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Abstract
R ecently , traffic problem s have attracted considerable attention N um erical 
sim ulations, hydrodynam ics m od els, and queueing theory are a few  o f  the 
basic theoretical to o ls  used  to describe car traffic on h ighw ays  
C om putationally, C ellular A utom aton  m od els are sim p le  and flex ib le  and are 
in creasin gly  used in sim ulations o f  co m p lex  system s, provid ing considerable  
in sigh t on  traffic behaviour A  particular strength o f  these m od els is fast 
’’m in im al” m icroscop ic  sim ulation, w h ich  n everth eless can reproduce  
im portant m acroscop ic features

T his m eth o d olo gy  requires streets to be d ivided  into sites (ce lls), w ith  sites  
linked into road segm ents and form ing netw orks, punctuated by junctions, 
traffic signa ls and so on Car m ovem en ts are represented by “ju m p s”, w here  
each  jum p represents the current car speed

M uch p revious w ork  has concentrated on flo w  o f  cars under h ighw ay  
con d ition s, but le ss  effort has been concerned  w ith  urban netw orks and the 
constraints, w h ich  apply in this con text T he research reported here, u ses  
C ellular A utom aton m eth o d olo gy  to exam ine traffic patterns in urban and 
inter-urban areas A  three state determ inistic C ellular A utom ata M o d el is 
defined  for the dynam ic p rocess and netw orks o f  various s izes  are 
investigated , w ith  all n od es controlled  and d iverse traffic conditions  
considered  at each in tersection  B oth  transient m ovem en ts o f  cars through the 
netw ork and tem porary lo st to flo w , through off-street parking, are exam ined  
for im pact on  traffic param eters

A  stochastic  feed in g m echanism , in  w h ich  car arrivals fo llo w  a P o isson  
p rocess, has been  im plem ented  throughout the sim ulation  ’for different arrival 
rates L ane-changing rules for sim ulation o f  tw o-lan e traffic are also d iscu ssed  
and, finally , a Stochastic C ellular A utom ata M o d el for inter-urban areas is 
presented K ey features o f  traffic behaviour under the various netw ork  
conditions are analysed  and com parisons w ith  h ighw ay flo w  
S u ggestion s and future im provem ents on  m od el realism  are also given



Acknowledgements

I take this opportunity to thank m y advisors, Dr H eather R uskin  and Dr 

M ich eál O ’hEigeartaigh, for their invaluable ad v ice  and gu idance throughout 

m y research study Their constant support, encouragem ent and friendship  

m ade m y stay at D C U  an enjoyable

I w ould  lik e  to thank P rof M ich al R yan and the S ch o o l o f  Com puter  

A p p lication s in general for providing m e w ith  the opportunity and the  

n ecessary funding to undertake this research

M any thanks to R ory B oland , the director o f  the traffic section  in D ublin , and 

to all p eop le  in the traffic control room  for help ing m e to conduct m y survey  

I also thank P rof Duarte for helpful d iscu ssion s at an early stage and for 

pointing m e to som e im portant references

Thanks for M ostafa A bou_Shaban  for helping m e w ith  the co d e  used  to p lot 

the space-tim e diagram s

Finally , I w ish  to express m y heartfelt thanks to m y w ife , for her 

understanding and her constant support, and to m y parents for their affection  

and encouragem ent



Declaration

I hereby certify  that this m aterial, w h ich  I n ow  subm it for assessm en t on the 

program m e o f  study leading to the award o f  P h.D . is entirely m y ow n  w ork  

and has not been taken from  the w ork o f  others save and to the extent that such  

w ork has been  cited  and ack n ow led ged  w ith in  the text o f  m y work.

S igned  A  » D ate



Table of Contents

Part I “Traffic Simulation on a Single-lane’ 
Chapter 1 “Introduction”------------------------ -0

1 0 Introduction  ---------------------------------
1 1 Literature R ev iew -----------------------------------

1 1 1  M acroscop ic T raffic F lo w  M od els-
1 1 1 1  Car Following Theory—j---------------- ----------

1 1 1 2  P sy ch o lo g ica l-P h y sio lo g ica l Sp acin g M od els-
1 1 2  M acroscop ic  M o d e ls ........

1 1 2  1 C ontinuum  M o d els—
1 1 2  1 1  S im p le  C ontinuum  M  
1 1 2  1 2  M od els w ith  M om ent 

1 1 2  2 T w o  flu id  T heory.......
1 1 3  Cellular A utom ata M o d els—

O n e-d im ensional C ellular A utom ata M o d els---------------------26
T w o-d im en sion a l C ellular A utom ata M o d els------------------- 28

1 1 4  T h esis O u tline-—  -------------------  31

1 1 3  1 

1 1 3  2

od els-
um —

-1
-2
-2
-5

9
-11

-12

-14
-20
-2 3
-2 5

Chapter 2 “ Simple Cellular Automata Model for Urban Traffic Flow -33

2 0  Introduction----------------------------------------------------------------------------------------------------- 34
2 1 The C ellular A utom ata M od el------------------------------------------------------------------------ 35

2 11 M o d el Param eters------------------------------------------------------------------------------ 36
2 12 M o d el D yn am ic--------------------------------------------------------------------------------- 37

2 2 Sim ulation  and R esu lts------------------------------------------------------------------------------------ 39
2 2 1 T he M o d el w ith  Periodic B oundary C onditions-------------------------------- 39
2 2 2 T he M o d el w ith  O pen B oundary C on dition s--------------------- ------ ---------- 43

2 3 R oad  Traffic S im ulations--------------------------------------------------------------------------------46
2 3 1 R oad D escrip tion----------------------------------------------------- ----------------------------46



2 3 2 S im ulation  and R esu lts--------------------------------- —------------------------------------48
2 4  Sum m ary and C onclud ing C om m ents-------------   54

Part II “Network Traffic Flow”
Chapter 3 “Traffic System and Transient Movement Simulation”-----------------55

3 0  Introduction--------------------------------------------------------------------   56
3 1 N etw ork  description---------------------------------------------------------------------------------------- 56

3 1 1 N o d es------------------------------------------------------------------------------   56
3 1 2 L in k s - .............................— -........... — - ------- 59
3 1 3  S egm en ts------------------------------------------------------ ---------------- --------------------- 59
3 1 4  N etw ork  geom etry-------------------------------------------------------------   60
3 1 5  T raffic C ontrol and T raffic con d ition s at Junctions-----------------------------60
3 1 6  T raffic Param eters— ----------- 62

3 2 D escrip tion  o f  S im ulation  E xperim ents----------------------------------------------------------- 63
3 3 S im ulation  and E xperim ents---------------------------------------------------------------------------- 66

3 3 1 T he E ffect o f  A rrival R ate on  N etw ork  Perform ance------------------  -66
3 3 1 1  The ex isten ce  o f  the “Jamming threshold??------------------------------------- 66
3 3 1 2  A rrival R ate v s  N etw ork  S ize  -----------    69

3 3 2 V arying the T raffic C on dition s-------------------- --------   73
3 3 3 T im e-m terval B ased  Sim ulation---------------------------------------------------------- 77
3 3 4  T he In fluen ce o f  the transient Period on  the N etw ork  Perform ance—82

3 4  Sum m ary and C onclud ing C om m en ts--------------------------------------------------------------85

Chapter 4 “Network Performance under Various Traffic Events”....................—87

4  0 Introduction--------------------------------------   —88
4  1 L o ss to F lo w  S im ulations.....................   —88

4  1 1  S im ulation  w ith  L oss to R o w  at F ixed  rate------------------------------------------88
4  1 2  S im ulation  w ith  L o ss to R o w  at Stochastic R ate----------------------------------94

4  2 T raffic S ystem  under Short and L ong term  E ven ts------------------------------------- 99
4  2 1 M od ellin g  Short-term  E ven ts---------------  99



4  2 2 M od ellin g  L ong-term  E ven ts--------------------------   104
r .

4  3 Sum m ary and C oncluding C om m ents ---------   109

Part HI “Two-lane Traffic Simulation”
Chapter 5 “ Simple Lane-changing Rules fo r  Urban Traffic using Cellular

Automata” -----------      111

5 0  Introduction------------------------------------ ------- --------------------------------------------------— 112
5 1 M otivation s for lane ch an gin g-----------------------------------------------------------------------113
5 2 T he T w o-lan e  M o d el--------------------------------------------------------------------------------------114
5 3 S im ulation  and R esu lts----------------------------------------------------------------------------------- 119

5 3 1 L ane-usage B eh aviou r--------------------------------------   119
5 3 2 F lo w  B eh aviou r-------------------------------------------------------------------------------- 126
5 3 3 L ane-changing B eh aviou r----------------------------------------------------------------- 130

5 4  M o d el V alidation ------------------------------------------------------------------------------------------- 134

Part IV “ Inter-urban Traffic Simulations”
Chapter 6 “Stochastic Cellular Automata Model fo r  Inter-urban Traffic”— 137

6 0 Introduction- -------------------     138
6 1 The M o d el- -----------------------      -139

6 1 1  D efin ition  o f  the M o d el --------------   139
6 1 2  Im plem entation  o f  the M o d el- ------------------------------------ ---------— 141

6 2 S im ulation  and R esu lts-----------------------  - ------  143
6 2 1 M o d el D y n am ics---------------------   144
6 2 2 Fundam ental D iagram s----------------------------------------------------------------------148
6 2 3 T he e ffec t o f  varying the m od el Param eters-------------------------------------- 150

6 3 O pen S ystem s-------------------------------------------------------------------------------------------------155
6 3 1 B o ttlen eck  S ituations------------------------------------------     157
6 3 2 S elf-organisation  o f  the M axim um  T hroughput ------ 157

6 4  Sum m ary and C onclud ing com m en ts ......................................... - .158



Chapter 7  “  Summary and Conclusion” — ------  160

7 0  R esearch Contribution---------------------------   161

7 1 Future W ork-------------------------------------------------------------------------------------------------- 166

7 2 C oncluding R em arks------------------------------------------------------------------------------------- 167

B ib lio g r a p h y -------------------------------------------------------------------  168

A p p e n d ic e s --------------    179

A  Statistical A n a lysis----------------------------------------------------------------------  179

A  1 T he R elationsh ip  b etw een  the netw ork size  and the input param eters— 180

A l l  N etw ork  size  v s  traffic con d ition s....................  180

A  1 2 N etw ork  size  v s  length  o f  transient period -----------------------------------182

A  1 3 N etw ork  size  v s  interval length  for calcu lating the output

Param eters-----------------------------------------------------------------------------------182

A  1 4  N etw ork  size  v s the num ber o f  the N etw ork -b lock ed  ex its-183

A  1 5 N etw ork  size  v s  arrival rate---------------------------------------   184

A  2 S tatistical an alysis u sin g  three-input factor----------------------------------------------- 185

A  2 1 experim ents using a 17 node netw ork------------------------------  185

A  2 2 experim ents using a 41 node netw ork---------------------------  - ......... 186

B  Sum m ary o f  the sim ulation  experim ents ---------- 188

C F eed in g M echan ism -------------- ---------- —---------------- 196

D  C om putational Perform ance -------— ------------   197

E D isk ette--------------------------------- — ----------------  199



CHAPTER 1
F IG U R E  (1 1) Perceptual thresholds in car-fo llow in g  behaviour 10
F IG U R E  ( 1 2 )  V eh ic les  p assed  by tw o  m ovin g observers 14
F IG U R E  (1 3) Fundam ental d iagram  obtained for real data 18
F IG U R E  ( 1 4 )  T he u se  o f  the flow -d en sity  curve to predict the loca l

con d ition s near a shock  w a ve 19
F IG U R E  ( 1 5 )  Schem atic illustration o f  the C A  m od el o f  traffic f lo w  w ith

tw o -lev e l crossin gs 31
CHAPTER 2
F IG U R E  (2  1) S pace-tim e diagram s o f  the C A  m od el d efin ed  on  100 site

lattice w ith  c lo sed  boundary con d ition s(c  b c) 38
F IG U R E  (2  2 a) F low -d en sity  relation  for the S im ple M o d e l w ith  c b c  41
F IG U R E  (2  2 b) V eloc ity -d en sity  relation  for the S im p le M o d el w ith  c b c 41
F IG U R E  (2 3) S pace-tim e diagram s, w here in (a) p =  0  3, (b) p =  0  8 42
F IG U R E  (2  4) Fundam ental d iagram s o f  the S im ple M odel, w ith  open

boundary con d ition s, w ith  system  o f  s ize  60  ce lls  4 4
F IG U R E (2 5) Fundam ental d iagram s o f  the S im ple M o d e l w ith  open

boundary con d ition s, w ith  system  o f  s iz e  80  ce lls  45
F IG U R E (2  6) D ay-on e o f  our sim ulation  u sin g road o f  s ize  77  ce lls  47
F IG U R E  (2  7 ) D ay-tw o  o f  our sim ulation usin g road o f  s ize  77  ce lls  49
F IG U R E  (2  8) D ay-three o f  our sim ulation  usin g road o f  s ize  144 ce lls  50
F IG U R E (2 9) S pace-tim e diagram s, w here in (a) the road o f  s ize  77  ce lls

and in (b) the road o f  s ize  144  ce lls  52
CHAPTER 3
F IG U R E  (3 1) Illustration o f  the n od e object 58
F IG U R E  (3 2) Illustration o f  the in tersection  types 58
F IG U R E  (3 3 ) R epresentation o f  a section  o f  the real netw ork  in  D u b lin  by'5

the p roposed  netw ork geom etry  61
F IG U R E  (3 .4 ). F low -chart o f  the sim ulation  co d e  65
F IG U R E  (3 5) N um ber o f  cars v s  arrival rate for 17 n od es netw ork 67

List of Figures



F IG U R E  (3 6) N um ber o f  w aiting cars v s  arrival rate for four netw orks 67 
F IG U R E  (3 7) W aiting cars v s arrival rate for various traffic conditions 68  
F IG U R E  (3 8) Transported cars v s  arrival rate for d ifferent netw orks 68  
F IG U R E  (3 9 ) F lo w -d en sity  relation  for a 1 7 ,4 1  n od e netw orks using the

the turning p ercentages 25% , 50% , 25%  71
F IG U R E (3 10) V elocity -d en sity  relation  for a 17, 41 n od e netw orks using

the turning p ercentages 25% , 50% , 25%  and p =  0 55 72
F IG U R E (3 11) F low -d en sity  relation  usin g tw o different traffic con d ition s 76  
F IG U R E (3 12) F low -d en sity  relation for a netw ork o f  s ize  25  n od es using

p =  0  3 and using tw o  different interval lengths 80
F IG U R E  (3 13) F lo w -d en sity  relation  for a 1 7 ,4 1  n od e netw orks using tw o  

different transient periods, 2 0 0  and 50 0  tim e steps 84
CHAPTER 4

F IG U R E  (4  1) N um ber o f  cars v s  arrival rate for 17 and 41 node netw orks 89  
FIG U R E  (4  2) N um ber o f  w aiting cars v s  arrival rate for tw o different

N etw ork s 90
FIG U R E (4  3) Fundam ental diagram s for non-transient m ovem en t sim ulation  

for tw o different netw orks w ith  com parison  to transient 
m ovem en t sim ulation  92

FIG U R E (4  4) N um ber o f  w aiting cars v s  arrival rate for tw o different
netw orks using different va lues for p i  94

F IG U R E (4  5) S ystem  d en sity  v s tim e steps for 17, 41 node netw orks,
p =  0  15 and p i  =  0  1, 0  3 96

FIG U R E (4  6) S ystem  d en sity  v s  tim e steps for 17, 41 n od e netw orks,
p = 0  50 , p i  = 0  1, 0  3 98

F IG U R E  (4  7 ) T he e ffec t o f  introducing short-term  even ts on the system
density  for tw o different netw orks, 17 and 41 n od es 101 

FIG U R E  (4  8) T he e ffec t o f  increasing short-term  even ts on  the system
d ensity  for a 17 n od es netw ork 102

FIG U R E  (4  9) Fundam ental diagram s for the extrem e ca ses  obtained in
m od ellin g  lon g-term  even ts .. 105



F IG U R E  (4  10 a) Fundam ental diagram  obtained for the case  o f  h ighest
value o f  q  107

F IG U R E  (4  10 b) Fundam ental d iagram  for observed  road traffic 107
CHAPTER 5

F IG U R E  (5 1) Illustration o f  con d ition s required for lane-changing 115
FIG U R E (5 2) F low -chart o f  the lane-changing m ech an ism  118
F IG U R E  (5 3) L ane-usage frequency v s  traffic d en sity  for different va lues

o f  P _L ob s 120
F IG U R E  (5 4 ) L eft lane u sage v s  traffic d en sity  for d ifferent va lu es o f

P _L ob s and P _chg = 0  4 , P _ob s = 0 3  123
FIG U R E  (5 5) L eft lane u sage v s traffic d en sity  for d ifferent va lu es o f

P _L ob s and P _ch g =  0 4 , P _obs =  0 4  123
F IG U R E  (5 6) F lo w  v s  d en sity  for both sin gle  and tw o-lan e M o d els  127 
F IG U R E  (5 7 ) T he relation betw een  the left-lan e f lo w  and the n gh t-lan e

flo w  for tw o  different sim ulations 128
F IG U R E  (5  8) T he e ffec t o f  varying P _o b s on  the f lo w  on  both  lanes 129
FIG U R E (5 9) T he e ffect o f  varying P _ob s on  the flo w -d en sity  relation  129
FIG U R E (5 10) lane-changing frequency v s  traffic d en sity  for d ifferent

va lu es o f  P _L ob s 4 131
FIG U R E (5 11) C om parison b etw een  lane-changing frequency to the

left lane and to the right lane 132
FIG U R E  (5 12) the e ffec t o f  lane-changing probability  on  the frequency

o f  lane ch an ges 133
F IG U R E  (5 13) lan e-u sage v s  traffic d en sity  for our em pirical data 135 
F IG U R E (5 14) L ane-usage frequency v s  traffic d ensity , w here

P _ob s = o  3, P _L obs =  0  5 , 0 5, and P _ch g =  0 4  135
CHAPTER 6

F IG U R E  (6 1) T he tim e-ev o lu tio n  o f  the A utom aton  using the S C A M  144  
F IG U R E  (6 2) S pace-tim e diagram s for SC A M , w here L  =  2 0 0 , vmax =3 146  
F IG U R E  (6 .3 ). T ypical start-stop w aves obtained at higher d e n s ity (0 .5 ) ... .1 4 7



FIG U R E (6 4 ) Fundam ental diagram s o f  the S C A M  u sin g  short-term
and long-term  averages 149

F IG U R E  (6  5) F lo w  v s  d en sity  relation  o f  the S C A M , w h ich  obtained
by varying the m od el m axim um  v e lo c ity  150

F IG U R E (6  6) V e lo c ity  v s  d en sity  relation o f  the S C A M , w h ich  obtained
by varying the m od el m axim um  v e lo c ity  151

F IG U R E  (6  7 ) T he e ffect o f  varying P _ac on  the flo w -d en sity  relation  151
F IG U R E  (6 8) T he e ffect o f  varying P_rd on the flow -d en sity  relation  152
F IG U R E  (6  9) The e ffect o f  varying P _inc on  the flow -d en sity  relation 153
F IG U R E  (6 10) Fundam ental d iagram  o f  the S C A M  w ith  open  boundary

con d ition s usin g different arrival rates, v max = 3  156
F IG U R E  (6  11) S pace-tim e p lo t o f  the ou tflow  from  a traffic jam  158
APPENDICES

F IG U R E  (A  1) T he interaction betw een  the netw ork  size and the traffic
conditions at lo w  and high arrival rates 180

F IG U R E  (A  2) T he interaction betw een  the netw ork  size  and the transient
period at lo w  and h igh  arrival rates 182



List of Tables
T A B L E  (2  1) T he jam m ed tim e range, in  tim e steps, for d ifferent road size

and light cy c le s  51
T A B L E  (3 1) T he in flu en ce o f  varying the arrival rate on  the m axim um  flo w  

and its density , cars transported, and the queue length  69  
T A B L E  (3 2) T he in flu en ce o f  varying traffic con d ition s on the m axim um

flo w  and its density , cars transported, and the queue length 75  
T A B L E  (3 3) Sam e as T A B L E  (3 2), but the arrival rate has increased

fro m p  =  0  3 to p = 0 55 75
T A B L E  (3 4) The in flu en ce o f  varying the interval len gth  on  the sim ulation  

outputs Sam ple o f  the sim ulation  outputs for 6 0 0  tim e steps for 
a netw ork o f  s ize  25 n od es at lo w  p = 0 1 78

T A B L E  (3 5) Sam e as T A B L E  (3 4), but for a larger netw ork  (41 nodes) 78
T A B L E  (3 6) T he in flu en ce o f  varying the interval length  on  the sim ulation

outputs Sam ple o f  the sim ulation  outputs for 6 0 0  tim e steps for  
a netw ork o f  s ize  25 n od es at p =  0 3 81

T A B L E  (3 7 ) Sam e as T A B L E  (3 6), but for a larger n etw ork  (41 nodes) 81
T A B L E  (3 8) The in flu en ce o f  changing the transient period on  the m axim um  

f lo w  and its d en sity  u sin g  d ifferent va lu es o f  p for tw o different 
netw orks, w here the turning p ercen tages are 25% , 50% , 25%  82  

T A B L E  (3 9) Sam e as T A B L E  (3 8), but the turning percentages are 12%,
76% , 12% 83

T A B L E  (4  1) Com parison betw een  the h igh est va lu es and the lo w est values  
o f  the m axim um  flo w  obtained for tw o different netw orks, 
w here som e o f  the netw ork ex its w ere b locked  108

T A B L E  (5 1) T he in flu en ce o f  changing the lane-changing param eters on  the 
lan e-u sage inversion  p oin ts using P _ch g =  0  4 , and different 
va lu es o f  the other tw o  param eters 121

T A B L E  (5 2). Sam e as T A B L E  (5 1), but w ith  P _ch g  =  0 5  125
T A B L E  (6  1). T he relation  b etw een  the v e lo c ity  and its safe  d istance .138



T A B L E  (6  2) 

T A B L E  (A  1)

T A B L E  (A  2) 

T A B L E  (A  3)

T A B L E  (A  4)

T he in flu en ce o f  varying the m od el param eters on  the 
m axim um  v e lo c ity  and the critical d en sity  154
Statistical analysis for the relationship  b etw een  the netw ork size  
and traffic con d ition s, transient period, interval length, 
and the num ber o f  netw ork-blocked  ex its  181
Statistical analysis for the relationship  b etw een  the netw ork size  
and arrival rate 184

•s

Statistical analysis for the relationship  b etw een  traffic 
con d ition s, transient period, and interval length  for a 17 n od es  
netw ork 185
Statistical analysis for the relationship b etw een  traffic  
conditions, transient period, and interval length  for a 41 nodes  
netw ork 187



Chapter 1 

“Introduction”

o



1.0 Introduction
T he m od ellin g  o f  traffic f lo w  has never been  an easy  task in v iew  o f  the high  

com p lex ity  o f  soc ia l netw orks U n lik e p h ysica l netw orks, there are no 

underlying dynam ics in  traffic but rather dynam ical con seq u en ces that appear 

as the result o f  the interaction o f  various veh icle-driver units, w ith  one  

another, w ith  the road and w ith  control netw orks

External param eters such as w eather con d ition s, d ifferent road conditions, 

different m otivations for the drivers have a great im pact on  traffic

perform ance T h ese external param eters are changeab le from  one location  to 

another, and ev en  for an ind iv idual stretch o f  the road these con d ition s vary  

over tim e

The in itial d evelop m en t o f  traffic m od els w as started in the 1950s in order to 

study the theoretical description  o f  traffic f lo w  T h ese m od els are based on  a 

set o f  m athem atical equations or on an an a logy  to  other p h ysica l system s  

Traffic f lo w  m od els, w hich  have been  d evelop ed  recently, m ay be c la ssified  

into tw o c la sses

•  M o d els  w h ich  attem pt to exp lain  traffic phenom ena on  the basis o f  the 

behaviour o f  the individual elem en ts, (sin g le  v eh ic les), are called  

M icroscop ic  M od els In m icroscop ic  m od els each  v eh ic le  in the road  

netw ork m ay be described by its p osition , its actual v e lo c ity , its desired  

v e lo c ity , its origin-destination  route, its tend en cy to overtake other 

v eh ic le s  and other characteristics o f  the driver's behaviour and the veh ic le

•  In contrast, w here traffic f lo w  ph enom en a are described  through

1



param eters, w hich  characterise the aggregate traffic properties, the  

resu lting m od els are ca lled  M acroscop ic  m od els

1.1 Literature Review
1.1.1 Microscopic Traffic Flow Models
T h ese m od els are based on a m echanism , w h ich  d escribes the p rocess o f  one  

car fo llo w in g  the other M icroscop ic m od els are also k n ow n  as “ H ead w ay  

M o d els” b ecau se they relate the h eadw ay b etw een  tw o  cars to the speed  

M o d els o f  this kind a llo w  for the characteristics and behaviour o f  individual 

cars to b e d istinct T h ey  are w e ll su ited  for sim ulation  stud ies in  w h ich  

stochastic behaviour can be represented by using probabilistic techniques  

In the transportation fie ld  this approach to m od ellin g  has been applied to 

q ueueing and gap acceptance p rocess (B erilon , 1988 , 19 91 ), car fo llo w in g  and 

lane changing m od els (G ipps, 1981 , 1986) and m od els o f  travel, route and 

departure tim e (M acket, 1990)

M icroscop ic  m od els con sist b asica lly  o f  tw o  m ain com p onen ts

a) A n  accurate description  o f  the road netw ork geom etry, including  

traffic fac ilities  such as traffic ligh ts, traffic d etectors, variable 

m essag e  sign  panels, etc

b) A  very  detailed  m od el o f  traffic behaviour, w h ich  reproduces the 

d yn am ics o f  each  ind iv idual car, d istin gu ish in g b etw een  d ifferent 

types o f  cars, w ith  the p ossib ility  o f  taking into account 

behavioural aspects o f  v eh ic le s  drivers
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M icroscop ic  m od els are c lo se  to reality in  that they reproduce the traffic  

system s w e ll T h ey  open  up a w id e  range o f  traffic scenarios in w h ich  p recise  

description  o f  traffic control and traffic m anagem ent sch em es can  b e  exp lic itly  

included B efo re  w e  d iscu ss m icroscop ic  m od els in d eta il on e m ight ask for 

the reasons behind m icroscop ic  sim u lation s9 T o answ er this qu estion  w e  need  

to k n ow  their advantages and the d isadvantages ■)
Microscopic advantages
Firstly, as a great m any param eters can be used to describe the individual 

features o f  driver behaviour it is  easy  to investigate  very  subtle changes that 

m ay be induced through, for exam ple, ch an ges in  the driver education  

S econ d ly , the sim ulation  outputs are capable o f  describ ing the m otion  o f  an 

in d iv idual car w hich , in turn, a llow  us to study and interpret certain asp ects o f  

the traffic dynam ics  

Microscopic disadvantages
A gainst these advantages o f  m icroscop ic  sim ulations on e should  consider the  

effort in m od el sp ecification , data requirem ents, statistical analysis and 

com putational requirem ents (tim e and m em ory)

B rackstone and M cD on a ld (1 99 5) have m entioned  other im portant factors  

w hich  m ay lim it the u se o f  m icroscop ic  sim ulations in the inter-urban area In 

this case , cars have p len ty  o f  opportunity to interact w ith each  other, w hich  

g iv es  the ch an ce for a sh ock  w a ve  to form  and propagate i f  the f lo w  is  h igh  

enough, w h ich  in turn lead s to f lo w  breakdow n
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T he first factor  is  the lack o f appropriate data, w hich  can be dem onstrated as 

fo llo w s , the va lid ity  o f  any m icroscop ic  sim ulation  m od el has to be 

m aintained at tw o lev els

1 A  m acroscop ic leve l,(va lid a tion ), to ensure the general perform ance o f

the m od el g iv e s  a g o o d  approxim ations to the observed  traffic 

n A  m icroscop ic  level,(calib ration), w ith  respect to interaction b etw een

veh ic le s

T he m acroscop ic data can be obtained by recording the traffic param eters, 

f lo w  and average ve loc ity , at regular sp ecific  tim e intervals In contrast, 

m icroscop ic  data is  not easy  to obtain and in vestigate  as m ost o f  the 

param eters required relate to “ the leader” car and h en ce  cannot be sam pled  

su ffic ien tly  at regular tim e intervals by a m ethod w h ich  u ses on ly  one set point 

for observations

T he second factor is  the lack o f knowledge o f  the sen sitiv ity  o f  the m odels  

S in ce m icroscop ic  m od els are evaluated  according to their ab ility  to reproduce  

traffic jam s and the f lo w  d en sity  relations, the fo llo w in g  question  arises 

Can w e  find a “perfect set o f  param eters” to obtain the “best fit” data using  

d ifferent com binations o f  ch an ges in param eters9

T he reasons behind our inability  to find the “p erfect set o f  param eters” are

1 a lack o f  appropriate data

2 inability  to optim ise a system  w ith  large num ber o f  d egrees o f  

freed om  per car

For exam ple, it is not p ossib le  to d efine h ow  ch an ges in one  

param eter w ill affect the system  perform ance both m acroscop ica lly

4



and m icroscop ica lly , fo llo w in g  interactions betw een  a large  

num ber o f  cars over a long period o f  tim e  

T he stability o f the traffic model is our third factor I f  w e  assum e that the other 

problem s are so lved , there is still this further problem  nam ely, the variability  

o f  data due to  different traffic patterns For exam ple, i f  w e  m easure the flow -  

d en sity  relation  for a certain num ber o f  days, w e  find different breakdow n  

p oints o f  the flow , d esp ite the fact that all the m easurem ents w ere done under 

the sam e con d ition s T his is  due to d ifferent configurations o f  the traffic  

stream  and also to different even ts occurring and th ese  w ill have a lm ost 

unpredictable chain  reactions, w ithin  the traffic stream, that w ill cau se the 

speed  o f  su ccess iv e  cars to vary in  a d iffering order in both space and tim e

l . l . l . l  Car following theory
T he p rocess in w h ich  on e car in  a stream  o f  traffic reacts to the behaviour o f  

the preceding car is ca lled  “ca r  following theory” and it is  based on  a cy c le  o f  

stim ulus and resp on se

“Car following models” are used  to d escribe the behaviour o f  the dnver-car  

system  in a stream  o f  interacting particles,(the cars), and to provide the basic  

com p onen ts o f  m icroscop ic traffic sim ulation  m od els C ar-fo llow in g  m od els  

(G azis, 1974 , G abord, 1991) con sist o f  a d ifferential d ifferen ce equation, 

w hich  is  used  to m od el continuous-tim e system s w ith  inputs and outputs, 

w hich  produces the acceleration at tim e instant (t+T) from

♦ car speed

♦ T he relative d istance, speed  o f  the car ahead
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A t tim e instant t, the general form  o f  the car fo llo w in g  m od els  can be 

w ritten as

response (t+T) = sensitivity * stimulus (t)
T he nature o f  the resp on se is acceleration  or deceleration  o f  the fo llo w in g  car, 

and the stim ulus is the d ifference in v e lo c ity  b etw een  the lead car and the 

fo llow er

T he m ost com m on m od el w as introduced by G azis et al (196 1)

,  ™  Av(0 
aA,+T) = “  (* )'(» ) ( 1 «

w here

A v (i)  =  vn_x( t ) -  vn(t)
Ax(t) = x n_y(jt)~ x n(t)

H ere the reaction  tim e T  tries to m od el the d elay  b etw een  stim ulus and

reaction  T he param eters a ,  m  and 1 m ust be evaluated  from  observations and

