The development of an Agent
Based Critiquing System
Architecture for a project

management tool: Prompter

By Eamon Gaffney B.Sc.

School of Computer Applications

Dublin City University
Glasnevin

Dublin 9

Supervisor: Professor J. A. Moynihan

A thesis submitted for the degree of

Masters of Science

March 1999

Declaration

’,
I hereby certify that this material, which I now submit for the assessment on

the programme of study leading to the award of Master of Science in
Computer Applications, is entirely my own work and has not been taken
from the work of others save and to the extent that such work has been cited

.and acknowledged within the text of my work.

Signed:(@m& (g/%‘ '%g Date : /91//7/// ? 7

Eamon Gaffney

Acknowledgements

I would like to thank my supervisor Prof. Tony Moynihan for all the help and guidance
he has given me during my time in DCU. I would like to thank Mark Johnston for his
technical guidance and Rory O’ Connor and the other members of the Prompter team
whom I worked with, during the Prompter project. They made my involvement in the
project very enjoyable (especially the project trips).

I would also like to thank Kieran O’Sullivan and Martin Gaffney for having the patience
to proof read this work. And finally to the other postgraduates and members of staff in
CA for the constant distractions they created, nights out, football etc. They helped make
my time there both memorable and enjoyable. And last but not least to my family and
friends for helping me get this far and encouraging me along the way. Nice one.

Eamon Gaffney

Abstract

The development of an Agent Based Critiquing System
Architecture for a project management tool: Prompter

By Eamon Gaffney B.Sc.

Since the Software Crisis was first identified in 1969 there has been a frantic scramble among
practitioners to define a software engineering discipline. This has led to development of
established ‘best practices’ in areas of software design, metrics collection, cost estimation, risk
analysis etc. To date, no tool has provided software managers with integrated project
management support. This is the motivation behind the Prompter tool which seeks to provide
assistance for project managers in the areas of decision support and planning throughout the
Iifecycle of a project.

The basis of this thesis is the design and development of a component of the Prompter tool
known as the Daemon architecture. The Prompter tool, is an ESPRIT project developed by a
consortium of companies including Dublin City University, Catalyst Software and Objectif
Technologie. Its goal is to provide decision support to the user in the field of Software Project
Management.

The Daemon Architecture for which I am responsible, provides the dynamic advice or criticism to
the user using intelligent agents or mini experts. The architecture had to be as open as possible,
distrnibuted, domain independent, an easily expandable knowledge base, asynchronous from the
rest of Prompter, have the ability to incorporate new Agent languages and finally, platform
independence.

The first stage of this thesis involved the design of the architecture outlining some of its
components. The second stage was the development of the architectural design into a functioning
prototype operated within the Prompter tool. This is followed by a discussion of some of the
more implementational issues that arose during this phase due to, design flaws, implementation
languages chosen, networking problems etc.

The resulting architecture outlined in this thesis can thus be used to provide decision support in
many domains and on many platforms and is easily maintainable.

Table of Contents

0 IR 13 40 Lo [e £ oY o TR

11 Overview of Prompter .
111 Prompter background
112 Highlevel Prompter Architecture.
1121 Daemon Architecture
12 Thesis Outline

2. An Overview of Critiquing Systems............c.cccoivvirninnnenans

2 1 Introduction .. R
2 2 Overview of Expert Systems ...
2 3 Overview of Critiquing Systems .
24 ICADS
241 Introduction
242 Architecture. .
243 Plan Generator Spattal Analyszs Component
2431 Spatial Reasoning Module . .
244 Differential Analyser- Inference Engine .
245 Knowledge Base
246 Mini Experts Critics
247 Dialogue Generator Design Suggestions
25 CDMCS e . .
251 Imtroduction
252 Architecture. . . .
253 Min Experts. Metrics
254 Knowledge Base. .
255 Differential Analyser. Sattsfactzon
256 Dialogue Generator Aggregation
26 TraumaTIQ e .
261 Introduction
262 Architecture...
263 Plan Generator. Plan Recogmtton
264 Dufferential Analyser Plan Evaluation
265 Knowledge...
266 Dialogue Generator Crztzque Generatton
27 Riskman 2
271 Introduction
272 Architecture
273 Knowledge Risk Taxonomy .
274 Differential Analyser Risk Analyser
2741 M Experts Daemons
2742 Blackboard
2743 Daemon Library
275 Dualogue Generator. Risk Analyser Reporter
2 8 General model of a Critiquing System
281 Introduction
282 General model
2821 Plan Generator ..
2822 Differential Analyser
2823 Dualogue Generator
28.3 Knowledge
284 Crites
29 Summary

R R Vo 1= o 1 e P PR PR 33

3 1 Introduction . ce . 33
32 Agents 34
321 HowAgents differ from programs 35

3 3 Types of Agents . . . 36
34 Agents as Critics .37
341 Agents Internal Structure .. 37

342 Criticism 38

343 Agent Communication .. 38

344 Blackboard within the Agent Architecture . 41

345 Knowledge Representation for Agents42

35 Summary .. C e . 43
4. Detailed Design CeeeedeeteeseeesresaresesrErarENaEEEEataraseNtSTNTARERTLERTaTnas 45
4 1 Introduction . . 45
4 2 Standards . .45
421 Object Model Technigque (OMT) . 46

4 3 Rationale behind Architecture. 47
4 4 Architecture e e . . . 48
45 Tokens . e 49
4 6 Daemon Detailed Design C e . 49
461 Daemon Supervisor - 50
4611 Daemon Supervisor Interfaces . Ce 53

462 Blackboard 53
463 Daemon Library ... 57
464 Daemon Design 58
4641 Daemon advice . . 59

4642 Daemon Execution . 61
47 Agentlanguages. Co . 62
, 47.1 FIPA97 . 63
472 CLIPS/JESS. . 64

‘ 4721 Jess Integration . 66
4 8 Knowledge . . 68
481 The Knowledge Engineering Process 68

482 Knowledge Representation 69

4821 DecisionTrees 70

483 NewDaemons . . 72

49 Summary 73
5. Implementation of a prototype...........cccciiiiiiiiiciicc i e 74
5.1 Introduction . 74
5.2 CORBA . . . 74
5.2.1 IDL nterface . . . 75
5.2.2 CORBA programming 76
5.2.2.1 Writing a server . . 76
5.2.2.2 Wruing aclient 77
5.3 Java Language 77
5.4 Where Java and CORBA f tin . . 78
5.5 Design and Implementation 79
5.5.1 Daemon Architecture 79

5.5.2 Implementation Strategy 79
5.53 Complex Coding... . 80

5.54 Improving the Performance ofthe prototype........................ vereieneennnn 80

5.5.5 IDL aiding the Design . . e .81

5.5.6 Problems with Spiral development .o 82

5.5.7 Daemon supervisor availability 83

5.5.8 Bostlenecks 83

559 Callbacks 83

5.5.10 Deadlocking . . 84

5.5.11 How open is the daemon archltecture .. 85

5.6 Summary 86

6. CONCIUSIONScuiuiiiiiiiiiirriiiin s e ra e s s s s e e 88
6 1 Introduction . . . C 88

6 2 Open architecture . 88

621 Mobility 88

622 Degree of Distribution 89

623 Generic .. . 89

624 Expandabiuy 89

625 Efficiency C e 90

6 3 Weakness of the Architecture. . .. 90

6 4 Future development of the tool. - . 91

65 Conclusions e . . . 92

66 Concludngemarks C e . e e e 94

7. Bibliography.......cciiiiiiiiiiicii s e 96
8. Appendix A: The main classes within the daemon architecture A-1
9. Appendix B: The CORBA interfaces..........ccccceviiciriiniiniircranannn. B-1

10. Appendix C: The OMT class diagram of the Daemon Architecture......C-1

Figure 1.1
Figure1.2
Figure 1.3
Figure 2.1
Figure 2.2
Figure 2.3
Figure 24
Figure 2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure3.1
Figure 3.2
Figure 3.3
Figure3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3
Figure 44
Figure 4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9
Figure 4.10
Figure 4.11
Figure 4.12
Figure 4.13
Figure 4.14
Figure 4 15
Figure 4 16
Figure 4.17
Figure 4.18
Figure 4.19
Figure 4 20
Figure 5.1
Figure 5.2
Figure 53
Figure 5.4
Figure 5.5

Figures

Qverview of Prompter tool

Process of Criiquing within Prompter
Overview of Daemon Architecture
ICADS architecture

CDMCS architecture overview

The CSMCS taxonomy

Graph showing the area of satisfaction of a metric
The Architecture of the TraumaTIQ system
Archtecture of Riskman?2

subclasses of the Techmeal Risk class
Blackboard structure for Riskman2
Overview of a Crnitiquing system
Intelligent Critiquing system structure
Direct Agent Communication
Assisted Agent Coordination

The blackboard

Overview of Blackboard

Prompter Taxonomy

Prompter overview

Daemon Architecture OMT Diagram
Daemon Supervisor OMT Diagram
Daemon Execution State Diagram
Process of advice state diagram
Blackboard structure

Blackboard OMT Diagram

State diagram for the construction of Blackboard
Event diagram to 1llustrate the available to execute
Daemon OMT diagram ‘

Daemon Internal structure

Advice OMT diagram

Daemon output OMT diagram
Overview of daemon execution

Agent 1ntegration nto Prompter
Agent Integration OMT diagrams
Preparing the daemon for execution
AND and OR trees

Example decision tree

Decaiston tree simplification

CORBA overview

Interfaces

Java overview

Removal of Blackboard server

Problem with deadlocking

1. Introduction

In the last few years computers and software have increased in complexity and sophistication at
an extraordinary rate. With the advent of Operating Systems that were multithreaded and network
based, computers had more processing power and resources available to them than ever before.
This allowed computer software to become responsible for a wide range of complex tasks, from
landing the NASA space shuttle, to controlling power stations. Thus, since software has become
more complex, so too has the job of managing its development. Software project managers must
be aware of as much information as possible when making decisions, and sometimes this can
prove overwhelming. They have no one to advise them on what decision to make. For this reason,
decision support systems such as Prompter were developed. Prompter provides project
managers with a better view of what is happening in their project and assists them in their

decision making process.

In this thesis a specific component of Prompter that 1 was responsible for designing and
developing 1s discussed. This component is called the daemon architecture and in the coming

chapters, 1t 1s broken down and explained in much greater detail.

1.10verview of Prompter

The Prompter tool is a decision support tool for software project managers. It was developed to
assist project managers, provide them with advice in their decision making process and help them
assimilate best practices in the field of software project management, specifically software project

planning [Prompter 97].

1.1.1 Prompter background

The P3 project (Project and Process Prompter) Prompter was a European project funded by
ESPRIT by the fourth framework programme of the European Commission as ESPRIT project
22241 and had five project partmers. The main developer partners were a consortium of
companies that included Catalyst Software(Dublin), Dublin City University and Objectif
Technologie (Paris). Catalyst were responsible for the central component of the tool, the School
of Computer Application in DCU(Dublin) were responsible for the implementation of the
knowledge within the tool, and finally Objectif Technologie (Paris) were responsible for the GUI

to the tool. In addition to these partners there were a number of user partners including Schneider
Electric(France) and INTRACOM (Athens Greece) who provided user feedback and comments
throughout the project relating to the tool itself and the knowledge it contained.
z .

Prompter is based on work performed by Dublin City University between the years 1987-94. The
“ Riskman 2 project” [MoynihanT 94] developed in 1994 provided much of the inspiration which
built on work from the Riskman and the IMPW [Verbruggen 87] (Integrated Management
Process Workbench). It was a critiquing system architecture within the risk management domain.
It was concerned with helping a project manager to walk around a proposed software

development and anticipate any major risks to whuch the project may be exposed [HenryW 94].

The initial development of Prompter began in September 1996 and was completed in February
1999. I jomed the School of Computer Applications in DCU (Dublin City University), i the
early stages of the project during the architectural design phase. I was involved m the
construction and writing of the architectural design document and the detailed design document. I
was also the main programmer for the individual components within the daemon architecture, the
mterface between the architecture and the rest of the tool and finally in the integration of
intelligent agents mnto the system. A number of prototypes were developed which allowed me to

refine the architecture and produce an improved design.

As mentioned previously, software project management and specifically software project
planning is the domain of the Prompter tool. It is concerned with the entire development process.
Software project managers must be aware of many things in the course of their jobs, all of which

may affect the outcome. A definition of project management can be found at [ThayerR 88].

Some areas of concern to Software Project Management include {PressmanR 94]:
- measurement
- estimation
- risk analysis
- scheduling
- tracking

- control

!
|
!
|
|
}
|
[
'
t
|
i

These measurement activities allow managers to better understand the direction in §vhich the
project may be going and thus foresee potential problems. As this is an on ongoinfg process
throughout the development of the project, it can become difficult to keep track of all :aspects of
the project at any one time. ,:
|
|
1.1.2 High Level Prompter Architecture

§

This section contains an overview of the architecture of the Prompter tool. Figure 1.1 highlights

the tool’s three logical components:

Prompter

\
interfaces

Daemon
Architecture

i
1
!
|
|
|
|
|
i
|
|
;
|
|
|

Figure 1.1 Overview of Prompter tool

l
e The GUI (developed by Objectif Technologie): This is the user interface to the tool and 1

responsible for all communication between the user and the tool. :

|
%
e The Kernel (developed by Catalyst Software): This contains the central functionality of the

tool. It is responsible for the scheduling of tasks and the processing of informatié)n. It also

acts as an interface between the GUI and the daemons. f
!

|
e The Daemon Architecture (developed by School of Computer Applications in D’CU): The

daemon architecture, for which I was the main developer, is a critiquing system in itself,
providing the dynamic knowledge for the tool. A crtiquing system critiques a user on what
they have performed and illustrates how they may overcome their problem. It is siqllﬂar to the
idea of an expert system but is more dynamic in that it works with the user to Edevelop a
solution instead of providing suggestions. Contained within this architecture are a %’mmber of
sub-components called daemons (described in full in chapter 3) which are responsible for the

advice generated by the Prompter. These daemons are mini experts in the field of software

project management, which provide advice if requested or criticise what th;e user 1§
!
performing, if a potential problem 1s discovered. &

t
t

f
As can be viewed in figure 1.1, each of these components is separated by an inter;face. This

allowed each to be designed and developed independently of the others. It also allowsEPrompter
be an easily distributed tool. Each components can be resident on a different host on 2:1 network,
and having some underlying networking language handling any information that cirosses the
mterfaces. As a results the GUI may be situated on a number of machines in a networlfc, with the
kernel and daemon architecture situated on a high powered server in another area of the network
This results in a light weight front end to the tool. [

|
The tool itself helps guide a user through some tasks associated with the beginning o‘if a project
such as activity planning, resource allocation and cost estimation. If the user encounters some
problems or feels they are unable to make a decision they can ask the tool for acilvice. The
daemons are consulted and supply advice based on its knowledge and the inforrnatiojn the user

has entered. A good conceptual model of this process [Prompter 97] can be viewed in fiigure 1.2
!

. Users Tools
Domain Proposed Proposed
Solution i
P Solution

Problem Cnitiquing
Solving & Advice
C — N Wser

Critique

Figure 1.2 Process of Critiquing within Prompter

1.1.2.1 Daemon Architecture

My role within the project was to design and develop this daemon architecture: from the

|

conceptual level to a fully working component of Prompter. This meant performing«ithe initial

design, the detailed design, the implementation and testing phases of the architecture. !E
|
|

Figure 1.3 gives an outline of the conceptual model of the daemon architecture. It is a critiquing
{

system which retrieves information from the kernel about what the user 1s doing, and c%riticises it

or provides advice on what to do next.

Kemel

Network
Communication layer

Daemon
Architecture

. Daemon Blackboard II
Supervisor structures

Network
» Communication layer

Daemon
Library

71T N

aT'Aons

Figure 1.3 Overview of Daemon Architecture

The components making up the daemon architecture are:

The Daemon Supervisor: The main controller of the architecture and is responsible for all
communication between the architecture and the rest of the tool as well as the execution of

the daemons.

The Daemons: (intelligent agents) are the mini experts that perform the critiquing process.

Each daemon is an expert in some specific area of software project management.

The Daemon Library: This module is responsible for the maintenance of the daemons
including their actual file storage, their versioning etc. This module is also responsible for

their retrieval when they are available to execute.

The Blackboard: This component helps monitor the state of all the daemons at any one time.
This is by far the most complex structure in the daemon architecture. At any stage the
blackboard holds the state of all the daemons in the system, this is to ensure that daemons do
not execute over and over if they have not received any new information. This blackboard

also holds the last piece of advice each daemon gives.

The communication layer between the daemon supervisor and the daemon library allows the

daemons to reside on a different machine to the rest of the tool if necessary.

1.2 Thesis Outline

Chapter 1 gave a brief overview of the Prompter tool and the area for which the tool was
designed for. It gave some background to the Prompter project, such as who the project was
funded by and previous projects that led to this tool’s development. The architecture at a high
level was outlined including a description of where my work fitted in. Finally, an outline of the

major structure in the daemon architecture was given.

Chapter 2 offers an explanation of what a critiquing system 1S and its advantages over expert
systems. Some critiquing systems (in development at the time of writing) are described with an
overview of their architectures. The systems covered include CDMCS, Riskman, TraumTIQ and
ICADS. Their architectures are outlined at a high level and their operations are discussed. From
this discussion, I was able to construct a conceptual model of a critiquing system to illustrate
what features are common to these systems. This model then helped me in the design of the

daemon archutecture.

The daemon architecture uses a concept called critiquing agents to providing advice to user and in
chapter 3 this is explained. They are described and contrasted against other types of agents
available. This chapter finished with a discussion on how these agents fit into the architecture and

the structures required to allow them to operate.

Chapter 4 explains the detailed design of the daemon architecture. I used Object Oriented
diagrams to design each component and in this chapter these diagrams are explained. This chapter

also explains how each component communicates and operates with the rest of the tool and with
the agents.

Chapter 5 discusses some of the implementation issues and some of the problems that were
encountered during the development phase. To help understand some of these problems I thought
it necessary to explain the implementational languages. There is an overview of programming n
CORBA and how it affects the efficiency of the tool and an overview of Java and 1ts advantages
over other languages. Some other issues that are also dealt with include whether the choice of
language was a good one, whether or not the prototype should have been multithreaded and a
general evaluation of the implementation strategy is given. This chapter concludes with a

discussion on what has been learned during this phase of the development.

Chapter 6 contains the main conclusions of the thesis. It discusses the various merits of the
design, the weak points of the design and finishes with a discussion on the possible future work to

improve the architecture.

2. An overview of Critiquing Systems.

This chapter outlines how a general model of a critiquing system was constructed and how it

was used to aid in the design of the daemon architecture.

2.1 Introduction

Since 1 decided that the daemon architecture was to mimic a critiquing system, I needed a
general model to base my design on. In this chapter I outline how I developed thus model by
explaiming the architectures of a number of critiquing systems and highlighting their common
components and how they interoperate. This general model is then explained and how it

relates to the daemon architecture.

2.2 Overview of Expert Systems

An expert system is a system that employs human knowledge to solve problems that
ordinarily require human expertise [TurbanE 95]. They were first developed 1n the 1960s with
early attempts producing general-purpose problem solvers. By the 1980s they had become
quite popular as a means of assisting a user with their problem solving. They remain quite

popular today.

These systems provide the user with advice or plans of action on how to overcome a problem
or perform a task. A definition of an expert system is as follows [RichE 91]:
a system which exploits a number of reasoning mechanisms for the purpose of
solving a task or problem i.e. expert systems as well as expert advisory systems
compute their own solutions and offer these to the user as a solution to the problem.

They do not work with the user or examine the user’s solution however.

Expert systems are generally composed of two major environments, the consultation
environment and the development environment. The purpose of the development
component is to provide the facility for the user to add to the knowledge base of the tool. The
consultation environment assists the user n obtaining expert advice and knowledge, based on

the information they inputted.

Thus, a user partakes in a question and answer session in the consultation environment, with

the user providing the problem specific information to the system. From this the system

makes inferences and suggestions to the user in the form of a plan of action as to what to do

next.

There are a number of plﬁalems that have been encountered in developing and using these

types of systems:

e There is no guarantee that they will in fact reach a conclusion at all thus leaving the user
with no advice. This renders the tool useless in some situations.

e As aresult of the above point, expert systems only work well in situations with a narrow
domain.

e For expert systems to work well they must be experts in their area. For this to be the case,
the knowledge they have at their disposal must be collected from human experts in the
same area. However many experts do not agree on several issues and thus the knowledge
base is biased toward the experts consulted.

e As above, if the expert system provides a plan of action to overcome a problem there is
no guarantee that it i$ the best way. In other words the approach of experts to situations

may vary greatly.

In summary, expert systems are highly useful in many areas of problem solving. However
once the domain becomes relatively large, the risk of it being unable to produce useful advice
for the user becomes greater. In addition to this, the plans produced by the system are static,
the user must stick to it rigidly or else the system is of no use. However a critiquing system is

a more dynamic model that works with the user in developing a plan.

2.3 Overview of Critiquing Systems

A Critiquing system allow the user to work with the system to highlight problems or develop
solutions to them instead of provide plans that they must stick to. For this reason it was

decided to model the daemon architecture on such a structure.

It provides a criticism of a user’s plan based on all knowledge at its disposal and can also
advise them on different decisions. However it is up to the user to make the decision in the

end. This process of critiquing is described below: [SilvermanB 92]

The user when using the system provides two sets of data to the system, the
first set of information is the problem description. This data may contain the

design requirements. The second set of data is the user’s plan of action. This

is the user’s procedure for solving the problem e.g. the final plan of a
building’s structure or the steps involved in treating a patient in a hospital.
This data is then analysed by the critiquing system to check the correctness
efficiency, clarity or workability of the plan in relation to the problem and to

its one suggested plan.

As stated above, the general model critiques before during and after the user’s input. It
provides feedback, criticism, and justification for this criticism, so the user may improve their
solution. This is an iterative process and occurs several times in a project’s life. It 1s this
concept of feedback that distinguishes critiquing systems from other types of decision based
systems such as expert systems and expert advisory systems. It is also an ideal model to base

the daemon architecture on.

Some advantages critiquing systems have over expert systems [GernerA 93] are below:

e Acceptability: It may be easier for a user to accept a critiquing system over an expert
system since the user views the system as helping their solution, rather than the expert
system approach, which can be viewed as forming the plan which the user follows.
Also, instead of the user taking a passive role, they are leading the critiquing system
through the problem at hand, thus the system only prompts them when a problem
occurs. Finally the solution produced is user centred and so individual to them.

e Flexibility: In general when dealing with real life situations, there is more than one solution
to a specific problem, thus critiquing systems are better able to generate an acceptable
solution dependent upon the user, and the knowledge base. Subjective judgement is
also a real consideration which expert systems find extrerﬁely difficult to model and
is yet so important in decision making.

 Expert user: The critiquing system sees the user as an expert with its own knowledge and
beliefs and is therefore capable of making their own decisions. However the expert
system provides no facility for the user to provide an input to the final solution. They

can only accept 1t or reject it.

In the design the daemon architecture for Prompter, it was necessary for me to firstly create a
conceptual model of a critiquing system to base it on. This required the surveying a number of
critiquing systems available (at the time of writing), and the extraction of their common

components.

10

Those systems studied were:

Riskman: critiquing system in the Risk Management Domain

TraumTIQ: System to provide critiquing to a physician dealing with trauma patients
ICADS: Intelligent Critic System for Architectural Design. A system to help in all areas
of building design

CDMCS: Composite Design and Manufacturing critiquing system. A Critiquing system

dealing with composite materials e

These systems were chosen because each demonstrated a different type of critiquing system.

One system provided critiquing in real time, one provided critiquing using highly

mathematical methods etc. This ensure that the model I developed was not based on a specific

type of critiquing system or on a specific domain.

From these systems, a number of common components were extracted:

Plan generator: converts the user’s data into an internal representation. This component
1§ also responsible for generating a plan which is passed to the following component.
Differential Analyser: This component compares the user’s plan to the internal
knowledge or the generated plan.

