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Abstract 

Traditional Si CMOS scaling following Moore’s Law is becoming increasingly difficult as 

physical limits are approached at sub-20 nm nodes and beyond. A significant issue is the 

limited charge carrier mobility in Si, and so new channel materials that carry relatively higher 

mobility carriers have been used, such as strained Si. Other materials such as III-V and 

germanium (Ge) are currently under consideration for replacing the conventional Si channel 

for future generations of low power and high speed electronics. However, challenges still 

remain with the realisation of high quality III-V material on Si for CMOS devices fabrication 

because the tolerance to dislocations is very low (<10
5
 cm

-2
). In order to overcome this 

problem, a non-destructive X-ray characterisation routine which can be used to effectively 

help III-V growers identify various issues associated with heteroepitaxial growth of III-V 

materials and which delivers useful experimental feedback to growers for material quality 

optimisation has been designed. The feasibility of this routine has been demonstrated through 

the characterisation of a series of deliberately fabricated “problematic” heteroepitaxial GaAs 

materials. 

According to industry experts, the future of modern nanoelectronics may well also depend on 

a second trend, which is the implementation of diverse functionality within modern ICs. This 

“More than Moore” (MtM) approach will be realised through the manufacture of complex 

Systems on Chip (SoC) and Systems in Package (SiP), evolving towards fully three-

dimensional ICs (3-D ICs). However, progress in this direction is hampered by the lack of a 

compelling metrology in order to measure non-destructively and in situ the process induced 

warpage, strain and other defects inside silicon die, a problem which has been highlighted by 

the International Technology Roadmap for Semiconductors (ITRS). Therefore, the second 

aim of this thesis has been the development of a novel laboratory-based technique called X-

ray diffraction 3-dimensional surface modelling (XRD/3DSM) in order to address this major 

stumbling block in the development of MtM integrated circuit technology. 
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Chapter 1   

Introduction 

1.1 Complementary metal-oxide-semiconductor (CMOS) field-effect transistor 

(FET) scaling  

 Since the early 1970s, the dimensions of CMOS transistors have been aggressively 

downscaled, successfully enhancing the performance of transistors by about 30-35% for each 

new generation of CMOS technology. This Si CMOS scaling is described by Moore’s law [1-

5], where transistor size shrunk at the rate of ~0.7x for each generation, down to the 

technology node of 130 nm. The traditional scaling process has apparently slowed down as it 

reached the 90 nm CMOS generation node [1-5], largely due to issues with the gate dielectric 

(silicon dioxide, SiO2) becoming physically too thin. The restriction on the SiO2 thickness 

approached the 1.2 nm limit as illustrated in Fig. 1.1. Reducing the oxide thickness more 

would mean a prohibitively large gate leakage current arises as a consequence of the direct 

tunnelling across the relatively thin gate oxide [4, 6]. 

 

Figure 1.1 Gate oxide thickness scaling. Traditional scaling slackened at the 90 nm 

technology node [4]. 
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 In 2007, Intel announced the first 45nm generation of transistor technology by 

introducing a revolutionary high-k metal-gate transistor in cooperation with strained Si 

technology. This new technology improved the performance of the device by approximately 

23 % compared to the 65 nm node [2, 4]. The significant improvement is due to the use of a 

high-k gate that enabled a >25x gate leakage reduction, in addition to mobility advantages 

offered by strained Si [4]. If Moore’s law continues, it will need further new materials as 

substitutes for the existing solutions. Overall, the CMOS technology has been through a 

revolutionary change after the 130 nm node as more chemical elements have been introduced 

in order to drive the CMOS roadmap forward (see Fig. 1.2), and this is likely to continue in 

future CMOS technologies [7]. 

  

Figure 1.2 The evolution of CMOS technology after the 130 nm technology node [4, 7] (the 

options for future technologies are subject to change). 
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1.1.1 Moving towards “More Moore” and “More than Moore” technologies 

 “More Moore” 

 Looking towards future CMOS technology nodes such as the 16 nm node and 

beyond, the existing technology is insufficient to drive the CMOS roadmap due again to the 

limited channel mobility in Si MOS devices [8, 9] (see Fig. 1.2).  One of the obvious 

remedies that has been consistently pointed out by the International Technology Roadmap for 

Semiconductors (ITRS) 2009-2011[8, 9], is to replace the conventional Si or strained Si 

CMOS channel with alternative materials offering a higher mobility than Si. Channel 

materials being proposed are Ge and III-V materials [8-11]. Considering the high electron 

mobility exhibited by III-V materials compared to Si, these materials are amongst the best 

alternative channel materials to bring about the mobility improvement for n-MOSFETs. In 

addition, III-V materials have remarkable optical properties: the III-V direct band gap allows 

a more efficient photon creation/conversion than in Si. Therefore, more functionality 

(optoelectronic devices) can be added to conventional logic functions on the same Si 

platform.  Fig. 1.3 shows a plot of carrier mobility as a function of energy band gap for 

numerous semiconductor materials [8].  III-V compound semiconductors such as indium 

antimonide (InSb), indium arsenide (InAs), gallium antimonide (GaSb) and gallium arsenide 

(GaAs) possess comparatively higher electron mobility than that of Si. Although InSb and 

InAs possess the highest electron mobility, they are not the ideal choice of n-channel 

materials because of their narrow energy band gaps, as they are more susceptible to thermal 

generation of excess carriers, thus resulting in current leakage [8]. By forming the III-V 

ternary semiconductors (i.e. InGaAs, InAsSb and InGaSb), one can avail of a wide selection 

of composition and energy band gap for n-channel FET applications while simultaneously 

maintaining their superior electron mobility. In particular, a very high-speed InGaAs 

quantum-well (QW) transistor has been demonstrated at an operating voltage of only 0.5 V 
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[12, 13]. These have made III-V materials a promising material choice for future high-speed 

logic applications as they give rise to high transistor drive current in addition to ensuring low 

gate delay. 
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Figure 1.3 Carrier mobility as a function of minimum energy band gap for elemental and III-

V compound semiconductors [8].  

 

 Considering the materials for the p-type channel, both III-Vs (such as InGaAs, InSb, 

InGaSb, GaAs) and Ge are the primary candidates as they offer significantly higher hole 

mobility than that of Si [8]. Although, most III-V materials are superior in electron mobility, 

they are not significantly better in terms of hole mobility. This has been one of the crucial 

obstacles to be encountered, when identifying a suitable high mobility III-V p-FET candidate 

in order to balance the mobility between p-and n-channel FETs [14]. Nevertheless, recent 

works have demonstrated one solution by incorporating strain as a mobility enhancer for both 

the Ge [15] and III-V materials such as InGaAs and GaSb [16, 17] for p-channel FET 

applications. That suggests it is possible to further improve the hole mobility of Ge and III-V 

materials by straining them, but it is yet to be thoroughly investigated.    
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 A fundamental requirement for integrating the III-V materials into the channel of a 

silicon based MOSFET (i.e. onto a silicon substrate), is to produce a suitable platform. 

Hetero-integration of III-V materials presents several very difficult technological challenges. 

The key challenge lies in the significant lattice mismatch between the Si substrate and the III-

V over-layers, since there is a 4.1% mismatch between Si and GaAs. Large numbers of 

defects (misfit and threading dislocations) are generated in the epitaxial layers due to the large 

lattice mismatch [18, 19].  

 Different growth strategies have been explored to overcome the materials issues 

associated with GaAs heteroepitaxy on Si. The use of strained or composition-graded buffer 

layers in combination with thermal annealing have been thoroughly investigated, but the high 

cost associated with the growth of thick GaAs epilayers and the propagation of dislocations 

into the active areas of the devices during annealing have hindered its implementation in 

production [20-22]. Low-temperature growth of GaAs on Si using atomic hydrogen as a 

surfactant has been shown to reduce significantly the average defect density (10
4 

cm
-2

) and 

enhance the electrical properties of the as-grown film by bending and pinning threading 

dislocations via modification of the surface energy and growth dynamics. While the 

relaxation of the lattice mismatch in the early stages of growth is very efficient using this 

method, it has as the main drawback of poor thermal stability of the resulting GaAs epilayers 

[23, 24].
 
 One of the most promising alternatives is selective growth of GaAs on patterned Si 

substrates, also called epitaxial lateral overgrowth (ELO) or microchannel epitaxy (MCE) 

[25-28]. In this case the silicon substrate is masked with a thin dielectric film and 

subsequently patterned using lithographic techniques with micron or nanomet scale 

resolution. Selective nucleation of GaAs in the mask-free Si areas enables lattice mismatch 

dislocations to be trapped by the mask vertical sidewalls provided the aspect ratio of the 

opening is sufficiently large. Improvements in defectivity are required as there is an immense 
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challenge in using III-V material on Si to fabricate CMOS devices because the tolerance to 

dislocations is very low (<10
5
 cm

-2
).  

