
ISSC 2002, Cork. June 25–26

A New Data Structure For The Implementation Of
Unsupervised Texture Segmentation

Padmapriya N, Pradeep P.P and Whelan P.F

Vision Systems Laboratory
School of Electronic Engineering

Dublin City University
Dublin 9, Ireland

E-mail: {padmapri,pradeepp,paul.whelan}@eeng.dcu.ie

Abstract — In this paper, we propose a novel technique to imple-
ment an algorithm for unsupervised texture segmentation. Local
Binary Patterns (LBP) have been demonstrated to provide a robust
and efficient framework for texture segmentation. The distribution
of local binary pattern and the contrast measure is used to evaluate
the similarity between the adjacent image regions during the seg-
mentation operation. The algorithm uses a new data structure. The
existing data structures such as trees and graphs are modified to
construct a quadtree and mergegraph. Quadtree is used for splitting
the image into blocks of roughly uniform textures and mergegraph is
used for merging similar adjacent regions. The algorithm has been
tested using mosaic images consisting of various textures, in addition
to natural scenes. This approach proved to yield computationally ef-
ficient segmentation of images.

Keywords — Local Binary Pattern, Quadtree, Splittree, Merge-

graph, Segmentation algorithm.

I Introduction

Texture analysis has been an active field of re-
search for the past three decades and has useful
applications in industry, biomedical surface inspec-
tion, remote sensing, document analysis and many
more areas of computer vision. There are numer-
ous techniques for the extraction of texture fea-
tures and various methods for segmentation. Most
of the methods are developed for grey scale tex-
tures. Implementation of these methods using hi-
erarchical splitting and agglomerative merging is
computationally intensive. We have developed a
strategy to implement an algorithm for unsuper-
vised texture segmentation. In the existing texture
segmentation methods one of the many data struc-
tures is used. This paper is based on a novel data
structure using splittree and mergegraph for unsu-
pervised texture segmentation. The performance
of the algorithm is tested on grey scale and colour
images.
Ojala et al [1] developed Local Binary Pattern
(LBP) and a method for unsupervised texture seg-
mentation and found excellent results using Bro-
datz textures [2], hence our analysis is focussed on
this technique. The major steps in this algorithm

are texture feature extraction, image splitting and
merging. This algorithm is implemented using a
quadtree, to split the image into blocks of roughly
uniform texture, followed by agglomerative merg-
ing of similar adjacent regions using a mergegraph.
This paper is organised as follows. Section 2 de-
scribes the feature extraction technique, LBP and
the texture description using G-Statistic. Section
3 details the implementation of the split and merge
algorithm. Section 4 presents the experimental re-
sults and finally section 5 concludes this paper.

II Feature extraction technique

a) Local binary pattern

Wang and He [3] introduced the Texture Spec-
trum method which is a novel approach for fea-
ture extraction and they proposed the usefulness
of the texture spectrum for texture classification.
A texture image can be decomposed into a set of
small textural units, called Texture units (TU). A
Texture unit is represented by 8 elements, each
of which has one possible value (0, 1, 2) obtained
from a neighbourhood of 3× 3 pixels. The neigh-
bourhood is represented by V = {V0, V1, V2, ...V8},
which generates 38 standard texture units. The oc-

currence distribution of texture units is called the
Texture Spectrum. Wang and He [3] proved that
the Texture Spectrum method is useful in discrim-
inating different types of textures and obtained
promising results using four Brodatz’s natural im-
ages. They carried out a comparative classifica-
tion experiment between a set of texture spectrum
measures and a set of co-occurrence measures and
found that both methods performed equally. Ojala
et al. [1] proved that a simple two level version of
this method performed equally well. In this ver-
sion, LBP is described with 28 = 256 possible tex-
ture units. The texture unit TU = {E1, E2, ..., E8}
is obtained by applying the threshold operation us-
ing the following rule :

Ei =

{

0 Vi < V0

1 Vi ≥ V0,

where V0 is the center pixel. The LBP is deter-
mined as follows,

LBP =

8
∑

i=1

Ei ∗ 2i−1 (1)

