
The development of an Agent
Based Critiquing System
Architecture for a project

management tool : Prompter

By Eamon Gaffney B.Sc.

School of Computer Applications

Dublin City University

Glasnevin

Dublin 9

Supervisor: Professor J. A. Moynihan

A thesis submitted for the degree of

Masters of Science

March 1999

Declaration

I hereby certify that this material, which I now submit for the assessment on

the programme of study leading to the award o f Master o f Science in

Computer Applications, is entirely my own work and has not been taken

from the work o f others save and to the extent that such work has been cited

, and acknowledged within the text o f my work.

Eam on G affney

Acknowledgements

I w ould like to thank m y supervisor Prof. Tony M oynihan for all the help and guidance
he has given me during m y tim e in D CU . I would like to thank M ark Johnston for his
technical guidance and R ory O ’ C onnor and the other m em bers o f the Prom pter team
w hom I worked with, during the Prom pter project. T hey m ade m y involvem ent in the
project very enjoyable (especially the p ro ject trips).

I would also like to thank K ieran O ’Sullivan and M artin G affney for having the patience
to p roo f read this work. And finally to the other postgraduates and m em bers o f staff in
CA for the constant distractions they created, nights out, football etc. They helped m ake
m y tim e there both m em orable and enjoyable. And last but not least to m y fam ily and
friends for helping m e get this far and encouraging m e along the way. N ice one.

Eam on G affney

\

Abstract

The development of an Agent Based Critiquing System
Architecture for a project management tool: Prompter

By Eamon Gaffney B.Sc.

Since the Software Crisis was first identified in 1969 there has been a frantic scramble among
practitioners to define a software engineering discipline. This has led to development of
established ‘best practices’ in areas of software design, metrics collection, cost estimation, risk
analysis etc. To date, no tool has provided software managers with integrated project
management support. This is the motivation behind the Prompter tool which seeks to provide
assistance for project managers in the areas of decision support and planning throughout the
lifecycle of a project.

The basis of this thesis is the design and development of a component of the Prompter tool
known as the Daemon architecture. The Prompter tool, is an ESPRIT project developed by a
consortium of companies including Dublin City University, Catalyst Software and Objectif
Technologie. Its goal is to provide decision support to the user in the field of Software Project
Management.

The Daemon Architecture for which I am responsible, provides the dynamic advice or criticism to
the user using intelligent agents or mini experts. The architecture had to be as open as possible,
distributed, domain independent, an easily expandable knowledge base, asynchronous from the
rest of Prompter, have the ability to incorporate new Agent languages and finally, platform
independence.

The first stage of this thesis involved the design of the architecture outlining some of its
components. The second stage was the development of the architectural design into a functioning
prototype operated within the Prompter tool. This is followed by a discussion of some of the
more implementational issues that arose during this phase due to, design flaws, implementation
languages chosen, networking problems etc.

The resulting architecture outlined in this thesis can thus be used to provide decision support in
many domains and on many platforms and is easily maintainable.

Table of Contents
1. Introduction..1

1 1 Overview o f Prompter • I
1 1 1 Prompter background . ■ 1
1 1 2 High level Prompter Architecture. . . 3

1 1 2 1 Daemon Architecture .. 4
12 Thesis Outline . . . 6

2. An Overview of Critiquing Systems..8
21 Introduction.. 8
2 2 Overview o f Expert System s 8
2 3 Overview of Critiquing Systems . . . 9
2 4 ICADS . . 12

2 41 Introduction 12
2 4 2 Architecture. . 12
24 3 Plan Generator Spatial Analysis Component . 13

24 3 1 Spatial Reasoning Module 13
2 4 4 Differential Analyser-Inference Engine . . 14
24 5 Knowledge Base 14
2 4 6 Mini Experts Critics . . 14
2 4 7 Dialogue Generator Design Suggestions 15

2 5 CDMCS 16
2 5 1 Introduction 16
2 5 2 Architecture. 16
2 5.3 Mini Experts. Metrics . . . 1 7
2 5 4 Knowledge Base....................... 18
25 5 Differential Analyser. Satisfaction 18
2 5 6 Dialogue Generator Aggregation . .19

2 6 TraumaTIQ 2 0
2 61 Introduction . . .20
2 62 Architecture...................... 20
2 63 Plan Generator. Plan Recognition 21
2 64 Differential Analyser Plan Evaluation . 22
2 6 5 Knowledge 23
2 6 6 Dialogue Generator Critique Generation 23

2 7 Riskman 2 . 24
2 7 1 Introduction 24
2 72 Architecture .. . 24
2 7.3 Knowledge Risk Taxonomy . . 25
2 7 4 Differential Analyser Risk Analyser . 25

2 74 1 Mini Experts ' Daemons . 26
2 7 4 2 Blackboard . 26
2 74 3 Daemon Library . .. 27

2 7 5 Dialogue Generator. Risk Analyser Reporter . . 27
2 8 General model o f a Critiquing System . 28

2 81 Introduction . 28
2 82 General model .. 28

2 82 1 Plan Generator 28
2 82 2 Differential Analyser 29
2 82 3 Dialogue Generator 29

2.8.3 Knowledge 30
2 84 Critics ... 31

2 9 Summary 32

3. Agents...33
31 Introduction ■ 33
3 2 Agents • 34

3 21 How Agents differ from programs................................ 35
3 3 Types o f Agents . ■ 36
3 4 Agents as Critics ■ 37

3 41 Agents Internal Structure . . 37
3 4 2 Criticism 38
3 4 3 Agent Communication . . 38
3 44 Blackboard within the Agent Architecture . 41
3.4 5 Knowledge Representation for Agents42

3 5 Summary . . .4 3

4. Detailed Design..45
41 Introduction . . 45
4 2 Standards ■ ■ 45

4 2 1 Object Model Technique (OMT) 46
4 3 Rationale behind Architecture. 47
4 4 Architecture 48
4 5 Tokens 49
4 6 Daemon Detailed Design • 49

4 61 Daemon Supervisor . . 50
4 6 1 1 Daemon Supervisor Interfaces 53

4 62 Blackboard 53
4 6 3 Daemon Library . . . 57
4 64 Daemon Design 58

4 6 4 1 Daemon advice . . 59
4 64 2 Daemon Execution . 61

4 7 Agent languages. 62
, 4 7.1 FIPA97 . 63

4 7 2 CUPS/JESS. . 64
4 7 2 1 Jess Integration . 66

4 8 Knowledge . . 68
4 8 1 The Knowledge Engineering Process 68
4 82 Knowledge Representation 69

4 82 1 Decision Trees 70
4 8 3 New Daemons 72

4 9 Summary. . . . 73

5. Implementation of a prototype... 74
5.1 Introduction . 74
5.2 CORBA . . . 7 4

5.2.1 IDL interface 75
5.2.2 CORBA programming 76

5.2.2.1 Writing a server . . 76
5.2.2.2 Writing a client 77

5.3 Java Language . 77
5.4 Where Java and CORBA fit in . . 78
5. 5 Design and Implementation 79

5.5.1 Daemon Architecture 79
5.5.2 Implementation Strategy 79
5.5.3 Complex Coding.. 80
5.5.4 Improving the Performance of the prototype.. 80

5.5.5 IDL aiding the Design81
5.5.6 Problems with Spiral development. . . . 82
5.5.7 Daemon supervisor availability 83
5.5.8 Bottlenecks 83
5.5.9 Callbacks 83
5.5.10 Deadlocking 84
5.5.11 How open is the daemon architecture . . 85

5.6 Summary . 86

6. Conclusions.. 88
6 1 Introduction 88
6 2 Open architecture . 88

62 1 Mobility 88
6 2 2 Degree of Distribution 89
62 3 Generic . . . 89
62 4 Expandability 89
62 5 Efficiency 90

6 3 Weakness of the Architecture. . . . 90
6 4 Future development of the tool. .9 1
65 Conclusions 92
6 6 Concluding R em arks 94

7. Bibliography.. 96

8. Appendix A: The main classes within the daemon architecture.... A-1

9. Appendix B: The CORBA interfaces..B-1

10. Appendix C: The OMT class diagram of the Daemon Architecture........ C-1

Figures
Figure 1.1 Overview of Prompter tool

Figure 1.2 Process of Critiquing within Prompter

Figure L3 Overview of Daemon Architecture

Figure 2.1 ICADS architecture

Figure 2.2 CDMCS architecture overview

Figure 2 3 The CSMCS taxonomy

Figure 2.4 Graph showing the area of satisfaction of a metric

Figure 2.5 The Architecture of the TraumaTIQ system

Figure 2.6 Architecture of Riskman2

Figure 2.7 subclasses of the Technical Risk class

Figure 2.8 Blackboard structure forRiskman2

Figure 2.9 Overview of a Cntiquing system

Figure 3.1 Intelligent Cntiquing system structure

Figure 3.2 Direct Agent Communication

Figure 3.3 Assisted Agent Coordination

Figure 3.4 The blackboard

Figure 3.5 Overview of Blackboard

Figure 3.6 Prompter Taxonomy

Figure 4.1 Prompter overview

Figure 4.2 Daemon Architecture OMT Diagram

Figure 4 3 Daemon Supervisor OMT Diagram

Figure 4.4 Daemon Execution State Diagram

Figure 4.5 Process of advice state diagram

Figure 4.6 Blackboard structure

Figure 4.7 Blackboard OMT Diagram

Figure 4.8 State diagram for the construction of Blackboard

Figure 4.9 Event diagram to illustrate the available to execute

Figure 4.10 Daemon OMT diagram

Figure 4.11 Daemon Internal structure

Figure 4.12 Advice OMT diagram

Figure 4.13 Daemon output OMT diagram

Figure 4.14 Overview of daemon execution

Figure 4 15 Agent integration into Prompter

Figure 4 16 Agent Integration OMT diagrams

Figure 4.17 Preparing the daemon for execution

Figure 4.18 AND and OR trees

Figure 4.19 Example decision tree

Figure 4 20 Decision tree simplification

Figure 5.1 CORBA overview

Figure 5.2 Interfaces

Figure 53 Java overview

Figure 5.4 Removal of Blackboard server

Figure 5.5 Problem with deadlocking

1. Introduction
In the last few years computers and software have increased in complexity and sophistication at

an extraordinary rate. With the advent of Operating Systems that were multithreaded and network

based, computers had more processing power and resources available to them than ever before.

This allowed computer software to become responsible for a wide range of complex tasks, from

landing the NASA space shuttle, to controlling power stations. Thus, since software has become

more complex, so too has the job of managing its development. Software project managers must

be aware of as much information as possible when making decisions, and sometimes this can

prove overwhelming. They have no one to advise them on what decision to make. For this reason,

decision support systems such as Prompter were developed. Prompter provides project

managers with a better view of what is happening in their project and assists them in their

decision making process.

In this thesis a specific component of Prompter that I was responsible for designing and

developing is discussed. This component is called the daemon architecture and in the coming

chapters, it is broken down and explained in much greater detail.

(
1.10verview of Prompter

The Prompter tool is a decision support tool for software project managers. It was developed to

assist project managers, provide them with advice in their decision making process and help them

assimilate best practices in the field of software project management, specifically software project

planning [Prompter 97].

1.1.1 Prompter background

The P3 project (Project and Process Prompter) Prompter was a European project funded by

ESPRIT by the fourth framework programme o f the European Commission as ESPRIT project

22241 and had five project partners. The main developer partners were a consortium of

companies that included Catalyst Software(Dublm), Dublin City University and Objectif

Technologie (Paris). Catalyst were responsible for the central component of the tool, the School

of Computer Application in DCU(Dublin) were responsible for the implementation of the

knowledge within the tool, and finally Objectif Technologie (Pans) were responsible for the GUI

1

to the tool. In addition to these partners there were a number of user partners including Schneider

Electric(France) and INTRACOM (Athens Greece) who provided user feedback and comments

throughout the project relating to the tool itself and the knowledge it contained.

I
Prompter is based on work performed by Dublin City University between the years 1987-94. The

“ Riskman 2 project” [MoynihanT 94] developed in 1994 provided much of the inspiration which

built on work from the Riskman and the IMPW [Verbruggen 87] (Integrated Management

Process Workbench). It was a critiquing system architecture within the risk management domain.

It was concerned with helping a project manager to walk around a proposed software

development and anticipate any major risks to which the project may be exposed [Henry W 94],

The initial development of Prompter began in September 1996 and was completed in February

1999. I joined the School of Computer Applications in DCU (Dublin City University), in the

early stages of the project during the architectural design phase. I was involved in the

construction and writing of the architectural design document and the detailed design document. I

was also the main programmer for the individual components within the daemon architecture, the

interface between the architecture and the rest of the tool and finally in the integration of

intelligent agents into the system. A number of prototypes were developed which allowed me to

refine the architecture and produce an improved design.

As mentioned previously, software project management and specifically software project

planning is the domain of the Prompter tool. It is concerned with the entire development process.

Software project managers must be aware of many things in the course of their jobs, all of which

may affect the outcome. A definition of project management can be found at [ThayerR 88].

Some areas of concern to Software Project Management include [PressmanR 94]:

- measurement

- estimation

- risk analysis

- scheduling

- tracking

- control

2

i

These measurement activities allow managers to better understand the direction in which the

project may be going and thus foresee potential problems. As this is an on ongoing process

throughout the development of the project, it can become difficult to keep track of all aspects of

the project at any one time. !
!i

1.1.2 High Level Prompter Architecture

This section contains an overview of the architecture of the Prompter tool. Figure 1.1 highlights

the tool’s three logical components: 1

II
t
f

I
I

• The GUI (developed by Objectif Technologie): This is the user interface to the tool and is

responsible for all communication between the user and the tool. !
|

• The K ernel (developed by Catalyst Software): This contains the central functionality of theI
tool. It is responsible for the scheduling of tasks and the processing of information. It also

acts as an interface between the GUI and the daemons. |
I
!

• The Daem on A rchitecture (developed by School of Computer Applications in DCU): The

daemon architecture, for which I was the main developer, is a critiquing system in itself,

providing the dynamic knowledge for the tool. A critiquing system critiques a user on what

they have performed and illustrates how they may overcome their problem. It is similar to the
I

idea of an expert system but is more dynamic in that it works with the user to [develop aI
solution instead o f providing suggestions. Contained within this architecture are a number of

sub-components called daemons (described in full in chapter 3) which are responsible for the

advice generated by the Prompter. These daemons are mini experts in the field oif software

GUT
Prompter

Kernel interfaces

Daem on
Architecture

Figure 1.1 Overview of Prompter tool

project management, which provide advice if requested or criticise what the user is
|

performing, if a potential problem is discovered. i
I
I

As can be viewed in figure 1.1, each of these components is separated by an interface. This

allowed each to be designed and developed independently of the others. It also allows\PrompterI
be an easily distributed tool. Each components can be resident on a different host on a network,

and having some underlying networking language handling any information that crosses the

interfaces. As a results the GUI may be situated on a number of machines in a network, with the

kernel and daemon architecture situated on a high powered server in another area of the network

This results in a light weight front end to the tool.

i
The tool itself helps guide a user through some tasks associated with the beginning of a project!
such as activity planning, resource allocation and cost estimation. If the user encounters someII
problems or feels they are unable to make a decision they can ask the tool for advice. The

daemons are consulted and supply advice based on its knowledge and the information the user

has entered. A good conceptual model of this process [Prompter 97] can be viewed in figure 1.2

Domain
Exp

^ Íio a ís^

Users
Proposed
S nli i f inn

Critique

Tools
Proposed
Solution

User
Model

Figure 1.2 Process of Critiquing within Prompter I
!II

1.1.2.1 Daemon Architecture !I
My role within the project was to design and develop this daemon architecture j from the

conceptual level to a fully working component of Prompter. This meant performing j the initial

design, the detailed design, the implementation and testing phases of the architecture. I
iI

Figure 1.3 gives an outline of the conceptual model of the daemon architecture. It is a| critiquingI
system which retrieves information from the kernel about what the user is doing, and criticises it

or provides advice on what to do next. !

Daemon
Architecture

Network
Communication layer

Daemon Blackboard
Supervisor structures^

Network
Communication layer

Daemon
Library

Daemons

Kernel

Figure 1.3 Overview of Daemon Architecture

The components making up the daemon architecture are:

• The Daemon Supervisor: The main controller of the architecture and is responsible for all

communication between the architecture and the rest of the tool as well as the execution of

the daemons.

• The Daemons: (intelligent agents) are the mini experts that perform the critiquing process.

Each daemon is an expert in some specific area of software project management.

• The Daemon L ibrary: This module is responsible for the maintenance of the daemons

including their actual file storage, their versioning etc. This module is also responsible for

their retrieval when they are available to execute.

• The Blackboard: This component helps monitor the state of all the daemons at any one time.

This is by far the most complex structure in the daemon architecture. At any stage the

blackboard holds the state of all the daemons in the system, this is to ensure that daemons do

not execute over and over if they have not received any new information. This blackboard

also holds the last piece of advice each daemon gives.

• The communication layer between the daemon supervisor and the daemon library allows the

daemons to reside on a different machine to the rest of the tool if necessary.

5

1.2 Thesis Outline

Chapter 1 gave a brief overview of the Prompter tool and the area for which the tool was

designed for. It gave some background to the Prompter project, such as who the project was

funded by and previous projects that led to this tool’s development. The architecture at a high

level was outlined including a description of where my work fitted in. Finally, an outline of the

major structure in the daemon architecture was given.

Chapter 2 offers an explanation of what a critiquing system is and its advantages over expert

systems. Some critiquing systems (in development at the time of writing) are described with an

overview of their architectures. The systems covered include CDMCS, Riskman, TraumTIQ and

ICADS. Their architectures are outlined at a high level and their operations are discussed. From

this discussion, I was able to construct a conceptual model of a critiquing system to illustrate

what features are common to these systems. This model then helped me in the design of the

daemon architecture.

The daemon architecture uses a concept called critiquing agents to providing advice to user and in

chapter 3 this is explained. They are described and contrasted against other types of agents

available. This chapter finished with a discussion on how these agents fit into the architecture and

the structures required to allow them to operate.

Chapter 4 explains the detailed design of the daemon architecture. I used Object Oriented

diagrams to design each component and in this chapter these diagrams are explained. This chapter

also explains how each component communicates and operates with the rest of the tool and with

the agents.

Chapter 5 discusses some of the implementation issues and some of the problems that were

1 encountered during the development phase. To help understand some of these problems I thought

it necessary to explain the implementational languages. There is an overview of programming in

CORBA and how it affects the efficiency of the tool and an overview of Java and its advantages

over other languages. Some other issues that are also dealt with include whether the choice of

language was a good one, whether or not the prototype should have been multithreaded and a

general evaluation of the implementation strategy is given. This chapter concludes with a

discussion on what has been learned during this phase of the development.

6

Chapter 6 contains the main conclusions of the thesis. It discusses the various merits of the

design, the weak points of the design and finishes with a discussion on the possible future work to

improve the architecture.

7

2. An overview of Critiquing Systems.
This chapter outlines how a general model of a critiquing system was constructed and how it

was used to aid in the design of the daemon architecture.

2.1 Introduction

Since I decided that the daemon architecture was to mimic a critiquing system, I needed a

general model to base my design on. In this chapter I outline how I developed this model by

explaining the architectures of a number of critiquing systems and highlighting their common

components and how they interoperate. This general model is then explained and how it

relates to the daemon architecture.

2.2 Overview of Expert Systems

An expert system is a system that employs human knowledge to solve problems that

ordinarily require human expertise [TurbanE 95]. They were first developed in the 1960s with

early attempts producing general-purpose problem solvers. By the 1980s they had become

quite popular as a means of assisting a user with their problem solving. They remain quite

popular today.

These systems provide the user with advice or plans of action on how to overcome a problem

or perform a task. A definition o f an expert system is as follows [RichE 91]:

a system which exploits a number of reasoning mechanisms for the purpose of

solving a task or problem i.e. expert systems as well as expert advisory systems

compute their own solutions and offer these to the user as a solution to the problem.
They do not work with the user or examine the user’s solution however.

Expert systems are generally composed of two major environments, the consultation

environm ent and the development environm ent. The purpose of the development

component is to provide the facility for the user to add to the knowledge base of the tool. The

consultation environment assists the user m obtaining expert advice and knowledge, based on

the information they inputted.

Thus, a user partakes in a question and answer session in the consultation environment, with

the user providing the problem specific information to the system. From this the system

makes inferences and suggestions to the user in the form of a plan of action as to what to do

next.

There are a number of problems that have been encountered in developing and using these

types of systems:

• There is no guarantee that they will in fact reach a conclusion at all thus leaving the user

with no advice. This renders the tool useless in some situations.

• As a result of the above point, expert systems only work well in situations with a narrow

domain.

• For expert systems to work well they must be experts in their area. For this to be the case,

the knowledge they have at their disposal must be collected from human experts in the

same area. However many experts do not agree on several issues and thus the knowledge

base is biased toward the experts consulted.

• As above, if the expert system provides a plan of action to overcome a problem there is

no guarantee that it is lh e best way. In other words the approach of experts to situations

may vary greatly.

In summary, expert systems are highly useful in many areas of problem solving. However

once the domain becomes relatively large, the risk of it being unable to produce useful advice

for the user becomes greater. In addition to this, the plans produced by the system are static,

the user must stick to it rigidly or else the system is of no use. However a critiquing system is

a more dynamic model that works with the user in developing a plan.

2.3 Overview of Critiquing Systems

A Critiquing system allow the user to work with the system to highlight problems or develop

solutions to them instead of provide plans that they must stick to. For this reason it was

decided to model the daemon architecture on such a structure.

It provides a criticism of a user’s plan based on all knowledge at its disposal and can also

advise them on different decisions. However it is up to the user to make the decision in the

end. This process of critiquing is described below: [SilvermanB 92]

The user, when using the system provides two sets of data to the system, the

first set of information is the problem description. This data may contain the

design requirements. The second set of data is the user’s plan o f action. This

9

is the user’s procedure for solving the problem e.g. the final plan of a

building’s structure or the steps involved in treating a patient in a hospital.

This data is then analysed by the critiquing system to check the correctness
efficiency, clarity or workability of the plan in relation to the problem and to

its one suggested plan.

As stated above, the general model critiques before during and after the user’s input. It

provides feedback, criticism, and justification for this criticism, so the user may improve their

solution. This is an iterative process and occurs several times in a project’s life. It is this

concept of feedback that distinguishes critiquing systems from other types of decision based

systems such as expert systems and expert advisory systems. It is also an ideal model to base

the daemon architecture on.

Some advantages critiquing systems have over expert systems [GemerA 93] are below:

• Acceptability: It may be easier for a user to accept a critiquing system over an expert

system since the user views the system as helping their solution, rather than the expert

system approach, which can be viewed as forming the plan which the user follows.

Also, instead of the user taking a passive role, they are leading the critiquing system

through the problem at hand, thus the system only prompts them when a problem

occurs. Finally the solution produced is user centred and so individual to them.