 The new materials and device architectures in development, such as hetero-

integration of III-V on Si will ultimately provide a route that push CMOS technology scaling 

forward [4, 9-11]. The extension of CMOS scaling using non-Si materials channels for future 

high speed and low power logic transistor is labelled by the ITRS as the “More Moore” (MM) 

approach. However, the most critical issue still remains, i.e. the realisation of high quality III-

V materials on Si substrates. 

 

“More than Moore” 

 Recently, a second trend called “More than Moore” (MtM) is defined by industry 

experts, where added value to devices is provided by incorporating functionalities that do not 

necessarily scale according to Moore’s Law [29, 30]. One MtM approach enables the 

migration of the non-digital components from the printed circuit board (PCB) into a single 

package containing the integrated circuit (IC).  System on chip (SoC), System in Package 

(SiP) and 3-dimensional (3D) IC technologies provide such a route for the continued 

improvement in chip performance, with reduced power, cost and size at the system level 

while the new materials and architectures that can support Moore’s Law scaling, are not yet 

ready [4, 30].  

  SoC refers to integrating all components of a computer or other electronic system on 

one silicon platform horizontally (chip), as shown in Fig. 1.4. It may consist of analogue, 

radio frequency (RF), power sensors as well as passives components to expand the 

functions/value of the semiconductor chips [29, 31]. This technology not only helps to satisfy 

the ever-increasing demands for high processing performance, but at the same time ensures a 
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slim form factor and lower overall power consumption. Nonetheless, the implementation of 

SoC technology is hampered by the long design times due to integration complexities, high 

wafer fabrication costs, test costs, and mixed-signal processing complexities requiring dozens 

of mask steps and intellectual property (IP) issues [31, 32].  

 

 

 Figure 1.4 The concept of SoC and SiP: migration from the system board level onto the chip 

(SoC) or into the package (SiP) [9, 33]. 

 

 Therefore, a new paradigm called system-in-package (SiP) is being innovated to 

overcome the shortcoming of the SoC approach. This is due mainly to the capabilities of SiP 

to integrate several either already existing, and/or dedicated dies, together to create a new 

function without having to pay for long product development times and very expensive mask 

System on board 

System on chip (SoC) 
System in package (SiP) 

SoC solution : Higher degree of 

miniaturisation 

- Reduced system size 
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- Increased device cost 
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- Reduced packaging cost 

2D interconnect: 

- Large form factor 

- Long lines 
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sets [31, 32]. These materials, technologies and functional components on different dies can 

be connected in 3-dimensions by vertically stacking each layer one on top of another in the 

same package (see Fig. 1.4), enabling the continued increase in functional density and 

decrease in cost per function required to maintain the progress in cost and performance for 

electronics, such as for mobile communications markets [9, 32].  

 The core innovation of SiP technology is not for the replacement of SoC technology, 

but it is in fact the heterogeneous integration of digital and non-digital functionalities into 

compact systems as illustrated in Fig. 1.5 [29]. This is particularly important for future 

multifunctional systems as they will require not only more signal and data processing power, 

but also require the interaction with the outside world via an appropriate transducer, such as 

sensors and actuators. This implies that future highly integrated systems (advanced SoC/SiP 

systems) will comprise of both SoC (“More Moore”) and SiP (“More than Moore”) 

components in which SoC components may be viewed as the brain of an intelligent compact 

system, whereas SiP components will be responsible for interaction with the outside world 

and users (see Fig. 1.6) [9, 29]. 

 Figure 1.5 The combined need for digital and non-digital functionalities in an integrated 

system is translated as a dual trend in the ITRS: miniaturisation of the digital functions 

(“More Moore”) and functional diversification (“More than Moore”) [29]. 
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 Figure 1.6 “More than Moore” technologies complement the digital processing and storage 

elements of an integrated system in allowing the interaction with the outside world and in 

powering the system [9, 29]. 

  

 The existing SoC/SiP systems are however plagued by reliability problems as they 

are not as reliable as traditionally packaged integrated circuit systems. Issues such as 

electrical, thermal and mechanical stress management are the primary concerns in order to 

meet the future integration requirements of advanced SoC/SiP systems[32, 34]. 

Manufacturing-induced thermal stress, created during the fabrication of packaged integrated 

circuits, can be large enough to induce cracking or interfacial delamination in the package, 

which could potentially degrade the performance and reliability of the packaged chip, 

ultimately leading to device failure. However, there are no available laboratory based 

metrologies that can non-destructively measure or image stress/strain, warpage inside 

packaged chips or SoC/SiP packages. Therefore, the need to develop non-destructive 

metrologies that can be used to effectively measure stress/strain in packaged chips or SoC/SiP 

systems is identified by the ITRS, in both the 2011 and 2009 editions [35, 36]. These non-

destructive measurement methodologies will be used to gain a better understanding of the 

sources and distribution of strain inside the packaged chips or SoC/SiP systems, created 

“More Moore”: SoC 

further scaling 
“More than Moore”: SiP 

further scaling 



 

10 

 

during different packaging or manufacturing processes, and thereby helping to improve the 

manufacturing efficiency, performance and reliability of advanced packaging products. 

 

1.2 Scope of this thesis 

 Concerning further miniaturisation by “MM” solutions, one of the obvious tasks is 

the replacement of the Si channel by III-V materials, where the most critical issue is the 

realisation of high quality hetero-integration of III-V materials lattice matched to Si 

substrates.   

 In order to circumvent these problems, it is important to understand and identify the 

sources of defect/strain generation. Through the selection of appropriate characterisation 

methodologies, I aim to achieve the following technological objective: 

 

1) Design a non-destructive X-ray characterisation routine that can be used to effectively 

identify various issues associated with heteroepitaxial growth of III-V materials, and delivers 

useful experimental feedback to growers for material quality optimisation.   

 

Although “MtM” technology provides an alternative route, which enables continued rapid 

progress in functional density during a period where traditional CMOS scaling cannot keep  

pace and new architectures are not ready, it is still plagued by reliability issues that need to be 

addressed in order in improve the efficiency of the existing packaging products. Therefore a 

second aim in this thesis is as follows: 

2) Development and implementation of a novel technique for non-destructive analysis of 

manufacturing process-induced stress/warpage inside completely encapsulated packaged chip 
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1.3 Characterisation methodology 

 i) Characterisation of heteroepitaxial growth of III-V materials   

 The most common problems that have to be encountered during the hetero-integration 

of III-V materials lattice matched to Si substrates have been anti-phase domains, dislocations, 

strain and lattice tilts distributed within the III-V layers due to their crystal dissimilarities. 

These factors mean that abundant extended defect densities (>10
8
 cm

-2
) are generated in the 

III-V epitaxial layers when directly grown on Si substrates. The selection of appropriate 

characterisation techniques is an essential first step to identify significant effects of each 

growth step (i.e. growth and annealing temperatures, III/V flux ratios and layer thickness), 

towards the production of low defect density heteroepitaxial of III-V materials. 

 An X-ray characterisation routine that can be used to effectively help III-V growers in 

tackling the aforementioned problems was designed, as summarised in Fig. 1.7. This routine 

was planned using mainly X-ray diffraction techniques such as conventional X-ray diffraction 

(XRD) and high-resolution XRD (HR-XRD) performed at Dublin City University (DCU) by 

me and synchrotron X-ray topography (SXRT) performed at HASYLAB. It is to examine 

specimens using a range of essentially non-destructive methods; this is because often one 

characterisation technique alone cannot reveal all the desired characteristics of the specimens 

under test. Likewise, many preferred techniques are destructive in nature – either during the 

measurement itself or prior to the measurement, during sample preparation. When one uses 

non-destructive methods, it allows the same specimen to be measured a number of times in 

order to obtain comprehensive information. Apart from X-ray techniques, I have also 

employed optical techniques such as micro-Raman spectroscopy, and photoluminescence 

spectroscopy to characterise the surface quality of the specimen. Other measurements such as 

atomic force microscopy (AFM) and transmission electron microscopy (TEM) were provided 

by collaborators from Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC) and 
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IMDEA Materials, Madrid, Spain, respectively. These measurements served the purpose of 

complementing the analysis of my own results.  

