ 1 x 1018 and [C] ~ 1 x 1017 cm'3

Four samples of each type were prepared, Cd alone, Cd + 7Li, Cd + 6Li 

and Cd + 6Li + 7Li The samples were diffused with cadmium at ~ 1100°C for 3h 

All samples were then coated with lithium (suspended in oil) and were heated to 

200°C for 1 h to drive off the mineral oil To drive in the lithium the samples were 

annealed at 400°C for 30min After an RCA clean to remove the lithium source 

the samples were heated at 600°C for 2h to evenly distribute the lithium and 

were then lapped and etched to remove surface damage The estimated lithium 

concentration was ~ 3 x 1015 cm'3 (Lightowlers, 1997) Further details of this 

diffusion technique can be found in Zhu (1998)

5.2.1 Group I - Cadmium isotope effects

In samples doped with 106Cd instead of 116Cd, isotope shifts in the zero- 

phonon lines and local mode, L1 were observed and thus the participation of 

cadmium in the centre was established Preliminary measurements, shown in 

figure 5 1 show the isotope shift in the zero-phonon lines is small ~ 0 1 meV, 

with the energy position higher for the lower mass Spectra shown in figure 

5 2(a) recorded at 4 2 K at higher resolution, (0 15 cm'1) show that the lowest 

energy zero-phonon line A, shifted by ~ 0 08 (± 0 02) meV when the mass was 

reduced from 116 to 106 amu (atomic mass unit) In the case of the dual 

implant sample a splitting and broadening of the line was observed as shown in 

figure 5 2(b) The observed lineshape was reconstructed from the superposition 

of two Lorentzian lines centred at the positions observed for the zero-phonon 

lines containing only one isotope The estimated relative concentrations of the 

isotopes 116Cd 106Cd in the dual implant sample was ~ 0 47 0 53 Assuming 

that two cadmium atoms are incorporated in the defect the observed lineshape
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could not be reproduced, so we conclude that the defect contains a single

low energy shoulder of the A line, experiences a shift of ~ 0 1 meV when the 

mass is varied from 116 to 106 amu, similar to the shift observed for the A line 

The energy position is higher for the lower mass with the isotope shift indicating 

cadmium involvement The line was not observed in the dual implant sample 

due to the broad nature of the A zero-phonon line Previously reported isotope 

shifts for the CdA and CdB defects have revealed shifts to higher energy of 0 11 

and 0 09 meV respectively, when the isotopic mass was varied from 106 amu to 

116 amu (McGlynn et a l , 1996) This isotope behaviour of the group I zero- 

phonon lines will be discussed later in this section as similar effects were 

observed for groups II and III

The local mode L1 energy from the A zero-phonon line was 8 10 (±0 05) 

meV for 106Cd and 7 83 (±0 05) meV for 116Cd, as shown in figure 5 1 The ratio 

of local mode frequencies for two different isotope masses can be related to the 

isotope masses by

This equation holds for an atom vibrating with respect to an otherwise static 

lattice The ratio expected for a pure cadmium vibrational mode is V106/116 = 

0 956 and the ratio of the phonon energies is 0 966 This indicates L1 is 

primarily due to the vibration of the cadmium atom with respect to the static 

lattice The data recorded confirmed the involvement of cadmium in local mode 

L3, an energy shift of ~ 0 41 (+0 3) meV was observed when the mass was 

varied from 116 to 106 amu If the vibration is due only to the vibration of the 

cadmium atom the expected isotope shift is ~ 1 38 meV The observed shift is ~ 

30% of the expected shift for a pure cadmium-like vibration indicating the local 

mode vibration is only partly due to the vibration of the cadmium atom The 

clear cadmium isotope shift especially in the local mode L1 unambiguously 

confirms the participation of cadmium in the group I defect

cadmium atom The previously reported A line (section 3 4) observed on the

(5 1)
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Energy (meV)

Figure 5.1 Cadmium isotope shifts on group 1 and L1 mode at T~ 10 K. (a) 106Cd 
and (b) 116Cd. Resolution = 1 cm'1.

Energy (meV) Energy (meV)

Figure 5.2 High resolution spectra (0.15 cm'1) at ~ 4.2 K of group I minimum 
energy zero-phonon line A. (a) the isotope shift in the single isotope samples, (b) 
the width of A has broadened in the dual implant sample. The black line 
represents the spectrum and the fit (blue) is estimated from the ratio of the l06Cd 
(red) and n6Cd (green) isotopes.

146



Isotope Substitution and Magnetic Field Perturbation Chapter Five

5.2.2 Group I - Lithium isotope effects

The two stable lithium isotopes, 6Li and 7Li, were diffused either 

separately or together into Si Cd samples prepared by diffusion These 

samples received various annealing treatments to enhance the luminescence 

of the defects, unfortunately, the group I lines were not produced with sufficient 

intensity to enable isotope effects to be studied Circumstantial evidence as 

outlined in section 3 2 suggests that lithium is involved in the defect centre The 

defect formation is enhanced by the introduction of a lithium pellet and the 

observation of the exciton bound to the lithium donor at 1093 2 meV in samples 

along with all three groups indicates lithium is diffused into the samples during 

the high temperature anneal and quench However, at present, direct proof that 

lithium is incorporated in the centre has not yet been obtained and lithium may 

be a catalyst in the formation of the defects and not a constituent of the defect 

To confirm lithium involvement in this defect further samples doped with lithium 

isotopes and annealing experiments will need to be undertaken to enhance the 

luminescence of the centre

The involvement of cadmium in the group I defect has been proven The 

local mode L1 is due to the vibration of a cadmium atom in an otherwise static 

lattice and the observed isotope shift of local mode L3 indicates the vibration of 

the cadmium contributes to the vibration of the mode However it does not 

account for the full-expected isotope shift of the mode due to a pure cadmium- 

like vibration The involvement of lithium in the defect could not be confirmed 

due to unreliable data An estimate of the change in the silicon lattice 

parameter that is required to accommodate a Cd atom can be determined For 

a local mode, the shift Q0 in equilibrium position is given in terms of the reduced 

mass n of the mode and its frequency oo (Davies 1989)

, 2ti(üS
¡¡p- (52)

where S is the Huang-Rhys factor for the mode The Huang-Rhys factor SA for 

L1 was estimated as ~ 0 55 in section 3 3 The Huang-Rhys factor for mode L3 

was not estimated due to the broad nature of the mode and the broad
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background luminescence Considering only local mode L1, fao =7 8 meV, S ~ 

0 55 and taking the mass of the cadmium atom (116 amu) as the reduced 

mass, the value of Q0 is estimated to be ~ 0 00963 nm This is equivalent to a 

change of ~ 4 1 % of the silicon lattice parameter in the presence of this defect 