Knowledge: the internal knowledge of the system.

Dialogue generator: This generates the output advice in a more acceptable format.

Mini Experts: These experts provide the critiquing process.

These headings are the most commonly used components in these systems and were taken

from general critiquing system papers e.g. [SilvermanB 92].

11

2.4 Intelligent Critic System for Architectural Design (ICADS)

2.4.1 Introduction

The majority of information relating to this system was taken from [ChunH 97], It is a
Computer Aided Architectural Design system called ICADS for use in the area of building

design. Critiquing systems are beginning to be used more frequently in this area.

This system is similar to many Intelligent Computer-Aided Architectural Design (ICAAD)
systems, in that it provides the basic tools to draw plans (in this case floor plans), create 3D
models of objects etc. However it also has extended capabilities with the introduction of Al
techniques which provide the ability to offer advice and criticisms to the user on their designs.
These Al techniques take the form of critics or as they are called within this system, wizards.
Each critic, is an expert in a particular area of building design. These critics have the power to

criticise a plan if necessary and to offer alternative solutions.

The main research focus of the ICADS project according to the designers was“todevelop a
spatial representation that is rich enough to capture qualities ofspatial relationships that are
important in reasoning with government regulations and design principles”. The system is
derived from work performed on other projects such as EKSPRO, Janus and NALIC.
However ICADS goes one step further in that it also has the ability to reasonout the

relationships between object positioning e.g. placing a stairs in front of a door.

2.4.2 Architecture

The ICADS system architecture is illustrated in figure 2.1. It is an embedded system in that it
is attached to the end of a CAD software. It is not concerned with a GUI since there are many

systems available on the marketplace which already perform this task adequately.

This architecture is broken down using the above mention critiquing system components
outlined in the section 2.3:
Plan Generator: where the CAD information is converted intoa representation that can
be understood by the Critics and other modules
Knowledge base: where the knowledge is stored in the tool
The differential analyser: where the user’s plans and the critics suggestions are
compared
The dialogue generator: where the results are converted into information that the user

can understand

Figure 2.1 ICADS architecture

2.4.3 Plan generator: Spatial Analysis Component (SAC).

Critiquing systems use a plan generator to read in the user’s data and convert it into a
representation that it can understand. This information is then compared with the knowledge

the system has at its disposal.

Within the ICADS architecture, there are two main components or areas of expertise, the
Spatial Analysis Component and the Critics Module [ChunH 97]. The SAC is responsible
for analysing the drawing or plan to produce an internal knowledge representation of it. It
takes the graphical drawing from the CAD and converts it into an internal knowledge

representation that the critics can understand. This allows the critics to analyse this plan.

In general, critiquing systems cannot analyse the data the user is working with i.e. pictures of
the floor plan. The system must convert the user’s information into data that the critiquing
system can analyse. One of the components used to convert this data is the Spatial Reasoning
Module.

2.4.3.1 Spatial Reasoning Module

This module is responsible for identifying all objects in the drawing that the CAD system has
supplied [ChunH 97] and computing the relevant geometric information of each object. Also
contained within this module is a set of ICADS spatial primitives or special rules, which

analyse the data and extract spatial relationships etc. The result is a data set that fully

describes the plan the CAD has supplied. The relevant domain information about the objects
1s taken from the Object Knowledge Base. Thus stores all the static knowledge about objects.

The resulting data is stored or output to the Current Fact Base.

2.4.4 Differential Analyser: Inference Engine

The critiquing system uses the “Differential Analyser” as the core of its intelligence. The
user inputs the data set of their project (in this case the object), their types their locations etc.
The Differential Analyser consults the Critics and the Static Knowledge using the problem
specific information and constructs a plan of its own. This plan is then compared to the user’s
version. Obviously the two plans will never be identical and some leeway is required. Thus

only differences beyond an acceptable threshold are criticised.

In the case of the ICADS, the inference engine is responsible for relating the information
stored within the Current Fact-Base to the rules within the critics. This structure
communicates with the critic modules. The critics check the designer’s use of specific values

and if a problem is found it will try to supply advice on how the problem may be overcome.

2.4.5 Knowledge Base

In this system there are two forms of knowledge base represented, Static and Dynamic
knowledge which serve different purposes. The Static knowledge is stored in the Object
Knowledge base and the dynamic knowledge is stored in the critics. These critics are
represented in-a rule format that takes information from the user and filters it through a

number of rules that deal with different aspects of architectural design [ChunH 97].

This static information is stored in the Object Knowledge Base, which the system needs to
access when analysing the plan the CAD has supplied. It is a repertoire of information on

possible objects that the system can accept.

2.4.6 Mini Experts: Critics

These mini experts perform the dynamic critiquing of the user’s plan. They form the second
component of the critiquing process in this system. They consist of the Critic’s rules and its
knowledge space and are capable of analysing the data and proposing a plan or forming an
intelligent criticism of it. These critics analyse the data through the inference engine and pass
any advice/justification back to the SAC,

14

The rules within each critic are supported by a number of rules-of-thumb and basic
guidelines, which have been entered into the Knowledge base. An example of a critic of this
system [ChunH 97] is the Interior Design Expert (IDX) critic. This rule concerns the max and
min size of various objects in a building.
The minimum width of each fire exit route is 900mm.
The nunimum width of each exit door is 750mm.
The developer categorises ‘these critics into Direction of Objects, Proximity of Objects,

Spatial Relations of Rooms, Dimensions of Objects and locations of Rooms.

As a result, if the suggestioﬁ of the rule is followed, it leads to the changing of spatial co-
ordinates. If the designer ignores this advice, the system must not continually prompt them
about the fact.

The knowledge for these critics is encoded in rules which the inference engine can interpret
and then easily apply to the information in the Current Fact-Base. The critic itself is built with
the goal of acting as the designer’s regulation advisor, and only infonﬁs them when one of
these rules have been broken. It then provides an explanation of how the problem may be
overcome. The rules themselves have different levels of importance so if a government rule is
broken, the advice must be taken. However if a suggestion of a lesser priority is not taken the

system must accept the decision.

2.4.7 Dialogue Generator: Design Suggestions

When a rule fires, the results are displayed in textual messages back to the designer. This is
due to the fact that this system was still in development at the time of writing this thesis. The
developers stated however that they planned to introduce the potential to allow the critics to
modify the drawings automatically to satisfy rules. However there was little documentation

on this component of the tool.

15

2.5 Composite Design and Manufacturing Critiquing System
CDMCS

2.5.1 Introduction

The outline of this system was taken from [CDMCS 92], It was developed by the University
of Alabama and Tulsa and the “Research, Development and Engineering Centre” (RDEC) of

the U.S. Army Missile Command.

It was designed to assist engineers who may not be familiar with composite technology to
evaluate the advantages and disadvantages of using it for a proposed component design, and
also to provide technical support to designers in the area of “productivity and engineering
analysis”. It is an attempt to provide a broad base of manufacturing knowledge, which
provides engineers with up to date advice in the production/manufacturing discipline. The
CDMCS critiques a design and supplies an account of the strengths and weaknesses of the

proposed design.

A composite material can be described as a combination of two or more distinct materials
differing in form or composition on a macro-scale. When developing some material,
designers generally do not have a specific set of criteria for what each part of the object
should be made up of. Generally they have a set of non-specific requirements e.g. the
windings of a filament may not have a set value but instead have a range between two values.
This is known as the Fuzzy criteria of the object i.e. the data and the evaluation criteria are

“spread” or “fuzzy”. Thus any number of possible combinations can lead to the solution.

2.5.2 Architecture

This system differs from the previously mentioned system, in that it utilises a more
mathematical technique as part of its expertise. These mathematical models [CDMCS 92] are
called metrics. They are used as a criterion to measure the correctness of the result of a piece
of information and are grouped in levels of importance in the differential analyser. The

architecture of the system can be viewed in figure 2.2 below.

The designer’s data and the expert metrics are entered into the differential analyser. This
compares the two plans by passing them through three levels of metrics, where the first level

is the most important having a large effect on the result, the next level having a lesser effect,

and so on. The resulting evaluation is then presented to the user after some processing by the

Dialogue Generator on the results.

Figure 2.2 CDMCS architecture overview

2.5.3 Mini Experts: Metrics

Metrics describe the materials used and how the knowledge is related, to provide a measure of
the “correctness” of a given process. They are composed of definitions of relationships
between design parameters, i.e. domain data supplied by the designer’s plan. These metrics
are organised into a hierarchy, which is a reasoning mechanism that utilises qualitative and

fuzzy knowledge, and operates on these metrics to produce the critique on the design.

Metrics are as varied as the knowledge they contain and are the core of the system. Realistic
problems deal with various type of metrics, which can be qualitative, quantitative, Boolean
and conditional. An example of a boolean metric can be seen below.

If Hole is yes, THEN
Tolerance / Wall-Thickness >10%

The result of each metric is then considered i.e. how important the result of a specific metric
is to the entire design. If it is not that critical then it may be ignored. The metrics are
classified into three levels of importance [CDMCS 92]:
Requisite: These metrics in general have only two possible outcomes and represent
conditions that must occur in order for the design to be realistically considered. If a metric
is not satisfied then the design is rejected. These metrics contain the most important
information in the system.
Core: The next level of importance. It is essential that they are to some degree, accepted.
The degree of satisfaction directly effects the outcome. It is at this point that the notion of
the fuzzy criteria associated with the metric is introduced.
Enabling: The lowest level of metrics. They alter the basic correctness of the design but
only in very small ways. These metrics are not essential to the success or the failure of the

design.

17

2.5.4 Knowledge Base

Figure 2.3 was taken from the project overview of all the stages of composite product/process
design. It is important to note that this hierarchy was still under development at the time of
writing this thesis. The diagram shows a number of metrics and how they fit together. Some
examples of the metrics are given below [CDMCS 92], This taxonomy is displayed to show
the complexity of the knowledge that must be represented. Each box is a metric that may not
appear that important on its own but when a number of these metrics are collected together
the systems can become quite powerful. There also exists a mechanism which operates on the

structure to produce an overall state of the system. This mechanism is called Satisfaction.

Domain Expert Editor
2

Critiquing iniciaL-Ow
End User Input By Metrics Explanation
21 _2'2 23 2.4 _2'5 2.6 2.7 2.8
Primary réfabrication Toolin Primary Post Finishin
Materials p 9 Processing Processing 9
e AL —— e N Is_a\Links xox —_—
254 2.5.5 2.5.6 2.5.7 258 259 2.5.10 2511
Ts Filament Filament Compression Sheet Pultrusion Resin Transfer
Winding Winding Molding formatting Molding
a Links
2531 2541 2551 256.1 2571 2581 259.1 25101 25111
Attribute Attribute Attribute Attribute Attribute Attribute Attribute
Metric Metric Metric Metric Metric Metric Metric

Figure 2.3 The CSMCS taxonomy

2.5.5 Differential Analyser: Satisfaction

The key element adapted with this system for the critiquing of a design is the concept of
“Satisfaction”. Satisfaction is the measure ofthe degree to which some data item is contained
in a metric. It is a function of both the input data and the value given by the designers to the
metric. Thus since there are three levels of metrics, there are three levels of satisfaction. For
the core metrics and enabling metrics the satisfiability is determined by probability, since

these are simple 0 or 1 outputs. An example of one of these formulas is as follows.

Si = y)P*(x)Py(y)M(x, y)dxdy
Where W is the unitizing weighting function, P is the density function and M is the metric
satisfaction function. The output of this function in graph format is illustrated in figure 2.4

with the area of satisfaction being the shaded area or also known as the area of variable

acceptability. After the value has been acquired it is possible to evaluate the importance of

this satisfaction in terms of the importance of the particular metric.

Range of P1

Parameter |
Zd 0 abuey

Perameter 2 Regionof Metne -~ .
Satisfaction N

Figure 2.4 Graph showing the area of satisfaction of a metric
These functions are a form of thresholding. A breakpoint is determined for the metric, which
represents the point at which a metric is assumed to become unlikely to be satisfied. Each

metric has 1ts own breakpoint which the developers determine.

Thus metrics are capable of evaluating information against the knowledge they have at their
disposal and from this, produce a result. This result is then converted into useful advice for
the user. Thus is performed in the dialog generator.

2.5.6 Dialog Generator: Aggregation

This is the final stage in the critiquing process. The purpose of Aggregation is to collect the
lsatlsﬁability values received from all three levels of metrics to compute one overall value.

’I:he method of aggregation is defined as the sum of the averages of the core and enabling
* metric fuzzy function evaluations. This value is mapped to the success or failure state. There

the results are transformed into useful advice and returned to the user through a GUI.

19

2.6 Critiquing Trauma Management Plans On-Line: TraumaTIQ

2.6.1 Introduction

The information concerning TraumaTIQ came from a number of sources [GemnerA 93]
[GernerA 94]. It is an extension to the TraumAID system, which is a decision support system
for the delivery of trauma care during the initial definitive phase of patient management.
Although TraumaTIQ is not part of this system it is responsible for interpreting the proposed
actions in the context of the current state of the patient and thus producing a critique of these

actions.

The TraumAID project was developed by the University of Pennsylvania to assist a physician
during an initial “defimtive management phase of patients with severe injuries”. At the very
core of this-system, data about the patient’s condition is monitored and advice or criticism
provided to the physician about the plan of action. Again the planner must schedule all the

above actions and procedures so as to produce a plan for the physician to consider.

This system differs from many others including those discussed already, in that most systems
perform critiquing during an off-line consultation session. The user in this situation will not
have the time to be sitting at the screen. Their attention is only drawn to the output. Thus for
the system to be kept up to date requires constant attention and the amount of time available
for executing actiqns is also limited. These requirements lead to a system that is task centred

rather than system centred.

2.6.2 Architecture

An overview of the system is given in figure 2.5. The critiquing process in the TraumaTIQ
system can be activated in a number of ways e.g. when either the physician orders some

actions to be performed or new information or advice upon which route to take is requested.

The system is divided into three main components:

¢ Plan Recognition: which allows the system to infer the likely goals of the physician’s plan
in relation to the patient’s condition.

e Plan Evaluation: identifies any flaws or potential problems within the physician’s plan and
any large deviations between its plan and the physicians.

s Dialog Generation: Translates all the results found into useful information that the

physician can use. It must be prioritised so the most critical information comes first.

20

TraumAID
Patient Plan Annotated
ormatio | Recogmition | plan
Changes to | Plan
Fhysician Evaluation
Cntique
contents

Figure 2.5 The Architecture of the TraumaTIQ system

Language
Generation

The critiquing process is triggered whenever a new piece of relevant information is made
available to the system. The cyclic appearance of the architecture is to ensure that as new
information becomes available, the entire system is updated. The resulting critiques are

generated based on the complete set of orders that are pending at any one time.

2.6.3 Plan Generator:.Plan Recognition

This system uses information about the situation in which the plan is being developed, in
order to infer the plan the physician will most likely use. This decision will be based upon the
plan that finishes and the minimum number of unsatisfied goals at its end. The reason for this
1s the user cannot be treated as a co-operative provider of information but what can be
observed “through the keyhole” is actions that have been performed and orders the physician
has placed for actions.

An advantage of this system is that it uses a form of knowledge representation known as
context'u'al knowledge along with basic domain principles to guide the search for an
explanation plan. Thus if the system has a goal it considers relevant, it tries to use a number
of principles outlined in the following algorithm as an explanation for the physician’s

proposed actions.

IF an action 1s ordered by the physician THEN

check 1f it 1s part of TraumAID’s recommended plan as a means of satisfying a goal
IF action is i the recommended plan THEN

add the action to the representation of the physician’s plan
ELSE

DO determine whether there 1s a relevant goal that maght address what the action involves

21

IF any goals that might lead to the action are present in the TraumAID’s set of active goals THEN
assume that the action 1s being performed to address the goal
ELSE IF there 1s no relevant goal to explain why the physician has ordered it THEN
check whether any of the possible goals motivating the action are part of a currently
active diagnostic strategy
IF no relevant goal or strategy 1s found THEN
add action to the representation of the physician’s plan with no goél attached
IF the system only knows of one goal that would lead to performing the action THEN

assume the action 1s addressing the goal.

2.6.4 Differential Analyser: Plan Evaluation

The plan evaluation detects flaws or mistakes, misconceptions and disagreements with the
physician’s plan in comparison to the suggested one. This can be performed using two

approaches called the differential and the analytical approaches.

The differential approach compares the physician’s plan with another plan which could be a
broadly acceptable course of action to solve the problem. So if it is unhappy with the plan

suggested, it will have at least one other plan to recommend.

The analytical approach is described as a workspace of possible plans within which a
solution is more or less acceptable. It allows the system to deal with domains, where
variability and subjectivity are introduced into the decision making process i.e. since it is
capable of generating its own solutions, it can operate on problems where the domains are too

complex or constrained to be solved using simple decision rules.

Thus the differential evaluation, explaining why 1ts solution is the correct way to approach the

problem, and the analytical constraints, generating explanations as to what is wrong with the

users plan, are combined. By comparing the model of the physician’s plan with the plan

developed by TraumAID, TraumaTIQ 1s capable of recognising four different types of

discrepancies [GemerA 94]:

¢ Omission: if the physician is ignoring some specific goal.

e Commission: if the physician orders some procedure, which the system does not feel 1s
constructive or useful

* Procedure Choice: when the physician had ordered a procedure to tackle a goal or problem
which the system considers the wrong choice and that better procedures exist.

¢ Scheduling: The system considers the physician is addressing lesser problems when more

pressing ones exist.

22

2.6.5 Knowledge

As outlined in the above algorithm in section 2.6.3, the knowledge base is stored in an
hierarchical structure through which the system navigates. This knowledge contains a set of
plans on how to deal with different situations. The system has a set of guidelines to interpret

orders that do not correspond to its knowledge of possible plans.

Knowledge is then used, after the differential analyser has finished, to filter the output, so that
non-trivial errors will be critiqued, using the magnitude of the different types of errors that
have occurred. This method of filtering is implemented by separating errors into one of three
categories: Tolerable, Non-Critical, Critical. This knowledge is stored in an error taxonomy
This taxonomy classifies these errors by their potential impact on the patient’s outcome.
Using this knowledge it calculates an expected disutility value for each error classification.

This information is then given to the dialog generator as feedback to the user.

2.6.6 Dialog Generator: Critique Generation

This component involves the generation of advice to the user from the information retrieved
from the Plan Evaluation stage. It is considered to be one of the most important stages since,
if the advice is not presented correctly then the physician may become confused or start to

ignore the system altogether. It is separated into two stages:

- Strategic generation involves determining the content and structure of the output. The
output itself is driven by the plan evaluation stage, information from omission errors,
commission, procedure choice and scheduling errors. Depending on the level of urgency
of these errors each piece of advice will be given an INFORM or WARN flag. In addition

to this the system must supply justification information to support this criticism.

- Tactical generation, on the other hand, is related to displaying the critique to the
physician. It was considered that individual tokens could relate to a string such as:
Close_Chest_Wound ————=> * closing the chest wound”
However this does not allow these tokens to fit into a lot of varied sentences. To improve
the quality of the output, a more general semantic decomposition of these concepts must
be available. This representation together with an appropriate grammar and lexicon, is
used to generate sentences. Combinatory Categorical Grammar as this is called is a

functional head-driven, top-down approach to tactical grammar [SilvermanB 92].

23

2.7 A Critiquing System Architecture in the Risk Management
Domain: Riskman 2

2.7.1 Introduction

The information for Riskman 2 was taken from the following sources, {PowerJ 94] [HenryW
94]. It was developed by the School of Computer Applications in Dublin City University
(Ireland) to provide decision support for Software Risk Management. Riskman 2 was
developed as a research project funded by the Irish National Software Directorate in order to
develop a Risk management case tool. It is based on previous tools such as Riskman 1 and
IMPW [Verbruggen 87]. Its goal was to help a project manager “walk-around” a proposed
software development project and to help them anticipate any major risks to which the project
might be exposed. Riskman 2 was one of the initial tools that acted as a starting point for the
P3 project. Prompter is a development on the Riskman concept into the wider field of

Software Project management.

Similar to the previous systems, the user enters information dealing with their project which
passes to a collection of mini-experts or daemons in the field of risk which analyses this
information. The system stores the results or advice in a structure called a Blackboard. This
advice takes the form of text, which is embedded in the daemon and provides the user with
ideas about reducing the risk factor of their suggested design. These daemons also supply

justification for the advice if the user requires it.

2.7.2 Architecture

The basic architecture of the Riskman2 is based upon the lessons learnt form the Riskmanl
project, which was a rule-based system. The architecture for Riskman2 is both flexible and
could readily be enhanced. The architecture [PowerJ 94] can be viewed in figure 2.6:

24

eneric Project
Model
Project Model Project
Instantiator Manager

tantated
Model

Rask

Taxonomy
Ruisk Analysis
Daemon Blackboard with Daemon|
Supervisor ——¥| Conclusions and Advice

e
Daemon
Labrary

Risk Analysis Reports
Reporter

Figure 2.6 Architecture of Riskman2

2.7.3 Knowledge: Risk Taxonomy

The project Risk Taxonomy 1s a description of the various types of risk a project can be
exposed to. The Riskman?2 project categorises its taxonomy into five groups. One of these
categories, Technical Risk, is illustrated below in figure 2.7 to show how the knowledge 1s

represented. Thus class can be broken into a number of subclasses.

Techmcal
Risk
)
Resource Available Development Requirements
Constraints Technology Approach o

Figure 2.7 Subclasses of the Technical Risk class

This representation allows the easy addition of new categories to the knowledge base. The
differential analyser would then consult this taxonomy, when the user presented information
to the tool.

2.7.4 Differential Analyser: Risk Analyser

Thus 1s the heart of the tool where the user’s decisions are analysed and critiqued. To perform
this task there are a number of components such as the Daemon Library, the Blackboard, the
Risk Taxonomy, and the Daemons themselves.

Il

25

2.7.4.1 Mini Experts: Daemons

A daemon is defined as an individual expert in some specific area, of Risk. They hold all the
knowledge about their specific area. For each class of the Risk taxonomy illustrated above,
there exists at least one mini expert. When Riskman2 analyses a project’s risk it lets the
daemons examine the user’s project information as well as the outputs from other daemons.
They compare this information with what is stored in their knowledge base, and criticise it if

necessary.

These daemons are controlled by an Inference Engine (IE) situated m the daemon library.

Thus IE passes the user’s data into the daemons and processes any advice they produce.

2.5.4.2 Blackboard

A blackboard is a problem-solving model, used for the purpose of allowing a number of
mechanisms to communicate [EngelmoreR 88]. The Riskman2 developers described it as a
system, which uses multiple independent knowledge sources to analyse different aspects of
complex problems. These independent knowledge sources are the daemons in the system. For
every element 1n the above taxonomy there exists a daemon which is the expert in that area,
and for every daemon there exists an area for it in the blackboard. A partial taxonomy

structure in the blackboard structure can be viewed in figure 2.8 below.

On the blackboard the specific areas, drivers and respective factors of the taxonomy are
represented. Each daemon contributes its information or advice to the common workspace
and at that point other daemons may take it and use it to generate more information i.e.

blackboards are composed of solutions from component solutions [HenryW 941,

Risk

I | I
Schedﬂ lOperatxona]] l Support J

I I
! |

I |

Figure 2.8 Blackboard structure for Riskman2

A blackboard however must have some form of organisation imposed upon it. These daemons

cannot write to it anywhere, or the result would be chaotic. The blackboard in the Riskman?2

26

project is hierarchically organised into various levels of analysis. Information associated with
objects on one level serves as input to a set of knowledge sources which place new
information in other levels. When a daemon has performed its calculations it posts its results
to the appropriate place in the blackboard. Every daemon has its own allocated space or slot.

Thus the daemons will know where to look if they require information.