 In order to demonstrate the capability of this X-ray characterisation routine in 

identifying the existence/generation of different defects associated with heteroepitaxial 

growth as well as in identifying the significant effects of each growth process, I have 

implemented this routine to characterise a series of deliberately fabricated heteroepitaxial 

GaAs materials with different defects (antiphase domains, dislocations, strain/relation, lattice 

tilts). These ‘problematic’ GaAs materials were deposited on Ge and Si substrates by altering 

the growth parameters, which will be explained in more detail in Chapter 4. In this work all 

the materials were grown and provided by collaborators from Instituto de Ciencia de 

Materiales de Madrid (ICMM-CSIC), Spain.  

 ii) Lab-based X-ray diffraction 3-dimensional surface modelling (XRD/3DSM) 

 As the reader will subsequently see, XRD-3DSM is a novel technique for non-

destructive analysis of strain/warpage inside completely encapsulated packaged chips. 

Originally developed by DCU Researchers using synchrotron sources [37, 38]. It was 

developed using XRD techniques, utilising a laboratory-based a triple-axis Jordan Valley D1 

X-ray diffractometer at DCU. Maps are produced of the entire Si die inside a packaged chip, 

which reveal warpage via mapping of rocking curve full-widths-at-half-maximum (FWHM) 

as a function of position across encapsulated packages. SXRT is used to validate data 

obtained from XRD/3DSM. More details of the technique will be explained in Chapter 5. 
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Figure 1.7 The work flow of the characterisation methodology used for analysing the 

quality of heteroepitaxially grown III-V materials. Acronyms are defined in the text. 
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1.4 Report Layout 

 

 This report is structured into a number of chapters, organised as described by the 

chart in Fig. 1.8. Chapter 2 describes the fundamentals of the characterisation methodology 

and the instrumental setup. Chapter 3 discusses the major barriers that hamper the 

heteroepitaxy of GaAs on non-polar substrates and the challenges encountered in growing 

high quality GaAs layers by ELO on nanostructured-oxide substrates. Chapter 4 gives a brief 

discussion regarding the growth of GaAs samples and reviews the charactersation of 

heteroepitaxial growth of GaAs samples using the X-ray charactersation routine shown in Fig. 

1.7. More specifically, the implementation of distinct approaches in identifying various issues 

associated with heteroepitaxial growth will be discussed. Chapter 5 reviews briefly the 

evolution of IC packaging technology and the development and implementation of 

XRD/3DSM for non-destructive analysis of die stress inside packaged chips. Chapters 6 and 7 

demonstrate the feasibility of the XRD/3DSM technique for chateracterisation of die stress 

inside fully encapsulated packaged chips. Finally, Chapter 8 covers the conclusions from this 

research and outlines future work. 
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Chapter 2 

Characterisation Methodology and Instrumental Setup 

2.1 Introduction 

The selection of appropriate characterisation methodologies is vital for analysing and 

comprehending the source of defects and strain generation and their influence on the 

properties of semiconductor materials. This chapter has the preliminary aim of introducing the 

fundamental and instrumental setup of numerous characterisation techniques that have been 

selected for this work. 

 

2.2 X-Ray diffraction (XRD) 

 X-Ray diffraction is a non-destructive analytical methodology which can provide 

information about the chemical composition and crystallographic structure of natural and 

manufactured materials. It is used extensively for quality control of production, especially in 

research and development applications. 

 

2.2.1 Fundamentals of X-ray diffraction 

 In 1911, the phenomenon of X-ray diffraction (XRD) in crystalline materials was 

discovered by von Laue, Friedrich and Knipping in rock salt [39]. In the following year, 1912, 

W. L. Bragg confirmed that crystal diffraction is associated with a set of evenly spaced sheets 

typically running through centres of the atoms of the crystal lattice, as depicted in Fig. 2.1. 

The scattered X-rays from adjacent planes will add up constructively and generate a strong 

diffraction. This, however, only occurs under specific circumstances, namely when [40]:  

           (2.1)  



 

17 

 

 

where n is an integer representing the order of diffraction,   is the wavelength, d is the 

interplanar spacing of the diffracting planes and θ is the angle between the incident beam and 

the diffracted beam relative to the reflecting plane. That said, reflection occurs when the 

following criteria are satisfied [40]: 

  i)  the angle of incidence is equivalent to the diffracted angle , 

  ii) the path-length difference (AO+AB or dsinθ + dsinθ)  is equal to an integer multiple of the 

X- ray wavelength   (nλ).  

 

 

 

2.2.2 Diffraction in reciprocal space 

 An ideal crystal is built up of molecules arranged on a regular 3-dimensional crystal 

lattice. A crystal lattice can be explained as a periodic arrangement of molecules in a regular 

pattern in the crystal.  The basic building block for the crystal lattice is known as the unit cell. 

The length of the unit cell along the three crystallographic axes x, y and z directions are 

defined as a, b and c, as shown in Fig. 2.2. In real space, any direction in a crystal can be 

specified using a lattice vector (r) and can be written as [41]:  

            (2.2)  

Figure 2.1 Schematic diagram of Bragg diffraction. 
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where u, v and w are integers that specify the direction and a, b and c are the unit cell vectors 

describing the lattice, as shown in Fig. 2.2.  

 

Figure 2.2 Schematic diagrams illustrating a unit cell in real space, a) a direction in a crystal 

represented by a vector (r), and b) a direction of a set of parallel crystal planes (hkl) defined 

by their normal vector (  ) and interplanar spacing (dhkl) [41, 42]. 

  

 When one considers X-ray diffraction, it is always easier to describe the structure of a 

crystal in terms of families of planes (hkl). This is because X-ray diffraction occurs from 

different sets of crystals with different reflection planes (hkl) and interplanar spacings (dhkl) at 

different angles, as previously described using Bragg’s law. A set of parallel crystal planes 

(hkl), can be characterised by its normal vector (  ) and interplanar spacing (dhkl) [41], as 

shown in Fig. 2.2b). By using these two quantities, each set of parallel crystal planes (hkl) can 

be represented by a single point in reciprocal space, in which each reciprocal lattice point is 

defined by a reciprocal lattice vector (ghkl). The ghkl is always parallel to    of the crystal plane 

(hkl) in cubic crystals, and they are related by [41] 

      
 

    
   (2.3)  
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where        
 

    
 is the distance of the reciprocal lattice point from the lattice origin. An 

example of a 2-dimensional reciprocal lattice of GaAs is depicted in Fig. 2.3 [43]. By way of 

example, a line drawn from the origin of the reciprocal lattice (typically taken to be a 

reciprocal lattice point itself) to another point is a reciprocal lattice vector (ghkl).  

 

 Figure 2.3 Two-dimensional reciprocal lattice for zincblende GaAs [43]. 

 

 The X-ray diffraction in reciprocal space can be further explained using a geometrical 

construct called the Ewald sphere, as illustrated in Fig. 2.4. The Ewald sphere is centred on a 

line representing the X-ray beam direction, and it has a radius of 1/λ [41]. The reciprocal 

lattice has its origin at the point where the X-ray beam exits the Ewald sphere. The crystal 

rotation around the centre of the sphere is equivalent to the rotation of the reciprocal lattice 

about its origin. A strong diffraction from a crystal with reflection planes (hkl) will occur 

when the corresponding reciprocal lattice point (hkl) lies exactly on the circumference of the 

Ewald sphere [41]. 

  As shown in Fig. 2.4, ki and kd represent the wavevectors along the directions of the 

incident, and diffracted beams, respectively. The scattering vector Q is equivalent to the 

difference between the diffracted and incident (Q = kd - ki) wavevectors. This is the condition 

at which it satisfies Bragg’s law and diffraction occurs [41, 44].  This can be shown through 

the following relationship obtained from the Ewald sphere shown in Fig. 2.4,  
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(2.4)  

For a crystal with reflection planes of (hkl) which satisfy Bragg’s law, the reciprocal lattice 

vector (    ) is identical to the scattering vector (Q) [41, 44]. Therefore, the modulus of Q, 

i.e.     is equal to        and it is simply      
  in real space, obtained from Eq. 2.3. 

Substituting     into Eq. 2.4, one can obtain a relationship which is equivalent to Bragg’s 

law, 

      
 

     
 (2.5)  

 

Figure 2.4 Ewald sphere construction illustrating the diffraction X-ray occurs in reciprocal 

space [41]. 

 

2.3 Powder X-ray diffraction (XRD) 

 This technique is used to characterise micro- or poly-crystalline samples in order to 

ascertain the crystallographic structure, average crystallite sizes, and the preferred orientation 
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(texture) in the polycrystalline samples. An unknown substance can be identified from its 

diffraction pattern, as each individual substance possesses a distinctive diffraction pattern. 

