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A b s t r a c t

The Epstein-Barr Virus is a human herpesvirus that is associated with African endemic 

Burkitt’s Lymphoma (BL) and several other cancers of lymphoid/epithelial origin. The 

capacity of this virus to regulate the expression of cellular adhesion molecules, such as 

CD44, has important implications in the pathogenesis of EBV-associated malignant 

disease. CD44 is a multifunctional cell surface adhesion molecule involved in cell-cell 

and cell-matrix interactions. Many isoforms of CD44 exist, some of which have been 

implicated in metastasis. These are generated primarily as a result of complex alternate 

RNA splicing within the CD44 operon. In this thesis, CD44 expression was analysed in 

(I) EBV-positive BL-cell lines and (II) EBV negative derived cell lines that express 

viral latent proteins either after superinfection with virus, or after stable transfection of 

single viral genes. The results obtained illustrate that the expression of EBV latent 

proteins correlates with the induction of standard/variant isoforms of CD44 

mRNA/protein in a BL cell background. When expressed as sole viral proteins, neither 

of the two principal viral effectors of cell transformation, the EBV latent membrane 

protein 1 (LMP1) nor the EB nuclear antigen 2 (EBNA2), were sufficient to induce 

CD44 expression. As part of this research a novel method for detecting CD44 mRNA 

splice variants was developed. Labelled antisense riboprobes derived from CD44 

cDNA sequences were used in Ribonuclease Protection Assays (RPA) to analyse 

standard/variant exon usage in a range of cell lines including EBV-infected cells. The 

results obtained with this assay also indicated that the pattern of CD44 standard and 

variant exon usage is very complex but similar in type-III latency BL cell lines and 

lymphoblastoid cell lines.

The effect of EBNA2 and EBNA1 on cellular gene expression in an EBV negative BL 

background was also investigated by differential display reverse transcription 

polymerase chain reaction (DDRT-PCR). This was examined using EBV-negative BL 

cell lines in which EBNA2 or EBNA1 were expressed as sole viral proteins. A  panel of 

six potentially differentially expressed gene were initially identified but subsequently 

northern blot analysis showed that none of these were in fact modulated by the relevant 

EBV protein.
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1.0 E p s t e i n -B a r r  V ir u s

1.1 D i s c o v e r y  a n d  C l a s s i f i c a t i o n

In 1962 Dennis Burkitt described the clinical manifestation of a common childhood 

cancer in East Africa, Burkitt’s lymphoma (BL), (Burkitt, 1962b). He suggested that a 

virus may be the cause of the lymphoma. In an attempt to confirm this hypothesis the 

Epstein-Barr virus (EBV) was discovered in cultured lymphoblasts from samples of 

African Burkitt’s lymphomas by Epstein et al., (1964). EBV is a ubiquitous human 

herpes virus, for which humans are the exclusive natural host, it infects between 90- 

95% of the population (Kieff, 1996). The herpesviruses are a family of DNA viruses 

found commonly in humans and animals. Herpes viruses are biologically classified into 

three subfamilies, alpha, beta and gamma, EBV belongs to the genera 

Lymphocryptovirus of the subfamily gammaherpesvirus. Viruses of this subfamily are 

characterised by their tropism for lymphoid cells and their capacity to induce cell 

proliferation in vivo, resulting in transient or chronic lymphoproliferative disorders and 

in vitro where many can immortalize the infected cell. Taxonomists have renamed EBV 

as human herpesvirus 4 (HHV4) but EBV is still its commonly used name (IARC 

Monographs, 1997). Like other herpesviruses, a mature EBV virion has a toroid-shaped 

protein core that is wrapped with double-stranded DNA this is surrounded by an 

icosahedral capsid with 162 capsomers (figure 1.1). The capsid is surrounded by an 

amorphous material, the tegument, composed of globular proteins. The envelope of 

herpesviruses have numerous glycoprotein spikes (Kieff, 1996).

Glycoprotein spikes

DNA-associated
protein

DNA

Tegument

Envelope

Capsid

Fig. 1.1. Schematic representation o f herpes virus structure.
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1.2 EBV GENOME STRUCTURE

The EBV genome is a linear, double stranded 172 Kb DNA with a guanine/cytosine 

content o f 60% (Kieff, 1996). The genome encodes an estimated 100 genes, but like 

many viruses there is complicated differential splicing of RNA transcripts and the 

number o f proteins produced may be greater (Kieff 1996). The EBV genome was 

completely sequenced from the EBV strain B95-8, initially cloned as a Bam HI 

fragment library, therefore open reading frames (ORF), genes, sites for transcription or 

RNA processing are frequently referred to specific Bam HI fragments (Baer et al., 

1984). For example, the BARF1 ORF is found in the Bam HI A fragment (BA) and it 

is the first ORF (FI) extending in a rightward (R) direction. A simplified schematic 

representation o f the EBV genome is outlined in figure 1.2.

US IR UL TR

I I I I I I I I I

0 20 40 60 80 100 120 140 160Kb

Nb C WWWWWWWWWY H F Q U P O a  M S L Eele2e3 ZGR K 'B  G D c b T X V d l  A N*"0 

-EBER1,2 EBNALP EBNA2 EBNA3A,3B,3C EBNA1 LMP2A LMP1LMP2B

Fig. 1.2. A schematic representation of the EBV genome adapted from IARC Monographs (1997). The 

genome is divided up into repeat regions, 0.5 Kb terminal direct repeats (TR) and 3.0 Kb internal direct 

repeats (IR) that divides the genome into short and long largely unique sequence domains (US and UL). 

The Bam HI fragments are represented by the letters below the red line. The Bam H I fragment location 

of the EBV latent genes are indicated below the fragments. EBER, EBV encoded RNA; EBNA, EBV 

nuclear antigen; LMP, latent membrane protein; LP, leader protein.

The major DNA repeat elements serve as landmarks on the EBV genome map, 

however, serial passage of virus infected cells frequently results in differences in the 

number of tandem repeat reiterations (Dambaugh et al., 1980; Heller et al., 1981;
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Brown et al., 1986; Siaw et al., 1986). Some of these repeats encode proteins and this 

can explain differences in protein sizes observed on immunoblots and can also serve as 

an important marker in identifying virus strains, or virus infected cells (Kieff, 1996).

It has been found that some EBV genes expressed during latent and lytic infection have 

no homology with other herpesvirus genes and may have arisen from cellular DNA. 

The EBV latent gene BCRF1 is the most striking example of an acquisition from the 

cell gene pool. BCRF1 is nearly identical to human interleukin 10 (IL10) in primary 

amino acid sequence (Moore et al., 1993). Two EBV types circulate in most human 

populations (Gerber et al., 1976; Young et al., 1987; Rowe et al., 1989). These 

genomes formerly known as type A and type B are now referred to as type-1 and type-2. 

The genomes are almost identical except for the genes that encode some of the Epstein- 

Barr nuclear antigens (EBNAs) such as EBNA2, EBNA3A, 3B, 3C and EBNALP, in 

latently infected cells (Nanoyama and Pagano, 1973; Bornkamm et al., 1980). Apart 

from these genes the genomes appear to have little differences beyond those which 

characterise individual EBV strains. The differences in type-1 and type-2 EBV 

genomes are reflected in type-specific and type-common epitopes for antibodies (Young 

et al., 1987) and T-cell recognition (Moss et al., 1988). As type-1 EBV is more 

common in developed societies, most EBV immune human sera from these countries 

react preferentially or exclusively with type-1 EBNA2, EBNA3A, 3B, 3Cand EBNALP. 

African sera are almost evenly split in their serological reactivity, However, the 

recovery of type-2 virus from blood is unusual (Young et al., 1987; Rowe et al., 1989). 

In culture, EBV type-2 infected lymphocytes grow less efficiently in vitro than their 

type-1 infected counterparts (Rickinson et al., 1987).

1.3 EBV STRATEGY OF INFECTION

Two forms of EBV-cellular infection are recognised, latent and replicative (or lytic). In 

latent infection, virus penetrates the cell and remains present either as circular episomal 

DNA (formed through fusion of the terminal repeats) or, less frequently as linear DNA  

integrated into the host genomic DNA. Episomes, present in low copy numbers in the 

host cell nucleus, are copied by host cell DNA replicating enzyme and pass to daughter

4



cells in mitosis (Joske and Knecht, 1993). EBV infection is largely restricted to primate 

B-lymphocytes in vitro. Most human peripheral blood B-lymphocytes are susceptible 

to EBV infection. The virus does not usually replicate in recently infected B- 

lymphocytes, instead they become stably latently infected. In latently infected B- 

lymphocytes, EBV expresses six different nuclear proteins or EBNAs, two integral 

membrane proteins or LMPs and two small nonpolyadenalated RNAs or EBERs. These 

viral gene products maintain the latent infection and cause the previously resting B- 

lymphocytes to continuously proliferate (Mark and Sugden, 1982). The EBV infected 

proliferating B-lymphocytes are similar to activated B-lymphocytes in their secretion of 

immunoglobulin and their adherence to each other (Klein, 1987; Zhang et al., 1991). 

Approximately 1 in every 105-106 of the B-lymphocytes purified from the peripheral 

blood of previously infected people are latently infected with EBV. These latently 

infected B-lymphocytes may be cultured and will proliferate into long-term 

lymphoblastoid cell lines (LCL) (Sixbey and Pagano, 1985). LCL outgrowth is the 

simplest means for establishing immortal cell lines from individual humans for 

chemical, biological and genetic analysis.

Most non-EBV-infected continuous B-lymphocyte cell lines are derived from 

sporadically occurring EBV-negative Burkitt’s lymphomas (BL) and many can be 

infected with EBV in vitro (Calender et al., 1987; 1990). The growth of BL cells in 

vitro is attributed to constitutive c-myc expression (Dalla-Favara et al., 1983) and to less 

characterised changes in chromosome 1 (Berger and Bernheim, 1985). BL cells grow 

as single cells and do not express activation markers and adhesion proteins associated 

with B-cell activation such as CD23, CD30, CD70 (Thorley-Lawson and Mann, 1985; 

Rowe et al., 1985), or the cellular adhesion molecules LFA-1, LFA-3, ICAM-1 and 

CD44 (Gregory et al., 1988). Usually EBNA1 is the only viral protein expressed 

(Marchini et al., 1991; 1992a; 1992b). This form of latent infection (type-1 latency) is 

similar to that in many EBV infected BL cells in vivo (Rowe et al., 1987; Sample et al., 

1991). In some EBV-positive BL cell lines the same EBV genes are expressed as in 

latently infected primary B-lymphocytes. The cells then express the same repertoire of 

B-lymphocyte activation markers and adhesion proteins as EBV-infected primary B-
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Lymphocytes, they grow in clumps and to higher densities, this is known, as type-III 

latency (Calender etal., 1987; 1990).

EBV infection of primary B-Lymphocytes in vitro involves binding of CD21 on the B- 

Lymphocyte plasma membrane. CD21 (also known as CR2) is the receptor for the C3d 

component of complement. After binding, aggregation of CD21 in the plasma 

membrane, the co-aggregation of surface immunoglobulins (slg) and internalization of 

EBV into cytoplasmic vesicles occurs (Nemerow and Cooper, 1984; Carel et al., 1990). 

The virus envelope then fuses with the vesicle membrane, releasing the nucleocapsid 

and tegument into the cytoplasm. Penetration is usually complete within l-2h. 

Superinfection of established BL cell lines is somewhat different in that EBV binding 

does not result in as significant a patching of CD21 and slg and the envelope fuses with 

the plasma membrane, releasing the nucleocapsid and tegument into the plasma 

membrane. The observed differences in mode of infection between primary B- 

lymphocytes and BL cells are likely to be due to the cytoskeletal abnormalities of the 

tumour cells (Kieff, 1996). The EBV outer envelope glycoprotein gp350 and gp220 

are the CD21 ligand. The interaction of CD21, gp350 and gp220 mediates EBV 

absorption (Tanner et al., 1987; Nemerow et al., 1987; 1989). Another EBV 

glycoprotein gp85, has been implicated in the fusion of the EBV envelope with the 

vesicle membrane. Monoclonal antibodies to gp85 inhibit the fusion of the EBV 

envelope and the cell membrane (Miller and Fletcher, 1988). Little is known about 

EBV capsid dissolution, genome transport to the cell nucleus or DNA circularization. 

By comparing EBV to other DNA viruses that replicate in the nucleus it may be 

suggested that the cytoskeleton is likely to mediate EBV capsid transport to the nucleus 

(Dales and Chardonet, 1973). Cell transcription factors probably determine if latent or 

lytic infection ensues after the genome enters the nucleus and circularizes (Kieff, 1996).

1.4 EBV LATENT INFECTION

The usual outcome of B-lymphocyte infection with EBV is a persistent latent infection. 

Three forms of latent infection referred to as type-I-III have been demonstrated in EBV 

carrying B-cell lines and EBV carrying tumour biopsy samples. These distinct forms of
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EBV latency which have been characterised are distinguished on the basis of expression 

of EBV latent genes and promoter usage (Sample et al., 1986; 1991; Rowe et al., 

1986; 1987). Type-I latency is characterised by the expression of a single EBV protein 

EBNA1 (Rowe et al., 1987), together with a high copy number of small non- 

polyadenylated RNA transcripts known as EBER1 and EBER2 (Rymo, 1979; Howe and 

Shue, 1989). The classic features of latency I are exhibited in endemic (BL) biopsies 

and in early passage cell lines derived from these tumours (Rowe et al., 1987).

Cells in latency II resemble latency I cells as they express EBNA1 and the EBER 

RNAs. They also express LMP1, LMP2A and LMP2B. Two EBV-related clinical 

conditions exhibit the latency 2 program, nasopharyngeal carcinoma (NPC) and 

Hodgkin’s disease (HD). Explanted BL cells grow continuously in culture and on serial 

passage some retain the phenotype of the original biopsy (type-I). However, during 

prolonged culture in vitro many BL cell lines show a dramatic phenotypic drift, with 

increased expression of B-cell activation antigens and adhesion molecules and the 

appearance in the culture of clumps of more lymphoblastoid-like cells (type-III). As the 

group-III phenotype cells dominate the culture, they frequently lose expression of CD10 

and CD77 (which are BL-associated markers), while other LCL associated markers, 

such as CD40, intracellular adhesion molecules and Bcl-2 are up-regulated (Rooney et 

al., 1986; Rowe et al., 1987; Henderson et al., 1991). Type-III cells express all the 

EBV latent genes and also the expression of cellular genes such as CD23 and a ligand 

for the EBV receptor CD21 is detected (Wang et al., 1987). Two EBV-associated 

diseases best exemplify the latency III program, infectious mononucleosis and 

posttranplantation lymphoproliferative disorder (PTLD) which is a potentially fatal 

immunoblastic lymphoma in transplant patients.
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Table 1.1. Pattern of EBV latent gene expression

Type of 

latency

Gene Product Examples Reference

1 EBERs, EBNA1 Burkitt’s lymphoma 

Gastric Carcinoma

Rowe et al., (1987) 

Imai et al., (1994)

II EBERs, EBNA1, 

LMP1, 2A, 2B, 

BARFO

Hodgkin’s disease 

Nasopharyngeal carcinoma

Deacon et al., (1993) 

Hitt et al., (1989) 

Brooks et al., (1992)

III All EBV latent genes PTLD, IM Young et al., (1989) 

Tierney et al., (1994)

Other EBERs, EBNA1, 2 Smooth muscle tumours Lee et al., (1995)

Table 1.1 was adapted from the 1ARC monograph (1997), PTLD, Post-transplant lymphoproliferalive 

disorder, IM infectious mononucleosis.

1.5 EBV LATENT GENES

The binding of EBV to CD21 and the subsequent infection of the cell triggers a cascade 

of events leading ultimately to the immortalization of the cell. The immortalization of 

primary B cells requires the expression of several viral genes. The first viral proteins to 

be expressed in B cells upon EBV infection, namely EBNA2 and EBNALP are believed 

to play critical roles in the early stages of the immortalization process (Alladay et al., 

1989; Rooney et al., 1989; Alfieri, et al., 1991). Transcription of nuclear proteins is 

initiated at RNA polymerase II-dependent promoters in the Bam HI C (Cp) and Bam 

HI W (Wp) regions of the viral genome (Rogers et al., 1992). EBNA2 and EBNALP 

are initially transcribed from the very strong promoter Wp, which is present in multiple 

copies in the major internal repeat. Once immortalization is established, Wp activity 

declines and transcription of the EBNA genes switches to using the Cp promoter 

(Woisetschlaeger et al., 1990). All EBNA coding mRNAs are derived from the same 

transcriptional unit by alternative splicing and alternative polyadenylation (figure 1.3.). 

The coding exons for most of the EBNAs are towards the 3' end of the mRNAs and are
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preceded by the highly spliced leader exons, which are encoded within the major 

internal repeat o f the genome (Farrell, 1995).

0 20 40 60 80 100 120 140 160 172Kb

Cp/Wp 1 E B N A 2

I  U  Q j “ " L
LMP2A, 2B EBNALP Q EBNA3C

|  EBNA1

Fig. 1.3. A simplified outline of the splicing of the EBV nuclear antigen coding mRNAs. Transcription 

initiation is shown to arise from the Cp promoter. The EBNA gene mRNAs all derive from the same 

transcription unit by alternative splicing and alternative polyadenylation.

1.5.1 EBNA1

EBV nuclear antigen 1 is the only EBV latent gene which is detectable in all EBV 

infected cells. The 73 kDa protein consists o f a short amino-terminal region a 20 kDa - 

40 kDa, glycine alanine repetitive sequence flanked by arginine rich sequences and a 

highly charged acidic carboxy terminal sequence (Hennessy and Kieff, 1983). During 

latent infection o f human host cells, EBV genomes are maintained as double-stranded 

DNA episomes that replicate once every cell cycle (Adams, 1987, Yates and Guan, 

1991). The carboxy terminus o f EBNA1 determines its nuclear localisation by 

interacting with a specific protein that is homogeneously distributed on chromosomes 

(Harris et al, 1985; Petti et al., 1990). This property is likely to be important for 

segregation o f episomes into progeny nuclei during mitosis. Part o f EBNA1 is also 

associated with the nuclear matrix. EBNA1 is the only EBNA that continues to be 

made during lytic infection (IARC Monograph, 1997).

EBNA1 binds to two components o f the latent cycle origin o f replication, ori P and it is 

the only virus encoded trans-acting factor required for episomal maintenance o f the 

EBV genome (Ring, 1994). EBNA1 is a sequence specific DIM A binding protein that

LMP1

i
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binds as a dimer to the sequence TGGATAGCATATGCTATCCA present in ori P. 

The replication origin is composed of 20 tandem repeats o f the EBNA1 binding site, 

spaced about 1 Kb away from the 20 repeats are a further 4 copies o f the binding site, 2 

in dyad symmetry and two in tandem. The dyad symmetry component is stringently 

required for episome replication. The interaction o f EBNAI with the tandem repeats 

and dyad symmetry sites is co-operative and results in high-order structures that lead to 

bending o f the DNA, distortion o f the duplex and looping out of the intervening 

sequences (Frappier and O’Donnell, 1991; Orlowski and Miller, 1991; Frappier and 

O’Donnell, 1992). Regions of the protein important for DNA binding and 

transactivation o f ori P  are located in the carboxy-terminal third of the protein 

(Ambinder et al, 1991). The functional domains o f EBNAI are outlined in fig. 1.4. 

Furthermore, ori P acts as an EBNAI dependent enhancer and plays a crucial role in the 

regulation of viral transcription from both the C and the LMP1 promoter in growth- 

transformed cells (Sugden and Warren, 1989; Gahn and Sugden 1995).

Gly-Ala

1 98 327 641
4 Dimerization

459 607
DNA binding —► i —i

450 604
I l i  \<- Transcriptional

4 2  7 6  450 641 activation

B  4— Nuclear localization 
379 387

Fig 1.4. Functional domains of EBV nuclear antigen 1 (EBNAI). The Gly-Ala box is a repetitive region 

composed entirely of glycine and alanine, it varies in length between viral strains. Adapted from Farrell, 

1995.

The promoter from which the EBNAI gene is transcribed differs between cell types. In 

EBV transformed LCLs all the EBNA genes are derived from a highly spliced transcript 

that is generated by transcription from the C or W promoters located on the Bam HI C 

and W fragments respectively (Middelton et al, 1991). A recent study has indicated 

that RNA transcripts from latently infected early passage type-I BL cells, in the absence 

of a stimulus to induce virus replication, is initiated from a promoter distinct from Fp
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located in the adjacent Bam H I-Q fragment (Nonkwelo et al., 1995). This promoter is 

designated Qp. Qp does not contain a recognisable TATA box, which is consistent with 

multiple sites of transcription initiation from Qp (Nonkwelo et al., 1996). Additionally, 

EBNA1 can negatively autoregulate expression within receptor plasmids containing 

both Fp and Qp through two binding sites downstream of the 3'-most Qp start site 

(Sample et al., 1992; Snug et al., 1994). Following the switch from latent to lytic 

infection EBNA1 transcription is controlled by the Fp upstream of Q (Lear et al., 1992).

EBNA1 can bind RNA in vitro through arginine/glycine motifs (Snudden et al., 1994). 

EBNA1 also activates expression of the lymphoid recombinase genes (RAGs) through 

an as yet unidentified mechanism (Srinivas and Sixbey, 1995). Activation of the RAGs 

could promote chromosomal rearrangements and translocations and possibly also 

facilitate viral integration. This may indicate that EBNA1 can activate expression of 

critical cellular genes and affect cellular growth control. Expression of EBNA1 in EBV 

negative cell lines has no obvious effect upon cellular growth characteristics. However, 

the expression of EBNA1 in the B cells of transgenic mice has been shown to be 

associated with the development of lymphocytic lymphoma and leukaemia suggesting 

that EBNA1 predisposes the mouse lymphocytes to oncogenic change (Wilson and 

Levine, 1992).

1.5.2 EBNA2

The EBV nuclear antigen 2 (EBNA2) is one of the first EBV encoded proteins 

expressed after primary infection of B lymphocytes. EBNA2 differs extensively 

between type-1 and type-2 EBV isolates (Aitken et al., 1994) and is the primary 

determinant of the biological difference that enables the type-1 strains to transform B 

lymphocytes with greater efficiency (Rickinson et al., 1987; Platt et al., 1993). In 

nuclear fractions EBNA2 is associated with nucleoplasmic chromatin and nuclear 

matrix fraction (Platt et al., 1993). EBNA2 is an 83 kDa protein containing a 

polyproline region, a glycine arginine repeat and a highly acidic carboxy terminus 

(Dambaugh et al., 1984). Like EBNALP and EBNA1, EBNA2 is phosphorylated on 

serine and threonine residues. EBNA2 undergoes significant post-translational
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modification other than phosphorlyation because the size of the nascent protein is 

smaller than that of the stable intranuclear EBNA2 (Kieff, 1996). EBNA2 is a trans- 

activator of viral and cellular gene expression. A set of activation molecules including 

the EBV receptor CD21 and the B-cell activation antigen CD23 which has been 

implicated as a growth and survival factor for B cells (Wang et al., 1987, 1990a), are 

turned on by infecting EBV-negative BL cell lines with an immortalizing strain of the 

virus such as B95-8. When infected with a viral strain deleted for EBNA2 (P3HR-1) 

up-regulation of these genes was not observed. By stably transfecting EBNA2 into a 

P3HR-1 expressing BL, increased expression of CD21 and CD23 was observed, 

indicating a direct role for EBNA2 in the modulation of cellular genes implicated in B- 

cell proliferation (Wang et al., 1987, 1990a). Other genes trans-activated by EBNA2 

are the c-fgr oncogene (Knutson, 1990) and viral genes including LMP1 (Abbot et al., 

1990; Ghosh and Kieff, 1990; Wang et al., 1990b; Tsang et al., 1991; Fahraeus et al., 

1993) and LMP2 (Tsang et al., 1991) also the ds-acting element upstream of the Cp 

promoter (Walls and Perricaudet, 1991; Sjoblom et al., 1995).

Three regions have been located which appear to be stringently required for 

transformation and the iraws-activating activity of EBNA2, between amino acid 

residues 95-110, 280-337 and 425-462. The role of the 95-110 region is unclear, the 

425-462 region is essential due to its acidic irans-activating characteristic and the 280- 

337 region mediates the interaction with DNA sequence specific binding proteins that 

bring EBNA2 to its responsive elements as EBNA2 does not interact directly with DNA  

(IARC Monograph, 1997). All the promoters activated by EBNA2 share the core 

sequence GTGGGAA (Waltzer et al., 1994). Through studies of its responsive elements 

a 28 amino acid polypeptide corresponding to residues 310-336 of EBNA2 (see figure

1.5) was used to purify a nuclear protein p63. The sequence of p63 revealed it to be the 

previously characterised recombination signal sequence binding protein RBP-Jk, a 

widely expressed and highly conserved protein that probably acts as a key adapter for 

transcription regulatory factors of cellular genes. EBNA2 interacts with RBP-Jk and 

binds DNA in this way (Grossman et al., 1994; Henkel et al., 1994).
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Fig 1.5. Functional domains of EBV nuclear antigen 2 (EBNA2). The pro box is a region composed 

entirely of proline, it varies in length between viral strains. Adapted from Farrell 1995.

The genetics o f Drosophila provides a clue to the physiological role of R B P -Jk . RBP- 

Jk  is a DNA binding protein and the down-stream target o f a cellular receptor called 

Notch (Fortini and Artavanis-Tsakonas, 1994), which in mammals is part o f  a family o f  

related proteins. The Notch gene o f Drosophila megalanogaster encodes a 300 kDa 

transmembrane receptor with a large extracellular domain and 36 tandem epidermal 

growth factor (EGF)-like repeats as well as an intracellular domain with 6  tandem 

Ankyrin repeats and a PEST sequence (Artavanis-Tsakonas et al., 1995). Notch 

participation in local intracellular communication was first appreciated in studies o f  

embryonic neurogenesis in Drosophila, The Lin-12 and Glp-1 proteins of 

Caenorhabditis elegans are both structurally similar to Notch, although both possess 

fewer EGF-like repeats in their extracellular domains than Notch. These proteins have 

also been extensively studied in order to delineate the role o f Notch (Artavanis- 

Tsakonas et al., 1995). Within the past few years, several homologs of the Drosophila 

Notch proteins have been identified in vertebrates including humans. The vertebrate 

Notch genes are expressed throughout developing tissues at the embryonic stages and in 

the proliferative layer o f mature tissue, the expression o f vertebrate Notch is thought to 

play a role in the cell-fate specification in many developmental contexts (Artavanis- 

Tsakonas et al., 1995). Antibodies to two o f the four known human Notch proteins 

have been used to examine Notch protein levels in human tissue samples including
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certain cancerous tissues (Zagouras et al., 1995). In metaplastic cervical tissues as well 

as in certain cancerous lesions, Notch proteins are detected at elevated levels relative to 

the surrounding tissue (Zagouras et al, 1995). This data supports the theory that Notch 

signalling activity is correlated with the differentiation state of these human tissues. 

Genetic and molecular studies have identified a family of structurally related ligands for 

the Drosophila Notch receptor and the C. elegans Lin-12 Gly-1 receptor proteins. 

These ligands encoded by the Delta and Serrate genes in Drosophila are all membrane- 

anchored extracellular proteins. The extracellular part of all putative ligands contain 

varying numbers of EGF-like repeats and a second cysteine-rich conserved motif 

referred to as the DSL region (Tax et al., 1994). Further studies have identified further 

putative Notch ligands in humans. These vertebrate molecules have overall structures 

similar to the Delta and Serrate and all have extracellular regions with EGF-like repeats 

and cysteine rich DSL motifs. This DSL region is important in ligand function as 

shown by mutation analysis (Artavanis-Tsakonas et al., 1995). A  protein that interacts 

directly with the intracellular Ankyrin repeat region of Notch in Drosophila is the 

product of the Suppression of Hairless [Su(H)] locus, which has been strongly 

implicated in playing a central role in Notch signalling. The Drosophila Su(H) protein 

is highly related to RBP-Jk (Fortini and Artavanis-Tsakonas, 1994).

Notch 1 is a human Notch first identified at the breakpoint of a recurrent chromosomal 

translocation associated with a subset of human T-cell acute lymphoblastic 

leukaemia/lymphomas (T-ALL). RNA transcripts from the normal Notch 1 gene are 

found in most cells but are present at highest levels in the developing thymus and brain 

(Aster et al., 1997). A  truncated form of Notch 1 has been identified in human T-ALLs 

and its oncogenicity has been confirmed. Notch has been shown to interact physically 

and functionally with RBP-Jk and with components of the NF-kB signalling pathway 

and some Notch phenotypes in the fly appear to be independent of the Su(H). Studies 

conducted in T-ALLs indicate that the oncogenic capacity of truncated Notch 1 may be 

mediated at least in part by RBP-Jk. As EBNA2, which is required for B-cell 

transformation, binds to and alters RBP-Jk it may be that RBP-Jk also has an important 

role in T-cell transformation (Aster et al., 1997).
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It has been proposed that Notch signalling is achieved by a DSL ligand activating the 

Notch receptor, which in turn, activates the CSL transcription factors (CSL = CBF1, 

Su(H), LAG-1). In addition feedback loops within the pathway reinforce and amplify 

the signalling.

Receptor activation Transcription-factor activation

DSL ligand  ► Notch recep tor    ► CSL effector

Vertebrate example

Delta la n d  2----------------------------► Notch 1-4 -------------------- ► RBP-Jk

A  biochemical understanding of Notch signalling, however, is only just emerging and 

many details remain poorly understood (Kimble et al., 1998).

Ligand binding activates Notch and subsequent processing and transport of Notch to the 

nucleus converts the repressor RBP-Jk (Hsieh and Hayward, 1995; Waltzer et al.,

1995), into an activator and turns on target genes (Jarriault et al., 1995; Hsieh et al.,

1996). EBNA2 and activated Notch interact with similar regions in the RBP-Jk 

molecule (Hsieh et al., 1996). Mutational analysis of an 80 bp EBNA2 responsive cis- 

element within the viral LMP promoter region identified two sequence elements 

involved in trans activation by EBNA2. Along with RBP-Jk, a consensus binding site 

for Spi-1 (PU.l), a member of the Ets family of transcription factors, was identified 

which is also essential for transactivation of LMP1 by EBNA2 (Laux et al., 1994; 

Johansenn et al., 1995).

A consistent feature of BL cells is the transcriptional activation of the proto-oncogene c- 

myc by chromosomal translocation (Bornkamm et al., 1988; Spencer and Groudine, 

1991). The most frequent translocation t(8;14) fuses the c-myc gene locus on 

chromosome 8 to the constant region of the Ig heavy chain gene locus on chromosome 

14. Since BL cells are thought to proliferate through activation of the c-myc gene the 

growth promoting function of EBNA2 may not be required in the setting of BL. A  

novel function of EBNA2 has been described using an oestrogen responsive system 

whereby the expression of EBNA2 is controlled by the presence or absence of oestrogen
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(Jochner et al., 1996). EBNA2 down-regulates surface IgM expression and 

transcription of the Ig-|x locus very efficiently. In BL cell lines with the t(8;14) 

translocation, down-regulation of Ig-^. is associated with concomitant transcriptional 

shut-off the c-myc gene, reflecting the fact that c-myc is under the control of Ig heavy 

chain locus in these cells. The function of EBNA2 as a negative regulator of Ig-|i 

provides an explanation for the growth inhibiting effect of EBNA2 in cells carrying a 

t(8;14) translocation (Jochner et al., 1996). The down regulation of IgM expression by 

EBNA2 may also provide an explanation for the long standing observation that EBV 

negative BL cells in culture tend to have higher levels of Ig expression than their EBV 

positive counterparts (Benjamin et al., 1982; Cohen et al., 1987; Magrath et al., 1990). 

Ig-pi and c-myc are down-regulated by EBNA2 at the transcriptional level and the 

transcription of Ig-fx and c-myc are affected by EBNA2 simultaneously. This suggests 

that EBNA2 is mediating its effect on expression through a common target, presumably 

a transcription factor (Jochner et al., 1996).

A  recent study using an LCL conditional for functional EBNA2 expression on the 

presence of oestrogen, demonstrated that the transcription of the proto-oncogene c-myc 

is activated by EBNA2. The precise mechanism of this transcription activation remains 

to be elucidated (Kaiser et al., 1999). It was also concluded that in contrast to c-myc 

and LMP1, neither cyclin D2 nor cdk4 is a direct EBNA2 target. Cyclin D2 and cdk4 

are both elements of the basic cell cycle machinery and drive cell cycle progression in 

early Gi. Since it has been shown that different B cell activation protocols can induce 

cyclin D2 and cdk4, it may be that the induction by proliferation of EBNA2 is a 

secondary event potentially driven by the primary viral and cellular EBNA2 targets 

(Kaiser etal., 1999).

1.5.3 EBNALP

EBNA leader protein is so designated because it is encoded by the 5' leader sequence of 

bicistronic mRNAs specifying the other EBNAs. The translation initiation codon for 

EBNALP is created by a splicing event that occurs near the 5' end of the message 

(Sample et al., 1986; Speck et al., 1986; Rogers et al., 1990). The EBNALP protein is
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composed of amino-terminal repetitive segments followed by a unique carboxy-terminal 

sequence. EBNALP is frequently observed as a ladder of proteins in gel electrophoresis 

which differ in the number of amino-terminal repeats due to the fact that the repetitive 

part of the protein is derived from exons in the major internal repeat of the virus, which 

varies in copy number in any EBV population (Hammerschmidt and Sugden, 1989). 

The protein is strongly associated with the nuclear matrix, immunofluorescence 

microscopy illustrates its unusual location in the nucleus, a proportion is diffusely 

spread through the nucleus while the rest is concentrated in a few granules frequently 

distributed in curved linear arrays (Petti et al., 1990; Jiang et al., 1991). Association of 

EBNALP with pRb and p53 has been suggested based on in vitro biochemical 

interaction and colocalization of EBNALP with pRb as detected with one antibody and 

not another, the in vivo relevance of this is unknown (Jiang et al., 1991; Szekely et al., 

1993). Transient transfection of EBNALP and EBNA2 into primary B-lymphocytes co­

stimulated with gp350 indicated that the two proteins co-operate in the induction of G0 

to Gi transition as marked by induction of cyclin D2, however, the mechanism of action 

remains unclear (Sinclair et al., 1994).

1.5.4 LM P1

Latent membrane protein 1 (LMP1) mRNA is the second most abundant viral transcript 

in latently infected cells (Fennewald et al., 1984; Sample and Kieff, 1990). The 

product, encoded by three exons, is an integral membrane protein with at least 3 

domains: a 2 0  amino acid hydrophilic amino terminus; a six amino acid hydrophobic 

domain and a 2 0  amino acid, alpha helicase transmembrane segments separated by five 

reverse turns, each five of 1 0  amino acids in length and a 2 0 0  amino acid carboxy 

terminus, rich in acidic residues (see figure. 1.6). LMP1 migrates on SDS-PAGE 

between 58 and 63 kDa depending on the EBV strain. Both the amino and the carboxy 

terminal sequences are on the cytoplasmic surface of the plasma membrane connected 

by the six transmembrane domains. This results in the exposure of three reverse turn 

loops on the external surface of the cell (Liebowitz et al., 1986; Thorley-Lawson and 

Israensohn, 1987). LMP1 forms patches in the cell membrane, to which the 

intermediate filament protein vimentin colocalizes, however, patch formation does not
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require vimentin or other EBV proteins (Liebowitz et al., 1986; Moorthy and Thorley- 

Lawson, 1990, 1993a). LMP1 is the only known EBV gene which acting alone can 

transform rodent fibroblasts (Wang et al., 1985). LMP1-expressing rodent fibroblasts, 

grown in low concentrations of serum, acquire anchorage-independent growth in soft 

agar and become tumorgenic (Wang et al., 1985). LMP1 is highly toxic if expressed at 

high levels (Hammerschmidt and Sugden, 1989). At least half of the LMP1 protein 

expressed is associated with the cytoskeleton as defined by resistance to extraction with 

non-ionic detergents and co-localization with vimentin. Nascent, non-ionic detergent- 

soluble LMP1 has a half-life of less than two hours and is converted to an insoluble, 

cytoskeleton-associated form, with a half-life of 3-15h, that is phosphorlated on serine 

and threonine residues in the carboxy terminal domain (Moorthy and Thorley-Lawson, 

1990, 1993a). LMP1 is transcribed during lytic infection and full size LMP1 is 

incorporated into virions, indicating that virion-associated products may affect the 

growth of newly infected cells (Mann et al., 1985).

LMP1 also alters the growth of EBV-negative BL lymphoblasts when expressed stably 

or transiently at the appropriate level in such cells after gene transfer. In fact, LMP1 

induces many of the changes usually associated with EBV infection of primary B- 

lymphocytes or with antigen activation of primary B-lymphocytes, including cell 

clumping, increased villous projections, increased vimentin expression, increased cell 

surface expression of CD23, CD39, CD40, CD44 and class II major histocompatability 

complex (MHC), decreased expression of CD10 and increased expression of the cell 

adhesion molecules LFA-1, ICAM-1 and LFA-3 (Wang et al, 1988b; Birkenbach et al., 

1989; Wang et al., 1990a; Liebowitz et al., 1992; Peng and Lundgren, 1992; Zhang et 

al., 1994a; Kieff, 1996). It has been suggested that LMP1 may contribute to malignant 

disease by mediating upregulation of the adhesion molecule CD44 which may be an 

important factor determining the progression and dissemination of EBV-associated 

tumours in vivo (Sy et al., 1991; Walter et al., 1995). LMP1 was shown to increase 

certain cytokines with B-cell promoting activity, such as IL-10 (Nakagomi et al., 1994). 

It has also been shown to protect B-lymphocytes from apoptosis by inducing expression 

of the anti-apoptotic proteins Bcl-2 (Rowe et al., 1994) and also that of A20 (Henderson 

et al., 1991; Martin et al., 1993; Fries et al., 1996).
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Transfection studies with LMP1-deletion mutants indicate that the cytoplasmic amino 

terminus is not responsible for the activating effects, the transmembrane domains are 

critical, probably due to their importance for LMP1 aggregation in the plasma 

membrane and the carboxy-terminal domain is essential (Wang et al, 1988a,b; Martin 

and Sugden, 1991; Moorthy and Thorley-Lawson, 1993a,b). As expected EBV  

recombinants lacking LMP1 were unable to induce growth transformation of primary B 

cells (Kaye et al., 1993). A  recent study described the effect of LMP1 on EBV negative 

B cell growth using a tetracycline regulated cell line in which the expression of LMP1 is 

inducible. Results demonstrated that induced expression of LMP1 had a cytostatic 

effect upon B-cell lines due to an accumulation of cells at the G2/M phase of the cell 

cycle (Floettmann et al., 1996).

The discovery that LMP1 efficiently transactivates the expression of the human 

immunodificiency virus type-1 long terminal repeat (HIV-1 LTR) by induction of 

NFkB activity, was evidence that at least part of LMP1 transcriptional activating effects 

are mediated by NFkB activation (Hammarskjöld and Simurda, 1992). It was then 

shown that LMP1 engages signalling proteins such as tumour necrosis receptor 

associated factors (TRAFs) 1, 2 and 3. This provided further evidence for the role of 

TRAFs in signalling and linked LMP1-mediated transformation to signal transduction 

from the TNFR family (Devergne et al., 1998). Constitutive LMP1 expression in EBV- 

transformed cells carrying a conditional EBNA-2 gene has provided evidence that 

LMP1 in the absence of functional EBNA2 promotes survival of the cells without 

maintaining proliferation, similar to the stimulation of the endogenous CD40 receptor, 

(CD40 is a member of the TNFR family), by CD40 ligand which is even more effective 

in promoting cell survival than LMP1 (Zimber-Stroll et al., 1996). The functional 

similarity between LMP1 and CD40 is corroborated by the fact that the two proteins 

recruit TRAFs which mediate activation of NF-kB (Mosialos et al, 1995). LMP1 

mediates NFkB activation via two independent domains located in its carboxy terminal 

cytoplasmic tail, a TRAF interacting site that associates with TRAF 1, 2, 3 and 5 

through a core motif PXQXT/S and a TNFR associated death domain (TRADD)- 

interacting site (see fig. 1.6), (Devergne et al, 1998). Deletion of the TRAF interaction
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domain within the LMP1 molecule abolishes B-cell transformation by EBV (Izami et 

al., 1997). LMP1 aggregation at the plasma membrane is essential for signalling and 

for B-lymphocyte growth transformation (Floettmann and Rowe, 1997; Gires et al, 

1997). LMP1 constitutively signals because the six transmembrane domains enable 

ligand-independent continuous aggregation in the plasma membrane. As a consequence 

of LMP1 aggregation, TRAFs and TRADD constitutively associate with the LMP1 

carboxy-terminal cytoplasm domain (CTD) (Devergne et al., 1996; Izumi and Kieff,

1997). The anti-apoptotic gene A20 is upregulated by LMP1 and this up regulation of 

the A20 promoter is mediated through an NFKB-binding element upstream of the A20 

promoter (Laherty et al., 1992).

Six transmembrane domains o f LMP1

Fig. 1.6. Schematic representation of LMP1 adapted from Kieff, 1996. LMP1 consists of a N terminal 

cytoplasmic domain, six hydrophobic transmembrane domains separated by reverse turns and a 200 

amino acid C-terminal domain (CTD). The two signalling domains in the CTD are represented by purple 

boxes.

While an important function o f the amino terminal cytoplasmic amino acids (aa) 

appears to be in orientating the transmembrane domains (Izumi et al, 1994), two 

regions o f 200 aa CTD are critical for NF-kB activation and for B-lymphocyte growth

Cytoplasm

N term 
domain
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transformation. The region consisting of the membrane-proximal 45 residues of the 

cytoplasmic tail mediates less than 30 % of LMP1-induced NF-kB activation and has 

the functional designation CTAR1 (Carboxy-terminal activation region 1, see figure

1.6) (Mitchell and Sugden, 1995; Huen et al., 1995). This domain is both necessary and 

sufficient for initial B-lymphocyte transformation. CTAR1 mediates the association of 

LMP1 with TRAFs (Devergne et al., 1996). It has been suggested that TRAF2 or 

TRAF1/2 heterodimers mediate NFkB activation by CTAR1 while TRAF3 may act as a 

negative modulator by displacing TRAF1 and TRAF2 from LMP1 (Devergne et al., 

1996). The distal region of LMP1 CTD, encompassing aa 352-386 designated CTAR2, 

is the major NF-KB-inducing domain and mediates the association of LMP1 with 

TRADD (Izumi and Kieff, 1997; Devergne et al., 1998;).

Studies have indicated that activation of the TNFR family member CD40 in conjunction 

with IL-4 stimulation can mimic EBV-induced immortalization of human lymphocytes 

in short-term culture (Saeland et al., 1993; Galibert et al., 1994). Expression of LMP1 

in B-lymphocyte cells induces many of the phenotypic changes characteristic of EBV 

immortalization, suggesting parallel roles for the cellular CD40 protein and the viral 

LMP1 protein in signal transduction pathways. The expression of CD40 and LMP1 on 

malignant epithelial cells suggests that signals from these proteins may be involved in 

not only B-cell activation but also progression to malignancy in cells of epithelial origin 

such as NPC (Miller et al., 1997). LMP1 has also been shown to induce expression of 

the epidermal growth factor receptor (EGFR) and A20 in human epithelial cells (Miller 

et al., 1995). Upon stimulation with EGF, these cells demonstrated enhanced tyrosine 

phosphorylation of down stream targets of the EGFR and exhibit enhanced growth in 

serum free media. Induction of molecules such as EGFR and A20 in epithelial cells 

may be important from LMP1-mediated effects on cell growth and differentiation in 

established epithelial cell lines, as well as for EBV-infected epithelial malignancies such 

as NPC (MiHer et al., 1995).

It has been shown that overexpression of TRAF3 in a B-cell line expressing LMP1, 

displaces TRAF1 and TRAF2 from the membrane associated signalling complex, 

suggesting a negative regulator role for TRAF3 which is important in NF-kB activation.
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LMP1 may modulate TRAF signal transduction events by binding negative regulators 

of the TRAF pathway such as TRAF3 (Devergne et al., 1996). The relative levels of 

LMP1 and TRAF3 are apparently critical for the induction of the EGFR. These and 

other findings support the following model: In the absence of LMP1 or activated CD40, 

TRAF signalling molecules are present but are unable to activate signalling pathways 

resulting in A20 or EGFR expression. Expression of LMP1 in C33A epithelial cells 

then engages three distinct signalling pathways. The TRAF interaction domain in 

LMP1 activates the transcription factor NF-kB resulting in the induction of genes 

including the NF-kB regulated A20 gene. The TRAF interaction domain also induces 

expression of the EGFR through the activation of a pathway distinct from NF-kB 

activation alone. The distal LMP1 domain initiates the third signalling event. The 

distal domain which does not interact with the TRAF molecules, activates NF-kB, 

resulting in the induction of A20 expression, but has no effect on EGFR expression. 

The presence of two domains in LMP1 that can activate NF-kB through TRAF- 

dependent and TRAF-independent pathways suggests that NF-kB activation is carefully 

regulated during viral transformation (Miller et al., 1997). The EGFR and other genes 

regulated by activation of the TRAF pathway are likely to mediate the oncogenic effects 

of LMP1 and CD40 expression in epithelial cells (Miller et al., 1997).

1.5.5 LM P2A  AND 2B

The genes encoding LMP2A and 2B have also been named terminal protein 1 and 

terminal protein 2 (TP1, TP2), because they are transcribed across the terminal repeat 

sequences of the linear viral genome of which are fused together upon infection to 

generate the intracellular episomal form of the viral genome (Laux et al., 1988; Sample 

et al., 1989). The two messages consist of different 5' exons and eight common exons 

and are predicted to encode nearly identical proteins differing only in the length of their 

hydrophilic amino termini (Ring, 1994). Transcription of the LMP2A starts 3Kb 

downstream of the LMP1 transcription start site (Laux et al., 1988a; Sample et al., 

1989). The LMP2B and LMP1 promoters form bi-directional transcription units 

containing a common EBNA2 responsive element, while a separate EBNA2 response 

element regulates LMP2A transcription (Zimber-Strobl, et al., 1993). LMP2A and 2B
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are 54 and 40 kDa in size respectively. Both proteins are predicted to encode twelve 

highly hydrophobic membrane spanning domains and are localized to patches in the 

plasma membrane of infected cells, in close association with LMP1 (Longnecker and 

Kieff, 1990). LMP2A and 2B are not required for EBV mediated immortalization but 

they do improve efficiency of transformation (Longnecker et al., 1992; Brielmeir et al.,

1996). The LMP2 proteins are phosphorylated on serine, threonine and tyrosine 

residues (Longnecker et al., 1991) and have been shown to interact with src-family 

tyrosine kinases in EBV-infected B cells (Burkhardt et al., 1992) They have also been 

associated with another stably phosphorylated tyrosine kinase sky. These interactions 

suggest that the LMP2s play a role in transmembrane signal transduction (Kieff, 1996). 

LMP2A has been shown to inhibit anti-immunoglobulin-mediated Ca mobilization, 

PKCy2 activation and anti-immunoglobulin-induced reactivation of the lytic cycle, 

which can be bypassed by TPA with Ca2+ ionophores (Miller et al., 1994b, 1995a). 

These data are consistent with a model in which LMP2A sequesters the receptor 

associated tyrosine kinase, blocking its autophosphorylation and downstream signalling 

events (Miller et al., 1995a).

1.5.6 EBNA3A, 3B, 3C.

EBNA3A, 3B and 3C are encoded by 3 genes located in tandem in the EBV genome 

(see fig. 1.3.). Each is encoded by a short and long exon (Hennessy et al., 1985, 1986; 

Kallin et al., 1986; Petti and Kieff, 1988; Ricksten et al., 1988). The mRNAs that 

encode these proteins are the least abundant EBNA mRNAs, with only a few molecules 

occurring in each latently infected cell. The proteins are located in large nuclear clumps 

in the nuclear matrix, chromatin and nucleoplasmid fractions but not in the nucleolus 

(Petti et al., 1990). Type-1 and 2 strains of EBV exhibit 84%, 80% and 72% amino acid 

identity in their EBNA3A, 3B and 3C sequences respectively (Sample et al., 1990). 

There is increasing evidence that EBNA3C, like EBNA2, functions as a iraws-activator 

of both cellular and viral genes. Transfection of an EBNA3C expression construct into 

an EBV negative BL cell line has been shown to result in the upregulation of the EBV 

receptor CD21 (Wang et al., 1990). Furthermore, expression of EBNA3C in the Raji 

cell line (in which the EBV genome is deleted for most of the EBNA3C open reading
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frame) induces an up-regulation of LMP1 and the cellular proteins CD23 and vimentin 

(Allday et al., 1993; Ring, 1994). EBNA3A and 3C are required for transformation 

whereas EBNA3B is not (Tomkins and Kieff, 1992a; Tomkins et al., 1993). EBNA3A, 

3B and 3C proteins have been shown to inhibit the transcriptional activation of EBNA2 

responsive promoters (Le Roux et al., 1994) by destabilizing RBP-Jk and EBNA2/RBP- 

Jk complexes from binding to their cognate RBP-Jk binding sites (see figure 1.7). 

