CELLULAR AUTOMATA MODELS FOR

TRAFFIC FLOW IN URBAN NETWORKS

by

Abdelhakeem A. Hammad, B.Sc. M.Sc.

A thesis submitted in fulfilment of the

requirements for the degree of

Ph.D. m Computer Applications

School of Computer Applicatiohs
Dublin City University
Dublin 9, Ireland

Supervisors

Dr. Heather Ruskin and Dr.Micheal O’hEigeartaigh



CELLULAR AUTOMATA MODELS FOR TRAFFIC FLOW
IN URBAN NETWORKS
Abstract

Recently, traffic problems have attracted considerable attention Numerical
simulations, hydrodynamics models, and queueing theory are a few of the
basic theoretical tools used to describe car traffic on highways
Computationally, Cellular Automaton models are simple and flexible and are
increasingly used in simulations of complex systems, providing considerable
msight on traffic behaviour A particular strength of these models 1s fast
“minimal” mucroscopic simulation, which nevertheless can reproduce
important macroscopic features

This methodology requures streets to be divided into sites (cells), with sites
Iinked into road segments and forming networks, punctuated by junctions,
traffic signals and so on Car movements are represented by “jumps”, where
each jump represents the current car speed

Much previous work has concentrated on flow of cars under highway
conditions, but less effort has been concerned with urban networks and the
constraints, which apply in this context The research reported here, uses
Cellular Automaton methodology to examune traffic patterns in urban and
inter-urban areas A three state determunistic Cellular Automata Model 1s
defined for the dynamic process and networks of various sizes are
mvestigated, with all nodes controlled and diverse traffic conditions
considered at each intersection Both transient movements of cars through the
network and temporary lost to flow, through off-street parking, are examined
for impact on traffic parameters

A stochastic feeding mechanism, in which car arrivals follow a Poisson
process, has been implemented throughout the simulation for different arrival
rates Lane-changing rules for simulation of two-lane traffic are also discussed
and, finally, a Stochastic Cellular Automata Model for inter-urban areas 1s
presented Key features of traffic behaviour under the various network
conditions are analysed and comparisons with highway flow

Suggestions and future improvements on model realism are also given
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Chapter 1

“Introduction”



1.0 Introduction

The modelling of traffic flow has never been an easy task in view of the high
complexity of social networks Unhke physical networks, there are no
underlying dynamics 1 traffic but rather dynamical consequences that appear
as the result of the interaction of various vehicle-driver units, with one
another, with the road and with control networks
External parameters such as weather conditions, different road conditions,
different motivations for the drivers have a great ;rnpact on traffic
performance These external parameters are changeable from one location to
another, and even for an individual stretch of the road these conditions vary
over time
The mitial development of traffic models was started in the 1950s 1n order to
study the theoretical description of traffic flow These models are based on a
set of mathematical equations or on an analogy to other physical systems
Traffic flow models, which have been developed recently, may be classified
mto two classes
e Models which attempt to explain traffic phenomena on the basis of the
behaviour of the individual elements, (single vehicles), are called
Microscopic Models In mucroscopic models each vehicle in the road
network may be described by 1ts position, its actual velocity, its desired
velocity, 1ts origin-destination route, its tendency to overtake other
vehicles and other characteristics of the driver's behaviour and the vehicle

e In contrast, where traffic flow phenomena are described through



parameters, which characterise the aggregate traffic properties, the

resulting models are called Macroscopic models

1.1 Literature Review

1.1.1 Microscopic Traffic Flow Models

These models are based on a mechanism, which describes the process of one
car following the other Microscopic models are also known as “ Headway
Models” because they relate the headway between two cars to the speed
Models of this kind allow for the characteristics and behaviour of individual
cars to be distinct They are well suited for simulation studies in which
stochastic behaviour can be represented by using probabilistic techniques
In the transportation field this approach to modelling has been appled to
queueing and gap acceptance process (Berilon, 1988, 1991), car following and
lane changing models (Gipps, 1981, 1986) and models of travel, route and
departure time (Macket, 1990)
Microscopic models consist basically of two main components
a) An accurate description of the road network geometry, including
traffic facilities such as traffic lights, traffic detectors, variable
message sign panels, etc
b) A very detailed model of traffic behaviour, which reproduces the
dynamucs of each individual car, dlstmgulshmg between different
types of cars, with the possibility of taking into account

behavioural aspects of vehicles drivers



Microscopic models are close to reality in that they reproduce the traffic
systems well They open up a wide range of traffic scenarios 1 which precise
description of traffic control and traffic management schemes can be exphcitly
mcluded Before we discuss microscopic models n detail one nught ask for
the reasons behind microscopic stmulations? To answer this question we need
to know their advantages and the disadvantages J

Microscopic advantages

Firstly, as a great many parameters can be used to describe the individual
features of driver behaviour 1t 1s easy to mvestigate very subtle changes that
may be induced through, for example, changes 1n the driver education
Secondly, the simulation outputs are capable of describing the motion of an
individual car which, n turn, allow us to study and interpret certain aspects of
the traffic dynamaics

Microscopic disadvantages

Against these advantages of microscopic simulations one should consider the
effort m model specification, data requirements, statistical analysis and
computational requirements (time and memory)

Brackstone and McDonald(1995) have mentioned other important factors
which may imit the use of microscopic simulations in the inter-urban area In
this case, cars have plenty of opportunity to interact with each other, which
gives the chance for a shock wave to form and propagate if the flow 1s high

enough, which 1n turn leads to flow breakdown



The first factor 1s the lack of appropriate data, which can be demonstrated as
follows, the valdity of any microscopic simulation model has to be
maintained at two levels
1 A macroscopic level,(validation), to ensure the general performance of

the model gives a good approximations to the observed traffic
n A microscopic level,(calibration), with respect to mnteraction between

vehicles
The macroscopic data can be obtamed by recording the traffic parameters,
flow and average velocity, at regular specific time intervals In contrast,
microscopic data 1s not easy to obtain and mvestigate as most of the
parameters required relate to “ the leader” car and hence cannot be sampled
sufficiently at regular time 1ntervals by a method which uses only one set point
for observations
The second factor 1s the lack of knowledge of the sensitivity of the models
Since microscopic models are evaluated according to thewr ability to reproduce
traffic jams and the flow density relations, the following question arises
Can we find a “perfect set of parameters” to obtain the “best fit” data using
different combinations of changes in parameters?
The reasons behind our 1nability to find the “perfect set of parameters” are

1 alack of approprnate data

2 mability to optumuse a system with large number of degrees of

freedom per car
For example, 1t 1s not possible to define how changes in one

parameter will affect the system performance both macroscopically



and microscopically, following interactions between a large

number of cars over a long period of time
The stabulity of the traffic model 1s our third factor 1If we assume that the other
problems are solved, there 1s still this further problem namely, the variability
of data due to different traffic patterns For example, 1if we measure the flow-
density relation for a certain number of days, we find different breakdown
points of the flow, despite the fact that all the measurements were done under
the same conditions This 15 due to different conﬁgurdt]lons of the traffic
stream and also to different events occurring and these will have almost

unpredictable chain reactions, within the traffic stream, that will cause the

speed of successive cars to vary 1n a differing order in both space and time

1.1.1.1 Car following theory

The process 1n which one car 1n a stream of traffic reacts to the behaviour of
the preceding car 1s called “car following theory” and 1t 1s based on a cycle of
sttmulus and response
“Car following models” are used to describe the behaviour of the driver-car
system 1n a stream of interacting particles,(the cars), and to provide the basic
components of mucroscopic traffic simulation models Car-following models
(Gazis, 1974, Gabord, 1991) consist of a differential difference equation,
which 1s used to model continuous-time systems with iputs and outputs,
which produces the acceleration at time mnstant (t+T) from

¢ car speed

¢ The relative distance, speed of the car ahead



At time mstant t, the general form of the car following models can be
written as
response (t+T) = sensitivity * stimulus (t)
The nature of the response 1s acceleration or deceleration of the following car,
and the stimulus 1s the difference i velocity between the lead car and the
follower

The most common model was introduced by Gazis et al (1961)

v " () Av(t)

4+ = @ =os (11)
where

Av(t) = v, (&)— v, (®)

Ax(t) = x,, @)= x,(t)

Here the reaction time T tries to model the delay between stimulus and

reactton The parameters o, m and | must be evaluated from observations and

Av(t), Ax(t) are the changes 1 both the speed and the space

Simple “car—following models” resembles a feedback control process in which

oscillations may occur This leads to various kinds of instabilities 1n the traffic

flow, which 1n turn can lead to collisions

There are two types of mstability

1 Local instability, which can be observed in situations in which
disturbance, (e g a change in a distance-headway resulting from the
change in speed of the leading car), does not die out but rather

increases with time



u Asymptotic nstability, defined as the sitnation i which a disturbance
grows 1n magnitude as 1t propagates from car to car

In contrast, stability of the traffic flow model means that changes in the

velocity by the lead car of a traffic stream will not be amplified by successive

cars 1n the stream (untid a collision occurs) Also there are two types of

stability
1 Local stability, which considers the response of a car to the
change 1n motion of the car immediately ahead
1 Asymptotic stability, which deals with the propagation of a

fluctuation through a platoon of cars
Recently (Gipps, 1981, 1986) proposed a new car-following model, which was
designed to possess the following features
1 The parameters 1n the model, o, m, and 1 should correspond to
obvious characteristics of drivers and cars
11 The model should be well behaved when the interval between
successive recalculations of speed and position 1s the same as
the reaction time
This model 1s based on the assumption that the driver of the following car

selects limuts to his desired braking and acceleration rates For acceleration

1
v, (£ v, (1) |?
Vaery S V() + 250, T|1==5= 1% 0025+ == (12)

n n

where
v.(t+T) 18 the maximum speed to which car n can accelerate during the

time mterval(t, t+7)



% 1s the deswred speed for car n and a, 1S the maximum

acceleration for car n

For braking

1

v, (¢ +T) b, T+ (5, T =b, (2%, () = 5, = X, (O =, (T =v,.2()/ B))?

(13)
where

v,(t+T) 18 the maximum speed for a car n with respect to car n-1

b, 1s the most severe braking that the driver of car n wishes to
undertake,(b, < 0)

s, 1s the effective size of car n,(1e, the physical length plus a
margin into which the following car 1s not willing to intrude),
even at rest

B 15 the estimate of b, | used by the driver of car n

If 1t 15 assumed that the driver travels as fast as safety and the limitation of the
car permit, the mean speed 1s given by combining these equations, as follows

v,(t +T) = min(acceleration, braking) (14
The model has been used to simulate vehicular traffic mu multi-lane arterial
roads with special attention devoted to the structure of the lane changing
decisions

More recently (Bando et al, 1994, 1995) the following equation has been used

for calculating the acceleration

1
a(t) = ;[wgap(r» —v(1)] (15)



[

Where V 1s the deswred velocity function, which has approximately a linear
relationship with gap and also depends on some other variables such as road
conditions

1.1.1.2 Psychological-Physiological Spacing models

Car following equations assume that the driver of the fo]lo’wmg car reacts, to
arbitrary small changes 1n the relative speed, even at a very large differences
mn distances to the front car Therefore, car following equations assume that
there 1s no response as soon as speed differences disappear, which 1s not very
realistic

A significant new approach was developed by Wiedmann(1974) based on
knowledge about human perception and reaction behaviour and which used
different perceptual thresholds Only when these thresholds are reached will
the driver of the following car be able to perceive the change in the apparent
size of the leading car and, subsequently, be able to react to the changes of
acceleration or deceleration h
Such thresholds are presented as parabolas in the relative distance vs relative
speed relation in Fig (1 1) It can also be seen from this picture how car
following proceeds A vehicle with speed v(n+1), which 1s larger than the
speed v(n) of the preceding vehicle will catch up with constant relative speed
Av Upon reaching the threshold, the driver reacts by reducing his speed One
such example of relative motion with constant deceleration appears as a

parabola The minimum of the parabola lies on the Ax-axis The driver tries to

decelerate so as to reach a pomnt at which Av = 0 He 1s not able to do this



accurately because, firstly, he 1s not able to perceive small speed differences
and, secondly, he 1s not able to control his speed sufficiently well

The result 1s that the spacing will again increase When the driver mtially
reaches the opposite threshold he accelerates and tries again to achieve the
desired spacing (indicating in Fig (1 1) by the upper part of the loop)

If one assumes that the relationship of the perceptual thresholds for spacing
are the same for both positive and negative changes 1n relative speed, then the
resulting spacing behaviour resembles a symmetrical pendulum about its

equilibrium point

Ax

Zone without
reaction

Zone with
reaction

Zone with
reaction

Ax’

1 perceptual threshold

Fig(l 1) Perceptual thresholds 1n car-following behaviour,

n

Source Wiedemann (1974)
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1.1.2 Macroscopic Models

Macroscopic traffic flow models (Lightill and Whitham, 1955, Gazis, 1974)
treat the traffic system as a continuous fluid They are concerned only with the
behaviour of groups of cars, ignoring the behaviour of the individual
transportation units

Before we classify rﬁacroscoplc models, we mention some of their advantages

and disadvantages

Macroscopic advantages

1 They are useful in studying traffic behaviour under heavy traffic
conditions
1 Due to the use of the aggregate traffic variables, flow, density, and

mean speed, the computational requirements are much less than with
microscopic variables, allowing real time simulation of traffic flow 1n
large networks

Macroscopic weaknesses

1 Do not incorporate driver, car, and roadway parameters in an explicit
way
1 Macroscopic models are not able to provide information about fuel

consumption or route choice for individual cars and sometimes show
poor results 1n the event of microscopic phenomena occurring e g like
queueing at traffic light, on-ramps, and others

In the next section we classify macroscopic models, giving a brief description

of each

11



1.1.2.1 Continuum Models

The first contribution to the continuum models are due to Lightill and
Whitham (1955), who proposed that certain traffic phenomena of dense
highway traffic can be described 1n terms of continuum variables, traffic flow,
density, and mean speed

The assumption of the theory 1s that

At any pont of the road the flow 1s a function of the concentration of cars
This assumption implies that simple changes 1n the flow rate are propagated
backwards through the traffic stream along a kinematic wave whose velocity
relative to the road 1s the slope of the flow-density curve

The flow q and the concentration k have no sigmificance except as means The
purpose of the theory 1s to determine how these mean values vary in space and
time This 1s done by considering the speed with which changes 1in q and k are

propagated along the roadway
N
A fixed observer sees a flow g = e uk where N 1s the number of vehicles

passing hum i time 7, and u 1s the mean speed at which the N vehicles pass
him Assuming that the observer moves upstream with uniform speed c, then

he will pass additional vehicles say, ¢ k which will be added to ¢ so that

N
+ck = —
q + G T

and, 1if he moves down stream this becoms (16)

q - ck =

12
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N 1s the difference between the number of vehicles passing the observer and
those, which he passes If he moves at the mean speed of the stream, then N =
Oandc=u

Consider now two observers moving at a uniform speed c, the second starting
at time 7 and remaining behind the first Suppose that the flow and
concentration are changing with tume, but that the observers joimntly adjust their
speed ¢ so that the number of vehicles which pass them minus the number
which they pass, 18, on the average, the same for each obse;'i‘/er during a time
interval T Thas 1s 1llustrated in Fig (1 2) By (1 6) the result of therr

observation would be

ql — ckl =

N
= =42 - ck2 (17)

1f they were moving downstream 1n the positive direction of flow

Solving for ¢, we find that

q2 — ql
- 1= 4 1
k2 — k1 19
If the changes 1n flow and concentration are small, then
Agq
_ 249 19
c= = (19

Thus, when the difference i flow and concentration are small, they propagate

A
at a speed given by the tangent A_Z to the flow-concentration diagram

13
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Fig(1 2) Vehicles passed by two moving observers,

Source D Gazis (1974)

1.1.2.1.1 Simple continuum models

Contmuum traffic flow models are based on a fluid flow analogy which

regards traffic flow as a particular fluid process, with states characterised by

aggregate variables such as density (in Veh/km), flow (in Veh/h) and mean

speed (1 km/h)

In flmd flow analogy, the traffic stream 1s treated as a one-dimensional

compressible flud This leads us to describe the dynamic evolution of

macroscopic traffic parameters by means of a

1 Conservation or continuity equation

n One-to-one relationship between speed and density or between flow
and density, which 1s known as the fundamental diagram of traffic

engineering

14



The simple continuum model consists of the continuity equation and the
equation of state:

flow = density * mean speed.
If these equations (1.10.a and b) are solved together, then we can obtain speed,

flow, and density at any time and point of the roadway:

0= uk (110 .a)
dg dk
vy = (UOb)

By knowing these traffic variables, we know the state of the traffic stream and
can derive measures of effectiveness, such as delay stops, total travel time and
others that help engineers to evaluate the performance of the traffic systems.
Equation of continuity

Equation (1.10.h) expresses the law of conservation of a traffic stream (cars)
and is known as the conservation or continuity equation. It has the same form
as in fluid flow.

If entries/exits exist within the stretch of the roadway, then the equation takes

the form
k .
) (1id
Where K(x ) and (X, 1) are the traffic density and flow respectively, at the
space-time point(x,t). The generation term g(x,t) represents the number of cars
entering or leaving the traffic flow in a roadwaysectionwith entries/exits. The

equation of continuity relates two fundamental variables, density and flow rate

with two independent ones (space and time).
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The solution of equation (1 10 b) 1s impossible without an additional equation
The first possibility considers the momentum equation described later The
second option uses the fundamental diagram

Fundamental diagram

The macroscopic parameters of the traffic flow are related by equation (1 10 a)
where the equilibrium speed u(x,t) = u(k) must be provided by a theoretical or
empirical equation of state, that can take the form

k) .
u, =u, | 1- (k ) ! (112)

jam

Where U, 1s the eqmlibrium speed, U, 1s free flow speed

Equation (1 10 b) simply states that flow, g, 1s a function of density, k,1e g =
f (k) Usmg this relation one can also obtain the relation, which relates the
mean speed and the density 1e u = f (k) This, however, 1s only valid at
equilibrrum Equilibrium can hardly be observed 1n practice, so that obtaining
a satisfactory speed-density relationship 1s a task that 1s hard to achieve and 1s
always assumed theoretically
The flow-density relation presented in Fig (1 3) reveals two extreme ponts
K=0 = q=20
K=k_, = u=0 = qg=10
The cloud of pomnts between these two extremes 1s based on measurements
performed over specific time intervals This cloud of points represents an area

of maximum flow, which 1s considered to be an important feature of the road

section under concern
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The fundamental diagram can be divided into two regions

1 The free flow area, in which all cars are moving with therr desired
speed
1 The dense traffic area, m which all cars are almost étopped

According to Hall (1993) the fundamental diagram can be characterised by the

following

a) Free flow traffic area, which can be represented by sections of linear
approximations

b) the dense traffic regime

¢) Measurement points found outside these two areas of traffic conditions
represent transition situations, such as traffic leaving the head of a queue
Thas traffic flow cannot be larger than the capacity of the congested area,
but 1t can be faster than the congested flow

The solution of the simple continuum model leads to the formation of shock

waves as llustrated in Fig (1 4) The shock wave 1s shown as a heavy line on

the space-time diagram, ahead of 1t the flow 1s denser and the waves are drawn

paralle]l to the tangent to the flow-density curve at A, which represents a

situation where traffic flows at near capacity implying that speed 1s well below

the free-flow speed

Behind 1t the concentration 1s less and the waves travel faster, they are drawn

parallel to the tangent to the curve at B, which represents an uncongested

condition where traffic flows at a higher speed because of the lower density

17



Real Traffic

occupancy [%]

Fig. (1.3): Fundamental diagram obtained for real data;

Source: Hall, L. et al (1986)

Lighthill and Whitham (1955) have used the flow-density curve to predict

conditions near a shock wave.

Since the simple continuum models do not consider acceleration and inertia
effects, they do not faithfully describe the non-equilibrium traffic flow
dynamics. These are taken into account in the higher-order continuum models.
These models add a momentum equation that accounts for the acceleration and
inertia characteristics of the traffic mass. In this manner, shock waves are

smoothed out and the equilibrium assumption is removed.
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Shockwave

Waves

Fig (1 4) The use of the flow-density curve to predict
the 1local <conditions near a shock wave, source.

Gazis (1974)

Disadvantages of simple continuum models

1- Kinematic models contan stationary speed-density relations (1e the mean
speed should adjust instantaneously to traffic density) More realistically,
1t 1s adapted after a certain time delay and to reflect traffic conditions
downstream.

