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Abstract

This thesis presents the development of a decision support system to optimise
replacement and insemination decisions in Irish dairy herds under market conditions.
The technique used was developed specifically for animal replacement problems, and
is known as a ‘Hierarchic Markov Process’. The model optimises culling decisions on
the basis of lactation, production level, calving date, fertility and calving interval.
Production, involuntary culling rates, feed costs, carcass values and other economic
factors are allowed to vary according to the traits of a particular animal. The output
from the model is a series of retention payoffs (RPO) upon which culling decisions
are based. RPO is the expected future return in keeping a cow for an additional stage
rather than replacing her with a heifer.

A study of culling rates in commercial dairy herds was also carried out and the
effect of culling strategies on the genetic level of dairy herds was investigated using

Monte Carlo simulation.



Chapter 1

Introduction



1.1 The Importance of the Dairy Industry to the Irish

Economy

Ireland is a predominately rural economy and society. About 43% of the
population live in rural areas, including towns of fewer than 1,500 people. Population
density is 50 persons per square kilometre, the lowest density level in the European
Union (Anon (1994a)). The agricultural sector in Ireland accounts for around 12.6%
of employment, compared with an average European Union figure of 6.2% . W hen the
food sector is included, this accounts for some 17% of the total employment in Ireland
(Anon (1994b)).

The agriculture and food industries are vital elements not only in the Irish rural
economy but in the wider national economy. The Gross Domestic Product for Ireland
in 1995 was estimated by the Central Statistics O ffice to be £34,199 million, with the
agriculture, forestry and fishing sector accounting for £2,880 million of this,
equivalent to 7.5% of the total. This represents an increase from £2,687 million and
£2,575.7 million for 1994 and 1993 respectively. However, expressed as a percentage
of the total gross domestic product, the gross product from this sector has decreased:
7.7% for 1994 and 7.9% for 1993. The proportion of GDP accounted for by
agriculture in Ireland is, however, high in comparison with other EU countries, where
the average is 2.7% (Anon (1994a)).

Exports from the agricultural sector account for some 22% of total exports and the
low import content of agri-food exports means that approximately 40% of Ireland’s
net foreign exchange earnings come from this sector. Preliminary estimates of the
value of exports from agricultural produce in Ireland for 1996 (January to November)
was estimated at £2,287.3 million. The value of exported agricultural produce for the

years 1993- 1995 are shown in Table 1.1.



Year Agricultural Produce

IRE million
1993 2,540.3
1994 2613.4
1995 2940.8
Table 1.1 The value of exported agricultural produce for the years 1993- 1995.

In 1996, the overall value of Gross Agricultural Output was estimated at
£3,494 million, a decrease of 2.2% from 1995 (Anon (1997)). £1,838.6 million of this
figure was attributed to livestock, of which 62.5 % (£1,149.9 million) was accounted
for by cattle. Income from livestock products was dominated by milk production
(£1,210.2 million; 97.4% of£1,242.4 million). These and other relevant figures are

presented in Table 1.2

Year

1994 1995 1996
Livestock 1,825.5 1,885.6 1,838.6
« Cattle 1,282.4 1,323.7 1,149.9
. Pigs 200.2 233.2 292.5
* Sheep / lambs 168.7 155.3 198.2
Livestock Products 1,173.3 1,237.8 1,242.4
. Milk 1,140.9 1,204.2 1,210.2
Crops 401.9 449.6 413.1
¢ Cereals 100.2 137.5 130.3
* Rootcrops 136.1 136.1 103.6
Gross Agricultural Output 3,400.6 3,573.0 3,494.1

Table 1.2 Estimates of Outputs in Agriculture, 1996.



At the end of December 1996, the Irish cattle herd consisted of 6,756,600
animals of which 2,334,900 were cows, 1,272,400 (54%) being dairy cows (Anon,
1997). The number of dairy heifers in calf was estimated at 240,300 at this time. The
national dairy herd is increasing (0.4% from 1995 to 1996), and the number of other
cows is also increasing (7.5% from 1995 to 1996). This results in an overall increase

in the national cow herd of 3.5% in the period December 1995 - December 1996.



1.2 The Importance of Culling Strategies for Profitability

The profitability of a dairy herd is directly influenced by the actions of the
decision-maker, i.e. the dairy farmer. The decisions that the farmer makes are based
mainly on economic considerations, rather than biological considerations (Van
Arendonk(1985b)). The management by the dairy farmer is directed towards the
maximisation of total profit on the farm. A decision type that greatly influences the
herd profitability is the culling strategy (Renkema and Stelwagen(1979);
Kuipers(1982)). The culling strategy is the process of making decisions on whether to
keep or replace animals in the herd. A decision to replace a cow in the dairy herd will
be taken by a farmer because he/she expects higher profits by replacing that cow than
by keeping it in the herd.

In some instances, replacement decisions may be outside the control of the
dairy farmer, e.g. if the cow contracts a serious illness. Such instances, when the
replacement of a cow in the herd is not a management decision, are classed as
‘involuntary culling’. Culling on the basis of a management decision is referred to as
‘voluntary cullingand is the subject of research in this thesis. The advantages of a
culling strategy can be improved by maximising the proportion of cows that are culled
for voluntary as distinct from involuntary reasons. In a study of culling some years
ago (Crosse and Donovan(1989)), the proportion of cows culled for involuntary
reasons was found to be 13.68% compared with 3.88% on average for voluntary

reasons.



1.3 Summary of Research Objectives

1.3.1 Study of Culling in Irish Dairy Herds

A study of culling rates in large intensive commercial dairy herds in Ireland is
described in Chapter 2 of this thesis. Data from the DairyM IS database
(Crosse(1991); Cliffe(1994)), which were recorded over a five year period, were
analysed, together with cow disposal rates from the National Farm Survey over the
period 1990- 1993 (Anon(1993a)).

W hile cow replacement strategies exert a considerable effect on farm
profitability, other studies have found that they have a negligible effect on the genetic
improvement of the herd (Korver and Renkema(1979); Allaire(1981)). A Monte Carlo
simulation model (JOrgnsen(1996)) was used to simulate the effects of culling
strategies based on the lactation adjusted production on physical and financial
parameters in a model dairy herd (Moorepark Blueprint for summer production). This
model was also used to simulate the effect of different breeding goals in the herd (i.e.

sires of varying genetic merit).

1.3.2 Optimisation of Culling Decisions

M athematical models have been developed to determine the optimal
replacement (and insemination) policy for dairy cows under different price and
production circumstances. These optimum decisions need to be based on the expected
future performance of the cows already in the herd and of the future replacement
heifers. Optimisation techniques that have been applied to dairy cattle replacement
were described and evaluated by Kristensen(1993).

The optimisation technique that has been applied in most studies of dairy
replacement is dynamic programming. This technique, first introduced by
Bellman(1957), can be used to determine the replacement decisions which result in

maximum expected income (where income is defined by an objective function) over



time. The application of this optimisation technique to the dairy replacement problem
is outlined in Chapter 3 of this thesis. Two techniques, the value iteration method and
the policy iteration method, are examined and their advantages and disadvantages
outlined. Relevant objective functions for dairy replacements are studied, including an
objective function for a situation where milk quota acts as a constraint on production.

Kristensen (1988; 1991) developed the notion of Hierarchic Markov Processes
for application to animal replacement problems. This method is a hybrid of the value
and policy iteration methods, and is designed to overcome the so-called ‘curse of
dimensionality’, associated with these traditional dynamic programming methods.
This approach, has been applied to dairy replacement problems (Houben et al(1994);
Kristensen(1987), and its benefits are explained in Chapter 4.

The Irish dairy and beef industries are highly seasonal (Ryan (1997)). This
pattern of seasonal production essentially reflects farmers’ efforts to maximise returns
from their resources and farming systems. ‘Seasonality of production arises from the
fact that milk and beef can be produced at lower farm cost in the summer months
because of Irish grass growth rates’ (Anon (1993b)). The optimisation technique of
Hierarchic Markov Processes described by Kristensen(1989; 1991) has to be modified
to include seasonality (Kristensen(1997)), which is essential to the modelling of an
Irish dairy system. The necessary changes to the iteration cycle are explained in
Chapter 5 of this thesis.

A model for dairy replacement in the Irish dairy industry was developed and
the physical traits describing dairy cows and the economic factors used are described
in Chapter 6. The analysis of economic inputs and effect of season was carried out
using the ‘Moorepark Dairy Planner’ (W alsh(1995)), and this computer programme
was modified to take cognisance of recent developments in milk production
technologies. The results obtained from the model for optimal replacement are
presented in Chapter 7. Finally the conclusions from these results and future research

in this area are discussed in Chapter 8.



Chapter 2
Culling in Irish Dairy Herds



2.1 Dairy Cow Disposal Rates from Commercial Dairy

Farms in lreland

2.1.1 Introduction

Cow disposal rates from dairy herds participating in DairyMIS (Crosse(1991);
Cliffe(1994)) were analyzed over a five-year period (1990-1994). In total over this
period, there were 22,000 animal records from 53 herds. The number of farms recorded
varied over the years due to farms entering and leaving the system, though the turnover
rate of farms was relatively small. The primary reasons for dairy cow disposal together
with the effect of parity of animal, seasonality of disposal and farm effect were retrieved
from the computer records. In addition, cow disposal rates from the National Farm
Survey (NFS) database were also analyzed over the period 1990-1993.

The long-term profitability of the dairy herd will be affected by whether dairy
cows leave the herd for 'voluntary' reasons such as low milk production or for
‘involuntary’ reasons such as animal disease, infertility or mortality. Many studies have
reported the reasons (and their relative frequencies) for removal of dairy cows (Allaire et
al(1977); O'Connor and Hodges(1963); Gartner(1983); Young et al(1983);

W alsh(1983) and Crosse and 0'Donovan(1989)). The actual herd culling rates can vary
widely between herds and between years and are largely determined by herd
management practices (Gartner(1983); Walsh(1983); and Crosse and

0 'Donovan(1989)). In a study of experimental herds in Ireland, W alsh(1983) reported
an average culling rate of 21.6 per cent per annum, varying between herds from 16.4 to
27.2 per cent. A more recent survey on dairy cow culling in Ireland by Crosse and
0'Donovan(1989) reported an average dairy cow disposal rate of 17.6 per cent, this
figure being made up of 13.7 per cent for involuntary reasons and 3.9 per cent for
voluntary reasons. Reproductive problems were the most common reason given for
involuntary culling and mastitis was the second most common reason. The culling rate
for older animals was higher than for the other age classes, and the seasonal distribution

of cow disposals was relatively constant with the peak of culling in January.



Dairy farmers in Ireland have now been operating with a quota constraint on
milk production for over a decade. The objective of this study was to update the
information available on dairy cow disposal rates on commercial dairy farms under this
new economic reality. The development and implementation of the DairyM IS computer
system is described in detail in Crosse(1991) and Cliffe(1994). The farms included in
the DairyM IS system are representative of intensive dairy farms in Ireland and are
mainly located in the South of Ireland. The NFS data base is more representative of
dairy farms nationally; further details in relation to the National Farm Survey are

presented in detail in Anon(1993a).

2.1.2 The DairyMis System

2.1.2.1 Data capture - DairyMIS

Each animal entering the computer system had to be identified with a unique
number. Initially, the following data were assembled on each animal: animal number,
lactation number, sire, dam, breed, date of birth, calving dates and status (i.e. in milk
or non-lactating). Stock events such as calving date, sales, and deaths were then recorded
in diaries on the farm and were collected monthly by a recorder, who coded the data for
computer input. In the case of culling data, up to 31 primary reasons for animal sales
were assigned codes and these codes were then used for computer input. The data were

validated both at entry to computer and when the main system files were updated.

2.1.2.2 Data presentation

The results are presented as percentages, the denominator for each of the
percentage values calculated being equal to the number of cows at risk (available at any
time during year) for the DairyMIS data. The average number of cows in the herd was
used as the denominator for the NFS data. The data were analyzed using chi-square

analysis where relevant.



2.1.3 Culling Rates for the DairyMIS Data

The following results refer to the DairyM 1S database only. The disposal rates of
cows by primary reason for disposal are shown in Table 2.1. Up to 31 primary reasons
for culling were recorded initially but a number of the less important reasons have been

grouped together under ‘other reasons’ for this analysis.

Primary reason for culling Year

1990 1991 1992 1993 1994  Average

Tuberculosis 0.19 0.48 0.08 0.18 0.11 0.21
Abortion 0.13 0.34 0.23 0.20 0.18 0.22
Brucellosis 0.00 0.00 0.02 0.04 0.00 0.01
Calving problems 0.06 0.09 0.10 0.04 0.12 0.08
Infertility 3.10 4.12 5.02 2.53 3.18 3.59
Limb and foot disorders 0.34 0.50 0.63 0.42 0.25 0.43
Late calving 0.19 0.11 0.02 0.55 0.41 0.26
Low production 1.10 1.35 0.81 1.02 1.72 1.20
M astitis 1.56 1.78 2.81 1.20 1.83 1.84
Old age 0.42 0.78 0.33 0.67 1.85 0.81
Pining 0.13 0.05 0.04 0.09 0.11 0.08
Teat and udder injuries 0.23 0.21 0.15 0.09 0.18 0.17
Surplus 2.59 2.86 1.44 2.05 1.99 2.19
Other reasons 6.82 3.04 3.04 3.36 4.16 4.08
Total 16.87 15.71 14.70 12 .44 16.09 15.16
Table 2.1 Cow disposals - by primary reason for disposal (%)

The average cow disposal rate was 15.2%, averaged over the five years ranging from
12.4% in 1993 to 16.9% in 1990. The most significant primary reasons for culling on
average over the five years were infertility (3.6%), surplus of stock (2.2%), mastitis
(1.8%), and low production (1.2%). W hile there were differences in these figures

between years, the relative importance of these reasons for cow disposal remained over



the years. The disposal rates of cows by parity (lactation number) are shown in Table

2.2.

Parity of Dam Year
1990 1991 1992 1993 1994 Average Significance
Eczaz3
Lactation 1 16.49 10.85 9.09 8.37 12.15 11.39
Lactation 2 11.64 11.09 9.41 7.41 10.76 10.06 *
Lactation 3 13.09 11.36 10.88 10.46 10.93 11.34 NS
Lactation 4 14.24 14.45 12.96 9.46 13.08 12.84 NS
*Hhx
Lactation >4 20.84 20.70 20.91 18.05 23.59 20.82
*xk k. E . *kx Xk

Significance

Table 2.2 Cow Disposals: by parity (lactation number) of animal (%)

The disposal rate of cows was significantly influenced by the parity of the animal
(PcO.0O0Il). The highest incidence of culling (20.8 per cent) within each parity category
was recorded for cows of greater than 4 lactations. The culling rates in the other parity
classes were quite similar. The reasons for culling by the parity groups are shown in
Table 2.3 and it can be seen that infertility is cited as the overall most important main
reason for disposal, though for first lactation animals this reason is ranked second. A
surplus of cows is the second most important reason accounting for 14% of all cullings,
though it assumes a somewhat higher importance in first and second lactation disposals.
M astitis, which accounts for 12% of cullings overall, becomes particularly important in
later lactations. Low production, on the other hand, is given as a relatively important
reason in early lactations and it is quite insignificant in later lactations. As would be

expected, cow disposals due to old age in parities 1, 2 and 3 are very low.

10



Primary reason for culling Parity of dam

1 2 3 4 >4 All
Infertility 19.50 27.29 28.66 30.73 21.66 23.48
Surplus 24.82 16.86 13.61 13.02 11.46 14.29
M astitis 6.94 5.17 9.69 13.75 14.77 12.10
Low production 10.17 12.87 13.40 5.00 6.03 7.94
Old age 0.21 0.97 0.52 11.46 9.20 5.45
Limb and foot disorders 1.26 1.95 2.58 3.23 3.31 2.80
Late calving 1.05 1.27 1.34 2.92 1.90 1.76
Abortion 1.75 3.22 1.86 1.56 0.85 1.40
Tuberculosis 1.61 1.75 2.37 1.56 0.91 1.30
Teat and udder injuries 1.40 0.78 0.82 1.04 1.17 1.12
Pining 0.70 0.49 0.52 0.83 0.50 0.56
Calving problems 1.40 0.49 0.52 0.00 0.41 0.53
Brucellosis 0.21 0.00 0.31 0.00 0.05 0.08
Other reasons 28.96 26.80 23.92 25.21 27.73 27.20
Total 100.0 100.0 100.0 100.0 100.0 100.0
Table 2.3 Cow disposal rate - reason for disposal by parity of cow

The remainder of cullings are attributable to a very large number of reasons each of
which is cited as the reason for the culling in only a very small percentage of cases.
Indeed it was necessary to group eighteen such reasons into one grouping "other
reasons™ in Table 2.3, and while each reason was of very minor importance, the
grouping accounted for approximately one quarter of cullings.

The seasonal distribution of cow disposals for the years 1990-1994 is shown in
Table 2.4. It can be seen that there have been year-to-year fluctuations in this pattern.
W hile May accounts for the highest percentage of annual disposals averaged over the
five years, it does not represent the peak in every year. In general, however, it can be
seen that the period December to May accounts for a high proportion of cullings,

typically 65%.



Year

Month 1990 1991 1992 1993 1994 Average
January 10.25 15.15 10.07 13.02 7.71 11.15
February 10.02 10.50 10.34 7.32 7.09 9.10
March 16.36 7.57 10.88 13.02 16.16 12.86
April 11.86 9.61 14.15 10.93 6.28 10.49
May 8.71 14.39 11.50 21.46 26.17 16.22
June 8.71 5.22 8.64 6.59 7.40 7.32
July 2.85 4.77 2.59 3.05 4.29 3.56
August 8.89 8.02 2.72 2.81 1.86 5.01
September 4.27 7.26 12.18 7.15 2.42 6.53
October 5.99 3.50 1.70 2.65 3.11 3.50
November 4.86 5.54 5.99 5.55 9.07 6.20
December 7.23 8.47 9.25 6.43 8.39 7.98
Total 100.0 100.0 100.0 100.0 100.0 100.0
Table 2.4 Cow disposals - by month of disposal (%)

During the other six months, June to November, disposals are typically low, with
occasional peaks occurring in individual months.

Twenty-three farms that were recorded over a five-year period were selected
(matched sample) to quantify the culling rate on individual farms. The data are shown in
Table 2.5. It can be seen that the average disposal rate ranged from 10 per cent to 20 per
cent. The difference in the disposal rates between farms was significant for four out of
the five years (PcO.OOIl). The difference in cow disposal rates for many of the individual
farms across years was also significant (P<0.05). The culling rates fluctuated from year

to year for many of the farms, as can be seen in Table 2.5.