2.7.4.2 Daemon Library

This component is responsible for the storage and upkeep of the daemons themselves and to
act as an inference engine to the daemons. An inference engine can be defined as a
mechanism for mampulating rules from the knowledge base and drawing conclusions and
inferences from them with respect to the data from the project. The inference engine chosen
for this system is a forward chaining production rule system. The rules take the form of
simple IF statements which provide the bulk of the domain dependent knowledge in most

expert and critiquing systems.

These rules are contained in a daemon or mini-expert system, and are parsed by combining

the rules in the daemon with the data from the user to produce a resuit.

2.7.5 Dialog Generator: Risk Analyser Reporter

When daemons finish their execution, the Risk Analyser Reporter delivers the final report to
the user in a concise and clear manner. The developers specified that this output should

contain a number of factors e.g. Risk Area, Nature of the risk, justification for the concern,

plan to remove the risk, etc.

There are two mechanisms used to produce the output, breath-first and depth-first traversal.

- Breath first Traversal: this is traversal of the blackboard hierarchy as a breath first level
to provide the user with an overview of all the risks that are of concern in all areas of risk.

- Depth-first Traversal — if the user requires a more detailed explanation of a particular
area then the search continues down that area of the blackboard only, resulting in all the

risk concerns that led to the conclusion.

27

2.8 General model of a Critiquing System

2.8.1 Introduction

From the above-mentioned systems it was possible to see that they have a number of concepts
in common. In this section a general structure for a critiquing system is illustrated. This model

acted as a base in the design of the daemons and the daemon architecture.

The general model of a critiquing system involves a user inputting data and allowing the
system to provide feedback, criticism, and justification for this criticism to the user. In
addition to this, many systems come with static advice built mto a repository of some kind.
This advice is used during critiquing and also before the user begins. Thus, most critiquing
systems have a knowledge base, a mechanism for generating a plan, a component for

comparing these plans and finally a mechanism for turning results into advice.

2.8.2 General Model

The general model I developed is illustrated in figure 2.9.

User Work Environment

Imtial Input by user .
- Problem Description
- Proposed Solutio;

Critiquing System

Plan Generator

Differential
Analyser

Static
Knowledge
Base

Cntics

Diglog session

Dralog Generator \
~9'~

Figure 2.9 Overview of a Critiquing system

2.8.2.1 Plan Generator
The first stage of most critiquing systems is the “Plan Generator” which causes the system
to develop its own plan. A plan is generated from the user’s information and passed to the

Differential Analyser. Some systems use their knowledge base to generate a default plan

28

while others have a more dynamic plan generator. In the ICADS system, the plan generator is
the SAC component, which converts the user’s data into an internal representation and does
not involve the system generating its own plan. However, in the TraumaTIQ system there is a

specific plan generator which creates its own plan separate to that of the user.

2.8.2.2 Differential Analyser

The critiquing system uses the “Differential Analyser” as the core to its intelligence. They
input data relating to their project along with other relevant data from other systems involved
within the project environment. This allows the plan generator to generate its own plan of
action. The two plans (the user plan and the system generated plan) are then fed into the

differential analyser.

In general there are two mechanisms for creating a differential analyser which are
conceptually the same. In the first mechanism two plans are passed to the differential
analyser. It compares them by consulting the Critics and the Static Knowledge to decide
which plan is better, as is the case with TraumaTlQ. The second mechanism is to give the
differential analyser the problem specific information (the user plan) only and compare the
plan against the knowledge of the critics and the static knowledge as is the case with ICADS

or Riskman.

However there are rarely two plans exactly the same and so some leeway is must be given.
Thus only differences beyond an acceptable threshold are criticised. This is known as fuzzy

logic (used in the CDMCS systems).

2.8.2.3 Dialog Generator

The differences are presented to the “Dialog Generator” which converts them into
information useful to the user. This information usually contains justification for the criticism
and advice on how the user plan may be changed to incorporate these changes. The user
considers this information and if required a dialog session is started whereby the system and

the user “discuss” the results.

As a result of this “discussion” property, critiquing systems can complement problem-solving
systems with or without full knowledge of the problem space. They can provide criticism on
areas in which they have expertise and since the user is also considered an expert, the solution

is based upon a larger knowledge base than if the system had to solve the problem on its own.

29

2.8.3 Knowledge

The above statement about world knowledge hits upon one problem. Critiquing systems are
capable of critiquing without full knowledge and as a result the problem of guaranteeing the
correctness of the knowledge becomes a problem. How much information does the system
require before it can give correct advice? Silverman [SilvermanB 92] suggested a four-pomnt
framework to reduce the chances of error occurring in the knowledge base. If any of these
tests fail then the body of knowledge is considered unsound. This plan is outlined below

¢ Clarity Test: All statements must be clear and unambiguous as they are easier to falsify and
therefore more testable. A statement 1s considered to say more, the more falsifiable it
is.

e Coherence Test: This tests the logical structure of statements and whether the result omits
knowledge about the problem.

e Correspondence Test: This test concerns the agreement of statements with reality i.e. if the
body of knowledge reflects the real world in relation to the problem at hand. This test
fails if one or more elements of the problem space are not represented within the
knowledge base.

» Workability Test: This test is to see if it is possible for the body of knowledge to lead to a
description of the problem and to check that there are no omissions. Silverman states
that critiquing is not a “sermon” but instead a case of verification and validation of
the body of knowledge. It requires a mutual exchange of viewpoints between the

human and the system.

These four points lead Silverman to the following principle [SilvermanB 92]:
“One can criticise knowledge in terms of its clarity, coherence, correspondence and ‘
workability but if one of these tests fail to discredit the knowledge then the others are still free

to do so ... The principle is one of critiquing the credibility of the user task results, rather than

proving the correctness of it”.

Although this knowledge is a very important factor in critiquing systems, a number of other
considerations must be taken into account before the user is presented with advice. For
example: What does a critiquing system do when it runs into conflict with the user? Should it
argue its case? Critiquing systems must interact with the user so that if it presents advice in
the wrong way it can be rejected. It is often not just the content of a critique but the way in
which the critique is delivered, or the author’s reaction to it, which can determine its

successful usage.

30

Gerard Fisher has made active critiquing the central focus of his research [FischerG 93]:
Active critiquing can be described as the monitoring of designer actions and the active
mterruption of the design process to point out errors, or suggest guidance [EckertC 95]. Fisher
showed that passive critics of the user’s design were not requested early enough and resulted
in mistakes early in the design, which were costly to fix. Eckert [EckertC 95] suggests a form
of critic known as Collaborative Critics for professional designers. It is a combination of the
two forms of critics where the system suggests advice when deemed necessary but in addition

to this the user can request advice.

2.8.4 Critics

Within this knowledge base, the static rules and standards are contained. This information can
be very useful before the user even starts. After this the more general information must be
stored in the form of simple rules such as
IF condition] THEN
statementl
ELSE {F condition2 THEN
statement2
END

If condition] is true execute statement] else if condition2 is true then execute statement2.

Although there are more complex mechanisms for developing critics the above mentioned
mechanism still seems the most popular. Judging by the aforementioned critiquing systems
1.e. the ICADS, TarumaTIQ and Riskman, they all represent their critics this way, as they are
simple to construct and verify. However since their implementation generally depends on the

domain the language used, the complexity of the knowledge etc. their structure cannot be
generalised.

31

2.9 Summary

In this chapter a number of critiquing systems were described for the purposes of developing
a general model. The chapter began with an overview of an expert system which was then
contrasted with a critiquing system. This was followed by a description of the critiquing

systems used in the survey.

The first architecture was the ICADS system. This system demonstrates a model that fits in
well with the general critiquing system model. It demonstrates the use of separate critics that

specialise in a particular area of building design.

The next system discussed was the CDMCS system. This system was included in the review
because of its divergence from the normal critiquing system design in that instead of critics it
uses mathematical functions to model knowledge. However, even though it is different to the
" previous system it still conforms to the general model.

.
TraumaTIQ was included because it operates in a real time environment. It deals with real
world situations in real time. It is a task centred system and must be able to adapt to situations

that occur outside of its control.

Riskman was the final system. It attempted to model a critiquing system for Software Risk

management. It was included because Prompter is a development on some of the its ideas.

One problem that was encountered during the creation of this study was the difficulty in
acquiring detailed information about commercial systems. This was due to the fact that most
of the critiquing systems designed today are produced for commercial use and not research, as

a result the design documents remain classified to the project.

In the following chapter, the mechanism by which the daemon architecture provides
critiquing is explained i.e. Intelligent Agents. It is shown how the general model developed
here was used to develop an Intelligent Critiquing Agent and the structures that were

necessary to integrate them.

32

3. Agents

The objective of this chapter is to explain the concept of software agents and the various types
available. Following on from this I describe how I combined the idea of an agent with the concept
of a critiquing system, to produce a number of agents that are capable of providing decision

support within an implemented prototype of the Prompter tool.

3.1 Introduction

With the advent of the Internet, the availability of knowledge contained within many different
types of system such as expert systems, databases etc. became much more accessible. It, as a
result, became more difficult to produce systems capable of accessing, incorporating or simply
taking advantage of this knowledge due to compatibility problems, various conflicting standards
and security issues. Thus the concept of the open architecture was bormn. These systems were
designed to be easily distributed, platform independent, easily expandable, domain independent

etc. They could interact with knowledge bases or other systems of various types.

One of my goals was to make the daemon architecture as open as possible and one mechanism of
achieving this was, through the use of intelligent agents. Agents work on behalf of the user or

system, performing tasks such as information retrieval or database querying etc.

Open agent systems mediate between different types of programs and generate problem-oriented
solutions. In some situations agents reduce network traffic, provide efficient means of
overcoming the problem of incorporating legacy systems, and most importantly, they have the
ability to operate asynchronously and autonomously of the process that created them thus helping

developers construct more robust and fault tolerant systems.[LangeD 98]

The agent concept was adapted for the Prompter tool as a mechanism of storing and organising
the knowledge of the tool. Each agent contains information relating to a specific area of software
project planning and can execute on its own, offer advice when necessary and provide an easy
mechanism for the addition or deletion of agents from the knowledge base. They also allow the

architecture to remain distinct from the domain it represents.

33

3.2 Agents

/

The term Agent has been used for quite some time now without people fully understanding what
it is that an agent is expected to do. There is ongoing research into finding an agreed definition
for it. There are also those that do not support the use of agents and are sceptical of their problem
solving ability [PetrieC 97].

There have been attempts at a definition for agents. The examples below show how each
definition leans towards a specific type of agent and also illustrates how vague the language used:
- Intelligent Software Agents can be defined [CroftD 97)as software agents that use Al in the
pursuit of the goals of its clients.
- A mobile agent is an active object that can move both data and functionality to multiple
places within a distributed system. [FarleyS 97]
- Anagentisa comﬁutational entity [Broadcom 97] which:
= acts on behalf of other entities in an autonomous fashion
» performs its actions with some level of proactivity and/or reactiveness

= exhibit some level of the key attributes of learning, co-operation and mobility.

All these defimtions describe an autonomous goal orientated entity that operates asynchronously
and may communicate with the user as well as with other agents with the purpose of helping the
user. However these definitions are quite vague due to the variety of areas in which agents are
found and the various tasks they perform. A better description of an agent is given in Danny B.
Lange’s paper [LangeD 98], an agent is a software object:
¢ situated within an execution environment
+ possessing all, of the following properties:
reactive — senses change in the environment and acts according to those changes
autonomous — has control over its own actions;
goal driven — it is proactive;
temporally continuous — is continuously executing.
¢ And possibly possessing any of these orthogonal properties:
communicative — able to communicate with other agents;
mobile — can travel from host to host
learning — adapts accordingly to previous experience

believable — appears believable for the end user.

34

This definition allows us to pick out the specific properties that our agents can posses and even
though this definition is at a lower level, it is in no way closed. Thus for the purpose of the
Prompter tool the definition of an agent is [Prompter 97]:
. a fully encapsulated program (entity) which is capable of autonomous
asynchronous behaviour in some environment for a specific purpose (goal). They
have a knowledge base that allows them to manipulate information and also have

the ability to communicate with the Prompter tool.

These agents are reactive to a certain extent within the daemon architecture. They react when
information relating to them changes. They are autonomous i.e. execute on their own, they are
mdependent of the architecture itself and are also goal driven. There is no reason for these types
of agent to be mobile. However the architecture is open to the incorporation of these types of

agents if the situation ever arose.

3.2.1 How Agents differ from programs

There is a tendency to see agents as nothing more than a buzz word. In this section I will argue

that this tendency is misguided and that agents are more sophisticated independent entities.

Agents are based on the concept of reactivity in that they are not scheduled for execution by the
system but execute when they have something to contribute to the user. They have their own
thread of control and execution environment, which is not the same as programs or methods.
Within the Prompter prototype this is also true. Each agent 1s autonomous and operates
asynchronously of the system. Each is a mini expert which supplies information to the user when
advantageous. An agent is programmed with its own individual knowledge base, from which it

gathers information when supplying advice to the user.

Programs on the other hand are less reactive [Broadcom 97]. They are specifically scheduled or
called from code to perform a particular task. They only respond to what interface designers call
direct manipulation. Nothing happens unless a person gives the command. Functions and methods
only execute when called. The only information they have is what is supplied to them through
variables. When they finish, the results are passed back to the system. It is a very client/server

oriented approach. Although the code execution may not be static, 1t still conforms to the

35

client/server approach. They are not pre-emptive. They do not suggest their availability to execute

and as a result are not temporally continuous or autonomous.,

3.3 Types of Agents

Since there is no hard and fast definition of what an agent should look like, the result has been the

production of a number of different agent types. Up until now a lot of agent implementation and

development has been focused on the area of the Internet and agent mobility. Some of these

agents are outlined below.

Mobile agents — These are the most common form of agents. They have the ability to move
from machine to machine and shuffle their code and state with them when they move. So
when an agent is operating on a heavily laden machine it may be advantageous to move to a
different, less burdened machine. These types of agents are generally used as a method of
iformation gathering, travelling from server to server possibly querying many databases etc.
Thus is where the whole area of agent trust and security becomes important.

Distributed Agents — These types of agents are mainly used to reduce load balancing and
can be distributed over a number of computers or processors on a network. This allows agents
requiring large amounts of processor time to search for a free processor or to be allocated a
dedicated processor, thus reducing the overall execution time of the system.

Multi-Agents — This category of agents is used when dealing with relatively large tasks or
goals. If a task is submitted by the client it can be beneficial for it to be broken up into a
number of subtasks which can then be handled by a number of specialised agents. These
agents then report back to their supervisory agent, which analyses their outputs and reports
the results back.

Collaborative Agents — these agents interact with each other in a similar way to multiple
agents, however the concept of an agent’s autonomy is weakened. Here agents work together
to produce an output. They share knowledge about the situation and work as a team.

Social Agents — (or anthropomorphism) involves the collaboration between humans and
agents. Some agents are being developed which can present themselves as human-like

creations to improve how humans interact with them [MaesP 97].

36

3.4 Agents as Critics — Daemons

Now that the various types of agents have been discussed, it is possible to describe the agents I
developed within the Prompter tool. These agents have a number of properties similar to those
presented above but also have some that are unique to themselves. Each agent or daemon as they
are called in Prompter is a mini expert which monitors user actions and provides advice on
possible alternatives or potential problems that may lie ahead. This advice takes the form of a

criticism of the user’s work, as in a critiquing system, and a justification for its conclusions.

3.4.1 Agent’s Internal Structure

I developed a common architecture for the critiquing daemons (see figure 3.1). Contained within
it are many of the components outlined in the general model developed in the previous chapter

such as a plan generator, differential analyser, dialogue generator etc.

User data
Daemon as nput
Header l
Critiquing l
System

Differential
Analyser

Daemon
Knowledge
Base

Advice

Figure 3.1 Intelligent Critiquing system structure

The identification information relating to a specific agent is stored in a structure called the
daemon header. This header identifies the agent to the tool and contains information relating to
the area the agent is an expert in, what version number it is and other related information. It also

makes the job of sorting, storing and searching for agents much easier.

37

The core of the agent contains a number of rules that interpret the information given to it by the
inference engine. Here it performs the differential analysis on the user’s data by comparing it to

its own static knowledge base. Its output is then passed to its dialogue generator

This output is passed through a dialog generator which produces the advice for the user. I decided
that the best mechanism of encapsulating advice was using HTML as it allows the introduction of
bullet points, text manipulation etc. This advice is passed back to an inference engine which is

encased within the daemon architecture.

3.4.2 Criticism

This advice allows the user to be alerted to a potential problem within their project. I divided 1t

into a number of sections:

- Critique: a dynamic criticism of what the user has done this may be accompanied by advice
on how to overcome the problem.

- Background: This provides some generic advice that may help the user know why the
problem has been highlighted.

- Justification How the advice was geherated. This tells the user why the advice is given.

- Bibliography: A list of reading material that the user may consult if unsure or confused. This

is a list of papers, conference proceedings, books etc. that may help the user.

3.4.3 Agent Communication

There is no point in collecting a number of experts into a room if there is no organisation imposed
on them. There would be chaos and the advice supplied to the user would be irrelevant,
inconsistent and most likely out of date or supplied to the user at the wrong time. There are
several motivating factors behind why groups of agents need to be co-ordinated outlined 1n
{Broadcom 97]. Thus I had to impose some form of architecture around the agents. I had a choice

of two basic concepts of approaching the design which I outlined below[GeneserethM 94].

- Direct communication In direct communication, agents handle their own communication.
An agent can communicate directly with another agent. See figure 3.2, The advantage here
being, agents can communicate without the assumption of data structures being available in
the system itself. It allows a greater separation of the agents from the tool thus making them

more autonomous. It does not rely on the existence or capabilities of other programs. The

38

language KQML [FininT 92] was designed specifically to allow agents to easily

communicate and pass information to each other.

(

Figure 3.2 Direct Agent Communication

However the drawback with this is that once the number of agents increases, so too does the
complexity and the resulting cost [GeneserethM 94]. As in figure 3.2 if a new agent, is
introduced the number of connections grows by a factor of N (N = number of agents). A
requirement of the Prompter tool was the ability to add to the knowledge base i.e to add new
agents. Thus if this architecture was chosen it would result in a complicated integration

period.

Assisted coordination This architecture differs from the above in that agents rely on special

system programs to achieve coordination. It introduces a more controlled environment over
which agents execute. Figure 3.3 shows the representation of four agents, all dealing with
different areas of risk. If the Risk Agent has information relevant to other agents, it can
broadcast it using a structure called a facilitator. The level of complexity is much less with

this archutecture compared to the previous one. If a new agent is to be introduced this requires

only one new connection,

Faalitator

Risk ﬁ l Estimation 5

Figure 3.3 Assisted Agent Coordination

A

39

In contrast to the competing concept, this architecture allows agents to become more
integrated into the system and not as isolated. A facilitator is mechanism for performing this
organisation [GeneserethM 94]. The facilitator is the controller of the agents. It forwards
information to them and takes advice from them. They surrender their autonomy in some way
to this facilitator, which now controls to some extent their execution. This design allows the
agents to better express their requirements so the facilitator can be more discriminating in

routing messages.

I chose the later of the two architectures for the daemon architecture for the following reasons:

In general this mechanism is more efficient as the amount of communication 1s reduced. In direct

communication, if the number of agents is large the cost of broadcasting a job is very high.

it allowed agents to be grouped together into a hierarchical structure, similar to the taxonomy
they had to represent. The facilitator itself may be similar to an agent with a facilitator
controlling it.

the knowledge base has to be easily expandable meaning a quick and simple process to add
new agents. Since this architecture only needs the introduction of one new connection for a
new agent, it was the best option.

Since Prompter is a marketable tool other issues such as efficiency and multi-threading had
to be also taken into account. The overhead incurred if direct communication was chosen
would be higher since the communication and expandability factor would be much greater.
This would slow the tool down and also make it to difficult to regulate the flow of advice
from agents to the user. Assisted coordination is easier since the facilitator controls all the
agents under it. Thus the tool only has to deal with the facilitators and never sees the

underlying agents.

Hence all the critiquing agents in the daemon architecture are organised into an Assisted co-

ordination structure. If the facilitator sees that an agent can execute it informs the relevant

inference engine to perform the task. Internally the agent interprets the information, compares it

to its knowledge base and constructs some worthwhile advice for the user. The mechanism

chosen to simulate a faciitator within the daemon architecture is called a Blackboard similar to
that used for Riskman2 (section 2.5.4.2).

40

3.4.4 Blackboard within the Agent Architecture

As described above the decision taken was to design the architecture using the Assisted co-
ordination approach. Thus the agents and facilitators are monitored by a controlling structure

called a blackboard which acts as the master facilitator for all the agents.

A blackboard as described in the previous chapter is a complex problem-solving model
prescribing the organisation of knowledge, data and problem-solving behaviour within the overall
organisation. Put more simply, one might imagine an analogue of a group of experts in a room as
in figure 3.4. The only mechanism they have of communicating with each other is through

writing what they think on a blackboard. The other experts can read what has been written.

Figure 3.4 The blackboard

Since they can see the current state of the solution they can use it to develop and write their own
suggestion. This results in experts working together to provide some solution. However for this

structure to be viable some mechanism of control must be enforced.

The blackboard I developed is responsible for ensuring that order is maintained within the agents
architecture. It ensures information is kept up to date and the system is informed when advice 1s
received from the agents. Each agent is given its own area of the board to write its advice to as
was the case with Riskman 2. However if necessary it can read the outputs from other agents or
inform an agents if other dependent agents have produced new outputs or if some new

information has been received from the user.
In the daemon architecture, the blackboard acts as a high level method of agent communication It

does not merely communicate simple information at a low level from agents to agents, but instead

communicates highly detailed advice. The blackboard model thus contains two basic components.

41

e The knowledge sources - The knowledge needed to solve the problem is partitioned into
knowledge sources, which are kept separate and independent. In Prompters case, these are
the agents themselves.

e The BB data structure - The problem-solving state is kept in a global database. Knowledge
sources produce changes to the blackboard, which lead incrementally to a solution to the
problem. Communication and interaction among the knowledge sources takes place solely
through the blackboard.

Daemon Controller/ Blackboard

Daemon
Library

Dacmon3 information

Figure 3.5 Overview of blackboard

The operation of the blackboard systems within the architecture is as follows: knowledge sources
(daemons) respond opportunistically to changes in the blackboard. The expert sees some change
on the blackboard and responds by performing analysis on the data given. It then writes its

conclusions to the blackboard which can be read by other agents.

3.4.5 Knowledge Representation for agents

An agent draws its intelligence from its knowledge base. There are many mechanisms for
representing knowledge in an agent, however these mechanisms are, majority of time, specific to

the knowledge that must represent.
The knowledge base for the Prompter tool was constructed by dividing up the main area of

software project planning into categories. Within each of these, subcategories were introduced.

This led to the taxonomy for the agent knowledge base as illustrated in figure 3.6.

42

¥ Advice areas | |

|l Analysis & planning l———l Estmation ll

—(Selecting lifecycle I —l Setlecting methad I
—l Standards] \—l Analysing estimates]
L—l Selecting technolagles l
I Acivity Planning F——14 Resource allocation ||
—r Identitying activities I —l identtying needs I
-f Scheduling] —{ Scheduling resources |
= | Team skill mix |
|I Project re-planning I———{I Measurement II
—{ Metrics I
i Analysls |

I[Risk management l——

-—{ Identitfication I

Technlcal 2

_r Analysis |
—{ Mitigation]
=l Monitoring |

Figure 3.6 Prompter Taxonomy

The simplest way of representing this taxonomy in the daemon architecture was by creating an
individual daemon for each category. Thus for the area of Risk identification there were a total of
five daemons created. Note that it would also have been possible to place all the categories of
Risk identification into one agent or on a bigger scale placing all the risk areas in total Risk
daemon. However this reduces the level of expandability e.g. if a new agent 1s produced for the
area of support under Risk identification then the whole agent would have to be changed since
this area would only be part of the daemon. If each category has its own separate agent, the

category can be easily substituted.

3.5 Summary

The objective of this chapter was to introduce the reader to the concept of agents highlighting the
type of agents developed for the Prompter tool.

