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A computational approach for edge linking
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EÆcient edge operators such as those based on partial derivatives fail to return continu-

ous edge maps. To address this, a supplementary edge linking step is required to complete

the initial edge information. In this paper we propose a fast and eÆcient algorithm for

edge linking using the local information around edge terminators. In order to minimise

incorrect linking decisions, the direction and the linking path for each edge terminator is

established by minimising a cost function. The particular novelty of this approach lies in

the labelling scheme which assigns the directionality of the edge terminators (endpoints)

based only on local knowledge. As a consequence, it relaxes the demand of a priori knowl-

edge and furthermore assures an accurate and eÆcient search for edge paths in the image.
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1. Introduction

Successful edge detection is one of the most important steps in a wide range of image

processing and analysis operations. While edges are associated with sharp changes in pixel

intensity distribution, usually they are extracted by applying partial derivatives to the

intensity image [4,9,15]. However, the edge map returned by the edge operators based on

�rst and second derivatives fail to correctly recover the entire edge structure associated

with a given image. In this regard, the recovered edge map either contains false edge

points which are generated by image noise or exhibits gaps in edges due to a low variation
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in the pixel intensity distribution. Thus, after edge extraction further processing has to

be applied in order to eliminate the spurious edge responses and to link the gaps in edges.

Various techniques which address the problem of improving the quality of the initial

edge detection have been investigated. Approaches that have been used include morpho-

logical methods [1,5,16,23], Hough transform [7], probabilistic relaxation techniques [8],

multiresolution methods [2,14] and the use of additional information such as colour [18].

In general, morphological approaches o�er a fast solution as they attempt to maximally

exploit the local information. In this regard, Snyder et al. [20] proposed to close the

gaps in the edges using a chamfer map-based algorithm. After the distance transform

is computed around the edge structure, the surrounding pixels are re-labelled into edge

pixels using a best neighbor strategy. This edge linking scheme proved to be eÆcient

to close the gaps between closely spaced unconnected edges. Xie [25] proposed a Causal

Neighborhood Window algorithm where the the horizontal edge segments were considered

as seeds for edge linking. The main advantage of this edge linking algorithm is its low

computational overhead but the performance is poor when dealing with highly textured

scenes. Later, Hajjar and Chen [10] proposed a real time edge linking algorithm based on

a VLSI architecture. In their formulation, the break points were detected and the gaps

in edges are bridged according with the smallest distance between two compatible break

points. Although simple, their algorithm signi�cantly increases the level of connected

pixels in the edge structure. As it is based on a hardware architecture the size of the

scanning window is �xed and as a consequence their implementation does not guarantee

to produce closed contours.

In contrast, multiresolution and multiscale methods attempt to enhance the edge struc-

ture by aggregating the information contained in a stack of images with di�erent spatial

resolutions. These methods also referred to as pyramidal techniques usually outperform

morphological techniques, but this is obtained at a high computational cost. In this

sense, Farag and Delp [6] proposed a multiresolution approach to edge linking using a

sequential search algorithm. In their implementation they use a multiresolution image

pyramid which allows the edge information contained in low resolution images to guide

the sequential search at higher resolutions. Their algorithm proved to return high quality
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connected edge contours when applied to arbitrary textured images. One problem with

this approach is the large number of parameters that have to be tuned and furthermore

they tend to be image dependent. Vincken et al. [24] proposed a multiscale linking model

for image segmentation. In their implementation they used a hyperstack where the multi-

scale images are obtained by applying a linear di�usion model based on Gaussian �ltering.

Initially introduced by Perona and Malik [17], this approach has the advantage that it

o�ers scale invariance which assures a precise location of edges across various scales, a

fact that greatly simpli�es the edge linking process. This algorithm was applied to the

segmentation of brain images and the results indicate the eÆciency of this strategy.

This paper presents a method of producing connected edge structures which is appro-

priate for use in conjunction with scene understanding algorithms. The algorithm �rstly

applies an eÆcient edge operator which initially blurs the image using an exponential

function in order to remove image noise. This is followed by the edge linking scheme

which closes the gaps in edges by analysing the local information around edge termina-

tors. In order to minimise the incorrect linking decisions, the edge terminator is labelled

by analysing the local edge structure and this information is used to determine the link-

ing path in the unconnected edge structure. The devised edge linking algorithm produces

quality connected edge maps at a low computational cost. A synopsis of the developed

edge linking algorithm is illustrated in Figure 1.
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Figure 1. Outline of the proposed edge linking algorithm.

