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Abstract: This paper will examine the technical issues relating to the feasibility of using Computer 
Assisted Diagnosis (CAD) techniques to automatically identify, localize, and accurately measure body 
fat tissue from a rapid whole body MRI exam. The aim of this work is the provision of an automated 
system, which assesses subjects’ whole body MRI scans and which provides numerical and visual 
feedback to illustrate the findings. The system generates real time results allowing for an initial 
assessment to be performed immediately following the completion of an MRI scan. The paper will 
focus on the specific issues relating to the formation, volume reconstruction, image processing and 
analysis of the whole body images. A working system and details of a prospective investigative study 
of 42 volunteers will be presented.  
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1. Introduction 
The accurate determination of a person’s total body fat has become an increasingly important issue in 
medical analysis as obesity is now recognised to play a significant role in a variety of serious health 
problems. With the proliferation of cross-sectional imaging modalities over the last twenty years, 
increased attention has focused on the relative distribution of total body fat, with the recognition that 
visceral fat, and in particular the ratio of intra-abdominal fat to total fat predispose to altered insulin 
resistance and subsequent medical problems. However, most available methods for determining body 
fat content cannot accurately localize the distribution of fat.  

Alternative medical techniques have been used to measure body fat utilising tools such as Computed 
Tomography (CT) and Magnetic Resonance Imaging (MRI). As in the past the quality of MRI images 
was limited, CT which could provide higher image resolution, was widely used to measure the total 
body fat [1]. The results proved to be very encouraging but due to the requirement of exposure to 
ionising radiation this technique is rendered impractical for serial investigations [2]. In addition, whole 
body imaging using CT would necessitate extensive image interpolation, thus potentially introducing 
bias. MRI although not as widely available as CT is becoming more widely used and does not entail 
ionising radiation. While MRI has been previously used for fat analysis, a review of the literature 
reveals that a wide spectrum of techniques have been applied, often consisting of single or selected 
slices, with subsequent extrapolation to the remainder of the body [3]. Other early papers on whole 
body MR imaging for fat analysis used gaps of 1-3 cm between axial slices, which require interpolation 
and thus inevitably introduce bias. Indeed previous authors have shown that subsampling and limited 
scanning does introduce bias and increased uncertainty into recorded fat measurements [4]. In our 
study we achieved whole body coverage without slice gaps, thus removing the potential for bias from 
this source and ensuring accurate and reproducible results. In addition, developments in hardware, 
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field homogeneity as well as the use of a gradient-echo sequences have reduced our imaging time to 
approximately 140 sec. 

In this investigation we illustrated how the use of Computer Assisted Diagnostic (CAD) techniques 
based on the methodologies of advanced image processing and analysis can be used in order to 
quantify the fat distribution within the body in sequences of full body MR images. The outcome of this 
research effort is a system which assesses a subject’s full body MRI scan, providing numerical and 
visual feedback to illustrate its findings. This system generates results in a matter of minutes allowing 
for an initial assessment to be performed immediately following the completion of an MRI scan. By 
highlighting areas where body fat is concentrated the system allows radiologists to quickly identify and 
examine regions of interest in the scan. 
The systems numerical outputs also provide an accurate measure of body fat as a percentage of 
whole body mass. This is an important metric, which is difficult and time consuming to arrive at by 
alternative means such as hydro-density and anthropometrical measurements  [5,6,7]. The distribution 
of actual fat tissue in the body is an important measure of health and overall fitness and is not well 
quantified by the body mass index (BMI, the measure of body fat based on height and weight =  
kg/m2), currently the most generally used metric for quantifying body fat content. But BMI has 
limitations as it may overestimate body fat in athletes and others who have a muscular build and 
underestimate body fat in older persons and others who have lost muscle mass. 

In this regard the assessment of body fat in athletes involved in programmes of intensive training was 
an area of particular importance in our study. The ability to localize fat distribution and to show an 
athlete exactly where it is on their body is of great interest as such information can be used to help 
shape the training schedule employed by the athlete. This has particular importance for many weight 
restricted sportsmen, such as rowers, boxers and jockeys. In developing a fast and accurate approach 
to body fat measurement and localization, the authors believe that it is possible to improve the ease, 
efficiency, and effectiveness with which the analysis and reporting of these important fitness measures 
can be conducted on a routine basis. 
 