A description of what an agent is and the various types available was given. The critiquing agents
I developed were then explained and how they differ from the general model of an agent. The

architecture that was developed to organise them and integrate them into the daemon architecture

was then elaborated upon.

43

Following on from this, the knowledge of the daemon architecture was outlined, highlighting how

it was broken down into groupings of agents.
In the following chapter, the daemon architecture is examined at a more detailed level. Each

component is explained using object diagrams and a detailed explanation of some of the more

interesting protocols is given.

44

4. Detailed Design

4.1 Introduction

This chapter is concerned with the detailed design of the daemon architecture of Prompter. The
Daemon Supervisor, the Blackboard, the Daemon Library the daemons and their knowledge. An
outline of the knowledge engineering process that was used to develop these daemons is also
given are all explained. Firstly however, some of the standards that were adhered to during the

development of the architecture are introduced.

4.2 Standards

The main reason for coding standards is the maintainability of the code. It is summed up in the
following quote [AmblerS 97]:
“Coding standards for java are important because they lead to greater
consistency within your code Greater consistency leads to code that is easier
to understand, which in turn means it's easier to develop and maintain. This

reduces the overall cost of the application.”

Standards make it easier to share code and for others to maintain it. The Java coding standards
outlined in [AmblerS 97] were adhered to for the implementation of the daemon architecture of

Prompter.

Another standard adhered to during the project was the Object Orientated Analysis (OOA)
specification [RumbaughJ 91]. This is a semiformal specification technique for the OO paradigm.
There are currently over 40 different techniques for performing OOA, and new techniques are put
forward on a regular basis. The most popular techniques are: OMT, UML and Booch’s technique.

However, most techniques are largely equivalent and consist of three basic steps:

- Class modelling - Determine the classes and their attributes. Then determine the
interrelationships between the classes. Present this information in the form of a diagram -
termed a ‘Class Model’.

- Dynamic modelling - Determine the actions performed by or to each class or subclass.

Present this information in a diagram - termed a Dynamic Model’.

45

Functional modelling - Determine how the various results are computed by the various

products. Present this in the form of a diagram - termed a Functional Model”.

The choice of which particular method of OOA to employ for a given project is usually arbitrary
and linked to the experience or preference of the system designer, or dictated by outside
influences. With this in mind, OMT was chosen as the OOA method for the design of the
Prompter. Within this thesis all class diagrams, event diagrams and state diagrams conform to
this standard. A brief discussion of OMT is given below. However for a good description to the

OMT methodology, see [RumbaughJ 91] or [MartinL 96]

4.2.1 Object Model Technique (OMT)

OMT describes the structure of objects and illustrates their identities and relationships to other
objects, their attributes and their methods. An oudine is given to help the reader better understand

the class diagrams in the daemon architecture.

The basic structure used in all OMT diagrams is the class structure. The class structure
corresponds to a class in 00 languages and is defined as [RumbaughJ 91]:
“A schema, pattern, or template for describing many possible instances of data. A class diagram

describes an object class™.

An example of a class can be viewed in figure 4.3. Contained within a class are the various
attributes that make up the class. Following on from this are the methods or operations which

perform tasks or operate on these attributes.

There are numerous mechanisms of linking classes together however only those used in the OMT
diagrams to follow, are explained. The most basic link is known as the association link and is
illustrated in figure 4.3. An association link, is a line between two classes indicating a relationship
between them, the relationship is always displayed beside the line. These links come in a number
of formats, the simplest being a line between two classes, indicating the classes are related in
some way by a one to one relationship. The next format is a link with a dot at one end. This is
known as a one to many relationship and means that one class (the end without the dot) is linked

to one or more of the corresponding class (as illustrated in figure 4.3) by the relationship defined.

The next mechanism of creating a relationship between classes is called the Aggregation
relationship and takes the appearance of a diamond in the line. It is defined as relating an
assembled class to a component class. It is the “part-off’ relationship and indicates that one class
is associated with an object by making up part of it i.e. the class is part-off the associated class.

An example of this can be view in figure 4.7.

4.3 Rationale behind Architecture

Before the architecture is introduced it is important to illustrate some of the reasons/rationale or

requirements behind it.

Platform Independence - It was decided the Prompter tool, including the daemon architecture,
was to be a platform independent tool, meaning it had to be capable of running on any type of
machine using any type of operation system. Within the architecture there had to be no machine
specific protocols or features such as the ability to write directly to COM ports etc. Thus a project
wide decision was made to implement the tool using the Java Language (see Chapter 5 for a
detailed description). This placed a number of constraints on the design of the architecture. It had
to be performed in an Object Oriented fashion to allow ease of implementation in Java which it is
itself 00. Also Java’s ability to allow only one level of inheritance constrained the class level

design further.

Distributed - It was also decided that the Prompter tool was to be a distributed system. The
decision was made to divide the tool into three main components the daemon architecture, the
GUI and the kernel. Within the daemon architecture component, | introduced an extra level of
distribution at the Daemon Library component. It was also decided that CORBA was to act as the
distributed layer to bind all the components together. It utilises interfaces to allow components to

communicate, meaning that the design had to incorporate these properties.

Independence - Since each component was to be distributed in the architecture, it meant that
each component had to be independent and asynchronous of the others, so structures such as
buffers and threading issues had to be considered in the design phase. Also, the introduction of
CORBA allowed the system to be divided up into a client-server system (The concept of CORBA
and its client-server structure is developed further in Chapter 5). This allowed the design of each

component to be more client server oriented as well, thus increasing the independence of each.

47

Expandability — One of the major concerns within the daemon architecture was the abulity to
allow the simple integration of new daemons or agents into the knowledge base thus requiring the
architecture to be as open as possible. The design had to have a minimum amount of coupling
between the architecture and the daemons themselves i.e. I had to ensured that if new daemons
were added, their integration into the knowlecfge taxonomy was not difficult. I also had to provide
the facility to allow daemons written in different languages to be added thus allowing the tool to

be capable of keeping up with new languages and concepts.

4.4 Architecture

As mentioned in the Chapter 1 (section 1.1.2) the architecture of Prompter is broken up into three
main components as viewed in figure 4.1, with the daemon architecture broken up mto four

components: the Daemon Supervisor, the Blackboard, the Daemon Library and the Daemons.

Prompter
tool

Daemon
Daemo_n Daemon
Supervisor Library
t Daemons O ;
H
Blackboard Q O O %

Figure 4.1 Prompter Overview

The daemon supervisor 1s the main controller of the daemon architecture and is responsible for
the passing of information between the daemons and the kernel, and between the daemons and the
blackboard. When the blackboard informs the daemon supervisor that a daemon can execute it
informs the daemon library to retrieve it from its repository. The daemon supervisor then gives
the daemon the information it needs to execute. Finally, the advice the daemon returns is loaded
back into the blackboard for later retrieval by the kernel.

48

As illustrated in figure 4.1 the blackboard interface is not across the communication layer due to
the level of communication between itself and the daemon supervisor being so large. Between the
other three components there is a communication layer called the CORBA layer (section 5.2).
This layer allows the components on both sides to communicate with each other and yet operate
asynchronously. For example, the GUI can reside on many machines and still maintain its
connections to the kernel and daemons. The CORBA layer automatically takes care of routing all
method calls, security issues, passing information across a network etc. In fact the kernel can be
completely rewritten in a different language to the other components who would remain unaware,

due to each components independence.

4.5 Tokens

The token structure is the method of passing information from the user to the daemons. A token is
the base type variable within Prompter. It stores a value that is set by the user or the system. All
information that the user enters is converted into these token values. Each token has a unique
name and number which distinguishes it from others, and a description or defimtion to illustrate

its function.

There are two types of tokens within Prompter, qualitative and quantitative. Qualitative tokens
have scale values, such as high medium and low, while quantitative tokens have actual values
such as 36 or 2.52.

4.6 Daemon Detailed Design

Following on from figure 4.1, the overall OMT class diagram for the daemon architecture is
outlined in figure 4.2 highlighting only the class relationship firstly and then each component 1is

explained separately.

As illustrated in figure 4.2 the three main components of the daemon architecture are:
¢ Daemon Supervisor

e Daemon Library

e Blackboard

e 'Daemons

49

Daemon T Daemon
Supervisor Library
DaemonS DaemonLibrary
AdvicelmplTable |
Project Daemon
Advice
Blackboard BBTmel
Segment
Slot, Scenario|
ode

DmnOutput

1 1 1
Advicele "ExtendedAdvick | uleJusti
iblograph

Figure 4.2 Daemon Architecture OMT Diagram

Each of these components aids the daemons in their critiquing process. They act as the interface
between the daemons and the rest of the tool. They ensure that the correct advice is returned at

the right time and the information passed back is always the most up to date available.

4.6.1 Daemon Supervisor

The daemon supervisor is responsible for all communication between the kernel and the daemon

components. It is the main controller of the daemon architecture and is concerned mainly with

50

scheduling issues, communication issues and of course daemon execution and the handling of the

advice returned from them. Most of the tasks of the daemon supervisor are outlined below:

o It is responsible for the creation of new threads of control for daemons available to execute.

» It maintains these daemon threads and times out them after a period.

o It is responsible for the acquisition of information from the kernel relating to information the

user may have entered or changed.

» The daemon supervisor is responsible for the creation and maintenance of the advice table. This
is a buffer to temporarily store the advice until the kernel is ready to recerve it.

o It ensures the advice from the daemons is forwarded to the blackboard and the advice table. The

advice is forwarded to the blackboard because it may be used by other daemons at a later date

The class diagram for the daemon supervisor is shown in figure 4.3. The daemon supervisor class
contains a number of project classes. Within each of these are the details of a specific software
project the user may be working on. Each project is kept completely separate and has a unique

blackboard that stores the state of the daemons for that specific project.

| DaemonS

stantProcess
stopProcess
startProject
siopProject
getTokenValue
getédv:c; ToDL
etStateArra

To adnze dviceAvailable
recogniseChange
executeDaemon
getDependencyTable

1

Daemons
Blackboard

TolB

orwardAdvice
tokenChange
stopProject
recogniseChange

To BB

Figure 4.3 Daemon Supervisor OMT Diagram

The reason for abstracting the project information away from the daemon supervisor 1s to allow
related information such as project details to be grouped together and processed separately and
independently of other projects. It also allows the maintenance of multiple projects to be handled

more efficiently, such as the deletion or creation of an entire project.

51

Sa

The methods contained within the daemon supervisor are concerned primarily with

communicating information to the kernel or the advice table. They require little explanation.

However the following have more specific roles:

M
- -

void recogniseChange(..); - This method is the signal for the daemons to start monitoring
what the user has done. Up until this invocation the daemon remains inactive while the user is
selecting default information. Note that it is not necessary for the daemons to be executing all
the time and there may be times when the user wants to make a number of changes before the
daemons supply advice. The user may decide to try an experiment and at the end let the

daemons analyse the result.

void executeDaemon(..); - This method is responsible for the execution of a daemon and 1s
one of the key methods in this component. The Blackboard tells the daemon supervisor which
daemons can execute and it is up to the daemon supervisor to inform the relevant inference
engines. However the events that occur on either side of this call can be better understood

with the help of the following state diagram.
BB Analyse create token
. getStateArmyl State Array | Daemon value list

to execute
' getTokenValues

advice in execute execute
Advice Tabld ~ forward Daemon | forward > Daemon
HTML - rich info
advice l to BB

O,

Figure 4.4 State diagram for generation advice

To execute the daemon, the token values for its dependent tokens must be acquired from the

Kernel. These values determine which rule within the daemon fires. When the daemon has

executed the advice returned is in a very rich format that is of little use to the user but may be of

great use to other daemons. For this reason the rich advice 1s passed on to the blackboard for use

by other daemons and a more user friendly version is sent to the advice table for the user.

void processAdvice(DmnOutput dOut); - This method acts as the dialogue generator for

the daemon architecture. It is responsible for the conversion of advice from one form to

52

another As mentioned above the advice must be presented to the user 1n a readable format so
they can understand 1t better 1e HTML The nich advice structure contamning all the
information returned from the daemon 1s passed as a parameter This method takes the user-
relevant information from each section and places 1t n a HTML string HTML tags are
inserted so the GUI can identify the various pieces of advice for display purposes This

process 1s 1llustrated 1n the following state diagram

Process Object
.M_" Do create created | Do Joad
Advice Object advice ID etc
Advice ID Info
All advice stored 1n object
fo stored)
1n string Do sert Advice
@(————— area Tag mto
" | advice Stnng

Info Tag inserted
serted|
)

Do 1nsert userinfo
from Advice area
wnfo nto stnng

Figure 4.5 Process of advice state diagram

The advice object 1s created, and the various ID information added in An advice tag 1s nserted
followed by the actual advice When the current section 1s fimshed the next tag 1s inserted and so
on until all the advice has been converted nto HTML Ths string 1s then added to the advice

object, which 1s forwarded to the advice table where the Kernel can retrieve 1t

4.6.1.1 Daemon Supervisor Interfaces

A number of CORBA mterface defimtion language (IDL) interfaces were created to allow the
daemon supervisor to communicate with the Daemon Library and the Kernel across CORBA
These mnterfaces can be viewed 1 the Appendix B and contamn all the methods needed for the

modules to commurnicate with each other

4.6.2 Blackboard

The blackboard 1s the main data structure m the daemon archutecture that momitors the daemons

Its purpose 1s to hold state information about daemons and inform the daemon supervisor when

53

one can execute The structure of the blackboard 1s outlined diagrammatically mn figure 4 6 and 1ts
OMT chagram n figure 4 7
| BB Coniroller |

4

Node / \
Node \

Node

Segment 1

Seenmria ¥ | Slot1 E ‘SlotNH Adeeg
= 3|

Semmarta ¥ { stot1 l] SlotN“AdeeE

Segment N

[Scanamo}] Slot1 .mi SlotN l; Adeeﬁ
—

Seenpw N 131011 E’"“l SlotNE Advice

Figure 4.6 Blackboard structure

The blackboard 1s a tree structure with a number of branches called nodes, which are montored
by the blackboard controller Each node represents one area of the knowledge taxonomy specified
in the previous chapter Contamned within each node are a number of segments A segment
represents a specific daemon of that node Thus if there are a number of daemons dependent on
Estimation, this will result in a number of corresponding segments n that node

Within each segment 1s a structure called a scenario There can also be many scenarios within one
segment A scenario can be described as follows, if a user wants to try a number of possible paths
but 1s unsure of which one 1s correct they create a scenario which allows them to try a possible
alternative solution to a problem thus producing an alternative state for a daemon Thus results in
a daemon having a number of different states each one stored within a different scenario So since
a segment represents a daemon 1n general, a scenario represents the daemon 1n one of the possible
paths

A daemon 1s dependent on a number of tokens that are used to help give advice These tokens can

exist in one of two states at any time, either changed or unchanged Thus within each scenario

there 15 a number of structures called slots, one for each dependent token and a slot for the last

54

piece of advice the daemon provided The class diagram for the blackboard module 1s shown in

figure 4 7 The advice structure will be discussed further in the section 4 6 4 1

[Slot | nario

tokenlD D

g A

- avakbleToExecute

daerron Area

adwicelD
projectiD
scananolD
daermoniD
dGU
dArea

| RuloJustify.]
area | ExtondedAdvice | Titke stfyText
comment adviceText Authors
| Publisher
Date
LRI

Figure 4.7 Blackboard OMT Diagram

As mentioned above a token can hold one of two states, at any one time

- unchanged the token value has not changed since the last execution of the daemon If this 1s

true for all the tokens 1n the daemon then the daemon has no need to execute

- changed the token value has changed If thus 1s the case the daemon’s advice 1s no longer up
to date and must execute again

Again a lot of the above methods are related to the updating and the searching for tokens but

some of the more 1mportant methods are outlined below

e voiud createBB(DependencyTable); - This method 1s responsible for the creation of the

blackboard structure and involves
¢ The acquisition of the daemon information from the Dependency table
e The extraction of the relevant data from this table
¢ The construction of the node and segments from this information

e The addition of these nodes along with an output area to the blackboard

55

The parameter “DependencyTable” or DT 1s an array of objects that 1s recetved from the Daemon
Library and contans all the information about the daemons that the Blackboard needs to construct
itself Each object contains the daemon’s ID, the daemon’s area of expertise and finally a hist of
all the tokens each daemon depends upon The state diagram for this method 1s 1llustrated n
figure 4 8

do do

start Search Table| foundnew | create node
Dependency createBB node

table acquisition A \find

by BB new node
node created

do search DT
for daemon [*€
related to node
A

while ﬂ
BB created not ound related

firushed daemon

do create
segment for
daemon

Figure 4.8 State diagram for the construction of Blackboard

When the blackboard has a copy of this “Dependency table”, 1t retrieves the relevant data
from 1t to construct the relevant nodes and segments It first finds an uncreated node and
creates one It then searches the “Dependency table” for daemons that are related to it When
1t finds one, 1t takes the daemonID from the “Dependency table” and retrieves the array of
“tokenlDs” (integers) which 1t depends on To create the segment the blackboard uses the call
“segment createSegment (dacmonID, tokenID[]),” This in turn creates a default scenario
with space for the advice the daemon may produce at a later stage All that remains now 1s to
add thus segment to the node When all the daemon’s segments that relate to this node are
added, the node 1s added to the blackboard

e Daemonlnfo availlableToExecute(), - This method 1s responsible for asking all the nodes 1if
they have any daemons that are capable of executing The criteria for a daemon executing 1s
if one or more of its tokens have changed since 1ts last execution and all of its slots are

marked available The event diagram for this method call 1s llustrated 1n figure 4 9

56

Node Segment Scenano

dinfo segToExecute !
dinfo ScenToBxecute

, , sachsas [l

BB
. dinfo avaraleToExecute

3

Figure 4.9 Event diagram to ilustrate the availabletoexecute
)

e void forwardAdvice(DmnAdvice adv); - This method 1s called from the daemon supervisor
and passes the advice from the daemon, to the blackboard after it executes This allows the
blackboard to keep a constant record of the last advice generated by the daemon This can be
used to provide advice to the user without having to re-execute the daemon, or to other
daemons during their executton The method takes the advice and searches the blackboard for

~

the segment 1t belongs to and stores it within the correct scenario

4.6.3 Daemon Library '

The daemon library 1s responsible for the physical management of the daemons themselves It
controls the physical storage of the daemons and their acquisition when available to execute

Since this 1s not that critical to the daemons themselves 1t 1S not discussed m detail

The daemon library 1s a separate component conceptually from the rest of the architecture The
reason for this 1s the distributed nature of the tool Since it may be required to store all the
daemons on some machine separate to the tool itself, the CORBA layer was mtroduced Thus if a
user 1s mobile they can still execute their specific daemons 1f they have a network link to the
daemon library Thus also makes the integration of new daemons, much easier Another advantage
of thus link 1s even though there 1s only one set of daemons 1n the daemon library, many users can

access them

Broadly speaking the functions of daemon library are

e When Prompter 1s started the daemon library supplies dependent token information
(dependency table) to the daemon supervisor when requested (as part of the blackboard
construction process) The dependency table as mentioned above contamns all the relevant
mformation required for the blackboard to correctly construct itself

e The daecmon supervisor mstructs the daemon library to extract a named daemon from the

hibrary for execution when 1ts dependent tokens are available

57

4.6.4 Daemon Design

An OMT diagram for a daemon 1s 1llustrated 1n figure 4 10 and a conceptual view 1s 1llustrated mn
figure 4 11

Daemon
daemonlID
dName
dVersion

dOrigin
dArea
dIE
TokenliD
Rule

| Advice |

Figure 4.10 Daemon OMT diagram

To better explain the structure in figure 4 10, a daemon can be thought of consisting of three

mam structures

(Idenuﬁcatlon number Daemon
Name of Daemon
Daemon Version Number
H eader Creator of Daemon
Token dependencies
Daemon Rule Set
Daemon Adv1 Adv2 || Adv3 || Adv4
Advice »

Figure 4.11 Daemon Internal structure

The Daemon Header contams mformation relating to the unique identifier of the daemon, its
version number and who wrote 1t Also contained within this section 1s the list of dependent
tokens (the tokens the daemon needs information on to supply advice), its area of expertise and

what inference engine 1t requires to execute

The Daemon Functionality 1s the specific rules of the daemon It 1s from within this section the
daemon knowledge 1s stored Obviously this section differs from daemon to daemon Some have
a simple knowledge base which may be represented as IF THEN statements while others need

more complicated concepts such as frames or fuzzy logic to achieve their goals It 1s this area of

58

the daemon that changes depending upon the implementational language chosen However as
outlined mn section 4 7, the daemon 1s controlled by its respective imference engme which handles
its execution and so the overall daemon architecture can remain oblivious to the daemons
functionality The design I employed allows for the future expansion of the daemon library with

new daemons and daemon languages Agent languages are discussed further m section 4 7

The Daemon Advice 1s the third component Within the daemon the advice 1s divided up mto a
number of structures The rule set dictates which advice object 1s returned The advice when
returned to the inference engine 1S broken up mto various components and forwarded to the

daemon supervisor This advice structure 1s now outlined in more detail

4 6.4.1 Daemon advice

There are two distinct views of advice within the daemon architecture because the advice itself
servers two purposes The advice to the user only contains information that 1s relevant to the user,
however the advice that 1s returned from the daemons contains much more Such as the token
values that caused certain rules to fire etc This information 1s not relevant to the user but may be

of some use to other daemons

Kernel/GUI view - Both the kernel and GUI, and therefore the user will view the advice as one

large page of text/graphics which 1s presented in HTML format This advice 1s supplied to the
kernel 1n the form of an advice object as m figure 4 12

| Advice |
AdvicelD
ProjectiD
Scananoll
daemoniD
dArea

Figure 4.12 Advice OMT diagram

Thus class (figure 4 12) contamns all the 1dentification material needed for the tool to 1dentify what
the advice 1s related to and where 1t came from The actual advice 1s stored m the advice field as a
string Contamed within this 1s the HTML tags that help the GUI differentiate between the

components of advice

59

Daemon view - This alternate view of the advice for the daemons The data 1s 1n a more detailed
format The advice 1s structured as a hierarchy of classes, which reflect the individual components
that make up the advice This more detailed view of advice provides a more flexible means of
presenting daemon outputs and allows for easy enhancement of the daemons over time The class
diagram 1n figure 4 13 ilustrates the structure followed by an explanation of the various
categories

DmnOutEﬂ
advicslD
projectiD
scananolD

Advlceieg ExtendedAdvl} BIbIoEmEh} RuleJustify

area advice Text Title Justty Text
comment Authors
advice Publisher

Date
URL

Figure 4.13 Daemon output OMT diagram

1 Advice text - this 1s the actual dynamic advice text and 1s made up of the following
e Area of expertise - What 1s the area of competency of the expert giving you advice, for
example, ‘cost risk management’ or ‘lifecycle selection’
e Comment - The experts comment on your project plan For example, ‘A high degree of

risk to the cost of the project has been 1dentified’

e Advice - A short paragraph of advice on how to handle the situation 1dentified above

2 Extended advice text - A comprehensive explanation of the area in which the expert 1s
giving you advice and a fuller explanation of the mechanisms you can employ to address
concerns The rationale behind having this section 1s to provide the user - n particular an

inexperienced project manager - with more in-depth information

3 Bibhography - This 1s a suggested reading list for the user m respect to the area under
consideration This points to such things as the related sections 1n the project handbook,
published works and internet resources

4 Justification - How the daemon arrived at 1ts conclusions (in rule terms), 1e what rule

executed for 1t to give 1ts advice

60

4.6.4.2 Daemon Execution

The following diagram (figure 4 14) shows the various steps involved m a daemon’s execution

10
11
12

/”’_—\5\
Daemon Library
daemop 7 o D, D,
8
11
! Daemonl ! DL . _4/

_ Daemon Supervisor 13

i BB ! Kemeli
! comms! . _comms
O S ‘ 7\
Blackboard 4/14 & Kernel

Figure 4.14 Overview of a daemon’s execution

Blackboard tells the daemon supervisor blackboard_comms which daemon 1s ready to run
by the method daemonID[] availableToExecute()