This deformation is sufficient to create a local strain field about the defect, 

which can be either electron or hole attractive In contrast, strains produced in a 

typical uniaxial stress experiment are < 0 2% of the silicon lattice parameter 

(Davies, 1989), clearly, the group I deformation is large in comparison

5.2.3 Group II -Cadmium isotope data

To ascertain if cadmium is a constituent of the group II centre, isotope 

samples doped with 116Cd, 106Cd and both isotopes were treated to optimise 

group II luminescence A very small isotope shift of ~ 0 06 (± 0 02) meV was 

observed as the isotopic mass was varied from 116Cd to 106Cd, with the higher 

energy shift for the lower mass as in the case of the group I isotope shift This 

is shown in figure 5 3(a) for the minimum energy zero-phonon line F at ~ 4 2 K 

The same spectral line is shown in figure 5 3(b) for a sample containing both 

106Cd and 116Cd isotopes The line, which did broaden but did not split, was 

reconstructed from the superposition of the two lines centred at the positions 

observed in the single isotope samples The fit indicates only one cadmium 

atom is involved in the defect and the relative concentration of the isotopes, 

116Cd to 106Cd was estimated to be ~ 30 70 When implanting the dual implant 

sample the nominal ratio of 116Cd to 106Cd was 50 50, the isotope ratio for 

group II is not 50 50 as nominally implanted Similar results were observed for 

CdA, Cde and the 1026 meV defect (McGlynn et a l , 1996) McGlynn suggests 

that as the Cd is being implanted it damages the crystal which can reduce or 

impede the successful implantation of further Cd In the case of group I (section 

5 2 1) the ratio is 50 50 A tentative explanation of our result is that the different 

annealing temperatures during defect production may cause or vary the out- 

diffusion of Cd Further investigations are necessary to confirm this

The local modes of group II were not observed in the high resolution 

spectra recorded at 4 2 K In spectra recorded at ~ 10 K the local modes of 

group II, L1 at ~ 7 3 meV and L2 at ~ 15 8 meV were not observed due to
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overlap with the group I zero-phonon lines and the group II TA mode 

respectively. However, the L3 mode at hco « 30 meV was observed. The energy 

shift expected for L3 due to a pure cadmium-like vibration in a harmonic-

oscillator is (Vl 16/\06-\)ha> = 1.39 meV. The observed isotope shift is ~ 0.31

(±0.2) meV which when compared to the expected shift of a cadmium vibration 

accounts for ~ 22% of the expected shift, indicating the local mode L3 is only 

partly due to the vibration of a cadmium atom.

Energy (meV)

Figure 5.3 Photoluminescence spectra of the lowest energy group II line for 
samples diffused with (a) one cadmium isotope and (b) both lithium isotopes. In (b) 
the spectrum is represented by the full black line, the reconstruction by the blue 
line and position and estimated intensity ratio of the 116Cd (green) and ,06Cd (red) 
lines are shown.

5.2.4 Group II -Lithium isotope data

Group II were the only lines produced in the lithium isotope samples with 

sufficient intensity to enable isotope effects to be studied. The data recorded 

show confirmation of the Li involvement in the centre. A shift of ~ 0.1 (± 0.01) 

meV in the position of the minimum energy zero-phonon line F at ~ 2 K is 

shown in figure 5.4(a). The higher mass isotope produces the higher energy 

line position. No splitting of the zero-phonon line was observed in the dual 

implant sample, but the line did broaden considerably and assuming the 

involvement of two lithium atoms occupying equivalent sites the lineshape was 

reconstructed, shown in figure 5.4(b). From the calculated fit, 7Li is the 

predominant isotope in the dual implant sample as the ratio of isotopes is

Energy (meV)
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estimated to be 60 : 40. The isotope shift of ~ 0.1 meV to the high energy side 

for 7Li is much smaller than the energy shifts observed for most lithium-related 

centres. Lithium isotope shifts in the range of ~ 1 meV have been reported for 

the Q, S and a Li4-related centre (Canham, 1983, Canham et a/., 1985, 

Lightowlers et a/., 1984, Rodriguez et al., 1997a, b). Recently lithium-related 

isotopes shifts in the range of ~ 0.7 meV have been reported for the L and H 

systems (Zhu, 1998).

Energy (meV) Energy (meV)

Figure 5.4 Luminescence spectra of the minimum energy line F, for samples 
diffused with cadmium and (a) one lithium isotope and (b) both lithium isotopes. 
In (b) the black line represents the spectrum. The blue line represents the fit, the 
red line 6Li + 6Li, the green line 7Li + 7Li and the purple line 6Li + 7Li.

The phonon sidebands of group II at T ~ 10 K for the 6Li and 7Li isotope 

samples are shown in figure 5.5. Several additional lines are observed and will 

be discussed below. The group II local modes L1 and L3 are clearly observed 

and local mode L2 is observed close to the TA mode of the group. The change 

in phonon energy from the principal zero-phonon line J, to each local mode for 

each isotopic sample and the expected isotope shift for each mode due to the 

vibration of a lithium atom are shown in table 5.1. The L1 mode does not involve 

lithium, as the phonon energy is the same for both isotopes. The change in 

phonon energy that is observed for the L2 mode is approximately 28% of the 

expected vibration energy shift of 1.24 meV due to the vibration of a lithium 

atom. The shift of L2 directly demonstrates the incorporation of the lithium in the 

mode, but the vibration of the mode is only partially accounted for by the 

vibrating lithium atom. The L3 mode exhibits a large lithium isotopic shift of 2.3
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(± 0 3) meV which is in excess of the full size of the expected vibration shift of 

2 23 meV The evidence confirms mode L3 is due to vibrating lithium in an 

otherwise static lattice

Local

Mode

A l

(meV)

'Li

(meV)

Phonon energy 

change (meV)

Expected energy 

change (meV)

L1 7 53 (±0 02) 7 53 (±0 02) 00 06

L2 15 09 (±0 05) 15 44 (±0 04) 0 35 (±0 07) 1 24

L3 30 20 (±0 26) 27 90 (±0 2) 2 30 (±0 3) 2 23

Table 5.1 Phonon energy of the group II for the local modes in the lithium isotope 
samples. If the phonon shift equals the expected vibration shift the mode shift is 
due to the vibration of the lithium atom only.

The broad feature labelled L1 + L3 in figure 5 5 was previously ascribed

to a combination mode of L1 and L3 (section 3 3 2) No isotope shift was

observed at L1 + L3 as the lithium mass was varied but due to the broad nature

of the feature it may not be possible to observe the energy change A zero-

phonon line (labelled *) at ~ 1030 60 meV with a local mode at ha -7 7 meV 
*

(L ) is not lithium related as no isotope shift was observed as the isotope mass , 

varied No details of this zero-phonon line have been reported in the literature 

The intensity of the Cu-related line at ~ 1014 meV observed in the 6Li implanted 

sample is very weak This line is not observed in the 7Li implanted sample, but 

a broad feature labelled U is observed centred at ~ 1014 meV This feature was 

not observed with such intensity before and is possibly related to the 1030 6 

meV line A doublet at ~ 997 71 and 998 15 meV (labelled **) undergoes an 

energy shift of ~ 0 18 (± 0 04) meV as the isotopic mass is reduced from 7 to 6 

amu indicating the lines are lithium related These lines at present have not 

been identified from the literature and no further study of these lines was 

undertaken The lithium related Q-centre (Li4-V) at ~ 1045 meV and its 

associated isotope shift are also observed in the spectra but at very low 

intensity

The group II defect consists of one cadmium and two lithium atoms 

occupying equivalent sites The Huang-Rhys parameter for the first mode (ha 

= 73  meV) is 0 027 (section 3 3) and the calculated shift, Q0 of the equilibrium 

position of the mode is ~ 0 00498 nm This ~ 2% change in the silicon
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parameter in the presence of this defect creates a strain about the defect site 

which can bind an electron or hole and is comparable to the shift obtained for 

the group I defect.