2.  Image Formation 
 
Magnetic resonance imaging is based on the absorption and emission of energy in the radio frequency 
range. It effectively measures the amount of hydrogen present at each location in the scanned 
volume, which is in turn used to characterise the various tissues present. In this fashion a detailed 
picture of the region under examination is built up. The level of detail produced is very high and 
improving with every new generation of scanners thus enabling a wide range of diagnostic 
possibilities. A scanner is generally specified in terms of its magnet size. Typically a clinical scanner 
would have a 1.5T magnet (1 tesla = 10,000 gauss, compared with the earths magnetic field of 0.5 
gauss), although research scanners can produce much higher magnetic fields. 
 
MRI applies a hydrogen specific RF (radio frequency) excitation pulse to the protons that sit in a static 
magnetic field. The pulse causes the protons within a given area to absorb energy causing the 
unmatched protons to spin at a given frequency (specific frequency of resonance) in a given direction. 
The RF pulses are generally supplied via a coil in conjunction with a very low strength magnet (18 to 
27 millitesla) called a gradient magnet. This is arranged in such a manner inside the main magnet that 
when they are turned on and off very rapidly in a specific manner, they alter the main magnetic field on 
a very local level allowing very specific areas to be examined enabling the slicing of any region from 
any direction. When the RF pulse is turned off, the hydrogen protons return to their natural alignment 
within the magnetic field and release their excess stored energy. When they do this, they give off a 
signal that the coil now picks up and sends to the computer system. What the system receives is 
mathematical data that is converted, through the use of a Fourier transform, into an intensity map, or 
image.  
 
Measurements are taken at important relaxation times T1 and T2. T1 is the settling time for the atoms 
to return to equilibrium after being disturbed by the RF pulse while T2 is the decay of the RF signal 
after it has being created, both these measures are tissue dependent. For example water has a longer 
T1 time when compared to fat because it does not give up its energy as quickly as fat. In a T1 
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weighted image the signal from fat is bright, whereas image intensities from areas of muscle and fluid 
are lower, this is the protocol employed in our study. Similarly water has a longer T2 time when 
compared with fat, as such a T2 weighted image attenuates the signal from fluid more slowly than the 
signal from fat, muscle, or normal connective tissues. Using these and other properties a host of 
different imaging protocols have being devised to optimize image quality.. 
 
2.1. Full body MR acquisition 
 
MR images were acquired on a 1.5T imaging unit (Intera-Philips Medical Systems), which was fitted 
with a table-top extender and which allowed automated table movements. With the table-top extender 
caudo-cranial coverage of 200 cm is achieved, which allows examination of all but the tallest subjects. 
Images are acquired in 6-7 fully integrated stacks, with a small overlap. We acquired coronal T1 
weighted gradient-echo images with voxels of 2.02x2.02x8.00mm3. By dividing the body into such 
small three-dimensional voxels and subsequently using computer aided diagnostic techniques as 
outlined in this paper, a very definite representation of fat distribution is obtained, and potential 
inaccuracies due to partial volume effects are kept to a minimum. The entire body is covered, without 
gaps, in an imaging time of approximately 140 seconds, although actual imaging time does depend on 
the patient’s body size. By this method 32 coronal slices of 8mm thickness are acquired for each of 6-
7 stacks. In larger subjects, slice thickness may be increased to 9-10mm to ensure adequate 
coverage, while in smaller subjects it could be decreased to enable more accurate body mapping. 
 
A degree of controversy exists in the literature as to the exact biochemical consistency of the tissue 
detected as “Fat“ by MRI. However, most authors accept that adipose tissue is composed of 84.67% 
triglyceride, 12.67% water and 2.66% protein, giving a density of 0.9196 g/cm3 [8]. In addition, this 
biochemical consistency appears to be homogenous throughout the human body so that confounding 
variables that underlie the difficulties with other body composition methods such as age, gender and 
ethnic origin are removed, and the use of equations apart from the automated total body fat calculation 
is removed.  In our cohort of patients we examined a group with a wide spectrum of body fat levels 
and distributions without obvious detriment or difficulty, including athletes who are ill served by other 
available methods. 
 