EBNA3 proteins are thus believed to counter balance and finely tune the action of 

EBNA2 (Waltzer et al., 1996; Robertson et al., 1996; Zhao et al., 1996).

LMPl

¥
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EBNA2

,_^EBNA3C

EBNA3C

1. EBNA transcription 2. EBNA2 transactivation of transcription 3.EBNA3C modulation of Transcription

Fig 1.7. A schematic model of the mechanism by which EBNA3C counteracts EBNA2 mediated 

activation, by destabilizing the interaction of RBP-Jk and RBP-Jk/EBNA2 complexes binding DNA. 

Adapted from Roberston et al., 1995.

EBNA2 can also be recruited to promoters through interaction with other factors such as 

the proteins from the PU .l family thus inhibitors of EBNA2-mediated transcriptional 

activation by the EBNA3 proteins could thus be restricted to promoters activated 

through RBP-Jk binding sites. This could be a way to differentially regulate certain 

viral or cellular genes (Waltzer et al., 1996).
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1.5.7 EBV ENCODED RNAs (EBERS)

The two EBV-encoded, small nonpolyadenylated RNAs, EBER1 and EBER2, are by far 

the most abundant EBV RNAs in latently infected cells, with an estimated abundance of 

107 copies per cell. They are usually transcribed by RNA polymerase III although 

polymerase II may also be involved. Most EBERs are located in the nucleus and are 

associated at the 3' terminus with the cellular La antigen (Howe and Steiz, 1986; Howe 

and Shu; 1989). EBER 1 and 2 have extensive sequence similarity to adenovirus VA1 

and VA2 and cell U6  small RNAs, both of which form similar secondary structures and 

complex with La protein (Rosa et al., 1981; Glickman et al., 1988). The role of the 

EBERs is unclear but based on the functions of VA and U 6  RNAs two alternative roles 

have been proposed for the EBERs. In adenovirus infection VA1 RNA acts in the 

cytoplasm to directly inhibit activation of an interferon-induced protein kinase, which 

blocks transcription by phosphorylating the protein-synthesis initiator factor eIF-2a. 

EBER1 and 2 can partially complement the replication of an adenovirus with null 

mutations in VAI and VAII, but their effect on eIF-2a kinase activity is significantly 

less and they are not found in the cytoplasm (Kieff, 1996). Both of the proposed 

functions of EBERs are somewhat incompatible with the observation that their 

expression is delayed until after EBNA and LMP gene expression and initiation of DNA  

synthesis (Alfieri et al., 1991). Nevertheless, the earlier events in primary B-cell 

infection are sensitive to interferon (IF) and EBERs may play a role in blocking eIF-2 

kinase (Thorley-lawson, 1980; 1981).

1.6 G e n e s  o f  t h e  l y t ic  v ir a l  c y c le

Only a small fraction of latently infected B-lymphocytes spontaneously enter the 

productive cycle, in these the viral DNA is amplified several hundred fold by a lytic 

origin of DNA replication, ori Lyt (Hammerschmidt and Sugden, 1988). Thus lytic 

infection is usually induced by chemicals (Luka et al., 1979; Saemundsen et al., 1980; 

Laux et al., 1988b). Phorbol esters are among the most reproducible and most broadly 

applicable inducers, their effect is probably mediated by protein kinase C activation of
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Jun-fos interactions with AP-1 upstream of the immediate early virus genes (Farell et 

al., 1983; 1989; Farell 1992; Laux et al., 1988). The Akata cell line which carries an 

LMP2A-deleted virus can be induced by cross-linking of surface immunoglobulins (slg) 

to the extent that more than 50% of the cells enter the lytic cycle (Takada, 1984; Takada 

and Ono, 1989). A second approach to investigating viral replication is to induce the 

lytic cycle by superinfection of Raji cells with defective EBV from the P3HR-1 cell line 

(Mueller-Lantzsch et al., 1980). Raji is an EBV-positive BL cell line with an unusually 

high EBV episome copy number, it is defective for DNA replication and late gene 

expression thus is tightly latent (Polack et al, 1984a). Defective virions from P3HR-1 

contain rearranged DNA molecules in which the intermediate early ira«s-activator of 

lytic cycle are expressed after superinfection (Cho et al., 1984; Miller et al., 1984). 

Studies with such cell lines has allowed the division of EBV replicative proteins into 

early antigens (EA), membrane antigens (MA) and virus capsid antigens (VCA). Early 

antigens are further subdivided into EA-D (diffuse) and EA-R (restricted) due to a 

different sensitivity to methanol fixation (Henle et al., 1971a; 1971b). After induction, 

cells that have become permissive to viral replication undergo cytopathic changes 

characteristic of herpesviruses, including migration of nuclear chromatin, synthesis of 

viral DNA, assembly of nucleocapsids, envelopment of the virus by budding through 

the inner nuclear membrane and inhibition of host macromolecular synthesis (IARC 

Monograph, 1997) see figure 1.8.
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Fig. 1.8. A schematic representation of early and late EBV gene expression. The VCA the MA and the 

EA are illustrated, their open reading frames are written in bold.

Virus gene expression follows a temporal and sequential order (Farrell, 1992; Takada 

and Ono, 1989). Some virus genes are expressed independently o f new protein 

synthesis, early after induction and are classified as immediate early genes. Early lytic 

virus genes are expressed slightly later and their expression is not affected by inhibition 

of viral DNA synthesis (KiefF, 1996).

1 .6 .1  IMMEDIATE E a r l y  GENES

After P3HR-1 superinfection of Raji or slg cross-linking of Akata cells in the presence 

of protein synthesis inhibitors, three leftward mRNAs are transcribed. The BZLF1, 

BRLF1 and BI LF4 encoded proteins are potent transactivators of early EBV lytic gene



expression (Takada and Ono, 1989; Marschall et al., 1991; Kieff, 1996). The functional 

and physical interaction of BZLF1 with NFkB is an important mediator of LMP1 

effects in EBV latent infection. BZLF1 can also downregulate the EBNA Cp promoter 

perhaps facilitating the transition from latent to lytic infection (Kenny et al., 1989; 

Sinclair et al., 1992).

1.6.2 E a r l y  g e n e s

The early genes are expressed when lytic cycle is induced in the presence of inhibitors 

of DNA synthesis. By this criterion at least 30 EBV mRNAs are early gene products 

(Hummel and Kieff, 1982a,b; Baer et al., 1984). Two very abundant early proteins 

have been mapped to specific DNA sequences. The BALF2 protein is homologous to a 

HSV DNA binding protein and is important in DNA replication (Hummel and Kieff, 

1982a; Kieff, 1996). The BHRF1 protein which is expressed in moderate abundance, 

has extensive collinear homology with bcl-2 (Pearson et al., 1983a; Austin et al., 1988). 

BHRF1 can protect EBV negative BL cells from apoptosis (Me Carthy et al., 1996), 

however, EBV recombinants lacking the BHRF1 ORF are fully capable of initiating and 

maintain cell growth transformation and they can also enter the lytic cycle and produce 

virus (Lee and Yates, 1992; Marchini et al., 1991). Several of the early genes are linked 

to DNA replication as indicated in figure 1 .8 .

1.6.3 L a t e  g e n e s

The late genes code for structural glycoproteins or proteins that modify the infected 

cells in order to permit viral envelopment or egress (IARC Monograph, 1997). Among 

the non-glycoproteins the major nucleocapsid protein is encoded by BCLF1, BNRF1 

encodes the major external nonglycoprotein of the virion and BXRF1 is likely to encode 

a basic core protein. The BFRF3 ORF encodes the tegument protein, (see figure 1.1) 

and VCA p l 8 , which is strongly immunogenic in humans (Kieff, 1996). The genes 

encoding the EBV glycoproteins are illustrated in bold in figure 1.8. The late BCRF1 

gene, which is located in the middle of the EBNA regulatory domain between ori-P and 

Cp, is a close homologue of the human IL-10 gene, with nearly 90% collinear identity
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in amino-acid sequence (Moore et al., 1990; Vieira et al., 1991; Touitou et al., 1996). 

BCRF1 has most of the activity of human IL-10, including negative regulation of 

macrophages and NK cell functions and inhibition of IF y production. Thus, virally 

expressed IL-10 may have a local effect on these responses to reactivate infection 

(IARC Monograph, 1997).

1.7 E B V  ASSOCIATED NON-MALIGNANT DISEASES

1.7.1 I n f e c t io u s  M o n o n u c le o s i s

The classical clinical syndrome associated with primary EBV infection is infectious 

mononucleosis (IM), commonly known as glandular fever. Primary infection during 

early childhood appears to result in mild fever or no clinically detected symptoms 

(Henle and Henle, 1970). As is the case with some other viral illnesses the severity of 

primary infection increases with advancing age, infection during or after adolescence 

can give rise to IM in up to half of the infected individuals (Henle and Henle, 1979). 

Clinically apparent IM tends to be a disease of the socio-economic advanced countries 

where a greater number of people escape infection in childhood with a peak incidence 

occurring in people from 15-25 years of age (corresponding to the time at which they 

start dating) (Power and Walls, 1993). Hormonal changes and maturation of the 

immune response are thought to be possible reasons for this maturation related 

incidence of disease. After infection there is a 30-50 day incubation period, followed by 

a 3-5 day period where mild symptoms are experienced, these include headache, 

malaise and fatigue. In more than 80% of cases a sore throat will occur during the first 

week. Fever with temperatures reaching 39.5°C or higher lasts for about 10 days and 

then fall gradually over an additional 7-10 days. While IM is usually a benign, self- 

limiting disease, complications may ensue, including rupture of the spleen. 

Neurological complications, interstitial nephritis with renal failure, hepatitis interstitial 

pneumonia and anaemia have also been reported (Imoto et al., 1995; Mayer et al., 1996; 

Morgenlander, 1996; Sriskandan et al., 1996). Fatal mononucleosis usually occurs in 

individuals with an underlying immune defect (Miller, 1990).
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The acute phase of virus infection is characterised by a well-defined serological pattern. 

There is the absence of antibodies to EBNA and the presence of IgM antibodies to 

structural components of the virion, anti-VCA (viral capsid antigen) and anti-MA (anti­

membrane or envelope antigen). Antibodies to early components of the viral replication 

cycle, early antigens (EA) are also readily detected (Henle and Henle, 1979). IgM 

antibodies to VCA evolve quickly with infection, persist for weeks to months and do 

not reappear. Their detection is presumptive evidence of recent primary infection. 

Antibodies to EA of the diffuse or restricted types develop in most primary infections 

and wane with time (Horwitz et al., 1985). Transcriptional analysis suggests that a 

type-III EBV latency prevails in infectious mononucleosis, with expression of the full 

set of EBV latent genes, including Cp/Wp-driven EBNA1 (Falk et al., 1990; Tierney et 

al., 1994). A more detailed analysis of EBV gene expression at the level of the single 

cell reveals, however, a more heterogeneous picture. Only a subset of cells coexpress 

EBNA2 and LMP1, characteristic type-III latency. Most cells appear to be EBER 

positive but negative for EBNA2 and LMP1, suggesting a type-I latency and some large 

immunoblasts are seen which appear to express LMP1 in the absence of EBNA2 - type- 

II latency. There are also many small lymphocytes that express EBNA2 but no 

detectable LMP1. It is uncertain if this represents a new type of latency or a transitory 

phenomenon (Niedobitek et al., \ 997b).

1.7.2 X-LINKED LYMPHOPROLIFERATIVE SYNDROME

The X-linked Lymphoproliferative (XLP) syndrome is a hereditary immunodeficiency 

disorder characterised by a self-destructive immune response to primary EBV infection 

(Provisor et al., 1975; Purtilo, 1976). Patients are usually asymptomatic until they 

encounter EBV, but may present symptoms of immuno deficiency prior to EBV 

infection. After primary EBV infection, the majority of patients develop IM with a fatal 

outcome. Patients who survive the primary infection are at high risk of developing 

malignant lymphoma, hypogammaglobulinaemia or aplastic anaemia. The XLP gene 

has been localised to Xq25, identification of the function of this gene is of prime
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importance for better understanding the complex interaction between EBV and the host 

(IARC Monograph, 1997). The only curative treatment for X-linked 

lymphoproliferative syndrome is allogenic bone-marrow transplantation (Williams et 

al, 1993).

1.7.3 O r a l  h a ir y  l e u k o pl a k ia

Oral hairy leukoplakia is an epithelial lesion of the tongue which was originally 

described in HIV-infected individuals but was subsequently found in 

immunosuppressed transplant patients. Oral hairy leukoplakia manifests itself as a 

raised white lesion, typically located at the lateral border of the tongue, but which may 

extend to other parts of the oral mucosa (IARC Monograph, 1997). In 1985, EBV DNA  

was detected in this lesion and the virus has been localised to the superficial epithelial 

cells. Linear virion DNA and the expression of viral lytic cycle antigens e.g. BZLF1 

and VCA, have been shown, indicating that epithelial cells may support EBV 

replication (Greenspan et al., 1985; Gilligan et al., 1990a; Young et al., 1991). 

Expression of BZLF1 and VCA, are restricted to the more differentiated upper epithelial 

cell layer (Greenspan et al, 1985; Young et al, 1991). In contrast to the abundance of 

the virus in the upper epithelial cells, viral genomes and EBV gene products associated 

with latent infection are absent from the basal or parabasal epithelial cells of oral hairy 

leukoplakia (Thomas et al., 1991). Together with the absence of a detectable episomal 

population of EBV genomes, this indicates that oral hairy leukoplakia is an isolated 

focus of lytic EBV infection, with no detectable latent phase (IARC Monograph, 1997). 

Regression of oral hairy leukoplakia can be induced by treatment with acyclovir, 

indicating that this lesion is indeed caused by EBV (Resnick et al., 1988).
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1.8 E B V  ASSOCIATED MALIGNANT DISEASES

1.8.1 B u r k i t t ’s  L y m p h o m a

Burkitt’s lymphoma (BL) is the most common childhood cancer in certain parts of 

equatorial Africa and Papua New Guinea, with an annual incidence of more than 50 

cases per million children below the age of sixteen. Burkitt’s lymphoma now accounts 

for 30-70% of childhood cancers in equatorial Africa. The high incidence of BL in 

these locations is associated with geographic and climatic features, determined by 

altitude in East Africa and by rainfall in West Africa, coincident with holoendemic 

malaria (Haddow,1963; Burkitt, 1969; 1983; O’Connor, 1970). The fact that malaria 

infection might be a cofactor in the development of BL is supported by the observation 

that individuals with malaria have a reduced T-cell response to EBV-infected cells. In 

the United States the incidence of BL is 2-3 cases per million children per year. BL is a 

poorly differentiated malignant lymphoma in which the tumour cells show little 

variation in size or shape. The tumour cells are monoclonal B lymphocytes and they 

contain characteristic chromosomal translocations (Manolov and Manalova, 1972; 

Manalova et al., 1979; Rowe and Gregory, 1989). The jaw is the most frequently 

involved site for tumours and the commonest presenting feature in patients with BL in 

equatorial Africa (Burkitt, 1958; 1970a) and Papua-New Guinea (Burkitt, 1967). Jaw 

tumours seem to be age dependent, occurring most frequently in young children, very 

young children often have orbital or maxillary tumours (Olurin and Williams, 1972). 

Abdominal involvement is found in a little more than half of equatorial Africa patients 

at presenting (Burkitt, 1970b) and as many as 80% of patients in other countries 

(Margrath, 1991; 1997). Burkitt’s lymphoma is classified as a non-Hodgkin’s 

lymphoma, invariably of B-cell origin, with B-cell markers such as CD19, CD20, CD22 

and CD79a and surface immunoglobulin always detectable. The surface 

immunoglobulins are usually IgM (IARC Monograph, 1997). Other surface markers 

that are expressed in most BLs include CD 10 and CD77 but CD23 and CD5 are absent 

(Harris et al., 1994). BL cells express low levels of HLA class I adhesion and 

activation molecules such as CD54, C D lla/18 and CD58 (Massucci et al., 1987; 

Billuad et al., 1989; Anderson et al., 1991).
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In the areas of Africa where BL is endemic, more than 90% of the tumours contain EBV  

DNA and express EBNA1 (Geser et al., 1983). However, in parts of the world where 

BL is sporadic (Western Europe and the Americas), only about 15-20% of BL tumours 

contain EBV DNA, this indicates that EBV is not essential for formation of the tumour. 

Therefore, EBV may not play a direct role in the pathogenesis of BL, but may simply 

increase the risk of development of BL by virtue of it’s ability to immortalize B cells 

(including the cell population that gives rise to Burkitt’s lymphoma) (Klein, 1979). 

This hypothesis is consistent with the lack of expression of EBV latent genes (e.g. 

EBNA2, EBNA3 and LMP) known to be necessary for the transformation of B cells 

(Alfeiri, et al., 1991 ; Woisetschlaeger, et al., 1991). The only latent gene invariably 

expressed in Burkitt’s lymphoma, EBNA1, has never been shown to have transforming 

functions (Rowe et al., 1988; Rowe et al., 1987; 1992; Sample et al., 1991; Magrath et 

al., 1993).

The discovery of non-random chromosomal translocations associated with Burkitt’s 

lymphoma (Bernheim et al., 1981) paved the way to an understanding of the genetic 

derangements that are a central component of its pathogenesis. It has been observed 

that the chromosomal breakpoint on chromosome 8 , band q24 is common to all three of 

the observed translocations in BL and that the breakpoints are located on chromosome 

14, 2 and 22, at the heavy- and light-chain immunoglobulin loci (Croce et al., 1979; 

Lenior et al., 1982; Me Bride et al., 1982). The t(8;14) is the most frequent location of 

a breakpoint in African BL occurring in 75% of tumours and in 50% of Brazilian 

tumours (Gutierrez et al., 1992). The net consequence of translocation appears to be 

that c-myc is regulated as if it were an immunoglobulin gene, i.e. it is constitutively 

expressed in these immunoglobulin-synthesising tumour cells.

1.8.2 N a s o p h a r y n g e a l  C a r c i n o m a

Nasopharyngeal carcinoma (NPC) is a rare malignant tumour in most populations, 

however, it is highly prevalent in Southern China where it represents the most common 

tumour in males. More moderate rates are seen in the Inuit population, in other parts of
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Southeast Asia and North Africa. (Ho, 1978). NPC is a disease with a remarkable racial 

and geographical distribution. It constitutes 75-95% of all malignant tumours occurring 

in the nasopharynx in low risk populations and virtually all of those in high risk 

populations (Ho, 1971; Levine and Connelly, 1985). The overall rates of NPC are high 

in China but the incidence in Southern China is 20% greater than that in Northern China 

(Parkin et al., 1997). The rates of NPC are higher in men than in women in most 

populations studied, the number of both male and female cases increases steadily with 

age and the peak is at around 45-54 then declines at older ages (Parkin et al., 1997).

NPC is derived from poorly differentiated epithelial cells and arises in the surface 

epithelium of the posterior pharynx (Parkin et al., 1986). There is strong association 

between NPC and EBV as the presence of EBV is always detected in tumour cells. 

EBV infection is an essential step in the progression to malignancy. It has been shown 

that EBV DNA in NPC is clonal, arising from a single EBV infected cell (Raab-Traub 

and Flynn, 1986b). EBV is present in the cell at the time of carcinogenic 

transformation, thus suggesting that EBV contributes to the transformation event (IARC 

Monograph, 1997). NPC occurs primarily in adults and is unlikely to be the result of 

primary EBV infection as it is prevalent in areas where initial EBV infection occurs 

during childhood (Power and Walls, 1993).

Early studies have shown that NPC patients frequently possess elevated serum 

antibodies to two EBV lytic cycle antigens, viral capsid antigen (VCA) and early 

antigen (EA) (Henle and Henle, 1976; Ho et al., 1976). Scrum detection of these 

antibodies is a routine diagnostic test for NPC in South-east Asia. In about half the 

cases of NPC the presenting sign is a cervical mass resulting from spread to regional 

lymph nodes. Other symptoms may include nasal obstruction, postnasal discharge, 

possible impairment of hearing, tinnitus or otitis media. NPC may metastasise to the 

skeleton, the spine, the liver, lung and skin as well as to the peripheral lymph nodes 

(Miller, 1990).

Nearly all cases of NPC have detectable EBV DNA sequences, the detection of EBV 

DNA and EBERs has been useful in identifying carcinomas that have metastasised to 

lymph nodes when the primary tumour has not been identified (Ohshima et al., 1991;
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Chao et al, 1996). Transcriptional expression of EBV latent genes in NPC cells has 

been studied by northern blotting/hybridization (Raab-Traub et al., 1983; Gilligan et al., 

1990b, 1991; Karran et al., 1992). BARFO, LMP2, EBER and EBNAl-coding 

transcripts are always expressed in NPC cells and LMP1 is detected in 50% of tumours 

(Fahraeus et al., 1988; Brook et al., 1992). Occasionally lytic cycle early genes are also 

detected in a few cells (Luka et al., 1988; Cochet et al., 1993).

The high incidence of NPC among the Cantonese population of China was first 

described by Ho in 1971, who also observed that salted fish is the principal source of 

supplemented food in the diet of these people (which consists mainly of rice). Further 

studies revealed that salted fish consumption was significantly related to the risk for 

developing NPC tumours and increasing frequency of intake was consistently 

associated with increased risk. The association with salted fish was stronger when 

exposure occurred during childhood as compared with adulthood (Huang et al, 1981). 

Carcinogenic volatile nitrosamines have been detected in Chinese salted fish, however, 

their precise role in NPC has yet to be determined (IARC Monograph, 1997).

1.8.3 H o d g k in ’s  d ise a se

Following a report by Weiss and colleagues of EBV DNA in 50% of Hodgkin’s disease 

(HD) tissues (Weiss et al., 1987), the role of EBV in HD has been subjected to intense 

scrutiny (Joske and Knecht, 1993). Histologically HD is characterised by mononuclear 

Hodgkin cells (HC) and their multinucleated variants, the Reed-Sternberg cells (RS). 

The Rye classification distinguishes four major types of Hodgkin’s disease: nodular 

lymphocytes predominant, nodular sclerosis, mixed cellularity and lymphocyte-depleted 

(Luka and Butler, 1966, Harris et al., 1994). It is now accepted that lymphocyte- 

depleted HD represents a separate tumour entity and is considered separately from the 

other three classical forms of HD. Increasing evidence suggests that HD is not a single 

entity but a rather a heterogeneous group of diseases (Harris et al, 1994). The clinical 

representation of HD varies with geographical location and in the western world HD 

usually arises as a unifocal lesion in cervical lymph nodes. Continuous spread of the 

tumour to adjacent lymph nodes gives rise to enlarged nodes. With spread of the
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tumour through lymphatic channels, other organs are involved, the preferential sites of 

involvement including the spleen and distant Lymph nodes. Subsequently as the 

disease becomes more aggressive, other organs are involved, including the liver and the 

kidney, bone-marrow involvement in HD is indicative of extensive tumour infiltration 

(Kaplan, 1980).

In most western populations, very few cases occur among children, a rapid increase in 

incidence among teenagers is seen followed by a peak at about age 25, the incidence 

then plateaus with a second peak with increased age. There is an excess in males which 

is more pronounced at older ages (Mac Mahon, 1957). In poorer populations there is an 

initial peak in childhood only among boys with a relatively low abundance among 

young adults followed by a late peak in those of advanced age (Correa and O’Connor, 

1971). There is evidence that the risk factor for HD in young adulthood through middle 

age is associated with higher education, higher social class, fewer siblings, less crowded 

housing and early birth rank. All of the above factors lead to increased susceptibility to 

later infections with the common childhood infections (IARC Monogragh, 1997).

Pallesen et al., (1991a) and Herbst et al., (1991a) reported that the EBV in HD has a 

restricted latent phenotype of EBNA1 and usually LMP1, LMP2A and LMP2B without 

detectable EBNA2 expression, as in NPC. These finding have been widely replicated. 

In multiple specimens of HD from case studies, molecular evidence of clonal EBV 

genomes with specifically restricted expression of latent viral proteins in the RS cells is 

found in 30-50% of cases. EBV genome status appears to be uniform in involved nodes 

within patients and over time in those patients studied longitudinally (Delsol et al., 

1992; Brousset et al., 1994). The consistency of the finding of clonal EBV and the 

expression of LMP1 in about half of HD cases argues strongly against a passenger role 

for EBV in these cases. Seroepidemiology findings in multiple case studies show that 

patients with HD can be distinguished by an altered antibody profile to EBV. The 

evidence indicates that EBV is a causal factor in the etiology of HD.

The risk of HD after diagnosis of IM has been evaluated and this study revealed that 

overall there was a threefold increase in the risk of developing HD. Essentially all HIV-
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1 infected patients with HD have a higher rate of EBV positivity, generally these 

patients present with advanced HD and have poor prognosis (Moran et al., 1992; Tirelli 

et al., 1995).

1.8.4  POST-TRANSPLANT LYMPHOPROLIFERATIVE DISORDERS

Post-transplant lymphoproliferative disorders (PTLD) are a major complication in 

allograft recipients, occurring in 1-20% of patients. The incidence tends to be lowest 

for renal transplant patients and highest for lung transplant patients which may reflect 

the amount of immunosuppressive therapy associated with the latter (Nalesnik and 

Starzl, 1994; Montone et al, 1996). In PTLD the tumours proliferate unchecked due to 

the absence of adequate T-cell tumour suppression. The tumours can be polyclonal or 

monoclonal as determined by analysis of EBV terminal repeats or cellular gene 

rearrangement status (Joske and Knecht, 1993). It is believed that the pathogenesis of 

the condition starts with EBV driven polyclonal B-cell proliferation, eventually leading 

to fully developed malignant lymphoma. Typically B-cells in these 

lymphoproliferations express a broad spectrum of virus-encoded latent proteins, 

including EBNA1, EBNA2 and LMP1. This type-III form of latency is similar to that 

found in LCLs in vitro, accordingly these cells usually display LCL pattern of cellular 

gene expression, including lymphocyte activation and adhesion molecules (Young et 

al, 1989; Thomas et al, 1990). However, considerable variability has been found in 

EBV gene expression in and between lesions with type-I and type-II latency also 

observed (Delecluse et al, 1995).

1.8.5  A I D S - r e l a t e d  l y m p h o m a s

In the US lymphomas are 60 times more frequent in AIDS patients than in the general 

population (Beral et al, 1991). Non-Hodgkin’s lymphomas are very common in HIV 

infected individuals, primarily at extranodal sites, particularly common are primary 

central nervous system lymphomas (Krogh-Jensen et al, 1994). Morphologically, 

AIDS-related non-Hodgkin’s lymphomas fall into two broad groups; diffuse large B- 

cell non-Hodgkin’s lymphomas, which often show a prominent immunoblastic
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component and Burkitt’s lymphoma and Burkitt’s-like lymphoma. Superficially the 

pathogenesis is the same as PTLD; EBV-immortalised B lymphocytes proliferate 

unchecked due to decimated T-cell numbers resulting in oligo- or monoclonal B-cell 

proliferations (Joske and Knecht, 1993). The two types of AIDS-related non-Hodgkin’s 

lymphomas show striking differences in their relationship to EBV, suggesting different 

pathogenic mechanisms. Most diffuse large B-cell non-Hodgkin’s lymphomas and all 

AIDS-related central nervous system lymphomas are EBV-positive (MacMahon et al., 

1991). Diffuse large B-cell lymphomas have been reported to occur relatively late in 

AIDS patients (Gaidano and Dalla-Favera, 1995) and more advanced depression of the 

immune system is a risk factor for their development (Pedersen et al, 1991). Most 

AIDS-related non-Hodgkin’s lymphomas appear to be monoclonal both with respect to 

their antigen receptor genes and to the EBV episomes, however, there may be rare 

polyclonal cases (Ballerini et al., 1993; Delecluse et al., 1993c).

HIV appears to contribute to the pathogenesis of some EBV-associated AIDS-related 

non-Hodgkin’s lymphomas by inducing severe immunosuppression, leading to a loss of 

EBV-specific T-cell immunity (MacMahon et al., 1991). As EBV-positive, AIDS- 

related B-cell lymphomas consistently lack the HIV genome, a direct contribution of 

HIV to tumorigenesis beyond suppression of the immune system is unlikely (Knowles, 

1993). The relative risk for AIDS-related non-Hodgkin’s lymphomas increases with 

duration of HIV infection and to a certain extent with immune suppression (Munoz et 

al., 1993).

BL is up to one thousand fold more frequent in HIV-positive individuals than in the 

general US population (Beral et al., 1991). The tumour is EBV positive in about 20% 

of cases (Beral et al, 1991). AIDS related BL, both EBV-positive and EBV-negative, 

have been consistently shown to harbour the characteristic c-myc translocation. These 

translocations have been detected in a minority of diffuse large B-cell lymphomas and 

cases with morphological features between large B-cell lymphomas and BL (Ballerini et 

al., 1993; Delecuse et al., 1993c; Bhatia et al., 1994). Other genetic changes implicated 

in the pathogenesis of AIDS-related non-Hodgkin’s lymphoma whether EBV-associated 

or not, include p53, N -ras and K-ras point mutations and deletions in the long arm of
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chromosome 6 (Gaidano and Dalla-Favera, 1995). HIV-positive individuals who 

develop HD are more likely to have advanced extra-nodal disease, not to respond to 

therapy and to die of opportunistic infections than those with HD alone (Ames, et ah, 

1991).

The detection of EBV in T-cell lymphoma opposes the well established process of B- 

cell lymphotrophisim of the virus in vitro. The interpretation of the detection of EBV in 

T-cell non-Hodgkin’s lymphomas and an assessment of the role of the virus in the 

pathogenesis of T-cell lymphoma are complicated by two factors. Firstly, if EBV 

infection of certain T-cells in vitro leads to predominantly lytic infection, EBV infection 

of T-cells may be accidental rather than part of the viral strategy to establish persistent 

infection. Such infection of cells not adapted to latent infection may contribute to the 

development of EBV-associated T-cell lymphomas. Secondly, in many cases the virus 

is detected in only a small proportion of tumour cells (Anagnostopoulos et ah, 1996). 

Although the virus may be present at the onset of the neoplastic process it may 

subsequently be lost from the tumour cell. While there is some evidence to suggest this 

may happen in vitro it has not yet been shown in vivo. The alternative scenario would 

be a secondary infection of established neoplastic T-cells with the virus, this would 

exclude the virus from an initial role in neoplasia but would be compatible with a role 

of the virus in contributing to the disease process. The frequent expression of LMP1 in 

T-cell lymphomas would seem to argue in favour of such a role (d’Amore et ah, 1992). 

However, the role of EBV in T-cell related malignancies remains uncertain to date.
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1.9 CD44

1.9.1 O v e r v i e w

CD44 is a family of ubiquitous multistructural and multifunctional cell surface adhesion 

molecules involved in cell-cell and cell-matrix interaction. Twenty exons are involved 

in the genomic organisation of this group of proteins. The first five and the last five 

exons are constant whereas the ten exons located between these regions are subjected to 

alternative splicing resulting in the generation of a variable region on the protein. 

Differential utilisation of the ten variable region exons, as well as variations of N- 

glycosylation, O-glycosylation and glycosaminoglycanation (by heparan sulphate or 

chondrotin sulphate) generates multiple isoforms of different molecular size (85-230 

kDa ). The smallest and most prolific being CD44 standard (CD44s) which lacks the 

entire variable region. CD44s is found in a wide variety of tissues including the central 

nervous system, lung, epidermis, liver and pancreas, whereas variant isoforms of CD44 

(CD44v) appear to have a much more restricted distribution. CD44v is expressed in 

tissues during development including embryonic epithelia. Known functions of CD44 

are cellular adhesion (aggregation and migration), hyaluronate degradation, lymphocyte 

activation, lymph node homing, myeleopoiesis, lymphopoiesis, angiogenesis and 

release of cytokines, presentation of chemiokines and growth factors to travelling cells 

and transmission of growth signals. The role of CD44 in neoplasia has been extensively 

investigated since it was uncovered that metastatic potential can be conferred on non- 

metastasising cell lines by transfection with a gene encoding a variant member of the 

CD44 family. High levels of CD44 are associated with several types of malignant 

tumour, the physiological function of CD44 indicates that it may be involved in the 

metastatic spread of tumours.

1.10 CD44 NOMENCLATURE

Prior to being given a standard name CD44 appeared in many guises probably reflecting 

its many functions. CD44 was first described as a molecule present on the surface of T- 

lymphocytes, granulocytes and coitical thymocytes (Dalchau et al., 1980). It was
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rediscovered as a phagocytic glycoprotein 1 (Pgp-1) and 80 kDa polymorphic surface 

glycoprotein expressed in large amounts on the surface of macrophages and 

granulocytes. The ability of CD44 to associate with the cellular cytoskeleton and bind 

the extracellular matrix components fibronectin, collagen type-I and IV and hyaluronan 

led to CD44 being described as the extracellular matrix receptor for type-III (ECM-III) 

and identified as the major receptor for hyaluronan (Lesley et al., 1993). Furthermore, 

binding of specific antibodies to a protein that is known to be CD44 were shown to 

interfere with lymphocyte homing (Hermes 3 or GP90Hermes) and with the binding of 

lymphocytes to high endothelial venules (HUTCH-1) (Lesley et al., 1993). Other 

names attributed to CD44 were glcoprotein 85, Ly-24, hyaluronate receptor (H-CAM) 

and In (lu)-related p80 glycoprotein (Naor et al., 1997). All of the above were included 

in the cluster of differentiation 44, or CD44 designation assigned by the Third 

International Workshop on Leukocyte Typing (Cobbold et al., 1987).

1 .11  CD44 STRUCTURE

Standard CD44 is a type-I transmembrane glycoprotein of 341 amino acids, forming a 

248-amino acid extracellular domain and a 72-amino acid cytoplasmic tail (see figure 

1.9) (Stamenkovic et al., 1989). The N-terminal (membrane distal) region of CD44 

folds into a globular domain through disulphide bonding of conserved cysteine residues. 

CD44 has the ability to bind hyaluronic acid (HA) in the extracellular domain. The 

amino acid sequence of CD44s predicts a polypeptide of approximately 37 kDa which 

contrasts with its apparent size SDS-PAGE of 80-90 kDa (Stamenkovic et al., 1989). 

This difference is the result of extensive glycosylation and glycosaminoglycanation of 

the extracellular domain, which contains many sites for both N- and O-linked 

carbohydrates. Most of the potential N-linked sites are located in the membrane distal 

region while the membrane proximal domain has many O-linked sites (see figure 1.9). 

Chondroitin sulphate and heparan sulphate are examples of the glycosaminoglycans 

added during postranslational modification of CD44. These are large molecules with 

highly charged sulphate and carboxylate groups (Sneath and Mangham, 1998). The 

varying degree of glycosylation can affect some of the functions of the CD44 molecule. 

The negatively charged environment produced by these chains attracts positive ions and
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so creates an osmotic potential (Sneath and Mangham, 1998). Differing CD44 isoforms 

appears to have different patterns of glycosylation, CD44s has a small amount of 

chondrotin sulphate whereas CD44v3-10 is glycosylated principally by heparan 

sulphate (Gallagher, 1992). There are four consensus sequences for attachment of 

chondroitin sulphate in the membrane proximal region (see figure 1.9) (Stamenkovic et 

al, 1989; Goldstein et al., 1989; Zhou et al., 1989; Screaton et al., 1992). There are 

isoforms of CD44 that occur in both the glycosylated and non-glycosylated forms, 

suggesting that some of the molecules functions are not dependant on the 

glycosaminoglycan side chains (Hardingham and Fosang, 1992). The CD44 

glycoprotein is an acidic molecule, its charge largely due to sialic acid (Jalkanen et al., 

1988). The ti/2 of CD44 turnover was found to be 8h (Lokeshwar and Bourguignon, 

1991).

Cell membrane OOOOOOCC3000000  

OOCOOOOCDOOOOOO

cs -Potential site for chondroitin 
sulfate incorporation.

-Potential N-linked 
glycosylation site.

-Potential O-linked 
glycosylation site.

Fig 1.9. Schematic drawing o f CD44 protein.

Polypeptide isoforms of CD44 are produced by alternative splicing of at least 10 of the 

20 CD44 exons during mRNA processing. This introduces additional sequences at a 

single site between amino acids 202 and 203 in the membrane proximal extracellular 

domain of CD44s (Stamenkovic et al., 1989; Dougherty et al., 1991; Jackson et al., 

1992; Screaton et al., 1992; Screaton et al., 1993; Tolg et al., 1993). Potentially any
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combination of polypeptides encoded by these alternative exons could be inserted into 

the CD44 sequence, but no means all possible combinations seem to be expressed 

(Lesley et al., 1993). To date approximately 30 different CD44 transcripts have been 

described. However, this is most likely not the final number, theoretically over 750 

membrane bound CD44 isoforms can be generated by alternative use of the variant 

exons (van Weering et al., 1993). The variant exons are called vl-vlO  and the high 

molecular weight proteins that contain these sequences are identified by the specific 

exons used, for example: CD44v6 uses v6  of the variable region in conjunction with the 

5' and 3' constant regions, CD44v8-10 uses v8 , v9 and vlO of the variable region in 

conjunction with the 5' and 3' constant regions (Naor et al., 1997). Note, however, that 

exon v l  is not expressed in humans as it contains a termination codon that is absent in 

the rodent CD44 gene (Screaton et al., 1993). As well as increasing the size of the 

polypetide backbone CD44, insertion of variant exon sequences introduce extra 

potential glycosylation sites, particularly for O-linked oligosaccharides (Borland et al.,

1998).

1.12 CD44 GENOMIC ORGANIZATION

The CD44 gene is located on the short arm of human chromosome 11 and on mouse 

chromosome 2. The entire human CD44 gene covers between 50 and 60 kb of genomic 

DNA and contains at least 20 exons (figure 1.10). CD44 cDNA sequence alignments 

show remarkable conservation between species, such as the human and the rodent 

CD44, with overall similarities in excess of 70% (Naor et al., 1997). The nomenclature 

used in this description is based on that of Screaton et al., (1992), who described 19 of 

the 20 exons involved in the genomic structure of CD44, thus the exons are termed 1- 

19, with a missing exon, subsequently located between exons 5 and 6 , designated 6 a 

(Borland et al., 1998). Exon 6 a is also known in other studies as exon 5a or variant 

exon 1 (vl). CD44 proteins containing sequences encoded by v l  (exon 6 a) are not 

observed in humans (Ponta et al., 1998). The smallest CD44 transcript is the standard 

one, CD44s, which lacks the entire variable region with exon 5 of the 5' constant region 

being directly spliced to the 3' constant region (Idzerda et al., 1989; Harn et al., 1991;
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He et al., 1992). CD44 is expressed widely on hematopoietic cells thus CD44s is also 

designated CD44H.

Extracellular region Cytoplasmic region
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Transmembranc domain 
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v l  v2 v3 v4 v5 v6 v7 v8 v9 vlO
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Fig 1.10. Schematic representation of the genomic structure of CD44 and multiple transcription products 

of CD44, adapted from Brooks et al., (1995). A and B represent the standard forms of CD44. C 

represents the epithelial form (CD44E or CD44v8-10). D and E represents the metastatic forms pMeta-1 

(CD44v4-7) and pMeta-2 (CD44v6-7) respectively.

Exons 1-16 including exon 6 a (v l) encodes the extracellular domain of the protein, 

exon 17 encodes a short transmembrane domain and exons 18 and 19 encode the 

cytoplasmic domain (Lesley et al., 1993). Enormous heterogeneity in mRNA products 

transcribed from the gene is produced by alternative splicing of exons 6-14 in humans. 

These exons are known as variant exons v2-vl0  and are capable of being individually 

spliced. Exons 18 and 19 which code for the intracellular portion of the CD44 protein 

are also subjected to alternative splicing generating two possible cytoplasmic tails (see 

figure 1.10). Short tailed isoforms of CD44 (those lacking exon 19), have been detected 

with PCR but in a 100-200 fold lower abundance than the long tailed isoforms and it is 

unclear whether the corresponding mature protein exists or if it has any functional 

relevance in vivo (Lesley et al., 1993). The DNA sequence of exon 18 carries a long
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A+T tract, possibly causing instability in the mRNA of the short version (Naor et al., 

1997). Consensus splice donor/acceptor sites are also found within exons 5 and 7, 

resulting in CD44 isoforms containing shortened versions of these exons. These 

isoforms have been found in some tumours, (Hoffmann et al., 1991; Shtivelman and 

Bishop, 1991), but it is not known if they are used in normal tissue. An additional exon 

(called v9a) located between v9 and vlO and with a restricted expression pattern has 

been recently identified (Yu and Toole, 1996). This may enable cells to express a low  

molecular weight CD44 as a soluble isoform, which may turn out to have important 

functional properties in tissue remodelling in the foetus (Yu and Toole, 1996).

Northern blot analysis of RNA isolated from hematopoietic cell CD44 revealed three 

major transcripts in humans ~1.6 , 2.2 and 4.8 kb (Goldstein et al., 1989; Samenkovic et 

al., 1989; Quackenbush et al., 1990). Utilization of multiple polyadenylation signals 

may explain this heterogeneity (Harn et al., 1991). A  recently described alternative 

splicing assay has demonstrated a dramatic effect of intron length upon alternative 

splicing of the CD44 exons (Bell et al., 1998). It was discovered that as intron length 

shortened exon inclusion increased, suggesting a kinetic proximity model for the 

splicing of alternative exons. Alternatively spliced exons are frequently included in 

contiguous blocks, a fact which may suggest that all of the variable exons may not have 

a separate function. Instead they may act as stuffers, extending the N-terminal 

hyaluronic acid binding domain from the cell surface (Bell et al., 1998). This is in 

agreement with the observed number of variant isoforms of CD44 when compared to 

the possible number of variants through combinations of splice variants.
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1.13 D i s t r i b u t i o n  o f  CD44 o n  n o r m a l  t i s s u e

CD44 has been found on a wide range of tissues including the central nervous system, 

lung, epidermis, liver and pancreas. The distribution of CD44 standard and variant 

expression in normal human tissue is outlined in table 1 .2 .

Table 1.2. Differential expression of CD44 variants in normal human tissue. (Adapted 

from Sneath and Mangham, 1998).

TISSUE CD44S CD44V6 CD44V7 CD44V8 CD44V7-8 CD44V8-9 CD44V7-9

Skin +++ +++ +++ +++ +++ +++ +++

Tongue +++ +++ +++ +++ +++ +++ +++

Oesophagus +++ +++ +++ +++ +++ +++ +++

Lung +++ ++ ++ ++ ++ ++ ++

Stomach +++ + + + ++ ++ ++

Colon +++ +/++ +/++ +/++ ++ ++ ++

Thyroid gland + + + + ++ +++ ++

Pancreas ++ ++ ++ ++ +++ +++ +++

Adrenal gland - - - - + + +

Ovary - - - - + + +

Cervix +++ +++ +++ +++ +++ +++ +++

Kidney, cortex + - + + + + +

Ureter + - - - - - -

Bladder +++ ++ ++ +++ +++ +++ +++

Spleen ++ ++ ++ ++ ++ ++ ++

Lymphocytes +++ - - - - - -

Expression: +++, Strong; ++, Moderate; +, Weak; -, Negative.

CD44 variant isoforms seem to have a much more restricted distribution than CD44s 

and their expression on a variety of epithelial cells seems to have a tissue specific 

pattern, suggesting that the process of alternative splicing is normally tightly regulated 

(Sneath and Mangham, 1998). This also suggests that these isoforms, with a specific 

exon sequence and restricted distribution have different additional functions to CD44s 

(Sleemann et al., 1995). For example, numerous variants of CD44 have been found to 

be expressed strongly on tissues during stages of development, including expression on 

embryonic épithélia (Wirth et al., 1993). CD44 was detected by indirect 

immunofluorescence in early preimplanted human embryos containing one to eight- 

cells. The intensity of expression was maximal at the eight cell stage and down- 

regulated at the morula, blastocyst and postimplantation stages (Campbell et al., 1995).
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Immunohistochemical studies with variant-specific mAb revealed the expression of 

CD44 variants in 10 week-old human embryos. CD44v9 was the predominant isoform 

found in many areas including the trachea, lung and thyroid gland, CD44v6 was also 

found in the epidermis and trachea (Terpe et al., 1994b). CD44v isoforms have been 

detected in the rat apical ectodermal ridge (AER) (Wainwright et al., 1996). The AER 

is a highly specialised ectodermal structure located at the leading end of the limb tip 

which is responsible for maintaining underlying mesenchymal cells in a constant state 

of proliferation. Presence of the AER is critical to limb out-growth as its removal 

abrogates further limb development. RT-PCR analysis of AER tissue demonstrated the 

expression of several large CD44v proteins containing v3 sequences, including one 

containing all of the 10 variant exons CD44vl-10 (Wainwright et al., 1996). It was 

shown experimentally that upon treatment with mAb directed against an epitope 

encoded by the CD44 v6  exon, AER failed to support out growth of the limb bud 

(Wainwright et al., 1996). Since a member of the fibroblast growth factor (FGF) family 

is able to replace the AER function (Niswnder et al., 1993) and as the proteoglycan 

version of CD44 can present various growth factors it is tempting to speculate that the 

role of AER CD44v is to present FGF-like growth factors to growing limbs 

(Wainwright et al., 1996). CD44 expression during foetal human thymus development 

was detected on the thymic epithelial cells and thymocytes begining at week 8 of foetal 

gestation. CD44 variants containing v4, v6  and v9 exon products emerge at 10 weeks 

of foetal gestation (Mackay et al., 1994; Terpe et al., 1994b; Patel et al., 1994).

In humans the expression of CD44v6 and CD44v4 on cells of epithelial origin is 

widespread. They have been identified in epithelial cells of skin epidermis, hair 

follicles, oesophagus and tonsils (Naor et al., 1997). CD44v6 but not v4 was also found 

on the epithelium of sweat glands, prostate gland, mammary glands and lung bronchi. 

CD44v9 has been detected on cells of the previously mentioned tissues as well as in the 

intestine, stomach, pancreatic duct, the tubular region of the kidney, hepatic bile ducts, 

thyroid gland, salivary gland and many more (MacKay et al., 1994; Terpe et al., 1994b; 

Stauder et al., 1995). Contradictory findings regarding the presence of CD44v isoforms 

in other epithelial cells have been obtained. For example, thyroid and salivary glands 

were CD44v4 and v 6  negative in one study by immunohistochemistry (MacKay et al.,
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1994), but positive in another (Fox et al., 1993). Similar conflicting results have been 

found on the endothelium. These discrepancies can be attributed to technical 

differences in methodology, varying degrees of staining sensitivity or the use of 

antibodies that recognise different epitopes (Naor et al., 1997).

All types of hematopoietic cells, including erythrocytes, T and B lymphocytes, natural 

killer cells, macrophages, aveolar macrophages, kuffer cells, dendritic cells as well as 

granulocytes preferentially express CD44s (Naor et al., 1997). Memory and activated 

T-cells have much higher levels of CD44s than naive T-cells, in addition they express 

CD44v9 (MacKay et al., 1994). A substantial change in the CD44 repertoire has been 

noted after cell activation. Three to 14 days after in vivo antigenic stimulation of rat T- 

cells, B-cells and macrophages express (in addition to CD44s) CD44 variants 

containing the v6  exon (Arch et al., 1992). Similarly activation of human T-cells 

transiently upregulates expression of CD44 variants containing v 6  and v9 in vitro. 

CD44 transition has also been demonstrated during B-cell activation and differentiation 

in the germinal centre of human tonsils. Normal splenic human B-cells activated with 

anti-Ig antibody express increasing levels of CD44s, CD44v6 and a CD44v containing 

the vlO exon product (Salles et al., 1993). Whereas resting human peripheral blood B 

cells express CD44s only, various CD44v isoforms such as, CD44v8-10, CD44vlO, 

CD44 v6  and CD44v6-7 have been detected after stimulation with PMA, or IL-2 (Naor 

et al., 1997). EBV-negative BL cells do not express CD44. In contrast CD44s, 

CD44v8-10 and CD44vlO were detected in EBV-positive BL cells and EBV-negative 

BL cells infected with EBV (Kryworuckho etal., 1995).