• Flexibility: In general when dealing with real life situations, there is more than one solution

to a specific problem, thus critiquing systems are better able to generate an acceptable

solution dependent upon the user, and the knowledge base. Subjective judgement is

also a real consideration which expert systems find extremely difficult to model and

is yet so important in decision making.

• Expert user: The critiquing system sees the user as an expert with its own knowledge and

beliefs and is therefore capable of making their own decisions. However the expert

system provides no facility for the user to provide an input to the final solution. They

can only accept it or reject it.

In the design the daemon architecture for Prompter, it was necessary for me to firstly create a

conceptual model of a critiquing system to base it on. This required the surveying a number of

critiquing systems available (at the time of writing), and the extraction of their common

components.

10

Those systems studied were:

• Riskman: critiquing system in the Risk Management Domain

• Traum TIQ : System to provide critiquing to a physician dealing with trauma patients

• ICADS: Intelligent Critic System for Architectural Design. A system to help in all areas

of building design

• CDMCS: Composite Design and Manufacturing critiquing system. A Critiquing system

dealing with composite materials

These systems were chosen because each demonstrated a different type of critiquing system.

One system provided critiquing in real time, one provided critiquing using highly

mathematical methods etc. This ensure that the model I developed was not based on a specific

type of critiquing system or on a specific domain.

From these systems, a number of common components were extracted:

- Plan generator: converts the user’s data into an internal representation. This component

is also responsible for generating a plan which is passed to the following component.

Differential Analyser: This component compares the user’s plan to the internal

knowledge or the generated plan.

Knowledge: the internal knowledge of the system.

Dialogue generator: This generates the output advice in a more acceptable format.

Mini Experts: These experts provide the critiquing process.

These headings are the most commonly used components in these systems and were taken

from general critiquing system papers e.g. [SilvermanB 92].

11

2.4 Intelligent Critic System for Architectural Design (ICADS)

2.4.1 Introduction

The majority of information relating to this system was taken from [ChunH 97], It is a

Computer Aided Architectural Design system called ICADS for use in the area of building

design. Critiquing systems are beginning to be used more frequently in this area.

This system is similar to many Intelligent Computer-Aided Architectural Design (ICAAD)

systems, in that it provides the basic tools to draw plans (in this case floor plans), create 3D

models of objects etc. However it also has extended capabilities with the introduction of AI

techniques which provide the ability to offer advice and criticisms to the user on their designs.

These AI techniques take the form of critics or as they are called within this system, wizards.

Each critic, is an expert in a particular area of building design. These critics have the power to

criticise a plan if necessary and to offer alternative solutions.

The main research focus of the ICADS project according to the designers was “to develop a

spatial representation that is rich enough to capture qualities o f spatial relationships that are

important in reasoning with government regulations and design principles”. The system is

derived from work performed on other projects such as EKSPRO, Janus and NALIC.

However ICADS goes one step further in that it also has the ability to reason out the

relationships between object positioning e.g. placing a stairs in front of a door.

2.4.2 Architecture

The ICADS system architecture is illustrated in figure 2.1. It is an embedded system in that it

is attached to the end of a CAD software. It is not concerned with a GUI since there are many

systems available on the marketplace which already perform this task adequately.

This architecture is broken down using the above mention critiquing system components

outlined in the section 2.3:

Plan G enerator: where the CAD information is converted into a representation that can

be understood by the Critics and other modules

Knowledge base: where the knowledge is stored in the tool

The differential analyser: where the user’s plans and the critics suggestions are

compared

The dialogue generator: where the results are converted into information that the user

can understand

12

Figure 2.1 ICADS architecture

2.4.3 Plan generator: Spatial Analysis Component (SAC).

Critiquing systems use a plan generator to read in the user’s data and convert it into a

representation that it can understand. This information is then compared with the knowledge

the system has at its disposal.

Within the ICADS architecture, there are two main components or areas of expertise, the

Spatial Analysis Com ponent and the Critics M odule [ChunH 97]. The SAC is responsible

for analysing the drawing or plan to produce an internal knowledge representation of it. It

takes the graphical drawing from the CAD and converts it into an internal knowledge

representation that the critics can understand. This allows the critics to analyse this plan.

In general, critiquing systems cannot analyse the data the user is working with i.e. pictures of

the floor plan. The system must convert the user’s information into data that the critiquing

system can analyse. One of the components used to convert this data is the Spatial Reasoning

Module.

2.4.3.1 Spatial Reasoning Module

This module is responsible for identifying all objects in the drawing that the CAD system has

supplied [ChunH 97] and computing the relevant geometric information of each object. Also

contained within this module is a set of ICADS spatial primitives or special rules, which

analyse the data and extract spatial relationships etc. The result is a data set that fully

13

describes the plan the CAD has supplied. The relevant domain information about the objects

is taken from the Object Knowledge Base. This stores all the static knowledge about objects.

The resulting data is stored or output to the Current Fact Base.

2.4.4 Differential Analyser: Inference Engine

The critiquing system uses the “Differential Analyser” as the core of its intelligence. The

user inputs the data set of their project (in this case the object), their types their locations etc.

The Differential Analyser consults the Critics and the Static Knowledge using the problem

specific information and constructs a plan of its own. This plan is then compared to the user’s

version. Obviously the two plans will never be identical and some leeway is required. Thus

only differences beyond an acceptable threshold are criticised.

In the case of the ICADS, the inference engine is responsible for relating the information

stored within the Current Fact-Base to the rules within the critics. This structure

communicates with the critic modules. The critics check the designer’s use of specific values

and if a problem is found it will try to supply advice on how the problem may be overcome.

2.4.5 Knowledge Base

In this system there are two forms of knowledge base represented, Static and Dynamic

knowledge which serve different purposes. The Static knowledge is stored in the Object

Knowledge base and the dynamic knowledge is stored in the critics. These critics are

represented in a rule format that takes information from the user and filters it through a

number of rules that deal with different aspects of architectural design [ChunH 97].

This static information is stored in the Object Knowledge Base, which the system needs to

access when analysing the plan the CAD has supplied. It is a repertoire of information on

possible objects that the system can accept.

2.4.6 Mini Experts: Critics

These mini experts perform the dynamic critiquing of the user’s plan. They form the second

component of the critiquing process in this system. They consist of the Critic’s rules and its

knowledge space and are capable of analysing the data and proposing a plan or forming an

intelligent criticism of it. These critics analyse the data through the inference engine and pass

any advice/justification back to the SAC.

14

The rules within each critic are supported by a number of rules-of-thumb and basic

guidelines, which have been entered into the Knowledge base. An example of a critic of this

system [ChunH 97] is the Interior Design Expert (IDX) critic. This rule concerns the max and

min size o f various objects in a building.

The minimum width of each fire exit route is 900mm.

The minimum width of each exit door is 750mm.

The developer categorises these critics into Direction of Objects, Proximity of Objects,

Spatial Relations of Rooms, Dimensions of Objects and locations of Rooms.

As a result, if the suggestion of the rule is followed, it leads to the changing of spatial co

ordinates. If the designer ignores this advice, the system must not continually prompt them

about the fact.

The knowledge for these critics is encoded in rules which the inference engine can interpret

and then easily apply to the information in the Current Fact-Base. The critic itself is built with

the goal of acting as the designer’s regulation advisor, and only informs them when one of

these rules have been broken. It then provides an explanation of how the problem may be

overcome. The rules themselves have different levels of importance so if a government rule is

broken, the advice must be taken. However if a suggestion of a lesser priority is not taken the

system must accept the decision.

2.4.7 Dialogue Generator: Design Suggestions

When a rule fires, the results are displayed in textual messages back to the designer. This is

due to the fact that this system was still in development at the time of writing this thesis. The

developers stated however that they planned to introduce the potential to allow the critics to

modify the drawings automatically to satisfy rules. However there was little documentation

on this component of the tool.

15

2.5 Composite Design and Manufacturing Critiquing System

CDMCS

2.5.1 Introduction

The outline of this system was taken from [CDMCS 92], It was developed by the University

of Alabama and Tulsa and the “Research, Development and Engineering Centre” (RDEC) of

the U.S. Army Missile Command.

It was designed to assist engineers who may not be familiar with composite technology to

evaluate the advantages and disadvantages of using it for a proposed component design, and

also to provide technical support to designers in the area of “productivity and engineering

analysis”. It is an attempt to provide a broad base of manufacturing knowledge, which

provides engineers with up to date advice in the production/manufacturing discipline. The

CDMCS critiques a design and supplies an account of the strengths and weaknesses of the

proposed design.

A composite material can be described as a combination of two or more distinct materials

differing in form or composition on a macro-scale. When developing some material,

designers generally do not have a specific set of criteria for what each part of the object

should be made up of. Generally they have a set of non-specific requirements e.g. the

windings of a filament may not have a set value but instead have a range between two values.

This is known as the Fuzzy criteria of the object i.e. the data and the evaluation criteria are

“spread” or “fuzzy”. Thus any number of possible combinations can lead to the solution.

2.5.2 Architecture

This system differs from the previously mentioned system, in that it utilises a more

mathematical technique as part of its expertise. These mathematical models [CDMCS 92] are

called metrics. They are used as a criterion to measure the correctness of the result of a piece

of information and are grouped in levels of importance in the differential analyser. The

architecture of the system can be viewed in figure 2.2 below.

The designer’s data and the expert metrics are entered into the differential analyser. This

compares the two plans by passing them through three levels of metrics, where the first level

is the most important having a large effect on the result, the next level having a lesser effect,

16

and so on. The resulting evaluation is then presented to the user after some processing by the

Dialogue Generator on the results.

Figure 2.2 CDMCS architecture overview

2.5.3 Mini Experts: Metrics

Metrics describe the materials used and how the knowledge is related, to provide a measure of

the “correctness” of a given process. They are composed of definitions of relationships

between design parameters, i.e. domain data supplied by the designer’s plan. These metrics

are organised into a hierarchy, which is a reasoning mechanism that utilises qualitative and

fuzzy knowledge, and operates on these metrics to produce the critique on the design.

Metrics are as varied as the knowledge they contain and are the core of the system. Realistic

problems deal with various type of metrics, which can be qualitative, quantitative, Boolean

and conditional. An example of a boolean metric can be seen below.

If Hole is yes, THEN
Tolerance / Wall-Thickness >10%

The result of each metric is then considered i.e. how important the result of a specific metric

is to the entire design. If it is not that critical then it may be ignored. The metrics are

classified into three levels of importance [CDMCS 92]:

Requisite: These metrics in general have only two possible outcomes and represent

conditions that must occur in order for the design to be realistically considered. If a metric

is not satisfied then the design is rejected. These metrics contain the most important

information in the system.

Core: The next level of importance. It is essential that they are to some degree, accepted.

The degree of satisfaction directly effects the outcome. It is at this point that the notion of

the fuzzy criteria associated with the metric is introduced.

Enabling: The lowest level of metrics. They alter the basic correctness of the design but

only in very small ways. These metrics are not essential to the success or the failure of the

design.

17

2.5.4 Knowledge Base

Figure 2.3 was taken from the project overview of all the stages of composite product/process

design. It is important to note that this hierarchy was still under development at the time of

writing this thesis. The diagram shows a number of metrics and how they fit together. Some

examples of the metrics are given below [CDMCS 92], This taxonomy is displayed to show

the complexity of the knowledge that must be represented. Each box is a metric that may not

appear that important on its own but when a number of these metrics are collected together

the systems can become quite powerful. There also exists a mechanism which operates on the

structure to produce an overall state of the system. This mechanism is called Satisfaction.

2.1 2.2
Primary
Materials

2.3
préfabrication

2.4
Tooling

2.5
Primary

Processing

2.6
Post

Processing

2.7
Finishing

2.8

_ - ---------- " " ^ 1 ——— ------^ Is_a\ Links *” * '— —

2.5.4 2.5.5
Ts Filament

Winding

2.5.6
Filament
Winding

2.5.7
Compression

Molding

2.5.8
Sheet

formatting

2.5.9
Pultrusion

2.5.10
Resin Transfer

Molding

2.5.11

a Links

2.5.3.1 2.5.4.1 2.5.5.1 2.5.6.1 2.5.7.1 2.5.8.1 2.5.9.1 2.5.10.1
Attribute Attribute Attribute Attribute Attribute Attribute Attribute

Metric Metric Metric Metric Metric Metric Metric

2.5.11.1

Domain Expert Editor
2

Critiquing
By Metrics

iniciaL-üw
End User Input Explanation

Figure 2.3 The CSMCS taxonomy

2.5.5 Differential Analyser: Satisfaction

The key element adapted with this system for the critiquing of a design is the concept of

“Satisfaction”. Satisfaction is the measure o f the degree to which some data item is contained

in a metric. It is a function of both the input data and the value given by the designers to the

metric. Thus since there are three levels of metrics, there are three levels of satisfaction. For

the core metrics and enabling metrics the satisfiability is determined by probability, since

these are simple 0 or 1 outputs. An example of one of these formulas is as follows.

Si = y)P*(x)Py(y)M(x, y)dxdy

Where W is the unitizing weighting function, P is the density function and M is the metric

satisfaction function. The output of this function in graph format is illustrated in figure 2.4

with the area of satisfaction being the shaded area or also known as the area of variable

18

acceptability. After the value has been acquired it is possible to evaluate the importance of

this satisfaction in terms of the importance of the particular metric.

Figure 2.4 Graph showing the area of satisfaction of a metric

These functions are a form of thresholding. A breakpoint is determined for the metric, which

represents the point at which a metric is assumed to become unlikely to be satisfied. Each

metric has its own breakpoint which the developers determine.

Thus metrics are capable of evaluating information against the knowledge they have at their

disposal and from this, produce a result. This result is then converted into useful advice for

the user. This is performed in the dialog generator.

2.5.6 Dialog Generator: Aggregation

This is the final stage in the critiquing process. The purpose of Aggregation is to collect the

satisfiability values received from all three levels of metrics to compute one overall value.

The method of aggregation is defined as the sum of the averages of the core and enabling

' metric fuzzy function evaluations. This value is mapped to the success or failure state. There

the results are transformed into useful advice and returned to the user through a GUI.

19

2.6 Critiquing Trauma Management Plans On-Line: TraumaTIQ

2.6.1 Introduction

The information concerning TraumaTIQ came from a number of sources [GemerA 93]

[GemerA 94], It is an extension to the Traum A ID system, which is a decision support system

for the delivery of trauma care during the initial definitive phase of patient management.

Although TraumaTIQ is not part of this system it is responsible for interpreting the proposed

actions in the context of the current state of the patient and thus producing a critique of these

actions.

The TraumAID project was developed by the University of Pennsylvania to assist a physician

during an initial “definitive management phase of patients with severe injuries”. At the very

core of this system, data about the patient’s condition is monitored and advice or criticism

provided to the physician about the plan of action. Again the planner must schedule all the

above actions and procedures so as to produce a plan for the physician to consider.

This system differs from many others including those discussed already, in that most systems

perform critiquing during an off-line consultation session. The user in this situation will not

have the time to be sitting at the screen. Their attention is only drawn to the output. Thus for

the system to be kept up to date requires constant attention and the amount of time available

for executing actions is also limited. These requirements lead to a system that is task centred

rather than system centred.

2.6.2 Architecture

An overview of the system is given in figure 2.5. The critiquing process in the TraumaTIQ

system can be activated in a number of ways e.g. when either the physician orders some

actions to be performed or new information or advice upon which route to take is requested.

The system is divided into three main components:

• Plan Recognition: which allows the system to infer the likely goals of the physician’s plan

in relation to the patient’s condition.

• Plan Evaluation: identifies any flaws or potential problems within the physician’s plan and

any large deviations between its plan and the physicians.

• Dialog Generation: Translates all the results found into useful information that the

physician can use. It must be prioritised so the most critical information comes first.

20

The critiquing process is triggered whenever a new piece of relevant information is made

available to the system. The cyclic appearance of the architecture is to ensure that as new

information becomes available, the entire system is updated. The resulting critiques are

generated based on the complete set of orders that are pending at any one time.

2.6.3 Plan Generator:.Plan Recognition

This system uses information about the situation in which the plan is being developed, in

order to infer the plan the physician will most likely use. This decision will be based upon the

plan that finishes and the minimum number of unsatisfied goals at its end. The reason for this

is the user cannot be treated as a co-operative provider of information but what can be

observed “through the keyhole” is actions that have been performed and orders the physician

has placed for actions.

An advantage of this system is that it uses a form of knowledge representation known as

contextual knowledge along with basic dom ain principles to guide the search for an

explanation plan. Thus if the system has a goal it considers relevant, it tries to use a number

of principles outlined in the following algorithm as an explanation for the physician’s

proposed actions.

IF an action is ordered by the physician THEN

check if it is part of TraumAID’s recommended plan as a means of satisfying a goal

IF action is in the recommended plan THEN

add the action to the representation of the physician’s plan

ELSE

DO determine whether there is a relevant goal that might address what the action involves

21

IF any goals that might lead to the action are present m the TraumAID’s set of active goals THEN

assume that the action is being performed to address the goal

ELSE IF there is no relevant goal to explain why the physician has ordered it THEN

check whether any of the possible goals motivating the action are part of a currently

active diagnostic strategy

IF no relevant goal or strategy is found THEN

add action to the representation of the physician’s plan with no goal attached

IF the system only knows of one goal that would lead to performing the action THEN

assume the action is addressing the goal.

2.6.4 Differential Analyser: Plan Evaluation

The plan evaluation detects flaws or mistakes, misconceptions and disagreements with the

physician’s plan in comparison to the suggested one. This can be performed using two

approaches called the differential and the analytical approaches.

The differential approach compares the physician’s plan with another plan which could be a

broadly acceptable course of action to solve the problem. So if it is unhappy with the plan

suggested, it will have at least one other plan to recommend.

The analytical approach is described as a workspace of possible plans within which a

solution is more or less acceptable. It allows the system to deal with domains, where

variability and subjectivity are introduced into the decision making process i.e. since it is

capable of generating its own solutions, it can operate on problems where the domains are too

complex or constrained to be solved using simple decision rules.

Thus the differential evaluation, explaining why its solution is the correct way to approach the

problem, and the analytical constraints, generating explanations as to what is wrong with the

users plan, are combined. By comparing the model of the physician’s plan with the plan

developed by TraumAID, TraumaTIQ is capable of recognising four different types of

discrepancies [GemerA94]:

• Omission: if the physician is ignoring some specific goal.

• Commission: if the physician orders some procedure, which the system does not feel is

constructive or useful

• P rocedure Choice: when the physician had ordered a procedure to tackle a goal or problem

which the system considers the wrong choice and that better procedures exist.

• Scheduling: The system considers the physician is addressing lesser problems when more

pressing ones exist.

22

2.6.5 Knowledge

As outlined in the above algorithm in section 2.6.3, the knowledge base is stored in an

hierarchical structure through which the system navigates. This knowledge contains a set of

plans on how to deal with different situations. The system has a set of guidelines to interpret

orders that do not correspond to its knowledge of possible plans.

Knowledge is then used, after the differential analyser has finished, to filter the output, so that

non-trivial errors will be critiqued, using the magnitude of the different types of errors that

have occurred. This method of filtering is implemented by separating errors into one of three

categories: Tolerable, Non-Cntical, Critical. This knowledge is stored in an error taxonomy

This taxonomy classifies these errors by their potential impact on the patient’s outcome.

Using this knowledge it calculates an expected disutility value for each error classification.

This information is then given to the dialog generator as feedback to the user.

2.6.6 Dialog Generator: Critique Generation

This component involves the generation of advice to the user from the information retrieved

from the Plan Evaluation stage. It is considered to be one of the most important stages since,

if the advice is not presented correctly then the physician may become confused or start to

ignore the system altogether. It is separated into two stages:

Strategic generation involves determining the content and structure of the output. The

output itself is driven by the plan evaluation stage, information from omission errors,

Commission, procedure choice and scheduling errors. Depending oh the level of urgency

of these errors each piece of advice will be given an INFORM or WARN flag. In addition

to this the system must supply justification information to support this criticism.

Tactical generation, on the other hand, is related to displaying the critique to the

physician. It was considered that individual tokens could relate to a string such as:

Close_Chest_Wound <— > “ closing the chest wound”

However this does not allow these tokens to fit into a lot of varied sentences. To improve

the quality of the output, a more general semantic decomposition of these concepts must

be available. This representation together with an appropriate grammar and lexicon, is

used to generate sentences. Combinatory Categorical Grammar as this is called is a

functional head-driven, top-down approach to tactical grammar [SilvermanB 92].

23

2.7 A Critiquing System Architecture in the Risk Management
Domain: Riskman 2

2.7.1 Introduction

The information for Riskman 2 was taken from the following sources, [PowerJ 94] [HenryW

94]. It was developed by the School of Computer Applications in Dublin City University

(Ireland) to provide decision support for Software Risk Management. Riskman 2 was

developed as a research project funded by the Irish National Software Directorate in order to

develop a Risk management case tool. It is based on previous tools such as Riskman 1 and

IMPW [Verbruggen 87]. Its goal was to help a project manager “walk-around” a proposed

software development project and to help them anticipate any major risks to which the project

might be exposed. Riskman 2 was one of the initial tools that acted as a starting point for the

P3 project. Prompter is a development on the Riskman concept into the wider field of

Software Project management.

Similar to the previous systems, the user enters information dealing with their project which

passes to a collection of mini-experts or daemons in the field of risk which analyses this

information. The system stores the results or advice in a structure called a Blackboard. This

advice takes the form of text, which is embedded in the daemon and provides the user with

ideas about reducing the risk factor of their suggested design. These daemons also supply

justification for the advice if the user requires it.

2.7.2 Architecture

The basic architecture of the Riskman2 is based upon the lessons learnt form the Riskmanl

project, which was a rule-based system. The architecture for Riskman2 is both flexible and

could readily be enhanced. The architecture [PowerJ 94] can be viewed in figure 2.6:

24

Figure 2.6 Architecture of Riskman2

2.7.3 Knowledge: Risk Taxonomy

The project Risk Taxonomy is a description of the various types of risk a project can be

exposed to. The Riskman2 project categorises its taxonomy into five groups. One of these

categories, Technical Risk, is illustrated below in figure 2.7 to show how the knowledge is

represented. This class can be broken into a number of subclasses.

Technical
Risk

Resource
Constraints

Available
Technology

I Development
1 Approach

Requirements

Figure 2.7 Subclasses of the Technical Risk class

This representation allows the easy addition of new categories to the knowledge base. The

differential analyser would then consult this taxonomy, when the user presented information

to the tool.

2.7.4 Differential Analyser: Risk Analyser

This is the heart of the tool where the user’s decisions are analysed and critiqued. To perform

this task there are a number of components such as the Daemon Library, the Blackboard, the

Risk Taxonomy, and the Daemons themselves.