This can be done by comparing the experimental diffracted pattern against a Powder 

Diffraction File (PDF) – comprising of data on interplanar spacings (d) and relative intensities 

(I) complied for crystalline materials - maintained by the International Centre for Diffraction 

Data (ICDD) [45].   A powder XRD spectrum can be collected by setting the sample and 

detector angles together in a 2:1 ratio, which will be explained further in subsequent sections.  

 One of the most useful features of XRD is its ability to determine the crystallinity of 

substances. The diffraction pattern of a crystalline material comprises a series of sharp peaks, 

which are distinguishable from the broad and weak intensity peaks produced by amorphous 

material. Through the line broadening of the peak, the average crystallite size is computable 

via the Scherrer equation [41], 

   
    

     
 (2.6)  

where t is the calculated average crystallite size,  λ is the wavelength of the X-ray source 

used,                       is the  full width at half maximum (FWHM) of the 

diffracted peak in radians (corrected for any instrumentally induced line broadening) and θ is 

the Bragg diffraction angle of the peak. 

 

2.3.1 Crystallographic texture mapping  

 A polycrystalline sample might typically comprise of a number of randomly 

distributed grain orientations and some of these grain orientations might tend to cluster about 

a preferred orientation. These are known as non-textured and textured materials, respectively.  
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 A pole figure is the stereographic projection mainly used to graphically illustrate the 

distribution of grain orientations of a polycrystalline material.  It can be plotted by recording 

the conventional powder diffraction 2θ-ω scans for all rotations (phi, ϕ     -  6   ) and tilts 

(chi, ψ     -     ) of the sample, in order to collect the intensity distribution throughout all 

reciprocal space [41, 44]. A single 2θ-ω scan can be recorded by setting the sample and 

detector angles together in a 2:1 ratio, shown in Fig. 2.5 (a). In this experimental geometry, 

the scan always moves along the direction normal to the sample surface, and thus, collects 

only the ‘out-of-plane’ lattice constant information for a crystalline material. In other words, a 

2θ-ω scan only collects information on grains with Bragg planes parallel to the film plane [41, 

44], while a pole figure is a combination of a series of 2θ-ω scans recorded for different tilts 

against the X-ray incident beam incidence plane and rotated around the sample normal in 

order to get all grains in a diffracting position. Therefore, it captures the intensity distribution 

throughout all of reciprocal space over the surface of a hemisphere with a radius of,     (see 

Fig. 2.5b) [41, 44]. For a crystal with reflection planes of (hkl) which satisfy Bragg’s law, the 

reciprocal lattice vector (    ) is identical to the scattering vector (Q) (see Fig. 2.5 b). The 

resulting collected intensities are plotted onto a two-dimensional pole figure (pole plot as 

shown in Fig.2.5c. Strong diffractions occur only when Bragg’s law is satisfied for lattice 

planes of the textured grains for a particular (hkl) reflection at a certain tilt, ψ, and rotation, ϕ. 
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Figure 2.5 Schematic diagrams of a) 2θ-ω scan in reciprocal space, and scanning geometry 

for a pole figure, b) Hemisphere represents the stereographic projection of all reciprocal 

space, and c) Top view of the hemisphere (pole plot) [41, 44]. 

 

 If the material has no texture, the collected signal will be uniformly distributed on the 

pole figure. Alternatively, poles will tend to group together at certain chi, ψ, and phi, ϕ, 

angles in the pole figure if the material comprises of some preferential grain orientations. If 

the preferred orientation is very strongly preferential, the poles will tend to group together in 

tighter and tighter bands as the texture becomes stronger as illustrated in Fig. 2.6. 
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Figure 2.6 Pole figures and schematic illustrations of preferred orientation. The arrows show 

the direction for a chosen (hkl) direction. 

 

b) Pole figure (top) and schematic illustration  

of highly textured polycrystalline material  

with certain preferred orientation 

a) Pole figure (top) and schematic illustration of 

polycrystalline material with random orientation 

d) Pole figure (top) and schematic illustration  

of grain with strong orientations in [001] 

direction, i.e. a perfect single crystal layer 

c) Pole figure (top) and schematic illustration of 

grain with preferred orientations in [001] 

direction, i.e. misoriented epitaxial layer 
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2.4 High-resolution X-ray diffraction (HR-XRD) 

 The most significant difference between high-resolution XRD and conventional XRD 

measurements is the use of a highly collimated incident monochromatic beam, e.g. of the 

order of ~12 arc-sec divergence compared to ~ 360 arc-sec for conventional XRD 

measurements. The divergence of the beam is closely related to the source size (h), slit size 

(s) and the source-specimen distance (a). As shown in Fig. 2.7, the divergence (δθ) is 

expressed as [43] 

    
   

 
 (2.7)  

In order to reveal the finest details from the specimen, the divergence of the beam has to be 

smaller than the angular offset caused by defects in the specimen. For conventional XRD 

measurements, the divergence of the beam is ~ 360 arc-sec [46] and yields a rocking curve 

with a broad full-width-at-half-maximum (FWHM). This is far beyond the angular resolution 

that we require to reveal the details of thin epitaxial films, where typically in the order of 10 

arc-sec is necessary [43]. Therefore, a highly monochromatic incident beam is essential to 

provide sufficient angular resolution for HR-XRD measurements in order to reveal the layer 

thickness, composition, strain and relaxation of thin epitaxial films at the arc-second scale. 

Figure 2.7 Schematic diagram showing the divergence along a single-axis [43].  
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2.4.1 HR-XRD experimental geometry 

 Symmetric and asymmetric reflection modes are the two types of experimental 

geometries typically used in HR-XRD experiments. A symmetric Bragg reflection geometry 

collects only the information from out-of-plane (direction perpendicular to the layer plane) 

structural parameters, while the use of asymmetric grazing incidence is exceedingly sensitive 

to the in-plane structural parameters (parameters of the crystal structure in the layer plane) 

(see Fig. 2.8) [46]. Combining the data from both geometries provides us with all the 

meaningful information that we require for analysis. 

Figure 2.8 a) Symmetric (collects only the out-of-plane lattice parameter) and b) asymmetric 

(collects in-plane lattice parameter data) diffraction geometry for high-resolution X-ray 

diffraction. 

 

 

2.4.2 High-resolution XRD rocking curves and ω-2θ scans 

 Two distinct types of HR-XRD scans are defined as ω (omega) scans and ω-2θ 

(omega-2theta) scans. An ω scan is used to evaluate the mosaic tilt in a material. It can be 

recorded by scanning the sample angle (ω) for a specific angular range of arc-sec with the 

detector angle (2θ) fixed at twice the known Bragg angle. The resulting plot of angle (ω) 

versus the collected intensity is known as a rocking curve.  On the other hand, the ω-2θ scan 

is recorded by scanning the sample and detector angles together in a 1: 2 (ω: 2θ) ratio. Thus 
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the scan is collected by moving the 2θ detector axis at the twice the rate of the ω axis. This 

geometry is particularly useful in revealing the structural parameters of the epitaxial layer, i.e. 

strain, composition and layer thickness [43]. For instance, for GaAs heteroepitaxially grown 

on Si, defects such as dislocations are typically predominant due to the large lattice mismatch 

between GaAs and Si. These extended linear defects generated during the growth process 

directly impact on the full-width-at-half-maximum (FWHM) and peak splitting of the rocking 

curves (ω-scans) and ω-2θ scans, respectively [43]. Table 2.1 summarises some of the 

important parameters that will impact on the characteristics of rocking curves or ω-2θ scans.      

 

Table 2.1 The effect of substrate and epilayer parameters upon the rocking curves and ω-2θ 

scans [43]. 

Material 

parameter 

Effect on rocking 

curve 

Distinguishing features 

Mismatch Splitting of layer and 

substrate peak 

Invariant with sample rotation 

Misorientation  Splitting of layer and 

substrate peak 

Changes sign with sample rotation 

Dislocation 

content 

Broadens peak Broadening invariant with beam size. No shift 

of peak with beam position on sample. 

Curvature Broadens peak Broadening increases linearly with beam size. 

Peak shifts systematically with beam position 

on sample. 

Relaxation Changes splitting Different effect on symmetrical and 

asymmetrical reflections. 

  

 High-resolution X-ray diffraction rocking curves (HR-XRD RCs) can be measured in 

either double-axis or triple-axis configuration based on the type of information that is required 

by the user. A typical double-axis RC experiment can be done in a short period of time. 

Conversely the time requirements are generally longer for triple-axis analysis as an additional 

analyser crystal is placed on the detector side for a more precise definition of the detector 

scattering angle, 2θ. This analyser crystal itself will quench the diffracted intensity, and thus, 
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longer exposure times are required to increase the signal-to-noise ratio in order to achieve a 

clean result. This also prevents the disappearance of some smaller peaks [43]. 

