
i

Assisting the Hypertext Authoring Process with

Topology Metrics and Information Retrieval

Gavin Gollogley

1

M.Sc. 1997

Assisting the Hypertext Authoring Process with Topology

Metrics and Information Retrieval

By

Gavin Gollogley B.Sc.

School of Computer Applications,

Dublin City University,

Glasnevin,

Dublin 9.

Supervisor: Prof. Alan F. Smeaton

A dissertation submitted for the degree of Master of

Science

11

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Masters of Science in Computer

Applications, is entirely my own work and has not been taken from the work of others

save to the extent that such work has been cited and acknowledged within the text of

my work

Signed

111

Acknowledgements

Many thanks to my research supervisor Prof Alan Smeaton for his advice and

direction in the undertaking of this thesis Thanks also to Forbairt for providing the

funding which enabled me to carry out this research

Thanks to my parents who have encouraged and supported me for as long as I can

remember

I would like to thank Fran, Ciaran, David, Michelle and in particular Dr Fergus

Kelledy for their assistance Special thanks to Fiona and Aine for forcefully steering me

in the right direction

Finally, I’d like to thank all my friends inside and outside DCU for providing

irrefutable proof that there is more to life than work alone (and thanks for the

postcards') Thanks in particularly to those people who acted as ‘guinea pigs’ for the

results part of my thesis, namely Darragh, Deirdre, Donal, Gary, Gerry, Martina, Noel,

and Peter

I

IV

ABSTRACT

As more and more documents become available in electronic format, the use of

hypertext systems is becoming more common as a way to organise information

However as the size of a hypertext database grows, the ‘lost in hyperspace’ problem

may limit efficient and meaningful usage of hypertext systems

In order to increase local coherence at net level, authors should limit 'the fragmentation

characteristics of hypertext’ These characteristics seem to be endemic to hyper­

documents and result from the segmentation of information into disjointed nodes

Fragmentation may result in a lack of interpretative context and thus lead to the

impression that the hyper-document is an aggregation of loosely linked pieces of

information rather then a coherent whole In an attempt to understand a new node,

readers try to extract information and relate it in context to other nodes that they have

viewed In this thesis we describe an application which incorporates an apprentice link

editor to suggest candidate information/hypertext links for the hypertext author to

validate These ‘suggestions’ use node-to-node comparison and metrics to present the

author with the most appropriate choices in adding a new node to the hypertext they

are authoring

Although this project is intended to provide a hypertext author with the tools needed

to enhance the construction of a large hypertext, the assumption of trusting the author,

and the notion that the best quality control tool is a skilled author is never forgotten

Table of Contents

1 1 Introduction 1

1 2 Information structure 2

1 3 Hypertext 4

13 1 Hypertext History. . 6

13 2 Hypertext Markup Language (HTML) 10

1 4 Hypertext Systems 12

14 1 Hyper-G . . 12

14 2 Hyperties . 13

14 3 NoteCards 14

14 4 Microsoft HtmlHelp System 14

1 5 Hypertext Models 15

15 1 The Dexter Model 16

1 5 2 The gIBIS Model . 17

1 5 3 The Trellis Model 18

1 6 Summary 20

C h a p t e r 2 - R e l a t e d R e s e a r c h . 2 1
2 1 Introduction 21

2 2 The Problems with Hypertext 21

2 2 1 Disorientation 21

2 2 2 Authoring Costs 25

2 2 3 Jumping into Hyperspace 26

2 2 4 Cognitive Overload 26

2 2 5 Integration 28

2 2 7 Text to Hypertext Conversion 30

2 2 8 To Embed or not to Embed 31

2 3 Hypertext Authoring Tools 32

2 3 1 Netscape Navigator Gold 3 0 33

2 3 2 Microsoft FrontPage 34

2 3 3 Microcosm 35

Chapter 1 - Introduction... 1

V I

2 4 Methodologies For Structural Analysis 37

2 41 Link Structures • 37

2 4 2 Hierarchies 40

2 4 3 Metrics . 43

2 5 Summary 46

C h a p t e r 3 - P r e p a r a t i o n o f D a t a . 4 7
3 1 Introduction 47

3 2 Web versus other Hypertext Systems 47

3 3 UNIX versus PC . . 49

3 4 Dictionary of Computing . . 49

3 5 Conversion to Standalone 54

3 6 Definition of Problem 57

3 7 Summary 61

C h a p t e r 4 - S y s t e m D e s i g n . 6 2
4 1 Introduction . 62

4 2 Writing a New Node 63

4 2 1 Frames . . 67

4 3 Why Perl ? 68

4 4 Node to Node Comparisons 68

4 4 1 WordNet 68

4 5 Indexing of Documents 71

4 5 1 Indexing New Documents 74

4 6 The Search Engine 75

4 6 1 Implementing the Search engine 77

4 6 2 Interface to Node Ranking 80

4 7 The Topology Maintenance Module . 81

4 8 Adding Link Anchors 84

4 9 Summary 85

C h a p t e r 5 - R e s u l t s . 8 7
5.1 Introduction...87

5 2 Evaluation M ethod. . 87

5 3 Nodes Viewed . . 89

Vll

5 3 1 Nodes Viewed versus Links Created 92

5 3 2 Links from New Nodes.. •• .. 94

5 3 3 Linking to the new node . . 98

5 4 Compactness . 100

5 4 1 Link ratios effecting compactness . 102

5 5 Other Statistics 105

5 6 Summary . . 106

Chapter 6 - Conclusions.. 107

6 1 Introduction 107

6 2 Future Work 110

References... I l l

Appendix A - User Node Content...116

Appendix B - Experiment Results...125

Vili

Chapter 1 - Introduction

‘Authoring involves identifying links within information and structuring them to

enhance accessibility Developers of large hypermedia systems, or systems likely to

require maintenance over a period of time, must select a structured approach to

authoring or risk greatly inflated development cost, a less than desired functionality,

and difficulties in use and maintenance’ [Gmi95]

The information revolution is upon us [Gim95] Due to the technology increases in the

areas of databases, computer hardware and communications networks, our ability to

quickly and easily access information has unproved However there is now an

overgrowth of information People today are faced with so much information in so

many different media that the time required to absorb and analyse is becoming

increasingly prohibitive We also find it difficult to identify areas of information that

are most relevant to our needs [Gmi95] Many techniques have been tried in order to

sift through this sea of information Most however have looked into the possibilities of

methods to search and retrieve information instead of looking at the organisation of

this information Improving the organisation of information makes information easier

to locate and assess its relevance and put it to use

Multimedia has now become a buzz word of the late 20th century The ability to display

media such as sound, picture and video means that knowledge and information can be

presented in a manner that increases understanding and facilitates education

Hypermedia and hypertext lets us orgamse information in accordance with the ways in

which we naturally access and manipulate it A hypertext is a collection of documents

that contain cross references or links to each other Hypermedia is an extension of

hypertext to allow graphics, sound, video, etc Both should present information in such

a way that shows conceptual associations between information chunks which reveal

the structure and interrelationships within the information The form requires

manageable chunks that can be joined by links The link structure is important, but not

1.1 Introduction

1

more so than the composition of the disparate fragments Each time the user stops

moving through the medium, the fragment he or she confronts must be able to stand

alone, to make sense on its own, even though it offers multiple doorways to other

places If the chunk does not give the impression that it stands alone, the users will feel

as if something is missing, as if the information is inadequate, incomplete [McAd93]

Both hypermedia and hypertext are handled similarly in design and refer to organised

sets of information linked by semantic relationships and as such are viewed

indifferently for the purposes of this thesis

Authoring is the process of creating and storing information in a fashion appropriate to

its intended uses This often involves either transforming existing information sources

or creating new information to populate a hypermedia information repository [Gmi95]

Sometimes the mistake is made that authoring is the same as publishing This is not so

as publishing involves issues like layout and usability A lot of hypertext tools claim to

be authoring tools but are little more then publishing tools e g HotDog Authorship

involves identifying structures for information that will support accessibility and

manipulation The author must adopt suitable methodologies for generating these

structures Two issues must be addressed in the construction of a hypermedia

application how to structure the information and what authoring approach to take

1.2 Information structure

An appropriate structures for a hypertext needs to be identified to maximise

accessibility to the information it has on offer These structures affect the authoring

process as it is through the authoring process that these structures are typically

generated The following factors affect the design of information structures

• information retrieval and accessibility

• information security

• mformation reuse and maintainability

• relationships between mformation sources

• provision of differing viewpoints on the mformation

2

Authors should try to make explicit the knowledge representations inherent within the

information In the construction of a hypertext, information is broken down into nodes

which should represent one concept and one concept only and should lose all

uselessness if broken down further [Gim95] These nodes must then be interlinked via

what are known as anchors This is the process of identifying anchor points within each

node that form the starting points for links to other nodes

Hypertexts can be classified under 3 different types of structure, linear, hierarchical and

network (see Figure 1 1)

• Printed material is usually presented in a linear manner This involves users having

to complete one topic before moving on to the next e g training material Using a

linear structure, information can be kept in a sequential manner It may be unwise

for the hypertext author to alter the original structuring of a linear document as it

could remove any sort of value from the text A linear structure can be found in

guided tours where information is presented in logical progression These could also

serve as useful teaching tools

• Hierarchical structure resembles that structure found in books - table of contents,

chapters, sections, paragraphs, etc Like a linear structure, it would be advisable for

the author to keep the structure that the paper version of the document was in In

this structure the root node is usually the starting point and the structure is made up

of hierarchical links (see Section 2 2 8 for more detail on the different types of links

available) Systems such as KMS (Knowledge Management System) use

hierarchical structure as the base structure [Aksc88]

• A network structure consists of relational or associative links These are semantic in

nature and are non sequential They link common or related information together

An example of this may be a node on hypertext with links to a node on the WWW

which in turn may link to information on setting up a web page This would suit

information in an encyclopaedia best The ability to browse information that is in

this particular structure, would be seen by many as the major advantage of

hypertext/hypermedia

3

The author would pick the structure needed depending on what sort of information is

being presented, what material will be included and how the information is to be

accessed 1 e table of contents, search, mdex or full text

 ► ► ► ►

Linear Structure

Network Structure

Figure 1.1 The 3 types of information structures

1 . 3 H y p e r t e x t

The hypertext approach to information management is to separate documents or other

information units into parts or fragments, where fragments are stored and managed in a

network of nodes, where each node of the network contains one or more fragments

and related nodes are connected through information links [Agos96] Before we go on

to give a brief history of hypertext, we must give definitions of some of the

terminology which is used in the construction and reading of hypertext The following

are the mam terms associated with hypertext

• Node A node contains any kind of digitised data that can be managed and

presented through a computer using its screen and any other output device. It can

4

be a fragment of text, a graph, a drawing, a sound byte, a video clip or any other

possible form of data or a combination of these [Agos96].

• Link: A link implements a logical connection between two related nodes; the origin

is the node from which the logical connection between the two fragments emanate;

the destination is where a connection between nodes ends. Two nodes that should

be read sequentially should be linked. Linking nodes offers the possibility of

creating multiple pathways throughout a hypertext [Agos96]. There are different

types of links, reference, relational and structural (see Section 2.2.8 for more detail

on the different types of links available). Links can also be unidirectional (a link

going from one node to another but no link back) or bi-directional (a links exist in

the reverse direction allowing inverse relationships).

• Anchors: The starting point for a link is known as an anchor point. By clicking on

an anchor, the link will be traversed and the user will be presented with the node

associated with that link. This process is known as navigating a hypertext. Anchors

can be embedded within the text of a node or outside the text.

• Path: An ordered set of nodes which represent a sequence in which a web can be

read. This path may represent the sequence of nodes the user actually read or the

sequence the author recommends the user to take [W3CR97].

• Web: A set of nodes interconnected by links. Usually refers to the set of all nodes

that are interconnected.

• Topology: The allowable connectivity between nodes, anchors and links e.g. a 1 to

1 or a 1 to many mapping. This displays the properties of a hypertext, the

connectivity of the structure due to the number of links and anchor placements.

• Typed Links: A typed link carries some semantic information, which effectively

increases its information content. Link types can express relationships between the

information described by 2 nodes:

A Is part of B / B includes A

A Made B / B is made by A

A Uses B / B is used by A

A refers to B / B is referred to by A [W3CR97].

Annotation: This is the linking of a new commentary node to an existing node via an

annotation. If users can annotate nodes, then they can immediately provide feedback if

5

the information is misleading, out of date or plainly wrong Thus the quality of the

information m the web can be improved [W3CR97]

1 . 3 . 1 H y p e r t e x t H i s t o r y

The idea of hypertext has been around since the 1930’s It may have been Ted Nelson

who ‘coined’ the term hypertext in 1965 but Vannevar Bush had conceived the idea in

the 1940’s His article was published in the Atlantic Monthly under the title of ‘As We

Might think’ [Bush45] He proposed a MEMEX device that was designed around the

concept of association, which would facilitate the large number of scientists who had

to be redeployed after World War II Information would be selected by association,

rather then conventional indexing, a means of sharing information and ensuring this

information was never lost He also came up with the notion of ‘trailblazers’,

individuals who identified links or trails between pieces of information and could store

them in the MEMEX device [Dunn93] This system was never built but proved to be

the foundation of hypertext

In the 1960’s Doug Engelbart worked on the AUGMENT project to build tools to

help humans and they invented the mouse, word processing and wmdows on VDU’s

As part of the project, Engelbart developed NLS (oN-Line System) which allowed his

researchers to store all their papers and reports m a shared library This system had

several hypertext features but was not designed to be a hypertext [Morr94] It was first

demonstrated at a conference in 1968 and up until recently, NLS was marketed as a

hypertext-like commercial product

In 1965 Nelson first used the term ‘hypertext’ He visualised a system called Xanadu

which would be a common access world depository of computer readable literature

and other media and in fact would incorporate everything that was ever written Not

surprisingly this never happened but a small, reduced version was released in 1990

[Nels80]

1967 saw the first real hypertext system being produced by Adries van Dam at Brown

University This system was known as HES (Hypertext Editing System) and

6

incorporated a text based user interface and also had linking and jumping from text to

text Van Dam later designed FRESS (File Retrieval and Editing System) [Donn95]

ZOG was the name of a well known hypertext system developed at Carnegie-Mellon in

the 1970’s It was a frame based text database with hierarchical links Each frame

contained a single screen of information and a menu in the form of link options

providing multi user access The commercial version of this is now known as KMS

(Knowledge Management System) [Donn95]

The Symbolics Document Examiner was a hypertext system whose subject matter was

the Symbolics LISP machine which is a workstation for LISP processing This

contained 8,000 pages of printed text Developed by Jan Walker it included 10,000

nodes and 23,000 links [Donn95] This was the first hypertext application to see real

world use

1986 saw the first hypertext system that was commercially available and could run on

personal computers This system was GUIDE from Office Workstations Limited

(OWL) and was developed by Peter Brown at Kent University

In 1987, Apple Computers decided to put a hypertext system called HyperCard on

every Apple machine Originally it was not meant as a hypertext system but as a rapid

prototyping tool and it contained a lot of hypertext features It combined a relational

database with the ability to integrate other media (sound and video) using the Mac’s

graphical interface HyperCard was given away virtually for free and this tremendous

marketing strategy caused a sudden increase in the levels of interest in hypertext and

brought about the first ACM Hypertext Conference in 1987 at the University of

Carolina Since then there have been 8 major conferences on Hypertext in total, with

the most recent conference, Hypertext 97 being held in Southampton m the UK

In 1989 an idea was proposed to create a user-friendly interface to the Internet, the

World Wide Web (WWW) At a basic level the Internet is a set of computer networks

interconnected with routers It is a three level hierarchy composed of backbone

networks (e g ARPAnet, NSFNet, MILNET), mid-level networks, and sub networks

7

These include commercial (com or co), umversity (ac or edu) and other research

networks (org, .net) and military (mil) networks and span many different physical

networks around the world with various protocols including the Internet Protocol

[Howe97] The Internet includes FTP (File Transfer Protocol), TELNET, e-mail,

Gopher, Archie and the World Wide Web

The WWW was developed at CERN in Geneva It is a distributed, heterogeneous,

hypermedia information system It is distributed because there are millions of Web

servers around the world providing access to web documents and heterogeneous

because it isn’t bound to any particular hardware and is accessible to any computer

with an Internet connection [Morr94] It was released in May 1991 and has since seen

phenomenal growth This meteoric rise is due to a number of factors including the fact

that all software needed to set up a Web Server or view Web documents using a Web

Browser is free Another of its major advantages is the fact that HTML (Hypertext

Markup Language, see Section 13 2) the mark-up language used in writing a Web

node is very simple to write and graphical display of information is easy to produce

Figures 1 2a and 1 2b show two surveys, one from 91-97, the second from 93-97 of

the number of hosts connected to the Internet, where a host computer is a computers

connected to the Internet

B a s ts

■.’si s is* « "5 » è "s? & "S- sJS JS ,5 J &"t-nrg. « 3 ^ ^

Figure 1.2a Host Count Graph (1991-1997) [Netw97]

Internet Domain Survey
Host Computers January 1997

20.000.000 -I
15.000.000 -

10.000.000 • 6,642 0̂0 <1— --»9,472,00 0
12,881,000

16,146,000

4,852,000
2,217,000

0
Jan-93 Jan-94 Jan-95 Jul-95 Jan-96 Jul-96 Jan-97

Figure 1.2b Host Count Graph (1993-1997) [Netw97]

• Netree's Internet Statistics (www netree.com/netbin/internetstats) (based on

Internet statistics estimates from Internet Business Centre) reports 102 0 million

people on the Internet, and 1 6 million WWW sites on the Internet, world-wide, 16

January 1997 ('on the Internet' means all persons with access to WWW, e-mail, ftp,

gopher, and Telnet services, and 'sites' means domains offering web pages.)

• International Data Corporation (IDC) (www ldcresearch com) reports 314 million

users of the WWW, world-wide, 31 October 1996

The WWW conforms to the HTTP (Hypertext Transport Protocol) which is

client/server HTTP servers provide Web clients with hyperlinks to nodes on the same

Web-Site or anywhere else on the WWW Resources available to WWW servers are

named using a method known as Uniform Resource Locator (URL) which can be used

to identify almost any object available on the Internet URLs require the protocol

necessary to obtain the information, the system where the information is stored and the

location of the information on that system e g

URL’s can also have other protocols apart form HTTP

• ftp://ftp funet.fl/pub/Lxnux
FTP, the File Transfer Protocol which allows a user on one computer to

transfer files to another over a TCP/IP network

• gopher.//gopher.utirc utoronto.ca
Gopher, a popular distributed document retrieval system (Gopher was largely

superseded by the WWW)

• news.news announce.newusers

http //www.compapp.dcu.xe/index.html

9

ftp://ftp
http://www.compapp.dcu.xe/index.html

News refers to the protocol USENET, A distributed bulletin board system

supported mainly by UNIX machines and the people who post and read articles

thereon

To look at the WWW and the way it is used for presenting and structuring information

on a variety of topics, it would be impossible not to explain what the underlying format

was for all Web documents, namely HTML This next sections gives an overview of

HTML and some examples of its tag elements structures

1.3.2 Hypertext Markup Language (HTML)

Hypertext Markup Language, or HTML for short, is a subset of the International

Standards Organisation (ISO) Standard Generalised Markup Language (SGML) which

is used for authoring and publishing large structured documents [Mich94] (see Chapter

2 Section 2 2 6 Standards) HTML provides formatting information such as codes for

the node title, headings, paragraphs and general document structure as well as allowing

the encoding of hypermedia anchors which contain embedded URL links [Donn95]

HTML also provides full hypermedia facilities like graphics, sound, moving picture and

animation Some examples of HTML tags are as follows

<HTML> </HTML> Delimits the HTML portion of a node

<TITLE> </TITLE> Delimits the title of the node

<H1> . </Hl> Delimits a font size which would appear as

 NAME

<HR>

the largest to the reader (H6) is the

smallest font size

Wraps a piece of text in a bold format

This defines a link to a URL with the

anchor defined after it until the terminating

Displays a graphic image found at this

URL address

Draws a horizontal line

10

An example of a tagged document and the way it looks through a Web Browser

(Netscape) is shown in Figure 1 3a and 1 3b

<HTML>
<HEAD>
<TITLE>School of Computer Applications</TITLE>
</HEAD>
<BODY background=". /images/dcublue gif' fgcolor=#000000 text=#FFFBFO
link=#FFFF00 alink=#FF0000 vlink=#FFBB00>
<CENTER><IMG ALIGN="Center” SRC=". /images/masthead gif' ALT="Dublin City
University"></CENTER>
<HR Size=3>
<CENTER><Hl>School of Computer Applications</Hl></CENTER>
<CENTER><H3>(Faculty of Computing and
Mathematical Sciences)</H3></CENTER>
<P>The School is responsible for the disciplines of computing, statistics and operations
research within the University. Staff are mvolved m both pure and applied research
including a number of projects for industry </P>_________________________________

Figure 1.3a HTML Markup of a Web page [Scho97]

D ublin City
I JNIVERSITY

Ollscoil Çlïathatr Ehatle Atha CUa.th

School of Computer Applications
(Faculty of Coimmtlns aiw

The School is responsible for the disciplines of computing, statistics and operations
research within the University. Staff are involved in both pure and applied research
including a number of projects for industry. ' : ;; :

Figure 1.3b Marked up HTML page as it is viewed through a Web Browser

(Netscape) [Scho97]

11

1 . 4 H y p e r t e x t S y s t e m s

Although the WWW has taken over as the most popular format for presenting

hypertext, there are other hypertext systems Hypertext systems are emerging as a new

class of complex information management systems These systems allow people to

create, annotate, link together, and share information from a variety of media such as

text, graphics, audio, video, animation, and programs Hypertext systems provide a

non-sequential and entirely new method of accessing information unlike traditional

information systems which are primarily sequential in nature They provide flexible

access to information by incorporating the notions of navigation, annotation, and

tailored presentation [Bieb93] A hypertext system should have the following

capabilities

• A Graphical User Interface, with the help of browsers and overview

diagrams which helps the user to navigate through large amounts of

information by activating links and reading the contents of nodes

• An authoring system with tools to create and manage nodes (of multiple

media) and links

• Traditional information retrieval (IR) mechanisms such as keyword

searches, author searches etc There are also attempts to incorporate

structured queries along with content queries - retrieving a part of the

hypertext network based on some user-specified criteria

• A hypermedia engine to manage information about nodes and links

• A storage system which can be a file system, a knowledge base, a relational

database management system or an object-oriented database management

system [Bala94] We will now give examples of some of the best known

hypertext systems

1 . 4 . 1 H y p e r - G

Hyper-G is a large scale multi-protocol, distributed, hypermedia information system

which uses an object orientated database layer to provide the following

12

• information structuring and link maintenance facilities

• fully integrated attribute and content search

• hierarchical access control scheme

• interactive link editing

• interactive preferences

• consistent look and feel

• point-and click document insertion

Hyper-G combines the intuitiveness of top-down hierarchical navigation with the

immediacy of associated hyperlinks and the power of focused attribute and content

searches [Orch95] Hyper-G is being developed jointly by the Institute for Information

Processing and Computer Supported New Media (IICM) of Graz University of

Technology, Austria and the Institute for Hypermedia Systems of Joanneum Research,

Graz, Austria [Prad95] HyperLinks connect a source anchor within a document to a

destination anchor within another document, an entire document, or a collection of

documents The links are stored within a link database, so they are bi-directional,

updatable (no dangling links), and visualizable

Hyper-G has been developed carefully to ensure cross-operability with WWW Hyper-

G databases have gateways to WWW and Gopher Hyper-G introduces a sophisticated

authorisation mechanism defining for each user the rights to read, create links, modify

and annotate This provides the basis for sophisticated customisation, and even CSCW

(Computer Supported Co-operative Work) within Hyper-G that have to be, like all

other more sophisticated features, built on top of WWW (potentially creating

confusion and incompatibility) Hyper-G, as a late-comer in the field, has been able to

profit from and incorporate experience from earlier projects such as Gopher and

WWW [Maur94]