2- Kinematic wave theory shows shock wave formation by steepmng speed
jumps (1e increases hnearly) to infinite sharp jumps A macroscopic
theory 1s based on values, which are average values from an aggregate of
vehicles Averages are taken erther over temporal or spatial extended
areas Infinite jumps, therefore, are in contradiction to the basics of
macroscopic description

3- Unstable traffic flow 1s characterised, under appropriate conditions, by

regular stop-start waves with amplitude-dependent oscillation time

19



4- The dynamics of traffic flow result in the hysteresfé phenomena This
consists of generally retarded behaviour of vehicle platoons after emerging
from a disturbance compared to the behaviour of the same vehicles
approaching the disturbance Simple contimuum models cannot describe
such phenomena

5- Besides hysteresis, the crucial instability effect 1s bifurcation behaviour
(1e, traffic flow becomes unstable beyond a certamn critical traffic
density) Above the critical density, the traffic flow becomes rapidly more

congested without any obvious reason

1.1.2.1.2 Models with Momentum (inertia)

The extension of the simple continuum models, in order to explain the
dynamic effects in the preceding section, was first pointed out by Whitham
(1974) and Payne (1979)

The actual speed u(x, t) of a small ensemble of vehicles 1s obtamned from the

equilibrium speed-density relation, using a delay time T, and from an

anticipated location x + Ax

u(x,t+7) = U, (k(x+Ax,t)) 113)

Muller and Eerden (1987) have studied this recursive equation in detail
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Expanding, using Taylor series with respect to T and Ax, assuming that both

quantities can be kept small, yields the substantial acceleration of a platoon of

vehicles
du 1 1 dk
— = U, (k)-u) - ¢,* ——— 114a
il CRO R A (1142
In a fixed co-ordmate system this transforms into
du du(x(t),t)) dx
i T=uxd—t+u,=uxu+ut (114b)
And from equations (1 14 a) and (1 14 b) we get
du du 1 1 Jdk
—+u—=—\U,-ul|-c¢,>*— — 115
R e e e (113

where
T 15 the relaxation time, the time 1n which a platoon of cars reacts to the speed
alternations

U, 1s the fundamental diagram

¢,” 1s constant, independent of density k, and 1s called the anticipation term

The LHS 1n equation (1 15) 1s decomposed into a convention term, the
second term, indicating the acceleration due to spatial alternation of the
streamlines and a local acceleration which 1s time dependent

The first term on the RH S 1s the equilibrium term, that 1s the effect of the
drivers adjusting their speed to the fundamental diagram and the second term
represents the anticipation on the downstream density (1e the effect of drivers

reacting to the downstream traffic)
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. ok
The continuity equation ?3% +79t_ = 0 from (110b) and the

momentum equatlon
du ou 1 , 1 Jdk
AU, —ul-c2 = s
iy s Tl -t os 1y

form a set of first order, partial differential equations which describes the
dynamic effects associated with the traffic flow, such as stop-start wave
formation, bifurcation mto unstable flow and transience, and behaviour at
bottlenecks

To mvestigate these equations, the road section 1s discretised m time and
space Numerical methods used mn computational fluid dynamics can be

appled to solve these equations
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1.1.2.2 Two fluid theory

The two fluid theory of town traffic was proposed by Herrman and Prigogine

(1979), Herrman and Arkekani (1984) Cars i a traffic stream can be viewed

as two fluids, the first consisting of moving cars and the second of cars stopped

due to congestion, traffic hights, stop signs, and obstructions resulting from

constructions, accident and reasons other than parked cars, which are ignored

since they are not components of the traffic

The two fluid theory provides a macroscopic measure of quality of traffic

service 1n a street network which does not depend on the density

The two fluid model 1s based on the assumptions

1 The average moving speed mn a street network is proportional to the
fraction of moving cars

il The fraction of stopped time of a test car, circulating 1n a network, 1s
equal to the average fraction of the cars stopped during the same period

The first assumption represents the relationship between the average speed of

the moving cars and the fraction of moving cars which can be formulated as

follows
V=V a-f) (116)
where
|’ 1s the average maximum moving speed
n 1s an 1ndication of the quality of traffic service in the
network
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|4 1s the average speed, which can be wiltten asV=VFf,

f, 1s the fraction of stopped cars

The second assumption means that the network conditions can be represented

by a single car appropriately sampling the network

Equation (1 16) can be written as

)—(n+1)

Combining the Equattons (1 17) and (1 18) we get

1 n

T. = T - T _ &+t T n+l

s m

which represents the two fluid formulation
Equation can be written as
T, =T-T

where

(117)

(118)

(119)

(120)

(121)

which represents the relation between the trip time per unit distance, T, and the

running time per unit distance, T,

Taking the natural logarithm of both sides in Equation (1 21) yields

InT =

, InT, +
n+ 1

n +

In T (122)

which provides a hinear expression for the use of least squares analysis
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1.1.3 Cellular Automata Models

Cellular automata (CA) are discrete dynamical systems, which are defined

one-dimensional lattice (or multi-dimension grid) of k identical cells

on a

The global behaviour of the system 1s determined by the evolution of the states

of all cells as a result of multiple interactions

CA, which were developed to model simple mathematical systems

are

mcreasingly used 1n the simulation of complex systems In this approach, the

traffic system 1s regarded as an interacting particle system, which shows a

transition between two phases

Low-density phase in which all cars move smoothly with maximum speed, and

4

High-density phase in which cars are almost stopped
The CA evolves m discrete time steps The state of each site at the next
step 1s determued from the state of the site itself and 1ts nearest sites a
current tume step

The CA models simulate the movement of each individual car according

t the

to a

number of simple rules, essentially moving each forward by an integer number

of increments at an mnteger speed
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1.1.3.1 One-dimensional Cellular Automata Models

Very recently, Nagel and Shreckenberg (1992) have introduced a stochastic

Cellular Automata model to simulate freeway traffic They found that there are

two regions 1n the traffic flow

1 Free-phase, which 1s domant at low density

il Congested traffic in which traffic jams appear at a high density
The model 1s defined over a lattice of k-identical sites, each of length 7
representing the length of the car plus distance between cars in jam, and
site can be either empty or occupied by a single particle

Each particle can have an integer velocity between 0 and v where v_

max ?

i general Given the configuration of the particles at time step t

5m

each

=5

X

the

configuration at time step t+1 1s computed by applying the following rules ,

which are done m parallel for all particles
¢ Calculate the headway distance(= gap)
¢ Deceleration
If v> gap (the particle 1s running too fast), then slow down to
v = gap (ru
¢ Acceleration
If v < gap and v< v_, then accelerate by one
v =v+1 | (ru
¢ Randomusation
If after these steps, the velocity v 1s greater than zero, then with proba

p reduce v by one v =v-1 (ru

26
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¢ Car advance

Each particle 1s advanced v sites ahead (rule 4)

Nagel and Schreckenberg (1992), showed that the start-stop waves, (traffic

jams), appear i the congested traffic region Also, they obtamned good

agreement with reahistic fundamental diagrams

Basically, they tried to model two properties of the road traffic

e Cars travel at some deswed speed, unless they are forced to slow down 1n
order to avoid collisions with other vehicles

e Interactions are short ranged and can be approximated by being restricted to
nearest neighbours

Imperfections in the way drivers react 1s modelled as noise

The continuous himit of the CA model has been mvestigated by Kraul et al

(1996), this 1s obtained by lettmg v_ — e and p_. — O

X max

The generalised version of the CA model allows for continuous values of the
velocities and spatial co-ordinates In the N-S model noise, 1s introduced by
randomly decelerating car velocity by one with probability p,. .. This,
however, 1s generalized to an equipartition between zero and the maximum
acceleration 1n the generalized version

The CA rules for the mtermediate model are defined as follows
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vdes = mln(V(l’) + a(t)’ vmax’ gap(t))’
V(¢ +1) = max(0, v, — 0 rand()), (123)

x(t+D)=x@) + v(t+1)
Where gap(t) 1s the free headway distance, a,,, 1s the maximum acceleration ,

rand() 1s a random number in the mterval (0, 1) and ¢ 1s the maximum
deceleration due to noise

Numerical simulations showed that the transition, leading from the free flow
regime to the congested flow regime, bears strong sumlarities to a first order
phase transition 1 equilibrium thermodynamics An additional advantage of the
continuous model 1s that 1t 18 much easier to cahibrate with real data, despite the

shight decrease 1n the numerical efficiency

1.1.3.2 Two-dimension Cellular Automata Models

Two-dimensional problems, (city traffic), are more compilcated compared to
one-dimensional ones and 1n turn they are less realistic

Biham and Middleton (1992), have introduced a simple determunistic two-
dimensional model Three variants of the model were mvestigated, the first two
variants of the model use three-state Cellular Automata defined on a square
lattice Each site contamns erther an arrow pomnting upwards, an arrow pointing
to the right, or 1s empty

In the first variant (Model I) the traffic dynamuc 1s controlled by traffic lights,
such that the right-arrows move only 1n even time steps and the up arrows

move 1n odd time steps
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On even time steps, each arrow moves one step to the right unless the site on its
right-hand side is occupied by another arrow If 1t 1s blocked by another arrow
1t does not move, even 1f during the same time step the blocking arrow moves
out of that site Simular rules apply to the up arrows, which move upwards

The model 1s defined on a square lattice of N x N sites with periodic boundary
conditions

In model 11, the traffic light 1s removed and all arrows move 1 all time steps
(unless they are stopped) If both an up and a right arrow try to move to the
same site, one of them will be chosen randomly, with lequal probabilities
Model 11 1s considered to be the non-deterministic variant of the model
Extensive numerical simulation shows a sharp jammng transition which
separates the low-density dynamucal phase in which all cars move at maximal
speed and the high-density jammed phase i which they are all stopped

The third variant of the model 1s a four-state C A defined on a square grid Each
site contains erther an arrow pomnting upwards, an arrow pomnting to the right,
an arrow pomting left, or 1s empty In this four-state model all arrows try to
move at every time step If both an up arrow and a right arrow try to move to an
empty site at the same time step they both move 1 and overlap On the other
hand no arrow can move mto a site which 1s already occupied

The simulations of Btham and Middleton(1992) show that the model exhibits a
contmuous transition, which 1s qualitatively similar to the one-dimensional
case

Nagatani (1993) has extended the CA model proposed by Biham and

Middleton (1992) (the BML model), to mnvestigate the effect of the two-level
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crossing on the traffic jam mn the original model The model, as in Fig (1 5), 1s
defined on a disordered square lattice with two components

e The first component 1s the site of three states répresentmg the one-

level crossing
e The second component 1s the site of four states representing the two-
level crossing

Nagatan (1993) showed that the dynamical jamming transition does not occur
when the fraction ¢ of the two-level crossings becomes larger than the
percolation threshold, which gives rise to the critical behaviour However, the
dynamical jamming transition occurs at higher density of cars with increasmng
fraction c of the two-level crossing below the percolation threshold
Torok and Kertesz (1996) have studied the sequential update version of the
BML model called the Green Wave Model (GWM)
The main difference between the two models 1s that mm the BML model single
cars move while 1 the Green Wave Model, whole convoys (line of same type
of cars with no empty space between them) travel together
In the BML model, two cars cannot move together because if they become
neighbours the second car 1s not able to move until the first 1s moved away In
the GWM the two neighbouring cars always stay together 1if the first moves the
second will move 1n the same time step and there 1s no effect that could
separate them The GWM shows two types of transition the free flow-jam

transition and a structural transition in the jammed region
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Fig (1 5) Schematic i1llustration of the cellular automata

model of traffic flow with two-level crossings, source

Nagatani (1993)

Thesis Outline

The remaining chapters of this thesis are organized as foll(;{)vs In Chapter 2 we
present a three state determmunistic cellular automata model for urban traffic,
then the model 1s adapted to simulate road traffic In Chapter 3 we move
towards network traffic flow and we investigate using the simple model,
developed mn Sec (2 1), the network performance under different parameters
that govern the traffic flow, whereas in Chapter 4 we mvestigate the traffic

behaviour along the network with loss to flow and under short and long-term

traffic events

31



In Chapter 5 a set of lane-changing rules for cellular automata 1s presented and
a stochastic cellular automata model for traffic flow in inter-urban areas 1s
presented in Chapter 6 Finally, Chapter 7 concludes this thesis by ghlighting

the man contributions and discussing directions for future research
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Chapter 2

“Simple Cellular Automata Model for Urban Traffic Flow”
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2.0 Introduction

Numerical simulations, hydrodynamic models, and queuing theory are a few
of the basic theoretical tools, used to describe traffic flow on freeway networks
(Leutzbach, 1988, Kuhne, 1984) Traffic control has been intensively studied
also from the pomt of view of Operations Research (Improta, 1987) As one
might expect, the theory of traffic flow 1s related to telecommunication and
computer network theory Equally, many basic concepts 1n traffic flow theory
have their origins 1n physics, (Lighthill and Whitham, 1955, Herrmann et al,
1959)

Cellular automata, which were developed to model simple mathematical
systems, are increasingly used in the simulation of complgx physical systems
(Wolfram, 1986), and have helped demonstrate phenomena which are of
practical interest

Congestion 1s a simple phenomenon cars can not move without sufficient
space between them (Nagatani, 1993a,b, 1994a,b , Nagel and Herrmann,
1993) In order to simulate freeway traffic flow, Nagel and Schreckenberg
(1992) extended the 1D asymmetric simple exclusion model by taking mto
account car velocity,(Sec(1 13 1)) They showed that a transition from
lamnar traffic flow to start-stop waves occurs with increasing car density, as
observed 1n real freeway traffic

Control of traffic flow 1n cities 1s a more complex endeavour as 1t ivolves
many degrees of freedom such as local densities and speeds Cremer and

Ludwig (1986) have developed a fast simulation model for modelling traffic
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flow through urban networks They simulate the progression of cars along a
street usmng bit manipulation computer programs When compared with
standard nmucroscopic models, the computational time needed 1s less by a ratio
of 1/ 150 The models simulate, accurately, macroscopic phenomena of traffic
flow, while at the same time reproducing the main mecham;ms of microscopic
models

In this chapter we present a Cellular Automaton (CA) to simulate traffic flow

in urban networks, which extends this approach

2.1 The Cellular Automata Model

Our model 1s a 3-state cellular automaton defined on a one-dimensional lattice
L, of kidentical sites with at most one particle per site, where each site can

take one of the states 0, 1 and 2 State 0 1s the empty site, state 1 represents a

¢
oy

site occupied by a stopped car and state 2 corresponds to a site with a moving

car The CA evolves 1n discrete time steps The state of each site at the next

time step 1s determuned from the state of the site itself and those of its two

nearest neighbour sites, at the current time Applying a parallel update rule for

all sites 1n the model, the transition rules may be described as follows

If a site 15

1- Occupied by a moving car and the neighbouring site in the direction of
movement 1S empty, then the car 1s advanced one site (Rule 1)

2- Occupied by a moving car and the next site in front 1s occupied by a

stopped or moving car, the car can not advance e (Rule 2)
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3- Occupied by a stopped car and the nearest site in front 1s empty , then 1t
will advance by one site (Rule 3)

4- Empty, and a car wishes to enter 1t from an adjacent cell, then the current
site 15 occupied by a moving car 1f the next site ahead 1s either empty or

occupied by a moving car, and by a stopped car otherwise (Rule 4)

2.1.1 Model parameters

The fundamental diagrams 1n traffic flow models are (1) flow vs density and
(1) average velocity vs density The following parameters play a central role 1n

this analysis
The mean velocity of cars 1n a unit time nterval T 1s defined to be the number
of moving cars divided by the total numbers of cars

n

V= —, @2n
n
where n_, =number of moving cars in T
and n = total number of cars

The average mean velocity over an mterval of time T 18

1
<> = —ZV, 22
T4

where v, = system velocity at f time step

T = Length of the time interval
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The density of cars n the system, p, and the flow, q, are defined by

p=n/k (23)
q = <v>p 24
where n = number of cars
and k = number of sites in the model
2.1.2 Model Dynamics

The time-evolution of the automaton follows the simple rules given earlier for
applying periodic boundary conditions, (as dlustrated on the space-time

diagram, Fig (2 1)) ‘

L

When a periodic boundary condition 1s 1mposed on the model, cars that exit
the system (on the right hand side) are fed back mto the system on the left-
hand side, as our traffic moves from left to right

Each site on the lattice can take one of the states 0 (empty), 1 (stopped car) or
2 (moving car) If one follows the movements of individual cars 1n the space-
time diagram Figs (2 1a and b), cars moving freely are characterised by
diagonal hines with the symbol 2, while stationary cars are characterised by
vertical Iines with the symbol 1

Lines are configurations at consecutive time steps At low density, these lines
show lamunar traffic, with the system moving with maximum velocity subject
to one gap ahead indicating “free phase” traffic

In contrast, at high density, we find congestion clusters, each congestion

represent a traffic jam, indicating a “jammed phase” traffic
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Note that when traffic 1s stopped, the traffic jam wave moves backwards

relative to the traffic flow

2.2 Simulation and Results.

2.2.1 The model with periodic boundary conditions

We have implemented computer simulations i Borland C++ for a
determunistic CA model, starting with random 1nitial configuration of cars with
density p and velocity = O Different lattice sizes (k = 60, 80, 100, 120, 140)
were used In each case, the CA model ran for 1000 time st:,bs and this process
was repeated 300 times to generate the average case statistics

Most road-traffic observers have concentrated on measuring flow, g, and
average velocity, v, as being the quantities of greatest practical interest The
density p can be obtained from these measurements

The relation between the three macroscopic variables, flow, average velocity,
and density, 1s widely known as the fundamental diagram 1In Sec (1121 1),
we have studied 1n detail the flow-density relation, which represents the first
component of the fundamental diagram Another mmportant relation 1s the
velocity-density relation This 1s regarded as the secondx component of the
fundamental diagram, which shows how the system d;nsny affects mean
speed at different levels of concentrations The fundamental diagrams are also
known as *“ Empirical relations”

Using the fundamental diagrams, our simulation results reveal that the system

reached 1ts critical state when the density p, = 05

39



The maximum flow recorded was ¢ = 05, after a transient period ¢, =%,
which does not depend on the system size. g

Fig (22 a) shows the fundamental diagram (flow vs density) which 1s
symmetrical about the critical density p, =05, which marks the boundary
between free flowing and congested traffic

In Fig (2 2 b) we plot the average velocity against density, which indicates that
the system moves with a constant average velocity <v> =‘1 untd p= 035 and
then decreases as we increase the density

The space-time diagrams i Figs (23 a) and (23 b) are very useful in
visuahzing traffic and traffic jams In these figures,(2 3 a, b), each black pixel
represents a car Space direction 1s horizontal, time 1s pointing downwards,
cars are moving from left to right and from top to bottom.

In free flowng traffic, Fig (23 a), the system reaches a steady state
characterised by each car advancing one site to the right at each time step In

contrast, in congested traffic, Fig (2 3 b), the traffic jam moves one site to the

left at each time step

40



Fundamental Diagram
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Fig (2 2 a) flow-density relation for a system of size
80 Data are averaged over long time periods (1000
time steps) using closed boundary conditions It 1s
easy to see that the phase transition between the two

regimes occurs at the critical density 0 5
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Fig (2 2 b) velocity-density relation, using closed
boundary conditions, again the System moves with constant
velocity until the density of 0 5, then the transition
between the two phases take place
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2.2.2 The Model with Open Boundary Conditions

The rules of the Simple Model with open boundary conditions are identical to
the periodic case except that we work with average deg_xsmes and need to
consider the mput to the system as well as the duration of e:lch simulation run
Different rates of mjecting cars into the system were mvestigated These
correspond to peak-time rates, such as those that occur at, say, 8 00 hrs or
17 00 hrs and off-peak time, corresponding to 11 00 hrs or 20 00Ohrs

In our model, exit from the road (system) 1s controlled by a traffic light,
operating under a green and red light regime Cars can leave the system only
during the green hight phase, by deleting the last site of the road, and form a
queue during a red hight phase In this model the user fixes the duration of the
green and red phases

Differing lattice sizes (60, 80) were selected, data was collected after
transience k / 2, and averaged over 200 simulation runs I;:ach simulation run
consisted of 600 time steps using various regimes for the green and red phases
The fundamental diagrams for the two different array sizes, k =60, 80, are
presented 1 Figs (24) and (25) Comparing these diagrams with those
obtained for closed system (closed boundary conditions), we make the

following observations
1 Imposing open boundary conditions has led to lower values for the

maximum flow and 1ts density, g, has decreased from 05 (at p, =

05)t0 03525 (at p, =0 424)
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i The simulation reveals that the maximum flow and its density depend
on the system size. Using a system of size 60 sites has led to a

maximum flow of qmx ~ 0.36 at density pgmn ~ 0.48, whereas a

lower value for QX = 0.3525 was obtained at lower density of 0.42

in the case of larger size network(k=80).

0.345
0.46 0.48 0.5 0.52 0.4 0.56 0.58
density
(a)
(b)

Fig.(2.4):Fundamental diagrams for the Simple Model with open
boundary conditions; flow-density relation, velocity-density

relation, for array size 60 cells. Data were averaged over 200
runs, where each run is 600 time steps
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m Applying open boundary conditions was also able to give, roughly, the
characteristic shapes of the fundamental diagrams, flow-density

relation and velocity density-relation
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Fig (2 5) Fundamental diagrams for the Simple. Model with open
boundary conditions, flow-density relation, velocity-density
relation, for array size 80 cells Data were averaged over 200

runs, where each run 1s 600 time steps

45



2.3 Road Traffic Simulation

We now extend our simulation to include road traffic flow, where each “road”
is formed by linking more than one segment, where a segment is a one-
dimensional array of k sites.

In this section we introduce a new parameter jammed, time t-, which

represents the waiting time period cars require to leave the road. In real traffic,
this parameter depends on the number of traffic lights, which are installed
between the road segments, and the duration of both light cycles, red and
green, as well as the traffic density. The aim of this section is to study and
analyse the effect of the number of road segments and the light cycle duration

on the jammed time parameter.

2.3.1 Road Description

The model looks at traffic flow for a seven-day period on two designs: a road
consisting of 77 cells and three segments and another consisting of 144 cells
and five segments. The choice is made in order to avoid complex situations
with large number of intersections.

The simulation runs allowed for:

1- Road input and output

Cars were generated at random and input into the system according to two
different injection rates: peak-time and off-peak time rates. Cars were allowed
to leave the road only during the green cycle and the first site outside the road

was assumed to be free throughout the simulation run.
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2- Specified duration of the light cycle

e
\

The simulation was performed using different periods for both the red and

green cycles
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Fig (2 6) Day-one of our simulation using road of size 77
cells, with green cycle = 20 time steps, red cycle = 15 time

steps and Where (a), (b), and (c¢) represents the relations of
the time-steps against jammed time, density, and, velocity

i
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2.3.2 Simulation and results

Each simulation run 1s calculated using up to 10,000 time steps, where the
peak-time period 1s considered to be nside the mterval 2000-8000 time steps

Fig (2 6) describes the traffic behaviour throughout day-one traffic simulation,
where the roads size = 77 cells and the green time cycle 1s greater than the red
time cycle by a factor of 4/3 The jammed time vs time steps relation,
presented i Fig (2 6 a), shows the sharp transition in the jammed time

parameter ¢, at two pomts, (2000 & 8000 time steps respectively), which

separates the two traffic regimes, 1e free and dense traffic It also

demonstrates how ¢, rapidly increases over the dense traffic period and the

way 1n which 1t oscillates during the two regimes These™oscillations, which
may occur due to the density fluctuations and the duration of the traffic light
cycle, have considerable impact on the traffic velocity This 1s demonstrated n

Fig (26¢) To observe the effect of the light cycle duration on the ¢,

parameter, we have increased the red cycle period to be the same as the green
cycle, see Fig (2 7) This change 1n turn decreased the outflow By comparing
Figs (2 6 a and 2 7 a), we find that increasing the red cycle period has result in
no sigmificant changes m the jammed-time parameter over the dense traffic
period, which my be noticed by very small oscillations 1n the ¢, parameter as
1t can be seen from Fig (27 a) Ths, also, was the case when the green cycle
was decreased to be the same as the red cycle period

Now we nvestigate the effect of the number of traffic lights on the jammed-

time parameter ¢ by increasing the road segments to five segments
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Fig (2 7) Day-two of our simulation using road of size 77
cells, with the green cycle and the red cycle the same and
Where (a), (b), and (c) represents the relations of fundamental

measures vs tlme steps

Fig (2 8) 1illustrates the traffic flow behaviour throughout a one-day traffic
smmulation, which was performed to investigate jammed-time behaviour after
the number of road segments was mncreased to five and with green time cycle

= 20 time steps and red time cycle = 15 time steps
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time steps
(a)

tim* stops

(b)

tims <

(c)

Fig(2.8): Day-three of our simulation using road of size 144
cells, and the green cycle = 20 time steps, red cycle = 15 time
steps and Where @ , (M), and () represents the relations of

the time-steps against jammed time, density, and velocity.