For the scanning process patients are placed supine, with their hands crossed over the abdomen. This 
enables the subjects’ upper limbs to be imaged. We had initially placed the subjects’ hands by their 
sides, but found that this caused aliasing artefacts due to the geometry of the magnetic field. After 
imaging, the raw data is transferred, in DICOM (Digital Imaging and Communications in Medicine) 
format [9,10], to a workstation for analysis. Figure 1 illustrates two images from adjacent coronal 
sections. Each coronal section contains 32 images running through the body from front to back. When 
one or more image series in a DICOM study are reconstituted and merged within a volumetric 
framework the resulting data volume can exhibit characteristics poorly suited to the application of 
automated image processing techniques. Simplistic reconstruction can result in poorly registered data, 
while regional greyscale variations between images can cause undesirable intensity shifts within 
regions in the reconstructed volume. These mismatches in localisation and image intensities can 
cause serious problems, especially for automated image processing and analysis procedures. 
 

    
 
Figure 1. Samples of the individual MRI coronal sectional sub-volumes used to form the whole body 
image. 
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We now present a volume reconstruction scheme which addresses the issues of data placement and 
intensity matching within a three dimensional space using a combination of vector based 
reconstruction and automatic histogram registration. The resulting data volume represents the 
combination of the input sub-volumes located and normalised so as to yield a consistent data field 
across the combined sample space of the sub-volumes. This reconstruction technique yields a 
matched volumetric dataset specifically designed to produce more accurate and more consistent 
results under processing and analysis. 
  
 
3. Volume reconstruction  
 
In the full body MRI protocol used the subject is imaged in a set of overlapping coronal sections. The 
resulting series of up to 7 coronal sectional sub-volumes must be reconstructed into a volumetric 
dataset in order to facilitate analysis. There are two issues that require particular attention in this 
process: spatial registration and greyscale matching. To achieve correct spatial registration we use 
location and orientation vectors stored in the DICOM headers. This allows us to accurately position 
each image within a global coordinate system. In this way we can account for the overlap between 
adjacent coronal slices so as to correctly generate the final volume. 
 

          
                               (a)                                                                 (b) 
 
Figure 2. Initial alignment of DICOM sectional sub-volumes. This illustrates the gaps, which can 
appear between sections, and the grey scale variations across the DICOM sectional images. (a) Six 
coronal sections composed to form the full image. (b) Close-up of a regional misalignment caused by 
poor recomposition. 
 
3.1 Greyscale Matching 
 
Greyscale matching is necessary because there can be significant intensity offsets between 
successive coronal sections due to the nature of the MRI acquisition process. It is necessary to 
minimise these effects in order to optimise the performance of the automated analysis procedure. We 
achieve this using histogram matching once the incoming images have been grouped into their 
coronal subsections.  
 
An intensity histogram is calculated for each subsection, Figure 3a, the characteristic peak 
representing the soft tissues within the data is located algorithmically, and the set of histograms is 
matched, scaling them linearly so as to align the identified peak locations, while also keeping the 
histograms lowest intensity levels fixed, Figure 3b. Investigation into the use of a more direct 
histogram scaling approach based on matching the grey range of the data proved to be insufficient to 
the task, failing to converge adequately in grey space. The histogram matching process presented 
here leads to a reformatted intensity histogram for each of the subsections which results in the 
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reduction of intensity differences introduced during image acquisition, and consequent improvements 
in the results achieved in subsequent processing steps, (Figure 4). 
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(a)                                                                                    (b) 
 
Figure 3. Histograms of the seven subsections required for a whole body image. The first peak in 
each plot represents the abundant low intensity background pixels present in the image sections. The 
second peak represents the soft tissue and the high intensity tail above the second peak is primarily 
fat tissue. (a) Before normalisation, (b) after normalisation. During the histogram scaling operation 
some of the bins join hence the noisy appearance of the normalised histograms. Note the precise 
alignment of the second peak (soft tissue) of these histograms. 

 
 

   
 

Figure 4. Unnormalized and normalized sections. 
 