25

2.7.4.1 Mini Experts: Daemons
A daemon is defined as an individual expert in some specific area, of Risk. They hold all the

knowledge about their specific area. For each class of the Risk taxonomy illustrated above,

there exists at least one mini expert. When Riskman2 analyses a project’s risk it lets the

daemons examine the user’s project information as well as the outputs from other daemons.

They compare this information with what is stored in their knowledge base, and criticise it if

necessary.

These daemons are controlled by an Inference Engine (IE) situated m the daemon library.

This IE passes the user’s data into the daemons and processes any advice they produce.

2.5A.2 B lackboard

A blackboard is a problem-solving model, used for the purpose of allowing a number of

mechanisms to communicate [EngelmoreR 88]. The Riskman2 developers described it as a

system, which uses multiple independent knowledge sources to analyse different aspects of

complex problems. These independent knowledge sources are the daemons in the system. For

every element m the above taxonomy there exists a daemon which is the expert in that area,

and for every daemon there exists an area for it in the blackboard. A partial taxonomy

structure in the blackboard structure can be viewed in figure 2.8 below.

On the blackboard the specific areas, drivers and respective factors of the taxonomy are

represented. Each daemon contributes its information or advice to the common workspace

and at that point other daemons may take it and use it to generate more information i.e.

blackboards are composed of solutions from component solutions [HenryW 94],

Figure 2.8 Blackboard structure for Riskman2

A blackboard however must have some form of organisation imposed upon it. These daemons

cannot write to it anywhere, or the result would be chaotic. The blackboard in the Riskman2

26

project is hierarchically organised into various levels of analysis. Information associated with

objects on one level serves as input to a set of knowledge sources which place new

information in other levels. When a daemon has performed its calculations it posts its results

to the appropriate place in the blackboard. Every daemon has its own allocated space or slot.

Thus the daemons will know where to look if they require information.

2.7.4.2 Daemon L ib rary

This component is responsible for the storage and upkeep of the daemons themselves and to

act as an inference engine to the daemons. An inference engine can be defined as a

mechanism for manipulating rules from the knowledge base and drawing conclusions and

inferences from them with respect to the data from the project. The inference engine chosen

for this system is a forward chaining production rule system. The rules take the form of

simple IF statements which provide the bulk of the domain dependent knowledge in most

expert and critiquing systems.

These rules are contained in a daemon or mini-expert system, and are parsed by combining

the rules in the daemon with the data from the user to produce a result.

2.7.5 Dialog Generator: Risk Analyser Reporter

When daemons finish their execution, the Risk Analyser Reporter delivers the final report to

the user in a concise and clear manner. The developers specified that this output should

contain a number of factors e.g. Risk Area, Nature of the risk, justification for the concern,

plan to remove the risk, etc.

There are two mechanisms used to produce the output, breath-first and depth-first traversal.

B reath first Traversal: this is traversal of the blackboard hierarchy as a breath first level

to provide the user with an overview of all the risks that are of concern in all areas of risk.

Depth-first T raversal - if the user requires a more detailed explanation of a particular

area then the search continues down that area of the blackboard only, resulting in all the

risk concerns that led to the conclusion.

27

2.8 General model of a Critiquing System

2.8.1 Introduction

From the above-mentioned systems it was possible to see that they have a number of concepts

in common. In this section a general structure for a critiquing system is illustrated. This model

acted as a base in the design of the daemons and the daemon architecture.

The general model of a critiquing system involves a user inputting data and allowing the

system to provide feedback, criticism, and justification for this criticism to the user. In

addition to this, many systems come with static advice built into a repository of some kind.

This advice is used during critiquing and also before the user begins. Thus, most critiquing

systems have a knowledge base, a mechanism for generating a plan, a component for

comparing these plans and finally a mechanism for turning results into advice.

2.8.2 General Model

The general model I developed is illustrated in figure 2.9.

User Work Environment

Figure 2.9 Overview of a Critiquing system

2.8.2.1 Plan Generator

The first stage of most critiquing systems is the “Plan Generator” which causes the system

to develop its own plan. A plan is generated from the user’s information and passed to the

Differential Analyser. Some systems use their knowledge base to generate a default plan

28

while others have a more dynamic plan generator. In the ICADS system, the plan generator is

the SAC component, which converts the user’s data into an internal representation and does

not involve the system generating its own plan. However, in the TraumaTIQ system there is a

specific plan generator which creates its own plan separate to that of the user.

2.8.2.2 Differential Analyser

The critiquing system uses the “Differential Analyser” as the core to its intelligence. They

input data relating to their project along with other relevant data from other systems involved

within the project environment. This allows the plan generator to generate its own plan of

action. The two plans (the user plan and the system generated plan) are then fed into the

differential analyser.

In general there are two mechanisms for creating a differential analyser which are

conceptually the same. In the first mechanism two plans are passed to the differential

analyser. It compares them by consulting the Critics and the Static Knowledge to decide

which plan is better, as is the case with TraumaTIQ. The second mechanism is to give the

differential analyser the problem specific information (the user plan) only and compare the

plan against the knowledge of the critics and the static knowledge as is the case with ICADS

or Riskman.

However there are rarely two plans exactly the same and so some leeway is must be given.

Thus only differences beyond an acceptable threshold are criticised. This is known as fuzzy

logic (used in the CDMCS systems).

2.8.2.3 Dialog G enerator

The differences are presented to the “Dialog G enerator” which converts them into

information useful to the user. This information usually contains justification for the criticism

and advice on how the user plan may be changed to incorporate these changes. The user

considers this information and if required a dialog session is started whereby the system and

the user “discuss” the results.

As a result of this “discussion” property, critiquing systems can complement problem-solving

systems with or without full knowledge of the problem space. They can provide criticism on

areas in which they have expertise and since the user is also considered an expert, the solution

is based upon a larger knowledge base than if the system had to solve the problem on its own.

29

The above statement about world knowledge hits upon one problem. Critiquing systems are

capable of critiquing without full knowledge and as a result the problem of guaranteeing the

correctness of the knowledge becomes a problem. How much information does the system

require before it can give correct advice? Silverman [SilvermanB 92] suggested a four-point

framework to reduce the chances of error occurring in the knowledge base. If any of these

tests fail then the body of knowledge is considered unsound. This plan is outlined below

• Clarity Test: All statements must be clear and unambiguous as they are easier to falsify and

therefore more testable. A statement is considered to say more, the more falsifiable it

is.

• Coherence Test: This tests the logical structure of statements and whether the result omits

knowledge about the problem.

• Correspondence Test: This test concerns the agreement of statements with reality i.e. if the

body of knowledge reflects the real world in relation to the problem at hand. This test

fails if one or more elements of the problem space are not represented within the

knowledge base.

• Workability Test: This test is to see if it is possible for the body of knowledge to lead to a

description of the problem and to check that there are no omissions. Silverman states

that critiquing is not a “sermon” but instead a case of verification and validation of

the body of knowledge. It requires a mutual exchange of viewpoints between the

human and the system.

These four points lead Silverman to the following principle [SilvermanB 92]:

“One can criticise knowledge in terms of its clarity, coherence, correspondence and

workability but if one of these tests fail to discredit the knowledge then the others are still free

to do so ... The principle is one of critiquing the credibility of the user task results, rather than
proving the correctness ofit”.

Although this knowledge is a very important factor in critiquing systems, a number of other

considerations must be taken into account before the user is presented with advice. For

example: What does a critiquing system do when it runs into conflict with the user? Should it

argue its case? Critiquing systems must interact with the user so that if it presents advice in

the wrong way it can be rejected. It is often not just the content of a critique but the way in

which the critique is delivered, or the author’s reaction to it, which can determine its
successful usage.

2.8.3 Knowledge

30

Gerard Fisher has made active critiquing the central focus of his research [FischerG 93].

Active critiquing can be described as the monitoring of designer actions and the active

interruption of the design process to point out errors, or suggest guidance [EckertC 95], Fisher

showed that passive critics of the user’s design were not requested early enough and resulted

in mistakes early in the design, which were costly to fix. Eckert [EckertC 95] suggests a form

of cntic known as Collaborative Critics for professional designers. It is a combination of the

two forms of critics where the system suggests advice when deemed necessary but in addition

to this the user can request advice.

2.8.4 Critics

Within this knowledge base, the static rules and standards are contained. This information can

be very useful before the user even starts. After this the more general information must be

stored in the form of simple rules such as

IF condition 1 THEN

statementl

ELSE IF condition2 THEN

statement2

END

If conditionl is true execute statementl else if condition2 is true then execute statement2.

Although there are more complex mechanisms for developing critics the above mentioned

mechanism still seems the most popular. Judging by the aforementioned critiquing systems

i.e. the ICADS, TarumaTIQ and Riskman, they all represent their critics this way, as they are

simple to construct and verify. However since their implementation generally depends on the

domain the language used, the complexity of the knowledge etc. their structure cannot be

generalised.

31

2.9 Summary

In this chapter a number of critiquing systems were described for the purposes of developing

a general model. The chapter began with an overview of an expert system which was then

contrasted with a critiquing system. This was followed by a description of the critiquing

systems used in the survey.

The first architecture was the ICADS system. This system demonstrates a model that fits in

well with the general critiquing system model. It demonstrates the use of separate critics that

specialise in a particular area of building design.

The next system discussed was the CDMCS system. This system was included in the review

because of its divergence from the normal critiquing system design in that instead of critics it

uses mathematical functions to model knowledge. However, even though it is different to the

previous system it still conforms to the general model.

TraumaTIQ was included because it operates in a real time environment. It deals with real

world situations in real time. It is a task centred system and must be able to adapt to situations

that occur outside of its control.

Riskman was the final system. It attempted to model a critiquing system for Software Risk

management. It was included because Prompter is a development on some of the its ideas.

One problem that was encountered during the creation of this study was the difficulty in

acquiring detailed information about commercial systems. This was due to the fact that most

of the critiquing systems designed today are produced for commercial use and not research, as

a result the design documents remain classified to the project.

In the following chapter, the mechanism by which the daemon architecture provides

critiquing is explained i.e. Intelligent Agents. It is shown how the general model developed

here was used to develop an Intelligent Critiquing Agent and the structures that were

necessary to integrate them.

32

3. Agents
The objective of this chapter is to explain the concept of software agents and the various types

available. Following on from this I describe how I combined the idea of an agent with the concept

of a critiquing system, to produce a number of agents that are capable of providing decision

support within an implemented prototype of the Prompter tool.

3.11ntroduction

With the advent of the Internet, the availability of knowledge contained within many different

types of system such as expert systems, databases etc. became much more accessible. It, as a

result, became more difficult to produce systems capable of accessing, incorporating or simply

taking advantage of this knowledge due to compatibility problems, various conflicting standards

and security issues. Thus the concept of the open architecture was bom. These systems were

designed to be easily distributed, platform independent, easily expandable, domain independent

etc. They could interact with knowledge bases or other systems of various types.

One of my goals was to make the daemon architecture as open as possible and one mechanism of

achieving this was, through the use of intelligent agents. Agents work on behalf of the user or

system, performing tasks such as information retrieval or database querying etc.

Open agent systems mediate between different types of programs and generate problem-oriented

solutions. In some situations agents reduce network traffic, provide efficient means of

overcoming the problem of incorporating legacy systems, and most importantly, they have the

ability to operate asynchronously and autonomously of the process that created them thus helping

developers construct more robust and fault tolerant systems.[LangeD 98]

The agent concept was adapted for the Prompter tool as a mechanism of storing and organising

the knowledge of the tool. Each agent contains information relating to a specific area of software

project planning and can execute on its own, offer advice when necessary and provide an easy

mechanism for the addition or deletion of agents from the knowledge base. They also allow the

architecture to remain distinct from the domain it represents.

33

3.2 Agents

The term Agent has been used for quite some time now without people fully understanding what

it is that an agent is expected to do. There is ongoing research into finding an agreed definition

for it. There are also those that do not support the use of agents and are sceptical of their problem

solving ability [PetrieC 97].

There have been attempts at a definition for agents. The examples below show how each

definition leans towards a specific type of agent and also illustrates how vague the language used:

- Intelligent Software Agents can be defined [CroftD 97]as software agents that use AI in the

pursuit of the goals of its clients.

A mobile agent is an active object that can move both data and functionality to multiple

places within a distributed system. [FarleyS 97]

An agent is a computational entity [Broadcom 97] which:

■ acts on behalf of other entities in an autonomous fashion

■ performs its actions with some level of proactivity and/or reactiveness

■ exhibit some level of the key attributes of learning, co-operation and mobility.

All these definitions describe an autonomous goal orientated entity that operates asynchronously

and may communicate with the user as well as with other agents with the purpose of helping the

user. However these definitions are quite vague due to the variety of areas in which agents are

found and the various tasks they perform. A better description of an agent is given in Danny B.

Lange’s paper [LangeD 98], an agent is a software object:

• situated within an execution environment

• possessing all, of the following properties:

reactive - senses change in the environment and acts according to those changes

autonomous - has control over its own actions;

goal driven - it is proactive;

temporally continuous - is continuously executing.

• And possibly possessing any of these orthogonal properties:

communicative - able to communicate with other agents;

mobile - can travel from host to host

learning - adapts accordingly to previous experience

believable - appears believable for the end user.

34

This definition allows us to pick out the specific properties that our agents can posses and even

though this definition is at a lower level, it is in no way closed. Thus for the purpose of the

Prompter tool the definition of an agent is [Prompter 97]:

... a fully encapsulated program (entity) which is capable of autonomous
asynchronous behaviour in some environment for a specific purpose (goal). They

have a knowledge base that allows them to manipulate information and also have

the ability to communicate with the Prompter tool.

These agents are reactive to a certain extent within the daemon architecture. They react when

information relating to them changes. They are autonomous i.e. execute on their own, they are

independent of the architecture itself and are also goal driven. There is no reason for these types

of agent to be mobile. However the architecture is open to the incorporation of these types of

agents if the situation ever arose.

3.2.1 How Agents differ from programs

There is a tendency to see agents as nothing more than a buzz word. In this section I will argue

that this tendency is misguided and that agents are more sophisticated independent entities.

Agents are based on the concept of reactivity in that they are not scheduled for execution by the

system but execute when they have something to contribute to the user. They have their own

thread of control and execution environment, which is not the same as programs or methods.

Within the Prompter prototype this is also true. Each agent is autonomous and operates

asynchronously of the system. Each is a mini expert which supplies information to the user when

advantageous. An agent is programmed with its own individual knowledge base, from which it

gathers information when supplying advice to the user.

Programs on the other hand are less reactive [Broadcom 97]. They are specifically scheduled or

called from code to perform a particular task. They only respond to what interface designers call

direct manipulation. Nothing happens unless a person gives the command. Functions and methods

only execute when called. The only information they have is what is supplied to them through

variables. When they finish, the results are passed back to the system. It is a very client/server

oriented approach. Although the code execution may not be static, it still conforms to the

35

client/server approach. They are not pre-emptive. They do not suggest their availability to execute

and as a result are not temporally continuous or autonomous.

3.3 Types of Agents

Since there is no hard and fast definition of what an agent should look like, the result has been the

production of a number of different agent types. Up until now a lot of agent implementation and

development has been focused on the area of the Internet and agent mobility. Some of these

agents are outlined below.

• Mobile agents - These are the most common form of agents. They have the ability to move

from machine to machine and shuffle their code and state with them when they move. So

when an agent is operating on a heavily laden machine it may be advantageous to move to a

different, less burdened machine. These types of agents are generally used as a method of

information gathering, travelling from server to server possibly querying many databases etc.

This is where the whole area of agent trust and security becomes important.

• D istributed Agents - These types of agents are mainly used to reduce load balancing and

can be distributed over a number of computers or processors on a network. This allows agents

requiring large amounts of processor time to search for a free processor or to be allocated a

dedicated processor, thus reducing the overall execution time of the system.

• M ulti-Agents - This category of agents is used when dealing with relatively large tasks or

goals. If a task is submitted by the client it can be beneficial for it to be broken up into a

number of subtasks which can then be handled by a number of specialised agents. These

agents then report back to their supervisory agent, which analyses their outputs and reports

the results back.

• Collaborative Agents - these agents interact with each other in a similar way to multiple

agents, however the concept of an agent’s autonomy is weakened. Here agents work together

to produce an output. They share knowledge about the situation and work as a team.

• Social Agents - (or anthropomorphism) involves the collaboration between humans and

agents. Some agents are being developed which can present themselves as human-like

creations to improve how humans interact with them [MaesP 97].

36

r~

3.4 Agents as Critics - Daemons

Now that the various types of agents have been discussed, it is possible to describe the agents I

developed within the Prompter tool. These agents have a number of properties similar to those

presented above but also have some that are unique to themselves. Each agent or daemon as they

are called in Prompter is a mini expert which monitors user actions and provides advice on

possible alternatives or potential problems that may lie ahead. This advice takes the form of a

criticism of the user’s work, as in a critiquing system, and a justification for its conclusions.

3.4.1 Agent’s Internal Structure

I developed a common architecture for the critiquing daemons (see figure 3.1). Contained withm

it are many of the components outlined in the general model developed in the previous chapter

such as a plan generator, differential analyser, dialogue generator etc.

The identification information relating to a specific agent is stored in a structure called the

daemon header. This header identifies the agent to the tool and contains information relating to

the area the agent is an expert in, what version number it is and other related information. It also

makes the job of sorting, storing and searching for agents much easier.

37

The core of the agent contains a number of rules that interpret the information given to it by the

inference engine. Here it performs the differential analysis on the user’s data by comparing it to

its own static knowledge base. Its output is then passed to its dialogue generator

This output is passed through a dialog generator which produces the advice for the user. I decided

that the best mechanism of encapsulating advice was using HTML as it allows the introduction of

bullet points, text manipulation etc. This advice is passed back to an inference engine which is

encased within the daemon architecture.

3.4.2 Criticism

This advice allows the user to be alerted to a potential problem within their project. I divided it

into a number of sections:

C ritique: a dynamic criticism of what the user has done this may be accompanied by advice

on how to overcome the problem.

Background: This provides some generic advice that may help the user know why the

problem has been highlighted.

Justification How the advice was generated. This tells the user why the advice is given.

B ibliography: A list of reading material that the user may consult if unsure or confused. This

is a list of papers, conference proceedings, books etc. that may help the user.

3.4.3 Agent Communication

There is no point in collecting a number of experts into a room if there is no organisation imposed

on them. There would be chaos and the advice supplied to the user would be irrelevant,

inconsistent and most likely out of date or supplied to the user at the wrong time. There are

several motivating factors behind why groups of agents need to be co-ordinated outlined in

[Broadcom 97], Thus I had to impose some form of architecture around the agents. I had a choice

of two basic concepts of approaching the design which I outlined below[GeneserethM 94],

D irect com m unication In direct communication, agents handle their own communication.

An agent can communicate directly with another agent. See figure 3.2. The advantage here

being, agents can communicate without the assumption of data structures being available in

the system itself. It allows a greater separation of the agents from the tool thus making them

more autonomous. It does not rely on the existence or capabilities of other programs. The

38

language KQML [FininT 92] was designed specifically to allow agents to easily

communicate and pass information to each other.

However the drawback with this is that once the number of agents increases, so too does the

complexity and the resulting cost [GeneserethM 94], As in figure 3.2 if a new agent, is

introduced the number of connections grows by a factor of N (N = number of agents). A

requirement of the Prompter tool was the ability to add to the knowledge base i.e to add new

agents. Thus if this architecture was chosen it would result in a complicated integration

period.

Assisted coordination This architecture differs from the above in that agents rely on special

system programs to achieve coordination. It introduces a more controlled environment over

which agents execute. Figure 3.3 shows the representation of four agents, all dealing with

different areas of risk. If the Risk Agent has information relevant to other agents, it can

broadcast it using a structure called a facilitator. The level of complexity is much less with

this architecture compared to the previous one. If a new agent is to be introduced this requires

39

In contrast to the competing concept, this architecture allows agents to become more

integrated into the system and not as isolated. A facilitator is mechanism for performing this

organisation [GeneserethM 94]. The facilitator is the controller of the agents. It forwards

information to them and takes advice from them. They surrender their autonomy in some way

to this facilitator, which now controls to some extent their execution. This design allows the

agents to better express their requirements so the facilitator can be more discriminating in

routing messages.

I chose the later of the two architectures for the daemon architecture for the following reasons-

• In general this mechanism is more efficient as the amount of communication is reduced. In direct

communication, if the number of agents is large the cost of broadcasting a job is very high.

• it allowed agents to be grouped together into a hierarchical structure, similar to the taxonomy

they had to represent. The facilitator itself may be similar to an agent with a facilitator

controlling it.

• the knowledge base has to be easily expandable meaning a quick and simple process to add

new agents. Since this architecture only needs the introduction of one new connection for a

new agent, it was the best option.

• Since Prompter is a marketable tool other issues such as efficiency and multi-threading had

to be also taken into account. The overhead incurred if direct communication was chosen

would be higher since the communication and expandability factor would be much greater.

This would slow the tool down and also make it to difficult to regulate the flow of advice

from agents to the user. Assisted coordination is easier since the facilitator controls all the

agents under it. Thus the tool only has to deal with the facilitators and never sees the

underlying agents.

Hence all the critiquing agents in the daemon architecture are organised into an Assisted co

ordination structure. If the facilitator sees that an agent can execute it informs the relevant

inference engine to perform the task. Internally the agent interprets the information, compares it

to its knowledge base and constructs some worthwhile advice for the user. The mechanism

chosen to simulate a facilitator within the daemon architecture is called a Blackboard similar to

that used for Riskman2 (section 2.5.4.2).

40

1

r

3.4.4 Blackboard within the Agent Architecture

As described above the decision taken was to design the architecture using the Assisted co

ordination approach. Thus the agents and facilitators are monitored by a controlling structure

called a blackboard which acts as the master facilitator for all the agents.

A blackboard as described in the previous chapter is a complex problem-solving model

prescribing the organisation of knowledge, data and problem-solving behaviour within the overall

organisation. Put more simply, one might imagine an analogue of a group of experts in a room as

in figure 3.4. The only mechanism they have of communicating with each other is through

writing what they think on a blackboard. The other experts can read what has been written.

Figure 3.4 The blackboard

Since they can see the current state of the solution they can use it to develop and write their own

suggestion. This results in experts working together to provide some solution. However for this

structure to be viable some mechanism of control must be enforced.

The blackboard I developed is responsible for ensuring that order is maintained within the agents

architecture. It ensures information is kept up to date and the system is informed when advice is

received from the agents. Each agent is given its own area of the board to write its advice to as

was the case with Riskman 2. However if necessary it can read the outputs from other agents or

inform an agents if other dependent agents have produced new outputs or if some new

information has been received from the user.

In the daemon architecture, the blackboard acts as a high level method of agent communication It

does not merely communicate simple information at a low level from agents to agents, but instead

communicates highly detailed advice. The blackboard model thus contains two basic components.

41

• The knowledge sources - The knowledge needed to solve the problem is partitioned into

knowledge sources, which are kept separate and independent. In Prompters case, these are

the agents themselves.