Comparing the results obtained in Figs (2.6 and 2.8), we may observe the
following:

Increasing the number of road segments has generated the same traffic features
as for the three segment road, and has also increased the jammed time as

expected, see Table (2.1).
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4

Road Size Green Cycle =20 & Red cycle increased | Green Cycle reduced

Red Cycle = 15 to Green cycle to red Cycle
77 cells 5-80 15-120 40-100
144 cells 35-135 50-140 55-140

Table (2 1) The jammed-time range, 1n time steps, for

different road size and light cycles

Table (2 1) shows that the jammed-time range, for both roads, 1s affected by
the changes 1n the light cycle duration for both red and green times For both

roads, the ¢, parameter attains its mmnimum value when the green cycle 1s
greater than the red cycle, whereas the maximum value of ¢, 1s obtained at

higher value for the red cycle

This can be seen also from the space-time diagrams in Fig (9 (a) and (b))

From these, 1t 1s easy to visualise the traffic behaviour for a certain number of
tume steps

In Fig (2 9), where Borland C++ 1s used to plot our space-tune diagrams, cars
are moving to the right from top left to bottom right Straight hines indicate
that cars are moving freely, while vertical lines means that cars are blocked
(stopped)

Traffic jams at the traffic lights are represented by the vertical trajectories,

1

which are moving backwards against the traffic.
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In the Fagures, these jams are more noticeable, and also last for longer periods
as we 1ncrease the number of the traffic hghts from 3 to 5, hence the observed
mcrease similarly in jammed time

Smmular phenomena were apparent when different light cycle periods were
applied, as 1n the three-segment road case From the above results, we
conclude that the jammed-time parameter for the sunulation depends on the
number of traffic lights and the duration of each light cycle,r red and green, and
as well as the traffic density, as found for real traffic

The choice of the different cases for the hight cycle’s duration was destined to
create three different traffic patterns as follows

¢ By increasing the green light cycle over the red cycle, we consider our

simulated traffic to be more mmportant than the traffic which passes the
same traffic lights on the other roads,
e This situation 1s no longer dommant when the traffic on the other roads

becomes heavier 1n this case we increase the red cycle for our simulated

traffic, 1e more green light for the other roads &

e In the third choice all roads are of the same importance, but the traffic
ahead 1s more congested In this case decreasing the green cycle will take

some pressure at the front junctions
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2.4

11

v

Summary and Concluding Comments

i

A three state determmaistic Cellular Automata Slmui%;tlon Model for the
dynamic process of traffic flow 1n urban Networks 1s presented 1n this
chapter, with space and time discrete

The time—evolution of the automaton follows simple rules, the state of
each site at the next time step 15 determined from the state of site itself
and those of the nearest neighbour sites,

We have performed our simulation, applying a parallel update strategy,
on small size lattices with open and closed boundary conditions
Simulations have been extended to include roads, where each road 1s
formed by linking a finite number of segments separated by traffic
Iights ¢

Results for the jammed time parameter ¢, showed that this parameter

depends on the number of traffic hghts and the duration of each light
cycle

Since the update rules treat segments of the road networks, rather than
mdividual vehicles, computational time does not depend on the number

of the vehicles within the segments, but only on the segment size
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Chapter 3

“Traffic System and Transient Movement Simulation”
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3.0 Introduction

The development of the network level traffic approach was based on the two-
fluid theory of town traffic (Herman and Prigogme, 1979, Herman and
Ardekani, 1984), which relates the average speed of moving cars to the
fraction of runming cars in a street network Further extensive studies have
been carried out on the basis of this theory (Mahamassant et al, 1990,
Williams et al, 1987), which has many advantages but a’lso mvolves some
effort in model specification and high computational requirements However,
the behaviour of the various network variables at high concentration levels of
cars remains to be understood Other relevant work in the same area has
mvolved development of a fast simulation model for progression of cars along
a street through bit manipulation programs (Cremer and Ludwig, 1986) In this

chapter we move from a single-lane traffic modelling to modelling networks

using the Simple Cellular Automata Model described mn Sec (2 1)

3.1 Network description

Road networks are represented by nodes, segments (lanes), and links This
structure allows the traffic simulation 1n integrated networks of urban two-lane
carriageways The network objects may be described by components as

follows

3.1.1 Nodes

Each node can be viewed as an intersection or a T-junction. Nodes are points

1n the network where traffic enters or leaves the simulated network, or traffic
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from one link 1s distributed among other links 1n the netwgi;k The entry links
of the network are located at all the peripheral nodes with the exception of the
T junction nodes Each node object, Fig (3 1), has the following data items
1-Node number
Each node has a unique identification number
2-Node offset
For each node the offset 1s defined as the number of time steps at which the
node will change its default start, (red time traffic), to green time traffic for the
duration of the green cycle
The offset refers to the time relationship between the adjacent signals at
network nodes The pattern of offsets n a series of signal aims to munimize the
stops and delay associated with travel through network of signals
The node offset 1s calculated as follows
1 the offset 1s set to zero for nodes, which are considered as the
offset-start nodes
1 for all other nodes, the offset 1s considered to be the shortest path
from the nearest entry and exit node up to the given node
3-Node type
The node type specify whether the node 1s an ntersection, a T junction, or
entry and exit node
4-Node green cycle
The green cycle 1s the number of time steps, which allows the traffic to flow

from a specific direction at a specified node
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5-Node red cycle

Is the duration of the opposite traffic flow at a specified node

6-Node signal

Two signals only are mtroduced in our network traffic stmulation, red (0) and
green (1), assuming that the default setting for each node signal 1s O (red)
7-Node entries

These are the segments, which link the give node to other network nodes

3.1.2 Links

A link 15 a set of two adjacent lanes, each of which has a different drection,
which may connect any two nodes, see Fig (3 2)
Network roads are connected using links, all hinks 1n the simulated network

,
LR

consist of 2-lanes, with all feasible movements allowed at all intersections

3.1.3 Segments

Segments are road sections, which connect nodes Each segment object,
demonstrated in Fig (3 2), has the following characteristics

1- length

Thas 1s the number of cells in each segment, where each cell 1s 75 m and
represents the car length plus distance between cars 1n dense traffic

2- configuration

This indicates the mnitial state for the segment, 1e the way m which the
vehicles are mitially placed at random #

3- transient period

This specifies the number of time steps, which we discard before starting the
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collection of our data and 1s based on the segment size It represents the time
needed for relaxation to equilibrium

4- starting and ending nodes

The starting and ending nodes of any segment tell us the position of the

segment inside the stmulated network K

3.1.4 Network geometry

The geometry of the network was chosen to be a circular grid with radws r,
which indicates the number of nodes from the centre node of the simulated
network to the surface node Applying this geometry, each segment object of
the network can be either a straight line or a true arc, which 1s characterised by
the co-ordmates of the start and end pomts (nodes) Increasing the radws of
the grid would also increase the number of segments by a fixed number, which
allows different size networks to be simulated Fig (3 3) shows how the

i
e

proposed geometry 1s used to represent real networks

3.1.5 Traffic control and traffic conditions at junctions

All nodes were controlled, (signalised), in our stmulated network Our signal
operating condition was assumed to be a pre-timed signal, (fixed time control)
By fixed tume control, both the green tume cycle and the red time cycle are
fixed without any consideration to the vehicle arrivals and departures at

junctions

L2
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Three determuinistic traffic conditions were employed n our simulation of the
number of cars passing an intersection or junction, (1) 25% turn left, 50% go

straight, 25% turn right and (1) 20% turn left, 60% go straight, 20% turn right,
and (111)12% turn left, 76% go straight, 12% turn right These conditions apply

at all intersections where all three movements are allowed, and reduce to 50%-

50% at junctions with two movements only

3.1.6 Traffic parameters

In this chapter we also extend the definition for the traffic parameters, density,
flow, and velocity, to the network level

Network velocity 1s obtamed at every time step as the ratio of the total number
of moving vehicles, mnside the network, to the total number of vehicles
Network density 1s also calculated at every time step as the ratio of the total
number of vehicles, inside the network, to the total numbermof sites

The corresponding network flow, at every time step, 1s (;alculated using the
relation Network flow = Network velocity * network density

Since the density varies dramatically with time in dynamuc traffic networks,
the simulation time 1s split into intervals, which corresponds to observation
periods The user can set the interval length and different values have been
applied 1n our simulations This 1s because the interval length, as we will see
later, has a significant effect on the traffic parameters The choice of the
mnterval length turned out to be influenced by the domunant traffic regime, free
or dense The time dependent density, velocity and flow are examined by

taking averages every 30-150 time step throughout the simulation run
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3.2 Description of Simulation Experiments

It 1s the aim of this chapter to investigate and study the behaviour of urban
traffic networks and to characterise ther performance using the proposed
simple Cellular Automaton model

In this section, our purpose 1s to study the physical and operational features of
the simulated network through the analysis of the fundamental diagrams, for
relations such as density vs flow and density vs velocity

In general the following factors may influence the network‘;i)erformame

l car arrvals to the network ( at fixed or stochastic rate)

) the number of the entryl exit nodes

1 traffic conditions at intersections

w network geometry

v external parameters such as weather conditions, different road

conditions, different motivations for the drivers
Vehicles were randomly distributed along the network, then thy generated at
random and mnput into the network through all nodes of entry In our simulated
traffic, vehicles did not have " Knowledge" about therr complete path along
the network, but only about therr next time step movemé:‘rllt Network nodes
can be classified as entry/exit nodes, T-junction nodes and mtersection nodes
In the following simulations four different networks were considered, whose
radn varied from r=3,(8 Km length for a network of 17 nodes and 28 links), to
r=6,(24 Km length for a network of 41 nodes and up to 76links) Each hnk 1s a

two-lane carriageway
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A stochastic feeding mechamism, see Appendix (C), m'which car arrvals
follow a Poisson Process, was implemented, (using different rates of arrivals),
throughout the simulation experiments It 1s also assumed that the network
neighbourhood can take any number of vehicles that might leave the network
Traffic conditions may also affect the network performance For example if
we 1ncrease the probabilities for turning left or right, then network density will
mcrease, since the number of vehicles circulating nside the network will
mcreases relative to those leaving 1t

In this chapter we do not consider varied network geometry, but assume a

simple geometry for our sitmulated network throughout, keeping the number of
the entry/exits are constant *
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3.3 Simulation and Results

Using a stochastic feeding mechanism, the main factors 1n the following
experiments are :

1 arrval rate u traffic conditions

i interval length v transient period

In this Chapter, we consider only the transient movement of the cars along the
network, whereas, in Chapter 4 we allow cars to park inside the network, so
that they are temporarily lost to the flow

In the following simulation each run consists of 5000 iterations Network
parameters are calculated every 30- 150 time steps after a discard period of
200-500 time steps with traffic conditions applied as m section (3 15) and
using different arrival rates A summary of the simulation outputs can be
found 1n Appendix B, Tables (B 1-B 4) We start by looking at the effect of

the arrival rate, p, on the traffic behaviour along the network

3.3.1 The effect of the arrival rate on the network

parameters

3.3.1.1 The existence of jamming threshold

Fig (3 5) shows the number of cars passing through the network for a 17-node
network, together with the number of cars waiting outside Arrival rate (n)
varies between 0 1 and 0 6 It 1s easy to observe the “jammuing threshold’ for
U greater than the critical value u =0 25 the network 1s noi‘}zble to cope with

the traffic, which has results in long queues outside
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The simulation also reveals that the critical arrival rate p 1s independent of the

network size (Fig (3 6)), where the network size has extended from 17 nodes

up to 25 nodes, 33 nodes and 41 nodes, and also the traffic conditions, Fig

37
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Fig (3 5) Number of cars vs arrival rate relation for a 17
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Fig (3 6) Waiting cars vs arrival rate for four different

networks, and turning percentages 20% left, 60% through, and

20% right

67




8000
7000 -
6000 -
5000 -
4000
3000
2000
1000

CUTERY U 0SS

SMAi*?;

0.2 0.4 0.6

arrival rate([j)

Fig.-(3.7): Waiting cars vs arrival

conditions

rate

Fig.(3.8): Transported cars vs arrival

networks and turning percentages are:25%

25% right

3 25% left, 50%
through, 25% right

»’i8$"“-20% left, 60%
through, 20% right

through, 12% right

0.8

for various traffic

rate for different size

left, 50% through, and

It is however, worth noting that the number of cars transported through the

network is affected by the network size, especially for p greater than the

critical value p = 0.25, Fig (3.8), this is obtained for different network

sizes: 17, 25, 33, and 41 nodes.

68



This graph also suggests that the number of cars transported via small size
networks 1s greater than those transported via larger size networks This 1s due
to the mcrement of the traffic lights number, 1e more delay at ntersections,
and also car path through the network becomes longer

3.3.1.2 Arrival rate vs Network size

In the next simulation runs we start by changing the arrival rate and keeping

other factors the same, where different network sizes were used The output

parameters, flow, density, and velocity, are averaged every 30-tume steps after

a discard period of 200-time steps to let transience die out

Performance Measure Arrval rate 17 nodes 41 nodes
FEY X 014892 0 123815
Max Flow ;}i*# ﬂg ) P - g{g:%%g?g L G688 - 1
REE G "
\p =01 0 186459 0 143406
Density of Max Flow n=03 0482386 0430268
n=055 0414131 0494114
n=01 2743 2430
Transported cars #=03 5917 B
n=055 6215 5810
p=01 3 3
Queue Length p=03 308 552
1=055 i 5769

Table (31) The influence of varying the parameter p on the

maximum flow and 1ts density, cars transported via the network

and the queue length outside 1t for different size networks
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At all intersections the traffic conditions, as mn Sec (315) case (u), were
applied The fundamental diagrams, presented in Figs (3 9) describe the flow
behaviour for two different network sizes, 17 nodes and 41 nodes

The effect of changing the arrival rate () can be summarised as follows

1 A higher flow was obtamned 1n the case of smaller size network and
this was obtamed for different values of n, sei Table (3 1) The
table also shows that increasing the arrival rate fromn =01top =
0 3 has significantly increased the maximum flow (an increment of
66% was observed for the smaller network and 91% for the larger
network) However, when p was greater than the “jamming
threshold” the flow behaviour was very simular, wrespective of the
network size Statistical analysis, presented mn Appendix A (Table
(A 2)), reveals that the arrival rate strongly mfluences the flow, with
a significant interaction with the network size at o = 0 01 level of
significance ‘

il Also Table(3 1) shows that the maxmmum flow occurred at much
higher density when a high rate of arrival was used to mnject the
network with cars

il Cars transported through the simulated network are mfluenced by
both network size and arrival rate The number of the transported
cars increases significantly when p mcreases from 0 1 to 0 3 and

this mcrement becomes less significant at high rate of arrivals (n =

0 55)
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(a) Flow-density relation for a 17 nodes network using various

arrival rates and the turning percentages 25% left, 50%
through, and 25% right
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(b) Flow-density relation for a 41-node network using various

arrivals rates with turning percentages are 25% left,

through, and 25% right

Fig (3 9)
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It can be seen from Table (3 1) that cars transported via the network was
much higher 1n the case of smaller networks wrrespective of the values of p
as seen 1n Fig (3 8)
tv  As the value of p increases the “7ammung threshold”’, a well known
Macroscopic phenomena “Queues outside the networks” will occur
Our simulation reveals that the queue length increased significantly as
the arrival rate mncreased fromp =0 3 to p =0 55 with the queue
length longer 1n the case of smaller networks
The effect of varying the network size can also be seen from Fig (3 10), which
shows the velocity-density relation for two different networks using a
stochastic feeding mechanism, (1n which car arrivals follow a Poisson process
with p =0 55) Also, Fig (3 10) shows that the maximum velocity obtained n
the case of larger size network 1s greater than the maximum velocity obtained

for the smaller s1ze network

09 1 —+—17 nodes

- 41 nodes

08 -

07 -

06 -

velocity

05 4

04 -

03 T L T T T T 1
0 01 02 03 04 05 06 07

density

Fig (3 10) : Velocity-density relation for two different

networks using arrival rate of 0 55 and same traffic conditions
in Fig(3 9)
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3.3.2 Varying of Traffic Conditions

Two different sets of traffic conditions were applhed, (1) 25% turn left, 50% go

straight, 25% turn right and (1) 12% turn left, 76% go straight, 12% turn right

The mfluence of changing the traffic conditions on some of the network

performance measures are presented m Tables (3 2) and (3 3) Also, in Fig

(3 11), we present the fundamental diagrams for four different networks,

applying two different traffic conditions using a moderate arrival rate p = 0 3

By comparing Tables (3 2) and (3 3) and studying the flow-density relations mn

fig (3 11), we make the following observations

1

The network maximum flow was mcreased by increasing the headway
traffic percentages from 050% to 076% and this increment was
obtained for arrival rates (up = 03, 0 55) Also, Fig (3.11) shows that
the effect of increasing the headway traffic percentages was more
noticeable 1n the case of smaller size networks Statistical analysis,
presented 1n Appendix A (Table (A 1)), shows a significant effect of
the traffic conditions on the flow at low and high arrival rates at o =
001 level of significance Also, the analysis reveals a significant
mnteraction between the network size and traffic conditions, using low
B, at the same level of significance

The change 1n the traffic conditions also affected the number of cars
transported through the networks Tables (3 2) and (3.3) shows that for

higher arrival rates, p =0 3, 0 55.
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Increasing the headway traffic percentages has decreased the cars
transported through the network and this could be seen clearly in the
case of smaller sized networks This 1s because the probability for a car
to use the main roads rather than the sub-roads increases by increasing
the headway traffic, which, in turn, affect the number of cars entering
the network

The simulations also reveal an important role for traffic conditions on
the queue length outside the simulated networks For smaller size
networks, increasing the headway traffic percentages increased the
queue length and this increment became more r;otlceable at higher
arrival rates This 1s because the system density changes rapidly,
mcreasing with every increment of p

As the network becomes more congested, the turning percentages play
an mmportant role at the entry and exit nodes So, by increasing the
headway traffic, cars tended to queue longer rather than go straight
through In contrast, by increasing the network size, the network was
able to cope with the mcomung traffic untidl much latter in the
simulation Hence the turning percentages were more effective for a
longer period and the queue length decreased as: we 1ncreased the

headway traffic percentages
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Perfarmance TFrafiic ¥7 Nodeg 33 Nades 41 Rodes
Mensure Conditions
25%, 50%, 25% 0247978 0.2334 0.236816
Max Flow 2%, 1%, 12% 6260762 9.241085 0.245792
Density of 25%, 50%, 25% 0.482386 0.419332 0.430268
MaximFow | 12%,76%,12% 0.455271 0.439291 0.459454
Trausported { 28%, 50%, 28% 5917 5740 5351
Cars 12%, 76%, 12% 5781 5467 5314
Quewe Length | 25%, 30%, 25% 888 739 552
12%,76%, 12% 847 672 400
Table (3 2) The Table shows the network parameters, maximum

flow and 1ts density, cars transported via the network and the

dueue length outside 1t, obtained using different traffic

conditions and u=0 3

Performance "Fratfic 17 Nodes 33 Nodes 41 Nodes
Measure Conditions
25%, 50%, 25% 0.250189 0.236959 0.236763
Max Flow 12%, 76%,12% #.261315 0.2428758 6.250523
Deusity of 25%, 50%, 25% 0.414131 0.433432 0.494114
Maxim Flow | 12%,76%, 12% 0.453458 0.458928 0.426943
Transported 1 25%, 50%, 8% 6353 5989 5819
Cars 12%,76%, 12% 6215 5796 5740
Quene Length | 25%, 50%, 25% 6063 5854 5769
12%, 76%, 12% 5292 5744 5700
Table (3 3) The table contents are the same as 1n Table (2),

but using higher arrival rate {(n=0 55)
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Fig (3.11). Flow-density relation using two different traffic

conditions
(a)25% left, 50% through, and 25% right and
(b)12% left, 76% through, and 12% right
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3.3.3 Time-interval Based Network Simulation

In order to observe the changes in the traffic behaviour throughout the
simulation run, our simulation results were averaged over two different time-
mtervals
To quantify the effect of the time-interval, (interval length):_ on these averages,
simulations were carried out using two lengths, 30 and 150 time steps (short-
term and long-term averages respectively)
The output values of the traffic parameters for duration period of 600 time
steps, after a discard period of 200 time steps, applying a low arrival rate for
two different networks are presented in Tables (3 4) and (3 5)
Tables (3 6) and (3 7), on the other hand, present similar outputs, but with a
higher arrival rate (p=03) From studying these output averaged values, we
make the following comments
1 Tables (3 4) and (3 5), which compare traffic parameters that gathered
using both short-term and long-term averages at low p, demonstrate
the following
As long as the free traffic was dominant there were no significant
changes 1n the network density and consequently, 1n the network flow
This can be seen from Table (3 4), where the changes in the retwork
density did not exceed 0 0148 during the short-term averages and 0 013
over the long-term averages
As a consequence of this traffic pattern, ncreasing the number of data
points or averaged values will not give a better idea of the fundamental

diagrams,( flow-density relation here).

71



1

Short-term averages Long-term averages
velocty |[density | flow | velocity |density| flow
0863204} 0 148 |0 1278
0 855269 0.1419 | G 1214
0879504 }0.1485 | & 1268
0 868557 | 1.1445 | 6 1220
0869728 0.14567 | 6.1267 10 888803 }0.1306 | 0,116
087011610.1464 | G 1274
086928 |0.1476 | & 1283
086181501424 | & 1227
08539490.1382 | & 1188
0867702§9,1378 | B.1185{ 088667 [ 1383 | 0,1226
0 862757 | 0.1427 | @ 1231
0872121 [ 0.1471 | 6 1283
0862006} 4 144 |G 1241
0855352 }0.1468 | 6 1252
087068510 1459 | 0.127 {0 883948}0.1436 | 0.1268
0876735} 0.1423 | U 1248
0850307 0.1393 [ ¢ 1185
0868917 | 0.140% | b 1217
0863169}0.1399 | & 1207
0871927 10,1332 | B.1162]0 894586 | ) 1383 | 6,1238

Table (3 4): Ssample of the simulation outputs for 600 time steps
for a network of size 25 nodes at low arrival rate p = 0 1

Short-term averages Long-term averages

velocity |density | Flow | velocity |density| flow
0862791 [ 0.1380 | 6 1199
0870016111384 | 6 1205
0867203 }0.1363 | 0.1208
0879202} 4,134 [ G 1178
0873163 0.1364 | 0,1191 10 893192 ),1415 | 0 1264
0875453 }0.1331 |0 1165
0866876D.1356 |0 1175
0 860863 }0.1354 | B.1166
0 863462 }0,1356 | (. 1171
0 866894 }9.1345 | 0.1166{ 0 893607 | {1.1393 | § 1245
0 857361 [0.1315| 0 1128
0877931}0.1334 |6 1172
0878355} 13156, 1155
08664780 1318 | 0,142
0 872744 10.1315 | 0 1147 {0 888003 | ,1384 | 0 1220
0880963 10.1301 |0 1148
0876164092728 1115
0 87145919,1266 | 0.3103
0871158}90,1272 | B.1108

08788 [0,1283|0 11360902559} 0 1391 | ¢ 1256

Table (3 5) Same as Table (3 4), but for a larger network (41 nodes)
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This was more noticeable in the case of large sized (Table (3.5))
networks, with smaller changes in the network density, (0.0127,
0.0035), during short-term averages and long-term averages
respectively. This result in very small changes in the network flow,
(0.0105, 0.0035), over short-term and long-term averages respectively
The statistical analysis in Appendix A (Table (A.l)) supports our
findings and reveals that the interval length does not have a significant
effect, at a = 0.01 level of significance, on the network flow at low
arrival rate. However, a significant interaction between the network
size and the interval length at the same level of significance was
obtained.

