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Abstract

A comparison paper is presented to evaluate the results from five smoothing filters. The filters
are linear, nonlinear isotropic and nonlinear anisotropic designed to smooth homogenous areas while
preserving the higher moments in the data. The methods are outlined and then evaluated on the extent
to which edge information is preserved and unwanted noise is suppressed.
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1 Introduction

The process of smoothing images is two-fold, firstly to remove unwanted noise from the image to facili-
tate further processing and secondly to maintain important image features such as edges.

There are two main types of smoothing, linear and non-linear. Both of these types have being exten-
sively studied in literature. One of the main aims of filtering images is to smooth areas of homogeniality
and to preserve areas of interest such as edges. Traditional linear filters such as mean, average and Gaus-
sian attempt to remove noise by replacing each pixel by an average or weighted average of its spatial
neighbours [2]. While this reduces the amount of noise present in the image, it also has the disadvantage
of removing or blurring the edges. Nonlinear filters, the most common being the median filter, modifies
the value of the pixel by some nonlinear function of the pixel value and its spatial neighbours. Nonlinear
filters maintain the edges but the filtering results in a loss of resolution by suppressing fine details. More
recently, the use of edge-based diffusion has emerged [1, 3, 4, 5, 6]. These filters require a tradeoff
between smoothing efficiency, preservations of discontinuities and the generation of artifacts. In short
the diffusion or smoothing term is a variable over space and time and in [3], this term is a function of
the magnitude of the gradient intensity at the point in question. Gerig [4] extended this case to 3D and
performed the diffusion on medical volumes. Perona and Malik’s [3] diffusion has the disadvantage that
it stopped the diffusion at edges, this was advanced by [7] by permitting diffusion along the direction of
the edges making it anisotropic.

This paper compares five filters. The linear Savitzky-Golay filter is a convolution of the image with
the least-squares fitting of a polynomial. The basic linear Gaussian filter is a convolution with a gaussian
mask, nonlinear adaptive filtering which filters the image but smoothes less in areas of local discontinu-
ities and high spatial variance. Nonlinear diffusion, which again smoothes with an exponential with no
smoothing occurring where the gradient has high values. Finally anisotropic gaussian smoothing which
uses a scaled and shaped gaussian mask to smooth along the direction of high gradients and never across
the gradients.
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2 Savitzky-Golay Filter

The Savitzky-Golay [8] smoothing filter was introduced for smoothing data and for computing the nu-
merical derivatives. The smoothed points are found by replacing each data point with the value of its
fitted polynomial. The process of Savitzky-Golay is to find the coefficients of the polynomial which are
linear with respect to the data values. Therefore the problem is reduced to finding the coefficients for
fictitious data and applying this linear filter over the complete data. The size of the smoothing window
is given asN × N whereN is odd, and the order of the polynomial to fit isk, whereN > k + 1. The
general smoothing causal filter equation is given as;

gx,y =
n∑

j=−n

n∑
i=−n

Ci,jfx+i,y+j (1)

n is equal toN−1
2 . C is the convolution matrix andfxy is the original data.

f(xi, yi) = a00 + a10xi + a01yi + a20x
2
i + a11xiyi + a02y

2
i + .... + a0ky

k
i (2)

We then want to fit a polynomial of type in equation (2) to the data. Solving the least squares we can find
the polynomial coefficients. We start of the the general equation;

A · a = f

where a is the vector of polynomial coefficients

a = (a00 a01 a10 .... a0k)T

We can then compute the coefficient matrix as follows.

(AT ·A) · a = (AT · f)

a = (AT ·A)−1 · (AT · f)

Due to the linear-squares fitting being linear to the values of the data, the coefficients can be computed
independent of data. To achieve this we can replacef with a unit vector thus, the coefficient matrix
becomesC = (AT A)−1AT . C can then be reassembled back into a traditional looking filter of size
N × N . In order to smooth the image the first coefficient is used, higher order coefficients are used to
calculate derivatives. The advantage of the Savitzky-Golay filter has over moving average and other FIR
filters is its ability to preserve higher moments in the data and thus reduce smoothing on peak heights. In
more homogenious areas the smoothing approaches an average filter over the smoothing kernel.

3 Adaptive Smoothing

The algorithm for adaptive smoothing implemented in this paper is adapted from Chen [5]. The technique
measures two types of discontinuities in the image, local and spatial. From both these measures a less
ambiguous smoothing solution is found. In short, the local discontinuities indicate the detailed local
structures while the contextual discontinuities show the important features.

In order to measure the local discontinuities, four detectors are set up as shown:

EHxy = |Ix+1,y − Ix−1,y|, (6)

EVxy = |Ix,y+1 − Ix,y−1|, (7)

EDxy = |Ix+1,y+1 − Ix−1,y−1|, (8)
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ECxy = |Ix+1,y−1 − Ix−1,y+1|, (9)

Ix,y is the intensity of the pixel at the position (x,y). We can then define a local discontinuity measure
Exy as:

Exy =
EHxy + EVxy + EDxy + ECxy

4
(10)

In order to measure the contextual discontinuities, a spatial variance is employed. First, a square
kernel is set up around the pixel of interest,Nxy(R). The mean intensity value of all the members of this
kernel is calculated for each pixel as follows:

µxy(R) =

∑
(i,j)∈Nxy(R) Ii,j

|Nxy(R)|
(11)

From the mean the spatial variance is then calculated to be:

σ2
xy(R) =

∑
(i,j)∈Nxy(R)(Ii,j − µxy(R))2

|Nxy(R)|
(12)

This value of sigma is then normalised toσ̃2
xy between the minimum and maximum variance in the en-

tire image. A transformation is then added intoσ̃2
xy to alleviate the influence of noise and trivial features.