Energy (meV)

Figure 5.5 Comparison of the phonon sideband of group II in 6Li and 7Li isotope 
samples.

5.2.5 Isotope splitting data for group III - Cadmium

Cadmium isotope substitution studies have confirmed that cadmium is a 

constituent of this defect. In figure 5.6 a very small isotope shift is observed in 

the a3 zero-phonon line. In (a) where the sample was implanted with 106Cd the 

a3 line moved to a lower energy by ~ 0.06 (± 0.02) meV, a smaller shift than 

observed in group I or II. Spectra of the dual implant sample (c) show the a3 

line is very slightly broadened. The small shift and broadening of the line is too 

small to indicate how many cadmium atoms are involved in the defect; the only 

conclusion that can be made is that cadmium is involved in the defect. The 

isotope shift is more clearly seen in the behaviour of the first local mode, as 

shown in figure 5.7. In the 106Cd sample, the phonon energy between a2 and P2 

is -4.99 (±0.04) meV; when the isotopic mass is increased to 116Cd the phonon 

energy decreases to ~ 4.76 (± 0.05) meV. The ratio of ~ 0.953 is in excellent 

agreement with the value of 0.956 expected for a local mode due to the 

vibration of a cadmium atom against a static defect.
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1087 5 1088 0 1088 5 1089 0 1089 5

Energy (meV) Energy (meV)

Figure 5.6 Cadmium isotope substitution of a* group III zero-phonon line.

1080 1085 1090

Energy (meV)

Figure 5.7 The effect of cadmium isotope substitution on the a  zero-phonon lines 
and the first phonon p. (a) sample implanted with 106Cd, (b) n6Cd and (c) dual 
implant sample. The feature Pi was identified in section 3.6 as a (partially 
allowed) forbidden transition of group III.

The group III system was not observed in the lithium isotope samples 

and at present, from circumstantial evidence, the enhancement of 

luminescence from the defect by deliberate lithium contamination can only 

suggest lithium is a constituent of the defect or is a catalyst in the production of 

the defect. If we consider the complex to contain one cadmium atom then the 

reduced mass of this system is 116 a m u Using equation 5 2 and an average 

phonon energy of 9 19 meV and the calculated total value for S of 2 3 (section
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3.3.3) the equilibrium position Q0 for the defect is estimated as ~ 0.001 nm. This 

is equivalent to a change of ~ 0.6% of the silicon lattice parameter in the 

presence of this defect. This deformation can produce a strain field about the 

defect site, which can be attractive to either electrons or holes.

5.3 Zeeman M easurem ents

Uniaxial stress measurements can only reveal information about the 

orientational and orbital electronic degeneracy of defects. To reveal any spin 

degeneracy the three defects of interest were subjected to magnetic fields of up 

to 5 T. A <110> orientated sample was used as all three major crystallographic 

directions can be obtained by rotations in a <110> plane. The first section 

considers the effect of a magnetic field perturbation of group I. This centre 

consists of triplet-singlet combinations of states. This behaviour was also 

observed for groups II and III, which are discussed in the following sections.

5.3.1 Zeeman analysis for group I

Representative spectra of the effect of an applied magnetic field on the 

<110> direction at T~ 10 K are shown in figure 5.8. There is neither a splitting 

nor shift in energy for the B, D or E zero-phonon lines, suggesting that the lines 

are due to transitions between singlet states. However, lines A and C are split 

into three clearly resolved components. Figure 5.9 shows the variation of the 

zero-phonon line energies with the increasing magnetic field. There is no 

variation in energy of the singlet lines (labelled s) and the linear splitting of the 

triplet lines (t-i to t6) reveals there are no magnetically induced interactions 

between the electronic states. Within the resolution available the triplet splitting 

is completely isotropic and any zero-field splitting is <0.1 meV.

The shift rate of the lower energy component of line A, labelled ti is 

smaller than for the higher energy component with corresponding g values of 

1.89 (ti) and 1.94 (t3) respectively. The g values for the C line were found to be 

1.86 (tt) and 1.90 (te) for the low and high energy components, respectively. 

These values are slightly lower than those of the free electron and also those of 

groups II and III (next section). This behaviour is consistent with the coupling of
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two spin V* particles to form a spin triplet and spin singlet separated by an 

exchange interaction energy These results are similar to the effect of a 

magnetic field perturbation on the singlet-triplet lines of the exciton bound to 

isoelectromc donor centres The orbital angular momentum of the tightly bound

Energy (meV)

Figure 5.8 Spectra recorded for the group I zero-phonon lines with an increasing 
<110> magnetic field at a temperature of ~ 10 K.

hole of the isoelectromc donor is almost quenched so that the bound excitons 

have two spin like particles - this leaves only the spin state, s = 1/4 to interact 

with the loosely bound electron spin states, s = V2 These bound excitons have 

total angular momentum S = 0 and S = 1 and in the presence of a magnetic field 

the S = 1 triplet state splits into three components while the S = 0 singlet state is 

not affected This suggests the group I triplet states with g ~ 2 and the 

unperturbed singlets are most simply regarded as being formed from a spin-% 

electron and spin-1/£ hole, the orbital angular momentum of the hole having 

being quenched by the axial nature of the defect
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Magnetic Field (T)

Figure 5.9 Variation of the Group I line energies with the increasing magnetic field 
along the <110> direction at T ~ 10 K.

The minimum energy zero-phonon line, A was studied at 4 2 K and within 

the resolution available a zero-field splitting <0 1 meV was observed, as shown 

in figure 5 10 This suggests there is a crystal field (Td) or axial (low symmetry ) 

field splitting similar to the zero-field splittings reported previously for lithium 

related defects With the application of a magnetic field the ~ 1044 meV QL 

zero-phonon line of the Q centre split into a spin-triplet with a small (<0 1 meV) 

zero field splitting (Lightowlers et a l, 1984) The higher energy lines of the Q 

centre, Q and Qh did not split or show any broadening for magnetic fields up to 

6T

Figure 5 11 shows the intensity of the splitting components at 4 2 and 10 

K in a magnetic field of 5 T, the relative intensities of the A zero-phonon line are 

subject to thermalisation The observed splitting therefore occurs in the initial 

state of the transition
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Magnetic Field (T)

Figure 5.10 The isotropic triplet splitting of the lowest energy A line of group I 
with increasing magnetic field up to 7 T at a temperature of 4.2 K.