In summary, it is clear that epidermal regions rich in proliferating cells express high 

levels of CD44v isoforms, especially exon v 6 . Similarly, activated leukocytes and 

epithelial cells upregulate v6  and v9 containing variants. The extensive locomotive and 

generative activities within the embryo are also accompanied by marked expression of 

CD44v exons, again the v 6  variant is particularly conspicuous. Malignant cells, which 

share many properties with normal adult and foetal cells of generative tissues, bear 

similar CD44 isoforms (see section 1.16).
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1.14 CD44 LIGANDS

1.14.1 CD44 AND HYALURONIC ACID

Perhaps the best studied aspect of CD44 is its ability to bind components of the 

extracellular matrix (ECM). The main ligand of CD44 is hyaluronic acid (HA), this 

glycosaminoglycan (GAG) is a major component of the ECM of many tissues. Also 

known as hyaluronan or hyaluronate, HA is a very high molecular weight GAG 

composed of repeating units of glucuronic acid-(U-3/V-acetylglucosamine pi-4. Unlike 

other GAGs of the ECM, HA is not found covalently linked to ECM proteins, but 

associated non-covalently with a number of HA-binding proteins (such as aggrean in 

cartilage) through HA-binding domains (Borland et al., 1998). The functions of HA are 

mediated through a family of HA-binding proteins called hyaladherins. The major 

leukocyte and epithelial hyaladherin is CD44 (Knudson and Knudson, 1990). Other 

members of this family include the receptor for hyaluronate mediated motility 

(RHAMM) (Turley et al., 1991), cartilage link protein and the proteoglycan core protein 

(aggrecan) (Hardingham and Fosang, 1992).

HA is synthesised by fibroblasts (Teder et al., 1995), chondrocytes (Mason et al., 1989) 

and mésothélial cells (Honda et al., 1991; Heldin et al., 1992). The evidence for a 

receptor-ligand relationship between CD44 and HA has been established by several 

experimental approaches, resulting in a number of observations including; Anti-CD44 

blocked hyaluronate binding of many CD44 positive cells and binding was sensitive to 

hylaluronidase: CD44 cDNA transfected into CD44 negative cells conferred HA

binding and hyaluronidase-sensitive binding to high endothelial venules (HEV): 

Soluble CD44-lgGFc chimeric protein bound to purified hyaluronate and to lymph node 

HEV and binding was inhibited by hyaluronidase (Aruffo et al., 1990; Stamenkovic et 

al., 1991, Lesley et al, 1992).
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1 .1 4 .2  M e c h a n i s m  o f  h y a l u r o n a t e  b i n d i n g

Early work on the fibroblast HA receptor found that the minimal HA fragment bound is 

a hexasaccharide. Like many of the Hyaladherins, CD44 contains a region (amino acid 

31-120 at the N-terminus) homologous to the S loop of cartilage link proteins (CLP) 

(Stamenkovic et ah, 1989; Goldstein et ah, 1989). Conservation of this sequence 

between the proteins suggests that it fulfils an important function. Greater 

understanding of HA binding to CD44 and other hyaladherins came from the 

identification of a HA binding motif in the CLP domain (Aruffo et ah, 1990; Culty et 

ah, 1990; Yang et ah, 1994), which is found in all other hyaladherins. It consists of two 

basic amino acids separated by seven non-acidic amino acids (i.e. B(X7)B, where B is 

arginine or lysine, X is any non-acidic amino acid and X7 contains at least one basic 

aa), (Yang et ah, 1994). Three copies of this motif are found in CD44; one in the N- 

terminal CLP domain and there are two overlapping motifs in the central region of the 

extracellular domain (Yang et ah, 1994). CD44 has been shown to cluster on the cell 

surface and this clustering effect has been shown to be necessary for the binding of 

hyaluronate because it is a multivariant interaction (Underhill et ah, 1980). An intact 

cytoplasmic domain is also required for high affinity binding of HA (Lesley et ah, 

1992). The binding affinity increases with molecular ionic strength because both 

molecules are negatively charged and binding is optimal at a neutral pH (Underhill et 

ah, 1992).

CD44 is heavily glycosylated on both N- and O-linked oligosaccarides. Nascent CD44 

does not bind HA, but all its intermediate precursors along the glycosylation route 

possess the ability (Lokeshwar and Bourguigon, 1991). Although a certain level of cell 

surface glycosylation is probably required for CD44-dependent-HA binding, the 

complete glycosylation pattern may interfere with the CD44-HA interaction (Naor et 

ah, 1997). The ability of variant isoforms of CD44 to bind HA is variable 

(Stamenkovic et ah, 1991; Bennet et ah, 1995). It appears that although CD44v 

isoforms contain a HA-binding domain, the molecule’s ability to bind HA is reduced by 

the presence of its variant exons (Bennet et ah, 1995). The inhibiting effect of the 

variant exons is additive as a result of the degree of their glycosylation. Binding studies
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show that CD44 variants lacking O-linked glycosylation can bind HA as efficiently as 

CD44s. N-linked glycosylation has been shown to reduce the ability of CD44 to bind 

HA (Lesley and Hyman, 1992). This regulatory glycosylation can occur at the level of 

alternative splicing and also at the level of expression of glycosyltransferase (Bennet et 

al., 1995).

Not all CD44-expressing cells are able to bind HA, although some acquire the property 

after activation or chemical modification. Thus the presence of CD44 is required but 

not sufficient for HA binding, this may suggest that the process is regulated by cellular 

factors (Naor et al, 1997). Neither does HA binding correlate with the amount of 

CD44 expressed, as a cell with a large amount of CD44 may not bind HA, while 

another with a lower level of CD44 may be binding competent. It has been proposed 

that there may be a particular HA-binding form of CD44, although exactly what that is, 

is unclear (Borland et al 1998). Given the ubiquity of CD44 and HA, these 

observations are hardly unusual, as only tight binding regulation may prevent 

unnecessary or even harmful CD44-dependent cell adherence (Naor et al 1997). HA- 

binding is induced on some CD44-positive, non-HA-binding cell lines and normal 

haematopoietic cells when they are treated with an activating CD44 monoclonal 

antibody, or when the cells are activated or induced to differentiate by treatment with 

phorbol esters (Lesley et al., 1990a, 1993a). The induction of HA-binding by activating 

antibodies could be due to a conformational change in CD44 or may occur as a 

consequence of clustering of CD44 on the cell surface (Borland et a l, 1998).

1.14.3 D e g r a d a t io n  o f  h y a l u r o n a t e .

CD44 also plays an important role in the degradation of HA by pulmonary macrophages 

and other cells (Orkin et al., 1982; Culty et al., 1992). This degradation is a multi-step 

process in which HA is first bound to the cell surface, then internalized, brought into a 

lysosomal compartment and finally broken down by acid hydrolases. The first step of 

this process can be inhibited by the addition of lysomotrophic agents, which prevent the 

acidification of the lysosomal compartment necessary for the acid hydrolases (Culty et 

al, 1992). The degradation of HA may be important in a number of situations. For
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example, in the adult lung tissue excessive amounts of HA would interfere with the 

exchange of gas and blood. Here macrophages take up HA and remove it from the 

system. Another situation is the removal of HA from the lymphatic fluids. In this case 

a highly branched population of dendritic cells present in the lymph nodes appear to 

bind and degrade HA from the lymph (Fraser et al., 1988; 1989). These cells also 

express relatively large amounts of CD44, suggesting that it plays a role in this situation 

as well.

1.14.4 N o n -h y a l u r o n a t e  l i g a n d s  o f  CD44.

Although HA is the principal ligand of CD44 it is by no means the only one. CD44 can 

adhere to the ECM components collagen (Carter and Wayner, 1988; Lokeshwar and 

Bourguinon, 1991; Jalkanen and Jalkanen, 1992; Romaris et al., 1995), laminin 

(Jalkanen and Jalkanen, 1992) and chondroitin sulphate (Aruffo et al., 1990; Sy et al.,

1991), albeit, as indicated in some studies with lower affinity (Aruffo et al., 1990; 

Peach et al., 1993). The minor chondroitin-sulphated isoform of CD44 on human 

lymphocytes binds fibronectin, laminin and collagen type-I in vitro and binding depends 

on the chondroitin sulphate chains (Jalkanen and Jalkanen, 1992; Romaris et al., 1995). 

Osteopontin (or Eta-1), a chemotactic factor secreted by a number of cell types 

including activated T-cells, osteoblasts and macrophages, is a CD44 ligand. This non­

glycosylated phosphoprotein binds mouse fibroblasts transfected with CD44 v4-7 and 

also CD44s (Weber et al., 1996). The serglycins are a heterogeneous family of 

proteoglycans that share a core protein composed primarily of Ser-Gly repeats and 

differ in the GAG attached. Serglycin/gp600 is a small chondroitin-sulphated 

proteoglycan stored in the intracellular secretary granules of lymphoid, myeloid and 

some tumour cells (Stevens et al., 1989). The chondroitin 4-sulphate chains of 

serglycin /gp600 are essential to its interaction with CD44. The CD44-related binding 

of peripheral lymphocytes and CTLs to serglycin/gp600 allows CTL activated with anti- 

CD44 and anti-CD3 mAbs to release granzyme A, suggesting a physiological role for 

this proteoglycan (Toyama-Sorimachi et al., 1995).

52



1.15 P h y s i o l o g i c a l  r o l e s  o f  CD44.

The varied structure and distribution of CD44 suggests that the molecule has a variety 

of functions, some of which are discussed in the following section.

1.15.1  C e l l u l a r  A d h e s io n

CD44 is used in many cell types to mediate HA-dependent adhesion. Aggregation of 

macrophages and lymphocytes is induced by exogenous HA (Pessac and Defendi, 1972; 

Green et al, 1988). Cultured fibroblasts can aggregate spontaneously by using 

exogenous HA present on the cells (Underhill and Dorfman, 1978; Underhill and Toole, 

1981). HA based adhesion is reduced in the presence of hyaluronidase, low levels of 

hyluronate, high concentrations of chondroitin, or monoclonal antibodies to the HA- 

receptor (Pessac and Defendi, 1972; Underhill et al., 1987). CD44 binding to HA is 

relatively weak in comparison with other cell adhesion mechanisms, such as those 

involving cadherins or integrins. This has been suggested as an advantage where cells 

only need to be held close together for the exchange of chemical signals (Underhill 

1992). Exon vlO has a serine glycine motif and functions as a chondroitin sulphate 

attachment and is used in preference to the CD44 chondroitin/HA binding site. This 

moiety is recognised by other CD44 molecules and is bound. Exon vlO can promote 

homotypic or heterotypic cell-cell adhesion in vitro (Cooper and Doughtery, 1995).

1.15.2  L y m p h  n o d e  h o m i n g  a n d  l y m p h o c y t e  a c t i v a t i o n

One of the main functions of CD44 is lymph node homing which was studied 

extensively in the late 1980’s and the early 1990’s. Depletion of CD44 positive cells 

from bone marrow using anti-CD44 monoclonal antibodies prevented their ability to 

reconstitute the thymus of irradiated mice. This illustrated that CD44 is a homing 

receptor for migrating thymus progenitor cells (O’Neill, 1989). In contrast migration of 

lymphocytes into the lymph nodes and other organs was normal, suggesting that other 

molecules are involved (Camp et al., 1993). Lymph node homing is achieved by a 

specific interaction between the middle domain of CD44s on lymphocytes and a protein
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present on the high endothelial cells of peyers patch and lymph nodes, called mucosal 

addressin (Huet et al., 1989). The CD44v6 has been shown to have a crucial role in the 

movement and homing of antigen activated lymphocytes in lymph nodes (Arch et al.,

1992).

In addition, after antigenic and mitogenic stimulation, CD44 expression on activated B 

and T cells increased remarkably (Stauder and Gunthert, 1995). CD44v6 has been 

shown to be required for activation of B and T lymphocytes and maturation of stem cell 

progenitors (Arch et al., 1992). The precise mechanism involved has yet to be 

elucidated though it is thought that activation and interaction of lymphocytes requires 

crosslinking of CD44 and additional cofactors and adhesion molecules. CD44v3 and 

CD44v6 have also been shown to be expressed transiently as an early event on the blast 

cells of lymph nodes and spleen after activation of lymphocytes (Arch et al., 1992; 

Koopman et al., 1993).

1.15.3 C y t o k i n e  a n d  g r o w t h  f a c t o r  p r e s e n t a t i o n  b y  CD44

Cytokines, chemokines and growth factors may be best presented to travelling 

leucocytes if anchored to the substratum, thus preventing them from being swept away, 

as by the blood stream (Tanaka et al., 1993). The role of macrophage inflamitory 

protein-l-P (MIP-1(3) in T-cell adhesion has been reported by Tanaka et al., (1995). 

Their results show that 1) MIP-ip is present on endothelium; 2) immobilized MIP-1 p 

induces binding of T-cells to VCAM in vitro; and 3) MIP-1(3 is immobilized by binding 

to CD44. Circulating T-cells recognise adhesion molecules such as selectins expressed 

on endothelial cells and loosely attach to them. Subsequently, T-cells are activated 

through binding of MIP-lp immobilized by CD44 and then they adhere tightly and 

migrate to extravasate. Although, so far there is no evidence that tumour cells recognise 

cytokines presented by CD44, it can be speculated that similar events might happen in 

the interaction between tumour cells and endothelial cells.

CD44 is modified with heparin sulphate. Growth factors and cytokines which have 

affinity to heparin are potent binders of heparan sulphate. Heparin-binding growth
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factors and cytokines comprise many factors including basic fibroblast growth factor 

(bFGF), heparin-binding epidermal growth factor (HB-EGF), hepatocyte growth factor 

(HGF), platelet derived growth factor PDGF and IL-8 in addition to MIP-1(3. CD44 

containing the alternatively spliced exon v3 in keratinocytes bind bFGF and HB-EGF 

via heparan sulphate (Bennet et al, 1995). Since some of the heparin-binding growth 

factors stimulate tumour cell growth, motility and invasion, endothelial cell presenting 

growth factors on CD44 may offer favourable conditions for the survival, growth and 

extravasation of tumour cells. Conversely, binding of bFGF and IL-8 on CD44 heperan 

sulphate chains may stimulate enothelial cell angiogenesis (Hadmada et al, 1998). 

CD44 has been implicated in many other physiological roles such as angiogenesis and 

wound healing and many more which are reviewed by Naor et al (1997).

1.16 T h e  r o l e  o f  CD44 i n  n e o p l a s i a

Tremendous interest in a possible role for CD44 in neoplasia was generated when 

Gunthert and colleagues conferred metastatic potential on a non-metastasising cell line 

by transfecting a variant of CD44 (Gunthert et al., 1991). The initial work was to 

identify the membrane proteins on a metastasising rat pancreatic adenocarcinoma by the 

use of monoclonal antibodies. These antibodies were screened on a bacterial cDNA 

expression library and one of the cDNA clones was found to encode a variant isoform 

of CD44. This cDNA was transfected into a non-metastasising, rat pancreatic 

adenocarcinoma, which although expressing CD44s, did not express this particular 

variant. The new cell line was found to have gained metastatic properties when injected 

into rats (Gunthert et al., 1991). CD44v6 gained further interest when it was discovered 

that T-cells activated in both mouse and humans are associated with transitional 

expression of v6-containing variants and that specific mAbs to CD44v6 inhibited 

various immunological function of the activated cells (Arch et al., 1992; Moll et al., 

1996).
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1.16.1 T h e  r o l e  o f  CD44 in  m e t a s t a s i s  f o r m a t i o n

Metastatic spread requires a series of interactions between the tumour cell and the 

surrounding extracellular matrix and non-tumour cells. These interactions will depend 

on cell surface determinants such as extracellular receptors for matrix and lamina, 

surface bound proteolytic enzymes, cell adhesion molecules and growth factor receptors 

(Gunthert et al., 1991). The metastasising tumour cell copies the same mechanism of 

normal cellular migration. CD44 can function as a cell surface determinant for many of 

the roles required for metastatic spread to occur (Sneath and Mangham, 1998). The 

function of CD44v6 in the metastatic process can be blocked by a mAb to CD44v6, 

however, this observation does not reveal in which step or steps CD44 is involved, 

although the mAb has to be given early on to stop metastatic process (Reber et al., 

1990; Seiter et al., 1993).

The theoretical steps in the metastatic process are known as the metastatic cascade 

(Zetter, 1993; Jiang, 1994)and they consist of; 1) loss of contact with the surrounding 

tumour cells or neighbouring cells; 2) breakthrough of the basement membrane and 

penetration of the vessel walls; 3) survival of shearing forces in the blood/lymph stream; 

4) adhesion and penetration through the vessel walls; 5) expansion into foreign tissue; 

6) induction of vascularisation of the tumour. For a tumour cell to lose contact with its 

neighbouring cells, its adhesive properties must change. Changing the cellular CD44 

profile could certainly achieve this. Increased expression of CD44 can enhance binding 

to HA and a pericellular matrix of HA may decrease the affinity of a cell for 

surrounding HA deficient cells by interfering with the adhesion processes, thus leading 

to detachment. This increased mobility is thought to be initiated by CD44, as it is 

linked to the cells cytoskeleton (Trochon et al., 1996; Bourguignon et al., 1993). A  

CD44 ligand complex may mediate the mechanical force and transmit intracellular 

locomotary signals via the cytoskeleton. This response may lead to the cells enhanced 

movement along a HA rich surface (Sneath and Mangham, 1998). As previously 

discussed, CD44 has the ability to uptake and degrade HA (see section 1.14.1-2), this 

property could allow tumour cells to escape entrapment within HA rich environments. 

The ability of CD44 to degrade HA could also be used for tumour cells to assist its path
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through the basement membrane and vessel wall. Some cell adhesion molecules have 

an inhibitory role in the process of metastasis. Downregulation of adhesion molecules 

by tumour cells may free tumour cells from a tumour mass and allow migration and 

dissemination of the tumour cell. A  tumour cell that can only bind but never free itself 

will never be able to metastasise. Therefore downregulation of CD44 may be beneficial 

for the growth or metastasis of some tumour cells (Sy et al., 1997). Down regulation of 

CD44 on neuroblastoma is a marker for aggressiveness (Combaret et al., 1995).

1.16.2 R o l e  o f  CD44 i n  t u m o r i g e n e s i s

There are many possible theories about the possible role of CD44 in tumorigenesis. 

CD44 expression is associated with a high rate of cell division. The proliferation status 

of tumour cells increase when cultured on anti-v6 antibody coated plates. CD44v6 on 

the cell surface is though to cross link with other CD44v6 molecules, initiating signals 

of growth promoting activity (Zoller, 1995). Interaction between CD44 and its ligands 

might induce the tumour cells to produce autocrine growth factors which may be critical 

for tumour growth. The function of CD44 beyond cellular adhesion requires the 

transmission of intracellular signals. Some of these signals are thought to occur via the 

cytoskeleton and may enable CD44 to signal to both the locomotary and mitogenic 

machinery of the cell (Trochon et al., 1996). Tumour cells expressing CD44 can adhere 

to the extra-cellular matrix through its ligand, including HA. This might allow tumour 

cells to colonise this environment more efficiently. The function of uptake and 

degradation of HA by CD44 could enable tumours cells to invade HA rich tissues 

(Sneath and Mangham, 1998).

1.16.3 CD44 i n  s p e c if ic  t u m o u r  t y p e s

Since the initial research illustrating the potentially crucial role of CD44 in tumorigensis 

and the metastatic cascade, there have been many studies investigating the pattern of 

CD44 in tumours. The following section gives a brief description of the role of CD44 

standard and variant isoform expression in various cell types.
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Lung carcinom a: CD44 has been detected in normal lung tissue and CD44 isoforms 

containing v6 or v9 were found on epithelial cells only. Some lung cancers retain the 

epithelial pattern of variant expression where as others show significantly reduced or 

absent, expression of CD44 standard or variants. No evidence correlating CD44v 

expression with tumour metastastic capacity has been observed (Givehchian et al, 

1996), suggesting that down regulation of CD44 standard and CD44 variants may 

contribute to metastatic spread, rather than enhanced expression of specific variant 

CD44 isoforms.

Melanoma: Whereas melanocytes express high levels of CD44s but not CD44v 

melanoma lesions express in addition to CD44s, CD44 variant containing v5 and vlO, 

according to one study (Manter-Horst et al., 1995) and CD44v7-8 according to another 

study (Korabiowska et al., 1995). Tumour progression from common nevi through 

early and advanced primary melanoma to metastatic melanoma was followed by a 

gradual increase in the proportion of patients with v5 positive lesions (from 16 to 60%) 

(Manter-Host et al., 1995).

B reast carcinom a: Studies investigating CD44 expression in breast carcinoma have 

indicated that expression could be regulated by hormones. Increase in the expression of 

oestrogen and progesterone receptors showed a positive correlation with CD44v6 

(Friedrichs et al., 1995). Several studies have evaluated CD44 expression in breast 

carcinomas with varying results. Sinn and colleagues found a correlation between 

CD44v3/v4 and CD44v6 and increased tumour grade (Sinn et al., 1995), whereas 

Friedrichs and colleagues found a correlation between expression of CD44s and 

CD44v9 and tumour grade (Friedrichs et al., 1995). Neither study found CD44 or any 

of its variants to be independent prognostic indicators, as was the case in a similar study 

by Kaufmann et al, (1995). Differences between studies might result from varying 

techniques of recognition. Using immunohistochemistry, Sinn et al, showed a higher 

expression of CD44 at the tumour-stroma interface and that all regional lymph node 

metastases were homogeneously positive for variants of CD44. A  more recent study 

using immunohistochemistry on 218 primary breast carcinomas, found that CD44s and 

CD44v6 did not correlate with known predictors of poor prognosis (Stevens et al,

1996).
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O varian carcinom a: Immunostaining with polyclonal antibodies specific for CD44v3- 

10 revealed a detectable reaction with tumour cells in 75% of ovarian cancer specimens. 

When statistical analysis was confined to population with advanced disease, the overall 

survival of patients with tumours expressing CD44 variants were shorter than those of 

patients which did not express CD44 variants (Uhl-Steidl et al., 1995). Sliutz and 

colleagues showed that ovarian tumour samples exhibit a more complex pattern of 

CD44 expression than normal ovarian tissue and proposed that this expression is 

reflected in its serum concentration (Sliutz et al 1995). However, the variants of CD44 

detected in the serum did not correlate with any clinical parameter and it was suggested 

that the dominant serum CD44 variants were produced by natural sources masking the 

pathological output (Sliutz et al., 1995).

G astrointestinal carcinom a: The two main types of gastric cancer, intestinal and 

diffuse, differ in histological features and have different patterns of CD44 expression. 

The intestinal type of gastric cancer express mainly v6, whereas the diffuse type is 

mainly v6 negative (Dammrich et al., 1995). It is interesting that the v6 positive 

intestinal type appeared to have a more infiltrating type of growth compared with the 

CD44v6 negative diffuse type. Mulder and colleagues found no correlation between 

CD44v6 expression in gastric carcinoma and prognosis (Mulder et al., 1995). CD44v5 

expression correlated with significantly shorter overall survival time. Some studies 

have found CD44v9 variants to be an independent prognostic indicator for 

gastrointestinal tumours. It was found that CD44v9 expression in primary gastric 

carcinoma had a statistical correlation with tumour recurrence and mortality (Mayer et 

al., 1993). Yamaguchi and colleagues found that the rate of CD44v8-10 expression was 

significantly higher in tumours from patients with liver metastasis than those without, 

but no correlation was found between CD44v8-10 expression and prognosis 

(Yamaguchi et al. 1995). Lymph node metastasis is a critical prognostic factor for 

gastric cancer and a recent study illustrated that expression of CD44v6 increased the 

lymphatic potential of gastric cancer cells (Kurozumi et al., 1998).
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In normal colonic mucosa, CD44s or CD44v expression is mostly confined to the 

proliferating zone of the crypts, as indicated by immunohistochemistry (IHC). In other 

sites CD44s expression is practically absent and CD44v are not detected (Abbasi et al., 

1993; Wielenga et al., 1993). Using IHC, RT-PCR and in situ hybridisation, some but 

not all investigators have demonstrated that CD44s and CD44v are expressed in the 

primary malignant colorectal tissue of at least 50% of patients and in lung, liver and 

lymph node metastases of all patients (Wielenga et al., 1993; Suh et al., 1995). 

Higashikawa and colleagues found that the colorectal cancers they examined over­

expressed high molecular weight variants including the exon v6. CD44v6 was also 

found to correlate with tumour stage or metastatic status and was suggested to be a 

common phenotype of colorectal cancer. However, some studies have found the 

CD44v9 variant to be an independent prognostic indicator of gastrointestinal tumours. 

Another study found CD44v8-10 expression to be an independent prognostic indicator 

for colorectal cancer (Yamaguchi et al., 1996). Takahashi group found that expression 

of CD44s by colon carcinoma cells enhances their HA binding and this enhancement 

seems to reduce both in vitro and in vivo growth of the carcinoma cells. They also 

reported that the HA binding activity of CD44 was less pronounced in highly metastatic 

cell lines compared with poorly metastatic cell lines. The difference in HA binding 

ability was suggested to be caused by post-translational modifications (Takahashi et al., 

1995). This lead to the conclusion that the functional consequences of the association 

of decreased CD44s expression, with colonic mucosa transformation, may be important 

as the expression of high molecular weight CD44 variants by tumours increases 

(Takahashi et al., 1995). Furthermore, tumour tissues from 16-20 patients with colon 

cancer showed abnormal retention of intron 9 (located between exon v4 and v5) in 

CD44 transcripts. Such aberrant expression of intron 9 was also identified in the 

mRNA of oesophageal, colon and breast carcinoma cell lines (Yoshida et al., 1995).

CD44 standard and variant expression has been examined in many other carcinomas 

such as thyroid, pancreatic leukaemia and prostrate for more comprehensive reviews see 

Gauntert et al., 1995; Naor et al., 1997; Sneath and Mangham, 1998. Although the data 

in the literature are often contradictory due to variable methodology and the misguided 

belief that all tumours must behave in an identical manner, the preliminary conclusion
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that in many human cancers CD44 standard and variant expression are upregulated 

seems justified (Gunthert et ah, 1995; Naor et ah, 1997). The extensive assembly of 

CD44v and aberrant gene products in tumour cells may reflect the release from 

alternative splicing control, a phenomenon that is still ill-defined but that could 

eventually be used as a diagnostic tool. The contradictory findings do not at this stage 

allow the establishment of a conclusive concept regarding the role of CD44s or its 

variants in the development of cancer or the prognostic value of these molecules. On 

the other hand, the results are sufficiently interesting to encourage further research 

(Naor et ah, 1997). Thus, in conclusion it can be said that many but not all types of 

cancer cells are able so seek a selective advantage by the expression of CD44 proteins.

1.17 CD44 AND EBV

Due to the considerable body of evidence of a role for CD44 and CD44v isoform 

expression in neoplasia it is not surprising that the expression of CD44 in EBV infected 

cells and in EBV-related malignancies has received a lot of attention in recent years. A  

study aimed at characterising the pattern of CD44 isoform expression in nasopharyngeal 

carcinoma (NPC) employed both RT-PCR and monoclonal antibodies (mAb) directed 

against the variant exons of interest (Brooks et ah, 1995). The expression of CD44v6- 

10 and CD44v8-10 was detected by RT-PCR, however, the pattern of expression 

detected using mAbs differed. CD44s was widely distributed both on epithelial and on 

lymphoid cells, while the CD44v8-10 appeared restricted to the neoplastic epithelial 

cells and was not present on infiltrating stromal elements. Expression of v6 containing 

isoforms was detected on two thirds of the NPC biopsy samples, in such cases 

expression was usually strongest in isolated patches of tumour cells (Brooks et ah,

1995). Interestingly, a study on non-Hodgkin’s lymphoma using mAbs revealed a 

similar weak focal pattern of staining on low grade malignancies and a strong 

upregulation of CD44v6 isoforms correlating with high grade malignancy (Terpe et ah,

1994). The expression of isoforms containing exon v6 has also been linked to advanced 

stages of colon cancer and to high grade human lymphomas (Koopman et ah, 1993; 

Terpe et ah, 1994). In view of the heterogeneous pattern of LMP1 expression in NPC 

and the fact that LMP1 has previously been shown to cause upregulation of CD44 when
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transfected into the EBV-positive LMPl-negative BL cell line Daudi (Wang et al., 

1990), the pattern of CD44 isoform expression was also examined by Brooks and 

colleagues (1995) in LMP1 positive and LMP1 negative NPC tumours. A  correlation 

between the LMP1 positive or negative status of NPC tumours and the expression of 

specific variant CD44 isoforms was not observed. However, only a small number of 

tumours, ten in total, were examined four of which were LMP1 positive, thus perhaps a 

larger study may reveal more conclusive results.

EBV has been identified in about 10% of gastric carcinomas (Leoncini et al., 1993; 

Fukayama et al., 1994). The EBV in EBV-associated gastric carcinoma (EBVaGC) is 

monoclonal and EBVaGC appears to have a better prognosis than EBV-negative gastric 

carcinoma (Chong et al., 1994; 1997). Immunohistochemical analysis was used to 

detect CD44v expression in gastric carcinoma and to evaluate the role of EBV in CD44 

expression in EBVaGC. Significant correlation was found between the expression of 

CD44v3-5 and v6 and EBVaGC. Several groups have reported that CD44v expression 

in gastric carcinoma is linked with poor prognosis, this does not appear to be the case in 

EBVaGC (Chong et al., 1997). The profile of EBV encoded proteins expressed in 

gastric carcinoma has been shown to resemble type-I latency (Fukayama et al., 1994). 

Therefore the expression of CD44vs might be differentially regulated from that of 

CD44s and independent of LMPl-expression in this EBV-associated epithelial 

malignancy. It is possible that EBV infection may influence CD44 expression by 

interacting with cytokine genes, such as those for TNFa, IFNy and interleukin 10, 

which are known to modulate CD44 expression (Mackay et al., 1994; Osada et al.,

1995).

Stable expression of CD44s but not the epithelial form of CD44 in the human BL cell 

line Namalwa, which is constitutively CD44 deficient, has been shown to accelerate 

local and disseminated tumour development in athymic mice (Sy et al., 1991). The 

enhancing effect of CD44 expression on lymphoma growth is thought to be due in part 

to facilitation of cell interaction with host tissue stroma (Sy et al., 1991; 1992). A  study 

by Walter et al. (1995), illustrated that BL cells that formed local tumours after 

xenotransplantation into SCID mice disseminated to lymphoid tissue following
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introduction of LMP1. The principal effect of LMP1 introduction was upregulation of 

CD44 expression and further experiments revealed that the introduction of CD44 into a 

BL cell line which was LMP1 and CD44 negative was observed to confer the 

disseminated growth pattern associated with LMP1. Together these results indicate that 

LMP1 may regulate expression of CD44 and play an important role in the behaviour of 

EBV-based lymphomas (Walter et al, 1995).

Kryworuchko et al, (1995) investigated the association between human B-cell 

activation and CD44v expression by analysing CD44 expression in resting and 

mitogenically stimulated B-cells. Results indicate that resting B cells express CD44s 

and that activation by PMA or surface immunoglobulin crosslinking alone or in the 

presence of IL-2 induces CD44E, CD44vlO and CD44v6-7 expression. B-cell 

activation by EBV infection induced the expression of CD44E and CD44vlO but not of 

CD44v6-7. These results indicate that CD44v6-7 expression depends on the mode of 

activation (Kryworuchko et al, 1995). The role of EBV in inducing CD44 expression 

was further investigated using a panel of BL cell lines that differ in EBV status but 

share the same genetic background, i.e. BL30 (EBV negative BL cell line), 

BL30/P3HR1 (BL30 cells infected with an EBNA2 defective EBV strain EBV-P3HR1) 

and BL30/B95-8 (BL30 cells infected with a wild type EBV strain EBV-B958). Flow 

cytometry indicated that BL30 and BL30/P3HR1 were CD44 negative but BL30/B95-8 

was positive for CD44s, CD44E and CD44vlO. The fact that B95-8 strain and not 

P3HR1 induced CD44 expression in BL30 cells suggests that EBNA2 and or LMP1 

may mediate the induction of these isoforms (Kryworuchko et al., 1995),

A  recent report by Kryworuchko et al, (1999), investigated the effect of cytokines, 

especially those involved in B-cell activation and differentiation on CD44-HA 

interaction using a series of LCLs and EBV-positive BL cell lines. This study indicated 

that the ability of CD44 to recognise HA is dependent on the mode of activation and 

stage of transformation of human B-cells. Among the mitogens, PMA and among the 

cytokines, IL-4 alone induced strong HA recognition in the in vitro EBV-infected BL 

cells BL30/B95-8and in vivo infected B cell line IM. Attempts to delineate the 

molecular mechanism responsible for IL-4 and PMA-induced CD44-mediated HA
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adhesion in BL30/B958 cells revealed that the increased HA adhesion correlated with 

enhanced expression of CD44s and isoforms containing v3, v6 and v9 and increased 

electrophoretic mobility that maybe due to differential glycosylation of the CD44s 

protein. Differential utilisation of v4 was also observed. In contrast, LCLs failed to 

recognise HA following PMA or IL-4. These results suggest that the signalling 

pathway that mediate CD44 expression and CD44-mediated HA binding are selectively 

inactivated in LCLs (Kryworuchko et. al, 1999).

CD44 expression was examined using an LCL that was immortalized through a mutant 

EBV in which the expression of EBNA2 was regulated by the presence or absence of 

oestrogen. In this cell line, CD44 mRNA as well as CD44s protein levels were 

upregulated through the conditionally active EBNA2. Thus EBNA2 is implicated in the 

induction of CD44s in LCLs (Fichter et al, 1997).

Two major subgroups of AIDS-related non Hodgkin’s lymphomas (ARL) have been 

defined, Burkitt-type NHL (BL) and polymorphic centoblastic/immunoblast-rich large 

cell lymphomas (CB/IB LCL) (Kersten et al, 1998). These subgroups differ in their 

association with EBV and thus possibly in their pathogenesis. It has been shown that 

patients with BL have significantly higher CD4-cell counts (greater immunity), 40% of 

these patients were EBV-positive and displayed type-1 latency. CD44 expression was 

not detected. In contrast the majority of CB/IB LCL had a low CD4-cell count and 

were EBV-positive, a high percentage of which displayed type-II or type-III 

phenotypes. CD44s expression was restricted to CB/IB LCL in which high expression 

of exon v6 containing isoform was also observed (Kersten et al., 1998). The observed 

EBV-latency types and full expression of adhesion molecules suggested that defective 

EBV immunity is important in the pathogenesis of CB/IB LCL (Kersten et al., 1998).

Thus the presence of EBV and the expression of EBV latent genes, particularly EBNA2 

and LMP1 play an important role in the induction of both CD44 standard and variant 

isoform expression. However, this induction appears to be cell-type specific and 

stimulus specific, with LMP1 appearing to play an important role in CD44 expression in 

B-cell lines but not in epithelial cells (Wang et al., 1990; Brooks et al., 1995). Also
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EBNA2 appears important for the expression of CD44 in an LCL context (Fichter et al.,

1997). The activation of B-cells by EBV infection also results in a specific pattern of 

CD44 isoform expression when compared with mitogen stimulated cells (Kryworuckho 

et al., 1995). Overall the expression of CD44 in EBV infected cells appears to be 

related to the latent genes expressed and the cellular context in which they are 

expressed.
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1.18 A im s  OF THIS THESIS.

The research presented in this thesis can be divided into two distinct sections. In the 

first section (chapters three and four), the expression of the adhesion molecule CD44 in 

Epstein-Barr infected B-cells is investigated. The effect of EBV-latent proteins on 

CD44 expression was examined in both type-I and type-III BL cell lines. As LMP1 and 

EBNA2 are the principal effectors of phenotypic change in EBV-infected B-cells their 

potential role in regulating CD44 expression was also addressed by expressing these 

proteins individually in an EBV-negative BL cell background. To this end flow 

cytometry, western blotting, northern blotting and RPA were employed.

The transcriptional expression pattern of CD44 splice variants was also investigated in 

EBV-positive BL and LCL cell lines in an attempt to define the splicing pattern of 

CD44 exons used. This was in part achieved by the development of a novel qualitative 

and quantitative CD44 exon-specific RPA. Identification of an EBV-positive BL 

splicing pattern may prove useful as a potential prognostic indicator for EBV-related 

BL. In addition the ability to accurately analyse CD44 mRNA splice patterns would be 

of use in helping to further our understanding of the factors that regulate the expression 

of this important adhesion molecule.

In the second section of this thesis (chapter 5), the effect of the EBV latent proteins 

EBNA1 and EBNA2 on cellular gene expression was examined by differential display 

polymerase chain reaction. As both EBNA1 and EBNA2 are required for B-cell 

immortalization, the identification of any novel gene which is differentially regulated by 

the expression of either of these latent viral proteins would be of interest.
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CHAPTER 2 

M ATERIALS AND METHODS
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2. MATERIALS AND METHODS

2.1 B io l o g ic a l  m a t e r ia l s

2.1.1 C e l l  l in es

T ab le 2.1. Cell lines used in this study

Cell Line EBV

Status

Cell Classific­

ation

Description

DG75 EBV negative 

BL

Lymphoid B ccll line derived from an Israeli Burkitt- 

like lymphoma case (Ben-Bassat et al., 1977).

DG75 EBNA1 Stable

transfectant

EBV negative BL ccll line stably expressing EBNA1 

(Welinder et al., 1987).

DG75 EBNA2 Stable

transfectant

EBV negative BL cell line slably expressing EBNA2 

(Welinder et al., 1987).

DG75 tTA Stable

transfectant

EBV negative BL ccll line stably transfected with the 

tetracycline-regulated transactivator only 

(Floettmann et al., 1996).

DG75 tTA 

EBNA2

Stable

transfectant

Tetracycline regulated system whereby the 

expression of EBNA2 can be induced by the removal 

of tetracycline from the growth media (Floettmann et 

al., 1996).

DG75 tTA 

LMP1

Stable

transfectant

Tetracycline regulated system whereby the 

expression of LMP1 can be induced by the removal 

of tetracycline from the growth media (Floettmann et 

al., 1996).

Raji + Type III EBV positive lymphoid B-cell line from an African 

Burkitt lymphoma (Pluvertaft, 1965).

Mutu 1 + Type I Early passage BL cell line expressing EBNA1 as the 

only viral gene (Gregory et al., 1990).

Mulu 3 c95, 

c62, cl48.

+ Type III are stable clones of the early passage BL cell line 

Mutu 1 which have, upon serial passage in culture, 

“drifted” to express the full compliment of EBV 

latent genes (Gregory et al., 1990).

Mutu 3 

(LMP1-)

+ Type III This is a partially characterised Mutu 3 clone which 

no longer expresses LMP1.
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Kem BL, 

Rael BL.

+

+

Type I Early passage BL cell lines expressing EBNA1 as the 

only viral gene (Patarroyo el al., 1988).

BL41,

BL41-B958, 

IARC 171.

+

+

+

Type I 

Type III 

LCL

These cells are a matched set. BL41 is an early 

passage BL cell line expressing EBNA1 as the only 

viral protein, BL41 B958 is the cell line stably 

transformed with the EBV virus strain B958 

expressing all the EBV latent genes, (Calender el al., 

1987) IARC 171 is a spontaneously transformed 

Lymphoblastoid cell line derived from the same 

patient (Andersson et al., 1991).

BL72 III 

IARC 307

+

+

Type III 

LCL

These cells are a matched pair, BL72 is a group 3 BL 

cell line expressing all EBV latent genes. IARC 307 

is a spontaneously transformed LCL from the same 

patient (Rowe et al., 1990).

BL74

IARC 290B

+

+

Type I 

LCL

These cells are a matched pair, BL74 is a group 1 BL 

cell line expressing only EBNA1. IARC 290B is a 

spontaneously transformed LCL from the same 

patient.

Ag876 + Type III Type III BL cell line expressing all the EBV latent 

genes (Dambaugh etal., 1984).

X50-7 + LCL Spontaneously transformed LCL (Miller et al., 

1984).

Hut 78 - T cell EBV negative T cell line.

Jurkai T cell Acute T-lymphocytic leukcmic cell line (Brattsand, 

etal., 1990).

HT29 A colon adenocarcinoma cell line (ATCC No. HTB- 

38).

C33A,

C33A Neo, 

C33ALMP1. -

Epithelial cell
These are cervical epithelial cell lines. C33A is the 

parental cell line, C33A Neo is stably transfected 

with an empty vector, C33A LMP1 is stably 

transfected with a vector constiutively expressing 

LMP1 (Miller et al., 1995).

All BL cell lines and LCLs were obtained from Professor Martin Rowe, University of 

Cardiff, Wales. Hut 78 and HT29 cells were a gift from Dr Aideen Long, St James 

Hospital, Dublin Ireland. The epithelial cell lines C33A were a gift from Dr Nancy 

Rabb-Traub University of North Carolina, USA.
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2.1 .2  A n t ib o d ie s

BRIC 238, D2.1, L3D-1 and 44F10.2 antibodies to standard CD44 were a generous gift 

from Dr Sinead McGrath, St James Hospital, Dublin, Ireland. PE2 and CS1-4 

(antibodies against EBNA2 and LMP1 respectively) were gifts from Professor Martin 

Rowe, University of Cardiff, Wales. The antibodies were supplied as cell culture 

supernatants and stored at 4°C or -20°C prior to dilution.

Monoclonal Antibody

Anti-CD44 v3 and v6

Anti CD44 v4, v4-5, v7 and v7-8

Anti-mouse-alkaline phosphatase (AP) conjugate

Rabbit anti Mouse IgG

Goat anti-rabbit HRP

Rabbit anti Mouse FITC

Supplier

R&D Systems

Bender Med

Promega

Dako

Dako

Dako

2.1.3 B a c t e r i a l  s t r a in s

E.coli DH5a, genotype: F-, end A l, hsdR17 (rk-,mk=), supEAA, thi -1,X-, rec A l, gyr A96, 

rel Al,(j) m a c  Z5M15.

E.coli NK5772, dam-, dcm-, MetBl, Gal T22,Lac Y l, Tax-78.

2.1.4 P l a s m i d s

pGem 3Zf (+) 

pGem 7Zf (+) 

pAZ SCD44

pAZ vCD44

Cloning vector from Promega.

Cloning vector from Promega.

CD44 standard cDNA cloned in to pAZ (pAZ is a reduced form 

of pSP65 vector from Promega) from Dr Ursula Gunthert, Basil, 

Switzerland.

CD44 variant cDNA cloned into pAZ (pAZ is a reduced form of 

pSP65 vector from Promega) from Dr Ursula Gunthert, Basil, 

Switzerland.
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pTAg Cloning vector from R&D Systems.

2.1.5 O l ig o n u c l e o t id e s

Genosys Biotechnologies Europe Ltd.

(3-actin

Forward primer

5' GAA ATC GTG CGT GAC ATT AAG GAG AAG CT 3’ 

Reverse primer

5' TCA GGA GCA ATG ATC TTG A 3'

CD44 v6-v7 

Forward primer

5' CGC GGA TCCAGG CAA CTC CTA GTA GTA C 3' 

Reverse primer

5' CGC GGA TCC AGC GTT GTA CTA TGA CTG GA 3‘

2.1.6 COMMMERCIAL KITS AND RESTRICTION ENZYMES

A ll restriction enzymes were supplied by Boehringer Mannheim.

DD RTPCR Gene Hunter Corporation

Enhanced Chemiluminesence substrate (ECL)Amersham

InVitro Transcription kit Promega

InVitro Transcription kit Pharmingen

Protein assay dye reagent BIORAD

Qiagen Tip -100 Qiagen

RPA kit Pharmingen

Taq DNA polymerase Perkin Elmer and Boehringer Mannheim.

The LigATor R&D Systems

T7 Sequencing kit Pharmacia

Wizard® PCR Preps DNA Purification System from Promega.
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I

2.2  C h e m ic a l  m a t e r ia l s

Protein prestained markers 

35S labeled dATP 

a 32P labeled UTP

NEB

Amersham

Amersham

dNTPs

RNase A

Marvel

Chloroform

Isopropanol

Dimethyl formamide

Pharmacia Biotech

Pharmacia Biotech 

Premier Beverages

ROMIL

ROMIL

Riedel-de-Haën

Sigma-Aldrick-Fluka Chemical Co.;

Urea, Dithiothreitol, Coomassie blue R, BCIP/NBT, Tetracycline, Liquid Phenol, 

Nitocellulose, Ampicillin, Potassium acetate, Tween-20, BSA, Sodium azide, 

Sigmacote, Ammonium phosphate, Mineral oil, a-Thiol-glycerol, PMSF, MOPS, BCS 

E. coli tRNA, Apoprotinin, Formaldehyde, Micophenolic acid, BCS, Xanthine.

Merck;

Boric acid, Ammonium persulphate, Sodium acetate, Magnesium chloride, Glucose, 

Sodium chloride, Potassium chloride, Sodium hydroxide, Sodium dodecylsulphate, 

Calcium chloride, Glycine, Methanol.

TEMED, Bromophenol blue, Potassium dihydrogen phosphate, Potassium hydrogen 

phosphate, Sodium phosphate, Glycerol, Tris(hydroxymethyl)methylamine, EDTA, 

Magnesium sulphate, Ethidium bromide, Isoamyl alcohol, Hydrochloric acid, Acetic 

acid, Methanol, Isopropanol, Nondent P40, Sucrose, Paraformaldhyde.

Boehringer Mannheim;

Agarose, Low melt agarose, IPTG, Hygromycin B, Geneticin (G418), Leupeptin.

BDH;
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Oxoid;

Agar technical, Bacto-Tryptone, Yeast extract.

KODAK;

X-ray film, X-ray film developer, X-ray film fixer.

National diagnostics;

Acrylagel, Bis-acrylagel.

Gibco-BRL;

RPMI 1640, McCoys 5A, DMEMH, Trypsin EDTA, Fetal calf serum, Pencillin, 

Streptomycin, L-Glutamine, Hepes, Sodium Pyruvate, 1Kb DNA ladder, ß- 

galactosidase (X-gal).

Promega;

lOObp DNA ladder, RNA markers.
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2.3 DNA MANIPULATION

Preparation of all solutions used in chapter two are outlined in appendix A.

2.3.1 S t o r a g e  o f  DNA s a m p l e s

DNA samples were stored in TE buffer pH 8.0 at 4°C. EDTA was used to chelate 

heavy metal ions that are needed for DNase activity while storage at pH 8.0 minimises 

deamidation. DNA was also stored in sterile distilled H2O (dH20 ).

2.3.2 E q u i l i b r a t i o n  o f  p h e n o l

Before use, phenol was equilibrated to pH 8.0 with TrisCl pH 8.0 as DNA partitions

into the organic phase at <pH 7.8. Solid phenol was melted at 6 8 °C, hydroxyquinoline 

was added to a final concentration of 0 .1 % (w/v) (acts as an antioxidant, a chelator of 

metal ions, and an RNase inhibitor). An equal volume of buffer (0.5 M TrisCl pH 8) 

was added to the liquefied phenol and stirred for 15 min. The two phases were then 

allowed to equilibrate and as much as possible of the upper aqueous phase was 

removed. The extraction was repeated using equal volumes of 0.1 M TrisCl pH 8 until 

the pH of the phenol was > 7.8. An equal volume of TrisCl pH 8 and 0.2% (w/v) (j-

mercaptoethanol were added to the phenol, which was then stored at -20°C in the dark.

2.3.3 P h e n o l / c h l o r o f o r m  e x t r a c t i o n  a n d  e t h a n o l  p r e c i p i t a t i o n

Phenol/chloroform extraction and ethanol precipitation was carried out to concentrate 

nucleic acid samples or change the buffers in which a sample was dissolved. An equal 

volume of phenol/chloroform/isoamyl alcohol (25:24:1) was added to the DNA  

solution, mixed by vortexing and centrifuged for 10 min at 13000 x g. The upper 

aqueous phase was removed, taking care not to take any material from the interphase, 

this was placed in a sterile microfuge tube. An equal volume of chloroform/isoamyl 

alcohol (24:1) was added to the aqueous phase, vortexed as before and centrifuged for 5 

min at 13,000 x g. Again the upper aqueous phase was removed to a fresh tube. One
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tenth volume of 3 M sodium acetate (pH 5.2) was added to the solution of DNA, mixed 

and then 2 volumes of 100% (v/v) ethanol. This mixture was vortexed and incubated at 

room temperature for 5 min. The DNA samples were then centrifuged for 30 min at

12,000 x g at 4°C, the supernatant was removed and pellets were washed with 1 ml 70% 

(v/v) ethanol to remove excess salts. The tube was centrifuged for 5 min at 10,000 x g, 

the supernatant was removed and pellets were air dried for approximately 1 0  min. 

Pellets were resuspended in an appropriate volume of sterile Tris-EDTA (TE) (pH 8.0) 

or dH2 0 .

2.3.4 R e s t r i c t i o n  d i g e s t i o n  o f  DNA

Restriction enzymes bind specifically to and cleave double-stranded DNA at specific 

sites within or adjacent to a particular sequence known as the recognition site. The 

restriction enzymes used were supplied with incubation buffers at a concentration of 

10X (working concentration IX). DNA was digested with restriction endonucleases for 

identification purposes or to linearise or cut fragments from a plasmid. DNA digests 

were performed by adding

200 ng -1  [xg of DNA (Final concentration of <300 ng/pil)

1 ul of enzyme/fig of DNA solution (~10 U).

10 X buffer to a final concentration of IX  

dH2 0  to the final volume required 

The reaction was gently mixed, centrifuged, then incubated for 2 hr at the optimum 

enzyme temperature (between 25°C and 50°C, usually 37°C).