1 . 4 . 2 H y p e r t i e s

Hyperties was designed as TIES (The Interactive Encyclopaedia System) under the

stewardship of Ben Shneiderman at the University of Maryland’s Human-Computer

Interaction Laboratory It provides both authoring and browsing capabilities A node in

13

Hyperties may contain an entire article that may consist of several pages Links are

represented by highlighted words or embedded menus which can be by pointing at

them Readers can preview links before actually traversing them. When a user chooses

to select a node, the node in question is not immediately displayed Instead a short

summary of the node appears first, allowing the user to decide whether it is worth their

while viewing the full node The authoring and browsing capabilities of Hyperties are

separated The authoring tool allows the author to import text or graphics into nodes

Links are embedded into the text, with the author selecting the text chosen to be an

anchor and the system responds by automatically looking up a table of node names to

establish a link Hyperties has been used by NASA as a hypertext on the Hubble Space

Telescope, as well as many interactive encyclopaedia’s

1 . 4 . 3 N o t e C a r d s

NoteCards was developed at Xerox PARC by Randall Trigg, Thomas Moran and

Frank Halasz It is a hypermedia system for authors and researchers to analyse

information, construct models, formulate arguments and process ideas [Hala88] Its

two main components are notecards and links The notecards are used to store and

organise information and have the same functionality as a node The links between the

various notecards are typed and directional The user specifies the type of link to

communicate the nature of the relationship [Dunn93] The browsing facility of

NoteCards is displayed on a notecard that contains a diagram of the complete structure

of the notecards being used Users are allowed alter the structure and the general

makeup of these diagrams by adding links and nodes NoteCard also offers a function

that uses ‘fileboxes’ to categorise and hierarchically structure notecards

1 . 4 . 4 M i c r o s o f t H t m l H e l p S y s t e m

This help system which is planned for release in August 1997 by Microsoft is designed

for displaying context-sensitive help, table of contents and indexing and will be

viewable using Microsoft’s Web Browser ‘Internet Explorer’ or most other Web

14

Browsers as it will be written in HTML It is aimed at authors who create online Help

for software or Web Sites [Hear97] and is made up of 5 components which are briefly

• HTML ActiveX Control ActiveX is a medium in which one can write small code

modules that run on the Internet It is made up of C++ and Object Linking and

Embedding and is a rival to Sun Microsystems Java HtmlHelp provides a wizard to

place ActiveX control into a HTML document [Hear97]

• Compressed HTML Compressed HTML allows for the quicker transfer of HTML

over the Internet as well as taking up less space on a computer hard drive This

adds extra functionality to the ActiveX control by allowing text search It also has

the ability to determine links at runtime, known as associative linking An

associative link contains a list of keywords that the Help System uses to search for

topics referring to the keywords This allows topics of a similar nature to be

accessed from a pop-up window presented to the user

• Layout Engine The layout engine can be any Web browser that supports ActiveX

The engine is hosted by the HTML Help Window and started through HTML Help

API or indirectly through a HTML Help executable

• HTML Help Window This displays HTML m a customised resizable window,

independent of the user’s browser (similar to WinHelp) The window that appears is

owned by the application that created it and when the application is minimised, so is

the Help window Users may have many Help windows open at one time, unlike the

solitary WinHelp window

• HTML Help Workshop The workshop is an authoring kit containing all the tools

necessary for creating and maintaining an HTML Help project It provides online

help and many wizards which automate the process of decision making [Hear97]

1 . 5 H y p e r t e x t M o d e l s

In the last ten years a lot of work has gone into developing models for hypertext

These models are useful as they help to distinguish true hypertext systems [Fns92]

suggest three different types of hypertext models that are required

15

• Interchange formats defined by means of a formal model of hypertext are

required to facilitate the interchange of information between hypertext

systems

• A semantic model to co-ordinate intellectual tasks

• A model of hypertext browsing semantics to be used for learning or

sequential information seeking tasks

[Fns92] cites the following three models as being of the type just mentioned, the

Dexter model, the gIBIS model and the Trellis model Each of these are now briefly

presented

1.5.1 The Dexter Model

The Dexter Hypertext Reference model evolved out of two small workshops It

attempts to capture the mam abstractions that exist in a range of hypertext systems Its

stated goal is to provide a basis for both comparing hypermedia systems and improving

interoperability [Giru95] The Dexter Model represents a hypermedia system with

three layers

• The Within-Component Layer The bottom layer, the within-component layer

represents the contents and structure within the system Developers are given the

freedom to define new component types This facilitates the construction of systems

that just contain text, to ones that have text, audio, video, etc.

• Storage Layer This defines how the nodes and links of the hypertext are connected

to form a network This is the core of the Dexter Model A database is composed of

a hierarchy of components, which are either atoms (primitive components) or

composites (composed of other components), connected by links Links can be

directional by using a ‘from’ and a ‘to’ anchor Anchors are described by a

combination of a unique global component identifier with a unique intracomponent

anchor identifier [Morr94]

• The Runtime Layer This is the top layer of the Dexter model This captures the

ability to access and manipulate the data structures Design decisions concerning the

appearance of the hypertext system are made here Options on link anchors are also

16

presented here and include bold text, icons and the change of cursor shapes

[Morr94]

Runtime Layer

Presentation of the hypertext, user interaction, dynamics

Presentation Specification

Storage Layer

A ‘database’ containing a network of nodes and links

Anchors

Within-Component Layer

The content/structure inside the nodes

Figure 1.4 Layers of the Dexter model

1.5.2 The gIBIS Model

The gIBIS model (graphical Issue-Based Information System) was presented by

[Fris92] as a hypertext model based on a semantic model that allows one to relate to

issues, arguments and positions by means of a pre-defined set of components and

semantic links It was devised by Conklin and Begeman to support the system design

process The model allows several people to collaborate on a design project to discuss

the design through a process of deliberation and argumentation [Dunn93] The central

idea behind this is to help each design team member to understand the problem, focus

on important issues and provide a trace of the arguments and discussions within the

context of hypertext In gIBIS, issues, arguments and positions are represented as

hypertext components and semantic relationships by links Arguments can ‘support’ or

‘object to’ positions, positions can ‘respond to’ issues and issues can ‘be suggested

by’, ‘expand on’ or ‘challenge’ positions [Morr94]

17

Argument

Figure 1.5 A gIBIS network [Dunn93]

1.5.3 The Trellis Model

The Trellis model is a hypertext model that incorporates browsing semantics The

author controls and modifies the way a browser presents the information by

representing the various states of browsing session and the conditions necessary to

transfer from one state to another [Fura89], îe we can specify the manner in which

the nodes are visited This model is based on Petri nets A directed, bipartite graph in

which nodes are either "places" (represented by circles) or "transitions" (represented

by rectangles), invented by Carl Adam Petri A Petn net is marked by placing "tokens"

on places When all the places with arcs to a transition (its input places) have a token,

the transition "fires", removing a token from each input place and adding a token to

each place pointed to by the transition (its output places) [Howe97] In a Petri net

graph the nodes are places When a place contains a token, a information element is

displayed (node) Transitions represent links in the hypertext and the hypertext is

explored by executing the Petn net

18

Table of Contents

Figure 1.6 of a Petri net is an example of a hypertext describing the maintenance of the

Electrical System of a Boeing 737. If the Auxiliary Power Unit link button is pressed

the APU Generator node is displayed. The only way to get to the node ‘AC

Generation: Trouble shooting’ is to traverse every node before it [Dunn93].

These are not the only models of hypertext available but are the most common. Of the

three models described, the Dexter model is the most popular. This is because it leaves

many of the design decisions to the author and is highly flexible. It also is the most

popular choice among well known people in the hypertext community which has added

to its credibility. However, these models have little to do with authoring and are more

directed towards managing and storing information instead of the process of authoring.

They assume that the hypertext already exist and are more concerned with the

browsing aspect of hypertext instead of the authoring.

19

1.6 Summary

In this chapter we discussed the concept of information, the information revolution and

structuring information into manageable building blocks This then gave an explanation

of hypertext and the way it structures and presents information We discussed the

theories, concepts and history of hypertext This led us to the history of the Web, its

rapid growth, its structure and the way information is marked up on it, namely HTML

This was followed by a look at hypertext systems Finally we looked at various

hypertext models

20

Chapter 2 - Related Research

2.1 Introduction

In this chapter we will discuss related research that may be of benefit to the hypertext

author This will take the form of discussing the various problems which affect

hypertext structure, authoring and browsing Solutions to these problems will also be

described This is followed by an in-depth look at 3 different authoring tools available

for the construction of hypertext/hypermedia Section 2 4 will discuss possible

methodologies that a hypertext author could use to enhance current authoring habits

which are more geared towards presentation of hypertext nodes and not structural

design of complete hypertexts This section 2 4 will cover the topics of link structures,

hierarchies and global and local metrics

2.2 The Problems with Hypertext

In this section we will describe the current problems that are faced by people writing or

browsing hypertext As most of these are problems that face hypertext users every day,

they reflect the lack of authoring techniques used in the construction of hypertexts By

creating a hypertext structure that recognises these problems, the author could enhance

the browsing and learning capabilities of a hypertext reader The first problem we will

look at is disorientation

2.2.1 Disorientation

The disorientation problem is also been referred to as being ‘lost in hyperspace’ As a

user browses through a hypertext they can be faced with questions such as

• where am 1 7

• how did I get here 9

• how will I get back to where I started 7 [Smea93]

21

In traditional structured texts where there may be chapters, table of contents, page

numbers and bookmarks, it is less easy to become lost, however in a complex

hypertext network, a user may easily become disorientated It is very important that

the hypertext author in constructing a hypertext deals with these issues or at least

makes sure that the reader has access to some facilities that will ease these problems.

[Conk87] defines the disorientation problem as the tendency to lose one’s sense of

location and direction in a non-linear document In a browsing session, hypertext users

can come across links to 1 0 0 0 ’s of nodes and numerous anchors embedded into each

of these nodes The World Wide Web has not helped this problem. Right now there is

little or no structure to the Web and this problem continues to grow as more and more

unstructured mini webs of hypertext are added Authors should reduce the

fragmentation characteristics of hypertext [Thur96] sees these characteristics as being

endemic to hyper-documents and result from segmentation into disjointed nodes

The problem of disorientation on the WWW has been tackled recently by a number of

visualising tools to show authors and readers the structure of the hypertext they are

using, in a graphical form. A sweep of the Web returns visualising hypertext tools like

• Atlas of Cyberspace - http //www geog ucl ac uk/casa/martm/atlas/atlas html

• Cybertools - http //www.cd dartmouth edu/~langmead/CyberTools/

• Dynamic Diagrams - http //www dynamicdiagrams com/

• Hyperspace - http //www cs bham ac uk/~amw/hyperspace/

• Interactive Graph Drawing - http //www cs rpi edu/projects/pb/graphdraw/

• Netscope - http //www merzcom com/demos/netscape/demo html

• Sitemap - http //hslin gws uky edu/Sitemap/Sitemap html

• Webview - http //www cs Washington edu/homes/ghnden/WebView/WebView html

These are to name but a few Figure 2 1 shows an example of the Dynamic Diagrams

visualising tool to show the reader a map of the local web site using a Java Applet

This map changes as users enter different subsections of the Web site

22

http://www.cd

Figure 2.1 Dynamic Diagram Products - MAPA Service Description

There have been other solutions to the disorientation problem. The following is a short

description of each

• Guided Tours: A guided tour is a presentation of a series of nodes associated with

a particular subject or topic [Dunn93] The browser suggests to the user what is the

best route to take through a selection of nodes on a particular topic At any stage

the user may change their path and deviate to view another node by following a

hypertext link If the user gets lost then they may easily return to the tour they were

viewing

• Bookmarks: These allow a user to mark a place that they were interested in They

are then free to browse elsewhere, knowing they can return to this node at anytime

The ability to bookmark a popular site or individual node is one of the built-in

features of most WWW Web Browsers

• Thumbtabs: The same as a bookmark except it may be viewed by all users in a

multi-user system f

23

• Annotates: The same as margin notes The reader is allowed make personalised

notes about what they are reading, perhaps iconised

• Breadcrumbs: These show the user that they have already visited this node durmg

this browsing session Also known as coffee stains Web browsers do this by

changing the colour of an anchor to a node after that node has been visited

Breadcrumbs help in two ways, (1) the user can avoid time wasting by realising they

have been there before, and (2) remind the author of what direction they may have

gone in before, where they came from and in what direction they may be heading in

[Morr94]

• History List: The presentation to the user of a list of the most recent nodes they

have visited in browsing the hypertext This allows the user to return very quickly

to a node previously visited An example of this is the ‘Go’ button on the WWW

Browser, Netscape Navigator Gold

• Tabletops: Tabletops are a means of capturing the layout of a set of nodes and

turning it into a clickable icon This allows the user to browse through the hypertext

knowing they can use the icon to return to a certain place m the hypertext

• Fish Eye Lenses: This concept is presented in a lot of the visualisation work done

on improving hypertext disorientation These are based on the idea of the fisheye

camera lens which distorts the apparent distances between objects in the picture

Objects that are close at hand appear in detail, while objects that are further away

are far off in the back of the picture Fisheye views were first purposed by Furnas

[Furn86] as a means of overcoming the problems of general graphical browsers In

terms of hypertext it gives the reader a disproportionate emphasis on the current

node being displayed, showing the more remote nodes in lesser detail As the reader

moves through the hypertext, the view presented by the lens changes in line with the

current node being viewed. This however could lead to further disorientation by

24

presenting to the user too much information about the hypertext. The number of

nodes shown must obviously be limited [Dunn93].

• Map: A Map refers to the tourist metaphor for hypertext navigation [Dunn93]. A

local map would show the nodes in the immediate locality of the node being viewed,

whereas a global map would show all the nodes in the hypertext.

• Flyovers: In SemNet, [Fair88] uses a tool to present a three dimensional graphical

view of the hypertext. This allows the user to fly over and among the nodes in the

hypertext.

• Graphical Browsers: The idea of a graphical browser was around long before the

appearance of any form of web browser. These use graphical images to allow the

user to navigate through the hypertext. This idea is now being tackled by the recent

spate of visualisation tools on the Web (discussed earlier in this chapter).

• Backgrounds: This is the idea of changing the background colour of certain nodes

in a hypertext depending on their subject matter or their particular positioning in the

hypertext structure e.g. different colours to represent different chapters.

2.2.2 Authoring Costs

The problem at the moment is that the cost of authoring hypertext is not properly

considered and the consequences of this is a poorly authored hypertext structure

[Smea93]. The problems of cost arise because not enough research has been carried

out on how to start authoring and achieve good functionality. When it is decided that

the hypertext is badly structured, then the costs of rewriting and righting the problem

are immense. This is one of the main arguments between WWW developers and the

rest of the hypertext community. The WWW group are more concerned with

developing the Web as an enabling technology for other applications and to support

other features such as advertising and other interests, than to be concerned about the

structure of the Web. This is where the hypertext community should help in adapting

25

their considerable knowledge towards applying a structure to the Web The money is

certainly m the Web to do this and pay for the research needed

2.2.3 Jumping into Hyperspace

The ‘jumping into hyperspace’ metaphor comes from the need to supply the user of the

hypertext with a good starting node to browse from. There are two ways to find a

specific topic in a hypertext The first is to browse through the nodes from the start

until the user finds what information they needed, while the second is to use some form

of search to find particular subject matter Many hypertext systems provide boolean or

string matching searches against a user query. A good starting point is a node that is

connected to other nodes that are of interest to the user The ‘goodness’ of a node

should not be measured by the similarity of a node to a query, but instead measured by

the goodness-of area around that particular node [Smea93] Solutions to this problem

include search facilities based on vector space modelling [Coom90], statistical

approaches in information retrieval [Crou89], probabilistic retrieval models using

Bayesian Inference Networks [Crof89] and drawing graph patterns [Cons89] Other

work in this are is the use of guided tours [Guin92], which dynamically generate a

guided tour in response to a user query

2.2.4 Cognitive Overload

Cognitive overload is the feeling of being unable to retain all the information that has

been presented to a user This feeling can be felt by both author and reader of a

hypertext Due to the complexity of some hypertext systems, the user may feel

bombarded with information, little of which is being remembered For an author, ideas

may spring to mind when constructing a hypertext, ideas which may be lost if not

written down in the form of notes or written into the hypertext immediately A reader

of a hypertext not only has to comprehend the information in the node they are

reading, but also contend with multiple anchors which link off to other pages Conklin

describes it as ‘the additional effort and concentration necessary to maintain several

tasks or trails at one time’ This problem arises because of the limited capacity of

26

human information processing, with every effort additional to reading reducing the

mental resources available for comprehension [Thur95]

There are two specific manifestations of cognitive overload

• Embedded Digression: where a user has to remember a list of side tracks of

information that they would like to explore at some point, but not right now

• The Art Museum Problem: coherence and understanding are diminished as the

reader takes in none of the information on offer as there is too much of it The name

comes from the metaphor of visiting an art museum and seeing so many great

works, but being unable to remember any in great detail

[Foss89] describes some tools which have been used in NoteCards to tackle the

problem of cognitive overload

• Graphical History Lists: These lists record every node the user has visited during

a browsing session They also provide a trace of multiple digressions allowing the

user to revisit an area they have already been The information here is stored

linearly

• History Trees: These trees also record a user’s path through a hypertext, storing

the information hierarchically A tree like structure is built up representing all the

nodes and the connections between them that the user has visited Users are

allowed to attach annotations to the nodes of the tree in order to remind them of

some idea or detail that came to mind while visiting that node

• Summary Boxes: These allow an author to add annotates to nodes that they are

creating to record ideas At a later stage they can return and view these

• Summary Trees: These are similar to a history tree with the added mechanism of

allowing the user to add annotates in the form of text or drawing to any page that

they may have visited on their travels through the hypertext This allows the user to

build up a conceptual map of the hypertext

[Conk87] suggest the following solutions to the problem of cognitive overload

• Have the reference node appear immediately: By returning a link in as short a

time as possible the extra cognitive load is minimised However, due to the traffic

on the WWW and processor power this may be a difficult task to achieve

27

• Provide short summary of node content: Used in Hyperties, this displays a small

summary of the content of a node when a link to that node is selected. The user may

then follow up on this link or decide from the summary that it is not worth visiting

that node

• Using a graphical browser which shows the local sub-network into which the

link leads: This displays information about the destination node as well as

information about the surrounding nodes From this the user can decide whether a

node is worth pursuing

2.2.5 Integration

Before the Web all hypertext systems were closed This means that they did not

integrate with other software on a computer and there was a fixed set of encapsulated

applications A open hypertext system is one which allows any application to

participate in hypermedia environment The Web is an open hypertext/hypermedia

system. Its browser’s can launch many different applications on a client’s computer

desktop However it is not fully open as its hypertext links are embedded in the data

which is stored in a proprietary document format Another open hypertext system is

Microcosm will be mentioned later in this chapter

2.2.6 Standards

With the huge increase in Web usage, HTML (hypertext mark-up language) has

become the new standard for writing hypertext Before the Web many of the PC based

and Windows products available where not compatible As of now all Microsoft help

files are being written in HTML instead of the standard RTF (Rich Text Format) The

pre-Web Hypertext ’89 conference produced a survey which reported that the lack of

standards inhibits the use of hypertext It was believed then that there was a need for

standards in the following hypertext rhetoric, information interchange, browsing

semantics, interoperability, multimedia data and synchronisation. Although HTML has

introduced some standards, the impact and size of the Web on the whole world has

28

diminished some of these At present (July 1997), W3C (World Wide Web

Consortium) recommends HTML Version 3 2

The W3C was set up in 1994 to develop common protocols for the evolution of the

WWW W3C started at CERN and now are represented by consortia in America,

Europe and Asia W3C are vendor neutral and offer a number of public services, (1) a

repository of information and specifications for WWW users, (2) a reference code to

implement standards, (3) various protocol and applications to demonstrate the use of

new technology HTML 3 2 was developed in early 1996 together with vendors

including IBM, Microsoft, Netscape Communications Corporation, Novell, SoftQuad,

Spyglass, and Sun Microsystems It adds widely deployed features such as tables,

applets and text flow around images, while providing full backwards compatibility with

the existing standard HTML 2 0 HTML 3 2 is an SGML application conforming to

International Standard ISO 8879 - Standard Generalised Markup Language As an

SGML application, the syntax of conforming HTML 3 2 documents is defined by the

combination of the SGML declaration and the document type definition (DTD) This

specification defines the intended interpretation of HTML 3 2 elements, and places

further constraints on the permitted syntax which are otherwise inexpressible in the

DTD [W3CR97] The problem with the HTML 3 2 Standard is that not all browsers

are capable of handling these standards, so people don’t get to see a lot of the

presentations provided by certain Web pages on offer This is particularly true about

Java Applets As platforms differ, browsing capabilities differ Although there are

versions of Web browsers for every platform, a lot of people don’t have the hardware

necessary to run these browsers Recently there has been a spate of browsing

extensions added to many pages e g Real Audio, Macromedia Shockwave, Real

Video, Microsoft ActiveX, etc These all add to the presentation of Web pages on

offer but also diminish a Web page as few people bother to download the software

necessary to run these add-ons or just aren’t able to run the software from their

platforms On top of this, download time is increased considerably, slowing up access

even more

29

2.2.7 Text to Hypertext Conversion

In an ideal world, all hypertexts would be designed and written from scratch so that the

layout and structure does not hinder an author’s work A simple process that would

convert text documents to hypertext nodes would considerably reduce the amount of

time an author would have to spend on creating the hypertext structure There would

be no need to learn another hypertext language if a decent tool existed that could do

this conversion This would give an author more time to deal with structure and

presentation with existing nodes becoming immediately available The following are a

list of possible problems [Drak94]

• Word processing formats contain information that is just not convertible into

HTML e g font types

• It is difficult to determine the granularity for each node, how much information

makes up a page of hypertext, too little or too much may equally disorientate a

reader

• Some documents may require navigation aids due to the complexity of the structure

of the text, or possibly the complex nature of the subject

• Conversion may be inflexible with the converted documents not fully availing of a

hypertext’s capabilities An example of this may be that in a text document, a

referral to another section takes the form of ‘See Section 2’, whereas this would

just be a link in a hyper-document

• Another problem may be that a document may be too linear for a hypertext

Sometimes breaking a document down to suit a hypertext may lead to the loss in

detail of the subject matter

For large hypertexts this problem is an impossible manual problem as the time taken to

create a proper hypertext from text would be huge Our authoring tool described in

this thesis, uses similarity measures to create a cross referencing structure which is one

possible way of countering some of the problems of improving text to hypertext

conversion Of course there is still the problem of embedding anchors into the text as

well

30

2.2.8 To Embed or not to Embed

When creating a hypertext node not only does the author have to deal with the

problem of deciding what nodes should be linked to each other and what structure to

keep, but they must also face the problem of whether to embed the anchor for each

link in the text or to keep them separate as ‘See Also’ links Firstly however in talking

about links between nodes we must point out the 3 different link types These are

• Reference link - these are used to relate part or whole of a node to another

node(s) These are usually um-directional and are generally used to create cross-

referencing structure commonly found in hypertext systems

• Relational link - those that have a strong semantic closeness, usually bi-directional

They relate to nodes that address similar subject matters

• Structural link - those that express a hierarchical relationship, forming a tree in the

hypertext structure These would be difficult to generate and would be more of a

concern when topology and the structural concerns are brought into a hypertext

If anchors for links are embedded in the text of a node, then the author has a number

of problems to overcome One of these problems is plurals or tenses The same term

can be represented in a number of different forms For example, computer,

computerise, computability, etc To reduce these words to a common form, a

stemming algorithm would be needed as is done in conventional information retrieval

(See Chapter 4 Porters Algorithm)

Another common problem with embedding anchors is the use of abbreviations An

example of this would be HTTP or Hypertext Transfer Protocol Here the author has

to recognise the fact that both terms mean the same A predefined list of terms and

their relevant abbreviations may be the only way to solve this problem, otherwise

manual anchoring throughout the nodes will have to be done There may also be a

problem with words that are hyphenated e g. tuples, n-tuples

In choosing a possible position for an anchor, there may be more then one occurrence

of the term in a node Here the author must decide whether to make all of these

31

occurrences anchors which is not particularly wise as too many anchors may confuse

the author, or whether to choose one term to be the anchor

[Dunn94] suggests the following 9 steps to embedding anchors in text

• Find terms that are an exact match

• Remove from node content

• Remove stopwords

• Apply normalisation of terms and reduce all plurals to singular form

• Remove any phrase which appears in more than one or more anchors

• Accept a string in the node text as a suitable location if it contains all but one word

from the search string

• Select local stopwords based on frequency of occurrence within node titles and

their anchors

• Follow step above but reduce the selected frequency threshold by 1

• Select global stopwords

In our project we decided to keep the anchors in the nodes themselves but external to

the text The reason for this is given in Chapter 4 Section 4 8 Another way to embed

anchors however is to keep the links external from the text Microcosm, developed at

Southampton University, is a system that embeds the anchor in the text but stores the

link externally A link database is used to store the information about what nodes are

connected by what links, but the application is responsible for maintaining the

persistent sections which mark as hotspots With the link structures held locally, tools

to show link structures, dangling links and tools for navigation can be built [Davi96]

This could also means that moving and deleting links becomes less of a problem

2.3 Hypertext Authoring Tools

At present there is a massive range of hypertext authoring tools on the market or

freeware ones available to download The list of Web-based HTML authoring tools is

immense. However most of these deal with the construction and presentation of the

text in HTML format instead of the actual cross referencing and structure building of a

32

hypertext web. The authoring tools are closer to being individual node editors than

hypertext web constructors. In the next section we will provide an overview of three

authoring tools. Two of these are web based, Netscape Gold and Microsoft FrontPage,

while the other, Microcosm, is an open hypermedia system that provides an authoring

tool and although it is separate from the Web it can still interface with it. We choose

these three at random as they are representative of the state of the art of hypertext

authoring tools.