3.2 3D Reconstruction 
 
At this stage the full set of input images, now intensity matched, can be manipulated uniformly in order 
to reconstruct the final volume. First a bounding box is calculated by recording the extents of each 
incoming image within the specified coordinate system and using the maximum and minimum values 
recorded in x, y, and z in order to calculate the origin and required extents of the final volume. As all 
the images come from a single DICOM study they share a common real world origin and coordinate 
system stored in the DICOM header. This information is now used in order to accurately project each 
image into the merged data space. The location of the first data pixel in each image is recorded in the 
DICOM header, relative to some real world origin, which remains fixed for all images within a single 
study. Similarly two vectors parallel to the image rows and columns respectively are also stored. This 
information allows a transformation matrix to be calculated which yields a direct mapping into the 
reconstructed volume for every pixel in each of the images. Using this information the final volume is 
built up by projecting each image into the output volumes data space (Figure 5). 
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Figure 5. Matching and merging, without (left) and with (right) histogram normalization. 
 
 
Although the whole body MRI data which we are working with is nominally acquired in a coronal 
orientation, in reality it is often oriented slightly off the coronal. In order to accurately reconstruct the 
volume and arrive at a consistent data layout for processing we reorient the incoming data using the 
axial orientation as our base volumetric coordinate system, as this is the fundamental orientation used 
in medical imaging applications. In axially sliced data x runs from the subjects right to left (the 
observers left to right), y runs from the subjects chest to back, and z runs from their feet to head, when 
the subject is lying head first, supine (face up) in the scanner. Thus in a coronal image, looking at the 
subject from their chest towards their back, the image x axis maps to the volumetric x axis, but the 
image y maps to minus z in the axial volumetric coordinate system (the image y runs from head to 
toe). 
 
In order to achieve the desired normalisation of coordinate systems we apply a matrix transformation 
to all the data so as to reslice and combine it into a unified volume in the desired axial coordinate 
system (Figure 6). The information needed to achieve this reorientation is found in the DICOM 
headers of each image slice. Consider a whole body dataset consisting of 6 sections, each containing 
32 slices. This is presented to the system as a set of 192 individual DICOM image files. From each file 
header we can extract the real world location of the first pixel in that image O = [Ox,Oy,Oz]T, in a fixed 
global coordinate system, along with the two orientation vectors, R = [Rx,Ry,Rz]T and C = [Cx,Cy,Cz]T, 
aligned parallel to the image rows and columns respectively. For an exactly coronal image these 
vectors would be R = [1 0 0] and C = [0 0 -1]. But since the nominally coronal acquisition is often 
slightly off the coronal this may not be the case and as such an accurate reconstruction by 
straightforward means is hampered by this consideration in addition to the variable overlap which 
exists between each subsection of 32 images. 
 

 
Figure 6. Projection of image data into destination volume (coronal to axial). 

 
In order to achieve the desired reconstruction we proceed as follows. First we calculate the spatial 
extents of each image using the origin and the row and column vectors, along with the pixel width and 
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height of the image. This yields a three dimensional bounding box for each slice and by extension, for 
the complete dataset. We then project each slice in turn into the destination volume. We project the 
four corners of the image into the volume and then using an inverse transformation we project each 
volume voxel within this subregion back into the source image and interpolate from the neighbouring 
image pixels in order to arrive at a greyscale value corresponding to this point in the destination 
volume. The interpolated grey value at position x is calculated using a cubic model 
 

v = a + bx + cx2 + dx3 

 

where x is an offset from v2, usually in the range 0 to 1 (spanning the interval v2 to v3), v1-v4 are four 
consecutive, unit spaced grey values along a line and,  
 

  a =      v2                      
  b =  -v1/3 - v2/2 + v3   - v4/6    = (v3-(v1/3.0+v2/2.0+v4/6.0)) 
  c =   v1/2 - v2   + v3/2            = ((v1+v3)/2.0-v2) 
  d =  -v1/6 + v2/2 - v3/2 + v4/6    = ((v2-v3)/2.0+(v4-v1)/6.0) 

 
This procedure is repeated for each of the 192 slices so that finally the destination volume has been 
completely populated with all the data from the original source images. 
 