The daemon supervisor Kernel_comms asks the Kemel for the actual values for the tokens

the executable daemon needs by passing it the tokenIDs using the function TokenValue[]
getTokenValue(tokenl D[])

The required values are returned by the kernel 1n the above function

The daemon supervisor DL_comms requests the extraction from the DL of the required
daemon by the function call daemonRef getDaemon(daemonID)

The DL instantiates the requested daemon

The DL then returns a reference to the daemon as the return value in function 4

The daemon supervisor Daemon_execution nterrogates the instantiated daemon to find out
which inference engine (IE) it needs, by using the function int getIEType()

The type of IE 1s returned

The daemon supervisor Daemon_execution then passes the daemon reference, tokenIDs and
their values to the IE for evaluation of the production rules using the function advice
processRule(daemonRef, tokenID[], tokenValues[])

The IE processes the daemon’s rules

The IE then closes the daemon

The IE passes the advice to the daemon supervisor Daemon_execution using the return value

of function 9

61

13 The daemon supervisor then builds the advice object and passes 1t to the kernel

14 The daemon supervisor passes the rich advice to the blackboard

4.7 Agent Languages

There are many Al languages currently available to represent agents which have their good and
bad points There are currently efforts being made to construct an agent standard know as FIPA97
[FIPA 97] The question however arose which languages and standards were suitable for agent

mmplementation within Prompter and whether a tool for creatmg them should be used

There have been many attempts at producing tools specifically for designing agents However
most of these have achieved only modest success 1n the market place as most of these tools were
concermned with mobile agents on the Internet, IBM’s Aglets was one of the main contenders It
was focused on building network based applications that used mobile agents [LangeD 96] to
perform tasks on some network However due to its complexity and the ability to create
“Intelligent” agents 1t only received modest success Telescript [WhiteJ 96] produced by General
Magic was another attempt, again for mobile agents and 1t was also unsuccessful due to 1t being
too cumbersome OMG have now become mvolved and are, at present, trymg to develop an agent
standard 1n the form of a CORBA facility This 1s known as the FIPA97 standard Since this 1s

work to try to standardise agents 1t 1s discussed further n the following section

As a result of surveying the above languages it became evident that there was no clear language
that stood out I decided the daemon architecture should not be dependent on one language but
mstead be open to many Different languages can be easily inserted mto the architecture e g Lisp

or Prolog This concept 1s llustrated n figure 4 15

These agents are controlled by therr respective inference engines which m turn are controlled by
the Agent Controller, otherwise known as the master facilitator mtroduced m the previous
chapter If agents wish to commumnicate with each other or with agents implemented n another

language, they do so using the blackboard structure described previously

62

) . Restof the jool :
EEILY Y o v beddied s R AR R s

prves e
"
b e

Agent Information |
&
Results

= -
. ~ gt Coneller 7
JESS KQML . Telescrlpi

IE o IE
Fam LY

Figure 4.15 Agent mtegration mto Prompter

During the implementation stage of this architecture an agent languages had to be chosen as the

default agent language To make this dectsion a number of factors had to be taken into account

- the tool was wrtten i Java Thus a language that was capable of interfacing with 1t was
required

- the 1ssues of commercial licences had to be considered

- Efficiency Agents needed to be executed efficiently and be capable of returming their advice
back to the tool

- The agent language chosen had to be well known so users could implement their own

daemons 1f the case arose

471 FIPA97

FIPA97 1s a standard that 1s being developed by the FIPA (Foundation for Intelligent Physical
Agents) orgamisation FIPA itself 1s an mnternational association of compames, which agreed to
share efforts to produce specifications of generic agent technologies They stated that
spectfications must be produced before mdustries make commitments to therr own
methodologies, thus avoiding incompatibility In other words this specification 1s designed to

avoud conflicts between agents and to ensure the interoperability between heterogeneous agents

63

Some of the main goals of FIPA are to achieve standardisation 1n the following areas [FIPA 97]

- Agent Management

- Agent/Agent Interaction

- Agent/ Software Interaction

Their current Developers Guide [FIPA 97] states that its mamQ goal 1s not to state information on
specific implementation 1ssues such as “How do we implement FIPA compliant agents m
language xxx?” But instead to act as a guidance for people implementing FIPA compliant

platforms

On the more implementational side of the specification, one of the mamn trends 1s the use of
CORBA as 1ts recommended transfer protocol, i particular IIOP However since this in general
refers to agents travelling across intranets or internets it 1s not highly relevant to the daemon
architecture Also, thus specification was still tackling the problem of the internal structure of
agents and what language they should be implemented 1n at the time of writing this thesis In

general they suggest ACL (Agent Communication Language) as theirr commumication language

For these reasons 1t was decided that the FIPA was not of high relevance to my work since the
1ssue of commumnication was solved using a blackboard, thus requiring no need for ACL or
CORBA to be used

4.7.2 CLIPS/JESS

JESS (Java Expert System Shell) [FriedmanE 97] 1s a Java derivative or clone of the popular
expert system shell CLIPS (C Language Integrated Production System) [Giarratano 84] designed
by researchers at NASA As 1t 1s written entirely i Java makes 1t compatible with the daemon
architecture CLIPS 1s a well known expert system language used in many systems and as a result
has a wide programmer base So although JESS itself was still in development at the time of

writing this thesis, 1t 1s based on a language that has proved itself

The language 1tself 1s similar to LISP, another Al language It 1s a rule based expert system shell
meamng that its purpose 1s to continuously apply a set of if-then statements or rules to a set of
data or fact ist These rules are contamed m the daemon and the Java mterpreter supplies the

information for them to analyse

JESS production rules consist of conditional statements known as production rules and a working
memory Contained 1n these production rules are one or more conditions, which lead to one or
more actions The JESS runtime cycles through the working memory trying to match conditions
on the LHS with data If 1t finds a rule that has enough information to fire then 1t places those
production rules and the conditions mnto a conflict set and executes the relevant actions which
may change this conflict set causing more rules to fire This cycle continues until there are no

more conflicts left

It may seem less efficient to program if-then statements in CLIPS rather than some simple
custom-built interpreter However 1f there were a large number of rules in a daemon 1t would
result 1 unnecessary cycling by the IE to find rules that can fire JESS overcomes this problem
by using the Rete algonthm [Giarratano 84] This algorithm cycles through the rules and
remembers past test results across iterations of the rule loop Only new facts are tested and
addition these facts are tested agamnst only the rule LHS’s to which they are most likely to be
relevant Thus results 1s a reduction of the computational complexity per iteration to O(sqrt(RP)),
down from O(RPF) where R 1s the number of rules, P 1s the average number of patterns per rule
and F 1s the number of facts on the fact list

The structure of a simple daemon can be viewed as follows

, The header of the daemon can be represented 1n JESS as a template

(deftemplate daemon0 “Expert 1n process Selection”

(slot) , relevant daemon 1nformation
(slot version) , daemon version

(slot _31) , UserProficiency token

(slot _32) , CustomerAccesibility

(slot _33) , ApplicationType

(slot _34) , DevelopmentOrganisation

, Tule to provide advice can be easily encoded 1nto a simple 1f-then condition
(defrule process_selection "rule taken from FCPR Vs of daemon 0"
(daemon0 (_31 ?tk1)(_32 ?tk2)(_33 ?tk3)(_34 ?tk4)) , using the daemon template
=> , give each token a value
(af (and (= ?tk1 1) (= ?tk2 1)(= ?tk3 1}= ?tk4 1))
then (printout t " use 1terative model” crlf))
(f (and (= ?tk1 1) (= ?tk2 2)(= ?tk3 2)(= ?tk4 2))
then (prmtout t " Prototype for HCI, incremental development” crlf))
(f (and (= ?tk1 2) (= ?tk2 3)(= ?tk3 3)(= "tk4 3))

65

then (printout t " V or M model" crlf))

(af (and (= ?tk1 3) (= ?tk2 4)(= ?tk3 1)(= ?tk4 1))
then (printout t " Prototype” crif))

(of (and (= ?tk1 4) (= 7tk2 5)(= ?tk3 4)(= "tk4 4))
then (printout t " Spiral model” crlf))

The daemonO deftemplate 1s the template name for the daemon whuch tells the JESS runtime what
tokens the daemon needs to execute Each of these tokens 1s stored 1n a slot and each slot 1s given
a variable to store the token value The RHS of the rule condition 1s now checked The token
values are checked and if one of the if conditions 1s satisfied the output 1s piped back to the
inference engine from where 1t executed from This mtegration between the JESS environment

and daemon architecture 18 now described below

4.7 2.1 JESS Integration

As described 1n the previous chapter, a set of agents implemented 1n a common language are
controlled by an mnference engmne specific to that language This engmne handles all
communucation between the daemon supervisor and the daemons Thus to mtegrate an inference
engine a wrapper class must be constructed to forward and receive information As JESS 1s

mmplemented 1n Java, the construction of this class was relatively sumple

In general there were three mechanisms of integrating JESS nto the archutecture, High Medium
and Low coupling With High coupling, a Java object can be created from withan JESS and/or
have therr attributes montored by 1t However this level of sophistication was not necessary since
all that was required was the passmg of the relative token values to the JESS daemon and
allowmg them to execute on therr own For this reason the low coupling option was chosen At
this level, only information 1s passed to the JESS daemon, which 1s allowed to execute until
completion within the inference engine The output 1s then piped back to the awaiting method call
where 1t 1s organsed and stored within a DmnOutput object The class diagram for this wrapper 1s
ustrated in figure 4 16

66

JessParser

DmnOutput pipefdwice
Rete InputStream
pipeAdvice QOutputStream
P rocessDasmon

Rete

RetaCompiler
run

Figure 4.16 Agent Integration OMT diagrams

The Rete class 15 the mamn JESS class used to run and compile JESS code The JessParser class 1s

the constructed JESS wrapper that 1s bound to the Rete engine When the JESS environment has

executed the daemon 1ts output 1s returned to the tool using the pipeAdvice class also shown

above This class has an mput and output attribute through which information 1s passed and

returned from the JESS inference engine

The set-up and execution of the JESS daemons 1s explained further in this method below

DmnOutput ProcessRule(Daemon dnm, int [] tokenlIDs, int [] tokenVals); - Thus method
18 responsible for preparing an inference engine to execute a specific daemon It receives the
relevant mformation related to 1t such as the tokenIDs and the token values There 1s a
chfferent processRule call for each inference engine and its implementation 1s situated within
the wrapper For JESS, when the inference engine 1s ready, 1t constructs a JESS command to
load the tokens and the respective values This command 1s them submutted to the IE which
executes the daemon When this 1s completed the output 1 ¢ the advice 1s piped back mto a

DmnOutput class and returned to the daemon supervisor

.——-. do Setup Rete Do [oad
Engme Daemon
Pass the daemon to
the rete compiler
Do pass
Ifox
tokenVals to A Do Parse
Daemon the daemon
Daemon ready Iferrors
Do Execute Cj
daemon and store Advice .
advice stored

Figure 4.17 Preparing the daemon for execution

67

This above process (as also outlined 1n figure 4 17) of executing daemons 1S just as simple for
other languages that are incorporated into the tool However 1f there 1s no functionality provided
for this integration, a wrapper must be constructed There 1s currently work on Lisp [AIST 98]
and Prolog wrappers for integration into Java software and so the languages available for the
daemons are m no way hmted The only requirement for new daemons 1s that they conform to
the nterface for the daemon supervisor’s method call (processRule), name and parameter

structure for launching the daemons

4.8 Knowledge

In this section 1 describe the daemon knowledge base and the engineering process 1 used to
construct daemons The term ‘knowledge base’ 1s used to refer to the expertise within the

Prompter daemons, which are represented in terms of JESS production rules

4.8.1 The Knowledge Engineering Process

The knowledge engineering process [SmithP 86] 1s a process by which knowledge 1s collected in
such a way that 1t 1s implemented correctly within agents or daemons The process 1s generally
divided up 1nto a number of sections

- Knowledge Identification

- Knowledge Extraction

- Knowledge Validation

- Knowledge Representation

- Knowledge Verification

A brief description of the above process 1s now given

e Knowledge 1dentification - This 1s the process of identifying actual advice/knowledge
sources 1n the software engineering world For example, this process could include
1dentifying studies on subjects like ‘lifecycle selection methods’ or ‘risk analysis measures’
which contain information such as a method of 1dentifying a situation and the actions to taken
as a result

* Knowledge extraction — When appropriate knowledge sources have been identified they

must be documented 1n a suitable form which can be translated into actual daemons

68

» Knowledge validation - Validation of the knowledge base has been identified as an
important step in the construction of the daemons. The purpose of this validation process is to
ensure that the knowledge used and the advice given is technically accurate and appropriate
for a given situation.

 Knowledge representation - This is the mechanism for translating the knowledge into
actual rules or some other form of mathematical structure.

 Knowledge verification - This is the process of verifying whether the actual knowledge
representation accurately reflects the documented knowledge source. For example, in a rule-
based system, the concerns include rules that have correct condition parts and when executed

give appropriate advice. Other issues include circular or redundant rules.

The area that is most relevant here is Knowledge Representation, or how to get from knowledge

into rules.

Within the Prompter project a number of software experts within the project team were
approached and asked to construct a number of documents [Prompter 98] related to their area of
expertise within SPM. They collected their data from sources such as case studies, research, and
their own experience working in the area. These documents contained all the knowledge the
daemons need to perform their task and sources where more information can be acquired. An

example of one of these can be found at [Prompter 98].

The documents were then inputted into the knowledge validation process and further developed
to produce a number of comprehensive design and implementation documents for the daemons.
These documents can also be used in the future maintenance of daemons. Within the knowledge
validation stage, all the documents were circulated to experts external to the project, whose
opinions were sought. Once these documents had been fully agreed upon they were ready for the

next phase, Knowledge Representation.

4.8.2 Knowledge Representation

This is the process of translating the extracted knowledge in the Daemon Knowledge Base Design
documents into daemon rules or into a more mathematical structure other than text alone. There
are several mechanisms for performing this task that vary in sophistication and complexity. One
mechanism is through the use of decision trees. | chose these because the people who had to

construct the knowledge may not have had much experience in knowledge representation and so

69

the mechanism had to be simple to develop and understand It also had to elimmate any
ambigurty 1n the knowledge For this reason, I decided that knowledge should be presented mn a

more structured and mathematical format

4.8.2.1 Decision Trees

Decision trees are derived from simple predicate logic and are in general easy to construct and
understand They are structures which map out all possible routes that can be taken through the
knowledge space They show graphically the relationships of the problem and can deal with more

complex situations mn a compact form

A decision tree 1s composed of nodes representing goals, and links representing decisions These
Iinks either join nodes to nodes or nodes to end nodes These end nodes store the advice for the
path followed If a node has more than one link exiting 1t means there 1s more than one possible
route that can be taken The deciding factor on which route 1s taken 1s dependent on which node
can be satisfied If neither 1s satisfied then no advice 1s given If one 1s satisfied the other route 1s

forgotten about

Thus for constructing these types of trees we only need to use two forms of logical operators In
predicate logic all logical rules can be reduced to a number of AND and OR operators These can

be easily represented 1n the decision tree structure m figure 4 18

AND OR

IF (2 AND b) THEN IF (2 ORb) THEN
c

ELSIF (d) THEN
B

AN

O e—w
Q —c

Ae—ce— «—{) |a

Figure 4.18 AND and OR trees

The AND operator consists of adding the test condition to the current path Thus to get to the
node C the conditions a and b must be satisfied In the case of the OR operator to get to C, a or b
must be satisfied, but to get advice E, d must be satisfied. These diagrams must be determimstic
atall times 1 ¢ there should be only one possible path that can be taken at any one time A sample
daemon decision tree can be constructed from one of the test daemons used mn “Cavan” (one of

the early prototypes of the tool). The daemon file firstly 1s as follows

70

Daemon zero

Verston 1 Oa

Whnitten by ROC as demo for Christmas prototype

Expert 1n process selection

31,32,33,34

IF31=1AND32 =1 AND 33 =1 AND 34 = 1 THEN The suggested hfecycle for your project 1s to use Iterative prototypes
IF31=1AND32 =2 AND 33 =2 AND 34 = 2 THEN It 1s suggested that you use Prototyping for systems development
IF31 =2 AND 32 =3 AND 33 =3 AND 34 = 3 THEN The suggested hifecycle for your project 1s to use the V model

IF31 =3 AND 32 =4 AND 33 = 1 AND 34 = 1 THEN It 1s suggested that you use Prototyping for systems development
IF31 =4 AND 32 = 5 AND 33 = 4 AND 34 = 4 THEN It 15 suggested that you use the Spiral model

The decision tree that would have lead to the above daemon would appears 1n figure 4 19

Tk 31=1 Tk 31=2

Tk 31=3 Tk 31=4
Tk32=1 Tk32=2 Tk 5203 e s
Dtable 1 4
al ’ The33=2 Tk 33=3 Tk 33=1 Tk 33=4
Tk34=1 Tk 34=2 Tk 34=3 - L . b
y 4 l
Gez] [ag)

Figure 4.19 Example decision tree

where the test condition 1n each case 1s “tk X = value” As can be viewed from the diagram,
patterns can be noted 1n the tree such as tk 31’s value being similar in two IF statements Each
path 1s terminated m an end node, which contains the advice ID The advice to be given 1s then

specified 1n the following tables

N

Advice Index Advice Text

Adv 1 The suggested Life cycle for your project 1s to use Iterative prototypes
Adv 2 It 1s suggested that you use prototyping for system development

Adv 3 The suggested life cycle for your project 1s to use the V model

Adv 4 It 1s suggested that you use the spiral model

Table 4.1 Table outhining the various advice objects

If the decision tree becomes overly complicated there are a number of mechamsms that can be

utilised to sumplify 1t

71

- A node can contain more than one piece of information If a number of tokens m an AND
statement all have the same value they can be specified in the same node e g from the
decision tree the path that leads to adv 1 - tokens 31 and 32 can be combined 1nto the same
nodeie tk31,32=1

- Branches of a tree do not always have to be divergent, they can converge as well if the
knowledge allows Thus there can be only one advice box for Adv 2 in the decision tree with
two possible paths to 1t

- If the tree becomes large, certain sections can be separated. They are drawn separately

Dtable 1 4] [
¥

Tk 21=1

//

Tk32=1 Tk32=2 Tk22=1 Tk22=2
I’ - = N\
l‘ Dtable 14) Tk 33=2 Tk 23=1 Tk 2322
\\ - Ld
Tk 34=1 Tk34=2 Tk 24=1 Tk 24=2

lAdv2

\

Figure 4,20 Deciston tree simplification

- and given a name such as Dtable 14 This sub tree can then be included i the full tree by
placing 1its ID as a node This 1s similar to the method call As can be viewed from the
diagram, since the table has only one mput and one output, this should be consistent with its

location 1n the overall tree

4.8.3 New Daemons

The field of SPM 1s by no means stagnant and for this reason there must exist the ability to
expand and m some way alter the knowledge of the daemons As a result the daemons are kept as
mndependent of the tool as possible It 1s, as described previously, rather simple to incorporate a

new daemon 1nto the tool, especially if the inference engine 1s already available
To add a new daemon to the archutecture the following must be done It must be ensured that the

daemon conforms to the hugh level structure of a daemon specified above The file that contamns

the daemon must be added to the daemon directory and the tool restarted This will result in the

72

daemon reading the daemon headers as usual mcluding the new addition, and the blackboard
bemg constructed automatically with the new daemon information Once the daemon 1s mnserted
mto the correct directory the rest 1s automatic However some care must be taken to ensure the

knowledge 1t contains 1s consistent with that already available

4.9 Summary

In conclusion, the goal of thus chapter was to outline the detailed design of the daemon

architecture

It began with a brief discussion on some of the high level decisions that were made before the
development of the tool such as standards which included coding standards, design standards, and
documentation standards Following on from this a high level OMT diagram of the archutecture

was given, with each component broken down and explamned 1n detail

The daemons and their advice were the last component described m this chapter A brief
discussion concerning the knowledge of the daemons was outlined It described the various
protocols that were followed to ensure the knowledge was correct and a suggested mechanism for

bridging the gap between documented knowledge and rule based knowledge was given

The followimng chapter discusses some of the implementation issues that arose during the

development of this architecture into a working prototype

73

5. Implementation of a prototype

The goal of this chapter 1s to explain some of the implementation 1ssues that were encountered

during the development of a prototype of the daemon architecture

5.1 Introduction

Thus chapter 1s primarily concerned with the implementation stage of the daemon architecture and
some of the 1ssues I encountered during this phase A brief discussion 15 given relating to some of
the requirements of the architecture such as what exactly mobile code 1s, what platform
mdependence 1s and why these are necessary at all Thas leads on to a discussion concerning some
of the problems that were encountered in the implementation stage lllsmg the languages chosen

and the solutions used to overcome them

A brief discussion of the implementation languages is given so the above mention problems can
be better understood Iona’s implementation of the CORBA standard was the distributed language
chosen while the main implementation language was Java 1 also outline a number of reasons for
their mclusion and the advantages and disadvantages they brought Fally an outline of the
development strategy 1s given detailing how the architecture evolved from the design to a

working prototype, and the problems that were encountered

5.2 CORBA

I chose Iona’s implementation of CORBA, OrbixWeb3 [Orbix 97] as the mamn communication
language for the Prompter tool The Common Object Request Broker Architecture (CORBA), 18
the Object Management Group's standardised specification [OMG 98] for interoperability among
the rapidly increasing number of hardware and software products available today CORBA allows

applications to communicate with each other independently of their location or designer

The CORBA bus allows transparent access to distributed objects over a heterogeneous network of
machines and operating systems - distributed meaning the various objects can be hosted across
many computers and heterogeneous meanmng many languages and many operating systems can be
used, yet all operating together transparently The chent remains completely independent of the
server It may be written i Java and the server written m C++ and neither would be aware of the

difference. Also the client can be completely unaware of the server’s location This makes

74

network programming much easier as 1t allows you to create distributed applications that mteract
as though they were implemented for one machine[Orbix 97] Figure 51 shows a hgh level
diagram of the CORBA structure

< CORBA/ORB >

Figure 5.1 CORBA overview

As can be viewed from this diagram, CORBA 1s a chent/server mechamsm, whose
communication 1s handled by an underlying communication layer known as an ORB CORBA
distributes any messages between the client and the server via 1ts Object Request Broker (ORB)

The ORB receives requests from a ‘client’ to send a message to an object The broker locates the
object referred to by the chient and delivers the message to it The ORB smoothes over the system
differences between the individual components of an application It can be described as an Object

Bus, a software equivalent to the computer hardware bus [WeissM 96]

5.2.1 IDL Interface

In order to enable the client and server to operate with such transparency, CORBA must maintain

some mechamsm of hnking them 1 e through interfaces (see figure 5 2)

Client

Figure 5.2 Interfaces

These interfaces are defined using CORBA’s Interface Defimtion Language or IDL Ths
language allows classes, their respective attributes and methods and any other information to be

defined 1n some common syntax

interface gnd {
readonly attribute short height, // height of the grid
readonly attribute short width, // width of the grid
// IDL operations

75

i

void set(in short n, in short m, In long value), // set the element [n,m] of the grid, to value
long get(in short n, In short m), // return element [n,m] of the grid

In the above example taken from the CORBA documentation [Orbix 97], the mterface contains
two attributes and the respective method calls that can be made on them The Server and Client

have the same view of the mterface but are unaware of what lies on the other side

This file 18 compiled mto a stub for the client This contains the method’s location, 1ts
mmplementation language and the parameters it requires etc If the client wants to execute a
method 1t makes a call to this stub The client 1s unaware of the mechanisms used to communicate
the call This stub processes the call and passes 1t to the underlying ORB runtime This runtime

communicates with the server ORB, and passes 1t on to the server

This procedure differs from other distnibuted mechamsms such as RPC (Remote Procedure Calls)
m that IDL 1s completely object-orientated and thus supports wnheritance and polymorphism as

well as encapsulation

5.2.2 CORBA programming

In the following two sections, an outline 1s given of the main CORBA mechanisms for the set-up

of a Chient and Server, accompanied with an explanation of the mamn method calls involved