2.3.1 Netscape Navigator Gold 3.0

Described by [Nets97] as ‘a powerful solution for information creation, access and

sharing with the seamless integration of Netscape's Web, News, and Mail applications’

Netscape Navigator Gold 3.0 is a WYSIWYG (What You See Is What You Get)

editor that allows easy mark-up of HTML nodes. The editor is built into the Netscape

Web Browser and can be accessed by the click of a button from the Netscape Browser

(Figure 2.2 displays the editor toolbox). This means that it is cross platform.

Figure 2.2 G old’s Editor Toolbox

The author, in creating new nodes in Gold is offered 3 choices, start from a blank

document, use a template (in order to follow existing examples) or use the wizard

available to take the author on a step-by-step construction of an HTML page. It

provides all the features of HTML (e.g. style guides, etc.) and also allows the user to

download existing pages and re-edit these. However, although it allows linking, the

author has to choose the anchor for this link manually. There is no in-built link

suggestion process and no attention paid to the overall structure of the web being

constructed.

33

2.3.2 Microsoft FrontPage

MS FrontPage is more of a mini web editor then a node editor Like Gold it contains a

WYSIWYG editor avoiding the need to know HTML Some of the functions of

FrontPage are as follows

• Create FrontPage Webs: This allows the use of templates and wizards to create

Web pages including a corporate presence wizard, discussion web wizard, personal

web template and project template

• Administration: There are 3 types of permissions that an administrator may add,

browsing, authoring and administering permissions All permissions are hierarchical

ranking from administrative to authoring and then browsing

• View the Entire Web: A user can view the web created graphically, viewing all

nodes and links between them This view may be expanded or contracted to

facilitate user specification (See Figure 2 3)

’̂ F io n lP iiy e E x p liire r-te ira tirn i [http;//locaUiust/teii.afUm]

Fife |$ l ;Vjie¥»

jss rd l

M . [FolderViewf,, ^

t j The Tena Firm Home Page

@ http //www compostcom

F a Urban Botamca
+j [jj Visit Our Terrarium

+i U Botanists and Horticulturalist
+! U Plant Genus and Species

(f?) http //www microsoft com .

G3 mailto webmasterta'terrafirm.
K [jl Sales and Finances

Online Budget xls

Sales Forecast Overview do
1997 Business Planppt

Second Quarter Report xls s Third Quarter Proiection Wo
P Q Related Links

Stole Locations doc

@ http //www roses com

m Seasonal Weather xls
■© http //www aphidhelp org

K |j) Marketing <r|

l l __________ U 21

fes. The- ïaa* Fite Home Page*

U'SSfl tssöäfcon&d£>c

j>>— >— Seas orsi 'Wesirgi ,< s ..

T«ia Tetra Fi tK V pS Ÿiifi 'tvyw epMiï p
Pw w \ \ . ,.TBri-ta~e Paqe X ,

¿■a Search Pc««
àc'<sstìisr>Q Pia-w

Onternal Hvperimk. Advertising flans ppti

J , ,
z ï

> r

Figure 2.3 Visual of FrontPage Web

34

• Test and Repair Hyperlinks: If any node is removed or renamed, all links are

updated in the entire Web There is a ‘Verify Hyperlinks’ command which checks

that no links are dangling This can be done on internal and external links A Verify

Hyperlink dialog box allows a user to repair any broken links Another function of

FrontPage is a ‘Recalculate Hyperlinks’ command which will show any recent

changes m the Web if another author has been working on it concurrently

• Configuring Editors: This allows you to configure editors for any of the file types

in a Web

• To Do List: This is a sort of annotation facility that tracks and names all unfinished

work tasks in a web construction

• Full Text Index: A text index is kept of the web being created for use with the

WebBot search component This allows users to find nodes in a Web without the

need to program a search facility WebBot allows a user to insert dynamic objects

into a web This provides complex functionality including search FrontPage also

supports Java, ActiveX, database connectivity and Visual Basic

2 . 3 . 3 M i c r o c o s m

Microcosm provides an open and resource based approach to the development and

delivery of learning materials [Davi97] Microcosm is a hypertext system, but here

however we will describe the authoring process that it supports Authoring using

Microcosm involves two different processes The first is the building of a resource

base, the second is the act of authoring within that resource base There are 4 steps

needed to build a resource database These are as follows

• Collection: This is the process of collecting data to use in the hypertext This

means text files, files of other formats, paper documents, pictures, bmp’s, gifs, etc

Microcosm suggest adopting the approach of rejecting nothing - it is important that

all information relevant to the particular subject area is gathered [Hall97]

• Digitising of Information: This involves the process of turning paper documents

into electronic documents and also the scanning of texts and pictures

35

• Organising: Information is organised into the structure needed using Microcosm’s

Document Management System e g list documents according to author, themes,

title, physical shape, etc

• Indexing and Generic Linking: In order for nodes to be found, generic linking is

necessary This defines how to get to a node but not where to go from it A generic

link database is created that is sorted alphabetically and presented in node format

This can act as a guide to the author as to what links have been created and also

serve as a powerful tool for the user Different links are kept in different linkbases

to avoid confusion, depending on their subject matter These links provide no

specific connection between source and destination node Instead these destination

nodes, either labelled or indexed, are a set of external information resources that

bind, on the fly to specific occurrences of source node selections These bindings

are an expression of authored links [Hall96]

The next phase is authoring within the resource base When the resource base has

reached a certain size then the authoring process can begin [Hall96] describe this as

building a coherent body of information with a particular purpose The process of

collecting information is still continued in parallel with the authoring process One of

the key features of Microcosm is its ability to incorporate information using third party

software like Authorware, Toolbook and Director Effective authoring should give

pointers to important parts of information, answering the questions of

• what am I doing here 9

• what are the objectives and aims 7

• how am I going to go about achieving this 7

[Hall96] suggest the best 4 applications of Microcosm are

• educating and training

• geographic and urban information systems

• technical documentation and manufacturing support

• multimedia archives

36

Microcosm’s authoring environment provides hypertext linking, logical structuring of

material, direct access to any material, search facilities, glossary keywords and hidden

links (these enable the user to focus on the material while only activating cross

references on essential materials) There are different sets of links to the same

resources, allowing the information to be reused by different users who have different

requirements and interests Another function of Microcosm is the dynamic link

generator using Prolog Links can be generated or accessed in response to dynamic

processes such as a database or rule based query This allows clause evaluation

resulting in the return of different interpretations depending on the query

2 . 4 M e t h o d o l o g i e s F o r S t r u c t u r a l A n a l y s i s

In this section we will explore how other methods may effect hypertext structural

analysis in an authoring environment This study will be mainly based on work in this

field by Botafogo, Rivlin, and Shneiderman [Bota92] who analysed hypertext in two

ways, the first was to provide authors with different views of the hypertext, the

second, examined useful metrics to reflect the properties of nodes and the whole

structure First however we will discuss the application of developing link structures in

the creation of a hypertext and the way these could effect the authoring process

2 . 4 . 1 L i n k S t r u c t u r e s

A common problem with hypertext may be that in static hypertexts there is an

abundance of links, many of which are inappropriate at times [Calv97] We will take a

brief look at the work of three different approaches to this problem, to see whether this

research could aid the hypertext author in the creation of nodes and the cross

referencing that is involved m the authoring process

[Chua95] developed a hypertext training system (HTS) which enabled a user to browse

through a hypertext, provide judgement on node traversal and activate the system to

update link structure Although HTS is not an authoring tool, we will give a brief

explanation of it as it deals with link creation between nodes The HTS consists of 5

37

major modules The first is the link generator which builds an NxN Similarity Matrix

between N hypertext nodes m a web, to generate an average of k links per node This

uses the same weighting scheme as that used in our authoring tool’s node to node

comparison, namely tf*IDF (See Chapter 4 Section 4 6) The Start Node Advisor

module computes a ranked list of possible start nodes and the Next Node Advisor

builds a ranked list of next nodes for the user to select at each stage of browsing This

sequence of the nodes browsed and any possible feedback which the user gives on each

node traversed are stored and used by the link trainer to update the weights in the SIM

matrix Finally the Query Processor provides a query-based search function that

modifies the query based on user feedback

[Chua95] suggest 3 ways of evaluating the usability of a hypertext to support effective

user browsing and information retrieval These 3 methods may also be of use to an

author in evaluatmg the hypertext they are creating The first is to compute the average

cost of locating the first relevant node, F, and subsequently retrieving the rest of the

relevant nodes

Cost = F + S = F, + 2 , pathy
ĵ Ri i ^

where F (is the cost of locating the first relevant node i in the relevant node set,

pathy is the path length from node i to node j, R (denotes the rest of the relevant set

excluding node l This measure will show the number of links needed to be traversed

by a reader to retrieve all relevant nodes in a hypertext The author may find that there

maybe too many links to follow to find all the information on a particular topic and

may choose to change this The second suggested measure is compactness which we

will discuss later Their third measure is recall, which measures the fraction of relevant

nodes in a collection that are retrieved

Recall = Total number of nodes retrieved

Total number of relevant nodes in the hypertext

Although this is more of a measure of the effectiveness of a retrieval engine, it may

also provide the author with useful knowledge as to how relevant the subject matter of

their hypertext is against a user query.

38

[Adam97] used another method known as object decomposition to structure an

existing hypertext. This method provides a consistent framework for breaking course

material into manageable and interrelated nodes. This method was tried on a CS383

hypermedia course ‘that attempted to enhance the educational resources available to a

student outside of the classroom’ [Adam97]. The initial hypertext had a loose structure

around course objectives and schedule. This structure was then re-created into a object

oriented text decomposition based hypertext (OOTDH) [Talb89]. This method uses

object decomposition to develop a hierarchy of relationships between concepts in the

material. As a main concept is decomposed, the explicit relationships serve as links

between the conceptual components. This could force an author to rethink several key

development issues:

• How do I expect students to access this concept ?

• What level of detail is needed at this level of abstraction ?

• Can the student access material which supports or expands on this concept directly,

or do they have to navigate through different hierarchical levels ? [Adam97].

[Adam94] developed graphs and flow charts to assist a hypertext author in dealing

with these issues. The graphical display of cross references and hierarchical links meant

that a complete system map was developed. To evaluate how big the change in

structure was from the original hypertext, a Relative Out Centrality (ROC) was used

[Bota92] to measures a node’s accessibility. The difference between the new structure

imposed on the hypertext as against the old structure showed that node access is made

almost 5 times easier by using Object Decomposition. This method was also found to

enhance student performance in exams but also increase the amount of time required to

visit the number of increased nodes.

[Calv97] describes research into creating dynamic hypertext structure and content to

facilitate the learning process of a student. They point out that variations in link

structure are needed to advance learning material. They suggest that although metrics

like those applied by [Bota92] are ‘able to find link structures that are unusable they

cannot guarantee that link structures having all suggested values for different metrics

will actually belong to highly usable hyper-documents’ [Calv97]. Links are often

introduced without consideration of their actual usefulness. Users often find

39

themselves confused as to why a piece of information is at the end of a particular link

meaning that linking can hamper instead of benefiting the user [Calv97] developed a

technique which creates link structures based on the following requirements

• Required Knowledge: knowledge needed in order to view a node The system

automatically hides (conditional) links1 to nodes if the user has not acquired this

information by having ‘visited’ prescribed nodes in advance

• Forbidden Knowledge: knowledge that makes viewing uninteresting The system

automatically hides (conditional) links to nodes if the user has acquired this

information by having ‘visited’ prescribed nodes m advance

• Generated Knowledge: knowledge the user gams after readmg this node

This technique was found to enhance the student learning process while still preserving

as much navigational freedom as desired However [Calv97] is quick to pomt out that

dynamic link structures must be used with care as they could confuse a student due to

unexpected changes

2 . 4 . 2 H i e r a r c h i e s

Centrality is the notion of how easily a node can access other nodes To do this we

must find the sum of distances between one node and all other nodes A matrix that has

as its entries the distances of every node to every other node is called a distance

matrix If a node can’t reach another node then the distance is infinite To find out

which node is most central we use a converted distance matrix C defined as follows

c _ \M ir if My * °o
,J [K, otherwise

where M is the distance matrix, K is a finite conversion constant (usually set to the

number of nodes m the matrix) The matrix is made up of the central out distance

(COD) and converted m distance (CID) COD is the sum of all entries m row I for

node 1 in the matrix,

C O D . ^ C ,

The CIN for a node 1 is the sum of all entries m column 1 m the converted distance

matrix,

40

a D , = 2 yC j,

The converted distance (CD) of a hypertext is given as :

c d = X , I , c ,

In order to define the central node for a hypertext we must find out which one has the

smallest distance to all other nodes. As the distance grows the node becomes less

central. [Bota92] states that for a small hypertext, COD gives a good measure of node

centrality compared with other nodes but indicates little if two hypertexts are

compared due to the possible differences in sizes. Two other formulae are used to

compensate for this problem First the ROC (Relative Out Centrality) metric for a node

is defined as:

ROC,. = CD/COD,.

The higher this measure the more central the node, the more it can access other nodes.

The second metric is the RIC (Relative in Centrality) which is defined as:

RICj =CD/CID;

The higher the value for this the more accessible the node (see Figure 2.4). This

would provide an author with the ability to see how well the node is linked to every

other node and whether a user may get disorientated by the number of possible nodes

and links between them.

B -+ C

A B C D E F COD ROC

A 0 1 1 2 2 3 9 1 0 .2

B 1 0 1 1 2 2 7 13.1

C 6 6 0 6 1 2 2 1 4.3

D 6 6 6 0 6 1 25 3.7

E 6 6 6 6 0 1 25 3.7

F 6 6 6 6 6 0 30 3.1

CID 25 25 2 0 2 1 17 9 92

RIC 3.7 3.7 4.6 4.4 5.4 1 0 .2

Figure 2.4 Converted Distance Matrix and Associated Metrics (taken from

[Bota92]).

41

In constructing a hypertext, authormg tools sometime differ on the flexibility of the

structure the author may create NoteCards makes an author create links hierarchically,

Hyperties gives authors the freedom to create a structure of their choice But which is

better 7 [Bota92] suggests ways of finding hierarchies that will separate hierarchical

from cross referential links [Tng87] suggests that a hypertext system should allow the

author to create many coexisting organisations of the same hypertext which can evolve

m parallel
<

To identify a hierarchy, the root of the hypertext must be found 1 e that node that

reaches all of or most of the other nodes in the hypertext It should also have a

reasonable number of children and its distance from it to any other node should not be

too large To identify a good root for a hypertext, all index nodes should be removed

(nodes that present an index or guide to all other nodes) and an author should select

nodes that have a high relative out centrality (ROC) Once the root has been identified

one can separate the hierarchical from the cross reference links This is done by

assuming that vertices are flexible joints and edges are strings of constant length By

picking up the graph at the root and letting the rest dangle one will be left with a tree

that has the shortest path taut

Figure 2.5 ‘Hierarchisation of a Graph’ [Rivl94]

42

Figure 2.5 shows how this technique works. Hierarchical links are presented as solid

lines, while cross reference links are in dashed lines. In this diagram, node F has 2

parents from the same level. Node F is part of subtree A or part of subtree E. Once a

hierarchy has been found it is important to show it to the author in a reasonable way.

One option is to display the whole graph. This may not be wise as the hypertext may

have a large number of nodes and links. Other ways are to use maps and fisheye lenses

which have been discussed earlier. Yet another way is to show the hypertext in the

form of a book, with each hierarchy forming a different chapter. It may be noted that

the use of hierarchies is equally an important tool in solving many problems felt by

readers of hypertexts and not just authors [Rivl94],

2 . 4 . 3 M e t r i c s

Metrics give clear and precise values to objects being studied so that subjectivity is not

involved [Bota92]. Word, the word processing package from Microsoft for example

uses metrics to show how readable a piece of text is by showing how much passive

voice is used for example. Showing the readability of a node may be of some use to an

author but in the overall scheme of things where a large hypertext is concerned it is not

very useful. [Bota92] describes the use of two different types of metrics that will

characterise the structure of hypertext. These are global metrics which deal with the

hypertext as a whole, and node metrics, which focus on the structural properties of

individual nodes. These will present to the author how complex and structured the

hypertext they are building is.

There are two different global metrics, stratum and compactness. Compactness shows

how well connected or disconnected a hypertext is. Values vary between 1 and 0, 1

indicating a high compactness value which means that each node can easily reach every

other node in the hypertext. 0 or a low compactness value indicates that parts of the

hypertext are disconnected. Since hypertexts vary in size (nodes and links), it is not

easy for an author to grasp the significance of those numbers. [Bota92] tested these

metrics on three different hypertexts to see if it was a good measure of complexity for

a hypertext. CMSC (Computer Science Department of the University at Maryland)

43

which is hierarchically structured with 106 nodes and 402 links has a compactness

value of 0 53 HHO (Hypertext Hands-On') is an electronic book with 243 nodes and

803 links, also built hierarchically has a compactness value of 0 55 Finally GOVA

(Guide of Opportunity in Volunteer Archaeology) is structured like an encyclopaedia

has 222 nodes and 1609 links and has a compactness value of 0 78 It can be seen that

the differences in the structures and the differences in node and link ratio are reflected

in the compactness values for each hypertext This shows that compactness could

prove a useful aid in helping the hypertext author to create a better structure for their

hypertext Compactness is the metric we will use in our topology maintenance module

and is discussed m further detail m Chapter 4 Section 4 7

The other metric [Bota92] used was stratum, which was designed to capture the linear

ordering of a hypertext Stratum is a measure that indicates whether there is a natural

order for reading a hypertext Maximum stratum is achieved in a linear hypertext If

stratum is zero the hypertext has no hierarchy [Rivl94] Again this metric was applied

to the 3 hypertexts named above The values for CMSC, HHO and GOVA were 0 13,
1
0 05 and 0 01 respectively These values show that even simple hypertexts like CMSC

are still far from linear and the author has used links liberally Although HHO has more

nodes then GOVA its stratum is 5 times as large This is due however to the number of

cross references used m GOVA

It should be pointed out that compactness and stratum are not independent measures

If a hypertext as a compactness value of 1 its stratum will be 0 and vice versa

However both metrics indicate different but possibly very useful properties for a

hypertext author (See Figures 2 6a and 2 6b [Morr94]) They supply the author with

information about the hypertext like its density, in linearity and its organisation The

author may decide that the hypertext should be broken down further into different

clusters of information or whether to bring some nodes closer together. What global

metrics achieve is the ability to let an author impose some form of structure on the

hypertext they are creating

44

Node metrics are designed to indicate special nodes in the hypertext These may

indicate to the author whether a node is difficult to reach because it is too deep in the

hypertext, whether links are missing or if a node is specialised [Bota92] Botafogo at al

suggest two different node metrics, depth and imbalance

Depth indicates the distance a node is form the root of a hypertext The larger the

distance the harder it is to reach that node as more links have to be traversed Nodes

that are deeply embedded in a hypertext are unlikely to be read by most hypertext

users The author could detect this as a bug or they could purposely store this node so

deep because it may contain information that may be of little consequence to the

reader Only readers with a deep mterest in a topic may come across it as they read

further into the hypertext. This metric offers the author the chance to locate

unreachable or deep nodes and verify that their placement was intentional [Bota92]

45

The second node metric is imbalance In a hypertext we would like each node to be

about one idea and the text for idea to be similar in length 1 e number of words With

this assumption and also the idea that each link from a node is an extension of an idea

contained in the source node, the author may like to create a hypertext in the form of a

balanced tree An author may use this metric to create a balanced hypertext or if

imbalances are required they may overlook this information An imbalanced hypertext

is not always bad and may in fact be a requirement of the author’s For example our

DCU Web server would purposely contain far more information about ‘Faculties and

Centres’ then about each lecturer in the university This would cause an imbalanced

tree with a bias towards information about ‘Faculties and Centres’

The metrics and structural processes used to analyse the structure of a hypertext, show

it is possible to indicate different views of a hypertext to an author They also identify

possible errors in the structure [Bota92] suggests using them to see if one’s hypertext

contains the expected properties He also suggests improving results by taking into

account node content and stylistic dimensions as well

2 . 5 S u m m a r y

In this chapter we covered the problems which a hypertext author may face in the

creation of a well structured hypertext We then explained three different authoring

tools available Although these provided excellent presentation facilities of hypertext

nodes, they did not help particularly in adding structure and balance to a web of

information To do this we found that research had been done in adding structure to

nodes by using metrics and other techniques including link structure The underlying

theme presented however, is that present authoring techniques available in commercial

software do not possess the capabilities presented by tools and techniques developed in

research This is why we see the large number of different hypertext problems Instead

we find that these tools that have user interface techniques and textual analysis, do not

make use of an important part of hypertexts their structure [Bota92]

46

Chapter 3 - Preparation of Data

3 . 1 I n t r o d u c t i o n

In building an efficient authoring tool, we needed to create a good test set to work on

in order to get results and comment on our findings. This opened up many questions,

such as finding an existing hypertext to test on, where this would come from, whether

to design the authoring tool around hypertext on the Web (HTML) or to take some

other hypertext system and whether to build a PC or a UNIX standalone version of the

authoring tool. The first section of this chapter deals with why we choose the Web

instead of another hypertext system. The next decides on UNIX as against Personal

Computer. Section 4 discusses the Dictionary of Computing, the test hypertext we

used. This is followed by a section covering the changes we had to make to this test set

to shape it into the format we needed. Section 6 explores the problem definition, why

there a need for a different approach to authoring hypertext. Finally section 7 provides

a summary of the chapter.

3 . 2 W e b v e r s u s o t h e r H y p e r t e x t S y s t e m s

Presently in the hypertext community there seems to be a backlash against the role of

the Web in the construction and browsing of hypertext. Before the WWW appeared in

1989, hypertext was written for specific systems. Few would have heard of the words

‘hypertext’ or ‘hypermedia’, except people who resided in colleges or worked on these

systems. It was not until the Apple’s HyperCard that hypertext really found a market

for itself, however retrieval was slow and hypertext viewers were not very robust,

specifically designed for one format and one format only. Then the Web took over and

its growth since its beginning has been phenomenal. Not only has hypertext become a

buzz word, it has also become another form of medium, with most companies

presenting their business through pages on the Web. Its rise has taken the original

hypertext community by surprise, leaving them with many questions and few answers.