4. Image Segmentation 
 
A visual examination of the images contained in the datasets reveals that the fat tissues tend to have 
a higher greyscale value than other tissues. But these images also indicate that there is quite a high 
greyscale variation within the image regions representing fat tissues. Also, even after histogram 
matching, the greyscale values for fat in some situations overlap those associated with other nominally 
lower intensity tissues such as those representing liver or brain. Therefore accurate segmentation 
cannot be achieved by applying simple methods based on thresholding. Thus in order to cope with 
these problems we have devised a multi-stage segmentation algorithm. The first step involves the 
segmentation of the full body from MRI data. For this purpose we have to analyse the distribution of 
the intensity value of the voxels contained in the data set.  The histogram of the entire volume dataset 
is illustrated in Figure 7.  
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Figure 7. Histogram of the full body volume. The data with intensity values below Tb represents the 
background while the data with intensity values above Tf represents candidate fat tissue. 
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Thus, in order to segment the lean and fat body tissues from the background we have to threshold the 
data where the threshold is set to Tb. The result of this operation represents precise body 
segmentation except in the region of the lungs whose voxels have intensity values lower than Tb. This 
first phase segmentation is used to calculate the height and the body mass and to identify the 
interface surface between the body and background. The extraction of the interface surface (body 
shell) allows us to apply a boundary enhancement to compensate for signal drop-of in peripheral 
regions of data. For this purpose we apply an intensity compensation scheme based on a predefined 
chamfer map that is applied starting from the outer shell of the body region.   
 
4.1 Adaptive Smoothing 
 
Once complete we apply adaptive smoothing (Figure 8) to improve local homogeneity. The aim of this 
operation is to remove the additive image noise while preserving the image edge information.  To this 
end, we implemented the smoothing algorithm described in [11]. This smoothing algorithm tries to 
adapt pixel intensities to the local attributes present in the image by evaluating two discontinuity 
measures (i.e. local and contextual) that should be preserved during the smoothing operation. The 
local discontinuity is measured using four detectors that approximates the image gradients in four 
directions: 
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where Ix,y is the pixel intensity at (x,y). These four detectors respond strongly to local edges and a local 
discontinuity measure can be defined as follows: 
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As the local discontinuity evaluates the local gradients it is sensitive to image noise. Unfortunately, the 
MR images reveal a high level of noise and as a result the local discontinuity is not efficient in 
distinguishing the true local discontinuities from noise. Thus, the local discontinuity has to be 
augmented with a contextual discontinuity, which evaluates the attributes of the neighbouring pixels. In 
this implementation the contextual discontinuities are measured by the local variance that is measured 
in a predefined neighbourhood (see Eq. 3).  
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where σ2
xy is the measured variance, µR is the mean intensity value computed in the square 

neighbourhood R and Nxy represents the total number of pixels in a neighbourhood. The adopted 
smoothing strategy uses both local and contextual discontinuities and for each pixel its intensity value 
is iteratively updated with the nonlinear transformation illustrated in Eq. 4.  
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where, 
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In Eqs. 4 to 7 the parameter t defines the iteration and the transformation illustrated in Eq. 4 updates 
the intensity values of each pixel using two weighting parameters, η and γ, which measure non-linearly 
the contextual and local discontinuities.  The variables S and α are important as they determine to 
what extent the local and contextual discontinuities should be preserved during the smoothing 
operation.  In our implementation we set these parameters to the following values S = 10, α=10, θσ 
=0.2, window size R =2, and the algorithm is run for 2 iterations. Figure 8 illustrates the performance 
of the adaptive smoothing operation. Note that the smoothing operation did not affect the edge 
localization. 
 

 

(a)                                                                     (b) 
Figure 8. Adaptive smoothing operation. (a) Input image. (b) Filtered image. 