LBP does not take into account the contrast of
texture which is the measure of local variations
present in an image and is important in the de-
scription of some textures. Hence the LBP is com-
bined with a simple contrast measure C, which is
the difference between the average grey levels of
pixels with value 1 and pixels with value 0 con-
tained in the texture unit.

b) Description of textures using G-statistic

Texture is classified based on the feature distribu-
tions. The texture regions are defined by two fea-
ture distributions, the LBP distribution and the
contrast distribution, since one texture measure
is inadequate to describe the spatial structure of
the local texture. The discrimination between the
two distributions is performed using G-Statistic
[4]. The LBP/C distribution is approximated by
2D distribution of size 256×b, where b is the num-
ber of bins for C. As mentioned in [4], the best
value for this variable, b is 8 or 16. The value
of G-Statistic indicates the probability that two
sample distributions come from the same popula-
tion. If the value of G is high, the probability that
the two samples are drawn from the same popula-
tion is low. The similarity of the two histograms
are measured with a two-way test of interaction or
heterogeneity.

G = 2

{

[

∑

s,m

n
∑

i=1

fi log fi

]

−

[

∑

s,m

(

n
∑

i=1

fi

)

log
(

n
∑

i=1

fi

)

]

−

[n
∑

i=1

(

∑

s,m

fi

)

log
(

∑

s,m

fi

)

]

+

[

(

∑

s,m

n
∑

i=1

fi

)

log
(

∑

s,m

n
∑

i=1

fi

)

]

}

(2)

where fi is the frequency at bin i ; s and m are
the two sample histograms; and n is the number
of bins.

III Algorithm development

Segmentation of an image entails the division or
separation of the image into regions of similar at-
tributes. If the number of possible textures is too
large, or if no assumptions can be made about the
type of textures, then an unsupervised texture seg-
mentation is used. In the case of unsupervised tex-
ture segmentation, statistical analysis is performed
on the entire distribution of vectors, and the aim is
to recognise clusters in the distribution and assign
the same label to them all. This method follows
hierarchical splitting and agglomerative merging
procedure. The proposed algorithm implements
the splitting using a quadtree structure and merg-
ing generates a forest structure with each tree of
forest representing a merged area in the image.

a) Implementation of hierarchical splitting

The hierarchical splitting divides the image into
blocks of roughly uniform texture. A block is split
into 4 subblocks based on a uniformity test. The
six pairwise G values between the LBP/C his-
togram of the 4 subblocks are calculated. The

(a) (b)

Fig. 1: A typical example of the splittree and the
corresponding image representation

maximum G value is represented by Gmax and the
minimum G value by Gmin. The uniformity of the
region was tested with R = Gmax

Gmin

> X where X is
a threshold value. If the relation R > X is true,

then the block is considered to be non-uniform and
is split further into four blocks. The procedure
of splitting the block was repeated recursively on
each subblock until a block size Smin is reached.
The value for Smin is 16×16 or 4×4 [4]. This algo-
rithm is implemented using a quadtree structure.
A quadtree structure is called a splittree (Fig. 1(a))
with every parent node having 4 child nodes and
the corresponding image representation is shown in
Fig. 1(b). This algorithm generates a splittree by
using an iterative procedure. The tree is initialised
with one node referring the whole image. The it-
erative procedure traverses through the leaves of
the tree. If the image area corresponding to a par-
ticular leaf is nonhomogeneous then it is split into
4 child nodes. This iteration stops when there are
no more leaves to be split or the image size of an
unsplit leaf is Smin. The leaves of the splittree at
the end of the iteration procedure refers to a ho-
mogeneous region in the image. These leaves are
denoted as V = {V1,V2,V3, ...,VNs

} where each
Vi is a leaf and the ith index is selected arbitrar-
ily and Ns is the number of homogenous regions s.
Also, the union of all Vi equals the whole image.
Pseudo code for the splittree approach is given be-
low:

NodeType Head ;

// Image is assigned to Head of Tree

Head.Image = Image;

while(1)

{// Start Iteration

int No_of_leaves ;