The community seems to have split into to different factions, those who are opposed to

the Web’s influence on hypertext and believe that hypertext research has little to do

47

with the Web and those who want to use the Web as the infrastructure to build

hypertext on and embrace the advantages that it come with it [Smit97] in his keynote

speech at the Eighth ACM Conference on Hypertext sees it as one group whom view

the Web as an unwelcome guest, who have simplified the data model, ignored

problems of large scale navigation and declared link integrity as irrelevant On the

other hand there are those who want to embrace it and the considerable technology

that comes along with it Smith feels that the hypertext community is in a unique

position to give the Web some of the features that have made small experimental

systems so practical Some of the advantages of smaller hypertexts include integrated

authorship, global write access and reliable links Reliable links seems to be one of the

major problems of the Web There is no governing body that checks to see if a link still

exists or whether its address (URL) has changed Many would claim though that it

would be impossible to ever have 100% reliable links as the Web is just too big

We are also of the opinion that the Web is the way to go for now as there are such vast

numbers using the web, not just for browsing but also for authoring and publishing

information over a wide range of topics including education, business and sport

Hypertext is now not just for those in educational institutions or the Information

Technology business, it has now a much wider spread and the Web must be

congratulated for this event The Web provides global access, the ability to create a

simple page of HTML with many links and images in minutes This is the major

problem with any other form of existing hypertext system Many of the existing

systems require the user to read manuals, follow demos and look for technical support

e g the Microsoft Help System, HyperCard, Hyperties and Microcosm (these are

discussed in full in Chapter 2) When they have created a hypertext using one of these

systems, it is usually an end in itself with no possibility to convert it to any other kind

of hypertext mark up or integrate it HTML as a subset of SGML (Standard

Generalised Markup Language) makes parsing and conversion easy, so converting one

set of tags to another format, or the removal of these tags to get the text as a

standalone should not be a problem

It could also be said however, that the ability to create nodes and links so easily has

left the Web in the mess that many feel it has now become There is little or no

48

structure to the Web as it stands, there is no one to regulate which nodes are linked to

what, no authority to check for dangling links or enforce standards The Web is an

open medium for users to do with what they please This is the attraction and also the

downfall People who browse the Web can only but acquire skills and knowledge from

whatever is already there Perhaps if Web/hypertext authors maintained better

structures in the beginning, Web browsers who try their hand at authoring may just

pick up some good authoring habits The definition of this part of the problem will be

discussed in more detail m Section 3 6

3 . 3 U N I X v e r s u s P C

Having decided to select the Web as our medium, we were then faced with the

decision of whether to build the authoring tool on either a PC or UNIX Workstation

platform The choice was influenced by the technology available In the first instance,

the authoring tool was going to use HTML forms and CGI scripts which all must be

run off a Web server, these could be facilitated by our group’s (Multimedia and

Information Retrieval Group) Web server which is run on a UNIX workstation This

was the technology available at the time, it would have course have been possible to

use a Windows NT server or any other platform Web server if they had of been

available The second reason for choosing UNIX was that some other research work

was already written on the UNIX platform and the tool could use this existing data and

executables from previous projects such as the DCU Web Robot which uses

compactness metrics and Query Space Reduction for Information Retrieval which

contains a search engine Although we have based the authoring tool on a UNIX

platform it will in fact run on a multiple platform basis, as it is Web based i e UNIX,

Windows NT, DOS, etc

3 . 4 D i c t i o n a r y o f C o m p u t i n g

When decidmg what hypertext to test the authoring tool on, we looked for an existing

hypertext instead of using the tool to create one from scratch This was done mainly

because we wanted a hypertext that was information-rich and which had a wide spread

49

of connectivity throughout its nodes to provide an excellent test set for the authoring

tool to work with. The Dictionary of Computing was ideal for this.

We had decided to use the Dictionary of Computing after viewing other possible

existing hypertexts and deciding that it was not feasible to build our own hypertext

from scratch. The latter decision was made due to the time period involved as well as

subject matter. We needed a large scale hypertext, one that was information-rich with a

good deal of connectivity. To build a hypertext incorporating these features would

take to long, the scale of this task being to large. The decision to use the Dictionary of

Computing over other existing hypertexts was made very carefully. We had first

decided to also use a CD ROM distributed course on multimedia and a wide variety of

topics known as the Multimedia Course. However as this was CD ROM based, we had

no access to the actual text of the course. This meant to construct a Web based

hypertext from this would have meant retyping the whole course as well as recreating

the cross linking all of which would have to be manually marked up in HTML. Another

hypertext we looked at was for a company who we had done previous research work

for. They had wanted their private networks hypermedia course used in our research.

After viewing their possible hypertext of information we found it to be too linear, very

much written in the format of a book. Other hypertexts viewed included web

courseware and encyclopaedias.

The Dictionary of Computing (Copyright Denis Howe 1993, 1996.), known as

FOLDOC (Free on-line Dictionary of Computing), is a searchable dictionary of

acronyms, jargon, programming languages, tools, architecture, operating systems,

networking, theory, conventions, standards, mathematics, telecomms, electronics,

institutions, companies, projects, products, history, in fact anything to do with

computing. Some examples of the wide diversity of terms are

• ‘Zipperhead - an IBM term for a person with a closed mind’ ,

• 'Propeller Head - jargon used by hackers that is equivalent to a computer geek’

• ‘Egosurfing - Scanning the World-Wide Web, databases, print media or research

papers looking for the mention o f your name’ [Howe97].

50

The Dictionary started in 1985 and now contains over 10,000 definitions totalling 3 7

megabytes of text. Entries are cross-referenced to each other and to related resources

elsewhere on the net These include HTTP, FTP, Telnet and NEWS sites This

Dictionary is not to be mixed up with the IEEE Computer Society’s Computer

Dictionary Project which also produces glossaries of computer-related terminology

The IEEE dictionary was created by a collaboration between the IEEE technical

committees and working groups and other entities interested in terminology and was

set up to provide an interchange of ideas regarding current and emerging definitions

The primary focus of the IEEE dictionary is to provide computer terminology to

computer professionals as opposed to the corpus we are working on which, while

describing computer terms also provides coverage of many slang and vernacular

definitions to amuse the computer hack or the everyday Web surfer

The Dictionary aims to provide a

‘one stop source of information about all computing terms and includes many useful

cross-references and pointers to related resources elsewhere on the Internet, as well as

bibliographical reference to paper publications’ [Howe97]

The idea was to give a more encyclopaedia like look to the Dictionary instead of

having just entries for the main computer terms This means that not just current

hardware (High Performance Serial Bus, coaxial cable) and software devices

(expanded memory manager, process) are mentioned, but also games (DOOM,

International Core War Society), companies (Dell Computer corporation, Adobe

Systems In c), the great computer thinkers (Alan Turing, Andrew Tanenbaum), as well

as slang terms (cyberbunny, vulture capitalist), humour (Electmg a Pope, Infinite

Monkey Theorem) and strange computer symbols (8 Queens Problem, 2B+D) There

is in fact a file called other which contains around 130 definitions of computer related

terms that contain numbers or other non alphabetic characters An example of these

are

• 1 TR 6 - a control channel protocol for ISDN

51

• ,-) - an emoticon, "half-smiley" (ha ha only serious), also known as "semi-smiley" or

"winkey face"

• @-party - A semi-closed party thrown for hackers at a science-fiction convention

(especially the annual Worldcon), one must have an electronic mail address to get

in, or at least be in company with someone who does One of the most reliable

opportunities for hackers to meet face-to-face with people who might otherwise be

represented by mere phosphor dots on their screens

FOLDOC’s definitions have been provided by over 600 contributors with a service

provided to let anybody act as a guest editor. This involves writing a definition and

submitting it to the Dictionary where it will be validated At present the dictionary is

accessed over 10 ,0 0 0 times a day and has won many awards and much praise from the

Web community

The Dictionary is available to download free (World Wide Web URL

http //wombat doc.ic ac uk/), and is mirrored on other sites throughout the WWW and

is also currently being translated into Spanish It served by a SparcStation ELC at the

Department of Computing at Imperial College, London, UK The Dictionary is

presented as one large text file and contains no HTML whatsoever By using the

provided search utilities (CGI Perl Scripts) it allows the user to enter in a query and

return a page of HTML generated on the fly 1 e the page is shown to the user in a

particular format but does not really exist as that hard coded document The scripts

search through the text file, find the appropriate piece of text and then turn this text

into hypertext by adding the correct HTML tags

Links and anchors in the text file are denoted by ‘{}’, so if the author wanted to turn

the word Perl into a link, it would look like {Perl} in the text file and would be

converted to ‘ Perl ’ by the script to make it viewable on a

Web browser A Dictionary term that contains more then one word would be

converted like this {fear and loathing} to ‘ fear

and loathing ’ Anchors in this hypertext are actual file names, so if a word is used

in a definition of a subject and this word also exists as a definition elsewhere (1 e exists

52

as a file name), then a link is added implicitly Anchors also exist that are dangling links

and have no destination This is because the Dictionary is growing all the time, and

whereas the original writer (Denis Howe) may believe a certain term should have a

definition, that definition may not have yet been written due to the fact that the author

hasn’t yet had the time to write it, or a guest editor hasn’t been found to provide a

knowledgeable definition for the term

We downloaded the latest version of the Dictionary in February ’97 but since it is

constantly updated a later addition is sure to exist As well as showing the user the

page with the text marked up in HTML, also shown are links to the previous five

definitions and the next five definitions that proceed the current topic, in alphabetic

order The query form is also added to the marked up page allowing the user to query

the Dictionary again As well as links embedded in the text, many of the files have a list

of links under the heading of ‘See Also’ at the bottom of the document, e g The file

‘computer+geek html’ has the following terms as links under the heading of See Also

• propeller head

• clustergeeking

• geek out

• , wannabee

• terminal junkie

• spod

• weenie [Howe97]

53

Figure 3.1 An example of a page generated by the Dictionary’s query facility for

the term “token ring”.

3 . 5 C o n v e r s i o n t o S t a n d a l o n e

In order to develop our hypertext authoring tool and use FOLDOC as a test bed, we

needed to have a separate file for each topic, which would mean splitting the large text

file into over 10,000 files, each marked up in HTML. We also had to maintain the

correct cross references and external linking that already existed. A script was written

to convert and split the single large text file into separate files. For example the text file

entry for ‘token ring’ is as follows :

token ring

A computer {local area network} arbitration schem e in which conflicts in the

transm ission of m essages are avoided by the granting of "tokens" which give

perm ission to send. A station keeps the token while transmitting a message,

if it has a m essage to transmit, and then passes it on to the next station.

Often, "Token Ring" is used to refer to the {IEEE 802.5} token ring

{standard}, which is the most common type of token ring.

{Usenet} newsgroup: {news:comp.dcom.lans.token-ring}

54

Converted to HTM L it looks like this

<HTML> <TITLE>token r ing< /TITLE> <BODY>
< H l> tok en n n g < / H l > A com p uter <a
h r e f ="l o c a l + a r e a + n e t w o r k html"> l o c a l a r e a n e tw o r k < /a >
a r b i t r a t i o n scheme m w h i c h c o n f l i c t s i n t h e
t r a n s m i s s i o n o f m e s s a g e s a r e a v o i d e d by t h e g r a n t i n g o f
"tokens" w h i c h g i v e p e r m i s s i o n t o s e n d . A s t a t i o n k e e p s
t h e t o k e n w h i l e t r a n s m i t t i n g a m e s s a g e , i f i t h as a
m e s s a g e t o t r a n s m i t , and t h e n p a s s e s i t on t o t h e n e x t
s t a t i o n .

<P>
O f t e n , "Token Ring" i s u s e d t o r e f e r t o t h e <a
h r e f = ”i e e e + 8 0 2 . 5 .html">lEEE 802 5 < / a > t o k e n r i n g <a

h r e f = ,,s t a n d a r d . h t m l “> s t a n d a r d < / a > , w h ic h i s t h e most
common t y p e o f t o k e n r i n g .

<P>
<a h r e f = " u s e n e t . h t m l "> U s e n e t < / a > new sgroup:
<a h r e f = "news: comp. d c o m .I a n s t o k e n - r i n g " >
comp. dcom. I a n s t o k e n - r i n g < / a x p >
</BODY> </HTML>

As can be seen the links in {} are turned to HTML links using the <a href> tag,

paragraph tags are added to maintain the presentation the text and the document

heading is maintained e g <Hl>token rmg</Hl> as well as been used to give the file a

name with the html file extension The large text file also contained links that were in

the form of <networking> or <games> These are pointers to subject files that

included every file for that particular subject In the language subject file for example

there are links to C, Perl, C++, Awk, Lisp, COBOL, etc The amount of different

subject files number 87, as well as a file called ‘all html’ that contains a link to every

file in the Dictionary (See Figure 3 2)

55

There were of course small problems in the conversion and one of these was a

difficulty with file names. Some node titles started with special characters like

‘<gr&d>’, ‘@Begin’, ‘Xsqcap’, ‘/dev/null’, etc.. Other titles were made up of multiple

terms which are not allowed as file names in UNIX, it was decided to put a plus

between each word, thus token ring becoming ‘tokin+ring.html’, comprehensive peri

archive network became, ‘comprehensive+perl+archive+network.htmi, etc.. All file

names were set to lower case as were the links between the files. Thus the link to

‘perl.html’ might appear as Perl but it would in fact point to Perl in lower case e.g. <a
\

href = “perl.html” > Perl . As the original Dictionary returns HTML pages on

the fly, it can accommodate links that have upper and lower case letters in their

filenames. If a term like ‘computer’ was the first word of a sentence and was being

used as an anchor then it would start with a capital ‘C’. If however it was an anchor in

the middle of a sentence then it would start with a small ‘c’. As we had to hard code

the links, we could make the text look properly formatted, with capitals where they

should be, but we had to put the link behind the anchor in lower case. As a result of

this some file names were the same, an extreme case being the word pop, this in the

Dictionary had three meanings all spelt the same but using upper and lower case to

change its meaning.

56

pop - <programming> To remove s o m e th in g from t h e t o p o f
a s t a c k . O p p o s i t e t o p u sh

POP - 1 < la n g u a g e > A f a m i l y o f programming l a n g u a g e s ,

POP-1, POP-2, e t c
2 . P o s t O f f i c e P r o t o c o l .

PoP - < n e t w o r k m g > P o i n t o f P r e s e n c e (a s i t e were t h e r e
e x i s t s a c o l l e c t i o n o f t e l e c o m m u n i c a t i o n s
e q u i p m e n t)

In this case a file called pop html would be created and contain all three meanings of

the word. This was done in about 100 other cases as well, although slow and involving

a lot of manual work there was no quick solution to this problem. There were some

problems with the filenames that the Dictionary had, some like ‘Snooze and @Begin

would have were fine as filenames on UNIX can be somewhat more diverse There

were however difficulties with C + + which had to be generated as c%2b%2b or <g> for

example As UNIX can deal with exceptionally long filenames, our Dictionary terms

gave it no problems Our longest filename was in fact 68 character long

With the conversion to HTML completed the Dictionary of Computing was now in a

workable format for our project, 10,000 nodes marked in HTML format, each

containing cross reference links to each other and to external sources, each linked by

one major file and also split into subject groups

3 . 6 D e f i n i t i o n o f P r o b l e m

At present a lot of authoring done on large Web based Hypertexts is done under trial

and error To date, existing authoring tools present the user with the creation of

HTML documents and the referencing of these to each other using links This basically

provides manual techniques to the author in the creation of a hypertext This maybe

useful in the short term, but as the hypertext grows and new nodes and links are added

it becomes increasingly more difficult to keep track of the whole structure of the

hypertext being constructed Unless the author is keeping to a strict linear structure

then the hypertext will soon lose its shape leading to tangling links, cul-de-sacs, over

57

or under connected nodes or other undesirable features [Smea96]. None of the above

are desirable, but unless some automation is added then what will result is a mishmash

of connected documents with little or no form To this problem we hope to provide

one solution, or at least to attempt to prove whether some degree of automation is

useful in the creation of a hypertext. (See Chapter 2, Section 2.2 on Hypertext

Authoring Tools - Netscape Navigator Gold, Microsoft Frontpage and Microcosm.)

Our approach is to add a number of distinct inputs into the authoring process and to

build an authoring tool-kit. These inputs include the similarity comparison between a

new node being created and the existing nodes in the hypertext, returning back a

relevant document similarity score for each existing node in the hypertext. We also

attempted to use a topology measurement of the structure of the hypertext in the

locality where the new node is to be placed. We will use metrics to show the structural

properties of certain areas of the Web, those areas that are affected by the adding of a

new node to the hypertext.

We will not give a measurement on the overall graph structure of the entire web as

such a measure would be useless to a hypertext author as we are dealing with a new

node AND at least 10,000 existing ones. Topology measurement values returned using

the whole hypertext would provide results with such minute changes that it would be

difficult to draw conclusions from such findings. Instead we will provide topology

values on localised areas of the hypertext, mini ‘webs’ so to speak. Such topology

measurement values would come from following the links from the new node down to

a certain level in the hypertext, by 2 or 3 levels in the hypertext web. The graph

measure we speak of will display the compactness of the structure of miniature webs as

a new node is added, measuring the connectivity or boundedness of the web in the

“area” being created.

What we are trying to achieve in this thesis is to see whether hypertext authoring is

improved by the addition of information retrieval and topology metrics. Our tool will

offer the author a way of adding a new node to an existing hypertext. When the node

contents are created, a ranked list of existing nodes will be displayed showing the

closest of these nodes to the new node using a text similarity measure. The hypertext

58

author can select which nodes to link to the new node and which links to create from

the new node and whether the links are um-directional (links going from new node to

existing node or vice versa only) or bi-directional (links going from new node to

existing node and vice versa) The author will then be able to see how coherent the

topology structure or layout of the mini web is A value between 0 and 1 will be

returned A value closer to zero means the addition of the node has little effect on the

web structure and the configuration of the web is veering towards a linear structure,

while closer to 1 means the addition of that node has binded the web closer together

into a more networked structure It is not possible to show the author the compactness

value before the addition of the new node as we use that node as our central node to

run the compactness metric on (see Chapter 4) Furthermore, our mim-web is the

nodes surrounding the new node, theoretically this web doesn’t exist till we add our

new node

An example of the above might be understood better by looking at what [Carl89] sees

as the structural characteristics of a hyper-document, positioning it somewhere on a

continuum between two extremes [Pilt97] One of the two extremes is a large, loosely

structured collection of written works that have not been specially adapted for use in

hypertext This might mean, say, a collection of papers on discourse analysis or

educational packages, which themselves are in an ordinary, linear format but organised

by the author or editor of the hyper-document so that the reader can tell by the

organisation which articles are closely related and which articles are less so, which

articles are meant to provide an overview of the field and which articles concentrate on

a specific point A further advantage is that different articles can support or challenge

each other and all references can be active in the sense that they are worked into links

that can take the reader to the article in question and then back again to where he or

she started from [Pilt97]

On the other hand other corpuses that involve a long piece of creative writing like a

novel for example are not supposed to be rich in linking and cross references [Pilt97]

The author may be able to structure a book into chapters and paragraphs, but further

divisions and the addition of linking are just not part of this medium. Even though

there has been an increase in the level of hypertext fiction on the Web in recent tunes a

59

book still remains a book and over connectedness can only confuse the subject matter.

The other extreme that [Carl89] names is "a highly organised, compressed, structure of

richly interconnected 'chunks', which have meaningful boundaries between sets and

subsets and logical relationships among elements". The precondition for this is that the

information itself has a rich network organisation [Schn89]. Encyclopaedias are

examples of traditional types of texts that come close to this kind of organisation and

might thus benefit from being worked into a hyper-structure. [Pilt97] Considering this

it is no surprise that several encyclopaedias and dictionaries have been published in

hypermedia format. A simple sweep of the Web shows language, hacker, acronym and

other miscellaneous dictionary types as well as thesauri and encyclopaedias containing

many resources.

We would hope that an author would be able to have the choice to pick the structure

of a hypertext at the beginning of the hypertext authoring and to hold that structure in

place by using this authoring tool. This structure being sought after could include a

predominately linear, predominately hierarchical or predominately networked

structure, depending on the subject matter of the hypertext. When the structure sought

after is achieved by the author’s linking, the links are added into the documents and the

node added to the hypertext. With this facility, an author could put more effort into

creating the content of each node with less worry of trying to remember what anchors

used in the new node should provide a reference to another node already written.

Although the author is presented with two aids, information retrieval to suggest new

hypertext links and metrics to view hypertext structure, it is the latter with which we

are more concerned. It is our aim in this thesis to discern whether the addition of

metrics and thus the presentation to the author of the hypertext’s exact structure and

the structural differences which occur with the addition of each new node, is a major

step in node creation. However, it could be the case that fine authorship, and perhaps

just information retrieval is enough to create a well balanced structure for a hypertext.