Energy (meV)

Figure 5.11 Temperature effect of the zero-phonon splitting pattern in a magnetic 
field of 5 T. The spectra are recorded at 4.2 and 10 K with a resolution of 1 cm 1.
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5.3.2 Zeeman analysis for group II

Figure 5 12 shows the effect of the magnetic field applied in the <110> 

direction on the group II lines at ~4 2 K Within the resolution available identical 

spectra were obtained for the <001 > and <111> directions The lowest energy 

line F was clearly seen to split into three components (ti to t3) under a magnetic 

field At high magnetic fields another split component was observed, labelled tt 

in figure 512, suggesting zero-phonon line G is spin-triplet Due to 

thermalisation effects and the low intensity of the G line, the higher energy split 

component was not observed as it overlapped with line H The higher energy 

zero-phonon lines do not split, shift or show any broadening under the 

application of a magnetic field Information on the spin of the highest energy 

zero-phonon line M was not obtained as the intensity was comparable to the 

signal to noise ratio obtained during the experimental work The variation of the 

energy of the lines with increasing magnetic field is shown in figure 5 13 The 

triplet splitting is linear indicating no magnetically induced interactions between 

the electronic states and a small zero field splitting of < 0 1 meV is observed for 

the F line The low energy component of the F triplet has a g value of 2 07 

whereas, the higher energy component, t3 has a g value of 1 92 The higher 

energy zero-phonon line, G has a g value of 1 95 for the low energy split 

component with the higher energy component unobserved

The values of g close to 2 indicate that the hole orbital angular 

momentum is almost quenched so that the bound excitons have two spin-half 

particles These two combine to give the S = 1 (triplet) and S = 0 (singlet) state 

which are separated by the electron-hole exchange energy The quenching of 

orbital angular momentum readily occurs in semiconductors by strong axial low 

symmetry fields As a result singlet-triplet bound exciton states occur mainly at 

axial isoelectromc defects with a short-range hole attractive central cell 

potential This is the case for the group II defect
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Energy (meV)

Figure 5.12 The variation of energy of the zero-phonon lines of group II with 
increasing magnetic field at T ~5 K.

Magnetic Field (T)

Figure 5.13 Triplet and singlet splitting of the group II zero-phonon lines at ~ 5 K.
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The relative intensities of the split components of zero-phonon line F 

thermalise indicating the observed splitting occurs in the initial state of the 

transition The intensity of U, the lower energy component of zero-phonon line 

G increases with magnetic field Figure 5 14 shows this increase in intensity is 

linear as a function of the magnetic field squared, the intensity data are plotted 

only for values of B where the line was clearly observed in the spectra The 

transition probability is proportional to the square of the matrix element for the 

transition For a fixed magnetic field, B the Hamiltonian takes the form 

(Anderson E E , 1971)

H0 + gnemjB (5 3)

where fiB is the Bohr magnetron, and g is the Lande g-factor Thus the rate of

an induced transition is proportional to B2 The mixing of U with upper excited 

states in the applied magnetic field leads to the forbidden transition being 

allowed with the intensity variation proportional to the square of the magnetic 

field

B2 (T2)

Figure 5.14 The variation in intensity of t4 as a function of magnetic field squared.
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5.3.3 Zeeman Studies for group III

Zeeman measurements were made on the group III, ai zero-phonon line 

at 4 2 K and on the higher energy zero-phonon lines a2 and 013 at 10 K Data for 

an applied magnetic field parallel to the <001 > direction at 4 2 K for ai is shown 

in figure 5 15 Under the application of a magnetic field ai was split into three 

thermalising components, as shown in figure 5 16 and by orientation of the 

sample in the magnetic field, the triplet was found to be isotropic with no zero- 

field splitting observable The linear splitting of the triplet zero-phonon line 

indicates there are no magnetically induced interactions between the electronic 

states Shift rates of 0 116 and 0 117 meV/T for the low- and high-energy 

components yield g values of 2 00 and 2 02 respectively

The fan diagram of the higher energy, a 2 and 013 zero-phonon lines 

studied at T ~ 10 K is shown in figure 5 17 The lines do not split or show any 

energy shift in any crystallographic direction in an applied magnetic field up to 5 

T This indicates the higher energy zero-phonon lines are singlet states Also 

shown is the ai triplet state, however the higher energy component is not 

observed due to overlap with the P3 phonon replica at this higher temperature

Magnetic Field (T)

Figure 5.15 The magnetic field splitting of the ai line transition for a magnetic 
field along <001 > direction at 4.2 K.
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The above results are similar to the results for groups I and II and the 

singlet-triplet lines of the exciton bound to the isoelectromc donor centres For 

these centres, the orbital angular momentum of the hole is quenched leaving 

only its spin state (s = 14) to interact with the loosely bound electron spin (s = 1/4) 

(for details see the previous two sections) The ai line which originates in the 

triplet state is weak compared to the singlet line as it is forbidden from the 

selection rule AS = 0 The second singlet state ot3 observed at higher energy 

may suggest there is a second singlet-triplet pair with the second triplet 

forbidden Zeeman measurements on the Q luminescence system at ~1045 

meV have yielded similar results, a singlet triplet-pair with an additional higher 

energy singlet state (Lightowlers et a l, 1984) Lightowlers and his co-workers 

have suggested a set of two singlet-triplet pairs possibly resulting from two 

singlet electron states being lowest in energy

Energy (meV)
Figure 5.16 Comparison of the intensities of the magnetically split components of 
ai at 4.2 and 10 K in a magnetic field of 4 T.
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Magnetic Field (T)

Figure 5.17 The a  and 03 zero-phonon lines of group I I I  as a function of applied 
magnetic field. The solid lines are a best fit, with g  = 0 for 012, 013 and P3 indicating 
singlet states and a g  value of 2 for the ai low energy triplet component.

5.4 Conclusion

The isotope substitution and Zeeman data presented provide evidence 

of the chemical constituents and information about the spin states of the 

defects. Both cadmium and lithium are present in the group II defect - one Cd 

atom and two Li atoms. It is not yet clear what the full microscopic structure of 

the group I and III defect complexes are. Cadmium isotope shifts have shown 

the involvement of cadmium in both defects, but the failure to observe these 

centres in the samples doped with 6Li and 7Li isotopes means that we have no 

direct proof of lithium involvement in these defects, the circumstantial evidence 

outlined (section 3.2) is strong.