5.2.2.1 Writing the Server

A class 1s constructed to contain the server e g public class Server { } The first task within a
server class 1s to connect to the CORBA ORB 1itself This mmtialises the ORB and returns a
reference to the server class Ths call appears as follows

org omg CORBA ORB orb = org omg CORBA ORB imt(),

The next task 1s for the server to create a reference to 1ts implementation code This 1s where the
mmplementation of the methods defined within the IDL terface 1s stored Thus, if the
implementation code for this server 1s 1n a class called ServerImplementation, the call appears as

TestInterface test = new Serverlmplementation(int x,int y),

76

This creates an mstance of the generated Java file from the interface, and this instance 1s then
bound to an wnstance of the implementation class All that remains 1s for the server to indicate its
readiness to the ORB This can be done using the call

CORBA Orbix impl_1s_ready(“ServerName”),
In this call the server name 1s also given to the ORB so it may be distinguished from other

servers

5.2.2.2 Writing the Chent
A class 15 constructed for the client e g public class Clhient { }, As before, the chient must
mmutialise the ORB from 1ts perspective again using the call

org omg CORBA ORB orb = org omg CORBA ORB (),

The chient can then attempt to bind to the server using the call

TestInterface test = TestInterfaceHelper bind(“ ServerName” ,srvHost),

Thus tells the ORB to bind to a server called ServerName and inform 1t that a client with a
machine address srvHost wishes to bind to 1t At this pomnt the chient can now make method calls

on the server using stmple method calls with the format test methodCall(),

5.3 Java language

Java was chosen as the mam implementation language for the tool It 1s an object-oriented,
architecture neutral, portable, multi-threaded, dynamic language It 1s designed to support
applications on networks, such as the Internet, which made 1t an ideal chorce for the Prompter
tool since Prompter 1s designed to be a distributed system capable of operating with its
components sitnated on various computers across an Intranet or Internet It was also a
requirement that it be platform independent All these requirements were met by Java In addition

since 1t 1s fully object-orientated 1t provides a natural choice for integration with CORBA

Unlike other languages the Java compiler does not generate machine code but specific bmary
code (bytecode) which 18 run by a virtual machine This virtual machine 1s a layer of software on
a computer, which takes Java bytecodes and executes them on that platform The Java structure 1s
highlighted 1n the following diagram taken from [Hortonl 97)

77

loaded mto

v

- B

The program 1s
executed by the
bytecode interpreter
withmn the VM

Figure 5.3 Java Overview

This structure results m code that executes the same way, no matter what 1ts underlying
archutecture 1s Thus Java bytecodes can be shipped over the net and are guaranteed to function
the same on all platforms A program written and compiled on a Penttum with a WindowsNT O/S

can be simply transferred to a Umx machine and run without the need for recompilation

Java has achieved widespread acceptance in the programming world [SrimivasK 97] Due to

Java’s mobility 1t can also be considered as an option for implementing mobule agents

5.4 Where Java and CORBA fit in.

Although the basic Java support for bytecode migration implies Java code mobility this capability
1s not really viable With the standard implementation of Java, all Java objects reside on a single
host Also Java lacks mechamisms for transmitting arguments from one host to another In
contrast the fundamental premise of CORBA 1s that an object on one host can invoke a method of
an object on another host CORBA passes references rather than objects and thus avoids
plunging into the 1ssues of object migration CORBA also provides a persistent object service that

18 not possible with Java

Thus for the purposes of the daemon architecture, using both Java and CORBA together can
satisfy all the tasks of a distributed multi-platform system Java will allow CORBA objects to run

78

on any system Some suggest [OrfaliR 97] that Java 1s the 1deal language for writing client/server
objects Its built m multithreading and garbage collection makes 1t easy to implement robust
objects Thus the two languages complement each other Java deals with implementation
transparency and CORBA provides the network services not covered by Java It links the Java

portable application environment and the rest of the world

5.5 Design and Implementation

In thus section some of the implementation 1ssues I encountered in the development of the
prototype are discussed This includes explanations of some problems encountered and the

mechamsms used to overcome them

5.5.1 Daemon Architecture

The daemon architecture was broken down into two CORBA servers The first server, the
Daemon Supervisor controls all communication between the daemons and the kernel through the
IDL mterface The second CORBA server, the Daemon Library maintains the daemons
themselves This second CORBA layer allows the daemon supervisor and the daemon library to

restde on different machines and to the rest of the tool if necessary

One 1ssue that 1s discussed later relating to the daemon archutecture 1s the deletion of a CORBA
layer between the Daemon supervisor and the Blackboard Thus layer was designed nto the mmtial

architecture but was deleted during the implementation stage due to the complications 1t caused

5.5.2 Implementation Strategy

The life cycle model chosen for the development of a prototype of Prompter was the Spiral
model [McDermwd] 91] This resulted 1 a number of prototypes that increased in sophistication
and complexity as time passed It was thought that for simplicity it was best to implement the
prototype wn Java imtially to prove the architectural concept and then mntroduce the CORBA
commumnications layer at a later stage It was thought that this strategy would give an easy

transition from design to implementation

SUN’s JDK1 1 6 was chosen as the development environment over other versions of Java such as
Microsoft’s J++ which 1s not 100% pure Java compatible unlike the sun version This
compatibility was deemed important as, at the time of coding, a question exists over the

compatibihity of certam vendors’ Java environments. The version of CORBA used was Iona’s

79

OrbixWeb v3 0 and was chosen because 1t was implemented fully 1n Java thus mamntaimng the

tool’s mobility across platforms and JDK compliance

On the completion of the mtial coding of the prototype in Java, the IDL nterfaces were
mtroduced At this stage 1t became clear to me that many of the class structures and protocols
would have to be altered as IDL cid not support many of the rich structures specified during the

design phase

55.3 Complex Coding
The mtroduction of CORBA 1ncreased the complexity of the code and the mcreased length of
execution time Since CORBA uses references to objects and servers, the code becomes more

complex to debug as 1t becomes 1mpossible to trace through these references

Another problem was the overhead i running the software When the software was run on one
machine, the server calls were almost instantaneous, however, as more distribution was
mtroduced the overhead became more dependent on the state of the network This was expected
but 1t cid lead to a lot of waiting by some clients on results from the servers and a general slowing
the down of the tool This was most evident 1n the 1itial starting up of the tool This required the
creation of all the servers which resulted m the ORB having to search for the location of the
servers This meant requesting mformation from the network DNS (The network supervisor),

leading to unwanted delay

5.5.4 Improving the performance of the prototype
As stated above, there was a great overhead to mnitially start the tool due to CORBA One method
of overcoming this problem was by specifying exactly what servers were where 1e by giving

their exact IP addresses on start-up Obviously this reduces the distribution factor of the tool

Another method was the reduction in the distribution factor of the daemon architecture
Origmally there were three CORBA servers within the architecture, those being the daemon
supervisor, the daemon library and finally the blackboard Thus on start-up of the daemon
component, three servers had to be created and mmitialised I decided that one of these had to be
removed The blackboard server was chosen because there was a closer hnk (thus meamng more

CORBA communication) between the daemon supervisor and the blackboard than with the

Daemon Library

80

Daemon Supervisot
Project | [Praject] | Project |
A R

 Basmen Saprrvisor. .
imﬁgj {Project }| Project |
i A

Y
Blackboard Blackboard| [Brackboard] [Blackhoard|

Figure 5.4 Removal of Blackboard server

The removal of this CORBA link meant the daemon server and specifically each project now had
direct control over thewr own blackboard and resulted in a much quicker prototype (see figure
54) The prototype now operated with a 50% improvement i overall operational time It also

reduced the complexity of the code

The elimination of the blackboard server as 1t stood also reduced a potential bottleneck at the
blackboard interface As 1t stood, the blackboard server handled all information dealing with all
projects from all users However with the elimination of the interface, it allowed each project to
have 1its own umque blackboard which it controlled This reduced the complexity of mamtaimng
data relating to projects It also made the design more OO as the data for one project became only

available to that project The trade-off here however was the tool was now less distributed

The final mechamsm I incorporated to improve the performance of the prototype was the
reduction of method calls made across CORBA This meant that when a CORBA call was made
the maximum amount of information had to be passed with it An example of this 1s the token
change protocol Imtially the kernel signalled a tokenchange after one token was changed Thus 1t
was decided to create a structure called the state array that would buffer token changes and
transmit a number of them at once Obviously this meant the daemon architecture was not as up
to date as possible, but a trade-off had to be made for efficiency This solution reduced the
CORBA calls by almost 60%

5.5.5 IDL aiding the Design

Since IDL was used as an interface between the man components within the architecture and the
rest of the tool, 1t forced me to make decisions about some design 1ssues before they would
normally be considered Imtially the interfaces were specified and stubs created This then
provided a base for the design stage, which allowed each logical structure to be separated from

the rest of the architecture As a result of this property, it forced the design stage of the

81

architecture to be linked more closely to some implementation It also allowed the easy addition
of new code to the prototype which was necessary since the life cycle was a spiral model for the

tool

There 1s another side to this however Smce these nterfaces had to be specified early in the
design process 1t resulted 1n many problems and errors occurring that caused re-writes of the
interface So although 1t helped to work with some interface, 1t also introduced the problem that 1f

the nterfaces were wrong the design itself would have to be changed resulting 1n many changes

5.5.6 Problems with the Spiral development
The Spiral model was used as the life cycle model for the tool This meant that a stmple version
of the prototype was developed mmtially and through a process of revisiting, it became more

complex, with more functionality as time progressed

This seemed a good method of developing the archutecture However 1t did have its problems In
the first 1teration of the prototype many lessons were learmnt about CORBA and IDL etc However
when they were revisited 1n the second iteration, the documentation had to be revisited, code had
to be studied again and 1n some cases re-implemented or improved upon, resulting in wasted time
on each iteration Thus ths Iife cycle model resulted in a lot of time taken consulting
documentation, redesigning some of 1t, scrapping some of 1t, etc mstead of having a constant

turnout of new code

However some good points also resulted from this life cycle model It allowed certain paths to be
tried and if unsuccessful, reworked Also 1t allowed the ability to improve on old code as new
code was mtroduced As the java language progressed new functionality was discovered that
allowed operations to be performed 1n different ways, e g the reading m of files The life cycle
model allowed this method of improvement This was also useful was with the advice structure 1
decided that the advice would be more useful to the tool as actual HTML mstead of its OO form
This allowed the advice to be restructured and also made the daemon architecture much more
adaptable to other systems as the advice from the daemons was mn a standard format that could be

easily mncorporated

82

5.5.7 Daemon Supervisor availability

The daemon supervisor acts as a server to the kernel and must be available to execute a method
mvocation at any time If a tokenChange method was called 1t would result in the daemon
supervisor having to perform a number of operations including a callback before 1t was free to
perform the next task from the kernel This was unacceptable since if the kernel was kept waiting,

the rest of the tool and the user would also have to wait

It was not possible to make all the calls to the daemon supervisor one-way as most of them would
be missed Thus one mechamsm of overcoming this was to mtroduce multi-threading When a
call 1s made from the kernel, a thread 1s created m the DS to handle it, and 1s allowed to execute,
thus ensuring the daemon supervisor spends as little time as possible being unavailable to the

kernel

5.5.8 Bottlenecks

The above 1s a simple mechanism of threading the daemon architecture as each thread 1s given 1ts
execution time by the operating system It was considered that problems would arise when more
than one of these threads wanted to write to the blackboard and the advicetable (the structure for
buffering advice to the kernel) However within the Java language threading classes there i1s
functionality to cover this With the addition of the word “synchronised” to the defimtion of a
method, 1t prevents more than one thread accessing that method at any time Thus does however

cause bottlenecks 1n the system

To ensure consistency, methods concerned with the blackboard, the state-array and the advice
table had to be synchromsed 1n other words allowing one thread m at a tuime This meant that at
the mnterface to these methods bottlenecks occur To reduce this the size of these methods were
reduced to perform a smaller set of tasks, thus making the time to execute this method smaller
and the bottleneck smaller

5.5.9 Callbacks

Callbacks are a mechamsm used by CORBA and OrbixWeb to allow a server to mvoke methods
on a chent In other words the implementation of the method 1s 1n the client and 1s mnvoked from
the server These appear many times 1 the interface between the DS and the Kermnel They also

produced most of the problems that were encountered during this interface’s development during

the implementation phase

83

To understand the problems that followed, the implementation mechamsm must be explamned
further Within the server there 1s a waiting mechamsm that serves calls made by the client This
waiting mechanmism 1s the Impl_is_ready call Thus for a server to mmvoke a method on the client,
there must also be a serving mechamsm to serve these mvocations This mecharusm 1s the
processEvents call Thus when the server mnvokes a method on the chient the processEvent serves

1t 1n the same way as the Impl_is_ready

The first problem these callbacks produced was the fact that the client did not know when the
server would make one of these calls and so did not know when to call processEvents It was
thought that placing the processEvent in a separate thread would solve this problem However
this would greatly slow the client down as the scheduling of the thread would be left up to the
underlying operation system to schedule whether the processEvent call or the client thread should

be run

I noted that the callbacks m general would not be that common and that normal client/server
operations would be 1 the majority Thus I decided to schedule a processEvent when 1t was
thought that one was most likely to occur It was known that most callbacks would occur when
the daemon supervisor wanted to inform the kernel that 1t had advice available Thus the kernel
would know when 1t told the daemon supervisor which tokens had changed and that it may result
in a daemon executing and thus advice being generated Thus after a tokenChange method was

called, 1t would be soon followed by a processEvent call

5.5.10 Deadlocking

Another problem that was introduced due to callbacks was deadlocking When a method was
mvoked from a server to the client 1t may cause what 1s called deadlocking This occurred when a
call tokenChange was made to the server (Daemon Supervisor) It caused the server to request the
state array from the kernel However what was not considered was that the kernel was still

waiting for the method tokenChange to fimish as illustrated in figure 5 5

. tokenChange
DS

Kernel

Get state array

Figure 5.5 Problem with deadlocking

84

But the return call cannot be processed until the tokenChange method 1s fimshed which 1s when

the state array 1s returned As can be seen this will never be resolved

One solution was to introduce a timing mechamsm for the calls thus nsuring if the method did
not finish after a certan time the call was revoked However 1f the chient was blocked, how could
it check the system time? To overcome this problem of blocking, the method call itself was
encapsulated 1n an mdividual thread so 1f 1t becomes blocked only that thread would block while

the client as a whole remained active

However this was still unacceptable as the thread would remain blocked indefinitely Thus the
decision was made to make the method tokenChange one-way Now this allows the method
mvocation to be equivalent to a fire and forget mechamsm, meaning that when the kernel invokes
the method it does not wait to ensure the daemon supervisor receives it, but instead presumes 1t
has and that the daemon supervisor server will process 1t Of course, there 15 the potential for the
daemon supervisor to muss the call but 1t 1s a trade-off to ensure that deadlocking 1s not

encountered

5.5.11 How open is the daemon architecture

The prototype has no hard coded references to the domain of software project management Thus
to change the domain of the daemon architecture would not be incredibly difficult All that 1s
required 1s to change the daemons contained within the directory “dib” in the “DmnPack”
directory of the prototype When these daemons are changed the prototype must then be restarted
This causes the daemon hbrary to re-read the daemon headers and the blackboard 1s then
reconstructed with the new daemon information Thus the daemon architecture has mcorporated

the new daemons

Obviously this 1s not possible m the case of all domains The new domain must be structurally
similar to that used 1n the prototype since the blackboard must be capable of representing the state
of the daemons at any stage and 1t has to do thus with 1ts structure of nodes, segments and
scenar10s Also the new domain must utiise the concept of tokens as this 1s the basic data type
used within the prototype Thus as long as the new domamn maintains a similar structure to

software project planmng, the prototype will have little problems representmg 1t

85

Obviously the daemons must also retain the same structure as the Prompter dacmons as well
They must have a daemon header that 1dentifies itself to the tool and the advice structure should
remain similar This should not be highly difficult because 1n general when advice 1s given 1t 18
usually followed by a justtfication for 1t, and the ability to give background information to the

advice and some sort of bibliography of where more information can be acquired

5.6 Summary

In this chapter some of the main implementation languages used in the development of a
prototype and the problems that were encountered are discussed Contained within the CORBA
description an outline was given about how simple servers and clients can be created However
this 1s by no means the full potential of CORBA as there 1s a great deal more functionality that

has not been mentioned here

The rationale was then given for why these languages were chosen over others This rationale
which was stipulated m the requirements documentation for the tool, forced the rejection of
languages which may have had a quicker execution time than Java, but which were not as

platform mdependent or as easy at multithreading etc

However the question must be asked whether the languages achieved their objective The answer
to this would be yes n that the prototype 1s fully JDK comphant and distributed The prototype
that 1s machine independent and platform independent, and with the use of CORBA the tool 1s
capable of operation across a distributed network This architecture 1s also easily adaptable to
other domamns i that there 1S no software project management domain-specific nformation
hardcoded into the prototype, thus allowing 1t to be used with many other domamns The
architecture also allows the easy incorporate of new daemons mto 1t As stated in the previous
chapter thus incorporation only requires a new inference engine wrapper if its implementation

language 18 new or if the inference engine for 1ts language 1s already 1n the tool, 1t just has to be
added to the daemon directory

In the later sections of this chapter some of the problems encountered during the
implementational stage and the solutions to them were described Most of the problems
discovered were eliminated or at least reduced The questions about the complexity of the code

and the runtime are 1ssues that cannot be 1gnored as they are stil evident n the performance of

86

the prototype On the other hand 1 respect to the entire tool, the runtime of the daemon

architecture 15 not as critical to the overall tool as with other components

In conclusion, the languages chosen to implement the prototype did achieve their tasks It must be
expected that with the mcorporation of CORBA, an overhead is in some way incurred The
detailed design that was described 1n the previous chapter was implemented and the architecture
did perform decision support for the user in some fashion while still retatning its conceptual and

implementational independence from the rest of the tool

In the following chapter the conclusions that were drawn from this thesis are given with

suggestions as to how this architecture can be developed further m the future

87

6 Conclusions

6.1 Introduction

In this chapter I outline what has been achieved 1n this thesis including a discussion on the current
state of the prototype and its architecture, the archutecture’s strengths and weaknesses and a
discussion on the future work and development that could be performed on the archutecture It
finishes with some of my personnel remarks relating to the work I have performed and what I

have learned

6.2 Open architecture

There were a number of requirements the daemon architecture had to satisfy, most notably to
provide decision support within the Prompter tool However 1t also had to be as open as possible,
mamtam a level of abstraction between the architecture and 1ts knowledge, highly dynamic and
mobile, and like the rest of the Prompter tool and 1t had to represent its knowledge mn a

convement and easily expandable manner

Thus, the requirements above called for an architecture that was

e Dynamic
e Generic
e Mobile

e Distributed
o Efficient

In the following sections 1t 1s shown how these criteria were achieved

6.2.1 Mobility

The daemon architecture 1s not specific to any operating system or computer architecture since 1t
was implemented 1n Java (chapter 5), a platform independent language, the distribution language

was OrbixWeb3 which 1s a Java implementation of CORBA, and JESS, a Java implementation of

88

CLIPS, was chosen as the agent language These languages achieved their tasks while also
mamtaimng the 100% JDK compliance of the tool

6.2.2 Degree of Distribution

Iona’s implementation of the CORBA standard, OrbixWeb3 (chapter 5) was the distribution
language chosen Although this added a major level of complexity into the development stage of
the tool, 1t did allow, the daemon architecture to operate asynchronous from the rest of the tool

across a network

I also mtroduced a level of distribution mto the daemon architecture between the daemon
supervisor and the daemon library and also between the daemon supervisor and the blackboard,

which was later deleted due to efficiency problems

6.2.3 Genetric.

In order to achieve an architecture that was generic, a level of abstraction between the
architecture and the daemons had to be mamtamned Consequently I decided to have the
architecture control the daemons using imnference engmes which are tied to 1t using wrappers
These inference engines are responsible for the execution of the daemons and the retrieval of their
advice This does not prevent daemons implemented m different languages from communicating
Daemons/agents controlled by different inference engines communicate with each other usmg the
blackboard As a result, the architecture has no contact with the daemons themselves Thus to

replace the domain, only the daemons have to be changed

6 2.4 Expandability

The daemon architecture had to have some mechanism of altering its knowledge base easily As
described 1n chapter 4 the knowledge base 1s mapped to the daemons 1 a 1 to 1 relation such that

for each section of the taxonomy there 1s a daemon to represent 1t
Thus to expand the knowledge of the taxonomy the process 1s simple A new daemon 1s written to

contan the new knowledge to be mncorporated There 1s no requirement on how the daemon’s

mnternal rule structure should appear as long as 1t conforms to the high level structure laid out in

89

chapter 4 If the daemon 1s written 1n a language famihiar to the architecture 1 ¢ there 1s a wrapper
for 1t already 1n the architecture, then the daemon file can be inserted into the “dlib” directory
where 1t 1S mcorporated upon start-up of the tool However, 1if the daemon 1s written 1 a new
language a wrapper must be constructed to mcorporate the inference engine for it mto the
architecture This 1S not as complicated as 1t may seem as there are a number of Java
representations for Al language currently available (at the time of wrnting there were Java
mmplementations of Prolog and Lisp as well as the already described CLIPS available) Again the

new mference engime and daemons are incorporated upon start-up of the tool

An advantage of this mtegration process 1s, the tool does not have to be recompiled each time a
new daemon s mtroduced This property of expandability ensures that the knowledge can be

easily maintained 1n the future

6.2.5 Efficiency

One problem that was encountered during the implementation stage and discussed i more detail
in the previous chapter was the delay mtroduced by the CORBA layers If the daemon

architecture was to perform satisfactorily 1t had to be efficient at 1ts tasks

Since there are two CORBA layers above the daemon architecture there 1s already a major delay
to the user However, as was also noticed, this delay was greatly increased by the CORBA layer
between the daemon supervisor and the blackboard Smce 1ts removal, the distribution factor of

the architecture was reduced but the efficiency of the prototype was greatly improved

Also because the interface between the daemon supervisor and the rest of the tool contains a
number of methods 1t was possible to easily introduce multithreading into the daemon supervisor
So on method calls from the kernel, the daemon supervisor creates a thread to handle the task,

thereby utilising 1its CPU time better

90

6.3 Weaknesses of the Architecture

In this section some of the weaknesses i the design and in the implementation of the daemon

architecture are described

Although the architecture 1s an open one, there are still some domain-specific traces within it The
main one 1s the structure of the blackboard The blackboard currently provides one node structure
for each individual area of software project planming Within each node 1s a segment for each
daemon and so on Thus the blackboard 1n some way murrors the domam 1t represents If a new
domain 1s ntroduced it may be difficult to incorporate this mto the blackboard A new set-up
program for the blackboard may be needed 1if 1t could not be represented the same way This leads
me to conclude that the daemon architecture 1s best suited to domams where knowledge 1s easily

broken up into categories similar to those of software project planning

As stated above 1f a new daemon 1s added to the system with an existing inference engine, there 1s
no problem However if a daemon written 1 a new language 1s created, a wrapper for its
inference engine must be created For certain languages this may not be possible if there 1s no

functionality provided

At present the prototype runs slowly However since the daemon architecture 1s at the backend of
Prompter this may not be an 1ssue If the architecture 1s incorporated mnto a tool that requires
faster results, problems may occur This lack of speed 1s as a result of the use of CORBA within
the archutecture

Since the architecture communicates with the rest of Prompter through a CORBA interface, it 18
necessary to have an ORB situated on the machine that runs 1t as well as a Java vartual machine