With the author benefiting from using our authoring tool, we believe the reader of the

hypertext must also gain indirect benefits as well. We would hope to alleviate to some

extent the problems discussed in Chapter 2 e.g. disorientation, cognitive overload and

60

the problem of jumping into hyper space In a fragmented hypertext environment, when

users branch off on to a new path, they must be able to see immediately why a link

exists between where they came from and where they are If they are dissatisfied with

this new path, they must be able to return to the previous place quickly and easily

[McAd93] We would hope that due to our node to node comparisons, that following

a link would not be a waste of time but m fact lead to information totally in context

with the previous node visited during a browse

3 . 7 S u m m a r y

In this chapter we have discussed the problems of choosing an appropriate hypertext

for us to use in our experiments instead of developing our own from scratch and what

platform on which to do our development In doing this we set out the criteria we

needed and then found a suitable hypertext to meet our needs Problems to overcome

were, whether the hypertext was to be Web based or not, and should we develop on a

UNIX or PC platform. With answers to these we found a Web based hypertext that

met our needs called the Dictionary of Computing We discussed the origins of this

Dictionary, how it worked and what changes we had to make to it to make it suitable

for our authoring tool The chapter was concluded by a discussion on the problem

definition and the reasons why we felt a need to try to alter the hypertext author’s

thinking on how to build a well structured and browser fnendly hypertext

61

Chapter 4 - System Design

4.1 Introduction

In this chapter we will discuss the construction of the authoring tool and the various

elements that were added in order to create a suitable tool to try and develop a valid

approach to authoring hypertext Section 4.2 deals with the layout of the tool, what

sort of interface it has, the use of HTML frames and the idea of different templates to

facilitate different hypertext structures The next section discusses the configuration of

the search engine and the retrieval and weighting schemes that were used for the node

to node comparisons and why these configurations were chosen This is followed by a

look at the indexing of new nodes, the problems of adding a new node to an existing

index and the difficulty of doing this in real time Section 4 6 concerns metrics, how we

use them in the context of the authoring tool, what metric values are presented to the

author and why The chapter is concluded by a review of the various types of linking

available to the author and how the tool achieves this Figure 4 1 gives a graphical

overview of the system

Create Node

User creates node
using CGI fillout
form

Re-create if
unsatisfied

View Node

User keeps or
Node to node
similarities Creation of

User suggests
possible links , r

Topology --------------------► Ranked List -------------------------- ► Link Creation
Metrics

Node added
to index

Submit link suggestions
to assertion Compactness
value

Link
Suggestions

Create Index
on new Node

Figure 4.1 Overview of Authoring Tool

62

4 . 2 W r i t i n g a N e w N o d e

In the previous chapter we discussed the make up of the Dictionary of Computing and

what its format was When writing a new node to this, we must be sure to create that

node in exactly the same format as those in the Dictionary As we had decided to use

the Web as the platform for the authoring tool, we used CGI-forms to build the tool on

the Web CGI stands for Common Gateway Interface As we used CGI to build our

authoring tool around, we will now give a brief explanation of how exactly CGI

works CGI is a method for HTTP servers to communicate with other programs on

most platforms CGI sets up a communication standard for input and output, and a

CGI-program gets input from the Web server and gives back output via the Web

server (See Figure 4 2) [Bout96] When a user fills out a form on an HTML page and

clicks on submit, the Web browser begins to format the data in a specific way

1 Browser requests p ^ 5 Server transmits complete
document from server I T document to browser

Server

2 Server recogmses CGI ^ ' 4 CGI program outputs a
agent, executes CGI program | f new Web document

3 CGI program takes advantage of external resources

Figure 4.2 The CGI Mechanism

Forms have been described as an excellent way of getting input for programs over the

Web using HTML A form entry is made up of a name and a value Forms allow a user

to enter data, make corrections and when finished to submit this data and send it to the

server and then to the program that needs that data Basic syntax for a form consist of

63

three elements, the first tells the browser that this page of HTML is a form and then

calls a specific program that takes the data from this form [Sams97]

<Form Method = P o s t A c t i o n = " h t t p • / / s e r v e r - n a m e / c g i -

b in /p rogram -n am e" >

The next element is the input tags These draw the form boxes on the screen to allow a

user to enter data While stating what size of TEXTARE A to draw, one also states the

names of the variables and optionally specify a VALUE attribute to assign to each

variable

What i s y o u r name : cINPUT NAME = " v a r i a b l e " VALUE =
" o p t i o n a l " >

The third element of a form is the submit and reset buttons which appear on the form

When clicked the submit sends the information to the browser and this calls the

program, while the reset button clears all values from the form or resets to original

default values and allows the user to re-enter data

< INPUT TYPE = " s u b m i t " NAME = "s u b m i t ">

< INPUT TYPE = " r e s e t " NAME = " R e s e t ">

)

The above give the basic mark up of a HTML form There are many other ways to

enter data into a form and these include

• radio buttons

• check boxes

• text boxes

• select/option

The browser interprets these in different ways and each are drawn in different ways on

different platforms and operating systems and can add to the presentation of a HTML

form When the submit button is pressed the Web server uses the CGI standard to start

executing the program and set up environment options This program usually sits in the

Web server’s cgi-bin directory as an executable The browser formats the data from

the form by using name-value pairs Every item in the form has a name and a value,

64

which all get joined into one large string, e g namel =

value I&name2=value2&name3=value3 The & separates the pairs and the = sets what

value to assign the variable names ‘namel’, ‘name2’, etc The program which is called

by the form interprets the input as $in{‘variablename’}, where variablename is what

the form author entered in the Name = attribute on the form. This value returns a

string [Sams97]

There are two ways a browser can handle requests, one is the GET command, the

other is the POST command The GET Method is used to request a document and

usually does not involve the submission of any other data by the user If the requested

URL points to a CGI program then a new document, an error code or a redirection to

another document is performed If the <ISINDEX> tag is used then there will be a

certain amount of user input, with the data being stored in the QUERY_STRING

environment variable The POST method is used to deliver information from the

browser to the server In most cases (including our project), the information is sent via

a submission form. The REQUEST_METHOD environment variable is set to POST

and data is sent as a separate data stream. Another method called PUT is also used but

not as common as the above two HTTP request methods [Sams97]

In the case of the authoring tool, we created a template that would allow the author to

write a new node of hypertext and also keep the same format of the existing 10 ,0 0 0

nodes This would mean creating a CGI-form that when submitted would rewrite the

text in a format that was exactly the same as the other nodes Each node was made up

of the following distinguishing features

• File heading (this would also encode the file name)

• A link to a particular subject file

• The text of the node that would describe the term being defined

• The date the node was written

With this knowledge, designing the form was made simpler We needed an input area

to allow the author to add the title, a select attribute to give the author the choice of

which subject file to link to (as noted previously there are 87 in total), a text area to

allow the content of the node to be written and finally another input area to facilitate

65

the date of creation. The author could then submit this information by clicking on the

submit button and view the new node. If the author is not happy with this she can re­

enter the data and resubmit. The new node is marked up in HTML tags which are

invisible to the user unless she chooses the option on the browser to view the HTML

source. The authoring tool stores the new node in a file as well as presenting it on the

fly to the user. We do this to avoid overwriting files in case of corrections having to be

made. It is also quicker to show the document on the fly and save the data to a file

unknown to the user, instead of saving to a file and opening this up to show the author

its content.

c o n s t r a i n t Enter node data:

equality or inequality relation, between the
values of one or more variables (often two).
E.g. x>3 is a constraint on x. Constraint
satisfaction is the process of assigning values
to variables so that all constraints are true.

05 August 97

File Vane :

Subject Ti'pc : JlI)fllth8fTi8tic3

Node Content :

k Boolean re la t io n of te a £
equality or inequality relation ,
between tbe value? of w e nr aoce

15 a constraint on Constraint

< 1] > j

Create Node Comparison:

D a t e ; pfAwpSiS?'' """" ' """"'1

Figure 4.3 Authoring Tool Node Creation

As mention earlier, we created a template for this hypertext so that the user could

enter data in the knowledge that it would be the same format as the nodes in the

Dictionary of Computing. To facilitate the format of nodes from a different Web based

hypertext, we designed the tool to allow the author to slot in a different template. The

template for the Dictionary can be seen on the right hand side of Figure 4.3, if the

66

author was creating nodes for a different node presentation then all that is needed is a

change to this HTML fill out form. Due to the ease of writing HTML forms, this can

be viewed as a simple task

4 . 2 . 1 F r a m e s

Also on view in Figure 4 3 we see the use of Web frames Dividing a single browser

window into multiple regions for separate and parallel viewing of URL’s is called

framing Netscape describe frames as ‘a sophisticated page presentation capability that

enables the display of multiple, independently scrollable frames on a single screen, each

with its own distinct URL’ [Nets97] Although frames are not part of the WC3

recommended HTML Version 3 2 (they will be in standard 4 0), they have become a

de facto standard and most browsers, including Internet Explorer 3 0 and of course

Netscape 2 0 support them. Frames contain two sets of documents The first is

frameset documents which contains the necessary information for the browser to

determine what kind of structure it should use in dividing the window into frames

These do not contain any information about the actual contents of the frames Frames

are also made up of body documents, these are the actual documents which the

frameset references by calling their URLs (uniform resource locator) Frames can be

made up of numerous body documents The real power of Netscape frames he in the

fact that they allow hyperlinks in one frame to update the contents of other frames

This works because each frame has a name and each hyperlink a target property, this

allows not only the browser to show a document, it also tells that document where it is

to be displayed [Char97]

<a h r e f = document_URL t a r g e t = " t a r g e t _ n a m e " > H y p e r l i n k

T e x t < / a >

We chose frames as they can present the author with a dynamic view of the hypertext

they are authoring In the first step of node creation a user can create, view and re-edit

the node on one screen As our authoring tool is discussed further; the various uses of

frames in the authoring tool will be presented

67

4 . 3 W h y P e r l ?

Due to the large amount of CGI scripting, we had to chose a compatible programming

language to write the authoring tool in. We selected the language Perl for this. Perl

(Practical Extraction and Report Language) written by Larry Wall, is an interpreted

language optimised for scanning arbitrary text files and extracting information from

those. Before the massive growth of the Web it was usually used by system

administrators (and hackers) due to its practicality and ease of use. It is an excellent

language for a variety of tasks, especially those which require text management and

data-parsing and provides great support for regular expressions. Although initially a

UNIX language, the growth of the Web has seen it appear on other platforms.

4 . 4 N o d e t o N o d e C o m p a r i s o n s

When the contents of a new node is created, the next step in our authoring process is

to compute the node to node comparisons. When the newly created node is marked

up, it will be compared to all the other indexed nodes in this hypertext using our text

search engine. A ranked list of existing nodes will be returned, which are the closest in

comparison to the newly created node. This ranked list will be presented to the author

as hypertext links back to the suggested document nodes so that they can be browsed

directly, thus allowing the author to verify the links suggested by the system [Smea95].

4 . 4 . 1 W o r d N e t

We looked at a few ways of trying to find the best way to provide accurate

comparisons between the nodes and one of these was to use WordNet®. WordNet had

been used for other projects in DCU in the past which included image retrieval so we

thought this may provide the comparisons needed. WordNet is a lexical reference

system, a dictionary and a thesaurus. It contains English nouns, verbs, adjectives and

adverbs which are organised into synonym sets each representing one lexical concept.

Different relations link the synonym sets [Word96]. WordNet was designed and built

by the Cognitive Science Laboratory at Princeton University. The WordNet database is

68

made up of lexicographer files, a search engine and an interface that displays the

information in the database Pointers describe the relations between this synset and

other synsets and there are two forms of these, one is lexical relations between word

forms, the other is semantic relations between word meanings There are a number of

different types of relationships between nouns that can be created

• Synonyms

• Groups Senses

• Hyponyms

• Meronyms

• Attributes

Antonyms

Hypernym Tree

Hyponym Tree

Holonyms

Familiarity

• Coordinate sisters List of Compound words

There are also different relationships between verbs, adverbs and adjectives A search

on synonyms of the noun ‘library’ results m the following [Word96]

Sense 1

library — a collection of literary documents or records kept for reference

=> collection, aggregation, accumulation, assemblage — several things

grouped together

Sense 2

library — a room where books are kept, "they had brandy in the library"

=> room — an area within a building enclosed by walls and floor and

ceiling, "the rooms were very small but they had a nice view"

Sense 3

library, depository library — a facility built to contain books and other materials

for reading and study

=> depository, deposit, repository — a place where things can be

deposited for safekeeping

Sense 4

library, program library - (computing) a collection of standard programs and

subroutines that are stored and available for immediate use.

69

=> collection, aggregation, accumulation, assemblage - several things

grouped together

We thought we could compare each new node to the existing hypertext node using

WordNet due to the fact that WordNet would pick up on the relationships between

words and hopefully we could have returned more effective similarity scores between

each node le a ranked list We suspected that node-to-node comparison might be

suitable for a WordNet based similarity measure on the grounds that the nodes were

small and contained few words each Thus the scope for word matching across nodes

based on synonym or other relationships as opposed to exact string matching, would

be greater

We performed some preliminary investigations into the suitability of WordNet based

similarity measure but found our results a bit disappointing The percentage of total

words in the Dictionary of Computing that are in WordNet was only 40% After the

removal of stopwords (1 e common words - the, there, etc), the total grew to 58% of

the total words in the Dictionary We then did a search on the number of collocations

that were in WordNet and also in the Dictionary Collocations are terms which are

commonly found placed together 1 e ‘Artificial Intelligence’, ‘operating system’ They

are also known as phrases Only 1 5% of the term occurrences in the Dictionary were

recognised as collocations, and in fact only 536 unique terms (a lot of the 15% was

made up of the term ‘operating system’) As collocations would give a general pointer

to the content of a text, the percentages given above are an overwhelming indication

that it was not feasible to use WordNet for our node to node similarities because of its

coverage and so we had to find another method for comparing the documents

What we then turned to was a search engine written for a PhD project on Query Space

Reduction in Information Retrieval by Fergus Kelledy [Kell97] This engine was

capable of searching through a corpus of 750,000 documents, using a query of up to

100 index terms and return a ranked list in between 5 and 10 seconds on a

conventional workstation This was ideal for our needs as even though the hypertext

we were using was large, it numbered only 10,000 documents The next few sections

70

will discuss how we adopted this search engine for our system, and the problems we

faced Firstly though, we will explain how our documents were indexed so as to allow

fast retrieval by this search engine

4 . 5 I n d e x i n g o f D o c u m e n t s

Indexing is the ability to represent text contents in a manner with leads to fast and

efficient retrieval The indexing of our hypertext nodes was important as 10,000

documents is a fair size collection We needed a system that will not only index the

existing documents efficiently, but will also allow us to add a new node to the index

and query against it as well The indexing system for the search engine can be split into

5 parts, statistics gathering, node pre-processing, partial index creation, partial index

merging and index post-processing The first stage, statistical gathering, involves the

process of storing information on each node in the hypertext This includes the node

name, the directory where it is stored, the starting and ending location of the text in

each node and the number of index terms within each node The algorithm written for

this runs through each file at a time, extracting the appropriate information

The next stage after statistics gathering is the node pre-processing This is the

procedure where the text of each node is parsed, the stopwords removed and the

remaining words are stemmed Stopwords are words that are non content bearing, like

prepositions, conjunctions and pronouns [Agos96] Due to their high frequency of

occurrence they would be poor discriminators between two nodes There removal will

reduce the index size, thus speeding up the retrieval process The words were removed

using a lexical analysis generator to input the stopwords and to create a deterministic

finite state automata The stopword list is made up of about 400 words and includes

such terms as ‘between’, ‘around’ and ‘cannot’

Another part of the pre-processing is phrase recognition Although the removal of

stopwords reduces the amount of words that are in the index, there are still plenty of

terms that are used excessively throughout the corpus which would be of questionable

value when discriminating between nodes An example of a phrase would be ‘operating

71

system’ These two words commonly occur beside each other and because of this the

system also treats them as one index term. Initially, the text is scanned and commonly

occurring phrases are pulled from the text If a phrase occurs more then 25 times in the

corpus then it is added to the phrase set This phrase set already exists with pre-defined

phrases, like ‘President of America’ Phrase recognition have been found to be very

useful in the discrimination of documents from each other

The next part of the pre-processing phase is a procedure known as stemming and

conflation This procedure reduces words to word stems using a predefined set of rules

which examine the number of vowels, consonants and other patterns The algorithm

used for this was developed by Porter, and is therefore known as Porter’s algorithm

[Port80] A brief explanation of the 6 steps involved in the algorithm follows

1 Remove plurals and -ed, -ing, etc

2 A trailing Y becomes I

3 Maps double suffices to single -isation (-ize plus -ation)

4 Follows same procedure in (3) for -full, - i c and -ness

5 Removes -ant, -ence

6 Removes -e if word has more then two letters [Smea93]

An example of the above would be the words ‘computer’ and ‘computerise’ which

would both be stemmed to ‘comput’ This procedure not only reduces the number of

words in the index and the index size but also helps in the search for a query, e g a

search on the word ‘computer’ would not only return documents with the word

‘computer’, but also documents containing ‘computerise’ It should be noted that this

pre-processing phase is also performed on the query

The data in the index is divided into lexicon information, posting information and

positional information It can be represented by the following table (Figure 4 5)

72

Lexicon Data Posting Data Position Data

Index Term No. of

Postings

Doc Id. Term

Freq.

Min

Pos.

Max

Pos.

Avg.

Pos.

Aeroplane 2 45 10 3 990 150

67 12 54 567 234

Zoom 3 90 2 50 100 75

120 4 132 167 146

150 5 877 951 921

Figure 4.5 Document Representation, taken from [Kell97].

The lexicon holds a record for each unique index term in the collection or hypertext,

along with the number of those nodes it appears in. The posting information contains

the node identifier and the number of times that term appears in that node. Finally, the

positional information contains information on where the first term was found, where

the last term was found and what is the average position for that term in each node.

The positional information is important for other retrieval operations and is explained

further in [Kell97]. This is the third phase used in indexing and is known as partial

inverted index creation. The information is generated into an inverted file containing

the above representation (See Figure 4.5).

The fourth phase is the merging of the partial index files. Inverted files representing

chunks of the indexed documents are merged together to create a third file. Matching

records have their posting lists concatenated together. After this procedure is done,

there exists one large overall inverted index.

Finally when one index exists for all files, we carry out some post processing on the

index. This involves the removal of terms that only appear once in the index, these are

usually misspellings or once-off terms that will not be of use in searching. As well as

the removal of unique terms, the index terms are sorted using within document term

frequency divided by document length [Kell97]. The total indexing of the initial

73

Dictionary nodes took about 6 minutes to run on a Sun SparcStation 20. The above

procedures are not just carried out on the initial documents in the hypertext, but also

on the new nodes being added This was a major problem and will be discussed in

detail in the next section

4 . 5 . 1 I n d e x i n g N e w D o c u m e n t s

We realised that if an author is using our hypertext authoring tool to create a series of

new nodes, then the chances were that the nodes may be of similar content to existing

nodes which would probably be of great significance when it came to the author

selecting links between nodes Not only may an author want to link a new node to one

of the existing ones, but she may also want to link a new node to a node created in the

current authoring session With this problem we realised that to create a new node and

add it to the existing index was not possible in real time We had to explore the

possibility of creating a second index, one that would store information about only the

new nodes created in an authoring session and which would mean the author could

index a node in a short space of time making it usable for node-to-node comparisons,

and then move on to creating another new node When the authoring session was over,

the new index could be merged with the old index as the runtime aspect is not so

important here

To solve this problem we implemented the indexing procedure in the following

manner When the first new node has been created and the links have been added to it,

the user submits this node to be indexed Instead of writing this to the existing index

we call a procedure that creates a ‘DELTA’ index The usual indexing procedure is

carried out, but this time run on only one node and the new inverted file is written to a

separate directory When another new node is created, the same procedure is followed

with the new index being incremented and the next new node can be compared to the

new index and the old index This process continues building up the DELTA index

until the authoring session is finished At this stage, the author can exit the authoring

tool or merge the new index with the existing index, this procedure takes a few

minutes but as said before, since it is done at the exiting stage, tune is not such an

74

important factor The author may not choose to do this and could in fact exit, leaving

the two separate indexes the way they are When next using the authoring tool, an

author can keep indexing nodes into the DELTA index This procedure works fine and

solved the indexing problem, however it led to some difficulties in the retrieval part

These problems and the search engine as a whole will be described in Section 4 6

As "explained already, we could not add the new nodes to the existing index due to

time constraints This meant that the existing index is not updated until the end of an

authoring session To link an existing node to a new node an anchor has to be placed in

the text of the existing node This however does not update the index that represents

the contents of that node We thought this may be a problem as although an anchor

only represents one term, it may still effect the list of documents returned as a result of

a query Our concern turned out to be unfounded though, as after a series of tests, we

found that adding one term to a document and then querying the index using that

specific term has only a minor effect on the ranked list and the document scores This

is due to the weighting scheme used in the retrieval part of the system, which is

discussed in depth later in the chapter It does however remain a problem, and one that

possibly parallel processes and faster processors may solve at a later date

4 . 6 T h e S e a r c h E n g i n e

This next section discusses the retrieval or matching part of the authoring tool, the

element that deals with node-to-node comparison, and the returning of a ranked list of

nodes to the author This, like the indexing before it, can be divided up into a number

of procedures The transformation of the search query into a usable format for

retrieval, a pre-computation phase where all values necessary for retrieval are

computed, the inverted file access phase and finally the normalisation and ranking of

all results on a query We will first give a description of the search engine and then

show how we used it to access our data

The first phase of matching is the conversion of the query node into a workable

format This included carrying out the same pre-processing techniques that we carried

75

out on the original text 1 e the removal of stopwords, the stemming of the remaining

words and the search for phrases among the query The query on the terms ‘Larry

Wall’ is represented in the format shown in Figure 4 6 , a lot of these values are

calculated at the pre-computation phase

No. Query Max IDF Query Query Posting Query

Posting Freq Within Term Term List Term

Doc Fq. Weight Thres. Thres.

20 1 6 6 60 43 68 1 20 lam

27 1 3 6 30 39 80 1 27 wall

Figure 4.6 System Representation of the Query ‘Larry Wall’

The above query is contained in the following format In reading from left to right for

the first query term ‘larri’, originally Larry’ before pre-processing

• 2 0 represents the number of postings which is the number of times that term

appears in different nodes

• ‘1 ’ under query frequency refers to the number of times the index term is in the

query text

• The maximum number of times ‘larry’ appears in a node is 6

• The Inverse Document Frequency (IDF) is 6 60, which refers to the terms

specificity

• The Query Term Weight of 43 68 is the overall weight assigned to the term

• The Query Term Threshold flag is set to ‘1’ (true) if QTT is switched on This

means that terms that appear a large number of times in documents and are

therefore less discriminating, are not processed in the retrieval process

• ‘2 0 ’ indicates the number of postings from the entire postings list that will be read

in and processed

• Finally the Query Term is the actual query term string itself after pre-processing

[Kell97]

76

Briefly, the IDF score is computed to give weights to various terms m the query It

works under the assumption that the more a node contains a given word, the more that

the node is about a concept represented by that word and the rarer a term in a node,

the more discriminating it is Basically it is used to discriminate nodes from each other

W W]=1f ii log (N/df;)

where N is the total number of nodes 1 e 10,000, df ̂ = number of those nodes with

word j and tf is the number of times word > is in node (This statistically based

approach is also known as tf*H)F weighting [Smea93]

The third phase, the inverted file access, involves the use of a binary insertion tree to

efficiently handle the accumulation of many node to node similarity scores [Kell97]

This is followed by normalisation and ranking of the nodes The normalisation process

is needed as node lengths vary in size, some large, some small e g take for example a

user who creates a node with just the term “Perl” in it and looks for node to node

similarities - the node ‘Curseperl’ contains the word “Perl” 2 times in 16 words were

most of the other words are stopwords The node ‘Milarepa’ contains the word ‘Perl’

3 times but there about 150 words in the text of the node Theoretically, if the node is

large then it should have a higher score then a shorter node due to the fact that it

contains more index terms However, the first node ‘Curseperl’ will receive a higher

score as it has less possible unrelated terms meaning it will be more about the subject

matter i e Perl The node scores must be normalised to take their size into account

The results are then sorted and ranked in order

4 . 6 . 1 I m p l e m e n t i n g t h e S e a r c h e n g i n e

After the author has created a new node, it is submitted as a query to the search

engine We pass this text using a system call built behind a HTML form As mentioned

in the description of indexing new nodes, we ran into a few problems When a node is

created it is added to the DELTA index and this process is continued until the session

is over. The problem of querying against this new index and the existing one and

combining results was not trivial The problem here was that since the new index is so

77

much smaller then the old one, results would be returned with a huge bias in favour of

nodes in the new index as the index is far smaller in size. As the results are weighted

using tf*IDF we have to get the Log f N / n where large N is the total number of

documents in the index and little n is the number of documents the query term is found

in. Take for example a query on the large index on the term ‘Larry’, the total index

size is 10 ,0 0 0 documents and the number of postings is 2 0 , so we would get a value of

10000/20 . If a query was made against a value in the new index we may get a

value that looked something like LogyJ5 / 1 , 5 nodes and the query found in 1

document. If we ranked the values from these two, the scores would not be

comparable. However, the node found in the new index may not be as close in

similarity to a node in the existing index, even though the measure value says it is.

Unless this problem was solved, the idea of returning a accurate ranked list of

document scores to the author was not feasible.

We solved this problem by running the search engine three times for each query.

Although this may sound computationally expensive, it wasn’t due to the speed of the

engine in the first place. Figure 4.7 shows the representation of a query when the

search engine is run three times on it.

No.

Posting

Query

Freq

Max IDF Query Query Posting

W ithin Term Term List

Doc Fq Weight Thres. Thres.

Query

Term

26 1 15 6.34 40.28 1 26

After the first run of the search engine...

peri

2 1 2 6.27 39.34 1 2

After the second run of the search engine...

peri

26 1 15 6.27 39.34 1 26

After the third run of the search engine...

peri

Figure 4.7 System Representation of Query ‘Perl’ after 3 runs of the Search

Engine.