2.3.5 R e p a i r  o f  DNA t e r m i n i

The majority of restriction endonucleases digest DNA leaving either a 5' or a 3' 

overhang. When DNA is ligated together these ends must be compatible; if they are not 

the ends must be repaired and a blunt ended ligation carried out. This was achieved 

using the Klenow fragment of Ecoli DNA polymerase I. The DNA was resuspended at 

a concentration of 50 (ig/ml in IX  Eco Pol buffer (supplied with the Klenow), dNTPs 

were added to a final concentration of 33 ¡¿M each, 1 |xl of Klenow was added and the
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reaction was placed at 25 °C for 15 min. The enzyme was inactivated by heating to 

70°C for 10 min. This DNA was then purified by phenol/chloroform extraction and 

ethanol precipitation (2.3.3).

2.3.6 L ig a t i o n  o f  DNA m o l e c u l e s

Several strategies for ligation of DNA molecules were used depending on the nature of 

the termini. In the case of cohesive termini, ligations of equimolar amounts of vector 

and insert DNA (<1 jxg) were carried out overnight at 16°C in a commercial ligation 

buffer (5 mM ATP) with 10 units of ligase/ml. After ligation, the samples were heated 

to 10 min at 70°C to inactivate the ligase (this appears to improve transformation 

efficiencies).

2.3.7 D e p h o s p h o r y l a t i o n  o f  l i n e a r i s e d  p l a s m i d  DNA

During ligation, T4  DNA ligase will catalyse the formation of a phosphodiester bond 

between adjacent nucleotides only if one contains a 5' phosphate group and the other 

contains a 3' hydroxyl group. Recircularisation of plasmid DNA can therefore be 

minimized by removing the 5‘ phosphate groups after treatment with calf intestinal 

phosphatase enzyme (CIP). Digested DNAs (<100 ng/ul) were dephosporlylated using 

C1P in a 100 |xl volume (CIP was added 1 unit/100 pmoles for cohesive termini and 1 

unit/2 pmole for blunt termini). The solution was vortexed, centrifuged briefly and 

incubated for 30 min at 37°C. This was followed by an enzyme denaturation step 

achieved by heating to 75°C for 10 min. This DNA was purified by phenol/chloroform 

extraction and ethanol precipitation (2.3.3).

2.3.8 P r e p a r a t i o n  o f  c o m p e t e n t  c e l l s

The Calcium chloride (CaCl2) method was employed to prepare competent cells. An 

E.coli strain was streaked from a glycerol stock on to an LB agar plate and incubated at 

37°C overnight. An isolated colony was then picked using a sterile inoculating loop and 

used to inoculate 5 ml of SOB (appendix A) broth. This culture was incubated in a
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shaking incubator at 200 rpm overnight at 37°C. The resulting culture (2 ml) was then 

used to inoculate 100 ml of sterile SOB and incubated at 37°C until the O.D. of the 

culture at 640 nm was between 0.4 and 0.8 (~2 hr 15 min). The cells were then 

transferred to two sterile 50 ml falcon tubes and incubated on ice for 10 min followed 

by centrifugation at 4,000 x g, 4 °C for 10 min. The resulting pellets were resuspended 

in 25 ml of 100 mM CaCL2, mixed gently and incubated on ice for a further 20 min. 

Centrifugation was carried out as before (4,000 x g at 4°C for 10 min) followed by 

removal of the supernatant and the pellet was then resuspended in a 1% (w/v) volume of 

CaCl2. The competent cells were stored on ice and used within 24 hr.

2.3.9 T r a n sfo r m a t io n s

Two hundred microliters of competent cells were placed in a pre-chilled microcentifuge 

tube containing lOfxl of DNA at a concentration of -100 ng per 10 ill. The contents 

were mixed gently and incubated on ice for 30 min, during which time an aliquot of 

SOC (appendix A) was pre-heated at 42°C. After 30 min on ice the cells were heat- 

pulsed at 42°C for 90 s followed by incubation on ice for a future 2 min. One mililiter 

of preheated SOC was then added to the cells and incubated at 37°C in a shaking 

incubator for 1 hr 10 min. The cells were concentrated by centrifugation following 

which ~800 |xl of supernatant was removed and discarded. The cells were resuspended 

in the remaining supernatant and plated out with the appropriate controls on LB plates 

containing ampicillin and incubated overnight at 37°C. If the cells are transformed they 

become ampicillin resistant thus only transformed cells will yield colonies. These were 

used to prepare broth cultures by inoculating 5 ml of LB containing ampicillin, 

incubated over night at 37°C and DNA minipreparations were carried out as described 

in section 2.3.10.

2.3.10 Sm a l l  sc a l e  pr e p a r a t io n  o f  pl a sm id  DNA (M ini prep)

This is a modification of the method of Birnboim and Doly, (1979) and Ish-Horowicz 

and Burke (1981). A single bacterial colony was used to inoculate 5 ml of LB medium 

(with appropriate antibiotic) and incubated overnight at 37°C. An aliquot (1.5 ml) of
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this culture was added to a sterile microfuge tube and centrifuged for 30 s at room 

temperature, the remainder was stored at 4°C. The medium was removed from the tube, 

leaving the pellet as dry as possible. The pellet was resuspended thoroughly in 100 ¡¿1 

of solution I by vigorous vortexing. To this 200 (il of freshly prepared solution II was 

added, the tube contents were mixed by inverting the tube rapidly a number of times. 

Ice-cold solution III (150 ¡il) was added and the tubes were vortexed gently for 10 s.

The lysate was centrifuged for 5 min at 12,000 x g, the supernatant was transferred to a 

fresh tube, taking care not to carry over any of the white precipitate. An equal volume 

of phenol/chloroform/isoamyl alcohol (25:24:1) was added, mixed by vortexing and 

centrifuged for 5 min at 12,000 x g. The upper aqueous phase was removed to a fresh 

tube, to which 2 volumes of 100% (v/v) ethanol were added, the solution was vortexed 

and centrifuged for 5 min at 12,000 x g. The supernatant was discarded, the pellet was 

washed with 1 ml 70% (v/v) ethanol, centrifuged as before and the supernatant was 

removed. The pellet was air-dried, then resuspended in 50 (il of TE (pH 8.0), 1 ¡il of 

DNase-free RNase A  (20 [xg/ml) was also added, vortexed, incubated at 37°C for 1 hr 

then stored at 4°C. Glycerol stocks of all bacterial cultures were prepared at this stage 

by the addition of 0.5 ml of a 50% (v/v) glycerol solution to 0.5 ml of the overnight 

bacterial culture of interest and storing at -80°C.

2.3.11 Q ia g e n ™ pl a sm id  DNA p u r if ic a t io n  pr o t o c o l

Plasmid DNA was purified using the QIAGEN-tip 100 isolation system from Promega. 

All buffers used are described in appendix A. A glycerol stock o f the bacteria of 

interest was streaked out on LB ampicillin agar and incubated overnight at 37°C, an 

isolated colony from this plate was used to inoculate a 5 ml LB ampicillin starter culture 

and incubated in a shaking incubator at (~300rpm) 37°C for 8 hr. One millilitre of the 

starter culture was used to inoculated 25 ml of LB ampicillin in a 250 ml sterile flask 

and incubated overnight in a shaking incubator at 37°C. The O.D. of the culture must 

read 1-1.5 at 600 nm. The following centrifugation steps were carried out using a JA-20 

rotor in a Beckman centrifuge. The bacteria culture was transferred to a centrifuge tube 

and centrifuged by spinning at 6,000 x g for 15 min at 4°C. The supernatant was
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removed and the pellet was dried by inverting the tube on tissue paper and allowing the 

supernatent to drain off. The bacterial pellet was resuspended completely in 4 ml of 

Buffer PI containing RNase, 4 ml of freshly prepared Buffer P2 was added and 

incubated at room temperature for 5 min. Following incubation, 10 ml of prechilled 

Buffer P3 was added, immediately mixed gently by inverting the tube 5-6 times then 

incubated on ice for 20 min. The mixture was then centrifuged for 1 hr at 20,000 x g at 

4°C.

The Qiagen-tip 100 was equilibrated by applying 4 ml of QBT buffer and allowing the 

column to empty by gravity. The column does not dry out at this stage as the flow of 

buffer will stop when the buffer reaches the upper filter. After the centifugation step the 

supernatant was removed immediately from the tube without disturbing the pelleted 

material and applied to the column by filtering through 1MM filter paper. The 

QIAGEN-tip was washed with 2 x 10 ml of Buffer QC. DNA was then eluted with 5 ml 

of Buffer QF. DNA was precipitated by adding 0.7 volumes of room-temperature 

isopropanol and centrifuged immediately at 15,000 x g for 30 min at 4°C and the 

supernatant was carefully removed. The resulting pellet was washed with 70% (v/v) 

ethanol, allowed to air dry for 5 min and re-dissolved in a suitable volume of TE or 

dP^O. DNA was then quantified by spectrophotometric analysis as described in section 

2.3.15.

2.3.12 A g a r o se  G e l  E l e c t r o ph o r e sis  o f  DNA

Electrophoresis through agarose gels is the standard method used to separate, identify 

and purify DNA fragments. The technique is simple, rapid to perform and can be used 

for the isolation of DNA fragments.

An appropriate quantity of agarose or low melt agarose was added to 100 ml IX  TBE 

/TAE buffer. The amount of agarose depends on the percentage agarose required. This 

was decided in relation to the size of the DNA fragments being separated. The mixture 

was boiled to dissolve, when cooled sufficiently (~60°C) the gel was cast into the 

Hybaid horizontal gel electrophoresis system, the comb was inserted. The gel was
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allowed to set before filling the chamber with IX  TBE/TAE, the comb was then 

removed. To a 20 fil sample, 4 fxl of DNA sample buffer was added and loaded into the 

wells made by the comb. DNA sample buffer was also added at IX  concentration to 

500 ng of a 1Kb DNA ladder which was loaded as a size marker. The gel was run at 

constant voltage (5 V/cm) for 1-2 hr. When complete, the gel was stained in ethidium 

bromide (0.5 mg/ml) for 30 min, placed in distilled water to destain for 15 min and 

viewed under UV illumination.

2.3.13 I so l a tio n  o f  DNA f r o m  a g a r o se  g els

Low melting point agarose gels were prepared in IX  TAE buffer (gel isolation is not 

carried out in TBE buffer as borate ions are difficult to remove from the resultant DNA 

solution). Ethidium bromide was added to the samples before electrophoresis so as to 

minimise manipulations with the fragile low melting point agarose gels. After 

electrophoresis, the gels were viewed under 70% UV illumination. The time of 

exposure to UV light was kept to a minimum, as overexposure to UV would cause 

damage to the DNA. The DNA band of interest was excised from the gel using a clean 

scalpel, excess agarose was cut away to minimise the size of the gel slice which was 

then placed in a sterile microfuge tube.

2.3.14 P u r if ic a t io n  o f  DNA fr o m  l o w  m e l t  a g a r o se

All DNA fragments of interest were purified from agarose using the Wizard® PCR 

Preps DNA Purification System from Promega as follows; the agarose gel slice (300 

mg) was placed in a sterile microcentifuge tube at 70°C until the agarose had melted 

completely. One mililitre of the resin provided was added to the liquified solution and 

mixed gently but thoroughly for 20 s (not vortexed).

A  2 ml syringe (plunger removed) was attached to the wizard® minicolumn the 

DNA/agarose/resin mix was added to the syringe, the plunger was replaced and the mix 

was pushed gently through the column. The syringe was detached and the plunger 

removed again, then it was reattached and the column was washed with 2 ml of 80%
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(v/v) isopropanol. The column was then spun at 10,000 x g for 2 min to dry the resin. 

The DNA was eluted by adding 50 [xl of TE or dH20  to the minicolumn and allowed to 

stand for 1 min at room temperature and centrifuged again at 10,000 x g for 20 s. The 

purified DNA was stored at 4 °C or at -20 °C.

2.3.15 Spe c t r o ph o t o m e t r ic  a n a l y sis  OF NUCLEIC ACIDS

DNA and RNA concentration was determined by measuring the absorbance at 260 nm, 

which is the wavelength at which nucleic acids absorb maximally (A,max). A  50 jig/ml 

preparation of pure DNA has an absorbance of 1 unit at 260 nm while 40 ¡ig/ml of pure 

RNA also has an absorbance reading of 1 at this wavelength. The purity of an RNA or 

DNA preparation was determined by reading absorbance at 260 nm, the X,max for nucleic 

acids and at 280 nm, the A.max for proteins and obtaining the ratio for these absorbances. 

Pure DNA and RNA have A260/A280 ratios of 1.8 and 2.0 respectively. Lower ratios 

indicate the presence of protein while higher ratios often indicate residues of organic 

reagents.

2.4 CELL CULTURE METHODS

All cell culture techniques were performed in a sterile environment using a Holten 

laminar air flow cabinet. Cells were visualised with an Olympus CK2 inverted phase 

contrast microscope.

2.4 .1  C u l t u r e  o f  c e l l s  in  su spe n sio n

All media compositions and media supplements are given in appendix A. The cell lines 

DG75, DG75 EBNA 1, DG75 EBNA 2, DG75 tTA, DG75 tTA EBNA 2, DG75 tTA 

LMP1, HuT 78, HL60, Mutu 1, Mutu 3 c62, cl48, c95, Mutu 3 LMP1-, X50-7, BL41, 

BL41-B958, IARC 171 Rael BL, Kem BL, IARC 307, IARC 290B, Ag876 III, BL72 

III, BL74,and RAJ I were maintained in supplemented RPMI 1640. Additional 

supplements were added to some culture media see section 2.4.3 Cultures were seeded 

at a density of 2 xlO5 to 5 x 105 cells per ml in 25 cm2 flasks and expanded in 75 cm2
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flasks. Cells were sub-cultured two or three times per week by harvesting into a sterile 

centrifuge tube and centrifuging at 1000 x g for 5 min at room temperature. The cell 

pellet was resuspended gently in an appropriate volume of fresh media and replaced into 

the tissue culture flask. All cell lines were incubated in a humid 5% C 02 atmosphere at 

37°C in a Heraesus cell culture incubator.

2.4.2 C u l t u r e  o f  a d h e r e n t  c ells

HT29 cells were maintained in McCoy’s 5A medium with L-glutamine supplemented 

with 10% (v/v) FCS, penicillin (100 units/ml) and streptomycin (1 [ig/'ml). C33A, C33A 

Neo and C33A LMP1 were maintained in supplemented high glucose DMEM 

supplemented with 10% (v/v) FCS, penicillin (100 units/ml) and streptomycin (l[ig/ml). 

Cultures were seeded into 25 cm2 and 75 cm2 tissue culture flasks. As the cells were 

strongly adherent trypsinisation was required for harvesting prior to sub-culturing. For 

trypinisation the medium was decanted and the cells were washed with 2 ml of sterile 

IX PBS to remove any residual FCS which contains a trypsin-inhibitor activity (0.2- 

macroglobulin). Two mililitres of 0.25% (v/v) trypsin EDTA (HT29) or IX  trypsin 

(C33A C33A Neo and C33A LMP1) was then placed in each flask which was incubated 

at 37°C for 5-10 min or until all cells could be visualised as having detached from the 

flask surface. The cell suspension was then decanted into a sterile centrifuge tube 

containing 5 ml of sterile supplemented media (FCS inhibits trypsin) and centrifuged at 

1000 x g for 5 min. Cells were resuspended in supplemented medium at 2 to 5 x 105 

cells/ml, using 5 ml per 25 cm2 flask and 15 ml per 75 cm2 flask. Cells were then 

incubated as in section 2.4.1..

2.4.3 M e d ia  su ppl e m e n t s

Supplements were added to the growth media of certain cell lines to (a) improve cellular 

proliferation or (b) to select cells containing transfected plasmids (all media 

supplements are outlined in appendix A). L-cysteine is required for the survival and 

proliferation of most group 1 BL cell lines. However L-cysteine is rapidly oxidated
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under normal culture conditions. To improve proliferation of the group 1 Burkitt 

lymphoma cell line Mutu 1 a-thioglycerol was added to growth media as a stable 

substitute for L-cysteine. The a-thioglycerol was dissolved in bathocuproine disulfonic 

acid (BCS) which effectively prevents autoxidation of thiols in liquid solutions. 

Sodium pyruvate was also added to protect against H2O2 which may be generated. 

HEPES was added to maintain an alkaline pH of 7.4. The cell lines DG75 tTA EBNA2 

and DG75 tTA LMP1 are tetracycline responsive cell lines in which the gene of interest 

is cloned downstream of a promoter containing a binding site for a hybrid tetracycline 

regulated transactivator (tTA) which is constiutively expressed from a second co­

transfected plasmid. Tetracycline binds to the tTA and prevents it binding to the 

promoter which remains silent, but upon removal of tetracycline from the growth 

medium the tTA binds the promoter sequence and activates transcription. These cell 

lines were maintained in supplemented RPMI containing 1 ug/ml of tetracycline. Every 

three weeks the transfected cells were reselected by the addition of 500 [xg/ml of 

hygromycin to DG75 tTA, 500 ug/ml of hygromycin and 1,000 ¡ig/ml of geneticin 

(G418) to DG75 tTA EBNA 2 and 800 iig/ml of hygromycin and 2,000 ug/ml of 

geneticin (G418) to DG75 tTA LMP1.

The stably transfected cell lines DG75 EBNA1 and DG75 EBNA2 were maintained in 

supplemented RPMI containing 0.5 [xg/ml of microphenolic acid and 50 ug/ml of 

Xanthine. The stably transfected cell lines C33A Neo and C33A LMP1 were 

maintained in supplemented high-glucose DMEM containing 600 iig/tnl of geniticin. 

The parental cell line C33A was maintained in supplemented high glucose DMEM.

2 .4 .4  C e l l  C o u n ts

Cell counts were performed using an improved Neubaue haemocytometer slide. Trypan 

blue exclusion dye was routinely used to determine cell viability. Ten microlitres of 

trypan blue was added to 90 [¿1 of a cell suspension and mixed. A sample of this 

mixture was added to the counting chamber of the haemocytometer and cells were 

visualised by light microscopy. Viable cells excluded the dye and remained clear while
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dead cells stained blue. Cell numbers were acertained by multiplying the average cell 

count by the dilution factor and again by the volume of the haemocytometer.

2.4.5  C e l l  s t o r a g e  a n d  r e c o v e r y

Cell stocks were prepared for long term storage as follows; Suspension cells: 1 x 107 

cells in exponential phase were pelleted and resuspended in 800 (il of supplemented 

RPMI to which 100 jil of FCS was added, then placed on ice for 10 min. DMSO was 

added to a final concentration of 10% (v/v), mixed gently and transferred to a sterile 

cryotube. Adherent cells: one confluent 75 cm2 flask of adherent cells was used per cell 

stock. Adherent cells were washed with IX  PBS followed by trypsinization and 

resuspension in 900 [xl of FCS and 100 [xl of DMSO. The cells were mixed gently and 

added to a sterile cryotube. The cryotubes were slowly lowered into the gas phase of 

liquid nitrogen and immersed in liquid nitrogen in a cryofreezer (Cooper Cryoservices 

Ltd). Cells were recovered from liquid nitrogen by thawing rapidly at 37°C and 

transferring to a sterile centrifuge tube containing 5 ml of prewarmed supplemented 

media. The cells were centrifuged at 1000 x g for 5 min, the pellet was resuspended in 

5-10 ml of fresh supplemented medium, transferred to a culture flask and incubated at 

37°C in 5% C 02.

2.4 .6  F l o w  c y t o m e t r y

All cells were passaged 24 hr before flow cytometry analysis; 2 x 105 cells were used in 

each experiment. The cells were pelleted at 1000 x g, the supernatant was removed and 

the pellet washed in 5 ml of PBS and recentirfuged. The supernatant was removed and 

the pellet stored on ice until required (up to 24 hr). Cell pellets were resuspended in 2 

ml of PBS giving a final concentration of 2 x 105 cells. The quantity and dilution of the 

various antibodies used is outlined in table 2.2. All anti-CD44 variant antibodies were 

prefixed and all standard antibodies were not.
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Table 2.2. Conditions for antibodies used in flow cytometry analysis.

Antibody Name Dilution Quantity (il

Anti standard CD44 L3D-1 Neat 10

Anti standard CD44 44F10.2 Neat 5

Anti standard CD44 D2.1 Neat 10

Anti variant CD44 v3, v4-5, v6 1/100 10

Anti variant CD44 v4, v7, v7-8 Neat 5

irrelevant Ab IE Neat 10

Rabbit anli-mouse FITC FITC 1/50

Protect from light

5

Procedure: An FITC and an IE control were included with each cell line used, the FITC 

was a control for non-specific fluorescence and the IE was a non-specific murine 

antibody which controlled against non-specific antibody binding. After the pellets were 

resuspended, 200 |il of the cell suspension was aliquoted into each tube and the 

appropriate amount of Ab was added and incubated at room temperature for 10 min. 

The cells were then washed in 500 [xl of washing buffer and microcentrifuged at 2,000 x 

g at 4°C for 2 min. This step was repeated and the cells were resuspended in 50[xl of 

FITC Labelled monoclonal and incubated at room temperature for 10 min. The 

washing step was repeated twice as above. The cells were then resuspended in 500 ¡0,1 

of 2% (w/v) paraformaldehyde (fixative) and used in flow cytometry analysis. 

Alternatively the cells could be stored for up to 7 days when protected from light. 

When prefixing cells the initial 200 ,̂1 aliquot of cells were added to a tube containing 

500 |il of 2% (w/v) paraformaldehyde and incubated at room temperature for 10 min. 

The cells were then washed twice as above and resuspended in 200 ¡xl of IX  PBS. The 

procedure was carried out as above with the exception of the final step when the cells 

were resuspended in 500 (il of 0.5% (w/v) as opposed to 2% (w/v) paraformaldehyde.

2.4.7 IMMUNOCYTOCHEMISTRY, FIXATION AND STAINING OF TISSUE CULTURE 

CELLS

Examination of the uniformity of EBNA 2 expression in the tetracycline inducible cell 

line DG75 tTA EBNA2 was examined by immunocytochemistry. Prior to starting the
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procedure a bath of methanol and acetone were placed at -20°C for 2 hr. A  cell 

suspension was prepared of 1 x 106 cells/ml in supplemented RPMI, 50 [xl of this 

suspension was placed in a 1.5 ml microcentifuge tube which had a hole pierced in the 

bottom. This tube was then placed in a cytospin and centrifuged onto a clean 

microscope slide at 700 x g for 5 min. The slide was allowed to air dry for 5 min then 

placed in ice cold methanol for 5 min. The slide was then air-dried briefly and placed 

into an ice cold acetone bath for 1 min 45 s. This procedure fixed and permeated the 

cells. Slides were left to air dry overnight. Primary antibody (PE2 anti-EBNA2) was 

diluted 1/50 in PBS with 5% (v/v) FCS, 30 ¡il of the dilution was placed on the cell 

smear for 30 min in a humid chamber at 4°C. The slide was washed ( 3 x 3  min) with 

—10 ml volumes of PBS, taking care to ensure that the slide did not dry out. Secondary 

Ab (Anti-mouse AP, Promega) was again diluted 1/50 in PBS containing 5% (v/v) FCS, 

100fxl was placed on the smear and incubated for 30 min in a humid chamber at 4°C. 

PBS washing was repeated as before and the slide was allowed to air dry. Finally, 100 

(j.1 of substrate (BCIP NBT) was added to the smear and colour was allowed to develop 

for a minimum of 30 min. When colour was apparent the slide was washed with water 

and viewed under microscope.

2.5 RNA ANALYSIS

2.5.1 R N a se  f r e e  e n v ir o n m e n t

RNA is easily degraded by ubiquitous RNase enzymes and thus stringent measures 

were employed to avoid this potential hazard. All glassware and metal spatulas were 

baked prior to use at 180°C for 8 hr in order to inactivate any RNase. Sterile disposable 

plasticware is generally considered RNase free and thus did not require treatment. 

RNases are resistant to autoclaving but they can be deactivated by the chemical 

diethylpyro-carbonate (DEPC) when it is added to solutions at a final concentration of 

0.1 % (v/v), incubated at room temperature for 18hr and autoclaved. Solutions which 

contain amines such as Tris cannot be DEPC-treated as the DEPC is inactivated by 

these chemicals. Solutions containing these chemicals were prepared using DEPC
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treated H20  followed by autoclaving. Hands are a major source of RNase 

contamination thus gloves were used at all times and changed frequently.

2.5.2 RNA EXTRACTION FROM CULTURED CELLS

Prior to RNA isolation the cells were examined by phase contrast microscopy to 

determine the condition of the cells. A cell count was performed as described in section 

2.4.4. RNA was extracted from cultured cells using the commercial reagent RNA 

ISOLATOR™. Cells grown in suspension were pelleted and then lysed in RNA 

ISOLATOR™ by repetitive pipetting. One millilitre of RNA ISOLATOR™ was used 

per 1 x 107 cultured cells. Cells grown in monolayers were lysed directly in the cell 

culture flasks as trypsin can lead to the introduction of RNases, cells were removed 

from the flask by a sterile cell scraper and homogenised as above. The homogenised 

sample was incubated at room temperature for 5 min to allow complete dissociation of 

nuclear protein complexes, (the procedure may be stopped at this point by storing 

samples at -70°C). Phase separation was achieved by adding 0.2 ml of chloroform per 1 

ml of RNA ISOLATOR. The samples were covered and shaken gently but thoroughly 

for 15 s or until completely emulsified. Samples were incubated at room temperature 

for 15 min. The resulting mixture was centrifuged at 12,000 x g for 15 min at 4°C. 

Following centrifugation the mixture separates into a lower red, phenol-chloroform 

phase, an interphase and a colourless upper aqueous phase. The aqueous phase, which 

contains the RNA, was removed to a fresh tube and RNA was precipitated by adding 

0.5 ml of isopropanol per ml of RNA ISOLATOR used initially. The samples were 

stored for 10 min at room temperature, then centirfuged at 12,000 x g for 10 min at 4°C. 

The resulting RNA pellet was washed using 1 ml of 75% (v/v) ethanol by inverting the 

tube 5 times. The pellets were then recentrifuged at 10,000 x g for 5 min at 4°C and the 

75% (v/v) ethanol was removed. Pellets were air dried and dissolved in DEPC treated 

upH20 . The resulting RNA preparation was heated to 60°C and mixed gently to ensure 

a homogeneous solution prior to aliquoting. An aliquot was removed for 

spectrophotometric and gel electrophoretic analysis.
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2.5.3 mRNA i s o l a t i o n  from t o t a l  RNA

The PolyATtract mRNA isolation system from Promega was used to isolate mRNA 

from total RNA. This system employed a biotinylated oligo(dT) primer to hybridize at 

high efficiency in solution to the 3‘ poly(A) region present in most mature eukaryotic 

mRNA species. The hybrids were captured by streptavidin coupled to paramagnetic 

particles (SA-PMPs) and selected using a magnetic separation stand followed by 

washing at high stringency. The mRNA was eluted from the solid phase by the simple 

addition of ribonuclease free deionized water. This procedure yields an essentially pure 

fraction of mature mRNA after only a single round of magnetic separation. The 

procedure is outlined below.

Total RNA containing mRNA fraction 

5'  AAAAA3'

5'

5'

Hybridise with biotin-oligo (dT) 

------------- AAAAA3'

TITHT-US'
Add Streptavidin PMPs

~ f  N^PMP

-  AAAAA3' 

TnTTT-B5’

T ÎH T 1 -B 5 1

Magnetise DPMP

AAAÄAJ

r r m T - B 5 '

D

PMP

Wash and elute

AAAAA3'
(Aqueous) TTTTTT-B5'

(Solid) no PMP

Fig 2.1. Schematic representation of PolyATtract mRNA isolation procedure.



2.5 .3 .1  A n n e a l i n g  o f  p r o b e

In a sterile RNase free tube 1 mg of total RNA was made up to 500 |il using RNase free 

water and placed in a 65°C water bath for 10 min. To the RNA 3 ¡1,1 of biotinlyated 

oligo (dT) probe and 13 fil of 20X SSC was added, mixed gently and incubated at room 

temperature until completely cooled. This required approximately 10 min during which 

stock solutions of 0.5X and 0.1X SSC were prepared.

2.5.3.2 W a s h i n g  o f  t h e  p a r a m a g n e t i c  p a r t i c l e s

The SA-PMPs were resuspended by gently flicking the bottom of the tube until they 

were completely dispersed and then captured using the magnetic stand provided. Thirty 

seconds were allowed for collection of all particles, the supernatant was removed and 

the particles were washed by resuspending three times in 0.3 ml of 0.5X SSC each time 

capturing them using the magnetic stand and carefully removing the supernatant. The 

washed particles were then resuspended in 0.1 ml of 0.5X SSC.

2.5.3.3 C a p t u r e  a n d  w a s h i n g  o f  a n n e a l e d  O l ig o  (d T ) - mRNA h y b r i d s

The entire contents of the annealing reaction were added to the tube containing the 

washed SA-PMPs and incubated at room temperature for 10 min. The SA-PMP were 

captured and the supernatant was gently removed and retained until after elution and 

quantification of the mRNA, when it was evident satisfactory binding had taken place. 

The particles were washed with 0.1X SSC by gently flicking the bottom of the tube 

ensuring that all particles were resuspended, capturing the particles and removing the 

supernatant with care. This was repeated four times.

2.5.3.4 E l u t i o n  o f  mRNA

In order to elute the mRNA, the particles were resuspended in 100 ¡ul of RNase free 

water by a gentle flicking of the tube. The particles were magnetically captured and the 

eluted mRNA containing aqueous phase was removed to a sterile RNase free tube. The
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particles were not discarded but the elution step was repeated using 150 jxl of RNase 

free water. Particles which had been carried over were removed at this point by 

centrifugation at 10,000 x g for 10 min at 4°C and the mRNA was transferred to a fresh 

RNase free tube. The concentration of the mRNA was determined by 

spectrophotometric analysis as described in section 2.3.15.

2.5.4 RNA ANALYSIS BY GEL ELECTROPHORESIS

In order to check the integrity of RNA, isolated samples were run on 1% (w/v) agarose 

gels. These gels were prepared as outlined in section 2.3.12. The RNA samples (5 fxl) 

were prepared for electrophoresis by adding 15 fil of RNA sample buffer and 3 |xl of 

RNA loading buffer. The samples were heated to 65°C for 10 min prior to loading on 

the gel. The gel was run in IX  TAE as described in section 2.3.12. As ethidium 

bromide is included in the RNA loading buffer the gels did not require further staining 

and could be visualised directly on a UV transilluminator. The presence of two strongly 

staining bands represent the 28 S and the 18 S ribosomal RNAs, which indicated intact 

RNA. Degradation is observed by a smear running down the length of the gel.

2.5.5 R e v e r s e  t r a n s c r i p t i o n  P o l y m e r a s e  c h a in  r e a c t io n

2.5.5.1 R e v e r s e  t r a n s c r i p t i o n  (RT)

This is the process whereby mRNA is transcribed into cDNA using a reverse 

transcriptase, in this case Moloney Murine Leukemia Virus reverse Transcriptase 

(MMLVRT). A  typical reverse transcription reaction using a random hexamer is 

outlined below:

Total RNA 2 fig

Random hexamer (Promega) 100 ng

Magnesium Chloride 2.5 mM

BSA 100 pig/ml

rRNasin 40 units
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RT MMLV 400 units

5X Buffer IX

dHsO Final volume 40 (il

Program 20°C 1 min, 42°C 50 min, 99°C 6 min, 95°C 5 min.

2.S.5.2 P o l y m e r a s e  C h a in  R e a c t i o n  P r o t o c o l  (P C R )

The polymerase chain reaction (PCR) involves the amplification of specific DNA  

sequences using DNA primers which anneal to the DNA of interest. The primers are 

designed so that one anneals to the forward DNA strand and the other anneals to the 

reverse strand thus allowing polymerisation of both strands by the enzyme Taq DNA  

polymerase. This results in exponential amplification of the sequence of interest. PCR 

protocols varied with respect to the DNA amplified.

P-actin PCR

per 100|ul reaction jxl

Sterile ultra pure water 71

10X enzyme buffer 10.0

25 mM MgCl2 6.0

dNTP (1 mM each) 5.0

Forward primer 250 ng/^1 1.0

Reverse primer 250 ng/fil 1.0

Taq DNA polymerase 5U/^1 1.0

Template cDNA 5.0

Total volume 100

This reaction mix was overlaid with 50 ul sterile mineral oil before placing in the 

minicycler (Hrybid).

PCR program 94.5 °C 1 min 1 cycle

94.5 °C 1 min ->

34.0 °C 1 min 44 cycles

72.0 °C 1 min

72.0 °C 10 min 1 cycle
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CD44 v6-v7

per 50|xl reaction ]xl

Sterile ultra pure water 36.5

10X enzyme buffer 5

25 mM MgCl2 2.5

dNTP (5 mM each) 2

Forward primer 10 pM/|j,l 1

Reverse primer 10 pM/|il 1

Taq DNA polymerase 1

Template DNA 500 ng 1

Total volume 50

This reaction mix was overlaid with 50 [il sterile mineral oil before placing in the 

minicycler (Hybid).

PCR program 94.5 °C 5 min 

94.5°C 1 min 

53°C 1 min

72.0 °C 1 min 

94.5°C 1 min 

68°C 1 min

72.0 °C 1 min

72.0 °C 10 min

1 cycle

2 cycles

30 cycles 

1 cycle

All PCR products where visualised on agarose gels as outlined in section 2.3.12.

2.6 PREPARATION OF CELL PROTEIN

Prior to protein isolation cells were examined by phase contrast microscopy to 

determine the condition of the cell cultures. Cell counts were then performed as 

described in section 2.4.4. Two methods were employed to isolate protein as outlined 

below. All buffers required are outlined in appendix A.
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2.6 .1  P r e p a r a t io n  o f  t o t a l  c e l l u l a r  p r o t e in s  (M e t h o d  A)

This method was employed to isolate total cellular protein including nuclear proteins 

from cultured mammalian cells. Approximately 6 x 107 cells from a cell line were used 

in each protein prep. Cells were pelleted at 1000 x g for 5 min and washed with 10 ml 

of ice-cold PBS. The cells were then spun at 3,000 x g and all the supernatant was 

removed. The volume of the pellet was estimated and the cells were dispersed in five 

volumes of ice-cold suspension buffer. This step was carried out rapidly to avoid 

proteolytic degradation. An equal volume of 2X SDS gel loading buffer was added, 

immediately after the suspension buffer, at which stage the sample becomes extremely 

viscous. Samples were then placed in a boiling water bath for 10 min. The DNA in 

each sample was sheared by sonication for 1 min on full power. The resulting lysates 

were transferred to an microcentifuge tube and centrifuged at 10,000 x g for 10 min at 

room temperature. Supernatants were aliquoted and stored at -20 °C. Samples were 

analysed by SDS PAGE, loading approximately 6 x 105 cells per lane as described in 

section 2.6.5.

2 .6 .2  P r e p a r a t io n  o f  c e l l u l a r  p r o t e i n s  (M e t h o d  B )

Protein samples which excluded nuclear proteins were prepared as described by 

Kelleher and Long, (1992). Suspension cells were pelleted at 2,000 x g for 5 min and 

washed twice with 5 ml of PBS and the resulting pellet was drained. Adherent cells 

were washed twice with PBS and then lysed in the culture flasks. Cell lysis was 

preformed by adding the following per 1 x 107 cells: 0.5 ml PBS, 1 [xl PMSF (0.1 mM), 

3 pil leupeptin (10 mg/ml) and 0.5 ml 1% (v/v). The pellet was vortexed every 5 min for 

30 min and then centrifuged at 400 x g for 5 min to deposit the cell debris. The samples 

are maintained on ice at all times. Supernatant were removed to ultracentrifuge tubes, 

overlaid with paraffin liquid and ultracentrifuged for 30 min at 100,000 x g. The 

supernatant was dispensed into aliquots and stored at -20 °C. Lysates were thawed out 

immediately before use. One 100 [il aliquot was stored on ice for immediate 

quantification using the Bradford assay as described in section 2.6.3.

93



2.6 .3  E s t im a t io n  o f  p r o t e i n  c o n c e n t r a t io n

In order to standardise the amount of protein sample applied to SDS-PAGE gels the 

protein concentration of each cell lysate isolated by method B was determined using the 

Bradford assay (Bradford, 1976). A  standard curve was constructed using a stock 

solution of BSA. The standard solution contained 0, 25, 50, 75 jig or 1 mg of BSA  

protein per 1 ml of solution. The sample concentration was determined within this 

range and test solutions falling outside of this were diluted 1:2, 1:5, and 1:10. Standard 

and test solutions were prepared in a 1:1 solution of PBS and 1% (v/v) Np40. Standards 

were prepared as indicated in table 2.1.

Table 2.3 Preparation of standard BSA solutions for Bradford assay.

Concentration o f standard 

(ng/100 III)

Volume of stock 100 jag/100 (¿1 

BSA (ni)

Volume of 

Diluent

(HD

Total

Volume

(HD

0 0 100 100

25 25 75 100

50 50 50 100

75 75 25 100

100 100 0 100

The Bradford reagent (Biorad) was diluted 1/10 and filtered through 1MM Whatman 

paper immediately before pipetting 5 ml into tubes containing 100 ¡il of sample. The 

tubes were vortexed briefly and colour development was allowed to proceed for 30 min. 

Absorbance was read at 595 nm against a reagent blank. A standard curve was plotted 

for BSA standards (concentration versus absorbance) which allowed estimation of the 

sample protein concentration.

2.6.4 A c e t o n e  p r e c i p i t a t i o n  o f  p r o t e in s

Proteins isolated by method B have residual salts which may give rise to diffuse bands 

on SDS-PAGE, thus acetone precipitation was employed when preparing proteins 

isolated in this manner for SDS-PAGE. Having determined the protein concentration of
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a sample, a sufficient volume was aliquoted to yield 50-100 (ig of protein per lane. This 

volume was diluted 1:5 with ice cold acetone (stored at -20°C), vortexed and incubated 

at -20°C for a minimum of 30 min. The precipitated protein was briefly 

microcentrifuged (25,000 x g for 2 min) and the supernatant was removed. Sample 

buffer (IX) was added so that 20 [xl contained the appropriate amount of protein 

required. The samples were incubated in a boiling water bath for 10 min after which 

they were subjected to SDS-PAGE or stored at -20°C.

2.6.5 P r o t e i n  e l e c t r o p h o r e s i s , p r e p a r a t i o n  o f  SDS-PAGE g e l s

A two phase SDS-PAGE system was used to analyse proteins with a 5% stacking gel 

and a 10% resolving gel as outlined below.

Resolving Gel

10 ml 10% resolving gel(m

acrylagel 3.33

bis-acrylagel 1.35

1.5 M Tris (pH 8.8) 2.5

ultrapure water 2.62

10% (v/v) SDS 0.10

10% (v/v) APS 0.10

TEMED 0.004

Stacking gel

2.5 ml 5% stacking gel(ml)

acrylamide 0.42

bis-acrylagel 0.168

1 M Tris (pH 6.8) 0.312

upH20 1.55

10% (v/v) SDS 0.025

10% (v/v) APS 0.025

TEMED 0.0025

95



2.6.6 P o l y a c r y l a m i d e  g e l  e l e c t r o p h o r e s i s  (PAGE)

An ATTO protein gel electrophoresis system was used in this study. Glass plates were 

washed with detergent, rinsed first with tap water and then with dH20  and finally wiped 

in one direction with tissue soaked with 100% (v/v) ethanol. The gasket was placed 

about the ridged plate, the plates were put together and secured with clamps. The depth 

of the resolving gel was marked on the outer plate. The resolving gel was then poured 

to within 2 cm of the top of the larger plate and overlaid with 100% (v/v) ethanol. 

When set, the ethanol was removed and the stacking gel was poured. A clean comb was 

inserted and the gel was allowed to polymerise for 45 min-1 hr. The electrophoresis 

tank was filled with IX  Tris glycine running buffer to the level of the horizontal rubber 

gasket. After polymerisation the gaskets clamp stands and comb were removed. 

Unpolymerised gel was removed by gently rinsing the wells with dH20 , the wells were 

then straightened using a loading tip. The prepoured gels were lowered into the buffer 

at an angle to exclude air bubbles from the gel buffer interface. The gel plates were 

fixed firmly in place with the notched plate innermost. The chamber formed by the 

inner plates was filled with IX running buffer, the samples were loaded and the 

electrodes were attached. The gels were run at 30 mAmps per gel for approximately 1 

hr. When complete the plates were removed, separated and the gel was either placed in 

transfer buffer prior to western blotting or stained in Coomassie blue. Staining took 

place for 30 min, agitating constantly. The gel was then placed in destain (see appendix 

A) with constant agitation, until all background staining was removed. The destain was 

changed as it became saturated with stain.

2.6.7 W e s t e r n  b l o t  a n a l y s i s

An SDS-PAGE gel was run as described, with pre-stained markers (New England 

Biolabs). Two pieces of 3MM filter paper were cut to the size of the gel as was the 

nitrocellulose membrane. The sponges from the transfer apparatus along with 4 pieces 

of 3 MM filter paper cut to size and the SDS gel were soaked in transfer buffer. Two 

sponges were placed on each side of the transfer apparatus and 2 pieces of filter paper in 

turn, on each of these. The gel was placed on one side of the filter paper. The
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nitrocellulose membrane which had been pre-wet in distilled water and then soaked in 

transfer buffer for 5 min and placed on top of the gel, ensuring that no bubbles were 

trapped between any of the layers. The second stack of filter paper and sponges were 

placed on top of the membrane, the transfer apparatus was assembled and placed in the 

blotting apparatus with the gel on the side of the negative (black) electrode and the 

nitocellulose on the positive (red) side. The voltage was set at 80 volts for 2 hr. After 

transfer, the apparatus was disassembled and the membrane was washed briefly in TBS 

to remove any traces of gel, followed by blocking buffer for 1 hr. The membrane was 

then incubated with the appropriate antibody at the appropriate temperature overnight. 

Sodium azide was added to each antibody solution to a final concentration of 0.02% 

(w/v) as a preservative thus permitting reuse of the antibody.

Table 2.4. Incubation conditions for antibodies used in western blotting

Antibody Name Dilution Incubation temperature

Anti-EBNA 2 

Anti-LM P 1 

Anti-Standard CD44 

Anti-Standard CD44 

Anti-Variant CD44

PE2 1/50 

CS14 1/50 

BRIC238 1/100 

D2.1 1/100 

v4-v5, v7, v7-8 1/100

4"C

4°C

room temperature 

room temperature 

room temperature

After overnight incubation, the membrane was washed twice in TBST (0.1%(v/v) 

Tween-20) for 10 min and once in blocking buffer for 15 min. The filter was then 

incubated in the secondary antibody, a mouse anti-human alkaline phosphatase 

conjugated antibody (Promega) diluted 1/5000 in Blotto, for 1 hr at room temperature, 

followed by washing three times with TBST for 10 min each. All the above incubations 

were carried out with agitation. Membranes were then placed in a clean container and 

covered with BCIP/NBT substrate. The container was placed in the dark at room 

temperature without shaking for 30 min or longer if required. The filter was then rinsed 

in distilled water to stop the reaction, photographed then wrapped in cling film to store.
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2.7 DIFFERENTIAL DISPLAY REVERSE TRANSCRIPTION 

POLYMERASE CHAIN REACTION (DD-RTPCR).

DD-RTPCR was carried out using the RNAmap Differential Display system from the 

Gene Hunter corporation™.

2.7.1 D D -R e v e r s e  T r a n s c r i p t i o n  o f  mRNA.

Total RNA was used for reverse transcription. The integrity of all RNA used was 

verified by (3-actin RT PCR (2.5.5.1) and visualised on a formaldehyde gel as described 

in section 2.7.8. RNA isolated from transformed rat embryo fibroblast was included in 

the kit as a control for reverse transcription dependent amplification of mRNA with any 

primer combinations. Four reverse transcription reactions were set up for each RNA, 

one for each of the anchored olig (dT) primers. The following were added for each RT 

reaction.

¿d

dH20  9.4

5XRT buffer 4.0

dNTP(250 (iM) 1.6

Total RNA (DNA free) 2.0 (0.1 ^g/[xl, freshly diluted)

T12MN(10 \xM ) 2X)

(M=A,C,G, N=A,C,T,G)

Total 19.0

The mixture was placed in the thermocycler for 5 min at 65°C and 10 min at 37°C after 

which l[il of MMLV reverse transcriptase (Promega) was added to each tube, mixed 

briefly, then incubated at 37°C for 50 min and 95°C for 5 min. After incubation tubes 

were centifuged briefly to collect condensation and stored on ice for immediate PCR or 

-20°C for long term storgage.
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2.7.2 D D -P o l y m e r a se  C h a in  R e a c t io n .

PCR was carried out in a final volume of 20 ¡xl. A core mix was prepared where 

possible to avoid pipetting errors, the RT mix and AP primer were aliquoted 

individually. AP primers used in this study were 

AP-11 (2 [lM) 5'-CAGACCGTTC-3'

AP-12 (2 |xM) 5'-TGCTGACCTG-3'

AP-13 (2 (xM) 5'-AGTTAGGCAC-3‘

AP-14 (2 \xM) 5'-AATGGGCTGA-3'

AP-15 (2 [xM) 5'-AGGGCCTGTT-3'

The PCR reaction was set up at room temperature as follow:

id

dH20  9.2

10X PCR buffer 2.0

dNTP (25 (xM) 1.6

AP-primer (2 x̂M) 2.0

T12MN (10 [xM) 2.0

RT mix (containing the 2.0

same T12MN for PCR) 

a 35S-dATP (1200 Ci/mM) 1.0

AmpliTaq (Perkin-Elmer) 0.2

Total 20.0

The reaction was mixed well, overlaid with 20|xl of mineral oil and placed in the 

thermocycler (MJ Research). PCR was carried out at 94°C, 30 s, 40°C, 2 min, 72°C, 30 

s for 40 cycles, 72°C, 5 min, followed by electrophoretic analysis or storage at -20°C.

2.7.3 D e n a t u r in g  p o l y a c r y l a m id e  g e l  e l e c t r o p h o r e sis

Differential display products were visualised by autoradiography after separation on a 

6% (w/v) denaturing polyacrylamide gel using a sequencing apparatus. The 

constituents of the gel are out lined in appendix A.
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2 .7 .4  P r e p a r a t io n  o f  t h e  se q u en c in g  a ppa r a t u s

Sequencing apparatus plates were washed in detergent to remove all traces of gel, rinsed 

thoroughly with tap water followed by upH^O, wiped dry with clean dry tissue 

removing all tissue. One hundred percent ethanol was poured onto the plates and wiped 

in one direction along the entire length plate until dry. The large plate was siliconised 

using sigmacote, a few drops were applied at one end and wiped along the plate in one 

direction. Spacers and combs were wiped in 100% (v/v) ethanol and placed on one 

plate. The apparatus was then assembled and clamped together.

2.7 .4 .1  Ca st in g  t h e  g el

Starting with a clean dry casting tray a paper sealing strip was placed into the casting 

tray. To 20 ml of gel mix, 250 fil 10% (w/v) APS and 100 fxl of TEMED was added. 

This gel solution was poured quickly onto the sealing strip and the assembled 

sequencing plates were placed on top and clamped into the tray. When set (tip to 

check), the main gel was pour at 45° angle using a 50 ml syringe slowly and constantly. 

The comb was inserted blunt end first and the gel was allow to set, allow 3 hr. Two 

litres of lx  TBE was prepared from the 10X stock with upfkO. The comb was removed 

and inserted with the sharp tooth edge toward the gel. Four hundred millilitres of 

1XTBE was poured in the bottom reservoir and the IPC chamber was filled, the wells 

were washed thoroughly, to remove bubbles or urea, with a syringe containing IX  TBE 

and a fine needle. The gel was pre-run for at least 45 min using sample loading dye in a 

few wells to ensure the samples would run correctly. After a gradual increase of power 

over a 10 min period the gel was run at 1700 volts for approximately 3 hr.

2.7 .2  D r y in g  a n d  D e v e l o p in g

After electrophoresis the buffer was removed from the IPC chamber and the plates were 

separated. Two pieces of 3MM filter paper (cut to size) was placed on top of the gel, 

avoiding bubbles. The paper was lifted gently taking the gel with the paper. This was 

then covered with cling film and placed in the gel dryer, with the cling film facing up.
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The gel was dried at 80 °C for 2 hr. Orientation markers were prepared by carefully 

streaking 35S containing loading dye across a piece of filter paper, in the shape of an x 

and allowing it to dry. The markers were then wrapped in sellotape and stored until 

required. When the gel was dry the cling film was removed and the gel was placed in a 

cassette, two orientation markers were attached either side of the gel. In the dark room 

a sheet of X-ray film was placed on the gel and the cassette was sealed. The gel was 

exposed to the film for 24-96 hr. The film was removed from the cassette in the dark, 

placed in developer for 3 min, water for 1 min, fixer for 3 min and water again to rinse 

any residual developer or fixer (when developing the film was agitated continuously in 

each of the solutions). The film was then air-dried for 2 hr until fully dry.