Av(t), Ax(t) are the changes in  both the speed  and the space

S im p le “car-following models” resem b les a feedb ack  control p rocess in  w h ich

oscilla tion s m ay occur T his leads to various k inds o f  instab ilities in the traffic

f lo w , w h ich  in  turn can lead to co llis ion s

There are tw o  typ es o f  instability

1 L o ca l instability , w h ich  can be observed  in situations in  w hich  

disturbance, (e  g a change in  a d istan ce-h eadw ay resu lting from  the 

change in speed  o f  the lead ing car), d oes not d ie out but rather 

increases w ith  tim e
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ii A sym p totic  instab ility , d efin ed  as the situation in w h ich  a disturbance  

grow s in m agnitude as it propagates from  car to car 

In contrast, stab ility o f  the traffic f lo w  m od el m eans that changes in  the 

v e lo c ity  by the lead  car o f  a traffic stream  w ill not be am plified  b y  su ccess iv e  

cars in the stream  (until a co llis io n  occurs) A lso  there are tw o types o f  

stability

1 L o ca l stability, w h ich  con siders the resp on se o f  a car to the

change in m otion  o f  the car im m ed iately  ahead  

u A sym p totic  stability , w h ich  deals w ith  the propagation o f  a

fluctuation  through a p latoon  o f  cars 

R ecen tly  (G ipps, 1981 , 1986) proposed  a n ew  car-fo llow in g  m od el, w h ich  w as  

d esigned  to p o ssess  the fo llo w in g  features

i T he param eters in  the m odel, a ,  m , and 1 should  correspond to 

ob v iou s characteristics o f  drivers and cars , 

n T he m od el should  b e w e ll behaved w h en  the interval b etw een  

su ccess iv e  reca lcu lations o f  speed  and p ositio n  is the sam e as 

the reaction  tim e

T his m od el is based on  the assum ption  that the driver o f  the fo llo w in g  car 

se lects  lim its to his desired braking and acceleration  rates For acceleration

v n<t+T) Z v „ ( 0  +  2 5 a n T 1 _v„(0 *
_1

f  v„(0^2 0025 + - ^
V K i }

( 12)- K
w here

vn (t + T ) is  the m axim um  speed to w h ich  car n can accelerate during the

tim e m terval(t, t+T)



Vn is  the desired speed for car n and an is the m axim um

acceleration for car n
For braking

v,(r+T) <b„ r+(i>„;rJ -J,(2u„_1(i)-v , -*„«)] -v ,«)r-vri!w /s))’
( 13)

w here

vn (t + T) is  the m axim um  speed for a car n w ith  resp ect to car n -1

bn is  the m ost severe braking that the driver o f  car n w ish es  to

undertake,(bn < 0)

sn is  the e ffec tiv e  s ize  o f  car n ,(i e , the p h ysica l length  p lus a

m argin into w hich  the fo llo w in g  car is not w illin g  to intrude), 

even  at rest

B is  the estim ate o f  bn_{ used  by the driver o f  car n

I f  it is assum ed  that the driver travels as fast as safety and the lim itation  o f  the

car perm it, the m ean speed is  g iven  by com bining th ese  equations, as fo llo w s

vn (t + T)= m in(acceleration , braking) (14)
to

T he m od el has been  used  to sim ulate vehicular traffic in m ulti-lane arterial 

roads w ith  sp ecia l attention d evoted  to the structure o f  the lane changing  

d ecisio n s

M ore recen tly  (B ando et al, 1994, 1995) the fo lio w m g  equation  has been  used  

for calcu lating the acceleration

a ( t )  = y[v ( gap(t)) -  v(i)] (1 5)



W here V is  the desired v e lo c ity  function , w hich  has approxim ately a linear 

relationship  w ith  gap and also  depends on  som e other variables such as road  

conditions

1.1.1.2 Psychological-Physiological Spacing models
Car fo llo w in g  equations assu m e that the driver o f  the fo llo w in g  car reacts, to 

arbitrary sm all ch an ges in the relative speed, even  at a very  large d ifferen ces  

in d istan ces to the front car T herefore, car fo llo w in g  equations assum e that 

there is no resp on se as so o n  as speed d ifferen ces disappear, w hich  is  not very  

realistic

A  sign ifican t new  approach w as d evelop ed  by W ied m an n (1974) based on  

k n ow led ge  about human perception  and reaction behaviour and w h ich  used  

different perceptual thresholds O nly w h en  these thresholds are reached w ill 

the driver o f  the fo llo w in g  car be able to p erceive the change in the apparent 

size  o f  the leading car and, subsequently, be able to  react to the ch an ges o f  

acceleration  or deceleration

Such thresholds are presented as parabolas in the relative d istance v s relative  

speed relation in F ig (1 1) It can also be seen  from  this p icture h ow  car 

fo llo w in g  p roceed s A  veh ic le  w ith  speed  v (n + l) ,  w hich  is  larger than the 

speed v(n ) o f  the preceding v eh ic le  w ill catch up w ith  constant relative speed  

Av U p o n  reaching the threshold, the driver reacts by reducing his speed O ne  

such  exam p le o f  relative m otion  w ith  constant deceleration  appears as a 

parabola T he m in im um  o f  the parabola lie s  on  the A x-axis T he driver tries to  

d ecelerate so as to reach a point at w hich  Av =  0  H e is not able to do this



accurately because, firstly, he is not able to perceive sm all speed  d ifferen ces  

and, secon d ly , he is  not able to control h is speed  su ffic ien tly  w e ll 

T he result is that the spacing w ill  again  increase W hen  the driver in itia lly  

reaches the op p osite  threshold he accelerates and tries again to ach ieve the 

desired spacing (indicating in F ig  (1 1) by the upper part o f  the loop )

If  one assum es that the relationship o f  the perceptual thresholds for spacing  

are the sam e for both p ositiv e  and n egative changes in relative speed , then the 

resulting spacing behaviour resem b les a sym m etrical p endulum  about its 

equilibrium  point

Ax

1 perceptual threshold
Fig(l 1) Perceptual thresholds in car-following behaviour, 

Source Wiedemann (1974)
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1.1.2 Macroscopic Models
M acroscop ic  traffic f lo w  m od els (L ightill and W hitham , 1955 , G azis, 1974)  

treat the traffic system  as a con tin u ou s flu id  T h ey  are concerned  on ly  w ith  the 

behaviour o f  groups o f  cars, ignoring the behaviour o f  the individual 

transportation units

B efore  w e  c la ss ify  m acroscop ic m od els, w e  m ention som e o f  their advantages  

and d isadvantages  

M acroscop ic advantages

i T h ey are u sefu l in  studying traffic behaviour under h eavy traffic

conditions

u D u e to the use o f  the aggregate traffic variables, f lo w , density, and

m ean speed , the com putational requirem ents are m uch le ss  than w ith  

m icroscop ic  variables, a llow in g real tim e sim ulation  o f  traffic f lo w  in 

large netw orks  

M acroscop ic w eak n esses

i D o  not incorporate driver, car, and roadw ay param eters in an exp lic it

w ay

u M acroscop ic  m od els are not able to provide inform ation about fuel

consum ption  or route ch o ice  for ind iv idual cars and som etim es sh ow  

p oor results in the even t o f  m icroscop ic phenom ena occurring e  g like  

queueing at traffic ligh t, on-ram ps, and others 

In the next section  w e  c la ss ify  m acroscop ic m od els, g iv in g  a b rief description  

o f  each

li



1.1.2.1 Continuum Models
T he first contribution to the continuum  m od els are due to L ightill and 

W hitham  (1 9 5 5 ), w ho proposed  that certain traffic ph enom en a o f  dense  

h ighw ay traffic can be described  in term s o f  continuum  variables, traffic flow , 

density , and m ean speed  

T he assum ption  o f  the theory is  that

A t any p oint o f  the road the f lo w  is  a function  o f  the concentration  o f  cars 

T his assum ption  im p lies that sim ple ch an ges in  the f lo w  rate are propagated  

backw ards through the traffic stream  along a k inem atic w a ve w h o se  v e lo c ity  

relative to the road is the slop e o f  the flo w -d en sity  curve  

T he flo w  q and the concentration k  have no sign ifican ce  excep t as m eans The 

purpose o f  the theory is to determ ine h ow  these m ean va lu es vary in space and 

tim e T his is  d on e by considering the speed w ith  w h ich  ch an ges in q  and k  are 

propagated along the roadw ay

NA  fixed  observer sees  a f lo w  q =  —  =  uk w here N  is the num ber o f  v eh ic les
T

p assin g  h im  in tim e T, and u is  the m ean speed  at w h ich  the N  v eh ic le s  pass  

him  A ssu m in g that the observer m oves upstream  w ith  un iform  speed c , then  

he w ill  p ass additional v eh ic le s  say, c k  w h ich  w ill  be added to q so that

Nq + ck = —  h  T

and, i f  he m oves dow n stream this becom s ( 1 6 )
Nq - ck = —T
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N  is the d ifferen ce b etw een  the num ber o f  v eh ic le s  p assin g  the observer and 

those, w hich he p asses I f  he m o v es at the m ean speed o f  the stream, then N  =
0 and c = u
C onsider n ow  tw o  observers m ovin g at a uniform  speed  c, the second  starting 

at tim e T  and rem ain ing behind the first Su pp ose that the f lo w  and 

concentration  are changing w ith  tim e, but that the observers jo in tly  adjust their 

speed  c  so that the num ber o f  v eh ic le s  w h ich  pass them  m inus the number 

w hich  they p ass, is, on  the average, the sam e for each observer during a tim e  

interval T  T his is illustrated in F ig ( 1 2 )  B y  (1 6) the result o f  their 

observation  w ou ld  be

Nq\ -  ck\ = —  = q2 -  ck2 (1 7)

i f  they w ere m ovin g d ow nstream  in the p o sitiv e  d irection  o f  f lo w  

S olv in g  for c , w e  find that

q2 -  q lc =  -------- —  (1 8)k2 -  k l
I f  the ch an ges in f lo w  and concentration are sm all, then  

Aq

c - i  ' ( 1 9 )

Thus, w hen the d ifferen ce in f lo w  and concentration  are sm all, th ey  propagate

Aqat a speed  g iven  by the tangent —— to the flow -con centration  diagram
Za/C
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AT

F ig ( l  2) V eh ic les  passed  by tw o  m ovin g  observers,
Source D Gazis (1974)

1.1.2.1.1 Simple continuum models
C ontinuum  traffic f lo w  m od els are based on  a flu id  f lo w  an alogy  w h ich  

regards traffic f lo w  as a particular flu id  p rocess, w ith  states characterised by  

aggregate variables such  as d en sity  (in  V eh /k m ), f lo w  (in  V eh /h) and m ean  

speed (in km /h)

In flu id  f lo w  analogy, the traffic stream  is treated as a on e-d im en sion a l 

com p ressib le  flu id  T his leads us to describe the dynam ic evo lu tion  o f  

m acroscop ic  traffic param eters by m eans o f  a 

1 C onservation  or continuity equation

n  O n e-to-on e relationship  b etw een  speed  and d en sity  or b etw een  f lo w

and d ensity , w h ich  is  k n ow n  as the fundam ental d iagram  o f  traffic 

engineering
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T he sim ple continuum  m od el con sists o f  the continu ity equation and the 

equation o f  state:

flow = density * mean speed.

If these equations (1 .1 0 .a and b) are so lved  together, then w e  can obtain speed, 

flow , and d en sity  at any tim e and point o f  the roadway:

q = uk ( l .lO .a )

dq dk
*  + ¥  =  0  ( U O b )

B y  k n ow in g  these traffic variables, w e k n ow  the state o f  the traffic stream  and 

can derive m easures o f  e ffec tiv en ess , such as delay stop s, total travel tim e and 

others that help engineers to evaluate the perform ance o f  the traffic system s. 

Equation of continuity

Equation ( l .lO .b )  exp resses the law  o f  conservation  o f  a traffic stream  (cars) 

and is know n as the conservation  or continuity equation. It has the sam e form  

as in fluid flow .

If en tries/exits ex ist w ith in  the stretch o f  the roadw ay, then the equation takes  

the form

dq dk§  + ¥  -  * (* ,) (l id

W here k(x ,t) and q(.x, t) are the traffic d en sity  and flo w  re sp e c tiv e ly , at the 

sp ace-tim e p o in t(x,t). T he generation term  g(x,t) represents the num ber o f  cars 

entering or leav in g  the traffic f lo w  in a roadw ay section  w ith  entries/exits. The

equation o f  continu ity  relates tw o fundam ental variables, density  and flo w  rate

w ith tw o independent on es (space and tim e).
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T he solution  o f  equation  (1 10 b) is  im p ossib le  w ithout an additional equation  

The first p ossib ility  con siders the m om entum  equation described  later The  

second  option u ses the fundam ental diagram  

Fundamental diagram
The m acroscop ic param eters o f  the traffic f lo w  are related by equation (1 10 a) 

w here the equilibrium  speed  u(x,t) = u(k) m ust be provided by a theoretical or 

em pirical equation  o f  state, that can take the form

ue = u f

W here Ue is the equilibrium  speed , Uf  is  free f lo w  speed

Equation (1 10 b) sim p ly states that flow , q, is a function  o f  density , k, l e  q -  
f  (k) U sin g  th is relation  on e can  also obtain the relation, w h ich  relates the  

m ean speed  and the d en sity  i e  u = f  (k) This, h ow ever, is  on ly  valid  at 

equilibrium  Equilibrium  can  hardly b e observed  in practice, so that obtaining  

a satisfactory sp eed -d en sity  relationship  is  a task that is hard to ach ieve and is 

alw ays assum ed theoretically

The flow -d en sity  relation  presented  in  F ig  ( 1 3 )  reveals tw o  extrem e points  

K  =  0 => q = 0

K  = ^ max ^  U = 0 => q= 0

T he cloud  o f  poin ts betw een  these tw o  extrem es is  based on  m easurem ents  

perform ed over sp ecific  tim e intervals T h is c lou d  o f  p o in ts represents an area 

o f  m axim um  flo w , w hich  is  considered  to be an im portant feature o f  the road  

section  under concern

1-
V k j a m  )

(1 12)
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T he fundam ental diagram  can  be d iv ided  into tw o regions

I The free f lo w  area, in w hich  a ll cars are m ovin g  w ith  their desired

speed

II T h e dense traffic area, in  w h ich  all cars are a lm ost stopped  

A ccord in g to H all (1 9 9 3 ) the fundam ental diagram  can  be characterised by the 

fo llo w in g

a) Free f lo w  traffic area, w h ich  can be represented by section s o f  linear 

approxim ations

b) the dense traffic regim e

c) M easurem ent points found outside these tw o  areas o f  traffic con d ition s  

represent transition situations, such as traffic leav in g  the head o f  a queue  

T his traffic f lo w  cannot be larger than the capacity  o f  the con gested  area, 

but it can be faster than the con gested  flow

T he solution  o f  the sim p le  continuum  m od el lead s to the form ation o f  sh ock  

w a ves as illustrated m  F ig  ( 1 4 )  T he shock  w ave is  sh ow n  as a h eavy  lin e  on  

the sp ace-tim e diagram , ahead o f  it the f lo w  is  denser and the w a ves are drawn  

parallel to  the tangent to the flow -d en sity  curve at A , w hich  represents a 

situation w here traffic f lo w s  at near capacity im p ly in g  that speed  is  w e ll b e low  

the free-flo w  speed

B ehind  it the concentration is  le ss  and the w a ves travel faster, they are drawn  

parallel to the tangent to the curve at B , w h ich  represents an u n con gested  

con d ition  w here traffic f lo w s  at a h igher speed  b ecau se o f  the lo w er  density



Real Traffic

occupancy [%]

Fig. (1.3): Fundamental diagram obtained for real data; 

Source: Hall, L. et al (1986)

Lighthill and W hitham  (1 9 5 5 ) have used the flow -d en sity  curve to predict 

con d ition s near a shock  w ave.

S in ce the sim ple continuum  m od els do not consider acceleration  and inertia 

effec ts , they do not faith fu lly  d escribe the non-equilibrium  traffic flow  

dynam ics. T h ese are taken into account in the h igher-order continuum  m odels. 

T h ese m od els add a m om entum  equation that accounts for the acceleration  and 

inertia characteristics o f  the traffic m ass. In this manner, sh ock  w a ves are 

sm oothed  out and the equilibrium  assum ption  is rem oved.
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i k

Fig (1 4) The use of the flow-density curve to predict 
the local conditions near a shock wave, source. 
Gazis(1974)

Disadvantages of simple continuum models
1- K inem atic m od els contain  stationary sp eed -d en sity  relations ( l e  the m ean  

speed should adjust instantaneously to traffic density) M ore realistically , 

it is  adapted after a certain tim e d ela y  and to reflect traffic cond itions  

dow nstream .

2- K inem atic w a v e  theory sh ow s sh ock  w a ve form ation by steeping speed  

jum ps ( î e  increases linearly) to in fin ite sharp jum ps A  m acroscop ic  

theory is  based on  va lu es, w h ich  are average va lu es from  an aggregate o f  

v eh ic le s  A verages are taken either over tem poral or spatial exten d ed  

areas Infin ite jum ps, therefore, are in contradiction  to the b asics o f  

m acroscop ic description

3- U nstab le traffic f lo w  is  characterised, under appropriate con d ition s, by 

regular stop-start w aves w ith  am plitude-dependent o sc illa tion  tim e
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4- T he d yn am ics o f  traffic f lo w  result in  the h ysteresis p h enom en a This 

con sists  o f  generally  retarded behaviour o f  v eh ic le  p la toon s after em erging  

from  a disturbance com pared to the behaviour o f  the sam e v eh ic les  

approaching the disturbance S im p le continuum  m od els cannot describe  

such  phenom ena

5- B esid es  h ysteresis, the crucial instab ility  e ffec t  is bifurcation behaviour  

(1 e , traffic f lo w  b ecom es unstable b eyond  a certain critica l traffic  

density) A b o v e  the critical d ensity , the traffic f lo w  b ecom es rapidly m ore  

con g ested  w ithout any ob v iou s reason

i.1.2.1.2 Models with Momentum (inertia)
The exten sion  o f  the sim ple continuum  m od els, in  order to exp lain  the 

dynam ic e ffec ts  in the preceding section , w as first pointed  out by W hitham  

(19 7 4 ) and Payne (19 7 9 )

T he actual speed u(x, t) o f  a sm all en sem b le  o f  v eh ic le s  is  obtained from  the 

equilibrium  sp eed -d en sity  relation, using a d elay  tim e x, and from  an 

anticipated location  x  + Ax

u(x,t + z) = Ue(k(x + Ax,t)) (1 13)

M uller and Eerden (1 9 8 7 ) have studied this recursive equation  in  detail
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Expanding, using T aylor series w ith  resp ect to x and Ax, assum ing that both  

quantities can be kept sm all, y ie ld s the substantial acceleration  o f  a p latoon  o f  

veh ic le s

x is  the relaxation  tim e, the tim e in  w h ich  a p la toon  o f  cars reacts to the speed  

alternations

Ue is the fundam ental diagram

ca2 is  constant, independent o f  d en sity  k , and is  ca lled  the anticipation term 

T he L  H  S in equation (1 15) is d ecom p osed  into a convention term, the 

secon d  term, indicating the acceleration  due to spatial alternation o f  the  

stream lines and a lo ca l acceleration  w h ich  is  tim e dependent 

T he first term  on  the R  H  S is the equilibrium  term, that is the e ffec t o f  the  

drivers adjusting their speed  to the fundam ental d iagram  and the secon d  term  

represents the anticipation on  the dow nstream  d en sity  (1 e  the e ffec t o f  drivers 

reacting to the dow nstream  traffic)

(1 14 a)

In a fix ed  co-ordinate system  this transform s into

du

dt

du(x(t),t)) dx  --------  = ur —  + u, -  u ru +  u.
dt dt

(1 14 b)

A nd from  equations (1 14 a) and (1 14 b) w e  get

du du  1 r. ,  -| , 1 dkdu du (1 15)

w here
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dq dkT h e continu ity equation  —  +  —  =  0  from  ( 1 1 0  b) and theox at
m om entum  equation

du du  1 r "I , 1 dk ^
T U  ( 1 1 5 )

form  a set o f  first order, partial d ifferentia l equations w h ich  describes the  

dynam ic e ffec ts  associated  w ith  the traffic flo w , such  as stop-start w ave  

form ation, b ifurcation into unstable f lo w  and transience, and behaviour at 

b ottlenecks

T o in vestigate  these equations, the road section  is d iscretised  in  tim e and  

sp ace N u m erica l m ethod s used  in  com putational flu id  d yn am ics can be  

applied to so lv e  these equations
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1.1.2.2 Two fluid theory
T he tw o flu id  theory o f  tow n  traffic w a s p roposed  by H errman and P rigogin e  

(1 9 7 9 ), Herrm an and A rkekani (1 9 8 4 ) Cars m  a traffic stream  can be v iew ed  

as tw o flu ids, the first con sistin g  o f  m ovin g cars and the secon d  o f  cars stopped  

due to con gestion , traffic lights, stop signs, and obstructions resu lting from  

constructions, accident and reasons other than parked cars, w h ich  are ignored  

sin ce they are not com ponents o f  the traffic

T he tw o flu id  theory p rov id es a m acroscop ic m easure o f  quality o f  traffic  

service  in  a street netw ork w hich  d oes not depend on the density  

The tw o flu id  m od el is  based on  the assum ptions

i The average m ovin g speed  in  a street netw ork is  proportional to the

fraction o f  m ovin g cars 

n T he fraction o f  stopped  tim e o f  a test car, circulating in  a netw ork, is

equal to the average fraction o f  the cars stopped during the sam e period  

T he first assum ption represents the relationship  b etw een  the average speed o f

the m ovin g  cars and the fraction o f  m ovin g  cars w h ich  can be form ulated as

fo llo w s

V = ym(X~fs)nH (116)

w here

Vm is  the average m axim um  m ovin g speed

n is  an indication  o f  the quality o f  traffic serv ice  in  the

netw ork

23



V is  the average speed , w h ich  can be w ritten as V =Vr f r 

f s is  the fraction o f  stopped cars 

T he second  assum ption  m eans that the netw ork con d ition s can be represented  

b y a sin gle  car appropriately sam pling the netw ork  

Equation ( 1 1 6 )  can be w ritten as

T = (117)

f ,  = J  (1 18)

C om bin ing the Equations (1 17) and (1 18) w e  get

T = T - T n + i T n + 1 (1 19)

w h ich  represents the tw o  flu id  form ulation  

Equation can be w ritten  as

T s =  T -  T r (1 20)

w here

T r = T m TTT T 0 + 1 ( 121 )

w h ich  represents the relation b etw een  the trip tim e per unit d istance, T, and the 

running tim e per unit d istance, T r

Taking the natural logarithm  o f  both  sides in  Equation (1 21) y ie ld s

In Tr = — T r  In T m + — 7—  In T (122)n + 1 n +  1

w h ich  p rov id es a linear exp ression  for the u se  o f  least squares analysis
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V.

1.1.3 Cellular Automata Models
C ellular autom ata (C A ) are d iscrete dynam ical system s, w h ich  are d efined  on  a 

on e-d im en sion a l la ttice (or m u lti-d im ension  grid) o f  k  id en tical ce lls  

T he g lob a l behaviour o f  the system  is determ ined by the evo lu tion  o f  the states  

o f  all c e lls  as a result o f  m ultip le interactions  

C A , w h ich  w ere d evelop ed  to m od el sim p le  m athem atical system s, are 

in creasin gly  used  in  the sim ulation  o f  co m p lex  system s In this approach, the 

traffic sy stem  is  regarded as an interacting particle system , w h ich  sh ow s a 

transition b etw een  tw o  phases  

L o w -d en sity  p h ase m w h ich  all cars m ov e  sm ooth ly  w ith  m axim um  speed , and 

H igh -d en sity  p h ase in  w h ich  cars are a lm ost stopped

T he C A  ev o lv e s  in  d iscrete tim e steps T he state o f  each  site at the next tim e  

step is determ ined from  the state o f  the site itse lf  and its nearest sites at the 

current tim e step

T he C A  m od els sim ulate the m ovem en t o f  each  ind iv idual car according to a 

num ber o f  s im p le  rules, e ssen tia lly  m ovin g each  forward b y  an integer number 

o f  increm ents at an integer speed
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each

max ^

the

1.1.3.1 One-dimensional Cellular Automata Models

V ery recently, N a g e l and Shreckenberg (1 9 9 2 ) have introduced a stochastic  

C ellular A utom ata m od el to sim ulate freew ay traffic T h ey  found that there are 

tw o region s in  the traffic f lo w  

1 Free-phase, w h ich  is  dom inant at lo w  density

n  C ongested  traffic in w h ich  traffic jam s appear at a h igh density

T he m od el is  defined  over a lattice o f  k -id en tica l sites, each  o f  length 7 5 m  

representing the length  o f  the car p lus d istance b etw een  cars in jam , and 

site can be either em p ty or occu p ied  by a sin g le  particle  

Each particle can h ave an integer v e lo c ity  b etw een  0  and v max, w here v 

in general G iven  the configuration  o f  the particles at tim e step t 

configuration  at tim e step t+1 is  com puted  b y  applying the fo llo w in g  rules , 

w hich  are d on e in parallel for all particles

♦ C alculate the h eadw ay d istan ce(=  gap)

♦ D eceleration  

I f  v >  gap (the particle is running too  fast), then s lo w  d ow n  to 

v =  gap (rule 1)

♦ A cceleration  

I f  v  <  gap and v< vmax then accelerate by one  

v =  v +  1 (rule 2)

♦ R andom isation

I f  after these steps, the v e lo c ity  v  is  greater than zero , then w ith  probability

p  reduce v  by on e v  =  v -1  (rule 3)
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♦ Car advance

Each particle is advanced v  sites ahead (rule 4)

N a g e l and Schreckenberg (1 9 9 2 ), sh ow ed  that the start-stop w aves, (traffic  

jam s), appear in  the con g ested  traffic region  A lso , they obtained g o od  

agreem ent w ith  realistic fundam ental diagram s 

B asica lly , they tried to m od el tw o  properties o f  the road traffic

•  Cars travel at som e desired speed , u n less they are forced  to slow  d ow n  in 

order to avoid  c o llis io n s  w ith  other v eh ic les

•  Interactions are short ranged and can be approxim ated by being restricted to  

nearest neighbours

Im perfections in the w a y  drivers react is m od elled  as n o ise  

T he continuous lim it o f  the C A  m od el has been  in vestigated  by Krauß et al 

(1 9 9 6 ), this is obtained by letting v max —> o o  a n d  Pmax 0

T he generalised  version  o f  the C A  m od el a llo w s for continuous v a lu es o f  the  

v e lo c itie s  and spatial co-ord inates In the N -S  m od el n o ise , is  introduced by  

random ly d ecelerating car v e lo c ity  b y  on e w ith  probability  p break This, 

how ever, is generalized  to  an equipartition b etw een  zero and the m axim um  

acceleration  in  the generalized  version

T he C A  rules for the interm ediate m od el are defin ed  as fo llo w s

27



V*. =  n u n (v (i)  + a(t), v max, gap(t)),

v (f  + 1 )  =  m ax(0 , vdes -  o  randQ), (1 23 )

x(t + 1) =  x(t) + v ( i  + 1 )

W here gap(t) is  the free h eadw ay d istance, a max is  the m axim um  acceleration  , 

rand() is a random  num ber in the interval (0, 1) and a  is  the m axim um  

deceleration  due to noise

N u m erical sim ulations sh ow ed  that the transition, lead ing from  the free f lo w  

regim e to the con gested  flo w  regim e, bears strong sim ilarities to a first order 

p h ase transition in  equilibrium  therm odynam ics A n additional advantage o f  the 

continuous m od el is  that it is m uch easier to calibrate w ith  real data, d esp ite the 

sligh t d ecrease in the num erical e ffic ien cy

1.1.3.2 Two-dimension Cellular Automata Models

T w o-d im en sion a l problem s, (c ity  traffic), are m ore com p licated  com pared to 

on e-d im en sion a l on es and m turn they are le ss  realistic  

B iham  and M id dleton  (1 9 9 2 ), have introduced a sim p le  determ inistic tw o-  

d im en sion a l m od el Three variants o f  the m od el w ere in vestigated , the first tw o  

variants o f  the m od el u se  three-state Cellular A utom ata defined  on  a square 

la ttice E ach site contains either an arrow pointing upw ards, an arrow pointing  

to the right, or is em p ty

In the first variant (M od el I) the traffic dynam ic is  controlled  by traffic lights, 

such that the right-arrow s m ov e on ly  in  e v en  tim e steps and the up arrows 

m ov e in odd tim e steps
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On ev en  tim e steps, each  arrow m oves one step to the right u n less the site on its 

right-hand side is occu p ied  by another arrow I f  it is b locked  by another arrow  

it d o es  not m ove, even  i f  during the sam e tim e step the b locking arrow m ov es  

out o f  that site Sim ilar rules apply to the up arrows, w h ich  m ov e upwards 

The m od el is  d efin ed  on  a square lattice o f  N  x  N  sites w ith  periodic boundary 

conditions

In m od el II, the traffic ligh t is  rem oved  and all arrow s m ov e  in  a ll tim e steps  

(un less they are stopped) I f  both an up and a right arrow try to m ove to the 

sam e site, on e o f  them  w ill be ch osen  random ly, w ith  equal probabilities  

M o d el II is considered  to be the non-determ inistic variant o f  the m od el 

E x ten siv e  num erical sim ulation  sh ow s a sharp jam m ing transition w hich  

separates the lo w -d en sity  d yn am ical phase in  w hich  a ll cars m ov e at m axim al 

speed and the h igh-d en sity  jam m ed phase in w h ich  th ey  are all stopped  

T he third variant o f  the m od el is  a four-state C A  d efin ed  on  a square grid E ach  

site contains either an arrow pointing upw ards, an arrow pointing to the right, 

an arrow pointing le ft, or is em p ty In this four-state m od el a ll arrow s try to 

m o v e  at every  tim e step I f  both an up arrow and a right arrow try to m ov e to an 

em p ty  site at the sam e tim e step th ey  both m ov e in  and overlap On the other 

hand no arrow can m ove into a site w h ich  is already occu p ied  

T he sim ulations o f  B iham  and M id d leto n (19 92 ) sh ow  that the m od el exh ib its a 

continuous transition, w h ich  is qualitatively  sim ilar to the on e-d im en sion a l 

case

N agatam  (1 9 9 3 ) has extended  the C A  m od el p rop osed  by B ih am  and  

M id dleton  (1 9 9 2 ) (the B M L  m od el), to in vestigate  the e ffec t o f  the tw o -lev e l
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crossing  on  the traffic jam  in the original m od el T he m od el, as in  F ig  (1 5 ), is 

d efin ed  on  a disordered square lattice w ith  tw o com ponents

•  T he first com ponent is the site o f  three states representing the one- 

le v e l crossing

•  T he second  com p onen t is  the site o f  four states representing the tw o-  

le v e l crossing

N agatani (19 9 3 ) sh ow ed  that the d ynam ical jam m ing transition d oes not occur  

w h en  the fraction c  o f  the tw o -lev e l crossin g s b ecom es larger than the 

percolation  threshold, w h ich  g iv es rise to the critica l behaviour H ow ever , the  

d yn am ical jam m ing transition occurs at higher d en sity  o f  cars w ith  increasing  

fraction c o f  the tw o -lev e l crossing b elo w  the percolation  threshold  

T orok and K ertesz (1 9 9 6 ) have studied the sequential update version  o f  the  

B M L  m od el ca lled  the G reen W ave M o d el (G W M )

T he m am  d ifferen ce b etw een  the tw o m od els is that in  the B M L  m od el sin gle  

cars m ove w h ile  in the G reen W ave M od el, w h o le  co n v o y s  (line o f  sam e type  

o f  cars w ith  no em p ty space b etw een  them ) travel together  

In the B M L  m odel, tw o cars cannot m ov e  together b ecau se i f  they b ecom e  

neighbours the second  car is not able to m ov e  until the first is m oved  aw ay In 

the G W M  the tw o  neighbouring cars a lw ays stay together i f  the first m ov es the  

secon d  w ill m ov e  in the sam e tim e step and there is  no e ffec t that could  

separate them  T he G W M  sh ow s tw o types o f  transition the free flow -jam  

transition and a structural transition in  the jam m ed region
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Fig (1 5) Schematic illustration of the cellular automata 
model of traffic flow with two-level crossings, source T 
Nagatani(1993)