Farm Code

11
12
13
15
16
19
22
23
25
27
29
30
32
33
34

35

Significance

Table 2.5

1990

28.0

25.6

22.8

27.7

19.1

18.6

25.7

17.1

17.1

0.0

17.5

0.0

7.5

26.2

11.4

15.6

19.4

0.0

13.8

44.2

18.8

10.0

1991

13.5

18.3

13.8

16.6

12.3

13.6

13.3

13.9

16.5

16.5

10.1

13.3

17.1

24 .4

25.4

15.6

15.6

14.4

13.9

11.0

10.9

16.3

20.0

NS

Year

1992

121

17.3

19.6

13.5

17.2

8.4

13.1

18.1

17.2

12.5

22.3

4.9

8.2

19.1

11.9

19.0

19.0

10.1

10.3

19.4

6.1

16.7

14.3

* k%

Cow disposals by farm

13

1993

8.5

5.0

12.3

0.9

7.5

9.7

2.0

23.6

15.6

6.9

12.5

13.2

12.1

8.5

121

12.1

20.1

16.2

18.6

9.7

16.8

3.0

* k%

1994

19.4

7.0

9.6

18.7

10.9

10.6

14.7

13.9

25.6

10.2

12.8

9.9

16.9

13.4

8.2

25.1

25.1

22.3

9.7

16.1

12.0

9.5

15.8

*k*

Average
15.7
15.8
14.7
16.8
13.8
11.8
13.9
14.7
20.0
14.4
10.4
11.6
111
15.3
16.0
17.5
17.5
17.3
10.0
15.8
16.6
15.6

12.6

Significance

**
**k*

* k%

NS

* k%

**

NS

**k*x

NS

NS

* k%

**

**k*x

* Kk x

NS

* k%

NS

* k%



2.1.4 Discussion of Results

The disposal rates of cows in the National Farm Survey database for the years

1990-93 are shown in Table 2.6, with categories for dairy herd size.

Herd Size Year

1990 1991 1992 1993 Average

3-30 cows 12.31 14.42 19.58 18.60 16.23
31-60 cows 13.78 12.83 15.21 15.55 14.34

60+ COWs 12.95 16.63 17.63 15.05 15.57
Total 12.91 14.36 17.92 17.01 15.55
Table 2.6 Cow disposal rate by herd size category (NFS data-base)

The average disposal rate was 15.6%, ranging from 12.9% in 1990 to 17.9% in 1992.
The range in cow disposal rates for different herd size categories was also relatively
small (14.3% - 16.2%).

The dairy herds participating in the DairyM IS system are representative of the
larger intensive dairy farmers in Ireland. The larger herds are however very significant
in terms of total milk supply. Fingleton(1995) estimated the number of herds of 3-30
cows, 30-60 cows, and greater than 60 cows to be 26,500, 12,500 and 4,200,
respectively. The data from the NFS was included to see if the culling rate in the
National dairy herd was similar to that found in DairyMIS herds.

The average culling rate from the DairyM IS data set was 15.2 per cent compared
to an average culling rate of 15.6 per cent from the NFS database. The cow disposal
rates for farms in the different herd size categories was relatively similar. This culling
rate is lower than that found in a similar previous study which was carried out in the
early 1980’s (Crosse and 0 ’Donovan(1989)), when the average culling rate of 17.6 per
cent was recorded. The culling rate found in this study is considerably lower than the
culling rate 0f 21.6 per cent reported by Walsh(1983) for experimental herds in Ireland.
The influence of disease eradication programs, and in particular the Brucellosis

Eradication Program was very significant in the study by Walsh.
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The overall average culling rate found in this study also appears low when
compared with rates reported in similar studies in the UK. The Milk Marketing Board
reported an average rate of 17.7 % (Anon(1972)) and a similar rate of 17.4 was reported
by Beynon and Howe(1974). Gartner(1983), on the other hand, reported an average
culling rate of 21.0% .

The major advantages of culling strategies for herd improvement are achieved by
maximizing the proportion of cows that are culled for voluntary as distinct from
involuntary reasons (Walsh(1983)). Generally, culling for low production is considered
to be voluntary culling. Since the advent of milk quotas, culling of surplus cows has
assumed much more importance, and it is likely that dairy farmers would cull their
poorer animals if they had surplus stock. Culling of surplus stock together with culling
for low production is therefore considered to be voluntary culling. In this study, it was
found that about three quarters of all cullings were involuntary and only one quarter
were culled for voluntary reasons. These results are very similar to those reported in the
previous study by Crosse and 0 'Donovan(1989). Infertility was the most important
single reason given for involuntary culling and while culling for infertility was
particularly associated with older cows, a significant proportion of younger animals were
also culled for this reason. Mastitis was the next single most important reason given for
involuntary culling and this was also associated more with older cows. These results are
consistent with those reported elsewhere; several surveys have highlighted infertility and
mastitis as the predominant reasons for involuntary culling in dairy herds (Crosse and
0 'Donovan(1989); Gartner(1983); Anon(1971-72); Walsh(1983) and Beynon and
Howe(1974)).

The highest incidence of culling (20.8 per cent) was recorded for animals with
greater than four lactations. This was associated with infertility, mastitis, old age, low
production as well as a collection of other reasons. There was little difference in the
percentage of cows culled within the other age categories. Other studies have shown
that, in general, culling rates increase with age (Crosse and 0 'Donovan(1989);
O’Connor and Hodges(1963); Gartner(1963); Beynon and Howe(1974)). The relative
ranking of animals in different parities in terms ofdisposal is important. The potential
genetic gain from a selection policy is maximized by the disposal of older cows of
inferior genetic quality.

The disposal of dairy cows was well distributed throughout the year, with higher

than average being recorded in the period December to June. W hile most of the herds
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recorded were Spring-calving, some of the distribution of cullings throughout the year
may be due to the presence of some Autumn-calving herds in the survey. Itis likely that
many dairy cows culled for involuntary reasons are sold in poor body condition.

W alsh(1985) demonstrated that both carcass weight and carcass grades of cull cows can
be improved considerably by allowing a fattening period prior to disposal. The
introduction of milk quotas has meant that land availability is no longer a constraint on
many dairy farms. It is therefore possible to keep cull cows for longer periods on farms
and thus improve their value prior to sale (though some animals will have to be salvaged
because of serious illness); this could significantly improve farm income.

The large farm-to-farm variation in culling rates recorded in this study as in the
previous study by Crosse and 0 'Donovan(1989) would indicate that management is
important. A reduction of involuntary culling should allow for more culling for low
production and other reasons, which may enhance the genetic and general health of the

dairy herd.
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2.2 A Model for Culling and Breeding Goals in Irish Dairy
Herds

2.2.1 Development of a Simulation Model

The breeding goal on many commercial dairy farms is to maximise profitability,
and in this regard, the genetic quality of the dairy herd is an important determinant of
farm profitability. There has been a marked increase in the rate of genetic improvement
in dairy herds in Ireland on recent years. These developments present new
opportunities for increased profit on dairy farms as well as major challenges to milk
production systems that are mainly based on grass.

The simulation techniques known as Monte Carlo methods were used in this
study; these techniques are outlined in Appendix A. A model using Monte Carlo
methods was developed to simulate the physical and financial consequences of
alternate breeding goals and alternative levels of voluntary culling for a hypothetical
Irish spring-calving herd. The characteristics for this herd are based on the Moorepark
Blueprint for summer milk production. This model farm represents a typical intensive
dairy farming system in Ireland where the EU milk quota is the most limiting constraint
on production and where there has to be a combination of enterprises to use the land

available. This allowed the opportunity cost of capital and land to be evaluated

2.2.2 State Variables Included in the Model.

A cow’s Relative Breeding Index (RB195) describes, in a single figure, a cow’s
genetic merit for the production of fat and protein (Diskin(1995)). RBI195 values are
calculated from PD95 (Predicted Difference) values for kg of fat, kg of protein and

protein % and yield using the following formula:

RB195=100+0.36(PD Fat Kg)+1.64(PD Prt Kg) +74(PD Prt%)-0.014(PD milk yield)
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All available pedigree information is used to identify links between relatives so
that they can contribute to the proof of that animal. Information on ancestors can be
important in the case of animals with few performance records. As information from
the animals’ own performance increases, the importance given to ancestry information
declines.

A cow’s first 5 lactations are eligible for inclusion in the analysis. A reliability
figure, which is a measure of the reliability of milk ratings, is also published along with
acow’s Breeding Index. The reliability varies according to the amount of information
coming from an animal’s own lactation records and from all its identified relatives.
Reliability will generally be only 35-40% for cows with 1-2 lactations and up to 65%
for cows with 5 lactations.

RB195 was included as a state variable for each animal in the herd, as were
lactation number and production level. Production level was described by one of 15
levels (<74%, 74 to 78%,......... .. 122 to 126% and > 126% ), and defined relative to
the mature equivalent production. In this model, the lactation of an animal was

measured as 1st, 2nd and 3+.

2.2.3 Other Model Parameters

Current input and output prices were used in the analysis, and are presented in
Table 2.7. An involuntary culling rate of 18% was assumed. It was further assumed
that 50% of calves born were male, and that an overall calf mortality rate of 6%
prevailed. The RBI of a calf was calculated as the average of the sire and dam’’s
RBI195. At the end of each year, new heifers entered the herd until the quota could be
expected to be met in the following year (although production levels for the following
year were unknown, expected yields on the basis of current production levels could be
calculated). Replacement heifers are 2 year-olds, which were bred and reared within
the herd. The RBI195 of these heifers was assumed to be equal to the average RBI195 of

female calves surviving from 2 years previously.
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Prices (£ IR)

Land value /Ha /year 150
Feed costs /animal /year 60
Milk Price /litre 0.22
Calfvalue (female) 130
Calve value (male) 80
Replacement cost 840
Carcass value 350
Interest rate ( % ) 8
Table 2.7 Current input and output prices used for the simulation model.

The RBI195 of an animal in the herd had an effect on physical performance and
on financial factors. The following were dependent on the RB195 of animals in the
herd:

emilk yield

«feed costs

ecalfvalue

ecarcass value

eland usage

2.2.4 Culling and Breeding Goals Tested by the Model.

The physical and financial performance factors were simulated for two breeding
goals: (1) where sires with an average RB195 of 130 were used; (2) where the
average RBI1 of the sires used was 150. For each of these breeding goals, the RBI195 of
the average sire was allowed to increase (by 2 units per time stage) over time to reflect
the improvements in sires used over time (i.e. RBI Sire(t) = RBI Sire(0) + (2*1t)).

Three contrasting levels of voluntary culling 0, 10 and 20 % were also

evaluated. At the end of each stage of the simulation, a number of animals (based on
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the current herd size and on the voluntary culling rate) were culled according to the
lowest lactation adjusted milk yield.
At each stage of the simulation, the total yield, total revenue, land in use, and

average RBI of the herd were calculated. The farm parameters used are presented in

Table 2.8.

Calf mortality ( % ) 6

Involuntary culling ( % ) 18

Quota ( Litres) 520,000
Capital available 100,000

Land available 87

Housing space available (cows) 110

Table 2.8 Other parameters used for the model farm.

2.2.5 Stochastic Elements Included in the Model.

A planning horizon of 20 years (20 stages) was used. At each stage, each
animal in the herd could be culled involuntarily with a probability of 18%. Survival was
determined stochastically, as were the transitions from one production level to another,
where the transition probabilities were calculated as described by Van Arendonk
(1985b). Transitions in production levels were assumed to take place at the end of
lactation (stage).

For each calf in the herd, sex and survival were also determined stochastically.
Transitions in ‘lactation number’ could be determined deterministically since only one
transition was possible for an animal at any stage (i.e. lact(n+1) = lact(n) +1). An
animal’s RB195 remained constant for its lifetime, so again the transitions for this state

variable were deterministic.
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2.2.6 Results of Physical and Financial Factors.

As the simulation model was run, certain physical and financial factors were
measured at each stage. These were:

e Average RBI195 of the herd.

e Total milk yield of the herd.

e Average milk yield per cow.

e Current herd size.

e Land in use for dairy enterprise.

e Capital investment.

¢ Total revenues.

Breeding the herd to high index sires was found to have large effect on the

average RBI of the herd (Figure 2.1).
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Figure 2.1 The average RB195 of the herd under differing breeding goals
and voluntary culling rates.

For the latter halfof the planning horizon, a higher breeding goal resulted in
higher herd RB195’s, no matter what culling rate was chosen. Where the lower

breeding goal was combined with high culling rates (20%), the average RBI195 of the



herd rose quickly, but within 6-7 years, the average RB195 where the higher breeding
goal was used (regardless of the culling rate) was always higher. When there was no
voluntary culling, increases of 18 and 35 units of RB195 for years 10 and 20
respectively were recorded for the lower breeding goal (Sires with RB195 130). This
compares with an increase of 24 and 47 units of RB195 respectively, for the higher
breeding goal (Sires with RB195 of 150). The increases in RB195 associated with
higher culling rates are due to the faster introduction of genetically superior animals to
the herd. The increases due to culling policy are greater for the higher breeding goal
because, with the lower breeding goal, the genetic level of the herd soon approached

that of the replacement heifers.
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Figure 2.2 The average milk yield of cows in model herd under
different culling gaols and voluntary culling rates.

In the model, a herd member’s milk yield was adjusted for RB195 level. So, for
a certain age and production level, an animal with higher RB195 would have a higher
yield than one with a lower RB195 level. Therefore, it is not unexpected that the use of
the higher breeding goal (which results in higher average RB195 per animal (Figure
2.1)) results in a higher milk yield per animal as shown in Figure 2.2. Because of the

inclusion of a milk quota (Table 2.8), higher milk yields per cow (associated with
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higher breeding goals) meant that herd sizes had to be reduced, as illustrated in Figure
2.3. When a voluntary culling rate of 10% was applied, herd sizes of 85 and 76 were
recorded for years 10 and 20 respectively, when the lower breeding goal was applied.
W hile for the higher breeding goal, the respective figures were 79 and 70. So the
application of the higher breeding goal rather than the lower, results in a 11%

reduction in herd size after 10 years and a 30% reduction in herd size after 20 years.

Year

Figure 2.3 The size of the herd under the different breeding and culling
strategies.

The land used for the dairy enterprise was based on the genetic makeup of the

herd. For each animal in the herd, land usage was calculated as follows:
Land Usage = 0.85+((RB1-100)*0.003) hectares

For the higher breeding goal, the average RB1 was greatest (Figure 2.1). However, the
fewer animals required in the herd to reach quota (Figure 2.3) had the effect of
reducing the land area required for the dairy enterprise (Figure 2.4).

A measure of farm profit was taken at each stage under the various breeding
and culling strategies. These measures are shown in Figure 2.5. The calculation of

these figures was based on milk revenue, calf sales, feed costs, replacement costs, land

usage and capital expenditure.
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Figure 2.4 Land area required for the dairy enterprise under differing
breeding goals and voluntary culling rates.

A culling policy with no voluntary culling resulted in higher profits than either a
10% or 20% voluntary culling rate (and the 10% rate resulted in higher profits than the
20% rate). The use of higher merit sires (150 RB195) resulted in higher profit rates

over the 20 year planning horizon.
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Figure 2.5 Revenue for model farm under different breeding and culling
strategies.
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2.2.7 Conclusions from the Simulation Model

The results of the simulation suggest that the use of high merit sires had a large
effect on the genetic merit of the herd and consequently on milk yield per cow. This
resulted in increased farm profit even though cow numbers had to be reduced to stay
within the quota. Increasing the rate of voluntary culling also increased the genetic
merit of the herd, especially in the early years. This had positive effect on milk yield
per cow as well as on other farm parameters. However, the cost of achieving this
higher milk yield per cow was outweighed by the corresponding higher cost of
providing replacement animals. Therefore, culling on the basis of production alone

resulted in a reduction in total farm profit.
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Chapter 3
Traditional Dynamic Programming Techniques



3.1 Replacement Problems

3.1.1 Representing Operational Systems

In the analysis of operational systems, it is often possible and convenient to
consider the system as having a finite number of possible states (properties). The
system may then consist of a sequence of transitions between these states over time.
For example, if the problem were that of machine reliability, the state of the system
may be described by the age and state of repair of the machine. Similarly, in the case
where the operational system being described is a dairy cow, the system may be

described by the age and production level of the animal.

3.1.2 Replacement Problems

The determination of an optimal replacement strategy is an example of a
sequential decision problem If an asset is used in a production process, it is relevant
to consider at regular time intervals (stages) whether the present asset (described by
its state) should be replaced or kept for an additional period. The system can therefore
be influenced by a decision maker, who at each stage, uses one of a feasible set of
actions (e.g. Keep or Replace). The replacement problem is to determine the set of
decisions (one for each state at every stage) that will optimise some objective

function. This set of decisions is referred to as the optimal policy.

3.1.3 Dynamic Programming

If the traits of the asset are well defined and their precise behaviour over time
is known in advance, there are deterministic methods that might be applied to

determine analytically the optimal replacement time. If however, the traits of the asset
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in question are affected by random variation over time and among assets (as is the
case where the asset is a dairy cow), the replacement decision will depend on the
present observation of the traits. In such cases, a technique known as dynamic

programming is a relevant tool in the determination of an optimal replacement policy.

In the late 1950’s Bellman(1957) published a book entitled ‘Dynamic
programming’. Bellman was the first to appreciate the wide range of applicability of a
computational procedure, which is referred to here and in most literature as the value
iteration method. The value iteration method was first applied to the dairy
replacement problem as early as 1963, when a model consisting of one state variable,

lactation, described by 12 levels, was introduced by Jenkins and Halter(1963).



3.2 Dynamic Programming Techniques under a Finite

Planning Horizon

3.2.1 Criteria of Optimality

Before considering dynamic programming as an optimisation technique for a
sequential replacement problem we must first consider our objective function (what it
is that we wish to maximise/minimise). The following are two traditional objective

functions under a finite planning horizon.

A finite planning horizon is applied in the situation where a farmer knows that
farm production will cease after N stages, where N is fixed and finite. A stage may be
of any length, such as a year or a month. A relevant criterion under a finite planning
horizon may be to find the policy (a set of decisions at each (stage, state)) that
maximises the total expected rewards over the planning horizon (i.e. over the N

stages). Under this criterion the objective function would be:
(Equation 3.1)

where SNis the policy at stage N, and N(,,) is the reward for the (unknown) state I at
stage N.

If the decision maker has a time preference, such that he/she prefers an
immediate reward to an identical reward at a later stage, then the maximisation of
total discounted rewards would be a more relevant criterion. The objective function

would then be :
(Equation 3.2)

where 3is the discount rate defined by the interest rate and the stage length.
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3.2.2 The Value Iteration Method

The value iteration method is often referred to in literature as dynamic
programming, successive iteration or successive approximation. The value iteration

method has its basis in what Bellman(1957) described as the principle of optimality.

‘An optimal policy has the property that what ever the initial state
and initial decision are, the remaining decisions must constitute an
optimal policy with regard to the state resulting from the first

decision’

This statement implies that if the optimal policy from stage N onwards

(£(n) = (a(n),cj(/j + 1),....<7(/V))) is known, then the optimal policy from stage N-1
onwards (%(n-1)) will include£ (N) » Thus, as we proceed, more and more non-
optimal sub-policies can be rejected and disregarded for the remainder of the

calculation.