• The BB data structure - The problem-solving state is kept in a global database. Knowledge

sources produce changes to the blackboard, which lead incrementally to a solution to the

problem. Communication and interaction among the knowledge sources takes place solely

through the blackboard.

Figure 3.5 Overview of blackboard

The operation of the blackboard systems within the architecture is as follows: knowledge sources

(daemons) respond opportunistically to changes in the blackboard. The expert sees some change

on the blackboard and responds by performing analysis on the data given. It then writes its

conclusions to the blackboard which can be read by other agents.

3.4.5 Knowledge Representation for agents

An agent draws its intelligence from its knowledge base. There are many mechanisms for

representing knowledge m an agent, however these mechanisms are, majority of time, specific to

the knowledge that must represent.

The knowledge base for the Prompter tool was constructed by dividing up the main area of

software project planning into categories. Within each of these, subcategories were introduced.

This led to the taxonomy for the agent knowledge base as illustrated in figure 3.6.

42

r A dvice areas

Selecting lifecycle }

S tandards ~*]

—| Selecting technologies |

A c tiv ity Planning

—I Identifying activ ities

Scheduling 3
Project re-plann

Risk m anagem ent

Identification

Technical

-C
Schedule

Operational

-L
J

Estim ation

Selecting m ethod |

Analysing estim ates |

Identfying needs I

—| Scheduling resources |

Team skill m ix |

M easurem ent

Selection

—I Im plem entation plan j
Analysis ~|

Figure 3.6 Prompter Taxonomy

The simplest way of representing this taxonomy in the daemon architecture was by creatmg an

individual daemon for each category. Thus for the area of Risk identification there were a total of

five daemons created. Note that it would also have been possible to place all the categories of

Risk identification into one agent or on a bigger scale placing all the risk areas in total Risk

daemon. However this reduces the level of expandability e.g. if a new agent is produced for the

area of support under Risk identification then the whole agent would have to be changed since

this area would only be part of the daemon. If each category has its own separate agent, the

category can be easily substituted.

3.5 Summary

The objective of this chapter was to introduce the reader to the concept of agents highlighting the

type of agents developed for the Prompter tool.

A description of what an agent is and the various types available was given. The critiquing agents

I developed were then explained and how they differ from the general model of an agent. The

architecture that was developed to organise them and integrate them into the daemon architecture

was then elaborated upon.

43

Following on from this, the knowledge of the daemon architecture was outlined, highlighting how

it was broken down into groupings of agents.

In the following chapter, the daemon architecture is examined at a more detailed level. Each

component is explained using object diagrams and a detailed explanation of some of the more

interesting protocols is given.

44

4. Detailed Design

4.1 Introduction

This chapter is concerned with the detailed design of the daemon architecture of Prompter. The

Daemon Supervisor, the Blackboard, the Daemon Library the daemons and their knowledge. An

outline of the knowledge engineering process that was used to develop these daemons is also

given are all explained. Firstly however, some of the standards that were adhered to during the

development of the architecture are introduced.

4.2 Standards

The mam reason for coding standards is the maintainability of the code. It is summed up in the

following quote [AmblerS 97]:

“Coding standards for java are important because they lead to greater

consistency within your code Greater consistency leads to code that is easier

to understand, which in turn means it’s easier to develop and maintain. This

reduces the overall cost of the application.”

Standards make it easier to share code and for others to maintain it. The Java coding standards

outlined in [AmblerS 97] were adhered to for the implementation of the daemon architecture of

Prompter.

Another standard adhered to during the project was the Object Orientated Analysis (OOA)

specification [RumbaughJ 91]. This is a semiformal specification technique for the 0 0 paradigm.

There are currently over 40 different techniques for performing OOA, and new techniques are put

forward on a regular basis. The most popular techniques are: OMT, UML and Booch’s technique.

However, most techniques are largely equivalent and consist of three basic steps:

Class modelling - Determine the classes and their attributes. Then determine the

interrelationships between the classes. Present this information in the form of a diagram -

termed a ’Class Model’.

Dynamic modelling - Determine the actions performed by or to each class or subclass.

Present this information in a diagram - termed a Dynamic Model’.

45

Functional modelling - Determine how the various results are computed by the various

products. Present this in the form of a diagram - termed a Functional Model’.

The choice of which particular method of OOA to employ for a given project is usually arbitrary

and linked to the experience or preference of the system designer, or dictated by outside

influences. With this in mind, OMT was chosen as the OOA method for the design of the

Prompter. Within this thesis all class diagrams, event diagrams and state diagrams conform to

this standard. A brief discussion of OMT is given below. However for a good description to the

OMT methodology, see [RumbaughJ 91] or [MartinL 96]

4.2.1 Object Model Technique (OMT)

OMT describes the structure of objects and illustrates their identities and relationships to other

objects, their attributes and their methods. An oudine is given to help the reader better understand

the class diagrams in the daemon architecture.

The basic structure used in all OMT diagrams is the class structure. The class structure

corresponds to a class in 0 0 languages and is defined as [RumbaughJ 91]:

“A schema, pattern, or template fo r describing many possible instances o f data. A class diagram

describes an object class”.

An example of a class can be viewed in figure 4.3. Contained within a class are the various

attributes that make up the class. Following on from this are the methods or operations which

perform tasks or operate on these attributes.

There are numerous mechanisms of linking classes together however only those used in the OMT

diagrams to follow, are explained. The most basic link is known as the association link and is

illustrated in figure 4.3. An association link, is a line between two classes indicating a relationship

between them, the relationship is always displayed beside the line. These links come in a number

of formats, the simplest being a line between two classes, indicating the classes are related in

some way by a one to one relationship. The next format is a link with a dot at one end. This is

known as a one to many relationship and means that one class (the end without the dot) is linked

to one or more of the corresponding class (as illustrated in figure 4.3) by the relationship defined.

46

The next mechanism of creating a relationship between classes is called the Aggregation

relationship and takes the appearance of a diamond in the line. It is defined as relating an

assembled class to a component class. It is the “part-off’ relationship and indicates that one class

is associated with an object by making up part of it i.e. the class is part-off the associated class.

An example of this can be view in figure 4.7.

4.3 Rationale behind Architecture

Before the architecture is introduced it is important to illustrate some of the reasons/rationale or

requirements behind it.

P latform Independence - It was decided the Prompter tool, including the daemon architecture,

was to be a platform independent tool, meaning it had to be capable of running on any type of

machine using any type of operation system. Within the architecture there had to be no machine

specific protocols or features such as the ability to write directly to COM ports etc. Thus a project

wide decision was made to implement the tool using the Java Language (see Chapter 5 for a

detailed description). This placed a number of constraints on the design of the architecture. It had

to be performed in an Object Oriented fashion to allow ease of implementation in Java which it is

itself 0 0 . Also Java’s ability to allow only one level of inheritance constrained the class level

design further.

D istributed - It was also decided that the Prompter tool was to be a distributed system. The

decision was made to divide the tool into three main components the daemon architecture, the

GUI and the kernel. Within the daemon architecture component, I introduced an extra level of

distribution at the Daemon Library component. It was also decided that CORBA was to act as the

distributed layer to bind all the components together. It utilises interfaces to allow components to

communicate, meaning that the design had to incorporate these properties.

Independence - Since each component was to be distributed in the architecture, it meant that

each component had to be independent and asynchronous of the others, so structures such as

buffers and threading issues had to be considered in the design phase. Also, the introduction of

CORBA allowed the system to be divided up into a client-server system (The concept of CORBA

and its client-server structure is developed further in Chapter 5). This allowed the design of each

component to be more client server oriented as well, thus increasing the independence of each.

47

Expandability - One of the major concerns within the daemon architecture was the ability to

allow the simple integration of new daemons or agents into the knowledge base thus requiring the

architecture to be as open as possible. The design had to have a minimum amount of coupling

between the architecture and the daemons themselves i.e. I had to ensured that if new daemons
!

were added, their integration into the knowledge taxonomy was not difficult. I also had to provide

the facility to allow daemons written in different languages to be added thus allowing the tool to

be capable of keeping up with new languages and concepts.

4.4 Architecture

As mentioned in the Chapter 1 (section 1.1.2) the architecture of Prompter is broken up into three

main components as viewed in figure 4.1, with the daemon architecture broken up into four

components: the Daemon Supervisor, the Blackboard, the Daemon Library and the Daemons.

Daemon
Supervisor

Blackboard

Prompter
tool

CORBA
Communication layer

Daemon

Daemon
Library

OOO
Figure 4.1 Prompter Overview

The daemon supervisor is the main controller of the daemon architecture and is responsible for

the passing of information between the daemons and the kernel, and between the daemons and the

blackboard. When the blackboard informs the daemon supervisor that a daemon can execute it

informs the daemon library to retrieve it from its repository. The daemon supervisor then gives

the daemon the information it needs to execute. Finally, the advice the daemon returns is loaded

back into the blackboard for later retrieval by the kernel.

48

As illustrated in figure 4.1 the blackboard interface is not across the communication layer due to

the level of communication between itself and the daemon supervisor being so large. Between the

other three components there is a communication layer called the CORBA layer (section 5.2).

This layer allows the components on both sides to communicate with each other and yet operate

asynchronously. For example, the GUI can reside on many machines and still maintain its

connections to the kernel and daemons. The CORBA layer automatically takes care of routing all

method calls, security issues, passing information across a network etc. In fact the kernel can be

completely rewritten in a different language to the other components who would remain unaware,

due to each components independence.

4.5 Tokens

The token structure is the method of passing information from the user to the daemons. A token is

the base type variable within Prompter. It stores a value that is set by the user or the system. All

information that the user enters is converted into these token values. Each token has a unique

name and number which distinguishes it from others, and a description or definition to illustrate

its function.

There are two types of tokens within Prompter, qualitative and quantitative. Qualitative tokens

have scale values, such as high medium and low, while quantitative tokens have actual values

such as 36 or 2.52.

4.6 Daemon Detailed Design

Following on from figure 4.1, the overall OMT class diagram for the daemon architecture is

outlined in figure 4.2 highlighting only the class relationship firstly and then each component is

explained separately.

As illustrated in figure 4.2 the three main components of the daemon architecture are:

• Daemon Supervisor

• Daemon Library

• Blackboard

• Daemons

49

Daemon
Supervisor

W

AdvicelmplTable

JAdvice

Daem ons

Prolect

Blackboard

Daemon
Library

Daemon LibraiV

Daemon

Bblmpl
o -

Slot.

•— o
Scenario

Segment

Noc

DrnnOutpüh

AdviceTex XExtendedAd viete T
Biblography

RuleJustTF

Figure 4.2 Daemon Architecture OMT Diagram

Each of these components aids the daemons in their critiquing process. They act as the interface

between the daemons and the rest of the tool. They ensure that the correct advice is returned at

the right time and the information passed back is always the most up to date available.

4.6.1 Daemon Supervisor

The daemon supervisor is responsible for all communication between the kernel and the daemon

components. It is the main controller of the daemon architecture and is concerned mainly with

50

scheduling issues, communication issues and of course daemon execution and the handling of the

advice returned from them. Most of the tasks of the daemon supervisor are outlined below:

• It is responsible for the creation of new threads of control for daemons available to execute.

• It maintains these daemon threads and times out them after a period.

• It is responsible for the acquisition of information from the kernel relating to information the

user may have entered or changed.

• The daemon supervisor is responsible for the creation and maintenance of the advice table. This

is a buffer to temporarily store the advice until the kernel is ready to receive it.

• It ensures the advice from the daemons is forwarded to the blackboard and the advice table. The

advice is forwarded to the blackboard because it may be used by other daemons at a later date

The class diagram for the daemon supervisor is shown in figure 4.3. The daemon supervisor class

contains a number of project classes. Within each of these are the details of a specific software

project the user may be working on. Each project is kept completely separate and has a unique

blackboard that stores the state of the daemons for that specific project.

To advtet
tab le

D aem ons,

startProcess
stopProcess
startProject
stopProject
getlokenValue
getAdvice
getStateArrav
AdviceAvailable
recogntseChange
executeDaemon
getDependencyTable

3
Project___
Daemons
Blackboard
nro jectlO
forwardAd'orwardAdvice
tokenChange
stopProject
recogmseChange

Figure 4.3 Daemon Supervisor OMT Diagram

The reason for abstracting the project information away from the daemon supervisor is to allow

related information such as project details to be grouped together and processed separately and

independently of other projects. It also allows the maintenance of multiple projects to be handled

more efficiently, such as the deletion or creation of an entire project.

51

The methods contained within the daemon supervisor are concerned primarily with

communicating information to the kernel or the advice table. They require little explanation.

However the following have more specific roles:

• void recogniseChange(..); - This method is the signal for the daemons to start monitoring

what the user has done. Up until this invocation the daemon remains inactive while the user is

selecting default information. Note that it is not necessary for the daemons to be executing all

the time and there may be times when the user wants to make a number of changes before the

daemons supply advice. The user may decide to try an experiment and at the end let the

daemons analyse the result,

• void executeDaemon(..); - This method is responsible for the execution of a daemon and is

one of the key methods in this component. The Blackboard tells the daemon supervisor which

daemons can execute and it is up to the daemon supervisor to inform the relevant inference

engines. However the events that occur on either side of this call can be better understood

with the help of the following state diagram.

Figure 4.4 State diagram for generation advice

To execute the daemon, the token values for its dependent tokens must be acquired from the

Kernel. These values determine which rule within the daemon fires. When the daemon has

executed the advice returned is in a very rich format that is of little use to the user but may be of

great use to other daemons. For this reason the rich advice is passed on to the blackboard for use

by other daemons and a more user friendly version is sent to the advice table for the user.

• void processAdvice(Dm nOutput dO ut); - This method acts as the dialogue generator for

the daemon architecture. It is responsible for the conversion of advice from one form to

52

another As mentioned above the advice must be presented to the user in a readable format so

they can understand it better 1 e HTML The rich advice structure containing all the

information returned from the daemon is passed as a parameter This method takes the user

relevant information from each section and places it in a HTML string HTML tags are

inserted so the GUI can identify the various pieces of advice for display purposes This

process is illustrated in the following state diagram

Figure 4.5 Process of advice state diagram

The advice object is created, and the various ID information added m An advice tag is inserted

followed by the actual advice When the current section is finished the next tag is inserted and so

on until all the advice has been converted into HTML This string is then added to the advice

object, which is forwarded to the advice table where the Kernel can retneve it

4.6.1.1 Daemon Supervisor Interfaces

A number of CORBA interface definition language (IDL) interfaces were created to allow the

daemon supervisor to commumcate with the Daemon Library and the Kernel across CORBA

These interfaces can be viewed in the Appendix B and contain all the methods needed for the

modules to communicate with each other

4.6.2 Blackboard

The blackboard is the main data structure in the daemon architecture that monitors the daemons

Its purpose is to hold state information about daemons and inform the daemon supervisor when

53

one can execute The structure of the blackboard is outlined diagrammatically in figure 4 6 and its

OMT diagram in figure 4 7

Figure 4.6 Blackboard structure

The blackboard is a tree structure with a number of branches called nodes, which are monitored

by the blackboard controller Each node represents one area of the knowledge taxonomy specified

in the previous chapter Contained within each node are a number of segments A segment

represents a specific daemon of that node Thus if there are a number of daemons dependent on

Estimation, this will result in a number of corresponding segments m that node

Within each segment is a structure called a scenario There can also be many scenarios within one

segment A scenario can be described as follows, if a user wants to try a number of possible paths

but is unsure of which one is correct they create a scenario which allows them to try a possible

alternative solution to a problem thus producing an alternative state for a daemon This results m

a daemon having a number of different states each one stored within a different scenario So smce

a segment represents a daemon in general, a scenario represents the daemon in one of the possible

paths

A daemon is dependent on a number of tokens that are used to help give advice These tokens can

exist in one of two states at any time, either changed or unchanged Thus withm each scenario

there is a number of structures called slots, one for each dependent token and a slot for the last

54

piece of advice the daemon provided The class diagram for the blackboard module is shown in

figure 4 7 The advice structure will be discussed further in the section 4 6 4 1

Figure 4.7 Blackboard OMT Diagram

As mentioned above a token can hold one of two states, at any one time

unchanged the token value has not changed since the last execution of the daemon If this is

true for all the tokens in the daemon then the daemon has no need to execute

changed the token value has changed If this is the case the daemon’s advice is no longer up

to date and must execute again

Again a lot of the above methods are related to the updating and the searching for tokens but

some of the more important methods are outlined below

• void createBB(DependencyTable); - This method is responsible for the creation of the

blackboard structure and involves

• The acquisition of the daemon information from the Dependency table

• The extraction of the relevant data from this table

• The construction of the node and segments from this information

• The addition of these nodes along with an output area to the blackboard

55

The parameter “DependencyTable” or DT is an array of objects that is received from the Daemon

Library and contains all the information about the daemons that the Blackboard needs to construct

itself Each object contains the daemon’s ID, the daemon’s area of expertise and finally a list of

all the tokens each daemon depends upon The state diagram for this method is illustrated m

figure 4 8

Dependency
table acquisition
 bvBB

start
createBB

I
BB created

do
Search Table found new

node

do
create node

find
new
node

do search DT
for daemon

related to node

while
not

finished
found related

daemon

do create
segment for

daemon

node
created

Figure 4.8 State diagram for the construction of Blackboard

When the blackboard has a copy of this “Dependency table”, it retrieves the relevant data

from it to construct the relevant nodes and segments It first finds an uncreated node and

creates one It then searches the “Dependency table” for daemons that are related to it When

it finds one, it takes the daemonlD from the “Dependency table” and retrieves the array of

“tokenlDs” (integers) which it depends on To create the segment the blackboard uses the call

“segment createSegment (daemonlD, tokenID[]),” This m turn creates a default scenario

with space for the advice the daemon may produce at a later stage All that remains now is to

add this segment to the node When all the daemon’s segments that relate to this node are

added, the node is added to the blackboard

• Daem onlnfo availableToExecute(), - This method is responsible for asking all the nodes if

they have any daemons that are capable of executing The catena for a daemon executing is

if one or more of its tokens have changed since its last execution and all of its slots are

marked available The event diagram for this method call is illustrated in figure 4 9

56

BB
dlnfo aaableToBecute

Figure 4.9 Event diagram to illustrate the availabletoexecute
/

• void forwardAdvice(DmnAdvice adv); - This method is called from the daemon supervisor

and passes the advice from the daemon, to the blackboard after it executes This allows the

blackboard to keep a constant record of the last advice generated by the daemon This can be

used to provide advice to the user without having to re-execute the daemon, or to other

daemons during their execution The method takes the advice and searches the blackboard for

the segment it belongs to and stores it within the correct scenario

4.6.3 Daemon Library

The daemon library is responsible for the physical management of the daemons themselves It

controls the physical storage of the daemons and their acquisition when available to execute

Since this is not that cntical to the daemons themselves it is not discussed m detail

The daemon library is a separate component conceptually from the rest of the architecture The

reason for this is the distributed nature of the tool Smce it may be required to store all the

daemons on some machine separate to the tool itself, the CORBA layer was introduced Thus if a

user is mobile they can still execute their specific daemons if they have a network link to the

daemon library This also makes the integration of new daemons, much easier Another advantage

of this link is even though there is only one set of daemons in the daemon library, many users can

access them

Broadly speaking the functions of daemon library are

• When Prompter is started the daemon library supplies dependent token information

(dependency table) to the daemon supervisor when requested (as part of the blackboard

construction process) The dependency table as mentioned above contains all the relevant

information required for the blackboard to correctly construct itself

• The daemon supervisor instructs the daemon library to extract a named daemon from the

library for execution when its dependent tokens are available

¡Mode Segment t

11 dlnfo segToBecute j

* dlnfo ScenTo&eaie
:

:

i

Search Sots 1 frJ

:

57

4.6.4 Daemon Design

An OMT diagram for a daemon is illustrated in figure 4 10 and a conceptual view is illustrated in

figure 4 11
Daemon
d a e m o n I D
d N a m e
d V e r s io n
d O rig m
d A r e a
d IE
T o k e n ID
R u le
A d v ic e

Figure 4.10 Daemon OMT diagram

To better explain the structure in figure 4 10, a daemon can be thought of consisting of three

mam structures

Daemon f
Header \
D aem on f

functionality \

D aem on r
A dvice ^

Figure 4.11 Daemon Internal structure

The Daemon H eader contains information relating to the unique identifier of the daemon, its

version number and who wrote it Also contained within this section is the list of dependent

tokens (the tokens the daemon needs information on to supply advice), its area of expertise and

what inference engine it requires to execute

The Daemon Functionality is the specific rules of the daemon It is from within this section the

daemon knowledge is stored Obviously this section differs from daemon to daemon Some have

a simple knowledge base which may be represented as IF THEN statements while others need

more complicated concepts such as frames or fuzzy logic to achieve their goals It is this area of

C Identification number^
Name of Daemon
Version Number
Creator of Daemon

Token dependencies

Daemon

Rule Set
of the daemon

Adv 1

r

Adv 2

r

Adv 3

r

Adv 4

r

58

the daemon that changes depending upon the implementational language chosen However as

outlined in section 4 7, the daemon is controlled by its respective inference engine which handles

its execution and so the overall daemon architecture can remain oblivious to the daemons

functionality The design I employed allows for the future expansion of the daemon library with

new daemons and daemon languages Agent languages are discussed further in section 4 7

The Daemon Advice is the third component Within the daemon the advice is divided up into a

number of structures The rule set dictates which advice object is returned The advice when

returned to the inference engine is broken up into various components and forwarded to the

daemon supervisor This advice structure is now outlined in more detail

4 6.4.1 Daemon advice

There are two distinct views of advice within the daemon architecture because the advice itself

servers two purposes The advice to the user only contains information that is relevant to the user,

however the advice that is returned from the daemons contains much more Such as the token

values that caused certain rules to fire etc This information is not relevant to the user but may be

of some use to other daemons

Kernel/GU I view - Both the kernel and GUI, and therefore the user will view the advice as one

large page of text/graphics which is presented in HTML format This advice is supplied to the

kernel in the form of an advice object as m figure 4 12

A d v ic e
AdvicelD
ProjectlD
Scanariolt
daemon ID
dArea
arivme___

Figure 4.12 Advice OMT diagram

This class (figure 4 12) contains all the identification material needed for the tool to identify what

the advice is related to and where it came from The actual advice is stored in the advice field as a

string Contamed within this is the HTML tags that help the GUI differentiate between the

components of advice

59

Daemon view - This alternate view of the advice for the daemons The data is in a more detailed

format The advice is structured as a hierarchy of classes, which reflect the individual components

that make up the advice This more detailed view of advice provides a more flexible means of

presenting daemon outputs and allows for easy enhancement of the daemons over time The class

diagram in figure 4 13 illustrates the structure followed by an explanation of the various

categories
DmnOutpu

ExtendedAdvIc »
area
comment
advice

Blblooraph’
Title
Authors
Publisher
Date

-U R L . -

RuleJuatlf
justityText

Figure 4.13 Daemon output OMT diagram

1 Advice text - this is the actual dynamic advice text and is made up o f the following

• Area of expertise - What is the area of competency of the expert giving you advice, for

example, ‘cost risk management’ or ‘lifecycle selection’