1.1.4 Thesis Outline
i

T he rem aining chapters o f  this thesis are organized as fo llo w s  In Chapter 2 w e  

present a three state determ inistic cellu lar autom ata m od el for urban traffic, 

then the m od el is  adapted to sim ulate road traffic In Chapter 3 w e  m ove  

tow ards netw ork traffic f lo w  and w e in vestigate  using the sim ple m odel, 

d evelop ed  in S ec  (2  1), the netw ork perform ance under d ifferent param eters 

that govern  the traffic flo w , w hereas in Chapter 4  w e  in v estig ate  the traffic 

behaviour along the netw ork w ith  lo ss  to f lo w  and under short and long-term  

traffic even ts
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In  Chapter 5 a set o f  lane-changing rules for cellular autom ata is  presented and 

a stochastic cellu lar autom ata m od el for traffic f lo w  in inter-urban areas is  

presented in  Chapter 6 F inally , Chapter 7  con clu d es th is thesis by h ighlighting  

the m ain contributions and d iscu ssin g  d irections for future research
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Chapter 2

“Simple Cellular Automata Model for Urban Traffic Flow”
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2.0 Introduction
N u m erical sim ulations, hydrodynam ic m od els, and queuing theory are a few  

o f  the basic theoretical to o ls , u sed  to describe traffic f lo w  o n  freew ay netw orks  

(Leutzbach, 1988 , K uhne, 1984) Traffic control has been  in ten sive ly  studied  

also from  the p oint o f  v iew  o f  O perations R esearch  (Im prota, 1987) A s one  

m ight exp ect, the theory o f  traffic f lo w  is related to telecom m u n ication  and 

com puter n etw ork  theory E qually, m any basic con cep ts in traffic f lo w  theory  

have their orig ins in p h ysics , (L ighth ill and W hitham , 1955 , H errmann et al, 
1959)

C ellular autom ata, w hich  w ere d evelop ed  to m od el sim p le m athem atical 

system s, are in creasin gly  used  in the sim ulation  o f  co m p lex  p h ysica l system s  

(W olfram , 1986), and have h elped  dem onstrate phenom ena w h ich  are o f  

practical interest

C on gestion  is a sim p le  p h enom en on  cars can not m ove w ith out su fficient 

space b etw een  them  (N agatam , 1993a,b , 1994a,b  , N a g e l and Herrmann, 

1993) In order to sim ulate freew ay traffic flo w , N a g e l and Schreckenberg  

(1 9 9 2 ) extended the ID  asym m etric sim p le  ex c lu sio n  m od el by taking into 

account car v e lo c ity ,(S e c ( l 1 3 1)) T h ey sh ow ed  that a transition from  

lam inar traffic f lo w  to start-stop w aves occurs w ith increasing car density , as 

observed  in real freew ay traffic

C ontrol o f  traffic f lo w  in c ities  is  a m ore com p lex  endeavour as it in v o lv es  

m any degrees o f  freedom  such  as lo ca l d en sities and sp eed s Cremer and 

L u d w ig (1 9 8 6 ) have d evelop ed  a fast sim ulation m od el for m od ellin g  traffic
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flo w  through urban netw orks T h ey  sim ulate the progression  o f  cars a long a 

street using bit m anipulation  com puter program s W hen  com pared w ith  

standard m icroscop ic m od els, the com putational tim e need ed  is  less  by a ratio 

o f  1 /  150 T he m od els sim ulate, accurately, m acroscop ic p henom ena o f  traffic 

flo w , w h ile  at the sam e tim e reproducing the m ain m ech an ism s o f  m icroscop ic  

m od els

In this chapter w e  present a Cellular A utom aton  (C A ) to sim ulate traffic f lo w  

in urban netw orks, w hich  extends this approach

2.1 The Cellular Automata Model
Our m od el is  a 3-sta te cellular autom aton d efin ed  on  a on e-d im en sion a l lattice  

L , o f  k  identical sites w ith  at m ost on e particle per site, w here each  site can  

take on e o f  the states 0 , 1 and 2 State 0  is the em p ty site, state 1 represents a
iks.

site occupied  by a stopped car and state 2  corresponds to a site w ith  a m oving  

car The C A  e v o lv es  in  d iscrete tim e steps T he state o f  each  site at the next 

tim e step is  determ ined from  the state o f  the site its e lf  and th ose o f  its tw o  

nearest neighbour sites, at the current tim e A p p ly in g  a parallel update rule for 

all sites in the m odel, the transition rules m ay be described  as fo llo w s  

I f  a site is

1- O ccu pied  by a m ovm g car and the neighbouring site  in  the d irection o f  

m ovem en t is  em pty, then the car is advanced  on e site (R ule 1)

2- O ccupied  by a m ovm g car and the next site m  front is occu p ied  b y  a 

stopped or m ovm g car, the car can not advance (R u le 2)

r
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3- O ccupied  by a stopped car and the nearest site in  front is em p ty , then it

4 - E m pty, and a car w ish es to enter it from  an adjacent ce ll, then the current 

site is occu p ied  by a m ov in g  car i f  the next site  ahead is  either em p ty or

2.1.1 Model parameters
T he fundam ental diagram s in traffic f lo w  m od els are (1) f lo w  v s  d en sity  and 

(n) average v e lo c ity  v s d en sity  T he fo llo w in g  param eters p lay a central role in 

this analysis

T he m ean v e lo c ity  o f  cars in a unit tim e interval x is d efin ed  to be the num ber 

o f  m ovin g  cars d iv ided  by the tota l num bers o f  cars

w ill advance by one site (R ule 3)

occup ied  by a m ovin g  car, and by a stopped car otherw ise (R ule 4)

Vx = (2 1 )n

w here n_^ =  number o f  m ovin g cars in  x

and n = total num ber o f  cars

The average m ean v e lo c ity  over an interval o f  tim e T  is

(2 2)

w here vt = system  v e lo c ity  at t tim e step

T  =  Length o f  the tim e interval
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The density of cars in the system, p, and the flow, q, are defined by
p = n / k (2 3)
q =  < v >  p (2  4)

w here n = num ber o f  cars

and k  =  num ber o f  sites in the m odel

2.1.2 Model Dynamics
T he tim e-ev o lu tio n  o f  the autom aton fo llo w s the sim ple ru les g iven  earlier for 

applying periodic boundary con d ition s, (as illustrated on  the space-tim e  

diagram , F ig (2 1))
5 1

W hen a periodic boundary condition is im p osed  on  the m odel, cars that exit  

the system  (on  the right hand side) are fed back into the system  on the left-  

hand side, as our traffic m o v es from  left to right

Each site on  the lattice can take on e o f  the states 0  (em pty), 1 (stopped car) or 

2  (m oving car) I f  on e fo llo w s  the m ovem en ts o f  in d iv idual cars in  the space- 

tim e diagram  F igs (2 1 a  and b), cars m ovin g freely  are characterised by  

diagon al lin es w ith  the sym b ol 2 , w h ile  stationary cars are characterised by  

vertica l lin es w ith  the sym b ol 1

L ines are configurations at con secu tive  tim e steps A t lo w  density , these lin es  

sh ow  lam inar traffic, w ith  the system  m ovin g  w ith  m axim um  v e lo c ity  subject 

to on e gap ahead indicating “free phase” traffic

In contrast, at high density , w e  find con g estio n  clusters, each  con gestion  

represent a traffic jam , indicating a “jammed phase” traffic
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(b)
Fig.(2.1): Space-time diagrams of the Simple CA Model
defined on a 100 site Lattice with closed boundary 
conditions, where in (a) p = 0.3 and in (b) p = 0.8
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N o te  that w hen  traffic is  stopped, the traffic jam  w a ve m ov es backw ards 

relative to the traffic f lo w

2.2 Simulation and Results.
2.2.1 The model with periodic boundary conditions
W e have im p lem en ted  com puter sim ulations in  B orland C + +  for a 

determ inistic C A  m odel, starting w ith  random  in itia l configuration  o f  cars w ith  

d en sity  p and v e lo c ity  =  0  D ifferent la ttice s izes  (k =  60 , 80 , 100, 120, 140)
, kw ere used  In each  case , the C A  m od el ran for 1000 tim e steps and this p rocess  

w as repeated 3 0 0  tim es to generate the average case  statistics  

M o st road-traffic observers have concentrated on  m easuring flo w , q, and 

average ve loc ity , v, as being the quantities o f  greatest practical interest The  

density  p can be obtained from  these m easurem ents

T he relation b etw een  the three m acroscop ic variables, f lo w , average ve loc ity , 

and density , is w id e ly  k n ow n  as the, fundamental diagram In S ec  ( 1 1 2  1 1), 

w e have studied in  d eta il the flow -d en sity  relation, w hich  represents the first 

com ponent o f  the fundam ental d iagram  A nother im portant relation is  the  

ve loc ity -d en sity  relation T his is  regarded as the secon d  com p onen t o f  the  

fundam ental diagram , w hich  sh ow s h ow  the system  d en sity  a ffects  m ean  

speed  at different lev e ls  o f  concentrations T he fundam ental d iagram s are also  

k n ow n  as “ Empirical relations’’

U sin g  the fundam ental diagram s, our sim ulation  results revea l that the system  

reached its critica l state w hen  the d en sity  p c =  0 5
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T he m axim um  flo w  recorded w as q = 0  5, after a transient period t0 =  f , 

w h ich  d oes not depend on  the system  size.

F ig (2  2 a) sh ow s the fundam ental d iagram  (flo w  v s  density) w h ich  is

sym m etrical about the critical d en sity  pc = 0 5 , w hich  marks the boundary  

betw een  free f low in g  and con g ested  traffic

In F ig (2 2 b) w e  p lot the average v e lo c ity  against density , w h ich  indicates that 

the system  m o v es w ith  a constant average v e lo c ity  <v>  =  1 until p =  0  5 and 

then d ecreases as w e  increase the d ensity

T he space-tim e diagram s in  F ig s (2  3 a) and (2  3 b) are very  u sefu l in 

v isu a liz in g  traffic and traffic jam s In these figu res,(2  3 a, b), each  black  p ix e l 

represents a car S p ace d irection is horizontal, tim e is  p ointin g dow nw ards,
i

cars are m ov in g  from  le ft  to right and from  top to  bottom .

In free flo w in g  traffic, F ig  (2  3 a), the system  reaches a steady state 

characterised by each  car advancm g on e site to the right at each  tim e step In

contrast, in con gested  traffic, F ig (2  3 b), the traffic jam  m o v es one site to the

left at each tim e step

■>
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Fundamental Diagram

0 5  -
0 45 -

0 4  -
0 35 -

_  0 3 -
3
o 0 25 -
“ ■ 0 2  -

0 15 -
0 1 -

0 05 -
0 -----------------F------------- 1------------- f------------- 1-----------

C 0 2  0 4  0 6  0 8  1

Densi ty

Fig (2 2 a) flow-density relation for a system of size
80 Data are averaged over long time periods (1000
time steps) using closed boundary conditions It is
easy to see that the phase transition between the two
regimes occurs at the critical density 0 5

densi ty

Fig (2 2 b) velocity-density relation, using closed 
boundary conditions, again the System moves with constant 
velocity until the density of 0 5, then the transition 
between the two phases take place
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2.2.2 The Model with Open Boundary Conditions
T he ru les o f  the S im p le  M o d e l w ith  op en  boundary con d ition s are iden tica l to  

the periodic ca se  excep t that w e  w ork w ith  average d en sities and need to 

consider the input to the system  as w e ll as the duration o f  each  sim ulation  run 

D ifferent rates o f  injecting cars into the system  w ere investigated  T hese  

correspond to peak-tim e rates, such as th ose  that occur at, say, 8 0 0  hrs or 

17 0 0  hrs and off-p eak  tim e, corresponding to 11 0 0  hrs or 20  OOhrs 

In our m odel, exit from  the road (system ) is controlled  by a traffic light, 

operating under a green and red light regim e Cars can lea ve  the system  o n ly  

during the green hght phase, by deletin g  the last site o f  the road, and form  a 

queue during a red hght phase In this m od el the user f ix e s  the duration o f  the 

green and red phases

D ifferin g  lattice sizes (60 , 80 ) w ere se lected , data \yas co llec ted  after 

transience k  /  2 , and averaged over 2 0 0  sim ulation  runs Each sim ulation  run 

con sisted  o f  6 0 0  tim e steps using various reg im es for the green and red phases  

T he fundam ental d iagram s for the tw o  different array s izes , k  = 6 0 , 80 , are 

presented in F igs (2 4) and (2 5) C om paring these d iagram s w ith  those  

obtained for c lo sed  system  (c losed  boundary con d ition s), w e  m ake the 

fo llo w in g  observations

i Im p osin g open  boundary con d ition s has led to lo w er va lu es for the 

m axim u m  flo w  and its density , <?max has decreased  from  0  5 (at p c =  

0  5) to 0  35 25  (at pc =  0  42 4 )
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ii. The sim ulation  reveals that the m axim um  flo w  and its d en sity  depend  

on  the system  size. U sin g  a system  o f  s ize  60  sites has led to a 

m axim um  flo w  o f  <7 max ~  0 .3 6  at d ensity  pqmn ~  0 .4 8 , w hereas a

low er va lu e for qmiX =  0 .3 5 2 5  w as obtained at low er density  o f  0 .4 2  

in the case  o f  larger size  n etw ork(k= 80).

0.345
0.46 0.48 0.5 0.52 0.54 0.56 0.58

density

(a)

(b)
Fig.(2.4):Fundamental diagrams for the Simple Model with open 
boundary conditions; flow-density relation, velocity-density 
relation, for array size 60 cells. Data were averaged over 200 
runs, where each run is 600 time steps
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in  A p p ly in g  open  boundary con d ition s w as a lso  able to g ive, roughly, the 

characteristic shapes o f  the fundam ental diagram s, flow -d en sity  

relation  and v e lo c ity  density-relation

0 4 0 45 0 5 0 55
density

0 6 0 65

(a)

0 9  H
0 8  -
0 7  ->.

o
o 0 6  -
4>

0 5  -
0 4  -
0 3  -

0 4 0 45 0 5 0 55
density

0 6 0 65

(b)

Fig (2 5) Fundamental diagrams for the Simple. Model with open 
boundary conditions, flow-density relation, velocity-density 
relation, for array size 80 cells Data were averaged over 200 
runs, where each run is 600 time steps
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2.3 Road Traffic Simulation
W e n ow  extend our sim ulation to include road traffic flo w , w here each  “road” 

is form ed by linking m ore than one segm ent, w here a segm ent is a on e

d im ensional array o f  k  sites.

In this section  w e  introduce a new  param eter jammed, time t-, w hich

represents the w aiting tim e period cars require to lea ve  the road. In real traffic, 

this param eter depends on the number o f  traffic lights, w h ich  are installed  

b etw een  the road segm ents, and the duration o f  both ligh t cy c le s , red and 

green, as w e ll as the traffic density . The aim  o f  this section  is to study and 

analyse the e ffect o f  the num ber o f  road segm ents and the light cy c le  duration  

on the jam m ed tim e parameter.

2.3.1 Road Description
The m od el lo ok s at traffic f lo w  for a seven -d ay  period on tw o designs: a road  

con sistin g  o f  77  ce lls  and three segm en ts and another con sistin g  o f  144 ce lls  

and five  segm en ts. The ch o ice  is m ade in  order to avoid  co m p lex  situations  

w ith  large number o f  intersections.

The sim ulation  runs a llow ed  for:

1- Road input and output

Cars w ere generated at random  and input into the system  according to tw o  

different in jection  rates: peak-tim e and off-p eak  tim e rates. Cars w ere a llow ed  

to leave the road on ly  during the green cy c le  and the first site outside the road  

w as assum ed to  be free throughout the sim ulation  run.
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2- S p ecified  duration o f  the ligh t cy c le  ,\
T he sim ulation  w as perform ed u sin g d ifferent periods for both the red and 

green cy c le s

Fig (2 6) Day-one of our simulation using road of size 77 
cells, with green cycle = 20 time steps, red cycle = 15 time 
steps and Where (a) , (b) , and (c) represents the relations of
the time-steps against jammed time, density, and( velocity
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2.3.2 Simulation and results
Each sim ulation  run is calcu lated  using up to 10 ,00 0  tim e steps, w here the 

p eak-tim e period  is  considered  to be in sid e the interval 2 0 0 0 -8 0 0 0  tim e steps 

F ig (2 6) describes the traffic behaviour throughout d ay-one traffic sim ulation, 

w here the roads s ize  =  77  ce lls  and the green tim e c y c le  is  greater than the red 

tim e c y c le  by a factor o f  4 /3  T he jam m ed tim e v s tim e steps relation, 

presented in  F ig  (2  6 a), sh ow s the sharp transition in the jam m ed tim e  

param eter t ] at tw o  points, (2 0 0 0  & 8 0 0 0  tim e steps resp ective ly ), w h ich

separates the tw o  traffic reg im es, l e  free and dense traffic It also  

dem onstrates h o w  rapidly in creases over the d en se traffic period  and the

w a y  in  w h ich  it osc illa tes during the tw o reg im es T hese' o scilla tion s, w hich  

m ay occur due to the d ensity  fluctuations and the duration o f  the traffic light 

cy c le , h ave considerab le im pact on  the traffic v e lo c ity  T h is is  dem onstrated in 

F ig (2 6 c) To ob serve the e ffec t o f  the light cy c le  duration on the

param eter, w e have increased the red cy c le  period  to be the sam e as the green  

cy c le , see  F ig (2 7) T his change in turn decreased  the ou tflow  B y  com paring  

F igs (2  6 a and 2 7 a), w e  find that increasing the red cy c le  period has result in  

no sign ifican t changes in  the jam m ed -tim e param eter over the d en se traffic 

period, w hich  m y be noticed  by very sm all o sc illa tion s in  the t} param eter as

it can be seen  from  F ig  (2 7 a) This, a lso , w as the case  w h en  the green cy c le  

w as decreased  to be the sam e as the red cy c le  period

N o w  w e  in vestigate  the e ffec t o f  the num ber o f  traffic ligh ts on the jam m ed- 

tim e param eter i 7by increasing the road segm en ts to f iv e  segm en ts
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Fig (2 7) Day-two of our simulation using road of size 77 
cells, with the green cycle and the red cycle the same and 
Where (a), (b), and (c) represents the relations of fundamental
measures vs time steps

F ig (2  8) illustrates the traffic f lo w  behaviour throughout a on e-d ay traffic  

sim ulation , w h ich  w as perform ed to in vestigate  jam m ed -tim e behaviour after 

the num ber o f  road segm ents w as increased to f iv e  and w ith  green tim e cy c le  

=  20  tim e steps and red tim e cy c le  = 1 5  tim e steps
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time steps 
(a )

t im *  s t o p s

(b)

t im s  <

(c)

Fig(2.8): Day-three of our simulation using road of size 144 
cells, and the green cycle = 20 time steps, red cycle = 15 time 
steps and Where (a) , (b) , and (c) represents the relations of
the time-steps against jammed time, density, and velocity.

Com paring the results obtained in F igs (2 .6  and 2 .8 ) , w e m ay ob serve the 

fo llow in g:

Increasing the num ber o f  road segm en ts has generated the sam e traffic features 

as for the three segm en t road, and has also increased the jam m ed tim e as 

exp ected , see  Table (2 .1 ).
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Road Size Green Cycle =20 & 
Red Cycle =15

Red cycle increased 
to Green cycle

Green Cycle reduced 
to red Cycle

77 cells 5-80 15-120 40-100
144 cells 35-135 50-140 55-140

Table (2 1) The jammed-time range, m  time steps, for 
different road size and light cycles

T able (2  1) sh ow s that the jam m ed-tim e range, for both roads, is  affected  by  

the ch an ges in  the ligh t cy c le  duration for both red and green tim es For both  

roads, the i  param eter attains its m in im um  va lu e  w h en  the green c y c le  is

greater than the red cy c le , w hereas the m axim u m  va lu e o f  t ] is  obtained  at

higher va lu e for the red cy c le

T his can be seen  also from  the space-tim e diagram s in F ig  (9  (a) and (b)) 

From  these, it is easy  to v isu a lise  the traffic behaviour for a certain num ber o f  

tim e steps

In F ig  (2 9), w here B orland C + +  is  used  to p lot our space-tim e diagram s, cars 

are m ovin g to the right from  top left to b ottom  right Straight lin es ind icate  

that cars are m ovin g freely, w h ile  vertica l lin es m eans that cars are b locked  

(stopped)

Traffic jam s at the traffic ligh ts are represented by the vertica l trajectories, 

w h ich  are m ov in g  backw ards against the traffic.
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Fxg.(2.9.a):Space-time diagram at off-peak time, where the road 
size is 77 cells

the road size is 144 cells



In the F igures, these jam s are m ore noticeable, and also last for longer periods  

as w e  increase the num ber o f  the traffic ligh ts from  3 to 5 , h en ce the observed  

increase sim ilarly in  jam m ed tim e

Sim ilar p henom ena w ere apparent w h en  different light c y c le  periods w ere  

apphed, as in  the three-segm ent road case  From  the above results, w e  

con clu d e that the jam m ed-tim e param eter for the sim ulation  depends on  the 

num ber o f  traffic ligh ts and the duration o f  each  ligh t cy c le , red and green, and 

as w e ll as the traffic density , as found for real traffic

T he ch o ice  o f  the different cases for the light c y c le ’s duration w as destined  to 

create three d ifferent traffic patterns as fo llo w s

•  B y  increasing the green light cy c le  over the red cy c le , w e  consider our 

sim ulated traffic to be m ore im portant than the traffic w h ich  p a sses the 

sam e traffic ligh ts on  the other roads,

•  T h is situation is no longer dom inant w h en  the traffic on  the other roads 

b ecom es heavier in  this case  w e  increase the red cy c le  for our sim ulated  

traffic, 1 e  m ore green light for the other roads £

•  In the third ch o ice  a ll roads are o f  the sam e im portance, but the traffic 

ahead is m ore con gested  In this ca se  d ecreasing the green c y c le  w ill take 

som e pressure at the front junctions
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2.4 Summary and Concluding Comments
i A  three state determ inistic C ellular A utom ata S im ulation  M o d el for the

dynam ic p rocess o f  traffic f lo w  in urban N etw o rk s is presented in this 

chapter, w ith space and tim e d iscrete

T he tim e-ev o lu tio n  o f  the autom aton fo llo w s  sim ple ru les, the state o f  

each  site at the next tim e step is determ ined from  the state o f  site itse lf  

and th ose  o f  the nearest neighbour sites,

11 W e h ave perform ed our sim ulation , applying a parallel update strategy,

on  sm all s ize  la ttices w ith  op en  and c lo sed  boundary conditions  

in  S im ulations h ave been  extended  to include roads, w here each  road is

form ed by link ing a fin ite  num ber o f  segm en ts separated by traffic
¥ligh ts

iv R esu lts for the jam m ed tim e param eter tJ sh ow ed  that this parameter

depends on  the num ber o f  traffic ligh ts and the duration o f  each  light 

cy c le

v  S in ce the update rules treat segm en ts o f  the road netw orks, rather than 

ind iv idual veh ic le s , com putational tim e d oes not depend on  the number 

o f  the v eh ic le s  w ith in  the segm en ts, but on ly  on  the segm ent s ize
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Chapter 3

“Traffic System and Transient Movement Simulation”
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3.0 Introduction
T h e d evelop m en t o f  the netw ork le v e l traffic approach w as based on  the tw o-  

flu id  theory o f  tow n  traffic (H erm an and P rigogin e, 1979 , H erm an and 

Ardekani, 1984), w hich  relates the average speed  o f  m ovin g  cars to the  

fraction o f  running cars in  a street netw ork Further exten sive  stu d ies have  

been carried out on  the basis o f  this theory (M aham assani et al, 1990 , 

W illiam s et al, 1987), w hich  has m any advantages but also in v o lv es  som e  

effort in m od el sp ecifica tion  and h igh  com putational requirem ents H ow ever, 

the behaviour o f  the various netw ork variables at h igh concentration  lev e ls  o f  

cars rem ains to be understood Other relevant w ork  in the sam e area has 

in v o lv ed  d evelop m en t o f  a fast sim ulation  m od el for progression  o f  cars along  

a street through b it m anipulation  program s (Crem er and L u d w ig , 1986) In this 

chapter w e  m ove from  a sin g le-lan e traffic m od ellin g  to m od ellin g  netw orks  

using the S im p le C ellular A utom ata M od el described  in S ec  (2  1)

3.1 Network description
R oad  netw orks are represented b y  n od es, segm en ts (lanes), and links T his  

structure a llo w s the traffic sim ulation  in  integrated netw orks o f  urban tw o-lane  

carriagew ays T he netw ork objects m ay be described  b y  com p onen ts as 

fo llo w s

3.1.1 Nodes
E ach node can be v iew ed  as an intersection  or a T-junction. N o d es  are points  

in  the netw ork  w here traffic enters or lea ves the sim ulated  netw ork, or traffic
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from  on e link  is  distributed am ong other links in  the n etw ork  T he entry links  

o f  the netw ork are located  at all the peripheral n od es w ith  the excep tion  o f  the 

T  junction  n od es E ach node object, F ig (3 1), has the fo llo w in g  data item s  

1 -Node number
E ach node has a unique id en tification  number

2-Node offset
For each  node the o ffset is  defined  as the num ber o f  tim e steps at w hich  the 

nod e w ill ch an ge its default start, (red tim e traffic), to green tim e traffic for the 

duration o f  the green cy c le

T he o ffse t refers to the tim e relationship  b etw een  the adjacent signals at 

netw ork  n od es T he pattern o f  o ffse ts  in a series o f  s ign a l aim s to m in im ize the  

stops and d elay associated  w ith  travel through netw ork o f  signals  

T he node offset is calcu lated  as fo llo w s

i the o ffset is set to zero for nodes, w hich  are considered  as the

offset-start n od es

n for all other nodes, the o ffset is con sidered  to be the shortest path

from  the nearest entry and ex it n od e up to the g iven  n od e  

3 -Node type
T he n od e type sp ec ify  w hether the node is an intersection , a T  junction , or 

entry and ex it  n od e

4-Node green cycle
T he green c y c le  is the num ber o f  tim e steps, w h ich  a llo w s the traffic to  f lo w  

from  a sp ec ific  d irection  at a sp ecified  node
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Node Object

Node number: 15

Node offset 20

Node type I (intersection)

Node red cycle 15 (time steps)

Node green cycle 20 (time steps)

Node signal 0 (red)

Node entries 12, 34, 45, 20, 44, 21

Fig(3 1)

link 1
L i l

link 2 link 3

link 5

 1^  i

t i l

Intersection

I
i

t 1

i 
i

link 4

T junction

Fig(3 2)
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5-Node red cycle
Is the duration o f  the op p osite  traffic f lo w  at a sp ecified  n od e

6-Node signal
T w o signals on ly  are introduced in  our netw ork traffic sim ulation, red (0) and 

green (1 ), assum ing that the default setting for each  n od e signal is  0  (red) 

1-Node entries
T hese are the segm ents, w hich  link  the g iv e  n od e to  other netw ork nodes

3.1.2 Links
A  link is  a set o f  tw o  adjacent lanes, each  o f  w h ich  has a d ifferent direction, 

w h ich  m ay con n ect any tw o  n od es, see  F ig (3 2)

N etw ork  roads are connected  using links, all links in the sim ulated  netw ork  

con sist o f  2-lan es, w ith  all feasib le  m ovem en ts a llo w ed  at all in tersections

3.1.3 Segments
S egm en ts are road sections, w h ich  con n ect n od es E ach segm ent object, 

dem onstrated m  F ig  (3 2 ), has the fo llo w in g  characteristics

1- length
T his is  the num ber o f  ce lls  in  each  segm ent, w here each  c e ll  is  7 5 m  and 

represents the car length  p lu s d istance b etw een  cars in  d en se traffic

2- configuration
T his in d icates the in itia l state for the segm ent, l e  the w a y  m  w h ich  the  

v eh ic le s  are in itia lly  p laced  at random  n
3- transient period
T his sp ec ifies  the num ber o f  tim e steps, w h ich  w e  discard b efore starting the
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co llec tion  o f  our data and is  based on  the segm ent s ize  It represents the tim e  

needed  for relaxation to equilibrium

4- starting and ending nodes
T he starting and ending nodes o f  any segm en t te ll us the p osition  o f  the 

segm ent in sid e the sim ulated netw ork

3.1.4 Network geometry
T he geometry o f  the netw ork w as ch osen  to be a circular grid w ith  radius r, 

w h ich  ind icates the num ber o f  n od es from  the centre n od e o f  the sim ulated  

n etw ork  to the surface node A p ply ing this geom etry , each  segm en t object o f  

the netw ork can be either a straight line or a true arc, w h ich  is characterised by  

the co-ordinates o f  the start and end points (nodes) Increasing the radius o f  

the grid w o u ld  also increase the num ber o f  segm en ts b y  a fixed  num ber, w hich  

a llo w s different s ize  n etw orks to be sim ulated F ig (3 3) sh ow s h ow  the 

proposed  geom etry is u sed  to represent real netw orks

3.1.5 Traffic control and traffic conditions at junctions
A ll n od es w ere controlled , (sign alised ), in  our sim ulated netw ork Our signal 

operating con d ition  w as assum ed to be a pre-tim ed signal, (fix ed  tim e control) 

B y  fix ed  tim e control, both the green tim e cy c le  and the red tim e c y c le  are 

fixed  w ith out any consideration  to the v eh ic le  arrivals and departures at 

junctions
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Fig (3 3) representation of a section of a real road 
network m  Dublin by the proposed network geometry
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Three determ inistic traffic con d ition s w ere em p loyed  in  our sim ulation  o f  the

num ber o f  cars p assin g  an intersection  or junction , (1) 25%  turn left, 50%  go

straight, 25%  turn right and (n) 20%  turn left, 60%  go straight, 20%  turn right,

and (m )12%  turn left, 76%  go straight, 12% turn right T h ese con d ition s apply

at all in tersections w here a ll three m ovem en ts are a llow ed , and reduce to 50% - 
50%  at junctions w ith  tw o  m ovem en ts on ly

3.1.6 Traffic parameters
In this chapter w e  also extend the d efin ition  for the traffic param eters, density , 

flo w , and v e lo c ity , to the netw ork lev e l

Network velocity is  obtam ed at every  tim e step as the ratio o f  the total number 

o f  m ovin g  veh ic le s , in sid e the netw ork, to the total num ber o f  v eh ic le s  

Network density is  a lso calcu lated  at every  tim e step as the ratio o f  the total 

num ber o f  v eh ic les , in sid e the netw ork, to the total num ber o f  sites  

T he corresponding network flow, at every  tim e step, is  calcu lated  using the  

relation Network flow  =  Network velocity * network density 
S in ce the d en sity  varies dram atically w ith  tim e in d ynam ic traffic netw orks, 

the sim ulation  tim e is  split into intervals, w h ich  corresponds to observation  

p eriods T he user can set the interval length  and different va lu es h ave been  

applied  in our sim ulations T h is is b ecau se the interval length , as w e  w ill see  

later, has a sign ifican t e ffec t on  the traffic param eters T he ch o ice  o f  the  

interval length  turned out to be in fluenced  b y  the dom inant traffic reg im e, free  

or dense The tim e dependent density , v e lo c ity  and f lo w  are exam ined  by  

taking averages every  3 0 -1 5 0  tim e step throughout the sim ulation  run

62



3.2 Description of Simulation Experiments
It is the aim  o f  this chapter to investigate  and study the behaviour o f  urban 

traffic netw orks and to characterise then- perform ance u sin g the proposed  

sim ple C ellular A utom aton  m od el

In this section , our purpose is  to study the p h ysica l and operational features o f

the sim ulated netw ork through the analysis o f  the fundam ental diagram s, for

relations such  as d en sity  v s  f lo w  and d en sity  v s  v e lo c ity

In general the fo llo w in g  factors m ay in flu en ce the netw orkiperform ance

i car arrivals to the network ( at fixed or stochastic rate)

u the number of the entry! exit nodes

ill traffic conditions at intersections

iv network geometry

v external parameters such as weather conditions, different road

conditions, different motivations for the drivers

V eh ic les  w ere random ly distributed along the netw ork, then thy generated  at 

random  and input into the netw ork  through all n od es o f  entry In our sim ulated  

traffic, v eh ic le s  did not have " K now ledge"  about their com p lete  path along
> j'the netw ork, but on ly  about their next tim e step m ovem en t N etw ork  nodes  

can be c la ssified  as entry /ex it nodes, T -junction n od es and in tersection  nodes  