When a higher arrival rate was used to feed the simulated networks, the
network density increased rapidly especially in the case of smaller size
networks. Everyday observations confirm that as long as the dense
traffic is dominant, only small changes (increment or decrement) in the
network density and in turn its flow can be obtained.

The simulation results presented in Tables (3.6) and (3.7) shows that
small changes in flow behaviour, (i.e. flow-density relation), can be
observed when short-term averages were used to describe the traffic
behaviour, because this will generate more data points throughout the
simulation run. In contrast using long-term averages has minimized the
number of the data points, which describe the flow behaviour, and in
turn small changes in the flow behaviour can not be observed. This can
be seen also in Fig (3.12). The statistical analysis, presented in

Appendix A (Table (A.l)), also reveals a significant role for the
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mterval length at higher rate of arrivals at o = 001 level of

significance
The simulations suggest that, for congested traffic, the smaller the

mterval length the better mn order to observe small changes n the

traffic behaviour through the network

027 - « 30-time steps averages
025 - = 150-ime steps averages
z 023 -
o
- 0214
019 -
O 17 T T T T
0 01 02 03 04 05
density
Fig (3 12) Flow-density relation for a network of size 25
0 3 and the turning percentages &5%, 50%, 25%

nodes using pu



Short-term averages Long-term averages

velocity density flow  velocity density flow
0.810784 0.2358 0.1912
0.797033 02395 0.1909
0.798958 0249 0.1989
0.799456 0249 0.1991
0.787616 0.2506 0.1974 0.81997 0.2579 0.2115
0.789998 0.2562 0.2024
0.768539 0 2607 0.2004
0.760912 0.2661 0.2025
0.780104 0.2646 02064
0.771537 0.2714 0.2094 0.775212 0.2873 02227
0.759717 0.2732 0.2075
0.753567 0.2835 0.2137
0.754227 0.284 0.2142
0.740113 0.2896 0.2144
0.747635 0.2966 02217 0.742689 0.3047 0.2263
0.726546 0.3005 0.2183
0.724729 0 3007 0.2179
0.729201 0.3059 0.223
0.751688 0.3089 0.2322
0.732638 03072 0.2251 0.722203 0.3242 02341

Table (3.6): Sample of the simulation outputs for 600 time
steps for a network of size 25 nodes,0.y = 0.3

Short-term averages Long-term averages

velocity density Flow velocity density flow
0.847112 0.1984 0.1681
0.83655 0.2057 0.1721
0.833052 0.2086 0.1738
0.829258 0.2122 0.176
0.832169 0.2173 0.1809 0.852978 0.2178 0.1858
0.832335 0.2199 0.183
0.826608 0.2232 0.1845
0.821905 0.2286 0.1879
0.8083 0.2354 0.1903
0.803471 0.2374 0.1908 0.833971 0.241 0201
0.805983 02422 0 1952
0.802133 0.2445 0.1961
0.799815 0.245 0196
0.804715 0.249 0.2004
0.788325 0.2549 0.201 0.809594 02606 0.211
0.780426 0.2588 0.202
0.787022 0.2582 0,2032
0.791823 0.2616 0,2072
0.794961 0.2652 0.2108
0.773795 0.2651 0.2052 0.794252 0.2768 02198

Table (3.7): Same as Table (3.6), but for a network of size 41 podes
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3.3.4 The influence of Changing the Transient Period

on Network Performance

Next we look at the effect of the transient period on the stmulation output by
using two different transient periods, 200 and 500 time steps In the following
experiments, the traffic parameters were averaged every 30-time steps by

applying the following traffic conditions as m case (1), Sec (3 15) for

&

duration of 5000 time steps using two different arrival rates (n =01 & p

055) This was carried out for two different network sizes, with radu r

i

3,(17 node) & r = 6,(41 node)

The results of the above simulations were as follows

At first glance, Table (3 8) reveals that the effect of increasing the transient
period from 200 to 500 time steps has no mgmﬁcantf3 mfluence on the
maximum flow obtained at both rates of arrivals, no mat;ter what network size
1s used n the simulation This 1s because no significance changes in the

maximum flow occurred, for either network, or for either p

Performance | Network n=01 p=055
Measure size
Trans Pd =200 | Trans Pd=500 | Trans Pd =200 | TransPd =500
Maximum | 17 nodes £1,14592 D.141146 0.25089 0.247644
Flow 41 nodes 0 123815 011531 0236763 0238576
Density of | 17 ntidag R.180439 0,168032 0414131 0 528179
Max Flow | 41 nodes 0 143406 0131372 0494114 0490861

¥
[

Table (3 8) The influence of changing the triar‘@1ent period on

the maximum flow and 1ts density, using different values for p

and traffic conditions 25%

left,

82

50% through, 25% raight




On the other hand, statistical analysis presented m Appendix A (Table(A 1))
shows the significant mfluence of the transient period on the network flow at
both rates of arrivals .

A closer look at Table (3 8) shows the influence of transient period on the
maximum flow as the statistical analysis confirms

This can be demonstrated as follows

Since no significance changes were observed in the maximum flow for either
length of transient period, the increment of the transient period has not
correctly reproduced the density of maximum flow This 1s more noticeable mn
the case of smaller size network at higher p

Fig (3 13) shows how the fundamental diagrams are affected by the length of
transient period, especially for smaller networks The effect of changing the

transient period for different traffic conditions was also noted (Table (3 9))

Performance | Network p=01 n=0355
Measure size
Trans Pd=200 | Trans Pd=500 | Trans Pd =200 | Trans Pd = 500
Maximum | 17 sodes 6,132537 0133296 0261315 0.264442
Flow 41 nodes 0137141 0 122812 0250523 0250281
Density of | 17 nodes 0.15784 0 154583 0 453458 504902
Max Flow | 41 nodes 0 157631 0 139498 0426943 0415698

Table (3 9): The influence of changing the transient period on

the maximum flow and 1ts density, using different values for u

and traffic conditions

12% left,

g3

76% through,

12% right




The simulation reveals that using 200-tume steps as a discard period 1s good
enough to let the transience die out, where the largest road segment n our

simulated networks did not exceed 60 sites, Fig (3 13)
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Fig (3 13) Flow-density relation using the traffic conditions
of 25% left, 50% through, and 25% right and arrival rate of
0 55

(a)for a 17 node network

(b)for a 41 node network

84



et
)

3.4. Summary and Concluding Comments

In this chapter we moved from single lane traffic flow towards road networks
Different network sizes have been tested, where all nodes were controlled by
traffic hghts and the signal operating conditions were assumed to be pre-timed
signal Various traffic conditions were considered at the network junctions A
stochastic feeding mechanism, 1n which car arrivals follow a Poisson process
with parameter p, has been mmplemented throughout the simulations using

different values for the parameter p

4
i

The work presented m this chapter suggests that parameters governing
performance of urban networks may be mvestigated in some detail using the
simple cellular automata Models

The results obtained 1n this chapter indicate the following

e It appears that there 1s a critical arrival rate “jamming threshold’ above
which the transportation through the network 1s not efficient any more and
this rate 1s independent of the network size

e In a free traffic regime, the traffic conditions, defined in Sec(3 1 5), seem
to mvolve significant interaction with network size,(o = 0 01), but for
dense traffic this interaction was not significant

e The arrival rate 1s the principal factor of importance for larger networks A
significant interaction,(o0 = 0 01), also exists between the arrival rate and

the network size
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The simulation also reveals that the interval length used to gather the
traffic parameters, average velocity, density, and ﬂo%, has a significant
role,(ac = 001), on the flow rate at higher arrival ;ate A significant
interaction between the network size and the interval length was obtained
at o = 0 01 level of significance The simulation reveals that the smaller
the mterval length the better, in order to calculate the traffic parameters

The length of the transient period, warm up period, also has influenced the
traffic parameters at both, low and high, arrival rate, where using 200-time
steps as a transient period was good enough to let the transience die out A
significant interaction (o = 001) between the transient period and the

network size obtained at low arrival rate

.
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Chapter 4

“Network Performance under Various Traffic Events”
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4.0 Introduction

In Chapter 3, we were concerned “only” with the transient features of
vehicle movements i simulating passage through the network under
sustained flow

In this chapter, we mvestigate the traffic behaviour along the network with
loss to flow Four underground parks, each of capacity up to 300 cars, were
mtroduced 1n order to examine the effect on the transient behaviour of the
system In the following experiments, each simulation run consists of 5000
time steps After a discard period of 200-tume steps, short-term averages
were used to gather the output parameters, flow, density, velocity, input of
cars to the network, output of cars of the network, and the queue length
outside each entry/exit node The turning percentages were 25% left, 50%
through, 25% right These simulations were performed for two networks of
different sizes, 17 and 41 nodes Each simulation run was divided into two
stages In the first stage (1000-3000 time steps) vehicles may enter the
underground parks at fixed or stochastic rate, while 1n the second stage
(3000-5000 time steps) they leave the underground parks, .lalso by the same

manner, and hence pass through the network

4.1 Loss to Flow Simulations

4.1.1 Simulation with Loss to Flow at Fixed Rate

In the following simulation a car may enter or leave the underground park

with fixed probability (p = 0 5)
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The most remarkable aspect of introducing these parks 1s a different
“jamming threshold” for different network sizes, as can be seen from

Fig(41)
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Fi1g(4.1) Number of cars vs arrival rate for

(a) 17 node network {b) 41 node network
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By increasing the network size 1ts ability to cope with the traffic improves,
see (Fig (4 2)) Ths can also can be illustrated by studying the fundamental
diagrams (Fig (4 3)) of one of the simulation runs, where p = 0 3 and the
data were averaged every 30-time step after a discard period of 200 time

steps

7000
6000
5000 -

1

4000
3000
2000
1000

—e— 17 nodes

—o— 41 nodes

i

]

number of waiting cars

0 ¥ T T T 1
0 01 02 03 04 05 06

arrival rate(p)

Fig (4 2) Number of waiting cars vs arrival rate for two

different size networks

The first part of the flow-density relation, Fig(4 3 (a)), represents the free
phase traffic, which 1s characterised by high velocities, see Fig(4 3 (b)), and
low densities

By contrast the second part represents the jammed phase traffic, which lasts

for a longer period 1n the case of small size network
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Fig (4.3): The fundamental diagrams for simulation described
above, where 1in

(a) flow-density relation, (b) velocity-density relation

(c) velocaity-flow relation, (d)velocity-flow relation for the

transient movement simulation, see Chapter 3

The above scenar10 can be explaimed as follows

Initial conditions of low density of cars and the application of arrival rate ( p
= 0 3) did not much mfluence the network density, as long as vehicles may
leave the network through the different exits and may also disappear into
one of the underground parks This situation was dominant until the second
stage of traffic movement when vehicles started to leave the underground
parks, causing traffic jams to spread everywhere along the network due to
the high density and low flow, characterised by decrease mn network
velocity, see Fig (43 (b)) This was more noticeable m the case of the

smaller network, where the network density increases significantly from p ~

0 1, during the first stage, to p~ 0 81, within the second stage
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In contrast the maximum network density obtained in the second stage for
the larger network was ~ 0 6

These Figs (43 (a)) and (43 (b)) mndicate strong simmilarities of the
fundamental diagrams to those obtained for individual road sections when
compared to those obtained 1n transient movement simulations (sec 23 1 1)
The flow vs velocity relations presented in Figs (4 3 (c)) and (4 3 (d)) show
the variation of velocity with flow for the two types of simulation,
simulation with loss to flow and transient movement simulation These
figures may be compared and explained as follows )

The upper parts of the fundamental diagrams represent the freely flowing
traffic, where each car travels at the desired speed, which lasts for a longer
period 1n the case of loss to flow systems

As the traffic becomes heavier the decrease in the average velocity begins
slowly Then the contmuous increase in the system density will lead to a
continuous decrease 1n the average speed and, i turn, the average flow,
which 18 more noticeable 1n the case of smaller network Also, this was more
noticeable 1n the case of loss to flow systems as the density increases

considerably due to the existence of the underground parks
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4.2.1 Simulation with Loss to Flow at Stochastic Rate

In the next experiments, at every time step, within the specified periods for
entering and leaving the underground parks, we assume that a car may enter
or leave any of these parks according to a Poisson distribution with
parameter pl

Fig (4 4) shows that increasing the parameter n1 from 0 1 to 0 3 has led to a
lower values for the jammung threshold, which depends on the network size
In the case of the smaller size network, the jamming threshold has decreased

from 0 2 to ~ 0 18 and also the number waiting cars has increased

6000 -
5000 -
£ 4000
8 H1=0 1, 17 nodes
meeenen 11120 3, 17 nodes
2 3000 1 '
= wegn111=0 1, 41 nodes
g 2000 - ——11=0 3, 41 nodes
1000 -
0 Li A T A T T T T T T Rl
0O 005 01 015 02 025 03 035 04 045 05 055
H

Fig.(4.4) : Number of waiting cars vs arrival rate for two
different networks using different values for the parameter
Bl

In contrast, using a larger si1ze network has mncreased the jamming threshold

up to 0 25 and also above the jamming threshold the number of waiting cars

has decreased considerably compared to the smaller size network
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In order to study the effect of varying the parameter p1 on the network

performance, mn the following simulation we restrict ourselves to studying

the behaviour of the system density over the simulation run As usual, 1n the

next simulations each run was conducted up to 5000 time steps, then data

were gathered every 30 time steps after a relaxation period of 200 time steps

The turning percentages were 25% left, 50% go through, 25% right, this

was performed for two different networks, 17 and 41 nodes, and using two

arrivalrates,p =0 15andp =05

At low arrival rate (p = 0 15), Fig (4 5) demonstrates the influence of the

parameter pl on the system density, both 1n (a) the system of size 17 nodes

and 1 (b) the system of size 41 nodes

The simulation results can be summarised as follows

e  Within the parking permitted period, (1 e 1n the first stage of the
simulation), increasing the parameter p1 from O 1 to 0 3 has increased
the probability for a car to disappear nto one of the parks This, 1n turn,
has decreased the system density within this period and this was
observed for both networks

e In contrast, the mnfluence of increasing the parameter n1 on the system
density was more noticeable during the off-parking period (1e the
second stage traffic) This increment has increased the probability for a
car to leave the park, which, 1n turn, increased the outgoing traffic from
the parks within a small time-interval As a consequence of this
dynamic, the system density responds rapidly, 1e 1s considerably

increased

Fo
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(b) The network of size 41 nodes
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This was more noticeable 1 the case of the smaller size network, where

the maximum density obtamned was ~ 0 41 compared to ~0 36 obtamned

m the case of the larger network, see Fig (4 5)

Thus situation was dommant until all cars left the parks, which last for a

longer period whenpl =0 1
At high arrival rate (u=05), the wnfluence of increasing the Poisson
parameter pl on the system density was observable only when the
underground parks were able to cope with the mmcoming traffic This 1s
because the probability for a car to disappear mnto one of the parks has
increased, which, n turn, will lead to congestion inside these parks at early
stage X
However, this period did not last for long and the system density increased
rapidly, urrespective of the value of n1 until the off-parking period started
At this stage the parameter pl, agam, retans its influence on the system

density and the outgoing traffic from the underground parks increases by the

increment of n1, see Fig (4 6)
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4.2 Traffic System under Short and Long-term

events

In Chapter 3, we assumed that the network ne1ghbourhood\was able to cope
with any number of cars that might leave the simulated network This means
that the first site outside any of the network exits was always free

In real traffic, this 1s not always true It sometimes happens that one (or
more) of the network exits 1s (are) closed for a short-term, due to a car
accident or traffic jams, etc, or for a long-term due to road works,  etc
The short-term events occur at random and last for a certain period of time,
whereas the long-term events may last for days or even weeks

To approach reahty these events, stated above, were modelled m our
simulations In the following experiments each simulation was conducted for
6000 tume steps and data were collected after a relaxation ﬁénod of 200 time
steps applymng traffic conditions 25% turn left, 50% go straight, 25% turn
right This was performed for a network of size 17 nodes by applying two

arrrval rates, p =0 15 and 0 35

4.2.1 Modelling Short-term events

The short-term events 1 our simulation were modelled by blocking some of
the network exits at random, (1e they are exponentially distributed with
parameter A), and each event may last only for a number of time steps,
which was also chosen at random, (using the function rand()). However, the

duration of any short-term event did not exceed 50 tume steps
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The number of occurrences of such short-term events was fixed mn our
simulation and two values were used, 15 and 25

To quantify the effect of mtroducing such events, simulations were runs by
blocking one or two of the network exits at random time steps, which were
exponentially distributed with parameter A = 0 005 ¢

Fig (4 7) shows the influence of imntroducing these events on the system
denstty during the simulation run for a network of size 17 nodes and using a
low arrval rate (u=015) In (a) 15 short-term events were mmposed
throughout the simulation and m (b) the number of these events was
increased to 25

In Fig (4 7) the changes 1n the system density can be interpreted as follows

the way m which the system density responds to the short-term

events(obstructions) depends on the following factors

1 the number of occurrences of such events, how frequently they will
occur?

il and 1f they occur for how long?

111 the percentage of the traffic leaving the network at the time of

imposing these events
v the number of the network exits which are influenced by these events
In (1) the time-interval, which separates between any two consecutive
obstruction occurrences, depends on the choice of the parameter A The
hgher the values of A the more frequent the obstructions In our simulation
the value of A was chosen to accommodate the number of the obstruction

occurrences over the syimulation period
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Increasing the number of obstruction occurrences, provided that a longer
period for the obstruction duration was randomly chosen, will increase the
system density This can be noticed from Figs (4 7 (a)) and (4 7 (b)), where

the number of obstruction occurrences has mcreased from 15 to 25 times
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Fig (4 7) The effect of introducing short-term events on the
system density, for a network of 17 nodes, over the
simulation run at low arrival rate(p = 0 15) where in

(a) The number of occurrences of these events was 15 and 1in

(b) the number increased to 25
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To get a clear wnsight into the importance of (m), let us assume that an
obstruction exists outside an entry and exit node and its duration period 1s 20
time steps Now 1if 25% of the traffic 1s leaving the network, then there 1s a
probability of P = 0 25 that car will be blocked Otherwise 1t will turn left
(right) or go straight through

This means that the obstruction has influenced the traffic leaving the
network only for 5 time steps and not 20 time steps' This explains why a
higher densities were obtammed in case of blocking only one exit m
Fig (47 (b)) Further simulations, not shown here, reveal a considerable role
for the traffic conditions on the system density

The influence of factor (1v) became more noticeable when the arrival rate

was 1ncreased to p =0 35, see Fig (4 8)
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number of occurrences of these events was 15
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As the traffic becomes heavier, blocking more of the network exits, even for
a short period of tume, has significantly influenced the system density as can

be seen from Fig (4 8)
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4.2.2 Modelling Long-term Events

In this section, long-term events have replaced the short-term ones, (1e
blocking some of the network exits over the duration of the simulation run)
Also, four underground parks, each of capacity up to 300 cars, were
mtroduced 1n order to simulate loss to flow (at fixed rate with P =0 5)

The simulations were performed for two different network sizes, 17 and 41
nodes, by using different arrival rates, p = 01, 03, and 055 Each
simulation run was conducted for up to 5000 time steps and data were
gathered every 30-150 time steps after a relaxation period 200-500 time
steps The traffic conditions applied as in Chapter 3, Sec (3 15) cases (1) &
() A summary of the simulation results can be found n Appendix B
(Tables (B 5) and (B 6))

In the case of the smaller size network our simulation reveals that the
highest value of the maximum flow (0 2598) was obtained, when only one
of the network exits was blocked and data were averaged every 150-time
steps after a warm-up period of 200 time steps The turning percentages
were 12% left, 76% through, 12% right and the arrival rate used wasp =03
In contrast, the lowest value of the maximum flow (0 2097) was obtamed
when two of the network exits were blocked and using the same simulation
parameters as above but at lower arrival rate (p =0 1)

To get a clear insight mto the effect of mtroducing both the long-term events

and the underground parks on the network performance, we therefore study

the above two extreme cases (1e. ¢, =0.2598 and ¢__ =0.2097).
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The traffic behaviour for these simulation runs compared with the case of

maximum flow obtained in the transient movement simulation, Chapter 3,

may be described with the help of the fundamental diagrams presented mn

Fig (4 9)
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From Fig (4 9), we can observe the effect of blocking one or more of the

network exits as follows

The first striking feature of Fig (4 9), flow-density relation, 1s this gap,
which 1solates the dense traffic regime This occurs due to the increment
of the network density from 0 330629 to 0 5969, when two exits were
blocked and from 0 4963 to 0 7059, when only one exit was blocked
This 1n turn results in dropping the network velocity from 0 63 to 0 33
and from 0 5 to 0 28 for the above cases respectively, which can be seen
from Fig (4 9 (b))

This discontinuity in the fundamental diagram has been obtained in road
traffic measurements, (Edie, 1974, Hall, 1986), which lead to the
assumption, that there 1s a pomt of discontinuity i the fundamental
diagram around the maximum traffic flow, between the left part of the
diagram, representing the free traffic, and the right part of the diagram,
representing the dense traffic The fundamental diagram obtamned for the

case of highest value of g___ (Fig (4 10 a) gives a good approximation to

the experimental data in Fig(4 10 b)
Also, introducing long-term events such as underground parks and

blocking some of the network exits has decreased the network maximum

flow from ¢, = 02702, which obtained mn the case of transient
movement simulation mn Chapter 3, to g_,_ = 0 2097, which obtained by

blocking two of the network exits at low arrival rate(p =0 1)
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Fig (4 9) reveals that introducing long-term events has resulted in lower
densities for the maximum flow In the case of transient movement

sumulation, ¢, was observed at density p, = 050, whereas

progressively blocking network exits has decreased the density of p,

from 0 41, which was observed n case of blocking one exit, to 033

when two of the network exits were blocked

Increasing the network size to 41 nodes has results in lower densities for
the extreme values of ¢g_,, The results are summarised in Table (4 1)

It can be seen from Table (4 1) that, in the case of larger size network,
shghtly lower values for the maximum flow were obtained at lower
densities The statistical analysis presented in Appendix A (Table (A 1))
reveals a significant interaction between the network size and the

number of the blocked exits at o = 0 5 level of significance

Performance 17 nodes network 41 nodes network
Measure Highest Lowest Highest Lowest
Maximum flow 02598 02097 0 254654 02054
Density of max flow 04439 03309 04199 03168

Table (4 1)
lowest values

networks,
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4.3 Summary and conclusion :

In first part of this chapter we have studied the non-transient movement of
cars along the networks by mtroducing underground parks and allow cars to
park mside the network, so that they are temporarily lost to flow This was
performed at fixed rate (1e car may leave (enter) the park with probability
P) and also at stochastic rate (1e car arrival or departure to any of the parks
follow a Poisson distribution with parameter p1)

In the second part of this chapter, we investigated, in brief, the influence of
imposing short and long-term events on the network performance

Short-term events 1n our simulation were modelled by blocking some of the
network exits at random, they were exponentially dlStIlbﬁte;l with parameter
A, and this blocking lasts only for a certamn number of time steps, which did
not exceed 50 time steps