The value iteration method uses functional equations of the following type ,

which embody the principle of optimality, to sequentially determine optimal policies:

fi(n) = max™>{r- + pfi (n+ 1)}
H (Equation 3.3)
i=12,...,u ,n=N /N-1,.1.

where « If [s the immediate reward when a decision d is made for state I.
* pifisprobability of transition from state I to state ] when the decision d is
taken.
« The discount factor D is included if the decision maker has a time
preference so that he prefers an immediate reward to an identical reward at

a later stage. If discounting is not to be performed, then b=1.
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« The function fi(n) is the total expected rewards from the process when it
starts from state 1 and will operate for N stages before termination. Thus

fi(N) is the salvage value of the system when it is in state I.

The action d maximising the right hand side of Equation 3.3 is optimal for state I
Equation 3.3 illustrates backward recurrence : starting at stage N=N and working
backward to the first stage (n =N , 1) an optimal policy is chosen using the

Equation 3.3.

2.2.3 The Advantages of Dynamic Programming

The advantage of the dynamic programming method over a method of
successive enumeration is in its use of the criteria of optimality. Working backward
from the final stage N, once the optimal policy has been found at a particular stage,

for a particular state, no other decision need be considered at that stage, for that state.

Consider a very small model of two states, as shown in Figures 3.1 and 3.2. At
each stage in the model, transitions between the two states are possible, depending on
the decision made. The use of the backward recurrence relation, Equation 3.3, is
shown in Figure 3.1. At the first step of the value iteration algorithm (N-|), two
comparisons are required. Again, at the second step (N-Z), two comparisons are
required, since the optimal sub-policy from N-I onwards is already known, and, as the

principle of optimality implies, must be on the optimal path.

Step 1 Step 2
N-I N N-2 N-I N
Figure 3.1 Illustration of the principle of optimality.



Using a method of complete enumeration, as shown in Figure 3.2, where the
number of stages in the model is 2, results in eight comparisons. These eight

comparisons, correspond to the eight possible complete paths through the model.

In general, with a model of N stages, where d decisions are possible, the value
iteration method requires N Xd com parisons. A method of complete enumeration
would require d Ncom parisons. Thus, even for quite small models, a method of

complete enumeration could be intractable.

3.2.4 The Value Iteration Method over an Infinite Planning Horizon

The value iteration method described uses a finite planning horizon. In other
words, the number of stages in the model is known and finite. In such cases, some

salvage value (the value of an asset in state /) can be placed on the system at stage N.

Of course, often the decision maker may not know in advance when
production will cease. In such cases, we have an infinite number of stages (i.e. N:°°).
The value iteration method requires a finite planning horizon and cannot solve the
problem exactly over an infinite planning horizon. However, it can be used to
approximate the optimal policy over an infinite planning horizon. It can be shown

(Howard(1960)) that
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lim v
«—>@) Snh=J i’ *= 7"y (Equation 3.4)

where/- for fixed | is constant. So by using Equation 3.3 over a large number of
stages, we will eventually observe that/j(n+1) is equal tofi(n) for all i, and that the
same policy is repeated over a number of stages. W hile we cannot be sure that this is
in fact the optimal policy over an infinite planning horizon, we can assume that it is

close to this optimal policy.

3.2.5 Application to Animal Replacement

McArthur(1973) designed a stochastic dynamic programming model for a
New Zealand herd-tested factory supply herd, breeding A.B. Jersey replacements. He
then evaluated the culling decisions derived from this model by comparing the
resulting profits with those of a herd culled on genetic value alone. For this model the
state variables were age and production level. McArthur(1973) concluded that optimal
culling rules derived from his model did not appreciably increase the gains from

culling.

Stewart et al(1977) developed a dynamic programming model in which Holstein
cows in a Canadian dairy herd were described by lactation number, body weight,
average milk fat % and milk yield. To minimise the number of state variables needed
in the model, cows were described by estimated 305-day milk yield; this resulted in a
state space of size 2695. A 10-year planning horizon was used and milk returns, beef
sales, feed costs and cow depreciation costs were all included in the calculation of

rewards at each stage.

When acow was removed at any stage, it was assumed that she would be replaced
by an ‘average’ heifer in her first lactation. To determine the milk production and
body weight production of an ‘average’ heifer, first lactation records of 5,049

Holstein cows were studied. Linear regression estimates of the probability of



involuntary removal, death and survival to the next stage (i.e. next lactation) were
derived. A study of 41,896 lactation records was carried out to predict body weight
transitions and it was concluded that no change was large enough to cause transitions
between body weight categories, with the result that in the model a cow was assumed
to remain in the same body weight category for its lifetime. The study looked at the
sensitivity of this dynamic programming model to changes in prices of relevant
factors. It was found that optimal policies for 2,557 of the 2,695 states did not change

regardless of the milk price, feed price, or interest rate.

Killen and Kearney(1978) developed a dynamic programming model for Irish
spring calvers. A value iteration model was used with lactation as the only state
variable. The model developed found the optimal culling policy in terms of expected
future returns from milk and butterfat production. The model was used to compare
retrospectively the actual culling rate nationally with the optimum culling rate over
the 20 year period 1957-1976. The model found that the optimal culling rate under the
market conditions for those years was between 17% and 20%, which was slightly

higher than the actual culling rate.

The model developed by Harris(1988) described cows by lactation number,
future milkfat production and calving date, resulting in 2600 states; this model was
then used to rank cows based on future profitability. Incorporation of calving date into
the model allowed the variation in individual cow lactation length and the likelihood
of induced calving to be accounted for in the coming and future seasons. Future
milkfat production was defined in such a way that it remained constant for the lifetime
of acow. The model calculated, using the value iteration method, an annualised
present value for all states at the present stage and used these values to rank cows in a
herd. The study, which was carried out in New Zealand, was applied to a herd of 168
Jersey cows. Sensitivity analysis, using Spearman Rank correlation, was carried out
on the parameters of the model. The author concluded by noting the advantages of the
dynamic model over the use of production indices, those advantages being that it

incorporates economic variables and looks further into the future.

In Harris(1990) this model was developed further to include milk production, milk
protein production and breed as state variables. In this study, as with Van

Arendonk(1985), milk production state variables were expressed as percentages of the



mature equivalent. The optimal policies were found both for replacement rates and the
insemination dates for cows. This was applied to 10 dairy herds and gave an increase
0fNZ$1.80, per 1% culled within herd in the net present value per cow from culling,

which outperformed the culling on the payment production index by NZ$1.10.

Van Arendonk(1985b) in his model described cows by lactation number, stage of
lactation and the level of milk production during the previous and present lactations,
which resulted in a state space of size 29880. A 20-year planning horizon was used
and a large number of factors, such as calf revenues, carcass value, feed costs, cost of
replacement heifers and the probability of and financial loss associated with

involuntary replacement, were considered.

It was assumed that a cow would be automatically replaced if it reached its 12th
lactation. There were 15 alternatives for production level, which were defined relative
to the mature equivalent production in the absence of genetic improvement and
voluntary replacement. The production level of a cow remained constant during the
lactation period and transition to other production levels took place only at the end of
the lactation period. Transition to different production levels depended on production
in the present and previous lactation for cows of second lactation or higher. For

heifers, these probabilities depended only on production in the present lactation.

The probabilities of realisation were used to calculate the marginal probability of
voluntary and involuntary replacement during each lactation, and the total proportion
of cows which were disposed of voluntarily. In addition, the average herd life of the
cows was derived. The average herd life in the optimum situation was 42.9 months,
which corresponded to an annual replacement rate of 28%. In total 26% of the

replacements were voluntary, resulting in a voluntary replacement rate of 7.3%.

Changes in the price of a replacement heifer or the carcass price for culled cows
were found by Van Arendonk(1985b) to have a considerable effect on the optimum
replacement policy. A reduction in the difference between the carcass value of culled
cows and the replacement costs resulted in a higher rate of voluntary replacement.
Changes in the price of milk, calves or feed, the production level of the herd or the

rate of genetic improvement did not greatly affect the optimum policy.



The model used in the previous study was extended in Van Arendonk(1985c) to allow
for variation in time of conception. Up to two months after calving, voluntary
replacesment or insemination was not considered. Three alternatives were considered
from 2 to 7 months after calving for open cows namely a) inseminating the cow with a
given probability of success, b) leaving her open, and c) replacing her immediately.
For the remaining months of the current lactation of open and pregnant cows, the

alternatives to keep or replace immediately were considered. In the study, a 15-year

planning horizon was used to save computation time.

The marginal probability of conception was calculated from the probability of first
and/or later inseminations occurring and the probability that conception took place
after insemination. The effect of the length of the previous calving interval on the net
revenues during the current lactation was accounted for during the transition to the
present lactation. It was found that, as expected, insemination was generally
continued longer for high producing cows than for low producers. The optimum
replacement policy was greatly affected by the size of the difference between the
replacement heifer price and the carcass value of culled cows, while price changes for

milk, feed or calves had a negligible effect.

Van Arendonk (1986) then extended the model further to take into account seasonal
variation in biological factors and prices; a new variable, month of calving was
therefore added. The month of calving influenced the production of milk, fat and
protein, the probability of conception, feed costs and the prices of milk, calves and
culled cows. Due to the large number of possible states of a cow, it was necessary to
omit the previous lactation’s production level as a variable in the model. Seasonal
differences in milk production, feed costs and calf price contributed considerably to
the differences in expected income from heifers freshening at different months. After
exclusion of the seasonal variation in the production of milk, fat and protein, only

minor differences in income remained.

The model of DeLorenzo(1992) had 151,200 states, the variables being lactation,
production, month of calving, month of lactation and days open. The model used was
an adaptation of the model used by Van Arendonk(1986) and was solved over a 20-
year planning horizon. This model considered three decisions at each stage : keep,

keep and inseminate or replace. To test optimal strategies computed from the model, a



simulation was written that could implement the optimal strategies or use alternative
insemination and culling policies. Expected monthly net revenues per cow from the
model agreed closely with the monthly net revenues from simulation. Some slightly
higher net revenues resulted from the simulation, but this would be expected. As a
stochastic problem, dynamic programming seeks the optimised expected, or long run

average, net return.

McCullough and DeLorenzo(1996) devised an approach to evaluating the results
from this model using sensitivity and behavioural analysis. The state vector described
by DelLorenzo(1992) was revised to include three additional days open classes.
Sensitivity analysis was defined as the quantification of the various outputs resulting
from uncertain price and production inputs. Behavioural analysis determined how
outputs changed when model specifications changed. Twelve outputs were considered
in these analyses, including, percentage of states with insemination decisions,
percentage of states with replacement decisions, voluntary culling rates and
involuntary culling rates. The model specifications that were varied were decision

horizon, number of milk production classes, and number of days open classes.

After the consideration of the changes in the 12 outputs compared with the large
savings in computation time, a 5 year decision horizon was determined to be
justifiable. This is an important result as many other models use planning horizons of
15-20 years. In models which have an infinite planning horizon (policy iteration,

Hierarchic Markov Processes), the planning horizon need not be considered.

It was found that for the model defined by DelLorenzo et al(1992), the number of
production levels could be reduced from 15 to 5 without changing results
significantly, but the number of days open should not be reduced from 10 and the

variable for month of calving should be retained.



3.3 Infinite Planning Horizons

3.3.1 The Policy Iteration Method

The value iteration method is exact over a finite planning horizon and can be
used to approximate an infinite planning horizon (Equation 3.4). Howard(1960)
introduced the policy iteration method, which could solve sequential problems exactly
over an infinite planning horizon. In infinite stage problems we assume that the
system is to be operated under the same policy at every stage. Our aim is to find a
policy, which, if repeated indefinitely, will have better limiting properties than other
policies. To do this, the policy iteration algorithm generates a sequence of stationary
policies, each with improved utility over the preceding one.

Since the collection of all stationary policies is finite and an improved policy
is generated at every iteration, it follows that the algorithm will find an optimal
stationary policy in a finite number of iterations. Howard(1960) proved this under the
assumption that the discount factor was fixed. However, this proof can be extended so
that the discount factor is dependent on the policy and state of the system
(Kristensen(1988)).

3.3.2 Optimisation using the Policy Iteration Method

If an infinite planning horizon is assumed, the vector of present values gs=

(gi\ g25-mguY under the policy s is calculated as :

g=(1-BsP9)'r
Where | is the u*u identity matrix, P5is the matrix of transition probabilities under
policy vand Bsis the diagonal matrix whose non-zero elements are the discount
factors fa5 j3%-mA/- An optimal policy can then be defined as that policy that
maximises the elements of the vector gs (i.e. a policy s’ is optimal iff it satisfies the

condition gs =max{gsJ)). The policy iteration algorithm can now be stated as follows :



Step 1 : (Initialisation ) Choose an arbitrary policy s°. Go to Step 2.

Step 2 : ( Policy Evaluation ) Given thekstationary policy /, compute the

corresponding cost function gs from the linear system of equations :

gs‘=d-B sPs) r
Go to Step 3.

Step 3 : ( Policy Improvement) For each state i, determine the action cfH e D

that maximises

7=1
And put skH(i)=dk+. If slcH=sk then stop since an optimal policy has now been

found. Otherwise k=k+1 and go to Step 2.

3.3.3 Criteria of Optim ality

Referring to the traditional criteria of optimality discussed in Chapter 3.2.1,
the objective function (Equation 3.1) (the maximisation of total expected rewards)
cannot be applied under an infinite planning horizon, as the function will not converge
where N

Since, by definition, the discount factor pel, the function (Equation 3.2) (the
maximisation of total expected discounted rewards) will converge towards a fixed
value for a large value of N. Thus, under an infinite planning horizon, the objective
function for the maximisation of total expected discounted rewards is defined and

given by:

Equation 3.5)



As with a finite planning horizon, each animal and its successors are
represented by a separate Markov decision process. Therefore criterion 3.5 is equal to
the maximisation of total discounted net revenues per animal.

Another relevant criterion of optimality under an infinite planning horizon is
the maximisation of expected average reward per unit of time. If all stages in the
system are of equal length, this equates to the maximisation of expected average
rewards per stage. This criterion along with (3.5) was developed by Howard(1960).

The objective function can be stated as:

(Equation 3.6)

Where Kf is the limiting state probability under the policy s (i.e. when the policy is
kept constant over an infinite number of stages)1

The maximisation of total expected discounted rewards, and the maximisation
of expected average rewards per stage over an infinite planning horizon were
developed by Howard(1960). Later Jewel(1963) presented a criterion for
maximisation of average rewards over time (per stage), where the stage length could
vary according to the state i and the action d. The objective function for this criteria is

given by:

CEquation 3.7)

where t* is the expected stage length at state i under decision d.

The appropriate equations for this objective function, as well as (3.5) and

(3.6), under the policy iteration method, are presented in Table 3.1.

1In practice, the optimal policies determined by criteria (3.5) and (3.6) are virtually
identical (Kristensen(1993)).



Objective Linear equations of step 2.
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Step 3.
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Table 3.1 Equations to be used for the policy iteration method for different objective
functions

We can see clearly from Table 3.1 that the objective function (3.6) is just a
special case of objective function (3.7) where t? = 1 for all i and all d. Both

Howard(1960) and Jewell(1963) interpreted t? as the expected stage length.

3.3.4 Criteria of Optimality under Quota Constraints

In the situation where no production quota is imposed upon a farmer, the most
limiting criterion is the number of cows he can have on his farm (grazing or housing
capacity). In this situation, the most appropriate criterion of optimality would appear
to be the maximisation of expected net rewards per cow in the long term.

An alternative criterion is needed, however, if there is some other restriction

imposed on the system This restriction may be in relation to inputs to the system (e.g.



a limited supply of heifers), or on the outputs of the system (e.g. a quota on
production). Since milk production quotas are in place in all EU countries, including
Ireland, such alternative criteria must be considered. In such a situation, where the
amount of milk produced is the most limiting restriction, an obvious criterion would
appear to be the maximisation of average rewards per kg of milk produced. This
criterion of optimality was first applied by Kristensen(1989). The theoretic
development of this criterion was later presented by Kristensen(1990). Under the
traditional average rewards criterion (Chapter 3.3.3) the optimal policy is that policy

that maximises

Further we define that if a state i is observed and a decision d is made, a
certain physical output (milk yield) m? is involved. In the same way as the average
rewards can be calculated under policy s, so the average physical output under s can

be calculated as

The criterion of optimality that is appropriate for the quota situation is the
maximisation of expected rewards per unit of physical output. Therefore, the optimal

policy would be that policy that maximises

(Equation 3.8)

The value of gs can be interpreted as the average rewards per unit of physical output
when the policy s is kept constant over an infinite number of stages. To ensure that gs

is always defined (and that its sign is always determined by grs) we assume, that for



To implement this criterion of optimality, the maximisation of average net
rewards over time, presented by Jewell(1963) can be considered. Jewell considered
the optimisation of this criterion where the stage length was considered as being a
stochastic variable whose distribution depended on the state i and the decision made,
d (Chapter 3.3.3).

Denoting the expected stage length, given i and d, as tf, Jewell presented an

algorithm that maximised

L7Ti  / (Equation 3.9)
h(s) =g = - -1

It is quite clear that equations (3.9) and (3.8) are analogous: In (3.8) mf is
interpreted as the expected physical output, dependent on i and d. In (3.9) tf is the
expected stage length dependent on i and d. Therefore, the maximisation of average
expected rewards per kg of milk can be applied using the equations in Table 3.1 for

criterion (3.7) where we substitute m f for tf.

2.3.5 Policy lteration - Discussion

The policy iteration has the advantage over the value iteration algorithm in
that it provides an exact solution to sequential problems (e.g. replacement problems)
over an infinite planning horizon. The policy iteration method also converges quickly.
It has further advantages, in that the equations in Table 3.1 are general. It is quite
possible to calculate the economic consequences of following any policy s. This
allows us to compare non-optimum policies with the optimal policy by carrying out
one iteration of the non-optimal policy. This can be done by comparisons of the
relative values under each policy considered.

The criteria of optimality developed by Jewell(1963) and modified by
Kristensen(1990) are also useful in calculating other technical results under a given
policy by redefining rf and Uin Table 3.1 (3.7). Examples of such interpretations
were given by Kristensen(1990).



1)

2)

3)

4)

If rf is defined as the milk yield of a cow in state i under
policy d, and tf is defined as the stage length when state i is
observed under policy s. Then gs is the average milk yield per

cow per year under policy s.

Let rf = 1if state i represents the purchase of a heifer and zero
otherwise and let tf be defined as the stage length when state i is
observed under policy s. Then gs is the annual replacement rate

under policy s.

Let rf = 1ifcalving takes place and zero otherwise and let tf
be defined as in 2) and 1) as the stage length when state i is
observed under policy  Then gs is the average number of

calvings per cow per year under policy 5

Let rf =nand tf = 1if a calving takes place after a calving
interval of n weeks, and both are zero otherwise. Then gs s the

average length of the calving interval under s.