In the fo llo w in g  sim ulations four different netw orks w ere considered , w h o se  

radu varied from  r= 3 ,(8  K m  length for a netw ork o f  17 n od es and 28  link s), to 

r= 6 ,(2 4  K m  length  for a netw ork o f  41 n od es and up to 76h nk s) Each link is a 

tw o-lane carriagew ay
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t HA  stochastic feed in g  m echanism , see  A ppendix  (C ), in-¡w hich car arrivals 

fo llo w  a P o isson  P rocess, w as im plem ented , (using d ifferent rates o f  arrivals), 

throughout the sim ulation  experim ents It is  a lso  assum ed that the netw ork  

neighbourhood can take any num ber o f  v eh ic le s  that m ight leave the netw ork  

T raffic con d ition s m ay also  affect the netw ork perform ance For exam p le if  

w e increase the probabilities for turning left or right, then netw ork density  w ill 

increase, sin ce the num ber o f  veh ic le s  circulating in sid e the netw ork w ill 

in creases relative to those leav in g  it

In this chapter w e  do not consider varied netw ork geom etry, but assum e a 

sim ple geom etry  for our sim ulated n etw ork  throughout, k eep in g  the num ber o f  

the entry/exits are constant '
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3.3 Simulation and Results
U sin g  a stochastic feedm g m echanism , the m am  factors m  the fo llow in g  

experim ents are ;

i arrival rate u traffic conditions

in interval length iv transient period

In this Chapter, w e  consider on ly  the transient m ovem en t o f  the cars along the 

netw ork, w hereas, in Chapter 4  w e  a llow  cars to park in sid e the netw ork, so 

that they are tem porarily lo st to the f lo w

In the fo llo w in g  sim ulation  each  run con sists  o f  5 0 0 0  iterations Network 

parameters are calcu lated  every  30 - 150 tim e steps after a discard period o f  

2 0 0 -5 0 0  tim e steps w ith  traffic con d ition s applied  as m  section  (3 1 5) and 

usm g d ifferent arrival rates A  sum m ary o f  the sim ulation  outputs can be 

found m A ppendix B , T ables (B  1-B  4 ) W e start by look m g at the e ffect o f  

the arrival rate, p , on  the traffic behaviour along the netw ork

3.3.1 The effect of the arrival rate on the network 
parameters

3.3.1.1 The existence of jamming threshold
F ig (3 5) sh ow s the num ber o f  cars p assin g through the n etw ork  for a 17-node  

netw ork, together w ith  the num ber o f  cars w aitm g outside A rrival rate (p )  

varies betw een  0  1 and 0 6 It is ea sy  to observe the “jamming threshold?’ for 

¡i greater than the critical value }i = 025 the network is notable to cope with 

the traffic, which has results in long queues outside
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The sim ulation  also  reveals that the critical arrival rate p is independent o f  the 

netw ork size  (F ig (3 6 )), w here the netw ork size  has extended  from  17 nodes  

up to 25  nodes, 33  n od es and 41 nodes, and also the traffic con d ition s, Fig  

(3 7)

Fig (3 5) Number of cars vs arrival rate relation for a 17 
node network and turning percentages 20% left, 60% through, and 
20% right

8 0 0 0
<2 7 0 0 0
" 6 0 0 0  O)
B 5 0 0 0

0 2 0 4 0 6
arrival ra te (|j)

— # - - 1 7 nodes
M w ^ i m v  2 5 nodes

- 3 3 nodes

— X - - 4 1 nodes

0 8

Fig (3 6) Waiting cars vs arrival rate for four different 
networks, and turning percentages 20% left, 60% through, and 
20% right
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7000 - 
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1 0 0 0  

0 -fSMfi*'?;
0.2 0.4 0. 6 0.8

a r r i v a l  r a t e ( | j )

♦  2 5 %  left, 5 0 %
t h r o u g h ,  2 5 % r ig h t

■»” i§$”“- 2 0 %  left,  6 0 %
t h r o u g h ,  2 0 % r ig h t

th r o u g h ,  1 2 % r ig h t

Fig.(3.7): Waiting cars vs arrival rate for various traffic 
conditions

Fig.(3.8): Transported cars vs arrival rate for different size 
networks and turning percentages are:25% left, 50% through, and 
25% right

It is how ever, worth noting that the number o f  cars transported through the 

netw ork is affected  by the netw ork size, e sp ec ia lly  for p greater than the 

critical va lu e p =  0 .2 5 , Fig (3 .8 ), this is obtained for d ifferent netw ork  

sizes; 17, 25 , 33 , and 41 nodes.
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T h is graph also  su ggests that the num ber o f  cars transported v ia  sm all s ize  

netw orks is greater than th ose  transported v ia  larger s ize  n etw orks T his is  due  

to the increm ent o f  the traffic ligh ts  num ber, 1 e  m ore d elay at intersections, 

and also  car path through the netw ork b ecom es longer

3.3.1.2 Arrival rate vs Network size

In the next sim ulation  runs w e  start by changing the arrival rate and keeping  

other factors the sam e, w here d ifferent n etw ork  s izes  w ere  used  T he output 

param eters, f lo w , density , and v e lo c ity , are averaged every  30 -tim e steps after 

a discard period  o f  20 0-tim e steps to let transience d ie out

Performance Measure Arrival rate 17 nodes 41 nodes

Max Flow
&14S92 0 m m

-■- - - " \83timr  .. ' i ' '
............. F i S ® 1.... ....................< " C S M " " '..................... .1 * t \

Density of Max Flow
>1 = 01 0 180459 0143406
p = 0 3 0 482386 0 430268
p = 0 55 0 414131 0 494114

Transported cars
p = 0 1 2748 2430
» « 0 3 m i
fi = 0 55 6215 5810

Queue Length
H = 01 2 3
H = 0 3 m 552
H = 055 m m 5769

Table (3 1) The influence of varying the parameter u on the 
maximum flow and its density, cars transported via the network 
and the queue length outside it for different s\ze networks
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A t all in tersections the traffic con d ition s, as in S ec  (3 1 5) case  (n), w ere  

applied T he fundam ental d iagram s, presented in  F ig s (3 9) describe the flow  

behaviour for tw o different netw ork sizes, 17 n od es and 41 n od es  

T he e ffec t o f  changing the arrival rate (p ) can be sum m arised as fo llo w s  

i A  higher f lo w  w a s obtained in the ca se  o f  sm aller s ize  netw ork  and 

this w as obtained for d ifferent va lu es o f  p , see  T able (3 1) The  

table also sh ow s that increasing the arrival rate from  p =  0  1 to p =  

0  3 has sign ifican tly  increased the m axim u m  flo w  (an increm ent o f  

66%  w as ob served  for the sm aller n etw ork  and 91%  for the larger 

netw ork) H ow ever, w hen p w as greater than the “jamming 
threshold” the f lo w  behaviour w as very  sim ilar, irrespective o f  the  

netw ork size  S tatistical analysis, presented  in A ppendix  A  (Table  

(A  2 )), reveals that the arrival rate strongly in flu en ces the flo w , w ith  

a sign ificant interaction w ith  the netw ork  size at a  =  0  01 le v e l o f  

sig n ifican ce

u  A lso  T able(3 1) sh ow s that the m axim um  flo w  occurred at m uch

higher d en sity  w h en  a h igh rate o f  arrival w as used  to in ject the 

n etw ork  w ith  cars

m  Cars transported through the sim ulated netw ork are in flu en ced  by

both  netw ork  size  and arrival rate T he num ber o f  the transported  

cars increases sig n ifican tly  w hen  p increases from  0  1 to 0  3 and 

this increm ent b ecom es le ss  sign ifican t at high rate o f  arrivals (p =

0 55)
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flow-density relation

5
o

0 27
0 25
0 23
0 21
0 1 9
0 1 7
0 1 5
0 1 3
0 1 1
0 09
0 07
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/

♦  M = 0 1 

5)J = 0 3 

M = 0 55

0 2 0 4
density

0 6

(a) Flow-density relation for a 17 nodes network using various
arrival rates and the turning percentages 25% left, 50% 
through, and 25% right

(b) Flow-density relation for a 41-node network using various
arrivals rates with turning percentages are 25% left, 50% 
through, and 25% right

F i g  (3  9 )
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It can be seen  from  T able (3 1) that cars transported v ia  the netw ork  w as  

m uch higher in  the case  o f  sm aller netw orks irrespective o f  the va lu es o f  p 

as seen  in  F ig  (3 8)

iv A s the va lu e o f  p increases the “jamming threshold”, a w e ll k n ow n  

M acroscop ic p henom ena “Q ueues outside the n etw orks” w ill occur  

Our sim ulation reveals that the queue length  increased sign ifican tly  as 

the arrival rate increased  from  p = 0 3 t o p = 0  55  w ith  the queue  

length  longer in  the case  o f  sm aller netw orks  

T he e ffec t o f  varying the netw ork size can  also  be seen  from  F ig  (3 10), w hich  

sh ow s the ve lo c ity -d en sity  relation for tw o different n etw orks using a 

stochastic feed in g  m echanism , (in w h ich  car arrivals fo llo w  a P o isso n  p rocess  

w ith  p =  0 55) A lso , F ig (3 10) sh ow s that the m axim um  v e lo c ity  obtained in 

the case  o f  larger s ize  netw ork is greater than the m axim u m  v e lo c ity  obtained  

for the sm aller s ize  netw ork

Fig (3 10) : Velocity-density relation for two different
networks using arrival rate of 0 55 and same traffic conditions 
m  Fig(3 9)
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3.3.2 Varying of Traffic Conditions
T w o different sets o f  traffic con d ition s w ere applied , (1) 25%  turn left, 50%  go  

straight, 25%  turn right and (n) 12% turn left, 76%  go  straight, 12% turn right 

T he in flu en ce o f  changing the traffic con d ition s on  som e o f  the netw ork  

perform ance m easures are presented  in T ables (3 2) and (3 3) A lso , in F ig  

(3 11), w e  present the fundam ental diagram s for four different netw orks, 

applying tw o  different traffic con d ition s u sin g a m oderate arrival rate p =  0  3 

B y  com paring T ables (3 2) and (3 3) and studying the f low -d en sity  relations in  

f ig  (3 11), w e  m ake the fo llo w in g  observations

l T he netw ork  m axim um  flo w  w a s increased by increasing the headw ay

traffic p ercentages from  0  50%  to 0  76%  and this increm ent w as  

obtained for arrival rates (p =  0  3 , 0  55 ) A lso , F ig  (3 .1 1 ) sh ow s that 

the e ffec t o f  increasing the h eadw ay traffic p ercentages w as m ore 

n oticeable in the ca se  o f  sm aller s ize  n etw orks S tatistical analysis, 

presented in  A ppendix  A  (T able (A  1)), sh ow s a significant e ffec t o f  

the traffic con d ition s on  the f lo w  at lo w  and h igh  arrival rates at a  =  

0 01 lev e l o f  sign ifican ce  A lso , the analysis reveals a sign ifican t  

interaction b etw een  the netw ork  size  and traffic con d ition s, using lo w  

p , at the sam e le v e l o f  s ig n ifican ce  

n  T he ch an ge in  the traffic con d ition s a lso  affected  the num ber o f  cars

transported through the netw orks T ables (3 2) and (3 .3 ) sh o w s that for 

higher arrival rates, p =  0  3 , 0  55.



Increasing the headw ay traffic p ercentages has d ecreased  the cars 

transported through the netw ork and this cou ld  be seen  clearly m  the  

case  o f  sm aller sized  netw orks T his is  b ecau se the probability  for a car 

to u se  the m ain roads rather than the sub-roads increases by increasing  

the headw ay traffic, w h ich , in turn, a ffect the num ber o f  cars entering  

the netw ork

111 T he sim ulations a lso  reveal an im portant role for traffic conditions on  

the queue length  outside the sim ulated  netw orks For sm aller s ize  

netw orks, increasing the h eadw ay traffic p ercentages increased the 

queue length  and this increm ent becam e m ore n oticeab le at higher 

arrival rates T his is  because the system  d en sity  ch an ges rapidly, 

increasing w ith  every  increm ent o f  p

A s the netw ork b ecom es m ore con gested , the turning percentages p lay  

an im portant role at the entry and ex it n od es S o , by increasing the 

h eadw ay traffic, cars tended to queue longer rather than go  straight 

through In contrast, by increasing the netw ork  size, the netw ork w as  

able to co p e  w ith  the in com in g traffic until m uch latter in  the  

sim ulation  H en ce the turning p ercen tages w ere m ore e ffec tiv e  for a 

lon ger period  and the queue length  decreased  as w e  increased the 

h eadw ay traffic p ercentages
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Measare

Traffic 17 Nodes 33N«tes

Max Plow

25%, 50%, 25% 0 247978 0.2334 0.236816

lZ%t 76%t U% 0,260762 3,241085 0,245792

Dis&sitJ i)F 

Mssaafiow

25%, 50%, 25% 0.482386 0.419332 0.430268

12%, 76%, 12% 0.455271 0.439291 0.459454

j tVaasported i 

Cars

m t 574« 5351

12%, 76%, 12% 5781 5467 5314

1 Qaewe length ; 2$%> so%, MS 739 m i
12%, 76%, 12% 847 672 400

Table (3 2) The Table shows the network parameters, maximum 
flow and its density, cars transported via the network and the 
queue length outside it, obtained using different traffic 
conditions and p=0 3

: FwfeFtttance : 

Measure
Traffic

Conditions

17 Nodes 33N<Kles itliSixtes

25%, 50%, 25% 0.250189 0.236959 0.236763

MaxFiew 12%, 76%, 12% &26t315 0J242875 C250S23

D&itsitj of 25%, 50%, 25% 0.414131 0.433432 0.494114

i Maxim IPtow 12%, 76%, 12% 0.453458 0.458928 0.426943

: Transpwted i z $ % ,s m a s % 6355 5989 m o

Cats 12%, 76%, 12% 6215 5796 5740

i Qaeue Length j 25%, 50%, 25% 6063 5854 5769

12%, 76%, 12% 6292 5744 5706

Table (3 3) The table contents are the same as m  Table (2), 
but using higher arrival rate (y=0 55)
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flow-density relation
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flow-density relation
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Fig (3.11) . Flow-density relation using two different traffic 
conditions

(a)25% left, 50% through, and 25% right and
(b)12% left, 76% through, and 12% right
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3.3.3 Time-interval Based Network Simulation
In order to observe the ch an ges in the traffic behaviour throughout the 

sim ulation  run, our sim ulation  resu lts w ere averaged over tw o different tim e- 

m tervals

T o quantify the e ffec t o f  the tim e-interval, (interval length),, on  these averages, 

sim ulations w ere carried out using tw o lengths, 30  and 150 tim e steps (short

term  and long-term  averages resp ectively)

T he output va lu es o f  the traffic param eters for duration period  o f  60 0  tim e  

steps, after a discard period  o f  2 0 0  tim e steps, applying a lo w  arrival rate for 

tw o d ifferent netw orks are presented in T ables (3 4 ) and (3 5)

T ables (3 6) and (3 7 ), on  the other hand, present sim ilar outputs, but w ith  a 

higher arrival rate (ji= 0  3) From  studying th ese  output averaged va lu es, w e  

m ake the fo llo w in g  com m ents

i T ables (3 4 ) and (3 5), w h ich  com pare traffic param eters that gathered  

using both short-term  and long-term  averages at lo w  \i, dem onstrate  

the fo llo w in g

A s long as the free traffic w as dom inant there w ere no significant  

ch an ges in  the network density and con seq u en tly , in the network flow  
T his can be seen  from  T able (3 4 ) , w here the changes in  the network 
density did not exceed  0  0 1 4 8  during the short-term  averages and 0 01 3  

over the long-term  averages

A s a con seq u en ce o f  th is traffic pattern, increasing the num ber o f  data  

points or averaged va lu es w ill not g iv e  a better idea o f  the fundam ental 

diagram s,( f low -d en sity  relation  here).
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'i
Short-term averages Long-term averages

velocity density flow velocity density flow
0 863204 0148 01273
0 855269 0 *li(9 0 1214:
0 879504 0.1465 01288
0 868557 0,1405 01220
0 869728 0.1457 0,126? 0 888803 0*1306 0.116
0 870116 0.1464 01274
0 86928 0"l476 0128&'

0 861815 0.1424 01227
0 853949 0.1302 G1188
0 867702 0*t378 0<1195 0 88667 01383 0,1228
0 862757 0*1427 01231
0 872121 Qll'471 01283'
0 862006 0144 01241
0 855352 0*1463 01252
0 870685 01459 0,127 0 883948 0*1436 0,1269
0 876735 0.1423 01245
0 850307 0.1303 0118$
0 868917 0.1401 01217
0 863169 0.1309 01207
0 871927 0.1332 0,1162 0 894586 01383 0,1238

Table (3 4): Sample of the simulation outputs for 600 time steps 
for a network of size 25 nodes at low arrival rate ]i = 0 1

Short-term averages Long-term averages
velocity density Flow velocity density flow

0 862791 0*1390 01199
0 870016 0*1384 01205
0 867203 04303 0,1208
0 879202 0,134 0117?
0 873163 0.1364 0,1191 0 893192 0*1415 01264
0 875453 01165
0 866876 0.1356 01175
0 860863 0*1354 0,1166
0 863462 0*1356 0,1171
0 866894 0*1345 $.1166 0 893607 0.1393 01245
0 857361 0.1315 01128
0 877931 0*1334 01172
0 878355 01315 0,1155
0 866478 01318 0,1142
0 872744 0.1316 01147 0 888003 0*1384 01229
0 880963 0.1301 01146
0 876164 0*1272 01115
0 871459 0*1266 0,1103
0 871158 0*1272 0,1108
0 8788 0*1293 01136 0 902559 01391 01256

Table (3 5) Same as Table (3 4), but for a larger network (41 nodes)
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T his w as m ore noticeable in the ca se  o f  large sized  (Table (3 .5 ))  

netw orks, w ith sm aller changes in the network density, (0 .0 1 2 7 , 

0 .0 0 3 5 ) , during short-term  averages and long-term  averages  

resp ectively . T h is result in very sm all ch an ges in the network flow , 
(0 .0 1 0 5 , 0 .0 0 3 5 ), over short-term  and long-term  averages resp ectively  

The statistical analysis in A ppendix  A  (T able ( A .l ) )  supports our 

fin din gs and reveals that the interval length d oes not have a sign ificant 

effect, at a  =  0 .01 lev e l o f  s ig n ifican ce, on  the netw ork flow  at lo w  

arrival rate. H ow ever, a sign ificant interaction b etw een  the netw ork  

s ize  and the interval length  at the sam e le v e l o f  s ign ifican ce w as  

obtained.

ii. W hen a higher arrival rate w as used to feed the sim ulated netw orks, the 

netw ork density  increased rapidly esp ec ia lly  in the case  o f  sm aller s ize  

netw orks. E veryday observations con firm  that as long as the dense  

traffic is dom inant, on ly  sm all ch an ges (increm ent or decrem ent) in the 

netw ork density  and in turn its f lo w  can be obtained.

T he sim ulation  results presented in T ables (3 .6 ) and (3 .7 ) sh ow s that 

sm all ch an ges in f lo w  behaviour, (i.e. f low -d en sity  relation), can be  

observed w h en  short-term  averages w ere used  to describe the traffic  

behaviour, because this w ill generate m ore data points throughout the 

sim ulation  run. In contrast using lon g-term  averages has m in im ized  the  

num ber o f  the data points, w hich  describe the f lo w  behaviour, and in 

turn sm all ch an ges in the flow  behaviour can not be observed. T his can  

be seen  also in F ig (3 .1 2 ). The statistical an alysis, presented in 

A ppendix A (Table ( A .l ) ) ,  also reveals a sign ifican t role for the
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interval length  at higher rate o f  arrivals at a  =  0 01 lev e l o f  

sign ifican ce

The sim ulations su ggest that, for con g ested  traffic, the sm aller the 

interval length  the better in order to ob serve sm all ch an ges in the  

traffic behaviour through the netw ork

Fig (3 12) Flow-density relation for a network of size 25 

nodes using = 0 3 and the turning percentages <25%, 50%, 25%
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Short-term averages Long-term averages
velocity density flow velocity density flow

0.810784 0.2358 0.1912
0.797033 0 2395 0.1909
0.798958 0 249 0.1989
0.799456 0 249 0.1991
0.787616 0.2506 0.1974 0.81997 0.2579 0.2115
0.789998 0.2562 0.2024
0.768539 0 2607 0.2004
0.760912 0.2661 0.2025
0.780104 0.2646 0 2064
0.771537 0.2714 0.2094 0.775212 0.2873 0 2227
0.759717 0.2732 0.2075
0.753567 0.2835 0.2137
0.754227 0.284 0.2142
0.740113 0.2896 0.2144
0.747635 0.2966 0 2217 0.742689 0.3047 0.2263
0.726546 0.3005 0.2183
0.724729 0 3007 0.2179
0.729201 0.3059 0.223
0.751688 0.3089 0.2322
0.732638 0 3072 0.2251 0.722203 0.3242 0 2341

Table (3.6): Sample of the simulation outputs for 600 time 
steps for a network of size 25 nodes,O.y = 0.3

Short-term averages Long-term averages

velocity density Flow velocity density flow
0.847112 0.1984 0.1681
0.83655 0.2057 0.1721

0.833052 0.2086 0.1738
0.829258 0.2122 0.176
0.832169 0.2173 0.1809 0.852978 0.2178 0.1858
0.832335 0.2199 0.183
0.826608 0.2232 0.1845
0.821905 0.2286 0.1879
0.8083 0.2354 0.1903

0.803471 0.2374 0.1908 0.833971 0.241 0 201
0.805983 0 2422 0 1952
0.802133 0.2445 0.1961
0.799815 0.245 0 196
0.804715 0.249 0.2004
0.788325 0.2549 0.201 0.809594 0 2606 0.211
0.780426 0.2588 0.202
0.787022 0.2582 0,2032
0.791823 0.2616 0,2072
0.794961 0.2652 0.2108
0.773795 0.2651 0.2052 0.794252 0.2768 0 2198

Table (3.7): Same as Table (3.6), but for a network of size 41 nodes
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3.3.4 The influence of Changing the Transient Period 
on Network Performance

ill
N ex t w e  lo o k  at the e ffec t o f  the transient period on  the sim ulation  output by 

using tw o  different transient periods, 2 0 0  and 5 0 0  tune steps In the fo llo w in g  

experim ents, the traffic param eters w ere averaged every  30 -tim e steps by  

applying the fo llo w in g  traffic con d ition s as in  ca se  (l), S ec  (3 1 5) for a 

duration o f  5 0 0 0  tim e steps using tw o different arrival rates (p =  0  1 &  p =  

0 55  ) T h is w as carried out for tw o  different n etw ork  sizes, w ith  radu r =  

3 ,(1 7  node) &  r =  6 ,(41 node)

T he results o f  the above sim ulations w ere as fo llo w s

A t first glance, T able (3 8) reveals that the e ffec t o f  increasing the transient 

period from  2 0 0  to 5 0 0  tim e steps has no significant^ in flu en ce on  the  

m axim um  flo w  obtained at both rates o f  arrivals, no m atter w hat netw ork size  

is used in the sim ulation  T his is  because no sign ifican ce  changes in the  

m axim um  flo w  occurred, for either netw ork, or for either p

Performance
Measure

Network
size

p = 0  1 p =  0  55

Trans Pd = 200 Trans Pd = 500 Trans Pd = 200 Trans Pd = 500
Maximum

Flow
17 JiOdôS &14892 0 ,1 4 0 4 6 Q>25&i8£
41 nodes 0 123815 011531 0 236763 0 238576

Density of 

Max Flow
17 m éss 0.180459 Q j m r n 0<4i4131 0  528179
41 nodes 0143406 0 131372 0 494114 0 490861

Table (3 8) The influence of changing the transient period on 
the maximum flow and its density, using different values for p 
and traffic conditions 25% left, 50% through, 25% right
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O n the other hand, statistical analysis presented  in A p p en d ix  A  (T ab le(A  1)) 

sh ow s the sign ifican t in flu en ce o f  the transient period on  the netw ork flo w  at 

both rates o f  arrivals

A  c loser  lo o k  at T able (3 8) sh ow s the in flu en ce o f  transient period on the 

m axim um  flo w  as the statistical analysis confirm s  

T his can be dem onstrated as fo llo w s

S in ce no sign ifican ce  changes w ere observed  in the m axim um  flo w  for either 

length  o f  transient period, the increm ent o f  the transient period has not 

correctly reproduced the d en sity  o f  m axim um  flo w  T his is  m ore n oticeab le in  

the case  o f  sm aller s ize  netw ork at higher p

F ig  (3 13) sh ow s h ow  the fundam ental d iagram s are affected  by the length  o f  

transient period, esp ec ia lly  for sm aller netw orks T he e ffec t  o f  changing the 

transient period for different traffic con d ition s w as a lso  noted  (Table (3 9))

Performance
Measure

Network
size

oII3- p  =  0  55

Trans Pd = 200 Trans Pd = 500 Trans Pd = 200 Trans Pd = 500
Maximum

Flow
l?BOde$i 0J32537 0,133296 0,261315 0,264442
41 nodes 0137141 0122812 0 250523 0 250281

Density of 
Max Flow

17 nodes GJ5784 0154583 0  453458 0  504902
41 nodes 0157631 0139498 0 426943 0 415698

Table (3 9): The influence of changing the transient period on 
the maximum flow and its density, using different values for u 
and traffic conditions 12% left, 76% through, 12% right
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The sim ulation  reveals that using 200-tim e steps as a discard period is  good  

enough  to let the transience d ie out, w here the largest road segm ent in our 

sim ulated n etw orks did not ex ceed  60  sites, F ig  (3 13)

0 2 7  

0 2 5  

0 2 3  H 

0 21 
0 1 9 

0 17  H 

0 1 5

•  r = 3,  trans period = 2 0 0  

« r = 3, tr'ans period = 5 0 0

0 1  0 2  0 3  0 4  0 5  0 6  0 7

d e n s i t y

(a)

0 2 6  -|

0 24  -

0 2 2  -

I  0 2 - / ♦ r = 6 , t r a n s p e r i o d = 2 0 0  I
» r = 6 , t r a n s p e r i o d = 5 0 0  |

0 18 -
0

0 16 - ♦

♦ -V
0 14 - 1 I 1 I 1 1 1

u
r

C 0 1  0 2 0 3 0 4 0 5 0 6 0 7

d e n s i t y

(b)
Fig (3 13) Flow-density relation using the traffic conditions 
of 25% left, 50% through, and 25% right and arrival rate of 
0 55

(a)for a 17 node network
(b)for a 41 node network



3.4. Summary and Concluding Comments
In this chapter w e  m oved  from  sin g le  lane traffic f lo w  tow ards road netw orks  

D ifferent netw ork sizes have been  tested , w here all n od es w ere controlled  by 

traffic h gh ts and the signa l operating con d ition s w ere assum ed to be pre-tim ed  

signa l V arious traffic con d ition s w ere considered  at the netw ork junctions A  

stochastic feed in g  m echanism , in  w h ich  car arrivals fo llo w  a P o isso n  p rocess  

w ith  param eter p , has been  im plem ented  throughout the sim ulations using  

different va lu es for the param eter p .v>
T he w ork  presented in this chapter su ggests that param eters governing  

perform ance o f  urban netw orks m ay be in vestigated  in som e detail u sin g the 

sim ple cellu lar autom ata M od els  

T he resu lts obtained in th is chapter ind icate the fo llow in g

•  It appears that there is a critical arrival rate ”jamming threshold’ above  

w h ich  the transportation through the n etw ork  is  not effic ien t any m ore and  

this rate is independent o f  the netw ork  size

•  In a free traffic regim e, the traffic con d ition s, d efin ed  in S e c (3 1 5 ), seem  

to in v o lv e  sign ifican t interaction w ith  netw ork  size,(oc =  0  0 1 ), but for 

den se traffic this interaction w as not significant

•  T he arrival rate is  the principal factor o f  im portance for larger n etw orks A  

sign ifican t in teraction ,(a  =  0  0 1 ), a lso  ex ists  betw een  the arrival rate and 

the netw ork size
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•  The sim ulation  also  reveals that the interval len gth  used  to  gather the  

traffic param eters, average v e lo c ity , density , and f lo w , has a significant 

r o le ,(a  =  0  0 1 ), on  the f lo w  rate at higher arrival rate A  sign ificant 

interaction b etw een  the netw ork  size  and the interval length  w as obtained  

at a  =  0  01 le v e l o f  sign ifican ce  T he sim ulation  reveals that the sm aller  

the interval length  the better, in order to calcu late the traffic param eters

•  T he length  o f  the transient period, w arm  up period, also has in fluenced  the  

traffic param eters at both, lo w  and high, arrival rate, w here using 200-tim e  

steps as a transient period w as good  en ou gh  to let the transience d ie out A  

sign ifican t interaction ( a  =  0  01 ) betw een  the transient period and the  

netw ork size  obtained at lo w  arrival rate
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( Chapter 4/

“Network Performance under Various Traffic Events”
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4.0 Introduction
In Chapter 3, w e  w ere concerned  “o n ly ” w ith  the transient features o f  

veh ic le  m ovem en ts in  sim ulating p assage through the netw ork under 

sustained flo w

In this chapter, w e  investigate  the traffic behaviour along the netw ork with  

lo ss  to f lo w  Four underground parks, each  o f  cap acity  up to 30 0  cars, w ere  

introduced in order to exam in e the e ffec t on  the transient behaviour o f  the 

system  In the fo llo w in g  experim ents, each  sim ulation  run con sists  o f  50 00  

tim e steps After a discard period  o f  2 0 0 -tim e steps, short-term  averages  

w ere used  to gather the output param eters, f lo w , density , v e lo c ity , input o f  

cars to the netw ork, output o f  cars o f  the netw ork, and the queue length  

outside each  entry/exit n od e T he turning percentages w ere 25%  left, 50%  

through, 25%  right T h ese sim ulations w ere perform ed for tw o netw orks o f  

different s izes , 17 and 41 n od es Each sim ulation  run w as d iv ided  into tw o  

stages In the first stage (1 0 0 0 -3 0 0 0  tim e steps) v eh ic le s  m ay enter the  

underground parks at fixed  or stochastic rate, w h ile  in  the secon d  stage
i

(3 0 0 0 -5 0 0 0  tim e steps) they lea ve  the underground parks,’ also by the sam e  

manner, and h ence p ass through the netw ork

4.1 Loss to Flow Simulations
4.1.1 Simulation with Loss to Flow at Fixed Rate
In the fo llo w in g  sim ulation  a car m ay enter or lea ve  the underground park  

w ith fixed  probability  (p =  0 5)



T he m ost rem arkable aspect o f  introducing these parks is  a d ifferent 

“jamming threshold!” for d ifferent netw ork sizes, as can be seen  from  

F ig (4  1)

(a)

V)
COo

a>Q
E3

0 1 0 2 0 3 
M

0 4 0 5 0 6

total
transported 

““■sfe— waiting

(b)

Fig (4.1) Number of cars vs arrival rate for

(a) 17 node network (b) 41 node network
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B y  increasing the netw ork  size its ab ility  to cop e  w ith  the traffic im proves, 

see  (Fig (4  2)) T his can also can b e illustrated by studying the fundam ental 

diagram s (Fig (4  3 )) o f  one o f  the sim ulation  runs, w here p =  0  3 and the 

data w ere averaged ev ery  30 -tim e step after a discard period  o f  2 0 0  tim e  

steps

Fig (4 2) Number of waiting cars vs arrival rate for two 
different size networks

T he first part o f  the f low -d en sity  relation, F ig (4  3 (a)), represents the free  

phase traffic, w h ich  is characterised by h igh  v e lo c itie s , see  F ig (4  3 (b)), and 

lo w  den sities

B y  contrast the second  part represents the jam m ed p h ase traffic, w h ich  lasts  

for a longer period in the case  o f  sm all s ize  netw ork
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(a)

(b)

(c)
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Fig (4.3) : The fundamental diagrams for simulation described 
above, where m
(a) flow-density relation, (b) velocity-density relation
(c) velocity-flow relation, (d)velocity-flow relation for the
transient movement simulation, see Chapter 3