• Comment - The experts comment on your project plan For example, ‘A high degree of

risk to the cost of the project has been identified’

• Advice - A short paragraph of advice on how to handle the situation identified above

2 Extended advice text - A comprehensive explanation of the area m which the expert is

giving you advice and a fuller explanation of the mechanisms you can employ to address

concerns The rationale behind having this section is to provide the user - in particular an

inexperienced project manager - with more m-depth information

3 Bibliography - This is a suggested reading list for the user m respect to the area under

consideration This points to such things as the related sections in the project handbook,

published works and internet resources

4 Justification - How the daemon arrived at its conclusions (in rule terms), i e what rule

executed for it to give its advice

60

The following diagram (figure 4 14) shows the various steps involved m a daemon’s execution

4.6.4.2 Daemon Execution

Figure 4.14 Overview of a daemon’s execution

1 Blackboard tells the daemon supervisor blackboard_comms which daemon is ready to run

by the method daemonID[] availableToExecute()

2 The daemon supervisor Kemel_comms asks the Kernel for the actual values for the tokens

the executable daemon needs by passing it the tokenlDs using the function TokenVaIue[]

getTokenValue(tokenID[])

3 The required values are returned by the kernel m the above function

4 The daemon supervisor DL_comms requests the extraction from the DL of the required

daemon by the function call daem onRef getDaem on(daem onlD)

5 The DL instantiates the requested daemon

6 The DL then returns a reference to the daemon as the return value in function 4

7 The daemon supervisor Daemon_execution interrogates the instantiated daemon to find out

which inference engine (IE) it needs, by using the function int getIEType()

8 The type of IE is returned

9 The daemon supervisor Daemon_execution then passes the daemon reference, tokenlDs and

their values to the IE for evaluation of the production rules using the function advice

processRule(daemonRef, tokenID[], tokenValues[])

10 The IE processes the daemon’s rules

11 The IE then closes the daemon

12 The IE passes the advice to the daemon supervisor Daemon execution using the return value

of function 9

61

13 The daemon supervisor then builds the advice object and passes it to the kernel

14 The daemon supervisor passes the rich advice to the blackboard

4.7 Agent Languages

There are many AI languages currently available to represent agents which have their good and

bad points There are currently efforts being made to construct an agent standard know as FIPA97

[FIPA 97] The question however arose which languages and standards were suitable for agent

implementation within Prompter and whether a tool for creatmg them should be used

There have been many attempts at producing tools specifically for designing agents However

most of these have achieved only modest success m the market place as most of these tools were

concerned with mobile agents on the Internet, IBM ’s Aglets was one of the mam contenders It

was focused on building network based applications that used mobile agents [LangeD 96] to

perform tasks on some network However due to its complexity and the ability to create

“Intelligent” agents it only received modest success Telescnpt [WhiteJ 96] produced by General

Magic was another attempt, agam for mobile agents and it was also unsuccessful due to it being

too cumbersome OMG have now become involved and are, at present, trying to develop an agent

standard m the form of a CORBA facility This is known as the FIPA97 standard Since this is

work to try to standardise agents it is discussed further m the following section

As a result of surveying the above languages it became evident that there was no clear language

that stood out I decided the daemon architecture should not be dependent on one language but

instead be open to many Different languages can be easily inserted into the architecture e g Lisp

or Prolog This concept is illustrated in figure 4 15

These agents are controlled by their respective inference engines which in turn are controlled by

the Agent Controller, otherwise known as the master facilitator mtroduced in the previous

chapter If agents wish to communicate with each other or with agents implemented m another

language, they do so using the blackboard structure described previously

62

EfôStOfiiÎülôOl
Agent Information

&
Results

JESS KQML % Telescnpt
IE IE IE

J? <■ A
lJ

Figure 4.15 Agent integration into Prompter

During the implementation stage o f this architecture an agent languages had to be chosen as the

default agent language To make this decision a number of factors had to be taken into account

the tool was written m Java Thus a language that was capable of interfacing with it was

required

- the issues of commercial licences had to be considered

Efficiency Agents needed to be executed efficiently and be capable of returning their advice

back to the tool

The agent language chosen had to be well known so users could implement their own

daemons if the case arose

4 7.1 FIPA97

FIPA97 is a standard that is being developed by the FIPA (Foundation for Intelligent Physical

Agents) organisation FIPA itself is an international association of companies, which agreed to

share efforts to produce specifications of generic agent technologies They stated that

specifications must be produced before industries make commitments to their own

methodologies, thus avoiding incompatibility In other words this specification is designed to

avoid conflicts between agents and to ensure the interoperability between heterogeneous agents

63

Some of the mam goals of FIPA are to achieve standardisation in the following areas [FIPA 97]

Agent Management

Agent/Agent Interaction

Agent/ Software Interaction

Their current Developers Guide [FIPA 97] states that its mam goal is not to state information on

specific implementation issues such as “How do we implement FIPA compliant agents in

language xxx>" But instead to act as a guidance for people implementing FIPA compliant

platforms

On the more implementational side of the specification, one of the mam trends is the use of

CORBA as its recommended transfer protocol, in particular IIOP However since this m general

refers to agents travelling across intranets or internets it is not highly relevant to the daemon

architecture Also, this specification was still tackling the problem of the internal structure of

agents and what language they should be implemented in at the time of writing this thesis In

general they suggest ACL (Agent Communication Language) as their communication language

For these reasons it was decided that the FIPA was not of high relevance to my work since the

issue of communication was solved usmg a blackboard, thus requiring no need for ACL or

CORBA to be used

4.7.2 CLIPS/JESS

JESS (Java Expert System Shell) [FnedmanE 97] is a Java derivative or clone of the popular

expert system shell CLIPS (C Language Integrated Production System) [Giarratano 84] designed

by researchers at NASA As it is written entirely in Java makes it compatible with the daemon

architecture CLIPS is a well known expert system language used m many systems and as a result

has a wide programmer base So although JESS itself was still m development at the time of

writing this thesis, it is based on a language that has proved itself

The language itself is similar to LISP, another AI language It is a rule based expert system shell

meamng that its purpose is to continuously apply a set of if-then statements or roles to a set of

data or fact list These rules are contained in the daemon and the Java interpreter supplies the

information for them to analyse

64

JESS production rules consist of conditional statements known as production rules and a working

memory Contained m these production rules are one or more conditions, which lead to one or

more actions The JESS runtime cycles through the working memory trying to match conditions

on the LHS with data If it finds a rule that has enough information to fire then it places those

production rules and the conditions into a conflict set and executes the relevant actions which

may change this conflict set causing more rules to fire This cycle continues until there are no

more conflicts left

It may seem less efficient to program if-then statements in CLIPS rather than some simple

custom-built interpreter However if there were a large number of rules m a daemon it would

result in unnecessary cycling by the IE to find rules that can fire JESS overcomes this problem

by using the Rete algorithm [Giarratano 84] This algorithm cycles through the rules and

remembers past test results across iterations of the rule loop Only new facts are tested and in

addition these facts are tested against only the rule LH S’s to which they are most likely to be

relevant This results is a reduction of the computational complexity per iteration to 0(sqrt(RP)),

down from 0(RPF) where R is the number of rules, P is the average number of patterns per rule

and F is the number of facts on the fact list

The structure of a simple daemon can be viewed as follows
, The header of the daemon can be represented in JESS as a template

(deftemplate daemonO “Expert in process Selection”

(slot) , relevant daemon information

(slot version) , daemon version

(slot _31) , UserProficiency token

(slot_32) , CustomerAccesibility

(slot _33) , ApphcationType

(slot _34) , DevelopmentOrgamsation

, rule to provide advice can be easily encoded into a simple if-then condition

(defrule process_selection "rule taken from FCPR Ys of daemon 0"

(daemonO (_31 9tkl)(_32 7tk2)(_33 9tk3)(_34 9tk4)) , using the daemon template

=> , give each token a value

(if (and (= ’ tk l 1) (= ?tk2 1)(= ’tk3 1)(= ’ tk4 1))

then (printout t " use iterative model" crlf))

(if (and (= ’tk l 1) (= ’ tk2 2)(= ’tk3 2)(= ?tk4 2»

then (prmtout t " Prototype for HCI, incremental development" crlf))

(if (and (= ’tk l 2) (= ’ tk2 3)(= ’ tk3 3)(= ’tk4 3))

65

then (printout t " V or M model" crlf))

(if (and (= ’tk l 3) (= ’ tk2 4)(= ’ tk3 1)(= 9tk4 1))

then (printout t " Prototype" crlf))

(if (and (= ?tkl 4) (= ?tk2 5)(= ?tk.3 4)(= ?tk4 4))

then (printout t " Spiral model" crli))

)

The daemonO deftemplate is the template name for the daemon which tells the JESS runtime what

tokens the daemon needs to execute Each of these tokens is stored m a slot and each slot is given

a variable to store the token value The RHS of the rule condition is now checked The token

values are checked and if one of the if conditions is satisfied the output is piped back to the

inference engine from where it executed from This integration between the JESS environment

and daemon architecture is now described below

4.7 2.1 JESS Integration

As described m the previous chapter, a set of agents implemented m a common language are

controlled by an inference engine specific to that language This engine handles all

commumcation between the daemon supervisor and the daemons Thus to integrate an inference

engine a wrapper class must be constructed to forward and receive information As JESS is

implemented in Java, the construction of this class was relatively simple

In general there were three mechanisms of integratmg JESS mto the architecture, High Medium

and Low coupling With High coupling, a Java object can be created from within JESS and/or

have their attributes momtored by it However this level of sophistication was not necessary since

all that was required was the passing of the relative token values to the JESS daemon and

allowing them to execute on their own For this reason the low coupling option was chosen At

this level, only information is passed to the JESS daemon, which is allowed to execute until

completion within the inference engine The output is then piped back to the awaiting method call

where it is organised and stored within a DmnOutput object The class diagram for this wrapper is

illustrated in figure 4 16

66

J e s s P a ~ s e r
DmnOutput
R e te

p ip e A d vi c e ______

P rocessDaemon

R e t e

ReteC ompiler
run

p ip e f ld v ic e
InputStream
OutputStream

Figure 4.16 Agent Integration OMT diagrams

The Rete class is the mam JESS class used to run and compile JESS code The JessParser class is

the constructed JESS wrapper that is bound to the Rete engine When the JESS environment has

executed the daemon its output is returned to the tool usmg the pipeAdvice class also shown

above This class has an mput and output attribute through which information is passed and

returned from the JESS inference engine

The set-up and execution of the JESS daemons is explained further m this method below

• D m nO utput ProcessRule(Daemon dnm, int [] tokenlDs, int [] tokenVals); - This method

is responsible for preparing an inference engine to execute a specific daemon It receives the

relevant information related to it such as the tokenlDs and the token values There is a

different processRule call for each inference engine and its implementation is situated withm

the wrapper For JESS, when the inference engine is ready, it constructs a JESS command to

load the tokens and the respective values This command is them submitted to the IE which

executes the daemon When this is completed the output 1 e the advice is piped back into a

DmnOutput class and returned to the daemon supervisor

Figure 4.17 Preparing the daemon for execution

67

This above process (as also outlined in figure 4 17) of executing daemons is just as simple for

other languages that are incorporated into the tool However if there is no functionality provided

for this integration, a wrapper must be constructed There is currently work on Lisp [AIST 98]

and Prolog wrappers for integration into Java software and so the languages available for the

daemons are m no way limited The only requirement for new daemons is that they conform to

the interface for the daemon supervisor’s method call (processRule), name and parameter

structure for launching the daemons

4.8 Knowledge

In this section I describe the daemon knowledge base and the engineering process I used to

construct daemons The term ‘knowledge base’ is used to refer to the expertise within the

Prompter daemons, which are represented in terms of JESS production rules

4.8.1 The Knowledge Engineering Process

The knowledge engineering process [SmithP 86] is a process by which knowledge is collected in

such a way that it is implemented correctly within agents or daemons The process is generally

divided up into a number of sections

- Knowledge Identification

- Knowledge Extraction

- Knowledge Validation

- Knowledge Representation

- Knowledge Verification

A brief description of the above process is now given

• Knowledge identification - This is the process of identifying actual advice/knowledge

sources in the software engineering world For example, this process could include

identifying studies on subjects like ‘lifecycle selection methods’ or ‘nsk analysis measures’

which contam information such as a method of identifying a situation and the actions to taken

as a result

• Knowledge extraction - When appropriate knowledge sources have been identified they

must be documented in a suitable form which can be translated into actual daemons

68

• Knowledge validation - Validation of the knowledge base has been identified as an

important step in the construction of the daemons. The purpose of this validation process is to

ensure that the knowledge used and the advice given is technically accurate and appropriate

for a given situation.

• Knowledge representation - This is the mechanism for translating the knowledge into

actual rules or some other form of mathematical structure.

• Knowledge verification - This is the process of verifying whether the actual knowledge

representation accurately reflects the documented knowledge source. For example, in a rule-

based system, the concerns include rules that have correct condition parts and when executed

give appropriate advice. Other issues include circular or redundant rules.

The area that is most relevant here is Knowledge Representation, or how to get from knowledge

into rules.

Within the Prompter project a number of software experts within the project team were

approached and asked to construct a number of documents [Prompter 98] related to their area of

expertise within SPM. They collected their data from sources such as case studies, research, and

their own experience working in the area. These documents contained all the knowledge the

daemons need to perform their task and sources where more information can be acquired. An

example of one of these can be found at [Prompter 98].

The documents were then inputted into the knowledge validation process and further developed

to produce a number of comprehensive design and implementation documents for the daemons.

These documents can also be used in the future maintenance of daemons. Within the knowledge

validation stage, all the documents were circulated to experts external to the project, whose

opinions were sought. Once these documents had been fully agreed upon they were ready for the

next phase, Knowledge Representation.

4.8.2 Knowledge Representation

This is the process of translating the extracted knowledge in the Daemon Knowledge Base Design

documents into daemon rules or into a more mathematical structure other than text alone. There

are several mechanisms for performing this task that vary in sophistication and complexity. One

mechanism is through the use of decision trees. I chose these because the people who had to

construct the knowledge may not have had much experience in knowledge representation and so

69

the mechanism had to be simple to develop and understand It also had to eliminate any

ambiguity m the knowledge For this reason, I decided that knowledge should be presented in a

more structured and mathematical format

4.8.2.1 Decision Trees

Decision trees are derived from simple predicate logic and are m general easy to construct and

understand They are structures which map out all possible routes that can be taken through the

knowledge space They show graphically the relationships of the problem and can deal with more

complex situations m a compact form

A decision tree is composed of nodes representing goals, and links representing decisions These

links either join nodes to nodes or nodes to end nodes These end nodes store the advice for the

path followed If a node has more than one link exiting it means there is more than one possible

route that can be taken The deciding factor on which route is taken is dependent on which node

can be satisfied If neither is satisfied then no advice is given If one is satisfied the other route is

forgotten about

Thus for constructing these types of trees we only need to use two forms of logical operators In

predicate logic all logical rules can be reduced to a number of AND and OR operators These can

be easily represented in the decision tree structure m figure 4 18

AND OR

IF (a AND b) THEN IF (a OR b) THEN

1 c C

ELSEF(d)THEN

9 B

¡ 1 1
1 C C E
C

Figure 4.18 AND and OR trees

The AND operator consists of adding the test condition to the current path Thus to get to the

node C the conditions a and b must be satisfied In the case of the OR operator to get to C, a or b

must be satisfied, but to get advice E, d must be satisfied. These diagrams must be deterministic

at all times i e there should be only one possible path that can be taken at any one time A sample

daemon decision tree can be constructed from one of the test daemons used m “Cavan” (one of

the early prototypes of the tool). The daemon file firstly is as follows

70

Daemon zero

Version 1 Oa

Written by ROC as demo for Christmas prototype

Expert in process selection

31 ,32 ,33,34

IF 31 = 1 AND 32 = 1 AND 33 = 1 AND 34 = 1 THEN The suggested lifecycle for your project is to use Iterative prototypes

IF 31 = 1 AND 32 = 2 AND 33 = 2 AND 34 = 2 THEN It is suggested that you use Prototyping for systems development

IF 31 = 2 AND 32 = 3 AND 33 = 3 AND 34 = 3 THEN The suggested lifecycle for your project is to use the V model

IF 31 = 3 AND 32 = 4 AND 33 = 1 AND 34 = 1 THEN It is suggested that you use Prototyping for systems development

IF 31 = 4 AND 32 = 5 AND 33 = 4 AND 34 = 4 THEN It is suggested that you use the Spiral model

The decision tree that would have lead to the above daemon would appears m figure 4 19

Figure 4.19 Example decision tree

where the test condition in each case is “tk X = value” As can be viewed from the diagram,

patterns can be noted in the tree such as tk 31 ’s value being similar in two IF statements Each

path is terminated m an end node, which contains the advice ID The advice to be given is then

specified in the following tables

Advice Index Advice Text

Adv 1 The suggested Life cycle for your project is to use Iterative prototypes

Adv 2 It is suggested that you use prototyping for system development

Adv 3 The suggested life cycle for your project is to use the V model

Adv 4 It is suggested that you use the spiral model

Table 4.1 Table outlining the various advice objects

If the decision tree becomes overly complicated there are a number of mechanisms that can be

utilised to simplify it

71

A node can contain more than one piece of information If a number of tokens m an AND

statement all have the same value they can be specified m the same node e g from the

decision tree the path that leads to adv 1 - tokens 31 and 32 can be combined into the same

nodei e tk 31,32= 1

Branches of a tree do not always have to be divergent, they can converge as well if the

knowledge allows Thus there can be only one advice box for Adv 2 m the decision tree with

two possible paths to it

- If the tree becomes large, certain sections can be separated. They are drawn separately

and given a name such as Dtable 1 4 This sub tree can then be included in the M l tree by

placing its ID as a node This is similar to the method call As can be viewed from the

diagram, since the table has only one input and one output, this should be consistent with its

location in the overall tree

4.8.3 New Daemons

The field of SPM is by no means stagnant and for this reason there must exist the ability to

expand and in some way alter the knowledge of the daemons As a result the daemons are kept as

independent of the tool as possible It is, as described previously, rather simple to incorporate a

new daemon into the tool, especially if the inference engine is already available

To add a new daemon to the architecture the following must be done It must be ensured that the

daemon conforms to the high level structure of a daemon specified above The file that contains

the daemon must be added to the daemon directory and the tool restarted This will result m the

72

daemon reading the daemon headers as usual including the new addition, and the blackboard

being constructed automatically with the new daemon information Once the daemon is inserted

into the correct directory the rest is automatic However some care must be taken to ensure the

knowledge it contains is consistent with that already available

4.9 Summary

In conclusion, the goal of this chapter was to outline the detailed design of the daemon

architecture

It began with a bnef discussion on some of the high level decisions that were made before the

development of the tool such as standards which included coding standards, design standards, and

documentation standards Following on from this a high level OMT diagram of the architecture

was given, with each component broken down and explained in detail

The daemons and their advice were the last component described m this chapter A bnef

discussion concerning the knowledge of the daemons was outlined It descnbed the vanous

protocols that were followed to ensure the knowledge was correct and a suggested mechanism for

bndgmg the gap between documented knowledge and rule based knowledge was given

The following chapter discusses some of the implementation issues that arose dunng the

development of this architecture into a working prototype

73

5. Implementation of a prototype
The goal of this chapter is to explain some of the implementation issues that were encountered

during the development of a prototype of the daemon architecture

5.1 Introduction
This chapter is primarily concerned with the implementation stage of the daemon architecture and

some of the issues I encountered during this phase A brief discussion is given relating to some of

the requirements of the architecture such as what exactly mobile code is, what platform

independence is and why these are necessary at all This leads on to a discussion concerning some

of the problems that were encountered m the implementation stage using the languages chosen

and the solutions used to overcome them

A brief discussion of the implementation languages is given so the above mention problems can

be better understood Iona’s implementation of the CORBA standard was the distributed language

chosen while the main implementation language was Java I also outline a number of reasons for

their inclusion and the advantages and disadvantages they brought Finally an outline of the

development strategy is given detailing how the architecture evolved from the design to a

working prototype, and the problems that were encountered

5.2 CORBA
I chose Iona’s implementation of CORBA, OrbixWeb3 [Orbix 97] as the mam communication

language for the Prompter tool The Common Object Request Broker Architecture (CORBA), is

the Object Management Group's standardised specification [OMG 98] for interoperability among

the rapidly increasing number of hardware and software products available today CORBA allows

applications to communicate with each other independently of their location or designer

The CORBA bus allows transparent access to distributed objects over a heterogeneous network of

machines and operating systems - distributed meaning the various objects can be hosted across

many computers and heterogeneous meamng many languages and many operating systems can be

used, yet all operating together transparently The client remains completely independent of the

server It may be written in Java and the server written in C++ and neither would be aware of the

difference. Also the client can be completely unaware of the server’s location This makes

74

network programming much easier as it allows you to create distributed applications that interact

as though they were implemented for one machme[0rbix 97] Figure 5 1 shows a high level

diagram of the CORBA structure

Figure 5.1 CORBA overview

As can be viewed from this diagram, CORBA is a client/server mechanism, whose

commumcation is handled by an underlying communication layer known as an ORB CORBA

distributes any messages between the client and the server via its Object Request Broker (ORB)

The ORB receives requests from a ‘client’ to send a message to an object The broker locates the

object referred to by the client and delivers the message to it The ORB smoothes over the system

differences between the individual components of an application It can be described as an Object

Bus, a software equivalent to the computer hardware bus [WeissM 96]

5.2.1 IDL Interface

In order to enable the client and server to operate with such transparency, CORBA must maintain

some mechanism of linking them i e through interfaces (see figure 5 2)

Client IDL ^ferver{----- 1 SS
Figure 5.2 Interfaces

These interfaces are defined using CORBA’s Interface Definition Language or IDL This

language allows classes, their respective attributes and methods and any other information to be

defined in some common syntax

interface grid {

readonly attribute short height, // height of the grid

readonly attribute short width, // width of the grid

// IDL operations

75

void set(in short n, in short m, in long value), // set the element [n,m] of the grid, to value

long get(in short n, in short m), // return element [n,m] of the grid

}-

In the above example taken from the CORBA documentation [Orbix 97], the interface contains

two attributes and the respective method calls that can be made on them The Server and Client

have the same view of the interface but are unaware of what lies on the other side

This file is compiled into a stub for the client This contains the method’s location, its

implementation language and the parameters it requires etc If the client wants to execute a

method it makes a call to this stub The client is unaware of the mechanisms used to communicate

the call This stub processes the call and passes it to the underlying ORB runtime This runtime

commumcates with the server ORB, and passes it on to the server

This procedure differs from other distributed mechamsms such as RPC (Remote Procedure Calls)

in that IDL is completely object-onentated and thus supports inheritance and polymorphism as

well as encapsulation

5.2.2 CORBA programming

In the following two sections, an outline is given of the mam CORBA mechamsms for the set-up

of a Client and Server, accompanied with an explanation of the main method calls involved