2. Edge detection

The image processing and analysis applications such as edge matching or object recog-

nition are highly inuenced by the quality of the edge detector employed. Robust edge

detection is a diÆcult problem since the input image is a�ected by noise and the objects

that de�ne the scene exhibit a low contrast around their borders. To address these prob-

lems Canny [4] introduced the gradient of the Gaussian where the Gaussian operator is
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applied in order to reduce spurious edge responses. To further improve the edge detected

output, he implemented a simple algorithm based on thresholding with hysteresis in order

to join the weak edge points with the edge structure de�ned by step-like edges. This al-

gorithm evaluates the output of the edge detector using two threshold parameters which

are often referred to as low and high thresholds. If the magnitude of an edge response is

greater than the high threshold then it is assigned as an edge point. Then, the remaining

edge responses are marked as edge points if their magnitude is situated between the low

and high threshold values and follow the edge structure with the magnitude above the

high threshold.

Although the gradient of Gaussian operator is a powerful edge detection technique

it entails a high computational cost. Thus, the implementation outlined in this paper

employs an optimal edge detector based on ISEF (In�nite Symmetric Exponential Filter)

[19] where the computational overhead is one order lower than that required by the Canny

edge detector. It is also important to note that the performance of the ISEF edge operator

is closely matched to that o�ered by the Canny edge detector. Our experimental results

are in line with those reported by Heath et al. [12] where the performances of a large

number of edge operators are evaluated. Figure 2 depicts the performance of the Canny

and ISEF edge operators when applied to a standard test image.

(a) (b) (c)

Figure 2. Performance of the Canny edge detector (�=1.0, low threshold=30, high thresh-

old=55) and the performance of the ISEF edge operator(a0=0.45, low threshold=5, high

threshold=7) when applied to the standard `Cameraman' test image.
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In line with the choice of the edge operator, detecting the optimal range of the internal

parameters of the edge operator is an important issue. For our implementation we set

the scale parameter for the ISEF edge operator to the default value (a0=0.45) and the

threshold parameters are selected by evaluating the level of small edge segments in the edge

detected output. To do this, we employed a strategy where the high threshold is directly

linked with the low threshold (i.e. the high threshold o�sets the low threshold by an

experimentally determined constant value). The thresholds are determined by evaluating

the ratio between the number of pixels derived from small edge segments and the number

of pixels derived from large segments which has to be smaller than a preset value. This is

achieved by analysing if the level of small edge segments returned by the threshold pair

with the minimum value for the low threshold respects the preset condition. If not, the

value of the low threshold is increased and the algorithm veri�es if the threshold selection

condition is upheld for the new threshold pair. This procedure is iteratively applied until

the level of small edge segments respects the threshold selection criterion.

3. Iterative edge thinning

Multiple edge responses represent another typical error associated with edge detecting

operators. Thus, there are cases when the edge responses are several pixels wide. Since

our goal consists of reconnecting the interrupted edges using only the local information,

multiple edge replications may generate incorrect linking decisions. Therefore to use

the local information eÆciently, a thinning algorithm has to be applied to remove the

unnecessary edge responses. To address this issue, an iterative morphological thinning

algorithm based on the use of L-type structuring elements was implemented [21]. This

algorithm is de�ned as follows:

I � S = I � (I 
 S) (1)

where I is the image containing the edge information, S is the structuring element, �

denotes the thinning operation and 
 de�nes the binary hit or miss transformation. The

thinning process is convergent and stops when two successive images in the sequence are

identical.
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4. Endpoint recovery and labelling

Although the proposed scheme signi�cantly improves the edge structure, there are situ-

ations where gaps in edges exist in the output image. To correct this problem we propose

a method to close the gaps by analysing the singular edge points which are referred to

as endpoints. Extracting the endpoints entails a simple morphological analysis [22] and

consists of a set of 3�3 masks that are applied to the resultant image after the application

of the edge detection and thinning process.
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Figure 3. The masks used to detect the endpoints.