T he ab ove scenario can  be exp lained  as fo llo w s

Initial con d ition s o f  lo w  d en sity  o f  cars and the application  o f  arrival rate ( p 

=  0 3) did not m uch in flu en ce  the netw ork  density , as long as v eh ic le s  m ay  

lea ve  the netw ork through the d ifferent ex its and m ay  also disappear into  

on e o f  the underground parks T his situation w as dom inant until th e second  

stage o f  traffic m ovem en t w h en  v eh ic le s  started to lea ve  the underground  

parks, causing traffic jam s to spread everyw here along the n etw ork  due to 

the high d en sity  and lo w  flo w , characterised by decrease in  netw ork  

v e lo c ity , see  F ig  (4  3 (b)) This w as m ore n oticeab le in the ca se  o f  the 

sm aller netw ork, w here the netw ork density  increases sign ifican tly  from  p ~ 

0  1, during the first stage, to p~ 0  81, w ith in  the secon d  stage
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In contrast the m axim um  netw ork  density  obtained in the second  stage for 

the larger n etw ork  w as ~  0  6

T h ese F igs (4  3 (a)) and (4  3 (b)) ind icate strong sim ilarities o f  the  

fundam ental diagram s to th ose  obtained for in d iv idual road section s w hen  

com pared to th ose obtained in  transient m ovem en t sim ulations (sec  2 3 1 1 )  

T he flo w  v s  v e lo c ity  relations presented in  F igs (4  3 (c)) and (4  3 (d)) sh ow  

the variation o f  v e lo c ity  w ith  f lo w  for the tw o  types o f  sim ulation, 

sim ulation  w ith  lo ss  to f lo w  and transient m ovem en t sim ulation  T hese  

figu res m ay be com pared and exp lained  as fo llo w s

T he upper parts o f  the fundam ental diagram s represent the freely  flow in g  

traffic, w here each  car travels at the desired speed , w h ich  lasts for a longer  

period in the case  o f  lo ss  to f lo w  system s

A s the traffic b ecom es heavier the d ecrease in  the average v e lo c ity  b egins  

s lo w ly  T hen the continuous increase in  the system  d en sity  w ill lead  to a 

continuous d ecrease in  the average speed and, in turn, the average flow , 

w hich  is  m ore n oticeab le in  the ca se  o f  sm aller netw ork  A lso , this w a s m ore  

n oticeab le in the ca se  o f  lo ss  to f lo w  system s as the d en sity  increases  

considerab ly  due to the ex isten ce  o f  the underground parks
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4.2.1 Simulation with Loss to Flow at Stochastic Rate
In the next experim ents, at every  tim e step, w ith in  the sp ecified  periods for 

entering and leav in g  the underground parks, w e  assum e that a car m ay enter 

or lea v e  any o f  these parks according to a P o isson  distribution w ith  

parameter p 1

F ig  (4  4 ) sh ow s that increasing the param eter p 1 from  0  1 to 0  3 has led to a 

low er va lu es for the jam m ing threshold, w hich  depends on  the netw ork size  

In the ca se  o f  the sm aller s ize  netw ork, the jam m ing threshold  h as decreased  

f r o m 0 2 t o ~ 0 1 8  and also the num ber w aiting cars has increased

M1 =0 1,17 nodes

 ------|J1=0 3, 17 nodes

|j1=0 1, 41 nodes 

— M1=0 3, 41 nodes

Fig. (4.4) : Number of waiting cars vs arrival rate for two 
different networks using different values for the parameter 
Ul

In contrast, u sin g a larger size  n etw ork  has increased the jamming threshold 
up to 0 25  and also above the jamming threshold the number o f  w aitin g  cars 

has decreased considerab ly  com pared to the sm aller s ize  netw ork
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In order to study the e ffec t o f  varying the param eter p i  on  the netw ork  

perform ance, in the fo llo w in g  sim ulation  w e  restrict ou rselves to studying  

the behaviour o f  the system  d en sity  over the sim ulation  run A s usual, in  the  

n ext sim ulations each  run w as conducted  up to 5 0 0 0  tim e steps, then data 

w ere gathered every  30  tim e steps after a relaxation  period  o f  20 0  tim e steps  

T he turning p ercentages w ere 25%  left, 50%  go through, 25%  right, this 

w as perform ed for tw o different netw orks, 17 and 41 nodes, and using tw o  

arrival rates, p =  0  15 and p =  0  5

A t lo w  arrival rate (p =  0  15), F ig (4  5) dem onstrates the in flu en ce o f  the  

param eter p i  on  the system  density , both in  (a) the system  o f  s ize  17 nodes  

and in (b) the system  o f  s ize  41  nodes  

T he sim ulation  results can  be sum m arised as fo llo w s

•  W ithin  the parking perm itted period, (i e  in the first stage o f  the 

sim ulation), increasing the param eter p i  from  0 1 to  0  3 has increased  

the probability for a car to disappear into on e o f  the parks T his, in  turn, 

has decreased  the system  d en sity  w ith in  th is period  and th is w as  

observed for both netw orks

•  In contrast, the in flu en ce o f  increasing the param eter p 1 on  the system  

d en sity  w as m ore n oticeable during the off-parking period  ( l e  the 

secon d  stage traffic) T his increm ent has increased  the probability  for a 

car to leave the park, w hich , in  turn, increased  the ou tgo in g  traffic from  

the parks w ithin  a sm all tim e-interval A s  a con seq u en ce o f  this 

dynam ic, the system  d en sity  responds rapidly, l e  is considerab ly  

increased
4
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time steps

p1= 0  1

M1=0 3

(a)

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

time steps

p1 = 01 
M1= 03

(b)
(■

Fig (4.5) The influence of introducing underground parks on 
the system density over the simulation run at low arrival 
rate(u = 0 15) using different values for the parameter ul, 
where m
(a) The network of size 17 nodes
(b) The network of size 41 nodes
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T his w as m ore n oticeab le in  the case  o f  the sm aller s ize  netw ork, w here  

the m axim um  d en sity  obtained w as ~  0 41  com pared to  ~ 0  36  obtained  

in  the case  o f  the larger netw ork, see  F ig (4  5)

T his situation w as dom inant until a ll cars left the parks, w hich  last for a 

longer period w h en  p 1 =  0 1 

A t high arrival rate (p = 0  5 ), the in flu en ce o f  increasing the P oisson  

param eter p i  on  the system  d en sity  w as observab le on ly  w h en  the  

underground parks w ere able to co p e  w ith the in com in g traffic T his is 

because the probability for a car to disappear into on e o f  the parks has 

m creased , w hich , in  turn, w ill lead to con gestion  in sid e these parks at early  

stage

H ow ever, this period did not last for long and the system  d en sity  m creased  

rapidly, irrespective o f  the va lu e o f  p 1 until the off-parking period started 

A t this stage the param eter p i ,  again, retains its in flu en ce on  the system  

d en sity  and the ou tgo in g traffic from  the underground parks increases by the 

increm ent o f  p 1, see  F ig  (4  6)
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(a)

(b)

Fig (4 6) The influence of introducing underground parks on 
the system density over the simulation run at high arrival 
rate(u = 0  5) using different values for the parameter ul, 
where m
(a) The network of size 17 nodes
(b) The network of size 41 nodes
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4.2 Traffic System under Short and Long-term 
events

\

In Chapter 3, w e  assum ed that the netw ork neighbourhood w as able to cop e  

w ith any num ber o f  cars that m ight leave the sim ulated netw ork T his m eans 

that the first site outside any o f  the netw ork ex its w as a lw ays free  

In real traffic, th is is  n ot a lw ays true It som etim es happens that on e (or 

m ore) o f  the netw ork ex its is  (are) c lo sed  for a short-term , due to a car 

accident or traffic jam s, etc, or for a long-term  due to road w orks, etc 

T he short-term  even ts occur at random  and last for a certain period o f  tim e, 

w hereas the long-term  even ts m ay last for days or even  w eek s  

T o approach reahty th ese  even ts, stated above, w ere m od elled  in our 

sim ulations In the fo llo w in g  experim ents each  sim ulation  w as conducted  for 

6 0 0 0  tune steps and data w ere co llected  after a relaxation period  o f  2 0 0  tim e  

steps applying traffic con d ition s 25%  turn left, 50%  go straight, 25%  turn 

right This w as perform ed for a netw ork o f  s ize  17 n od es by applying tw o  

arrival rates, p =  0  15 and 0  35

4.2.1 Modelling Short-term events
T he short-term  even ts in our sim ulation  w ere m od elled  by b locking som e o f  

the netw ork ex its at random , (l e  they are exp on en tia lly  distributed w ith  

param eter X), and each  even t m ay last on ly  for a num ber o f  tim e steps, 

w h ich  w as a lso  ch osen  at random , (using the fun ction  rand()). H ow ever , the 

duration o f  any short-term  even t did not exceed  50  tune steps



T he num ber o f  occurrences o f  such  short-term  even ts w as fixed  in  our 

sim ulation  and tw o values w ere used , 15 and 25

T o quantify the e ffec t o f  introducing such even ts, sim ulations w ere runs by  

block in g  on e or tw o o f  the netw ork ex its at random  tim e steps, w h ich  w ere  

exp on entia lly  distributed w ith  param eter X  =  0  0 0 5  1

F ig  (4  7) sh ow s the in flu en ce o f  introducing these even ts on  the system  

density  during the sim ulation  run for a netw ork o f  s ize  17 n od es and u sin g a 

lo w  arrival rate (p = 0  15) In (a) 15 short-term  even ts w ere im posed  

throughout the sim ulation  and in (b) the num ber o f  these even ts w as  

increased  to 25

In F ig  (4  7) the changes in  the system  d en sity  can  b e interpreted as fo llo w s  

the w a y  in w h ich  the system  d en sity  responds to the short-term  

events(obstructions) depends on  the fo llo w in g  factors  

i the num ber o f  occurrences o f  such  even ts, h ow  frequently they w ill  

occur9

11 and if  they occur for h o w  lo n g 9

m  the percentage o f  the traffic leav in g  the netw ork at the tim e o f

im p osin g  these even ts  

iv the num ber o f  the netw ork ex its  w hich  are in flu en ced  b y  these even ts

In (i) the tim e-interval, w h ich  separates b etw een  any tw o  con secu tive

obstruction occurrences, depends on  the ch o ice  o f  the param eter X  The  

higher the va lu es o f  X  the m ore frequent the obstructions In our sim ulation  

the va lu e o f  X  w as ch osen  to  accom m odate the num ber o f  the obstruction  

occurrences over the sim ulation  period
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Increasing the num ber o f  obstruction occurrences, provided that a longer  

period  for the obstruction duration w as random ly ch osen , w ill increase the  

system  d en sity  T h is can  be n oticed  from  F igs (4  7 (a)) and (4  7 (b)), w here  

the num ber o f  obstruction occurrences has increased from  15 to 25 tim es

(a)

(b)
Fig (4 7) The effect of introducing short-term events on the 
system density, for a network of 17 nodes, over the 
simulation run at low arrival rate(p = 0 15) where m
(a) The number of occurrences of these events was 15 and m
(b) the number increased to 25
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To get a clear insight into the im portance o f  (111), let us assum e that an 

obstruction ex ists  outside an entry and ex it n od e and its duration period  is  20  

tim e steps N o w  if  25%  o f  the traffic is  leav in g  the netw ork, then there is a 

probability o f  P  =  0  25  that car w ill be b locked  O therw ise it w ill turn left 

(right) or go  straight through

T his m eans that the obstruction has in flu en ced  the traffic leav in g  the 

netw ork on ly  for 5 tim e steps and not 2 0  tim e step s’ T h is exp la in s w h y  a 

higher d en sities w ere obtained in case  o f  b locking on ly  one ex it in 

F ig (4  7 (b)) Further sim ulations, not show n here, reveal a considerab le role  

for the traffic con d ition s on  the system  density

T he in flu en ce o f  factor (iv) becam e m ore n oticeab le w h en  the arrival rate 

w as increased to p =  0 35 , see  F ig  (4  8)

Fig (4 8) The effect of introducing short-term events on the 
system density, for a network of 17 nodes, over the
simulation run at high arrival rate(y = 0 3*5) where the 
number of occurrences of these events was 15
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A s the traffic b ecom es heavier, b lock in g  m ore o f  the n etw ork  exits, even  for 

a short period o f  tim e, has sign ifican tly  in flu en ced  the system  d en sity  as can  

be seen  from  F ig  (4  8)
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4.2.2 Modelling Long-term Events
In this section , lon g-term  even ts have replaced the short-term  ones, ( l e  

b lock in g  som e o f  the n etw ork  ex its  over the duration o f  the sim ulation  run) 

A lso , four underground parks, each  o f  cap acity  up to 3 0 0  cars, w ere  

introduced in order to sim ulate lo ss  to f lo w  (at fixed  rate w ith  P =  0 5)

T he sim ulations w ere perform ed for tw o different netw ork sizes, 17 and 41 

nodes, by u sin g d ifferent arrival rates, p =  0  1, 0  3, and 0  55  Each  

sim ulation  run w as conducted  for up to 5 0 0 0  tim e steps and data w ere  

gathered every  3 0 -1 5 0  tim e steps after a relaxation period 2 0 0 -5 0 0  tim e  

steps T he traffic con d ition s applied  as in  Chapter 3 , S ec  (3 1 5) cases (i) &  

(m ) A  sum m ary o f  the sim ulation  resu lts can  be found in A ppendix B  

(T ables (B  5) and (B  6))

In the case  o f  the sm aller s ize  netw ork our sim ulation  reveals that the 

h ighest va lu e o f  the m axim um  flo w  (0  25 9 8 ) w as obtained, w h en  on ly  one  

o f  the netw ork ex its w as b locked  and data w ere averaged every  150-tim e  

steps after a warm -up period  o f  2 0 0  tim e steps T h e turning percentages  

w ere 12% left, 76%  through, 12% right and the arrival rate used  w as p =  0  3 

In contrast, the lo w est va lu e o f  the m axim um  flo w  (0 2 0 9 7 ) w as obtained  

w h en  tw o  o f  the netw ork ex its w ere b locked  and u sm g the sam e sim ulation  

param eters as above but at low er arrival rate (p =  0 1)

T o get a clear insight into the e ffec t o f  introducing both the long-term  even ts  

and the underground parks on  the netw ork perform ance, w e  therefore study  

the above tw o extrem e ca ses  (i e. q„m =  0 .2 5 9 8  and qm.a = 0 .2 0 9 7 ).

104



T he traffic behaviour for these sim ulation  runs com pared w ith  the case o f  

m axim um  flo w  obtained in  the transient m ovem en t sim ulation, Chapter 3, 

m ay be described  w ith  the help o f  the fundam ental d iagram s presented in
I

F ig (4  9)

0 3  n 

0 25 

02H 
O 0 1 5  

^  01 
0 05 

0

A £
e

jp

I I ! I I I I I I I
0 01 0 2  0 3  0 4  0 5  0 6  0 7  0 8  0 9  1

density

a no blocking 

• 1 blocked 

2 blocked

(a)

1 1

0 8 -
>»**
Ô 0 6 -
o
d> 0 4 -
>

0 2  -

0 -

A*-l f-

I  I  I  I- - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - 1- - - - - - - - - - - - - - - 1

0 0 1  0 2  0 3  0 4  0 5  0 6  0 7  0 8  0 9  1

density

• no blocking

* 1 blocked 

2 blocked

(b)

Fig (4 9) Fundamental diagrams of the above two 
extreme cases, where m
(a)flow-density relations (b)velocity-density relations
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From  F ig  (4  9), w e  can ob serve the e ffec t o f  b lock in g  on e or m ore o f  the

netw ork ex its as fo llo w s

•  T he first striking feature o f  F ig  (4  9), f low -d en sity  relation, is this gap, 

w h ich  iso la tes the d en se traffic reg im e T his occurs due to the increm ent 

o f  the netw ork  density  from  0  3 3 0 6 2 9  to  0  5 9 6 9 , w h en  tw o  ex its w ere  

blocked  and from  0  4 9 6 3  to 0  70 5 9 , w hen  o n ly  on e ex it w as b locked  

T his in  turn resu lts in  dropping the netw ork v e lo c ity  from  0  63 to 0 33  

and from  0 5 to 0 28  for the above cases resp ective ly , w h ich  can b e seen  

from  F ig  (4  9 (b))

•  T h is d iscontin u ity  in the fundam ental diagram  has been  obtained in  road  

traffic m easurem ents, (Edie, 1974 , H all, 1 9 86 ), w hich  lead to the  

assum ption, that there is a point o f  d iscontin u ity  in  the fundam ental 

diagram  around the m axim um  traffic flo w , b etw een  the left part o f  the 

diagram , representing the free traffic, and the right part o f  the diagram,
i

representing the d en se traffic The fundam ental d iagram  obtained for the 

case o f  h ighest va lu e o f  g max (Fig (4  10 a) g ives a go od  approxim ation to 

the experim ental data in  F ig (4  10 b)

•  A lso , introducing lon g-term  even ts such  as underground parks and 

b lock in g  som e o f  the netw ork  ex its  has decreased  the netw ork  m axim um  

f lo w  from  <7max =  0  2 7 0 2 , w hich  obtained in  the ca se  o f  transient 

m ovem en t sim ulation  in Chapter 3 , to qmax =  0  20 9 7 , w h ich  obtained by  

block in g  tw o  o f  the netw ork ex its at lo w  arrival rate(]i = 0  1)
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Fig (4 10 a) The fundamental diagram obtained for the case of 

highest value of = 0 2598

( cars 
hour)

k(cat'sAnile)

Fig (4 10 b) Fundamental diagram for road traffic flow, 
source' Edie (197 4)
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•  F ig (4  9) reveals that introducing lon g-term  even ts has resu lted  in  low er  

den sities for the m axim um  flo w  In the case  o f  transient m ovem ent  

sim ulation, g max w as observed at d ensity  p q̂  -  0  50 , whereas

p rogressively  b locking netw ork ex its has d ecreased  the d en sity  o f  p q^

from  0  4 1 , w hich w as observed  in case  o f  b lock in g  on e  exit, to 0 33  

w h en  tw o  o f  the netw ork  ex its w ere b locked

•  Increasing the n etw ork  size to  41 n od es has resu lts in  low er d en sities for 

the extrem e va lu es o f  qmax T he results are sum m arised in  T able (4  1)

It can be seen  from  T able (4  1) that, in the case  o f  larger s ize  netw ork, 

sligh tly  low er  v a lu es for the m axim um  flo w  w ere  obtained at low er  

d en sities T he statistical analysis presented  in A ppendix  A  (T able (A  1)) 

reveals a sign ifican t interaction b etw een  the netw ork  size  and the  

num ber o f  the b locked  ex its  at a  =  0  5 lev e l o f  s ign ifican ce

Perform ance 17 n od es netw ork 41 n od es netw ork

M easure H igh est L o w est H igh est L o w est

M axim um  flo w 0  25 98 0  20 97 0 2 5 4 6 5 4 0  2 0 5 4

D en sity  o f  m ax flo w 0  4 4 3 9 0  3 3 0 9 0  4 1 9 9 0  31 68

Table (4 1) Comparison between the highest values and the 
lowest values the maximum flow obtained for two different 
networks, where some of the network exits were blocked
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4.3 Summary and conclusion -t
In first part o f  this chapter w e  have studied the non-transient m ovem en t o f  

cars along the netw orks by introducing underground parks and a llow  cars to 

park inside the netw ork, so that they are tem porarily lo st to f lo w  This w as  

perform ed at fixed  rate (1 e  car m ay lea v e  (enter) the park w ith probability  

P) and also at stochastic rate (1 e  car arrival or departure to any o f  the parks 

fo llo w  a P o isson  distribution w ith  param eter p i )

In the secon d  part o f  this chapter, w e  investigated , in brief, the in flu en ce o f  

im p o sin g  short and long-term  even ts on  the netw ork perform ance  

Short-term  even ts in  our sim ulation  w ere m od elled  by b lock in g  som e o f  the  

netw ork ex its at random , they w ere exp on en tia lly  distributed w ith  parameter 

X, and this b locking lasts on ly  for a certain num ber o f  tim e steps, w h ich  did 

not exceed  50  tim e steps

In contrast, b locking som e o f  the netw ork ex its  during the sim ulation  run 

have sim ulated the long-term  even ts Our fin d in gs can be sum m arised as 

fo llo w s

1 T he m ost rem arkable aspect from  introducing underground parks

w as a different "jamming threshold" for different netw ork  sizes, and 

sim ulation  w ith  lo s s  to f lo w  at stochastic r a t e ' sh ow s that the  

"jamming threshold” for each  netw ork depends on  the param eter p 1 

n T he sim ulation  also  reveals that sm all s ize  n etw orks respond rapidly

to external ch an ges, esp ec ia lly  for netw orks w ith  lo ss  to f lo w
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T he sim ulation  reveals that the w a y  in w h ich  the system  responds to 

the sim ulated short-term  even ts depends on  their num ber and h ow  

frequently th ey  w ill occur and the duration o f  each  occurrence and 

also  the arrival rate used  to feed  the system  w ith  cars T he in fluence  

o f  these even ts  w as m ore noticeable at h igher rate o f  arrivals M ore  

w ork  needs to be done to in vestigate  the in flu en ce the traffic 

con d ition s and the ch an ge in  the param eter X, w h ich  determ ine h ow  

frequently th ese  even ts w ill occur, on  the netw ork  perform ance  

B y  m od ellin g  long-term  even ts such as b lock in g  on e or m ore o f  the  

n etw ork  exits, over the sim ulation  run, a sign ifican t interaction  

b etw een  the netw ork size  and num ber o f  b locked  ex its  w as obtained, 

( a  =  0  01 ), at high le v e l o f  concentration o f  cars 

D esp ite  the co m p lex  interactions in  urban netw orks, the  

characteristic shape o f  the fundam ental diagram s w as a lso  obtained  

at netw ork traffic lev e l



Chapter 5

“Simple Lane-Changing Rules for Urban Traffic Using
Cellular Automata”

111



5.0 Introduction
T o approxim ate reality the sim ulation  to o l has to be e ffic ien t and represent

som e o f  the basic traffic features, w hich  can  be ob served  or tested  U sing

sin gle-lan e netw orks, im portant features lik e  lane changing and its e ffec t  on

the traffic stream  behaviour cannot be observed and studied

T he basic idea behind the lane changing m ech an ism  is  either to m aintain a

regular, (desired), speed  or to im prove the current speed, w here in both cases

the driver is  hindered from  d oing so in  h is current lane

T his situation is not a lw ays the case  in sid e urban traffic areas, w here drivers

m ay change their lane due to d ifferent m otivations, such  as perform ing a right

turn at intersections, to avoid  obstructions and so on

In the first regim e, (h igh w ay traffic), on e set o f  lane-changing rules w as  

show n to be able to  reproduce som e o f  the m acroscop ic aspects o f  traffic f lo w  

on h ighw ays such as d en sity  inversion  b etw een  the tw o lanes, w h ich  take  

place lo n g  b efore the d en sity  o f  the m axim um  flo w  (R ickert et al, 1996, 

W agner et al, 1997)

D u e to the com p lex ity  o f  the secon d  reg im e (urban traffic), w e  m ay raise the  

fo llo w in g  question

Can w e  find a p erfect set, “super set”, o f  lane-changing rules in  order to 

accom m od ate all the d ifferent m otivations for lane changing in sid e the urban 

areas9

>r

112



In this chapter, w e  present three different sets o f  rules for lane changing as 

fo llo w s  urgent lane-changing cond itions, minimal and maximal con d ition s for 

lane-changing each  o f  w h ich  is u sed  in  order to accom m odate the driver need  

to change lane (G ipps, 1986)

5.1 Motivations for Lane Changing
Lane-changing w ill occur in  on e o f  the fo llo w in g  cases

I T o gain som e speed advantage

If  the driver on  the left lane, (s lo w  lane), evaluates the other lane traffic 

to be better, (1 e  the second  lane has a low er f lo w  and higher speed), 

then w ith  probabihty P _ch g he w ill ch an ge lane and w ith  1-P _chg he 

w ill not

II T o avoid  obstruction

O bstructions, such as cars m aking delivery, B u s stops, and cars 

in tending to perform  a left, (or right), turn, have b een  im p osed  at 

random  w ith  probability  P _o b s T his obstruction is  located  on  the left 

lane w ith  probability P _ lob s and w ith  probability  1- P _ lob s on  the right 

lane Cars w ill m ov e  to overtake the obstruction as they enter the  

obstruction zon e

III T o turn at the next intersection

I f  the driver on  the left lane intends to perform  a right turn or the driver 

on  the right lane intends to perform  a left turn, then lane-changing w ill  

occur and this depends on  h ow  c lo se  the car is to the in tersection  zon e
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IV  T o avoid  s lo w  p la toon s on  the fast lane

S in ce a ll cars evaluate the fast lane to be the better on e, this w ill result 

in clusters o f  s lo w  m ovin g  cars A t this stage cars can change lane in 

order to pass th ose p la toon s provided  that the s lo w  lane a llo w  this 

change

5.2 The two-lane Model:
T he tw o-lan e m od el con sists  o f  tw o parallel s in g le-lan e  m od els and three sets  

o f  rules for lane-changing defined  b elo w , (Equations (5 l ) - ( 5  3)

Our lane changing ru les are based on  the fo llo w in g  steps

(a)- ch eck  for v eh ic les  that are qualified  for lane-changing according to  

the sp ecified  lan e-ch an gin g rules

(b)- m ov e the ch osen  v eh ic le s  for lane-changing to  the neighbouring  

sites in  the secon d  lane

( c )- use the m od el rules to update each  sin g le  lane independently

In step (a), norm ally, cars m ust overtake on  the right lane but overtaking on  

the left lane is  perm itted-

1 W hen the driver intends to turn at the next in tersection

2 W here the traffic is  m ovin g m ore s lo w ly  on  the right lane than the  

le ft lane

Step (b) is  needed  for the sim ulation  purpose on ly, as in  real traffic the car w ill  

advance to the destination  site d irectly  

Let us assum e that, in  reference to F ig .(5.1):
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dx is  the headw ay d istance to the leading car on  the destination lane

dy is the backw ards d istance to the fo llow in g  car on  the destination lane,

w here both  dx and d y  are m easured from  the em p ty neighbouring site  

on  the destination  lane  

v is the speed o f  the car w h ich  intends to change lane

vb is  the speed  o f  the fo llo w in g  car on  the destination lane

dz is  the head w ay d istance to the car ahead in the current lane

vb dy dx
Fig (5 1)

Then, the necessary con d ition s for lanes-changing are

1 d x> v  + ki [0, vmaJ

and in  order not to disturb the traffic on  the secon d  lane

2 d y > v b + k 2, k 2 e  [0, vmaJ

I f  w e  set k l = k 2 = 0 , then w e  obtain the minimal conditions for lane changing  

as fo llo w s

d x > v ,

dy > vb ( 5 1 )
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H ow ever, as the driver gets closer and closer  to the g iven  in tersection  or 

obstruction, he is  prepared to accept le ss  h eadw ay d istan ce on  the other lane  

(1 e  dx = v) T his w ill  result in  the urgent conditions for lane-changing as 

fo llo w s

dx> v,

dy > vb (5 2)

i '
Setting kr = k2 =  vmax y ie ld s the maximal conditions for lane-changing as 

fo llo w s

maxdx>v+ vn

dy>vb+ vmax (5 3)

T o apply Equation (5 3 ) , w e  m ust have dz < a, w here a  is  a param eter w h ich  

d efin es the headw ay distance on  the left lane that satisfies the driver in  order 

to stay in  h is current lane <■

In order to sim ulate the stoch asticity  e lem en t in  the lane-changing m echanism , 

w ith probability  P _ch g the driver w ill accept the maximal or minimal 

con d ition s to change his lane and w ith  probability 1- P _ch g h e w ill not 

In case  (I), S ec  (5 1), the intention o f  the driver to im prove his speed , by  

changing h is lane, is dependent on  w hether the traffic in  the present lane or the 

target lane is m ore lik e ly  to affect his speed
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I f  the driver is hindered in h is current lane, (left lane), he requires the minimal 

conditions to change lane O therw ise, the driver w ill m ov e  to the second  lane  

i f  it is  w orthw hile to do so, w hich  m eans that the driver is not satisfied  w ith  

his current h eadw ay d istance ( a  <  dz) and evaluates the secon d  lane as the 

better lane In this case, the maximal conditions for lane-changing are 

required F ig (5 2) presents the flow -chart for the lane-changing m echanism .

In case  (II), S ec(5  2), the obstruction zon e is  defined  as being 3 sites d istance  

from  the obstruction A s the driver m overs nearer to the obstruction, he is  

ready to accept the minimal or urgent condition to change lane, in order to 

avoid  being b locked  by the obstruction

In case  (III), S ec(5  1), as lon g  as the driver is outside the turning zon e, it has 

no in flu en ce on  the lane-changing d ecisio n  and the driver is  concerned  on ly  

about im proving his speed , case  (I)

W hen the driver enters the turning zon e, he ign ores any attem pt to change lane  

in  order to im prove his speed  and lo o k s for minimal conditions to change lane  

A s the driver m o v es  c lo ser  to the junction  and enters the urgent zon e for lane- 

changing he lo o k s for the urgent conditions for lane-changing in order to be in  

the right lane to perform  the required turn

In case  (IV ), S ec  (5 1) to avoid  s lo w  p la toon s on  the fast lane the driver lo ok s  

for the m in im um  requirem ents to change his lane A  platoon is d efin ed  as a 

b lock  o f  5 or m ore occu p ied  sites, for m ost o f  w hich  are stopped
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F ig  (5 2)
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5.3 Simulation and results
In the fo llo w in g  sim ulation  experim ents, each sim ulation  is conducted  for 50  

runs, w here each  run is  calcu lated  up to 2 0 0 0  tim e steps to generate the 

average ca se  statistics Im posing p eriod ic boundary con d ition s, w e  sim ulated  

a system  o f  s ize  2 x 1 0 0  sites, tw o-lane, w hich  is  large enough  for an urban 

street The turning probabilities at the in tersections are 0 .4  left and 0 30  right 

T he intersection  zon e is  considered  to  be 10 sites (or le ss) under minimal 

conditions and 5 sites or le ss  for urgent conditions at the sam e intersection. 