5.2.2.1 Writing the Server

A class is constructed to contain the server e g public class Server { } The first task within a

server class is to connect to the CORBA ORB itself This initialises the ORB and returns a

reference to the server class This call appears as follows

org omg CORBA ORB orb = org omg CORBA ORB imt(),

The next task is for the server to create a reference to its implementation code This is where the

implementation of the methods defined within the IDL interface is stored Thus, if the

implementation code for this server is in a class called Serverlmplementation, the call appears as

Testlnterface test = new Serverlmplementatwn(int x,int y),

76

This creates an instance of the generated Java file from the interface, and this instance is then

bound to an instance of the implementation class All that remains is for the server to indicate its

readiness to the ORB This can be done using the call

CORBA Orbix impljs_ready(“ServerName”),

In this call the server name is also given to the ORB so it may be distinguished from other

servers

S.2.2.2 Writing the Client

A class is constructed for the client e g public class Client { J , As before, the client must

initialise the ORB from its perspective again using the call

org omg CORBA ORB orb = org omg CORBA ORB imt(),

The client can then attempt to bind to the server using the call

Testlnterface test = TestlnterfaceHelper bind(“ ServerName”,srvHost),

This tells the ORB to bind to a server called ServerName and inform it that a client with a

machine address srvHost wishes to bmd to it At this point the client can now make method calls

on the server using simple method calls with the format test methodCall(),

5.3 Java language
Java was chosen as the mam implementation language for the tool It is an object-oriented,

architecture neutral, portable, multi-threaded, dynamic language It is designed to support

applications on networks, such as the Internet, which made it an ideal choice for the Prompter

tool since Prompter is designed to be a distributed system capable of operatmg with its

components situated on various computers across an Intranet or Internet It was also a

requirement that it be platform independent All these requirements were met by Java In addition

smce it is fully object-onentated it provides a natural choice for integration with CORBA

Unlike other languages the Java compiler does not generate machine code but specific binary

code (bytecode) which is run by a virtual machine This virtual machine is a layer of software on

a computer, which takes Java bytecodes and executes them on that platform The Java structure is

highlighted m the following diagram taken from [HortonI 97]

77

The program is
executed by the
bytecode interpreter
within the VM

Figure 5.3 Java Overview

This structure results in code that executes the same way, no matter what its underlying

architecture is Thus Java bytecodes can be shipped over the net and are guaranteed to function

the same on all platforms A program written and compiled on a Pentium with a WmdowsNT O/S

can be simply transferred to a Umx machine and run without the need for recompilation

Java has achieved widespread acceptance in the programming world [SrmivasK 97] Due to

Java’s mobility it can also be considered as an option for implementing mobile agents

5.4 Where Java and CORBA fit in.
Although the basic Java support for bytecode migration implies Java code mobility this capability

is not really viable With the standard implementation of Java, all Java objects reside on a single

host Also Java lacks mechanisms for transmitting arguments from one host to another In

contrast the fundamental premise of CORBA is that an object on one host can invoke a method of

an object on another host CORBA passes references rather than objects and thus avoids

plunging into the issues of object migration CORBA also provides a persistent object service that

is not possible with Java

Thus for the purposes of the daemon architecture, using both Java and CORBA together can

satisfy all the tasks of a distributed multi-platform system Java will allow CORBA objects to run

78

on any system Some suggest [OrfaliR 97] that Java is the ideal language for writing client/server

objects Its built in multithreading and garbage collection makes it easy to implement robust

objects Thus the two languages complement each other Java deals with implementation

transparency and CORBA provides the network services not covered by Java It links the Java

portable application environment and the rest of the world

5.5 Design and Implementation
In this section some of the implementation issues I encountered m the development of the

prototype are discussed This includes explanations of some problems encountered and the

mechanisms used to overcome them

5.5.1 Daemon Architecture

The daemon architecture was broken down into two CORBA servers The first server, the

Daemon Supervisor controls all communication between the daemons and the kernel through the

IDL interface The second CORBA server, the Daemon Library maintains the daemons

themselves This second CORBA layer allows the daemon supervisor and the daemon library to

reside on different machines and to the rest of the tool if necessary

One issue that is discussed later relating to the daemon architecture is the deletion of a CORBA

layer between the Daemon supervisor and the Blackboard This layer was designed into the initial

architecture but was deleted during the implementation stage due to the complications it caused

5.5.2 Implementation Strategy

The life cycle model chosen for the development o f a prototype of Prompter was the Spiral

model [McDermuidJ 91] This resulted in a number of prototypes that increased in sophistication

and complexity as time passed It was thought that for simplicity it was best to implement the

prototype m Java initially to prove the architectural concept and then introduce the CORBA

communications layer at a later stage It was thought that this strategy would give an easy

transition from design to implementation

SUN’s JDK1 1 6 was chosen as the development environment over other versions of Java such as

Microsoft’s J++ which is not 100% pure Java compatible unlike the sun version This

compatibility was deemed important as, at the time of coding, a question exists over the

compatibility of certain vendors’ Java environments. The version of CORBA used was Iona’s

79

OrbixWeb v3 0 and was chosen because it was implemented fully in Java thus maintaining the

tool’s mobility across platforms and JDK compliance

On the completion of the initial coding of the prototype in Java, the IDL interfaces were

introduced At this stage it became clear to me that many of the class structures and protocols

would have to be altered as IDL did not support many of the rich structures specified during the

design phase

5.5.3 Complex Coding

The introduction of CORBA increased the complexity of the code and the mcreased length of

execution time Since CORBA uses references to objects and servers, the code becomes more

complex to debug as it becomes impossible to trace through these references

Another problem was the overhead m running the software When the software was run on one

machine, the server calls were almost instantaneous, however, as more distribution was

introduced the overhead became more dependent on the state of the network This was expected

but it did lead to a lot of waiting by some clients on results from the servers and a general slowing

the down of the tool This was most evident in the initial starting up of the tool This required the

creation of all the servers which resulted m the ORB having to search for the location of the

servers This meant requesting information from the network DNS (The network supervisor),

leading to unwanted delay

5.5.4 Improving the performance of the prototype

As stated above, there was a great overhead to initially start the tool due to CORBA One method

of overcoming this problem was by specifying exactly what servers were where i e by giving

their exact IP addresses on start-up Obviously this reduces the distribution factor of the tool

Another method was the reduction m the distribution factor of the daemon architecture

Originally there were three CORBA servers within the architecture, those being the daemon

supervisor, the daemon library and finally the blackboard Thus on start-up of the daemon

component, three servers had to be created and initialised I decided that one of these had to be

removed The blackboard server was chosen because there was a closer link (thus meaning more

CORBA communication) between the daemon supervisor and the blackboard than with the

Daemon Library

80

|[3^fg|ect

Daemon Supervisai

&lacitbaard
z t X t

Blackboard BiacfcMarâ Blackboard

Figure 5.4 Removal of Blackboard server

The removal of this CORBA link meant the daemon server and specifically each project now had

direct control over their own blackboard and resulted in a much quicker prototype (see figure

5 4) The prototype now operated with a 50% improvement in overall operational time It also

reduced the complexity o f the code

The elimination of the blackboard server as it stood also reduced a potential bottleneck at the

blackboard interface As it stood, the blackboard server handled all information dealing with all

projects from all users However with the elimination of the interface, it allowed each project to

have its own unique blackboard which it controlled This reduced the complexity of maintaining

data relating to projects It also made the design more 0 0 as the data for one project became only

available to that project The trade-off here however was the tool was now less distributed

The final mechanism I incorporated to improve the performance of the prototype was the

reduction of method calls made across CORBA This meant that when a CORBA call was made

the maximum amount of information had to be passed with it An example of this is the token

change protocol Initially the kernel signalled a tokenchange after one token was changed Thus it

was decided to create a structure called the state array that would buffer token changes and

transmit a number of them at once Obviously this meant the daemon architecture was not as up

to date as possible, but a trade-off had to be made for efficiency This solution reduced the

CORBA calls by almost 60%

5.5.5 IDL aiding the Design

Since IDL was used as an interface between the mam components withm the architecture and the

rest of the tool, it forced me to make decisions about some design issues before they would

normally be considered Initially the interfaces were specified and stubs created This then

provided a base for the design stage, which allowed each logical structure to be separated from

the rest of the architecture As a result of this property, it forced the design stage of the

81

architecture to be linked more closely to some implementation It also allowed the easy addition

of new code to the prototype which was necessary smce the life cycle was a spiral model for the

tool

There is another side to this however Smce these interfaces had to be specified early m the

design process it resulted in many problems and errors occurring that caused re-writes of the

interface So although it helped to work with some interface, it also introduced the problem that if

the interfaces were wrong the design itself would have to be changed resulting in many changes

5.5.6 Problems with the Spiral development

The Spiral model was used as the life cycle model for the tool This meant that a simple version

of the prototype was developed initially and through a process of revisiting, it became more

complex, with more functionality as time progressed

This seemed a good method of developing the architecture However it did have its problems In

the first iteration of the prototype many lessons were learnt about CORBA and IDL etc However

when they were revisited in the second iteration, the documentation had to be revisited, code had

to be studied again and in some cases re-implemented or improved upon, resulting in wasted time

on each iteration Thus this life cycle model resulted in a lot of time taken consulting

documentation, redesigning some of it, scrapping some of it, etc instead of having a constant

turnout of new code

However some good points also resulted from this life cycle model It allowed certain paths to be

tried and if unsuccessful, reworked Also it allowed the ability to improve on old code as new

code was mtroduced As the java language progressed new functionality was discovered that

allowed operations to be performed m different ways, e g the reading in of files The life cycle

model allowed this method of improvement This was also useful was with the advice structure I

decided that the advice would be more useful to the tool as actual HTML instead of its 0 0 form

This allowed the advice to be restructured and also made the daemon architecture much more

adaptable to other systems as the advice from the daemons was m a standard format that could be

easily incorporated

82

5.5.7 Daemon Supervisor availability
The daemon supervisor acts as a server to the kernel and must be available to execute a method

invocation at any time If a tokenChange method was called it would result in the daemon

supervisor having to perform a number of operations including a callback before it was free to

perform the next task from the kernel This was unacceptable since if the kernel was kept waiting,

the rest of the tool and the user would also have to wait

It was not possible to make all the calls to the daemon supervisor one-way as most of them would

be missed Thus one mechanism of overcoming this was to mtroduce multi-threadmg When a

call is made from the kernel, a thread is created m the DS to handle it, and is allowed to execute,

thus ensuring the daemon supervisor spends as little time as possible being unavailable to the

kernel

5.5.8 Bottlenecks
The above is a simple mechanism of threading the daemon architecture as each thread is given its

execution time by the operating system It was considered that problems would arise when more

than one of these threads wanted to write to the blackboard and the advicetable (the structure for

buffering advice to the kernel) However within the Java language threading classes there is

functionality to cover this With the addition of the word “synchronised” to the definition of a

method, it prevents more than one thread accessing that method at any time This does however

cause bottlenecks in the system

To ensure consistency, methods concerned with the blackboard, the state-array and the advice

table had to be synchronised m other words allowing one thread m at a time This meant that at

the interface to these methods bottlenecks occur To reduce this the size of these methods were

reduced to perform a smaller set of tasks, thus making the time to execute this method smaller

and the bottleneck smaller

5.5.9 Callbacks

Callbacks are a mechanism used by CORBA and OrbixWeb to allow a server to invoke methods

on a chent In other words the implementation of the method is in the client and is invoked from

the server These appear many times in the interface between the DS and the Kernel They also

produced most of the problems that were encountered during this interface’s development during

the implementation phase

83

To understand the problems that followed, the implementation mechanism must be explained

further Within the server there is a waiting mechanism that serves calls made by the client This

waiting mechanism is the Impl_is_ready call Thus for a server to invoke a method on the client,

there must also be a serving mechanism to serve these invocations This mechanism is the

processEvents call Thus when the server invokes a method on the client the processEvent serves

it in the same way as the Impl_is_ready

The first problem these callbacks produced was the fact that the client did not know when the

server would make one of these calls and so did not know when to call processEvents It was

thought that placing the processEvent in a separate thread would solve this problem However

this would greatly slow the client down as the scheduling of the thread would be left up to the

underlying operation system to schedule whether the processEvent call or the client thread should

be run

I noted that the callbacks in general would not be that common and that normal client/server

operations would be in the majority Thus I decided to schedule a processEvent when it was

thought that one was most likely to occur It was known that most callbacks would occur when

the daemon supervisor wanted to inform the kernel that it had advice available Thus the kernel

would know when it told the daemon supervisor which tokens had changed and that it may result

m a daemon executing and thus advice bemg generated Thus after a tokenChange method was

called, it would be soon followed by a processEvent call

5.5.10 Deadlocking

Another problem that was introduced due to callbacks was deadlocking When a method was
invoked from a server to the client it may cause what is called deadlocking This occurred when a

call tokenChange was made to the server (Daemon Supervisor) It caused the server to request the

state array from the kernel However what was not considered was that the kernel was still
waiting for the method tokenChange to finish as illustrated in figure 5 5

 tnlrp.n Change._______
Kernel DS

Get state array

Figure 5.5 Problem with deadlocking

84

But the return call cannot be processed until the tokenChange method is finished which is when

the state array is returned As can be seen this will never be resolved

One solution was to introduce a timing mechanism for the calls thus insuring if the method did

not finish after a certain time the call was revoked However if the client was blocked, how could

it check the system time? To overcome this problem of blocking, the method call itself was

encapsulated m an individual thread so if it becomes blocked only that thread would block while

the client as a whole remained active

However this was still unacceptable as the thread would remain blocked indefinitely Thus the

decision was made to make the method tokenChange one-way Now this allows the method

invocation to be equivalent to a fire and forget mechanism, meaning that when the kernel invokes

the method it does not wait to ensure the daemon supervisor receives it, but instead presumes it

has and that the daemon supervisor server will process it Of course, there is the potential for the

daemon supervisor to miss the call but it is a trade-off to ensure that deadlocking is not

encountered

5.5.11 How open is the daemon architecture

The prototype has no hard coded references to the domain of software project management Thus

to change the domain of the daemon architecture would not be incredibly difficult All that is

required is to change the daemons contained withm the directory “dlib” in the “DmnPack”

directory of the prototype When these daemons are changed the prototype must then be restarted

This causes the daemon library to re-read the daemon headers and the blackboard is then

reconstructed with the new daemon information Thus the daemon architecture has incorporated

the new daemons

Obviously this is not possible in the case of all domains The new domain must be structurally

similar to that used in the prototype since the blackboard must be capable of representing the state

of the daemons at any stage and it has to do this with its structure of nodes, segments and

scenarios Also the new domain must utilise the concept of tokens as this is the basic data type

used within the prototype Thus as long as the new domain maintains a similar structure to

software project planning, the prototype will have little problems representmg it

85

Obviously the daemons must also retam the same structure as the Prompter daemons as well

They must have a daemon header that identifies itself to the tool and the advice structure should

remain similar This should not be highly difficult because in general when advice is given it is

usually followed by a justification for it, and the ability to give background information to the

advice and some sort of bibliography of where more information can be acquired

5.6 Summary
In this chapter some of the mam implementation languages used m the development of a

prototype and the problems that were encountered are discussed Contained within the CORBA

description an outline was given about how simple servers and clients can be created However

this is by no means the full potential of CORBA as there is a great deal more functionality that

has not been mentioned here

The rationale was then given for why these languages were chosen over others This rationale

which was stipulated m the requirements documentation for the tool, forced the rejection of

languages which may have had a quicker execution time than Java, but which were not as

platform independent or as easy at multithreading etc

However the question must be asked whether the languages achieved their objective The answer

to this would be yes in that the prototype is fully JDK compliant and distributed The prototype

that is machine independent and platform independent, and with the use of CORBA the tool is

capable of operation across a distributed network This architecture is also easily adaptable to

other domains in that there is no software project management domain-specific information

hardcoded into the prototype, thus allowing it to be used with many other domains The

architecture also allows the easy incorporate of new daemons into it As stated m the previous

chapter this incorporation only requires a new inference engine wrapper if its implementation

language is new or if the inference engine for its language is already m the tool, it just has to be

added to the daemon directory

In the later sections of this chapter some of the problems encountered during the

implementational stage and the solutions to them were described Most of the problems

discovered were eliminated or at least reduced The questions about the complexity of the code

and the runtime are issues that cannot be ignored as they are still evident m the performance of

86

the prototype On the other hand m respect to the entire tool, the runtime of the daemon

architecture is not as critical to the overall tool as with other components

In conclusion, the languages chosen to implement the prototype did achieve their tasks It must be

expected that with the incorporation of CORBA, an overhead is in some way incurred The

detailed design that was descnbed in the previous chapter was implemented and the architecture

did perform decision support for the user m some fashion while still retaining its conceptual and

implementational independence from the rest of the tool

In the following chapter the conclusions that were drawn from this thesis are given with

suggestions as to how this architecture can be developed further m the future

87

6 Conclusions

6.11ntroduction

In this chapter I outline what has been achieved in this thesis including a discussion on the current

state of the prototype and its architecture, the architecture’s strengths and weaknesses and a

discussion on the future work and development that could be performed on the architecture It

finishes with some of my personnel remarks relating to the work I have performed and what I

have learned

6.2 Open architecture

There were a number of requirements the daemon architecture had to satisfy, most notably to

provide decision support within the Prompter tool However it also had to be as open as possible,

maintam a level of abstraction between the architecture and its knowledge, highly dynamic and

mobile, and like the rest of the Prompter tool and it had to represent its knowledge in a

convement and easily expandable manner

Thus, the requirements above called for an architecture that was

• Dynamic

• Generic

• Mobile

• Distributed

• Efficient

In the following sections it is shown how these criteria were achieved

6.2.1 Mobility

The daemon architecture is not specific to any operating system or computer architecture since it

was implemented in Java (chapter 5), a platform independent language, the distribution language

was OrbixWeb3 which is a Java implementation of CORBA, and JESS, a Java implementation of

CLIPS, was chosen as the agent language These languages achieved their tasks while also

maintaining the 100% JDK compliance of the tool

6.2.2 Degree of Distribution

Iona’s implementation of the CORBA standard, OrbixWeb3 (chapter 5) was the distribution

language chosen Although this added a major level of complexity into the development stage of

the tool, it did allow, the daemon architecture to operate asynchronous from the rest of the tool

across a network

I also introduced a level of distribution into the daemon architecture between the daemon

supervisor and the daemon library and also between the daemon supervisor and the blackboard,

which was later deleted due to efficiency problems

6.2.3 Generic,

In order to achieve an architecture that was genenc, a level of abstraction between the

architecture and the daemons had to be maintained Consequently I decided to have the

architecture control the daemons using inference engines which are tied to it usmg wrappers

These inference engines are responsible for the execution of the daemons and the retrieval of their

advice This does not prevent daemons implemented m different languages from communicating

Daemons/agents controlled by different inference engines communicate with each other usmg the

blackboard As a result, the architecture has no contact with the daemons themselves Thus to

replace the domain, only the daemons have to be changed

6 2.4 Expandability

The daemon architecture had to have some mechanism of altering its knowledge base easily As

described in chapter 4 the knowledge base is mapped to the daemons in a 1 to 1 relation such that

for each section of the taxonomy there is a daemon to represent it

Thus to expand the knowledge of the taxonomy the process is simple A new daemon is written to

contain the new knowledge to be incorporated There is no requirement on how the daemon’s

internal rule structure should appear as long as it conforms to the high level structure laid out m

89

chapter 4 If the daemon is written in a language familiar to the architecture 1 e there is a wrapper

for it already in the architecture, then the daemon file can be inserted into the “dlib” directory

where it is incorporated upon start-up of the tool However, if the daemon is written in a new

language a wrapper must be constructed to incorporate the inference engine for it into the

architecture This is not as complicated as it may seem as there are a number of Java

representations for AI language currently available (at the time of writing there were Java

implementations of Prolog and Lisp as well as the already descnbed CLIPS available) Again the

new inference engine and daemons are incorporated upon start-up of the tool

An advantage of this integration process is, the tool does not have to be recompiled each time a

new daemon is introduced This property of expandability ensures that the knowledge can be

easily maintained m the future

6.2.5 Efficiency

One problem that was encountered during the implementation stage and discussed in more detail

in the previous chapter was the delay introduced by the CORBA layers If the daemon

architecture was to perform satisfactorily it had to be efficient at its tasks

Smce there are two CORBA layers above the daemon architecture there is already a major delay
j

to the user However, as was also noticed, this delay was greatly increased by the CORBA layer

between the daemon supervisor and the blackboard Smce its removal, the distribution factor of

the architecture was reduced but the efficiency of the prototype was greatly improved

Also because the interface between the daemon supervisor and the rest of the tool contains a

number of methods it was possible to easily introduce multithreading into the daemon supervisor

So on method calls from the kernel, the daemon supervisor creates a thread to handle the task,

thereby utilising its CPU time better

90

6.3 Weaknesses of the Architecture

In this section some of the weaknesses in the design and in the implementation of the daemon

architecture are described

Although the architecture is an open one, there are still some domain-specific traces withm it The

main one is the structure of the blackboard The blackboard currently provides one node structure

for each individual area of software project planning Within each node is a segment for each

daemon and so on Thus the blackboard m some way mirrors the domain it represents If a new

domam is introduced it may be difficult to incorporate this into the blackboard A new set-up

program for the blackboard may be needed if it could not be represented the same way This leads

me to conclude that the daemon architecture is best suited to domains where knowledge is easily

broken up into categories similar to those of software project planning

As stated above if a new daemon is added to the system with an existing inference engine, there is

no problem However if a daemon written in a new language is created, a wrapper for its

inference engine must be created For certain languages this may not be possible if there is no

functionality provided

At present the prototype runs slowly However since the daemon architecture is at the backend of

Prompter this may not be an issue If the architecture is incorporated into a tool that requires

faster results, problems may occur This lack of speed is as a result of the use of CORBA within

the architecture

Since the architecture communicates with the rest of Prompter through a CORBA interface, it is

necessary to have an ORB situated on the machine that runs it as well as a Java virtual machine

As a result a lot of resources are required to run the prototype

91

6.4 Future development of the tool

It is not thought that the knowledge base of Prompter will remain static, A tool to allow the user

to insert new daemons into the system would be very useful 1 e a Daemon Developers Kit This

tool would allow the user to create a daemon and hide all the implementation issues from them It

should ensure that the daemon is correct and insert it into the system leaving the user to

concentrate on the knowledge it must contam

It is known that there are some unresolved issues with how agents co-operate with each other and

how they resolve problems In this architecture these issues were overcome with the use of a

blackboard However this is not the only way this can be performed The introduction of an agent

communication language may provide a better solution to this issue

One major piece of functionality that has not been tackled is agent learning Since the daemons at

present have no idea of the profile of the user, they will supply information when they execute