The value iteration algorithm finds optimal policies at each stage (i.e. policy is

dependent on stage number), so it is possible to associate different rewards with each

stage (i.e. one could model an expected improvement in milk price at n=3). Because

the policy iteration method maximises the objective function over an infinite number

of stages (N = € and finds a stationary policy that is a general solution (i.e. policy is

the same at each stage), it is not possible to allow rewards, outputs etc.. to depend on

stage. It is however possible to include a rate of inflation/deflation in the model by use

of the discount factor 3

The more complicated formulation of the policy iteration method involves

finding the exact solution of gsin Step 2. This involves solving the system of

simultaneous linear equations :

g={1-BsPs)'r



The dimension of this system of equations is equal to the number of states in the
model u. The solution of this set of equations requires the inversion of a matrix of
dimension u*u, which is rather complicated. Thus, even for quite small models, the
policy iteration method involves solving large sets of simultaneous equations.
Because of this, when the model is large, the policy iteration method quickly becomes
infeasible. Due to this constraint, the policy iteration method has not been widely

applied to animal replacement problems.

Ben-ari et al(1983) examined the effect of a finite planning horizon on the
results of a dairy replacement problem. It was argued that the use of a finite planning
horizon ignored data beyond the planning horizon and caused severe distortion of the
results. These problems were illustrated by comparing the results of a model
formulated using the value iteration method with 5, 7 and 10 year planning horizons.
The model itself described a cow by 3 state variables : milk yield, age and
bodyweight. A stage length of one year was used and the decisions considered at each
stage were to keep the animal for an additional year or to replace it with a heifer. This
model was then formulated using the policy iteration method and designed as an

interactive tool.

The policy iteration method was also applied to the dairy replacement
problem by Reenberg(1979) and by Kristensen and Ostergaard(1982). In both of these

models the state space was small, containing 9 and 177 states respectively.



Chapter 4

Hierarchic Markov Processes



4.1 The Curse of Dimensionality

4.1.1 System s with Large State Spaces

The variation in traits in dairy cows is considerable and thus, models with
large state spaces are often needed in the modelling of the dairy cow as a production
unit. The difficulty with the policy iteration method, and to a lesser extent the value
iteration method, is that the optimisation of models with large state spaces is
infeasible. This problem is often referred to in literature as ‘the curse of
dimensionality” (Kristensen(1993)).

The notion of Hierarchic Markov Processes was introduced by
Kristensen(1988; 1991) to help overcome this problem and make possible the exact
solutions of models with very large state spaces over infinite planning horizons. In
order to illustrate how Hierarchic Markov Processes help solve systems with large

state spaces, we will need to first look at how the ‘curse of dimensionality’ arises.

4.1.2 Including Age as a State Variable

Consider a simple dairy model where a cow is described by age and yield
(Kristensen 1996). In this instance, we will say that the variable, age, can only take on
the values |...4, so that here, an animal must be replaced after at most 4 lactations.
Yields can take on one of 3 values: high, average or low. We will assume that the
probability that an animal will remain at the same level of yield to be 0.6. The
transition to another level is assumed to be 0.3 from low (or high) to average and 0.1
from low to high or vice versa, if the cow is kept. On the other hand, if the decision is
to replace, we will assume that there is an equal chance of the replacement heifer
being in each of the three levels. The probabilities for transition between the different
yield levels are presented in Table 4.1.

Table 4.1 is, in effect, our transition matrix p,j, if the only state variable in our

model were yield.



Decision = 1 (Keep) Decision = 2 (Replace)
j=1v =2@A 7T H) j=1 j=2() =3 (H)

i=1(L) 0.6 0.3 0.1 1/3 1/3 13

1=2 (A) 0.2 0.6 0.2 1/3 1/3 1/3

1=3 (H) 0.1 0.3 0.6 13 13 1/3
Table 4.1 Probabilities between different yield levels.

The inclusion of lactation gives us the transition matrix for a model with both
yield and age as state variables. The inclusion of age as a state variable has increased
the dimensions of P§ by a factor of 4 (corresponding to the number of levels
permissible for the variable ‘age’). The new transition matrix Pij is presented in Table
4.2 and Table 4.3. Table 4.2 shows the transition matrix where the decision = ‘keep’,
and Table 4.3 gives the transition matrix where the decision = ‘replace’. Empty spaces

in these matrices correspond to zeros.
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Pge

Loy
1 1 L 06 03 01
2 1 A 02 06 0.2
3 1 H 01 03 06
4 2 L 06 03 01
5 2 A 0.2 06 02
6 2 H 01 03 06
7 3 L 06 03 01
8 3 A 0.2 06 0.2
9 3 H 01 03 0.6
10 4 L 3 13 13
n 4 A 3 13 U3
12 4 H 13 13 13
Table 4.2 Transition matrix for decision = ‘keep’.
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p replace
rj

1/3

1/3

H 1/3

1/3

1/3

H 1/3

1/3

1/3

H 1/3

10 1/3
1T 1/3
Y2 H 1/3

Table 4.3

It is important to note that the transition matrices in these tables are sparse
because transitions in age are deterministic. Considering a cow in lactation i, if the
decision to keep for a further stage is taken, only a transition to age i+1 is possible
(assuming that the stage length is one year). If the decision is to replace the animal,

then only a transition to lactation 1 (replacement heifer) is possible. All other

H

13 1/3

13 173
13 13
13 13
13 173
13 13
13 13
13 13
13 173
13 173
13 13
13 13

Transition matrix for decision = ‘replace’.

transitions will be equal to zero.

4.1.3 Including Permanent Traits in the Model

10

12

In addition to the state variables for age and production, we will now define a

state variable for the genetic merit of the cow. This variable can take on the values:

bad (1), average (2) or good (3). Once a heifer enters the herd, a measure of this



genetic merit is taken. The animal will retain the same level of genetic merit for its
lifetime in the herd. When a heifer first enters the herd, we will further assume, that

the probability of its genetic level being good, average or bad is as follows:

Good =0.3
Average = 0.4
Bad = 0.3

The size of the state space is now 36 =3 *4 * 3. There are 36 different possible states
(combinations of state variables) that an animal can occupy. The transition matrix for
this model has now increased in size from a 12*12 matrix to a 36*36 matrix. This
new transition matrix Pij is shown in Appendix B. For the decisions ‘keep’ and
‘replace’. This new matrix shows even greater sparcity than the matrices in Tables 4.2
and 4.3. This is because genetic merit is defined as a permanent trait of the animal.

So, if the decision ‘keep’ is taken, transitions to states with a different genetic level to

the present state are not possible, and as such, these probabilities are equal to zero.

4.1.4 Dimensionality in Dynamic Programming

It is quite clear that if a new state variable of n levels is added to the model, it
results in an increase in the state space by a factor of n. In the small model discussed
here, the size of the state space does not pose significant problems to optimisation.
However, in more realistic models, where several traits are represented by state
variables, with a realistic number of levels, the size of the state space can soon
become prohibitive. In order to help circumvent this ‘curse of dimensionality’, the

notion of ‘Hierarchical Markov Processes’ was introduced by Kristensen(1988;1991).



4.2 Hierarchic Markov Processes

4.2.1 The Structure of Hierarchic M arkov Processes

In the traditional Markov decision model, a decision to ‘replace’ is simply
considered as a transition from one state to another. Hierarchic Markov Processes take
into account the fact that when a decision to replace is taken, there is a fundamental
change in the process (replacement of the current animal with a replacement heifer).
These processes omit age as a state variable and, moreover, take advantage of the fact
that when a replacement occurs the process (life cycle of the replacement animal) is
restarted (Houben et al(1994)).

In a Hierarchic Markov Process, the model is split into one main process and a
set of subprocesses. In the main process, the size of the state space is equal to the
number of subprocesses and each state in the main process corresponds to a
subprocess. In each subprocess there is a finite number of stages N, where N is the
maximum life-span of an animal in the herd. The structure of these processes is
shown in Figure 4.1.

A subprocess begins when an animal enters the herd. When a replacement
occurs, transition to an absorption state occurs. The subprocess then remains in this
state until stage N, when a new subprocess (representing the replacement heifer)
enters the herd. When a subprocess is in an absorption state, the stage length is always

zero, and all rewards and outputs are equal to zero.

4.2.2 Notation and Terminology

In the following sections, the notation and terminology to be used in this and
following chapters in regard to Hierarchic Markov Processes are defined. To avoid
ambiguity, Greek letters G x etc...) are used to denote states in the main process

(Kristensen( 1993)).
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PROCESS

Staee N

Staee 2

Staee 1

Subprocess 1

Stace N

Stage 2

Staee 1

Figure 4.1  The transition probability structure of a Hierarchic Markov
Process

4.2.2.1 Notation for Subprocesses

A Hierarchic Markov Process is a series of Markov decision processes called

subprocesses built into one Markov decision process called the main process. A
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subprocess is a finite time Markov decision process with N stages and a finite state
space i2n= {l,...,un}for stage n, 1< n < N. The action set Dn of the nth stage is
assumed to be finite, too. A policy s of a subprocess is a map assigned to each stage n
and state i s £2n an action s(n,i) e Dn. The set of all possible policies of a subprocess
is denoted T. When the state i is observed and the action d is taken, a reward rf(n) is
gained. The corresponding physical output is denoted as m?(n). Let Pif(n) be the
transition probability from state i to statej where i is the state in the /?th stage, j is the
state in the n+1th stage and d is the action taken at stage n. We further define ptfO) as
the initial probability of being in state i at stage n=0.

Under criterion (3.5), we must also define the discount factor in state i under the

action d as $?(n). We assume that the stage length is given by stage, state and action.

4.2.2.2 Notation for the Main Process

Assume that we have a set of v subprocesses each having its own set of
parameters. The main process is then a Markov decision process running over an
infinite number of stages and having a finite state space {l,...,v}. Each stage in this
process represents a particular subprocess. The action sets of the main process are the
sets '\t = 1,...,v, of all possible policies of the individual subprocesses. A policy a is
a map assigning to each state t of the main process an action a(i) e 'VVThe transition
matrix of the main process has the dimension v*v , and is denoted i> = {(j)*} The
transition probabilities are assumed to be independent of the action taken. The reward
fx and the physical output hxain state i of the main process are determined from the
total rewards and output functions of the corresponding subprocess of the value
iteration method (Shown for/0 in Figure 4.2). This is possible as the subprocesses run
over a finite number of stages N.

h? and the discount factor for subprocess i, can be calculated analogously.

This is shown in Appendix C.
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fi (nN)=r. (n) n=N.

/,(n) = r,'(n) +j3'(«)Ep'(«)//(n +1) , n=Ww-I, 1.
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Figure 4.2 Calculation of the reward for a subprocess

4.2.3 Formulation and Optimisation

The main advantage of the Hierarchic Markov Process is directly related to its
structure. A subprocess has a well defined and finite planning horizon (equal to the
life-span of a cow). This and its large state space make value iteration the ideal
optimisation method to use. The main process has a small state space and an infinite
planning horizon, and so, the policy iteration method is the ideal optimisation tool.

The hierarchic approach combines these two optimisation techniques to allow
the solution of replacement problems with large state spaces over an infinite planning
horizon. It can be shown mathematically that results of a model formulated as a
Hierarchic Markov Process are equal to that of a general Markov process optimised
using the policy iteration method.

The form of the optimisation cycle for Hierarchic Markov Processes is that of
the policy iteration method. Step 3 of the policy iteration method would be prohibitive
in this case as the number of alternatives action that would need to be compared is r t,
the number of alternative policies in the subprocess i. However, because of the
structure of the Hierarchic Markov Process, the value iteration method can be used in
the subprocess and the results used in Step 3 of the policy iteration method of the

subprocess.



As we are optimising over an infinite planning horizon, the objective functions
considered for the policy iteration method (Chapters 3.3.3 and 3.3.4) are relevant. The

iteration cycle of the Hierarchic Markov Process in its general form is as follows:

Step 1: Choose an arbitrary policy a. Go to Step 2.

Step 2: Solve the following set of linear simultaneous equations for FXIF&f,...F\&

and in the case of the criteria 3.7 and 3.8 ga:

g° K+ f: =r
k=\

In the cases of criteria 3.7 and 3.8 an additional equation Fa = 0 is needed in
order to determine a unique solution (since in this case we have v+1

unknowns). Go to Step 3.

Step 3: Define

Under criterion (3.5) and Tt= 0 under criteria 3.6, 3.7, 3.8.

For each subprocess t, find by means of the recurrence relations

\i(n)=max {rf(m- m (n)ga+ (N)Tt},
n=N

Tti(n) =max'{r- (N)- "\ {nN)g®°+$ (n)~ p(n)itta(n+1)3,
7=1

n=1,..JV—.



a policy s’ of the subprocess. The action s’(n,i) is equal to the d’ that
maximises the right hand side of the recurrence equation of state i at stage n.
Putct’(i) =s" fori = ..wv. Ifo’ = a, then stop since an optimal policy is
found. Otherwise, redefine a according to the new policy (puto = &). Go to
Step 2.

This general formulation can be altered for each of our criteria:

» Under criterion (3.5) all physical outputs (mf(n) and accordingly h?) are put equal
to zero.

» Under criterion (3.6) all physical outputs (mf(n) and hxa) and all discount factors
(Pidin) and B®) are put equal to 1

» Under criterion (3.7) all discount factors are put equal to 1

4.2.4 Discussion

This iteration cycle makes it possible to solve for large state spaces over an
infinite planning horizon. State variables of the main process are those traits that
remain constant over the lifetime of an asset (dairy cow). Examples of such traits may
be:

» Genetic merit of sire.
» Genetic merit of dam.
* Month of first calving.
* Breed.

» Age of first calving.

Once an animal occupies one of these states (subprocesses) it remains there for the
duration of its time in the herd. Therefore, these permanent traits need not be
considered as state variables in the processes.

The size of the state space in the main process determines the number of linear
simultaneous equations to be solved in Step 2 of the iteration cycle. It is because of
this step that it is not feasible to solve large models using the policy iteration method.

Under criterion 3.6, the number of simultaneous equations is v (the number of states



in the main process), while under criteria 3.7 and 3.8 the number of equations to be
solved is v+1. The size of the main process’ state space (determined by the permanent
traits included in the model) is usually small (Kristensen(1987) and Kristensen(1989)
had a main state space of size 5; Houben et al(1992) had a main state space of size 1),
which makes it feasible to solve even large models exactly over an infinite planning
horizon.

All other traits to be included in the model would be included as state variables in
the subprocesses. Examples of traits (variables) that could be included in the model

are:

* Month of calving.

» Calving interval.

* Production in current lactation.
* Production in previous lactation.
* Body weight.

» Fertility status.

In a traditional Markov decision process, the age of the dairy cow (lactation, stage of

lactation) might also be included as a state variable (Chapter 4.1).

Figure 4.3 A traditional Markov process with age as the only state variable
(0-3). Under this structure, the process represents an animal and
its future replacements (a transition to ‘age = 0’ represents a
replacement by a heifer).



However, under a hierarchic structure, a new subprocess begins when an animal
enters the herd. Because of this, age need not be included as a state variable, since it

will correspond directly to current stage of the subprocess (Figure 4.4).

Stage Number (age)

Figure 4.4 A subprocess in a hierarchical structure. Age is not required as a state
variable as it equals the stage number. In this structure, the stage
number is not a stage in a planning horizon, but rather a stage in the life
cycle of the asset (dairy cow). This is because when an animal enters
the herd it enters the start of a subprocess (which subprocess depends
on the permanent traits of the asset.

4.2.5 The Advantages of Hierarchic Markov Processes

The Hierarchic Markov Process is designed especially to fit the structure of
animal decision problems where the successive stages of the subprocesses correspond
to the age of the animal in question (Kristensen(1988)). If the model is designed in
such a way that the main process (which is solved using the policy iteration method)
has very few states, and the subprocesses (which are solved using the value iteration
method) have large state spaces, it is possible to find optimal solutions to even very
large sequential decision problems. The optimal solution given is exact (optimal over
an infinite planning horizon), fast and can handle very large models.

Models formulated as Hierarchic Markov Processes can be formulated as an
ordinary Markov decision process. This could then be solved over an infinite planning
horizon using the policy iteration method. In this situation, each combination of main
state (i), subprocess state (O and subprocess stage (n) should be interpreted as a state
(denoted mi). Parameters for this ordinary Markov decision process are easily found

from the hierarchic model:
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Note: The parameters on the right hand side of these equations belong to the

ith subprocess except pt(0) which belongs to subprocess K

This formulation would result in the same optimal policy as if the hierarchic
formulation were applied. The hierarchic method however, has considerable
computational advantage over the ordinary Markov decision process. The policy
iteration method is only relevant when solving small models, but the value iteration
method has been used to solve very large models. The time spent on optimisation
using the hierarchic formulation is much lower than even the value iteration method

(and it has the advantage of solving exactly over an infinite planning horizon).

4.2.6 Computational Advantages

Step 2 of the Hierarchic Markov formulation involves the solving a set of v
equations. With large models which have small state spaces in the main process, the
time spent on this step is small. For this step, we also require the calculation of the
rewards (/i°) and either the physical output or the expected discount factor according
to equations of the type shown in Figure 4.2. Since these parameters are calculated for
a known policy (a), their calculation (whichever two are relevant under our criterion)
involves approximately the same number of operations as one iteration of the value
iteration method (if the number of alternative actions to be compared for each state

using the value iteration method is two). If more than two actions were considered,



the number of operations required would be lower than that of one step of the value
iteration method.

Step 3 of the hierarchic formulation involves exactly the same number of
operations as one iteration of the value iteration method (the choice of decision for all
i, for some stage n). So, in conclusion, each iteration of the Hierarchic Markov
Process involves approximately the same number of operations as two iterations of
the value iteration method. For example, a model reported by Kristensen(1991)was
optimised using Hierarchic Markov Processes under a range of different price
conditions. The number of iterations that were required was between 3 and 6. This
corresponds to between 6 and 12 iterations of the value iteration method. The age of
the animal was measured every 4 weeks. If a finite planning horizon of 20 years were
assumed and the value iteration method used for optimisation, this planning horizon
would represent 260 iterations (stages) of the value iteration method (as compared
with 6-12 using the hierarchic approach).

Kristensen(1988) compared the performance of the Hierarchic Markov Process
with the value iteration method and the policy iteration method for criteria 3.5 - 3.8. A
small model, with 48 states when formulated as an ordinary Markov decision process,
was used. When formulated as a Hierarchic Markov Process, the main process of the
model has three states and the subprocesses have 4 states. The results of these

comparisons are shown in Figure 4.5 and 4.6.

H Value
m Policy
H Hierarchic

Criterion 2.5 Criterion 2.6 Criterion 2.7

Figure 4.5 Number of iterations required for 3 different
methods under 3 different criteria of optimality.
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Figure 4.6 Relative computer time for the three optimisation
methods under 3 different criteria of optimality.

In Figure 4.5, it can be seen that the number of iterations required by the value
iteration method is far greater than for either of the other two methods considered.
The relative computer time for the 3 optimisation techniques is shown in Figure 4.6.
As we would expect, the hierarchic model’s performance was superior to that of the
policy iteration method due to the smaller number of linear equations solved during
optimisation. In this example, an iteration of the hierarchic model is performed even
faster than one of the value iteration method applied to the same (transformed) model.
The reason for this is that the value iteration method had not been programmed in the

most efficient way (Kristensen(1988)).