 In the double-axis configuration, one collects the scattered intensity from all 

diffraction angles from the specimen and some vital parameters become indistinguishable, i.e. 

distinguishing between the lattice tilt and changes in interplanar (d) spacing of the crystal, and 

details such as interference fringes or narrow peaks can be lost or blurred [43].  This 

deficiency can be resolved unambiguously in triple-axis geometry by inserting the additional 

analyser crystal before the detector. The auxiliary crystal restricts the angular acceptance of 

the detector into few arc-seconds which further defines the 2θ angle [43].  

 

2.4.3 HR-XRD analysis by RADs simulations 

 As previously mentioned parameters of the epilayer such as strain relaxation, 

thickness and composition can be extracted directly from the peak splitting and position of 

measured HR-XRD scans. These details are easily determinable by modelling ω-2θ scans 

using the supplied JV-HRXRD software [46] called RADs (rocking-curve analysis software). 

Experimental data is compared to the simulated model using a robust goodness-of-fit (GOF) 

function [46]. Parameters such as background intensity, layer thickness, layer composition 

and strain relaxation are iteratively adjusted until best-fit-parameter values are achieved 

(lowest GOF values - a single number that reflects how well the best-fit simulation agrees 

with the experimental data) [46]. Although RADs simulations provide a lot of information 

regarding the epilayer it is not a sufficiently sophisticated package to extract all the required 

detailed information from a complex crystal structure, such as a monocrystalline layer 

embedded in a highly-textured polycrystalline layer. Despite these deficiencies, RADs 

simulation is still useful for the full analysis of epilayers, multilayer structures and alloyed 

semiconductors.  
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 The data-fitting process of RADs simulation includes few main stages, which will be 

demonstrated through an analysis of the degree of relaxation using a 004 ω-2θ HRXRD scan 

from a 180 nm thick- GaAs layer deposited on Si substrate: 

i) Importing the experimental data 

The file containing the experimental HRXRD data is imported into RADs and will be 

displayed in the form of an (x, y) line chart, as shown in Fig. 2.9. 

 

ii) Creating a simulation model 

A simulation model of the sample structure is built using the Model panel. For this case, bare 

Si is used as the substrate for the model, and then a GaAs layer is added to form the GaAs/Si 

simulation model. For the initial assumption, the GaAs layer thickness of the simulation 

model is set to the nominal thickness of 180 nm, and the degree of relaxation is assumed to be 

0% (fully matched). 

  

 

 

Figure 2.9 ω-2θ HR-XRD scan of GaAs/Si sample imported into Bede RADs. 
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iii) Simulating the diffraction  

 The model built in the previous step is simulated and displayed as the red (x, y) chart, as 

shown in Fig. 2.10. It is obvious that the initial simulated HRXRD curve does not match the 

experimental data. This implies that the GaAs overlayer is relaxed, therefore further data 

fitting is required in order to determine the actual degree of relaxation. 

 

 

iv) Fitting the diffraction 

In order to obtain the best fit model, each parameter (relaxation degree and thickness) is fitted 

individually and iteratively by RADs simulation until a lowest GOF value is achieved. For 

example, Fig. 2.11a) shows the simulation model after the degree of relaxation is fitted and 

this reduces the GOF value to 0.117. The lowest GOF value or best fit model can be achieved 

when the thickness is fitted and background noise is introduced, as shown in Fig. 2.11b).  

From the best fit model, the GaAs/Si layer is determined to be fully relaxed (~100% 

relaxation) with 15 nm thickness.  

Figure 2.10 ω-2θ HR-XRD scans and corresponding initial simulation of GaAs/Si sample 

before data fitting. 
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Figure 2.11 ω-2θ HR-XRD scans and corresponding simulation of GaAs/Si sample after data 

fitting. a) Simulation model after relaxation degree is fitted, and b) Best fit model achieved 

after the thickness and background noise are fitted. Note that the fit parameters can be found 

in Table 4.3. 

 

2.4.4 Reciprocal space mapping 

 As described in the previous section, a triple-axis HR-XRD ω-2θ scan comprises of 

only the data from one specific tilt.  In order to gather the information for a range of tilts, 

01 0

11 0

21 0

31 0

41 0

51 0

- 1 5 0 0 0 - 1 2 5 0 0 - 1 0 0 0 0 - 7 5 0 0 - 5 0 0 0 - 2 5 0 0 0 2 5 0 0

In
te

n
s

it
y

 (
c

p
s

)

O m e g a -2 T h e ta  (s e c )

E xp e rim e n ta l [S im u la t io n ]

C o m p a ris o n  2 C o m p a ris o n  3

GOF = 0.117 

01 0

11 0

21 0

31 0

41 0

51 0

- 1 5 0 0 0 - 1 2 5 0 0 - 1 0 0 0 0 - 7 5 0 0 - 5 0 0 0 - 2 5 0 0 0 2 5 0 0

In
te

n
s

it
y

 (
c

p
s

)

O m e g a -2 T h e ta  (s e c )

E xp e rim e n ta l [S im u la t io n ]

C o m p a ris o n  2 C o m p a ris o n  3

GOF = 0.056 

a) 

b) 



 

32 

 

reciprocal space mapping (RSM) is needed. This can be obtained by collecting a series of ω-

2θ scans at different omega offsets (omega_Rel), where 2θ = 2*ω – offset, as shown in Fig. 

2.12. The tilt value recorded in each ω-2θ scan is typically different. Therefore, a RSM – a 

complete map of ω-2θ versus tilt (omega_Rel) - is obtained by mapping the intensity 

distributions of these scans using Contour software.  In other words, it is an extension of 

rocking curve analysis that provides more valuable data in distinguishing the strain or 

mismatch from tilt or mosaic spread in a sample. 

 

Figure 2.12 a) For omega_Rel zero: A ω-2θ scan is collected, and b) A RSM can be obtained 

by collecting a series of ω-2θ scans at different omega offsets (omega_Rel), where 2θ = 2*ω 

– offset [42]. 

 

2.4.5 X-ray diffraction instrument set-up 

 All X-ray diffraction measurements were carried out using a triple axis Jordan Valley 

BEDE-D1 X-ray diffractometer as shown in Fig. 2.13. The incident X-ray beam was 

produced by a Cu rotating anode generator operated at 45 kV and 40 mA. A beam conditioner 

is used to condition the incident beam into a quasi-parallel beam (with a divergence of ~360 

arc-second) or further conditioned into monochromatic beam mode (with a divergence of ~12 
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arc-second) (Cu-Kα1; λ   1.54 5 Å) for standard XRD and high-resolution XRD 

measurements, respectively [46]. The instrument sample stage allows the sample to move in 

x, y, z, χ (chi, tilt of sample) and ϕ (phi, rotation of the sample about the surface normal). ω is 

the angle between sample and incident X-ray beam, whereas 2θ is the angle between incident 

X-ray beam and scattered X-ray beam (see Table 2.2 for the specification). All of these 

movements can be navigated via the Bede Control – instrument control software from Bede 

Scientific, and therefore allows the sample to be properly aligned prior to any of the X-ray 

measurements.  

 

 

 

 

 

Figure 2.13 Photo of the Jordan Valley D1 X-ray diffractometer system. 
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Table 2.2 D1 system stage axes specification [46]. 

Axis Function Range Resolution 

x Specimen translation, x direction 150 mm 0.5 µm 

y Specimen translation, y direction 150 mm 0.5 µm 

z Specimen translation, z direction 10 mm 0.5 µm 

Χ, Chi Specimen tilt 
135

o
 

(-90
o
 to + 45

o
) 

0.0003
o 

Φ, Phi 
Specimen rotation about surface 

normal 
± 365

o
 0.0001

o 

ω 
Angle between sample and 

incident X-ray beam 

200
o
 

(~-10
o
 to ~+ 190

o
) 

~0.000045
o
 

(~0.16 arc-sec) 

2θ 
Angle between incident X-ray 

beam and scattered X-ray beam 

210
o
 

(~-70
o
 to ~+ 140

o
)

 

~0.000045
o
 

(~0.16 arc-sec) 

 

The sample alignment process includes a number of main steps listed below: 

i) Mounting the sample onto the stage 

 Sample should always be handled with clean tweezers in order to prevent 

contamination.  

 Sample is mounted onto the central region of the stage using “blue tape”, as shown in 

Fig. 2.13. This method of mounting has been found to introduce very little strain into 

the sample, which is important for high-resolution measurements [46]. 