78

This works in the following manner The first pass of the search engine, runs on the

existing index with the 10,000 documents In the call to the engine we give the search

the following options ‘search -N 10000 -I Perl’ From Figure 4 7 we can see that the

term ‘Perl’ was located in 26 nodes Running the search the first time gives query

information on the mam index e g the weight for this index term is 6 3468 where the

IDF = Log Vl0000 / 26

The second pass computes the weights on the main index and the DELTA one The

existing index is used to get the N value IDF = Log-\/l0020/2 The mam values

obtained here are the number of nodes m the mdex (l e 2 0) and the postmg list number

of 2 (term found m 2 nodes m the DELTA m dex)

The third pass is then made, combining the DELTA mdex with the mam mdex, but this

time we use the same IDF score and weight that we uses m the second pass, 6 27 and

39 34 respectively This will give us the correct weights for a search on the 2 mdexes,

with their size taken into account IDF = L o g j10020/26

With the above procedure carried out we return to the user a list of results that are

ranked dependmg on the node score with statistics computed on the whole hypertext

The results returned are a list of node names that are also hypertext links to those

nodes The author can then view each node that the search has suggested to see if they

want to link their new node to that document, or link that node to the new node A

sample of the results returned for a query on ‘Perl’ is shown below

D o c . s c o r e F i l e

1 4 5 . 9 0 3 2 9 0 p e r i

1 1 5 . 9 1 4 8 1 0 m x l a r e p a

9 3 . 8 9 5 2 1 8 p e r l - b y a c c

82 5 7 5 5 8 4 p e r i p r o f i l e r

)
79

39 3 4 7 7 1 0 a s s o c i a t i v e a r r a y

The results are ranked by their score (the nodes with the closest similarity to the query

first) The list on the right hand side denotes the node names, the user can click on

these and browse the document

4.6.2 Interface to Node Ranking

After the author is presented with the ranked list of candidate destination links, he is

given the option to link the new node to a node on the list and/or vice versa Figure 4 8

shows how this list is presented to the author

camel
<iargon> The term camel has become
synonymous with the language Perl Since
Larry "Wall picked a camel for the front
cover of his "Programming Peri" book it has
been known as the camel book among peri
programmers His other book "Learning
Perl" is known as the Llama bookl

06 August 97

Create Node Companson

Node to Node Comparisons

1 194 08 Vw* rm camel

\ 138 46 jljri',1 ivjL e camel j SI
■ ~~ i—
i 124 07 j acknowledgements camel □

I 112 57 , kill fil e o camel1D

\ 103 37 tuisepeil o camel O

I 84 37 ¡feeping creature ’0 camel Ef

1 80 75 .patch ;□ camel! □A
1 71 00 jisabeHe-93 o camel □

i 60 03 isabelle D camel; □

j 59 58 tintellect □ camel'O

1 58 72 mouse droppings D camel □

i 55 71 yourdon/constantine □ camel □

’ 54 70 ¡obiect pascal □ camel1 □

1 51 98 juggling eggs O camel 0.......... i.....

Figure 4.8 Ranked List of Node Comparisons for Document ‘camel’.

Beside the score and the hyperlink to the node, there is also two sets of check boxes,

one beside the file name in the ranked list and the second beside the new file being

queried The check box beside the ranked list file name allows the user to create a link

from that particular node to the new node (e g. linking ‘Perl’ to ‘camel’, linking ‘Larry

Wall’ to ‘camel’) The same process works for the new node, if the box beside it is

80

checked, then a link is created from it to the file in the ranked list (e g linking ‘camel’

to ‘Perl’, ‘camel’ to ‘Larry Wall’, ‘camel’ to ‘feeping creature’) From Figure 4 8 it

can be seen that links can be unidirectional or bi-directional During this procedure the

links are generated on the fly We do this so that we can show the user what structural

changes they will make to the hypertext if they add these links If they are not happy

about these changes then they can easily remove or add links till they create the

structure they want

4.7 The Topology Maintenance Module

This next section deals with the use of metrics in our system. We will explain the

compactness metric which we use, followed by how we implement it in order to

provide intelligent suggestions to the author

To provide the user with a view of how adding or deleting a link can change the

structure of the hypertext, we chose to use a compactness metric on the hypertext

This is explained in fall in Chapter 2 but we will give a brief summary here A

compactness metric indicates the intrinsic connectedness of the hypertext [Bota92] A

hypertext with a low compactness value means there are few connections between the

hypertext, it may also mean that the author may not have identified enough links for

that hypertext A high compactness value means the hypertext is tightly connected, but

could also mean there are too many links [Smea95] Metrics only provide values, not

decisions on whether something is good or bad, it is up to the author to choose what

value appeals to them

In order to calculate a value of compactness, we need to create a converted distance

matrix, which will give the shortest distance path between each pair of nodes We were

able to use part of a previous project for this which was based on a Web Robot

[Crim95] We use our new node as the central node to run the metric on Although this

new node has no permanent links to it as yet, we assume it will from the links

generated on the fly (the possible links) We follow these links down to a certain depth

to create the distance matrix If a link does not exist between two nodes then a pre-

81

defined constant k is used, this is usually the total number of nodes in the hypertext

The matrix is made up of the central out distance (COD) and converted in distance

(CID) COD is the sum of all entries in row I for node I in the matrix, COD (=

V C „ The CIN for a node I is the sum of all entries in column I in the converted
J J

distance matrix, CID, = ^^ C To get the compactness value we use the following

formulae

cp = (M ax- E X a)

(Max - Min)

where q is the converted distance or shortest path between nodes 1 and j

Max = (n2 - n) C and Min = (n2 - n)

where n is the number of nodes in hypertext and C is the maximum value an entry in

the converted distance matrix can assume Usually C = k An example of how the

compactness measure works is demonstrated in Figure 4 9 -

f

a b c d e COD

a 0 1 2 3 1 7

b 1 0 1 2 2 6

c 5 5 0 1 2 13

d 5 5 5 0 1 16

e 5 5 5 1 0 16

CID 16 16 13 7 6 58

Figure 4.9 Sample Graph for Converted distance Matrix

The compactness or Cp value for the example above is 525 This is obtained from the

following figures

Cp = (100 - 58)

(100 -20)

If we were for example to add a node from b to e the Cp value would rise to 5375,

however if we had added a link from e to b we get a Cp = 8125 From this example

82

we can see the effect of adding a node in a certain position can have on the structure of

the hypertext From a situation where the Cp value was 525 telling us there is an

average spread of links throughout the hypertext to where the addition of one link

from e to a, making the node e far more accessible, and interconnecting other parts of

the hypertext This change is reflected m the new Cp value of 8125

This is the kind of service we are providing to the author, the ability to add and delete

nodes, to see values like the above and to decide on the linking structure wanted The

size of the graph in example Figure 4 9 is very small as we are dealing with only 5

nodes and 8 links Our hypertext has 10,000 nodes and anything up to 100,000 links

The size of our hypertext made us realise that it was not possible to compute a

compactness value on the entire structure Not only would it not be possible in real

time, it would also be of little use The addition of 1 node to 10,000 nodes will not

change the Cp value much, where as the addition of 1 node in a smaller graph would
I

give us a clearer value of the effect of adding this node to the hypertext We have set

the default value for the depth of the topology metric to follow to 3 Effectively this

means that when computing Cp we use the new nodes and all nodes reachable within 3

links only, as the graph on which we compute Cp This means that the converted

distance matrix is processed from information gathered from the new node and all

nodes to a depth of 3 links from it

83

camel
<iargon> The term camel has become
synonymous with the language Perl Since
Larry Wall picked a camel for the front
cover of his "Programming Perl" book it has
been known as the camel book among peri
programmers His other book "Learning
Perl" is known as the Llama bo ok I

06 August 97

Create Node Comparison

I2 4

3 5

[4 5

6 1

7 2

[ll I1 “
13 1

14 3

[l6 2

17 2

18 1

total no of nodes are 117

total no of links are 213

avg no of links per node is 1 820513

compactness is 0 139983

Figure 4.10 Snap shot of Compactness values with the ‘addition’ of a new node.

Figure 4 10 shows a snapshot of some of the compactness values that are presented to

the author (These values follow on from Figure 4 8 where we added links gomg from

the node ‘camel’ to the nodes ‘Perl’, ‘Larry Wall’ and ‘feeping creature’ and we linked

back to the node ‘camel’ from ‘Perl’ and ‘Larry Wall’) Along with the Cp value, we

also show the changes to the number of links m each file, how many nodes have 0

links, 1 link, how many nodes have 2 links, etc We also show the total number of

nodes, the total number of links m these nodes and the average number of links per

node The author may also find this sort of information useful m creatmg a structure

for his/her hypertext This information will be constantly changing as the author makes

use of the linking facility which allows him/her to see what form the hypertext would

take if certain links were added between nodes

4.8 Adding Link Anchors

This section explams how the anchors for each link are added to the nodes With each

running of the topology module, a file is updated holdmg the links which the author is

currently suggestmg to use When the author has come to a final decision on the

84

linkage to apply, links are physically added by clicking a submit button on a HTML

form to actually hard code these anchors and then create the links between the nodes

This is achieved in the following way Firstly each new anchor is added to each new

node, linking it to existing nodes in the hypertext Secondly each existing node that the

author has chosen to link to each new node is updated with the appropriate link

Finally a link is added to whichever of the ‘87’ subject files the author has chosen to

affiliate each new node with A link from each new node also points to this subject file

In essence by creating the various links we create links of the 3 types discussed in

Chapter 2 Our structural links are the links to and from the subject file, maintaining

the hierarchical relationship within the hypertext structure The vast majority of our

links are relational links as our ranked list presents nodes that have a strong similarity

to new nodes The majority of these will be bi-directional As well as returning nodes

that address similar subject matters, the search engine may return nodes that are

represented by maybe only one term in the text of the new node Although these may

be lowly ranked, the author may want the node to relate to them as well to create a

cross reference structure in the hypertext These are our reference links

When links and anchors are added, they are placed outside the main body of text in the

node, instead of embedded in the text This avoids the problems involved in embedding

anchors in text discussed in Chapter 2 (i e linking to plurals, dealing with different

verb tenses, the problems of having more then one match for the anchor in the text and

working with abbreviations of words)

4.9 Summary

In this chapter we discussed the system design and our user interface We explained

the creation of the interface to the authoring tool and the use of HTML frames We

then proceeded to give a description of the indexing and retrieval part of the tool and

the reasons for avoiding WordNet for the node to node comparisons Problems to

overcome here were the indexing and the subsequent querying of the new hypertext

nodes being designed by the author Our solutions to these problems were then

85

presented The chapter continued with a view of the topology maintenance module,

how this presents the results of using a compactness metric on hypertext to the author

and how the author can view the structure of the local hypertext if certam links were

added Finally we showed how the nodes are actually linked by giving an explanation"

of the anchor placement within the nodes

86

Chapter 5 - Results

5 . 1 I n t r o d u c t i o n

In this chapter we will present the results that we have achieved from experiments

using our authoring tool We will describe how the experiments were set up and the

process involved m obtaining the results Throughout the chapter we will evaluate and

analyse the results we achieved

5 . 2 E v a l u a t i o n M e t h o d

It was decided that the most effective way to evaluate our authoring tool which

implements our research ideas presented earlier, was to allow user interaction with it

and to measure this interaction as it happened This would take the format of allowing

users to write about various computer related topics using the authoring tool and to

link these up to relevant and related nodes in the Dictionary of Computing hypertext

using the tool’s node-to-node comparisons and the topology metric (compactness) As

well as this, we, the developers acting as experts, decided to run through the same

procedure as the other users, in order to see whether there were different styles and a

different approach to authoring hypertext depending on knowledge and experience of

using this particular authoring tool

The ‘users’ were postgraduate students studying for MSc’s or PhD’s from the School

of Computer Applications in Dublin City University Their topics of interest include

speech processing, Irish migration, dynamic programming, localisation, natural

language processing, graphics, etc To briefly summarise what this process involved,

each student using the authoring tool had to create 5 nodes on any computer related

topic of their choice These topics could be independent of each other (the subject of

each node is on a totally unrelated topic from the rest of the nodes created by that

user), or the user may choose to write 5 nodes on related topics or chose a

combination of these The users could then view the completed node without hypertext

links and submit this new node for node-to-node comparison with the existing

87

hypertext A ranked list of the 20 top nodes with the closest similarity would be

returned The user could then view any of the nodes returned in the ranked list to see

whether they should make a link to or from that node When they have created the

links they deem appropriate, users were shown the compactness value for this new

hypertext based on the mini-web surrounding the newly added node A user may

decide to change some links to make the mim-web more compact or leave the current

link structure in place

This process was carried out by 10 different postgraduate students creating 50 new

nodes in total We recorded the following data from each node created by each user

• Filename

• Number of links from the new node

• Number of links to the new node

• Time taken to create each node and its associated links

• Number of nodes viewed to make link selection

• Compactness Value

• Average links per node in the mim-web

• Highest ranked document

• Lowest ranked document

At this stage, we (developers) considered ourselves knowledgeable of the structure of

the Dictionary of Computmg after using it for over a year, how it was set up, the link

structure, the amount of links and anchors per node and how connected (compact) the

hypertext was We were also familiar with the authoring tool as we had designed it

After the user testmg we then re-entered in the text of the 50 nodes using the

authoring tool, running through the same process as the users, creating what we

considered as experts, to be the appropriate linking between the new nodes created

and the existing nodes in the hypertext This would allow us to analyse the

comparisons between the results the users got and the results we achieved, and to see

whether the authoring tool is useful for creating intelligent linkage between nodes In

our series of test we recorded the following data1

88

• Filename

• Number of links from the new node

• Number of links to the new node

• Number of nodes viewed to make link selection

• Compactness Value

• Average links per node in the mini-web

There was no need to record the highest and lowest ranking nodes here as they were

the exact match of the scores returned in the user testing. Time taken was also not

recorded.

5 . 3 N o d e s V i e w e d

As stated previously, we recorded the number of nodes viewed by the user during their

authoring sessions. This was the number of nodes from the ranked list that were

viewed in order to assess whether a link should be created to or from that node. As the

ranked list is returned showing the node to node similarities and their respective

scores, a user may click on any of nodes in the list returned in order to see if that node

has any relation to the node they created. As the link anchor changes colour when it

has been traversed, it was easy to make a count of which of the 2 0 nodes in the rank

list had been viewed.

Figure 5.1a Number of nodes viewed by each user

89

A v e r a g e Number v i e w e d p e r n o d e = 4 . 8 4

A v e r a g e number v i e w e d p e r u s e r = 2 4 . 2 0

S t a n d a r d D e v i a t i o n 1 = 2 828

Max2 = 2 0

M m 3 = 0

Nodes Viewed

T o p ic s

Figure 5.1b Number of nodes viewed by experts

A v e r a g e Number v i e w e d p e r n o d e = 9 . 1

S t a n d a r d D e v i a t i o n = 3 . 5 3 5

Max = 14

M m = 4

Figure 5 la gives a graphical representation of the number of nodes viewed by each

user (each 5 topics representing one user), while figure 5 lb which shows the number

of nodes we chose to view during our authoring session Both these figures also give

descriptive statistics on each session i.e naive users and experts The main finding of

these results showed that we as experts viewed many more nodes then the users who

carried out the initial series of tests The users viewed a total of 242 nodes out of a

possiblelOOO, a 24% value Experts viewed 455 i e 45% of the total nodes returned in

the ranked lists At first glance this could mean that the users were able to look at the

1 Where the Standard Deviation is a measure o f how widely values differ from the average value
2 Where Max is the maximum value m the range of data
3 Where Mm is the minimum value m the range o f data

90

filenames returned and make their decision to create links using that alone given that

node or filenames in the documents are mdicators of content The reason for this could

be due to the fact that a lot of the nodes written were about topics in the user’s fields

of interest and the filenames would be like a keyword to them in relation to a subject

they had written about It could however show that as experienced authors, we took

more time and consideration to create a better link structure.

Figure 5.2 Comparison of the candidates viewing procedure compared to ours

Figure 5 2 is a presentation of the comparison between the users and us in relation to

the nodes viewed What becomes apparent from early on is the erratic nature the 10

different users chose to view nodes The chart in fact displays ranges from 0 (the least

value possible) to 20 (the highest value possible) of nodes viewed The number of

nodes experts view is far more consistent across the 50 nodes, reaching a max of 14

nodes viewed and a minimum of 4 nodes viewed per node created compared to the

users max of 2 0 nodes viewed on some nodes and a minimum of 0 nodes viewed on

some other nodes The user who viewed the complete 20 nodes was unable to create a

link in the end from or to this node The title and topic of this node was ‘Machine

Translation’ We viewed only 5 nodes and were unable to create a link either Our

decision not to view the other 15 was influenced by the other node names returned in

the ranked list and our understanding that there may not be any node in the Dictionary

of Computing that may relate to this node. The user possibly was unsure and perhaps

uneasy with the fact that there may possibly be no relation to their node The next

20

T op ic s U s e rs Developers

91

section will discuss whether the number of links viewed has any relation or bearing to

the number of links created.

5 . 3 . 1 N o d e s V i e w e d v e r s u s L i n k s C r e a t e d

In this section we will analyse whether the proportion of nodes viewed had any

influence on the links created. First, we will look at the number of links created against

nodes viewed This information is presented in Figure 5 3a

Unks

Figure 5.3a Number of links created against nodes viewed

Figure 5 3a shows the plot of links created to and from nodes against the number of

nodes viewed by the candidates to make their linking decision The scattered nature of

the points suggests that the number of nodes viewed has little influence on the links

created, however it should be noted that linkage does rise as more nodes are viewed

The average links created though per nodes viewed is quite low

92

Figure 5.3b Number of links created against nodes viewed

Figure 5 3b shows the links created to and from nodes as against the number of nodes

viewed by an expert author to make our linking decision It should be pointed out that

the range of this diagram is from 0 to 14 compared to 0 to 20 on the users diagram

(Figure 5 3a) as their viewing habits covered the complete range of possible node

viewing There are discrepancies in the association of links created in relation to nodes

viewed as can be seen from figure 5 3b However it is clear that our approach to

viewing nodes had a more significant influence on the links created Linkage figures to

generally tend to rise as we viewed more nodes A correlation carried out using

Pearson Product Moment Correlation Coefficient shows a positive significant

correlation between the 2 variables, nodes viewed and links created (r= 4255, N=50,

p<0 05) as against a correlation for the users that shows no significant correlation

either positive or negative between the 2 variables, nodes viewed and links created

(r= 0554, N=50, p>0 05)

What the graphs (Figure 5 3a & 5 3b) do emphasise, is that by viewing the contents of

more nodes on the ranked list returned by the authoring tool we created significantly

more links then the non-expert users

93

5 . 3 . 2 L i n k s f r o m N e w N o d e s

This section discusses the number of links that were created by each author (user) from

the new nodes created to other nodes in the Dictionary of Computing hypertext Each

user had the option of creating a maximum of 2 0 links going from the new node to

other nodes or creating a minimum of no links if they found nothing suitable to link to

m the hypertext

Nodes

Users Experts

Total No. of Links 129 204

Avg. No. of Links 2 58 4 08

Standard Deviation 1 852 2 505

Max 10 1 1

Min 0 0

Figure 5.4 Comparison of users and developers Minks from’ totals

Figure 5.4 shows the comparison of the links created by the users from their newly

created nodes as opposed to the links we as experts choose The graph and table of

descriptive statistics clearly show that we created many more links from the new nodes

then the 10 users One of the reason for this could of been our expert knowledge of the

Dictionary of Computing, as we did create links on the basis that the Dictionary of

Computing is very tightly connected and should remain this way. This meant that we

may have linked some topics that had a loose relationship instead of perhaps a rigid

94

similarity to the new node being created. To show an example of this consider two

examples, one on a node titled ‘localisation’, the other on a node titled ‘SLIG’. The

first, localisation, was in fact the only topic which arose twice across the authoring

sessions.

• In the first localisation node (See Appendix A) created (lets call it localisation-A),

the user linked the node to Borland International Inc. and Acorn Ltd. We did the

same but also linked the node to ECRC, the European Computer-Industry Research

Centre. This centres mission ‘is to pursue research in fundamental areas of

computer science. The aim is to develop the theory, methodologies and tools

needed to build innovative computer applications’ [Howe97]. We considered this

node to have a reasonable enough relationship to a node on localisation, by studying

previous other linking techniques in the Dictionary of Computing.

• In a node called SLIG (Software Localisation Interest Group - See Appendix A),

the user linked to ECRC and the node created by them already in the session called

Localisation. We did the same but also linked to a node called ‘Software

Verification Research Centre’, which ‘is a specific research centre of the Australian

Research Council. Its mission is to create improved methods and tools, of industrial

significance, for developing verified software’ [Howe97]. Again we felt that a link

should be made here.
i

As pointed out earlier we also viewed the contents of many more nodes in making

these decisions so this also could be a factor. We created on average 1.5 times more

links from the new nodes than the users.

Of the 50 nodes created, there were 12 nodes where users and experts both added the

same amount of links or didn’t add any links at all, as the case may be. A point to note

here is that in one case we agreed with the linkage of a single user’s 5 nodes

completely. These nodes were very mathematical and statistically orientated, meaning

that they probably had few similarities to nodes already existing in the Dictionary, so

link choice wasn’t at a premium. In 6 cases the users added more links then us and in

32 cases we added more links then the users. The users created 5 nodes which they

95

found no suitable match in the Dictionary, we in fact found only one (Machine

Translation or MT, ‘the name given to the translation of text or speech by

computers’) An example where the user was unable to find a link and we were, is a

node titled ‘NBA COM’ This was about the NBA basketball site on the Web Not

surprisingly the ranked list of node similarities to it had no references to basketball'

The user here decided to create no links. When we were presented with the ranked list,

we choose to connect it to the following nodes ‘web page’, ‘home page’, ‘web site’

and ‘world-wide web’ Although it could be argued that the similarity here is weak, we

did again try to make the nodes as connected as possible in line with the Dictionary’s

linkage style This was an extreme example, usually if the user was unable to create a

link we only managed to find 1 link at best The 5 nodes where the users were unable

to find links were ‘Linear Predictive Coding’, ‘Diphone’, ‘Intonation’, ‘NBA COM’

and ‘Machine Translation’ Node titles and text are included in Appendix A

We then set about to see whether there was much overlap in the links the users created

compared to what were created by the experts This would show how many similar

links we both chose, how many separate ones the users chose and how many separate

ones we chose Figure 5 5 shows a table of the differences in both parties linking

procedures

Links Identical L inks
Unique to L inks Created Unique
Experts by Both Users

1 H P S G 0 3 0
2 WordNet 2 4 0
3 Machine Translation 0 0 0
4 VerbMobil 3 4 1
5 Case Frames 6 3 0
6 IS41 1 3 3
7 T C A P 8 3 0
8 VI 2 1 0
9 Aldiscon 2 2 0
10 HLR 1 1 0
11 Time Series 1 2 1
12 Stationary of a Time Series 1 2 1
13 Box-Jenkins Univariate Modelling 0 2 0
14 Forecasting 1 2 1
15 Spectral Analysis 0 4 0
16 Linear Predictive Coding 0 1 0
17 M P LP C 3 2 0
18 Diphone 2 0 0
19 Xpilot 3 2 0

96

20 Spark Audio 5 2 1

21 Prosody 2 1 0
22 Speech Processing 0 2 0

23 Text-to-Speech System 0 1 0
24 Intonation 1 0 0

25 Formant Coding 1 1) 2

26 Localisation 1 2 0

27 Cascading Style Sheets 1 3 0

28 Diablo 4 1 0

29 Dynamic Fonts 2 3 1

30 HTMLHelp 1 1 0

31 Aster 0 4 0

32 Maths Project 0 2 0

33 Prosody in Maths 2 4 1

34 C++ V Java 3 3 0

35 Dec-Talk Express 1 4 0

36 Dynamic Programming 2 4 0
37 Binomial Distribution 0 3 0
38 Bernoulli Trails 3 1 0

39 Chi-Square 3 3 0

40 Team Talk 2 1 0
41 Localisation 2 2 0
42 Internationalisation 1 0 1

43 SLIG 1 2 0
44 Electronic Documentation 0 9 1

45 Scrabble 0 1 0
46 Siggraph 97 4 6 0
47 NBA CO M 4 0 0
48 Movie Computer Graphics Special Effects 0 1 1

49 Gam es Console Versus the PC 0 4 1
50 Motion Capture 4 3 0

Figure 5.5 A sample of differences in both parties linking procedures

In this diagram (Figure 5 5) we clearly show how we, the developers created many

more different links then the users In this sample, nodes 1, 13 and 15 show that we

created exactly the same links from the new node to existing nodes For example, node

number 7 shows we both created 3 identical links but we added a further 8 other ones

This node in fact contained the largest differences of opinion on linkage between us

and the users The node was entitled ‘TCAP’ and is ‘the top layer of the SS7

protocol’ Another difference here is that we viewed 12 nodes to make this decision to

the user’s 1 Figure 5 6 shows the total differences between both parties

97

1□ Developers HBoth □ Users
Nodes

Figure 5.6 Total differences in both parties linking procedures

In total there were 217 links created from the 50 nodes to other nodes by both parties

We agreed on 115 links (53%), they created 16 (7%) different nodes to the experts

and we (experts) created 86 (40%) extra links to the users The small number of links

that the users created uniquely from us and the 53% of links that were identical, shows

that the experts added more links, but to a great extent included the users’ original

hypertext links The large amount of extra nodes we created could be due to the fact

that we read more nodes then the users or that we had it in our agenda to create as

many relevant nodes as was possible

5 . 3 . 3 L i n k i n g t o t h e n e w n o d e

This section discusses the links created from other nodes returned on the ranked list of

node-to-node similarities to the new nodes being created Figure 5 7 gives a graphical
Vf

outlay of this

 ôsyçipgçrç

Users Developers

Total No. of Links 66 70

Avg. No. of Links 1 32 14

Standard Deviation 1 544 1 261

Max 6 5

Min 0 0

Figure 5.7 Comparison of users and developers ‘links to’ totals

Unlike the ‘links from’ results which showed large differences between some aspects

of the two different parties linking procedure, the ‘links to’ results are quite similar

The graph shows a fair bit of overlap in the number of links created and a general

closeness in the line charting the two different groups (users and experts) Once again

we created more links then the users but this time the difference is minimal at 70 links

created by us to the users’ 66 links directed towards the new node We averaged 1 4

links per node to the users 1 32 links which shows there is little disagreement on the

links created

A lot of the nodes had no links directed towards them. The users in 23 instances (46%

of the total nodes created) chose not to create any links pointing to the new node, we

chose 14 (28%) such cases Both parties had the same number of ‘links to’ on 20

nodes (40%), the users had more links pointing to the new node in 13 cases (26%) and

we had more links pointing to the new node in 17 cases (34%) The number of links

created to the new node is very small compared to the number of links going from the

new node for both sets of parties This perhaps represents the fact that people are more

99

comfortable creating links from their node and adding anchors to it then doing the

same procedure to nodes they did not write This however may not be the case as a lot

of the links created are to nodes that have been created in the same session by the user

If it was a case of familiarity with a node then this would mean there would be a lot of

links created to and from the new node The answer however may be that the user may

actually find suitable similarities in the 2 0 nodes returned in the ranked list but may feel

that although there is some form of relationship between the node created and an

existing node, that relationship may not hold the other way around An example of this

is a node written by a user on ‘Time Series’ The user chose to create 3 links from this

to the following 3 nodes Set Theory, Aggregate Type and Esp, but chose to link none

of these back The reasons given for this were as follows.