4.2.7 Application to Animal Replacement.

In the Kristensen(1987) model, a cow was described in terms of lactation number,
stage in lactation, level of milk yield in the current and previous lactation, length of
calving interval, and genetic class, defined by the sire. It was concluded that milk
yield of previous lactation was not needed as a state variable when the other variables

were present in the model.



The future profitability, calculated from the optimal solution, was used for ranking
of cows in the herd. Replacement decisions were allowed to depend on the genetic
class of the heifers. While the weight of the cow was not included as a state variable,
a standard weight curve describing weight as a function of lactation number and stage
of lactation was used. Beyond the states defined by the state variables, additional
states were: 1) a replacement state, to which the system immediately transfers when a
replacement takes place, 2) a disease state, the probability of which is equal to the
probability of involuntary disposal, and 3) an infertility state, which the process
occupies if the cow is not known to be pregnant 40 weeks after calving.

This is the only study containing genetic class, defined by the breeding value of
the sire, as a state variable. It was found that there was a significant difference in the
average herd life of different genetic classes. Genetic class also made it possible to
compare the heifers available in the herd with present cows, and to rank them. Unlike
other studies where transitions to different classes of milk yield could only take place
at the end of a lactation, no such simplification was made in this paper.

Houben(1994) looked at the effects of mastitis occurrence on optimal replacement
policies. He found that although mastitis had a considerable effect on expected
income, in most cases the optimal decision was to keep and treat rather than to replace
the cow. The dairy replacement problem was modelled as a Hierarchic Markov
Process. The state variables used in the model were lactation, production levels in the
current and previous lactation, calving interval, clinical mastitis in current
month(binary) and accumulated number of clinical quarters in the current and
previous lactation. Exclusion of infeasible states resulted in a Hierarchic Markov
Process of 6,821,724 states with the result that optimisation of this model took over 6
hours of computer time. This model optimised three decisions : 1) keep the cow for at
least one more month and do not inseminate, 2) keep the cow for at least one more
month and inseminate her, 3) replace the cow immediately with a replacement heifer.

In the model, production level was defined relative to cows of the same age and
month of lactation and production level transitions were allowed on a monthly basis.
When transitions were only allowed at the start of a new lactation, it resulted in an
overestimation of high production animals and an underestimation of low producing
animals. The gross margin model of Van Arendonk(1985a) was extended to include
effects of clinical mastitis. Production losses due to mastitis and transition

probabilities were taken from Houben(1993). In Houben(1993) a stepwise least



squares method was used to obtain unbiased estimates of milk, fat and protein losses,
and logistic regression was used to estimate the probability that a cow would have
clinical mastitis in the next month. Analysis of the effect of the variables related to
mastitis was carried out and it was found that the state variable that accounted for
clinical quarters in the previous lactation had little influence on the optimal policy.
Clinical mastitis in the current lactation, especially in the current month, however, had

a significant effect on expected income.



Chapter 5

Seasonality, and its Inclusion in Markov Models



5.1 Seasonality in the Irish Dairy Industry

5.1.1 Milk Supply Patterns

Ireland, in contrast with other EU countries, has a highly seasonal milk supply
pattern. This can be seen in Figure 5.1, where the milk supply patterns for Ireland,
France, the Netherlands, and Denmark are shown. While the supply curves for these
other EU countries are relatively flat, the milk supply in Ireland is at its highest in
May and at its lowest in the winter months and the difference in supply during these

times is large.

Figure 5.1 A comparison of milk supply curves for four EU
countries.

This results from the fact that the lactation period in Ireland is associated with the
availability of grazed grass in the production system (Anon(1993b)). In Ireland, this
grazed grass, which is an inexpensive source of feed (relative to silage and
concentrates) is available during the summer. A study by Ryan(1997) was carried out

to contrast three calving patterns for Irish dairy herds. The resultant production
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systems are shown in Figure 5.2 and Figure 5.3 for spring and winter calving herds

respectively.

U Grass
H Concentrates
U Silage

Figure 5.2 Spring milk production system.

Under the spring production system 1.4 tons of Silage dry matter, 580 Kg of

concentrate dry matter and 3.5 tons of grass of dry matter were required per cow.

Figure 5.3 Winter milk production system.



Under the winter milk production system each cow required, on average, 1.5 tons of
silage dry matter, 1.3 tons of concentrates dry matter and 2.8 tons of grass dry matter.

This illustrates clearly the impact of season of calving on feed costs.

5.1.2 Seasonality in Markov Processes

Seasonality was included in the model of Van Arendonk(1986) which was
formulated as a traditional Markov process. The hierarchic models of
Kristensen(1987) and Houben et al(1994) which modelled Danish and Dutch
production systems respectively did not include seasonality. Due to the impact of
season of calving on the costs and revenues in Irish dairy herds, seasonality should be

included in any attempt to model Irish dairy herds.



5.2 Including Seasonality in Hierarchic Models

5.2.1 Problems with Seasonality in Hierarchic Models

To include seasonality in a Hierarchic model, it would appear that we should
include an additional state variable in our subprocesses. This variable could be called
‘month’ and have 12 possible values, where each value corresponds to a particular
month of the year (Jan, Feb,...,Dec). However, the inclusion of this state variable
leads to certain problems and requires reformulation of the Hierarchic Markov
Processes discussed in Chapter 4.2. To illustrate the problems associated with the
inclusion of seasonality, consider a model with month as the only state variable (i.e. Q
={1 12p.

In this model we further assume that if a decision to replace is taken, a
replacement heifer enters that herd the following month (e.g. if a replacement decision

is taken in June, the replacement heifer enters the herd in July (Figure 5.4)).

Decision =Replace

- ©
Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct
Time
Replacement Heifer e
Jul Aug Sep Oct
Figure 5.4 Illustration of how the month of entry of a
replacement heifer is dependent on the animal it is
replacing.



So when the replacement heifer (Figure 5.4) enters the herd, it enters into the state
corresponding to July with probability equal to one, and to any other state with a

probability of zero.

ie.  pi(0) = 1iffz=7 (July)

= 0 otherwise

Of course, if the heifer entered the herd in another month, the initial probabilities pi(0)
would change accordingly. So, depending on the month in which a cow enters the
herd, we have 12 distinct initial probability distributions. To account for this we
would need 12 subprocesses, corresponding to a main state variable ‘month of entry
to the herd’, where each of these subprocesses have distinct initial probabilities pi(0)
(Figure 5.5).

Subprocess Pi(0)
Month of entry = Jan (1) [1000 ... Q]
Month of entry = Feb 2 [0 100 ... Q]
Month of entry = Mar (3) [00 10 ...0]
Month of entry = Dec (12) [0000 ... 4

Figure 5.5 The initial probabilities p,(0) for the 12 subprocesses corresponding to
month of first entry into the herd.

The model now has a main process with a state space of size 12, and each
subprocess in the main process has a state space of size 12. A further implication
becomes clear when one considers the transitional probabilities in this main process
(required for Step 2 of our Hierarchic Markov Process iteration cycle). The iteration
cycle of Chapter 4.2.3 was based on the assumption that the transition probabilities of
the main process O were independent of policy a (i.e. independent of decisions made
in the subprocesses). Under this formulation, this is no longer true. The probability of

an animal which enters the herd in month i (subprocess t) being replaced by an animal
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which will enter the herd in monthj (subprocess k) is dependent on the decisions
made in the subprocess t. For example, if a cow’s ‘month of entry’ to the herd is June,
the probability that its replacement heifer’s ‘month of entry’ will be ‘January’ is
dependent on the time of replacement (which is a result of policy a). To account for

these problems, some reformulation of the Hierarchic model is needed.

5.2.2 An Extension to the Hierarchic Model

The problem of how to extend Hierarchic Markov Processes to relax the
assumption of $>being independent of policy was studied by Kristensen(1988),
although not in relation to seasonality. Kristensen(1988)’s model,described as an
‘extended model” was devised for a situation where h different qualities (t = 1 of
an asset existed, and where these qualities could be ranked from the least preferred to

the most preferred.

ie. liispreferredto lj iff tj>|j V i,j=12,../z

For this situation, it was assumed that one could order a certain quality of asset, but
that there was a limited supply for each quality. So, if an asset of quality t was
ordered there was a probability 7E (7tt < 0 V1) that it could be delivered. In this model,
the action set Q ={keep, replace} was extended. In each subprocess, h actions of the
type ‘replace if an asset of quality t is available “ were defined. If the action ‘keep’ is
referred to as action h+1, this resulted in h+1 possible actions.

Because of the additional actions (actions 1, ,h) which result in the
replacement of the asset (although with different heifers), one replacement state was
no longer sufficient in a subprocess. For every action of the type ‘replace if an asset of
quality t is available’ an absorption state was defined, this resulted in h absorption
states Aj,... ,Xhe*These states were defined in all state spaces. These replacement states

retain all the properties of replacement states, defined in Chapter 4.2 and additionally:



Pij =0  if & |
=1 if i=j Vi,j=XU. Xh

(i.e. transitions between replacement states are not possible).

The inclusion of these additional absorption states, had no effect on transition
probabilities (Py) if the action *keep’ (h+1) was chosen. If one of the replacement
decisions (i.e. 1,...,A) was taken, transition probabilities to the different absorption
states could be calculated (Equation 5.1) and the probability that an asset was kept

was 1-p." («) .

0, K<,
h> K>1, Equation 5.1)
jK
K=h

Since the only valid decision at stage N-1 is to replace (a necessary condition
for Hierarchic Markov Processes), at the end of a subprocess the process will always
be in one of the replacement states (Xii,... ,Ah). Depending on the replacement state
occupied at stage N, the old asset would be replaced by a new asset of the
corresponding quality if it were available.

This ‘extended model’ also required a reformulation of the iteration cycle
described in Chapter 4.2. There are analogies between this extended model and a
model which includes seasonality. The necessary changes to the iteration cycle of
Hierarchic Markov Processes are dealt with in the next section, with particular

reference to seasonality.
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5.2.3 Adapting the ‘Extended Model’ for Seasonal Effect

An adaptation of the ‘extended model’ described by Kristensen(1988) can be
used to include seasonal effect in a Hierarchic Markov Process. We must include
season (month) as a state variable in the main process as well as the subprocesses
(Chapter 5.2.1). A value of e.g. 4 in the main process means that the current
subprocess started in April. On the other hand, a value of 4 in a subprocess means that
the current month at that stage in the subprocess is April. The state of the main
process directly determines the probability distribution at the beginning of the
subprocess (Chapter 5.2.1).

As with the ‘extended model’, new absorption states must be defined. In this
case, where season is described by ‘month’, 12 absorption states must be defined
(Xi,... An), each corresponding to a month in which the replacement heifer could
enter the herd.

» Replace with a heifer which enters the herd in January.

* Replace with a heifer which enters the herd in Febuary.

» Replace with heifer which enters the herd in December.

These absorption states are defined in all state spaces (Figure 5.6).

Figure 5.6 At any stage n in all subprocesses, 12 additional (absorption) states
(Al,...,Ai2) are defined.



Analogously to the ‘extended model’, new actions of the type ‘replace with
heifer in month i’ must be defined (were v= 1, ,12 correspond to the months
Jan,...,Dec). As before, we also have a further action ‘keep’, which results in 13
possible actions. The inclusion of these additional absorption states has no effect on
transitions where the decision made is to ‘keep’. However, when a decision to replace

an animal is taken, transition probabilities to these replacement states are as follows :

k=1
otherwise

Note: The assumption is made here that if a decision to replace an animal is made in
month /, the animal is culled at the end of month i and the heifer enters the

herd the same month.

These absorption states have the same properties as before; once a process enters an

absorption state it remains in that state for the remainder of the process (Figure 5.4).

Time
Stage=n-1 Stage = n Stage = n+1

Figure 5.4  Once a process enters an absorption state, it remains in that
state for the remainder of the process.
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5.2.4 Calculating Main State Transitions

Transition probabilities for the main process, O, which are required for Step 2 of
the iteration cycle for Hierarchic Markov Processes (Chapter 4.2), now depend on the
policies of the subprocesses. For each state in the main process (month of entry), one
must calculate the probability that it ends in the zth absorption state A (i = 1,...,12).
These main process transition probabilities can be calculated using the following set of

recurrent equations for a given Kand for t=1, ,12.

i=1,.,12

The main transition probabilities are denoted here as OlKka , since these transitions
now depend on the current policy a. These transition probabilities must be calculated for
each iteration of our cycle, as the policy a changes. These formulae are identical for all
12 subprocesses, except for the third line (which differs since p/0) is dependent on

subprocess) and therefore all <bil, ..., can be calculated simultaneously for K

5.2.5 Seasonal Effect under the Average Reward / Output Criterion

Under the average reward/output criterion described in Chapter 4.2.3, the
recurrent equations described (Chapter 5.2.4) can be used to calculate the main state

transitions, but no discounting is applied.

ie. VvV i,s,n
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A further change to the iteration cycle described in Chapter 4.2.3, is required in the
first equation of Step 3 of the cycle (Kristensen(1996)). This change is required as the
terminal value Tvnow depends on the final state of the subprocess (i.e. which

absorption state is occupied). The new equation is as follows:

Where F? is the zth of the relative values for the main process calculated in Step 2 of
the iteration cycle. The full iteration cycle for a Hierarchic Markov Process where the
criterion of optimality is average reward/output and where seasonality is included in

the model is shown in Appendix C.

5.2.6 The Impact of Seasonality on the Complexity of a Model

Under the formulation described, the model consists of 12 subprocesses.
Usually, under a Hierarchic Markov Process design, each subprocess would have
different rewards (r?(n)), physical outputs (mf(n)) and transition probabilities Pif(n).
This, however is not the case for this formulation, since ‘month’ is included as a state
variable in the subprocesses as well as the main process. All parameters in the model
are in fact the same, with the exception of the initial probability distribution
ipi(O)  P(j(0)) which is dependent on the subprocess i. Because of this, the initial
probabilities should be indexed by subprocess (i.e.pil(0),...,pul(0) for subprocess i).

Since month is included as a state variable in the subprocesses, the policy for
each subprocess will also be the same. Computationally, the consequences of this are
that the new policy determined in Step 3 of the Hierarchic Markov Process iteration
cycle need only be calculated for one process. Since only ri(o) differs between
subprocesses, many of the calculations in Step 2 of the iteration cycle can be carried
out simultaneously. The calculation of h\ and/” for the 12 subprocesses are identical
with the exception of the 3rdline. So in each case only this 3rdline need be applied to
each subprocess individually.

The inversion of a 12*12 matrix is now needed where it would not in the

absence of seasonality in the model. While the inversion of such a small matrix would
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not be a cause for concern, if other variables weTe included as main state variables,
difficulties may arise. If a new main state variable with q possible values was defined,
this would result in the inversion of a \2g*\2q matrix. So, although the inclusion of
seasonality results in an increase in the state space by a factor of 12, the consequences
are very small, since almost all calculations can be done simultaneously for all

subprocesses.



Chapter 6
A Hierarchic Model for Irish Dairy Herds



6.1 State Variables, Stages and Decisions

6.1.1 State Space in the Main Process

A model was designed and applied to the Irish dairy replacement problem, which
included in the decision making process low production, fertility, calving interval,
seasonality, month of calving and various economic factors. This hierarchic model
consisted of twelve subprocesses built into one main process. Each state in the main
process (corresponding to a subprocess) corresponded to a ‘month of entry into the herd’

(as described in Chapter 5.2).

6.1.2 Stages in the Model

With a Hierarchic Markov Process design, stage length in the main process will
depend on the decisions made in the subprocesses. In this model, the stage length was not
equal for all stages in the subprocesses but was dependent on the stage number. A stage in
any of the subprocesses ended and a new one began 0, 2, 3, 4, 5 and 6 months after
calving (Figure 5.1) and immediately when an animal was replaced (i.e. stage length =0

replacement occurs).

14 Lactation 2rd Lactation 12th Lactation

Figure 6.1 Structure of the stages in each subprocess.
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The length of a stage beginning 6 months after calving depended on the calving interval of
the animal for that particular lactation.

In total a subprocess consisted of 73 stages (6 substages * 12 lactations = 72). The
73rd stage was required to allow transition to an absorption state 6 months after the 12th
calving (the maximum lifespan on a cow allowed in the model), and its length is therefore

zero (Figure 6.2).

12th lactation

f Stage Number =73
5m 6m

Figure 6.2 Only transitions to an absorption state are possible at the
72rd stage (6 months after 12lhlactation).

6.1.3 Replacement and Insemination Decisions

Both replacement decisions and insemination decisions were considered in this
model. At the time of calving (Om), the only decisions to be considered were ‘keep’ and
‘replace’. Then, from 2 months after calving, at monthly intervals, up until the 5thmonth

after calving, the following three decisions were possible:

* ‘keep’ To keep the animal for a further stage, but not to attempt
fertilization.
* ‘inseminate’ To keep the animal for a further stage and to attempt to fertilize

with a certain probability of success.

* ‘replace’ To replace the animal at the end of the current month.

IS



Six months after calving, the decision to inseminate the animal was not considered (Figure
6.3). Additionally, if an animal was found to be ‘open’ (not pregnant) 6 months after

calving, then the decision to ‘replace’ was taken immediately.

Keep
insem

Replace

Om 2m 3m 4dm 5m 6m

Figure 6.3 Valid decisions considered at each substage.

6.1.4 State Variables in the Model

Production levels, expressed as a percentage of the mature equivalent were used as
a state variable in the model. The model allowed for 15 alternative production levels.
These production levels were:

* < 74% of mature equivalent.

74 to 78% of mature equivalent.

78 to 82% of mature equivalent.

122 to 126% of mature equivalent.

> 126% of mature equivalent.

10nly valid under the condition that the animal is not ‘open’ at this stage.
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The limits and mean values for each of these alternatives were calculated using
formulae for ‘intensity of selection7described by Van Arendonk(1985b). The mean values,

denoted avm(m = 1,..,15) are calculated using Equation 6.1.

avVm=100~\VC* X J ~z(xjy(P (x"j ~P(XJ) Equation 6.1
o 2(X) = height of distribution ordinate at point x.
= 73TC
* p(x) = proportion with production lower than x.
= P(xJ =Jz(Odt ; t ~ yv(0,l)
* \VC = variation co-efficient of lactation production.

= 12% (Van Arendonk(1985b)).

c % = standardized upper limit of level m (x ~ N(0,1)).
= (ym- 100)/vc

. anr = standardized lower limit of level m.

= Njq form>land _c« form=1.

e ym = upper limit of production level m.

The limits and mean values (calculated using Equation 6.1) for the 15 production levels

are shown in Table 6.1.