 Always mount the sample in a known orientation i.e. the notch or flat or cleaved edge 

of the sample always placed in the same direction with respect to the X-ray beam. 

This allows the results from different samples to be easily compared and also to 

ensure very high reproducibility of the measurements. 

 For a miscut sample, the offcut direction should be placed perpendicular to the 

incident beam, and the offcut can be compensated for by optimising the χ position of 

the sample, in order to ensure a “real” symmetric experimental geometry [8]. 
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ii) Calibrating the 2θ and ω zero positions 

 It is important to remember that the lid of the system should be closed before the X-

ray shutter is switched on or prior to any XRD measurement. 

 Scan across the direct beam with the sample out of the incident X-ray beam (by 

moving the z position to 9 mm) for a 2θ range of 0.5
o
, and this gives us an X-ray 

intensity curve plotted against the 2θ scan range. The peak position of the intensity 

curve is the actual zero position for 2θ.  The 2θ zero position can be recalibrated by 

moving the 2θ to the actual zero position via Bede control. The same process is 

repeated for ω in order to ensure both the 2θ and ω zero positions are recalibrated 

correctly to avoid any misalignment, and therefore ensures an accurate and repeatable 

result. 

iii) Aligning the sample in the beam by adjusting the position of sample stage 

 The sample stage is moved (z) until intensity (I) = Ifull/2, where Ifull is the direct X-ray 

beam intensity. The position of ω is adjusted slightly in steps of 0.01
o
 to observe the 

maximum intensity. If the intensity is higher than Ifull/2, the position of z has to be 

readjusted slightly in order to ensure that intensity is equal to Ifull/2. 

 The incident beam is now properly aligned, which means it is parallel and half-way 

across the sample surface. This is to ensure that the incident beam is located at the 

centre of rotation of 2θ and ω or the sample surface is now over the centre of rotation. 

iv) Aligning the sample at the diffraction peak 

 Move the ω axis to the Bragg angle and the 2θ axis to the position of twice the Bragg 

angle of the substrate material (substrate peak is always chosen as reference for HR-

XRD measurements). However, the Bragg angle is individually dependent on the type 

of experiments (symmetric or asymmetric) and also the orientation of the substrate 

material. For an offcut substrate, the incident beam is set perpendicular to the offcut 
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direction and the offcut can be compensated for by tilting the chi angle (χ) of the 

stage. 

 Optimisations are then carried up for ω, χ and 2θ until the maximum intensity is 

acquired, this being the last step prior to measurements. 

The sample alignment process can also be performed automatically by using scripts or recipes 

provided by this system. For certain circumstances, such as a sample with a few degrees of 

offcut, it is however more time efficient to manually align the sample using aforementioned 

steps ii)-iv). 

 Apart from the sample alignments, the configurations of the XRD instrument such as 

the source optics and slit sizes have to be appropriately adjusted for distinct measurements 

and these are presented in Table 2.3. 

 All the scattered X-ray intensity is collected using an Enhanced Dynamic Range 

Detector (EDRc). It is a 50 mm, scintillator detector (YAP: Ce) with a background level of ~1 

to 1.5 cps and a saturation level of ~ 5 Mcps [46]. In general, the signal-to-noise ratio (S/N) of 

a diffraction pattern can be improved by using a longer count time (exposure time), but an 

increase in count time would mean an increase in the scan time. In order to avoid unnecessary 

long waiting times, different count times are typically selected based on the type of sample or 

intensities or features of interest, and this is however dependent on many factors such as 

crystallinity, sample thickness, type of measurement. For example, a 0.01 second count time 

is sufficient to collect a clean diffraction pattern from a 1000 nm thick Si sample, but a 5 

second count time will be needed to collect a clean pattern from a 50 nm thick Si sample due 

to low diffracted intensities compared to background noise. 

 It is important to always mount the sample, calibrate the system and align the sample 

in a consistent way as previously discussed. This allows us to achieve very accurate and 

highly repeatable results – in the order of the sampling step size [46].  
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Table 2.3 Tool configuration of X-ray diffraction instruments for different applications [43, 

46]. 

 

Standard X-ray diffraction – powder diffraction and crystallography texture mapping 
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Max-Flux
TM

 – modulates the divergence of incoming X-ray beam into a quasi-parallel           

    beam of Cu Kα X-rays with a divergence of ~360 arc-second. 

Slit – collimating the incoming beam to a width of 2 mm.  

D
et

ec
to

r 

 

Slits – B and C are used to restrict the angular acceptance of diffracted X-rays and  

          suppress diffuse scattering effects, respectively. 

Soller slit – A set of parallel slits that used to limit the angular divergence or spread of the X-   

ray beam without restricting the size of the beam. 

 

A
x

is
 

 

Scan is run by setting the sample and detector angles together in a 2:1 ratio, which is called a 

2θ-ω scan. Typically, it is calibrated in 2θ
o
 for power diffraction scans. This scanning geometry 

allows the probing of sets of planes which lie parallel to the sample surface, especially in 

highly-textured polycrystalline samples.  
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High-resolution X-ray diffraction – double-axis rocking curve and reciprocal space mapping 
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Max-Flux
TM

 – modulates the divergence of incoming X-ray beam into a quasi-parallel           

    beam of Cu Kα X-rays with a divergence of ~360 arc-second. 

Channel-cut-crystal – Two Si channel-cut crystals (CCCs) used in opposition after the Max-  

                                    Flux
TM

 to further condition the beam into monochromatic Cu-Kα1  

                                    with a  divergence of ~12 arc-second. 

Slit – Slit A collimates the incoming beam to a width of 0.5 mm. 

 

D
et

ec
to

r Slits– B and C are used to restrict the angular acceptance of diffracted X-rays and  

          suppress diffuse scattering effects, respectively. 

Analyser – used only in triple-axis diffraction to precisely define the detector position. 

A
x
is

 

Scan is run by setting the sample and detector angles together in a 1:2 ratio, called a ω-2θ scan. 

This scanning geometry is vital in order to probe the different interplanar spacings for the same 

sample tilt for high-resolution XRD. It was calibrated in arc-seconds prior to the 

measurements. 
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2.5 White Beam Synchrotron X-ray Topography (SXRT) 

 The concept of SXRT is analogous to the conventional laboratory-based XRD 

measurements, since both techniques are reliant on Bragg’s law. Similar to XRD, the 

principle of SXRT can be explained using the geometrical construction of the Ewald sphere, 

as depicted in Fig. 2.14. For the lab-based XRD measurement, a monochromatic X-ray with a 

particular wavelength is used. Diffraction from a crystal plane (hkl) will occur only if Bragg’s 

law is satisfied, i.e. if a reciprocal lattice point lies on the Ewald sphere. In other words, only 

diffraction from a specific set of lattice plane (hkl) of the crystal can be collected at one time. 

The diffraction from different crystal planes of interest can be acquired by orienting the 

sample to satisfy the Bragg condition for that particular plane [47]. 

 Similar to X-ray diffraction, Synchrotron X-ray Topography (SXRT) is also a non-

destructive method that is ideal for studying high quality crystalline materials, and in 

particular it can image defects and strain fields distributed within the crystals [48]. Using a 

white beam for SXRT brings several benefits, such as: sample orientation is not necessary, 

numerous reflections are recorded simultaneously with one exposure, all crystal parts are 

simultaneously visible, large diffracted intensity, and good geometrical resolution. One uses a 

continuous radiation spectrum (i.e. a “white beam”) consisting of a continuum of wavelengths 

(λ) each of which can be diffracted subject to the Bragg criterion being satisfied [48], as 

previously discussed. 

 As shown in Fig. 2.14b), a white beam comprises of X-ray beams with a continuum 

of wavelengths, ranging from a minimum wavelength, λmin to some maximum wavelength, 

λmax. A white beam allows a range of reciprocal lattice points to lie simultaneously on Ewald 

spheres with different radii [49].  Therefore, multiple diffractions can be recorded 

simultaneously on a single film with a single white beam X-ray exposure, forming a so-called 
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Laue pattern (see Fig. 2.14c). Each Laue spot is an X-ray topograph corresponding to a 

reflection arising from a different crystal plane of distinct (hkl).  

Figure 2.14 Ewald sphere diagrams illustrating the X-ray diffraction in reciprocal space a) 

using a monochromatic beam and b) using a white beam. Multiple Laue spots recorded on a 

single film using white beam in back reflection geometry is shown in c) [47, 48]. 