In the case of groups I and II, doping the sample with 106Cd instead of 

116Cd, the line positions shifted to higher energy for the lighter isotope. When 

the zero-phonon line is shifted to higher energy for a lighter mass this indicates 

that ke> kg, so that the vibrational mode for the ground state is softer than that

of the excited state. This suggests that for cadmium dominated vibrations at 

these centres there is a softening of the forces between the cadmium and the 

surrounding crystal when the centre is in the excited state. For group III, the
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forces do not soften between the cadmium atom and the surrounding crystal 

and the zero-phonon lines shifts to higher energy for heavier mass The shift of 

the group II zero-phonon lines to higher energies for 7Li compared to 6Li shows 

the excited state force constant ke is softer than that of the ground state

From the Zeeman data presented all three defects are similar as they 

consist of typical triplet-singlet combinations of states produced by isoelectromc 

centres in semiconductors All three centres may be isoelectromc donors, with 

the hole being the more strongly bound particle resulting in the quenching of the 

orbital angular momentum of the hole The two spin-like states interact to form 

bound exciton states with total angular momentum J = 1 and J = 0 The three 

defects appear to belong to the family of isoelectromc bound excitons having 

strong compressive axial strains, similar to the P line (Watkins et a l , 1985) and 

the Q line (Lightowlers et a l , 1984)

The magnetic field perturbation does not affect the highest energy lines 

for the group I and II systems, but splits the lower energy lines, A and C in the 

case of group I and zero-phonon lines F and G in group II into three 

components Within the resolution available all triplet splittings are completely 

isotropic with g values close to 2 Such an isotropic splitting indicates a total 

quenching of orbital angular momentum of the hole due to a large compressive 

axial strain In group III, the lowest energy zero-phonon line is a spin triplet with 

g = 2 and the second singlet state suggests there may be a set of two singlet- 

triplet pairs From thermalisation measurements the magnetic splitting occurs in 

the initial state for all triplets

In chapter six, the important results of each defect are summarised and 

discussed in detail Several models for the defects are considered and a variety 

of suggestions for future work are made
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Chapter Six  

Discussion

6.1 Introduction

In this thesis three defects observed using photoluminescence in 

cadmium-doped silicon have been studied. Prior to this study, very little was 

known about these lines other than they appeared in samples implanted with 

radioactive 111ln ions after several half-lives (Daly et a!., 1994). The lines were 

tentatively assigned to the complexing of 111Cd atoms with impurities in the 

crystal. When studying the samples after prolonged storage at room 

temperature, the three defects were not observed. This indicated that at least 

one of the constituents in the centres responsible was mobile already at room 

temperature. Since this is a well established property of lithium in silicon, the 

likelihood that all centres are related to centres that have both cadmium and 

lithium as constituents was explored in this thesis.

In an attempt to understand the optical properties of these three defects, 

photoluminescence spectroscopy in conjunction with isotope substitution 

studies and perturbation techniques of uniaxial stress and magnetic fields have 

been used. In this chapter we shall gather together all the results of the 

previous chapters and even though these results have been discussed in each 

chapter a model, which satisfies all of the observed behaviour of each defect, 

remains to be established. Groups I and II are very similar in nature and shall 

be discussed in the next section. The energy level structure deduced for group 

III indicates that both the initial and final electronic states are split - an 

uncommon occurrence for defects believed to be electrically neutral; this defect 

shall be discussed in detail in section 6.3.
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6.2 Groups I and II

The group I system can be optimised in cadmium implanted silicon when 

subjected to a high temperature anneal at ~ 1000°C for 10 s followed by a rapid 

quench to room temperature and heating at 150°C for about 15 min For group 

II the optimal defect production temperature (post-quench) is ~ 100°C for 15 

min Both groups are observed in FZ and CZ silicon Carbon and oxygen are 

generally more abundant in CZ silicon and as the groups are more intense in 

FZ rather than in CZ silicon it seems likely that the defects do not involve 

carbon or oxygen as constituents The groups were observed in silicon doped 

with either boron or phosphorous and thus seem to be independent of the 

common shallow donor and acceptor impurities These observations provide 

circumstantial evidence that lithium and cadmium are the only impurities 

involved in the defects Isotope substitution experiments have proven that both 

cadmium and lithium are present in the group II defect - one Cd atom and two 

Li atoms Cadmium is a constituent of group I but the involvement of lithium has 

yet to be proven unambiguously

6.2.1 Group I

The group I luminescence system consists of five zero-phonon lines and 

temperature dependence measurements have shown these transitions are from 

five excited state levels to the same final ground state The luminescence is 

observed up to ~ 40 K and an estimated thermal binding energy of ~ 10 meV 

suggests the exciton is captured as a pair The exciton once localised on the 

defect relaxes such that the primary particle is tightly bound and the secondary 

particle is loosely bound suggesting the centre is isoelectromc in nature The 

total binding energy of the A excited state is ~ 97 meV and we have found the 

lattice relaxation has a magnitude Er ~ 87 (± 20) meV The experimentally 

estimated relaxation energy is a major contributor to the binding energy of the 

exciton of the group I centre and the exciton can be considered self-trapped

Within the limits of our uniaxial stress experiment, the pattern and 

magnitude of the stress induced splittings of all group I zero-phonon lines were 

identical Interactions between the highest energy zero-phonon line E and the 

lower energy lines was observed A model that can fit all of the observed
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splitting and stress induced interactions is still under development, however the 

group I luminescence centre has been assigned trigonal (C3V) symmetry with 

transitions between A and E states We have shown from Zeeman studies that 

the lowest-energy excited state is a spin triplet and that the next highest state is 

a spin singlet This reveals that the orbital angular momentum of the deeply 

bound hole is quenched, giving for it s = A second singlet-triplet pair was 

observed at higher energy This confirms the isoelectromc model proposed 

from temperature dependence measurements, the optical transition is between 

a loosely bound electron and a tightly bound hole, a pseudo-donor

6.2.2 Discussion

A Cd-Li-Li defect appears to be an obvious candidate for the 

isoelectromc centre in question Cd has a relatively low diffusion coefficient 

indicating that the Cd atoms occupies a substitutional site (Arifov et a l , 1984), 

while Li is  known to have a very fast diffusion rate in Si which indicates 

interstitial diffusion (Pell, 1960a, b) Therefore, if we assume that the defect 

consists of one Cd substitutional atom and two Li interstitial atoms a possible 

model would be that of the Cd and Li atoms forming an axial defect parallel to a 

<111> type axis The bonding between the Cd, Li and neighbouring Si atoms 

must produce an electrically neutral ground state However, confirmation that 

this centre contains lithium must await isotope experiments on the group I line 

system

As an isolated impurity, lithium is an interstitial donor in the silicon lattice 

We would expect lithium to behave as a very shallow donor which can be 

described by EMT (Kohn 1957) The central cell potential for the lithium 

interstitial donor is repulsive for electrons thus it seems more likely that the 

complex binds an exciton with a highly localised hole and an electron in a near- 

hydrogemc orbit The 1s manifold of a pseudo-donor will have in Td symmetry 

three states A-i, E and T-\ Aggrawal proposed that the lithium interstitial donor 

in silicon has a inverted valley orbit splitting with the 1s(A-i) state lying 1 8 meV 

above the 1s(E+T2) state as shown in figure 6 1 (Aggrawal et a l , 1965) The E 

and T2 states are assumed degenerate In the axial C3V symmetry the T2 level is 

split further into an A2 and E state
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| conduction band |

2p±(2Tj+2T2) --------------   — -----  --------------2p±(2T,+2T2)

2p0 (A,+E+T2) -------------- -------------- --------------2p0 (A,+E+T2)
2po

Is (E)      ̂ Is (A,)
1s (T2)   is  ̂ Is (E+T2)

Is (A,) 1 8meV

Typical substitutional Effective mass Interstitial Lithium 
donor theory donor

Figure 6.1 The energy level structure of typical substitutional donors compared 
with that of the interstitial donor.