 
An initial threshold level Tf is calculated based on an analysis of the data histogram. The peak 
representing soft tissue (second peak in Figure 7) is located and voxels whose values fall above the 
end of this peak are initialised as potential fat voxels. A three-dimensional dilation based (6-
connected) region growing procedure [12] is applied to the initial estimate to extract the voxels 
affected by partial volumes. The adjacent voxels situated in the neighbourhood of the initial estimate 
with an intensity value above 90% of Tf are reclassified as fat voxels. 
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4.2 Region Refinement 
 
The final stage in the process involves the application of region refinements to eliminate false positive 
tissues such as brain and liver [13]. This requires the identification of each disjoint region in the fat 
estimate. For this purpose a fast 3D labelling procedure has been applied. This process is 
summarized below: 
 

• The intra-region variability for each disjoint region is evaluated. 
• If the region is compact and its intensity mean is high (1.2 x threshold determined from 

histogram analysis) then the region is classified as fat. The threshold scaling factor was 
determined experimentally. 

• Otherwise each pixel within the region is verified and only the voxels that are above the 
threshold determined from histogram analysis are retained (hysteresis threshold).  

• Isolated voxels are then removed.  
 
Through this process we arrive at a robust segmentation of the signal due to fat tissue within the data 
volume. 
 
5. Total body fat calculation 
 
Calculation of the total body fat (TBF) is performed using the following formula:  
 

TBF = (NFatVoxels)(Voxel_Dim)(Fat_Density) 
 
where NFatVoxels is the total number of fat voxels contained in the dataset, Voxel_Dim is the voxel 
dimension (in cm3), and Fat_Density is the density of the fat tissue (in g/cm3). The voxel dimensions 
can be extracted from the DICOM header and the datasets used in our study have mostly had 
dimensions of 2.02x2.02x8.00 [mm3]. The medical literature indicates that fat tissue density can be 
regarded as constant [1] and is usually assigned a value of 0.9196 [g/cm3]. The fat content is 
determined by counting the fat tissue voxels contained in the fat segmented data (marked in yellow in 
Figure 10). We normalize these values in order to yield the total body fat in kilograms. 
 
Once we know the total body fat (TBF) we can easily calculate the total body mass (TBM) with the 
following formula:  
 
       TBM = TBF + (NFullBody-NFatVoxels)(Voxel_Dim)(Lean_Tissue_Density).  
 
The value for Lean_Tissue_Density used in our calculations is: 1.11 [g/cm3]. 
 
It is worth noting that the protocol used means that our voxels are quite big (2x2x8mm) so partial 
volume effects replace the bias as an issue to be aware of and a potential problem and source of 
inaccuracies (e.g. we have found that a thin layer of fat across the front and back of the subject can be 
missed). This effect could be greatly reduced with the use of higher resolution data capture or su-voxel 
analysis.  
 
 
6. Basic system functions 
 
Analysis results are presented in a number of ways. Simple orthogonal review allows axial, coronal, 
and sagittal sections to be examined, highlighting regions, which have been classified as being body 
fat. Colour mark-up of the images provides effective visual feedback, improving the readability of the 
data (Figure 9). This form of review also allows detailed examination of the distribution of fat 
throughout the body and facilitates the easy identification of areas of particular fat concentration. 
 

10 



 
Imaging Beyond the Pin-hole Camera. 12th Seminar on Theoretical Foundations of Computer Vision, Schloß Dagstuhl / 
Wadern Germany, June 13 - 18, 2004 

 
 

 
Figure 9. System display output illustrating the localised regions identified as fat (marked in yellow in 
the image on the right). The slider bar allows the user to step through the image sequence. The image 
on the left is the original data after alignment and basic image processing to reduce noise artefacts. 
 
Three-dimensional volume rendered views (Figure 10) provide an excellent overview of the data, and 
when used with data space clipping can effectively visualise the body fat distribution within a volume 
of interest, providing a more complete view and comprehensive breakdown of the distribution of fatty 
tissue within the body. 
 

 
 
Figure 10. Volume rendering of a full body MRI dataset. As well as giving an overview of a patient’s 
superficial body-fat distribution, this fully interactive 3D model allows for flexible data clipping to be 
performed, which enables detailed analysis of regional fat distribution. 
 