In contrast, blocking some of the network exits during the simulation run
have simulated the long-term events Our findings can be summarised as

follows

1 The most remarkable aspect from mtroducing underground parks
was a different "jamming threshold" for different network sizes, and
simulation with loss to flow at stochastic rate-shows that the
"Jamming threshold” for each network depends on the parameter p 1

i The simulation also reveals that small size networks respond rapidly

to external changes, especially for networks with loss to flow
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The simulation reveals that the way 1n which the system responds to
the simulated short-term events depends on therr number and how
frequently they will occur and the duration of each occurrence and
also the arrival rate used to feed the system with cars The influence
of these events was more noticeable at higher rate of arrivals More
work needs to be done to investigate the influence the traffic
conditions and the change 1n the parameter A, which determine how
frequently these events will occur, on the network performance

By modelling long-term events such as blocking one or more of the
network exits, over the simulation run, a significant interaction
between the network size and number of blocked exits was obtained,
(o0 =0 01), at high level of concentration of cars

Despite the complex interactions 1n urban networks, the
characteristic shape of the fundamental diagrams was also obtamed

at network traffic level
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Chapter 5

“Simple Lane-Changing Rules for Urban Traffic Using

Cellular Automata”
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5.0 Introduction

To approximate reality the simulation tool has to be efficient and represent
some of the basic traffic features, which can be observed or tested Using
single-lane networks, important features like lane changing and 1its effect on
the traffic stream behaviour cannot be observed and studied

The basic 1dea behind the lane changing mechamsm 1s either to maimtamn a
regular, (deswred), speed or to improve the current speed, where 1n both cases
the driver 1s hindered from doing so 1n his current lane

This situation 1s not always the case nside urban traffic areas, where drivers
may change their lane due to different motivations, such as performing a right
turn at intersections, to avoid obstructions and so on

In the first regime, (highway traffic), one set of lane-changing rules was
shown to be able to reproduce some of the macroscopic asi;ects of traffic flow
on highways such as density inversion between the two lanes, which take
place long before the density of the maximum flow (Rickert et al, 1996,
Wagner et al, 1997)

Due to the complexity of the second regime (urban traffic), we may raise the
following question

Can we find a perfect set, “super set”, of lane-changing rules n order to
accommodate all the different motivations for lane changing mside the urban

areas”

¥y
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In this chapter, we present three different sets of rules for lane changing as

follows urgent lane-changing conditions, mimmal and maximal conditions for

lane-changing each of which 1s used in order to accommodate the driver need

to change lane (Gipps, 1986)

5.1

Motivations for Lane Changing

Lane-changing will occur 1n one of the following cases

I

IT

I

To gain some speed advantage

If the driver on the left lane, (slow lane), evaluates the other lane traffic
to be better, (1e the second lane has a lower flow and higher speed),
then with probability P_chg he will change lane and with 1-P_chg he
will not

To avoid obstruction

Obstructions, such as cars making delivery, Bus stops, and cars
mtending to perform a left, (or right), turn, have been imposed at
random with probability P_obs This obstruction 1s located on the left
lane with probability P_lobs and with probability 1-5 i’_lobs on the right
lane Cars will move to overtake the obstruction as they enter the
obstruction zone

To turn at the next intersection

If the driver on the left lane intends to perform a right turn or the driver
on the right lane intends to perform a left turn, then lane-changing will

occur and this depends on how close the car 1s to the mtersection zone
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v To avoid slow platoons on the fast lane
Since all cars evaluate the fast lane to be the better one, this will result
mn clusters of slow moving cars At this stage cars can change lane 1n
order to pass those platoons provided that the slow lane allow this

change

5.2 The two-lane Model:

The two-lane model consists of two parallel single-lane models and three sets
of rules for lane-changing defined below, (Equations (5 1)-(5 3)
Our lane changing rules are based on the following steps
(a)- check for vehicles that are qualified for lane-ch;mgmg according to
the specified lane-changing rules
(b)- move the chosen vehicles for lane-changing to the neighbouring
sites 1n the second lane
(¢ )- use the model rules to update each single lane independently
In step (a), normally, cars must overtake on the right lane but overtaking on
the left lane 1s permutted-
1 When the driver intends to turn at the next intersection
2 Where the traffic 1s moving more slowly on the right lane than the
left lane
Step (b) 1s needed for the simulation purpose only, as 1n real traffic the car will
advance to the destination site directly

Let us assume that, in reference to Fig.(5.1):
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dx 1s the headway distance to the leading car on the destination lane
dy 1s the backwards distance to the following car on the destination lane,
where both dx and dy are measured from the empty neighbouring site

on the destination lane

v 18 the speed of the car which mtends to change lane
vb 15 the speed of the following car on the destination lane
dz 1 the headway distance to the car ahead 1n the current lane
v
—>

3| dz |3

Fig (5 1)

Then, the necessary conditions for lanes-changing are
I dx>v+k ke l0, v ]
and 1 order not to disturb the traffic on the second lane

2 dy>vb+k,, k, [0, v

omax |
If we set k; = k,= 0, then we obtain the mimimal conditions for lane changing
as follows

dx > v,

dy > vb e 51
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However, as the driver gets closer and closer to the given mntersection or
obstruction, he 1s prepared to accept less headway distance on the other lane
(1edx = v) This will result in the urgent conditions for lane-changing as
follows

dx 2> v,

dy > vb 52

Setting k, = k,= yields the maximal conditions for lane-changing as

4 max

follows

dc>v+ v,

dy>vb+ v, 53

To apply Equation (5 3), we must have dz < ¢, where @ 1s a parameter which
defines the headway distance on the left lane that satisfies the driver n order
to stay 1 his current lane g

In order to simulate the stochasticity element in the lane-changing mechanism,
with probability P_chg the driver will accept the maximal or mimmal
conditions to change his lane and with probability 1- P_chg he will not

In case (I), Sec (5 1), the intention of the driver to improve his speed, by
changmg his lane, 1s dependent on whether the traffic mn the present lane or the

target lane 1s more hikely to affect his speed
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If the driver 1s hindered n his current lane, (left lane), he requires the minimal
conditions to change lane Otherwise, the driver will move to the second lane
1f 1t 15 worthwhile to do so, which means that the driver 1s not satisfied with
his current headway distance (0 < dz) and evaluates the second lane as the
better lane In this case, the maximal conditions for lane-changing are
required Fig (5 2) presents the flow-chart for the lane-changing mechamsm.
In case (I), Sec(5 2), the obstruction zone 1s defined as being 3 sites distance
from the obstruction As the driver movers nearer to the obstruction, he 18
ready to accept the munimal or urgent condition to changl: lane, 1 order to
avoid being blocked by the obstruction

In case (III), Sec(5 1), as long as the driver 1s outside the turming zone, 1t has
no influence on the lane-changing decision and the driver 1s concerned only
about improving his speed, case (I)

When the driver enters the turning zone, he 1gnores any attempt to change lane
m order to improve his speed and looks for mimimal conditions to change lane
As the driver moves closer to the junction and enters the urgent zone for [ane-
changing he looks for the urgent conditions for lane-changing mn order to be in
the right lane to perform the required turn

In case (IV), Sec (5 1) to avoid slow platoons on the fast lane the driver looks
for the minimum requirements to change his lane A platoon 1s defmed as a

block of 5 or more occupied sites, for most of which are stopped
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5.3 Simulation and resuits

In the following simulation experiments, each stmulation 1s conducted for 50
runs, where each run 1s calculated up to 2000 time steps to generate the
average case statistics Imposing pertodic boundary conditions, we simulated
a system of size 2x100 sites, two-lane, which 1s large enough for an urban
street The turning probabilities at the mntersections are 0.4 left and 0 30 right
The intersection zone 1s considered to be 10 sites (or less) under minimal
conditions and 5 sites or less for urgent conditions at the same intersection.
Headway parameter, o = 3 (1e headway distance = 22 5m), which 1s
reasonable for urban traffic The basic lane-changing parameters i our
simulation are

1 lane-changing probability (P_chg)

1 obstruction probability (P_obs)

m lane obstruction probability (P_Lobs)

5.3.1 Lane-usage behaviour

In order to get clear msight about the impact of the lane-changing parameters
on the lane-usage frequency, we have performed two different simulations by
changing the value of the above parameters as follow

Experiment I:

In the first simulation experiment, we have fixed the lane-changing
probability at P_chg = 04 and modified the values of the other two

parameters (P_obs = (0.3, 0.4) and P_Lobs = (0.7, 0.3), (0.6, 0.4), (0.5, 0.5)).
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Simulation | P_chg [ P_obs P_Lobs Low density high density
Left Right [ Inversionpomt | Inversion point

Runl 04 03 07 03 0075 0475
Run2 04 03 06 04 0115 0 505
Run3 04 03 05 05 0295 0625
Run4 04 04 07 03 0 065 0485
Run5 04 04 06 04 0105 0515
Run6 04 04 05 05 0275 0715

Table (5 1) sSimulation Experiment I each “run” refers to an

average of 50 Experiments over 2000 time steps each to obtain

average case statistics

The relationship between the lane-usage frequency and the simulation density

using different values for P_obs and P_Lobs 1s presented in Table (5 1) and

Fig (5 3) The observations can be summarized as follows

1 It can be seen from Fig (5 3) that both lanes have the same lane usage-

frequency at three different pomts The first two pomts are called

“density inversion” poimts At these points, high traffic-density switches

from one lane to the other lane

u The first “density inversion” pomt has occurred at density p = 0295

case (a) and at p =0 115 for case (b), while the second one has occurred

at much higher density p = 0625, 0 505 for both cases (a) and (b)

respectively

m  The location of these points depends on the lane-changing parameters,

which from Table (5.1) may be summarised as follows
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(a) The effect of lane obstruction probability(P_Lobs)
This parameter has considerable effect on lane-usage frequency For
example, using P_Lobs = 0 6 for the left lane and P_Lobs = 0 4 for the
right lane has influenced the lane-usage frequency for both lanes at an
early stage, (low density) The first “density inversion” pomt has
occurred at p, = 0 115, where usage of the right lane becomes higher
than usage of the left lane, and again the two lanes switch traffic at p,
= 0 505, where the left lane becomes more crowded than the right one
In contrast, using both lanes with the same P_Lobs = 0 5 has increased

the above densities (p,,p,) to a much higher values (p,= 0295 and
p,=0625), see Fig (5 3)

This can be explamned as follows

Increasing P_Lobs for the left lane will disturb 1ts traffic, even at low
density, due to the frequent, randomly occurring obs:ructlons

This results i the right lane again becoming more crowded at p =
0505 At this stage, a car will agamn switch lanes i order to avoid
traffic jams However, applying the same P_Lobs to both lanes has
mcreased the low-density nversion pomt from 0 115 to 0295 Ths
mncrease 18 to be expected as the motivation for lane-changing reduces
Fig (5 4) shows the location of the inversion points for different values

of P_Lobs
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Fig (5 5) left lane usage vs traffic density for different
values o©of P_Lobs and P_chg = 0 4, and P_obs = 0 4 Each
lntersection between the lane-usage curve and the horizontal

line represents an i1nversion point
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(b) The effect of obstruction probability(P_obs)

The obstruction probability also influences the lane-usage frequency
for both lanes, especially when there 1s no corls1derable difference
between the values of P_Lobs or when the two lanes are used with
same P_Lobs, (see Run3 and Run6 in Table (5 1)) For these runs,
mcreasing P_obs has resulted in lower value for the low density
mversion point and higher value for the higher density inversion point,
see Fags (5 4) and (5 5)

This can be explained as follows

Increasing the value of P_obs will result m more obstruction
occurrences on both lanes, which, m turn, increases the usage of the
right lane over the left lane at density (0 27) This 1§ to be expected as
the chance for a car to overtake on the right lane 1s greater than its
chance for overtaking on the left lane This increase 1n the usage of the
right lane, will continue, followed by decrease in the left lane usage,
until p ~ 05, where the usage of the right lane attain 1ts maximum
value over the left lane At this stage traffic starts to switch gradually
from the right lane to the left lane and due to the increase in
obstruction probability (P_obs), the second mnversion pomt occurs at

higher density (0 71)
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Experiment II

To examine the effect of the lane-changing probabulity on the lane usage
behavior, in the second experiment, presented mn Table (52), we have
increased the lane-changing probabulity to P_chg = 0 5 and also used different
values for the other two lane-changing parameters In general the same
macroscopic phenomenon, “density inversion” points, was observed

Table (5 2) shows the effect on the “ density inversion” points of mcreasing
P_chg to 05 This means that the “densz;y inversion” 1s modified by the lane-
changing parameters and more simulations are needed n order to determune
if there 15 a lmit for such changes For example, Table (5 2) demonstrates
that increasing lane-changing probability as well as obstruction probability

resulted 1 a smaller density for the first inversion pomnt (from p= 0295 to p=

0275) and hgher density for the second inversion pomnt (from p= 0 635 to

p=0735)
Simulation | P_chg | P_obs P_Lobs Low density high density
Left Right Inversion point Inversion point

Run7 05 03 07 03 0 085 0 465
Rung 05 03 106 04 0135 ; 0 505
Run9 05 03 [ 05 05 0295 0635
Run10 05 04 07 03 0065 0475
Runll 05 04 (06 04 0115 0519
Runl2 05 04 |05 05 0275 0735

Table (5 2) Simulation Experiment II each * run” refers to
an average of 50 Experiments over 2000 time steps each to

obtain average case statistics
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5.3.2 Flow Behavior

1

v

Despite adding another set of lane-changing rules, the maximum flow
for the two-lane model 1s much higher than the maximum flow for the
single-lane model This can be seen clearly from Fig (5 6) These results
1 Fig (5 6) are based on simulating two systems, the first of size k=100
representing a single-lane road, the second of size k = 2x100
representing a two-lane road In both cases data were averaged over 50
runs and each run 1s conducted up to 2000 time steps

The two-lane flow reaches its maximum, approximately, at p ~ 05,
which 1s the density of maximum flow for the single-lane model, (see
Fig(5 6))

In the case of the single-lane model, there 1s a sharp bend 1 the flow-
density curve, which 1s not found i the two-lane model This bend
means that the dynamics below and above the de;1s1ty of maximum
flow(p, .., ) for the single-lane model are different from those of the
two-lane model, 1e flow breaks-down quickly mn single-lane model

The change 1n the lane obstruction probability (P_Lobs) seems to have

a great mimpact on the flow behavior on both lanes as follows

a) Applymng P_Lobs=0 7 for the left lane and P_Lobs = 0 3 for the right

lane has decreased flow on the left lane compared to the right lane
Even at lower densities The flow 1s correspondingly increased on the

right lane, see Fig (5 7 (a))
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b) When P_Lobs =0 5 for both lanes, flow for both was similar at low
densities but, at higher denstties, (p > 05), we observed a
considerable change 1n the traffic flow between the two lanes, see
Fig (57 (b)) The first intersection point of the t\;vo curves obtamed
at low density "inversion point", while the last one occurred at the
high density "inversion point" The graph also shows a third
mversion pomnt which does not appear in lane-usage vs traffic
density relation presented in Fig(5 3)

For both cases (a) and (b) we obtamed sumilar traffic patterns by using
different values for P_chg,(0 4, 0 5, 0 6), but maximum flow on both lanes
decreased when the value of P_obs was increased, as can be seen from
Fig (5 8)
Fig (59) shows that as we increased the obstruction probability, the
maximum flow for the two-lane model decreased from q ~ 077 for
P_obs=03toq=068 for P_obs =05, (1e a decreases of 11 6 %), no

matter whether the obstacle was located 1n the left or right lane

09 —two lane
08 1

07 4
06 -
05 4
04 4
03 +
02 A
01 -

wmmmmnsingle lane

flow

0 02 04 06 08 1
density

Fig (5 6) flow vs density relation for both single-lane

and two-lane Models
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Fig.(5.7): flow-density relation for two different simulations
of size k = 2x100; two lane _Data were averaged over long time
periods over 50 runs using P_chg=0.4, P_obs=0.4, where in @)
P_Lobs=0.7, 0.3 and in (b) P_Lobs=0.5, 0.5 for both left and

right lanes respectively.
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Fig (5 8) flow-density relation for different simulation of
size k = 2x100, two-lane, using different values for P_obs,
where P_chg = 0 4 and P_Lobs = 0 7, 0 3 for both left and

right lanes respectively
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Fig (5 9) comparison of flows for different values of P_obs,

where P_chg and P_Lobs are fixed as in Fig (5 8)
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5.3.3 Lane-changing behavior

To understand lane-changing dynamucs, we have to study the relations

between lane-changing frequency and lane-changing parameters This study

can be summarized as follows

1 The influence of varymmg P_Lobs on lane-changing frequency 1s
presented mn Fig (5 10) The maximum value of lane-changing
frequency (0 001706) was obtamed at a traffic density of 0 295,when
P_Lobs = 0 5 for both lanes However, increasing P_Lobs for the left
lane decreased the frequency of lane changes to 0 001527 at the same
density This dynamuic 1s observed at different values of P_obs = 0 3,
04,and 05

1l Fig (5 10), also shows that lane-changing frequency increases linearly
at low densities, (p < 0125 ), and this 1s observed for all values of
P_Lobs Further simulations, see below, also show that as we exceed
the densty p = 0125, different values of the lane-changing
parameters will nfluence the lane-changing frequency Fig (5 10)
shows two significant peaks when P_Lobs =(0 5,0 5), the first at the
first inversion pomt while the second occurs before the second
mnversion take place

1 The maximum number of lane changes occurred at density p ~ 03 %
0 01, which 1s well below the density of maximum flow for the 2x100

site system (p =0 5)
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The maximum frequency of lane-changes to the right lane (0 000889)
was much higher than the maximum frequency to the left lane

(0 000655) and was obtamned at density p = 0295 This 1s higher than
that found for maximum frequency of changes to the left lane (p =

0245) This can be seen from Fig (5 11), for different values of

P_Lobs and P_obs

00018 ——-P_lLobs 07,03

&' 00016 - L e P_LODS =06 04
= ~——P_lobs=05 05
S 00014 1 =22

g 00012 "

5 00011 .\\\

c

E’ 00008 -

@ 00006

£

g 00004 -

E 00002 -
0

0 01 02 03 04 05 06 07 08 09 1
density

Fi1g(5 10) lane-changes frequency vs traffic density for
different values of P_Lobs while P chg = 0 4 and P_obs =
o 4

~

Increasing the value of P_obs from 03 to 05 has increased the
maximum frequency of lane changes to 0 001704 (at p = 0 275), from
0001486 (at p = 0285) This 1s to be expected, because drivers have
to change ther lane i order to avoid being . halted behind an

obstruction and these lane changes increase, as the occurrence of

obstructions becomes more frequent
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The effect of lane-changing probability (P_chg) seems to be
mfluenced by the values of the other two lane-changing parameters,
P obs and P_Lobs, as follows

Applying P_chg =04, P_obs =04 and P_Lobs = 0 5, (for each lane),
the maximum lane-changing frequency obtained was 0 001706, see
Fig (5 12 (a)) However, when we increased lane-changing probabulity
to P_chg = 0 6 and reduced the value of P_obs to 0 3, also increasing
P_Lobs for left lane to 0 7, the maximum lane-changing frequency
dropped to 0001447, see Fig (5 12 (b)) This example demonstrates
that increasing the value of P_chg will not always yield a higher
frequency of lane changes without controlling values of the other two
parameters However, further simulations are required in order to

quantify more the effect of changing of P_chg

>

lane-changing frequenc

0001 4 —e—changes to left lane
000089 -
00008 -
0 0007 A
0 0006 -
00005 -~
00004 -
00003 -
00002 -
00001 A

—=— changes to night lane

density

Fig (5 11) comparison between lane changing frequency to left

lane and right lane When p > 0 125 the increase in right

changes over left changes becomes more noticeable.
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Fig (5 12) The effect of lane-changing probability on the

frequency of 1lane changes It

effect of increasing P_chg on the frequency of lane changes

s |

easy to observe that the

depends on the other parameters, P_Lobs and P_obs
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5.4 Model validation :

Unfortunately, there exists no source of real data, which studies lane-usage
characteristics on two-lane roads 1 urban areas In this regard none of the
available studies were devoted for urban traffic, but they were concerned only
with highway traffic So, in order to calibrate our lane-changing rules, we
have, performed a simple study on one of Dublin’s two-lane streets This was
attempted 1n May 1998, as follows A video camera was set up on a high
building, overlooking the street of interest The street, which 1s 250m 1n
length, 1s controlled by traffic lights from both sides at two intersections and
has one pedestrian crossing We were nterested 1 calculating the lane usage
frequency for each lane Data were obtamned for 4-hours per day for four
different consecutive days One hmut of this empirical study was the lack of
requred equipment for surveymg a longer urban street with many
mtersections Another, clearly, was the limiuted period of time for which the
survey could be considered and we acknowledge Dublin Corporation, Traffic
Section, for facilitating us on this Unfortunately, we did not find any study of
urban traffic i relation to lane-changing to compare our data with

On highway traffic, Sparmann (1978) has demonstrated an important
macroscopic phenomenon called “ lane-usage inversion” or “ density
tnversion”, which occurs long before maximum flow ”'

The lane-changing rules, presented m this chapter, appéar to reproduce the

same phenomenon for urban traffic, within the lirmtations of the simulation

employed, ¢ f Figs (5 13) and (5 14)
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Fig (5 13) lane-usage vs traffic density for empirical data
Data were averaged every 3-minutes for a small Road segment 1n

Dublin City
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Fig (5 14) lane-usage frequency vs traffic density It can be
seen that the first “density inversion” has occurred also long

before maximum flow density
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The first “density inversion” mn our simulation has occurred long before the
density of maximum flow This 1s 1n agreement with Sparmann (1978)

As has been described 1n Sec (5 3), the “density inversion ““ point 1s adjustable
by the lane-changing parameters, P_chg, P_obs, and P_Lobs The choice
P_chg =04, P_obs =03, P_Lobs = 05 for both lanes left and right, gives a
reasonably good approximation to our observed data

The data, presented in Fig (5 13) indicate that the lane-u:c,age frequency for
both lanes 1s not correctly modelled at very large densities (p > 07) The left
lane flow 1s higher than the right lane flow This, for example, may be due to
the fact that long vehicles were not modelled in our simulations, which have a
great influence on the city traffic However, the limitations of this study in
regard of street and time for data collection have been noted earlier clearly,

further experimental or observational studies on larger roads are needed
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Chapter 6

“Stochastic Cellular Automata Model for Inter-urban Traffic”
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6.0 Introduction

In this chapter, we move from one-speed determunistic cellular automaton
models, where stochasticity was introduced through tl’:e random feeding
mechanism and probabilistic lane-changing rules, to a completely stochastic
cellular automaton model, with more than one-speed

The need for such models becomes necessary as we move from urban areas,
where links between junctions do not exceed 50-500 m, to inter-urban areas
with links, which may exceed 10-15 km

In the latter case, cars have a good chance to mteract with each other,
generating a very complex driving process or "traffic dynamics"

In this model we try to sumplify the above, complicated dynamics by
concentrating on the most important elements of driving, of course without
losing the essentials of the start-stop waves dynamic

According to the rules of road traffic in Ireland, the following Table (6 1)

demonstrates the car velocity and the safe distance needed 1n order to brake

without colliding with the leading car (or car in front)

Table 6.1
Velocity Safe distance 1n sites
v=1 1 site
v=2 3 sites
v=73 5 sites

Where one velocity unit 1s equivalent to 13 5 mph
The following relation can give the safe distance ds for-a car moving with

velocity v relative to the front car
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ds=2(v-1)+1, v=1,2,3 61)
Car acceleration or deceleration at the next time step 1s then dependent on the

above safe distance

6.1 The model

The model 1s defined on a one-dimensional lattice, which 1s regarded as a road
segment, of k identical sites (cells) The state of every cell 1s either empty or
occupied by a car, where each car has an integer velocity varied between 0 and

maximum velocity v_. The number of empty sites ahead of a given car 1s

called gap

6.1.1 Definition of the Model

For any given car, the number of empty sites to the front car after securing the
safe distance for the current car speed 1s called '"free headway distance” and

denoted by “dx”, which can be defined as follows

dx = gap - ds : (62)
The model update rules depend on the relation between the‘ car velocity and 1ts
free headway distance This means that starting from an arbitrary
configuration of cars, the following rules are applied in order to update the cell

state at time mstant ¢+1, given 1ts state at time ¢ This 1s applied

simultaneously for all cars
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Rule 1 "Irregularities in the driver behaviour”
Let v be the current car speed and 1ts target speed at the next time step
v ta*
Ifds (v £a) > gap(v £ a), a=0,1,2,3
Then, with probability P_inc, the driver will replace

gap (v £a) + b by ds(v +a), beZ 1 <b<v*ta

Rule 2 "acceleration”

Ifv<v_, andds(v+1)<gap(v+1)

Then, with probability P_ac, the car will accelerate to
S=v+1,
Rule 3 “deceleration”
If v > dx(v) and ds(v-a) < gap(v-a),
Then the car will decelerate to
S =v-a, a=1,23
Rule 4 "speed fluctuation”
If the car 15 moving with constant velocity, then with probability P_rd
the car will reduce 1ts speed to
S =v-r reZandrell, 3]
Rule 5 “car movement”
Every car advances d sites ahead where

d = max(v, S)

a = 1 mn case of acceleration
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6.1.2 Implementation of the Model

In what follows, we chose v, = 3 to confirm with traffic regulations in

Dublin, which allow a speed of 40 MPH (~ 3 in the model)in inter-urban

areas

The use of the above probabilities, P_inc, P_rd, and P_ac, 1s essential 1n order

to simulate realistic traffic flow in inter-urban areas They generate three

different traffic properties, which characterise the ter-urban traffic as

follows

i.