2.7.5 I s o l a t i o n  o f  cDNA

After developing the autoradiogram bands of interest were identified and marked on the 

filter using a pencil. The autoradiogram was then placed on the dried filter and aligned 

using the orientation markers. The band of interest was removed by cutting through the 

autoradiogram and the filter paper using a clean razor blade. The gel slice including the 

filter paper was placed in an microcentifuge tube and soaked in 100 fxl of upH20  for 10 

min, followed by boiling the tube with the lid tightly closed for 15 min. The mixture 

was then spun at 13,000 x g for 2 min to pellet the gel and the paper debris. The 

supernatant was transferred to a fresh tube to which 10 jxl of 3M sodium acetate, 5 fxl of 

glycogen (10 mg/ml) and 450 fxl of 100 % (v/v) ethanol were added. The tube was 

allowed stand for 30 min at -80°C followed by spinning at 13,000 x g for 10 min at 4°C 

to pellet the DNA. The pellet was washed in 85% (v/v) ethanol, dried briefly and 

dissolved in 10 ul of dH20 . Four microlitres were used for subsequent reamplification 

and the remainder was stored at -20°C.

2.7.6 R e a m p l i f i c a t i o n  o f  cDNA p r o b e

Reamplification was carried out using the same primer set and PCR conditions with the 

exception of the dNTP concentrations which was 20 [xM. No radioactive isotopes was 

added.
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]Xl

dH20 20.4

10X PCR buffer 4.0

dNTP (250 |iM) 3.2

AP-primer (2 fxM) 4.0

T12MN (10 (xM) 4.0

Isolated cDNA template 4.0

AmpliTaq (Perkin-Elmer) 0 4

Total 40.0

PCR was carried out at 94°C, 30 s, 40°C, 2 min, 72”C, 30 s for 40 cycles, followed by 

72°C for 5 min. The PCR product (30 (xl) was run out on a 1.5% (w/v) agarose gel and 

stained with Ethidium bromide (See section 2.3.12). In cases where the cDNA was not 

reamplified a 1:100 dilution of the first round PCR was made and 4fxl of this dilution 

was used for a second round of PCR, using the same conditions as those described 

above. The size of the reamplified band was confirmed by agarose gel electrophoresis 

by comparison with a 100 bp DNA ladder (Promega). The PCR products were then 

cloned into the cloning vector pTAg from Invitrogen.

2.7 .7  C l o n in g  of  PCR p r o d u c t s

The reamplified PCR products were cloned in to the pTAg cloning vector using the 

LigATor rapid cloning system from R&D systems. In order to reduce the risk of 

removing the A overhang by nuclease contamination unpurified PCR products were 

used for cloning. The use of freshly amplified PCR fragments yielded best results as 

storage of PCR products can lead to loss of the A  overhang preventing ligation to the 

pTAg vector. Prior to ligation residual DNA polymerase activity was removed to avoid 

false positives by the addition of an equal volume of chloroform:isoamyl alcohol (24:1) 

to the PCR reaction and vortexing for 1 min. The tube was then microcentrifuged for 1 

min at room temperature at 12,000 x g. The upper aqueous phase was transferred to a 

fresh tube, 2 fxl of this aqueous phase was used in the ligation reaction. The maximum 

volume used was 2 [xl as the salts may inhibit the ligation reaction.
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2.1.1.1 L i g a t i o n  r e a c t i o n

The following reagents were combined in a 1.5 ml microcentifuge tube: 

10X Ligase buffer 1 (il

50 ng/[xl pTAg vector 

Amplified fragment 

Nuclease free water

100 mM DTT 

10 mM ATP

0.5 ¡¿1 

0.5 1̂ 

l(xl 

2 Hi 

4.5 \il

The tube was vortexed briefly to mix and then microcentrifuged to collect the contents. 

T4 DNA ligase (0.5 fxl) was added using a fresh tip and mixed gently without vortexing. 

The ligation reaction was incubated over night at 16°C, then placed on ice until 

required.

2.1.1.2 T r a n s f o r m a t i o n  r e a c t i o n

Competent cells used for the transformation reaction were provided with the LigATor 

Kit. One 1.5 ml tube contained 40 [xl of cells which was sufficient for two 

transformation reactions. Cells were thawed on ice, 20 (il of which were gently pipetted 

into a prechilled sterile 1.5 ml microcentifuge tube. One microlitre of the ligation 

reaction was added to the cells and tapped gently to mix. The cells were then incubated 

on ice for 30 min. SOC media was also provided in the LigATor kit and it was thawed 

at room temperature. After 30 min on ice the cells were heat shocked at 42°C for 

exactly 30 s without shaking or mixing. The transformation reactions were then 

incubated on ice for 2 min, 80 [il of SOC media was added to each tube which were 

placed in a shaking incubator at 37°C for 1 hr. Prepared LB agar plates containing 

IPTG/X-Gal (see appendix A) were placed at 37°C for 30 min to equilibrate. Spread 

plates were prepared using 50 fil of the transformation reaction. The plates were left at 

room temperature to allow absorption of liquid and the incubated at 37°C overnight.
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pTAg contains a LacZa peptide sequence which when functionally produced 

complements the N-terminal truncated LacZ peptide synthesised in the competent cells 

provided in the LigATor Kit. The resulting enzyme (3-galactosidase, cleaves X-gal to 

give blue colonies. IPTG depresses the expression of the LacZa gene in cells 

containing pTAg. When an insert was cloned into the cut pTAg vector the LacZa 

peptide sequence is interrupted. This interfered with the function of the peptide and 

white colonies were produced on the plates. This formed the basis for the selection of 

colonies containing inserts. Transformed (white) colonies were inoculated into 5 ml of 

LB amp broth and incubated in a shaking incubator overnight at 37°C. DNA  

minipreparations were prepared from the resulting cultures as described in section 

2.3.10. The presence of inserts and there orientation was determined by restriction 

digests (as described in section 2.3.4).

2.7.8 S e q u e n c in g  o f  cDNA p r o b e s

A T7 Sequencing ™ Kit from Pharmacia Biotech was used for sequencing, this kit is 

based on the dideoxy method of sequencing (Sanger et al., 1977). The major steps 

involved in using T7 DNA polymerase to sequence DNA using a radioactive label were 

as follows; isolation of template DNA as described above, annealing of primer, 

labelling reaction, termination reaction, electrophoresis and autoradiography.

2.7.8.1 A n n e a l in g  o f  pr im e r  t o  d o u b l e  st r a n d e d  t e m p l a t e

The concentration of DNA was adjusted to contain 1.5-2.0 \ig of DNA in 32 ill of water 

(32 ¡ml of miniprep DNA was used in each sequencing reaction). To denature the 

template DNA 8 ¡il of NaOH was added, the tube was vortexed and centrifuged briefly 

to collect drops and incubated at room temperature for 10 min. To precipitate the DNA  

7 fil of 3 M sodium acetate (pH 4.8), 4 ul of dH20  and 120 ul of 100% (v/v) ethanol 

were added to the denatured template, mixed gently and placed at -20 °C overnight. 

The precipitated DNA was collected by spinning at 13,000 x g for 15 min the resulting 

pellet was washed in 70% (v/v) ice cold ethanol the tube was then centrifuged for 10 

min the supernatant was removed the pellet was air dried and resuspended in 10 fxl of
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dt^O. Two microlitres of undiluted universal primer and 2 [xl of annealing buffer was 

added to the template DNA vortexed and centrifuged briefly followed by incubation at 

65°C for 5 min. The tube was then transferred to 37°C for 10 min followed by room 

temperature for 5 min and then used directly for labelling reactions.

2.7.8.2 La b e l l in g  r e a c t io n

The following were added to the annealed template/primer mix,

Labelling mix (dATP) 3 ¡xl

Labelled dATP (S35) 1 |il

Diluted T7 DNA polymerise 2 ¡xl

These were mixed gently by pipetting and incubated at room temperature for 5 min.

Table 2.5. Dilutions of T7 DNA polymerase 

no. of templates polymerase dilution buffer(fxl) total volume(fil)

2 1 4 5

3 1.5 6 7.5

4 2 8 10

5 2.5 10 12.5

6 3 12 15

7 3.5 14 17.5

8 4 16 20

9 4.5 18 22.5

10 5 20 25

2.7.8.3 T e r m in a t io n  r e a c t io n

Four tubes were labelled A,C,G,T for each DNA template, 2.5 fxl of each of the “read 

short mixes” were added to their corresponding tubes and incubated for 5 min at 37°C. 

To each of the 4 pre-warmed sequencing mixes, 4.5 jil of the labelling reaction was 

added, mixed by gentle pipetting, and incubated at 37°C for 5 min. Five microlitres of 

stop solution was added and mixed gently. Four microlitres of each reaction was added 

to a fresh tube, incubated at 75-80°C for 2 min and immediately loaded on the
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sequencing gel. The remainder of the unheated reactions was stored at -20°C. 

Electrophoresis and autoradiography was carried out as described in section 2.7.4.

2.7.9 Riboprobe Synthesis

The cloned cDNAs were used to prepare probes for northern blots to confirm or refute 

the presence of differentially expressed cDNAs. Riboprobes (RNA Probes) were 

prepared using an in vitro transcription kit (Promega). Prior to labelling the plasmids 

containing the cDNA of interest were purified using the Qiagen purification protocol as 

outlined in section 2.3.11. Ten micrograms of purified plasmid DNA was linearized 

with the restriction enzyme Hind III, which did not cut the plasmid between the T7 

promoter and the end of the cDNA fragment.

T7
i—► Hind III

cDNA insert

Fig. 2.2. Restriction of cloned DD cDNAs prior to labelling.

The linerised DNA was purified by phenol/chloroform extraction and ethanol 

precipitation as described in section 2.3.3 and resuspended in 10 fxl of sterile DEPC 

treated H2O.

2.7.9.1 La b e l l in g  r ea c t io n

The following components were added at room temperature in the order outlined below 

to a 1.5 ml microcentifuge tube.

Transcription optimisation buffer 5X 4

100 mM DTT 2

RNasin Ribonuclease inhibitor (20U) 0.5

ATP, GTP, UTP, 2.5 mM each 4 (mix)

10 jiM CTP 2.4
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Linearised DNA template (0.2-1.0 mg/ml) 1.2

[a-32P] CTP (50 (xCi/|xl) 5

T7 RNA polymerase 15-20 U/fil 1

Final volume 20 pi

Reactions were incubated at 37°C for 60 min. Promega’s RQ1 RNase-freeDNase (0.5 

[xl-1 U/|j,g of DNA) was added to the labelling reaction and incubated at 37°C for 15 

min. The volume was adjusted to 50fxl using DEPC treated H2O and a 

phenol/chloroform and a chloroform extraction was carried out as described in section 

2.3.3. The following were then added to the labelled probes, 20 fig of calf pancreatic 

tRNA, 0.5 volumes of 7.5 M ammonium acetate and 2.7 volumes of ethanol. Following 

overnight precipitation at -20°C the probe was pelleted at 13,000 x g for 30 min at 4°C. 

The pellet was washed in 70% (v/v) ethanol the supernatant was removed and the pellet 

was air dried until all residual ethanol had evaporated then resuspended in 2 0  pil of 

DEPC treated H20 .

2.8 NORTHERN BLOTTING

Northern blotting was carried out according to Sambrook et al., (1989). RNA of 

interest was first separated on a formaldehydye gel.

2.8.1 T r e a t m e n t  o f  e l e c t r o p h o r e sis  a pp a r a t u s

Prior to running an RNA gel the electrophoresis apparatus was treated to remove any 

RNase. The tank, gel tray, comb and lid were washed in detergent and rinsed well in 

DEPC-treated H20  then air dried in 100% (v/v) ethanol. The tank, gel tray and comb 

were immersed in a 3% (v/v) solution of Hydrogen peroxide for 15 minutes. The 

apparatus was then rinsed thoroughly in DEPC treated upH20  and allowed to dry.
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2.8.2 E l e c t r o ph o r e sis  o f  RNA/mRNA t h r o u g h  g e l s  c o n t a in in g

FORMALDEHYDE

As formaldehyde vapours are toxic these gels were prepared in a fume hood. The gel 

was prepared by melting the appropriate amount of agarose in water cooling to 60°C 

and adding 5X formaldehyde gel running buffer and formaldehyde to give a final 

concentration of IX  and 2.2M respectively (Appendix A). The gel was cast in a fume 

hood and allowed to set for at least 30 min. The samples were prepared by mixing the 

following in a microcentifuge tube:

RNA (up to 30 |xg) 1.5^1

5X formaldehyde gel running buffer 2.0[il

Formaldehyde 3.5[xl

Formamide 10|nl

Ethidium bromide was added to samples (0.01 fxg/sample) which were to be used for 

northern blots in order to examine the RNA briefly under UV (70% strength) for equal 

loading prior to blotting. The samples were incubated at 65°C for 15 min, chilled on ice 

then centrifuged briefly to collect the sample. Sterile DEPC treated gel loading buffer 

(2  |j,l) was added to each sample and applied to the gel immediately after prerunning the 

gel for five minutes at 5V/cm. Gels were run while submerged in IX  formaldehyde gel 

running buffer for approximately 3 hr or until the dye front had migrated two thirds of 

the way down the gel. The gel was removed from the buffer and viewed under UV  

light. Samples to be blotted were treated as described in the next section.

2.8.3 Tr a n sf e r  o f  d e n a t u r e d  RNA t o  N it r o c e l l u l o se  fil t e r s

Gels which contained formaldehyde were first washed in several changes of DEPC 

treated H2O. As the percentage agarose used to prepare the gel was greater than 1% 

(w/v), the gel was soaked in 0.05 M NaOH for 20 min this treatment partially 

hydrolyses the RNA and improves the efficiency of transfer. The gel was then rinsed in 

DEPC treated H2O and soaked in 20X SSC for 45 min (Maniatis et al, 1989). Unused 

areas of the gel were trimmed away and the top left hand corner was cut for orientation
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purposes in this and succeeding operations. Capillary transfer was used to transfer the 

RNA onto the filter, transfer was set up as illustrated in Fig 2.3.

__________________  Weight

— Glass plate

— Paper towels

Whatman —
paper 1 — 1 Whatman paper

1  / \  Gel
—

Fig 2.3. Capillary transfer of nucleic acids from agarose gels to solid supports.
From Sambrook et, al., 1989.

A  solid support was placed in a bath of 20X SSC. A sheet of 3MM Whatman paper was 

cut to cover the support and dip down either side into the buffer. The washed gel is then 

placed (wells facing down) on to the whatman and covered by a piece of nitrocellulose 

membrane cut to the size of the gel. This membrane had been floated on a bath of 

deionized water and wetted completely from below then soaked in 20X SSC for at least 

5 min prior to placing it on the gel. The buffer chamber was then covered with cling 

film. Two pieces of 3MM Whatman paper which had been soaked in 2X SSC were 

then placed on top of the filter paper, care was taken at all times to ensure that no 

bubbles were trapped when preparing the transfer. A stack of paper towels were then 

placed on top of the gel and held in place by a weight. Transfer was allowed to 

continue overnight. After transfer was completed the saturated paper towels were 

removed as was the Whatman paper. The gel and the filter paper were removed 

together and turned upside down on a clean piece of towel. The position of the wells 

were marked using a ball point pen, the gel was then discarded. The filter was washed 

briefly in 6 X SSC to remove any remains of the gel then placed on a fresh sheet of 

Whatman paper and allowed to air dry for at least 30 min. The dried filter was then 

placed between two pieces of 3MM Whatman paper and baked in an oven at 80°C for 2
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hr. The filter was then used directly for prehybridisation or stored at room temperature 

wrapped in aluminium foil.

2.8 .4  P r e h y b r id iz a t io n  a n d  H y b r id iz a t io n  pr o t o c o l

The dried membrane was placed in a baked hybridization bottle, 10 ml of hybridization 

buffer A (Appendix A) was added and incubated in a Hrybid roller oven for 45 min to 1 

hour at 55°C. Once the membrane was wet after baking it was not allowed to dry out 

again. To 10 ml of fresh hybridization buffer A  which had been pre heated to 55°C, 5 

[xl of the labelled probe was added. The prehybridization buffer was removed and the 

preheated buffer containing the probe was promptly added. Hybridization was allowed 

to proceed overnight at 55°C.

2.8.5 M e m b r a n e  w a sh in g

Following the overnight incubation the hybridization buffer was removed and the 

membrane was washed as follows:

T ab le 2.6. Northern blot membrane washing.

Wash solution Temperature Time

IX  SSC, 0.1% (w/v) SDS room temperature 30 s

IX  SSC, 0.1% (w/v) SDS 22°C 30 min

IX  SSC, 0.1% (w/v) SDS 22°C 30 min

0.1XSSC, 0.1% (w/v) SDS 65°C 30 min

0.1X SSC, 0.1% (w/v) SDS 65°C 30 min

After washing the membrane was removed gently from the hybridization bottle and 

placed in a stomacher bag in a cassette. The blot was kept moist at all times with 0.1X  

SSC, 0.1% (w/v) SDS. The membrane was exposed to X-ray film for 24-96 hr at -70°C. 

Film was developed as described in section 2.7.4.2.
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2 .9  R N A SE PROTECTION ASSAY

The ribonuclease protection assay (RPA) is a highly sensitive and specific method for 

the detection and quantitation of mRNA species. The RiboQuant® RNase protection 

assay system (PharMingen) was employed during this study. The procedure is outlined 

below.

Day 1: Probe Synthesis

i

RNA preparation 

1

Overnight Hybridization

Day 2 : RNase treatment and Purification 
of Protected Probes

Gel preparation

Electrophoresis on Denaturing 
Polyacrylamide Gel

I

Autoradiography and /or Phosphorimaging

Fig. 2 .4 . Overview of the ribonuclease protection assay protocol.

2.9.1 P r o b e  Sy n t h e sis

The [a-32P]UTP, GACU nucleotide pool, DTT, 5X transcription buffer and the template 

DNA set was brought to room temperature prior to setting up the reactions. The 

following were added to a 1.5 ml microcentifuge tube for each probe synthesis:

RNasin 1 ul

GACU pool 1 [il

DTT 2 [il

5X transcription buffer 4 [il 

Template DNA 1 [il
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[a-32P]UTP 10 |il

T7 RNA polymerase 1 |il

In some cases cDNAs had been cloned in the SP6  orientation thus an SP6  enzyme 

(BohringerManheim) was employed which has a 10X transcription buffer the residual 

volume was made up with nuclease free water. The contents of the tube were mixed by

gentle pipetting and centrifuged quickly followed by incubation at 37°C for 1 hour. The

reaction was terminated by adding 2 ¡¿1 of RNase free DNase mixing gently and 

incubating at 37°C for 30 min. The following reagents were then added to the reactions:

EDTA 20 mM 26 [il

Tris saturated phenol 26 |il

Chloroform:isoamyl alcohol (50:1) 25 |xl 

Yeast tRNA 2 [xl

The contents were vortexed into an emulsion and centrifuged for 5 min at room 

temperature. The upper aqueous phase was transferred to a fresh tube containing 50 fil 

of chloroform:isoamyl alcohol (50:1), the tube was vortexed and microcentrifuged (top 

speed) for 2 min at room temperature. The upper aqueous phase was transferred to a 

sterile 1.5 ml tube to which 50 [xl of 4M ammonium acetate and 250 (xl of ice cold 

100% (v/v) ethanol was added. The tube was inverted to mix and incubated at -70°C for 

30 min followed by centrifugation at 4°C for 15 min. The supernatant was removed and 

the pellet was washed with 100 ¡xl of ice cold 90% (v/v) ethanol after which the 

supernatant was removed and the pellet was air-dried for 5-10 min. The pellet was 

solubilized by the addition of 50 ¡xl of hybridization buffer and gentle vortexing, 

contents were collected by a brief centrifugation. Duplicate 1 ¡xl samples of the labelled 

probe were quantified in a scintillation counter. A maximum yield of ~3 x 106 

Cherenkov counts/jil with an acceptable lower limit of ~3 x 105 Cherenkov counts/jil 

was expected. The probe was stored at -20°C until required. Generally probes can only 

be used for two overnight hybridizations when labeled with [a- P]UTP.
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2.9.2 RNA PREPARATION AND HYBRIDIZATION

RNA was prepared using the RNA isolation method outlined in section 2.5.2, 20 [xg of 

total RNA was used for each probe hybridization. Each RNA sample was made up to 

50 (xl with DEPC-treated upH20  to which 50 [xl of 4 M ammonium acetate and 250 |il 

of ice cold 100% (v/v) ethanol were added. The samples were mixed by inverting and 

stored at -70°C for one hr or -20°C overnight. The precipitated RNA was collected by 

centrifugation at 12,000 x g for 30 min at 4°C, the pellet was washed with 90% (v/v) ice 

cold ethanol. After removal of the supernatant and subsequent air-drying, the pellet was 

resuspended in 8 [xl of hybridization buffer by gentle vortexing for 3-4 min followed by 

a brief centrifugation. Two microlitres of the probe was then added to each RNA 

sample and mixed by pipetting. A drop of mineral oil was added to each sample and the 

tubes were centrifuged briefly in the microfuge. Samples were then placed in a heating 

block for 3 min which had been preheated to 90°C, and then immediately turned down 

to 56°C, allowing the temperature to ramp down slowly, and incubated for 12-16 hr. 

The heating block was then turned down to 37°C prior to RNase treatment and again the 

temperature was allowed to ramp down slowly and then was maintained at 37°C for 15 

min.

2.9.3 R N a s e  T r e a t m e n t s

An RNase mixture was prepared by adding 2.5 ml of RNase buffer to 6  jxl of RNase A  

+ T1 mix, per 20 RNA samples (RNase A  80 ng/jxl; RNase T1 250 U/(il). The RNA 

samples were removed from the heating block and 100 jil of the RNase cocktail was 

added underneath the oil into the aqueous layer (bubble). The tubes were 

microcentrifuged for 10 s and incubated for 45 min at 30°C. Before the RNase 

treatment was completed a Proteinase K mixture was prepared (per 20 samples),

Proteinase K buffer 1 X  390 \il

Proteinase K (10 mg/ml) 30 ¡xl

Yeast tRNA (2 mg/ml) 30 ¡xl
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The mixture was mixed together and 18 1̂ aliquots were added to a sterile 1.5 ml 

microcentifuge tubes. The RNase digests were extracted from underneath the oil and 

transferred to the tube containing the proteinase K mixture (avoiding transfer of oil). 

The RNase/Proteinase K mixture was vortexed briefly, microfuged quickly and 

incubated for 15 min at 37°C. Tris saturated phenol (65 |nl) and 65 |xl of 

chloroform:isoamyl alcohol (50:1) were added to the samples, vortexed into an 

emulsion then centrifuged for 5 min at room temperature. The upper aqueous phase 

was extracted, avoiding the interphase, and transferred to a fresh tube to which 1 2 0  al of 

4M ammonium acetate and 650 ¡j.1 of ice cold 100% (v/v) ethanol was then added. The 

tubes were mixed by inverting and were subsequently incubated at -70°C for 30 min. 

Samples were centrifuged for 5 min at 4°C, the pellet was then washed with ice cold 

90% (v/v) ethanol, the supernatant was removed and the pellet was allowed to air-dry 

for 5-10 min. Pellets were resuspended in 5 jxl of IX  loading buffer (provided in kit). 

Prior to loading onto the gel the samples were heated to 90°C for 3 min and placed 

immediately in an ice bath.

Five percent (w/v) gels were prepared according to the formula given in appendix A. 

The gel apparatus was prepared, cast, electrophoresed and dried as previously described 

in section 2.7.4. The dried gel was placed in a cassette which contained two 

intensifying screens, a sheet of X-ray film was placed on top of the gel and it was 

exposed overnight at -70°C. The film was developed as described in section 2.7.4.2.
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CHAPTER 3

ANALYSIS OF CD44 EXPRESSION IN BURKITT’S LYMPHOMA

CELL LINES
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3.1 I n t r o d u c t i o n

Several reports indicate that the presence of EBV and the expression of EBV latent 

genes, particularly EBNA2 and LMP1, play an important role in the induction of both 

CD44 standard and variant isoform expression (see section 1.17). B-cell activation by 

EBV infection induces the expression of CD44v8-10 and CD44vlO, further 

investigation illustrated that EBNA2 is required for the expression of these CD44 

variant isoform, thus indicating that EBNA2 and/or LMP1 may mediate its induction 

(Kryworuchko et al, 1995). EBNA2 has been shown to play a role in CD44 expression 

in lymphoblastoid cell lines (Fitchter et al., 1997), also LMP1 has been implicated in 

the regulation of CD44 expression in EBV-based lymphomas (Walter et al, 1995). In 

order to investigate further the effect of EBV latent genes on CD44 expression, we 

employed (1) the EBV-positive Burkitt’s lymphoma (BL) lines Mutu I and Mutu III 

(exhibiting type-1 and type-III latency programs respectively), (2) BL cell lines, DG75 

tTA EBNA2 and DG75 tTA LMP1 in which EBNA2 and LMP1 expression is 

induciably regulated by tetracycline.

3.2 A n a l y s i s  o f  CD44 e x p r e s s i o n

The expression of CD44 standard and variant isoforms was initially examined by flow  

cytometry, followed by western blotting as described in section 2.6.7. Flow cytometry 

may be used to analyse the expression of proteins at the cell surface and is an 

established method for the analysis of CD44 isoforms. These experiments were carried 

out by using a range of anti-standard and anti-variant CD44 antibodies. A flow  

cytometer is used to obtain quantitative information based on light scatter or 

fluorescence emission caused by individual cells in a population as they flow rapidly in 

a fluid stream in front of a light source. When a cell passes in front of the laser beam 

the light scatter or the fluorescence emitted from the cell is converted to an electronic 

signal that is proportional to a specific parameter for that cell (in this case fluorescence 

from a fluorescein (FITC)-labelled mAb bound to an anti-CD44 Ab bound to the cell 

surface). The information from a population of cells is displayed on a computer screen 

as a frequency histogram (Gilman-Sachs, 1994). Flow cytometry analysis was chosen as
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it possesses many inherent advantages (a) it gives an immediate answer as to the 

expression of a molecule of interest on the cell surface (b) the number of cells required 

for analysis by each antibody is small (c) multiple samples can be prepared together and 

stored for up to 7 days (when protected from light) before analysis. As the panel of 

CD44 anti-standard and anti-variant antibodies used initially was quite large this was 

considered the best approach to establish the CD44 expression pattern of the cell lines 

investigated. The protocol used for flow cytometry is outlined in section 2.4.6. The 

antibodies used for analysis were as follows:

D2.1

L3D-1

44F.10.2

1 Anti standard antibodies

v3

v4, v4-5 

v6

v7, v7-8

Anti-variant

antibodies

A fluorescein (FITC)-labelled anti-mouse secondary antibody was used in all flow  

cytometry experiments. An FITC control was included for each cell line analysed, that 

is cells with out a primary antibody followed by the FITC label which resulted in a 

negative peak indicating that there was no non-specific interaction taking place between 

the cells and the secondary antibody. This control was included for each cell line and 

was negative in each case (results not shown). Also an irrelevant mouse antibody IE 

was used as a negative control, illustrating how non-fluorescing cells appear. This is 

represented by a dark peak on the left hand side of each of the histograms, fluorescence 

is measured against this negative peak. The positive peak, i.e. the antibody of interest 

detecting the protein of interest on the surface of a population of cells, is the clear peak 

on each of the histograms. When fluorescence is not detected this peak lies on top of 

the negative peak, indicating that the molecule of interest has not been detected. 

Positivity is measured along the horizontal X-axis of the histograms which is a log scale 

measuring fluorescence. The greater the number of cells expressing the molecule of 

interest then the further along the log scale the peak will appear. Two peaks represent a 

dual population in which some cells express the molecule of interest and some do not. 

The Y-axis is a measure of cell number.
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In order to investigate the effect of EBV latent gene expression on CD44 standard and 

variant isoform expression, two EBV-positive BL cell lines, Mutu 1 and Mutu III were 

investigated. These cell lines were described by Gregory et al., (1990), Mutu I is a 

type-I latency BL cell line expressing EBNA1 as the sole viral protein. These 

phenotypically small cells grow singly in culture and resemble very closely the 

morphology of cells from a BL tumour. Mutu III is a stable clone of the early passage 

BL cell line Mutu I which has, upon serial culture “drifted” to express the full 

compliment of EBV latent genes (type-III latency). This drift also involves a switch to 

the expression of B-cell activation antigens and other surface molecules including CD44 

(Gregory et al., 1990). Mutu III cells clump greatly in culture. The EBV-associated 

diseases that best exemplify the latency III program are infectious mononucleosis and 

postransplantation lymphoproliferative disorder (PTLD).

These cell lines provide a useful tool in examining the collective effect of the EBV 

latent genes on CD44 gene expression. The expression of the standard isoform of CD44 

has previously been recorded in Mutu III but not Mutu I (Gregory et al., 1990), however 

the pattern of CD44 variant expression has not been investigated in this type-III EBV 

positive cell lines.

The T-cell line HuT 78 was used initially as a positive control for the expression of 

CD44. Thus the pattern of CD44 expression in HuT 78 was determined by flow 

cytometry before examining cell lines of interest as illustrated in the following section. 

All cell lines were examined by flow cytometry twenty four hours after passage so that 

the culture conditions of the cells were consistent between experiments.
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3.2.1 F l o w  c y o m e t r y  a n a l y s i s  o f  H uT  78

FL1-M
Fig. 3.1. Flow cytometry analysis o f CD44 standard and variant isoform expression in the T-cell 

line HuT 78. Relative cell number is plotted on the Y axis and log fluorescence intensity on the X-axis. 

The antibodies used are indicated on each histogram (2.1=D2.1).

It can be seen that with the exception of anti-v3 and v4-5, all mAbs detected strong 

expression of CD44 in HuT 78.
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3.3 A n a l y s i s  o f  CD44 e x p r e s s i o n  in  M u t u  I a n d  M u t u  III

Mutu IIIMutu I

wsc3oO

FL1-B

O

v 4  - 5

FL1-H

'•"■"I
I o'1

Fig. 3.2. Flow cytometry analysis o f CD44 standard and variant expression in the BL cell lines 

Mutu I and Mutu III. Relative cell number is plotted on the Y-axis and log fluroescence intensity on 

the X-axis. The antibodies used are indicated on each histogram.

The results of the initial experiments indicate that both Mutu I and Mutu III were 

negative for CD44 standard expression however, considerable variant expression was 

detected in both cell lines. The fact that standard expression was not detected was 

possibly due to conformational changes in the CD44 molecule caused by the insertion
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of variant epitopes, thus the anti-standard antibody L3D-1 was unable to detect CD44s. 

When comparing the variant expression pattern between both cell lines CD44v4 appears 

dramatically upregulated in Mutu III were as v4-5 appears down-regulated, a slight 

down regulation in expression of v7 was also observed in Mutu III. Both cell lines were 

strongly positive for v6  expression and negative for v3 expression, (results not shown).

Mutu I and Mutu III analysis was carried out using the anti-variant antibodies to 

variants which appeared differentially expressed in the initial experiments, v4, v4-5, and 

v7. Also included were the anti-standard antibodies D2.1 and 44 F.10.2.

Mutu I Mutu III

FL1-H

FL1-H

1 o
F L l-H

Fig. 3.3. Measurement o f CD44 standard and variant isoform expression in the BL cell lines Mutu

I and Mutu III by flow cytometry analysis. Relative cell number is plotted on the Y-axis and log 

fluroescence intensity on the X-axis. The antibodies used are indicated on each histogram (2.1=D2.1).

Using the anti-standard antibody 44F.10.2, CD44s was not detected in Mutu I or Mutu 

III (not shown), however, CD44s was repeatably detected using the anti-standard
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antibody D2.1. Considerably more standard CD44 expression was detected in Mutu III 

than Mutu I. Although in previous reports, CD44s was detected in Mutu III but not in 

Mutu I, the results obtained here using flow cytometry with the anti-standard antibody 

D2.1 indicated that Mutu I did express CD44. The pattern of CD44 variant isoforms 

was examined, v4-5 and v7 (not shown) again appeared to be downregulated in Mutu III 

however, the pattern of v4 expression was not consistent as expression of these isoforms 

was detected in both cell lines. The differences in CD44 expression may have been 

caused by masking of epitopes due to conformational change caused by glycoslyation or 

possibly related to variations in isoform expression caused by the cell cycle.

Western blot analysis was carried out on protein isolated from Mutu I and Mutu III as 

described in section 2.6.7, using two anti-standard antibodies (1) BRIC 238 which 

recognises the standard form of CD44 at -83  kDa and higher variant form appear as an 

upward smear from the 83 kDa band, and (2) D2.1 which recognises the CD44s 83 kDa 

band and a smaller band p45. P45 has previously only been detected in HuT 78 but is 

proposed to be a CD44 related protein as it recognises the HA binding site (Dr. Sinead 

McGrath, pers comm).

KDa

165

105
76.0

1. 2. 3. 4. 5.

m
CD44s

57.0 _
46.5 _    p45

37.5

28.0

Fig. 3.4. Detection of CD44s expression by western blotting. CD44 standard expression was analysed 

using the anti-standard antibody D2.1 and 100 |xg of protein per lane. Lane No. 1. Marker, 2. Mutu I, 3. 

Mutu III, 4. Blank, 5. HuT 78.

From figure 3.4 it is clear that CD44s was only detected in the positive control HuT 78, 

however p45 was detected in all cell lines and appeared to be several times more 

abundant in Mutu III. The apparent detection of CD44s by flow cytometry was
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probably due to the interaction of D2.1 with p45, thus explaining why CD44s was not 

detected with the other anti-standard antibodies L3D-1 and 44F.10.2. The absence of 

CD44s in Mutu III is contrary to a previous report by Gregory et al., (1990), who 

reported the detection of CD44s in Mutu III by flow cytometry. Thus the presence of 

CD44s in Mutu III was further investigated using another anti-standard antibody BRIC 

238 and the results are shown in figure 3.5.

I

Fig. 3.5. Detection o f CD44s expression by western blotting. The anti-CD44 antibody BRIC 238, was 

used to analyse the cell lines Mutu III and HuT 78 for the presence of standard CD44, 100 (ig of protein 

was loaded per lane. Lane No. 1. Mutu III, 2. HuT 78.

It can be seen from figure 3.5 that CD44s was not detected in Mutu III (clone no. 

cl48D). A partial characterisation of EBV latent gene expression in the cell clone Mutu 

III (cl48D) was made using available antibodies as indicated in figure 3.6. The cell line 

B95-8 was used as a positive control as it expresses all EBV latent proteins, also 

included was a second clone of Mutu III clone c95.
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32.5

EBNA2
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5. 4. 3. 2. 1.

KDa

175

EBNA3C

83

62

47.2

D

EBNA3A

3. 4. 5.

Fig. 3.6. Western blot analysis o f the EBV latent proteins expressed in the cell line Mutu III c l48 .

A. Analysis of LMP1 (~63 kDa) expression using the anti-LMPl antibody CS1-4. B. Analysis of 

EBNA2 (~83 kDa) expression using the anti-EBNA2 antibody PE2. C. Analysis of EBNA3C (146 kDa) 

expression using the mAb A10. D. Analysis of EBNA3A (149 kDa) using the mAb T2.78. Lane No. 1. 

Protein marker, 2. Mutu III c95, 3. Mutu III cl48D, 4. Blank, 5. B95-8.

It can be seen that both Mutu III clones express EBNA2, EBNA3A and EBNA3C, 

whereas, it is quite clear from figure 3.6 A., that Mutu III cl48D  does not express 

LMP1. Mutu III c95 does express LMP1 indicating that the absence of LMP1 in Mutu
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Ill c l48  is likely to be specific to this clone (Mutu III clone cl48  is henceforth referred 

to as Mutu III LMP1-). A western blot was performed to establish if Mutu III c95 (now 

referred to as Mutu III LMP1+) expressed CD44s.

1. 2. 3. 4. 5. 6.

KDa

105 ^

76

Fig. 3.7. Detection of CD44s expression by western blotting. The anti-CD44 antibody BRIC 238, was 

used to analyse 100 [xg of protein for the presence of CD44s. Lane No. 1. Marker, 2. Mutu I, 3. Mutu III 

LMP1-, 4. Blank, 5. Mutu III LMP1+, 6. HuT 78.

CD44s was detected in Mutu III c95 (now referred to as LMP1+), thus it is clear that the 

presence of LMP1 in the type III latency BL cell line Mutu III, correlates with the 

expression of the standard isoform of CD44. This blot also confirmed that CD44s was 

not expressed in the type-I BL cell line Mutu I.

3.4 I n v e s t i g a t i o n  o f  CD44 e x p r e s s i o n  a t  t h e  RNA l e v e l

It was clear that the presence of LMP1 in the type-111 latency cell line Mutu III 

correlates with CD44s expression. Transcription of the CD44 gene was analysed by 

northern blotting using mRNA from various cell lines and probed with a CD44s 

riboprobe. CD44 cDNAs, one of which corresponded to the standard CD44 exons only, 

and one which encodes the standard and the variant exons were used to generate 

riboprobes for northern blot and RNase protection assay (RPA). Both cDNAs (a gift 

from Dr Ursula Gunthert, Switzerland) were first subcloned as Eco RI fragments into 

pGEM 3Zf which has both SP6  and T7 promoter sequences flanking the multiple 

cloning site. The CD44s cDNA is 1300 bp and the CD44v cDNA is 2400 bp, see figure
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Fig. 3.8. A. Vector map of pGEM 3Z f (+). B. Restriction digestion o f pAZ CD44s and pAZ CD44v 

with Eco RI and purification o f cDNA fragments.. Lane no. 1. IKb DNA ladder, 2. CD44s purified 

cDNA fragment, 3. CD44v purified cDNA fragment, 4. pAZ CD44s, 5.pAZ C44v.
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Recombinant pGEM-3Zf CD44s and pGEM-3Zf CD44v clones were analysed by DNA  

minipreps and digested with Eco RI and Nco I, to ensure the inserts were of the correct 

size as illustrated in figure 3.9.A.

1.

Bp

5090 “
4072 -
3054 _ Mf

2036 - Ml
1636 _

1010

M

2. 3. 4. 5. 6. 7. 8. 9.

PGEM-3ZÍ 
CD44v cDNA

CD44s cDNA

B
PGEM 3Zf CD44s cDNA SP6 promoter

Nco I

PGEM 3Zf CD44v cDNA SP6 promoter

r i
Nco l Nco I

Fig. 3.9. A. Restriction analysis o f pGEM -3Zf CD44s and pGEM -3Zf clones. DNA maxipreps of 

two pGEM-3Zf CD44s clones and two pGEM-3Zf CD44v clones were digested with Eco RI and Nco I. 

Lane no. 1. IKb DNA ladder, 2-3, pGEM-3Zf CD44s Eco RI, 4-5, pGEM-3Zf CD44v Eco RI, 6-7, 

pGEM-3Zf CD44s Nco I, 8-9, pGEM-3Zf CD44v Nco I. B. Schematic representation o f riboprobes. 

CD44s cDNA sequences are shown above as open boxes and CD44v cDNA is shown as a shaded box in 

the sense orientation (left to right).

Eco RI digestion of pGEM-3Zf CD44s and pGEM-3Zf CD44v resulted in two correctly 

sized fragments in each case of 1300 bp and 3199 bp or 2400 bp and 3199 bp
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respectively (figure 3.9. A). Orientation digests were carried out using Bam HI which 

illustrated clearly that the inserts were in the orientation whereby SP6  could be used for 

the generation of labelled antisense riboprobes, (results not shown). In order to 

construct a riboprobe from pGEM-3Zf CD44s the plasmid was cut (figure 3.9. B) using 

an enzyme which does not cut within the area of interest, in this case Nco I was chosen 

as it cuts near the 5 1 end of the cDNA encoding CD44 standard, leaving a 5 1 overhang. 

Nco I digestion of pGEM-3Zf CD44v resulted in two fragments as Nco I cuts twice 

within the CD44v cDNA, figure 3.9. B.

A purified DNA preparation of pGEM 3Zf CD44s was then labelled by in vitro 

transcription producing a 32P-labelled riboprobe. Analysis of the riboprobe on 

denaturing PAGE revealed an undegraded fragment of the expected size (not shown). 

This riboprobe was then used to probe mRNA which had been blotted onto a 

nitrocellulose membrane as described in section 2.8. The results are shown in figure 

3.10.

3 hr exposure 16 hr exposure

1. 2. 3. 1. 2. 3.

Fig. 3.10. Northern blot analysis o f mRNA using a CD44s riboprobe. A CD44s 32P-labelled 

riboprobe was used to probe 3 [xg of mRNA revealing the three CD44 bands, these bands were
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approximately sized by comparison to the ribosomal bands of total RNA which was electrophoresed 

along side the mRNA. Lane no. 1. Mutu I mRNA, 2. Mutu III mRNA, 3. HuT 78 mRNA.

It can be seen that CD44s transcript is present in the Mutu III LMP1+ clone and that 

CD44s transcript was absent in Mutu I. To determine if equal quantities of mRNA were 

applied to each lane a 32P-labelled GAPDH probe was used to reprobe the same blot

Fig. 3.11. Northern blot analysis o f mRNA using a GAPDH riboprobe. A 32P-labelled riboprobe was 

used to probe the northern blot in figure 3.17. to demonstrate equal loading. Lane no. 1. Mutu I mRNA,

2. Mutu III mRNA, 3. HuT 78 mRNA.

Figure 3.11 illustrated that intact mRNA was present in each lane, HuT 78 appears 

overloaded but this is of no consequence as it only served as a positive control.

The ensemble of these results indicate that (1) CD44 expression was upregulated at the 

RNA level and (2) lack of CD44 expression in the type-III cell line Mutu III coincides 

with lack of LMP1 expression. As LMP1 and EBNA2 are the principal effectors of 

phenotypic change in BL cell lines it was decided to investigate the role of each of these 

viral proteins on CD44 expression when expressed as sole viral proteins in an EBV- 

negative BL background. The tetracycline regulated cell lines DG75 tTA LMP1 and 

DG75 tTA EBNA2 were used to this end.

3 .5  T e t r a c y c l i n e  R e g u l a t e d  G e n e  E x p r e s s i o n  S y s t e m .

The tetracycline regulated system used by Floettmann et al., (1996) is based on that 

developed by Gossen and Bujard (1992), in which the gene of interest is cloned 

downstream of a promoter containing binding sites for the hybrid tetracycline-regulated
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transactivator (tTA). The plasmid tTA encodes a fusion protein of the sequence- 

specific DNA binding tetracycline repressor (TetR) and the C-terminal domain of the 

herpes simplex virus VP16 transactivator. A second plasmid contains the gene of 

interest cloned downstream of seven copies of the Escherichia coli TnlO tetracycline 

operator (tetO) contiguous with a CMV-IE minimal promoter. When tetracycline is 

present, it binds to the tTA preventing it binding to the promoter. Upon removal of 

tetracycline the hybrid TetR binds to the tetO site positioning the VP16 domain so that 

— it can4ransactivate the CMV-IE promoter (Gossen and Bujard, 1992).

Stable cell lines containing plasmids in which EBNA2 and LMP1 expression was 

regulated by tetracycline were generated by Floettmann et al., (1996) as follows: The 

tTA expressing plasmid pUHD15-l was modified by the addition of a hygromycin 

resistance gene under the control of an SV40 promoter creating the drug-selectable tTA- 

expressing vector pJEF-3. A neomycin resistance gene under the control of an SV40 

promoter was cloned upstream of the tTA responsive promoter of pUHD10-3 to create 

the responsive vector pJEF-4. The EBNA 2 coding with a 5 ’ rabbit |3-globin intron was 

cloned into pJEF-4 to produce pJEF-31 (fig. 3.12). The LMP1 cDNA was inserted into 

pJEF-4 to produce pJEF-6 , (fig. 3.12). pJEF-3 was then transfected into DG75 to give 

the stable cell line DG75 tTA, which was then transfected with pJEF-31 producing the 

cell line DG75 tTA EBNA2 or pJEF-6  giving the cell line DG75 tTA LMP1 

(Floettmann et al., 1996). This system allowed examination of either EBNA 2 or LMP1 

in the same cell background before and after induction of the EBV protein thus 

eliminating clonal variations which may occur between cell lines.

130



T e t r a c y c l i n e  r e g u l a t e d  c e l l  l i n e s  DG75 t T A  EBNA2/DG75 t T A  LMP1

The host cell line DG75 is stably transfected with two plasmids pJEF-3 and pJEF-31 or pJEF-6 which are 

selected during cell culture using the drugs Hygromycin and G418 respectively.

A tetracycline regulated 

transactivator (tTA) is 

constitutively expressed on 

pJEF3
Hygro r

Tet

□

tTA tTA+Tet=Inactive

Removal of Tet=active tTA

Active tTA binds to a 5' regulatory region conatining a minimal 

promoter resulting in expression of EBNA2 or LMP1

OR

Fig. 3.12. A  schematic representation o f the tetracycline regulated system used to express o f DG75 

tTA EBNA2 and LMP1
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Prior to commencing flow cytometric analysis of the cell lines DG75 tTA LMP1 and 

DG75 tTA EBNA2 for CD44 expression, the induction of the EBV latent proteins 

LMP1 and EBNA2 respectively were confirmed by western blotting. Proteins were 

isolated from cultured cells 24 hours after the removal of tetracycline, and from cells 

which were maintained in medium containing tetracycline.

1. 2. 3. 4. 5. 6. 7. 8.

Kb - -

175

83

A

Kb

175

oa
-  . < —  EBNA2

62 mm + —  LMP1
62 -mSIN

Fig. 3.13. Western blot analysis o f the induction o f LMP1 and EBNA2 in the tetracycline regulated 

cell lines DG75 tTA LMP1 (left) and DG75 tTA EBNA2 (right). Western blots were carried out using 

the anti-LMPl antibody CS1-4 and the anti-EBNA2 antibody PE2. Lane no. 1, 5, Protein marker, 2. 

DG75 tTA LM Pl uninduced, 3. DG75 tTA LMP1 induced, 4. Blank, 6. DG75 tTA EBNA2 uninduced, 7. 

DG75 tTA EBNA2 induced, 8. Blank.

It is clear from figure 3.13 that 24 hr after the removal of tetracycline significant levels 

of LMP1 and EBNA2 are detected. Neither LMP1 nor EBNA2 are detectable in the 

protein extracts from cells before the removal of tetracycline from the growth medium.
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DG75 tTA LMP1 uninduced DG75 tTA LMP1 induced-48 hr
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Fig. 3.14. Flow cytometry analysis of CD44 standard and variant expression in the tetracycline 

regulated cell line DG75 tTA LMP1 before and after induction o f LMP1. Relative cell number is 

plotted on the Y axis and log fluorescence intensity on the X-axis. The antibodies used are indicated on 

each histogram.



It can be seen from figure 3.14 that CD44 standard expression was not detected in any 

experiment using the anti-standard CD44 antibody L3D-1. Once again failure to detect 

CD44 by this method may have been due to epitope masking caused by glycosylation or 

conformational changes due to the insertion of variant epitopes. CD44 variants were 

detected both before and after induction of LMP1. CD44v4 and CD44v6 were strongly 

expressed both before and after induction whereas the expression of CD44v3 and v4-5 

was not detected (results not shown). The expression of CD44v7 and v7-8 appeared 

slightly downregulated after induction of LMP1.

DG75 tT A LMP1 uninduced DG75 tTA LMP1 induced-48 hr

0 '3 '4iou t o 1 10 io  ig
FL1-H

Fig. 3.15. Measurement o f  CD44 variant isoform expression in the tetracycline regulated cell line 

DG75 tTA LMP1 before and after induction of LMP1. Relative cell number is plotted on the Y-axis 

and log fluorescence intensity on the X-axis. The antibodies used are indicated on each histogram.

Two additional anti-standard antibodies, D2.1 or 44F.10.2 were included in a second 

round of flow cytometric analysis, however, CD44 expression was not detected with 

these anti-standard antibodies either (results not shown). CD44 variants were again 

detected but the pattern observed was different from the initial experiments with greater
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v7  expression detected in both induced and uninduced cells with a slightly greater level 

of expression in the induced cells which contradicts the first experiment (see figure 

3.14/3.15). CD44v7-8 expression did not change and v4 appeared downregulated in 

both induced and uninduced cells when compared with initial experiments.

It has been noted that the induction of LMP1 in the cell line DG75 tTA LMP1 causes a 

cytostatic effect in the cells after 48hr, thus the apparent inconsistencies in CD44 

variant and standard isoform expression may have been attributable to this factor 

(Floettmann et al., 1996). In order to investigate this possibility, the cells were 

examined 96 hr after removal of tetracycline from the media and analysed by flow  

cytometry. However, the pattern of CD44 variant expression was again irregular and 

CD44s was not detected. The pattern of CD44 standard and variant expression was 

examined in the cell line DG75 tTA EBNA2 before and after induction of EBNA2 

(results not shown). Again CD44 standard was not detected however strong positive 

reaction using some anti-variant mAbs indicated the presence of variant isoforms. The 

patterns of CD44 variant expression before and after 24 hr and 48 hr induction were 

identical.