• Set Theory Time Series is a set of observations whereas as Time Series has little

to do with the theoretical background of Set Theory

• Aggregate Type A continuous Time Series can be digitised using aggregation and

aggregate type is a data type composed of multiple elements

• Esp Esp is an econometric software package that can be used for Time Series

Analysis, and the author felt that a link back would give precedence to Time Series

whereas this package can perform many different statistical analyses

In creatmg our links, we chose to link to Set Theory, Esp and Continuous Function

and we linked Esp to Time Series We found no relationship between the nodes Time

Series and Aggregate type as Aggregate Type is in fact a programming term and this

fact would have been noted by closer examination of the node We created the link

from Esp to Time Series because although we understood the candidates reasons for

not making the link, we had seen similar relationships in the Dictionary where links had

been made to and from a node This is an example of how having a greater knowledge

of the workings of the Dictionary of Computing can lead to the readiness to create

more links

5 . 4 C o m p a c t n e s s

This next section will discuss how the users approached the topology function of the

authoring tool, how we, the developers approached it and a comparison between the

I
100

I

results we both got. As mentioned in the introduction, each user was given an

explanation of how the compactness metric worked, an explanation of what the values

ranging between 0 and 1 meant and how this could be viewed in relation to a

hypertext. Each user was then allowed to interpret the topology value that resulted

from their linking procedure in whatever way they deemed appropriate. They could go

back and create more or less links depending on how they felt about the compactness

value they created. Figure 5.8 shows the compactness levels achieved by both parties

during the creation of the 50 nodes.

Users Experts

Avg. Compactness .151 0.189

Standard Deviation 0 . 1 2 2 0.108

Max 0.516 0.491

Min 0 0

Figure 5.8 Comparison of users and developers compactness values

Figure 5.8 clearly shows that compactness values achieved were in the main very low.

Since a value close to 1 means the hypertext is very compact, and a value close to 0

means there are fewer links between the nodes and the hypertext isn’t very connected,

it can be seen that the amount of links added had little effect on making the mini-web’s

surrounding each node created more compact. Average compactness for a user was

0.151 compared to our average compactness per node added of 0.189. This would be

as expected as we added more links then the users in total. This ratio of compactness

to links added will be discussed later. The compactness value obtained by both parties

was pretty constant throughout the node creation. It was felt that the users showed a

101

certain degree of apathy towards the compactness end of the authoring tool The belief

here is that when they had decided on what links to add, they felt little need to change

the number of links created In fact it was recorded that on only 2 occasions did a user

go back and change the link structure to see if they could get a different compactness

value The low compactness results are highlighted by the fact that the maximum

compactness value achieved by a user was 0 516, with only 3 nodes achieving

compactness values over 0 4 The users got a zero compactness value 5 times as they

created no links to or from 5 nodes. Only in the case of 1 node did we get a zero

compactness value Again we only had 3 nodes that had compactness values over 0 4

with or maximum value achieved at 0 491

5 . 4 . 1 L i n k r a t i o s e f f e c t i n g c o m p a c t n e s s

This last section contrasts both parties’ compactness values when each new node was

added This section will answer the question of how much does the ‘adding of links’ to

an existing hypertext effect the topology of a hypertext, and whether there is large

differences in compactness values when the differences in ‘links added’ is large Figure

5 9 shows a scatter graph of the relationship between the compactness value and the

number of links added by the users This graph gives an overview of the complete
i

range of compactness values achieved when a certain amount of links were created

102

Links Added + Com pactness

Figure 5.9 Scatter graph of the relationship of compactness and links added by

users

This graph is very erratic in nature and shows that while the users were adding links,

the compactness value was at all times random when compared to the number of links

added. The compactness value sweeps up and down throughout the user sessions

showing little dependence on the number of links added. Figure 5.9 is pretty conclusive

in stating that there is little relationship between compactness and the number of links

added. A correlation carried out using Pearson Product Moment Correlation

Coefficient shows no significant correlation either positive or negative between the 2

variables, compactness and links created (r=.0239; N=50; p>0.05).

The compactness reaches its highest point when strangely there is only 2 links added at

0.516. In theory, the more links a user adds the more compact a hypertext should be.

When 13 links (the highest combined total of links created to and from a new node)

are added the compactness value is only around 0.2. This would lead us to believe that

the Dictionary of Computing hypertext is also very erratic in its link structure. An

example of this can be seen from the link structure attached to a node created by a user

titled ‘Prosody’. These are ‘variations of the acoustic signal whose domains are beyond

the boundaries of each individual phonetic segment....etc.’. The user here created only

4 It should be noted that with all scatter graphs in this chapter, some points plotted on the graphs may
overlap making them hidden to the reader. This is very applicable in this graph as there is 5 node
points at the graph axis 0,0.

103

one link out of this node going to a node called ‘Wavelet’ It in turn linked to 3 nodes,

2 of which were the same The links in these nodes had a tendency to link back to the

parent nodes thus creatmg a connected mim-web by using only one link The

compactness value for this was 0 496 When we created links to and from this node we

chose to create 3 going from it and one coming back We thought that by increasing

the linkage we would make the hypertext more compact, instead we reduced

compactness by widening the range of the mim-web and reducing the number of links

per node average Our value for compactness was 0 109, a dramatic drop on the

topology value achieved by the user

Figure 5 10 shows a scatter graph of the relationship of the compactness value to the

number of links added by us (experts)

Links Added

5.10 Scatter graph of relationship of the compactness and links added by

developers

The graph (figure 5 10) shows that again there is a weak relationship between the

compactness value and the number of links shown When we used the authoring tool in

the construction of the 50 nodes we tried to make the hypertext as compact as

possible This meant creatmg a lot of links that the other users may have ignored (see

Section 5 2 2) An example of this is a node called ‘C++ V Java’ The student linked it

104

to 3 nodes and linked 1 node back to it and obtained the compactness value of 0 084

We linked it to 6 nodes and linked 3 nodes back to it and received a compactness

measure of 0 119 For so many links created we would have expected a higher

compactness difference, but once again the structure of the Dictionary most probably

caused a low score in compactness The compactness values generally rise as we added

more links though It does sweep up and down but is steadily rising which would show

that perhaps our authoring approach and choice of linkage were better in tune with the

Dictionary’s link structure then the authoring approach taken by the 10 users Again a

correlation was earned out using Pearson Product Moment Correlation Coefficient,

but shows no significant correlation either positive or negative between the 2 variables,

compactness and links created (r=.176; N=50; p>0 05), although the relationship is

slightly greater than that of the users

5 . 5 O t h e r S t a t i s t i c s

In order to see whether much effort went into the writing of topics by the users, we did

a brief analysis of the length of each node created by the users The following are the

statistics we came across

• Average word count per node 62 words

• The standard deviation for the set of 50 nodes 29 48

• The max word count 145

• The mm word count 16

We also analysed the time spend per node creation This was the time it took a user to

write a node right through to indexing it when all the linkage was created and the

topology checked

• Average time spend per node 7 08 minutes

• The time standard deviation for the set of 50 nodes 2 28 minutes

• The max time spent on a node 15 minutes

• The min time spent on a node 3 minutes

• The total time spent by the 10 users was 5 hours 57 minutes

105

5.6 Summary

In this chapter we presented our results and findings from experiments using our

hypertext authoring tool We first explained how our series of tests were carried out

and the two different groups who carried out the tests, those who had little or no

experience of authoring and using our authoring tool (the 10 DCU Postgraduate

students), and those (ourselves) who had previous experience in authoring and who

designed and built the authoring tool We compared results under the following

headings nodes viewed, nodes viewed in relation to links created, links created from

the new node, links directed to the new node, differences in approaches to topology

and compactness values m relation to links created We found that there were in places

large differences in the authoring approach taken by the different groups (users,

developers) We created more links then the users and in doing so had more of a

positive effect on the compactness value even though there was no real positive

relationship between links added and the compactness value In the following final

chapter we will present conclusions from our work and discuss possible ideas for

further research

106

Chapter 6 - Conclusions

In this thesis we presented an approach to authoring hypertext based on providing

intelligent link suggestions to the author using information retrieval techniques and

also utilising a compactness topology metric. The need for such a tool is illustrated by

the number of problems with hypertext presented in Chapter 2 of this thesis, including

disorientation, navigation, linking and embedding, text to hypertext conversion and

cognitive overload and the fact that there is a scarcity of proper hypertext authoring

tools. In Chapter 2 we discussed some of the current authoring tools on offer and we

were of the opinion that most hypertext authoring tools concentrate and emphasise

presentation only ignoring the fact that hypertext authoring is about relating,

connecting and presenting information in a way to enhance access and identify

structure.

Our experiments and the evaluation of the corresponding results, have led us to the

following conclusions about hypertext/hypermedia authoring. We are of the opinion

that information retrieval is useful as an approach to authoring and returning intelligent

linking suggestions for authors to choose from. In our authoring tool we returned 20

possible link suggestions for every node created by the author. We felt this was the

right number as an increase in the number of nodes in the ranked list would have

caused an increase in the amount of irrelevant data returned. We felt that our users at

least had a tendency to chose links according to the actual name or title of the node

returned without viewing the node contents to see if their choice was right. This meant

that in our case a lot of possible links were missed by users who may not have

associated a particular filename with the topic they had just written about.

Links also can be wrong as our example in Section 5.3.3 show where a user assumed

the node ‘Aggregate Type’ had relevance to data types used in ‘Time Series’ when it

in fact was about programming. Our approach as authoring experts when we authored

and added the same nodes to the hypertext as our test users, shows that it is better to

6.1 Introduction

107

view more nodes, 1 e on average the experts viewed twice as many nodes as the users

The experts authoring approach showed a positive correlation between ‘links created’

and ‘nodes viewed’ This differs from our apprentice users’ authoring techniques

where no significant correlation between the links created and nodes viewed was

found

Although the answers returned by our information retrieval methods were quite

relevant to the query entered (i.e the text of the newly created node), we did feel that

some nodes were missed due to conventional IR algorithms which are based on

keyword search only The answer to this problem is unclear Perhaps some form of

information retrieval using semantic closeness is needed Early in our work we tried

this idea by experimenting with WordNet which uses lexical relationships between

word forms and semantic relations between word meanings (see Chapter 4 Section

4 4 1), but our investigations proved fruitless as WordNet does not provide good

coverage of computer phraseology

Hypertext authors do tend to make links to nodes that they are more familiar with

This was the case as a lot of our apprentice authors created links among the 5 nodes

that they created themselves This was partly because in most cases the subject matter

of each users’ 5 nodes were similar However our findings also led us to believe that

there was a tendency not to create bi-directional links by both the system users and us

as experts in the field of hypertext authoring This not only has to do with the subject

matter of the Dictionary of Computing which was our test hypertext, but also the fact

that since we as experts, had not actually authored the contents of the nodes we were

linking to, we were less comfortable with placing anchors in those existing nodes

Whereas it would have been an ideal to have created a hypertext from scratch and let

the users work from there, our process of evaluation using a series of different authors

would not have been profitable The problems of using one test set l e the Dictionary

of Computing, had a greater influence on our results then we would initially have

hoped The fact that the Dictionary is not consistently rich in content and links, leads

to some discrepancies in calculating a compactness value on certain ‘mini-webs’. This

is particularly well illustrated in Chapter 5 Section 5 4 1, where we created a total of 4

links going to or from a node and a user created one link and yet got a compactness

score that created a far more connected mini-web then the one we, as experts tried to

create Due to time constraints we were unable to test our authoring tool on different

hypertexts in order to compare and evaluate these results This possibly could be

examined in future research

As pointed out in the results chapter, the apprentice authors showed a certain degree

of apathy towards the topology part of the authoring tool From the information the

users imparted to us and our experiences of using the authoring tool, we conclude that

in this instance the topology part of our authoring tool was not particularly effective in

creating a coherent structure to this hypertext Again this is the partly due to the

inconsistencies in the Dictionary of Computing nodes and the fact that strict guidelines

were not set as regards to what structure to maintain in the Dictionary Although it

was known that the Dictionary was fairly connected as regards links, the users and to a
i

certain degree the experts felt that once the links had been chosen, there was little

point in changing, deleting or adding links in relation to what the compactness value

was As stated before, perhaps it is only when a hypertext is being constructed from

scratch that a topology metric like compactness finds its real usefulness as regards

structuring hypertext The idea of telling an author that a strict compactness level was

needed e g all mini-webs should have a value of 0 6 , would not only inhibit the

hypertext author, but the swapping and switched of links in order to keep the right

compactness score, would lead to dubious and non relevant linkage

As pointed out in Chapter 4, we decided to use Perl and HTML in the implementation

of our authoring tool At the time this was the most obvious and popular choice Since

then however, the emergence of Java and Java Script for presenting Web based

information, particularly form based information, has dramatically changed on the

Web A lot of the initial problems we had in implementing the authoring tool such as

file permissions, platform choice and the interface design would have been removed

due to Java’s extensive library routines, portability, robustness and multi-threadmg

During our tests we discovered that having expert knowledge of the test set

(Dictionary of Computing) helped in the way we were able to increase connectivity

109

between new nodes created and existing nodes in the hypertext As a hypertext author

would in most cases be more familiar with the hypertext they were authoring, the

problem of not knowing the existing hypertext structure should not arise
i

6 . 2 F u t u r e W o r k

In our author tool we used the topology compactness metric on our hypertext which

showed how connected the hypertext was in the locality of the new node that we

created In Chapter 2 we presented other methodologies for analysing the structuring

of a hypertext including a global hypertext metric called stratum (which shows if there

is a natural order for reading a hypertext), and 2 node metrics, depth (how deep a node

is from the hypertext root node) and imbalance (whether a hypertext is balanced -

similar number of nodes on each different topic) These may have been useful as

regards presenting the author with possible other information in creating links,

particularly the depth metric and possibly should be added to the topology maintenance

module of the hypertext authoring tool

As mentioned above, the evaluation of results could be enhanced if the authoring tool

was tested on different hypertexts with different existing structures Future tests should

not only be carried out on existing hypertexts but should also include the evaluation of

a hypertext created from scratch We were limited by time and even though we were

able to draw suitable conclusions from our results, we felt that greater understanding

of the hypertext authoring domain could be got from working on a larger test set

110

References

[Adam94] W.J. Adams, “Application of Object Oriented Design Principles and
Graphical Design Techniques to Computer Aided Hypertext Based Instruction”,
Master’s Thesis, University of Arkansas, 1994.

[Adam97] W.J. Adams, C.A. Carver Jr., “The Effects of Structure on Hypertext
Design”, In Proceedings of ED Media 97, Calgary, June 1997.

[AdMe97] Ad.Media: Webstats, World http://www.admedia.aust.com/ws-4.htm,
1997.

[Agos96] M. Agosti, A. Smeaton (Editors), “Information Retrieval and Hypertext”,
Kluwer Academic Publishers, 1996.

[Aksc88] R. Akscyn, D. McCracken, E. Yoder, “KMS: A distributed hypermedia
system for managing knowledge in organisations”, Communications of the ACM, Vol.
31, No. 7, pp. 820-835, July 1988.

[Bala94] V. Balasubramanian, “State of the Art Review on Hypermedia Issues And
Applications”, Graduate School of Management, Rutgers University, Newark, New
Jersey, http://eies.njit.edu/~333/review/hyper.html, March 1994.

[Bieb93]. M. Bieber, “Providing Information Systems with Full Hypermedia
Functionality” , Proceedings of the Twenty-Sixth Hawaii International Conference on
System Sciences, 1993.

[Bota92] R. A. Botafogo, E. Rivlin, B. Shneiderman, “Structural Analysis of
Hypertexts : Identifying Hierarchies and Useful Metrics”, ACM Transactions on
Information Systems, Vol. 10, No. 2, April 1992.

[Bout96] T. Boutell, “CGI Programming in C and Perl”, Addison-Wesley Publishing
Company INC, 1996.

[Bush45] V. Bush, “As We May Think”, The Atlantic Monthly, 176, pp. 101-
108,1945.

[Calv97] L. Calvi, P. De Bra, “Using Dynamic Hypertext to Create Multi-Purpose
Textbooks”, In Proceedings of ED Media 97, Calgary, June 1997.

[Carl89] P.A. Carlson, 'Hypertext and Intelligent Interfaces for Text Retrieving’, in E.
Barrett, (ed.), The Society of Text — Hypertext, Hypermedia, and the Social
Construction of Information , the MIT Press, Cambridge, Massachusetts, 1989.

i l l

http://www.admedia.aust.com/ws-4.htm
http://eies.njit.edu/~333/review/hyper.html

[Char97] C D Rose, “The Netscape Frames Tutorial”,
http //www newbie net/frames/, 1997

[Chua95] T Chua, C Choo, “Automatic Generation and Refinement of Hypertext
Links”, The New Review of Hypermedia and Multimedia Applications and Research,
Vol 1, Taylor Graham, 1995

[Conk87] J Conklin, “Hypertext An Introduction and Survey”, IEEE Computer,
1987

[Cons89] M P Consens, A O. Mendelzon, “Expressing structural hypertext queries in
Graphlog”, Proceedings of Hypertext '89, Pittsburgh, pp 269-292, ACM Press

[Coom90] JH Coombs, “Hypertext, Full Text, and Automatic Linking”, 13th
International Conference on Research and Development in Information Retrieval,
Brussels, pp 83-98,1990

[Crim95] F Crimmins, B Nolan, DCU Web Robot, [Donn95] P Donnelly, “Resolving
Anchor Locations for Pre-Defined Links in Hypertext Nodes” ,M Sc Thesis, School of
Computer Applications, Dublin City University, 1993

[Crof89] W B Croft, H Turtle, “A retrieval model for incorporating hypertext links”,
Proceedings o f Hypertext ’89, Pittsburgh, pp 213-224, ACM Press

[Crou89] D Crouch, C Crouch, G Andreas, “The Use of Cluster Hierarchies in
Hypertext Information Retrieval”, Proceedings of Hypertext ’89, Pittsburgh, pp 225-
237, ACM Press

[Drak94] N Drakos, “From Text to Hypertext”, http //cbl leeds ac uk/mkos/doc
/www94/tableofcontents3_l htm l, 1994

[Dunn93] C Dunne, “Exploiting a User Model to Dynamically Generate Guided Tours
in Hypertexts”, M Sc Thesis, School o f Computer Applications, Dublin City
University, 1993

[Fair88] K M Fairchild, S E Poltrock, G W Furnas, “SemNet Three Dimensional
graphic representations of large knowledge bases”, Cognitive Science and its
Applications for Human-computer Interaction, R Guidon (Ed), Laurance Erlbaum
Associates, 1988

[Foss89] C L Foss, “Tools for Reading and Browsmg Hypertext” , Information
Processing and Management, 1989

[Fris92] M.F Frisse, S.B Cousins, “Models for Hypertext” , Journal for the American
Society for Information Science, Vol 43, No 2, pp. 183-191, 1992

112

[Fura89] R Furata, P D Stotts, “Programmante Browsing Semantics in Trellis”,
Proceedings of Hypertext '89, Pittsburgh, pp 27 - 42, ACM Press 1989

[Furn86] G W Furnas, “Generalised Fisheye Views”, Proceedings o f CHI ’86, Boston,
1996

[Gim95], A Grnige, D B Lowe, J Robertson, “Hypermedia”, IEEE Multimedia,
Winter 1995 p24-35

[Hala88] F G Halasz, “NoteCards A Multimedia Idea Processing Environment”,
Interactive Multimedia, Suseann Ambron and Kristina Hooper (Eds), Microsoft Press,
1988

[Hall97] W Hall, H Davis, G Hutchings, “Rethinking Hypermedia - The Microcosm
Approach”, Kluwer Academic Publishers, 1996

[Hear97] G Hearne, “QA Tools for Help Systems”, M Sc Thesis, School o f Computer
Applications, Dublin City University, 1997

[Howe97] D Howe, “Computing Dictionary”, http //wombat doc ic ac uk/foldoc/
index html, 1997

[Kell97] F Kelledy, “Query Space Reduction in Information Retrieval” , PhD Thesis,
School o f Computer Applications, Dublin City University, 1997

[Maur94] H Maurer, “Hyper-G Advancing the Ideas of World-Wide-Web”, Institute
for Information Processing and Computer Supported New Media, Graz University of
Technology, Graz/Austria, http //www chemie fu-berlin de/outerspace/doc/hyper-g-
abs html#Andrews94a, March 1994

[McAd93] M McAdams, "The User Interface for Public Cybermedia", Graduate
Program in Media Studies, The New School for Social Research, New York, February
1993

[Mich94] J Michalski, “Internet Tools 101 The building blocks”, Release 1 0, January
31st, 1994 v94 nl pl4(5)

[Morr94] P J Morrissey, “An Exploration of Automatic Hypertext Construction”,
M Sc Thesis, School o f Computer Applications, Dublin City University, 1994

[Nels80] T. Nelson, “Replacing the printed word A complete literary system”,
Proceedings oflFIP Congress, 1980, pp 1013-1-23

113

[Nets97] “Frames”, http //home netscape com/comprod/products/navigator/
version_ 2 O/frames/index html, 1997

[Netw97] “Internet Domain Survey”, January 1997, http //www nw com/zone/WWW/
report html, 1997