Production level (m) Limits (%) Average (%)

1 74 69.74
2 74-78 76.22
3 78 - 82 80.18
4 82 - 86 84.15
5 86-90 88.11
6 90-94 92.07
7 94-98 96.04
8 98 - 102 100.00
9 102-106 103.96
10 106-110 107.93
1 110-114 111.89
12 114-118 115.85
13 118-122 119.82
14 122-126 123.78
15 126 130.26
Table 6.1 The limits and average production levels for the 15 production levels.

The inclusion of seasonality in the model meant that the state variable ‘current
month’ had also to be included in the subprocesses. This state variable had 12 valid
alternatives corresponding to the months of the year. This subprocess state variable is
distinct from the variable ‘month of entry” which is the only state variable in the main
process. The value of the main process variable does, however, directly determine the
initial probability of the variable ‘current month’ in a subprocess (Chapter 5.2).

The fertility status of an animal was also considered in culling and insemination
decisions. A state variable, which will be referred to here and elsewhere as ‘status’, was
included in the model to allow this. This variable could take on one of five values. The
first 4 of these possible values: 2m, 3m, 4m and 5m indicated the stage in the cows current
lactation in which the animal had been successfully fertilized. If successful insemination
took place, it is assumed that it would be observed the following month. So, if
insemination were attempted 2 months after calving, the success or otherwise of the
insemination attempt would be observed at the following stage (3 months after calving).
The fifth valid value for the variable ‘status’ was ‘open’, used to indicate that the animal

had not as yet been successfully inseminated.
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6.1.5 Invalid States

At some stages of a subprocess, not all the possible state values were valid. For
example, 3 months after calving a ‘status’ of 5m (indicating that the animal in question had
been successfully fertilized 5 months after calving) would not be valid. Admissible values

for the state variable ‘status’ are shown in Figure 6.4.

open open open open open open
2m 2m 2m 2m
3m 3m 3m
dm 4m
5m
Om 2m 3m 4m 5m 6m

Figure 6.4  Valid values for ‘status’ for each substage.

6.1.6 Absorption states

In every subprocess and at every stage, 12 additional states (absorption states)
were defined. These 12 states were required since the transition probabilities in the main

process depended on the policy in the subprocesses (Chapter 5.2). The absorption states
were:

* Replace with a heifer entering the herd in January.

» Replace with heifer entering the herd in February.

» Replace with heifer entering the herd in December.
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At any stage, if a process was in any of these absorption states, the stage length at that

stage was equal to zero. In each subprocess, the state space was of size 912 (Figure 6.5).

¢ 15 ! 12 5
production * ‘current month’ * ‘status’
levels levels levels

12
+ absorption 912
states

Figure 6.5  The size of the state space in each subprocess.



6.2 Transition Probabilities

6.2.1 Transitions in Production Level

Transitions in production level were assumed, in the model, to take place at the
end of lactation. A cow would remain in the production level occupied at the start of its
current lactation until the time of next calving. The initial distribution (p,(0)) and transition
probabilities for the production level for a cow in production level m at the end of a
lactation was defined as in Van Arendonk(1985b). The initial probabilities pt(0) are

calculated using Equation 6.2 (where the notation is as used for Equation 6.1).

Xxm Equation 6.2
=p(xJ ~ p(xJ
For a cow in production level m in the current lactation, the probability of

transition to production level m’ in the next lactation can be calculated for the following

equations (Equation 6.3).

P,. =P(x"j-P(x"]j Equation 6.3

£"  =((;V,-100)-&,)/«:m

am = (<2wm-100"

vel = veM-tF)

81



9 Am =Apgform’>land -« form=1

6.2.2 Transitions in the Variable ‘Current Month’

At any stage n, under a decision d, only one transition in ‘current month’ is
possible. These deterministic transitions were based on the stage length at n under decision
d. For the month of calving (0 months), the transition probabilities for the state variable

‘current month’ where the decision to ‘keep *was taken were:

Pm (0m) - 1 iff n=(m+2) mod 12

= 0 otherwise
Where the stage number corresponds to 2, 3, 4 or 5 months after calving, a stage length of
one month is observed and transitions in ‘current month’ where the decision was is to

‘keep’ or ‘inseminate’ were:

Pim(2m, 3m, 4m, 5m)

1
[EE

iff n=(m+1) mod 12

= 0 otherwise

Six months after calving, if the animal was still found to be open, the decision
taken had to be to replace the animal. If, however, the animal was found to be pregnant at
this time the decisions ‘keep’ and ‘replace’ were valid. If the decision was taken to ‘keep’
(i.e. until the next calving), transition probabilities for the variable ‘current month’ were
dependent on the calving interval (which determines the stage length 6 months after
calving). The calving interval and thus, the stage length 6 months after calving could be
calculated from the ‘status’ of the cow. From this variable we know how many months

after the last calving conception occurred.



The earliest time when conception could occur in the model was 2 months after
calving, which gives a minimum calving interval of 11 months (a gestation period of 9
months) and therefore, a minimum stage length (for a stage corresponding to 6 months

after calving) of 5 months (Figure 6.6)

11 months

5 months

A

Figure 6.6 A calving interval of 11 months.

Similarly, if conception occurred 2 months after the earliest possible date (i.e. occurred 4
months after calving), the resulting calving interval would be 13 months, resulting in a

stage length 6 months after calving of 7 months (Figure 6.7).

13 months

7 months

Om 2m 3m 4m 5m 6m Om

Figure 6.7 A calving interval of 13 months.



The transition probabilities (for decision = ‘keep’) for the variable ‘current month’

6 months after calving follow directly from these stage lengths. i.e.

Plim(6m)

1
[EN

iff n = (m+5+’status’) mod 12

= 0 otherwise

6.2.3 Transitions in Fertility Status

The probability of successful conception, if the decision to inseminate is taken, has

been found to improve the later after calving that insemination is attempted (Figure 6.8)

Probability of
conception (PC) : 0.5 0.55 0.6 0.65

Om 2m 3m 4m 5m 6m

Figure 6.8 Probabilities of conception.

If the decision to inseminate an animal between 2 and 5 months after calving was taken,
transition probabilities for the state variable ‘status’ were calculated from these

probabilities of successful fertilization:

Psr (n = 2m, 3m, 4m, 5m) = PS (n) iff r = ‘status’ level
corresponding to the current
substage

1- PS (n) iff r= ‘open’



The decision to inseminate was only valid at stage n if the animal was ‘open’ at that stage
(i.e. Bl= open). If the decision taken was to ‘keep’ the animal for an additional stage, but

not to attempt insemination, the transition probabilities for the variable ‘status’ were:

iff S=r

Il
[

Py (n = OGiru2m, 3m, 4m, 5m)

= 0 otherwise

For stages corresponding to 6 months after calving, if the animal is open, it is said to be
infertile and ‘replace’ is the only valid decision. Otherwise, the actions ‘keep’ and ‘replace’

were valid at these stages.

6.2.4 Transition Probabilities for the Decision = ‘Replace’

If the decision was to ‘replace’ the animal at the end of the current month,
transitions to the absorption states were dependent on the current month (i.e. if
replacement occurs in May, transition to the absorption state corresponding to June

occurs). These probabilities have already been shown in Chapter 5.2 (Equation 5.2).



6.3 Physical Outputs and Rewards

6.3.1 Materials and Methods

A computer program called the Moorepark Dairy Planner, originally described
by Walsh(1995), was used for this analysis. The program was modified for this
project taking cognisance of recent developments in milk production technology.

The developments in milk production technology in recent years are described in
detail by Crosse(1996); Dillon(1996); Dillon and Crosse(1997); Gordon(1996);
Mayne(1996); O ’Farrell et al(1997); Stakelum(1997). The Moorepark Dairy planner
is a computer programme by which the dairy farm manager can calculate the effect of
a range of decisions and management practices on factors such as milk production,
milk composition, feed inputs, seasonality of milk output, seasonality of feed input,
inputs of variable and fixed costs and margin over feed costs and margin over all

costs.

6.3.2 Physical Outputs

Under the average reward / output criterion, which was the criterion of
optimality applied in this model, m?(n) is the milk yield for a cow in state i at stage n
when a decision d is taken. In the model, the mature equivalent lactation production
was set at 5500 litres. In the calculation of mf(n) this figure had first to be adjusted
for the average of the production level associated with the state i (Table 6.1). This
figure was then adjusted for the lactation of the animal, which could be calculated

from the stage number n. The lactation adjustment multipliers are shown in Table 6.2
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Lactation 1 2 3 4 5 6 7 8 9 10 1 12
Adjustment .77 83 10 10 99 9 94 93 92 91 90 .89

Table 6.2 Adjustment factors for lactation production .
The month of calving at any stage n and for any state i could easily be
calculated by backstepping the appropriate number of months (depending on the

stage in lactation) from the month associated with state i (Figure 6.9).

Month of
Calving: t i-2mod 12 ¢-3mod 12 f-4mod 12 i-5mod 12 f-6mod 12

Om 2m 3m 4m 5m 6m

Figure 6.9 Calculation of month of calving, where t is the value of the variable
month for state i.

The production for the lactation associated with stage n was then adjusted for

month of calving (multiplication factors shown in Table 6.3).

Month J F M A M J J A S @) N D
Adjustment 1.0 .98 .96 .95 .95 .97 .98 1.0 1.01 1.01 1.006 1.004
Table 6.3 Adjustment factors for lactation production.

This lactation production was then divided between the stages of the lactation. The
distribution of production over a lactation is dependent on the month of the year in
which calving takes place (For example, Figure 6.10 shows the cumulative production

when calving takes place in January and in August)
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Month of lactation

Figure 6.10 Cumulative production (%) for two different months of calving.

The lactation curves for month of calving are given in full in Appendix D. For
stages of length greater than one, cumulation of these proportions was necessary in

the calculation of the milk yield of that stage.

6.3.3 Calculation of Gross Margin

The immediate expected rewards r?(n) for all states i (a combination of
production level, fertility status and month) at all stages n (a combination of lactation
and stage in lactation) and for all decisions d (keep, inseminate or replace) had to be
calculated. A gross margin was first calculated for all (i,n,d). The gross margin model
included
* Income from milk production
» Calf Sales
» Feed Costs

* Sundry Costs.

With the information from the gross margin model the immediate expected rewards

for all (i,n,d) could be calculated. The gross margin (Gm,(n)) was calculated as:
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Grm(n) = Milk Revenue - Feed Costs - Sundry Costs + Calf Revenues

6.3.4 Income from Physical Output

The income from milk yield for state i at stage n under decision d were based
on a milk price, adjusted for fat and protein content. Standard fat and protein curves
were used (Appendix E). For every month, an associated fat and protein yield was

calculated using these curves. The milk price could then be adjusted for these figures.
Adjusted Milk Price = Standard Milk Price + Fat Correction + Protein Correction.

Where Fat Correction Total FatC_ontent 0.036 '0.24
Total Yield  ,

Total Protein Content »

i i -0.033 *0.43
Protein Correction Total Yield

6.3.5 Calf Sales

At the time of calving, calf sales were included in the gross margin. Calf value

was adjusted for month using the multiplication factors of Table 6.4.

Month J F M A M J A S ) N D
Adjustment 12 12 90 90 90 90 80 .75 .95 10 11 12

Table 6.4 Adjustment factors for calf sale revenues.
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Total Feed (KG)

6.3.6 Feed Costs

Feed costs were calculated on the basis of
» Grass usage
» Silage usage

» Concentrate usage

Grass, the cheapest form of feed, is in supply during the summer but not in the winter

months (Figure 6.11).
600.00
500.00
400.00
300.00
200.00

100.00

Figure 6.11 The seasonality of the different feed factors.

The seasonality of these feed supply patterns were handled in the model as follows.
Depending on the month of calving (calculated as in Figure 6.9), the grass, silage and
concentrate needed for the current lactation of the cow was calculated (Table 6.5).
Depending on the stage of lactation and the stage length at n, the proportion of
necessary grass, silage and concentrate for the lactation required at stage n were

calculated (the proportions used are presented in Appendix F).



Month Grass needed /cow  Silage needed /cow Concentrate ne
/kg DM /kg DM /cow /kg

January 2950 1550

February 3300 1425

March 3400 1400

April 3300 1400

May 3000 1620

June 2970 1589

July 2835 1634

August 2600 1600

September 2500 1600

October 2525 1650

November 2600 1750

December 2700 1750

Table 6.5 Grass, silage and concentrate requirements for each month of calving.

Grass and silage used was also adjusted for lactation (Table 6.6).

Lactation 1 2 3 4 5 6 7 8 9 10 1
Adjustment 83 97 10 10 10 .99 98 97 96 .95 .94

Table 6.6 Adjustments in Grass and silage requirements for lactation.

6.3.7 Sundry Costs

Sundry costs were also allowed for in the model. In the basic model,
additional costs of IRE 320 for 12 months were allowed for each cow in the herd.
This results in monthly additional costs of IRE 26.66. At stage n, the sundry costs

were then based solely on the stage length of n, under decision d.

a

eded
DM
750
570
470
500
550
650
750
1100
1200
1075
880
780

12
.93



6.3.8 The Calculation of Immediate Expected Rewards

With the information from the gross margin model, the immediate expected

rewards for state i, at stage n, when decision d is taken, were calculated as follows:

nkeep(n) =( - PIV(n)) ~ GMi(n)) + (PIV(n)*( (CV(n)- UV) -HC))

r,irsar(n) =((1 - PIV(n)) * GMi(n)) + (PIV(n)*( (CV(n)- UV) - HC))- IC

r replace =qm @+ CV(n)

where PIV(n) is the marginal probability of involuntary disposal at
stage n.

GMi(n) is the gross margin at stage n for state i.

CV(n) is the carcass value at stage n.

UV is the loss in carcass value due to involuntary culling.
HC is the cost of a replacement heifer.

IC is the cost of insemination.

6.3.9 Marginal Probability of Involuntary Disposal

The marginal probability of involuntary disposal at stage n was calculated on
the basis of lactation number and stage length. These probabilities were estimated
from the DairyMis records described in Chapter 2.1. Infertility, late calving, low
production, old age and surplus were not considered as involuntary culling as these
management decisions were included in the model. The probability of involuntary

disposal at lactation 1is give in Table 6.7 for 1 =1,..,12.

/ 1 2 3 4 5 6 7 8 9 10 1 12

(o] o (o] (o] o (o] (o] (0] 0 0 0 0
0 0 (o] 0 = ki = to
® & % o o I
o LLo] L(0] (e o 0]

Table 6.7 The probability of involuntary disposal for lactation /.
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The proportion of involuntary culling in each month of lactation was then calculated

on the basis of culling date and date of disposal. These proportions (up to a maximum
15 months allowed in the model) are shown in Table 6.8.

4 5 6 7 8 9 10 11 12 13 14 15
© 0 © © Q © © © © © © © © © ©
- © o] (0] [ © © © © © © © © 0

u30 L\ ON 0\ Ui LA o} ON -p* ] ON (O]
N> '-C o 00 to 0s 00 J ulJ [§} = 00
to © 4" 4n ~J Ln ~a 00 LA Oo

Table 6.8

The proportion of involuntary culling which takes place in month k of
lactation.



Chapter 7
Optimal Replacement Policies for Irish Dairy
Herds



7.1 Interpretation of Results

7.1.1 The Optimal Ranking of Dairy Cows

The output from the Hierarchic model is a series of rankings. The dynamic
programming approach can enable one to inform a farmer which cows in the herd
should be replaced, on the basis that a replacement heifer (and its future successors)
are expected to be more profitable than the current cow. However, in many situations
it is more relevant to the dairy farmer to know which cow in the herd is the least
profitable, rather than which animals in particular should be replaced.

Often, replacements are determined by the calvings of new heifers (such
situations often arise when only home reared heifers are used in the herd). In such a
situation, the availability of a ranking of the animals in the herd is more important
than an optimal policy. If a replacement is then to take place, the least profitable cow
in the dairy herd should be replaced. Rankings for all dairy cows defined in the model
can be calculated from Step 3 of the Hierarchic Markov Process iteration cycle
(Chapter 4.2.3). This ranking (retention payoff (Houben et al, 1994)) can be

calculated as:
RPOI(t) = max ( x;(n, keep), x,(n, insem)) - x/ (n, replace)

So, the retention payoff for a cow in state i at time t (RPOtft)) is the expected future
profit from keeping (or inseminating and keeping) the cow for an additional stage,
rather than replacing it at the end of the current month. An example of these rankings
for stage n=17 (six months after the third calving) is shown in Figure 7.11 At this
stage, the option to inseminate is not available; if an animal is found to be open at this

stage then the only available decision is to replace that animal. In terms of the optimal

1These rankings result from the implementation of the model for Irish Dairy herds described in the
previous chapter. These and other results are analysed and discussed in the following Section (7.2).
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The expected gains if the cow is kept 6 months after 3rdcalving, where the animal has a calving interval of 13 months.



policy, a negative RPO means that the cow in question should be replaced at the end
of the current month, whereas a positive RPO would mean that the animal should be
kept until the time of next calving (since the next stage is zero months after fourth

calving).

7.1.2 Including Herd Level Effects

The difficulty with the direct application of an optimal policy from a dynamic
programming model to a dairy herd is that these models are single-component,
whereas a dairy herd is in fact a multi-component system (Kristensen(1992)). By this
it is meant that, in practice, the culling decision for a cow in a herd does not only
depend on the state of that cow but on the state of other cows in the herd. Examples of
such ‘herd-level effects’ could be a limited supply of heifers or a quota constraint. A
quota acts as such a constraint since, although a cow may have a positive retention
payoff, at the herd level, keeping this cow may result in over-production for which
penalties may accrue.

While a multi-component system (dairy herd) may be formulated as an
ordinary Markov process (this is demonstrated by Kristensen(1992)), the resulting
model would be far too large to be solved by any known methods. An approximate
method to include herd-level effects called ‘Parameter iteration’ was introduced by
Ben-Ari and Gal(1986). The model of Ben-Ari and Gal(1986), which included only
180 states ,was then improved and analysed by Kristensen(1992). Both of these
models attempted to include the possibility of replacement heifer shortage.

An effort to include quota as a herd level constraint was introduced by Houben et
al(1995). A genetic algorithm (Davis, 1991) was used to attempt to calculate optimal
herd composition. This genetic algorithm used the results of the dynamic
programming model of Houben et al(1994). The object of the model was to optimise
the herd value (HV), HV being defined as the sum of expected future economic
profitability of all cows, determined by a dynamic programming model. The
chromosome used in the genetic algorithm had a binary alphabet, and was split into

two parts, the first holding the decision on whether individual animals should be kept,



and the second holding the decision on herd size. The final gene in the chromosome, a
marked gene, could not be mutated while the rest could. A check was needed to
ensure that a chromosome could not reflect a situation where the advised reduction of
herd size was larger than the number of cows to be culled immediately. Key
parameters for the model, crossover probability and mutation probability, were found
by measuring the performance of the operator over arecent interval. Using a dataset
of 16 cows, experiments showed that good results were found when the crossover
probability was about 0.6 and the mutation probability was 0.01.