Due to the varied results seen with flow cytomety, western blot analysis was carried out, 

using the anti-standard antibody BRIC 238 which recognises CD44 standard and CD44 

variant containing proteins.

1 . 2. 3. 4. 5. 6. 7. 8 9.

- A .

-  -4 L

KDa 
-  175

83

62 
► 47.5

Fig. 3.16. Detection of CÜ44 expression by western blotting in the cell lines DG75 tTA EBNA2 and 

DG75 tTA LMP1. Lane no. 1. 9. Protein marker, 2. HuT 78, 3. DG75 tTA EBNA2 uninduced, 4. DG75 

tTA EBNA2 24hr induction, 5. DG75 tTA EBNA2 48 hr induction, 6. DG75 tTA EBNA2 72 hr 

induction, 7. DG75 tTA LMP1 uninduced 8. DG75 tTA LMP1 48 hr induction.
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Figure 3.16 illustrates clearly that the induction of LMP1 or EBNA2, in the EBV- 

negative BL cell line DG75 does not result in CD44 expression at the protein level. The 

ensemble of these results imply that (1) CD44s is not expressed in the EBV negative BL 

cell line DG75 and is not upregulated by either EBNA2 or LMP1 when expressed as 

sole viral proteins. (2) Given that CD44 expression is upregulated at the RNA level in 

Mutu III LMP1+ and not in Mutu HI LMP1- this suggests that EBNA2 and LMP1 are 

both necessary for CD44 upregulation or that other EBV latent genes are required for 

upregulation of CD44 in BL. (3) The anti v4, v7 and v7-8 appear to crossreact with 

cellular proteins in DG75. It remains possible however that the v4 and v7-8 epitopes 

are expressed as part of novel CD44 molecules that do not react with the mAbs used in 

these experiments.
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3 .6  R i b o n u c l e a s e  p r o t e c t io n  a s s a y

The ribonuclease protection assay (RPA) is a highly sensitive and specific method for 

the detection and quantitation of mRNA species. The procedure is based on the 

hybridization of the analysed RNA to a radioactively labelled RNA probe and 

subsequent digestion of unhybridized RNA with single-stranded-specific nucleases, 

typically a combination of RNases A  and T l. The RPA procedure used in this study is 

outlined in section 2.9.

The pGEM 3Zf CD44v clone digested with Nco I was used to generate a riboprobe for 

RPA. Nco I cuts the CD44v cDNA within v7 resulting in a probe which contains the 

right end standard exons, plus v8 , v9, vlO and a portion of v7 as illustrated below.

PGEM 3Z f CD44v

Nco I v7 v8 v9 vlO Standard exons

44 102 90 240 bp < ----------

Probe length l,071bases
MCS 64 bases 

<  ►
Standard CD44 527 bases 

<  ►

Vaiant exons 480 bases 
<  ►

Fig. 3.17. Schematic representation of the pGEM 3Z f CD44v riboprobe construct.

The probe was generated by in vitro transcription as before, and used for RPA. The 

results obtained are shown in figure 3.18.
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Fig. 3.18. RPA assay for the detection of CD44 transcripts. An RPA was carried out using 20 \xg of 

total RNA and a 32P-labelled CD44v riboprobe. The labelled probe is indicated as A and protected 

fragments are indicated as B-E. Lane No. 1. Labelled CD44v probe, 2. HuT 78, 3. Mutu I, 4. Mutu III 

(LMP1+), 5. Mutu III (LMP1-), 6. DG75 tTA LMP1 uninduced 7. DG75 tTA LMP1 induced 96 hr.

The labelled probe (A) was electrophoresed alongside the samples to indicate that the 

probe was predominately full length, it also served as a size marker. CD44 transcript 

was detected in the cell lines HuT 78 and Mutu III LMP1+, but not in Mutu III LMP1-, 

Mutu I or before/after induction of LMP1 or EBNA2 in the cell lines DG75 tTA LMP1 

and DG75 tTA EBNA2 respectively (discussed in next section) (EBNA2 not shown). 

This experiment indicated that upregulation of CD44 was occurring at the level of 

transcription and confirmed the findings of the northern blot. Also EBNA2 or LMP1 

are not sufficient when expressed alone to up-regulate transcription of the CD44 gene. 

The main transcript detected by RPA was the CD44s exons (D). Bands B and C may be 

the result of variant exon expression in conjunction with the standard exons. Band E 

may represent variant exons without the expression of standard, however this is unlikely 

as the sizes do not seem to correspond to any selection of variant exons.
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3 .7  D i s c u s s i o n

CD44 is considered to be both structurally and functionally, one of the most variable 

surface molecules. Alternative splicing of variant exons as well as posttranslational 

modification of the molecule generates a wide repertoire of CD44 variant isoforms 

(Ponta et al., 1997). BL cell lines displaying a type III latency program have been 

reported to express CD44 whereas EBV-negative and type-I latency BL cell lines do not 

express CD44 (Gregory et al., 1990; Kryworckho et al., 1995). Thus the expression of 

CD44 in BL cell lines correlates with the expression of the EBV latent proteins. The 

EBV latent proteins EBNA2 and LMP1 have been implicated in regulating CD44 

expression in a BL background (Kryworckho et al., 1995). CD44 expression has been 

implicated in metastasis and enhanced tumour formation in BL cells. One report 

demonstrated that over expression of CD44 standard but not CD44v8-10 isoforms in the 

BL cell line Namalwa enhanced tumour formation and metastatic behaviour in these 

cells (Sy et al., 1991). Thus the upregulation of CD44 expression by EBV latent genes 

may result in increased metastatic and tumourigenic capabilities of BL cells. The aim 

of the work presented in this chapter was to examine the expression of CD44 isoforms 

in a BL cell background and in particular the effects (if any) of LMP1 and EBNA2.

Since mAbs to CD44 variants have been developed and made commercially available 

their use in the analysis of CD44 expression has become widespread (Naor et al., 1997). 

In this study, we used a panel of anti-CD44 antibodies to determine the expression 

pattern of CD44 in the cell lines examined. Initial analysis was carried out by flow  

cytometry on the cell lines Mutu I and Mutu III, which display type-I and type-III 

latency phenotypes respectively. These cell lines were used to examine the collective 

effect of the EBV latent proteins on CD44 gene expression. Although CD44s and 

CD44v expression was detected in both cell lines by flow cytometry, using the mAb 

D2.1, this finding is contrary to a previous report by Gregory et al., (1990), who 

described CD44s expression in Mutu III only. D2.1 recognises the 83kDa form of 

CD44 but also a smaller 45 kDa protein p45. Further analysis of Mutu I and Mutu III 

by western blotting using the anti-standard antibody D2.1 illustrated clearly that CD44s 

was not expressed in either cell line and the positive result obtained for CD44s
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expression by flow cytometry was most likely due to the recognition of p45 by D2.1. 

This result was investigated further using a second anti-standard antibody BRIC 238, 

which confirmed the absence of CD44s from Mutu III.

Mutu III is a type-III latency BL cell line which is characterised by the expression of all 

EBV latent proteins with the concomitant up-regulation of B-cell activation antigens 

and cellular adhesion molecules such as CD44. A  partial characterisation of the EBV 

latent genes expression in Mutu III clone cl48D  illustrated that LMP1 was not 

expressed and that this was a clone specific defect when compared with other Mutu III 

clones. The LMP1+ clone of Mutu III expressed CD44s were as the LMP1- Mutu III 

clone did not, as shown by western blot. This novel Mutu III clone now known as Mutu 

III LMP1- proved a useful tool in investigating the role of EBV latent genes on CD44 

expression as it illustrated that the expression of LMP1 in the type-III latency BL cell 

line Mutu III is probably linked with CD44 expression. This also suggests that 

expression of all the EBV latent genes are required to upregulate CD44 expression. 

This was illustrated by Fitcher and colleagues who reported CD44 upregulation in a 

LCL, this group used an LCL which was immortalised through a mutant EBV in which 

the expression of EBNA2 was conditionally regulated, in this system CD44 expression 

coincided with the restoration of EBNA2 expression (Fitcher et al., 1997). As type-III 

latency corresponds to EBV associated diseases such as IM and PTLD, it can be 

inferred that the expression of CD44 in these diseases may dependent on LMP1 or 

EBNA2 expression.

As LMP1 and EBNA2 are the principal effectors of phenotypic change in Burkitt’s 

lymphoma, the effect of these EBV latent genes on CD44 expression in a EBV negative 

BL background, was examined using a inducible system (Floettmann et al., 1996). 

CD44 expression was examined by flow cytometry before and after induction. The 

flow cytometric results were again highly varied, with the presence of positive peaks 

indicating the presence of CD44 variant epitopes without the presence of CD44 

standard epitopes. This is unusual as all known variant isoforms contain standard 

CD44, however, the extensive post-traslational modification that CD44 undergoes may 

have interfered with the detection of CD44s. Also the insertion of variant exons and the
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possible introduction of both N- and O-glycosylation sites may lead to the disruption of 

epitopes recognised by anti-CD44 antibodies. The positive signals observed by flow  

cytometry using some mAbs most likely represents non-specific cross-reactivity with 

cellular proteins other than CD44.

This possibility has been strengthened by a recent report that examined the used of 

mAbs for the detection of CD44 (Martegani et al., 1999). In this study Martegani and 

colleagues investigated the immunoreactivity of a large panel of commercially available 

anti-standard and anti-variant CD44 antibodies with a set of stable cell lines expressing 

various combinations of CD44 variant exons. They examined the cells by 

immunohistochemistry, fluorescence activated cell sorting (FACS) and RT-PCR. The 

results demonstrated that the immunoreactivity of some mAbs directed to CD44 exon 

specific epitopes can be impaired by the structural variability of the molecule 

(Martegani et al., 1999). Their findings demonstrated that (1) certain exon assortments 

and/or posttranslational modifications of CD44v molecules can mask CD44 exon 

specific epitopes; (2) glycosaminoglycan side chains, carried by some CD44v molecules 

of high molecular weight, may play a critical role in determining the exact conformation 

of the molecule, which is necessary for the detection of CD44 variant epitopes by 

specific mAbs, (3) in a panel of stable transfectants expressing CD44 N-glycosylation 

site-specific mutants, generated in the constant region of the extracellular domain, 

asparginine-isoleucine substitution is sufficient per se to impair the immunoreactivity of 

several mAbs to standard CD44. Thus, conformational changes due to alternative 

splicing of CD44 variant exons and/or posttranslational modification of the molecule 

(different degrees of glycosylation), which are cell-type specific, are likely to generate 

CD44 variants that elude immunodetection. These findings strongly suggest that 

immunohistochemical analysis of CD44 expression in vitro and in vivo, using mAb 

specific for CD44 variant encoded exons and epitopes, can potentially be impaired by 

false negative results (Martegani et al., 1999). The results obtained in this study with 

the anti-CD44s antibodies argue that epitope masking is not responsible for the failure 

to detect CD44s as three different anti-standard CD44 antibodies were used.
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Further investigation by western blotting revealed that the cell lines DG75 tTA LMP1 

and DG75 tTA EBNA2 did not express CD44 at the protein level before or after the 

induction of LMP1 or EBNA2 respectively. This demonstrated clearly that the 

expression of LMP1 or EBNA2 alone in this EBV negative BL background is 

insufficient for the up-regulation of CD44 expression. Although the findings of 

Martegani and colleagues (1999) may explain some false negatives, the apparent 

structural complexity of CD44s and CD44v may also explain false positives with 

possible cross-reactivity with other molecules or a lack of specificity resulting in the 

false detection of CD44 expression. This appears to be a problem in this study as CD44 

v7 and v7-8 were detected in DG75 tTA LMP1 before and after induction, however 

when RNA from these cell lines was analysed by RPA it was clear that mRNA 

transcript for either v7 or v 8  were not present (see next paragraph). This indicates that 

the results obtained using the mAbs were due to cross-reactivity with an unrelated 

molecules and not an as yet unidentified CD44 variant. Western blot analysis was 

carried out using a few selected CD44 anti-variant mAbs, however, this resulted in a 

high degree of non-specific background bands and the failure to detect CD44 variants 

(results not shown).

In order to obtain a clear answer as to the expression of CD44s in the cell lines 

examined it was decided to look at mRNA transcripts by northern blotting and 

ribonuclease protection assay (RPA). CD44s expression was examined in Mutu I and 

Mutu III LMP1 + by northern blotting which gave three clear CD44 transcripts in Mutu 

III LMP1+ but none in Mutu I. These three major transcripts have been previously 

described (Goldstein et al., 1989; Samenkovic et al., 1989; Quackenbush et al., 1990), 

and are thought to be due to utilization of mutiple polyadenylation signals (Harn et al., 

1991). RPA was also used to reinforce results obtained by northern blotting and to 

examine the mRNA transcript from the cell lines DG75 tTA LMP1 and DG75 tTA 

EBNA2 before and after the induction of the latent proteins. Results showed that 

EBNA2 or LMP1 when expressed alone in an EBV negative BL cell line are not 

sufficient to upregulate CD44 expression at the transcriptional level. Also LMP1 

expression correlates with CD44 expression at the transcriptional level in the type-III
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BL cell line Mutu III. The RPA also indicated the possible presence of splice variant 

transcripts in Mutu III LMP1+ and HuT 78.

3.8  C o n c l u s i o n s

In conclusion CD44 protein or transcript was not detected in the type-I BL cell line 

Mutu I. The drift to a type-III phenotype correlated with a strong up-regulation of 

CD44 expression. This up-regulation was at the transcriptional level. CD44 was not 

detected in the Mutu III LMP1- clone, thus providing evidence of a direct role for 

LMP1 in CD44 expression. In an EBV negative BL cell line background neither 

EBNA2 nor LMP1 alone were sufficient to up-regulate CD44 expression. Due to the 

widely varied and unreproducible results obtained for CD44 expression using variant 

specific mAbs by flow cytometry and western blotting, it was clear that mAbs alone 

were not sufficient to provide a definitive answer as to the presence or absence of CD44 

standard/splice variants. Therefore an alternative method for the detection of CD44 

expression is desirable. As the results obtained in this study by RPA clearly illustrated 

CD44 expression, it was decided to design a set of CD44 exon-specific probes which 

could be used to examine CD44 expression at the mRNA level in EBV-infected cells by 

RPA. This RPA would be used in conjunction with mAbs to determine the CD44 

expression pattern of any cell line examined. This will be discussed fully in the next 

chapter.
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CHAPTER 4

ANALYSIS OF CD44 EXPRESSION BY EXON-SPECIFIC RPA.
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4 .1  I n t r o d u c t i o n

Twenty exons are involved in the genomic organisation of the cell-surface 

transmembrane glycoprotein CD44. Ten of these exons encode the standard form of 

CD44, whereas the other ten exons can undergo alternative splicing resulting in 

variants which are inserted into the standard backbone of CD44 in various 

combinations (Screaton et al., 1992). In normal tissue, the steady-state level of CD44 

mRNA is low, and the variety of alternatively spliced transcripts produced from this 

complex gene is limited. However, increased and disorderly expression of CD44 

isoforms has been observed in a number of cancers (Sneath and Mangham, 1998). 

CD44 isoforms have been implicated in tumour metastasis and progression and are 

considered to have a lot of potential as a possible marker for the evaluation of the 

metastatic capabilities of certain tumours. Also, evaluation of CD44 variant 

expression could provide valuable information on the prognosis of certain cancers (Sy 

et al., 1997).

As the results described in chapter 3 have indicated, and as others have reported (Naor 

et al., 1997; Martegani et al., 1999), the use of mAbs alone does not always give a 

clear answer to the question of CD44 variant expression. Various other methods exist 

for CD44 analyses such as RT-PCR and exon junction analysis, all of which have 

both advantages and disadvantages, these will be discussed in detail later. The 

development of an assay for the detection of CD44 isoforms with the inherent 

versatility and sensitivity of an RT-PCR based method but without its disadvantages, 

is desirable. In this study a method was developed for the quantitative detection of 

human CD44 isoforms based on the ribonuclease protection assay (RPA) procedure, 

which was described by Zinn et al., (1983). The ribonuclease protection assay (RPA) 

is a highly sensitive and specific method for the detection and quantitation of mRNA 

species. Thus, a cDNA fragment of interest can be subcloned into a plasmid that 

contains these bacteriophage promoters T7, SP6  or T3, and the construct can be used 

as a template for synthesising radiolabelled anti-sense RNA probes. The RPA 

procedure used in this study is outlined in section 2.9. The CD44 exon-specific RPA 

developed in this study is based on a panel of CD44 exon specific probes from which
• 32labelled riboprobes were prepared by in vitro transcription. These P-labeled
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riboprobes were in turn used in a hybridisation reaction with the RNA of interest 

followed by RNase digestion and electrophoresis in a denaturing gel of the protected 

probe fragments after (see figure 4.1). By comparing results obtained with each 

variant specific probe and calculation of fragment sizes it was possible to determine 

the CD44-exon composition of the cells examined.

v9 vlO 3 1 Standard v8 v9 vlO 3 ' Standard

**~CD44 mRNA-*-

Fig. 4.1. Schematic representation of probe hybridization during RPA. CD44 mRNA segments 

are represented by open boxes. The labelled probe is represented as a black line, either unhybridized 

(dashed) or hybridised (solid line). Unhybridized probe and mRNA is then digested by RNase 

resulting in two fragments of defined length corresponding to different CD44 exon combinations.

Although not practical for the analysis of clinical samples, this assay, as it would be 

quantitative, would be useful in the analysis of factors that affect CD44v exon 

splicing and usage. The CD44 RPA was initially used to analyse CD44 variant 

expression in the colon carcinoma cell line HT29. This cell line was chosen as the 

CD44 exon profile of HT29 has been widely studied and established using other 

methods (Van Weering et al., 1993; Woodman et ah, 1996; Goodison et ah, 1997; 

Reeder et ah, 1998). The exon-specific RPA was also used to examine the pattern of 

variant isoform expression in EBV-positive cell lines which exhibit type-I and type-III 

latency and compared with the CD44 expression pattern of EBV-positive 

lymphoblastoid cell lines (LCL). Type-III EBV-positive cell lines are derived from 

type-I BL cell lines which have drifted in culture to express all the EBV latent genes. 

An LCL is established by isolating spontaneously transformed latently infected B- 

lymphocytes from peripheral blood of patients previously infected with EBV. LCL 

represent type-III infections of resting B cells and do not possess the translocated c- 

myc seen in BL. As LCLs and BL type-III cell lines reflect EBV latent gene 

expression profile associated with different EBV-malignancies, then comparison of 

CD44 expression in both types of cell lines is of interest.
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4.2 G e n e r a t i o n  o f  CD44 p r o b e s  f o r  e x o n - s p e c i f i c  R N a s e  P r o t e c t i o n  

A s s a y

Several CD44 exon-specific probes were constructed from a CD44 cDNA which 

contained both standard and variant CD44 exons. A  defined length of the CD44 

cDNA was excised from the recombinant pGEM 3Zf CD44v clone by a BamHl/Bcl I 

double digest and subcloned into pGEM 7Zf as the MCS of pGEM 7Zf contained 

more useful restriction sites for this study (figure 4.2). Bam HI cuts the CD44v cDNA  

within standard exon 3 and Bel 1 cuts at the start of standard exon 17 resulting in a 

CD44 cDNA fragment of 1,684 bp coding from exon 3 to exon 17 (see figure 4.2.B). 

Bel I and Bam HI have compatible ends, thus the CD44 fragment was subcloned in to 

Bam HI digested pGEM 7Zf. After subcloning the Bel I site is abolished.

B

Exon 1

Xmn\ 1991 

S ea) IB /?

' \ > \  
rp G E M T Z i H

vector
{300Qbp) ij

v2-10

T? i 1
/toll 14
4.1/ II 20
Spti 1 2o
\ i k i  1 31
xho \ 3/
tci>H 1 -13
l \n r  1 S3
Sm ai 56
C sp  -1 h Î 61
CJal 0 ?
Hind t|l ?■>
liamH \ ?U
Sac  1 9 1

Hsl X 1 KXJ
N$l I toa
t  SP6

1 aiail

15 16 17 18 19

Bam HI Bel I

Subcloned CD44 cDNA fragment, 1684bp
3 4 5 V2-10 15 16 17

< ► <Constant region , Variant region
-► <  ►

Constant region

Fig. 4.2. A  Schematic map o f pGEM 7Zf. B Schematic representation o f the CD44 cDNA. C. 

Schematic representation of subcloned portion of CD44 cDNA.
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5. 6. 7.

pGEM 7Zf CD44 

pGEM 7Zf

Fig. 4.3. Subcloning o f CD44 cDNA into pGEM  7Zf. A. Purified CD44 cDNA fragment Bam  

Hl/Bcl I digest. B. Purified Bam HI digested pGEM 7Zf. C. Recombinant pGEM 7Zf CD44 and 

pGEM 7Zf digested with Bam HI. Lanes no. 1, 3, 5, lkb DNA ladder, 2. CD44 cDNA fragment, 4. 

Bam HI digested pGEM 7Zf, 6. Bam HI digested recombinant pGEM 7Zf CD44, 7. Bam HI digested 

pGEM 7Zf.

Restriction digests were carried out to determine the orientation of the pGEM 7Zf 

CD44 recombinant clones, using Rsa I and Bam HI/Hind III double digests as 

illustrated in figure 4.4.
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1. 2. 3. 4. 5.

Kb
5090
4072
3054

2036
1636

1018

Fig. 4.4. Orientation restriction digestion o f recombinant pGEM 7Zf CD44. The orientation of 

two recombinant pGEM 7Zf CD44 clones was determined by Rsa I and Bam Hi/Hind III digestion. 

Lane no. 1. 1 kb DNA ladder, 2. Clone 1 Rsa I digest, 3. Clone 2 Rsa I digest, 4. Clone 1 Bamtil/Hind 

III digestion, 5. Clone 2 BamHl/Hind III digestion.

It is clear from figure 4.4. that clones 1 and 2 are in different orientations, as 

restriction patterns corresponded with the predicted sizes for both orientations (not 

given). Clone 1 which was in the SP6 orientation (i.e. SP6  was the promoter from 

which a riboprobe antisense to the CD44 mRNA could be transcribed) and was used 

in further experiments. This clone was named pGEM 7Zf CD44. Riboprobe 

templates were generated from plasmids by digestion with restriction enzymes that 

resulted in a 5 ' overhang or a blunt end. Subsequent in vitro transcription of these 

yielded riboprobes which were antisense to the CD44 mRNA. Schematic 

representations of the various templates are outlined in figure 4.5.
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Eco RI
5 ' CON v2 v3 v4 v5 v6 v7 v8 v9 vlO 3 ' CON

400 129 (126\102) 114 117 129 132 102 90 204 141 bases S P 6

Eco RI CON v2 v3 v4
bro

v5 v6 v7 v8 v9 vlO CON

/4cc I

Eco RI —

Nco I v7

Rsa I v8

Eco RI v6  v7 v8

Fig. 4.5. Schematic representation of templates used for in vitro transcription.

Dde I

SP6

vlO

SP6

SP6

SP6

SP6

SP6

CD44v2-10

Working title
of probes

CD44v2-4

CD44v5-10

CD44v6-10

CD44v7-10

CD44v8-10

CD44vlO

CD44v6-7
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4.3 G e n e r a t i o n  o f  t e m p l a t e s  f o r  r i b o p r o b e  c o n s t r u c t i o n

The full length pGEM7Zf CD44 clone, which contains both the 5 1 and the 3 1 standard 

exons as well as variant exons 2-10, was used to investigate the presence o f CD44. 

pGEM 7Zf CD44 was linearized with Eco RI as illustrated in figure 4.7, this resulted in 

a template containing all variant exons and the resultant labelled probe was called 

CD44v2-10. The standard or constant (CON/C) regions of the probe will hybridise with 

5 ' and 3 ' standard exons resulting in two protected fragments of defined size, in this 

case 400 bases and 141 bases respectively. The CD44v5-10 probe was produced by 

digestion of the CD44v2-10 probe with Acc I as illustrated in figure 4.7. The CD44v6- 

10 probe was generated by subcloning an Eco RV/Bcl I fragment from pGEM 3Zf 

CD44v (as described in section 3.1.3) into pGEM 7Zf which had been double digested 

with Bam HI and Sma I as illustrated in figure 4.6.A. Restriction analysis was used to 

confirm the size and orientation of the recombinant clone pGEM 7Zf v6-10. Rsa I 

digestion resulted in three fragments of 2311 bp, 1179 bp and 206 bp if cDNA inserts 

were in the orientation suitable for using SP6  as the promoter for riboprobe construction 

(see figure 4.6.B).

A 1. 2. 3. B 1. 2. 3.

Kb

3054

2036
1636

1018

Fig. 4.6 Cloning and restriction analysis o f pGEM 7Z f v6-10. A. The size and integrity of the 

purified Eco RV/Bcl I fragment from pGEM 3Zf CD44v, and the Bam HI/Sma I double digested pGEM 

7Zf were verified by gel electrophoresis prior to ligation. Lane no. 1. 1 kb DNA ladder, 2. pGEM 7Zf 

Bam ïü/Sma  I, 3. pGEM 3Zf CD44v Eco RV/Bcl I fragment. B. DNA minipreps from recombinant
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clones of pGEM 7Zf v6-10, were digested with Rsa I to determine their orientation. Lane no. 1 .1  kb 

DNA ladder, 2. Clone 1, 3. Clone 2.

Figure 4.6 illustrates that pGEM 7Zf v6-10 recombinant clones were of the correct size 

and in the correct orientation for the use of the SP6  promoter see figure 4.6.B.

The CD44v7-10, CD44v8-10 and CD44vlO templates were prepared by further 

restriction digests of pGEM 7Zf CD44 or pGEM 7Zf v6-10 (see figure 4.7. below).

CD44v7-10 = pGEM 7Zf v6-10 digested with Nco I.

CD44v8-10 = pGEM 7Zf v6-10 digested with Rsa I.

CD44vlO = pGEM 7Zf v6-10 digested with Dde I.

1. 2. 3. 4. 5. 6. 7. 8. 9.

Fig. 4.7. Preparation o f templates for CD44 riboprobes by restriction digestion. The recombinant 

clones pGEM 7Zf CD44 or pGEM 7Zf v6-10, were digested with various restriction enzymes, generating 

new CD44 exon-specific probes. Lane no. 1, 6, 1 kb DNA ladder, 2. pGEM 7Zf CD44/JVco I, 3. pGEM 

7Zf CD44/Eco RI, 4. pGEM 7Zf CD44/Acc I, 5. pGEM 7Zf v6-7/£co RI (described below). 7. pGEM 

7Zf v6-10/Eco RI, 8. pGEM 7Zf v6-10/Rsa I, 9. pGEM 7Zf v6-10¡Dde I.

The CD44v2-4 probe was prepared by digesting pGEM 7Zf CD44 with Acc I and Sac I, 

which removes a 925bp section of the CD44 cDNA from the end of the exon v4 to the
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Sac I site in the multiple cloning site of pGEM 7Zf, (see figure 4.2.A). This fragment 

was removed and the remaining vector was religated creating pGEM 7Zf v2-4 see 

figure 4.8 .A. DNA minipreps of recombinant pGEM 7Zf v2-4 clones were digested 

with Eco RI demonstrating that the clones were of the correct size, figure 4.8.B. Rsa I 

digests were also carried out to verify the constructs (results not shown).

A  B

1- 2- 3- 4- 1. 2. 3. 4.

Fig. 4.8. Cloning o f pGEM 7Zf v2-4. A. A fragment of 925 bp was excised from pGEM 7Zf CD44 

and the remaining vector was religated to form pGEM 7Zf v2-4. Lane no. 1. 1 kb DNA ladder, 2. 

pGEM 7Zf CDAA/Nco I, 3. pGEM 7Zf CD44 /Acc I, 4. pGEM 7Zf CD44 Acc I /Sac I.

B. Eco  RI digestion o f pGEM 7Zf v2-4. Lane no. 1. pGEM 7Zf Bam HI, 2. pGEM 7Zf £coRI, 3. 

pGEM 7Zf v2-4 Eco RI.

The final probe, CD44v6-7 was prepared by subcloning a PCR amplified fragment of 

CD44v6-7 cDNA into pGEM 7Zf. The forward primer was designed to hybridise at the 

start of variant exon 6 , the reverse primer hybridised at the start of variant exon 8 thus 

~20 bases from v8 were also amplified. The expected size of the PCR amplification 

product was 288 bp. Each primer incorporated a Bam HI sites at its 5 1 end. pGEM 7Zf 

CD44 was used as the DNA template for PCR amplification, the PCR protocol is 

outlined in section 2.5.5.
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1. 2. 3. 4. 5.

288 bp v6-7 
PCR product

Fig. 4.9. PCR amplification o f CD44v6-7. Ianc no. 1. lkb DNA ladder, 2, 3, negative controls, 4, 5, 

PCR amplification products.

After PCR amplification a PCR product of the correct size was obtained as illustrated in 

figure 4.9. This amplified product was isolated and digested with Bam HI, purified and 

subcloned into the Bam HI site of pGEM 7Zf. Two recombinant pGEM 7Zf v6-7 

clones (a) and (b), were digested with Bam HI to ensure the inserts were of the correct 

size and Eco RV/Hind III to determine the orientation (see figure 4.10 below).

Kb 
3054

1018

506
396
344
298

Fig. 4.10. Orientation digests o f pGEM 7Zf v6-7 recombinant clones. Lane no. 1. 1 kb DNA ladder, 

2. pGEM 7Zf v6-7 clone (a) Bam HI, 3. pGEM 7Zf v6-7 clone (b) Bam  HI, 4. pGEM 7Zf v6-7 clone (a) 

Eco RV/Hind  HI, 5. pGEM 7Zf v6-7 clone (a) Eco RV/Hind III, 6.100 bp DNA ladder.
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Figure 4.10 illustrates that the inserts are the correct size but there is one in each 

orientation. Clone b (lane no. 5) was in the SP6  orientation, this clone was used for 

further experiments.

A summary of all CD44 exon-specific probes is given in table 4.1. Labelled probe sizes 

and protected fragment sizes are also indicated.

Table 4.1. CD44 exon-specific probes.

P r o b e  N a m e P r o b e  C o m p o s it io n P r o b e

s iz e

BASES

M a x i m u m

p r o t e c t e d

SIZE BASES

CD44V2-10 C 5' v2v3v4v5v6v7v8v9vl0 C 3' 1763 1684 Full length, 

400 C 5' , 141 C 3'

CD44v2-4 C 5‘v2v3v4 824 757

CD44v5-10 v5v6v7v8v9vl0 C3 ' 962 914

CD44v6-10 Av6v7v8v9vl0 C3 ' 798 718

CD44v7-10 Av7v8v9vl0 C 3' 629 581

CD44v8-10 Av8v9vl0 C 3' 562 517

CD44vlO AvlO C 3' 260 215

CD44v6-7 v6v7vA8v 368 288

C5 1 = 5 1CD44 standard exons, C 3 ' = 3 1CD44 standard exons, A=contains part of the indicated exon.

Prior to hybridizing the CD44 variant exon-specific probes with a given RNA the 

CD44v2-10 probe was first employed to determine if CD44 was expressed in that 

particular cell line. In each RPA experiment the labelled probes were also 

electrophoresed alongside the RNA samples to check their integrity. All probes were 

full length and intact for each experiment (not always shown). Twenty micrograms of 

total RNA was used in each RPA analysis, however only half of this reaction was 

loaded onto the gel. A probe for GAPDH was included for each sample to ensure equal 

loading. RPA was carried out as described in section 2.9. The RNA used in these 

experiments was first examined by gel electrophoresis for structural integrity, illustrated 

in figure 4.11.
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4.4 RNA ANALYSIS.

d « |  l e t t l

8. 9._________ 10. 11.

12. 13. 14. 15.

HI | |

Fig. 4.11. Analysis of RNA structural integrity. Approximately 3p.g of total RNA from each cell line 

was examined by agarose gel electrophoresis. Lane no. 1. BL41, 2. BL41 B958, 3. IARC 171, 4. Mutu I,

5. Mutu III c95, 6. HuT 78, 7. HT29, 8. Ag876, 9. Mutu III c62, 10. BL72, 11. IARC 307, 12. BL74, 13. 

IARC290B, 14. X50-7, 15. RAELBL, 16.C33A, 17. C33ANeo, 18. C33ALMP1.

Structurally intact RNA was present in all cases indicated by the 28S, 18S and 5S 

ribosomal bands. The first cell lines analysed using the CD44 exon-specific RPA 

included the colon carcinoma cell line HT29. This cell line was chosen to establish the 

assay as the pattern of CD44 expression in HT29 has been well established (discussed 

below).

16. 17. 18.

( I I
0 « V
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4.5

1. 2. 3. 4. 5. 6.

CD44 EXON-SPECIFIC RPA ANALYSIS.

I

Bases
393

315

255

231

210

189

168

?

*

■

I

B

C5 ' v2 -v l0

400b

C 31

141b
CD44V2-10 probe used

C 51

Fig. 4.12. A. RPA analysis using the 

CD44V2-10 probe. C 3 1 represents the 

3 ' standard exons and C 5 ' represents the 5 ' 

standard exons. The arrows on the right hand 

side of the gel above the C5' region indicate 

protected fragments from mRNAs containing 

variant exons linked to either C 3 ' or C 5 '.  Lane 

no. 1. CD44V2-10 probe, 2. GAPDH probe, 3. 

Size marker, 4. Ag876 (BL type-III), 5. IARC 

290B (LCL), 6. HT29.

B. Schematic representation o f CD44V2-10 

probe.

141

124
GAPDH

C3 '
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It is clear from figure 4.12 that all three cell lines express CD44 mRNA. The 5 1 and 3 1 

constant exons are visible in Ag876 and IARC 290B (lanes 4 and 5). In contrast HT29 

mRNA (lane 6 ) gave a very low level of C3' protected fragment (141b). This indicated 

that either these exons are weakly expressed in HT29 of else they are almost always 

found linked with the adjacent vlO exon thus increasing the molecular weight of the 

protected fragment. The higher molecular weight bands present in all three lanes 

indicated the presence of variant exon-containing mRNAs. HT29 appears to have a 

substantially greater proportion of higher molecular weight bands indicating the 

presence of several variant exon combinations. These bands are not a consequence of 

overloading as the level of GAPDH mRNA does not vary appreciably between samples. 

GAPDH mRNA levels were analysed as a control for the quantity of RNA loaded. 

Figure 4.13 A represents GAPDH mRNA from the same gel illustrated in figure 4.12.

1. 2. 3. 4.

GAPDH
Probe

«—  GAPDH 
Protected fragment

B Densitometrie analysis

450000 
J3 400000 

350000 
300000 
250000 
200000 
150000 I 
100000 
50000 

0

c
2o'C©
Eo
'55c0
Ü u

2

Lane no.

Fig. 4.13. A. GAPDH analysis o f loading. Lane no. 1. GAPDH probe, 2. Ag876, 3. IARC 290B, 4. 

HT29. B. Densitometrie analysis o f GAPDH.
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As the expression of CD44 standard in the cell line HT29 had been confirmed (figure 

4.12) and the presence of many CD44 variants had been implied, the full range of CD44 

variant exon-specific probes was used to investigate CD44 mRNA structure in this cell 

line. Size evaluation and comparison between probes was used to determine the 

composition of a given protected fragment.
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Fig. 4.14. RPA analysis o f CD44 variant expression in the colon carcinoma cell line HT29.
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Fig. 4.14. RPA analysis o f CD44 variant expression in the colon carcinoma cell line HT29.

Protected bands representing CD44 variant exons are indicted with an arrow from A-M. Lane no. 1. 

CD44v2-4, 2. CD44v5-10, 3. CD44v6-10, 4. CD44v7-10, 5. CD44v8-10, 6. CD44vlO, 7. CD44v6-7, 8. 

Marker, 9, 10. Probes.

Fragment composition.

A. CD44v5-10C3’ 914 b H. CD44C5' 400 b (lane 1. only) O. CD44v2-4C5' 769b

B. CD44v6-10C3' 798 b I. CD44v6-8A 288 b P. CD44v2-3C5’ 655b

C. CD44vA6-10C3’ 718 b J. CD44v6-7 268 b Q. CD44v2C5' 519b

D. CD44v7-10C3' 669 b K. CD44v3-4 240 b (lane 1. only).

E. CD44Av7-10C3' 581 b L. CD44vlOC3' 215 b

F. CD44v8-10C3' 537 b M. CD44 v6 and/or v7

G. CD44Av8-10C3' 517 b N. CD44 v2 and or/v3

GAPDH mRNA levels were analysed as a control for the quantity of RNA in each lane. 

Figure 4.15 A represents GAPDH mRNA from the same gel illustrated in figure 4.14. 

Densitometrie analysis revealed the relative intensities of the GAPDH bands.

B

1. 2. 3. 4. 5. 6. 7.

l " f : H GAPDH

Etensitometric analysis

§ 400000

g 200000

0 DdqOoDD
Lane no.

Fig. 4.15. A. Analysis of GAPDH transcript levels. B. Densitometrie analysis o f GAPDH

bands. All lanes were loaded as illustrated in figure 4.14.
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CD44 exon-specific RPA revealed the pattern of HT29 CD44 exon expression. All 

CD44 variant exons were detected in HT29 mRNA with the 5 1 standard exons and the 

variant exons v8-vl0 as the predominantly used exons. V6  and v7 are more frequently 

joined to v8 than spliced on their own (figure 4.14 bands I and J). mRNA containing 9- 

10C31 or 10C3 1 are not detected in HT29. The 3 1 standard exons do not occur alone, 

but appear to be always spliced to vlO. Thus the 3 1 splicing pattern of CD44 mRNA in 

HT29 appears to be as follows:

v8 v9 vlO C 3 '
F. CD44v8-10C3'

v7 v8 v9 vlO C 3 '
D. CD44v7-10C3'

v6 v7 v8 v9 vlO C 3'
B. CD44v6-10C31

v5 v6 v7 v8 v9 vlO C 3'
A. The CD44v5-10C3' transcript 
occurs, however, this may be spliced to 
other exons 5 ' to v5.

Towards the 5 1 end of the CD44 mRNA, many combinations of exons are seen with the 

major signals obtained from the 5 1 constant exons. Higher molecular weight protected 

fragments are seen in very low levels corresponding to the 5 1 C linked to v2, v2-3, or 

v2-4, possibly bands Q, P and O respectively, indicating mRNA combinations 

containing theses variants are rare. Alternate donor/splice sites in this region may seem 

to confuse the issue by leading to an apparent under representation of the longer 

combinations. In this regard bands potentially corresponding to v2 and or v3 and v3-4 

are also to be seen (lane 1. Bands N and K respectively).
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4.6 CD44 EXON-SPECIFIC RPA ANALYSIS OF EBV-POSITIVE B-CELL LINES

The RPA was then used to examine CD44 exon-specific expression in a range of EBV- 

positive B-cell lines. Type-I and type-III latency EBV-positive BL cell lines along with 

lymphoblastoid cell lines (LCL) were investigated some of which were matched pairs 

(mp, i.e. arose from the same patient), these cell lines are summarised in table 4.2 

below. A further description of cell lines is given table 2.1.

Table 4.2. Cell lines used in CD44 exon-specific RPA analysis.

Type-I latency Type-III latency LCL Miscellaneous

HT29

HuT 78

BL41 (mp) BL41 B958 IARC171

Mutu I (mp) Mutu III c95 

Mutu III c62 

Mutu III LMP1-

BL74 (mp) IARC 290B

BL72 (mp) IARC 307

Ag876

X50-7

Rael BL

Kem BL

C33A (mp) 

C33A Neo 

C33A LMP1

A representative BL type-III and LCL cell line (Ag876 and IARC290B respectively) 

were chosen initially and examined to determine the pattern of CD44 exon splicing. 

These cell lines were previously shown to express CD44 (illustrated in figure 4.12.) thus 

variant exon-specific probes were used to investigate CD44 mRNA structure in this cell 

line, (figure 4.16).
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Ag876.III IARC 290B LCL
1. 2. 3. 4. 5. 6. 7. 8. 1. 2. 3. 4. 5. 6. 7. 8.

Fig. 4.16. RPA analysis using the CD44 variant exon-specific probes. Cell lines are indicated at

the top of the figure, probes used are indicated by the lane number. Lane no. 1. Marker, 2. 

CD44v2-4, 3. CD44v5-10, 4. CD44v6-10, 5. CD44v7-10, 6. CD44v8-10, 7. CD44vlOC, 8. 

CD44v6-7. Bands A-M represent variant exons, explanation on next page.
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Fig. 4.16. RPA analysis using the CD44 variant exon-specific probes.

A. CD44vA7-10C3' G. CD44v6-A8 X. D44C5

B. CD44v8-10C3 ' H. CD44v6-7

B 1 CD44Av8-10C3' I. CD44AvlOC3'

C. CD44v9-10C3' J. CD44vlO

X. D44C5' Y. CD44C3'

D. CD44v8-10 

D \  CD44Av8-10

K. CD44v8-9

K ' CD44vA8-9

E. CD44vlOC3'

F. CD44v9-10 M. CD44v6

L. CD44v7

Band A (lane 5) corresponds to the expected molecular weight for CD44Av7-10C3'and 

is only visible with the CD44v7-10 probe. This band is no longer present in lanes 3 and 

4 using a probe containing the complete v7 exon. Band B (lane 6 ) corresponds to the 

expected molecular weight for CD44v8-10C3'. This band is present in lanes 3, 4, and 5. 

This band is no longer present in lane 6  using a probe containing a truncated exon 8 

which results in the band B ' which is only present in this lane. Band C represents v9- 

10C3' which should be visible using probes CD44v6-10, CD44v7-10 and CD44v8-10. 

However, band C is not observed using probes CD44v7-10 and CD44v8-10 in Ag876. 

Band D 1 (lane 6 ) corresponds to the expected molecular weight for A8-10 C 3 1 and is 

only visible with the CD44v8-10C3' probe. This band is no longer present using a 

probe containing the complete v 8 exon (lanes 3, 4, 5) but reappears as band D 

corresponding to v8-10 C 3'. Band E corresponds to vlOC C 3 1 and will result from all 

probes containing vlO C31 (lanes 3,4,5,6 ). This band drops down to I, when using the 

A10C31 probe containing only a portion of vlO. Band K (lanes 4,5,6) corresponds to 

the expected molecular weight for v8-9 and is only visible with probes CD44v5-10, 

CD44v6-10 CD44v7-10, which contain a full length v8-9 exon. This band is no longer 

present in lane 6  using a probe containing a truncated exon 8  but reappears as band K 1 

corresponding to A8-9.

The results obtained (figure 4.16), illustrate that a similar and very complex pattern of 

CD44 variant exon expression is used in both types of cells. Both the 3 1 and the 5 1 

exons are widely expressed with CD44v8-10C31 being the predominant transcript. 

GAPDH analysis is represented in figure 4.17.
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It can therefore be concluded that the following exon combinations are used in these 

two cell lines: v7-10C3' , v8-10C3' , v9-10C3' , vlOC3* , v8-10, v8-9, v9-10, v6-7, 

v6 , v7 and vlO. The existence of vlO containing mRNAs that do not splice to the 

known C3' constant exon splice acceptor site has not previously been reported. It is 

possible that (a) a near by alternate splice acceptor site to the one at the start of the C 3 1 

exon is used, (b) splicing of vlO occurs to another downstream exon beyond the probes 

5 1 end. In the LCLs v7 appears less frequently on its own (compare bands L and M 

lane 8  for both cell lines figure 4.25).
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GAPDH mRNA levels were analysed as a control for quantity of RNA loaded. Figure 

4.17.A, represents GAPDH mRNA from the same gel illustrated in figure 4.16. 

Densitometrie analysis revealed the relative intensities of the GAPDH bands.

Ag876.III IARC 290B LCL
A 1. 2. 3. 4.

I

1 9 9 9S  23 2

B

160000

Densitometrie 140000 
analysis 120000
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80000
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0

Fig. 4.17. RPA analysis of GAPDH transcript levels. Cell lines are indicated at the top of the figure, 

probes used are indicated by the lane number. Lane no. 1. Marker, 2. CD44v2-4, 3. CD44v5-10, 4. 

CD44v6-10, 5. CD44v7-10, 6. CD44v8-10, 7. CD44vlOC, 8. CD44v6-7. B. Densitometric analysis of 

GAPDH.

Thus it appears that the complex pattern of CD44 variant exon splicing is similar in 

type-III EBV-positive BL cell lines and in LCLs. In order to investigate this further a 

panel of BL type-III and LCL cell lines were investigated by RPA using the CD44 

variant exon-specific riboprobes as illustrated in figure 4.18-4.25.

Densitometrie analysis
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CD44 mRNA expression was initially assessed by RPA using the CD44v2-10 probe.

6. 7. 8. 9. 10.

C 51
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C51
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168

C3 '

t -  141

C3 '

Fig. 4.18. RPA analysis of a range of cell lines using the CD44v2-10 probe. Lane no. 1. HuT 78, 2.

Mutu 1-, 3. Mutu III LMP1-, 4. Mutu III LMP1+,. 5. Marker,, 6. HT29, 7. BL41, 8. BL41 B958, 9, 10. 

IA R C 171.
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1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

Fig. 4.19. RPA analysis of CD44 standard exon expression. Lane no. 1. Marker, 2. CD44V2-10 

probe, 3. Ag876, 4. Mutu III c62, 5. BL72, 6. IARC 307, 7. BL74, 8. IARC 290B, 9. Marker, 10. 

CD44V2-10 probe.
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Fig. 4.20. RPA analysis of CD44 standard exon expression. Lane no. 1. Marker, 2. CD44V2-10 

probe, 3. Kem BL, 4. Rael BL, 5. X50-7, 6. C33A, 7. C33ANeo, 8. C33ALMP1, 9. Jurkat, 10. HuT 78.
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From figures 4.18-4.20. it is clear that CD44 C 5 1 and C3 ' exons are transcribed in all 

type-III BLs and LCLs. The Mutu III clone c62 and the LCL X50-7 appear to express 

low levels of both C 5 1 and C 3 1 exons. CD44 was not detected in the type-I BL cell 

lines Mutu I, Rael BL and Kem BL. Figure 4.18 also confirms the absence of CD44 

from Mutu III LMP1- as described before in chapter 3. The C33A cell lines were a 

group of stable epithelial cell lines one of which is stably transfected with LMP1. 

CD44 was not detected in any of these cell lines indicating that LMP1 expression alone 

is not sufficient to upregulate CD44 expression in this epithelial cell line. Although 

bands other than C 3 1 and C 5 1 are visible (figure 4.19 in particular), the presence of 

degraded probe fragments makes it difficult to conclude that variant exons are 

expressed. All cell lines that demonstrated CD44 expression were therefore analysed 

further using the CD44 variant exon-specific probes.

We then proceeded to compare the pattern of variant isoform expression in a range of 

type-III EBV positive BL cell lines and LCLs. In this set of experiments several cell 

lines were analysed simultaneously with one variant exon-specific probe, as indicated in 

figure 4.21-4.24.
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Fig. 4.21. RPA analysis using the CD44v5-10 variant exon-specific probe. Lane no. 1. Marker, 2.

Mutu III c62, 3. Ag876 III, 4. BL72 III, 5. IARC 307 LCL, 6. IARC 290B LCL, 7. X50-7 LCL.
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Fig. 4.22. RPA analysis using the CD44v2-4 and CD44v7-10 variant exon-specific probes. Lane no.

1. Marker, 2. Mutu III c62, 3. Ag876 III, 4. BL72 III, 5. IARC 307 LCL, 6. IARC 290B LCL, 7. X50-7

LCL.
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Fig. 4.23. RPA analysis using the CD44v6-10 and CD44v8-10 variant exon-specific probes. Lane

no. 1. Marker, 2. Mutu III c62, 3. Ag876 III, 4. BL72 III, 5. IARC 307 LCL, 6. IARC 290B LCL, 7.

X50-7 LCL.
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Fig. 4.24. RPA analysis using the CD44vlO variant exon-specific probe. Lane no. 1. CD44vlO

probe, 2. Marker, 3. Mutu III c62, 4. Ag876 III, 5. BL72 III, 6. IARC 307 LCL, 7. IARC 290B LCL, 8.

X50-7 LCL.
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The results illustrated in figures 4.21-4.24, illustrate that type-III latency BL cell lines 

and LCLs demonstrate a similar pattern of CD44 variant exon splicing, with a 

preference for v 8 , v9 and vlO utilisation in various combinations. The level of variant 

exon expression is not equal in all cell lines as demonstrated by the considerably 

reduced level of variant exon expression in the type-III cell line Mutu III c62 and the 

LCL X50-7. In figure 4.21 and 4.22 there appears to be a certain amount of C5 ' exons 

present when the CD44v5-10 and CD44v7-10 probes are used, this may be due to 

incomplete digestion of pGEM 7Zf CD44 probe prior to probe labelling, this could 

possibly lead to other non-specific bands. The CD44 exon usage was examined in the 

BL type-III cell lines BL41B958 and the Mutu III LMP1+ clone c95 and was found to 

be similar to that reported above (results not shown).