Irregularities in the drivers behaviour

In inter-urban areas 1ts 1s obvious that not all the drivers will comply with
the rules of the road and keep the required safe distance to the car ahead
In Rule 1, our aim 1s to model this “ wregular behaviour” of the driver
using the probability P_inc, which control the wmrregularities in the driver
behaviour This can be demonstrated as follows

Example:

Assume that we have the following configuration of cars, where each

number represents the current car velocity and "dots" are empty sites

Now the following car has the velocity v = 2, which means that the

required safe distance for this speed from Equation (6 1) 1s
ds(v=2)=22-1)+1=3

and the free headway distance for this car from Equation (6 2) 18

ax(v=2)=6-3=3

141



ii.

As dx(v) > v, the driver will try to accelerate to v + 1 and the requirement
for this acceleration, according to Rule 2, 1s that
ds(v+ 1) <gap(v+ 1)
According to the above configuration
ds(v+1)=5 and gap(v+1)=3
which implies that
ds(v+1)>gap(v + 1)

Now Rule 1 apples, because b = 2 < v+1 Therefore, with probability
P_inc the driver will replace gap(v + 1) + 2 by ds(v + 1) and with
probability 1- P_inc he will not

Delay factor

Rule 2 reads as follows
With a certain probability, P_ac, only, a car will accelerate to the new
speed v + 1 and with probability 1 ~ P_ac 1t will not, even if the
requirements for acceleration are completely fulfilled
The reason behind mntroducing the above probability 1s to model a very
mmportant property of realistic traffic flow 1n inter-urban areas, which 1s
the delay i acceleration For example, this delayg}may occur 1n the
following cases

1 The car 1s traveling with v < v__and 1t has enough free headway

distance to accelerate, but the car 1s comung to a pedestrian or traffic
light
u  Other problems not related to normal road features, ¢ g bad weather,

Road works, and faulty car performance
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lii.  Speed fluctuations

Traffic through urban areas is controlled by many factors such as; traffic
lights, pedestrians, zebra crossings  etc.

Therefore, the free headway distance is not always the main cause behind
the oscillation in the car movements between acceleration or deceleration.
The above factors lead to a stochastic sequence of changes in car speed and
speed fluctuations, which vary, from one car to another. In our stochastic
model, a fluctuation in speed occurs, with probability P_rd, provided that a

car is moving with constant speed as follows: Ifv = or v = dx(v) then,

with probability P_rd, the velocity v is reduced to v - I, where r is an

integer randomly chosen from the interval [1, vme].

Using the above probabilities, P_inc, P_rd, and P_ac, will generate

stochastic sequences for the changes in the car speed as follows:
0.0-.1.1.2.2_.2_.0->1

Where each integer number represents the current car velocity.

6.2 Simulation and Results

We have performed simulations with the Stochastic Cellular Automata Model
(SCAM) with various initial conditions. The Lattice size = 200 cells and
closed boundary conditions have been applied. In our simulation, car velocity

ranges from v = 0 to vmx = 3 and different values for the model parameters,

P_inc, P_rd, and P_ac, were investigated, see Sec(6.2.3).
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Each run was calculated up to 3000 tume steps, and the data averaged over 50
runs, after a discard period of 500 time steps Each curve contains about 100

data points

6.2.1 Model Dynamics

Model dynamics are easier to follow by visualising the time-evolution of the

Automaton with the help of the space-time diagrams e g (Fig (6 1))

Space
>

2 101 000 00 2 111
2 00 1000 00 2 01
2 01 000 101 2 1 1
210 0001 00 2 21 2
201000 101 2 1
1 0 0000 _00 1 _ 3 )
1 10000 01 1 3 1 1

2 1 00001 0 0 2 21
I 00000 1 1 1 _ 2 )
Time 1_0000 1 1 0 1 3 2 1
210001 1 00 1 3 1
2 0000 1 00 1 1 1
10000 100 1 1 21
00001 000 1_ 2 21
30000 1 00 1_1__ 2 1
2 0000 101 1 1 3 0
0000 1 00 1 1 __ 2 30
0000 1 01 1 1 3 30
0001 00 0 0 1 0 01
¥ 1 0001 000 1 2 1 01
1000 10 10 1 2 21
0001 01 01 1 > 70

Fig (6 1) space-time diagram at density (p) of 0 22 for
a system of size 200 cells and Viax = 3, P_lne= 0 5,

P rd= 0 3, P_ac =05 Each new row shows the traffic
system after one update step and just after the car

motion

Rows are configurations at consecutive time-steps Dots represent empty sites,

and imnteger numbers indicate the car velocity located at the given stte.
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The most impressive way to describe the traffic flow 1s by a diagram, which
shows the space-time curves of a set of cars over a road segment Such
diagrams have been produced by Treiterer (1975) in the United States by
aerial photography The typical patterns of car configuration for the car
densities 0 16 and 022 are presented in Fig (62 a and b), where the first
density 1s slightly below the density of maximum flow, see below, and the
second 1s shightly above the density of maximum flow

In Fig (6 2) each black Pixel represents a car, with trajectory mdicated by a
dotted curve Cars are moving from left to right and from top to bottom, 1e
from top left corner to bottom right corner Vertical trajectories mean that cars
are completely blocked, whereas diagonal trajectories show car movement
Traffic jams or jam waves are identifiable as solid areas m the space-time
diagrams At low densities, shightly below the density of maximum flow, (as
in Fig (6 2 a)), we find that lamnar traffic 1s the domunant pattern, despite the
appearance of small jams, which occurs randomly due to speed fluctuations
The appearance of these small jams becomes more noticeable as we exceed
the density of maxmmum flow, see Fig (6 2b), and ther hfetime becomes
relatively longer ;

On the other hand, the high-density regime, (Fig (6 3)), 1s characterised by
random formation of congested clusters, due to the stochasticity elements in
our model The hifetime of these traffic jams becomes continuous to increase
compared to those obtained at low densities (Fig (6 2 (a) and (b))

The Figure also shows the backward movement of the traffic jams, 1e aganst

the traffic flow
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Fig (6 3) shows that these congested clusters represents a typical start-stop
wave and, due to lack of real data in our study, may be compared to data
obtained for simulated highway traffic (Nage and Schreckenberg(1992) On

this basis, the model appears to produce fairly realistic results

Road

Time

Fig (6 3) Space-time diagram for the SCAM, Voax = 3, P_inc=

05 P rd= 03, Pac =05, and p = 0 5 Black dots represent
cars, consecutive horizontal lines represent configurations at
consecutive time steps It can be seen that the traffaic

jams, (sold areas), are moving backwards
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6.2.2 Fundamental diagrams

Next we study the fundamental diagrams, flow-density relation g-p and

ad
t

velocity-density relation v-p, of our SCAM
The definitions of the above macroscopic aggregate variables, q, p, and v, for
which data are shown 1n the fundamental diagrams, have been introduced n
Sec (2 1 1), using Equations (2 1)-(2 4)

The simulation reveals that the maximum flow obtamned was g, ~ 024 *
0 02 at the density p, ., =018 £001 (Fig (6 4 a)) In contrast the maximum

flow obtained by Nagel and Schreckenberge (1992), in highway traffic, was
0 318 £0 0005 and obtained at lower density (0 085 £ 0 004), where v, = 5

Further simulations, (Fig (6 4 (b)) shows that the system size does not have a

significant effect on the above two extremes, ¢, . , P,m.» Where data were
i

¢

long-term averaged
The flow-density relation (Fig.(6 4)) can be characterised as follows
1 Low-density phase, where the drivers change therr speed according to
rules of the road and the traffic control system In this regime, flow
mcreases hnearly by increasing the traffic density
n High-density phase, where the drivers change therr speeds according to
the needs of driving i a queue The high-density phase 1s characterised
by periodic start-stop waves (Fig (6 3)) and the significant drop in the
system flow as i Fig (6 4)
In between the above two-regimes, the traffic dynamic 1s'hard to explamn In

Sec (1.1 2 1) we outlmed the explanation given by Hall (1995)
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6.2.3 The Effect of Varying the Model Parameters

Firstly, we look at the influence of changing the model maximum integer

%
e

velocity on the two-extremes, q,...» Pyma

Our simulations, (Fig (6 5)), show that the position and the form of the
maximum flow depend strongly on the maximum integer velocity Reducing

the value of v, in the model has shifted the maximum flow ¢_, to hgher
values of density p while decreasing 1its value This 1s more noticeable for
Vma = 1, where the value of g, has decreased from 02209, m case of

Vmax =3, t0 0 1286 obtained for v, =1(1e a decrement of 58% approximatly)

Also, the fundamental diagrams show the asymmetry seen for real data

obtained for highway traffic (Hall and Gunter, 1986)

0 25 +
02
vmax=3
S 015 7 vmax=2
= 011 vmax=1
0 05 +
0 T , T . \
0 02 04 06 08 1
density

Fi1g(6 5) Fundamental diagrams obtained by varying the model
maximum integer velocity, where P_inc = 0 5, P_rd= 0 3, P_ac

=05
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The system velocity as a function of the traffic density for different values of

18 presented 1n Fig (6 6)

vmax

> vmax=3
3 vmax=2
E vmax=1
0 . o . . ]
0 02 04 06 08 1
density

Fig (6 6) Velocity-density relations obtained by varying the
model maximum velocity, where P_inc = 0 5, P_rd= 0 3, P_ac

=0 5

Fig (6 7) shows that the changes in the acceleration probability (P_ac) have

significantly influenced the flow behaviour and the maximum flow obtained

03 -
0 25 A
. 02 P_ac=07
2 015 —=P_ac=05
s 01 P_ac=03
005
0
0 010203040506070809 1
density
Fig (6 7) Different fundamental diagrams obtained by varying

the value of P_ac, where Vv, =3, P_inc = 0.5, and P_rd= 0.3
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Increasing the value of P_ac from 0 3 to 0 7 has increased the maximum flow
from 0 1554 to 0 2557(1 e an increment of 65% approximately)
In contrast using higher values for P_rd has reduced the maximum flow from

Goex = 02209 to g, = 02008, which means a decrement of 9%

approximately, see Fig (6 8)

025 -
021 —P rd=03
5015- e P_101=0 5
= 01 - v P_rd=07
005/
0 .
0 010203040506070809 1
density

i

Fig (6 8) fundamental diagrams obtained by varyaing the value

of P_rd, where v, =3, P_inc = 0 5, and P_ac= 0 5

Fig (6 9) shows that varying the value of P_inc has mnfluenced both the
position and the values of maximum flow Increasing the value of P_inc from
03 to 07 has shifted the maximum flow to higher values of p (0 22) and
shghtly decreases 1ts value from 0 2237 to 0 2181 At this density, 0 22, the
two curves crossover and the flow becomes higher as P_inc increases from 0 3
to 07 This situation was domnant untill p ~ 0 55, then the flow becomes
sumular on both lanes All the above experiments mvolve changing the model
parameters individually, 1e varyng one of the model’s parameters while

keeping others at the same values
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density

Fig (6 9) Flow-density relations obtained by varying the

value of P_inc, where Vyax= 3, P_Lac = 05, and P_rd= 0 3

This has resulted 1n different traffic flow patterns, which can be mnterpreted as
changes 1n the traffic behaviour, due to different circumstances, (e g speed

limats, bad weather, road conditions, etc)

Secondly, by keeping v_, =3, we look at different combinations of the model

parameters(P_inc, P_rd, P_ac) The summary of the simulation runs can be
found 1n Table (6 2), where three values for each parameters were used(0 3,
05,and 0 7)

Looking at the values of ¢ i Table (6 2), 1t 1s easy to see that the

max * p g max
model can be adapted to model a wide range of traffic circumstances, as above

The munimum value of g, 15 obtamed at bad driving conditions (P_rd =0 7,

P_ac =0 3), with maximum velocity obtained 1 6447 (1e Zi 2 mph)

[
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P_inc P_rd P_ac Py max G roas
03 03 03 017| 01565
03 03 05 018| 02231
03 03 07 016 02521
03 05 03 017 01483
03 05 05 018] 02093
03 05 07 016f 0239
03 07 03 016| 01427
03 07 05 017 02025
03 07 07 016 0232
05 03 03 017] 01557
05 03 05 018 02219
05 03 07 017 0 256
05 05 03 017 01464
05 05 05 019] 02083
05 05 07 018] 02433
05 07 03 017{ 01404
05 07 05 019 02005
05 07 07 019 02352
07 03 03 018 01533
07 03 05 022] 02181
0.7 8.3 0.7 018 0.2609
07 05 03 018} 01445
07 05 05 021] 02054
07 05 07 020 0 247
0.7 0.7 0.3 0.18; 0.1389
07 07 05 021] 01981
07 07 07 020 02389

Table (6 2)

The 1influence of varying the model

parameters on the two extremes
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In contrast, improving the driving conditions by decreasing P_rd to a lower
value (P_rd = 03) and increasing the value of P_ac j%o a higher value
(P_ac=0 7) has lead to the maximum value of g_, (0 2609) and also increased
the system velocity to a higher value (2 2044)

Further, the two extreme values of ¢g_. ,(mummum and maximum values),

were obtamed, suprisingly, at the same traffic density (p, ., = 0 18)
Table (6 2) shows that most values of p,, . are obtained at the density of 0 18
% 0 01, with some cases where p, .. 15 obtamed at a lower (higher) densities

than 0 18 £ 0 01 This 1s due to due to different combinations of the extreme

values of the model parameters 1n order to obtain a reahstic traffic patterns

6.3 Open Systems

In this section, we apply different boundary conditions and apply the same

rules of the stochastic cellular automata model The system wnputs and outputs

are treated as follows

e At the left side of the road, a stochastic feeding mechamism, in which car
arrrvals follow a Poisson process, has been implemented throughout the
simulations for different arrival rates

¢ On the other hand, cars may leave the system at the right side of the road

Thus 15 achieved by ensuring that the last three sites of the road are empty

The above conditions for the system mput and output will create open

boundary conditions
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The fundamental diagram for the stochastic model (Fig (6 10)) was obtained,
starting with a random mmtial configuration of density 0 2 and velocity v = 0,
by applying open boundary conditions and employing different rates of
arrivals The simulations included a system of size 300 sites for duration of

10,000-time step After relaxation, 1000 time steps, the maximum flow

obtamned 1s :
G max open = Demax,closed T € where 00<c< 6 03 (63)

at density of
Piras o = Pnas,aona ~ where 00< C; <004 (6 4)

The above results mean that a higher flow 1s obtamned at lower density,

compared to the model with closed boundary conditions

025 4
02 4 .
o e 5
015“ ﬁgoo"" ”’.’f.. L
; Q.“ . .,
Q g . * ¢
2 o,
01 f" :
. }
0 05 - L
-
o T T T T 1
0 005 01 015 02 025
density
Fig (6 10) Fundamental diagram of the stochastic model using

open boundary conditions Points are averaged over short-time
periods (50 time steps) for a system of size = 300 after
discard period of 1000 time steps Duration of system evolution

= 10,000 time steps Data relate to different arrival rates,

where v _ =3, P_inc=0 5, P_rd=0 5, P_ac = 0 4
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6.3.1 Bottleneck Situations

One of the important factors 1n traffic science 1s the existence of bottlenecks,
1e sections that have less capacity of accommodating traffic than do other
sections of the road A very common example of a bottleneck situation 1s a
two-lane directional road merging into one lane only

In order to obtain a bottleneck situation in the following simulation, we apply
a high rate of arrivals (n = 0 6) starting from a high mitial density Duration of

the simulation 1s 10,000 time steps for a system of size 300 cells

)
:

"

6.3.2 Self-organization of the Maximum Throughput

For the conditions specified 1n the previous section, our model shows that the
outflow from a jam appear to self-organize mnto maximum throughput This
phenomenon of self-organized criticality was reported imtially by Bak et al
(1987) using a one-dimensional sand-pile cellular automata model as the
transport process, but our model mdicates a state of non-trivial critical density
(1te p, # 0) in agreement with Nagel (1994, 1995) This can be seen from
Fig (6 11), where the system size k=300 and the mmtial density 1s 0 56 with
P imc=05P_rd=05,and P_ac =05 After a relaxation-of 1000 terations,
we started to collect our averages every 50-time steps The maximum flow

obtamned 15 g, 5., = 02185, which 1s 0 0102 greater than the maximum flow

obtamned mn closed systems, at lower density ( P =015)

qmax open
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Fig(6 11) space-time plot of the outflow from a jam, where the
system size = 300, starting from a dense traffic p = 0 56,and

apply high arrival rate on the left boundary p = 0 6,

1% =3, P_inc=0 5, P_rd=0 5, P_ac =0 5

max

6.4 Summary and Conclusion

A stochastic cellular automata model for the traffic in inter-urban areas 1s
presented 1n this chapter The model 1s defined on a one-dimensional lattice of
k-1dentical cells, where each cell 1s either empty or occup;ed by a car, where
each car has an mteger velocity varied betweenv=0andv=v__

The model update rules depend on the relation between the car velocity and 1ts
free headway distance and take into account some of the basic features, which
characterise the inter-urban traffic such as delay in acceleration, speed
fluctuations, and wregularities of the driver behaviour only in term of gap

acceptance

Our simulation results can be summarized as follows

¥
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The maximum flow g . =024 £ 002 was obtamed at density p_.. =

0 18 £ 0 01, further simulation reveals that the system size does not effect
these values

At low densities, we found that lamunar traffic was the domimant pattern
despite the appearance of small jams, whereas the high density regime was
characterized by congested clusters, which represent typical start-stop
waves

The simulation conducted mn Sec(6 3 3) shows that the model can be
adapted to model various traffic conditions such as bad weather, rush
hours, etc, by modifing its parametrs

When open boundary conditions were applied, a higher values for the
maximum flow was obtained at lower densities

Applymng open boundary conditions with higher arrival rate, the model
indicates that the outflow from a traffic jam appears to self-organise to a

maximum flow
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Chapter 7

“Summary and Conclusions”
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7.0 Research Contribution

The main contribution 1n this resealrch lies 1 developimg three cellular automata
models for traffic flow 1n urban angll mter-urban areas, which can be summarized
and discussed as follows 1

A simple cellular automata model%for urban traffic 1s presented, the model 1s a
three state determunistic cellular autiomaton with both space and time, discrete

1
The state of each site at next t1mei step 1s determuned from the state of the site

itself and those of the nearest neighbour sites, where v_, = 1 1s the maximum

possible jump for each particle For an arbitrary configuration, one update of the

system consists of the transition rulps described m Sec (2 2), which are performed

|

l
1n parallel for all sites

It 15 hard to classify the cellular automata models mn the frame of car following
theory, (described i Chapter 1, Se:c (1111)) In our model the stimulus can be
regarded as the gap between adjacent sites in the automata

Car movements, (described by rules, Rule 1, Rule 3, and Rule 4, defined in Sec
(2 1)), can be viewed as the response, n the case of acceleration, whereas Rule 2
may be considered as the deceleration due to nsufficient space ahead

Our simulation reveals that the system, (imposing periodic boundary conditions),

reaches 1its critical state at density 1pc= 0 5 and the maximum flow obtained was

Jmex = 0 5 after a discard period ;4 %, which does not depend on the system size
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This was also obtamned by Nagel and Schreckenberg (1992) in the determunistic

I

limit of their stochastic model us&lg V.., =1, but after a much higher transient

period For densities less than the critical density (p < p.), the kinematic waves

move forward with velocity 1 In contrast, for densities higher than p,_, the

kinematic waves move backward with velocity -1 The open boundary conditions,
I

(described i Chapter 2, Sec (2 3 2);), have led to lower values for maximum flow
|
and 1ts density, compared to maximum flow obtained for closed systems, which

!
|
r
!
!
The model, then, 1s adapted to model road traffic, where the road 1s formed by

depends on the system size

linking a finite number of segments separated by traffic lights In urban traffic,
l

{
our experience and every day observations says that cars have to wazit for a certain

period of time 1n order to leave a sp:emflc road

b

This time period depends on the I?mmber of the traffic lights mstalled between

|

road segments and the duration of both light cycles, red and green, as well as the
|
}

traffic density To examine the reah;sm of our simulation model, a new parameter"

|
jammed time ¢," 1s mtroduced, which represents the number of time steps a car

has to wait in order to leave theiroad Our simulation results show that this

parameter, as 1n real traffic, depehds on the number of traffic Lights and the

duration of each light cycle

The real task for our "toy" mode%l was 1ts ability to simulate traffic flow at
|
network level Four different networks, varying from 17 nodes, (8 km length), to