The Hopfield-Thomas-Lynch model is often used to describe the binding 

of excitons to isoelectromc impurities (1966) For isovalent donors, a hole is 

trapped in a non-Coulomb short-range impurity potential of the isovalent 

complex A bound exciton forms through the long-range Coulomb interaction 

between the trapped hole and an electron A model based on the ideas of 

Morgan and Morgan (1970) and developed by Davies (1984) can predict the 

energy spacing and relevant luminescent intensities of the lowest bound exciton 

transitions for axial defects in silicon The axial nature of the isoelectromc 

defect can be represented by a uniform uniaxial internal stress of magnitude S, 

(Davies, 1984) For centres with S, > 0 (pseudo-acceptors) this leads to a 

compression of the defect and an extension of neighbouring silicon atoms Two 

pseudo-acceptors where the model has predicted the energy spacing and the 

effects of internal and external stress successfully are the ABC centre and the 

Be-pair (Davies, 1984) The centres which possess S, < 0 are isoelectromc 

donors The calculated value of S, for the 1045 meV defect (the Q-centre) is - 

3 6 GPa and the binding energy is 100 meV, which is in close agreement with 

the electron-phonon relaxation energy (Davies, 1984) The model predicts the 

separation of the zero-phonon lines of the lowest-energy bound exciton states 

with two adjustable parameters the internal stress described by S, and the 

electron-hole exchange energy, A.
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The states are formed from a free hole taken from the k = 0 valence band 

maximum with angular momentum quantum number j = X The split-off valence 

band hole states with k = 0 and j = 1/4 are included, these holes have an energy % 

-  44 meV larger than the energy of the j = X states in silicon The electron 

states are formed from the conduction minima, found in silicon near the zone 

boundaries in the <001 > direction There are twelve electron states, two spin 

states for each of the six minima They electron and hole combine to form the J 

= 1 and J = 2 orbital states when localised on a Td centre if the electron and 

hole are bound by a potential weak relative to spin-orbit splitting % The J = 1 

triplet state and the J = 2 quintet state are separated by the electron-hole 

exchange energy (A), with the J = 2 state being the lower

In the case of an isoelectromc donor (S, < 0) a strong axial field produced 

by the centre quenches the angular momentum of the tightly bound hole Thus 

the hole behaves like a spin half particle and couples with the electron to form a 

spin-triplet, S = 1 state separated from a spin singlet, S = 0 state by energy A 

In group I magnetic field perturbations have revealed the lowest energy line A is 

a triplet state and B is a singlet state with energy separation A = 1 36 (±0 1) 

meV, and the higher energy triplet singlet states, C and D are separated by A « 

1 (±0 1) meV Figure 6 2 shows the lower energy bound states as a function of 

internal stress for a <111> orientated defect in silicon for an electron-hole 

exchange energy of A = 1 36 meV
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Stress Sj (GPa)

Figure 6.2 The lower bound exciton states as a function of Sj. The degeneracy of 
each exciton state is shown in the margin. For S; < 0 the states which form the 
triplet-singlet pair are labelled T and S. Energy separation A = 1.36 meV.

A procedure can be undertaken to obtain the best fit parameters for the 

internal stress (Sj) and the electron-hole exchange energy (A). In the group I 

system the energy spacing of the A-triplet and B-singlet lines is 1.36 meV and 

this was used as an initial value for the exchange energy. The values of the two 

parameters A = 1.5 meV and Si = -0.12 GPa in the model yield optically allowed 

transitions at 1.20 and 5.30 meV above the A line, compared to the measured 

values of 1.36 and 4.32 (±0.1) meV. A state is predicted 0.29 meV below A due 

to the zero-field splitting of S = 1 and transitions from this state are predicted to 

be forbidden. Spectra at high resolution revealed a zero-phonon line on the low 

energy side of A, labelled A at ~ 1058.05 meV (section 3.4), it is possible that 

this is the line predicted 0.29 meV below A, but at present this cannot be 

confirmed. Transitions from a doubly degenerate state predicted to lie ~ 4.1 

meV above A are forbidden as these transitions are from an S = 1 state which 

are forbidden from the spin selection rule. Figure 6.3(a) shows group I zero- 

phonon lines at ~ 15 K where (b) shows the energy positions from zero-phonon 

line A of the predicted levels. The forbidden transitions are represented by the 

dotted lines.
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The second triplet-singlet pair of group I (ZPLs C and D) are separated 

by A ~ 1 0 (±0 1) meV Setting S, = -0 12 GPa the best fit to the data was 

obtained for A = 1 2 meV The predicted line positions from zero-phonon line C 

are shown in figure 6 3(c) In this case the forbidden transitions are predicted to 

lie 0 24 meV below and 4 14 meV above the C line and the allowed transitions 

at 0 95 and 5 09 meV above C

These calculations show that this model can predict the relative positions 

of the zero-phonon lines The internal stress is estimated as -0 12 GPa and the 

electron and hole interact with exchange energies of 1 5 and 1 2 meV The 

model predicts two levels, 5 3 meV above A and 5 1 meV above C but there is 

no evidence of these lines in luminescence studies The origin of zero-phonon 

line E, 4 32 meV above A is not determined from the model The negative sign 

of the internal stress indicates a compressive local equivalent stress

Energy (meV)

Figure 6.3(a) Group I ZPLs at T ~ 15K. Singlet (S) and triplet (T) states are 
indicated. Model prediction with internal stress S, = -0.12 GPa and (b) exchange 
energy A= 1.5 meV. Energy spacing from ZPL A are shown by the vertical lines, (c) 
exchange energy A = 1.2 meV with energy spacing from C. The forbidden 
transitions are represented by the dotted lines.
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For large values of S, the optical transition from the triplet state is 

forbidden and as S, tends to zero transitions from the lowest-energy exciton 

states are forbidden as they are from the J = 2 state Figure 6 4(a) shows the 

ratio of the triplet to singlet transition probabilities as a function of the measured 

exciton binding energy (Davies, 1984) The exciton binding energy is the 

difference in energy between the singlet zero-phonon lines and the free exciton 

energy (1155 2 meV) The value of S, can be determined from the intensity ratio 

of the tnplet-singlet states The measured ratios of the transition probabilities 

for the Y, Z, X, S and Q lithium-related defects at 1131, 1126, 1117, 1082 and 

1045 meV respectively, are shown in figure 6 4(a) This graph has been 

extended to include data from the ratio of the transition probabilities of known 

singlet/triplet systems in silicon (Davies 1995) Points 2, 4, 6, 8 and 9 in figure 