However project managers in general all have different mechanisms of managing projects Some

managers hold their budgets as one of their critical issues while others think of this as being of

less importance To cater for this the daemons or indeed the blackboard could build up a profile

of what information the user accepts and what they leave for a later stage If a daemon’s advice

kept getting rejected, it could inform the system administrator that its advice could be wrong

Also if the manager likes to be kept aware of their Risk at all stages, the Risk daemon would

supply advice more often To allow the architecture to perform this task, some Artificial

Intelligent techniques could be introduced One suggestion would be the introduction of neural

networks into the blackboard that learn which daemon the user accepts advice from and which

they reject

6.5 Conclusions

The goal of this thesis was to design and develop an agent based architecture to provide decision

support for the Prompter tool This was achieved through the design and the development of a

daemon architecture as described in the previous chapters of this thesis Below some of the final

conclusions from this thesis are given along with the resolution of some general questions that

may have arisen

92

The first issue that must be addressed is whether the architecture achieved what it set out to do

The answer is yes The architecture is capable of providing advice or critiquing the user’s project

from a number of different perspectives It is distributed, and mobile, and most importantly is an

open architecture that allows the knowledge base to be easily expanded or even completely

changed

The architectural structure is also sound, smce it achieves its tasks successfully Even though

there are possible mechanisms for improving it, there are no components within it that are flawed

However if the design was performed again the mistake of over distribution would not have been

made Also, more investigation would be performed concerning other distribution languages

instead of OrbixWeb The question still remains, would the prototype have run better using Java’s

''Remote Method Invocation mechanism1? Another point that could be re-examined would be

making the daemon architecture more independent At present the link between the tool and the

daemon architecture is similar to a client-server protocol It was initially thought that this

architecture would be completely independent

Another question that remains is whether it would have been better to use an agent

communication language such as KQML instead of using the blackboard structure smce a

language of this type would allow better agent coupling However there are advantages with the

blackboard, the first being that it has been tested and it allows the architecture to remain in

control of the daemons However, if a language that allowed agents to communicate among

themselves was introduced, it would greatly increase the complexity of the relationship between

the daemons and make it much easier for daemons to work together

I can also conclude that Java was a good choice for the implementation language It allowed the

tool to be machine independent and highly mobile OrbixWeb allowed the individual components

of the tool to be distributed It mtroduced a great deal more complexity into the system, but it did

allow the tool to be divided up well Also the choice of another distribution mechanism would

most likely have introduced the same complexity

One of the mam questions that has arisen over the course of this thesis is whether the daemons

produced were actually agents Some sacrifices were made to the idea of an agent such as

surrendering some of their autonomy However they still have a lot of the properties associated

93

with agents as outlined in chapter 3, such as mdependence, being goal driven, the blackboard

allows them to be commumcative, and reacting to their environment

Another level of complexity that was introduced was JESS Was it a good language for

implementing daemons7 Since it is an mdependent component, JESS takes care of problems that

can arise with agents such as memory allocation, conflict resolution, rule resolution etc Also it

demonstrates the adaptability of the architecture to new languages It was capable of representing

the knowledge that was provided and therefore I must conclude that it was a good choice

6.6 Concluding Remarks

From the design and development of the daemon architecture I have learned a substantial amount

about software development within a team In this section I will make some general comments

that strike me as being of some importance

The design of an architecture for mtegration within another tool is a complicated process which is

usually performed in stages In developing the daemon architecture I learned this process, and

how important it is to the quality and maintainability of the resulting software Initially within this

process, there must be a requirement specification phase to define what it is that the component is

expected to perform From this an architectural design must be developed and then a detailed

design At every stage there must be adequate documentation to explain the decisions made or

protocols introduced I realised the importance of this process when the time came for me to

design the daemon architecture This documentation acted as a mechanism of reminding me why

one decision was made over another while also helping me produce higher quality code Also

each component was constructed using a traceable mechanism of documentation from the

requirements to the coding stages This prevented the coding stage from veering from the desired
path

Since the daemon architecture was developed as part of the Prompter tool, I had to design and

develop it so it was capable of interacting with software developed by other organisations This

introduced me to the idea of team development I learned the importance of correctly versioning

my documentation and code, of keeping up to date with the tool’s functionality, and most

importantly, working with other members of the team to create solutions to problems such as

efficiency, saving protocols, CORBA problems etc For the three components to work coherently

together, it was crucial for the members of the team to do as well

94

Prompter was developed according to a strict schedule of builds and deliverables and as a result

so was the daemon architecture This illustrated the importance of scheduling and developing

software within a time limit It meant that solutions to problems had, in some cases, to be

abandoned due to lack of time etc It required me to organise my time more thoroughly, making

me prioritise functionality and tasks in a better manner

In developing the daemon architecture and the knowledge it represents, I was introduced to a

different level of the project I was dealing with people who were responsible for supplying the

knowledge for the agents/daemons It helped illustrate that not all work within a project is

implementation onented and that other issues must also be considered This was also true when

working with users who provided feedback about prototypes developed, documentation, and

knowledge issues Smce they do not care what happens behind the scenes, they have a better view

of the tool as a whole This consultation showed that their most important concern was not how,

for example, the blackboard was structured, but instead with the appearance of advice for the user

and its content I learned that the tool should be viewed at several levels of abstraction and not

only at the design level

Smce Prompter was developed for commercial purposes a number of commercial issues had to

be considered during its development One that was highlighted to me during the development of

the agents/daemons was the problem of commercial licences for agent languages When I was

investigating agent languages to implement daemons in, I was not considering how much they

would cost to integrate into a commercial tool When this issue was raised a number of languages

had to be , abandoned Commercial software that uses other software to operate, generally must

acquire a licence to do so and this usually incurs cost

Smce Prompter will be used m real project development, it had to be ensured that withm the tool,

and specifically for myself, within the daemon architecture, components were well documented

and the structures and interfaces to components were as simple as possible This was to ensure

that the cost of maintaining the code would be low It had to be easy for components to be

replaced or rewritten if necessary This was also one of the reasons for maintaining the

abstraction o f the tool from the knowledge within the daemons

95

7. Bibliography
[AIST 98]

[AmblerS 97]

[Broadcom 97]

[CDMCS 92]

[ChunH 97]

[CroftD 97]

[EngelmoreR 88]

[EckertC 95]

[FarleyS 97]

[FirnnT 92]

[FischerG 93]

[FIPA 97]

[FnedmanE 97]

[GeneserethM 94]

Agency of Industrial Science and Technology, “http //www aist go lp/ETL
/-matsiu/iavalisp/mdex html”. Electrotechmcal Laboratory, JavaLisp,
accessed 14-9-98

Ambler, Scott W , “Java Coding Standards 17 Ola”, AmbySoft Inc 1997

Trinity College Dublin, Broadcom Eireann Research, “Software Agents
A Review” May 1997

Umversity of Alabama, Umversity of Tulsa, PED-MICOM-Army
“Compostite Design and Manufacturing Critiquing System”, USA, 1992

Chun, W H on, Lai, M Edmund, “Intelligent Critic System for
Architectural Design” IEEE Transactions on Knowledge and data
engineering, Vol 9, No 4, July/Aug 1997

Croft, David Wallace, “Intelligent Software Agents Definitions and
Applications”, Special Projects Division, Information Technology,
Analytic Services, Inc, USA 1997

Engelmore,R, Engelmore, Morgan, Engelmore Tony, “Blackboard
Systems” , Addison-Wesley, Great Britain, 1998

Eckert, Claudia, “Intervention Strategies for Critiquing Professional
Designers”, Design Discipline, The Open Umversity, Milton Keynes,
UK, 1995

Farley, Steven R , “Mobile Agent System Architecture”, Java Report
May 97

Finin, Tun, Finin, Rich, McKay, Fntzson, McKay, Don, “A Language
and Protocol to Support Intelligent Agent Interoperability”, Proceedings
of the CEN& CALS Washington '92 Conference, June 1992

Fischer, G , Nakakoji, K , Ostwald, J , Stahl, G , Sumner, T ,
“Embedding critics in design environments”, Knowledge Engineering
Review, 1993

“FIPA97 Developer’s Guide” - an output from FIPA98 Technical
Committee 10, Version 2,1997

Fnedman-Hill, Ernest, “JESS, The Java Expert System Shell”,
Distnbuted Computing Systems, Sandia National Laboratories, USA,
1997

Genesereth, Michael R , Ketchpel Steven P , “Software Agents”, Papers
from the Spring Symposium, Stanford Umversity 1994

96

[GemerA 94]

[Giarratano 84]

[HenryW 94]

[Hortonl 97]

[LangeD 96]

[LangeD 98]

[MaesP 97]

[MartinL 96]

[McDermuidJ 91]

[MoymhanT 94]

[OMG 98]

[OrfaliR 97]

[Orbix 97]

[PetneC 97]

[Gemer A 93] Gemer, Abigail S, “Cntiqumg Effective Decision Support In Time
Critical Domains”, Dissertation Proposal, Department of Computer and
Information Science, University of Pennsylvania, 1993

Gemer, Abigail S, “Cntiqumg Trauma Management Plans On-line”,
CliFF Abstract, cliff-group, 1994

Giarranto R , Riley, “Expert Systems - Principles and programming”,
Second Edition, PWS publishing, 1984

Henry, William, “Software Project Risk Management A support Tool”
Dublin City Umversity, M Sc in Computer Application, 1994

Horton, Ivor “ Beginning Java”, Wrox, UK, 1997

Lange, Danny, B , Chang, Damai T , “IBM Aglets Workbench,
Programming Mobile Agents m Java A White Paper”, IBM Corporation
September 1996

Lange, Danny, B , “Mobile Agents Environments, Technologies and
Applications”, PAAM98, 3rd international Conference and Exhibition
proceedings

Maes, P , “Software Agents”, Umcom Conference on Agents and
Intelligent User Interfaces proceedings, Umcom, 1997

Lockheed Martin advanced concepts, “Succeeding with the Booch and
OMT Methods, a practical approach”, Lockheed Martin advanced
concepts centre, Rational Software corporation, Addison Wesley, USA,
1996

McDermuid, John, A , “Software Engineer’s Reference Book”,
Butterworth-Heinemann, Oxford, 1991

Moymhan, T , Power, J , H enry,W , “A cntiqumg system architecture for
Software Risk Management”, 5th European software control and metncs
conference proceedings (ESCOM) Italy, May 1994

“The Common Object Request Broker Architecture and Specification”,
Object Management Group, MA, USA 1998

Orfali, R , Harkey, D , Edwards, J , “CORBA, Java and the Object
Web”, Byte magazine, October 1997

“OrbixWeb programmers guide”, Iona Technologies pic Dublin, 1997

Petne, Charles J , “W hat’s an agent and what’s so intelligent about
it?”, IEEE Internet Computing, July/August 1997

97

[PressmanR 94]

[Prompter 97]

[Prompter 98]

[RichE 91]

[Rumbaughj 91]

[SilvermanB 92]

[SmithP 86]

[SrinivasK 97]

[ThayerR 88]

[TurbanE 95]

[Verbruggen 87]

[WebbeB 94]

[WeissM 96]

[WhiteJ 961

[PowerJ 94] Power, Jane A.; “A critiquing system architecture in the risk
management domain: Riskman2” DCU M.Sc. in Computer Applications
thesis, 1994.

Pressman, Rodger S.; “Software Engineering, A Practitioners approach”,
Third Edition, European Adaptation, McGraw Hill 1994.

O. Connor, R. O; Floch, C; Moynihan, T.; Renault, T.; Combelles, A.;
“Prompter- A decision Support Tool using Distributed Intelligent
Agents”, Dublin City University 1997.

Prompter knowledge team, “Software Cost Risk”, Daemon Knowledge
Base Design, Project and Process Prompter, ESPRIT 22241, Dublin City
University, 1998.

Rich, Elaine; Knight, Kevin; “Artificial Intelligence, Second Edition ”,
McGraw-Hill, 1991, Ch 20

Rumbaugh, James; Blaha, Michael; Premerlani, William; Eddy,
Frederick; Lorensen, William; “Object-Oriented Modelling and
Design”, Prentice Hall, Englewood Cliffs, NJ, USA, 1991.

Silverman, Barry; “Communications of the ACM”, April 1992, Vol.35,
No.4

Smith, Peter; “An Introduction to Knowledge Engineering”, International
Thomson, 1986.

Srinivas, K.; Jugannathan V.; Karinthi, R.; “Java and Beyond Executable
Content”, IEEE Computer, June 1997.

Thayer, Richard H.; “Tutorial: Software Engineering Project
Management”, IEEE Computer Society Press, USA, 1988.

Turban, Efraim; “Decision Support Systems and Expert Systems,
Management Support Systems”, 4th Edition, Prentice Hall, USA 1995

Verbruggen, R; Jenkins,J; Bosco, M; “Integrated Management Process
Workbench: Intelligent Assistance for the Software Project
Management”, CASE ‘87, First International Workshop on Computer
Aided Software Engineering, Cambridge, Massachusetts 1987.

Webbe, Bonnie Lynn; Clarke, John; Chi, Diane, Gemer, Abigail; Kaye
J.; Neumann, S.; Ogunyemi, L.; Singh M. “The TraumAID Project”,
CliFF Abstract, cliff-group, 1994.

Weiss, M.; Johnson, A.; Kinsey, j.; “Distributed Computing: Java,
CORBA, and DCE”, Technical Report Open Systems Foundation, 1996.

White, Jim: “Mobile Agents white paper", General Magic, USA, 1996.

98

Appendix A The main classes in the architecture

Blackboard Class

* @author Eamon Gaffney
* @authorDCU*
* This is the Blackboard class which is responsible for the BB structure and the states of the tokens within
* each of the daemons (segments) It also stores the outputs from these daemons in case it may be required
* at a later date
*/

import java 10 *, // The Imported Java classes
import java util *,

/*
* The BB structure is implemented as a vector and within each element there exists a segment The BB
* creation can occur when the BB has a copy of the daemon libraries Dependency table Within this class
* there exists a number of methods which answer queries from the DS however there are also a few
* callbacks resident here as well
*/

public class BB {

// The BB structure will be a number of nodes all collected together using the vector data structure

private Vector BBstructure, // vector to store all the nodes
public mt projectID, // store the projectID the BB is related to
public Daemonlnfo [] DT, // This is the Dependency Table received from the

// library It is used by the method newCreateBB to
// create the BB

public BB() {
// constructors to create the BB vector
BBstruct = new Vector(), // the vector is initialised and ready to store information

}

// Methods for the BB Class

public void newCreateBB(DaemonInfo [] dTable, mt pID) {
/*
* This method is the new BB constuction It receives the DT from the DL This contains an array of
* daemonlnfo objects which is then placed into structures called node It first checks if the node is
* already created If not it should be created After this stage the segment which contains the
* daemon information is added to the relevant node
*@param dTable The dependency table
* @param . pID . projectID that the BB is related to
*/

A-l

DT = dTable, // Create a local copy of the DT
projectID = pID,

for (mt index=0, index< dTable length, mdex++) { // for all elements in the dependency table
array do

String dmnArea = dTable[mdex] area(), // read the area of the current daemon mdex
mt]=0,
Node newNode, // Search current BB to ensure node is not created already

while ((j<BBstruct sizeO) && (dmnArea '= ((Node)(BBstruct elementAtO))) area)) {
j++, // if not found move to the next index in the BB

}
if (j< BBstruct size()) { // if node is found in the BB already

newNode = (Node)(BBstruct elementAtO)), // The set the var equal to its position
// The reason for this is so a daemon may be added to it

}else {
newNode = new Node(dmnArea), // create a node instance
BBstruct addElement(newNode), // add new node to the BB
}

Segment seg = new Segment(dTable[mdex] daemonID(), dTable[index] tokenIDs()),
// create a segment giving the relevant information

newNode segs addElement(seg), // add segment to the BB structure
} // This will be done for every entry m the DT

public void endBBO {
// method to end the BB structure or reset it
BBstruct = new Vector(),

}

public void startScenario(int sID) {
/*
* Method to create a new scenario within the project This method must
* then tell each node to create a new scenario for each daemon */

for (int i=0,i<BBstruct size(),i++) {
((Node)(BBstruct elementAt(i))) startScenario(sID),

}

public void stopScenano(int sID) {
/*
* Method to delete a scenario within the project This then tells each node to create a new scenario for
* each daemon
*/
for (int i=0,i<BBstruct sizeO,i++) {

((Node)(BBstruct elementAt(i))) stopScenario(sID),
I

A-2

public int [] findDaemons(int tokenID) {
/*
* Used to find all the daemons which contain a certain token It does this by searching the Dependency
* table and constructing an array of integers which contains the daemonlDs
* @param tokenID the tokenID to be searched for
* @retur int [] array to store the daemonlDs the token appears in
*/

Vector did = new Vector(),

for (int k=0,k<DT length,k++) { // for all elements in the DT do
// for all the tokens m the segment do

for (rnt j=0,j<DT[k] tokenIDs() length,j++) {

if (tokenID==DT[k] tokenIDs()[j]) {
// if the tokenID required for this daemon do store the daemonID
did addElement(new Integer(DT[kj daemonID())),
}

}
}
mt [] daemons = new int [did size()], // store these IDs in an array
for(mt i=0,i<did size(),i++) { //copy the buffer mto an array

daemons[i] = ((Integer)(did elementAt(i))) mtValue(),
}
return daemons, // return this array

public int[] daemon Search (int dID) {
/*
* Method used my many methods for the purpose of searching for a specific daemon within the BB
* @param dID daemonID
* @retur mt[] index 0 contains index of the daemon within the node
* index 1 contains the index of the node within the BB
*/

int 1 =0,
mt [] ans = new int[2],

do{ // do a search for the daemon in each node daemon search returns -1
// if it is not m a node and the position m the node if it is there
ans[l] = ((Node)(BBstruct elementAt(i))) daemonSearch(dlD),
i++,

} while((i<BBstruct size()) && (ans[l] <0)),

1- , // required to negate the last i++
ans[0]=i,
return ans,

A-3

public void updateToken(mt daemonID , tokenlnfo tlnfo) {
/*
* update the token in the BB in all the segments it appears m Firsdy it searches for the DaemonID
* within the BB then searches for the token within that daemon When it finds it, the state
* is changed and the daemon flag hasChanged will indicate a token has changed
* @param daemonID the ID of a daemon
* @param tlnfo contains where the token is found 1 e
* its projectID and its scenanoID
*/

mt [] ans = daemonSearch(daemonlD), // search for daemon ans[0] = position of daemon within node

if (ans[0]< BBstruct size()){ // if 1 < BBstruct then the daemon was found at 1
// since the while ends before when pos is set

((Node)(BBstruct elementAt(ans[0]))) updateToken(ans[l],tlnfo), //update the tokens
} // at position and[0]

public void forwardStateArray(tokenInfo tlnfo) {
/*
* method which receives an object of tokenlnfo This contains all the information about the token that
* has been changed from where the token is related to etc Now all that
* remains is for the all the slots related to the token to be updated
*/

mt [] daemonlDs = findDaemons(tInfo tokenID()), //find all the daemons, tokenID exists m
for (mt j=0,j<daemonIDs length,j++) { // for each of these daemons

updateToken(daemonIDs[j],tlnfo),//update the token within them
}

public Vector availableToExecuteO {
/*
* Searches the BB for any daemons (segments) that are available for execution A daemon is available
* if all its tokens are available and there has been a change m one of its tokens
* @retur BBExeInfo[] the array of all the daemons that can execute
*/

Vector did = new Vector(), // vector to store all the daemons and their relavent tokens
for (mt i=0,i<BBstruct size(),i++) { // for all segments do

if (((Node)(BBstruct elementAt(i))) hasChanged()) { //if a token m the node had changed do
((Node)(BBstruct elementAt(i))) hasChanged = false,
Vector temp = new Vector(), // create a temp vector to store the daemonlDs
temp = ((Node)(BBstruct elementAt(i))) availableToExecuteO, // ask the node to return a list

// of daemons that can execute
for (mt j=0, j<temp size(), j++) { // copy them mto the proper vector

did addElement(temp element AtO)),
}

}
}
for(mt i=0,i<did size(),i++) { //copy the buffer mto an array

((BBExeInfo)(did elementAt(i))) projectID = this projectID,
} // an array as it is easier to transport
return did, // send list to DS project,

A-4

public void forwardAdvice(DmnOutput adv) {
/*
* Forwards the Daemons advice to the output area of the related segment
* @param adv the advice object reference to be added to the BB
* @param dlnfo the projectID, scenarioID of where the advice is related to
*/

mt daemonID = adv daemonID, // retrieve info from object
int pos, 1 =0,
mt [] ans = daemonSearch(daemonlD), // search for daemon array returned

if (ans[0]< BBstruct size()){ // if ans[0] < BBstruct then the daemon was found at 1
// since the while ends before when ans[l] is set

((Node)(BBstruct elementAt(ans[0]))) updateAdvice(ans[l],adv), // update the advice
1 //a t position ans[l]

}

public String saveBBO {
/*
* Save the information stored within the BB This method stores this information within a string which
* is then returned to the DS and on to the Kernel which stores it m the project file
* @ par am None
* (©return String the the BB info is saved m
*/

String info = "BB",
for(mt i=0,i<BBstruct size(),i++) { // for all elements do

// access the element at index l which is a secment and add node tag to string
mfo = mfo // store the returned string from that node
+((Node)(BBstruct elementAt(i))) getNodeInfo(),

}
mfo = mfo+ "JEND",
return mfo,

}

public void loadBB(Stnng info) {/*
* Method to load the information m the string back mto a BB structure
* @param String that stores the information to be loaded
* @retum None
*/

BBstruct = new Vector(), // tokemze String usmg Node as the delimiter
StnngTokemzer t = new StrmgTokenizer(mfo,",",false), // tokemze the TOKEN lme
String temp = t nextToken(),
while ((temp equals("END")) {

if (temp equals("Node")) {
Node newNode = new Node(t nextToken(),t nextToken()), // pass node name and state
temp = newNode createSegments(t),
BBstruct addElement(newNode);

} else { temp = t nextToken(),}
}

}

} // end of blackboard class

A-5

Node Class

/**
* @ author Eamon Gaffney
* @ author DCU*
* This class is responsible for the daemon object node that will be store the segments from a specific area
* of the knowledge base The purpose of this class is to group the a number of daemons that are m the
* same area the KB together*
*/
package p3 DmnPack,

import java util *,

public class Node {

public String area, I I the area the daemons contained within it are related to
public boolean hasChanged, // a Boolean flag If a token is changed m a daemon

// m this node this flag is set This prevents unnecessary searching of nodes that nothing has
// changed This flag is normally checked when the BB is checking for daemons to

execute public Vector segs = new Vector(), // store all the segments 1 e daemons relating to the node

// constructors

public Node(String value) {
area = value,

hasChanged = false,
}
public NodeO {

area ="" ,
hasChanged = false,

}

public Node(Stnng value, String state) {
area = value,
hasChanged = state startsWith("true"),

}

// Some of the methods of the class

public Stnng createSegments(StrmgTokenizer t) {
String temp = t nextTokenO,

while (temp equals(”Segment")) {
int seg = Integer parselnt(t nextTokenO),
temp = t nextTokenO, // pass node name and state
int [] tokenlDs = new mt [Integer parselnt(t nextTokenO)],
for (mt i=0,i<tokenIDs length,i++) {

tokenIDs[i] = Integer parselnt(t nextTokenO),

A-6

}
Segment newSeg = new Segment(seg,temp,tokenIDs);
temp = newSeg.createScenarios(t);
segs.addElement(newSeg);

}
return temp;

public void startScenario(int sID) {
/*
* Method to create a new scenario within each segment contained within the node
*/

for (int i=0;i<segs.size();i++) {
((Segment)(segs.elementAt(i))).startScenario(sID);

}
}

public void stopScenario(int sID) {
/*
* Method to delete a scenario within each segment contained within the node
*/

for (int i=0;i<segs.size();i++) {
((Segment)(segs.elementAt(i))).stopScenario(sID);

}
}

public int daemonSearch(int dID) {I*
* search the segments for a specific daemonlD. If it finds one it returns its index. However if it is not
* found it returns -1 which will be interpreted as such from where it has been called.
* @param : dID : the daemonlD
* @retur: in t: the index of the daemonlD in the node
*/

int i = 0;
while((i<segs.size())&& (dID != ((Segment)(segs.elementAt(i))).daemonID())) {

i++; // while daemonlD is not found continue
}
if (i<segs.size()) { // if i< segs.size this means the while didnt reach the end

return i; //o f segs and so must have found daemonlD thus return it
} else { return -1; }// if not found return -1 which indicated this.