 

2.5.1 Synchrotron Radiation X-ray Source 

 Synchrotron radiation is generated when electrons or positrons, whose velocity is 

close to the speed of light, are accelerated and confined to a circular orbit in a storage ring by 
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a magnetic field [49]. The radiation source of a typical synchrotron facility comprises of a 

linear electron accelerator, a storage ring and beam-lines as illustrated in Fig. 2.15 a). The 

electrons are initially accelerated by the linear accelerator to a few tens of MeV, and then 

fully energised by a booster to 2-10 GeV prior to electron injection into the storage ring. The 

injected electrons travel within the storage ring by lying on the orbit specified by the bending 

magnets [49]. In addition, insertion devices known as wigglers or undulators are often 

installed in the straight section between the bending magnets, and these act as enhancers of 

the radiation intensity. Light is emitted tangentially from the electron paths within the 

bending magnets or from insertion devices within the straight sections.  The light emitted 

from the bending magnet components is of a continuous spectrum and is now useable at 

beamlines located off the central storage ring. The electromagnetic spectrum of a typical 

synchrotron radiation source is shown in Fig. 2.15b). 
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 Figure 2.15 a) Schematic diagram and light output of a typical synchrotron radiation facility 

[49], and b) The electromagnetic spectrum of a typical synchrotron radiation source [50]. 

 

2.5.2 Experimental geometry 

X-ray topographs were taken at HASYLAB-DESY, Hamburg, Germany (Hamburger 

Synchrotronstrahlungslabor am Deutschen Elektronen-Synchrotron) using the continuous 

radiation spectrum emitted by a bending magnet source in the DORIS III storage ring. The 

positron ring at DORIS III had a particle energy of 4.45 GeV and a beam current of 100-180 

mA.  

Prior to SXRT experiments, the position of the incident beam was adjusted in order to 

make a straight line to the sample. This is one of the most critical initial steps of the 

experiment, and it can take up to several hours to align the beam back to the correct position 

if it is misaligned. Generally, the incident beam size was collimated to the dimensions of 2 

mm x 2 mm for large-area SXRT. The sample was mounted on a metal holder clamped in 

b) 
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position using a stand (see Fig. 2.16) and the topographs were recorded either on Agfa D3 X-

Ray Film (∼1 μm grain size) or on a higher resolution Slavich VRP- M holographic film 

(grain size ∼     μm) set ∼80 mm in front of or behind the sample in the back reflection and 

the transmission geometry, respectively (see Table 2.4). Multiple topographs were recorded 

simultaneously on a single film with a single white beam X-ray exposure, forming Laue 

patterns (See Table 2.4). Each Laue spot is an X-ray topograph corresponding to reflection 

arising from a different set of atomic planes of the crystal under test.  The individual 

topographs were magnified using a light microscope and the details of the growth defects 

could be observed and analysed. Software called LauePT [51] is used to index the individual 

topographs recorded on the film. 

 

 

 

 

 

 

 

 

Figure 2.16 Experimental station of SXRT with a sample mounted on the metal plate. 
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Table 2.4 X-ray topography experiment geometry. 

Back Reflection Set-up Geometry Transmission Set-up Geometry 

  

Back Reflection Laue pattern of GaAs/Ge recorded on a film. 

 

 

2.5.3 The resolution of SXRT 

 The spatial resolution refers to the smallest possible feature that can be resolved on a 

SXRT topograph. The spatial resolution can be calculated through the following relationship 

[49]: 

  

    
 

 
   (2.8)  

where s is the specimen-to-film distance, L is the source-to-specimen distance and h is the 

source size. From Eq. 2.8, it is obvious that a better image resolution can be achieved by 
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using a longer beam line and a smaller source size, as depicted in Fig. 2.17 [49]. From the 

references [52], the main specifications of the Synchrotron at HASYLAB-DESY are 

summarised in Table 2.5. In the work, all the large area back reflection (LABR) experiments 

were carried out using a sample to film distance of 80 mm, and this gives a spatial resolution 

of  3 µm, calculated using Eq. 2.8. 

 Figure 2.17 Schematic diagram illustrating the geometrical resolution limit set by the 

projected source height normal to the incidence plane [49]. 

 

Table 2.5 Main specifications of the Synchrotron at HASYLAB-DESY [52]. 

Parameter Value 

Source-Sample Distance 35 m 

Source Size 1.224 mm x 0.510 mm 

Beam Divergence  0.400 mrad x 0.238 mrad 

 

2.5.4 Penetration depth calculation 

 For back reflection topography, the X-ray penetration depth into the sample for each 

reflection can be calculated based on conventional kinematical theory (this is applied to 

imperfect or strained materials, such as GaN, SiC, GaAs or other lattice mismatched 

materials.) [53, 54]: 

h 
r 

L s 
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     2.4 

where    is the penetration depth,    is the incident angle,    is the diffracted angle and 

     is the wavelength-dependent absorption constant for the material. For back reflection, 

      and              
 

 
  , where L and H are the film to sample distance and 

distance from centre of film, respectively, as illustrated in Fig. 2.18. Table 2.6 summarises the 

typical penetration depths calculated from different reflections of LABR topographs recorded 

from Si material.  

 

 

Table 2.6 Penetration depths calculated from back reflection topographs of Si material. Note 

that, the penetration depths presented in this table are calculated from harmonically pure 

reflections. 

Reflection L (mm) H (mm) λ (Å) d (Å) Penetration 

Depth (µm) 

-2 2 8 80 50.5 1.2276 0.6401 63  

-1 1 7 80 23.6 1.5046 0.7605 37 

 

 

 

Figure 2.18 Schematic diagram of a typical back reflection process. 
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2.5.5 Dislocation density estimation 

 From the dislocation networks observed in a topograph, the area dislocation density 

(cm
-2

) of a particular specimen is determinable through the following relation [55], 

       4.20 

3 

 

where V is the volume of the specimen exposed to the X-rays and L is the total dislocation 

line length in that volume. Volume, V can be calculated using the beam size and X-ray 

penetration depth, tp. 

 

2.6 Micro-Raman Spectroscopy 

Micro- (μ-) Raman spectroscopy is a powerful non-destructive technique for 

evaluating the quality of a semiconductor. It is extremely sensitive to the presence of lattice 

disorder, impurities and stresses, and these are detectable via variations observed in the peak 

intensity, full-width-at-half-maximum (FWHM) and position (wavenumbers) of the peaks 

recorded in the μ-Raman spectra.  

 

2.6.1 The mechanism of light scattering   

 The mechanisms of light scattering can be categorised into Rayleigh, Stokes and 

Anti-Stokes scattering, as illustrated in Fig. 2.19 [56]. Rayleigh scattering occurs when the 

incident light is elastically scattered, during a process in which an atom or a phonon for 

condensed matter is excited by a photon (Energy, Eo = ħωo) from its vibrational ground state 

to a virtual state, where ħ and ωo are the Planck constant and vibrational frequency of the atom 

or phonon, respectively [56]. The excited atom or phonon can eventually be returned to the 

ground state by emitting a photon of the same energy, E = ħωo. Alternatively, the excited 

state can be returned to another vibrational level. In this case, the energy difference is emitted 
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as a photon of lower energy, E = ħ(ωo-ωvib), i.e. light emission with a longer wavelength, and 

this process is called Stokes scattering. The third mechanism is known as Anti-Stokes 

scattering. This occurs if the atom or phonon starts off in the first excited vibrational level and 

is then irradiated with photons whose energy is Eo = ħωo inducing a transition to the virtual 

state. When the excitation relaxes, it will be returned to the vibrational ground state by 

emitting a photon of energy E = ħ(ωo + ωvib) which results in light emission at shorter 

wavelengths [56]. 

 

Figure 2.19 Schematics of Rayleigh, Stokes and Anti-Stokes scattering [56, 57]. 

 

 Both Stokes scattering and Anti-Stokes scattering involve light scattering at different 

energies, which is manifested as inelastic scattering (Raman scattering). According to the 

rules of conservation of energy and momentum, the Raman scattered photons gain energy by 

absorbing a phonon (anti-Stokes shifted), or lose energy by emitting a phonon (Stokes 

shifted) [19]. For condensed matter energy and momentum conservation are represented by 

[56]: 

              (2.9)  

 

            (2.10)  
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where     ,      and     are the energies of scattered photon, incident photon and phonon of 

vibration, respectively, while    ,    and    are the wavevectors of the scattered photon, 

incident photon and phonon of vibration, respectively.  