Figure 3 illustrates the masks used to detect the endpoints, where the pixel under

investigation is highlighted and mask entries indicated by `x' can take any value (0 or 1)

but at least one of them has the value 1. This ensures that the single edge pixels are not

marked as endpoints.
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Figure 4. Situations where the edge direction (indicated with an arrow) is derived from

straight edges.

To eÆciently close the gaps in edges, requires the maximum exploitation of local knowl-

edge. Thus, we need to determine the scanning direction for each endpoint by evaluating

the linked edge pixels that generate it. As can be easily observed, the masks illustrated
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in Figure 3 contain some information that gives a useful clue regarding the endpoint di-

rection. Unfortunately, this gives only 4 scanning directions which is not suÆcient to �nd

always the correct result. To avoid such limitations we extend the search for edge links

to 8 directions, a situation where supplementary information has to be evaluated. As

Figure 4 illustrates, there are cases when the endpoint is generated by a straight edge, a

situation where the scanning direction can be easily established.
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Figure 5. The edge direction derived from curved edges.

This may not be the case for curved edges, when the edge direction is not as well de�ned.

A typical situation is illustrated in Figure 5 where the endpoint direction is evaluated by

analysing the local information for a larger neighborhood. In Figure 5 only the �rst 3

directions are analysed, while the remaining directions can be obtained by rotating the

masks.

5. Edge linking

The last step of the algorithm attempts to �nd possible edge paths using the infor-

mation associated with the edge terminators. In this regard, the algorithm investigates

the edge pixels situated at the side indicated by the endpoint direction. The endpoint

neighborhood is a parameter of the algorithm and de�nes the size of the scanning window,

which corresponds to the maximum linking distance. Thus, for each edge pixel situated in

the endpoint neighborhood a linking factor is computed using a simple cost function. The

cost function was designed to favor the edges that are close together and have opposite

directions. For farther edges the linking coeÆcient returned by the cost function increases

rapidly.

�(ep) = kddist(et; ep) + ke + kdir (2)
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where et, ep are the image co-ordinates of the edge terminator and the edge pixel,

dist(et; ep) is the Euclidean distance, ke is a reward factor if the edge pixel is also an

endpoint and kdir is a reward factor if the edge pixel is an endpoint and its direction

is opposite to that of the endpoint under investigation. The reward coeÆcients are de-

termined experimentally and in our implementation we set kd=0.25, ke=0.5 if the edge

pixel is an endpoint, 1 otherwise, kdir=0.5, 1, 1.5, 2.0; kdir takes a value of 0.5 when the

directions of the endpoint and the linking endpoint are opposite, 1, 1.5 according to the

deviation from the ideal case, 2.0 if the edge linking pixel is not an endpoint or the linking

endpoint has a similar direction with the endpoint in question.

Endpoint under 
   examination

Posible linking
     decisions

Edge linking decision

(a) (b)

Scanning
 window

Figure 6. Edge linking process. (a) Typical unlinked edge structure. (b) Edge linking

results after the cost function is evaluated.

After the cost function is computed for each edge pixel situated in the endpoint neigh-

borhood, the minimal value determines the linking path and a line is drawn between

the edge terminator and the edge pixel using the Bresenham algorithm [3]. Figure 6 de-

picts the edge linking process when dealing with a typical unlinked edge structure. The

pseudo-code describing the Bresenham algorithm is outlined in Figure 7.

6. Experiments and results

The results of the complete edge linking process when the algorithm is applied to a

noiseless standard test image is depicted in Figure 8. As Figure 8 illustrates, the algorithm

was able to handle diÆcult situations such as edge bifurcation.
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1. Plot the start point (x1,y1).
2. Compute diferences between the co-ordinates of the start point and the last point:
        dx = x2 - x1, dy = y2 - y1;
3. Initialize decision parameter:
        D_0 = 2dy - dx;
4. For each x_k along the line verify:
        if D_k < 0, then
               D_k+1 = D_k + 2dy,  Plot_Pixel(x_k+1,y_k);
       else 
               D_k+1 = D_k + 2dy - 2dx,  Plot_Pixel(x_k+1,y_k+1);
5. If step 4 is executed dx times then the line drawing process is complete.