41 nodes, (24 km length), have been used 1n the simulation, ghe limitations of this
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|
|
|
|

range 1s due to the effort needed to represent larger size networks However,

i

{
future work has to incorporate larger size networks
i
Each network node corresponds to‘a signalized intersection, timing of signals at

all nodes followed two-phase tmg scheme At all nodes traffic movements

|
followed turning percentages as described in Chapter 3, Sec (3 15) Cars are
mjected mto the network accordmg% to a Poisson process with parameter p, where

different values for p are used }
|

Two types of simulation were lexecuted, the first considers the transient
i

movement of cars along the networ#(s, whereas 1n the second rca:rs were allowed to
park inside the network, using urilderground parks, and the network behavior
under short and long-term events wiere also investigated

|
The simulation results strongly suégest that traffic flow 1n urban street networks
and the parameters governing 1ts performance may be characterized using the

Simple Cellular Automaton Models

Our findings indicate the following

e The characteristic shape of the fundamentalelagrams as observed for highway
traffic 1s, surprisingly, obtamed' at urban network level, despite the complex
interactions m urban traffic This 1s 1n agreement with Willlams (1986), and
results obtained here appear to reflect realistic traffic behaviour

e The simulation reveals that therEe 1s a critical arrival rafe” jamming threshold”

above which the network 1s not} able to handle the incoming traffic any more,

which results in “ queues oum{de the network” This “jamming threshold” 1s
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?
|
!
|

|

mdependent of the network size 1n the case of transient movement stmulation,
i

whereas different “jamming thresholds” for different network sizes were

t

| .
obtamned 1n the case of non-transient movement simulation

1

e At low arrrval rate and also? shghtly above the “jammung threshold” a
|

significant interaction,(o0 = 0 (;)1), between the traffic conditions, transient

period, and the interval 1engtﬂ was obtamned for smaller size network, 17

nodes This nteraction became msignificant for larger size network, 41 nodes

e Modelling long-term events, such as blocking some of the network exits, has

successfully reproduced the jammung effect typically seen mn highly congested

networks at peak-times

|
i

Using single-lane networks, mmportant features such as lane-changing and 1its

-

impact on the flow behavior m urban networks cannot be observed and studied

Compared to highway traffic, lane-'changmg i urban areas 1s more complex This
18 because the decision to change lane mn urban areas depends on a number of
objectives and at times these may conflict

Despite this complexity, our aim 1s to find the minimal sets of lane-changing
rules, which are capable of reproducing important macroscopic features such as

lane-usage nversion, which 1s observed long before maximum flow m highway

traffic and also observed in urban traffic flow mn our study, but at gher density,
i

see Sec (5 4) i

} 3
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In this regard a two-lane model 1s mtroduced, which consists of two parallel
single-lane model and three sets of rules for lane-changing defined as follows
urgent lane-changing conditions, mimnimal and maximal lane-changing conditions
Our simulation reveals that the above lane-changing rules were able to reproduce
the lane-usage mversion as obtained in both highway and urban traffic

The “density inversion* pomnt 1s modified by the lane-changing parameters,
P_chg, P_obs, and P_Lobs The choice P_chg =04, P_obs =03, P Lobs =05
for both lanes left and right, gives a good approximation to our observed data in a
study performed i Dublin city to calibrate our lane-changing rules The
Iimitations of our study was mentioned 1 Sec (5 4)

However, the lane-usage frequency for both lanes 1s not correctly modelled at
very large densities, where left lane flow 1s higher than the right lane flow

In the last chapter we moved from determunistic cellular automata models to a
completely stochastic cellular automaton models 1n order to model traffic in mter-
urban areas with links that may exceed 5 km

The stochastic model, also, 1s defined on a one-dimensional array of k sites The
state of each site 1s either empty or occupied by a car, where each car has an

mteger velocity between v =0 and v=v__ The model update rules, described mn

Sec (6 12) depend on the relation between the safe distance of the car velocity
and 1ts free headway distance

The model correctly reproduces the start-stop waves and the flow-density relation

shows the asymmetry known from the real data obtained for highway traffic
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The simulation reveals that the model can be adapted to model various road traffic
conditions, by modifying its parameters

In case of an open system the model gives a good approximation to the flow-
density relation obtained for ighway traffic and indicates that the outflow from a
jam appears to self-orgamze to maximum flow, when a high arrival rate 1s
appled, starting from a dense traffic condition

Throughout this thesis Microsoft Excel was used to plot all our graphs, and a
C++ code, which uses bitmaps see Appendix E a:\ Space-time\ bc.c, was used to
plot all the space-time diagrams A bitmap 1s a powerful graphics object used to

create, manipulate and store images as files on a disk

7.1 Future Work

-

o Despite the determmmstic update rules of the Simple Cellular Automata
Model, 1t was able to reproduce important features of urban traffic
Adding the stochasticity element to the update rules mught yield a more
realistic behavior of the model

¢ Buses and Trucks represents more than 50% of the urban traffic, so future
work has to be directed to incorporate long vehicles in the model (1e non-
homogenous units)

e Also, future simulation has to mvolve networks with complex intersections

(1e 1ntersections with complex geometry), and roundabouts
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e Extend the two-lane model to include a third lane, Wthh4 1S dictated as a bus-
lane The bus-lane represents one of the important short-terms events in urban
traffic

e Investigate the efficiency of the simulations in the case of non-homogenous
units by looking at the bit-wise coding and also the use of parallel computing

e In case of the stochastic CA model, more investigations are required to study
and scale the formation of the spontaneous traffic jams, Also, the limts of the
model has to be investigated in some detail

e Use the models developed in this research to develop a High Speed
Mlcroscopic Simulation for Urban and Inter-urban Traffic (HSMSUIT)

simulation package

7.2 Concluding Remarks

In this research, we have seen the importance and the capabilities of the Cellular
Automata methodology 1n modelling traffic flow in urban and inter-urban areas

Despite the complexity of the traffic dynamucs, the advances we have seen 1n the
last years are demystifying the 1dea that Cellular Automata are too simple to be

capable of simulating highly complex systems
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Appendices

Appendix A Statistical Analysis -

In this section we use factorial analysis to study how changing the input parameters
mught effect the output parameters

The mput parameters are length of transient period, interval length, traffic conditions,
the number of network-blocked exits, and the arrival rate

In contrast our output parameters or responses are traffic density, flow rate, average
velocity, number of cars mput to the system, number of cars output from the system,
and the queue length at each of the network entries

In the first section we study the significance for network I{érformance of the
mteraction between the network size and the mput parameters We examine the flow
rate 1n each case for different arrival rates at the injection pomnt

In section two, using different network sizes, we study the higher order interactions of
the three factors, transient period, interval length, and traffic conditions, and exarmine
thewr effect on the flow rate using two levels for each factor, again for various arrival

rates

e
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A.1. The relation between the network size and the input

parameters

A.1.1 Network size vs traffic conditions

We have used factorial analysis to examune the realism of our simulation model, in

particular to mvestigate the interaction between network size and traffic conditions

In the first experiment, network size and traffic conditions at intersections have levels

B1 to B4 and Al to A2 as follows

B Network size, B1 = 17 nodes, B2 =25 nodes, B3 = 33 nodes, B4 = 41 nodes

A traffic conditions, Al = 50% go straight through, 25% turn left, 25% turn right and

A2 =76% go straight through, 12% turn left,; 12% turn right

013 4 ® 0245 -
T Cond 12%,76% 12%- 024 -
) 0125 | e @ 0235
T 012- S 03
= 2 02251
= 0115 Bl L 0224
% > 0215 -
s 011 g 021+
>3 < 0205
0105 - ey 021 H=055
0195 . . ; S—
01 ; . . . Al A2 A3 A4
Al 2 %) M
Network Size
Network Size
(a) (b)
Fig(Al) y
7’

The experiment 1s performed using a stochastic feeding mechanism, in which car

arrivals at the injection points follow a Poisson process for different rates of arrivals

()
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Fig (A 1) shows that, at low arrival rate p = 01 for free tgafﬁc conditions, a

significant 1interaction between the traffic conditions and the network size was

obtamned at the o = 0 01 level of significance Increasing the arrival rate to p = 0 55,

results m a weak 1nteraction between the two parameters

Using the higher arrival rate, Table (A 1) demonstrates that both factors have a

significant effect on the flow rate

Factor F,.ap=01 E,. atp=055
A 1032 1418
(1,312 (1, 312)
B 428 2811 | 467 169 24 65 2971 [ 5085 |532
@312 | @319 | @202 |@22) |32 |62 |62 |62
AB 30 13 102
(3,312) @3, 812)
C 1716 3607
(1,312) (1,312)
BC 660 232
3, 312) (3, 312)
D 356 314 12
(1, 232) (1,232)
DB 26 04 1094
(3, 232) (3, 232)
E 039 859
(1, 232) (1, 232)
EB 170 037
(3, 232) f?‘lf-‘ (3, 232)

Table (A 1) 1In this table the response variable represents the

flow rate for all the experiments, where A traffic conditions,

B network size, C transient period, D

E network-blocked exits,

and o =
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A.1.2 Network size vs length of transient period

In experiment 2 we study the effect of the transient period on the network size factor.
The same levels for the network size parameter have been used as before and two
levels for the transient period; Cl = 200, C2 =500.

Using the low arrival rate, the interaction between the length of transient period and
network size seems to have a significant effect on the average flow rat at a = 0.01.
Again, this is not sustained when the high arrival rate is applied to feed the network
(Fig (A.2.b)). Both factors independently, however, have a significant effect on

network performance, (Table (A.l)).

(@) (b)

Fig(A.2)

A.1.3 Network size vs interval length for calculating the output
parameters

Our simulation results reveals that, as long the free flow is dominant, there are no

significant changes in the traffic parameters, average flow, average density, and
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average density, see Chapter 3, Sec (33 3) Hence, the interval length used to

calculate these averages does not have much influence on therr values This 1s not the

L
ot

case 1n the dense traffic regime period, where the mnterval length used to average these

parameters plays a significant role (F,, =314 at o = 0 01 level of significance)

lc

This can be observed from the statistical analysis presented in Table (A 1) with
interval length having two levels, D1= 30 time step, D2 = 150 time steps

The analysis also reveals that there 1s a significant interaction, at o = 0 01, between
network size and interval length for low arrival rate, less so for high arrival rate For
high arrival rate, network size and interval length are also separately significant at the
same level of significance However, for low arrival rate, interval length does not
have a significant effect

A.1.4 Network size vs the number of the Network-blocked exits

When car arrivals to the network are relatively low and/or 1f underground parks exist
mnside the network, then blocking one or two of the network exits will not have a great
mmpact on the network performance This situation is no longer true as the network
becomes congested and car arrival rate increases In this case, blocking any of the
network exits will strongly influence the network performance

To quantify the above performance, we have used two levels for the factor number of
network-blocked exits 1e E1 = 1 exit and E2 = 2 exits, and the same levels for the
network size parameter (Table (A 1)) It can be seen that when free flow traffic
operated through the simulated network, neither the two factors nlor therr mteraction

have a significant effect on the flow rate
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By contrast, under dense traffic conditions (1e a high arrival rate) both factors
(network size and number of blocked exits) have a significant role, (o = 0 01), n
terms of flow performance At this level of concentration, the flow rate 1s not affected

by interaction of the two factors

A.1.5 Network size vs arrival rate

One of the key factors i our stmulation 1s the arrival rate To investigate how factors
such as the arrival rate, network size and theirr combination might affect the network
performance, factorial analysis was used to analysis the simulation output, where two
levels, H1 =0 1 and H2 = 0 55, have been used for the arrival raté; and the same four
levels as previously for the network size

Statistical analysis in Table (A 2) shows that the arrival rate has a great influence on
flow performance and a significant interaction, at o = 0 01, also exists between the

two factors, H and B

Factor F..
H 738 58
(1, 232)
B 49 04
(3, 232) )
HB 24 33
(3,232)

Table (A 2) The response variable represents the flow
and each order palr represents the Degrees of freedom,

where H arrival rate and B network size and o = 0 01
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A.2. Statistical analysis using three-input factors:

In this section we study the effect of the following factors, transient period, the
interval length, and the traffic conditions on the flow rate performance using different

networks size Each of these parameters has two levels as follows

A Traffic conditions, Al =25% turn left, 50% go straight,25% turn right and
A2 =12% turn left, 76% go stra,lgﬁt, 12% turn right
B Transient Period, B1 = 200, B2 = 500

C

Interval Length, C1 =30, C2 = 150

A.2.1 Experiments using a 17 node network

Table (A 3) describes the statistical analysis performed using different arrival rates

using 17-node network

Source F,atp=01 | E, atpy=03 | FE, atp=055
A 34 62 87 22 143 62
B 12 07 2278 11 46
C 118 291 20 19170
AB 208 1478 1076
AC 188 30 0013 707
BC 1172 1473 777
ABC 1373 1072 098
Table (A 3) The table contents same as 1in table (A 2), but

A traffic conditions, B transient period, and C 1interval length

This was obtained for network of size 17 nodes and results obtained

at o = 0 01 level of saignificance
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From the above table it is easy to see that the interaction between the three factors
does have a significant effect, at a = 0.01, on the flow performance at low arrival rate.
However, this interaction was less significant as we increase the arrival rate and was
unimportant at high arrival rate of 0.55. In the case of the two-factor interactions we
find a significant interaction, (a = 0.01), between the length of transient period and
the interval length at various levels of arrival rates. In contrast there is no interaction
between the transient period and the traffic conditions except at a moderate arrival
rate, with Poisson parameter p = 0.3.

Also a significant interaction, (a = 0.01), between the traffic conditions and the
interval length was obtained at both low and high arrival rates, whereas for ju
moderate and equal to 0.3, interaction between the two factors was negligible. The
statistical analysis also shows a significant effect at different arrival rates for each
parameter with the exception of the interval length, where no significant effect was

observed at low arrival rate as expected.

A.2.2 Experiments using 41 node network

To study further the effect of network size on traffic parameters, the simulated
network was extended to include 41 nodes.

Table (A.4) shows that there is a significant interaction, a = 0.01, between the traffic
conditions and the transient period only when low arrival rate is applied whereas
negligible interaction between the traffic conditions and the interval length was
observed at all of arrival rates.

The individual parameters in this case have a significant effect, at the same a, on the
flow performance compared to previous networks, except in the case of the interval

length parameter at low arrival rate.
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Factor F,.atpy=01 | E, atpy=03 | F, atp=055
A 151 89 8 55 14 11

B 116 74 2500 19 36

C 488 321 26 179 06

AB 4115 001 0003

AC 043 089 116

BC 4 86 10 66 6 54

ABC 572 035 0 0001

Table (A 4) the response variable represents the flow, where
A traffic conditions, B transient period, and C 1interval length

This was obtained for network of size 41 nodes and results obtained

at o = 0 01 level of significance

Using Table (A 4) 1t 1s easy to see that the interval length factor and its interactions

\
N

terms do not have a significant effect the flow at low arrival rate no matter what the
network size However, under dense traffic conditions, the mterval length as well as
the other two factors are significant, (o = 0 01), 1 terms of influencing flow, although
most of the higher order interactions become less significant as the network becomes

more congested This appears to be true, wrrespective of the network size (Chapter 3,

Sec(3 3))
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Appendix B:

Experiment

N17D200S30H50%L25%R25%
N17D200S30H50%L25%R25%
N17D200S30H50%L25%R25%
N17D200S30H76%L12%R12%
N17D200S30H76%L12%R12%
N17D200S30H76%L12%R12%
N17D200S150H50%L25%R25%
N17D200S150H50%L25%R25%
N17D200S150H50%L25%R25%

N17D200S150H76%L12%R12%
N17D200S150H76%L12%R12%
N17D200S150H7€%L 12%R 12%

N17D500S30H76%L12%R12%
N17D500S30H76%L12%R12%
N17D500S30H76%L12%R12%
N17D500S30H76%L12%R12%
N17D500S30H76%L12%R12%
N17D500S30H76%L12%R12%
N17D500S150H50%L25%R25%
N17D500S150H50%L25%R25%
N17D500S150H50%L25%R25%

N17D500S150H76%L12%R12%
N17D500S150H76%L12%R12%
N17D500S150H76%L12%R12%

Table (B.D):
S: interval

Run Duration

5000 time step
5000 time step

5000 time step
5000 time step

5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step

Arrival Rate initial Oensity
\%
0.1 0.159274
0.3 0.147177
0.55 0.148185
0.1 0.155242
0.3 0.145161
0.55 0.140121
0.1 0.144153
0.3 0.132056
0.55 0.15625
0.1 0.138105
0.3 0.145161
0.55 0.144153
0.1 0.141129
0.3 0.15625
0.55 0.157258
0.1 0.143145
0.3 0.137097
0.55 0.142137
0.1 0.143145
0.3 0.167339
0.55 0.147177
0.1 0.153226
0.3 0.147177
0.55 0.149194

length used to calculate averages, H:

Max Flow

0.14892
0.247978

0.250189
0.132537

0.260762
0.261315
0.119422
0.249845
0.254043
0.133206
0.263661
0.270235
0.141146
0.249675
0.247644
0.133296
0.256717
0.264442
0.124543
0.249432
0.249719
0.151318
0.265604
0.26992

headway percentages, L:
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Summary of the simulation experiments

Oensity of
Max Flow
0.180459
0.482386

0.414131
0.15784

0.455271
0.453458
0.137413
0.490848
0.539544
0.154579
0.509714
0.50673
0.168032
0.451186
0.528179
0.154583
0.4774
0.504902
0.142374
0.468973
0.586972
0.179288
0.463274
0.54265

Summary of results for a transient moment simulations for a 17 nodes network,

Velocity
at max Fiow
0.825226
0.514065
0.604131
0.839694
0.572761
0.576273
0.863076
0.509007
0.470846
0.861731
0.517273
0.533292
0.839994
0.553374
0.468864
0.862293
0.53774
0.52375
0.874755
0.531867
0.425437
0.843993
0.57332
0.49741
where

turn left percentages, R:

Queue outside
the network
3
808

6063
6

847
6292
et
918
6270
0
997
6193
2
918
6243
3
782
5970
3
869
6370
7
914
5946

Total Input
Cars
2744
6270
6616
2540
6144
6810
2323
6217
6736
2461
6210
6772
2683
6073
6834
2478
6299
6721
2266
6064
6880
2734
6123
6654

:D: transient period,
turn right percentages

Total Output
Cars
2748
5917
6215
2539
5781
6355
2327
5865
6329
2452
5842
6325
2692
5756
6410
2497
5932
6283
2272
5761
6431
2714
5784
6255



Table
S:

N25D200S30H50%L25%R25%
N25D200S30H50%L25%R25%
N25D200S30H50%L25%R25%
N25D200S30H 76%L1 2%R12%
N25D200S30H76%L12%R12%
N25D200S30H76%L12%R12%
N25D200S150H50%L25%R25%
N25D200S150H50%L25%R25%
N25D200S150H50%L25%R25%
N25D200S150H76%L12%R12%
N25D200S150H76%L12%R12%
N25D200S150H76%L12%R12%
N25D500S30H 76%L12%R 12%
N25D500S30H76%L12%R12%
N25D500S30H76%L12%R12%
N25D500S30H76%L12%R12%
N25D500S30H76%L12%R12%
N25D500S30H76%L12%R12%
N25D500S150H50%L25%R25%
N25D500S150H50%L25%R25%
N25D500S150H50%L25%R25%
N25D500S150H76%L12%R12%
N25D500S150H76%L12%R12%
N25D500S150H76%L12%R12%

(B.2):

interval

J&in Duration

5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
50001me step
50001me step
50001me step
50001me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 time step

Arrival Rate

W
0.1
0.3

0.55
01
0.3

0.55
01
0.3

0.55
0.1
0.3

0.55
01
0.3

0.55
01
0.3

0.55
01
0.3

0.55
01
0.3

0.55

initial Density

0.157419
0.141935

0.152903
0.144516

0.138065
0.149032
0.148387
0.155484
0.147742
0.139355
0.14
0.150323
0.150323
0.145806
0.145161
0.14
0.14129
0.154839
0.147097
0.141935
0.14129
0.151613
0.140645
0.149032

headway percentages, L:
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Max Flow

0.133535
0.250938

0.257036
0.122532

0.251473
0.255588
0.130982
0.261953
0.268279
0.129295
0.25995
0.265441
0.125374
0.255886
0.261093
0.127269
0.254167
0.255759
0.125037
0.263499
0.262152
0.132389
0.257569
0.261592

turn

Density of
max Flow
0.154924
0.42474

0.50891
0.141974

0.460259
0.477692
0.145693
0.455198
0.516321
0.147715
0.46235
0.501034
0.14348
0.431914
0.441902
0.146585
0.422594
0.42253
0.140622
0.442829
0.509705
0.151483
0.459314
0.438199

Summary of results for a transient moment simulations for a 25 nodes network,

length used to calculate averages, H: left percentages, R:

Velocity
at max Flow
0.86194
0.590803
0.505071
0.857421
0.546468
0.535047
0.89903
0.575471
0.519598
0.8753
0.562236
0.529786
0.873803
0.592447
0.590839
0.868228
0.601446
0.605305
0.88925
0.595035
0.514322
0.873958
0.56077
0.59697

where :D:

Queue outside
the network

2
995

6533
6

937
6230
4
912
6336
6
838
6275
3
959
6192
3
1028
6189
2
816
6502
3
952
6130

Tata! input
Oars
2405
6073
6458
2376
5993
6392
2371
6030

j«1111!
2282
6033
6455
2338
6074
6501
2328
6060
6479
2297
5973
6413
2305
6014
6526

transient period,
turn right percentages

lota! Output
Cars

2467
5583

5876
2399
5467
5794
2406
5532
5879
2324
5523
5897
2372
5588
5859
2364
5566
5906
2340
5476
5856
2364
5498
5845



"ITxpefimW Run Duration Arrival Rate initial Density ~ Max flow Density at Velocity =~ Queue Outside  Total Input Totaf Output