6 4(b) coincide with the X, Y, Z, S and Q lithium-related centres The line in 

each graph shows the calculated intensity ratio assuming that the binding 

energy is produced by the perturbation by the local axial field on the hole

Exciton b ind in g  energy (me 10 
0 60 100

Stress |S/j (QPa)

*

4Û

!V
i

II
»o

Binding energy (meV)

Figure 6.4(a) Ratio of the transition probabilities of the triplet and singlet states as 
a function of -S, (Davies 1984). (b) Points show data for triplet/singlet transition 
probabilities as a function of their exciton binding energies (for details see Davies 
1995).
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Using the group I infinite temperature ratios determined from 

temperature dependence measurements the ratio of both singlet-triplet states 

are ~ 0 6 From figure 6 4(a) the maximum transition probability for smglet- 

triplet centres I silicon is found to be at most 0 25 In the case of group I the 

axial binding energy for singlet ZPLs B and D are ~ 95 5 meV and ~ 83 4 meV 

respectively Clearly, these values are not in agreement with those shown in 

figure 6 4(a) and in general some of the binding energy is expected to be 

produced from the binding of the electron For group I the relaxation energy is ~ 

87 meV and exciton is self-trapped Using the estimated thermal binding energy 

of ~ 10 meV and the log10 ratio of the triplet to singlet intensities of ~ -0 22 

places the data point in close proximity to point 1, figure 6 4(b) This data point 

is for the X17i line, a hydrogen related defect in silicon with A = 0 40 meV and 

an internal stress of -0 008 GPa (Kaminsku et a l , 1994, Davies 1995) Thus the 

model gives a reasonable estimation of the internal stress in comparison to the 

internal stress for the X17i line using the thermal binding energy

The model developed by Davies is “a gross oversimplification of reality” 

where the large electron-phonon interactions have been ignored (Davies, 

1984) The internal stress cannot be determined from spectroscopic data and 

the general trend of the data as shown in figure 6 4(b) assumes that the local 

axial field produces all the observed binding This is not the only process 

operating to bind an exciton and a model has yet to be developed which 

includes additional binding processes However, despite the limitations this 

model has predicted within experimental error the energy positions of the zero- 

phonon lines with only three parameters, the internal stress and the exchange 

splittings No interactions between the states have been included in the matrix

6.2.3 Group II

Group II consists of at least eight closely spaced zero-phonon lines and 

a tentative model suggests all zero-phonon lines are from thermalising excited 

states to a single ground state The intensity grows rapidly to a maximum at ~ 

5 5 K and decays until the luminescence finally disappears at ~ 25 K. A thermal 

dissociation energy of ~ 15 meV is very close to the energy of the free exciton
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indicating that an exciton was captured by the centre and is now localised to the 

centre with energy ~ 88 meV. A large fraction of the binding energy arises from 

the relaxation energy ~ 73 (± 20) meV and the exciton is self-trapped. The 

symmetry of the centre has been tentatively assigned as trigonal with 

transitions between A and E states. The high number of closely spaced stress- 

split components means we are unable to identify which state (A or E), is the 

excited state and the assignment of the stress components to each zero- 

phonon line is unreliable. As suggested previously, uniaxial stress 

measurements at 2 K should confirm this symmetry assignment. Zeeman 

splittings for group II are very similar to the splittings observed for group I with 

two triplet-singlet states observed. The minimum energy lines, F and G are 

triplet states with Lande g-values close to 2, indicating the hole is tightly bound 

where its angular momentum is quenched by the axial nature of the defect. 

Thus, similar to group I, the centre is pseudo-donor like.

6.2.4 Discussion

Using the model for excitons bound to an axial isoelectronic defect as 

outlined in the previous section the energy spacing as shown in figure 6.5 were 

obtained. From the best fit the internal stress is -31 MPa and the exchange 

splittings are 0.61 and 0.73 meV for the energy separation between triplet- 

singlet lines F - H and G - J respectively. Transitions are predicted at 0.61 and 

1.59 meV above the F line and 0.72 and 1.69 meV above the G line. The 

forbidden transitions lie at -0.12 and -0.13 meV below the F and G lines 

respectively and 0.98 meV above both lines. The group II lines I, K, L and M are 

not predicted from the model. The log10 ratio of the triplet to singlet intensities is 

-1.04 and -1.19 for F - H and G - J respectively. Using the thermal binding 

energy of ~ 15 meV places these data points in dose proximity to point 4 on the 

curve of figure 6.4(b). This point represents the Z-line, a lithium related defect 

(Lightowlers etal., 1985).

From isotope substitution experiments the defects consists of a Cd-Li 

complex, most probably one cadmium atom complexing with two lithium atoms 

to form an isoelectronic defect in the lattice. A tentative assignment of the 

defect as a Cd-Li-Li complex in a trigonal configuration is proposed. The
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cadmium atom is proposed to act as a substitutional acceptor with the two 

lithium atoms in interstitial sites aligned along the <111 > axis

Energy (meV)

Figure 6 .6 (a) Group I I  ZPLs at ~ 5K, with singlet (S) and triplet (T) lines indicated. 
Model prediction with internal stress S, = -31 MPa and (b) exchange energy A=0.61 
meV. Energy spacing from zero-phonon line F are shown by the vertical lines, (c) 
exchange energy A = 0.73 meV with energy spacing from G. The forbidden 
transitions are represented by the dotted lines.

Similarities between groups I and II were discussed The effects of 

uniaxial stress and magnetic field perturbations on the defects yields similar 

results, the symmetry of each defect system is assigned as trigonal and both 

defects have two triplet-singlet pairs indicating the defects are pseudo-donor in 

nature The centres are cadmium related and the presence of lithium of group I 

in the defect has yet to be confirmed The luminescence of group I is not seen 

in all samples produced the same way, the irregular interdependence casts 

some doubts upon isolated cadmium as the trap but rather indicates a complex 

centre consisting of more than one impurity most probably two lithium atoms 

This suggests that the binding centres themselves may be almost identical 

differing perhaps only the positions of the lithium atoms in the lattice
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6.3 Group III