It is given a threshold value ofθσ = (0 ≤ θσ ≤ 1) to limit the degree of contextual discontinuities.
Finally, the actual smoothing algorithm runs through the entire image updating each pixels intensity

valueIt
xy, wheret is the iteration value.

It+1
xy = It

xy + ηxy

Σ(i,j)∈Nxy(1)/{(x,y)}ηijγ
t
ij(I

t
i,j − It

x,y)
Σ(i,j)∈Nxy(1)/{(x,y)}ηijγt

ij

(13)

where,
ηij = exp(−αΦ(σ̃2

xy(R), θσ)), (14)

γt
ij = exp(−Et

ij/S) (15)

The variablesS and α determine to what extent the local and contextual disontinuities should be
preserved during smoothing. If there are a lot of contextual discontinuities in the image then the value
of ηij will have a large influence on the updated intensity value. On the other hand, if there are a lot of
local discontinuities then bothγij andηij will have the overriding effect, asηij is used for gain control
of the adaption.

4 Nonlinear Diffusion Filtering

The standard blurring operation involving Gaussian filtering attempts to remove the noise at the expense
of poor edge preservation. The Gaussian smoothing technique is very straightforward and involves the
convolution of the original image with a 2D Gaussian where the standard deviation selects the scale of
the blurring operation.

Sx,y = Ix,y ◦Gauss(x, y, σ) (16)

Gauss(x, y, σ) =
1

2πσ2
e−

x2+y2

2σ2 (17)

whereS is the filtered image,I is the input image,◦ implements the 2D convolution,Gauss() is the
2D Gaussian function whereσ is the scale parameter. From Eq. 17 becomes obvious that the smoothing
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becomes more pronounced for higher values of the scale parameter but at the same time we can no-
tice a significant attenuation of the optical signal associated with image boundaries. This result is highly
undesirable for many applications including image segmentation and edge tracking where a precise iden-
tification of the object boundary is required.

To alleviate the problems associated with the standard Gaussian smoothing technique, Perona and
Malik [3] proposed an elegant smoothing scheme based on non-linear diffusion. In their formulation the
blurring would be performed within homogenous image regions with no interaction between adjacent or
neighbouring regions that share a common border. The non-linear diffusion procedure can be written in
terms of the derivative of the flux function:

φ(∇I) = ∇I ·D(‖∇I‖) (18)

whereφ is the flux function,I is the image andD is the diffusion function. Eq. 18 can be implemented
in an iterative manner and the expression required to implement the non-linear diffusion is illustrated in
Eq. 19.

It+1
x,y = It

x,y + λ

4∑
R=1

[D(∇RI)∇RI]t (19)

whereIt represents the image at iterationt, R defines the 4-connected neighbourhood,D is the diffusion
function,∇ is the gradient operator that has been implemented as the 4 connected nearest-neighbour
differences andλ is a parameter that takes a values in the range0 < λ < 0.25 .

∇1Ix,y = Ix−1,y − Ix,y

∇2Ix,y = Ix+1,y − Ix,y

∇3Ix,y = Ix,y−1 − Ix,y

∇4Ix,y = Ix,y+1 − Ix,y

(20)

The diffusion functionD(x) should be bounded between 0 and 1 and should have the peak value when
the inputx is set to zero. This would translate with no smoothing around the region boundary where the
gradient has high values. In practice, a large number of functions can be implemented to satisfy this
requirement and in our implementation we were using the exponential function proposed by Perona and
Malik [3].

D(‖∇I‖) = e−(
‖∇I‖

k
)2 (21)

wherek is the diffusion parameter. The parameterk selects the smoothness level and the smoothing
effect is more noticeable for high values ofk.

5 Anisotropic Gaussian Smoothing

An anisotropic filter based on the familiar gaussian model was implemented in order to provide edge en-
hancing, directional smoothing. The goal was to develop a versatile smoothing filter based on a straight-
forward and highly adaptable form. The approach reduces to convolution with a scaled and shaped
gaussian mask, where the determination of the mask weights becomes the key step governing the perfor-
mance of the filter. By calculating the local greyscale gradient vector and favouring smoothing along the
edge over smoothing across it we can achieve an effective boundary preserving filtering approach, where
regions are homogenised while edges are retained.