}

public void updateToken(int pos, token Info tlnfo) {
/*
* mothod to update a token within a node. This method forwards the call to the segment Class
* @param : pos: the position od the daemonlD the token is in

A-7

*@param tlnfo the information about the token 1 e ID and seenanoID etc
*/

hasChanged = true,
((Segment)(segs elementAt(pos))) updateToken(tlnfo),

}

public void updateAdvice(mt pos, DmnOutput adv){/*
* Method to update the advice within a specific segment within the node
* @param pos the position of the segment within the node
*@param adv the actual advice object to be stored
*/

((Segment)(segs elementAt(pos))) update Advice(adv),
}

public Vector avadableToExecuteO {/*
* ask the node to construct a vector of alll the daemons that are available to execute It does this by
* asking each segment to return any scenario information if they can execute and copying them mto
* the vector total
* @retur Vector the vactor of all the scenarios that can execute This
* vector contains BBExelnfo object only
*/

Vector total = new VectorO,
for (mt i=0, i<segs size(), i++) { // find all daemons capable of executing,

if (((Segment)(segs elementAt(i))) hasChangedO) { // if tokens m segment have changed
((Segment)(segs elementAt(i))) hasChanged(false), // reset hasChanged variable
Vector temp = new Vector(), //temporary vector to store info from each segment
temp = ((Segment)(segs elementAt(i))) AvailableToExecuteO,// copy details of scenarios that

//can execute
for (mt j=0, jctemp sizeO, j++) { // copy temp vector mto total

total addElement(temp elementAt(j)),// thus all info is stored in one vector
}

}
}
return total,

String getNodelnfoO {

String nodeinfo =
nodeinfo =",Node,"+ area + + hasChanged,
for(mt i=0,i<segs size(),i++) { // for all elements do

nodeinfo = nodeinfo + +
// access the element at index 1 and store the mfo related to the segments m a string
((Segment)(segs elementAt(i))) getSeglnfoQ,

}
return nodeinfo,

} // end of class Node

A-8

/*
* @author Eamon Gaffney
* (©author DCU*
* responsible for the segments within the BB structure. Each segment contains the daemonID, a list of
* the tokenlDs and an output area for the Daemons to write their into. Thus each segment
* has a number of scenarios under its control.
*/
package p3.DmnPack;
import java.util.*;

public class Segment {

private int daemonID; // unique daemonID
public Vector scenarios = new Vector(); // vector to store the scenarios
public int [] tokens; // variable to stored the dependen tokens for the segment
private boolean hasChanged; // flag to indicate if a token within the segment
// has changed. This is used to stear the search to the changes and allow it to ignore those that haven’t

// constructor
public Segment(int dID, int tID[]) {

daemonID = dID;
tokens = tID;
hasChanged = false;

}

Segment Class

public Segment(int sID, String state, int [] tID) {
daemonID = sID;
hasChanged = state.startsWith("true");
tokens = tID;

}

public String createScenarios(StringTokenizer t) {
String temp = t.nextToken();

while (temp.equals("Scenario")) {
int sID = Integer,parseInt(t.nextToken());
boolean state = (t.nextToken()).startsWith("true"); // pass node name and state
DScenario s = new DScenario(sID,state,tokens);
temp = s.createSlots(t);
scenarios.addElement(s);

I
return temp;

}

public void startScenario(int sID) {
/*
* Method to create a new scenario within the segment*/

DScenario temp = new DScenario(sID, tokens);//((DScenario)(scenarios.elememAt(0))).tokenID);

A-9

}
scenarios.addElement(temp);

public void stopScenario(int sID) {
/*
* Method to delete a scenario within the segment
*/

int i=0;
while ((i< scenarios.size()) && (sID != ((DScenario)(scenarios.elementAt(i))).scenarioID())){

i++;
}
if(i<scenarios.size()) {

scenarios.removeElementAt(i);
} else (System.out.println(" scenario not found"); }

}

public void updateToken(tokenInfo tlnfo) {
/*
* update the token in a scenarios. This method forwards the info on to the appropriate scenario
* @param : tlnfo : the information that tells where specifically the token
* is ment for
*/

int sID = tInfo.scenarioID();
hasChanged = true; // indicate that the segment contains changes
int i=0;
while ((i< scenarios.sizeO) && (sID != ((DScenario)(scenarios.elementAt(i))).scenarioID()))(

i++;
}
if(i<scenarios.size()) {

((DScenario)(scenarios.elementAt(i))).updateToken(tInfo);
(else { System.out.println(" scenario not found"); }

public void updateAdvice(DmnOutput adv){
/*
* Method to update the advice of the a specific scenario within this segment
* @param : adv : the advice object to be stored.
*/

int sID = adv.scenarioID;
I I find the scenario index the advice relates to
int i=0;
while ((i< scenarios.sizeO) && (sID != ((DScenario)(scenarios.elementAt(i))).scenarioID())){

i++; // search for the scenario, i will indicate its position in the vector
} // if i < the size then the while didnt reach the end and so must have
if(i<scenarios.size()) { // been found

((DScenario)(scenarios.elementAt(i))).updateAdvice(adv); // method call to forward advice
} else { System.out.println(" scenario not found"); }// forward on the advice

A-10

public Vector AvailableToExecuteO {
/*
* method to construct a vector of all the scenarios that are capable of
* executing under its control The information is stored m BBExelnfo object
* which contain their daemonld, scenanoID etc
*/

Vector temp = new Vector(), // vector to store all the BBExelnfo object to be returned
for (mt i=0,i<scenarios size(), i++) { // search all scenarios

if (((DScenano)(scenanos elementAt(i))) hasChangedO) { // if it has changed do
((DScenano)(scenarios elementAt(i))) hasChanged(false), // ask the scenario to return mfo
BBExelnfo bRef = ((DScenario)(scenanos elementAt(i))) availableToExecute(),
if (bRef '= null) { //if not all tokens are available null is returned

temp addElement(bRef), // if OK add object to vector
}else{// System out pnntln(" null scenario"), }

}
}
for (mt i=0,i<temp size(),i++) { //add the daemonID to all smce they are related to

((BBExeInfo)(temp elementAt(i))) daemonID = this daemonID,// the same daemon
}
return temp,

public String getSeglnfoO {
String seglnfo =

seglnfo = (",Segment,"+ daemonID + ","+ hasChanged + +tokens length),
for (mt i=0,i<tokens length,i++) {

seglnfo = seglnfo + tokens[i],
}
for (mt i=0, Kscenanos sizeO, i++) {

seglnfo = seglnfo + ((DScenario)(scenanos elementAt(i))) getSnroInfo(),
}
return seglnfo,

} // end of segment class

A-ll

Scenario Class
/*
* @author Eamon Gaffney
* @author DCU
* (©version 3 27 2 date 29/10/98
*

* This class is responsible for the specific scenario of a daemon On creation of a segment the token info
is stored in
* the default scenario Each scenario store a hst of the tokens and their states
*/
package p3 DmnPack,
unport java util *,

public class DScenario {

public mt scenarioID, // specific scenario identifier
public Slot [] slots, // each scenario contains a number of slots contained m there is token details
private DmnOutput advice, // actual deaemon advice
private boolean hasChanged, // flag to ldicate if tokens m this scenario have changed
public mt [] tokenID,
public mt [] tokenVal, // This method will store the token values
// The advantage for usmg these arrays is purely for efficiency of running
// it is better to have then here than to go serching and constructing them

// Constructors

public DScenario(int sID, int [] tID) {
scenarioID = sID,
slots = new Slot[tID length],
hasChanged = false,
tokenID = tID,
for (mt i = 0, KtID length, i++) {

slots[i]= new Slot(tID[i]), // create a slot for each tokenID

}
advice = null,

}

public DScenario(int sID,boolean state, int [] tID) {
scenarioID = sID,
slots = new Slot[tID length],
hasChanged = state,
tokenID = tID,
for (mt l = 0, KtID length, i++) {

slots[i]= new Slot(tID[i]), // create a slot for each tokenID
}
advice = null,

}

A-12

public void updateToken(tokenInfo tInfo){
/*
* Method to update a specific token within the scenario The token ID is stored m the tlnfo
*/

hasChanged = true,
int tID = tlnfo tokenID(),
int tValue = tlnfo tokenValO,
int i=0,
while ((i<slots length) && (tID i=slots[i] tokenID)) {

i++,
}
if(i<slots length) {

slots[i] tokenUpdate(tValue),
} else { System out println(" Token not found"), }

public void updateAdvice(DmnOutput adv){
/*
* Method to update the advice in the specified scenario
* @param adv the advice object
*/

advice = adv, // add advice to the scenario
}

public BBExelnfo availableToExecute() {
/*
* check if scenario is available to execute The scenano is available if all the slot states is set to true
* Thus details are placed in the BBExelnfo class and all the slot states are reset to false
* @retur dlnfo the details of the scenano available to execute
*/

BBExelnfo dlnfo,
intj=0,
token Val = new mt[slots length],
while (0<slots length) && (slotsfj] token Value >= -1)) {

J++, // J = slots length only if all slots have changed
}
if (j<slots length) {

return null,
} else { // if all tokens have changed and are available

hasChanged = false,
for (int i=0, Kslots length,i++) { // reset all slots to false

slots[i] hasChanged(false),
tokenVal[i] = slots[i] tokenValue,

}
dlnfo = new BBExeInfo(scenanoID,tokenID, tokenVal),

}
return dlnfo,

}

A-13

public String getSnroInfo() {
/*
* Method to get the information from all the slots THis method is used during the saving of the BB
* @ par am None
* @retumString the information retrieved is stored m a string
*/

String snrolnfo =

snrolnfo = ",Scenario,"+scenanoID+","+hasChanged,
for (int i=0, KtokenID length,i++) {

snrolnfo = snrolnfo slots[i] hasQianged+",”+slots[i] tokenValue,
}
if (advice ’=null) {

snrolnfo = snrolnfo + ",Advice," + advice getAdvicelnfoO,
}
return snrolnfo,

public String createSlots(StnngTokenizer t) {
/*
* Method to create the scenarios from the information passed in This information
* takes the form of a string tokenizer which tokemzes the information from
* the string from the saved BB file
*/

for (mt i=0,i<slots length,i++) {
slots[i] hasChanged = (tnextToken()) startsWith("true"),
slots[i] tokenValue = Integer parselnt(t nextTokenO),

}
String temp = t nextToken(),
if (temp equals(" Advice")) {

advice = new DmnOutput(Integer parselnt(t nextTokenO),
Integer parselnt(t nextTokenO),Integer parselnt(t nextTokenO)),
advice storeAdvice(t),
temp = t nextTokenO,

}
return temp,

} // end of scenario class

A-14

Slot class
/**
* @author Eamon Gaffney
* @author DCU*
* the mformation relatmg to the token value of a specific daemon Within this class the
* tokenID is stored The purpose of this class is to group the a number of daemons that are in the
* same area the KB together Token value attribute added THis stores the value of the token EG*
*/

package p3 DmnPack,

public class SIot{
public mt tokenID, I I the unique identifier for the token
public boolean hasChanged, // the state of the token, true indicates the token has changed
public int tokenValue,

// constructor

public Slot(int tID) {
tokenID = tID,
hasChanged = false,
tokenValue = -1,

}

public void tokenUpdate(mt value) {
/*
* method to update the state of the token to true indicating the token
* has changed
*/

hasChanged = true,
tokenValue = value, // This stores the actual value of the token

}

} // end of slot class.

A-15

JessParser class
I**
* @author Eamon Gaffney
* @ author DCU*
* responsible for executing a jess daemons rules It is passed a reference to an instance of a jess
* daemon m the DL it then opens this this daemons rules and processes them, returning advice
**/

package p3 DmnPack,
unport java 10 *,
unport p3 DmnPack jess *,

public class JessParse {

public DmnOutput adviceToGive, // advice to return
public JessParse(){}

public DmnOutput ProcessRule(BBExeInfo dlnfo, Daemon liveDaemon, int [] tokenValues,
String P_DaemonFileLocation) {

ByteArrayOutputStream bs = new ByteArrayOutputStreamO, // output device from the jess files
PnntStream out = new PnntStream(bs),
Pipe Ad vice id = new Pipe Advice(out,System in,bs), //create the info passing mechanisms

FilelnputStream fis,
String dmnfile = P_DaemonFileLocation + liveDaemon daemonID() + " dmn",
Rete rete = new Rete(id), // create an instance of the Rete algorithm to setup the

// variables for the JESS files to be processed
try {

fis=new FilelnputStream(dmnfile), // tell the jesp compiler which file to read
Jesp j = new Jesp(fis,rete), // pass the file and the options to the compiler
try {

j parse(false), // parse the file
String command = // string to store the jess command that must be constructed
command = "(assert(daemonO",
for (int i=0,i<dlnfo tokenlDs length,i++) { // pass the info to the clp

command = command + ¿info tokenIDs[i]+""+ tokenValues[i]+")",
}
command = command + "))",
rete executeCommand(command),
rete executeCommand("(run)"), // run the CLIP
String ans = bs toStringO, // convert advice mto a string
AdviceText adv = new AdviceText(ans),
adviceToGive = new DmnOutput(adv), // package up the advice

} catch (ReteException E){ System out println(E),}
}catch(Exception ex) {System out pnntln(ex),}
return adviceToGive, // return the advice

}

} // end of jess parser class

A-16

Appendix B The CORBA interfaces

Daemon Supervisor/Kernel Interlace

exception P3Exception {

//Internal Prompter Exception for use in the interfaces
string exceptionReason, / / reason for the Exception
short exceptionCode, //unique exception code
short exceptionLevel, //Level of importance of Exception

interface Kernelcall;

j**
* ----------------------------------
* Section 1 - Interface Objects
* ----------------------------------

/** STATE ARRAY
* ------------------

* This state-array, is periodically downloaded by the DS, acts as a buffer
* or temporary storage area where the Kernel places tokenlDs that have changed
* in the project workspace This hst is downloaded by the DS and reset by the Kernel*

** l

interface tokenlnfo {
// A token object holds all the mfo needed to identify a token’s context

attribute long projectID, // The unique projectID
attribute long scenarioID, // The unique scenarioID
attribute long tokenID, // The unique tokenID
attribute long tokenVal, // The value of the token

};

typedef sequence<tokenInfo> stArray, // create an array or sequence of these tokenlnfo objects

interface StateArray {
// The State Array is a sequence of token objects

attribute stArray sArray,
};

B-l

*
/** Advice Object

*
* This is the Advice Object that will be used to communicate the daemons advice
* to the rest of the tool These objects are stored in as a sequence m
* the advice table*

interface AdviceObj {
// This is the AdviceObj interface

readonly attribute long projectID, // The unique projectID
readonly attribute long scenarioID, // The unique scenanoID
readonly attribute long daemonID, // The unique daemonID
readonly attribute long advicelD, // The advicelD of the advice
readonly attribute string dArea, // The area the advice pertains to
readonly attribute string advice, // The advice from the Daemon

};

// Sequence of advice objects make up the advice table
typedef sequence<AdviceObj> aTable_vector,

interface AdviceTable {
// This is the actual advice table interface

readonly attribute aTable_vector aTable,
};

// =========================
// Section 2 - Kernel to Daemon Interface// = = = = = = = =
//
// startProcess

// This is the initial startup call to the DS It results in the DS starting up all its
// housekeeping processes No parameters are passed or returned for this method It is
// used once when the project tool is started This method indicates the start of the process
//
// stopProcess //==========
// This method is used when the project is ending It results m the DS performing some clean
// up operation and saving any unsaved information It is also used to tell the DS to finish
// up all its processes.
//

B-2

newProject

This method indicates the start of a new project It differs from the startprocess method in
that we don’t want the DS to restart all its threads of control but mstead to create a new
BB etc and all the other tasks associated with a new thread This also tells the DS to ignore
any changes to the tokens smce the project is new and the user has returned to the APM stage
of development The field "maxNo" is passed which contains the number of tokens stored m the
project repository The unique project identifier is passed to the DS with the parameter
projectID to distinguish it from other projects This number is needed for setup purposes m the DS

startProject

thid method is used when the ds is told to create a project but is given blackboard information
to be stored m the BB structure This method is used when the BB was saved when the project was
previously closed

stopProject

This method differs from the stopProcess method in that it signifies that the project’s development
has ended and all relative information relating to it must be saved This does not mean that the
overall process has ended however The unique ID of the project must be passed to signify which
project must be ended, if multiple projects are running

createScenario

This method is used when a new scenario is created It results m the required structures being
created to store the relevant information relating to it

deleteScenario

This call tells the DS to end a particular scenario The unique ID is passed which tells the DS
which Scenario the Kernel wants stopped

recogmseChange

This method results in the DS starting to monitor token states of a specific project with the ID
projectID This would be used when there exists enough information for the daemons to give advice
on It is called when the IPM stage of the current project is reached

tokenChange

This method is used to inform the DS when a token or a number of tokens have changed

getAdvice

This method is used by the Kernel to retrieve the advice from the DS (1 e the advice table) The
return value is an instance of the class AdviceTable where the advice is stored minus the advice
previously returned Once the Kernel
has retrieved this table the DS resets the table to null

B-3

void startProcessO raises (P3Exception),
void stopProcessO raises (P3Exceptton),
void newProject(in long projectID),
void startProject(in long projectID, in string bbData),
string stopProject(m long projectID),
void createScenario(m long projectID, in long scenarioID),
void deleteScenario(m long projectID, in long scenarioID),
void recogmseChange(m long projectID),
void tokenChange(m long projectID, in long scenarioID, in Kemelcall ref),
AdviceTable getAdvice(),

};

interface DS {

Section 3 - Daemon to Kernel Interface

getStateArray

This method is used to download the "state-array" from the Kernel, which consists of a
list of all the tokens that have changed smce the array was last downloaded The method
returns an instance of the class stArray, which contains the tokenlDs This class can be
found m the IDL file m the interface of the same name

adviceAvailable

This method will be used after daemons have finished execution The DS will execute this
method to inform the Kernel that advice is stored in the "Advice-table", which the Kernel
will have direct access to No variable is returned as this method just acts as a flag to
show that advice is available

interface Kernelcall {

StateArray getArrayState() raises (P3Exception),
void adviceAvailable(m long projectID, m long scenarioID),

};

B-4

Daemon Library / Daemon Supervisor Interface

typedef sequence<long> Array, // array to store a collection on long numbers

interface Daemonlnfo {
// method used by the dl to pass daemon header information to the Blackboard which it need to set-up

attribute long daemonID, // a unique identifier for the daemon
attribute string area, // the area the daemon is an expert in
attribute Array tokenlDs, // the daemons dependent tokens

};

typedef sequence<DaemonInfo> daemonInfo_vector, // creating an array of Daemonlnfo

interface DependTable {
// this daemon information is passed to the Blackboard m the form of an array

readonly attribute daemonInfo_vector table,
};

typedef long TokenIDArray[35], // an array for the tokens

interface Daemon {
// the information stored m the daemon header

attribute long daemonID,
attribute string dName,
attribute string dVersion,
attribute string dOrigin,
attribute string dArea,
attribute long dGUI,
attribute long dIE,
attribute TokenlDArray TokenID,
readonly attribute string P_DaemonFileLocation,
readonly attribute long P_DaemonCount,

};

interface DL {
// the method calls the Daemon S can make on the daemon supervisor

DependTable getDependTable(),
Daemon getDaemon(in long DaemonID),
void DLSetup(in string P_DaemonFileLocation, in long P_DaemonCount),
oneway void killDLO,

};

B-5

Appendix C The OMT class diagram of the
Daemon Architecture

This class diagram contains the full OMT diagram of the daemon architecture including class attributes and
methods

TE"
Token ID
To ken V alues
rule__________

Advicelm plTable '
aT ab le vector

addAdviceO bj
endAT
getTabla
deleteA dviceO bj

A dvice
advice lD
projectID
scanario lD
daem on ID
dG U I
dA rea
advtcs

P aem on5~

startProcess
stopProcess
startProject
stopProject
getToken V a lu e
getAdvice
getS tateA rray
AdviceAvailable
recogm seC hange
executeD aem on
getD ep end encyTab le

Project '
D aem ons
Blackboard
proiectID_________
forwardAdvice
token C hange
stopProject
recogm seC hange

Daem on Library
D aem on H ead er
D aem on Index
To ken Index
To ken V alue
TokenC ount
N um O fD aem o ns
N um O fTokens
g etD aem on
U braryS etU p
g etD ep en d T ab le

D aem o n '
dA rea
Level
dG U I
dIE
d N a m e
dOrigin
dVersion
To ken ID
daem onID
R ule
Advice

Seam ent
Slot Scenario
token ID scenario ID * o -

N ode
hasC hanaed live hasC hanaed o daem on A rea

availab le
O -

BBIm pI '
BBstruct

createB B
createN ode
endBB
forwardAdvice
forw ardStateArray
updateToken
availab leToE xecute

D m nOutput
advice ID
projectID
scanario lD
daem onID
dG U I
dA rea_____

AdviceText
a re a
com m ent
advice

Ex tended Advic<
adviceText

Biblographv
Title
Authors
Publisher
D ate
U R L

RuleJustHv
justifyText

C-l