 
In addition to these visual tools, numerical results are presented to the user. Figure 11 shows an 
example of the typical results generated by the system. Estimates are made of the subjects height and 
weight from the segmentation of the whole body (see previous section), and measurements are 
performed to calculate values for the actual and percentage body fat detected, measured by volume 
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and by weight. All these calculations are performed automatically without any initialisation or 
subsequent intervention being required on the part of the user. The entire analysis process from raw 
DICOM data to final results takes less than two minutes. 
 

 
 
Figure 11. System output text on a per patient basis. Two slightly different methods for fat calculation 
are used. The DICOM weight is that entered by the MR technologists and is inaccurate in this patient, 
whose body weight was 102 Kg. The system provides an accurate assessment of body fat. By 
applying the clipping tool to the 3D volume rendered image (See Figure 10), similar detailed voxel-by-
voxel interrogation of a particular body region can be performed. 
 
A simplistic, threshold based approach was also applied (the results shown as Method 1 in Figure 11) 
in order to evaluate the advantage gained by using the more involved approach described in this 
paper (Figure 11, Method 2). This rudimentary approach proved to be extremely unreliable, being 
highly data dependant. It invariably misclassified significant portions of non-fat tissue as being fat, and 
occasionally resulted in fat estimates an order of magnitude larger than expected, due to the 
unsophisticated assessment procedure used. 
 
 
7. Results 
 
42 patients (Table 1) were recruited through local in-hospital advertising and through a hospital related 
sports clinic. These included a cohort of international rowers, a group of elite athletes in whom body fat 
estimation is of particular importance as individuals are weight restricted. Local institutional board 
approval was obtained.  There were 21 male and 21 female volunteers used in the study. Informed 
consent was acquired from each subject, and their weight and height were recorded. These were used 
to calculate the BMI in each patient. 
 
The BMI was calculated directly from the patients’ mass and height, and indirectly using the 
segmentation results. The directly measured BMI values of these datasets range from 18 to 35. 
Comparison of the direct and indirect methods was used to validate the segmentation procedure and a 
good correlation was found, see Figure 12.  Much of the data spread in the graph in Figure 12 is due 
to incomplete body acquisitions in the MRI scanner. Restricting the data to the 21 most complete 
datasets, where data loss at the extremities, especially at the feet of tall subjects, is kept to a 
minimum, results in a far superior straight line fit with much reduced deviations from the fitted line in 
the restricted data subsample. This is shown in the broken line and its associated subset of data 
points indicated in Figure 12. The sample points representing incomplete acquisitions all fall above the 
broken line and pull the full sample trend line (the solid line) in an upward direction. This reflects the 
relative effect of the missing data on the BMI and % body fat calculations. The missed data represents 
a relatively small volume, and hence weight (the feet and ankles), but can result in a disproportionately 
large variation in the estimated height of the subject. With down pointing toes the change can be as 
much as 30 centimetres in some cases. These two factors result in little difference in the estimated % 
body fat but can cause a significant elevation in the estimated BMI value since the subject is estimated 
to be shorter but not much lighter than would be the case were the measurements based on a 
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complete dataset. Note that in the case of complete datasets the automatic method consistently 
estimates a BMI less than the measured BMI. This is due to an over estimation in the height caused 
by down pointing toes. An alteration in the acquisition protocol supporting subject’s feet vertically could 
correct for this. Correspondingly, calculated BMI's based on incomplete datasets tend to be higher 
than the equivalent measured values, for the reasons given. These observations support the assertion 
that the automatic measurements achieved represent accurate results for the data under examination. 
 
Table 1 Patient data and associated automatically calculated BMI and percentage body fat values for 
the 21 male and 21 female subjects assessed in this study. These results are graphed in Figures 12 
and 12. 
 