The model, when implemented, was found to be robust and quick, but only
included the herd level effect of quota for the current year and did not account for the
effect herd composition in the current year might have on herd composition (and herd
profitability) in future years. This meant that, generally, the lowest ranking cows in

the herd were culled until the quota constraint was satisfied.
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7.2 Optimal Replacement and Insemination Decisions

7.2.1 Basic Results

The parameters used in the Hierarchic model for Irish dairy herds are shown in

Table 7.1. The model calculated optimal culling and insemination policies under these

parameters.
£1IR

Carcass value 400
Price of replacement heifer 800
Base price of milk /Litre 0.22
Cost of grass /Kg DM 0.028
Cost of silage /Kg DM 0.085
Cost of concentrates /Kg DM 0.17
Sundry costs /cow /year 320
Insemination cost 10
Loss in carcass value due to involuntary disposal 50
Other

Mature Equivalent Production (L) 5500

Age at first calving (months) 24
Table 7.1 The basic economic parameters applied in the dairy replacement

model

For each run of the model, certain results could be calculated, as described in
Chapter 2.3.5, describing the optimal solution. In Chapter 2.3.5 the calculation of
these technical results were described for the policy iteration method. However, they
can be applied analogously to Hierarchic Markov Processes, the method used in this
study. The technical results calculated for the optimal policy were:

» Average milk yield, per cow, per year

« Average replacement rate per year
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» Average number of calves born, per cow, per year
* Average return from milk, per cow, per year

» Average feed costs, per cow, per year

» Average gross margin, per cow, per year

» Average calving interval, per cow, per year

These technical results, calculated under the optimal policy (and where the economic

inputs of Table 7.1 were applied) are presented in Table 7.2

Basic Results

Average milk yield /cow /year (L) 5257.89
Average replacement rate /year (%) 17.8
Average calves born /year /cow ( number ) 1.112
Average return from milk /cow /year (£IR) 1157.7
Average feed costs /cow /year (£IR) 320.63
Average gross margin /cow /year (£IR) 774.76
Average calving interval /cow /year ( months) 11.7
Table 7.2 Results from the basic model

Examples of the rankings resulting from the optimal replacement and
insemination policy found by the model are shown in Figure 7.2. In Figure 7.2, only
the cows which were ‘open’ 3 months after their 4thcalving are shown. Because these
animals are ‘open’ at this stage, the option to ‘inseminate’ the animal was considered
valid by the model. As before, a negative ranking at stage n, for a cow in state /
(RPOIi(n)) means that the optimal decision is to ‘replace’. A positive RPOi(n) means
that the optimal decision is to keep the animal for at least a further stage. Where the
optimal decision is to keep the animal for a further stage, but not to attempt
insemination (i.e. the decision = keep’), the ranking is marked with the symbol ®. It
can be seen that, at this stage, in almost all cases where it is optimal to keep the cow

for a further stage, it is also optimal to attempt insemination. Only for those animals



Current Month

Milk J F M A M J J A S o N D

Yield

0 -122 11 30 78 60 104 144® 127® 155® 86® 57® -18
1 -94 52 69 127 112 155 183 153 168® 94® 61® -13
2 -68 80 96 160 145 187 210 172 175® 99® 63® -11
3 -40 110 126 194 179 220 237 192 183® 104® 66® -8
4 -9 141 158 229 213 253 267 217 191® 111® 69® -5
5 22 173 191 265 248 286 297 242 207 118® 71® -2
6 55 206 226 301 283 320 328 267 226 125® 74® 1
7 89 241 260 337 319 354 359 293 246 132® 77® 24
8 124 276 296 374 355 389 391 319 265 139® 86 56
9 159 312 332 410 391 423 423 348 285 157 105 90
10 195 349 368 447 427 458 455 377 308 174 131 124
n 231 386 405 484 463 493 487 407 334 198 159 159
12 268 423 442 521 499 528 519 437 362 227 190 194
13 304 460 478 558 535 563 552 467 392 256 222 230
14 363 519 537 617 592 619 604 517 441 305 274 287

Rankings for ‘open’ cows, 3 months after 4lhcalving, under the optimal policy. All cows, where the optimal decision was to keep

but not to inseminate are marked by the symbol 0.



with low production levels, and which last calved in the summer months, was it

optimal to keep the cow for a further stage without attempting insemination.

7.2.2 The Effect of Production Level

The effect of production level in the model is apparent in Figure 7.2. All
animals for which the optimal decision was to ‘replace’ (negative RPQOi(n)) had low
production levels. The production level of the dairy cow has been included in almost
all dynamic programming models for dairy replacement strategies (Houben et
al(1994); Kristensen(1985); Kristensen(1987); Van Arendonk(1986)). In this model,
as in others, the inclusion of production level had a considerable effect on the optimal
replacement strategy. Table 7.3 gives the average retention payoff associated with
each of the 15 production levels considered in this model. These average figures are
only used to illustrate the positive effect of high production on ranking, and do not

include the probability of realising any of these states.

Production Level * Average RPO
<74% 49.1876
74-78% 70.4887
78 - 82% 84.9217
82 - 86% 100.5150
86 - 90% 117.1652
90 - 94% 134.9231
94 - 98% 153.8353
98 - 102% 173.7557
102- 106% 194.6619
106-110% 316.5100
110-114% 239.1527
114-118% 262.4493
118-122% 286.3136
122- 126% 310.4110
> 126% 350.0683

* Relative to the mature equivalent.

Table 7.3 Average retention payoff for each of the 15 production classes under
the optimal policy.



It can be seen in Table 7.3 that the average retention payoff increases with production
level. This would be expected, as the higher relative production of the higher classes
is not offset by additional expenses. Therefore, the higher production levels should
perform better (higher RPO’s) under the average reward/output criterion.

The effect of production level in the model was then studied by reformulating
the model so that production level was not included as a state variable. This reduced
the size of the state space by a factor of 15. Removing production level as a variable
was equivalent to assuming all cows were in the production class associated with
100% of the mature equivalent (5500 L). The technical parameters calculated in this

situation are presented in Table 7.4 2).

Technical Result Basic No Production  No Production

Situation & Levels 2 Transitions 3
Av. Milk yield /cow /year 5257.89 5178.44 5615.558
Av. Replacement rate % 17.8 15.76 24.57
Av. No. calves /cow /year 1.112 1.09233 1.1756
Av. Return from milk /cow /year 1157.7 1140.20 1236.64
Av. Feed costs /cow /year 320.63 319.17 321.34
Av. Gross margin /cow /year 774.76 726.80 957.22
Av. Calving Int. /cow /year 11.7 11.7 11.69

Ill.cn. j' -

2 No production levels included in the model.
3 15 production levels, but with no transitions allowed.

Table 7.4 Technical results for three different production level types in the
model.

In the absence of a state variable for production level, there was a drop in the
replacement rate under the optimal policy. This would indicate that production level
should be included in the dairy replacement model, as many of the replacement
decisions are made on the basis of the production level of the cow (i.e. different
decisions are optimal for cows with all the same traits, except for production level).
When production level is included as a state variable, the optimal policy involves

culling of low producing cows and keeping higher producing cows, which results in



higher average milk yield (5257.89 1) than the situation where the production level of
the cow is not included in the model (5178.44 1). This lower average milk production
when production level is not considered, results in lower returns from milk
production, and in lower average gross margins (Table 7.4).

The inclusion of transitions in production levels in the model was also studied.
The model was reformulated so that transitions in production levels could not occur.
Once a heifer entered the herd at a certain production level, it remained at that level
for the remainder of its time in the herd. Technical results calculated in this situation
are also presented in Table 7.4. Since low producing animals had to remain in their
initial production levels, culling in these lower production levels increased. This
resulted in a much higher replacement rate (24.57%) and a large increase in the
average milk yield of cows under this optimal policy (again, reflected in higher
returns from milk production and gross margins). The higher culling rate, meant that
the number of calves born also increased. When transitions in production levels were
removed, 11.5% of the optimal decisions (keep, inseminate or replace) differed from
the situation where they were included. This indicates that the inclusion of these
transitions has a considerable effect on optimal policy and should be included in the

model.

7.2.3 The Effect of Seasonality on Optimal Policy

The seasonality of milk production in Ireland, which was included in the
model as explained in earlier chapters, is inevitably reflected in the optimal culling
and replacement policies found. Considering Figure 7.2 again, only for animals which
were in the 3rdmonth of there 4th lactation in January or December it was optimal to
‘replace’. Similarly the optimal insemination policy was highly seasonal; the option to
‘keep’ was only optimal in Figure 7.2 during the months July - November. Under the
optimal policy, these cows would be kept in the herd, without attempting insemination
until a heifer could replace a cow in the herd at a more profitable time. The effect of
month of calving is illustrated in Figure 7.3, again using average retention payoffs. As

can be seen in Figure 7.3, cows that calved in the summer months had the lowest
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average retention payoffs, whereas those that calved in the early months of the year

had the highest.

Month of Last Calving

Figure 7.3 Average RPO by month of last calving.

The effect of including seasonality in the model is also illustrated in Figure 7.4, where
a simple count of the number of ‘open’ cows for which the optimal decision was to
‘inseminate’ rather than to ‘keep’ or ‘replace’ is shown. Stages where the option to
‘inseminate’ was not valid were not considered. It can be seen in Figure 7.4, that the
majority of decisions to inseminate took place in the summer months. This is be
expected as insemination at this time results in Spring calving, which in turn takes
advantage of the Irish grass growth pattern. The influence of the seasonality on
insemination policy (Figure 7.4) and the large variance in the average RPO’s for each
month of calving (Figure 7.3) show clearly that seasonality should be included in any

culling model for the Irish dairy Industry.
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Figure 7.4 A count of the number of ‘open’ cows where the optimal decision was to
inseminate.

7.2.4 Including Conception Rates

In the model, the probability of a successful conception was said to be
dependant on the stage in lactation. The later in lactation that insemination was
attempted, the higher the probability of that insemination being successful. Where the
option to inseminate was valid, and where the decision to keep the animal for a further
stage (i.e. positive RPO) was optimal, it was found that under the optimal policy
insemination was attempted in 68.24% of cases.

The effect that the uncertainty of insemination had on the optimal policy was
studied by changing the model so that if insemination was attempted at any (valid)
stage, the probability that it would result in fertilisation was equal to 1 Because of
this change, where insemination decisions were not based on uncertainty, the decision
to inseminate could by delayed until the most profitable time. Under these
circumstances, insemination was only carried out in 48.78% of cases where the
optimal policy was to keep the cow for a further stage. The removal of the uncertainty

of successful insemination also had a large affect on the technical results of the model.
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These parameters are shown in Table 7.5, and it can clearly be seen that if conception
is certain when attempted, the herd parameters improve greatly. The average milk
yield per cow per year has increased to 5914.2 litres, an increase of 12.5% and gross
margin, per cow, per year has increased by 23.27%. The calving interval also
substantially decreased in length and more selective culling was carried out

(replacement rate of 19.07%).

Basic Situation N Conception Rate =1 2
Av. Milk yield /cow /year 5257.89 5914.19
Av. Replacement rate % 17.8 19.07
Av. No. calves /cow /year 1.112 1.22
Av. Milk return /cow /year 1157.7 1301.65
Av. Feed costs /cow /year 320.63 310.567
Av. Gross margin /cow /year 774.76 955.11
Av. Calving Int. /cow /year 11.7 11.117
Table 7.5 Technical results; Lwhere uncertainty of conception is included in the

model and 2 where conception always occurs when attempted.

7.2.5 Lactation and Stage of Lactation

The stage in the lifetime of the cow had a considerable affect on its RPO. In
Figure 7.5, the average retention payoff of animals in the 12 possible lactations in the
model are shown. The highest average RPO's were found in the second and third
lactations. The average RPO then decreased, as the cows got older.

Replacement and insemination decisions within lactation were also allowed in
the model, and had a large effect on optimal policy. If within-lactation decisions had
not been allowed in the model, then decisions would have to be made only at the end
of each lactation. If this were the case, optimisation of insemination decisions would

not be possible in the model.
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Figure 7.5 Average RPO by lactation number.

In Table 7.6, the percentage of cases for each substage where the three permissible
decisions were optimal under the optimal policy are presented (only ‘open’ cows were

considered, as the decision to inseminate was not valid for any other fertility status).

Decision Substage (months after calving)
0 2 3 4 5 6
Keep 88.9 28.2 25.8 255 26.2
Inseminate - 63.2 60.9 55.7 47.3 -
Replace 111 8.5 13.3 18.8 26.6 1001
100 % 100% 100% 100 % 100% 100 %

Six months after calving, if the cow was found to be ‘open’, the only valid decision was to replace

Table 7.6 The percentage of decisions to keep, inseminate and replace for open
cows at different stages of lactation.

It can be seen in Table 7.6 that the majority of replacement decisions were taken in
the later stages of lactation. Because of this, returns from the most productive stage of

a cow’s lactation (in terms of milk yield) could be accrued.
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7.2.6 Replacement Costs

In other dynamic programming models designed for dairy replacement,
optimal policies were found to be sensitive to changes in the costs and revenues
associated with culling. These costs and revenues are the cost of a replacement heifer
and the carcass value of the cow being replaced respectively. Sensitivity analysis was
carried out using the hierarchic model for these two parameters. In each case, the
optimal policy where the parameter was set at 90% and 110% of its base value (Table
7.1) were studied. The technical results from the optimal policy resulting from three

replacement heifer costs are shown in Table 7.7

Technical Parameter Cost of replacement heifer as a % of basic cost
90% 100% 110%
Av. Milk yield /cow /year 5281.49 5257.89 5240.64
Av. Replacement rate % 20.66 17.8 16.12
Av. No. calves /cow /year 1.134 1.112 1.100
Av. Milk return /cow /year 1162.82 1157.7 1153.88
Av. Feed costs /cow /year 319.11 320.63 322.13
Av. Gross margin /cow /year 825.92 774.76 743.15
Av. Calving Int. /cow /year 11.7 11.7 11.7
Table 7.7 Technical results from optimal policy under 3 price conditions for

replacement heifers.

When the cost of the replacement heifer was 90% of the basic value, it was optimal to
have more strategic culling in the herd (20.66%). This increased the average milk
yield per cow to 5281.49 litres and the gross margin to IRE 825.92 (an increase of
6.6% from the basic replacement cost). An increase in the replacement cost (110% of
the basic replacement cost) had the opposite affect on the technical parameters
calculated from the optimal policy. The replacement rate was now 16.12% and the
gross margin was IRE 743.15 (a decrease of 4.08%). The replacemént cost was found
to have no effect on the average calving interval per cow, which remained at 11.7

months, and to have only a marginal effect on the number of calves born per year.

108



The technical results from the optimal policies for carcass value at differing

levels is shown in Table 7.8. As with changes in replacement cost, changes in the

value of the cull cow were found to have a considerable affect on the optimal policy

and its results. The effects of these changes were not as large as changes in

replacement costs. When the value of the cull cow’s carcass was 90% of the basic

situation, the associated replacement rate was 16.71% and the average gross margin

IRE 755.18 (a decrease of 2.5%).

Technical Parameter

90%
Av. Milk yield /cow /year 5251.36
Av. Replacement rate % 16.71
Av. No. calves /cow lyear 1.10
Av. Milk return /cow /year 1156.16
Av. Feed costs /cow /year 321.89
Av. Gross margin /cow /year 755.18
Av. Calving Int. /cow /year 11.7
Table 7.8

When the value of the cull cow’s carcass was 110% of the basic situation, the

Carcass value as a % of basic

100%
5257.89
17.8
1.112
1157.7
320.63
774.76
11.7

110%
5267.80
19.61
1.13
1159.96
319.27
806.17
11.7

Technical results from optimal policy under 3 price conditions for
the carcass value of a culled animal.

associated replacement rate was 19.61% and the average gross margin IRE 806.17 (an

increase of 4%).
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Chapter 8

Conclusions



8.1 Conclusions

The purpose of this research has been to investigate methodologies for
determining optimal culling decisions on dairy farms, with particular reference to
farms operating in the Irish dairy industry. The typical technique applied for
replacement problems, where the traits of the asset in question are affected by random
variation over time and between assets (e.g. animal replacement problems), is
dynamic programming. Traditional dynamic programming methods, the value
iteration method (Bellman(1957)) and the policy iteration method (Howard(1960))
were considered as possible optimisation methods to be developed for this model.
However, due to the size of the state space required when using these techniques for
animal replacement problems, the hierarchic approach was taken. Hierarchic Markov
Processes help solve the ‘curse of dimensionality’ associated with the policy iteration
method (and to a lesser extent the value iteration method), without having to make
any assumptions on the length of the planning horizon.

The model developed allowed decisions to be made at certain stages of a
cow’s lactation. Replacement decisions were considered at the time of calving and 2,
3, 4, 5 and 6 months after calving. Insemination decisions were made 2, 3, 4 and 5
months after calving. These replacement and insemination decisions were made on
the basis of level of production, fertility, calving interval, season, month of calving
and various economic factors. The seasonality of grass production in Ireland meant
that it was necessary to include seasonality in the model. This required some
reformulation of the Hierarchic Markov Process iteration cycle described in Chapter 4
(Kristensen(1997)) and the necessary enhancements to the iteration cycle were
outlined in Chapter 5.

The output from the model, described in Chapter 7, was a series of rankings,
based on retention payoffs (RPO). RPO was calculated as the expected future profit
from keeping (or keeping and inseminating) a cow for an additional stage, rather than
replacing her at the end of the current month. These RPO’s allowed animals in a herd
to be ranked, and for culling decisions in a herd to be made on the basis of these

rankings (i.e. the lowest ranked cows in the herd would be culled first).



Several variations in the model were tested (e.g. with and without transitions
in production level), and for each resulting optimal policy (and ranking), certain
technical parameters were calculated. These technical parameters were then used to
analyse the effect of changes in the model on optimal policy. It was found that, if
transitions in the state variable ‘production level” were not allowed, the optimal policy
changed greatly (the optimal policy was found to be different in 11.5% of cases). The
model was also reformulated with the variable ‘production level’ not included, and
this resulted in the replacement rate increasing from 17.8% to 24.57%. The optimal
policy was also found to be highly seasonal, which was to be expected as lactation
curves, based on month of calving, for milk yield, protein yield, fat yield and feed
costs, were included in the model.

When insemination was attempted in the model, conception occurred with a
certain probability of success. The effect of this uncertainty of conception was studied
by subsequently removing it from the model. This showed that in fact the inclusion of
the uncertainty of conception had a considerable impact on the model results. Higher
milk yields per cow, shorter average calving intervals and more calves per cow could
be achieved when insemination could be assumed to be always successful. The effect
of the costs and revenues associated with culling were also studied. When the cost of
areplacement heifer was 10% lower, the optimal policy resulted in a replacement rate

0f 20.66%, as compared with 17.8% in the basic model.