The weightwt( ~pq,∇u) at each location in the mask is a function of the local gradient vector at the
centre of the mask and the distance of the current neighbour from that centre. There is a large number
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Laboratory Image MR Image
Original 57.4 277.65

Savitzky-Golay 40.804 61.232
Gaussian 40.966 102.08
Adaptive 24.241 42.99
Diffusion 27.658 69.633

Anisotropic 31.905 35.05

Table 1: The RMS of the standard deviation of the homogenous areas for the original and each filtered
image

of possibilities for the formulation of the mask weight calculation, based on the desired form for the
non-linear and anisotropic components of the filter. The weight for some neighbourq is calculated as a
function of the gradient of pointp, at the mask origin, and the distance from the origin to the neighbourq.
The relationship used in our approach is given in Eq. 22, where~pq is the vector from the mask centre point
p to some neighbourq, ∇u is the gradient vector atp, λ is the scale parameter, controlling smoothing
strength, andµ is the shape parameter, controlling anisotropy. Whenµ equals zero the anisotropic term
( ~pq·∇u

λ )2(2µ + µ2) disappears and the filter reduces to the non-linear, isotropic form, where smoothing
decreases close to strong edges but is applied equally in all directions, at any given location in the image.

wt( ~pq,∇u) = e−((
‖ ~pq‖‖∇u‖

λ
)2+( ~pq·∇u

λ
)2(2µ+µ2)) (22)

The images in Figures 1 and 2 illustrate the operation of the anisotropic filter. As the smoothing
strength and the number of iterations is increased more noise and small features are eliminated, but even
in extreme cases the most important edges in the image are well preserved in both location and strength.

6 Experiments and Results

The aim of each filter evaluated in this study is to smooth areas of homogeniality while preserving areas
of interest such as edges. Smoothing of homogenous areas is measured using the standard deviation
while the preservation of edges is measured using the strength and spread of the edge in the filtered
images. The filters are tested on two images, see figures 1 and 2, the first image of a laboratory having a
high SNR (signal-noise-ratio) and high CNR (contrast-to-noise-ratio) with a high density of edges. The
second medical image has a much lower SNR and CNR. Parameters were chosen to give the optimal
results on visual inspection. Visual results are presented in figure 6.

The standard deviation is measured in a7 × 7 window over the entire original image. From these
values 25% of the highest values were eliminated as belonging to edges in the image and 25% of the
lower values as having no significant texture. The standard deviation for each of the filtered images is
then taken at the same positions. The results are presented in Table 1. For the laboratory image, Adaptive
smoothing gives the best results followed by the two other non-linear filters. Both linear Savitzky-Golay
and Gaussian filters have the highest deviation after smoothing. In the medical image there are more
significant differences with the anisotropic and adaptive smoothing operators giving the best results while
the gaussian performs worst in the low SNR image.

The strength, shift and spread of the edge is evaluated on each of the images. Histogram plots across
two edges are shown in figure 3 showing both the image pixels and the gradient across the edge. For
the lab image the results are similar for all filters with more significant differences between filters in the
medical image. Two measurements are taken from these histograms which indicate edge strength and
spread. These results are compiled in Table 2. While Savitzky-Golay and Gaussian filters spread the
edge, the other three maintain and even enhance the edge characteristics.
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(a) (b) (c)

(d) (e) (f)

Figure 1: Results from each of the smoothing filters,(a) is the original image,(b) image after Savitzty-
Golay,(c) Gaussian,(d) Adaptive,(e)nonlinear diffusion and(f) aniostropic gaussian.

(a) (b) (c)

(d) (e) (f)

Figure 2: Results from each of the smoothing filters,(a) is the original image,(b) image after Savitzty-
Golay,(c) Gaussian,(d) Adaptive,(e)nonlinear diffusion and(f) aniostropic gaussian.
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Laboratory Image MR Image

Edge height Edge width Edge height Edge width
Original 31 2.26 219 2.04

Savitzky-Golay 23 2.5 158 2.48
Gaussian 15 4.4 196 2.16
Adaptive 26 2.13 211 2.00
Diffusion 25 2.17 214 2.00

Anisotropic 30 2.17 219 1.99

Table 2: Shows the edge strength and edge spread on the gradient image after each filtering from his-
tograms in figure 3.
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(d)

(e)

(f)

(i) (ii) (iii) (iv)

Figure 3: Pixel intensities and gradients along white lines from imagesfigure 1(a)andfigure 2(a). (i)
and(iii) show the pixel intensities and(ii) and(iv) show the gradient values from the lab image and the
medical image respectively.(a) is the original image,(b) image after Savitzty-Golay,(c) Gaussian,(d)
Adaptive,(e)nonlinear diffusion and(f) aniostropic gaussian.
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7 Conclusion

Five filters were evaluated using two criteria, texture smoothing and edge preservation. The filters con-
sisted of two linear filters, two non-linear isotropic and one non-linear anisotropic. The filters were tested
on two images with high and low SNR and the results show that, particularly in the low SNR case, the
anisotropic and adaptive filters performs much better than the linear filters at smoothing out the noise in
homogenous areas while still maintaining the edge strengths with minimum blurring across the edge.

The gaussian performs the worst of all the filters. The Savitzky-Golay deals better at preserving the
edges but again suffers in the lower SNR image. The anisotropic and adaptive smoothings preservation
of edges allows for more agressive smoothing on homogenious areas.
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