H ead w ay param eter, a  =  3 (i e  headway distance =  2 2  5m ), w h ich  is  

reasonable for urban traffic The basic lane-changing parameters in our 

sim ulation  are 

i lane-changing probability  (P_chg) 

n obstruction probability (P_obs) 

in lane obstruction probability  (P_L obs)

5.3.1 Lane-usage behaviour
In order to get clear insight about the im pact o f  the lane-changing parameters 

on  the lane-usage frequency, w e  have perform ed tw o different sim ulations by  

changing the va lu e  o f  the above param eters as fo llo w  

Experiment I:
In the first sim ulation  experim ent, w e  have fixed  the lane-changing 

probability at P _ch g =  0 4  and m od ified  the va lu es o f  the other tw o  

param eters (P _ob s =  (0 .3 , 0 .4 ) a n d P _ L o b s =  ( 0 .7 ,0 .3 ) ,  ( 0 .6 ,0 .4 ) ,  (0 .5 , 0 .5 )).
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(a)

(b)

Fig (5 3) Lane usage frequency vs traffic density for two 
different simulation of size 2xk, k=100, where P_chg = 0 4, 
P_obs = 0 3  and m

(a) P_Lobs = 0  5, 0 5 for left and right lane respectively
(b) P_Lobs = 0  6, 0 4 for left and right lane, respectively
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Simulation P _chg P_obs P_Lobs 
Left Right

Low density 
Inversion point

high density 
Inversion point

R u n l 0 4 0 3 0 7 0 3 0  07 5 0  475

R un2 0 4 0 3 0 6 0 4 0  115 0  505

Run3 0 4 0 3 0 5 0 5 0  295 0  625

R un4 0 4 0 4 0 7 0 3 0 065 0  48 5

Run5 0 4 0 4 0 6 0 4 0  105 0 515

Run6 0 4 0 4 0 5 0 5 0  275 0  71 5

Table (5 1) Simulation Experiment I each "run'" refers to an 
average of 50 Experiments over 2000 time steps each to obtain 
average case statistics

T he relationship  b etw een  the lane-usage frequency and the sim ulation  d ensity  

using d ifferent va lu es for P _ob s and P _L ob s is presented  in  T able (5 1) and 

F ig (5 3) T he observations can be sum m arized as fo llo w s  

i  It can be seen  from  F ig  (5 3) that both lanes h ave the sam e lane usage- 

frequency at three different points T he first tw o  points are called  

“density inversion” points A t these points, h igh traffic-d en sity  sw itch es  

from  on e lane to the other lane  

n T he first “density inversion” point has occurred at density  p  =  0  29 5  in  

case (a) and at p = 0  115 for case  (b), w h ile  the secon d  on e has occurred  

at m uch higher d en sity  p  =  0  6 2 5 , 0  50 5  for both cases (a) and (b) 

resp ective ly

in T he location  o f  these points depends on the lane-changing parameters, 

w h ich  from  T able (5 .1 ) m ay be sum m arised as fo llo w s
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(a) The effect of lane obstruction probability(P_Lobs)
T his param eter has considerab le e ffec t  on  lane-usage frequency For 

exam ple, u sin g P JL ob s =  0  6 for the left lane and P _L obs =  0 4  for the  

right lane has in flu en ced  the lane-usage frequency for both lanes at an 

early stage, (low  density) T he first “density inversion” p oint has 

occurred at p{ =  0 115, w here u sage o f  the right lane b ecom es higher  

than u sage o f  the left lane, and again the tw o  lanes sw itch  traffic at p 2 

=  0 50 5 , w here the left lane b ecom es m ore crow d ed  than the right one  

In contrast, using both lanes w ith  the sam e P _L ob s =  0 5  has increased  

the above den sities ( px,p 2) to a m uch higher va lu es ( p t =  0  29 5  and 

p 2 =  0 62 5 ), see  F ig (5 3)

T his can be exp lained  as fo llo w s

Increasing P _L ob s for the left lane w ill disturb its traffic, ev en  at lo w
i,

density , due to the frequent, random ly occurring obstructions  

T his results in  the right lane again becom ing m ore crow ded  at p  =  

0 50 5  A t this stage, a car w ill again sw itch  lanes in  order to avoid  

traffic jam s H ow ever, applying the sam e P _L ob s to both lanes has 

increased  the lo w -d en sity  in version  p o in t from  0  115 to 0  29 5  T his  

increase is  to be exp ected  as the m otivation  for lane-changing reduces  

F ig (5 4 ) sh ow s the location  o f  the inversion  points for different va lu es  

o f  P _L obs
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Fig (5 4) left lane usage vs traffic density-, for different 
values of P_Lobs and P_chg = 0 4, and P_obs = 0 3  Each
intersection between the lane-usage curve and the horizontal 
line represents an inversion point

Fig (5 5) left lane usage vs traffic density for different 
values of P_Lobs and P_chg = 0 4, and P_obs = 0 4  Each
intersection between the lane-usage curve and the horizontal 
line represents an inversion point
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(b) The effect of obstruction probability(P_obs)
T he obstruction probability a lso in flu en ces the lahe-usage frequency 
for both lanes, esp ec ia lly  w h en  there is  no considerab le d ifferen ce  

b etw een  the va lu es o f  P _L ob s or w h en  the tw o lanes are used  w ith  

sam e P _L obs, (see  Run3 and R un6 in T able (5 1)) For these runs, 

increasing P _ob s has resulted in low er va lu e  for the lo w  density  

inversion  point and h igher va lu e for the higher d en sity  inversion  point, 

see  F igs (5 4 ) and (5 5)

T his can be exp la in ed  as fo llo w s

Increasing the va lu e  o f  P _ob s w ill  result in  m ore obstruction  

occurrences on  both lanes, w hich , in  turn, increases the u sage o f  the 

right lane over the le ft  lane at d en sity  (0  27 ) T h is is to  be exp ected  as 

the chance for a car to overtake on  the right lane is  greater than its 

chance for overtaking on  the left lane T his increase in  the u sage o f  the 

right lane, w ill continue, fo llo w ed  by d ecrease in  the left lane u sage, 

until p ~  0 5, w here the usage o f  the right lane attain its m axim um  

va lu e over the left lane A t this stage traffic starts to sw itch  gradually  

from  the right lane to the left lane and due to the increase in 

obstruction probability  (P _ob s), the secon d  in version  p oint occurs at 

higher d en sity  (0  71 )
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Experiment II
T o exam ine the e ffec t o f  the lane-changing probability on  the lane usage  

behavior, in  the second  experim ent, presented in T able (5 2 ), w e  have  

increased  the lane-changing probability to P _ch g =  0 5  and also  used  different 

va lu es for the other tw o lane-changing parameters In  general the sam e  

m acroscop ic phenom enon , “d en sity  in version ” points, w as observed  

T able (5 2) sh ow s the e ffec t on  the “ density inversion” points o f  increasing
j

P _ch g to 0 5 T his m eans that the “density inversion’' is  m od ified  by the lane- 
changing parameters and m ore sim ulations are need ed  in order to determ ine  

i f  there is  a lim it for such changes For exam ple, T able (5 2) dem onstrates 

that increasing lane-changing probability as w e ll as obstruction probability 
resulted in a sm aller d en sity  for the first inversion  point (from  p =  0  295  to p =  

0  27 5 ) and higher d en sity  for the secon d  in version  p oint (from  p =  0  63 5  to 

p =  0  73 5)

Simulation P_chg P_obs P_Lobs 
Left Right

Low density 
Inversion point

high density 
Inversion point

Run7 0 5 0 3 0 7 0 3 0 085 0 465

Run8 0 5 0 3 0 6 0 4 0 135 0 505

R un9 0 5 0 3 0 5 0 5 0 295 0 635

Run 10 0 5 0 4 0 7 0 3 0  06 5 0 475

Run 11 0 5 0 4 0 6 0 4 0 115 0 519

Run 12 0 5 0 4 0 5 0 5 0 275 0 735

Table (5 2) Simulation Experiment II each " run" refers to 
an average of 50 Experiments over 2000 time steps each to 
obtain average case statistics
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5.3.2 Flow Behavior
i  D esp ite  adding another set o f  lane-changing rules, the m axim um  flo w  

for the tw o-lan e m od el is  m uch higher than the m axim um  flo w  for the 

sin gle-lan e m od el T his can  be seen  clearly  from  F ig  (5 6) T h ese  results  

in  F ig  (5 6) are based on  sim ulating tw o  system s, the first o f  s ize  k = 1 0 0  

representing a s in g le-lan e road, the secon d  o f  s ize  k  =  2x 1 0 0  

representing a tw o-lane road In both cases data w ere averaged over 50  

runs and each  run is  conducted  up to 2 0 0 0  tim e steps  

n T he tw o-lane f lo w  reaches its m axim um , approxim ately, at p  ~  0 5,

w h ich  is  the d en sity  o f  m axim um  flo w  for the sin gle-lan e m odel, (see  

F ig (5 6))

in  In the case  o f  the sin g le-lan e m odel, there is a sharp bend in  the flow -

d en sity  curve, w h ich  is  not found in the tw o-lan e m od el T h is bend  

m eans that the dynam ics b e lo w  and ab ove the d en sity  o f  m axim um  

f lo w (p ?max) for the sin g le-lan e m od el are d ifferent from  th ose  o f  the

tw o-lane m od el, i  e  f lo w  breaks-dow n q u ick ly  in  sm gle-lan e  m od el 

iv T he change in the lane obstruction probability (P _L obs) seem s to have  

a great im pact on  the f lo w  behavior on  both lanes as fo llo w s

a) A p p ly in g  P _L ob s= 0  7 for the left lane and P _L ob s =  0  3 for the right 

lane has decreased  flo w  on  the left lane com pared to the right lane  

E ven  at low er d en sities T he flo w  is  correspondingly  increased  on  the  

right lane, see  F ig  (5 7 (a))

126



b) W hen  P _L ob s =0 5 for both lanes, f lo w  for both w as sim ilar at low  

d en sities but, at higher d en sities, (p >  0  5), w e  observed a 

considerab le change in the traffic f lo w  b etw een  the tw o lanes, see  

F ig (5 7 (b)) T he first in tersection  p oin t o f  the tw o curves obtained  

at lo w  density  "inversion point", w h ile  the last on e occurred at the 

h igh  d en sity  "inversion point" T he graph also sh ow s a third 

inversion  point w h ich  d o es  not appear in  lan e-u sage v s  traffic 

d en sity  relation  presented in F ig (5  3)

For both cases (a) and (b) w e  obtained sim ilar traffic patterns by u sin g  

different va lu es for P _ch g ,(0  4 , 0  5, 0  6 ), but m axim um  flo w  on  both lanes  

decreased  w h en  the va lu e o f  P _ob s w as increased, as can be seen  from  

F ig (5 8)

v F ig (5 9) sh ow s that as w e  increased the obstruction probability, the 

m axim um  flo w  for the tw o-lane m od el d ecreased  from  q  ~  0 77  for 

P _ob s =  0  3 to q  =  0  68 for P _ob s =  0  5, (i e  a decreases o f  11 6  %), no 

m atter w hether the ob stacle w as located  in  the left or right lane

density

— two lane 
————single lane

Fig (5 6) flow vs density relation for both single-lane 
and two-lane Models
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Fig.(5.7): flow-density relation for two different simulations 
of size k = 2x100; two lane .Data were averaged over long time 
periods over 50 runs using P_chg=0.4, P_obs=0.4, where in (a) 
P_Lobs = 0 .7, 0.3 and in (b) P_Lobs = 0.5, 0.5 for both left and
right lanes respectively.
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density

left lane, P_obs = 03

 right lane, P_obs = 03

  left lane P_obs = 0 4

right lane P_obs = 04

Fig (5 8) flow-density relation for different simulation of 
size k = 2x100, two-lane, using different values for P_obs, 
where P_chg = 0 4  and P_Lobs = 0 7, 0 3 for both left and
right lanes respectively

Fig (5 9) comparison of flows for different values of P_obs, 
where P_chg and P__Lobs are fixed as m  Fig (5 8)
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5.3.3 Lane-changing behavior
T o understand lane-changing dyn am ics, w e  h ave to  study the relations 

b etw een  lane-changing frequency and lane-changing parameters This study  

can be sum m arized as fo llo w s

1 T he in flu en ce o f  varying P _L ob s on  lane-changing frequency is

presented in F ig  (5 10) T he m axim um  va lu e o f  lane-changing 
frequency (0  0 0 1 7 0 6 ) w as obtained at a traffic d en sity  o f  0  2 9 5 ,w hen  

P JL ob s =  0  5 for both lanes H ow ever, increasing P JL ob s for the left 

lane decreased  the frequency o f  lane ch an ges to 0 0 0 1 5 2 7  at the sam e  

d en sity  T his dynam ic is  observed at d ifferent va lu es o f  P _ob s =  0  3, 

0  4 , and 0 5

n F ig  (5  10), also sh ow s that lane-changing frequency increases linearly

at lo w  densities, (p <  0  125 ), and this is  observed  for all va lu es o f  

P _L obs Further sim ulations, see  b e low , a lso  sh ow  that as w e  exceed  

the density  p =  0 1 2 5 ,  d ifferent va lu es o f  the lane-changing 

parameters w ill  in flu en ce  the lane-changing frequency F ig  (5 10) 

sh ow s tw o sign ificant peaks w h en  P _L ob s = (0  5 ,0  5), the first at the 

first inversion  p oin t w h ile  the second  occurs b efore the second  

in version  take p lace  

m  T he m axim um  num ber o f  lane ch an ges occurred at density  p ~  0  3 ±

0 01 , w hich  is w e ll b elow  the d en sity  o f  m axim um  flo w  for the 2 x 1 0 0  

site  sy stem  (p =  0  5)
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iv T he m axim um  frequency o f  lan e-ch an ges to the right lane (0 0 0 0 8 8 9 )  

w as m uch higher than the m axim um  frequency to the left lane 

(0 0 0 0 6 5 5 ) and w as obtained at density  p =  0  29 5  This is  higher than 

that found for m axim um  frequency o f  ch an ges to the left lane (p =  

0  24 5 ) T his can be seen  from  F ig  (5 11), for d ifferent va lu es o f  

P _L obs and P _obs

0 0018  

S' 0 0016 -

® 0 0014 - 

o  0 0012 - 
n  0001 - 
§ ,  0 0008 - 

ra 0  0 0 0 6 -  

°  0  0 0 0 4 -  

j j  0 0002- 
0 -

0 0 1  0 2  0 3  0 4  0 5  0 6  0 7  0 8  0 9  1

density

- P_Lobs =0 7 ,0  3 
- P_Lobs =06 04 

-P Lobs =05 05

Fig (5 10) lane-changes frequency vs traffic density for 
different values of P_Lobs while P_chg = 0 4  and P_obs = 
o 4

v Increasing the va lu e o f  P _ob s from  0 3 to 0  5 has increased  the  

m axim u m  frequency o f  lane ch an ges to  0  0 0 1 7 0 4  (at p =  0  27 5 ), from  

0  0 0 1 4 8 6  (at p =  0  28 5 ) T his is  to be exp ected , because drivers have  

to change their lane m order to avoid  being . halted behind an 

obstruction and these lane ch an ges increase, as the occurrence o f  

obstructions b ecom es m ore frequent
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v i T he e ffec t o f  lane-changing probability (P _ch g) seem s to be 

in flu en ced  by the va lu es o f  the other tw o lane-changing param eters, 

P _ob s and P _L obs, as fo llo w s

A p p ly in g  P _ch g =  0  4 , P _ob s = 0 4  and P _L ob s =  0 5 ,  (for each  lane), 

the m axim um  lane-changing frequency obtained w as 0  0 0 1 7 0 6 , see  

F ig (5 12 (a)) H ow ever, w h en  w e  increased lane-changing probability 
to P _ch g  =  0 6  and reduced the va lu e o f  P _ob s to 0  3 , also increasing  

P _L ob s for left lane to  0  7 , the m axim um  lane-changing frequency 
dropped to 0 0 0 1 4 4 7 , see  F ig (5 12 (b)) T his exam p le dem onstrates  

that increasing the va lu e o f  P _ch g w ill not a lw ays y ie ld  a higher  

frequency o f  lane ch an ges w ith out controlling va lu es o f  the other tw o  

param eters H ow ever, further sim ulations are required in  order to 

quantify m ore the e ffec t o f  changing o f  P _ch g

0 0 2  0 4  0 6  0 8  1

density

Fig (5 11) comparison between lane changing frequency to left 
lane and right lane When p > 0 125 the increase m  right
changes over left changes becomes more noticeable.
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P_chg=0 6, P_obs = 0 4  
P_Lobs = 0 7 0 3

- P_chg=0 6 P_obs = 0 4  
P Lobs s 0 5 0 5

(b)
Fig (5 12) The effect of lane-changing probability on the 
frequency of lane changes It is easy to observe that the 
effect of increasing P_chg on the frequency of lane changes 
depends on the other parameters, P_Lobs and P_obs
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5.4 Model validation
U nfortunately, there ex ists  no source o f  real data, w h ich  studies lane-usage  

characteristics on tw o-lane roads in  urban areas In th is regard none o f  the  

availab le studies w ere d evoted  for urban traffic, but th ey  w ere concerned  on ly  

w ith h igh w ay  traffic S o , in  order to calibrate our lane-changing rules, w e  

have, perform ed a sim ple study on  on e o f  D u b lin ’s tw o-lan e streets T his w as  

attem pted in M ay 1998 , as fo llo w s  A  v id eo  cam era w as set up on  a high  

build ing, overlook in g  the street o f  interest T h e street, w h ich  is  2 5 0 m  in  

length , is controlled  by traffic ligh ts from  both sides at tw o in tersections and 

has on e pedestrian crossing  W e w ere interested in  calcu lating the lane u sage  

frequency for each  lane D ata w ere obtained for 4-hours per day for four  

different con secu tive  days O ne lim it o f  th is em pirical study w as the lack o f  

required equipm ent for surveying a longer urban street w ith m any  

in tersections A nother, clearly, w as the lim ited  period  o f  tim e for w hich  the  

survey cou ld  be considered  and w e  ack n ow led ge D u b lin  Corporation, Traffic  

Section , for facilitating us on  this U nfortunately, w e  did  not find any study o f  

urban traffic in relation  to lane-changing to com pare our data w ith  

On h igh w ay traffic, Sparm ann (1 9 7 8 ) has dem onstrated an im portant 

m acroscop ic  p h enom enon  ca lled  “ lane-usage inversion” or “ density 
inversion”, w hich  occurs long b efore m axim um  flow

T he lane-changing rules, presented in this chapter, appear to reproduce the  

sam e p h enom enon  for urban traffic, w ith in  the lim itations o f  the sim ulation  

em p loyed , c  f  F igs (5 13) and (5 14)
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Fig (5 13) lane-usage vs traffic density for empirical data 
Data were averaged every 3-minutes for a small Road segment m  
Dublin City

Fig (5 14) lane-usage frequency vs traffic density It can be 
seen that the first "density inversion" has occurred also long 
before maximum flow density
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T he first “density inversion” in  our sim ulation  has occurred lon g  before the 

d en sity  o f  m axim um  flo w  T his is  in  agreem ent w ith  Sparm ann (19 7 8 )

A s has b een  described in  S ec  (5 3 ), the “density inversion “ point is  adjustable 

by the lane-changing parameters, P _ch g , P _ob s, and P _L ob s T he ch o ice  

P_chg = 0 4 , P _obs =  0  3 , P _L ob s =  0  5 for both lanes left and right, g iv es  a 

reasonably  g o o d  approxim ation to our observed  data 

The data, presented in  F ig  (5 13) ind icate that the lan e-u sage frequency for  

both  lan es is  not correctly m od elled  at very  large d en sities (p >  0  7 ) T he left 

lane f lo w  is  higher than the right lane f lo w  T his, for exam ple, m ay be due to 

the fact that long v eh ic le s  w ere  not m od elled  in our sim ulations, w hich  h ave a 

great in flu en ce on  the c ity  traffic H ow ever, the lim itations o f  this study in  

regard o f  street and tim e for data co llec tio n  h ave been  noted  earlier clearly, 

further experim ental or observational studies on  larger roads are needed
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Chapter 6

“Stochastic Cellular Automata Model for Inter-urban Traffic”
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6.0 Introduction
In this chapter, w e  m ov e from  on e-sp eed  determ inistic cellu lar autom aton

\ c

m od els, w here stoch asticity  w as introduced through the random  feedin g  

m ech an ism  and probabilistic lane-changing ru les, to a com p lete ly  stochastic  

cellu lar autom aton m odel, w ith  m ore than on e-sp eed

T he need  for such m od els b ecom es n ecessary  as w e  m ove from  urban areas, 

w here links b etw een  jun ction s do not exceed  5 0 -5 0 0  m, to inter-urban areas 

w ith  links, w h ich  m ay ex ce ed  10-15  km

In the latter case , cars have a go od  chance to interact w ith  each  other, 

generating a very  co m p lex  driving p rocess or "traffic dynam ics"

In this m od el w e  try to sim p lify  the ab ove, com p licated  dynam ics by  

concentrating on  the m ost im portant elem en ts o f  driving, o f  cou rse w ithout 

lo sin g  the essen tia ls o f  the start-stop w a ves dynam ic

A ccord ing to the rules o f  road traffic in  Ireland, the fo llo w in g  T able (6 1) 

dem onstrates the car v e lo c ity  and the safe d istance n eeded  in order to brake 

w ithout collid ing  w ith  the lead in g car (or car in front)

T a b le  6 .1
V e lo c ity Safe d istance in  sites
V = 1 1 site
v  =  2 3 sites
v  =  3 5 sites

W here one v e lo c ity  unit is  equ ivalent to 13 5 mph

T he fo llo w in g  relation  can g iv e  the sa fe  d istance ds for a car m ovin g  w ith  

v e lo c ity  v relative to the front car
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<fc =  2 ( v - l )  +  l ,  v =  1 , 2 , 3  (6 1)

Car acceleration  or deceleration at the next tim e step is  then dependent on  the 

above safe d istance

6.1 The model
T he m od el is defined  on  a on e-d im en sion a l la ttice, w h ich  is  regarded as a road

segm en t, o f  k  identical sites (ce lls) T he state o f  every  c e ll is  either em p ty or)>

occu p ied  by a car, w here each  car has an integer v e lo c ity  varied  b etw een  0 and 

m axim um  v e lo c ity  vmax T he num ber o f  em p ty sites ahead o f  a g iven  car is 

called  gap

6.1.1 Definition of the Model

For any g iven  car, the num ber o f  em p ty sites to the front car after securing the  

safe d istance for the current car speed  is  ca lled  "free headway distance” and 

d enoted  by “d;t” , w hich  can be defined  as fo llo w s

dx  =  gap - ds  - (6  2)
i

The m od el update rules depend on  the relation b etw een  the car v e lo c ity  and its 

free headway distance T h is m eans that starting from  an arbitrary 

configuration  o f  cars, the fo llo w in g  rules are applied in  order to update the c e ll 

state at tim e instant t+ 1, g iven  its state at tim e t T h is is applied  

sim u ltan eously  for all cars
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R ule 1 "Irregularities in the driver behaviour”
Let v be the current car speed  and its target speed  at the next tim e step  

v i a *

I f  ds (v ± a ) > gap(v ±a), a = 0 ,1 ,2 ,3

T hen, w ith  probability P _in c, the driver w ill rep lace

gap (v ±  a) +  b by ds(v ±  a), b e  Z, 1 < b < v ± a

R ule 2 "acceleration”
I f  v <  vmax and ds (v +  1) <gap (v + I)

Then, w ith  probability P _ac, the car w ill accelerate to 

S =  v +  1,

R ule 3 ’’deceleration”
I f  v >  dbc(v) and ds(v-a) < gap(v-a),

Then the car w ill decelerate to

S = v-a, a =1, 2, 3
R ule 4  "speed fluctuation”

I f  the car is  m ov in g  w ith  constant ve loc ity , then w ith  probability  P_rd  

the car w ill reduce its speed  to

S =v-r,  r e Z  and r e  [1, 3]

R ule 5 “car movement”
E very car advances d sites ahead w here  

d = m ax(v, S) 

a =  1 in case  o f  acceleration
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6.1.2 Implementation of the Model

In w hat fo llo w s , w e  ch o se  vmax =  3 to confirm  w ith  traffic regulations in 

D ublin , w h ich  a llow  a speed  o f  40  M P H  (~  3 in  the m od el)in  inter-urban  

areas

T he use o f  the above probabilities, P _inc, P_rd, and P _ac, is essen tia l in order 

to sim ulate realistic traffic f lo w  in inter-urban areas T h ey  generate three 

different traffic properties, w h ich  characterise the inter-urban traffic as 

fo llo w s

i. Irregularities in the drivers behaviour
In inter-urban areas its is  ob v iou s that not all the drivers w ill com p ly  w ith  

the rules o f  the road and keep  the required safe d istance to the car ahead  

In R ule 1, our aim  is  to m od el th is “ irregular behaviour” o f  the driver 

using the probability P _in c, w hich  control the irregularities in the driver 

behaviour T h is can be dem onstrated as fo llo w s  

Example:
A ssu m e that w e  have the fo llo w in g  configuration  o f  cars, w here each  

num ber represents the current car v e lo c ity  and "dots" are em p ty sites

. . . . 2 ..........3 . . . .
N o w  the fo llo w in g  car has the v e lo c ity  v = 2, w hich  m eans that the 

required safe distance for this speed  from  Equation (6 1) is

ds(v=2) = 2 ( 2 - l ) + l  =  3 

and the free headway distance for this car from  E quation (6  2) is

dx(v=2) =  6 - 3  =  3
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A s dx(v) >  v, the driver w ill try to accelerate to v +  1 and the requirem ent 

for this acceleration, according to R ule 2 , is that

ds(v +  1) <gap(v + I)

A ccord ing to the above configuration

ds(v + I) = 5 and gap(v + 1) = 3 
w hich  im p lies that

ds(v +  I) >  gap(v + I)
N o w  R ule 1 applies, because b =  2 <  v + 1  T herefore, w ith  probability  

P _inc the driver w ill rep lace gap(v + I) + 2 by dsiv +  1) and w ith  

probability 1- P _inc he w ill not

ii. D e la y  fa c to r

R ule 2 reads as fo llo w s

W ith a certain probability, P _ac, on ly, a car w ill accelerate to the new  

speed v +  1 and w ith  probability 1 -  P _ac it w ill not, even  i f  the  

requirem ents for acceleration  are com p lete ly  fu lfilled  

T he reason  behind introducing the ab ove probability  is to  m od el a very  

im portant property o f  realistic traffic f lo w  in inter-urban areas, w h ich  is  

the d elay in  acceleration  For exam ple, this d e la y 1 m ay  occur in the  

fo llo w in g  ca ses

i T he car is travelling w ith  v <  vmax and it has enough free headway 

distance to accelerate, but the car is com in g to a pedestrian or traffic 

light

u  Other problem s n ot related to norm al road features, e  g bad w eather, 

R oad w orks, and faulty car perform ance
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iii. Speed fluctuations
T raffic through urban areas is controlled  by m any factors such as; traffic 

lights, pedestrians, zebra cro ss in g s  etc.

T herefore, the free headway distance is not a lw ays the main cau se behind  

the oscilla tion  in the car m ovem en ts betw een  acceleration  or deceleration. 

The above factors lead to a stochastic seq u ence o f  ch an ges in car speed and 

speed fluctuations, w hich  vary, from  one car to another. In our stochastic  

m odel, a fluctuation in speed occurs, w ith probability P_rd, provided that a 

car is m ovin g w ith  constant speed as fo llow s: I f  v =  or v =  dx(v) then, 

w ith probability P_rd, the v e lo c ity  v is reduced to v -  r, w here r is an 

integer random ly ch osen  from  the interval [1, vmax ].

U sin g  the above probabilities, P_inc, P_rd, and P_ac, w ill generate  

stochastic seq u ences for the changes in the car speed as fo llow s:

0 — > 0 — > 1— > 1 — > 2 — > 2 — > 2 — > 0 — >1 .........

W here each  integer num ber represents the current car velocity .

6.2 Simulation and Results
W e have perform ed sim ulations w ith the S tochastic C ellular A utom ata M od el 

(SC A M ) w ith  various in itial cond itions. The L attice s ize  =  20 0  ce lls  and 

c lo sed  boundary con d ition s have been  applied. In our sim ulation , car v e lo c ity  

ranges from  v = 0 to vmax = 3 and different va lu es for the m od el param eters, 

P_inc, P_rd, and P _ac, were investigated, see  S ec (6 .2 .3 ) .
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Each run w as calcu lated  up to 3 0 0 0  tim e steps, and the data averaged over 50  

runs, after a discard period o f  50 0  tim e steps E ach curve contains about 100  

data points

6.2.1 Model Dynamics
M o d el d yn am ics are easier to fo llo w  by v isu a lisin g  the tim e-ev o lu tio n  o f  the 

A utom aton  w ith  the help o f  the space-tim e diagram s e  g (Fig (6 1))

Space

 ►
2 1 0 1 00  0 00_______ 2_______ 1 1 12 0 0 1 00 0 00 2 0 12 0 1 000 1 0 1 2 1 12 1 01 0 00 1 00 2 2 1 22 0 1 0 oo :1 0 1 2 1 11 0 00 00 00 1 3 1 21 1 00 00 0 1 1 3 1 12 1 000 0 1 0 0 2 2 11 0 000 0 1 1 1 2 1 21 0 000 1 1 0 1 3 2 12 1 0 00 1 1 0 0 1 3 1 12 00 00 1 0 0 1 1 1 11 00 00 1 0 0 1 1 2 1000 0 1 00 0 1 2 2 1
3 000 0 1 oc1 1 1 2 1 12 000 0 1 0 1 1 1 3 00000 1 00 1 1 2 3 000 0 0 1 0 1 1 1 3 3 0000 1 0 0 0 0 1 0 0 11 000 1 0 0 0 1 2 1 0 11 000 1 0 1 0 1 2 2 1000 1 0 1 0 1 1 2 2 0

Fig (6 1) space-time diagram at density (p) of 0 22 for 
a system of size 200 cells and Vmax = 3, P_mc= 0 5, 
P_rd= 0 3, P_ac =0 5 Each new row shows the traffic 
system after one update step and just after the car 
motion

R o w s are configurations at con secu tive  tim e-step s D o ts  represent em pty sites, 

and integer num bers ind icate the car v e lo c ity  located  at the g iv en  site.
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T he m ost im p ressive w a y  to describe the traffic f lo w  is  by a diagram , w hich  

sh ow s the sp ace-tim e curves o f  a set o f  cars over a road segm ent Such  

diagram s have been produced  b y  Treiterer (19 7 5 ) in the U nited  States by  

aerial photography T he typ ica l patterns o f  car configuration  for the car 

den sities 0  16 and 0 22  are presented in  F ig  (6  2  a and b), w here the first 

d en sity  is  sligh tly  b elo w  the d en sity  o f  m axim um  flo w , see  b elow , and the  

second  is  sligh tly  ab ove the d en sity  o f  m axim um  flo w

In F ig  (6  2) each  b lack  P ix e l represents a car, w ith  trajectory indicated  by a 

dotted  curve Cars are m ovin g  from  left to right and from  top to bottom , i e  

from  top left corner to bottom  right corner V ertical trajectories m ean that cars 

are com p lete ly  b locked , w hereas d iagonal trajectories sh ow  car m ovem ent 

Traffic jams or jam waves are identifiab le as so lid  areas in  the space-tim e  

diagram s A t lo w  d ensities, s ligh tly  b elo w  the d ensity  o f  m axim um  flo w , (as 

in F ig (6  2 a)), w e  find that laminar traffic is  the dom inant pattern, d esp ite the  

appearance o f  sm all jam s, w h ich  occurs random ly due to speed fluctuations  

The appearance o f  these sm all jam s b ecom es m ore n oticeab le  as w e  exceed  

the density  o f  m axim um  flo w , see  F ig (6 2 b), and their lifetim e b ecom es  

rela tively  longer

On the other hand, the h igh-d en sity  regim e, (F ig (6 3 )), is characterised by  

random  form ation o f  con gested  clusters, due to the stoch astic ity  elem en ts in 

our m od el T he life tim e o f  these traffic jam s b ecom es con tin u ou s to  increase  

com pared to th ose  obtained at lo w  den sities (Fig (6  2 (a) and (b))

T he F igure also sh ow s the backward m ovem en t o f  the traffic jam s, i e  against 

the traffic f lo w
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►  space (R oad)

Fig (6 2) The typical patterns of car configurations up 
to 1500 time steps, where L =200, Vmax = 3, P_inc= 0 5, 
P_rd= 0 3, P_ac =0 5
(a) the pattern for density of 0 16 (b) the pattern for 

density of 0 22
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Fig (6 3) sh ow s that these con gested  clusters represents a typ ica l start-stop  

w a ve and, due to lack  o f  real data in our study, m ay be com pared to data 

obtained for sim ulated h ighw ay traffic (N ag e and Sch reck enb erg(1992) On 

this basis, the m od el appears to produce fairly realistic results

Road ►

Time

Y

Fig (6 3) Space-time diagram for the SCAM, V = 3, P_mc=
0 5, P_rd= 0 3, P_ac =0 5, and p = 0 5 Black dots represent 
cars, consecutive horizontal lines represent configurations at 
consecutive time steps It can be seen that the traffic 
jams,(sold areas), are moving backwards
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6.2.2 Fundamental diagrams
N ex t w e  study the fundam ental diagram s, flo w -d en sity  relation  q-p and 

v e loc ity -d en sity  relation  v-p, o f  our SC A M

The defin ition s o f  the ab ove m acroscop ic aggregate variables, q, p, and v, for 

w hich  data are sh ow n  in the fundam ental d iagram s, have b een  introduced in  

Sec (2 1 1), using E quations (2  l ) - ( 2  4)

T he sim ulation  reveals that the m axim um  flo w  obtained w as qmax ~  0  2 4  ±  

0 0 2  at the d en sity  p 9max =  0  18 ±  0  01 (Fig (6  4  a)) In contrast the m axim um

flo w  obtained b y  N a g e l and Schreckenberge (1 9 9 2 ), in h igh w ay  traffic, w as  