As aresult a lot of resources are required to run the prototype

91

6.4 Future development of the tool

It 1s not thought that the knowledge base of Prompter will remain static, A tool to allow the user
to sert new daemons 1nto the system would be very useful 1 ¢ a Daemon Developers Kit This
tool would allow the user to create a daemon and hide all the implementation 1ssues from them It
should ensure that the daemon 1s correct and msert 1t mnto the system leaving the user to

concentrate on the knowledge 1t must contain

It 1s known that there are some unresolved i1ssues with how agents co-operate with each other and
how they resolve problems In this architecture these 1ssues were overcome with the use of a
blackboard However this 1s not the only way this can be performed The mtroduction of an agent

communcation language may provide a better solution to this 1ssue

One major piece of functionality that has not been tackled 1s agent learning Since the daemons at
present have no 1dea of the profile of the user, they will supply information when they execute
However project managers 1n general all have different mechamsms of managing projects Some
managers hold their budgets as one of their critical 1ssues while others think of this as being of
less importance To cater for this the daemons or indeed the blackboard could build up a profile
of what information the user accepts and what they leave for a later stage If a daemon’s advice
kept getting rejected, 1t could mform the system admimstrator that its advice could be wrong
Also 1f the manager likes to be kept aware of their Risk at all stages, the Risk daemon would
supply advice more often To allow the architecture to perform this task, some Artificial
Intelligent techmques could be mntroduced One suggestion would be the introduction of neural
networks nto the blackboard that learn which daemon the user accepts advice from and which

they reject

6.5 Conclusions

The goal of this thesis was to design and develop an agent based archutecture to provide decision
support for the Prompter tool This was achieved through the design and the development of a
daemon architecture as described 1n the previous chapters of this thesis Below some of the final
conclusions from this thesis are given along with the resolution of some general questions that

may have arisen

92

The first 1ssue that must be addressed 1s whether the architecture achieved what 1t set out to do
The answer 1s yes The architecture 1s capable of providing advice or critiquing the user’s project
from a number of different perspectives It 1s distributed, and mobile, and most importantly 1s an
open architecture that allows the knowledge base to be easily expanded or even completely

changed

The architectural structure is also sound, since it achieves its tasks successfully Even though
there are possible mecharusms for improving it, there are no components within 1t that are flawed
However 1if the design was performed again the mistake of over distribution would not have been
made Also, more mvestigation would be performed concerning other distribution languages
nstead of OrbixWeb The question still remains, would the prototype have run better using Java’s
\Remote Method Invocation mechanism? Another pomt that could be re-examined would be
making the daemon architecture more independent At present the link between the tool and the
daemon architecture 1s similar to a chient-server protocol It was imtially thought that this

architecture would be completely independent

Another question that remamns 1s whether 1t would have been better to use an agent
communucation language such as KQML mstead of using the blackboard structure since a
language of this type would allow better agent coupling However there are advantages with the
blackboard, the first being that 1t has been tested and 1t allows the architecture to remain n
control of the daemons However, if a language that allowed agents to communicate among
themselves was mtroduced, 1t would greatly increase the complexity of the relationship between

the daemons and make 1t much easier for daemons to work together

I can also conclude that Java was a good choice for the implementation language It allowed the
tool to be machine independent and highly mobile OrbixWeb allowed the individual components
of the tool to be distributed It mtroduced a great deal more complexity into the system, but it did
allow the tool to be divided up well Also the choice of another distribution mechanism would

most likely have mtroduced the same complexity
One of the mamn questions that has arisen over the course of this thesis 1s whether the daemons

produced were actually agents Some sacrifices were made to the 1dea of an agent such as

surrendering some of their autonomy However they still have a lot of the properties associated

93

with agents as outhined n chapter 3, such as independence, being goal driven, the blackboard

allows them to be communicative, and reacting to their environment

Another level of complexity that was mtroduced was JESS Was 1t a good language for
implementing daemons? Since 1t 1s an mdependent component, JESS takes care of problems that
can arise with agents such as memory allocation, conflict resolution, rule resolution etc Also 1t
demonstrates the adaptability of the architecture to new languages It was capable of representing

the knowledge that was provided and therefore I must conclude that 1t was a good choice

6.6 Concluding Remarks

From the design and development of the daemon architecture I have learned a substantial amount
about software development within a team In this section I will make some general comments

that strike me as being of some importance

The design of an architecture for mtegration within another tool 1s a complicated process which 1s
usually performed in stages In developing the daemon architecture I learned this process, and
how 1mportant 1t 1§ to the quality and mamtamnability of the resulting software Imtially within this
process, there must be a requirement specification phase to define what 1t 1s that the component 1s
expected to perform From thus an architectural design must be developed and then a detailed
design At every stage there must be adequate documentation to explain the decisions made or
protocols mtroduced I reahised the importance of this process when the time came for me to
design the daemon architecture This documentation acted as a mechanism of reminding me why
one decision was made over another while also helping me produce higher quality code Also
each component was constructed using a traceable mechamism of documentation from the

requirements to the coding stages This prevented the coding stage from veering from the desired
path

Since the daemon architecture was developed as part of the Prompter tool, 1 had to design and
develop 1t so 1t was capable of interacting with software developed by other organisations This
mntroduced me to the 1dea of team development I learned the importance of correctly versioning
my documentation and code, of keeping up to date with the tool’s functionality, and most
importantly, working with other members of the team to create solutions to problems such as
efficiency, saving protocols, CORBA problems etc For the three components to work coherently

together, 1t was crucial for the members of the team to do as well

94

Prompter was developed according to a strict schedule of builds and deliverables and as a result
so was the daemon architecture This dlustrated the mmportance of scheduling and developing
software within a ttime limit It meant that solutions to problems had, in some cases, to be
abandoned due to lack of time etc It required me to organise my time more thoroughly, making

me prioritise functionality and tasks mn a better manner

In developing the daemon archutecture and the knowledge 1t represents, I was mtroduced to a
different level of the project 1 was dealing with people who were responsible for supplying the
knowledge for the agents/dacmons It helped illustrate that not all work within a project 1s
implementation onented and that other 1ssues must also be considered This was also true when
working with users who provided feedback about prototypes developed, documentation, and
knowledge 1ssues Smce they do not care what happens behind the scenes, they have a better view
of the tool as a whole This consultation showed that their most important concern was not how,
for example, the blackboard was structured, but instead with the appearance of advice for the user
and 1ts content I learned that the tool should be viewed at several levels of abstraction and not

only at the design level

Since Prompter was developed for commercial purposes a number of commercial 1ssues had to
be considered during its development One that was highlighted to me during the development of
the agents/daemons was the problem of commercial licences for agent languages When I was
investigating agent languages to implement daemons 1n, I was not considering how much they
would cost to mtegrate into a commercial tool When this 1ssue was raised a number of languages
had to be.abandoned Commercial software that uses other software to operate, generally must

acquire a licence to do so and thus usually ncurs cost

Since Prompter will be used 1n real project development, 1t had to be ensured that within the tool,
and specifically for myself, within the daemon architecture, components were well documented
and the structures and mterfaces to components were as simple as possible This was to ensure
that the cost of mamtaimng the code would be low It had to be easy for components to be
replaced or rewntten if necessary This was also one of the reasons for maintaining the

abstraction of the tool from the knowledge within the daemons

95

7. Bibliography

[AIST 98]

[AmblerS 97]

[Broadcom 97]

[CDMCS 92]

[ChunH 97]

[CroftD 97]

[EngelmoreR 88]

[EckertC 95]

[FarleyS 97]

[FiminT 92]

[FischerG 93]

[FIPA 97]

[FriedmanE 97]

[GeneserethM 94]

Agency of Industrial Science and Technology, “http //www aist go Jp/ETL
{~matsu/javalisp/mdex htmi”, Electrotechnical Laboratory, JavaLisp,
accessed 14-9-98

Ambler, Scott W, “Java Coding Standards 17 01a”, AmbySoft Inc 1997

Trimty College Dublin, Broadcom Eireann Research, “Software Agents
A Review” May 1997

University of Alabama, Umversity of Tulsa, PED-MICOM-Army
“Compostite Design and Manufacturing Critiquing System”, USA, 1992

Chun, W Hon, Lai, M Edmund, “Inteligent Critic System for
Architectural Design” IEEE Transactions on Knowledge and data
engineering, Vol 9, No 4, July/Aug 1997

Croft, David Wallace, “Intelligent Software Agents Defimtions and
Applications”, Special Projects Division, Information Technology,
Analytic Services, Inc, USA 1997

Engelmore,R, Engelmore, Morgan, Engelmore Tony, ‘“Blackboard
Systems” , Addison-Wesley, Great Britain, 1998

Eckert, Claudia, “Intervention Strategies for Critiquing Professional
Designers”, Design Discipline, The Open University, Milton Keynes,
UK, 1995

Farley, Steven R, “Mobile Agent System Architecture”, Java Report
May 97

Finin, Tim, Fimin, Rich, McKay, Fritzson, McKay, Don, “A Language
and Protocol to Support Intelligent Agent Interoperability”, Proceedings
of the CE\& CALS Washington “92 Conference , June 1992

Fischer, G, Nakakop, K, Ostwald, J, Stahl, G, Sumner, T,
“Embedding critics i design environments”, Knowledge Engineering
Review, 1993

“FIPA97 Developer’s Guide” —
Commuttee 10, Version 2, 1997

an output from FIPA98 Technical

Friedman-Hill, Ernest, “JESS, The Java Expert System Shell”,

Distnbuted Computing Systems, Sandia National Laboratories, USA,
1997

Genesereth, Michael R , Ketchpel Steven P, “Software Agents”, Papers
from the Spring Symposium, Stanford University 1994

96

[GernerA 93]

[GernerA 94]

[Giarratano 84]

[HenryW 94]

[HortonlI 97]

[LangeD 96]

[LangeD 98]

[MaesP 97]

[MartinL. 96]

[McDermud]J 91]

[MoynithanT 94]

[OMG 98]

[OrfaliR 97]

[Orbix 97]

(PetrieC 97]

Gerner, Abigaill S, “Cntiquing Effective Decision Support In Time
Critical Domains”, Dissertation Proposal, Department of Computer and
Information Science, Untversity of Pennsylvama, 1993

Gerner, Abigail S, “Crniiqumg Trauma Management Plans On-line”,
CUFF Abstract, cliff-group, 1994

Giarranto R, Riley, “Expert Systems — Principles and programming”,
Second Edition, PWS publishing, 1984

Henry, Willham, “Software Project Risk Management A support Tool”
Dublin City University, M Sc in Computer Application, 1994

Horton, Ivor “ Beginmng Java”, Wrox, UK, 1997

Lange, Danny, B, Chang, Damal T, “IBM Aglets Workbench,
Programming Mobile Agents m Java A White Paper”, IBM Corporation
September 1996

Lange, Danny, B, “Mobile Agents Environments, Technologies and
Applications”, PAAM9S, 3™ international Conference and Exhibition
proceedings

Maes, P, “Software Agents”, Umcom Conference on Agents and
Intelhigent User Interfaces proceedings, Unicom, 1997

Lockheed Martin advanced concepts, “‘Succeeding with the Booch and
OMT Methods, a practical approach”, Lockheed Martin advanced
concepts centre, Rational Software corporation, Addison Wesley, USA,
1996

McDermuid, John, A, “Software Engmeer’s Reference Book”,
Butterworth-Heinemann, Oxford, 1991

Moymhan, T, Power, J , Henry,W , “A critiqumg system architecture for
Software Risk Management”, 5* European software control and metrics
conference proceedings (ESCOM) Italy, May 1994

“The Common Object Request Broker Architecture and Specification”,
Object Management Group, MA, USA 1998

Orfah, R, Harkey, D, Edwards, J, “CORBA, Java and the Object
Web”, Byte magazine, October 1997

“OrbixWeb programmers guide”, Iona Technologies plc Dublin, 1997

Petrie, Charles J, “What’s an agent and what’s so mtelligent about
1t?”, IEEE Internet Computing, July/August 1997

97

[Powerd 94]

[PressmanR 94]

[Prompter 97]

[Prompter 98]

[RichE 91]

[Rumbaughj 91]

[SilvermanB 92]

[SmithP 86]

[SrinivasK 97]

[ThayerR 88]

[TurbanE 95]

[Verbruggen 87]

[WebbeB 94]

[WeissM 96]

[WhiteJ 961

Power, Jane A.; “A critiquing system architecture in the risk
management domain: Riskman2” DCU M.Sc. in Computer Applications
thesis, 1994.

Pressman, Rodger S.; “Software Engineering, A Practitioners approach”,
Third Edition, European Adaptation, McGraw Hill 1994.

O. Connor, R. O; Floch, C; Moynihan, T.; Renault, T.; Combelles, A
“Prompter- A decision Support Tool using Distributed Intelligent
Agents”, Dublin City University 1997.

Prompter knowledge team, “Software Cost Risk”, Daemon Knowledge
Base Design, Project and Process Prompter, ESPRIT 22241, Dublin City
University, 1998.

Rich, Elaine; Knight, Kevin; “Artificial Intelligence, Second Edition ”,
McGraw-Hill, 1991, Ch 20

Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy,
Frederick; Lorensen, William; “Object-Oriented Modelling and
Design”, Prentice Hall, Englewood Cliffs, NJ, USA, 1991.

Silverman, Barry; “Communications of the ACM”, April 1992, Vol.35,
No.4

Smith, Peter; “An Introduction to Knowledge Engineering”, International
Thomson, 1986.

Srinivas, K.; Jugannathan V.; Karinthi, R.; “Java and Beyond Executable
Content”, IEEE Computer, June 1997.

Thayer, Richard H.; “Tutorial: Software Engineering Project
Management”, IEEE Computer Society Press, USA, 1988.

Turban, Efraim; “Decision Support Systems and Expert Systems,
Management Support Systems”, 4thEdition, Prentice Hall, USA 1995

Verbruggen, R; Jenkins,J; Bosco, M; “Integrated Management Process
Workbench: Intelligent Assistance for the Software Project
Management”, CASE 87, First International Workshop on Computer
Aided Software Engineering, Cambridge, Massachusetts 1987.

Webbe, Bonnie Lynn; Clarke, John; Chi, Diane, Gemer, Abigail; Kaye
J.; Neumann, S.; Ogunyemi, L.; Singh M. “The TraumAID Project”,
CliFF Abstract, cliff-group, 1994.

Weiss, M.; Johnson, A.; Kinsey, j.; “Distributed Computing: Java,
CORBA, and DCE”, Technical Report Open Systems Foundation, 1996.

White, Jim: “Mobile Agents white paper”, General Magic, USA, 1996.

98

Appendix A The main classes in the architecture

Blackboard Class

/**

* @author Eamon Gaffney

* @author DCU

*

* Thus 1s the Blackboard class which 1s responsible for the BB structure and the states of the tokens within
* each of the daemons (segments) It also stores the outputs from these daemons m case it may be required
* at a later date

*/

umport java 10 *, // The Imported Java classes
umport java util *,

/*
* The BB structure 1s implemented as a vector and withmn each element there exists a segment The BB
* creation can occur when the BB has a copy of the daemon hibraries Dependency table Within this class
* there exists a number of methods which answer queries from the DS however there are also a few
* callbacks resident here as well

*/

public class BB {
// The BB structure will be a number of nodes all collected together using the vector data structure
private Vector BBstructure, // vector to store all the nodes
public mt projectID, // store the projectID the BB 1s related to

public DaemonlInfo [] DT, // This 1s the Dependency Table received from the
// ibrary It 1s used by the method newCreateBB to

// create the BB
public BB() {
// constructors to create the BB vector
BBstruct = new Vector(), /{ the vector 1s mitialised and ready to store mmformation
}

// Methods for the BB Class

public void newCreateBB(Daemonlnfo [] dTable, int pID) {
/*
* This method 1s the new BB constuction It receives the DT from the DL This contams an array of
* daemonInfo objects which 1s then placed mto structures called node It first checks if the node 1s
* already created Ifnot it should be created After this stage the segment which contamns the
* daemon mformation 1s added to the relevant node
* @param dTable The dependency table
* @param ., pID . projectID that the BB 1s related to
*/

DT = dTable, // Create a local copy of the DT
projectlD = pID,

for (int mdex=0, index< dTable length, mdex++) { // for all elements mn the dependency table
array do
String dmnArea = dTable[index] area(), // read the area of the current daemon mdex
mt =0,
Node newNode, // Search current BB to ensure node 1s not created already

while ((j<BBstruct size()) && (dmnArea '= (Node)(BBstruct elementAt()))) area)) {
H+, //1f not found move to the next index in the BB
}
1f (j< BBstruct s1ze()) { // 1f node 1s found n the BB already
newNode = (Node)(BBstruct elementAt(j)), // The set the var equal to 1ts position
// The reason for this 1s so a daemon may be added to 1t
}else {
newNode = new Node(dmnArea), // create a node mstance
BBstruct addElement(newNode), // add new node to the BB
}

Segment seg = new Segment(dTable[mdex] daemonID() , dTable[index] tokenIDs()),
// create a segment giving the relevant information
newNode segs addElement(seg), // add segment to the BB structure
} // This will be done for every entry m the DT

}

public void endBB() {
// method to end the BB structure or reset 1t
BBstruct = new Vector(),

}

public void startScenario(int sID) {
/*
* Method to create a new scenar1o within the project This method must
* then tell each node to create a new scenario for each daemon
*/
for (int 1=0,1<BBstruct stze(),1++) {
((Node)(BBstruct elementAt(1))) startScenar1o(sID),
}

public void stopScenario(int sID) {
/*
* Method to delete a scenario within the project Thus then tells each node to create a new scenario for
* each daemon
*/
for (it 1=0,1<BBstruct size(),1++) {
((Node)(BBstruct elementAt(1))) stopScenario(sID),

public int [] findDaemons(int tokenID) {
/*
* Used to find all the daemons which contam a certamn token It does this by searching the Dependency
* table and constructing an array of integers which contamns the daemonIDs
* @param tokenID the tokenID to be searched for
*@retur mt[] array to store the daemonlDs the token appears mn
*/
Vector did = new Vector(),

for (int k=0,k<DT length,k++) { // for all elements in the DT do
// for all the tokens m the segment do

for (mt j=0,}<DTI[k] tokenIDs() length,j++) {

if (tokenID==DTT[k] tokenIDs()(3]) {
// 1f the tokenID required for this daemon do store the daemonID
did addElement(new Integer(DT{k] daemonID())),
)
}
}

mt [] daemons = new mt [did size()], // store these IDs m an array
for(int 1=0,1<d1d s1ze(),1++) { //copy the buffer into an array
daemons[1] = ((Integer)(did elementAt(1))) mtValue(),
}

return daemons, // return thas array

public mt[] daemonSearch(int dID) {
/*

* Method used my many methods for the purpose of searching for a specific daemon withn the BB
* @param dID daemonID
*@retwr mt[] mdex O contams mndex of the daecmon within the node
* mdex 1 contamns the mdex of the node within the BB
*/
mt1=0,
mt [} ans = new mt[2] ,

do{ // do a search for the daemon m each node daemon search returns -1
//1f 1t 15 not m a node and the position m the node 1f 1t 1s there
ans[1] = ((Node)(BBstruct elementAt(1))) daemonSearch(dID),
1++,

} while((1<BBstruct size()) && (ans[1] <0)),

1--, //required to negate the last 1++

ans[0]=1,
return ans,

A-3

public void updateToken(int daemonID , tokenInfo tinfo) {

/*
* ypdate the token m the BB 1n all the segments 1t appears m Firstly 1t searches for the DaemonID
* within the BB then searches for the token within that daemon When 1t finds 1t, the state
* 15 changed and the daecmon flag hasChanged will mdrcate a token has changed
* @param daemonlD the ID of a daemon
* @param tInfo contams where the token 1s found 1 ¢
* 1ts projectID and 1ts scenariolD
*

/

mt [] ans = daemonSearch(daemonID), // search for daemon ans{0] = position of daemon within node

if (ans[0]< BBstruct size()){ //1f 1 < BBstruct then the daemon was found at 1
// smce the while ends before when pos 1s set
((Node)(BBstruct elementAt(ans[0]))) updateToken(ans[1],tInfo), // update the tokens
} // at position and[0]

public void forwardStateArray(tokenInfo tInfo) {
/*
* method which recerves an object of tokenInfo This contamns all the mformation about the token that
* has been changed from where the token 1s related to etc Now all that
* remains 15 for the all the slots related to the token to be updated
*/
mt [] daemonIDs = findDaemons(tInfo tokenID()), //find all the daemons, tokenID exists m
for (it j=0,j<daemonIDs length,j++) { // for each of these daemons
updateToken(daemonIDs[j],tInfo),// update the token within them
}

public Vector availableToExecute() {
/*
* Searches the BB for any daemons (segments) that are available for execution A daemon 1s available
*1f all 1ts tokens are available and there has been a change m one of 1ts tokens
* @retur BBExeInfo[] the array of all the daemons that can execute
*/
Vector did = new Vector(), // vector to store all the daemons and therr relavent tokens
for (int 1=0,1<BBstruct size(),1++) { // for all segments do
if ((Node)(BBstruct elementAt(1))) hasChanged()) { //if a token m the node had changed do
((Node)(BBstruct elementAt(1))) hasChanged = false,
Vector temp = new Vector(), // create a temp vector to store the daemonlDs
temp = ((Node)(BBstruct elementAt(1))) availableToExecute(), // ask the node to return a list
// of daemons that can execute
for (mt }=0, j<temp size(), j++) { // copy them nto the proper vector
did addElement(temp elementAt(y)),
}
}
}
for(int 1=0,1<d1d s1ze(),1++) { //copy the buffer into an array
((BBExeInfo)(did elementAt(1))) projectID = this projectID,
// an array as 1t 1s easier to transport
return did, // send list to DS project,

public void forwardAdvice(DmnOutput adv) {
/*
* Forwards the Daemons advice to the output area of the related segment
* @param adv the advice object reference to be added to the BB
* @param dInfo the projectID, scenarioID of where the advice 1s related to
*/

mt daemonID = adv daemonlID, // retrieve info from object
mt pos, 1 =0,
mt [] ans = daemonSearch(daemonID), // search for daemon array returned

if (ans[0]< BBstruct size()){ //1f ans[0] < BBstruct then the daemon was found at 1
// simce the while ends before when ans[1] 1s set
((Node)(BBstruct elementAt(ans{0]))) updateAdvice(ans{1},adv), // update the advice
} // at position ans[1]

pubhic String saveBB() {
/*
* Save the information stored within the BB This method stores this mformation withmn a string which
* 15 then returned to the DS and on to the Kernel which stores 1t m the project file
* @param None
* @return String the the BB mfo is saved m
*f
Strmg mfo = "BB”,
for(int 1=0,1<BBstruct size(),1++) { // for all elements do
[/ access the element at index 1 which 1s a secment and add node tag to string
mfo = mfo // store the returned string from that node
+((Node)(BBstruct elementAt(1))) getNodelnfo(),
}
mfo = mfo+ ", END",
return mfo,

public void loadBB(String info) {
/*
* Method to load the mformation i the string back mto a BB structure
* @param String that stores the mformation to be loaded
* @return None
*/
BBstruct =new Vector(), // tokemze String usmg Node as the delimiter
StringTokenizer t = new StrmgTokenzer(info,"," false), // tokemze the TOKEN line
String temp = t nextToken(),
while ('temp equals("END")) {
if (temp equals("Node")) {
Node newNode = new Node(t nextToken(),t nextToken()), // pass node name and state
temp = newNode createSegments(t),
BBstruct addElement(newNode);
} else { temp = t nextToken(), }
}

} // end of blackboard class

Node Class

/**

@author Eamon Gaffney
@author DCU

This class 1s responsible for the daemon object node that will be store the segments from a specific area
of the knowledge base The purpose of this class 1s to group the a number of dacmons that are m the
same area the KB together

¥ OX K R ¥ K ¥

*/

package p3 DmnPack,
unport java util *,
public class Node {

public String area, // the area the daemons contained within 1t are related to
public boolean hasChanged, //a Boolean flag If a token 1s changed m a daemon
// m this node this flag 1s set This prevents unnecessary searching of nodes that nothing has
// changed Ths flag 1s normally checked when the BB 1s checking for daemons to
execute pubhic Vector segs = new Vector(), // store all the segments 1 ¢ daemons relating to the node

/I constructors

public Node(String value) {
area = value,
hasChanged = false,
}

public Node() {

area="",
hasChanged = false,

public Node(String value, String state) {
area = value,
hasChanged = state startsWith("true"),
H

// Some of the methods of the class

public String createSegments(StrmgTokemzer t) {
String temp = t nextToken(),

while (temp equals("Segment")) {
mt seg = Integer parselnt(t nextToken()),
temp = t nextToken(), // pass node name and state
mnt [] tokenIDs = new nt [Integer parselnt(t nextToken())],
for (mt 1=0,1<tokenIDs length,1++) {
tokenIDs[1] = Integer parseInt(t nextToken()),

A-6

}

Segment newSeg = new Segment(seg,temp,tokenlDs);
temp = newSeg.createScenarios(t);

segs.addElement(newSeg);

return temp;

public void startScenario(int sID) {
r~
* Method to create a new scenario within each segment contained within the node
4
for (int i=0;i<segs.size();i++) {
((Segment)(segs.elementAt(i))).startScenario(sID);
}
}

public void stopScenario(int sID) {
Vs
* Method to delete a scenario within each segment contained within the node
4
for (int i=0;i<segs.size();i++) {
((Segment)(segs.elementAt(i))).stopScenario(sID);
}
}

nglic int daemonSearch(int diD) {

* search the segments for a specific daemonlID. If it finds one it returns its index. However if it is not
* found it returns -1 which will be interpreted as such from where it has been called.
* @param : dID : the daemonID

*@retur: int: the index of the daemonlD in the node
4

inti=0;

while((i<segs.size())&& (dID = ((Segment)(segs.elementAt(i))).daemonID())) {
i++; // while daemonlD is not found continue

}

if (i<segs.size()) {// if i< segs.size this means the while didnt reach the end
return i; /l1of segs and so must have found daemonlD thus return it
}else {return -1; }/ if not found return -1 which indicated this.