M Max Flow at Max Row the Network cars Cars
N33D200S30H50%L25%R25% 5000 time step 01 0.145714 0.123954 0.144823 0.855896 4 2321 2369
N33D200S30H50%L25%R25% 5000 time step 0.3 0.152381 0.2334 0.419332 0.556812 739 6491 5740
N33D200S30H50%L25%R25% 5000 time step 0.55 0.16 0.236959 0.433432 0.433432 5854 6815 5989
N33D200S30H76%L12%R12% 5000 time step 0.1 0.15381 0.138539 0.163858 0.845484 4 2507 2528
N33D200S30H76%L12%R12% 5000 time step 0.3 0.143333 0.241085 0.439291 0.548804 672 6279 5467
N33D200S30H76%L12%R12% 5000 time step 0.55 0.146667 0.242875 0.458928 0.511926 5741 6751 5796
N33D200S150H50%L25%R25% 5000 time step 01 0.148095 0.143204 0.164671 0.869639 5 2361 2425
N33D200S150H50%L25%R25% 5000 time step 0.3 0.140952 0.242285 0.43769 0.553554 807 6263 5588
N33D200S150H50%L25%R25% 5000 time step 0.55 0.141429 0.242092 0.435438 0.555973 5776 6836 5983
N33D200S150H76%L12%R12% 5000 time step 0.1 0.152381 0.132734 0.153399 0.874409 0 2494 2552
N33D200S150H76%L12%R12% 5000 time step 0.3 0.147143 0.25041 0.481382 0.52019 791 6273 5480
N33D200S150H76%L12%R 12% 5000 time step 0.55 0.152857 0.265046 0.468599 0.544273 8163 6727 5826
N33D500S30H76%L12%R12% 5000 time step 0.1 0.153333 0.119552 0.136254 0.877418 3 2377 2437
N33D500S30H76%L12%R12% 5000 time step 0.3 0.143333 0.237264 0.43985 0.539421 688 6245 5512
N33D500S30H76%L12%R12% 5000 time step 0.55 0.138095 0.23482 0.518609 0.452788 5937 6888 6030
N33D500S30H76%L12%R12% 5000 time step 0.1 0.150952 0.124745 0.148753 0.838607 8 2312 2371
N33D500S30H76%L12%R12% 5000 time step 0.3 0.144286 0.242352 0.486614 0.498037 612 6284 5523
N33D500S30H76%L12%R12% 5000 time step 0.55 0.140476 0.240965 0.508666 0.473719 6068 6790 5884
N33D500S150H50%L25%R25% 5000 time step 0.1 0.144286 0.123623 0.142087 0.870053 1 2380 2398
N33D5005150H50%L25%R25% 5000 time step 0.3 0.14381 0.241518 0.405884 0.595043 787 6230 5546
N33D500S150H50%L25%R25% 5000 time step 0.55 0.14619 0.242907 0.470925 0.515808 5882 6821 5978
N33D500S150H76%L12%R 12% 5000 time Step 1111 0.144762 0.118459 0.134982 0.877589 (11 2282 2309
N33D500S150H76%L12%R12% 5000 time step 0.3 0.137619 0.249781 0.400047 0.62438 615 6257 5502
N33D500S150H76%L12%R12% 5000 time step 0.55 0.145238 0.254398 0.462507 0.550043 6005 6710 5802

transient period,
turn right percentages

Table (B.3):
S: interval

Summary of results for a transient moment simulations for a 33 nodes network, where: D:
length used to calculate averages, H: headway percentages, L: turn left percentages, R:
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Experiment Run Duration Arrival Rate  initial Density MaxFiow Density of Velocity Queue Outside Total Input Total Output
1 Max Flow at Max:How  the Network . Cars ;; Cars
N41 D200S30H50%L25%R25% 5000 t me step 0.1 0.148791 0.123815 0.143406 0.863386 3 2335 2425
N41 D200S30H50%L25%R25% 5000 t me step 0.3 0.150961 0.236816 0.430268 0.550393 552 6388 5351
N41 D200S30H50%L25%R25% 50001 me step 0.55 0.140732 0.236763 0.494114 0.441462 5769 7385 5810
N41 D200S30H76%L12%R12% 5000 t me step 0.1 0.154991 0.137141 0.157631 0.86986 3 2484 2522
N41 D200S30H76%L12%R12% 5000 t me step 0.3 0.150961 0.245792 0.459454 0.534966 400 6514 5314
N41 D200S30H76%L12%R12% 5000 t me step 0.55 0.147861 0.250523 0.426943 0.586784 5700 7357 5740
N41D200S150H50%L25%R25% 5000 t me step 0.1 0.150031 0.126424 0.141542 0.893192 1 2337 2412
N41D200S150H509%L25%R25% 5000 t me step 0.3 0.155921 0.244922 0.365846 0.669466 629 6331 5341
N41D200S150H50%L25%R25% 5000 t me step 0.55 0.151891 0.250251 0.445275 0.562015 5591 7821 6246
N41D200S150H76%L12%R12% 5000 t me step 0.1 0.148411 0.140923 0.159056 0.886 5 3739 3710
N41D200S150H7fi%t129%R 12% 50001me step 0.3 0.147861 0.258957 0451121 0.57403 494 6488 5250
N41D200S150H76%L12%R12% 5000 t me step 0.55 0.152201 0.258452 0.433729 0.595883 5697 7295 5713
N41D500S30H76%L12%R 12% 50001me step L 0.145691 0 11531 0.131372 0,877736 iiliii 2262 QllILIITii
N41 D500S30H76%L12%R12% 5000 t me step 0.3 0.145071 0.235872 0.430988 0.547282 521 6353 5341
N41 D500S30H76%L12%R12% 5000 t me step 0.55 0.150961 0.238576 0.490861 0.486036 5476 7242 5894
N41 D500S30H76%L12%R12% 50001 me step 0.1 0.144761 0.122812 0.139498 0.88039 3 2342 2414
N41 D500S30H76%L12%R12% 5000 t me step 0.3 0.152821 0.247386 0.455698 0.542872 492 6525 5312
N41 D500S30H76%L12%R12% 5000 t me step 0.55 0.156541 0.250281 0.415698 0.602073 5529 7293 5699
N41D500S150H50%L25%R25% 5000 t me step 0.1 0.153131 0.132789 0.148948 0.891513 1 2327 2423
N41D500S150H50%L25%R25% 5000 t me step 0.3 0.148791 0.245982 0.421425 0.58369 516 6358 5351
N41D500S150H50%L25%R25% 5000 t me step 0.55 0.155921 0.247123 0.402293 0.614285 5652 7152 5765
N41D500S150H76%L12%R12% 5000 t me step 0.1 0.154991 0.129713 0.145445 0.891836 4 2315 2419
N41D500S150H76%L12%R12% 5000 t me step 0.3 0.146621 0.252735 0.447167 0.565193 445 6485 5279
N41D500S150H76%L12%R12% 5000 t me step 0.55 0.154061 0.258279 0.441876 0.584505 5668 7266 5681
Table (B.4): Summary of results for a transient moment simulations for a 41 nodes network, where: D: transient
period, S: interval length used to calculate averages, H: headway percentages, L: turn left percentages, R: turn

right percentages
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Experiment

N17D200S30B1 H50%L25%R25%
N17D200S30B2H50%L25%R25%
N17D200S30B1 H50%L25%R25%
N17D200S30B2H50%L25%R25%
N17D200S30B1 H50%L25%R25%
N17D200S30B2H50%L25%R25%
N17D200S30B1 H76%L12%R12%
N17D200S30B2H76%L12%R12%
N17D200S30B1 H76%L12%R12%
N17D200S30B2H76%L12%R12%
N17D200S30B1 H76%L12%R12%
N17D200S30B2H76%L12%R12%
N17D200S150B1 H50%L25%R25%
N17D200S150B2H50%L25%R25%
N17D200S150B1 H50%L25%R25%
N17D200S150B2H50%L25%R25%
N17D200S150B1 H50%L25%R25%
N17D200S150B2H50%L25%R25%
N17D200S150B1 H76%L12%R12%
N17D200S150B2H76%L12%R12%
N17D200S150S1 H76%Lt 2%R12%
N17D200S150B2H76%L12%R12%
N17D200S150B1 H76%L12%R12%
N17D200S150B2H76%L12%R12%
N17D500S30B1 H50%L25%R25%
N17D500S30B2 H50%L25%R25%

Run Duration

5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step

Arrival Bate

\%
0.1

0.1

0.3

0.3
0.55

0.55
0.1

0.1
0.3
0.3
0.55
0.55
0.1
0.1
0.3
0.3
0.55
0.55
0.1

0l _
il
0.3
0.55
0.55

0.1
0.1

initial Density M ax Flow

0.147177
0.133
0.145161
0.135081
0.143145

0.152218
0.16129

0.131048
0.137097
0.145161
0.153226
0.140121
0.148185
0.142137
0.150202
0.140121
0.131048
0.144153
0.157258
0.143145
0.147177
0.139113
0.153226
0.15625
0.154234
0.143145
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0.224163
0.2120
0.236931
0.230511
0.238341
0.226313
0.217166

0.21553
0.244921
0.230073
0.251618
0.232449
0.236138
0.210436

0.23791
0.233809
0.247727
0.236659
0.216008
0.209734

0.2598
0.242613
0.258875

0.23615
0.227848
0.209774

Density of
max Flow
0.492272
0.4719
0.50286
0.467281
0.463133
0.508597
0.454462

0.335317
0.421416
0.444752
0.54804
0.476871
0.523876
0.553357
0.501119
0.443625
0.438452
0.389588
0.44391
0.330629
0.443933
0.468975
0.493992
0.502183
0.582783
0.409535

Velocity

A;-
0.455363

0.4493
0.471167
0.493303
0.514627

0.444976
0.477852

0.642765
0.581185
0.517306
0.459122
0.487445
0.450753
0.38029
0.474758
0.527042
0.565005
0.60746
0.486602
0.634349
wmmmm
0.517326
0.526072
0.470247
0.390966
0.512225

Queue outside

the network
3
102
2280
3046
7450
8790
2
2
1790
2812
7427
8642

2063
2827
7464
8772

19
1898
2832
7584
8473

Totalinput
Cars

2278
2868
5144
4143
5193
4279
2486

2201
5040
4274
5464
4268
2407
2437
4862
4119
5244
4191

2485
2401

5130
4298
5437
4252
2698
2314

Total Output
Cars
2202
2099
4551
3208
4584

3309
2297

1796
4404
3199
4774
3236
2310
1891
4294
3135
4622
3261

2316
1868

111S11

3161
4726
3266
2497
1832



N17D500S30B1 H50%L25%R25%
N17D500S30B2 H50%L25%R25%
N17D500S30B1 H50%L25%R25%
N17D500S30B2 H50%L25%R25%
N17D500S30B1 H76%L12%R12%
N17D500S30B2H76%L12%R12%
N17D500S30B1H76%L12%R12%
N17D500S30B2H76%L12%R12%
N17D500S30B1 H76%L12%R12%
N17D500S30B2H76%L12%R12%
N17D500S150B1 H50%L25%R25%
N17D500S150B2H50%L25%R25%
N17D500S150B1 H50%L25%R25%
N17D500S150B2H50%L25%R25%
N17D500S150B1 H50%L25%R25%
N17D500S150B2H50%L25%R25%
N17D500S150B1 H76%L12%R12%
N17D500S150B2H76%L12%R12%
N17D500S150B1 H76%L12%R12%
N17D500S150B2H76%L12%R12%
N17D500S150B1H76%L12%R 12%
N17D500S150B2H76%L12%R12%

Table (B.5):
period, S: interval
right percentages

5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
5000 t me step
50001me step
50001 me step
5000 t me step
5000 t me step
50001me step
50001me step
5000 t me step
5000 t me step
50001me step
5000 t me step
5000 t me step
50001me step
5000 t me step
5000 t me step
50001me step

0.3
0.3
0.55
0.55
0.1
0.1
0.3
0.3
0.55
0.55
0.1
01
0.3
0.3
0.55
0.55
01
0.1
0.3
0.3
0.55
0.55

0.149194
0.140121
0.140121
0.149194
0.150202
0.147177
0.149194
0.139113
0.144153
0.141129
0.148185
0.149194
0.140121
0.149194
0.146169
0.154234
0.140121
0.15625
0.136089
0.145161
0.139113
0.141129
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0.241441
0.231121
0.233647
0.225178
0.2208
0.228135
0.251889
0.228963
0.252824
0.22991
0.232802
0.224858
0.24286
0.229888
0.246749
0.239664
0.219682
0.215391
0.252152
0.233687
0.255734
0.239967

0.502963
0.406189
0.510158
0.564867
0.40343
0.393391
0.496906
0.451763
0.475676
0.592603
0.486852
0.405369
0.51085
0.484377
0.471898
0.491177
0.429647
0.367112
0.476765
0.536835
0.52874
0.51328

headway percentages, L:

0.480037
0.568998
0.457989
0.39864
0.547308
0.579921
0.506915
0.506821
0.531505
0.387966
0.478179
0.554698
0.475403
0.474605
0.522887
0.487938
0.511308
0.586718
0.52888
0.435306
0.483666
0.467516

Summary of results for a non-transient moment simulations for a 17 nodes network,
length used to calculate averages, H:

2236
2953

7447
8569

16
1964
2862
7431
8394

69
2388
3214
7537
8475

1

71
2030
2997
7568
8628

where:

D:
turn left percentages, R:

5055
4116
5370
4219
2271
2308
5031
4128
5370
4309
2378
2788
5035
4083
5216
4359
2499
2474
5008
4074
5424
4204

transient
turn

4466
3184
4702
3289
2115
1772
4388
3161

4723
3330
2287
2098
4416
3180
4601

3266
2289
1936
4381

3133
4749

3198.



Experiment

N41D200S30B1 H50%L25%R25%
N41 D200S30B2H50%L25%R25%
N41 D200S30B1 H50%L25%R25%
N41 D200S30B2H50%L25%R25%

N41D200S30B1 H50%L25%R25%
N41 D200S30B2H50%L25%R25%

N41D200S30B1 H76%L12%R12%
N41 D200S30B2H76%L12%R12%
N41D200S30B1 H76%L12%R12%
N41 D200S30B2H76%L12%R12%
N41D200S30B1 H76%L12%R12%
N41 D200S30B2H76%L12%R12%
N41D200S150B1 H50%L25%R25%
N41D200S150B2H50%L25%R25%
N41D200S150B1 H50%L25%R25%
N41 D200S150B2H50%L25%R25%
N41 D200S150B1 H50%L25%R25%
N41D200S150B2H50%L25%R25%
N41D200S150B1 H76%L12%R12%
N41D200S150B2H76%L12%R12%
N41D200S150B1 H76%L12%R12%
N41 D200S150B2H76%L12%R12%
N41D200S15081 H76%L12%R 12%
N41D200S150B2H76%L12%R12%
N41D500S30B1 H50%L25%R25%

Run Duration

5000 time step
5000 time step
5000 time step
5000 time step

5000 time step
5000 time step
5000 time step

5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step
5000 time step

Arrivai Rate

\%
0.1

0.1
0.3
0.3

0.55
0.55
0.1

0.1
0.3
0.3
0.55
0.55
0.1
0.1
0.3
0.3
0.55
0.55
0.1
0.1
0.3
0.3
0.55
0.55
0.1

Initlai Density Max Flow

0.148171
0.146311
0.147861
0.152821

0.156851
0.147861
0.144761

0.151271
0.150651
0.153131
0.146931
0.153131
0.147551
0.152201
0.149101
0.140422
0.141971
0.154991
0.144761
0.15902
0.147241
0.145691
0,151891
0.143521
0.153441
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0.217855
0.219951
0.222129
0.223269
0.233571
0.22648
0.217483
0.227134
0.237137
0.24677
0.24966
0.246243
0.214345
0.230547
0.231983
0.236279
0.242762
0.242762
0.224637
0.231568
0.247035
0.25273
0.254654
0.252916
0.21754

Density of
max Fk>w
0.32573
0.363491
0.316262
0.360969

0.359306
0.479256
0.334089

0.422467
0.350863
0.416134
0.431118
0.444347
0.338739
0.387583
0.449962
0.393681
0.449484
0.449484
0.345602
0.41157
0.400498
0.436416
0.416999
0.421461
0.403541

Vetocity

ai max Flow

0.668821
0.605108
0.702356
0.618526

0.650061
0.472567
0.650973

0.537638
0.6758
0.593004
0.5791
0.554168
0.632774
0.594834
0.515561
0.60018
0.540091
0.540091
0.649987
0.562645
0.616819
0.579105
0.610683
0.600093

0.648396

Queue iength

1018
1836

6400
7490

10
648
1946
6860
7560

12
997
1710
6573
7199
1
5
997
1784
lijEEi
7207
4

Total input
Cars

2667
2228
6044
5314

6433
5396
2481

2362
6368
5135
6950
5535
2375
2300
5897
5221
6382
5438
2335
2274
5925
5209
FILI!
5551
2192

To'.ai Output

Cars
2312
1581
4085
2989

4395
3065
2030

1490
4831
2887
4817
3119
2085
1611
3981
2894
4321
3151
1986
1509
3943
2887
4224
3112
1999



right percentages
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A1 DEG0GE00S HE0% D5 %R ] 5000 Hns Sep 0¥ G 145118 B 20BABR] G 316837 aaaeair] 12 DA 1647
N41D500S30B1 H50%L25%R25% | 5000 time step 03 0 146001 0 224838 0 357681 0 628598 1018 6193 4206
N41D500S30B2 H50%L25%R25% | 5000 time step 03 0 150651 0222188 0 437351 050803 2045 5257 2963
N41D500S30B1 H50%L25%R25% | 5000 time step 055 0148171 0 228898 041972 0 545359 6360 6387 4363
N41D500S30B2 H50%L25%R25% | 5000 time step 055 0 152511 0 232706 0 393686 0 591094 7403 5508 3174
N41D500S30B1H76%L12%R12% | 5000 time step 01 0 148791 0221385 0 341653 064798 4 2405 2022
N41D500S30B2H76%L12%R12% | 5000 time step 01 0 153441 0 224695 0 454287 0 49481 11 2608 1602
N41D500S30B1H76%L12%R12% | 5000 time step 03 0 143831 02378 0335209 0 709408 1041 5980 3978
N41D500S30B2H76%L12%R12% | 5000 time step 03 0 146311 0 240485 0407518 0590121 1822 5229 2918
N41D500S30B1H76%L12%R12% | 5000 time step 055 0 15096 0 247642 0 397962 0 622276 6511 6350 4343
N41D500S30B2H76%L12%R12% | 5000 time step 055 0 153131 0243118 0 424339 0572933 7704 5343 3042
N41D500S150B1H50%L25%R25% | 5000 time step 01 0 152821 0218188 0292447 0 746076 4 2330 2128
N41D500S150B2H50%L25%R25% | 5000 time step 01 0 146621 0221446 0 432387 0512148 10 2305 1448
N41D500S150B1H50%L25%R25% | 5000 time step 03 0 150031 0 235491 0 340413 0691779 955 6016 4099
N41D500S150B2H50%L25%R25% | 5000 time step 03 0 142901 0233617 0 387521 0 602849 1701 5280 2989
N41D500S150B1H50%L25%R25% | 5000 time step 055 0 154371 0 24067 0377373 063775 13170 6449 4450
N41D5005150B2H50%L25%R25% | 5000 time step 055 0 145071 0241727 0410919 0 588259 7009 5520 3110
N41D500S150B1H76%L12%R12% | 5000 time step 01 0 155921 0 226911 0 353205 0642433 5 2314 1961
N41D500S150B2H76%L12%R12% | 5000 time step 01 0 143831 0 232345 0 437421 053117 12 2391 1469
N41D500S150B1H76%L12%R12% | 5000 time step 03 0 143521 0248775 0 416261 0 597642 1064 5859 3876
N41D500S150B2H76%L12%R12% | 5000 time step .. 03 0 15902 0 250608 0 426361 .0.587783 1815 5171 2892
N41D500S150B1H76%L12%R12% | 5000 time step 055 0153131 0 25311 0 435938 0 580609 6351 6338 4340
N41D500S150B2H76%L12%R12% | 5000 time step 055 0 152511 0 25334 0418776 0 604953 7273 5440 3059

Table (6) Summary of results for a non-transient moment simulations for a 41 nodes network, where D transient

period, § interval length used to calculate averages, H headway percentages, L turn left percentages, R turn



Appendix C

Feeding Mechanism

For Poisson arrivals, mter-arrival time between two vehicles 1s randomly drawn

from the negative exponential distribution, 1 e

Loy = 8, ln(l-y), p>0, 0<r<l
U

where

t,,, =Inter-arrival time for next vehicle

t, =ter-arrval tume for previous vehicle

p = armvalrate

r = random number uniformly distributed between (0, 1]

As the random number generator 1s fundamental 1n stochastic simulation, we have

used the linear congruential random number generator, because of its cycle

length

We compute the 1th integer X, m the pseudorandom from X _, by the recursion
X, =(@X,_ +c) modm

where a = 16807, ¢ =0, and m = 2147483647, which 1s widely known as the

“multiplicative congruential” generator.
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Appendix D

Computational Performance

Table (D 1) shows the running times for simulating two different networks at two

arrival rates for two different simulation runs, 5000 and 7000 time steps

17 nodes network 41 nodes network
Run p=01 p=05 n=01 p=05
Duration CPU | Simulated | CPU | Simulated CPU | Smmulated | CPU | Simulated
time cars time cars time cars time cars
5000 39 2,635 41 12,696 49 2,309 50 11,350
7000 54 3,785 58 17,045 77 3,292 80 16,509
Table (D 1) the relation between the run duration and

the computational time, in Seconds, for two different

networks at two arrival rates

It can be seen from Table (D 1), that the computational time mamly depends on

the network size not the number of the simulated cars Also 1t can be seen from
the table that the complexity of the code 1s O(n®), bemng the increasing factors the

network size and the run duration Also there 1s a shight increase n the
computational time as we increase the arrival rate, Table (D 2) this increase 1s due

to the time required to update the queues outside the simulated network
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The hmitation in the run duration above 1s due to the formation of long queues

outside the network especially when a high arrival rate 1s used to feed the network

with cars
Arrival Rate | Network size | CPU, 5000 time steps | CPU, 7000 time steps Increasing Factor
17 39 54 138
p=01
41 49 77 157
17 41 58 141
n=05
41 50 80 160
Table (D 2) The table shows that the increasing factor in the

computational time, in Seconds, depends on both the network size

and the arrival rate

All computational performance measures described above 1s obtained on DEL PC

with 400 MHZ of speed and 64 MB of RAM
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Appendix E : Diskette

The hist of the diskette folders and files are presented 1n Table (E 1)

folder files Brief description
Short_evt net | modell h Header file, define model1 base class
nodel h Header file, define nodel class
segmenl h Header file, define segmen]1 derived class
modell cpp Contains the methods of the base class modell, which create
roads of the network
nodel cpp Contams the methods for the class nodel, which mmtialize

the network nodes and also update the network light cycles

segmenl cpp

Contams the methods for the derived class segmenl, which
Iink the roads within the network and also mitialize and
update the road segments

newnet cpp The man file, see flow-chart in sec(3 2)
nod17 dat Contamns nodes data for 17 nodes network
nod25 dat Contams nodes data for 25 nodes network
nod33 dat Contains nodes data for 33 nodes network
nod41 dat Contains nodes data for 41 nodes network
seg56 dat Contams segments data for 17 nodes network
Seg88 dat Contams segments data for 25 nodes network
Seg120 dat Contains segments data for 33 nodes network
Segl152 dat Contamns segments data for 41 nodes network
Long evt net Same as the above folder , but deals with long term events
Two_lan 2 lane_model Simulate traffic flow using two lanes

tlgvh

Header file contams the global variables

Stoch_model

Stoch_closed

Simulate traffic flow for mter-urban areas using closed
boundary conditions

Stoch_open Simulate traffic flow for mter-urban areas using open
boundary conditions
Space_time bcc Used to produce the space-time diagrams throughout the
thesis
Table (E 1)

199