Figure 7. Pseudo-code describing the Bresenham line drawing algorithm.

(a) (b) (c)

Figure 8. (a) The input image noiseless image. (b) The edge map returned by ISEF edge

detector. (c) Edge linking results.

To verify the algorithm's robustness to noise, the image illustrated in Figure 8 was

corrupted with additive Gaussian noise of standard deviation 30 grey-levels. In Figure 9

the result of the edge linking process is illustrated. It can be noticed that the algorithm

was able to handle this complication and the result returned by the edge linking algorithm

is almost identical with that depicted in Figure 8.

Next, to verify the validity of the proposed algorithm, we tested its performance on

a range of images de�ned by various scenes and the results were compared with those

returned by the Multiresolution Sequential Edge Linking algorithm (M-SEL) [6].

Figures 10 and 11 show the result of the proposed edge linking algorithm and the M-SEL

algorithm when applied to a set of test images.

By analysing the results depicted above it can be noticed that the performance of



10

(a) (b) (c)

Figure 9. (a) The input image corrupted with Gaussian noise (standard deviation 30

grey-levels). (b) The edge map returned by ISEF edge detector. (c) Edge linking results.

(a) (b) (c)(c)

Figure 10. (a) The input image. (b) Edge linking results returned by the proposed

algorithm (scanning widow 11 � 11). (c) Edge linking results returned by the M-SEL

algorithm.

the proposed algorithm compares well with that o�ered by the more complex M-SEL

algorithm. It can be observed that the edge linking strategy presented in this paper has

the ability to �nd the correct linking path even when dealing with complex edge structures

while avoiding errors such as closed loops of edges that can be noticed in the edge maps

returned by the M-SEL algorithm. These results also indicate that our approach deals

better with straight edges while the M-SEL algorithm, as illustrated in Figure 11, favors

curved edges. As opposed to M-SEL algorithm where a large number of parameters

have to be adjusted, our algorithm requires only two parameters to be speci�ed, namely

the parameter required to select the threshold parameters of the edge detector and the

maximum dimension for the scanning window.
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(a) (b) (c)

Figure 11. (a) The input image. (b) Edge linking results returned by the proposed

algorithm (scanning window 11 � 11). (c) Edge linking results returned by the M-SEL

algorithm.

An important issue is the computational eÆciency. Achieving reasonable timing using a

complex edge operator such as Canny is diÆcult, since the computational time required to

extract the edge structure derived from a 256�256�256 greyscale image is 4900 ms when

executed on a PC with a Pentium 133 processor. Therefore for this implementation we

choose a computationally eÆcient edge detector, namely the ISEF-based GEF operator

where the processing time is 545 ms. Also, it is worth mentioning that this advantage is

obtained without signi�cantly reducing the edge recovering performance (see Figure 2).

The processing time associated with the linking algorithm depends on the complexity of

the edge structure and the size of the scanning window. Timings for images involved in

the aforementioned experiments for the proposed algorithm (scanning window 11 � 11)

and M-SEL algorithm are depicted in Table 1.

7. Conclusions

It has generally been believed that enhancing the edge structure has to be based on

either computationally intensive multiresolution approaches [6,24] or on methods based

on probabilistic relaxation [8]. In this paper we have described a fast and eÆcient edge

linking algorithm to improve the quality of the edge information returned by the ISEF

edge detector. The proposed edge linking scheme has two key components. The �rst

component deals with the edge detection and the removal of multiple edge responses.
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Table 1

Computational overhead associated with the proposed algorithm and M-SEL algorithm

Input image Proposed algorithm (sec) M-SEL algorithm (sec)

Figure 8a 1.32 163

Figure 9a 1.43 165

Figure 10a 1.71 174

Figure 11a 1.57 166

The second component attempts to correct the local imperfections in the edge detected

output by maximally exploiting the information around singular points. The resulting

algorithm is computationally eÆcient as it requires a single pass through the entire edge

detected output and has the particular advantage that it can be applied to scenes where no

a priori knowledge is available. Also, experimental results indicate that the performance

of the proposed algorithm is comparable to that o�ered by more complex edge linking

algorithms.
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