//Scan through All the leaves

NodeType *Leaf = GetLeaves(Head,&No_of_leaves);

FLAG = 0 ;

for(i = 0 ; i < No_of_leaves ; i++)

{

//Check for homogeneity

if(!Homogeneous(Leaves[i].Image))

{

//split the image of ith leaf into four.

split(Leaf[i])

FLAG = 1 ;

}//end if

}//end for

if(FLAG ==0)//FLAG = 0 for Exit Condition

break;

}//end while

b) Implementation of agglomerative merging

An agglomerative merging procedure was applied
to the image which has been split into blocks of
roughly uniform texture. This procedure merges
similar adjacent regions until a stopping rule is
satisfied. The pair of adjacent segments which
has the smallest Merger Importance (MI) value
are merged. MI was calculated from MI = p×G,
where p is the smallest number of pixels among the
two regions and G is the value of G-Statistic. Af-

Fig. 2: A typical example of mergegraph

ter merging, the two respective LBP/C histograms
are summed to be the histogram of the new image
region, which alters the segmented image. The G
distribution between the new region and all ad-
jacent regions are then computed. The merging
procedure is adopted until the stopping rule is
satisfied. MIR = MIcurr

MImax

> Y , where MIcurr

is the Merger Importance of the current merge,
and MImaxis the largest merger importance of
all preceding merges. If the ratio MIR exceeds
the threshold value Y, the merging procedure is
halted. Theoretically, in the initial merges, the
adjacent regions with identical LBP/C histograms,
have a zero MI value which will lead to termina-
tion of merging prematurely. Hence for the first
few merges, the stopping rule was not verified [4].
The threshold value depends on the image and is
tested for each image experimentally.
The implementation of agglomerative merging is
done by creating a mergegraph. A mergegraph is
a triplet G = (V, A,E) where V is the set of nodes
and A and E defines two types of links which con-
nects these nodes.

• V = {V1,V2,V3, ...,VNs
}, where Vi is the

set of leaves of the splittree.

• A={a1, a2, a3, ..., an}, where ai is the set of
adjacent links between Vi and Vj .

• E={e1, e2, e3, ..., en}, where ei is the unidirec-
tional link between Vi and V(i+1)modn. This
forms the circular link list of nodes.

Fig. 2 shows a typical mergegraph for the splittree
and the image illustrated in Fig. 1. The mergen-
ode procedure traverses through the circular link
list. The merger importance value for all the ad-
jacent nodes are found and the region with small-
est merger importance value is merged with the

current node. All the newly merged nodes are
delinked from the circular link list and the merging
information and adjacency information for the cur-
rent node is updated. This procedure is repeated
until a stopping rule is satisfied. The pseudo code
outlined below shows one such iteration.

//Head points to the first node of Mergegraph

NodeType cnode;

//if current node is not equal to head

for(cnode = Head;cnode!=Head;cnode=cnode->next)

{

//Merge adjacent node of smallest merger

importance with the current node

Merge_Adj(cnode);

//update adjacent nodes for the new cnode

update_Adj_Information(cnode);

//update merge Information of cnode

update_merge_Information(cnode)

}//end for

if(cnode(mergecondition))

{

AddForest(cnode)

}//end if

IV Results and Discussion

The images used for colour texture analysis are
from the VisTex image database [5]. Segmenta-
tion results for four texture mosaics and two nat-
ural scenes are presented. The mosaics are also
created using the VisTex [5] image database. For
testing the algorithm, four images of 256 × 256
pixels were constructed with various combinations
of the VisTex texture images of 128 × 128 pixels.
The texture mosaics in Fig. 3(a) and Fig. 3(b) are

(a) (b)

(c) (d)