As the expression of CD44v6 and CD44v6-7 has been implicated in metastasis it was 

considered important to examine specifically the expression of these variants in a range 

of EBV positive BL cell lines and LCLs. The results of this experiment are shown in 

figure 4.25. All type-III BL cell lines and LCLs clearly express v 6  and v7. Levels of 

v6-7 transcript are similar in IARC 307 after normalising for GAPDH mRNA levels 

(figure 2.24). Faint bands were also observed in the cell lines X50-7 and Mutu III c62 

indicating low levels of v 6  and v7 transcript, this was not a consequence of loading as 

illustrated in figure 4.26. In the colon carcinoma cell line HT29 the majority of the v 6  

and v7 exons appear to be linked to v8 .
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1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

Fig. 4.25. RPA analysis using the CD44v6-7 variant exon-specific probe. Lane no. 1. HuT 78, 2.

HT29, 3. X50-7 LCL, 4. IARC 307 LCL, 5. IARC 290B, 6. IARC 171, 7. Ag876, 8. BL72 III, 9. Mutu III 

c62, 10. Mutu III c9 5 ,11. BL41 B 958,12. Mutu 1 ,13. BL74,14.BL41,15. Marker.

CD44
v6-A8
probe
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GAPDH mRNA levels were analysed as a control for quantity of RNA loaded. Figure 

4.26.A, represents GAPDH mRNA from the same gel illustrated in figure 4.25. 

Densitometric analysis revealed the relative intensities of the GAPDH bands.

L 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15.

M f l f t ’JMIM
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 4.26. A. RPA analysis o f GAPDH transcript levels. Lane no. 1. HuT 78, 2. HT29, 3. X50-7 LCL, 

4. IARC 307 LCL, 5. IARC 290B, 6 .1ARC 171, 7. Ag876, 8. BL72 III, 9. Mutu III c 6 2 ,10. Mutu III c95, 

11. BL41 B958, 12. Mutu I, 13. BL74, 14.BL41, 15. Marker. B. Densitometric analysis o f GAPDH  

bands.
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The RPA analysis yielded information on the profile of CD44 exon expression in the 

cell lines examined, however, the presence of transcript does not necessarily result in 

expression at the protein level. In order to investigate CD44 protein expression western 

blot analysis was carried out on all cell lines examined. The anti-standard CD44 

antibody BRIC 238 was employed which recognises a CD44 epitope encoded by a 

standard exon, thus also theoretically recognising all variant containing isoforms which 

appear as an upward smear from the standard 83 kDa form.

4.7 W e s t e r n  B l o t  a n a l y s i s  o f  CD44 e x p r e s s io n .
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Fig. 4.27. W estern blot analysis o f  CD44 expression. CD44 expression was determined by western 

blot analysis using the anti-standard antibody BRIC 238. Lane no. 1. Ag876, 2. Mutu III c62, 3. BL72 

HI, 4. IARC 307, 5. BL74, 6. IARC 290B, 7. IA R C 171, 8. HT29, 9. Marker, 10. Mutu III c6 2 ,11. Blank, 

12, HuT 78,13. B L41,14, BL41 B 958,15. IARC 171,16. X 50-7,17. Marker.
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The cell lines Mutu I, Mutu III LMP1+ and Mutu III LMP1- were also examined for 

CD44 protein expression as described in figure 3.7. CD44 proteins were detected by 

western blot in all type-III BL cell lines and LCLs with the exception of Mutu III c62 

and BL41 B958. Failure to detect CD44 protein in these cell lines is most likely due to 

the very low level of CD44 transcript present in these cell line. The low level of CD44 

transcript detected by RPA, indicates that the mRNA is not translated or that the 

translated products are undetected. A  low level of CD44 standard expression was 

detected in the cell line X50-7 when compared with other LCLs, this low level of 

expression is also observed at the transcriptional level. The CD44 protein detected by 

western blot in the cell line HT29 is of a higher molecular weight (figure 4.27 lower 

panel), this is also reflected by the RPA analysis which detected a large number of 

variant exon groups spliced to the standard exons with very low levels of the standard 

transcript detected. CD44s was not detected in the type-I cell lines BL74 and B141 as 

expected.
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4.8 D is c u s s io n

Several papers have reported the detection of certain alternatively spliced forms of 

CD44 in human metastatic tumours (Gunthert et al., 1991; Matsumura and Tarin, 1992; 

Sneath Mangham et al., 1998). As the precise combination of exons which are 

associated with the metastatic spread of a tumour cell have not all been completely 

defined a method for analysing CD44 expression in detail is required. Several methods 

have been described to analyse CD44 isoform expression in tumour cells and cell lines, 

including immunohistochemistry (IHC), RT-PCR followed by hybridisation, nested RT- 

PCR, exon run-off analysis and exon junction analysis. In the majority of studies to 

date the most frequently used methods of CD44 detection are immunohistochemistry 

using monoclonal antibodies, or RT-PCR. When compared to IHC, RT-PCR has 

advantages and disadvantages. RT-PCR is a more sensitive method then IHC and 

therefore, can be used to identify CD44 transcripts in exfoliated cells in stool and urine 

samples [this technique detects CD44 mRNA in as few as 10 tumour cells in 10 7 

leukocytes (Matsumura and Tarin, 1992)]. In addition, RT-PCR can determine the 

exact composition of CD44 variants and therefore, is used to distinguish between 

CD44s and the other CD44 isoforms. However, it should be borne in mind that 

detection of CD44 mRNA does not imply that this transcript is expressed as a protein. 

RT-PCR is vulnerable to ribonucleases. Therefore not only must specimens be 

immediately frozen after removal, but they should not be stored, even at -70°C, for 

longer than 1 month. Ideally RT-PCR or at least the RNA extraction and cDNA RT 

step should be performed immediately (Matsumura et al., 1994; Sugiyama et al., 1995) 

and this is not always practical. Also strict precautions must be taken not to amplify 

trace contaminants to detectable levels.

The ability of IHC to discriminate between normal and neoplastic cells is an obvious 

advantage over RT-PCR, as the tumour samples contain a mixture of both types of cells. 

However the fact that antibodies are restricted to the recognition of accessible CD44 

epitopes encoded by individual or limited number of exons is a disadvantage. 

Furthermore antibodies directed against the constant region of CD44 do not 

discriminate between standard and variant isoforms. Since various laboratories use a
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range of mAbs to CD44 at different concentrations, and the percentage cut-off points of 

sample positively are determined arbitrarily be each research group, IHC is much more 

dependent on universal standardisation than is RT-PCR (Naor et al., 1997). A recent 

study carried out by Martegani and colleagues investigated the reliability of 

immunodetection of CD44 isoforms using mAbs specific for CD44 variant exon 

products. They found that conformational changes due to the alternative splicing of 

CD44 variant exons and or posttranslational modification of the molecule generated 

variants that eluded immunodetection (Martegani et al., 1999). Thus it appears that RT- 

PCR is a more reliable method for CD44 detection than mAb alone.

Van Weering and colleagues described an RT-PCR-based approach to analyse the 

composition of Human CD44 splice products (Van Weering et al., 1993). In these 

experiments a CD44-specific oligonucleotide at the 3 1 side of constant exon 17 (C12A) 

was used in cDNA synthesis. This cDNA was subsequently amplified with two primers 

C l 3 (exon 5) and C2A (exon 16), located outside the variant part of the CD44 mRNA. 

This resulted in several amplification products depending on the cell line examined. To 

analyse the composition of each amplified band (representing one mRNA species), two 

different amplification methods were used, exon-specific runoff analysis and exon- 

specific PCR analysis (Van Weering et al., 1993). In exon-specific runoff analysis, the 

PCR product from the amplification between primers C13 and C2A was amplified by 

linear PCR using 32P-labeled oligonucleotide pv2-pvl0 plus Cl 3. This amplification 

yielded runoff products from that variant exon-specific primer to the PCR product. The 

runoff products from all the exon-specific primers were analysed on polyacrylamide 

gels to determine their exact length. In exon-specific PCR analysis the cDNA is 

amplified by exponential PCR between primer C2A and each of the variant exon- 

specific primers pv2-pvl0. These products were analysed directly by agarose gel 

electrophoresis. Therefore in both methods the cDNA was amplified between one 

primer in the constant part of the mRNA and one primer in each variant exon. 

Determination of the length of the exon-specific amplification products from the 

agarose or polyacrylamide gel enabled the determination of the composition of the 

amplified bands. The colon carcinoma cell line HT29 was among those investigated in
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this study, many transcripts were detected in HT29 the most abundant CD44 variant 

being CD44v8-10.

Exon-specific RT-PCR has also been used by other groups. Reeder and colleagues 

examined the effect of antisense CD44v6 expression on colorectal tumour cell line 

(HT29), metastasis and tumour growth in a wound environment (Reeder et al, 1998). 

A  recent paper by Lochart and colleagues describes RT-PCR followed by exon-specific 

PCR (Lochart et al, 1999). The RT step is carried out with an oligo-(dT)i5 as opposed 

to a CD44-exon specific primer as described by Van Weering et al, (1993). Exon- 

specific RT-PCR is a reliable procedure suitable for laboratories lacking resources to 

hybridise or work with radioactivity. Moreover the method is useful in screening large 

numbers of samples from solid tumours. When compared with RT-PCR followed by 

hybridisation RT-PCR exon-specific amplification showed similar sensitivity but 

required less time to perform. However strict operation procedures are required to 

avoid contamination and rigorous controls must be performed to detect false positive 

results. Exon-specific RT-PCR allows determination of exon composition of CD44 

isoforms, however, the intensity of the bands obtained is not a reliable indicator of 

abundance due to the variation in primer sequence and non-linearity of PCR 

amplification. RT-PCR is also very sensitive to contamination as extremely small 

amounts of RNA or DNA contamination can lead to spurious results.

Goodison and colleagues evaluated the order of exon assembly, in the colon carcinoma 

cell line HT29, at the 5 1 boundary between standard and variant portions of CD44 

(Goodison et al, 1997). This was carried out in an effort to identify if there was a 

tumour-defining splicing pattern that could be diagnostically useful and provide an 

insight into the mechanism involved in the abnormal expression of CD44 in the 

neoplastic process. Initially they carried out PCR, using two primers one from a 5 ' 

constant exon and one from a 3 1 constant exon. This resulted in a CD44s PCR product 

and various higher molecular weight products if variant exons were present. Southern 

blot hybridisation was then carried out with exon-specific probes. From a diagnostic 

point of view RT-PCR followed by southern hybridisation, although successful, is 

technically difficult and laborious for routine clinical use. Thus they designed a new
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assay, exon-j unction analysis, in which blotting and hybridisation are unnecessary 

(Goodison et al., 1997). The same group also performed exon junction analysis using a 

PCR-based approach. PCR amplification was carried out using a standard exon- 

anchored primer specific for a particular standard-variant exon junction. The 

overlapping primer was designed to have 18 bases complementary to the variant exon 

(X) and six bases of the primer complimentary with standard exon 5. By this method 

CD44 mRNA from the colon cancer cell line HT29 was shown to have every possible 

5/X exon junction. The sensitivity of PCR allowed for the detection of relatively rare 

junctions. This technique therefore, identified the composition of CD44v exon products 

and revealed the splicing pattern. This technique is also based on RT-PCR and is liable 

to the concomitant problems associated with this method (Goodison et al., 1997).

Thus it appears that the use of hybridization techniques is laborious and difficult to 

determine the exact composition of each CD44 mRNA species in the cell. Antibodies 

against epitopes encoded by each variant exon can only be used to show the presence of 

certain CD44 variant epitopes on cells but not the context in which they are present in 

the protein molecule. CD44 exon-specific RT-PCR is the most sensitive and versatile 

of the methods described to date however, it has many inherent disadvantages, 

principally its sensitivity to low levels of contaminating RNA and DNA and the fact 

that it is not quantitative. The aim of the work presented in this section was to analyse 

CD44 standard and CD44 variant exon usage in a range of EBV-positive B-cell lines. 

This was in part achieved by developing a qualitative and quantitative method for 

analysis of a portion of CD44 mRNAs in the cell.

A novel CD44 exon-specific RPA was designed for the detection of CD44 exon 

expression patterns. As RPA is a direct hybridization between the labelled probe and 

the RNA of interest it circumvents the two major problems of RT-PCR (1) RPA does 

not involve reverse transcription of RNA thus under representation of rare RNAs in the 

resultant cDNA cannot occur (2) PCR amplification is not required for RPA thus 

amplification of spurious PCR products due to contamination is also circumvented. 

RPA analysis is fully quantitative when factors such as RNA or labelled probe 

quantities are not limiting, as the levels of the resultant RNA:RNA hybrid are a direct
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indication of the amount of specific mRNA present. The use of an internal control to 

analyse GAPDH mRNA levels allows for direct quantification and comparisons to be 

made between cell lines. As CD44 exons have been shown to be spliced preferentially 

in groups (Bell et al., 1998), it was decided that the creation of probes that contained 

several variant exons would be more informative that those containing single exons, this 

is borne out when examining several variant exon probes simultaneously. The assay 

was initially carried out with the colon carcinoma cell line HT29 as the CD44 exon 

expression in this cell line has been previously analysed (Van Weering et al., 1993; 

Reeder et al., 1998). The results obtained in this study are in general agreement with 

others (Van Weering et al., 1993; Reeder et al., 1998), illustrating the presence of all 

CD44 variant exons and the predominant expression of CD44 exons v8-v l0  and the 

C 5 1 exons. The exon-specific RPA also revealed the distinct absence of the 3 1 

constant exons 15, 16 and 17. The lack of CD44 standard cDNA in HT29 has been 

previously recorded by Van Weering et al (1993), and was suggested to be the result of 

infrequent use of the alternative splice donor site in the constant exon 5. It appears from 

this study that these C 3 1 exons are always spliced along with variant exon 10 and do not 

occur on their own as illustrated in figure 4.13. Western blot analysis of CD44 

expression in HT29 which revealed proteins of 160-180 kDa without the expression of 

the usual 83 kDa standard form which is predominant in most other cell lines (figure 

4.27). This indicates that the majority of CD44 expressed in HT29 contains variant 

epitopes.

When employed to examine CD44 expression in EBV-positive cell lines the CD44-exon 

specific RPA revealed clearly that the type-I BL-cell lines examined in this study do not 

express CD44. This is in agreement with previous northern and western blots analysis 

carried out during the course of this study (illustrated in chapter 3) and with previous 

reports (Gregory et al., 1990). The failure to express CD44 in the type-I BL cell lines is 

not understood. From the results obtained in this study (chapter 3 and 4) it can be 

suggested that CD44 expression is a result of the expression of all the EBV latent genes. 

Therefore the reduced pattern of EBV latent proteins observed in type-I BL cell lines 

would account for the loss of CD44 expression. As EBNA1 is the sole viral protein 

expressed in type-I BL cell lines it can be concluded that EBNA1, when expressed
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alone in a BL cell line is not sufficient to upregulate CD44 expression at the RNA or 

protein level. When applied to type-III EBV-positive cell lines and LCLs the assay 

demonstrated the presence of CD44 standard and variant exon expression. Type-III 

EBV-positive cell lines are derived from type-I BL cell lines which have drifted in 

culture to express all the EBV latent genes. An LCL is established by isolating 

spontaneously transformed latently infected B-lymphocytes from peripheral blood of 

patients previously infected with EBV. As type III cell lines reflect the EBV latent gene 

expression profile associated with EBV-malignancies and LCLs reflect conditions in a 

spontaneously transformed cell derived from the blood of an infected individual, then 

comparison of CD44 expression in both types of cell lines is of interest. Type-III 

latency BL cell lines and LCLs demonstrate a similar pattern of CD44 variant splicing, 

with a preference for v8 , v9 and vlO. The pattern of variant expression is similar 

between cell lines but not the level of CD44 expression as exemplified by the type-III 

BL Mutu III c62 and the LCL X50-7, these cell lines express much lower levels of 

CD44 exons than other type-III and LCLs examined. Kryworuckho and colleagues 

examined the expression of CD44 in normal and transformed human B-cells by RT- 

PCR and IHC. Their results indicated that CD44s, CD44v8-10 and CD44vlO but not 

CD44v6-7 isoforms were detected in EBV-positive BL cell lines. The results obtained 

by RPA in this study show CD44v8-10 and CD44vlO as the main variant transcripts 

detected in EBV positive type-III BL cell lines. However, CD44v6-7 transcripts were 

also detected by RPA analysis using a CD44v6-7 specific probe as illustrated clearly in 

figure 4.23. This indicates clearly that v6-7 transcripts are transcribed in EBV-positive 

BL cell lines. Western blot analysis was carried out using an anti-v7 mAb, however, 

results obtained were uninterpretable due to the high level of background bands (results 

not shown).

In this study the detection of CD44 expression using the CD44v6-10 probe was less 

efficient than the use of other probes. This may have been due to secondary structure in 

the probe which prevented it binding effectively to the RNA. However the pattern of 

CD44v6 splicing can be deduced by combining the results received using the CD44v5- 

10, CD44 v7-10, CD44v8-10 probes and the v6-7 probe. These results indicated that in
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HT29 v 6  is predominantly joined to v7 and v8 and in the type-III cell lines and the 

LCLs v6  occurs both spliced to v7 and on its own.

It is clear that CD44 exon-specific RPA is a useful research tool which allows the 

simultaneous comparison of CD44 variant exon expression in different cell lines. 

However, RPA is a time consuming and labour intensive procedure thus its use as a 

routine diagnostic procedure for the detection of CD44 variant exons is at present not 

viable. A  recent report has described a high through put RPA which employs 

formamide free buffers. It was found that the elimination of formamide from the 

hybridisation buffer not only shortens the hybridisation time to ~70 min, (as opposed to 

overnight) but also reduces the time for sample preparation because the buffer used 

constitutes as little as 30% of the reaction volume, so as there is no need to precipitate 

RNA prior to hybridisation (Mironov et al., 1995). This group also reported that high 

specific-activity RNA-probes as old as one week can be successfully used for RPA, 

which means that at least 7 RPAs can be routinely performed in succession with the 

same probe, (as opposed to two overnight RPAs with the method employed in this 

study) (Mironov et al., 1995). The use of 32P in a routine diagnostic assay is not 

desirable due to safety considerations, thus developing an RPA which substituting ' P 

with P, or perhaps the development of a non-radioactive method would be beneficial. 

Thus it is clear that modification of the RPA used in this study may result in a high 

through put assay suitable for diagnostic purposes.
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4.9 C o n c lu s io n s

In conclusion the development of a novel qualitative and quantitative CD44 exon- 

specific RPA procedure allowed the analysis of exon usage in mRNA transcripts from 

the human CD44 gene. This assay was initially established using the colon carcinoma 

cell line HT29 in which the CD44 variant exon expression pattern had already been 

described. All CD44 variant exons were detected in HT29 mRNA v8-10 as the 

predominant variant exons present in mRNAs. Transcripts with the partial structure v 8 - 

10C3', v7-10C31, v6-10C31 were seen to occur in HT29. mRNA containing CD44v5- 

10C3 1 mRNA were also detected but these exons may additionally be spliced to more 

5 1 variant exons. The 3 1 standard exons appear to be always spliced to vlO. Towards 

the 5 1 end of the CD44 mRNA many combinations of variants were also observed with 

the predominant signal obtained from the C5 1 standard exons.

When used to examine the pattern of CD44 exon splicing in a range of EBV positive 

type-I and type-III BL and LCL cell lines it was observed that type-I cell lines do not 

express CD44. However, CD44 was detected in type-III BL cell lines and LCLs 

expressing LMP1. A similar but very complex pattern of CD44 variant exon expression 

was detected in both types of cells. In summary, variant exons v 8 , v9 and vlO are most 

often used, several combinations of which were detected. Transcripts containing vlO 

were not always seen to be spliced to the C 3 1 exons indicating the usage of a alternative 

3 1 splice acceptor site downstream of vlO.
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CHAPTER 5

EXAM INING TH E EFFECTS OF EPSTEIN-BARR NUCLEAR 

ANTIGENS 1 AND 2 ON CELLULAR GENE EXPRESSION BY 

D IFFERENTIAL DISPLAY POLYM ERASE CHAIN REACTION
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5.1 In t r o d u c t io n

Establishing latent infection of the Epstein-Barr virus (EBV) requires the transcription 

of several viral genes, which are then translated into proteins. These proteins in turn 

have a role to play in establishing and maintaining latent viral infection, by 

transactivating both viral and cellular genes. The EBV nuclear antigen 2 (EBNA2) is 

one of the initial EBV encoded proteins expressed after primary infection of B 

lymphocytes (Alfieri et al, 1991). Its expression is essential for immortalizing infected 

B-cells (Dambaugh 1984). EBNA2 is a transcription factor that can transactivate other 

viral genes as well as many cellular genes such as CD23 (see section 1.5.2). The EBV 

nuclear antigen protein 1 (EBNA1) encodes a sequence specific DNA binding protein 

which is the only virally encoded protein required for maintenance replication of the 

EBV viral episome. In EBV-positive cases of BL or NPC, every tumour cell normally 

expresses EBNA1. It is the only viral protein which is always present, thus suggesting 

it may confer a selective advantage on the tumour cell (Farrell, 1995). EBNA1 also 

activates lymphoid recombinase genes (RAGs) through an as yet unidentified 

mechanism (Rinivas and Sixbey, 1995). It is clear therefore that EBNA1 and EBNA2 

are of great importance in establishing and maintaining EBV infection in B 

lymphocytes through their action on viral and cellular genes.

Changes in gene expression can lead to changes in the fundamental morphology and 

behaviour of a cell including differentiation, development and carcinogenesis. Thus any 

analytical method that can identify genes which are differentially expressed in different 

cell types is of great value. Differential display polymerase chain reaction (DD-PCR) is 

one such method first described by Liang and Pardee (1992). In this study DDRT-PCR 

was employed to examine a set of BL cell lines to assess the effects of the EBV latent 

proteins EBNA1 and EBNA2, on cellular gene expression. DG75 is an EBV negative 

BL cell line (Ben-Bassat et al., 1977), DG75 EBNA1 and DG75 EBNA2 are stably 

transfected derivatives expressing EBNA1 and EBNA2 respectively (Welinder et al., 

1987). To examine further the effect of EBNA2 on cellular gene expression the 

tetracycline inducible cell line DG75 tTA EBNA2 described by Floettmann et al., 

(1996) was included in the study. The expression of EBNA2 in this cell line was
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induced by the removal of tetracycline from the growth medium. This system permitted 

the examination of the effect of EBNA2 in an isogenic background, eliminating any 

differences in cell lines due to clonal variation.

5 .2  M e t h o d s  f o r  g e n e  e x p r e s s i o n  a n a l y s i s

The development of subtractive hybridization marked a significant breakthrough in the 

analysis of gene expression. Subtractive hybridization (SH) was first described by 

Hedrick et al., in 1984. This method is based on hybridizing mRNA of one origin to 

mRNA of another origin; transcripts that do not find a match are then used in the 

construction of cDNA library. This technique has many applications, for example Lee 

et al., (1991) describes its use as a positive selection method for the detection of 

candidate tumour suppressor genes. However, subtractive hybidization has some 

inherent disadvantages in that it is a laborious and lengthy procedure which requires a 

significant amounts of RNA. In recent years several methods have been described for 

large scale gene expression analysis, these include a DDRT-PCR. In addition to 

rapidity, differential display (DD) has many inherent advantages over SH. Subtractive 

hybridization only identifies genes which are differentially expressed in one of a pair of 

cell lines examined, DD-PCR in generating banding patterns on gels, allows 

simultaneous analysis of several cell lines. Significantly less mRNA is required for 

DD-PCR than for subtractive hybridisation thus allowing analyses to be carried out on 

smaller samples. Differential display has therefore found widespread applications. It 

has, for example, been used to identify genes that are differentially expressed in breast 

carcinoma cells (Liang et al., 1992) and in preimplantation mouse embryos 

(Zimmermann and Schultz, 1994).

5 .3  D i f f e r e n t i a l  D i s p l a y  s t r a t e g y

The differential display strategy of the Liang and Pardee, which is often referred to as 

classical DD, was to amplify partial cDNA sequences from subsets of mRNAs by 

reverse transcription and PCR. These short sequences are then displayed on a 

sequencing gel. A  simplified standard protocol for DDRT-PCR is outlined in figure
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5.1. Polydeoxythymidilate (oligo dT) is employed as primer for the first strand cDNA  

synthesis which takes advantage of the fact that eukaryotic mRNAs have a 3' 

polyadenylated (poly(A)) tail to which the oligo (dT)can anneal (Liang and Pardee,

1992). Furthermore, the oligo (dT) is anchored by two 3' bases i.e. 5 ’-(T)n(A/G/C)N-3', 

where N is any base. There are twelve possible combinations of two bases not 

including T as the penultimate base. Each primer will be a perfect match with the 3' end 

of one twelfth of the total mRNA population. The resulting first strand cDNA can then 

be amplified by PCR using individual but arbitrarily chosen primers. The points at 

which a primer will anneal will be randomly distributed away from the poly (A) end of 

the cDNA. The 5’ primer should in theory be short, to enable it to anneal frequently 

near the end of a cDNA strand. After numerous trials with primer sets and PCR 

conditions a combination of a 10-mer arbitrary primer and an anchored oligo (dT) was 

found to give specific DNA amplification (Liang and Pardee, 1992). Lowering of the 

dNTP concentration allowed for sufficient radiolabelling of the PCR product to give 

high resolution on a sequencing gel. This results in a set of cDNA fragments of varying 

length which when labelled by incorporating (a-35S)dATP during amplification and 

separated on a DNA sequencing gel, produces a ladder-like pattern of bands (Liang and 

Pardee, 1992). A  set of mRNAs possibly including differentially expressed mRNAs are 

thus represented as partial cDNAs. When a cDNA of interest is identified, it is isolated 

by elution from the dried gel, and reamplified by PCR. One or two rounds of 

reamplification PCR may be required, these PCR products in turn are cloned into a 

cloning vector (in this study a TA cloning vector from R&D systems was employed). 

The presence of inserts were confirmed by restriction enzyme analysis. Clones were 

then sequenced which revealed the orientation of the cDNA. This allowed construction 

of RNA probes to confirm differential expression by northern blotting and for isolation 

of the full-length gene. DDRT-PCR is not without its problems, difficulties have been 

encountered in reproducing differential gene expression patterns by northern blotting 

resulting in a very high incidence of false positives (Sun et al., 1994). It has also been 

reported that DDPCR has a strong bias towards high copy number mRNAs, with rare 

transcripts not being detected (Bertolia et al., 1995). Many modifications to the original 

protocol have been made which address these problems which are now discussed.
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D i f f e r e n t ia l  D i s p l a y  P o l y m e r a s e  C h a i n  R e a c t i o n  (D D R T -P C R )

1. Reverse Transcription

mRNA

+ MMLV reverse transcriptase 
+dNTPs

-poly (A) tail 3' GMAAAA ] 
TMAAAA  
AMAAAA  
CMAAAA

I '...................  ' -poly (A) tail 3'

-Oligo dT (T12MN) 
M=ACG N=ACTG

 !
L

1st round cDNA

2. Polymerase chain reaction

■mm -Arbirary primer -  used to generate second strand cDNA  
-Oligo dT (Ti2MN)
-dNTPs 
-oc-[35S-dATP]
-AmpliTaq^DNA polymerase (Perkin Elmer)

I -Second strand cDNA  
-First strand cDNA

PCR amplification product

3. Denaturing Polyacrylamide Electrophoresies

PCR products X  Y

Potential differentially expressed gene.

[=CGT

Fig. 5.1. Schematic representation of DDRT-PCR procedure.
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5.4 M o d if ic a t io n s  a n d  im p r o v e m e n ts  t o  c l a s s i c a l  DDRT-PCR

Since the original protocol was first published in 1992, modifications and improvements 

of classical differential display continue to appear in the literature. A method outlined 

by Bauer et al., (1993) describes a mathematical model for primer design which 

produces an average of 70 bands at an annealing temperature of 42°C. They also 

described the application of the method to an automatic DNA sequencer and introduced 

non-denaturing gels which reduce the visual complexity of banding patterns (Bauer et 

al., 1993). A rapid method for screening and cloning cDNAs generated by differential 

display has also been described. This method employs northern blots to affinity capture 

cDNAs which were radiolabelled by PCR prior to hybridization. Fragments of cDNA  

which demonstrated differences in mRNA levels were recovered from the membrane 

after hybridization and cloned (Li et al., 1994).

A method termed arbitrary primed PCR fingerprinting of RNA or “RNA 

fingerprinting”, was described whereby both double stranded cDNA synthesis and PCR 

are carried out using the same arbitrary primer (Welsh et al., 1992). The problem of 

contamination of RNA preparations by chromosomal DNA was also addressed in this 

study. It was reasoned that because chromosomal DNA is double stranded, it would not 

be denatured prior to the synthesis of first cDNA strand, preventing primer annealing, 

and therefore DNA should not be able to participate in the first low stringency step. 

Thus as arbitrary primers are not introduced twice in opposite directions on a genomic 

DNA template it is not an efficient substrate for PCR. Thus it is unlikely that the 

presence of moderate amounts of dsDNA has an adverse effect on RNA fingerprinting 

(Welsh et al., 1992). Enhanced Differential Display (EDD) is another recent 

modification of DDPCR (Linskens et al., 1995). The principal novelty here lies in the 

introduction of a two step amplification procedure in which the first four PCR cycles 

are carried out at a lower annealing temperature with subsequent PCR cycles at a higher 

annealing temperature. This results in a more reproducible DD technique. However 

EDD involves the use of [ a -32P]dATP as a labelling nucleotide thus increasing the 

potential hazard to the user, it is also likely that EDD may not be suitable for the 

detection of rare genes (Linskens et al., 1995).

195



A  further advance on classical DD is a range of techniques which come under the

heading of systematic differential display. All systematic DD techniques are designed

on the presumption that the relative abundance of products in an amplified subset

remains unchanged compared with the abundance of the original mRNA (Matz and

Luckynoav, 1998). An example of systematic DD is a recently published procedure

which describes the identification of differentially expressed genes by 'restriction

endonuclease-based gene expression fingerprinting (GEF) (Ivanova and Belyavsky

1995). In this method, the first cDNA strand is synthesised using a 5’-biotinylated oligo

dT-containing primer the resulting cDNA:RNA hybrid is then tailed using dGTP and a

terminal transferase and the second strand of cDNA is synthesised using an oligo dC-

primer. The cDNA is then digested with a frequently cutting restriction endonuclease.

Three-prime terminal cDNA fragments are then selected by immobilization on

streptavidin-coated microbeads and thus each mRNA species is represented by not more

than one restriction fragment. An adapter is then ligated to one end of each restriction
1 ̂  •fragment which is then amplified by PCR with a biotinylated T -primer and an adaptor 

primer. The restriction products are then immobilised on to strepavidin microbeads at 

the biotinylated end, radiolabelled at the other end using P-dATP, then sequentially 

treated with restriction enzymes. The resulting enzymatic products are then analysed by 

PAGE and fingerprints from different RNA samples are compared. One considerable 

disadvantage of this method is that due to its low sensitivity it allows only the analysis 

of the most abundant mRNAs (Ivanova and Belyavsky, 1995).

A technique termed restriction landmark cDNA scanning (RLCS) employs the same 

basic strategy as GEF whereby a biotinylated restriction fragment is selected by 

immobilization on streptavidin-coated beads and radiolabelled. The techniques differ at 

this stage as there is no further subdivision of fragments, instead they are resolved by 

two dimensional gel electrophoresis. As a radioactive label is only attached to one end 

of the 3 1 fragment each cDNA is represented by a single spot. This technique is quite 

difficult requiring skill to obtain reproducible results. Also the analysis of spot pattern 

is considerably more difficult than side by side analysis of band patterns, (Suzuki et al, 

1996; Kato, 1996).
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Ordered differential display (ODD) is also based on the display of 3 ’-end restricted 

fragments of cDNA. Complimentary DNA (prepared from total RNA using a T-primer 

e.g. GTGAGTCGACCG(T)i3), was digested using the restriction enzyme Rsa I  and a 

32P labelled adapter sequence is ligated at the 5 ’ end. The 3’ cDNA fragments were 

PCR-amplified by PCR suppression: 3’ cDNA fragments were PCR-amplified, while 

the amplification of inner fragments [as well as poly A  (-) cDNA fraction] was 

suppressed, as fragments flanked by inverted repeats cannot be amplified with the single 

primer corresponding to the outer part of the repeat. This results in samples containing 

fragments representing one transcript defined by flanking sequences at its termini: T- 

primer and an adapter sequence at the 5’ end (Matz et al., 1997). Such pools were then 

subdivided into simplified subsets by means of amplification with the primers annealing 

to the flanking sequences but extended by two bases at their 3 ’ ends. Thus selecting 

1/192 of the total pool. Both extended primers were designed for use under high 

stringency conditions to avoid the problem of decreased discrimination capabilities. 

Once a fragment is identified as differentially expressed it can be directly sequenced 

after PCR amplification. One disadvantage of ODD is that banding pattern obtained 

from complexed samples may be difficult to analyse on a sequencing gel thus leading to 

further complications when isolating a fragment of interest (Matz et al., 1997). The 

advances made by systematic differential display are clear however these techniques 

require much more effort and special materials to produce a fingerprint. Also these 

techniques can be applied only to a comparison of samples of the same genetic 

background in order to avoid false positives originating from restriction fragment length 

polymorphism (Matz and Lukyanov, 1998).

5.5 N o n -r a d i o a c t i v e  DDRT-PCR

A study by Trentmann et al., (1995) indicated that the use of [a-35S]dATP, which was 

originally considered relatively safe, produces volatile decomposition products when 

subjected to high temperatures during PCR reactions in differential display. These 

products penetrate the PCR tubes and may prove dangerous to the researcher. In 

response to this Liang and Pardee (1995) confirmed the presence of S contamination 

of the thermocycler used for DDRT-PCR experiments. They suggested that a PCR
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machine be dedicated to DDRT-PCR alone, which was the case in this study. 

Alternatively a 33P label could be used which has a sensitivity between that of 35S and 

32P and does not appear to have the associated problems (Liang & Pardee, 1995). Many 

non-radioactive methods of DDPCR have now been developed in order to reduce the 

risk to the user.

A non-radioactive method involving the use of a fully degenerate hexamer to produce 

cDNA from mRNA has been described (Sokolov and Prockop, 1994). The cDNA is 

then amplified using various combinations of 2 or 3 arbitrary primers and the resulting 

bands are separated on a non-denaturing agarose gel, stained using ethidium bromide 

and viewed on a UV transilluminator. This technique, which avoids the use of 

radioisotopes, was used to identify a new brain-specific mRNA. Although this method 

is both rapid and sensitive, PCR amplification would have to be repeated with over 

1000 different primers to obtain cDNA fragments representing each of the 15,000 

different mRNAs present in a human cell (Sokolov and Prockop, 1994).

REN Display is a rapid and efficient method for nonradioactive DD and mRNA 

isolation. This procedure describes the use of horizontal polyacrylamide gels and 

visualisation of DNA bands by silver staining. Although REN display may not equal 

the sensitivity of classical DDPCR it has the inherent advantages of rapidity, safety and 

the ease of isolation of DNA fragments as they can be visualised on the gel (Lohmann 

et al., 1995). One report described a non-radioactive DD method which employs a 

digoxigenin (DIG) conjugated poly-T degenerate primer (DIG-Ti2VG) for reverse 

transcription and an arbitrary primer for PCR (Chen and Peck, 1996). After 

amplification, samples were separated on a 6 % denaturing SDS-PAGE gel and 

transferred to a nylon membrane. The membrane was then blocked and incubated with 

an anti-DIG alkaline phosphatase antibody/enzyme conjugate. Following washing, a 

signal is generated on the membrane by the alkaline phosphatase colorimetric reaction 

with NBT BCIP. An advantage of this method is the fact that DNA amplification can 

be achieved from an isolated membrane strip containing a band of interest (Chen and 

Peck, 1996).

198



Fluorescent (DDRT-PCR FDDRT-PCR) partially circumvents the need for 

radioactivity. In FDDRT-PCR, modified 3 ’-anchoring oligo (dT) primers are employed 

to reverse transcribe total RNA such that a common 20mer sequence is introduced at the 

5 ’-end of every cDNA. A fluorescent-labelled universal primer is then used in every 

PCR together with an arbitrary lOmer to generate 3’ fluorescently-labelled cDNAs, 

which are analysed on an automated sequencer. When a differential cDNA is identified 

by FDDRT-PCR the PCR is repeated using the appropriate primers and a radioactive 

label (Smith et al, 1997a). After elution of a cDNA of interest, the original lOmer and 

fluorescent primer are used for re amplification, this product is subjected to restriction 

enzyme digestion which yields a single fluorescently-labelled cDNA moiety 

corresponding to the 3 ’ end of that mRNA. These are visualised on an automated DNA  

sequencer generating a restriction enzyme fingerprint of the gel eluted cDNA thus the 

presence of more than one cDNA fragment can be detected (Smith et al, 1997b). Thus 

although this method does not avoid the necessity for radioactivity it does reduce its use 

significantly. A similar method described by Shohan and colleagues employed a 

fluorescently labelled PCR primer. This resulted in a dye-labelled PCR product which 

was resolved by electrophoresis for 30-40 min on a polyacrylamide capillary gel. Each 

product was automatically sized and quantified, these results were automatically stored 

on a data base which allowed retrospective analysis. Transcriptional specific DNA  

bands identified were then used to generate DNA-based probes for screening cDNA  

libraries (Shohan et al, 1996).

Many other modifications have been cited in the literature. A  report by Hadman et al., 

(1995) describes the use of mRNA and a 32P-labelled 3 ’ primer which eliminated the 

problem of amplification due to two 5 ’ primers as they will no longer be visible, 

yielding clean discrete labelled bands. Much attention has been placed on primer 

design in DDRT-PCR with many views as to how to improve the procedure by primer 

design. Graf and colleagues (1997) reported that rational primer design greatly 

improves DDPCR. They describe the design of primers of 12-14 bases in length with 

an A/T content of 60-80% which corresponds more closely to the A/T content of a 

typical 3 ’-UTR. Some primers also contained sequence motifs found in the 3 ’-UTR of 

immediate early genes. Although these primers might miss genes with non A/T rich 3’-
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UTR this study illustrated the rapid isolation of many gene fragments. Further 

suggestions on primer design are given by Zhao et al., 1995 and Afonina et al., 1997.

The rapid evolution of RNA fingerprinting is set to continue. It has already been 

successfully applied to identify differentially expressed genes in different tissues and 

cancer cells (Chang et al., 1997; Nelson et al., 1998; Ulrix et al., 1998). It may be used 

to investigate the response of a cell to a specific stimulus without cloning a single gene. 

Potential problems such as the under representation of rare mRNAs and the high 

percentage of false positives obtained remain to be fully addressed.

The research presented in the following section, aims to identify cellular genes whose 

expression is modulated by the key EBV latent proteins EBNA1 and EBNA2 in an EBV 

negative Burkitt’s lymphoma cell line background by DDRT-PCR.
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5.6 EBNA2 INDUCTION IN DG75 tTA EBNA2.

Before commencing DD experiments the induction of EBNA2 expression in the cell

line DG75 tTA EBNA2 upon removal o f tetracycline from the growth medium was

examined by western blotting using the anti-EBNA2 antibody PE2 as described in

section 2.6.7. The stably transfected cell line DG75 EBNA2 was included as a positive

control. It can be seen from figure 5.2 that EBNA2 expression was detected in the cell

line DG75 tTA EBNA2 after 24hr induction and in the cell line DG75 EBNA2.

KDa 
175 —

83
EBNA2

62 - 

47.5'

1. 2. 3.

•i9> -

4. 5. 6.

Fig. 5.2. W estern Blot analysis of EBNA2 expression. The detection of EBNA2 expression using the 

anti-EBNA2 antibody PE2. Lane No. 1. Protein marker 2. DG75 tTA EBNA2 uninduced, 3. DG75 tTA 

EBNA2 induced (24hr), 4. DG75, 5. DG75 EBNA2, 6. Protein marker.

EBNA2 expression was also investigated by immunocytochemistry, as described in 

section 2.4.7. to investigate if EBNA2 was present in all cells in the induced population.

A. Uninduccd

EBNA2

* ••A V '• - ! . ■ - -

B. Induced

Fig. 5.3. Immunocytochemistry analysis of EBNA2 induction. Panel A represents DG75 tTA EBNA2 

before tetracycline removal. Panel B represents DG75 tTA EBNA2 cells 24 hr after induction, the 

presence of EBNA2, indicated by purple staining( ►), was detected in over 95% of the cell population.
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5.7 E s t a b l i s h in g  t h e  s t r u c t u r a l  i n t e g r i t y  o f  i s o l a t e d  RNA.

The success of the differential display technique depends on the integrity of the RNA 

and on its being free of chromosomal DNA contamination. Total RNA is preferred over 

poly (A) RNA because of its cleaner background signal, easy purification, and integrity 

verification. RNA was isolated from all cell lines examined using RNA ISOLATOR as 

described in section 2.5.2. The resulting RNA was examined by electrophoresis 

through a formaldehyde gel as described in section 2 .8 .2 .

28S

18S

5S

1. 2. 3. 4. 5. 6.

Fig. 5.4. Formaldehyde gel electrophoresis o f  RNA. Samples of total RNA were subjected to 

electrophoresis through a formaldehyde gel and viewed on a UV transilluminator. The 28S, 18S and 5S 

ribosomal bands are clearly visible indicating structurally intact RNA. Lane No. 1. DG75, 2. DG75 

EBNA1, 3. DG75 EBNA2, 4. DG75 tTA, 5. DG75 tTA EBNA2 uninduced, 4. DG75 tTA EBNA2 

induced.

It is clear from figure 5.4 that the RNA used for differential display analysis was 

structurally intact.
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5.8 RT-PCR ANALYSIS OF RNA.

In order to ensure that the mRNA was intact and that contaminating DNA was not 

present RT PCR analysis of RNA from all cell lines investigated by differential display 

was carried out using primers for the house keeping gene (3-actin (section 2.5.5). The |3- 

actin primers used amplify a PCR product of 383 bp. The primers were designed to 

span an intron thus the presence of contaminating DNA can be detected by the presence 

of a 590 bp amplification product. The presence of a band of 383 bp only, in all cell 

lines indicates intact mRNA free from DNA contamination (figure 5.5).

Fig. 5.5. RT PCR analysis o f (3-actin mRNA. Lane No. 1. DG75, 2. DG75 EBNA1, 3. DG75 EBNA2, 

4. DG75 tTA, 5. DG75 tTA EBNA2 uninduced, 4. DG75 tTA EBNA2 induced..

5.9 D i f f e r e n t i a l  d i s p l a y  i n i t i a l  r e s u l t s .

Initial DDRT-PCR was carried out on RNA from the cell lines DG75, DG75 EBNA1, 

DG75 EBNA2, using various primer combinations. For example a primer such as 

5 ’Ti2GA allowed anchored annealing to mRNA containing TC located just upstream of 

their poly(A) tail (figure 5.1). Probability dictates that this primer recognises one 

twelfth of the total mRNA population (Liang and Pardee, 1992). Thus the primer 

designated T12MN, where by M=ACG and N-ACGT will recognise all possible RNA 

populations. This primer combined with an arbitrary primer which binds randomly to 

the DNA, was selected so as to amplify DNA from 50 to 100 mRNAs because this is
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the number optimal for display on the gel (Liang and Pardee, 1992). In total between 

1000 and 2000 cDNAs were amplified from each cell line examined. Table 5.1 lists the 

bands which were initially identified. However, upon repeating all the DD experiments 

a large number of the bands were not reproducible and were eliminated as false 

positives. The bands which were repeatable are marked with a * in table 5.1.

Table 5.1. Potentially differentially expressed partial cDNA identified by DDRT-PCR.

CELL LINES COMPARED SIZE (Bases).

DG75, DG75 EBNA1, DG75 EBNA2. 172

DG75, DG75EBNA1, DG75 EBNA2. 310*

DG75, DG75 EBNA1, DG75 EBNA2. 292*

DG75, DG75 EBNA1, DG75 EBNA2. 195*

DG75, DG75 EBNA1, DG75 EBNA2. 132

DG75, DG75 EBNA1, DG75 EBNA2. 212

DG75, DG75 EBNA1 350*

DG75, DG75 EBNA1. 268

DG75, DG75 EBNA1. 198

DG75, DG75 EBNA1 160*

DG75, DG75 EBNA1 155*

DG75, DG75 EBNA1 141

DG75, DG75 EBNA1 144

DG75, DG75 EBNA1 142

DG75, DG75 EBNA1 144

DG75, DG75 EBNA1 142

DG75, DG75EBNA1 140

DG75, DG75EBNA2 402*

DG75, DG75EBNA2 510

DG75, DG75EBNA2 300*

DG75, DG75EBNA2 150

DG75, DG75EBNA2 150

DG75, DG75EBNA2 148

DG75, DG75EBNA2 145

DG75 EBNA1, DG75 EBNA2 212

DG75 EBNA1, DG75 EBNA2 355
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Cell lines underlined in table 5.1 indicate cell lines in which the partial cDNA band appeared to be 

differentially expressed. The sections which are not underlined indicate cell lines in which the band was 

absent or did not appear to be differentially regulated.

Bands which were subjected to PCR within 48 hr were successfully cloned. Those 

bands are listed below, the primers used for their amplification are included in brackets:

DG75, DG75 EBNA1, DG75 EBNA2. (T12 MG, AP-14) 310*

DG75, DG75 EBNA1, DG75 EBNA2. (T12 MT, AP-14) 195*

DG75. DG75EBNA2 (Ti2 MC, AP-13) 402*

DG75, DG75 EBNA2 (Ti2 MA, AP-14) 300*

The tetracycline regulated cell line DG75 tTA EBNA2 was included in the study to 

examine more closely the regulation of cellular gene expression by EBNA2 in an 

isogenic background. EBNA2 was induced by the removal of tetracycline from the 

growth medium and differential display was carried out 9hr and 24 hr post-induction. 

DD was also carried out in the cell lines DG75 tTA and DG75 tTA EBNA2 before the 

removal of tetracycline. EBNA 2 induction was confirmed by western blotting and 

immunocytochemistry analysis as indicated in figures 5.2. Differential display 

experiments were repeated with the primers used to identify the reamplified cDNAs 

which are listed above. A  band of 300 bases was down regulated in DG75 tTA EBNA2 

at 9hr and 24hr post induction, results not shown. A band of 200 bases which appeared 

to be upregulated after induction of EBNA 2 was also identified figure 5.10.

DG75 tTA DG75 EBNA2 tTA (-), DG75 EBNA2 tTA(+) (T12 MA, AP-14) 300b* 

DG75 tTA DG75 EBNA2 tTA (-), DG75 EBNA2 tTA(+) (T12 MC, AP-14) 200*

Differential display experiments are illustrated in figures 5.6-5.10.
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5.9 D i f f e r e n t i a l  d i s p l a y  e x p e r i m e n t s

A 1. 2. 3. B. 1. 2. 3.

Fig 5.6. Differential display analysis. The image shows the initial (A) and a repeat experiment (B) 

illustrating a potentially differentially expressed band of 310 bases. This band appears to be up regulated 

in the cell line DG75 EBNA2. Lane No. 1. DG75, 2. DG75 EBNA1, 3. DG75 EBNA2.

A. 1. 2. 3. B 1. 2

Fig 5.7. Differential display analysis. The figure shows the initial (A) and a repeat experiment (B)

illustrating a potentially differentially expressed band of 300 bases. This band appears to be down

regulated in the cell line DG75 EBNA2. Lane No. 1. DG75 2. DG75 EBNA1 3. DG75 EBNA2.
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A  1. 2. 3. B. 1. 2. 3.

Fig 5.8. Differential display analysis. The figure shows the initial (A) and a repeat experiment (B) 

illustrating a potentially differentially expressed band of 195 bases. This band appears to be expressed in 

the DG75 cell line and DG75 EBNA2 but not in DG75 EBNA1. Lane No. 1. DG75, 2. DG75 EBNA1, 

3. DG75 EBNA2.

A 1. 2. 3. B. 1 3.

Fig 5.9. Differential display analysis. The image shows the initial (A) and a repeat experiment (B) 

illustrating a potentially differentially expressed band of 402 bases. This band appears to be up regulated 

in the cell line DG75 EBNA2. Lane No. 1. DG75, 2. DG75 EBNA1, 3. DG75 EBNA2.
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B. 1. 2

Fig 5.10. Differential display analysis. The figure shows the initial (A) and a repeat experiment (B) 

illustrating a potentially differentially expressed band of 195 bases. This band appears to be up regulated 

in the cell line DG75 tTA EBNA2 (induced). Lane No. 1. DG75 tTA, 2. DG75 EBNA tTA 

(Uninduced), 3. DG75 EBNA2 tTA (Induced).
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5.10 PCR REAMPLIFICATION OF ISOLATED CDNA FRAGMENTS.