[Orch95] D Orchard, “Hyper-G”, From Web Conference 95 Demonstration and
Paper Session, http.//www pacificspirit com/wwwConfNotes/hyperg htm, 1995

[Pilt97] R Pilto, “Contrasting Text and Hypertext”, http //www ekl oulu fi/staff/nsto/
htacc/ver3/contents htm, 1997

[Port80] M F Porter, “An Algorithm for Suffix Stripping”, Program, 14(3), pl30-137,
1980

[Prad95] “Harmony — The Umx/Xll Client for Hyper-G”,
http //vertex cs bsu edu/hyperg html, 1995

[Rich95] R Richardson, A Smeaton, “Using WordNet in a Knowledge-Based
Approach to Information Retrieval”, Working Paper CA-0395, School of computer
Applications, Dublin City University, Ireland, 1995

[Rivl94] E Rivlin, R Botafogo, B Shneiderman, “Navigating in Hyperspace
Designing a Structure-Based Toolbox”, Communications of the ACM, Vol 37, No 2,
February 1994

[Sams97] S Sams, “CGI and Perl Tutorial”, http //www catt ncsu edu/projects/perl/ ,
1997

[Schn89] B Schneiderman, G Kearsley, Hypertext Hands-on1 An introduction to a
new way of organizing and accessing information , New York, Addison-Wesley
Publishing Company, 1989

[Scho97] School of Computer Applications, Dublin City University,
http //www dcu ie/

[Smea93] A Smeaton, “Information Systems Lecture Notes” , School of Computer
Applications, Dublin City University, 1994

[Smea95] A Smeaton, “Building Hypertext under the Influence of Topology Metrics”,
IWHD'95 (International Workshop on Hypermedia Design), Montpellier, France, June
1995

114

[Smea96] A Smeaton, G Gollogley, “Software Environments for the Dynamic
Organisation of Multimedia Information”, Mid-project report for Project STI95I714,
October 1996

[Srrat97] J B Smith, “The King is Dead, Long Live the King”, Proceeding of the
Eighth ACM Conference on Hypertext, April 1997, p240

[Talb89] M L Talbert, D A Umpress, “Object Orientated Text Decomposition A
Methodology for Creating CAI Using Hypertext” in Lecture Notes in Computer
Science #360, Computer Assisted Learning, Proceedings of the 2nd International
Conference, ICCAL 1989, edited by H Maurer, New York, NY 560-578

[Thur95] M Thuring, J Hannemann, JM Haake, “Hypermedia and Cognition •
Designing for Comprehension”, Communications of the ACM, Vol 38, No. 8 , August
1995

[W3CR97] “W3C - The World Wide Web Consortium”, http //www w3 org/, 1997

[Word96] “WordNet Man Pages”, http //www cogsci princeton edu/~wn/index html,
1996

115

Appendix A - User Node Content

HPSG

HPSG was developed by pollard and sag in 1988 to incorporate the important features
that they had identified from several other grammatical formalisms including
government binding theory and generalised phrase structure grammar Its name stems
from the fact that the head of a phrase or sentence is deemed the most important
constituent and all important information is gathered from it

WordNet

WordNet is an on-line lexical resource which combines some of the more effective
elements of the traditional dictionary and thesaurus Information is represented in
synsets or synonym sets which contains several words or collocations which have the
same sense or meaning Each synset is linked to other synsets by semantic relations
which include hyponymy, antonymy, troponymy etc Hence concepts are arranged in a
kind of hierarchical concept graph

Machine Translation

MT or machine translation is the name given to the translation of text or speech by
computers While this task has proven to be more difficult than initially thought, there
are several commercial systems currently available, including METAL, SYSTRAN and
EUROTRA These translate between several different natural languages, 1 e they have
a variety of source and target languages

VerbMobil

VerbMobil is a face-to-face machine translation system currently under development in
Germany It uses HPSG as its main grammar formalism and speech synthesis to do
initial transfer between the speech and this formalism. It is intended for use with
discussions based on the topic of arranging meeting times and places It translates
between German and English

Case Frames

Case Frames or case grammars as they are also known were developed by Charles
Fillmore They are intended to represent a sentence not only in terms of syntax but also
with semantics The principal verb or action of the sentence is extracted and its
corresponding case frame identified This frame mdicates which roles or noun phrase
should be present in that sentence and what semantic properties those roles should
have Roles include agent, patient manner and instrument

116

IS41

IS41 is the American standard for cellular mobile phones. The standard isn't as
developed as GSM. It allows update locations cancel location are some of the
operations.

TCAP
TCAP is the top layer of the SS7 protocol. It stands for transaction capability
application protocol It's used in the communications industry.

Vi is a tool used to edit text files. There is a big learning curve as all the commands are
groups of keys i.e. no menu.

Aldiscon

Aldiscon are involved in the telecommunication industry. There main product is short
messaging, other products in HLR, VLR, cellular, GSM, IS41. It is an Irish company.

HLR

The HLR is the central part of the GSM network. It is a database of subscribers. It
holds the location of the subscriber and what services that subscriber is allowed. There
is a lot of network traffic to and from the HLR. Most of the network traffic involves
update locations. As a subscriber moves from one location to the next the mobile
phones sends a message to the HLR. The HLR then sends messages back to the mobile
phone and maybe to the VLR. The HLR can also handle Short messaging. HLR stands
for Home Location Register.

Time Series

A time series is a collection of observations made sequentially in time. A time series is
said to be continuous when observations are made continuously in time. Also can have
a discrete set of values continuous can be made discrete by digitising or aggregation.

Stationarity of a time Series

A series is called (strictlyO stationary if the joint probability distribution associated with
m observations made at any set of times 1 +k, 2 +k,...m+k is unaffected by any change
in the value of k. A series that is not automatically stationary can be rendered
stationary by repeated differencing where the differencing operator equals 1-B.

Box-Jenkins Univariate Modelling

The Box-Jenkins approach is an iterative approach to time series model building for
forecasting. Each of these series will be modelled using three stages of the ARMA
model building process. These stages are: (i) identification, (ii)estimation, and (iii)
diagnosis. Because the class of possible models is too extensive to be conveniently

117

fitted directly to data, rough methods for identifying subclasses of these models are
developed. Such methods of model identification employ data and knowledge of the
system to suggest an appropriate parsimonious sub-class of models which may be
tentatively entertained. In addition, the identification process can be used to yield
rough preliminary estimates of the parameters of the model.

Forecasting

All quantitative forecasting methods make use of the following basic strategy. Past
data are analysed in order to identify a pattern that can be used to describe them, then
this pattern is extrapolated, or extended into the future in order to make forecasts, this
strategy rests on the assumption that the pattern that has been identified will continue
into the future. The technique cannot be expected to give good predictions unless this
assumption is true. Short term forecasts are more reliable than long term. Time series
models generate predictions that are based solely on the historical pattern of the
variable to be forecast.

Spectral Analysis

Spectral analysis only applies to phenomena which possess a wave-like structure i.e.
can be represented as a composition of sine and cosine waves with different amplitudes
and frequencies. In fact we may usefully apply spectral analysis to any type of process
which fluctuates in some form, but which exhibits a kind of stability i.e. is stationary.
Spectral analysis includes many useful methods based on the Fourier analysis of time
series. The most fundamental spectral problem is the estimation of the spectral density
function. Spectral analysis can provide an intuitive frequency-based description of the
time series under consideration and indicate interesting features such as long memory,
presence of high frequency variation and cyclical behaviour.

Linear Predictive Coding *■

LPC (Linear Predictive Coding) is one of the most widely used techniques for speech
compression today. The method is based on the decomposition of the speech
production process into an excitation model and a vocal tract model. The vocal tract is
modelled as an all-pole filter. With traditional LPC (as opposed to MPLPC (Multipulse
Linear Predictive Analysis)) produces low quality but intelligible speech.

MPLPC

MPLPC (Multipulse Linear Predictive Coding) is a variation on traditional LPC which
produces by an analysis-by-synthesis technique much higher quality speech. Single
pulses are added to the excitation signal such that a perceptually significant error is
minimised.

Diphone

Given the difficulty in modelling phone-to-phone transitions researchers have turned to
a new synthesis unit which circumvents this problem Diphones consist of two half­
phones, the transition being contained within the unit itself. Unfortunately the number

118

of required synthesis units grows from 40 to 1600 i.e. 40*40. Since spectrally similar
units are being joined at diphone boundaries smoothing rules should be simple.

Xpilot

Xpilot is a multi-player space game. Run on a UNIX platform and across a network.
(You can play with people in different countries) it's great fun. Weapons at a player's
disposal include smart-missiles, lasers and mines.

Sparc Audio

Early SPARC stations supported only one type of audio data: 8-bit mu-law encoded
and sampled at 8000Hz. This gives telephone quality speech. Since then SPARC
stations 5 and 6 have a Crystal Semiconductor audio device which handles may more
formats: PCM, A-law for example. Other sampling rates are also supported.

Prosody

Prosodic features are stress, duration and intonation They are variations of the acoustic
signal whose domains are beyond the boundaries of each individual phonetic segment.
Listeners perceive prosodic features by a complex combination of acoustic correlates
such as intensity, duration and fundamental frequency.

Speech Processing

There are 2 types of broad class synthesiser, which are articulatory analog and acoustic
domains based on mimicking how humans speak. There are also 2 control methods
available through analysing existing speech sounds or through a set of rules and pre­
programmed sounds. DECtalk is an example of the former and sounds more natural
and intelligent than acoustic domain synthesis by rule.

I >
Text-to-Speech System

In developing a text-to-speech system(TTS) two distinct modules need to be assessed,
the linguistic mode and the signal processing mode. In the linguistic mode text pre­
processing, morphological analysis and grapheme to phoneme conversion needs to be
accomplished. Several problematic areas need to be solved like that of numbers, and
proper names. This string of phonemes is then sent to a synthesiser which can process
it in several different ways. One of the more successful methods to date has been that
of diphone concatenation.

Intonation

An algorithm for generating synthetic intonation was applied to a sample of text. The
sample is given to expert listeners to allow them compare synthetic intonation to that
of real human speakers intonation. The results showed that intonation choices in
reading aloud appear to be guided by synthetic and phonological factors. Especially in
respect to declination , a distinction should be made between intonation phrases in
sentence initial, medial and final position.

119

This is phoneme coding where each allophone must be explicitly choose by the user
This allows for unlimited, multilingual vocabulary Instead of words the lexicon
consists of word sounds made up of phonemes and their allophone variants

Localisation

Computer companies wishing to maximise their profit margin try and target as many
markets as possible In order to attain this goal foreign markets msu tbe exploited For
example an US company may attempt to target France, Germany, Italy and Spam
Therefore the product must be translated into these target languages Translation does
not describe this process correctly the product must be localised to make it appear as
if it was created and developed for the target market m question This process is part
of what is called the localisation industry

Cascading Style Sheets

HTML is a tagged based method for descnbmg the structure of a document , eg
document title , text body and links to other documents HTML is not meant to
describe how text should be formatted CSS are a method to allow this An author
creates various styles which can be applied to an entire web site, to numerous
documents or to a single document The stylesheet can be embedded m the document
or can be linked in More than one stylesheet can be included in a document

Diablo

Diablo is a Role playing 3D game it has smgle player or multiplayer options It is
based on the concept of medieval campaigns laced with magic where the user plays a
warrior, a sorcerer or a female the player is given a mission to complete involving
killing demons, skeletons, the undead, scary creatures and evil men the player must
mcrease their experience level by collecting information, more killings, finding better
weapons and better magic it is a great game for all those RPG lovers

Dynamic Fonts

Fonts specified m a document can only be viewed correctly if they are present on the
users machine Otherwise the text is displayed as normal To overcome this problem
Dynamic fonts have been created the web author creates their page usmg certam
fonts These fonts are then stored m a separate file This fonts file is referenced by the
web page and is downloaded by the user this guarantees that the web page will have
the correct fonts as specified by the author Only Web browsers that support dynamic
fonts will carry out this operation, otherwise the text is displayed as normal

Format Coding

120

HTMLHelp

HTMLHelp is a Microsoft help authoring tool that allows the user to create HTML
based help the help system can be run on a standalone machine or across the Web. It
is platform independent but currently only works with Microsoft Internet Explorer

Aster
Aster is a system developed by Dr T B Raman to produce spoken output from
athematical formulae He used the LaTeX markup language to derive his output, and
relayed the output to the user using a dec-talk synthesiser

Maths Project

The maths project is a system developed at the university of York to convey
mathematical to blind users using synthetic speech It uses prosodic queues to enhance
the equations, and also uses "earcons" to give overviews of the mathematical
expressions

Prosody in Maths

Prosody is used in the translation of mathematical formulae into synthetic speech The
use of prosody enhances the equations to produce meaningful spoken output, instead
of output m a monotone

C++ V Java

C++ and Java are similar m that they both use the Object Oriented method of program
design However, they are different in the way the handle both garbage collection, and
direct memory access Where C++ uses the pointer construct, Java handles this
automatically, abstracting the user from this aspect of programming

Dec-Talk Express

The Dec-talk Express is a device produced by the Digital Corporation which takes
ASCII text as input, and produces spoken output It has a number of in-built voices
which the user can adjust, and is highly programmable

Dynamic Programming

Dynamic programming is a method for solving decision problems over large state
spaces It was devised in the 1960's by Bellman The method devised by Bellman is
often referred to as the value iteration method

Binomial Distribution

The binomial distribution is the appropriate distribution when a number of Bernoulli
trails are carried out Where the sample space is large the binomial distribution can be
approximated using the Poisson distribution.

121

Bernoulli Trails

Bernoulli trails are independent trails. The outcome of these trails can only take on one
of two values, success or failure. The probability of success must be constant.

Chi-Square

The Chi-square distribution is a skewed probability distribution. It can be used for tests
of independence and goodness of fit tests. It can also be used for hypothesis tests on
population standard deviations.

Team Talk

Team talk is a web site dedicated to English Premiership football. My team is Carlisle
United.

Localisation

Localisation in the process of integrating the whole of a product into the language and
culture of the target markets to meet their specific needs. It involves all components of
a software product including its functionality, manuals, on-screen text, marketing
literature and graphics.

Internationalisation

Internationalisation is the behind-the-scenes work by software engineers to create a
system or application software independent of or transparent to natural language. It
includes generic coding and design issues, e.g. keeping user interface strings separate
from the rest of the code to aid translation.

SLIG

The Software Localisation Interest Group was set up to bring together all parties
interested in the localisation industry, such as software developers, translators,
technical writers and language researchers. There are four working groups currently
active: tools, terminology, training and education and multimedia. These groups hold
regular meeting hosted by SLIG members. It members include companies including
Microsoft, ITP, Symantec.

Electronic Documentation

Electronic Documentation is any documentation created using a software package and
stored in a computer file. Desktop Publishing (DTP) and Word Processing are the
most popular ways of creating electronic documentation. Most electronic documents
use some form of text markup. Specific markup (such as RTF from Microsoft Word,
or MIF from FrameMaker) identifies the appearance or format of the document.
Generic markup (such as HTML or SGML) store the structure of the elements of the
document.

122

Scrabble

Scrabble is a Windows based word game that allows the user(s) to play against each
other or the computer The computer uses Artificial Intelligence (AI) techniques to ,
evaluate its word to play The user must use the mouse to position their words, the
keyboard cannot be used We set the timer to play an exciting game of 30 second
scrabble

Siggraph 97

Siggraph 97 is being held in Los Angeles from the third to the eight of August
Siggraph is the best place to find out what is going on in the computer graphics
industry In the course you will learn about the fundamental principles of every
computer graphics technique The conference and exhibition is attended by over 40,00
people over the week long event

NBA.COM

Nba com is the official web site of the National basketball association The site gives
up to the minute scores and results during the NBA season in its news and features
pages teams and players are featured during the season Each week the top ten plays of
the week are placed in avi format in the nba com site to be downloaded and viewed

Movie Computer Graphics Special Effects

In the late 1980's the film Terminator 2 Judgement Day heralded a break through in
computer graphics effects The liquid terminator in the movie was a major
improvement over previous graphics effects in the movie One of the leading special
effects companies is George Lucas' Industrial Light and magic ILM ILM has allowed
Tom Hanks to shake hands with a long since dead president Eisenhower in Forest
Gump and brought dinosaurs back to life in Jurassic park With such impressive leaps
in computer graphics special effects in the near future real live actors may not be
necessary

Games Console Versus the PC

recently 32bit game consoles such as the Sony Playstation and the Sega Saturn and the
64 bit runtendo64 have been able to easily beat the Pentium PC in so far as graphics
detail and fluidity of update This is because these game consoles have special chips
which are specifically designed to handle the operations needed to render 3 d objects on
the screen, where as the PC the main processor does all the work This is a bout to
change with the introduction of affordable special 3D graphics board that are slotted
into the PC These graphics boards will bring the PC up to and beyond the
performance of the dedicated games consoles

Motion Capture

Motion capture is technique used in movie special effects and computer games to
produce life like movement of computer graphics characters on screen To record the

r 123

movement of persons, small coloured discs are placed on the persons joints and
cameras from different positions record the positions of the discs throughout the
sequence Using computer animation software a creature can be built around the disc
by placing a joint of the creature at each disc position As the discs move through the
sequence so do the virtual joints, thus producing life like animation

124

Appendix B - Experiment Results

R esu lts from A ppren tice A uthors

Lin k s from L inks to T im e L in ks C o m p actn ess A vg . L inks High Rank Low Rank Word
N ode N ode Taken View ed____________________________________ Count

HPSG 4 0 5 7 0.217 1.57 134.01 33.92 64
WordNet 4 0 9 6 0.150 1.87 172.59 51.56 60
Machine Translation 0 0 8 20 0.000 0.00 121.61 64.79 72
VerbMobil 5 4 6 8 0.055 1.04 140.64 44.96 54
Case Frames 3 2 7 5 0.215 1.43 175.2 48.45 73

IS41 6 6 6 0 0.029 1.60 67.86 23.78 27
TCAP 3 3 6 1 0.125 1.12 52.83 28.41 22
VI 1 1 3 0 0.085 1.44 66.3 28.71 26
Aldiscon 2 2 4 0 0.430 1.69 95.7 19.02 27
HLR 1 1 6 0 0.330 1.20 204.19 59.22 100

Time Series 3 0 9 8 0.040 1.06 86.69 47.99 48
Stationarity of a time series 3 3 7 7 0.045 1.02 96.54 43.16 55
Box-Jenkins Univariate Modelling 2 0 12 8 0.081 1.22 209.56 100.7 130
Forecasting 3 3 11 10 0.123 1.18 322.57 82.38 110
Spectral Analysis 4 2 15 15 0.096 1.27 234.64 79.79 145

Linear Predictive Coding 0 0 9 1 0.000 0.00 142.31 52.15 72
MPLPC 2 2 8 3 0.305 0.75 96.07 30.75 40
Diphone
Xpilot
Spark Audio

0 0 8 1 0.000 0.00 107.81 38.25 66
2 0 8 3 0.095 1.45 70.36 29.32 41
3 0 10 3 0.072 1.10 471.28 71.03 52

Prosody
Speech Processing

1 0 9 8 0.496 1.90 96.07 30.75 45
2 0 9 9 0.136 0.94 113.14 42.12 62

Text-to-Speech System 1 1 11 6 0.247 1.13 83.21 39.19 91

125

Intonation 0 0 12
Formant Coding 3 3 10
Localisation 2 0 8
Cascading Style Sheets 3 2 8
Diablo 1 0 7
Dynamic Fonts 4 0 7
HTMLHelp 1 0 6
Aster 4 2 9
Maths Project 2 2 7
Prosody in Maths 3 3 8
C++ V Java 3 1 5
Dec-Talk Express 4 2 6

Dynamic Programming 4 2 6
Binomial Distribution 3 1 6
Bernoulli Trails 1 0 5
Chi-Square 3 3 6
Team Talk 1 0 5

Localisation 2 0 3
Internationalisation 1 1 4
SLIG 2 1 5
Electronic Documentation 10 3 7
Scrabble 1 0 4
Siggraph 97 6 6 5
NBA.COM 0 0 4
Movie Computer Graphics Special Effects 2 1 6
Games Console Versus the PC 5 0 6
Motion Capture 3 3 6

11

5 0.000 0.00 96.98 44.36 81
8 0.251 1.55 108.25 28.94 39
1 0.247 2.01 86.02 58.56 89
2 0.287 2.27 105.28 51.87 84
4 0.097 1.00 113.18 57.81 92
0 0.231 2.45 281.94 153.93 103
0 0.186 1.94 113.1 42.4 39

13 0.216 1.60 62.25 28.72 37
10 0.221 1.56 143.41 57.6 41
9 0.248 1.52 55.67 29.22 35
12 0.084 1.25 284.7 86.68 56
6 0.081 1.93 107.93 64.82 38

5 0.100 1.07 73.75 37.94 34
1 0.154 0.93 179.6 26.67 32
2 0.249 0.90 102.67 33.25 28
3 0.246 1.27 308.64 28.49 35
0 0.157 1.26 89.1 52.74 16

2 0.079 1.68 90.19 38.41 43
6 0.516 0.94 94.85 62.32 47
7 0.121 1.04 134.52 65.35 69
5 0.205 1.61 218.03 83.4 75
3 0.048 1.16 132.72 65.5 59

1 0.090 1.51 68.44 34.83 75
0 0.000 0.00 92.09 38.6 62
3 0.136 1.59 239.88 133.76 100
2 0.148 2.13 375.08 85.22 114
3 0.052 1.45 215.17 95.01 89

R esu lts from E xpert A u thors

L in k s from
___ N ode

HPSG 3
WordNet 6
Machine Translation 0
VerbMobil 7
Case Frames 9
IS41 4
TCAP 11
VI 4
Aldiscon 4
HLR 2
Time Series 3
Stationarity of a time series 3
Box-Jenkins Univariate Modelling 2
Forecasting 3
Spectral Analysis 4
Linear Predictive Coding 1
MPLPC 6
Diphone 2
Xpilot 5
Spark Audio 8

Prosody 4
Speech Processing 1
Text-to-Speech System 1
Intonation 1
Formant Coding 2

L in k s to N ode N odes View ed C o m p a ctn e ss A vg . links

1 8 0.230 1.620
0 10 0.157 1.692
0 5 0 0
3 11 0.164 1.372
5 8 0.267 1.972

3 13 0.473 2.647
3 12 0.316 2.350
1 8 0.147 1.928
0 8 0.188 1.522
0 6 0.240 1.478

1 10 0.036 1.125
1 7 0.115 1.294
0 10 0.080 1.220
1 5 0.070 1.278
2 4 0.089 1.244

0 8 0.187 1.111
2 9 0.180 1.615
0 8 0.073 1.111
3 10 0.107 1.625
1 12 0.098 1.320

1 8 0.109 1.377
0 10 0.388 0.750
1 11 0.216 1.153
0 4 0.280 0.875
1 10 0.266 0.833

127

Localisation 3 1
Cascading Style Sheets 4 2
Diablo 5 1
Dynamic Fonts 5 3
HTMLHelp 2 0
Aster 4 1
Maths Project 2 1
Prosody in Maths 6 2
C++ V Java 6 3
Dec-Talk Express 5 2
Dynamic Programming 6 3
Binomial Distribution 3 1
Bernoulli Trails 4 2
Chi-Square 6 4
Team Talk 3 0

Localisation 4 1
Internationalisation 1 0
SLIG 3 2
Electronic Documentation 9 4
Scrabble 1 0
Siggraph 97 10 2
NBA COM 4 0
Movie Computer Graphics Special Effects 1 1
Games Console Versus the PC 4 2
Motion Capture 7 2

128

0 485 12 076
0 287 2 472
0 083 1 911
0 189 2 114
0 218 2 214
0 167 1 671
0 192 1 200
0 232 1 532
0 119 1 815
0 069 1 611
0 245 2 147
0 154 0 928
0 26 1 392
0 491 2
0 237 2 345
0 087 1 666
0 172 1 137
0 151 1 129
0 213 1 533
0 048 1 161
0 187 1 639
0 256 2 776
0176 1 257
0 157 2 14
0 115 2 01