Fig. 3: (a),(b) Segmented texture mosaics with four
different textures. (c),(d) Segmented texture mosaics with

two different textures

constructed using four different textures whereas

in Fig. 3(c) and Fig. 3(d), the texture mosaics are
constructed with two textures and four segments.
The later is done to verify whether the segmenta-
tion is based on the blocks or texture. The result
shows that the segmentation depends on the tex-
ture and not on the blocks. The natural images
consist of a bird in sea, of size 256× 256 and rocks
in sea of size 384×384 are also considered for test-
ing. The results discussed here are presented for
grey scale images, R, G, and B planes. The split
threshold value lie between 0.9-1.2 and the merge
threshold value lie between 1.2-1.4 depending on
the mosaic and natural scene images. These val-
ues are obtained after repeated trails. Figure 3 de-
picts the segmented grey scale images. Fig. 4 and
Fig. 5 show the results in R, G and B planes re-
spectively. The segmented results in an individual
plane depends on the colour components of the im-
age. Fig. 4 indicates that the stopping rule used in
these experiments allows the merging of the small
components into a single region. Different values
for the stopping rule parameter will result in the
termination of segmentation before these small re-
gions are merged. Hence the LBP method is more

Fig. 4: Segmented image of a natural scene in R, G and B
plane respectively

sensitive to the splitting and merging threshold
values. Fig. 5 has associated a large number of
small features and hence several small blocks re-
main unmerged after agglomerative merging pro-
cedure [6]. The result in Fig. 5 illustrates that the
segmentation is better in B plane as compared to
other planes, since the blue component is domi-
nant in the image. The method applied is a good
representation of a split image and the graph de-
rived from the splittree forms the initial point for
the merge procedure. On iterative merging proce-
dure the mergegraph breaks up into independent
trees which is referred as a forest data structure.

Fig. 5: Segmented image of natural scene in R, G and B
plane respectively

Each tree in this forest represents a merged area.
A split region is represented by the coordinates
of the square block. Adopting this representa-
tion reduces the computational complexity. The
efficiency of the algorithm is tested based on the
processing time requirement for a given input size
on a specific machine. The time taken to split a
256×256 image is 0.581 seconds, and 0.691 seconds
for merging the same image. For a Pentium 3 pro-
cessor, with 933MHz speed, the algorithm needs
1.272 seconds to perform the required task. The
average processing time required for this image is
1.28 seconds irrespective of the planes from which
the features are extracted. For an image size of
384×384, the computational time for splitting the
image is 2.163 seconds and merging the image is
6.089 seconds. The average time needed for this
image is 7.757 seconds. From the above results of
the geometrical and natural images it is evident
that the colour has an important contribution to
the discriminative power of the features [7]. Also
the inclusion of colour can increase the segmenta-
tion results without significantly complicating the
feature extraction algorithms. Extending these ex-
periments in different colour spaces will result in
good segmentation.

V Conclusions

In this paper we outlined an unsupervised texture
segmentation algorithm based on a split and merge
technique. The algorithm is based on a quadtree
data representation where a square image segment
is broken into four quadrants, if the original im-
age segment is nonuniform in attribute. Adjacent
pairs of regions are merged using the mergegraph.
Since the algorithm is more structured, it is easy
to implement unsupervised texture segmentation,

leading to consistent results.

References

[1] T. Ojala , M. Pietikainen and D. Harwood. “A
comparative study of texture measures with
classification based on feature distributions”.
Pattern Recognition, 29(1):51-59, 1996.

[2] P.Brodatz. “Texture-A photographic Al-
bum for Artists and Designers”. Reinfold,
NewYork.

[3] L. Wang and D.He. “Texture classification us-
ing texture spectrum”. Pattern Recognition,
23(8):905-910, 1990.

[4] T. Ojala and M. Pietikainen. “Unsupervised
texture segmentation using feature distribu-
tions”. Pattern Recognition, 32:477-486, 1999.

[5] VisTex. Colour Image Database. http: //www-
white.media.mit.edu/vismod/imagery/
VisionTexture/vistex.html.,2000.

[6] D.K.Panjwani and G.Healey. “Markov Ran-
dom Field models for unsupervised segmenta-
tion of textured colour images”. IEEE Trans-
actions on Pattern analysis and Machine In-
telligence, 17(10):939-954, 1995.

[7] A.Drimbarean and P.F.Whelan. “Experi-
ments in colour texture analysis”. Pattern
Recognition Letters, 22:1161-1167, 2001.