Upon identification cDNAs of interest were subsequently isolated from the 

polyacrylamide gel and reamplified by PCR. Reamplification was carried out using the 

same primer set and PCR conditions (with the exception of dNTP concentration) as 

described for DD-PCR (see section 2.7.6). Reamplification consisted of one or two 

rounds of PCR, if a PCR product was not detected by agarose gel electrophoresis after 

the initial PCR then 4 .̂1 of a 1:100 dilution of the first round PCR was used as template 

for a second round of PCR. Some difficulty was encountered in the reamplification of a 

number of bands. Upon further investigation it was observed that bands which had been 

stored, after elution, prior to reamplification were difficult to reamplify, this may have 

been due to degradation caused by the presence of residual 35S in the stored product.

Fig. 5.11. Reamplification o f differentially displayed cDNAs.

Lane No. PCR product.

1./9 .100 bp DNA marker,

2. B350; Not cloned due to the presence of two PCR products.

3. B212; Further experiments indicated that this band was not truly differentially regulated.

4. B300; Cloned.

5. B310; Cloned.

6. B292; Unable to clone.

7. B195; Cloned.

8. B132; Unable to clone.

10. B402; Cloned.

11. B172; Further experiments indicated that this band was not truly differentially regulated.
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Fig. 5 12. Reamplification o f differentially displayed cDNAs.

Lane No. PCR product.

1. 100 bp DNA marker.

2. B200; Cloned.

3. B300b; Cloned.

5.11 C l o n i n g  o f  r e a m p l i f i e d  DDPCR p r o d u c t s .

Reamplified PCR products were cloned using the LigATor rapid cloning system from 

R&D systems into the pTAg cloning vector (see figure 5.13) as outlined in section 

2.7.7. White colonies were chosen and DNA minipreparations were assessed for inserts 

by restriction analysis.

C o i e tOil

TT

i

p T A .
(381.6bp)

T7 promoter (24-40)

M13 reverse primer (3805-5) Multiple cloning site (51-172) M13 universal primer (196-180)

_______  I  —
   ! :

Insert site (102)

Fig. 5.13. Map o f the cloning vector pTAg.
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Restriction analysis was carried out on DNA minipreparations using the enzyme H inf I  

or a double digestion with the enzymes Bam HI and Hind III. Hinf I  cuts pTAg 13 

times, one of the resulting fragments (459 bp fragment) spans the insertion site if  an 

insert is present this fragment will become bigger, creating a new fragment of 459 plus 

the size of the cloned insert -  only if the insert does not have a Hinf I  site. Bam HI and 

Hind III are unique sites located either side of the insertion site in the MCS, thus a 

double digestion with these restriction enzymes results in the fragment being excised if 

the insert does not contain a Bam HI or a Hind III site.

M
*—•

M  M  —« M
bp
600 v * »4b
500 _ M  ‘ * 4M»
400 ----
300 ___
200 ___
100 —

•

1. 2. 3. 4. 5. 6. 7.

Fig. 5.14. Restriction analysis o f  PCR clones. Samples of DNA minipreps were digested with H inf I  

and subjected to electrophoresis through a 1.5% agarose gel. Lane no. 1. 100 bp DNA marker, 2. pTAg 

empty vector uncut, 3. pTAg/control insert, 4. pTAg/control insert H inf I, 5. pTAg H inf I, 6. pTAg/B310 

(a) H inf I. 7. pTAg/B310 (b) H inf I

From figure 5.14 it is clear that there is an insert present in the pTAg/B310 clones and 

the Hinf I  digest illustrates that it is the correct size of 310 bp. Hinf I  digest were 

carried out on other clones however the results obtained were not clear due to the 

presence of Hinf I  sites with in the inserts, in such cases a Bam HI and Hind III double 

digest strategy was employed.
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When pTAg is digested with Bam HI and Hind III 29 bp are added onto the insert thus 

B195 appears at approximately 224 bp (figure 5.15), B300 and B300b appears 329 bp 

(figure 5.15/5.16), B200 appears at 229 (figure 5.16) and B402 appears 431 bp (figure 

5.15).

V t e M V  f

B195 B300

¡ ¡ r
1. 2. 3. 4. 5. 6. 7.

Fig 5.15. Restriction analysis o f  PCR clones. DNA minipreps digested with Bam H I and Hind III and 

subjected to electrophoresis through a 1.5% agarose gel. Lane no. 1. 1Kb DNA ladder, 2. pTAg/B195 3. 

pTAg/B195, 4. pTAg/B195 , 5 pTAg/B300, 6 .1Kb DNA ladder, 7. pTAg/B402.

« « i - ~  -  w  «• ■* 

• - 1 1 1 » - ' pTAg

300
200

1. 2. 3. 4. 5. 6. 7. 8. 9. 10.11.

Fig 5.16. Restriction analysis o f PCR clones. DNA minipreps digested with Bam H I and Hind III and 

subjected to electrophoresis through a 1.5% agarose gel. Lane no. 1. lOObp DNA ladder, 2-4. pTAg/(3- 

actin (383bp), 5-9. pTAg/B200, 10-11. pTAg/B300b.
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Some difficulties were encountered when cloning reamplified PCR products -this may 

have been due to the loss of A  overhangs in the PCR products. PCR reactions were 

repeated in these cases but again cloning was unsuccessful. Thus a panel of six cloned 

partial cDNAs remained for analysis. These six partial cDNA clones were obtained 

from the analyses of one quarter of the total mRNA population (~3, 750 transcripts per 

cell line).

B310 Up regulated in DG75 EBNA2

B300 Down regulated in DG75 EBNA2

B195 Not expressed in DG75 EBNA1

B402 Up regulated in DG75 EBNA2

B300b Down regulated in DG75 tTA EBNA2

B 200 Up regulated in DG75 tTA EBNA2

5.12 S e q u e n c e  a n a l y s i s  o f  c l o n e d  cDNAs.

Sequencing of cloned cDNA was carried out prior to northern blot analysis as DNA  

sequence analysis was taking place in the laboratory at that time and it allowed time to 

establish a panel of cloned cDNAs for northern blot analysis. Sequence analysis also 

revealed the orientation of the cloned cDNAs for the construction of riboprobes for 

northern blot analysis. A T7 Sequencing™ Kit from Pharmacia was used for 

sequencing the cloned cDNAs as described in section 2.7.8. Sequence analysis are 

illustrated in figure 5.17.
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A B  C D

Fig 5.17. Photograph o f DNA sequence autoradiogram. Sequencing reactions were run in the order 

ACGT from left to right. Set A: Control DNA, B: B195, C: B300, D: B310. Other sequence results not 

shown.
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S e q u e n c e  a n a l y s i s

A variety of search engines on the Internet were used to identify sequences obtained. 

The internet site used was Pedro’s BioMolecular Research Tools -  

http://www.public.iasate.edu/~pedro/research-tools.html. BLASTN (Basic Local 

Alignment Research Tool Nucleotide) was the most frequently used search engine. The 

nucleotide sequence of the cDNAs of interest was entered into the BLASTN 

programme which carried out a search of data bases such as the EMBL and Genebank. 

The results were displayed as a list of sequences with decreasing alignment to the 

cDNA of interest.

Se q u e n c e  o f B310

GGATGAGCTTGAATGCTGTTCCCAAAGTCTCCCGTGTCCCAAGTTTCCAGTG 

CCTTCTCAGGGCAATGAAAATAGTTTGTGGACAGCTGGGGGATGGTTTCAG 

TGTCAAACTTTGGGAGTAAAATCTTTCATGTTTTTCTGAAGAACTTTGGCAT 

TAGAATTTGTTGGTTCTGGAAAGTCAAGAACACAGTTGTTTTATTGAGAGA 

NNNNNNN AAAAAAAAA.

Database Analysis:

A  search of the INCB system at Trinity College was carried out and the results revealed 

greatest homology with homosapien cDNA clone.

S e q u e n c e  o f  B 300 a n d  B 300 b .

CTTGATAAGAGGCGCAAAAGAAAAGAATCTCAAAGTGAAGGACCAGTTCG

AATTGCCTACCAAGACTTTGAGAATCACTACAAGAATAAACTCCTTGTGGTG

AAGGTTCTAAGCAGTGGGTCAGTTTCCGATAGGA.....................AAAAAAAA.

Sequence analysis revealed 100% homology between the sequence of B300 and B300b.

Database Analysis:

A  search of the EMBL and Genebank databases revealed 100% homology with a 

section of the human ribosomal protein cDNA, S20 (RPS20).
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S e q u e n c e  o f  B195

GGCAAGGGGGAAATGAGTAGTTGTTATTCAACAAATATAAAGTCTCAGTTT

TGCAAGATGAATACCTTCTAGAGATCTGCTGTGCAACAAGGTGCCTATAGTT

AACATTGCTGTATTATGCCTTAACAACTTGAGAGGGTAGATCTCAGGTTAAG

TGTTCTTACCACAAAAAAAAAAAAAAAAA.

Database analysis:

Sequence analysis revealed homology with (a) Human DNA sequence for cosmid 

N85E10 between markers D22S28-D22886 of chromosome 22ql2, (b) Human DNA  

sequence for cosmid U96H1 DX5366-DX5877 on chromosome X and (c) Human Xp22 

cosmid U106G8 and U26C6.

S e q u e n c e  o f  B402

ATTATTCTTTGTATAGGTCCTCATGTTACGGTACGTTTTAAACGTCGCAGCC

GAACATCGTAGTATTAGACGCCTGATACAAGAC

Database Analysis:

Sequence analysis did not reveal any significant homology with any sequence in the 

database.

S e q u e n c e  o f  B200

GTCGACAGATTAATGGGCTGGGGCAATGGGGAAATGAGTAGTTGTTATTCA

ACAAATATAAAGTCTCAGTTTTGCAAGATGAATACCTTCTAGAGACTGCTGT

GCAACAGGTGCCTATAGTTAACATTGCTGTATTATGCACTTAACAACTTGAG

AGGGGACTCAGGATGGCTCCGCAAAAAAAAAAAAAAAAAA.

Database Analysis:

Database analysis did not reveal an exact match with any sequence. However sequence 

analysis using the BLASTn search showed that the sequence had homology with human 

DNA from two PAC cosmids and also to the human calbindin 27 gene at exon 10.

216



5.13 N o r t h e r n  b l o t  a n a l y sis

In order to confirm the differential expression of the cloned cDNAs northern blot 

analysis was carried out. RNA probes (riboprobes) were used to probe total RNA 

blotted onto a nitrocellulose membrane as described in section 2.8. Riboprobes were 

transcribed from the T7 promoter in the cloning vector pTAg as outlined in section 

2.7.9.

T7 promoter

Hind III I
► 80

]_______ _ _ _   — ---------  | Hind III
cDNA

Fig. 5.18. Schematic representation o f RNA probes. Each cloned cDNA was digested with Hind III, 

transcription started from the T7 promoter thus the full length riboprobe measured the length of the 

cloned fragment plus 89bp of the vector.

When labelling the first riboprobes B300 and B310, samples of both probes were run on 

a polyacrylamide gel along side a control reaction to ensure that the probes were full 

length and that degradation had not taken place. The gel was wrapped in cling film and 

exposed to X-ray film for 2 min and then developed. The bands appear quite close 

together as they were analysed on a high percentage gel over a short period of time.

1. 2 .

B300

3 Kb control 

B310

Fig 19. Verification of riboprobe quality. From the picture it is clear that the probes are full length and 

degradation has not take place. Lane no. 1. B300, 2. B310, 3. Control probe 3Kb.

217



Prior to blotting, the RNA of interest was run on a formaldehyde gel and viewed briefly 

under ultra violet light to control for loading. Ten micrograms of RNA was used in 

every lane. A representative photograph is shown below:

Kb
9.49
7.46
4.4

2.37

1.35

0.24

1. 2. 3. 4. 5. 6.

Fig. 5.20. Formaldehyde gel electrophoresis o f RNA. Approximately lO^ig of total RNA was 

subjected to electrophoresis through a formaldehyde gel and viewed on a UV transluminator. The 28S, 

18S and 5S ribosomal bands are clearly visible indicating structurally intact RNA. Lane No. 1. DG75, 2. 

DG75 EBNA1, 3. DG75 EBNA2, 4. DG75 tTA, 5. DG75 tTA EBNA2 uninduced, 6. DG75 tTA EBNA2 

induced.

Northern blotting was carried out by blotting lOfxg of total RNA on to a nitrocellulose 

filter which was then probed using a 32P-labelled riboprobe constructed from a cloned 

potentially differentially expressed partial cDNA. Ethidium Bromide was included in 

all RNA samples in order to view the RNA briefly under UV light to ensure equal 

loading of the samples on the gel. The gel shown in figure 5.21 was used in northern 

blot analysis of B200 as illustrated in figure 5.24. The approximate size of the bands 

obtained by northern blotting was estimated by comparison with the RNA size makers 

as shown in figure 5.20.
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B 310

In the experiment shown in figure 5.21, a riboprobe corresponding to the B310 cDNA  

was used to probe total RNA from a panel of cell lines, by northern blotting. The 

differential expression observed by DDRT-PCR (in this case downregulation coincident 

with EBNA2 expression) was not seen in the northern blot, thus indicating that the 

differential expression of B310 was false positive.

1. 2. 3. 4. 5. 6.

Fig. 5.21. Northern blot analysis of DD products. Lane No. 1. DG75, 2. DG75 EBNA1, 3. DG75 

EBNA2, 4. DG75 tTA, 5. DG75 tTA EBNA2 (Uninduced), 6. DG75 tTA EBNA2 (Induced).

B 300

In the experiment shown in figure 5.22, a riboprobe corresponding to the B300/B300b 

cDNA which corresponds to the human ribosomal protein S20 was used to probe total 

RNA from a panel of cell lines, by northern blotting. The differential expression 

observed by DDRT-PCR (in this case downregulation coincident with EBNA2 

expression) was not seen in the northern blot. Thus indicating that the differential 

expression of B300 was false positive.

1. 2. 3. 4. 5. 6.

Fig. 5.22. Northern blot analysis o f DD products. Lane No. 1. DG75, 2. DG75 EBNA1, 3. DG75 

EBNA2, 4. DG75 tTA, 5. DG75 tTA EBNA2 (Uninduced), 6. DG75 tTA EBNA2 (Induced).
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B195

In the experiment shown in figure 5.23, a riboprobe corresponding to the B195 cDNA  

was used to probe total RNA from a panel of cell lines, by northern blotting. The 

differential expression observed by DDRT-PCR (in this case downregulation coincident 

with EBNA1 expression) was not seen in the northern blot. The human S20 ribosomal 

protein was also included (B300) in this northern blot which indicates that there was 

approximately equal loading of RNA. Thus indicating that B195 was another false 

positive.

^  -4 .0  Kb

< ---------  -0 .2 4  Kb

1. 2. 3. 4. 5. 6.

Fig. 5.23. Northern blot analysis o f DD products. Lane No. 1. DG75, 2. DG75 EBNA1, 3. DG75 

E B N A 2,4. DG75 tTA, 5. DG75 tTA EBNA2 (Uninduced), 6. DG75 tTA EBNA2 (Induced).
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B200

In the experiment shown in figure 5.24, a riboprobe corresponding to the B200 cDNA  

was used to probe total RNA from a panel of cell lines, by northern blotting. The 

differential expression observed by DDRT-PCR (in this case upregulation coincident 

with EBNA2 expression) was not seen in the northern blot. Thus indicating that the 

differential expression of B200 was also false positive.

IBM tm — ~2'9Kb

1. 2. 3. 4. 5. 6.

Fig. 5.24. Northern blot analysis o f  DD products. Lane No. 1. DG75, 2. DG75 EBNA1, 3. DG75 

EBNA2, 4. DG75 tTA, 5. DG75 tTA EBNA2 (Uninduced), 6. DG75 tTA EBNA2 (Induced).

The RNA gel used in this northern blot is illustrated in figure 5.20. DG57 EBNA1 

RNA is under-loaded in this gel however this is not important in this particular 

experiment as the expression of B200 as analysed by DDRT-PCR appeared to be 

upregulated with EBNA2 expression.

221



B 402

In the experiment shown in figure 5.25, a riboprobe corresponding to the B402 cDNA  

was used to probe total RNA from a panel of cell lines, by northern blotting. The 

differential expression observed by DDPCR (in this case upregulation coincident with 

EBNA2 expression) was not seen in the northern blot. Thus indicating that the 

differential expression of B402 was also false positive.

U w -2.4 Kb

1. 2. 3. 4. 5. 6.

Fig. 5.25. Northern blot analysis of DD products. Lane No. 1. DG75, 2. DG75 EBNA1, 3. DG75 

EBNA2, 4. DG75 tTA, 5. DG75 tTA EBNA2 (Uninduced), 6. DG75 tTA EBNA2 (Induced).
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5.14 D i s c u s s i o n  a n d  c o n c l u s i o n s

The differential display method described by Liang and Pardee has many advantages 

over classical methods for analysis of gene expression (Liang and Pardee, 1992). These 

include its rapidity, the ability to display the message profile of many cell types 

simultaneously from a small amount of RNA, and its ability to identify both activated 

and repressed genes in the same reaction. Although simple in theory, utilization of this 

method is quite labour intensive (Hadmann et al., 1995). Differential display has many 

steps and thus there are many areas were problems can arise. The initial step is the 

isolation of intact RNA, free from chromosomal DNA, ensuring that amplification of 

DNA does not occur during DD. Gel electrophoresis and (5-actin RT-PCR, were used to 

show that the RNA was structurally intact and free from DNA contamination 

respectively, thus establishing the integrity of the RNA used in this study.

Problems can also be encountered in the isolation of cDNA fragments from the dried 

gel. An exact match must be obtained between the gel and the corresponding 

autoradiogram so as to eliminating the possibility of excising the wrong band or more 

than one band. Orientation markers were included in this study to avoid this problem, 

however occasionally more than one band resulted from PCR reamplification therefore 

these products were unsuitable for cloning. It was observed that immediate 

reamplification of eluted PCR products yielded best results. Partial cDNAs, which were 

stored for in excess of 48 hr after elution prior to reamplification, proved difficult or 

impossible to clone. This may have been the result of degradation caused by the 

presence of residual 35S in the stored product. A  major limitation of the procedure is 

that differences in gene expression observed by DD are false and often cannot be 

reproduced by northern blot analysis, these false positive cases can arise with a 

frequency of up to 70% (Sun et al, 1994). The results of this study clearly illustrate 

that even after repeated DDPCR experiments and reamplification of PCR products of 

the correct size, false positives are indeed a major drawback of this particular approach. 

Northern blot analysis has clearly demonstrated that the alteration in band pattern 

observed in this study by differential display does not reflect real changes in mRNA 

levels but are artefacts of the procedure. False positives arise in a variety of ways such
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as the amplification of contaminating DNA, the addition of an “A” to the end of an 

amplified cDNA fragment during PCR which appears as a differentially expressed band 

or the isolation of an incorrect cDNA fragment from a dried gel. In the method 

described in this study several cDNA fragments can result from the amplification of the 

same mRNA resulting in a complexed pattern of gene expression which may lead to 

false positives, additionally different recombinant clones with similar sized inserts will 

be generated.

The problem of false positives has been addressed by a number of groups in the form of 

modifications to the original protocol, some of which are discussed in this section. 

When using total RNA as a template Hadman and colleagues found that a large 

proportion (~40%) of total bands resulted from PCR amplification between two 5' 

primers. The number of bands amplified in this manner was reduced by using poly(A)- 

selected mRNA however this resulted in poor resolution. This lead to the introduction 

of an end labelled 3' primer, thus only bands which included this primer were 

visualised, (Hadman et al., 1995). It has been suggested that insufficient starting 

material may be a factor in the relatively poor reproducibility seen in differential 

display. Even subtle differences in starling material results in a decrease in a transcript 

which can lead to a reproducible loss of a corresponding fragment in a fingerprint, so it 

will appear as a errant down regulation even in duplicates (Matz and Lukyanov, 1998). 

In order to reduce false positives caused by slight fluctuations in starting material 

McClelland et al., (1995) suggested that fingerprints of at least two different 

concentrations of total RNA that differ by two fold are run in parallel to determine 

which bands are not reproducible. Making sure that there is enough starting material is 

a simpler solution which has also been suggested (Matz and Lukyanov, 1998). One 

study suggested when using an induction system, duplicate PCR products should be 

displayed (Sompayrac et al., 1995). They also suggested displaying products over a 

time course of induction. This approach reduced the overall number of artifactual PCR 

or RT results. When possible they used cytoplasmic rather than total RNA to eliminate 

false positives due to nuclear RNA that is not transported to the cytoplasm (Sompayrac 

et al., 1995).
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Many of the DDRT-PCR products that appear as doublets and triplets (as is the case for 

B195), may represent two strands of the same fragment and molecules with and with 

out an additional A known to be added during PCR by Taq polymerase at the 3 1 end. 

This means that the true number of genes present are lower which may lead to false 

positives, as one transcript may have an additional “A” added and the corresponding 

gene in the next tube may not, thus appearing as a differentially expressed band. In 

order to avoid the complexity of the patterns on denaturing polyacrylamide gels caused 

by several bands derived from one DNA species, one study suggested electrophoresis 

through nondenaturing gels thus reducing their visual complexity and decreasing the 

probability of false positives (Bauer et al, 1993).

Five of the six potentially differentially expressed bands identified in this study 

appeared to be up- or downregulated coincident with EBNA2 expression at this stage of 

the experiment, this was not surprising as EBNA2 has been shown to transactivate both 

viral and cellular gene expression (see section 1.5.2). EBNA2 transactivates gene 

expression by binding DNA through interaction with RBP-Jk which is a downstream 

target gene of the cellular receptor Notch (Fortini and Artavanis-Tsakonas, 1994). 

Interaction with Notch converts the repressor RBP-Jk into an activator that can then 

interact with EBNA2 (Waltzer et al, 1995). The EBV latent genes EBNA3A, 3B and 

3C have been shown to compete with EBNA2 for RBP-Jk which result inhibition of the 

trancriptional activation of EBNA2 promoters (Le Roux et al, 1994). EBNA2 has been 

shown to downregulate IgM and c-myc expression in BL cells but upregulate c-myc 

expression in LCLs. Thus it is clear that EBNA2 can both act as a transcriptional 

activator and a repressor.

Many of the problems of differential display have been addressed in the battery of 

modifications and improvements which have been published since the original protocol 

in 1992 (see section 5.4). When examining differential gene expression today one can 

make a much more informed decision, which would result in choosing a differential 

display method that is suitable for the system to which it is applied. The use of 

nondenaturing gels combined with the amplification of different RNA concentrations 

might therefore have reduced the number of false positives in this study. A  systematic
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approach (see section 5.4) to DD would reduce the complexity of bands as each mRNA 

would technically be represented by one cDNA as opposed to several in classical DD. 

A  fluorescent DD approach which could be automated as described by Shohan and 

colleagues would both reduce the potential hazard to the user and ease identification of 

differentially expressed genes (Shohan et al., 1996). The use of a GAPDH probe as a 

control for RNA loading, as opposed to visual estimation of loading, would be advised 

as this would provide a much more stringent method of control which can be quantified 

by densitometry thus allowing exact normalisation of banding patterns obtained. In this 

study the use of GAPDH or P-actin on northern blots would have helped, however, 

significant modulation of gene expression in the cases identified by DDPCR can still be 

ruled out.

Further developments in gene expression analysis such as Serial analysis of gene 

expression (SAGE), expressed sequence tags (ESTs), representational difference 

analysis (RDA), DNA microarrays and advances in subtractive hybridisation, are 

providing new alternatives for identifying genes which are differentially regulated. 

Expressed sequence tags (ESTs), are generated by large scale sequencing of randomly 

chosen cDNAs, this provides an individual fingerprint of the expression status of an 

analysed tissue or cell (Kozian and Kirchbaum, 1999). Differential gene expression can 

be identified by comparing the databases of EST of a given organ or cell type with 

sequence information from a different origin (Vasmatzis et al., 1998). This method is 

not suitable for all laboratories however, as it requires large scale sequencing facilities. 

Serial analysis of gene expression (SAGE) was described by Velculescu et al., in 1995. 

SAGE is another sequence-based approach to the identification of differentially 

expressed genes. Sequence tags are generated by the reverse transcription of mRNA 

using a biotinylated oligo (dT) primer. The cDNA is then digested with a frequently 

cutting restriction enzyme and then selected by binding to streptavidin coated beads. 

The cDNA is then split into two samples each of which are ligated to a primer (A ' or 

B 1) containing a restriction site. The cDNA is digested using the appropriate restriction 

enzyme and the resulting DNA fragments are ligated, the resulting ‘digitags’ are 

amplified by PCR using primers A 1 and B 1. Following PCR the primer sites A and B 

are removed and the sticky ends formed allow the DNA to form concatemers, which are
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subsequently cloned. The structure of the concatamer has a typical pattern: between 

each anchoring site a digitag contains the sequence information of two independent 

cDNA tags (Kozian and Kirchbaum, 1999). The frequency of each tag in the cloned 

multimer directly reflects transcript abundance. In addition the short tags are long 

enough to uniquely identify the corresponding transcript in database searches. Based on 

the sequence information, comparative computational analysis for the presence and 

frequency of transcripts can be performed. When using an automated sequencer and 

computational support, SAGE is a powerful tool that allows rapid expression profiling 

of genes that are deposited in a gene bank. However this in itself is the greatest 

drawback of the procedure as only tags which are deposited in gene banks can be used 

for gene identification (Kozian and Kirchbaum, 1999). A further draw back of SAGE is 

the large amount of RNA required (2.5-5.0 [xg of mRNA). Recently a modification of 

SAGE analysis called microSAGE has been described which enables SAGE to be 

carried out on very small quantities of RNA (500-5000 times less mRNA). In the 

modified protocol, all steps from RNA isolation to tag release are performed in a single 

tube in which the RNA, and later the cDNA, remain immobilised to the wall of the tube 

by means of steptavidin-biotin binding. This eliminates many of the steps which may 

lead to the loss of material. Furthermore, total RNA is used as opposed to poly(A) and 

thus the mRNA isolation step is eliminated. Also less PCR cycles are performed, after 

the PCR step the protocol is essentially the same as SAGE (Datson et al., 1999).

Representational difference analysis was originally described as a method for the 

identification of particular differences between two complex genomes (Lisitsyn et al.,

1993). It has since been adapted to analyse differential gene expression by combining 

subtractive hybridization and PCR (Hubank and Schatz, 1994). In the first step, mRNA 

derived from two different populations, the tester (the population in which differential 

gene expression is expected to occur) and the driver, is reverse transcribed. The cDNA  

is then digested with a frequently cutting restriction enzyme and linkers are ligated to 

both ends. Following a PCR step the linkers of the tester and driver are digested and a 

new linker is ligated to the end of the tester cDNA. Tester and driver are allowed to 

hybridise, followed by PCR which exponentially amplifies only homoduplexes 

generated by the tester cDNA, via the priming site on both ends of the double-stranded
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cDNA. The main advantage of RDA is the specific amplification of fragments 

exclusively present in one cDNA pool, owing to an enrichment of rarely expressed 

tester sequence (Kozian and Kirchbaum, 1999).

A new approach to the study of gene expression has been the development of DNA  

microarrays. Current cDNA microarrays are systematically gridded at high density. 

They are generated by using cDNAs, PCR products, cloned DNA or synthetic 

oligonucleotides which are linked to the surface of nylon filters glass slides or silicone 

chips (Schena, et al, 1995). Differences in gene expression are determined by applying 

a labelled cDNA or oligomer to the microarray. If different fluorescent labels are used 

then two probes can be applied simultaneously and analysed at different wavelengths. 

The expression of up to 10,000 genes or more can be analysed on a single chip (Chee et 

al, 1996). As hybridisation can be carried out in small volumes this may allow the 

detection of rare transcripts in probes of high sequence complexity. It should be 

emphasized that although these hybridization-based approaches seem likely to become 

the method of choice for large scale analysis of gene expression in humans, they cannot 

be readily applied to other organisms as complete cDNA sequences of other organisms 

are not available (Soares, 1997). Furthermore, this method cannot be used to identify 

unknown genes that are differentially regulated.

The combination of subtractive hybridisation (SH) and differential display would in 

theory result in a powerful strategy for cloning up- and down-regulated genes. A  

combination of these techniques have been used to examine altered gene expression in 

rat liver after 70% hepatacytomy, however the resulting pattern of gene expression did 

not show significant simplification of banding pattern (Hakvoort et al., 1994). A  

reciprocal subtractive differential RNA display (RSDD) has been reported which again 

combines SH and DD. In this case DD was performed directly with reciprocally 

subtracted cDNA libraries that had not been subjected to PCR. Three single anchored 

oligo (dT) 3 1 primers were used for subsequent amplification prior to display. 

Reamplified cDNA identified using RSDD were analysed using reverse northern blots. 

RSDD resulted in a clear delineation of differentially expressed amplified bands using a 

reduced number of primers. Also as the SH round eliminates abundant cDNAs present
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in both populations this technique is more sensitive to detecting rare transcripts which 

may be differentially expressed as they will no longer be masked (Kang et al., 1998). 

The requirement for small quantities of RNA has always been cited as an advantage of 

DD and the need for large amounts of mRNA for SH has always been quoted as a 

disadvantage. This no longer appears to be so with a report by Ghosh (1996) describing 

a novel ligation mediated-PCR based strategy for construction of subtraction libraries 

from less than 0.5 |ig of mRNA as opposed to 10 (ig as previously required (Ghosh,

1996). Therefore SH is more suitable for combination with DD. A  further 

advancement of SH, suppression subtractive hybridisation (SSH), has also been recently 

described which is based on a technology similar to RDA but with modification to 

normalise for mRNA abundance. A report by Yang et al., (1999), proposes the 

combination of SSH and cDNA microarray for identification of differentially expressed 

genes (Yang et al., 1999).

In the past few years highly sophisticated tools have been developed for the analysis of 

differential gene expression. Each of these techniques has a number of unique 

advantages, such as simplicity (DD) or range (SAGE) of analysis. Conversely there are 

also limitations including the unidirectional analysis of RDA, the high expense of DNA  

microarrays or the analysis only of known genes with SAGE. Differential display 

provides a fast and technically simple method for the identification of differentially 

expressed mRNAs and has become one of the most widely used methods for the 

analysis of gene expression. Sequences-based approaches such as SAGE or 

oligonucleotide arrays are excellent tools for high-throughput screening of expression 

profiles, but once differentially expressed genes are identified, the corresponding cDNA  

must be cloned. The choice of gene expression analysis technology used by a particular 

research group will depend on a number of factors including the equipment and the cost 

and the needs of a particular laboratory. Thus there is no universal superior method of 

gene analysis. However, it is highly desirable to have an ideal tool, which would allow 

the unambiguous identification of differentially expressed genes in a simple and parallel 

manner and be suited to the detection of low-abundance mRNA species in a single 

experiment. Thus the evolution of gene expression analysis is set to continue.
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CHAPTER 6 

FINAL SUMMARY
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F in a l  s u m m a r y

The ensemble of the work presented in chapters 3 and 4 may be summarised as follows:

• CD44 protein or transcript was not detected in the type-I BL cell lines Mutu I, Rael 

BL, Kem BL, BL41, BL74.

• The drift to a type-III phenotype correlated with a strong up-regulation of CD44 

expression at the cell surface.

• Upregulation was seen to be due to de novo transcription of the CD44 gene.

• CD44 was not detected in the Mutu III LMP1- clone, thus providing evidence of a 

direct role for LMP1 in CD44 expression.

• In an EBV negative BL cell line background neither EBNA2 nor LMP1 alone were 

sufficient to up-regulate CD44 expression.

• The use of mAbs by flow cytometry and western blotting yielded highly varied 

results indicating that mAbs alone were not sufficient to provide a definitive answer 

as to the presence or absence of CD44 standard/splice variants.

A  novel set of CD44-exon specific probes were designed and used to examine CD44

variant exon splicing in EBV-infected cells by RPA. This assay was established by

applying the CD44 exon-specific probes to the colon carcinoma cell line HT29.

• All CD44 variant exons were detected in HT29, with mRNAs containing the 5 1 

standard exons and the variant exons v8-10 predominating. Transcripts encoding 

the CD44 exons v8-10C3 1, v7-10C3 ', v6-10C3 1 were also seen to occur in HT29. 

CD44v5-10C31 mRNA was also detected but these species may contain additional 

5 1 variant exons.

• The 3 1 standard exons appear to be always spliced to vlO.

• Towards the 5 1 end of the CD44 mRNA many combinations of variants were also 

observed with the predominant signal being obtained from the C5 1 standard exons.

• When used to examine the pattern of CD44 exon splicing in a number of EBV 

positive type-I and type-III BL and LCL cell lines it was observed that type-I cell
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lines do not express CD44. However, CD44 was detected in type-III BL cell lines 

and LCLs.

• A similar but very complex pattern of CD44 variant exon expression was detected in 

both of these cell types of. The variant exons v8 , v9 and vlO are most often used, 

several combinations of which were detected. Transcripts containing vlO were not 

always seen to be spliced to the C 3' exons indicating the usage of a alternative 3' 

splice acceptor site downstream of vlO.

In chapter 5 the effect of the EBV latent proteins EBNA1 and EBNA2 on cellular gene 

expression was examined by Differential display PCR. DD provides a fast and 

technically simple method for the identification of differentially expressed mRNAs and 

has become one of the most widely used methods for the analysis of gene expression. 

One of the original DDPCR methods was employed in this study, one which has been 

subsequently shown to be prone to false positives as was borne out by the results 

obtained in chapter 5.
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APPENDIX A



SO LU TIO N S F O R  DN A M AN IPU LATIO N  

TE buffer

10 mM Tris

Im M  EDTA pH 8.0

Solutions for mini-preparation o f plasmid DNA 

Solution I

50 mM Glucose

25 mM Tris.Cl (pH 8.0)

10 mM EDTA (pH 8.0)

Solution II (Prepared fresh) 

0.2 N NaOH

1 % (w/v) SDS

Solution III

60 ml 5 M potassium acetate

11.5 ml Glacial acetic acid

28.5 ml Distilled water

The resulting solution is 3M with respect to potassium and 5M with respect to acetate.

DNAse-free RNAse

RNAse A  (1 mg/ml) in sterile water.

100°C 30 min. Cool slowly, store -20°C

Solutions for M axipreparations o f DN A - Qiagen Buffers 

Buffer P I  (Resuspension buffer)

50 mM Tris CL, pH 8.0

10 mM EDTA

100 jAg RNase A

Store at 4°C after the addition of RNase A.

b



Buffer P2 (Lysis buffer)

200 mM Sodium Hydroxide

1% (w/v) SDS

Prepared fresh and stored at room temperature.

Buffer P3 Neutralization buffer)

3.0 M Potassium acetate pH 5.5 

Stored at 4°C.

Buffer Q B T  (Equilibriation buffer)

750 mM NaCL

50 mM MOPS pH 7.0

15% (v/v) Isopropanol.

0.15% (v/v) Triton X®-100

Stored at room temperature.

Buffer Q C  (Wash buffer)

1.0 M NaCL

50 mM MOPS pH 7.0

15% (v/v) Isopropanol

Stored at room temperature.

Buffer Q F  (Elution buffer)

1.25 M NaCL

50 mM Tris CL, pH 8.5

15% (v/v) Isopropanol

Stored at room temperature.

50% (v/v) Glycerol

25 ml Distilled H20

25 ml Glycerol



Autoclaved and stored at room temperature.

0.5 M  E D T A

186.1 g EDTA

800 ml Distilled water

6  g NaOH pellets

pH to 8.0 with 5 M NaOH 

Volume was adjusted to 1 L with water

50 X T A E

242 g Tris

57.1 ml Acetic acid.

100 ml 0.5 M EDTA pH 8.0

Adjusted to 1L with water

5 X T B E

54 g Tris

27.5 g Boric acid

20 ml 0.5 M EDTA pH 8.0

Adjusted to 1L with water.

Ethidium bromide

0 .1  g/ 1 0  ml water ( 1 0  mg/ml)

Stored in dark at room temperature.

Agarose gel loading dye

40% (w/v) sucrose

0.25% (w/v) bromophenol blue

d



B A C T E R IA L  G R O W TH  M ED IA 

L B  agar

10 g Tryptone

5 g Yeast extract

5 g NaCl

15 g Agar technical

Autoclaved and plates stored at 4°C.

L B  agar plus ampicillin

Ampicillin was added to a final concentration of 100 n-g/ml to LB agar (50 °C).

Plates were stored at 4 °C.

L B  broth (per L)

10 g Bacto-tryptone

5 g Yeast extract

5 g NaCl

Autoclaved and stored at 4 °C.

L B  broth plus ampicillin

Ampicillin was added to a final concentration of 100 [ig/ml to LB broth and stored at 4

°C.

SO B medium (per L)

20 g Tryptone

5 g Yeast extract

0.5 g NaCl

10 ml KC1 (250 mM)

Adjusted pH to 7.0 with 5 M NaOH 

Autoclaved, cooled to ~5°C and added : 

10 ml 1 M MgCl2 

Stored at 4 °C.



SOC medium (per L)

1L SOB

7.5 ml 50% glucose (filter sterilised)

Stored at 4 °C.

IP T G  stock solution (100 mM)

24 mg IPTG per ml of sterile H20

Filter sterilised and kept on ice until ready to use.

X-G al stock solution (5%(w/v))

This solution was prepared fresh for each use

50 mg of X-Gal per ml of N,N’ dimethyl-formamide in a sterile tube.

Protected from light and stored on ice until ready to use.

Am picillin stock solution (50 mg/ml)

50 mg of ampicillin per ml of sterile HzO 

Filter sterilised and stored at -20 °C.

L B  plates with antibiotics and IPTG/X-Gal.

To 1L of autoclaved LB agar (cooled to 50 °C) the following were added 

0.5 [iM IPTG (5ml IPTG lOOmM stock solution)

80 [ig/ml X-Gal (1.6 ml 5% (w/v) X-Gal stock solution)

50 |_ig/ml Ampicillin (1ml of 50mg/ml solution)

Plates were stored at 4 °C protected from light.

C E L L  C U LTU R E  M EDIA/SOLUTIONS 

Supplemented RPM I (200 ml)

176 ml RPMI 1640

20 ml Foetal calf Serum (Decomplemented - 50°C for 30 min)

2 ml 200 mM L-glutamine

2 ml Penicillin/Streptomycin (1000 U/ml-1000 [xg/ml)

f



Supplemented M cC O Y ’ S 5A (200 ml)

178 ml MACOY’S 5A with L-glutamine

20 ml Foetal calf Serum (Decomplemented; 50°C for 30 min)

2 ml Penicillin/Streptomycin (1000 U/ml-1000 ug/ml)

Supplemented D M EM  High Glucose

178 ml DMEM high glucose with L-glutamine

20 ml Foetal calf Serum (Decomplemented; 50°C for 30 min)

2 ml Penicillin/Streptomycin (1000 U/ml-1000 |xg/ml)

10X Phosphate Buffered Saline (PBS)

14.24 g Na2HP04.2H20  (8  mM)

2.04 g KH2P 0 4(1.5mM )

80.0 g NaCL (137 mM)

2.0 g KCL (2.7 mM) 

pH 7.5 and make up to 1 litre.

Diluted 1 in 10 in sterile distilled water and used at a IX  working concentration.

Trypsin E D T A  IX  (0.25%(v/v))

2.5 ml 10X trypsin (2.5%(v/v))

0.5 ml 1% (w/v) EDTA

22 ml IX  PBS

The solution was mixed well, aliquoted and stored at -20°C.

Thiol supplements. The following were added to 200 ml o f supplemented media:

200 (1,1 a-Thiolglycerol

2 ml Sodium pyruvate

2 ml HEPES
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Bathocuproine disulfonic acid (BCS -10  mM  stock solution )

36.4 mg BCS

10 ml IX PBS

Dissolved by vortexing, filter sterilised using a 0.2 micron filter, aliquoted and stored at 

-20 °C.

a-Thiolglycerol

A  stock solution of 50 mM in PBS containing 20 |xM BCS was prepared.

20 [il 10 mM BCS

10 ml IX PBS

43.3 ¡ill00%  a-thiolglycerol

Filter sterilised using a 0.2 micron filter, aliquoted and stored at -20 °C.

Sodium pyruvate

100 mM stock solution in IX  PBS (Gibco BRL). Stored at 4°C.

HEPES

1 M stock solution pH7.5 (Gibco BRL). Stored at room temperature.

Microphenolic acid/Xanthine supplements

200 ml Supplemented RPMI

0.5 |Ag/ml Microphenolic acid

50 ug/ml Xanthine

Microphenolic acid stock solution 2.5 mg/mL

2.5 mg Microphenolic acid

1 ml Sterile d.HzO

Two micro litres per ml of media was added giving a final concentration of 0.5 [ig/ml.

Xanthine stock solution o f 25 mg/mL

25 mg Xanthine

h



1 ml Sterile d.H20

Twenty micro litres per ml of media was added to give a final concentration of 50 

(xg/ml.

Geneticin G418 (stock solution 50 mg/ml) for tetracycline inducible cell lines

0.1 g Geneticin

2 ml RPMI1640

Filter sterilised using a 0.2 micron filter, aliquoted and stored at -20 °C. 20 ¡xl of the 

stock solution was added per ml of media to give a final concentration of 1 0 0 0  ¡ng/ml. 

Hygromycin (stock solution 50 mg/ml supplied)

Ten micro litres of the stock solution was added per ml of media to give a final 

concentration of 500 ¡o,g per ml. Stored at 4 °C.

Tetracycline (stock solution 5 mg/ml)

5 mg Tetracycline

1 ml 100% Ethanol

Stored at -20 °C, 1 ¡xl of tetracycline was added to 5 ml of media to give a final 

concentration of 1  [ig per ml.

Geneticin G418 (stock solution 600 mg/ml) For transfected epithelial cell lines 

C33A Neo and L M P 1

0.6 g Geneticin

1 ml 1 M Hepes pH 7.5

Filter sterilised using a 0.2 micron filter, aliquoted and stored at -20 °C. One |il of the 

stock solution was added per ml of media to give a final concentration of 600 ¡u,g per ml.

Flow Cytometry-W ash buffer

100 ml 10X PBS

Sprinkle of BSA

0.01% (w/v) Na Azide (O.lg/lOOOml)

Made up to 1L with distilled water and stored at 4°C.



2%  (w/v) Paraformaldehyde

2 g Paraformaldehyde

100 ml IX PBS

Heated to 65HC, allowed to cool, filtered, and store at 4°C.

SO LU TIO N S FO R  PRO TEIN ISO LATIO N  

Suspension buffer

0.1 M NaCL

0.01 M Tris CL (pH 7.6)

0.001 M EDTA (pH 8.0)

l^ig/ml Apoprotinin

100[xg/ml PMSF

Stored at 4 °C.

2X SDS gel loading buffer

100 mM Tris CL

200 mM DTT

4% (w/v) SDS

0.2% (w/v) Bromophenol blue

20% (v/v) Glycerol

Two X loading buffer was prepared with out DTT and stored at room temperature. DTT 

was added just prior to use from a 1M stock

Protease Inhibitors

2 mg/ml Leupeptin

0.1 mM PMSF (phenylmethylsulfonyl flouride)

1%  Nonidet p40 (Np40)

100 ml PBS

0.038 g EGTA

946 [.U Nonidet p40



Stored at 4 °C.

B SA  Stock Solution

50 mg B SA

This solution was made up to 50 ml with a 1:1 mixture of PBS and 1% (v/v)Np40. 

SOLUTIONS FOR SDS PAGE/WESTERN BLOTTING

10% (w/v) SDS

10% (w/v) Ammonium persulphate (APS)

Acrylagel

Bis-acrylagel

TEMED

1 M Dithiothreitol

10X Tris glycine running buffer (500 ml) 

15.138 g Tris

71.125 g Glycine

5.0 g SDS

Made up to 500 ml with distilled water. 

Destain

100 ml Acetic acid

400 ml Methanol

500 ml Distilled water

Coomassie blue stain

1 g Coomassie blue R

200 ml Destain

1M Tris.Cl pH 6 .8  

Tris.Cl pH 8 .81.5 M



Transfer Buffer (10X stock solution)

30.3g Tris

144.2g Glycine

Adjusted to pH 8.3, made up to 1 litre with distilled water, stored at room temperature.

IX  working Soluiton

100 ml 10X Stock solution

200 ml Methanol

700 ml Distilled H20

Stored at 4°C. Methanol was not used in the transfer buffer when protein of 120Kda or 

more were transfered.

TBS (IX)

6.1 g Tris

8 .8  g NaCl

Made up to 1 L with distilled water and adjusted to pH 7.5 with HC1.

Autoclaved and stored at room temperature.

T B ST  (0.1% , v/v)

1 L TBS (as above)

1 ml Tween 20

Blotto

50 ml IX  TBS (as above)

25 [i\ 0.05% (v/v)T ween 20 (0.5 ml/L)

2 g 5% (w/v) non-fat dry milk 50 g/L (Marvel)

0.5g NaN3
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Sodium azide (5%) (w/v)

50 mg NaN3

950 fxl Distilled water

R E A G E N TS F O R  SEQU EN CIN G

Six percent denaturing polyacrylamide gel

Six percent denaturing polyacrylamide gel was prepared for sequence analysis. The 

following formula was employed to determine the amount of acrylamide and bis- 

acrylamide required:

Va = volume of acrylamide

Vb = volume of bis-acrylamide 

Vt = total volume of gel mix 150 ml 

C = % crosslinking 5.2 %

A  = % gel 6/8  %

Va = Avt Vb = ACVt

30 200

Va = 6*150/30 = 30 ml Vb = 6*5.2*150/ = 24 ml

6 % Denaturing P A G

63 g Urea

30 ml Acrylamide

24 ml Bisacrylamide

15 ml 10X TBE

Made up to 150 ml with UP H20

Six hundred and fifty micro litres of 10% (w/v) APS and 150 (itl TEMED were added, 

and mixed briefly, directly before pouring.
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10X TBE (per 500 ml)

54 g Tris base

27.5 g Boric acid

20 ml 0.5 M EDTA (pH 8.0)

One X  concentration was used for polyacrylamide gel preparation.

10% (w/v)Ammonium persulphate

0.1 g APS/ml ultra pure H20

Developer (5 L)

1.50 L H20

1.25 L Developer

2.25 L HzO 

Stirred for 2 min

Fixer (5.125 L)

3.625 L HzO

1.250 L A  fixer

0.250 L B fixer

Stirred for 2 min

REAGENTS F O R  RNA ANALYSIS 

RNA sam ple buffer

50 % (v/v) Deionized formamide

8.3 % (v/v) Formaldehyde

0.027 M MOPS pH 7.0

6.7 mM Sodium acetate

RNA loading buffer (containing ethidium )

50% (v/v) High grade glycerol

1 mM EDTA (pH 8.0)
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0.4% (w/v) Bromophenol blue

0.1 ng/ml Ethidium bromide

Aliquoted and stored at -20°C.

5X M O PS Buffer (Formaldehyde gel running buffer)

0.1 M MOPS (pH 7.0)

40mM Sodium Acetate 

5 mM EDTA (pH 8.0)

20.6g of 3 -(JV-morpholino)propanesulfonic acid (MOPS) was dissolved in 800 ml of 

DEPC treated 50 mM sodium acetate. The pH of the solution was adjusted to 7.0 using 

2 M NaOH. 10 ml of DEPC-treated 0.5 M EDTA (pH 8.0) was added and the volume 

of the solution was adjusted to 1L using DEPC-treated H20 . The 5X solution was filter 

sterilised through 0.2 micron filters prior to use.

Formaldehyde gel

I part Formaldehyde

3.5 parts agarose in DEPC H20

1.1 parts 5X MOPS buffer

0.68g Agarose

35ml DEPC H20

The agarose solution was boiled until fully dissolved and allowed to cool to 60 °C. The 

following were then added.

II  ml 5X MOPS buffer

10 ml Formaldehyde

56 ml Final volume

The gel was cast in a fume hood and allowed to set for approximately 45 min. The gel 

was electrophoresed in IX  formaldehyde gel running buffer.
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R N A  loading buffer

50%(v/v) High grade glycerol 

1 mM EDTA (pH 8.0)

0.25% (w/v) Bromophenol blue

0.25% (w/v) Xylene cyanol FT7

DEPC treated overnight, autoclaved and stored at room temperature.

20XSSC

175.3g NaCL

88.2g NaCitrate

pH to 7.0 using a few drops of 10M NaOH and made up to 1 litre using up H20 . DEPC 

treated and autoclaved. Stored at room temperature.

Hybridization Buffer A

50 % (v/v) Deionized formamide 

6X SSC

1% (w/v) SDS

0.1% (v/v) Tween 20

lOO^ig/ml tRNA

Prepared fresh prior to use stored at room temperature.
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