8.2 Future Research

The dynamic programming approach does not allow inclusion of herd-level
effects and further research into including these herd-level effects in decision support
for culling decisions would be useful. The model of Houben et al(1995), which used a
search algorithm (genetic algorithm) to maximise herd value (HV), was a contribution
to this, but in that work, the impact of quota (the herd level constraint) was only
considered in the current year. The model of Houben et al(1995) drew on results from
an earlier dynamic programming model (Houben et al(1994)) which included culling
decisions based on mastitis incidence. In the study of culling rates on DairyMIS farms
described in Chapter 2.1, decisions to cull due to mastitis accounted for 12.14% of all

culling decisions. It would be possible to extend the model described in this thesis to



consider culling due to mastitis as a ‘voluntary culling’ decision. However,
considerable research would be needed into the calculation of transition probabilities
for variables associated with mastitis, and in the economic effects of mastitis
incidence.

The method of Hierarchic Markov Processes allows replacement models with
large state spaces to be solved exactly. A further extension of this technique is
described by Kristensen and JOrgensen(1996), and is called ‘Multi -level Hierarchic
Markov Processes’. This new technique takes advantage of the fact that transitions in
some variables are not possible at all stages (e.g. the variable for production level in
our study). Kristensen and JOrgensen(1996) used a sow replacement example to
illustrate how this technique might be applied, though the model was not actually
implemented. At this time, the algorithm for Multi-level Hierarchic Markov Processes
has not been included in an animal replacement model, but is another extension of this

thesis which would be worthy of investigation.
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Appendix A

Monte Carlo Simulation



A simulation model is simply a model of a system, which is used for the study
of the real system’s behaviour under different conditions. The inputs for a simulation
model consist of a set of parameters O , and a set of decision rules 0 .

The parameter set O = (i>0, O ), where Oo are the initial values of the
parameters at the start of calculation (state of nature), and Osare parameter values that
change during simulations (state variables). As state variables should be considered at
each stage of the simulation, Os= (Osi, 0L,..., Ost) where T is the number of stages
in the planning horizon.

The decision rules 0 specify the setting of input factors as well as other
decisions within the system. A decision rule can, for example, be simply a
straightforward rule of thumb to make culling decisions or it could implement the
results of a Dynamic Programming model for culling decisions.

The purpose of a simulation model is to calculate the expectation of a response

function, e.g. the expected utility

0o

U WO0)=\u MAA=AP A =P)dP

= 11u tl(e-(p,\<t>, = g>Jp«l>=<p\<t>» = (p,)p{<t>,=(p)d<pd(pa

(Eouation A.l)

where (0) is the utility function under the model M. This can refer to any

response function of the output variables.

There have been two categories of simulation models implemented within
animal production in literature, stochastic models and deterministic models. The
stochastic nature of the system is ignored in deterministic models. Stochastic models
can be either probabilistic models (e.g. Markov Chains, Bayesian networks) or Monte
Carlo models, the simulation technique used to model Irish dairy herds here.

Monte Carlo techniques rely on the drawing of random numbers. Every time
the model encounters a stochastic variable, a (pseudo-) random variable is drawn from
the appropriate distribution and this value is used in the subsequent calculations.

Each completed calculation (simulation run) with the model represents a random

drawing from the simultaneous distribution of input and output variables. By



increasing the number of calculations, the distribution of the output variables can be

specified to any degree of precision. The expected utility is found from :

AC =\

where @-is a random drawing from the multidimensional distribution of the

parameters, and k is the number of random drawings (Figure A. 1).

Simulation Run Average over k
Um(0,<Pi)
A Um(0,92)
" UMO,cpK

Figure A.l Monte Carlo simulation.

How a simulation model is formulated will depend on the purpose for which it
is intended. The simulation model may be intended to help improve the understanding
of a complex system, or for decision support.

If, as in this case, the purpose of the model is to improve the understanding of
a complex system, then for Oo (the initial state of nature), we have a fixed and known
set of parameters. For this scenario, the expected value of the utility function can be

calculated as:

IT,,(0\<50=(2,)- ] t U U(e<PAd= <)

i.e. Only the inner part of the integrand in Equation A. 1 must be calculated.



Appendix B
Transition Probabilities for a 36- State Model



1 2 3 4 5 6

pkeep

ij 1t lactation lactation

L A H L A H

1 L 06 03 01

2 1 A 02 06 02

3 H 01 03 06

4 L

5 2 A

6 B H

7 L

8 3 A

9 H

10 L 19 19 19

u 4 A 9 19 19

12 H 19 19 19

13 L

14 1 A

15 H

16 L

17 2 A

18 H

19 A L

20 3 A

21 H

22 L 19 1/9 19

23 4 A 9 1/9 19

24 H /9 19 19

25 L

26 1 A

27 H

28 L

29 2 A

30 H

31 H L

32 3 A

33 H

34 L 19 19 19

35 4 A 179 19 1/9

36 H /9 19 19

Table B1 Transition probabilities from state i to statej under the action ‘keep’

(/=1,...,12)

Bad Genetic Merit



pkeep
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Table B2

I>rI>rI>CrI>CHrI>CI>CI>CHrI>COI>COI>DCID>DCOCID>C

13 14 15 16 17 18 19 20 21
Average Genetic Merit
| *lactation 2rdlactation 3 lactation
L A H L A H L A H

9 19 19
9 19 19
9 19 19
06 03 01
02 06 02
01 03 06
06 03 01
02 06 02
01 03 06
9 19 19
9 19 19
9 19 19
19 19 19 '
9 19 19 !
19 19 19

..... 24)

2 23 24

4'b lactation
L A H
06 03 01
02 06 0.2
01 03 0.6

Transition probabilities from state i to statej under the action ‘keep’
(7=13



25 26 27 28 29 30 3 32 33 34 35 36

pkeep Good Genetic Merit
y 1< lactation 2ralactation lactation 4 lactation
L A H L A H L A H L A H
1 L
2 1 A
3 H
4 L
5 2 A
6 B H
7 L
8 3 A
9 H
10 L 19 19 19
1n 4 A 9 19 19
12 H 9 19 19
13 L
14 1 A
15 H
16 L
17 2 A
18 H
19 A L
20 3 A
21 H
22 L /9 19 19
23 4 A /9 19 19
24 H 79 19 1/9
25 L 06 03 01
26 1 A 02 06 02
27 H 01 03 06
28 L 06 03 0.1
29 2 A 02 06 02
30 H 01 03 06
31 H L 06 03 01
32 3 A 02 06 0.2
33 H 01 03 06
34 L 9 19 19
35 4 A 9 19 19
36 H V9 19 19
Table B3 Transition probabilities from state i to state j under the action ‘keep’

0=25,...,36)



1 2 3 4 5 6 7 8 9 10 1 12

preplr-ce Bad Genetic Merit
y | s lactation 2rd lactation 3 lactation 4* lactation
L A H L A H L A H L A H

1 L 19 19 19

2 1 A 79 19 19

3 H 79 19 19

4 L 19 19 19

5 2 A 79 19 19

6 B H 19 19 19

7 L 19 19 19

8 3 A U9 19 19

9 H 19 19 19

10 L 9 19 19

1 4 A 19 19 119

12 H 79 19 19

13 L 9 19 19

14 1 A 79 19 19

15 H 19 19 19

16 L 9 19 19

17 2 A 9 19 19

18 H 79 19 19

19 A L 79 19 19

20 3 A 9 19 1/9

21 H 9 19 119

22 L 9 19 19

23 4 A 79 19 19

24 H 79 19 19

25 L Y9 19 19

26 1 A 9 19 19

27 H 9 19 19

28 L 9 19 19

29 2 A 9 19 19

30 H 79 19 19

31 H L 9 19 19

32 3 A 9 19 19

33 H 9 19 19

34 L 9 19 19

35 4 A 9 19 19

36 H 19 19 19

Table B4 Transition probabilities from state i to statej under the action ‘replace’

0=1*— *12)



13 14 15 16 17 18 9 20 21 22 23 24

preplace__ Average Genetic Merit
] 19 lactation 2rd lactation lactation 4D actation
L A H L A H L A H L A H

1 L 9 19 19

2 1 A 19 19 19

3 H 9 9 19

4 L Y9 19 1/9

5 2 A 19 19 19

6 B H 19 19 19

7 L /9 19 19

8 3 A 19 19 19

9 H /9 19 19

10 L /9 19 19

11 4 A U9 19 19

12 H /9 19 19

13 L /9 19 19

14 1 A U9 19 19

15 H 9 19 19

16 L /9 19 19

g 2 A 19 19 19

18 H Y9 19 19

9 A L 19 19 19

20 3 A 19 19 19

21 H 19 19 19

22 L /9 19 19

23 4 A U9 19 19

24 H 9 19 19

25 L /9 19 19

26 1 A U9 19 19

27 H /9 19 19

28 L Y9 19 19

29 2 A U9 19 19

30 H 19 19 19

31 H L 9 19 19

32 3 A 19 19 19

33 H /9 19 19

34 L 19 19 19

35 4 A U9 19 19

36 H /9 19 19

Table B5 Transition probabilities from state i to statej under the action ‘replace’

(/=13,...,24)



25 26 271 28 29 30 3 32 33 34 35 36

prephce Good Genetic Merit
y Is' lactation 2“ lactation 3rd lactation 4* lactation
L A H L A H L A H L A H

1 L 9 19 19

2 1 A U9 19 19

3 H 19 19 19

4 L 9 19 19

5 2 A 79 19 19

6 B H 79 19 19

7 L 9 19 19

8 3 A U9 19 19

9 H 9 19 19

10 L 9 19 19

n 4 A 19 19 119

12 H 9 19 19

13 L /9 19 19

14 1 A 19 19 19

15 H 9 19 19

16 L 9 19 19

17 2 A 9 19 19

18 H V9 19 19

19 A L 9 19 19

20 3 A 19 19 19

21 H 9 19 19

22 L 9 19 19

23 4 A 19 19 19

24 H 9 19 19

25 L 9 19 119

26 1 A 9 19 19

27 H 9 19 19

28 L 19 19 1/9

29 2 A 19 19 19

30 H 9 19 19

31 H L 9 19 19

32 3 A 19 19 19

33 H 9 19 19

34 L /9 19 1/9

35 4 A L9 19 19

36 H 9 19 19

Table B6 Transition probabilities from state i to statej under the action ‘replace’

(/=25,...,36)



Appendix C

The Iteration Cycle for Hierarchic Markov

Processes 1

1where the average reward / output criterion is applied and seasonality is included in the model



Step 1 Choose an arbitrary policyp.

Step 2a For k = 1...12, find for i = 1,..12 the main transition probability &I
under policy p.

fl, 1=K
g(N) =\ /[=1,.12
10, 1*K
w
C/P(n)=Jjp . (n)gln+)\), i= n=N -1..4
=1 3 ’
& p P
o - —tpMgr =1 12%
Step 2b Solve the following set of linear simultaneous equations for F f,
Ff Ffand/:
« =i \Y;
k=\
Step 3 For each subprocess (X, find by means of the recurrence equations
a policy s' of the subprocess. Putp’(a)=s’ for C=1,...,v.

Tai(n) = maxd{rewardf (ri) - outputf(ri)gp+/2f).
n —N

Tai (n) = maxd{reward* (n) - outputf(n)gp+ 2L/Prob*(ri)Taj(n+ 1)},

="

n= —1.

-C2-



Ifp’ =p, then stop since an optimal policy is found. Otherwise, redefine p according

to the new policy (setp =p’). Go to Step 2

-C3-



Appendix D

Lactation curves for % milk supply



Month of Calving

JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC
JAN 6.40 0.00 4.00 6.00 6.40 8.00 8.00 8.80 10.90 13 .10 13 .00 13.70
FEB 12.80 6.50 0.00 4.00 5.60 6.00 7.00 7.10 10.50 10.80 12.00 13 .00
MAR 13 .90 13.00 7.00 0.00 4.00 5.50 6.00 6.90 9.00 10.80 12 .00 13 .00
APR 13 .50 13 .80 13 .00 7.50 0.00 3.50 5.00 5.90 8.00 9.30 11.00 12.50
MAY 12.40 13 .00 13 .00 14.50 7 .00 0.00 3.00 5.20 6.70 8.20 10.00 12 .00
JUN 10 .90 12.00 12.00 13 .50 15.00 8.00 0.00 2.50 5.20 6.60 9.00 10 .00
JUL 9.90 10.50 11.40 11.50 14.00 14.00 9.00 0.00 2.30 5.00 6.00 8.50
AUG 8.30 9.50 10.50 10 .50 12.00 13 .00 16.00 9.20 0.00 2.60 4.00 5.00
SEPT 6.40 8.00 9.10 9.00 11.00 12.00 14.00 18.00 8.40 0.00 2.00 2.30
OCT 3.80 6.50 8.00 8.50 10.00 11.00 13 .00 16.20 14.00 8.00 0.00 2.00
NOV 1.70 4.00 6.50 8.00 8.00 10.00 10.00 10.60 13 .00 13 .00 8.00 0.00
DEC 0.00 3.20 5.50 7.00 7.00 9.00 9.00 9.60 12.00 12.60 13 .00 8.00
Total 100 100 100 100 100 100 100 100 100 100 100 100

Source: MoorePark Dairy Planner (Walsh(1995)).

-D2-



Appendix E

Lactation Curves for Fat and Protein



Lactation curves for Fat %.

Month of Calving

JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC
JAN 3.80 3.60 4.10 4.50 4.20 4.08 3.93 3.73 3.56 3.42 3.40 3.52
FEB 3.60 3.85 3.60 4.50 4.50 4.20 4.02 3.81 3.39 3.46 3.35 3.35
MAR 3.40 3.60 4.00 3.60 4.50 4.50 4.16 3.91 3.79 3.52 3.35 3.35
APR 3.40 3.50 3.60 3.81 3.60 4.50 4.40 4.13 3.94 3.69 3.40 3.36
MAY 3.30 3.45 3.50 3.35 3.81 3.60 4.65 4.42 4.22 4.04 3.60 3.40
JON 3.30 3.45 3.30 3.14 3.25 3.73 3.60 4.52 4.36 4.02 3.70 3.55
JUL 3.50 3.55 3.58 3.25 3.20 3.32 3.78 3.60 4.65 4.20 4.00 3.70
AUG 3.64 3.65 3.70 3.43 3.29 3.28 3.39 3.87 3.60 4.00 4.40 4.00
SEPT 3.75 3.80 3.86 3.66 3.47 3.39 3.35 3.46 3.98 3.60 4.00 4.73
OCT 4.30 4.00 4.40 4.08 3.82 3.71 3.59 3.54 3.67 4.00 3.60 4.80
NOV 4.30 4.25 4.30 4.52 4.11 4.07 3.90 3.77 3.67 3.40 4.00 3.60
DEC 3.60 4.22 4.00 4.50 4.07 4.14 3.94 3.72 3.65 3.50 3.70 4.00
Total 100 100 100 100 100 100 100 100 100 100 100 100

Source: MoorePark Dairy Planner (Walsh(1995)).



Lactation curves for Protein %

Month of Calving

JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV
JAM 3.30 3.27 3.60 3.80 3.80 3.61 3 .48 3.31 3.18 3.05 2.90
FEB 2.90 3.30 3.27 3.80 3.80 3.80 3.57 3.38 3.03 3.09 3.00
MAR 2.80 3.20 3.40 3.27 3.80 3.80 3.64 3.44 3.30 3.11 3.00
APR 3 .15 3.10 3.30 3.47 3.27 3.80 3.98 3.75 3.60 3.37 3.21
MAY 3.18 3.20 3.20 3.13 3.54 3.27 4.28 4.08 3.91 3.60 3 .45
JUN 3.20 3.20 3.20 3.00 3.10 3.53 3.27 4.24 4.10 3.75 3.61
JUL 3.20 3.30 3.27 2.95 2.91 3.01 3.41 3.27 4.11 3.80 3.70
AUG 3.30 3.40 3.40 3.11 2.99 2.98 3.07 3.48 3.27 3.80 4. 01
SEPT 3.50 3.50 3.50 3 .42 3.29 3.18 3.13 3.24 3 .68 3.27 4.45
OCT 3.75 3 .60 3.85 3.74 3.51 3 .41 3.31 3.27 3.38 3.40 3.27
NOV 3.70 3.60 3.65 4.01 3.65 3.63 3.48 3.48 3.33 3.30 3 .40
DEC 3.27 3.62 3.60 3.87 3.52 3.59 3.42 3.28 3.18 3.00 3.00
Total 100 100 100 100 100 100 100 100 100 100 100

Source: MoorePark Dairy Planner (Walsh(1995)).

W DN DWW W W W NN W

DEC

.00
.90
.89
.08
.25
.30
.40
.60
.00
.00
.27

100



Appendix F

Feed Intake Curves



Lactation Curves for Grass Usage

Month of Calving

JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC
JAN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
FEB 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAR 4.7 4.7 4.0 3.5 4.1 4.0 5.3 6.2 6.1 6.1 6.0 5.1
APR 11.8 11.3 11.7 11.9 10.1 10.1 12.0 13 .2 17.6 15.8 16.0 14.3
HAY 14.5 15.0 14.9 13 .4 11.9 12 .0 11.0 14.4 16.5 16.3 16.0 16.4
JUN 14.5 14.5 14.5 15.5 15.2 13.0 10.0 10.0 15.9 15.3 15.0 16.4
JUL 15.0 15.0 14.9 14.6 15.7 15.7 16.0 10.0 10.2 14.8 15.0 17.0
AUG 15.0 15.0 15.0 15.5 16.2 16.0 16.7 16.0 9.3 9.2 13.5 14.0
SEPT 12.7 12.7 12.6 12.8 13.7 14.6 15.0 16.0 12.7 9.5 0 9.6
OCT 9.3 9.3 9.7 10.0 10.1 11.2 11.0 11.0 8.3 10.2 8.0 7.2
NOV 2.7 2.7 2.8 2.8 3.0 3.4 3.0 3.2 3.4 2.9 1.5 0.0
DEC 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total 100 100 100 100 100 100 100 100 100 100 100 100

Source: MoorePark Dairy Planner (Walsh(1995)).



Lactation Curves for Silage Usage

Month of Calving

JAN FEB MAR APR MAY JUN JUL AUG SEPT OCT NOV DEC
JAN 21.9 22 .9 21.0 21.4 23.0 22 .5 21.0 22 .2 22 3 23 .2 21.0 18.0
FEB 19.3 20.3 20.0 20.0 20.4 20.1 21.0 19.0 22 .3 23 .9 19 4 18.6
MAR 11.9 11.5 12 .0 12 .0 11.5 12.1 12 .9 12 .4 11.9 11.6 11.6 10.8
APR 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
MAY 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
JUN 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
JuL 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
AUG 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
SEPT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ocCT 4.8 4.6 6.0 6.0 6.0 6.1 6.5 6.2 6.5 2.3 10.0 18.6
NOV 18 .4 17.8 19.0 19.0 17.0 17.3 17 .7 19.2 15.6 15.1 17.0 16.8
DEC 23 .8 22.9 22.0 21.6 22.2 21.8 21.0 21.0 21.6 23 .9 21.0 17.1
Total 100 100 100 100 100 100 100 100 100 100 100 100

Source: MoorePark Dairy Planner (Walsh(1995)).
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Lactation Curves for Concentrate Usage

Month of Calving
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