0  318  ±  0 0 0 0 5  and obtained at low er density  (0  08 5  ±  0  0 0 4 ), w here vmax = 5 

Further sim ulations, (F ig (6  4  (b)) sh ow s that the system  s ize  d o es  not have a 

sign ifican t e ffec t on  the above tw o  extrem es, quax, p ?max, w here data w ere
K

long-term  averaged

The flow -d en sity  relation  (F ig .(6  4 )) can be characterised as fo llo w s  

l L ow -d en sity  phase, w here the drivers ch an ge their speed  according to 

rules o f  the road and the traffic control sy stem  In th is reg im e, f lo w  

increases linearly by increasing the traffic d en sity  

n H igh-d en sity  phase, w here the drivers ch an ge their speeds according to 

the needs o f  driving in  a queue T he h igh -d en sity  p h ase is  characterised  

by periodic start-stop w aves (F ig (6 3 )) and the sign ifican t drop in the  

system  flo w  as in  F ig  (6  4)

In b etw een  the above tw o-reg im es, the traffic dynam ic ls h a r d  to exp lain  In 

S ec (1 .1  2  1) w e  outlined the explanation  g iven  b y  H a ll (1 9 9 5 )
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Fig (6 4a) flow-density relation Points are averaged 
over short time periods (50 time steps) for a system of 
size = 200 after a transient period of 500 time steps,
where Vmax = 3, P_mc= 0 5, P_rd= 0 3, P_ac =0 5

density

k=200
k=400

Fig (6 4 b) flow-density relation Lines are averaged
over long time periods (2000 time steps) for systems of 
size = 200, 400 after a transient period of 500 time 
steps, where Vmax = 3, P_mc= 0 5, P_rd= 0 3, P_ac =0 5
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6.2.3 The Effect of Varying the Model Parameters
Firstly, w e  lo o k  at the in flu en ce o f  changing the m od el m axim um  integer  

v e lo c ity  on  the tw o-extrem es, <?max, p 9max

Our sim ulations, (Fig (6  5 )), sh ow  that the p osition  and the form  o f  the 

m axim um  flo w  depend strongly on  the m axim um  integer v e lo c ity  R educing  

the va lu e o f  vmax in the m od el has shifted  the m axim um  flo w  g max to higher 

v a lu es o f  d en sity  p  w h ile  decreasing its va lu e T his is m ore noticeable for 

vmai=  1, w here the va lu e o f  qmm has decreased  from  0  2 2 0 9 , in  ca se  o f  

vmax =3 , to 0  1286 obtained for vmax = l ( i  e  a decrem ent o f  58%  approxim atly) 

A lso , the fundam ental diagram s sh ow  the asym m etry seen  for real data 

obtained for h ighw ay traffic (H all and G unter, 1986)

density

vmax=3
vmax=2
vmax=1

Fig(6 5) Fundamental diagrams obtained by varying the model 
maximum integer velocity, where P _ m c  = 0 5, P_rd= 0 3, P_ac 
= 0 5
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T he system  v e lo c ity  as a function  o f  the traffic d en sity  for different va lu es o f  

v max is presented in  Fig (6 6)

oo
4)>

0 2

•vm ax=3 
~vm ax=2 
-vmax=1

0 4 0 6
density

0 8

Fig (6 6) Velocity-density relations obtained by varying the 
model maximum velocity, where P_inc = 0 5, P_rd= 0 3, P_ac
= 0 5

F ig (6 7 ) sh ow s that the changes in  the acceleration  probability (P_ac) have  

sign ifican tly  in flu en ced  the f lo w  behaviour and the m axim um  flo w  obtained

density

P_ac=0 7 
T —  P_ac=0 5 
 P ac=0 3

Fig (6 7) Different fundamental diagrams obtained by varying 
the value of P_ac, where VmM = 3, P_inc = 0.5, and P_rd= 0.3
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Increasing the va lu e  o f  P _ac from  0  3 to 0  7 has increased the m axim um  flo w  

from  0 1554  to 0 2 5 5 7 (i e  an increm ent o f  65%  approxim ately)

In contrast using higher va lu es for P_rd has reduced the m axim um  flo w  from  

¿7niax =  0  2 2 0 9  to £/max =  0  20 0 8 , w hich  m eans a decrem ent o f  9% 

approxim ately, see  F ig (6  8)

Fig (6 8) fundamental diagrams obtained by varying the value 

of P_rd, where Vmax = 3, P_inc = 0 5, and P_ac= 0 5

F ig (6  9) sh ow s that varying the va lu e o f  P _inc has in flu en ced  both the  

p osition  and the va lu es o f  m axim um  flo w  Increasing the va lu e  o f  P _inc from  

0  3 to 0 7 has shifted  the m axim um  flo w  to higher va lu es o f  p (0 22 ) and 

sligh tly  d ecreases its va lu e from  0  2 2 3 7  to 0  2181 A t this d ensity , 0  22 , the 

tw o  curves crossover and the f lo w  b ecom es h igher as P _inc increases from  0 3 

to 0  7 T h is situation w as dom inant until p ~  0  55 , then the f lo w  b ecom es  

sim ilar on  both lanes A ll the above experim ents in v o lv e  changing the m od el 

param eters ind ividually, l e  varying on e o f  the m o d e l’s param eters w h ile  

keep ing others at the sam e va lu es
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Fig (6 9) Flow-density relations obtained by varying the 
value of P_mc, where Vmax = 3, P_ac = 0 5, and P_rd= 0 3

T his has resulted in  different traffic f lo w  patterns, w h ich  can  be interpreted as 

changes in the traffic behaviour, due to d ifferent circum stances, (e  g speed  

lim its, bad w eather, road conditions, etc )

S econ d ly , by k eep in g  v max = 3 , w e  lo o k  at different com binations o f  the m od el 

param eters(P_inc, P_rd, P _ac) T he sum m ary o f  the sim ulation  runs can be 

found in Table (6  2 ), w here three va lu es for each  param eters w ere u sed (0  3, 

0  5 , and 0 7)

L ooking at the va lu es o f  <7 max, p ?max in  T able (6  2 ), it is easy  to see  that the

m od el can b e adapted to m od el a w id e  range o f  traffic circum stances, as above  

T he m in im um  va lu e o f  g max is  obtained at bad driving con d ition s (P_rd =  0 7, 

P _ac =  0  3), w ith  m axim um  v e lo c ity  obtained 1 6 4 4 7  (l e  22  2 mph)
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P_inc P_rd P_ac P q max ^ m a x

0 3 0 3 0 3 0 17 0 1565

0 3 0 3 0 5 0 18 0 2231

0 3 0 3 0 7 0 16 0 2521

0 3 0 5 0 3 0 17 0 1483

0 3 0 5 0 5 0 18 0 2093

0 3 0 5 0 7 0 16 0 2395

0 3 0 7 0 3 0 16 0 1427

0 3 0 7 0 5 0 17 0 2025

0 3 0 7 0 7 0 16 0 232

0 5 0 3 0 3 0 17 0 1557

0 5 0 3 0 5 0 18 0 2219

0 5 0 3 0 7 0 17 0 256

0 5 0 5 0 3 0 17 0 1464'  i
0 5 0 5 0 5 0 19 0 2083

0 5 0 5 0 7 0 18 0 2433

0 5 0 7 0 3 0 17 0 1404

0 5 0 7 0 5 0 19 0 2005

0 5 0 7 0 7 0 19 0 2352

0 7 0 3 0 3 0 18 0 1533

0 7 0 3 0 5 0 22 0 2181

0.7 &3 OJ 0.18 0.2600

0 7 0 5 0 3 0 18 0 1445

0 7 0 5 0 5 0 21 0 2054

0 7 0 5 0 7 0 20 0 247

0.7 0.7 0*3 0.18 | 0.1389

0 7 0 7 0 5 0 21 0 1981

0 7 0 7 0 7 0 20 0 2389

Table (6 2) The influence of varying the model 
parameters on the two extremes
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In contrast, im proving the driving con d ition s by decreasing P_rd to a low er  

va lu e (P_rd =  0  3) and increasing the va lu e o f  P _ac to a higher value  

(P ac= 0 7 ) has lead to the m axim um  valu e o f  <?max (0  2 6 0 9 ) and also increased  

the system  v e lo c ity  to a higher va lu e (2  20 4 4 )

Further, the tw o extrem e va lu es o f  qmmi,(m inim um  and m axim um  va lu es), 

w ere obtained, suprisingly, at the sam e traffic d en sity  ( p ?max =  0  18)

T able (6  2) sh ow s that m ost va lu es o f  p ?max are obtained at the density  o f  0  18 

± 0  0 1 , w ith  som e ca ses  w here p ?max is obtained at a low er (higher) densities

than 0 18 ±  0 01 T his is  due to due to different com binations o f  the extrem e  

va lu es o f  the m od el param eters in  order to obtain a realistic traffic patterns

6.3 Open Systems
In this section , w e  apply different boundary con d ition s and apply the sam e  

rules o f  the stochastic cellu lar autom ata m od el T he system  inputs and outputs 

are treated as fo llo w s

•  A t the left side o f  the road, a stochastic feed in g  m echanism , in  w h ich  car 

arrivals fo llo w  a P o isso n  p rocess, has been  im plem ented  throughout the 

sim ulations for d ifferent arrival rates

•  O n the other hand, cars m ay lea v e  the system  at the right side o f  the road 

T his is  ach ieved  by ensuring that the last three sites o f  the road are em pty

T he above conditions for the system  input and output w ill create op en  

boundary con d ition s



T he fundam ental d iagram  for the stochastic m od el (F ig  (6 10)) w as obtained, 

starting w ith  a random  in itia l configuration  o f  d en sity  0 2 and v e lo c ity  v =  0, 

by applying open  boundary con d ition s and em p loy in g  different rates o f  

arrivals T he sim ulations included  a system  o f  s ize  3 0 0  sites for duration o f  

10 ,000-tim e step A fter relaxation, 1000 tim e steps, the m axim um  flo w  

obtained is
i

*open=qaa,clo»d+C> Where 0 0  < C < 0  03  (6 3)

at density  o f

A? = Pq , ,  “  Ci w here 0  0  < C1 < 0  0 4  (6 4)" m a x  open “ m ax, d o se d  i  '  '

T he ab ove results m ean that a higher f lo w  is  obtained at low er density , 

com pared to the m od el w ith  c lo sed  boundary con d ition s

Fig (6 10) Fundamental diagram of the stochastic model using 
open boundary conditions Points are averaged over short-time 
periods (50 time steps) for a system of size = 300 after
discard period of 1000 time steps Duration of system evolution 
= 10,000 time steps Data relate to different arrival rates,
where =3, P_mc=0 5, P_rd=0 5, P_ac = 0 4
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6.3.1 Bottleneck Situations
O ne o f  the im portant factors in  traffic sc ien ce  is the ex isten ce  o f  bottlenecks, 

1 e  section s that have less  cap acity  o f  accom m odating traffic than do other 

section s o f  the road A  very com m on  exam p le o f  a bottleneck  situation is  a 

tw o-lane d irectional road m erging into on e lane on ly

In order to obtain a bottleneck  situation in the fo llo w in g  sim ulation , w e  apply  

a h igh  rate o f  arrivals (p =  0 6) starting from  a high in itia l d en sity  Duration o f  

the sim ulation  is 10 ,00 0  tim e steps for a system  o f  s iz e  3 0 0  ce lls

6.3.2 Self-organization of the Maximum Throughput

For the conditions sp ecified  in  the previous section , our m od el sh ow s that the  

ou tflow  from  a jam  appear to self-organ ize  into m axim um  throughput This 

p h enom enon  o f  self-organ ized  criticality  w as reported in itia lly  b y  B ak  et al 

(1 9 8 7 ) using a on e-d im en sion a l sand-pile cellu lar autom ata m od el as the  

transport process, but our m od el ind icates a state o f  n on -tn v ia l critica l d en sity  

( l e  p c *  0) in agreem ent w ith  N a g e l (1 9 9 4 , 19 95 ) T h is can be seen  from

F ig (6  11), w here the system  size  k = 3 0 0  and the in itia l d en sity  is  0  56  w ith  

P _inc =  0  5 , P_rd =  0 5, and P _ac =  0 5  A fter a relaxation :o f  1000 iterations, 

w e started to co llec t our averages every  50 -tim e steps T he m axim um  flo w  

obtained is  qmiX open =  0 2 1 8 5 , w h ich  is 0  0 1 0 2  greater than the m axim um  flow

obtained in c lo sed  system s, at low er d ensity  ( P ?max open = 0  15)
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Fig (6 11) space-time plot of the outflow from a jam, where the 
system size = 300, starting from a dense traffic p = 0 56,and 
apply high arrival rate on the left boundary = 0 6,
Vmax =3, P_mc=0 5, P_rd=0 5, P_ac = 0 5

6.4 Summary and Conclusion
A  stochastic cellu lar autom ata m od el for the traffic in inter-urban areas is  

presented in th is chapter T he m od el is d efin ed  on  a on e-d im en sion a l lattice o f  

k-identica l c e lls , w here each  c e ll  is  either em p ty or occu p ied  b y  a car, w here  

each  car has an integer v e lo c ity  varied b etw een  v =  0  and v =  vmax 

T he m od el update rules depend on  the relation  b etw een  the car v e lo c ity  and its 

free h eadw ay d istance and take into account som e o f  the basic features, w hich  

characterise the inter-urban traffic such  as d elay  in  acceleration, speed  

fluctuations, and irregularities o f  the driver behaviour on ly  in  term  o f  gap  

acceptance

Our sim ulation  results can b e sum m arized as fo llo w s
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•  T he m axim um  flo w  qmm =  0  2 4  ±  0 02  w as obtained at density  p max =  

0 18 ±  0  0 1 , further sim ulation  reveals that the system  s ize  d oes not effect  

these va lu es

•  A t lo w  d en sities, w e  found that laminar traffic w as the dom inant pattern  

d esp ite the appearance o f  sm all jam s, w hereas the high d en sity  reg im e w as  

characterized by con gested  clusters, w h ich  represent typ ica l start-stop  

w aves

•  T he sim ulation  conducted  in S ec(6  3 3) sh ow s that the m od el can be 

adapted to m od el various traffic con d ition s such as bad w eather, rush  

hours, etc, by m od ifin g  its parametrs

•  W hen open  boundary con d ition s w ere applied, a h igher va lu es for the 

m axim um  flo w  w as obtained at low er d ensities

•  A p p ly in g  open  boundary con d ition s w ith  higher arrival rate, the m od el 

ind icates that the ou tflow  from  a traffic jam  appears to self-orgam se to  a 

m axim um  flo w
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Chapter 7

“Summary and Conclusions”

)
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7.0 Research Contributioni

The main contribution in this research lies in developing three cellular automata 

models for traffic flow in urban anil inter-urban areas, which can be summarized 

and discussed as follows 

A simple cellular automata model for urban traffic is presented, the model is a

three state deterministic cellular automaton with both space and time, discrete

!
The state of each site at next time| step is determined from the state of the site 

itself and those of the nearest neighbour sites, where vmax = 1 is the maximum 

possible jump for each particle For an arbitrary configuration, one update of the 

system consists of the transition rules described in Sec (2 2), which are performed 

in parallel for all sites 

It is hard to classify the cellular automata models in the frame of car following
I

theory, (described in Chapter 1, Sejc (1 1 1  1)) In our model the stimulus can be

regarded as the gap between adjacent sites in the automata

Car movements, (described by rulers, Rule 1, Rule 3, and Rule 4, defined in Sec

(2 1)), can be viewed as the response, in the case o f  acceleration, whereas Rule 2

may be considered as the deceleration due to insufficient space ahead

Our simulation reveals that the system, (imposing periodic boundary conditions),

reaches its critical state at density lpc = 0 5 and the maximum flow obtained was

9max = 0 5  after a discard period t0 = —, which does not depend on the system size
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I

This was also obtained by Nagel and Schreckenberg (1992) in the deterministic 

limit of their stochastic model using vmax=l, but after a much higher transient

j
period For densities less than the critical density (p < p c), the kinematic waves

move forward with velocity 1 In contrast, for densities higher than p c, the

I
kinematic waves move backward with velocity -1 The open boundary conditions,

j
(described in Chapter 2, Sec (2 3 2)j), have led to lower values for maximum flow

and its density, compared to maximum flow obtained for closed systems, which
i

depends on the system size {
|

The model, then, is adapted to model road traffic, where the road is formed by
I

linking a finite number of segments separated by traffic lights In urban traffic,
i(

our experience and every day observations says that cars have to wait for a certain
t

period of time in order to leave a specific road
\

This tune period depends on the number of the traffic lights installed between
I

road segments and the duration of both light cycles, red and green, as well as the
!

traffic density To examine the realism of our simulation model, a new parameter"
i

jammed time t ] " is introduced, whlich represents the number of time steps a car

has to wait in order to leave the road Our simulation results show that this 

parameter, as in real traffic, depends on the number of traffic lights and the 

duration of each light cycle
i

The real task for our "toy" model was its ability to simulate traffic flow at
|

network level Four different networks, varying from 17 nodes, (8 km length), to 

41 nodes, (24 km length), have been used in the simulation, the limitations of this
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range is due to the effort needed,to represent larger size networks However,
/
j

future work has to incorporate larger size networks

Each network node corresponds to a signalized intersection, timing of signals at 

all nodes followed two-phase timing scheme At all nodes traffic movements
I

followed turning percentages as described in Chapter 3, Sec (3 1 5) Cars are 

injected into the network according! to a Poisson process with parameter p, where

different values for u are used I
Ii

Two types of simulation were ¡executed, the first considers the transient1
i

movement of cars along the networks, whereas in the second cars were allowed to
i1

park inside the network, using underground parks, and the network behavior 

under short and long-term events were also investigated
i

The simulation results strongly suggest that traffic flow in urban street networks 

and the parameters governing its performance may be characterized using the 

Simple Cellular Automaton Models
i

Our findings indicate the following \
i  ^

• The characteristic shape of the fundamental diagrams as observed for highway

traffic is, surprisingly, obtained at urban network level, despite the complex
I

interactions in urban traffic This is in agreement with Williams (1986), and 

results obtained here appear to leflect realistic traffic behaviour

• The simulation reveals that there is a critical arrival rate” jamming threshold”
above which the network is not able to handle the incoming traffic any more,

which results in “ queues outside the network" This “jamming threshold?' is
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independent of the network size in the case of transient movement simulation,
t

whereas different “jamming thresholds” for different network sizes were
t

obtained in the case of non-transient movement simulation
ti

• At low arrival rate and also| slightly above the “jamming threshold” a
!i

significant interaction,(a = 0 01), between the traffic conditions, transient 

period, and the interval lengtlj was obtained for smaller size network, 17 

nodes This interaction became insignificant for larger size network, 41 nodes

• Modelling long-term events, such as blocking some of the network exits, has 

successfully reproduced the jamming effect typically seen in highly congested 

networks at peak-times

Using single-lane networks, important features such as lane-changing and its
'«i

impact on the flow behavior in urban networks cannot be observed and studied 

Compared to highway traffic, lane-changing in urban areas is more complex This 

is because the decision to change ¡lane in urban areas depends on a number of 

objectives and at times these may conflict

Despite this complexity, our aim is to find the minimal sets of lane-changing 

rules, which are capable of reproducing important macroscopic features such as 

lane-usage inversion, which is observed long before maximum flow in highway

traffic and also observed in urban traffic flow in our study, but at higher density,
1

see Sec (5 4) !
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In this regard a two-lane model is introduced, which consists of two parallel 

single-lane model and three sets of rules for lane-changing defined as follows 

urgent lane-changmg conditions, minimal and maximal lane-changing conditions 

Our simulation reveals that the above lane-changmg rules were able to reproduce 

the lane-usage inversion as obtained in both highway and urban traffic 

The “density inversion“ point is modified by the lane-changing parameters, 
P_chg, P_obs, and P_Lobs The choice P_chg = 0 4, P_obs = 0 3, P_Lobs = 05  

for both lanes left and right, gives a good approximation to our observed data in a 

study performed in Dublin city to calibrate our lane-changing rules The 

limitations of our study was mentioned in Sec (5 4)

However, the lane-usage frequency for both lanes is not correctly modelled at 

very large densities, where left lane flow is higher than the right lane flow 

In the last chapter we moved from deterministic cellular automata models to a 

completely stochastic cellular automaton models in order to model traffic in mter- 

urban areas with links that may exceed 5 km

The stochastic model, also, is defined on a one-dimensional array of k sites The 

state of each site is either empty or occupied by a car, where each car has an 

integer velocity between v = 0 and v = vmax The model update rules, described in 

Sec (6 1 2) depend on the relation between the safe distance of the car velocityi
and its free headway distance

The model correctly reproduces the start-stop waves and the flow-density relation 

shows the asymmetry known from the real data obtained for highway traffic
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The simulation reveals that the model can be adapted to model various road traffic 

conditions, by modifying its parameters

In case of an open system the model gives a good approximation to the flow- 

density relation obtained for highway traffic and indicates that the outflow from a 

jam appears to self-orgamze to maximum flow, when a high arrival rate is 

applied, starting from a dense traffic condition

Throughout this thesis Microsoft Excel was used to plot all our graphs, and a 

C++ code, which uses bitmaps see Appendix E a:\ Space-time\ bc.c, was used to 

plot all the space-time diagrams A bitmap is a powerful graphics object used to 

create, manipulate and store images as files on a disk

7.1 Future Work
• Despite the deterministic update rules of the Simple Cellular Automata 

Model, it was able to reproduce important features of urban traffic

Adding the stochasticity element to the update rules might yield a more 

realistic behavior o f  the model

• Buses and Trucks represents more than 50% of the urban traffic, so future 

work has to be directed to incorporate long vehicles in the model (1 e non- 

homogenous units)

• Also, future simulation has to involve networks with complex intersections 

(1 e intersections with complex geometry), and roundabouts
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• Extend the two-lane model to include a third lane, which is dictated as a bus- 

lane The bus-lane represents one of the important short-terms events in urban 

traffic

• Investigate the efficiency of the simulations in the case of non-homogenous 

units by looking at the bit-wise coding and also the use of parallel computing

• In case of the stochastic CA model, more investigations are required to study 

and scale the formation of the spontaneous traffic jams, Also, the limits of the 

model has to be investigated in some detail

• Use the models developed in this research to develop a High Speed 

Microscopic Simulation for Urban and Inter-urban Traffic (HSMSUIT) 

simulation package

7.2 Concluding Remarks
In this research, we have seen the importance and the capabilities of the Cellular 

Automata methodology in modelling traffic flow m urban and inter-urban areas 

Despite the complexity of the traffic dynamics, the advances we have seen in the 

last years are demystifying the idea that Cellular Automata are too simple to be 

capable of simulating highly complex systems
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Appendices 

Appendix A Statistical Analysis

In this section we use factorial analysis to study how changing the input parameters 

might effect the output parameters

The input parameters are length of transient period, interval length, traffic conditions, 

the number of network-blocked exits, and the arrival rate

In contrast our output parameters or responses are traffic density, flow rate, average 

velocity, number of cars input to the system, number of cars output from the system, 

and the queue length at each of the network entries
f.

In the first section we study the significance for network performance of the 

interaction between the network size and the input parameters We examine the flow 

rate in each case for different arrival rates at the injection point 

In section two, using different network sizes, we study the higher order interactions of 

the three factors, transient period, interval length, and traffic conditions, and examine 

their effect on the flow rate using two levels for each factor, again for various arrival 

rates
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A.I. The relation between the network size and the input 
parameters
A.1.1 Network size vs traffic conditions
We have used factorial analysis to examine the realism of our simulation model, in 

particular to investigate the interaction between network size and traffic conditions 

In the first experiment, network size and traffic conditions at intersections have levels 

B1 to B4 and A1 to A2 as follows

B Network size, B1 = 17 nodes, B2 = 25 nodes, B3 = 33 nodes, B4 = 41 nodes 

A traffic conditions, A1 = 50% go straight through, 25% turn left, 25% turn right and

A2 = 76% go straight through, 12% turn left,; 12% turn right

Fig (A 1)

The experiment is performed using a stochastic feeding mechanism, in which car 

arrivals at the injection points follow a Poisson process for different rates of arrivals
t

(P)
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Fig (A l)  shows that, at low arrival rate p = 0 1 for free traffic conditions, a

significant interaction between the traffic conditions and the network size was

obtained at the a  = 0 01 level of significance Increasing the arrival rate to p = 0 55, 

results in a weak interaction between the two parameters

Using the higher arrival rate, Table (A 1) demonstrates that both factors have a

significant effect on the flow rate

Factor Fcaic at p = 0 1 Fcaic at p = 0 55

A 10 32 

(1, 312)*

14 18 

(1, 312)

B 4 28 

(3, 312)

28 11 

(3, 312)

4 67 

(3, 232)

1 69 

(3, 232)

24 65 

(3, 312)

29 71 J- 

(3, 312)

50 85 

(3, 232)

5 32 

(3, 232)

AB 30 13 

(3, 312)

1 02

(3,312)

C 17 16

(1, 312)

36 07 

(1, 312)

BC 6 60 

(3, 312)

2 32 

(3, 312)

D 3 56 

(1, 232)

314 12 

(1, 232)

DB 26 04 

(3, 232)

10 94 

(3, 232)

E 0 39 

(1, 232)

? 8 59 

(1, 232)

EB 1 70 

(3, 232)

0 37 

(3, 232)

Table (A 1) In this table the response variable represents the 
flow rate for all the experiments, where A traffic conditions, 
B network size, C transient period, D interval length, and 
E network-blocked exits, and a = 0 01
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A.1.2 Network size vs length of transient period
In experiment 2 we study the effect of the transient period on the network size factor. 

The same levels for the network size parameter have been used as before and two 

levels for the transient period; Cl = 200, C2 =500.

Using the low arrival rate, the interaction between the length of transient period and 

network size seems to have a significant effect on the average flow rat at a  = 0.01. 

Again, this is not sustained when the high arrival rate is applied to feed the network 

(Fig (A.2.b)). Both factors independently, however, have a significant effect on 

network performance, (Table (A.l)).

(a) (b)

F i g ( A . 2)

A.1.3 Network size vs interval length for calculating the output 
parameters
Our simulation results reveals that, as long the free flow is dominant, there are no 

significant changes in the traffic parameters, average flow, average density, and
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average density, see Chapter 3, Sec (3 3 3) Hence, the interval length used to 

calculate these averages does not have much influence on their values This is not the 

case in the dense traffic regime period, where the interval length used to average these 

parameters plays a significant role ( = 3 1 4 a ta  = 001 level of significance)

This can be observed from the statistical analysis presented in Table (A 1) with 

interval length having two levels, D l= 30 time step, D2 = 150 time steps 

The analysis also reveals that there is a significant interaction, at a  = 0 01, between 

network size and interval length for low arrival rate, less so for high arrival rate For 

high arrival rate, network size and interval length are also separately significant at the 

same level of significance However, for low arrival rate, interval length does not 

have a significant effect
t *
” t

A.1.4 Network size vs the number of the Network-blocked exits

When car arrivals to the network are relatively low and/or if underground parks exist 

inside the network, then blocking one or two of the network exits will not have a great 

impact on the network performance This situation is no longer true as the network 

becomes congested and car arrival rate increases In this case, blocking any of the 

network exits will strongly influence the network performance

To quantify the above performance, we have used two levels for the factor number of 

network-blocked exits l e E l  = 1 exit and E2 = 2 exits, and the same levels for the

network size parameter (Table (A 1)) It can be seen that when free flow traffic
£

operated through the simulated network, neither the two factors nor their interaction 

have a significant effect on the flow rate
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By contrast, under dense traffic conditions (îe  a high arrival rate) both factors 

(network size and number of blocked exits) have a significant role, (a  = 0 01), in 

terms of flow performance At this level of concentration, the flow rate is not affected 

by interaction of the two factors

A.1.5 Network size vs arrival rate

One of the key factors in our simulation is the arrival rate To investigate how factors 

such as the arrival rate, network size and their combination might affect the network 

performance, factorial analysis was used to analysis the simulation output, where two 

levels, HI = 0 1 and H2 = 0 55, have been used for the arrival raté and the same four’ ’ y

levels as previously for the network size

Statistical analysis in Table (A 2) shows that the arrival rate has a great influence on 

flow performance and a significant interaction, at a  = 0 01, also exists between the 

two factors, H and B

Factor F
calc

H 738 58
(1 ,2 3 2 )

B 49 04
(3, 2 3 2  )

HB 24 33
(3, 232 )

Table (A 2) The response variable represents the flow 
and each order pair represents the Degrees of freedom, 
where H arrival rate and B network size and a = 0 01
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A.2. Statistical analysis using three-input factors:
In this section we study the effect of the following factors, transient period, the 

interval length, and the traffic conditions on the flow rate performance using different 

networks size Each of these parameters has two levels as follows 

A Traffic conditions, A1 = 25% turn left, 50% go straight,, 25% turn right and

A2 = 12% turn left, 76% go straight, 12% turn right

B Transient Period, B1 = 200, B2 = 500

C Interval Length, Cl = 30, C2 = 150

A.2.1 Experiments using a 17 node network

Table (A 3) describes the statistical analysis performed using different arrival rates 

using 17-node network

Source Fcalc at M=0 1 Fcaic at (J=0 3 Fcaic at M=0 55

A 34 62 87 22 143 62

B 12 07 22 78 11 46

C 1 18 291 20 191 70

AB 2 08 14 78 1 076

AC 188 30 0 013 7 07

BC 11 72 14 73 7 77

ABC 13 73 10 72 0 98

Table (A 3) The table contents same as m  table (A 2), but 
A traffic conditions, B transient period, and C interval length 
This was obtained for network of size 17 nodes and results obtained 
at a = 0 01 level of significance
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From the above table it is easy to see that the interaction between the three factors 

does have a significant effect, at a  = 0.01, on the flow performance at low arrival rate. 

However, this interaction was less significant as we increase the arrival rate and was 

unimportant at high arrival rate of 0.55. In the case of the two-factor interactions we 

find a significant interaction, (a  = 0.01), between the length of transient period and 

the interval length at various levels of arrival rates. In contrast there is no interaction 

between the transient period and the traffic conditions except at a moderate arrival 

rate, with Poisson parameter p = 0.3.

Also a significant interaction, (a  = 0.01), between the traffic conditions and the 

interval length was obtained at both low and high arrival rates, whereas for ¡u 

moderate and equal to 0.3, interaction between the two factors was negligible. The 

statistical analysis also shows a significant effect at different arrival rates for each 

parameter with the exception of the interval length, where no significant effect was 

observed at low arrival rate as expected.

A.2.2 Experiments using 41 node network

To study further the effect of network size on traffic parameters, the simulated 

network was extended to include 41 nodes.

Table (A.4) shows that there is a significant interaction, a  = 0.01, between the traffic 

conditions and the transient period only when low arrival rate is applied whereas 

negligible interaction between the traffic conditions and the interval length was 

observed at all of arrival rates.