Male 
Subjects Age Measured 

BMI 
Calculated 

BMI 

Calculated
% Body 

Fat  

Female 
Subjects Age Measured

BMI 
Calculated 

BMI 

Calculated
% Body 

Fat 
1 31 32.6 28.67 29.45 1 27 19.3 18.11 21.06 
2 33 24.1 23.54 17.27 2 29 24.8 23.53 30.54 
3 32 25.4 23.73 27.79 3 20 20.3 19.72 19.61 
4 51 27.3 24.43 16.85 4 53 26.8 24.07 34.36 
5 29 25.0 22.76 17.36 5 56 22.5 20.77 28.66 
6 29 24.8 22.59 6.97 6 27 20.8 20.23 25.21 
7 29 25.0 23.68 13.06 7 21 24.6 21.73 30.29 
8 28 21.6 19.58 4.77 8 43 21.9 20.59 29.02 
9 49 31.1 28.42 30.07 9 41 25.6 26.69 37.46 
10 52 34.7 32.58 25.98 10 19 18.0 17.68 15.89 
11 24 28.7 23.18 6.24 11 26 21.8 22.21 16.39 
12 28 28.7 26.91 31.79 12 18 25.3 26.83 28.89 
13 23 26.3 22.62 10.32 13 26 30.5 30.96 38.05 
14 19 21.5 19.63 11.63 14 33 22.8 24.11 17.99 
15 28 26.3 25.58 20.04 15 23 20.5 22.10 23.71 
16 25 18.9 22.30 11.57 16 25 20.3 20.89 19.97 
17 26 26.9 24.80 12.21 17 25 29.4 30.74 41.67 
18 24 20.9 21.12 6.24 18 27 25.7 25.86 31.78 
19 26 27.7 27.58 21.19 19 55 25.1 28.52 35.20 
20 30 26.0 25.20 14.96 20 53 20.8 24.27 29.66 
21 45 29.9 32.70 28.3 21 42 23.7 23.65 25.16 
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Figure 12. Comparing manually measured BMI and the automatic CAD calculation. This illustrates 
that the CAD system does a good job in matching the manual BMI measurements. This test was used 
as an initial validation of the segmentation procedure and demonstrates that the CAD system 
developed produces reliable measurements. See the text for a full discussion. 
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Figure 13. BMI mapped against percentage body fat. The data is divided by gender and the two trend 
lines clearly illustrate the gender difference. Men tend to have a lower percentage body fat than 
women for the same BMI. The very lean subjects coming from the cohort of athletes examined further 
lift the trend line for the male subset, as their high muscle mass offsets low body fat and results in 
relatively high BMI values in this group, situated at the extreme left of the graphed data. The 
complexity of the relationship between percentage body fat and BMI illustrates the shortcomings of 
BMI as a reliable indicator of body fat. 
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The measure which is of greater interest is that of percentage body fat, whose accurate determination 
was the main goal of the study. The results showed that there was a reasonable correlation between 
this measurement and the BMI, with the expected gender differences as highlighted in Figure 13. 
However the complexity of the relationship illustrated in Figure 13 confirms the recognised 
shortcomings of the BMI as a measure of body fat level. The results for the cohort of international 
rowers highlights their unusually high muscle mass, demonstrating one of the drawbacks of BMI, its 
inability to distinguish between body mass stemming from different sources. The results are presented 
in Table 1 and Figures 12 and 13. In all cases, results were obtained within minutes of receiving the 
DICOM data. We have implemented an alternative implementation based on image clustering [14], 
although initial results indicate that this approach is outperformed by the method described in this 
paper. 
 
8. Conclusion 
 
The focus of this paper has been on the issues relating to the formation, processing and analysis of 
whole body MRI in the development of an MRI based body fat analyser. The reconstruction method 
described generates matched and merged volumetric datasets well suited to the application of 
automatic image processing and analysis techniques. It alleviates a number of problems, which 
become significant when computerised data analysis procedures are brought to bear on the problem 
of processing the data. While the human visual system is extremely efficient at compensating for 
intensity variations and physical misalignments in a scene these effects can cause significant 
difficulties in an automated approach to image analysis, and their minimisation greatly enhances the 
accuracy and reliability of such a system. 
 
We have seen that by highlighting areas where body fat is concentrated the system allows radiologists 
to quickly identify and examine regions of interest in the scan. The main conclusion of this work is that 
whole body MRI in conjunction with CAD allows a fast, automatic, and accurate approach to body fat 
measurement and localization and can be a useful alternative to BMI, especially for low fat groups 
such as athletes. This prospective investigative study contained 42 volunteers (21 male, 21 female) 
aged 18 to 56. The study group consisted of healthy volunteers with a wide range of body weights, 
and included a cohort of high performance athletes.  
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