}

public void updateToken(int pos,tokenInfo tinfo) {

/

*mothod to update a token within a node. This method forwards the call to the segment Class
* @param : pos: the position od the daemonlID the token is in

A7

* @param tInfo the information about the token 1 ¢ ID and scenariolD etc
*/

hasChanged = true,

((Segment)(segs elementAt(pos))) updateToken(tInfo),
}

public void updateAdvice(int pos, DmnOutput adv){
/*
* Method to update the advice within a specific segment withmn the node
* @param pos the position of the segment withm the node
* @param adv the actual advice object to be stored
*/
((Segment)(segs elementAt(pos))) updateAdvice(adv),

public Vector availableToExecute() {
/*
* ask the node to construct a vector of alll the daemons that are available to execute It does this by

* asking each segment to return any scenario mformation if they can execute and copymng them mto
* the vector total

*@retur Vector the vactor of all the scenarios that can execute This
* vector contans BBExeInfo object only
*/
Vector total = new Vector(),
for (int 1=0, 1<segs s1ze(), 1++) { // find all daemons capable of executing,
if (((Segment)(segs elementAt(1))) hasChanged()) { //if tokens m segment have changed
((Segment)(segs elementAt(1))) hasChanged(false), // reset hasChanged variable
Vector temp = new Vector(), //temporary vector to store mfo from each segment
temp = ((Segment)(segs elementAt(1))) AvailableToExecute(),// copy details of scenarios that
//can execute '
for (mt j=0, j<temp size(), ;++) { // copy temp vector mto total
total addElement(temp elementAt()),// thus all mfo 1s stored m one vector

return total,
}
String getNodeInfo() {

String nodelnfo = "",

nodelnfo =",Node,"+ area + "," + hasChanged,

for(mt 1=0,1<segs s1ze(),1++) { // for all elements do
nodelnfo = nodelnfo + "," +
// access the element at mdex 1and store the mfo related to the segments m a string
((Segment)(segs elementAt(1))) getSeginfo(),

}

return nodelnfo,

}

} {/ end of class Node

Segment Class

/
* @author Eamon Gaffney
’; (©author DCU

* responsible for the segments within the BB structure. Each segment contains the daemonlID, a list of
* the tokenlIDs and an output area for the Daemons to write their into. Thus each segment

* has a number of scenarios under its control.

4

package p3.DmnPack;
import java.util.*;

public class Segment {

private int daemonID; // unique daemonlID

public Vector scenarios = new Vector(); // vector to store the scenarios

public int [] tokens; // variable to stored the dependen tokens for the segment

private boolean hasChanged; // flag to indicate if a token within the segment

/I'has changed. This is used to stear the search to the changes and allow it to ignore those that haven’t

/I constructor

public Segment(int dID, int tID[]) {
daemonlID = dID;
tokens = tID;
hasChanged = false;

}

public Segment(int sID, String state, int [] tID) {
daemonlID = sID;
hasChanged = state.startsWith("true™);
tokens = tID;

}

public String createScenarios(StringTokenizer t) {
String temp = t.nextToken();

while (temp.equals("Scenario™)) {
int sID = Integer,parselnt(t.nextToken());
boolean state = (t.nextToken()).startsWith("true"); // pass node name and state
DScenario s = new DScenario(sID,state,tokens);
temp = s.createSlots(t);
scenarios.addElement(s);
|
return temp;

}

public void startScenario(int sID) {
/
’;}\/Iethod to create a new scenario within the segment

DScenario temp = new DScenario(sID, tokens);//((DScenario)(scenarios.elememAt(0))).tokenID);

scenarios.addElement(temp);

}

public void stopScenario(int sID) {

Vel
* Method to delete a scenario within the segment
4
int i=0;
while ((i< scenarios.size()) && (sID != ((DScenario)(scenarios.elementAt(i))).scenariolD())){

i++;

if(i<scenarios.size()) {
scenarios.removeElementAt(i);
}else (System.out.printin(** scenario not found™); }

}

public void updateToken(tokenlInfo tinfo) {
Vo
* update the token in a scenarios. This method forwards the info on to the appropriate scenario
* @param : tinfo : the information that tells where specifically the token
* is ment for
4

int sID = tinfo.scenariolD();

hasChanged = true; // indicate that the segment contains changes

int i=0;

while ((i< scenarios.sizeO) && (sID != ((DScenario)(scenarios.elementAt(i))).scenariol D()))(
i++;

if(i<scenarios.size()) {
((DScenario)(scenarios.elementAt(i))).update Token(tinfo);
(else { System.out.printIn(" scenario not found™); }

public void updateAdvice(DmnOutput adv){
/~
* Method to update the advice of the a specific scenario within this segment
* @param : adv : the advice object to be stored.
4
int sID = adv.scenariolD;
11 find the scenario index the advice relates to
int i=0;
while ((i< scenarios.sizeO) && (sID != ((DScenario)(scenarios.elementAt(i))).scenariol D())){
i++; // search for the scenario, i will indicate its position in the vector
} /I'if i < the size then the while didnt reach the end and so must have
if(i<scenarios.size()) { // been found
((DScenario)(scenarios.elementAt(i))).updateAdvice(adv); // method call to forward advice
}else { System.out.printin(* scenario not found"); }/ forward on the advice

A-10

public Vector AvailableToExecute() {
/*

* method to construct a vector of all the scenarios that are capable of

* executing under 1ts control The mformation 1s stored m BBExeInfo object
* which contam therr daemonld, scenarioID etc
*/

Vector temp = new Vector(), // vector to store all the BBExeInfo object to be returned
for (int 1=0,1<scenarios size(), 1++) { // search all scenarios
if ((DScenario)(scenarios elementAt(1))) hasChanged()) { // if 1t has changed do
((DScenario)(scenarios elementAt(1))) hasChanged(false), // ask the scenarto to return mfo

BBExelnfo bRef = (DScenari0)(scenarios elementAt(1))) availableToExecute(),
if (bRef '= null) { //if not all tokens are available null 1s returned

temp addElement(bRe;f), //1f OK add object to vector
Yelse{// System out printin(" null scenario "), }
}

}

for (mt 1=0,1<temp s1ze(),1++) { //add the daemonlID to all since they are related to
}

((BBExeInfo)(temp elementAt(1))) daemonID = this daemonID,// the same daemon
return temp,

public String getSegInfo() {
String seginfo = "",

segInfo = seginfo + ","

segInfo = (",Segment,"+ daemonID + ","+ hasChanged + "," +tokens length),
for (it 1=0,1<tokens length,1++) {

.+ tokens[1],
}

for (mt 1=0, 1<scenar1os size(), 1++) {

segInfo = segInfo + ((DScenar10)(scenarios elementAt(1))) getSnrolnfo(),
}
return seglnfo,
)
} // end of segment class

A-11

Scenario Class

/*

* @author Eamon Gaffney

* @author DCU

* (@version 3272 date 29/10/98

*

* Thas class 1s responsible for the specific scenario of a daemon On creation of a segment the token mfo
15 stored

* the default scenario Each scenario store a list of the tokens and thewr states

*/

package p3 DmnPack,

mport java util *,

public class DScenario {

public mt scenari10ID, // specific scenario 1dentifier

public Slot [] slots, // each scenario contamns a number of slots contamed n there 1s token details
private DmnOutput advice, // actual deaemon advice

private boolean hasChanged, // flag to 1dicate if tokens m this scenario have changed

public mt [] tokenID,

public mt [] tokenVal, // This method will store the token values

// The advantage for usmng these arrays 1s purely for efficiency of running

// 1t 1s better to have then here than to go serching and constructing them

/I Constructors

pubhic DScenario(int sID, int (] tID) {
scenar10ID = sID,
slots = new Slot[tID length],
hasChanged = false,
tokenID = tID,
for (mt 1= 0, 1<tID length, 1++) {
slots[1}= new Slot(tiD[1}), // create a slot for each tokenID

}

advice = null,

pubhic DScenario(int sID,boolean state, nt [] tID) {
scenar10ID = sID,
slots = new Slot{tID length],
hasChanged = state,
tokenID = tID,
for (int 1= 0, 1<tID length, 1++) {
slots[1]= new Slot(tID[1]), // create a slot for each tokenID
}

advice = null,

A-12

public void updateToken(tokenInfo tinfo){

/*

* Method to update a specific token within the scenario The token ID 1s stored mn the tinfo

*/

hasChanged = true,

mt tID = tInfo tokenID(),

mt tValue = tInfo tokenVal(),

mt 1=0,

while ((1<slots length) && (tID '=slots[1] tokenID)) {
1++,

}

if(r<slots length) {

slots[1] tokenUpdate(tValue),
} else { System out printin(" Token not found"), }

public voird updateAdvice(DmnOutput adv){

/*

* Method to update the advice n the specified scenario
* @param adv the advice object

*
}

advice = adv, // add advice to the scenario

public BBExeInfo availableToExecute() {

/*

* check 1f scenar10 1s available to execute The scenario 1s available 1f all the slot states 15 set to true
* Thus details are placed in the BBExeInfo class and all the slot states are reset to false

* @retur dInfo the details of the scenario available to execute

*/

BBExelnfo dInfo,

mnt =0,

tokenVal = new mt[slots length],

while ((j<slots length) && (slots[j] tokenValue '= -1)) {
J++, // 3 == slots length only if all slots have changed

}

if (J<slots length){
return null,
} else { //1f all tokens have changed and are available

hasChanged = false,

for (mnt 1=0, 1<slots length,1++) { // reset all slots to false
slots[1] hasChanged(false),
tokenVal[1] = slots[1] tokenValue,

}

dInfo = new BBExeInfo(scenariolD,tokenID, tokenVal),

}
return dInfo,

A-13

public String getSnrolnfo() {
/*
* Method to get the mformation from all the slots THis method 1s used during the saving of the BB
* @param None
* @returnString the mformation retrieved 1s stored m a strmg
*/
String snroInfo = "",

snrolnfo = ",Scenar10,"+scenariolD+","+hasChanged,
for (int 1=0, 1<tokenlID length,1++) {

snroinfo = snroinfo +","+ slots{i] hasChanged+","+slots[1} tokenValue,
}
1f (advice '=null) {

snrolnfo = snrolnfo + ",Advice,” + advice getAdvicelnfo(),

}
return snrolnfo,

public String createSlots(StringTokenizer t) {
/*
* Method to create the scenarnos from the mformation passed in This information
* takes the form of a string tokenizer which tokemzes the mformation from
* the string from the saved BB file
*/

for (mnt 1=0,1<slots length,1++) {
slots[1] hasChanged = (t nextToken()) startsWith("true"),
slots[1] tokenValue = Integer parseInt(t nextToken()),
}
String temp = t nextToken(),
if (temp equals("Advice")){
advice = new DmnOutput(Integer parseInt(t nextToken()),

Integer parseInt(t nextToken()),Integer parseInt(t nextToken())),
advice storeAdvice(t),

temp = t nextToken(),
}
Teturn temp,
}

} // end of scenario class

A-14

Slot class

JE*
* @author Eamon Gaffney
* @author DCU
*
* the mformation relatmg to the token value of a specific daemon Within ths class the
* tokenID 1s stored The purpose of this class 1s to group the a number of daemons that are in the
* same area the KB together Token value attribute added THis stores the value of the token EG
*
*/
package p3 DmnPack,
pubhlic class Slot{

public int tokenID, // the unique 1dentifier for the token

public boolean hasChanged, // the state of the token, true mdicates the token has changed
public it token Value,

/ constructor

public Slot(int tID) {
tokenID = tID,
hasChanged = false,
tokenValue = -1,

public void tokenUpdate(int value) {
/*
* method to update the state of the token to true mdicating the token
* has changed
*/
hasChanged = true,
tokenValue = value, // This stores the actual value of the token

} // end of slot class.

A-15

JessParser class

sk

~

@author Eamon Gaffney
@author DCU

responsible for executing a jess daemons rules It 1s passed a reference to an mstance of a jess
daemon m the DL it then opens this this daemons rules and processes them, returning advice

* ¥ ¥ ¥ ¥

**/

package p3 DmnPack,
mport java 10 *,
mmport p3 DmnPack jess *,

public class JessParse {

public DmnOutput adviceToGive, // advice to return
public JessParse(){ }

public DmnOutput ProcessRule(BBExeInfo dInfo, Daemon hveDaemon, int {] tokenValues,
String P_DaemonFileLocation) {

ByteArrayOutputStream bs = new ByteArrayOutputStream(), // output device from the jess files
PrintStream out = new PrintStream(bs),
PipeAdvice 1d = new PipeAdvice(out,System n,bs), //create the mfo passmg mechanisms

FielnputStream fis,
String dmnfile = P_DaemonFileLocation + ltveDaemon daemonID() + " dmn",
Rete rete = new Rete(1d), // create an instance of the Rete algorithm to setup the
// varables for the JESS files to be processed
try {
fis=new FileInputStream(dmnfile), // tell the jesp compiler which file to read
Jesp j = new Jesp(fis,rete), // pass the file and the options to the compiler
try {
J parse(false), // parse the file
String command = "", // string to store the jess command that must be constructed
command = "(assert(daemon(",
for (mt 1=0,1<dInfo tokenIDs length,1++) { // pass the mfo to the clp
command = command +"("+"_" + dInfo tokenIDs[1]+" "+ tokenValues[1]+")",
}
command = command + "))",
rete executeCommand(command),
rete executeCommand("(run)"), // run the CLIP
String ans = bs toString(), // convert advice into a string
AdviceText adv = new AdviceText(ans),
adviceToGive = new DmnOutput(adv), // package up the advice
}catch (ReteException E){System out printin(E), }
}catch(Exception ex){System out println(ex), }
return adviceToGuve, // return the advice

} // end of jess parser class

A-16

Appendix B The CORBA interfaces

Daemon Supetrvisor/Kernel Interface

exception P3Exception {

//Internal Prompter Exception for use i the mterfaces

string exceptionReason, // reason for the Exception
short exceptionCode, // unique exception code
short exceptionLevel, {/Level of importance of Exception

b5

mterface Kernelcall;

/**
* Section 1 - Interface Objects
*

%% /

[STATE ARRAY

* Thus state-array, 1s periodically downloaded by the DS, acts as a buffer

* or temporary storage area where the Kernel places tokenIDs that have changed

* m the project workspace This list 1s downloaded by the DS and reset by the Kernel
%k

sk /

mterface tokenInfo {

// A token object holds all the info needed to 1dentify a token’s context
attribute long projectID, // The unique projectID
attribute long scenar10ID, // The unique scenariolD
attribute long tokenID, // The umique tokenID
attribute long tokenVal, // The value of the token

b

typedef sequence<tokenInfo> stArray, // create an array or sequence of these tokenInfo objects

mterface StateArray {

// The State Array 1s a sequence of token objects
attribute stArray sArray,

IH

[** Advice Object

*
*

* This 1s the Advice Object that will be used to communicate the daemons advice
* to the rest of the tool These objects are stored m as a sequence m

* the advice table
E 3

**/

interface AdviceObj {
// This 1s the AdviceOby interface

readonly attribute long projectID, // The unique projectID
readonly attribute long scenariolD, // The unique scenariolD
readonly attribute long daemonID, // The unique daemonID
readonly attribute long advicelD, // The advicelD of the advice
readonly attribute string dArea, // The area the advice pertamns to
readonly attnibute string advice, // The advice from the Daecmon

IH

// Sequence of advice objects make up the advice table
typedef sequence<AdviceOby> aTable_vector,

mterface AdviceTable {
// Thus 1s the actual advice table mterface

readonly attribute aTable_vector aTable,
b

// Section 2 — Kernel to Daemon Interface

// Thus 1s the mitial startup call to the DS Tt results m the DS startmg up all its

// housekeeping processes No parameters are passed or returned for this method It 1s

// used once when the project tool 1s started This method indicates the start of the process
1/

// stopProcess

// This method 1s used when the project 1s ending It results m the DS performing some clean
// up operation and saving any unsaved mformation It 1s also used to tell the DS to finish

// up all 1ts processes.

/s

// newProject

// Thus method mdicates the start of a new project It differs from the startprocess method

// that we don’t want the DS to restart all 1ts threads of control but mstead to create a new

// BB etc and all the other tasks associated with a new thread Thas also tells the DS to 1gnore

// any changes to the tokens since the project 1s new and the user has returned to the APM stage

// of development The field "maxNo" 1s passed which contains the number of tokens stored m the
// project repository The unique project 1dentifier 1s passed to the DS wath the parameter

// projectID to distinguish 1t from other projects This number 1s needed for setup purposes m the DS
/

// startProject

I
// thid method 1s used when the ds 15 told to create a project but 1s given blackboard mformation

// to be stored n the BB structure This method 1s used when the BB was saved when the project was
// previously closed

/l

// stopProject

/| ===========

// This method differs from the stopProcess method m that 1t signifies that the project’s development
// has ended and all relative mformation relating to 1t must be saved This does not mean that the

// overall process has ended however The unique ID of the project must be passed to sigmify which
// project must be ended, if multiple projects are runnmg

1

// createScenario

i
// This method 1s used when a new scenario 1s created It results m the required structures being
{/ created to store the relevant mformation relating to 1t

1

// deleteScenario

// Thas call tells the DS to end a particular scenario The unique ID 1s passed which tells the DS
{/ which Scenario the Kernel wants stopped

/I

/] recogmseChange

i
// This method results m the DS starting to monitor token states of a specific project with the ID

// projectID This would be used when there exists enough mformation for the daemons to give advice
// on It1s called when the IPM stage of the current project 1s reached

/

// tokenChange

// S|=======—T=

// This method 15 used to mform the DS when a token or a number of tokens have changed
/!
// getAdvice

// This method 1s used by the Kemel to retrieve the advice from the DS (1 ¢ the advice table) The
// return value 1s an mstance of the class AdviceTable where the advice 1s stored mmnus the advice
// previously returned Once the Kernel

// has retrieved this table the DS resets the table to null

/

I

/i

mterface DS {

voud startProcess() raises (P3Exception),

voud stopProcess() raises (P3Exception),

void newProject(in long projectID),

voud startProject(in long projectID, m string bbData),

string stopProject(in long projectID),

void createScenario(in long projectID, m long scenariolD),

void deleteScenario(in long projectID, m long scenar1oID),

void recogmseChange(in long projectID),

void tokenChange(mn long projectID, m long scenariolD, m Kernelcall ref),
AdviceTable getAdvice(),

b

/ Section 3 — Daemon to Kernel Interface

// getStateArray
I
// This method 1s used to download the "state-array” from the Kemnel, which consists of a
// list of all the tokens that have changed since the array was last downloaded The method
// returns an mstance of the class stArray, which contains the tokenIDs Thus class can be
// found m the IDL file m the mterface of the same name

/

I

// adviceAvailable

/!
// This method will be used after daemons have fimshed execution The DS will execute this
// method to mform the Kernel that advice 1s stored in the "Advice-table”, which the Kernel
// will have direct access to No variable 1s returned as this method just acts as a flag to

// show that advice 1s available

mterface Kernelcall {
StateArray getArrayState() raises (P3Exception),

void adviceAvailable(in long projectID, m long scenarioID),

b

B-4

Daemon Library / Daemon Supetrvisor Interface

typedef sequence<long> Array, // array to store a collection on long numbers

interface DaemonInfo {
// method used by the dl to pass daemon header imformation to the Blackboard which 1t need to set-up

attribute long daemonID, // aumique 1dentfier for the dacmon

attribute string area, // the area the daemon 1s an expert m

attribute Array tokenlDs, // the daemons dependent tokens
5
typedef sequence<Daemoninfo> daemonInfo_vector, // creating an array of Daemoninfo
mterface DependTable {

// this daemon mformation 1s passed to the Blackboard m the form of an array

readonly attribute daemonInfo_vector table,
b

typedef long TokenIDArray[35], //an array for the tokens

interface Daemon {
// the mformation stored mn the daemon header

attribute long daemonID,

attribute string dName,

attnbute string dVersion,

attribute strng dOrigm,

attribute string dArea,

attribute long dGUI,

attribute long dIE,

attribute TokenIDArray TokenlD,

readonly atribute string P_DaemonFileLocation,
readonly attribute long P_DaemonCount,

¥

interface DL {
// the method calls the Daemon S can make on the daemon supervisor

DependTable getDependTable(),
Daemon getDaemon(in long DaecmonID),
void DLSetup(in string P_DaemonFileLocation, m long P_DaemonCount),
oneway void kidiDL(),
b

Appendix C The OMT class diagram of the
Daemon Architecture

Thus class diagram contamns the full OMT diagram of the daemon architecture mcluding class attributes and

methods
DaemonLibrary
TokenlD — . [DaemonS DaemonHeader
TokenValues l— Daemonindex
fule startProcess 1—2&22{;‘:'3:
stopProcess TokenCount
startProject NumOfDaemons
stopProject NumOfTokens
Advicelmpllable getTokenValue tDaomo
alable_vector getAdvice Eﬁ) a g‘ tB
getStateArray raryset.p
addAdviceOby AdviceAvailable getDependTable
endAT recogniseChange
getTable executeDaemon
deleteAdviceOb getDependencyTable
Daemon
dArea
Level
dGUI
roject dIE
Daemons dName
vice Blackboard dOngin
advicelD projectiD dVersion
projectiD forwardAdvice TokenID
scanarnolD tokenChange daemoniD
gg‘ﬂm"m stopProject §U|9
dvice
dAroa recogniseChange
advice
[BBImpi
BBstruct
createBB
1 createNode
St] [Scenario] ‘ endBB
tokenID scenariolD | Node forwardAdvice
hasChanged L—Q—J Iive k)— daemon Area forwardStateArray
avallablo updateToken
availableToExecute

DmnOutput

advicelD
projectiD
scanariolD
daemonlD
dGUI

dArea

advice

AdviceText tendedAdvicd
area advice lext
comment

iblogra RuleJustify]
itle Justify Text
Authors

Publisher

Date

URL

C-1