In this thesis comprehensive results on the group III Cd-related defect 

observed in FZ and CZ silicon have been described The defect is produced by 

annealing cadmium-implanted silicon at 1000°C and quenching rapidly, 

followed by an anneal at 375°C for 15 min The defect shows three zero- 

phonon lines, a i  at 1083 32, a 2 at 1086 02 and a 3 at 1088 53 (±0 05) meV 

From an analysis of the phonon sideband one, two and three phonon assisted 

lines were identified and are labelled p ,  y  and 5 at energies 4 84, 9 35 and 

13 49 (±0 07) meV, below ai The successive phonon replica energy decreases 

with increasing phonon number indicating the frequency mode of the vibromc 

series is slightly anharmomc The energy level structure deduced indicates that 

both the initial and final electronic states are split The luminescence takes 

place between three thermalising initial states to three different final states 

Strong selection rules must govern the luminescence spectrum Temperature 

dependence studies have shown that the defect consists of one loosely bound 

particle (with a binding energy of ~ 13 meV) and one tightly bound particle 

Uniaxial stress measurements establish the symmetry of the defect as 

monoclimc I with transitions from A to B states The curvature of the stress data 

indicated a higher energy state, which was identified as a B state The shift 

rates of the highest energy lines a2and a 3 were studied and within experimental 

error were equivalent in the <111> and <110> directions However, under 

<001 > stress, a 3 split into two components while a 2 did not split Zeeman 

measurements show no shift or splitting for a 2 and a 3 The lowest energy line a i  

split into three thermalising components with g - 2  indicating the orbital angular 

moment of the hole is completely quenched These results show the triplet- 

singlet nature of the ai and a2 lines, which are common for excitons, bound to 

isoelectromc donor centres

Cadmium isotope studies confirm that the defect contains at least one 

cadmium atom Because the luminescence of the defect is enhanced when the 

samples are annealed in the presence of lithium (via quartz glass) the 

circumstantial evidence points to the involvement of lithium in the defect The 

role of lithium in the defect production cannot be confirmed due to the failure to 

observe the defect in cadmium implanted samples intentionally doped with 6Li
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and 7Li Similar to groups I and II, it seems likely that the defect does not 

involve carbon or oxygen as constituents and appears to be independent of the 

common shallow donor and acceptor impurities

The energy level structure and vibrational properties of group III are 

clearly different to those of the other two groups For group III the model used 

for groups I and II is not adequate and we must look for an alternate description 

of the luminescence process

6.4 Suggestions for Further Work

We have shown that Li impurities in silicon combine with Cd acceptors to 

produce at least one Cd-Li-Li defect At present circumstantial evidence exists 

for the occurrence of two other such defects, which are unstable at room 

temperature Regarding the formation of such defects from published values of 

cadmium and lithium diffusion coefficients, lithium is the most mobile It seems 

probable that the occurrence of several defects corresponds to a lithium 

atom(s) occupying one of several possible locations in the vicinity of, but not 

necessarily strongly bonded to a cadmium defect The most immediate 

investigation that is required is the confirmation of Li in groups I and III

Thermal quenching treatments are necessary to form the defects and to 

date no explanation has been given as to why this step is crucial in the 

formation of these defects More work on the formation kinetics of the defects is 

necessary as the chemistry involved in the creation and destruction of these 

defects appears to be complicated

Uniaxial stress experiments on the excited states of groups I and II are 

necessary to confirm the nature of the transitions, that is if they are from A to E 

states or vice versa Polarisation data for all three defects would aid in the 

unambiguous identification of the transition types Photoluminescence 

excitation measurements, with the perturbation techniques of uniaxial stress 

and Zeeman measurements are required to study the excited state structure of 

the defects In addition, absorption measurements of group III should confirm 

the unusual energy level structure proposed
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A ppendix A

Stress Rig

The stress rig is designed to fit inside the Oxford Instruments CF 1204 

flow cryostat and is made from stainless steel which will minimise heat 

conduction (O’ Morain et a!., 1992). There are four apertures in the body of the 

rig about the sample which allow optical access to excite the sample and collect 

the luminescence. The samples are mounted in the stress rig such that their 

long axis is exactly parallel to the vertical axis of the stress cell; this is shown 

schematically in figure A.1. The samples are held in place by double-sided 

sellotape on the flat of both small push rods. This is to ensure the stress when 

applied to the sample is transmitted parallel to the stress direction by 

compensating for any roughness on the base of the push rods. The stress is 

transmitted from a steel spring above the load cell to the sample, via a hollow 

long steel push rod. The force produced by the compressed spring is measured 

with a Bofors KRA-1 piezoelectric load cell in mV per Kg (0.3 mV per 1 kg load). 

The actual pressure acting on the sample can be calculated by using the 

following equation:

9-8 (V -V 0)
S . r e s s i M P a ) - ^ ^  (A .1 )

where V and V0 (unit mV) are the load cell voltages at a finite stress and at zero 

stress respectively, A is the cross-sectional area of the sample (unit mm2). 

Stresses of up to 150 MPa can be achieved and the splitting of the stress split 

components of the zero-phonon lines are generally of the order of a few meV, 

which at low temperatures are large compared to the zero-phonon line widths.

Al



Appendix A Stress Rig

r m

Cryostat

Threaded bar

Spring

Load cell

Stress rig

Push rod

Small push rods

Figure A.1 A schematic diagram of a uniaxial stress cell used in the perturbation 
technique to determine the symmetry of the defects.
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Appendix B

R C A  C l e a n

Recent developments of the RCA clean are reviewed by (Heyns and 

Nemamch, 1999), this appendix summarises the critical steps of the clean 

based on their review The RCA clean removes contaminants, which may be 

particulate, such as organic molecules and ionic materials, or oxides, which 

may include other molecular species After the RCA clean, the Si surface is 

passivated with a chemical oxide layer that protects the Si surface from 

contamination

The two critical steps of the clean are SC1 (Standard Clean 1) and SC2 

The SC1 step removes organic surface films, surface impurities and particles 

The organic film impurities are removed by oxidation from the peroxide and the 

solvating effect of N H 4O H  dissolves the oxide The metal contaminants are 

removed by dissolution and complexing with N H 3  The SC2 step removes 

metallic impurities not removed in the SC1 step The surface is passivated with 

a hydrated oxide film after SC2

At various stages in the clean, the samples are rinsed in de-iomsed (Dl) 

water, to remove any chemical residue on the surface All the steps of the RCA 

clean are shown in figure B 1
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Appendix C_______________________________________ Monoclinic I S'% values along the <111> direction

A ppendix C

Monoclinic I Sÿ values along the <111> direction

Orientation

Number

S x x S y y S z z S x y S y z S x z

1 1 0 2 0 0 V2
3 3 3

2 1 0 2 0 0
3 3 3

3 1 0 2 0 0 V2
3 3 3

4 1 2 0 V2 0 0
3 3 3

5 1 2 0 Û. 0 0
3 3 3

6 1 2 0 V2 0 0
3 3 3

7 1 0 2 0 0 V2
3 3 3

8 1 0 2 0 0 V2
3 3 3

9 1 0 2 0 0 V2
3 3 3

10 1 2 0 V2 0 0
3 3 3

11 1 2 0 V2 0 0
3 3 3

12 1 2 0 V2 0 0
3 3 3

Table C .l Stress tensor components for each of the twelve monoclinic I defect 
orientations for stress along the < 1 1 1 > direction.
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