The individual parameters in this case have a significant effect, at the same a, on the 

flow performance compared to previous networks, except in the case of the interval 

length parameter at low arrival rate.
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Factor Fcalc at M=0 1 P eak at M=0 3 Fcaic at M=0 55

A 151 89 8 55 14 11

B 116 74 25 00 19 36

C 4 88 321 26 179 06

AB 41 15 0 01 0 003

AC 0 43 0 89 1 16

BC 4 86 10 66 6 54

ABC 5 72 0 35 0 0001

Table (A 4) the response variable represents the flow, where 
A traffic conditions, B transient period, and C interval length 
This was obtained for network of size 41 nodes and results obtained 
at a = 0 01 level of significance

Using Table (A 4) it is easy to see that the interval length factor and its interactions 

terms do not have a significant effect the flow  at low  arrival rate no matter what the 

network size However, under dense traffic conditions, the interval length as w ell as 

the other two factors are significant, (a  = 0 01), in terms o f  influencing flow , although 

most o f  the higher order interactions becom e less significant as the network becomes 

more congested This appears to be true, irrespective o f  the network size (Chapter 3, 

Sec(3 3))
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Appendix B: Summary of the simulation experiments
Experiment Run Duration Arrival Rate 

V

initial Oensity Max Flow Oensity of 
Max Flow

Velocity 

at max Fiow

Queue outside 

the network
Total Input 

Cars

Total Output 

Cars

N17D200S30H50%L25%R25% 5000 time step 0.1 0.159274 0.14892 0.180459 0.825226 3 2744 2748

N17D200S30H50%L25%R25% 5000 time step 0.3 0.147177 0.247978 0.482386 0.514065 808 6270 5917

N17D200S30H50%L25%R25% 5000 time step 0.55 0.148185 0.250189 0.414131 0.604131 6063 6616 6215

N17D200S30H76%L12%R12% 5000 time step 0.1 0.155242 0.132537 0.15784 0.839694 6 2540 2539

N17D200S30H76%L12%R12% 5000 time step 0.3 0.145161 0.260762 0.455271 0.572761 847 6144 5781

N17D200S30H76%L12%R12% 5000 time step 0.55 0.140121 0.261315 0.453458 0.576273 6292 6810 6355

N1 7D200S150H50%L25%R25% 5000 time step 0.1 0.144153 0.119422 0.137413 0.863076 I I I ! ! 2323 2327

N17D200S150H50%L25%R25% 5000 time step 0.3 0.132056 0.249845 0.490848 0.509007 918 6217 5865

N17D200S150H50%L25%R25% 5000 time step 0.55 0.15625 0.254043 0.539544 0.470846 6270 6736 6329

N17D200S150H76%L12%R12% 5000 time step 0.1 0.138105 0.133206 0.154579 0.861731 0 2461 2452

N17D200S150H76%L12%R12% 5000 time step 0.3 0.145161 0.263661 0.509714 0.517273 997 6210 5842

N17D200S150H7€%L 12%R 12% 5000 time step 0.55 0.144153 0.270235 0.50673 0.533292 6193 6772 6325

N17D500S30H76%L12%R12% 5000 time step 0.1 0.141129 0.141146 0.168032 0.839994 2 2683 2692
N17D500S30H76%L12%R12% 5000 time step 0.3 0.15625 0.249675 0.451186 0.553374 918 6073 5756
N17D500S30H76%L12%R12% 5000 time step 0.55 0.157258 0.247644 0.528179 0.468864 6243 6834 6410
N17D500S30H76%L12%R12% 5000 time step 0.1 0.143145 0.133296 0.154583 0.862293 3 2478 2497
N17D500S30H76%L12%R12% 5000 time step 0.3 0.137097 0.256717 0.4774 0.53774 782 6299 5932
N17D500S30H76%L12%R12% 5000 time step 0.55 0.142137 0.264442 0.504902 0.52375 5970 6721 6283
N17D500S150H50%L25%R25% 5000 time step 0.1 0.143145 0.124543 0.142374 0.874755 3 2266 2272
N17D500S150H50%L25%R25% 5000 time step 0.3 0.167339 0.249432 0.468973 0.531867 869 6064 5761
N17D500S150H50%L25%R25% 5000 time step 0.55 0.147177 0.249719 0.586972 0.425437 6370 6880 6431
N17D500S150H76%L12%R12% 5000 time step 0.1 0.153226 0.151318 0.179288 0.843993 7 2734 2714
N17D500S150H76%L12%R12% 5000 time step 0.3 0.147177 0.265604 0.463274 0.57332 914 6123 5784
N17D500S150H76%L12%R12% 5000 time step 0.55 0.149194 0.26992 0.54265 0.49741 5946 6654 6255

Table (B.l): Summary of results for a transient moment simulations for a 17 nodes network, where :D: transient period,
S: interval length used to calculate averages, H: headway percentages, L: turn left percentages, R: turn right percentages
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J&in Duration Arrival Rate 
W

initial Density Max Flow Density of 
max Flow

Velocity 

at max Flow

Queue outside 

the network
Tata! input 

Oars
Iota! Output 

Cars

N25D200S30H50%L25%R25% 5000 time step 0.1 0.157419 0.133535 0.154924 0.86194 2 2405 2467
N25D200S30H50%L25%R25% 5000 time step 0.3 0.141935 0.250938 0.42474 0.590803 995 6073 5583
N25D200S30H50%L25%R25% 5000 time step 0.55 0.152903 0.257036 0.50891 0.505071 6533 6458 5876
N25D2O0S3OH 76%L1 2%R12% 5000 time step 0.1 0.144516 0.122532 0.141974 0.857421 6 2376 2399
N25D200S30H76%L12%R12% 5000 time step 0.3 0.138065 0.251473 0.460259 0.546468 937 5993 5467
N25D200S30H76%L12%R12% 5000 time step 0.55 0.149032 0.255588 0.477692 0.535047 6230 6392 5794
N25D200S150H50%L25%R25% 5000 time step 0.1 0.148387 0.130982 0.145693 0.89903 4 2371 2406
N25D200S150H50%L25%R25% 5000 time step 0.3 0.155484 0.261953 0.455198 0.575471 912 6030 5532
N25D200S150H50%L25%R25% 5000 time step 0.55 0.147742 0.268279 0.516321 0.519598 6336 ¡« 1 1 1 1 ! 5879
N25D200S150H76%L12%R12% 50001me step 0.1 0.139355 0.129295 0.147715 0.8753 6 2282 2324
N25D200S150H76%L12%R12% 50001me step 0.3 0.14 0.25995 0.46235 0.562236 838 6033 5523
N25D200S150H76%L12%R12% 50001me step 0.55 0.150323 0.265441 0.501034 0.529786 6275 6455 5897
N25 D500S30H 76%L12%R 12% 50001me step 0.1 0.150323 0.125374 0.14348 0.873803 3 2338 2372
N25D500S30H76%L12%R12% 5000 t me step 0.3 0.145806 0.255886 0.431914 0.592447 959 6074 5588
N25D500S30H76%L12%R12% 5000 t me step 0.55 0.145161 0.261093 0.441902 0.590839 6192 6501 5859
N25D500S30H76%L12%R12% 5000 t me step 0.1 0.14 0.127269 0.146585 0.868228 3 2328 2364
N25D500S30H76%L12%R12% 5000 t me step 0.3 0.14129 0.254167 0.422594 0.601446 1028 6060 5566
N25D500S30H76%L12%R12% 5000 t me step 0.55 0.154839 0.255759 0.42253 0.605305 6189 6479 5906
N25D500S150H50%L25%R25% 5000 t me step 0.1 0.147097 0.125037 0.140622 0.88925 2 2297 2340
N25D500S150H50%L25%R25% 5000 t me step 0.3 0.141935 0.263499 0.442829 0.595035 816 5973 5476
N25D500S150H50%L25%R25% 5000 t me step 0.55 0.14129 0.262152 0.509705 0.514322 6502 6413 5856
N25D500S150H76%L12%R12% 5000 t me step 0.1 0.151613 0.132389 0.151483 0.873958 3 2305 2364
N25D500S150H76%L12%R12% 5000 t me step 0.3 0.140645 0.257569 0.459314 0.56077 952 6014 5498
N25D500S150H76%L12%R12% 5000 time step 0.55 0.149032 0.261592 0.438199 0.59697 6130 6526 5845

Table (B.2): Summary of results for a transient moment simulations for a 25 nodes network, where :D: transient period,
S: interval length u sed to calculate averages, H: headway percentages, L: turn left percentages, R: turn right percentages
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"ITxpefimW Run Duration Arrival Rate 
M

initial Density Max flow Density at 
Max Flow

Velocity 
at Max Row

Queue Outside 
the Network

Total Input 
cars

Totaf Output 
Cars

N33D200S30H50%L25%R25% 5000 time step 0.1 0.145714 0.123954 0.144823 0.855896 4 2321 2369
N33D200S30H50%L25%R25% 5000 time step 0.3 0.152381 0.2334 0.419332 0.556812 739 6491 5740
N33D200S30H50%L25%R25% 5000 time step 0.55 0.16 0.236959 0.433432 0.433432 5854 6815 5989
N33D200S30H76%L12%R12% 5000 time step 0.1 0.15381 0.138539 0.163858 0.845484 4 2507 2528
N33D200S30H76%L12%R12% 5000 time step 0.3 0.143333 0.241085 0.439291 0.548804 672 6279 5467
N33D200S30H76%L12%R12% 5000 time step 0.55 0.146667 0.242875 0.458928 0.511926 5741 6751 5796
N33D200S150H50%L25%R25% 5000 time step 0.1 0.148095 0.143204 0.164671 0.869639 5 2361 2425
N33D200S150H50%L25%R25% 5000 time step 0.3 0.140952 0.242285 0.43769 0.553554 807 6263 5588
N33D200S150H50%L25%R25% 5000 time step 0.55 0.141429 0.242092 0.435438 0.555973 5776 6836 5983
N33D200S150H76%L12%R12% 5000 time step 0.1 0.152381 0.132734 0.153399 0.874409 0 2494 2552
N33D200S150H76%L12%R12% 5000 time step 0.3 0.147143 0.25041 0.481382 0.52019 791 6273 5480
N33D200S150H76%L12%R 12% 5000 time step 0.55 0.152857 0.26S046 0.468599 0.544273 8163 6727 5826
N33D500S30H76%L12%R12% 5000 time step 0.1 0.153333 0.119552 0.136254 0.877418 3 2377 2437
N33D500S30H76%L12%R12% 5000 time step 0.3 0.143333 0.237264 0.43985 0.539421 688 6245 5512
N33D500S30H76%L12%R12% 5000 time step 0.55 0.138095 0.23482 0.518609 0.452788 5937 6888 6030
N33D500S30H76%L12%R12% 5000 time step 0.1 0.150952 0.124745 0.148753 0.838607 8 2312 2371
N33D500S30H76%L12%R12% 5000 time step 0.3 0.144286 0.242352 0.486614 0.498037 612 6284 5523
N33D500S30H76%L12%R12% 5000 time step 0.55 0.140476 0.240965 0.508666 0.473719 6068 6790 5884
N33D500S150H50%L25%R25% 5000 time step 0.1 0.144286 0.123623 0.142087 0.870053 1 2380 2398
N33D500S150H50%L25%R25% 5000 time step 0.3 0.14381 0.241518 0.405884 0.595043 787 6230 5546
N33D500S150H50%L25%R25% 5000 time step 0.55 0.14619 0.242907 0.470925 0.515808 5882 6821 5978
N33D500S150H76%L12%R 12% 5000 time Step ¡1 1 1 1 0.144762 0.118459 0.134982 0.877589 I I I 2282 2309
N33D500S150H76%L12%R12% 5000 time step 0.3 0.137619 0.249781 0.400047 0.62438 615 6257 5502
N33D500S150H76%L12%R12% 5000 time step 0.55 0.145238 0.254398 0.462507 0.550043 6005 6710 5802

Table (B.3): Summary of results for a transient moment simulations for a 33 nodes network, where: D: transient period,
S: interval length u s e d  to calculate averages, H: headway percentages, L: turn left percentages, R: turn right percentages
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Experiment Run Duration Arrival Rate
1

initial Density MaxFiow Density of 
Max Flow

Velocity 
at Max:Flow

Queue Outside 
the Network

Total Input
: Cars ;;

Total Output 
Cars

N41 D200S30H50%L25%R25% 5000 t me step 0.1 0.148791 0.123815 0.143406 0.863386 3 2335 2425
N41 D200S30H50%L25%R25% 5000 t me step 0.3 0.150961 0.236816 0.430268 0.550393 552 6388 5351
N41 D200S30H50%L25%R25% 50001me step 0.55 0.140732 0.236763 0.494114 0.441462 5769 7385 5810
N41 D200S30H76%L12%R12% 5000 t me step 0.1 0.154991 0.137141 0.157631 0.86986 3 2484 2522
N41 D200S30H76%L12%R12% 5000 t me step 0.3 0.150961 0.245792 0.459454 0.534966 400 6514 5314
N41 D200S30H76%L12%R12% 5000 t me step 0.55 0.147861 0.250523 0.426943 0.586784 5700 7357 5740
N41D200S150H50%L25%R25% 5000 t me step 0.1 0.150031 0.126424 0.141542 0.893192 1 2337 2412
N41D200S150H50%L25%R25% 5000 t me step 0.3 0.155921 0.244922 0.365846 0.669466 629 6331 5341
N41D200S150H50%L25%R25% 5000 t me step 0.55 0.151891 0.250251 0.445275 0.562015 5591 7821 6246
N41D200S150H76%L12%R12% 5000 t me step 0.1 0.148411 0.140923 0.159056 0.886 5 3739 3710
N41D200S150H7fi%t 12%R 12% 50001me step 0.3 0.147861 0.258957 0 451121 0.57403 494 6488 5250
N41D200S150H76%L12%R12% 5000 t me step 0.55 0.152201 0.258452 0.433729 0.595883 5697 7295 5713
N41 D500S30H76%L12%R 12% 50001me step l i i i 0.145691 0 11531 0.131372 0,877736 ¡ ¡ l i i i 2262 i l l l l l l l i i

N41 D500S30H76%L12%R12% 5000 t me step 0.3 0.145071 0.235872 0.430988 0.547282 521 6353 5341
N41 D500S30H76%L12%R12% 5000 t me step 0.55 0.150961 0.238576 0.490861 0.486036 5476 7242 5894
N41 D500S30H76%L12%R12% 50001me step 0.1 0.144761 0.122812 0.139498 0.88039 3 2342 2414
N41 D500S30H76%L12%R12% 5000 t me step 0.3 0.152821 0.247386 0.455698 0.542872 492 6525 5312
N41 D500S30H76%L12%R12% 5000 t me step 0.55 0.156541 0.250281 0.415698 0.602073 5529 7293 5699
N41D500S150H50%L25%R25% 5000 t me step 0.1 0.153131 0.132789 0.148948 0.891513 1 2327 2423
N41D500S150H50%L25%R25% 5000 t me step 0.3 0.148791 0.245982 0.421425 0.58369 516 6358 5351
N41D500S150H50%L25%R25% 5000 t me step 0.55 0.155921 0.247123 0.402293 0.614285 5652 7152 5765
N41D500S150H76%L12%R12% 5000 t me step 0.1 0.154991 0.129713 0.145445 0.891836 4 2315 2419
N41D500S150H76%L12%R12% 5000 t me step 0.3 0.146621 0.252735 0.447167 0.565193 445 6485 5279
N41D500S150H76%L12%R12% 5000 t me step 0.55 0.154061 0.258279 0.441876 0.584505 5668 7266 5681

Table (B.4): Summary of results for a transient moment simulations for a 41 nodes network, where: D: transient
period, S: interval length used to calculate averages, H: headway percentages, L: turn left percentages, R: turn
right percentages
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Experiment Run Duration Arrival Bate 
V

initial Density M ax F lo w Density of 
max Flow

Velocity
A;-

Queue outside 
the network

Total input 
Cars

Total Output 
Cars

N17D200S30B1 H50%L25%R25% 5000 time step 0.1 0.147177 0.224163 0.492272 0.455363 3 2278 2202
N17D200S30B2H50%L25%R25% 5000 time step 0.1 0.133 0.2120 0.4719 0.4493 102 2868 2099

N17D200S30B1 H50%L25%R25% 5000 time step 0.3 0.145161 0.236931 0.50286 0.471167 2280 5144 4551
N17D200S30B2H50%L25%R25% 5000 time step 0.3 0.135081 0.230511 0.467281 0.493303 3046 4143 3208
N17D200S30B1 H50%L25%R25% 5000 time step 0.55 0.143145 0.238341 0.463133 0.514627 7450 5193 4584
N17D200S30B2H50%L25%R25% 5000 time step 0.55 0.152218 0.226313 0.508597 0.444976 8790 4279 3309
N17D200S30B1 H76%L12%R12% 5000 time step 0.1 0.16129 0.217166 0.454462 0.477852 2 2486 2297
N17D200S30B2H76%L12%R12% 5000 time step 0.1 0.131048 0.21553 0.335317 0.642765 2 2291 1796
N17D200S30B1 H76%L12%R12% 5000 time step 0.3 0.137097 0.244921 0.421416 0.581185 1790 5040 4404
N17D200S30B2H76%L12%R12% 5000 time step 0.3 0.145161 0.230073 0.444752 0.517306 2812 4274 3199
N17D200S30B1 H76%L12%R12% 5000 time step 0.55 0.153226 0.251618 0.54804 0.459122 7427 5464 4774
N17D200S30B2H76%L12%R12% 5000 time step 0.55 0.140121 0.232449 0.476871 0.487445 8642 4268 3236

N17D200S150B1 H50%L25%R25% 5000 time step 0.1 0.148185 0.236138 0.523876 0.450753 2 2407 2310
N17D200S150B2H50%L25%R25% 5000 time step 0.1 0.142137 0.210436 0.553357 0.38029 2 2437 1891
N17D200S150B1 H50%L25%R25% 5000 time step 0.3 0.150202 0.23791 0.501119 0.474758 2063 4862 4294
N17D200S150B2H50%L25%R25% 5000 time step 0.3 0.140121 0.233809 0.443625 0.527042 2827 4119 3135
N17D200S150B1 H50%L25%R25% 5000 time step 0.55 0.131048 0.247727 0.438452 0.565005 7464 5244 4622
N17D200S150B2H50%L25%R25% 5000 time step 0.55 0.144153 0.236659 0.389588 0.60746 8772 4191 3261
N17D200S150B1 H76%L12%R12% 5000 time step 0.1 0.157258 0.216008 0.44391 0.486602 2 2485 2316
N17D200S150B2H76%L12%R12% 5000 time step 0,1 0.143145 0.209734 0.330629 0.634349 19 2401 1868
N17D200S150S1 H76%Lt 2%R12% 5000 time step ¡lili 0.147177 0.2598 0.443933 wmmmm 1898 5130 iiiSii
N17D200S150B2H76%L12%R12% 5000 time step 0.3 0.139113 0.242613 0.468975 0.517326 2832 4298 3161
N17D200S150B1 H76%L12%R12% 5000 time step 0.55 0.153226 0.258875 0.493992 0.526072 7584 5437 4726
N17D200S150B2H76%L12%R12% 5000 time step 0.55 0.15625 0.23615 0.502183 0.470247 8473 4252 3266
N17D500S30B1 H50%L25%R25% 5000 time step 0.1 0.154234 0.227848 0.582783 0.390966 2 2698 2497
N17D500S30B2 H50%L25%R25% 5000 time step 0.1 0.143145 0.209774 0.409535 0.512225 4 2314 1832
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N17D500S30B1 H50%L25%R25% 5000 t me step 0.3 0.149194 0.241441 0.502963 0.480037 2236 5055 4466
N17D500S30B2 H50%L25%R25% 5000 t me step 0.3 0.140121 0.231121 0.406189 0.568998 2953 4116 3184
N17D500S30B1 H50%L25%R25% 5000 t me step 0.55 0.140121 0.233647 0.510158 0.457989 7447 5370 4702
N17D500S30B2 H50%L25%R25% 5000 t me step 0.55 0.149194 0.225178 0.564867 0.39864 8569 4219 3289
N17D500S30B1 H76%L12%R12% 5000 t me step 0.1 0.150202 0.2208 0.40343 0.547308 3 2271 2115
N17D500S30B2H76%L12%R12% 5000 t me step 0.1 0.147177 0.228135 0.393391 0.579921 16 2308 1772
N17D500S30B1H76%L12%R12% 5000 t me step 0.3 0.149194 0.251889 0.496906 0.506915 1964 5031 4388
N17D500S30B2H76%L12%R12% 50001me step 0.3 0.139113 0.228963 0.451763 0.506821 2862 4128 3161
N17D500S30B1 H76%L12%R12% 50001me step 0.55 0.144153 0.252824 0.475676 0.531505 7431 5370 4723
N17D500S30B2H76%L12%R12% 5000 t me step 0.55 0.141129 0.22991 0.592603 0.387966 8394 4309 3330

N17D500S150B1 H50%L25%R25% 5000 t me step 0.1 0.148185 0.232802 0.486852 0.478179 1 2378 2287
N17D500S150B2H50%L25%R25% 50001me step 0.1 0.149194 0.224858 0.405369 0.554698 69 2788 2098
N17D500S150B1 H50%L25%R25% 50001me step 0.3 0.140121 0.24286 0.51085 0.475403 2388 5035 4416
N17D500S150B2H50%L25%R25% 5000 t me step 0.3 0.149194 0.229888 0.484377 0.474605 3214 4083 3180
N17D500S150B1 H50%L25%R25% 5000 t me step 0.55 0.146169 0.246749 0.471898 0.522887 7537 5216 4601
N17D500S150B2H50%L25%R25% 50001me step 0.55 0.154234 0.239664 0.491177 0.487938 8475 4359 3266
N17D500S150B1 H76%L12%R12% 5000 t me step 0.1 0.140121 0.219682 0.429647 0.511308 1 2499 2289
N17D500S150B2H76%L12%R12% 5000 t me step 0.1 0.15625 0.215391 0.367112 0.586718 71 2474 1936
N17D500S150B1 H76%L12%R12% 50001me step 0.3 0.136089 0.252152 0.476765 0.52888 2030 5008 4381
N17D500S150B2H76%L12%R12% 5000 t me step 0.3 0.145161 0.233687 0.536835 0.435306 2997 4074 3133
N17D500S150B1 H76%L12%R 12% 5000 t me step 0.55 0.139113 0.255734 0.52874 0.483666 7568 5424 4749
N17D500S150B2H76%L12%R12% 50001me step 0.55 0.141129 0.239967 0.51328 0.467516 8628 4204 3198.

Table (B.5): Summary of results for a non-transient moment simulations for a 17 nodes network, where: D: transient 
period, S: interval length used to calculate averages, H: headway percentages, L: turn left percentages, R: turn 
right percentages
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Experiment Run Duratìon Arrivai Rate 

V

Inìtlai Density Max Flow Density of 
max Fk>w

Vetocity 
: ai max Flow

Queue iength Total input 
Cars

To'.ai Output 
Cars

N41D200S30B1 H50%L25%R25% 5000 time step 0.1 0.148171 0.217855 0.32573 0.668821 2 2667 2312

N41 D200S30B2H50%L25%R25% 5000 time step 0.1 0.146311 0.219951 0.363491 0.605108 5 2228 1581

N41 D200S30B1 H50%L25%R25% 5000 time step 0.3 0.147861 0.222129 0.316262 0.702356 1018 6044 4085

N41 D200S30B2H50%L25%R25% 5000 time step 0.3 0.152821 0.223269 0.360969 0.618526 1836 5314 2989

N41D200S30B1 H50%L25%R25% 5000 time step 0.55 0.156851 0.233571 0.359306 0.650061 6400 6433 4395

N41 D200S30B2H50%L25%R25% 5000 time step 0.55 0.147861 0.22648 0.479256 0.472567 7490 5396 3065

N41D200S30B1 H76%L12%R12% 5000 time step 0.1 0.144761 0.217483 0.334089 0.650973 5 2481 2030

N41 D200S30B2H76%L12%R12% 5000 time step 0.1 0.151271 0.227134 0.422467 0.537638 10 2362 1490

N41D200S30B1 H76%L12%R12% 5000 time step 0.3 0.150651 0.237137 0.350863 0.6758 648 6368 4831

N41 D200S30B2H76%L12%R12% 5000 time step 0.3 0.153131 0.24677 0.416134 0.593004 1946 5135 2887

N41D200S30B1 H76%L12%R12% 5000 time step 0.55 0.146931 0.24966 0.431118 0.5791 6860 6950 4817

N41 D200S30B2H76%L12%R12% 5000 time step 0.55 0.153131 0.246243 0.444347 0.554168 7560 5535 3119

N41D200S150B1 H50%L25%R25% 5000 time step 0.1 0.147551 0.214345 0.338739 0.632774 6 2375 2085

N41D200S150B2H50%L25%R25% 5000 time step 0.1 0.152201 0.230547 0.387583 0.594834 12 2300 1611

N41D200S150B1 H50%L25%R25% 5000 time step 0.3 0.149101 0.231983 0.449962 0.515561 997 5897 3981

N41 D200S150B2H50%L25%R25% 5000 time step 0.3 0.140422 0.236279 0.393681 0.60018 1710 5221 2894

N41 D200S150B1 H50%L25%R25% 5000 time step 0.55 0.141971 0.242762 0.449484 0.540091 6573 6382 4321

N41D200S150B2H50%L25%R25% 5000 time step 0.55 0.154991 0.242762 0.449484 0.540091 7199 5438 3151

N41D200S150B1 H76%L12%R12% 5000 time step 0.1 0.144761 0.224637 0.345602 0.649987 1 2335 1986

N41D200S150B2H76%L12%R12% 5000 time step 0.1 0.15902 0.231568 0.41157 0.562645 5 2274 1509

N41D200S150B1 H76%L12%R12% 5000 time step 0.3 0.147241 0.247035 0.400498 0.616819 997 5925 3943

N41 D200S150B2H76%L12%R12% 5000 time step 0.3 0.145691 0.25273 0.436416 0.579105 1784 5209 2887

N41D200S15081 H76%L12%R 12% 5000 time step 0.55 0,151891 0.254654 0.416999 0.610683 lijÉÉi flllilll! 4224

N41D200S150B2H76%L12%R12% 5000 time step 0.55 0.143521 0.252916 0.421461 0.600093 7207 5551 3112

N41D500S30B1 H50%L25%R25% 5000 time step 0.1 0.153441 0.21754 0.403541 0.648396 4 2192 1999
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N41D500S30B2 H50%L25%R2S% SQOO time step 01 0140112 0 205436 Q316837 0,539077 12 2404 1547
N41D500S30B1 H50%L25%R25% 5000 time step 0 3 0146001 0 224838 0 357681 0 628598 1018 6193 4206

N41D500S30B2 H50%L25%R25% 5000 time step 0 3 0150651 0 222188 0 437351 0 50803 2045 5257 2963

N41D500S30B1 H50%L25%R25% 5000 time step 0 55 0148171 0 228898 0 41972 0 545359 6360 6387 4363

N41D500S30B2 H50%L25%R25% 5000 time step 0 55 0152511 0 232706 0 393686 0 591094 7403 5508 3174

N41D500S30B1 H76%L12%R12% 5000 time step 0 1 0148791 0 221385 0 341653 0 64798 4 2405 2022

N41 D500S30B2H76%L12%R12% 5000 time step 0 1 0153441 0 224695 0 454287 0 49461 11 2608 1602

N41D500S30B1 H76%L12%R12% 5000 time step 0 3 0143831 0 2378 0 335209 0 709408 1041 5980 3978

N41 D500S30B2H76%L12%R12% 5000 time step 0 3 0146311 0 240485 0 407518 0 590121 1822 5229 2918

N41D500S30B1 H76%L12%R12% 5000 time step 0 55 015096 0 247642 0 397962 0 622276 6511 6350 4343

N41 D500S30B2H76%L12%R12% 5000 time step 0 55 0153131 0 243118 0 424339 0 572933 7704 5343 3042

N41D500S150B1 H50%L25%R25% 5000 time step 0 1 0152821 0 218188 0 292447 0 746076 4 2330 2128

N41D500S150B2H50%L25%R25% 5000 time step 0 1 0146621 0 221446 0 432387 0 512148 10 2305 1448

N41D500S150B1 H50%L25%R25% 5000 time step 0 3 0150031 0 235491 0 340413 0 691779 955 6016 4099

N41D500S150B2H50%L25%R25% 5000 time step 0 3 0142901 0 233617 0 387521 0 602849 1701 5280 2989

N41D500S150B1 H50%L25%R25% 5000 time step 0 55 0154371 0 24067 0 377373 0 63775 13170 6449 4450

N41D500S150B2H50%L25%R25% 5000 time step 0 55 0145071 0 241727 0 410919 0 588259 7009 5520 3110

N41D500S150B1 H76%L12%R12% 5000 time step 0 1 0155921 0 226911 0 353205 0 642433 5 2314 1961

N41 D500S150B2H76%L12%R12% 5000 time step 0 1 0143831 0 232345 0 437421 0 53117 12 2391 1469

N41D500S150B1 H76%L12%R12% 5000 time step 0 3 0143521 0 248775 0 416261 0 597642 1064 5859 3876

N41D500S150B2H76%L12%R12% 5000 time step 0 3 015902 0 250608 0 426361 -0.587783 1815 5171 2892

N41D500S150B1 H76%L12%R12% 5000 time step 0 55 0153131 0 25311 0 435938 0 580609 6351 6338 4340

N41D500S150B2H76%L12%R12% 5000 time step 0 55 0152511 0 25334 0 418776 0 604953 7273 5440 3059

Table (6) Summary of results for a non-transxent moment simulations for a 41 nodes network, where D transient
period, S interval length used to calculate averages, H headway percentages, L turn left percentages, R turn
right percentages



Appendix C

Feeding Mechanism
For Poisson arrivals, inter-arrival time between two vehicles is randomly drawn 

from the negative exponential distribution, 1 e

In (1 ‘ V ) r, n ^ !t n + l = t n --------------------- , p > 0 ,  0 < r < l
f*

where

tn+l = inter-arrival time for next vehicle 

tn = inter-arrival time for previous vehicle 

u = arrival rate

r = random number uniformly distributed between (0, 1]

As the random number generator is fundamental in stochastic simulation, we have 

used the linear congruential random number generator, because of its cycle 

length

We compute the zth integer X i in the pseudorandom from by the recursion 

X t = +c) modm

where a = 16807, c = 0, and m = 2147483647, which is widely known as the 

“multiplicative congruential” generator.
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Computational Performance

Table (D 1) shows the running times for simulating two different networks at two 

arrival rates for two different simulation runs, 5000 and 7000 time steps

Appendix D

17 nodes network 41 nodes network

Run

Duration

p=0 1 p=0 5 fi=0 1 H=0 5

CPU

tune

Simulated

cars

CPU

time

Simulated

cars

CPU

time

Simulated

cars

CPU

tune

Simulated

cars

5000 39 2,635 41 12,696 49 2,309 50 11,350

7000 54 3,785 58 17,045 77 3,292 80 16,509

Table (D 1) the relation between the run duration and 
the computational time, m  Seconds, for two different 
networks at two arrival rates

It can be seen from Table (D 1), that the computational time mainly depends on 

the network size not the number of the simulated cars Also it can be seen from 

the table that the complexity of the code is 0 (n 2), being the increasing factors the 

network size and the run duration Also there is a slight increase in the 

computational time as we increase the arrival rate, Table (D 2) this increase is due 

to the time required to update the queues outside the simulated network
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The limitation in the run duration above is due to the formation of long queues 

outside the network especially when a high arrival rate is used to feed the network 

with cars

Arrival Rate Network size CPU, 5000 time steps CPU, 7000 time steps Increasing Factor

p = 01
17 39 54 1 38

41 49 77 157

p = 0 5
17 41 58 141

41 50 80 1 60

Table (D 2) The table shows that the increasing factor m  the 
computational time, in Seconds, depends on both the network size 
and the arrival rate

All computational performance measures described above is obtained on DEL PC 

with 400 MHZ of speed and 64 MB of RAM
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The list of the diskette folders and files are presented in Table (E l)

Appendix E : Diskette

folder files Brief description
Short evt net model 1 h Header file, define model 1 base class

nodelh Header file, define nodel class
segment h Header file, define segmenl derived class
model 1 cpp Contains the methods of the base class model 1, which create 

roads of the network
nodel cpp Contains the methods for the class nodel, which initialize 

the network nodes and also update the network light cycles
segmenl cpp Contains the methods for the derived class segmenl, which 

link the roads within the network and also initialize and 
update the road segments

newnet cpp The main file, see flow-chart m sec(3 2)
nodl7 dat Contains nodes data for 17 nodes network
nod25 dat Contains nodes data for 25 nodes network
nod33 dat Contains nodes data for 33 nodes network
nod41 dat Contains nodes data for 41 nodes network
seg56 dat Contains segments data for 17 nodes network
Seg88 dat Contains segments data for 25 nodes network
Segl20 dat Contains segments data for 33 nodes network
Segl52 dat Contains segments data for 41 nodes network

Long evt net Same as the above folder , but deals with long term events
Two lan 2 lane model Simulate traffic flow using two lanes

tlgvh Header file contains the global variables
Stochmodel Stoch_closed Simulate traffic flow for inter-urban areas using closed 

boundary conditions
Stoch_open Simulate traffic flow for inter-urban areas using open 

boundary conditions
Spacetim e be c Used to produce the space-time diagrams throughout the 

thesis
Table (E l)
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