 In other words, Raman scattering is an inelastic scattering of light as a result of the 

induced dipole moment due to the interaction between incident light and the vibrational 

modes of the material. The most straightforward way to model the process is to consider 

gaseous models, though the results are directly transferable to phonon vibrational modes. The 

strength of the induced dipole moment, P, in a molecule by the electric field, E, of the 

incident EM wave (or incident light) is given by [56, 58] 

      (2.11)  

where α is the polarisability of the molecule. The polarisability is a measurement of the extent 

by which the electron cloud around a molecule is distorted. It depends however on the nature 

of the bonds. The electric field, E, of the incident EM wave may be expressed as [56, 58] 

                 (2.12)  

where    is the vibrational amplitude and        is the frequency of the laser light. 

Subsituting Eqt. (2.6) into (2.5) yields the time-dependent induced dipole moment [56, 58] 

                  (2.13)  

For a molecular bond vibrating at a vibrational frequency of   vib, the physical displacement, 

q of the atoms about their equilibrium position is written as [56, 58] 

                   (2.14)  

 

where qo is the maximum displacement about the equilibrium position. For a small amplitude 

of vibration, the polarisability can be written as [56, 58] 
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   (2.15)  

where    is the polarisability of the molecular mode at equilibrium position and 
  

  
 is the 

changing rate of the polarisability with respect to the change in q (at equilibrium position).  

By substituting Eqs. 2.8 and 2.9 into Eq. 2.7, we obtain [56, 58] 

                  
  

  
                          (2.16)  

Using a trigonometric identity, the above equation can be rewritten as 

 

         
 

 
                   

                  
  

  

   
 

                                       

(2.17)  

The first term of Eq. 2.22 represents the oscillation of the induced dipole moment at the 

frequency,  o, of the incident light, leading to elastic scattering (Rayleigh). The later terms 

correspond to inelastic scattering processes (Raman scattering) in which light scattered at 

frequencies          (Stokes) and         (anti-Stokes), respectively. Raman scattering 

will only be observed if 
  

  
  , i.e. there must be a change in polarisability with the 

vibrational mode [56, 58]. 

 

2.6.2 Raman selection rules in backscattering geometry 

 The scattering efficiency or intensity (I) of Raman scattering relies on the polarisation 

vector of the incident and scattered light, and it can be represented by [56] 

             
  (2.18)  
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where      and      are the polarisation vector of the incident and scattered light, 

respectively, and    is the Raman tensor (which carries the geometric information about the 

crystal). An examination of the Raman tensors for the 32 crystal classes derived by Hayes and 

Loudon [59], shows that there are three Raman tensors corresponding to the crystal 

coordinate system (x=[100], y=[010], and z=[001])  of semiconductors with cubic crystal 

structure: 

     
   
   
   

       
   
   
   

       
   
   
   

  (2.19)  

where d represents the non-zero component in the matrix coordinates of ij.   

 For example, in the backscattering geometry, the Raman spectrum of perfect GaAs 

(001) surface comprises of only the Rz term, which corresponds to the longitudinal optical 

(LO) mode polarised along z [001]. However, the transverse optical (TO) mode can be 

present when there is lattice disorder or other defects distributed in the crystalline structure 

[60, 61]. This is due to the deviation from the true backscattering geometry inside the 

material, and therefore Rx and Ry (phonons polarised along x and y directions) are also 

involved in additional to Rz [62]. Fig. 2.20 shows the scattering process of a Raman system in 

the backscattering experimental geometry. Fig. 2.20b) illustrates the reason why the intensity 

ratio of the longitudinal optical (LO) and transverse optical (TO) Raman lines in GaAs are 

useful as a qualitative signature of the crystal perfection [63].  
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Figure 2.20 Schematic diagram represents the scattering process and geometries of (001) 

surface in a) a perfect crystalline structure, and b) crystalline structure with lattice disorder or 

misorientation. Red arrows indicate the scattered light. 

 

2.6.3 Raman spectrum 

 A Raman spectrum is a plot of measured Raman vibrational frequency in 

wavenumber, cm
-1

 (x-axis) against the Raman scattering intensity (y-axis). The x-axis 

represents the Raman shift, which is the wavelength, or conventionally, wavenumber 

difference between the scattered radiation and the excitation radiation of the probe laser light 

[64]:  

                                            (2.20)  

The frequencies of the Raman modes are always measured relative to the frequency of the 

laser light, and are denoted by relative wavenumbers (Rcm
-1

). Nonetheless, the R is generally 

omitted and the Raman spectrum is labelled simply in units of cm
-1

.  

 

 

 

 

[001] 

Laser beam 

[001] 

Laser beam 

perfect crystalline 

structure 

Lattice disorder or 

misorientations 

a) b) 



 

53 

 

2.6.4 Frequencies of Raman peaks 

 The frequency of the Raman mode is closely related to the masses, the interactomic 

forces and their bond lengths. Therefore, any alteration in these features will indirectly change 

the frequency of the Raman modes [65]. 

 The effect of stress on Raman frequency can be qualitatively understood by 

considering the crystal lattice as an array of atoms interconnected by a series of springs (see 

Fig. 2.21). The presence of a stress will alter the spring constant (i.e. lattice spacing) leading 

to Raman shifts [65]. For instance, a compressive stress will reduce the lattice spacing, and 

thus increases the vibrational frequency of the Raman mode. If tensile stress is present, it 

increases the lattice spacing which leads to the decrease of the vibrational frequency. For a 

simple case such as biaxial stress in a (001) GaAs, the Raman shift will change linearly with 

the magnitude of stress [64]. Therefore, the type of stress present in the (001) GaAs can be 

easily determined by comparing the Raman peak positions measured from stressed GaAs and 

bulk GaAs; 

                                                 
     (2.21)  

where a negative and positive Raman shift is a signature of the presence of tensile and 

compressive stresses in the specimen under test, respectively. 

Figure 2.21 Schematic diagram showing 2-dimensional crystal lattice with atomic bonds 

modelled as springs [37]. 
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2.6.5 Probe depth of the laser light 

 The Raman intensity collected from a sample is dependent on the volume of the 

sample being probed. Generally, shorter wavelengths give a smaller penetration depth. The 

total scattered integrated light intensity, Is from the surface of the sample to a depth, d, is 

given by [66] 

              
 

 

   
   

  
      (2.22)  

where Io, D, and   are the incident light intensity, the Raman scattering cross section and the 

photoabsorption coefficient of the probed material, respectively. If one assumes that the 

penetration depth, dp, is given by the depth that satisfies the relationship [66] 

 
  

     
     (2.23)  

then the penetration depth can be defined as [66] 

    
      

  
 

   

  
 (2.24)  

For example, the penetration depth of 488 nm argon ion laser light is 570 nm and 90 nm in 

crystalline silicon and gallium arsenide, respectively, where the absorption coefficient ( ) is 

obtained from the work reported by Aspnes et al. [67].  

 

2.6.6 Spatial resolution of a Raman microscope 

 The spatial resolution of a Raman microscope is closely related to the laser 

wavelength and microscope objective being used. It can be approximately predicted by the 

following equation [68]: 

                    
     

  
 (2.25)  
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where λ is the laser wavelength, and NA is the numerical aperture of the microscope objective 

being used. For example, the best spatial resolution which can be achieved from a Raman 

system equipped with a NA=0.90/100x objective lens and a 488 nm laser is calculated to be 

around ~1 µm. 

 

2.6.7 Micro-Raman spectroscopy experimental setup 

 In this work, a Jobin Yvon Horiba LabRAM 800 spectroscopic system with a 488 nm 

Ar
+
 laser, was used to capture the micro-Raman spectra at room temperature in back 

scattering geometry. The experimental setup is shown below: 

 

 

 Figure 2.22 Experimental set-up for micro-Raman spectroscopy [69]. 

 

 

 The laser was focused on the sample surface with an Olympus 100x microscope 

objective. The sample was moved by an automatic motorised XY stage whose step resolution 

is  .1 μm.  The scattered light from the sample was collected via the same microscope 

objective and passed directly through a notch filter, where the Rayleigh scattering is filtered 
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out. The filtered beam was then detected as a Raman signal by a liquid nitrogen cooled charge 

coupled device (CCD) detector using a dispersion grating of 1800 g/mm with a minimum 

peak shift resolution of 0.02 cm
-1

 and a measurement repeatability on the order of 0.1 cm
-1

. 

An integration time of 5 seconds was usually selected and three Raman spectra from the same 

probe position were averaged to increase the S/N.  

 The spectroscopy was calibrated prior to the measurement in order to ensure the 

consistency and accuracy of the results. More specifically, Raman calibration comprises of 

two major steps: firstly, the spectrograph was calibrated in wavelength (nm) using a white 

light beam in order to ensure the zero position observed in the spectrograph matches the zero 

position of the motor of the spectroscope. Secondly, the Raman peak position of a piece of 

strain-free Si at 520.07 cm
-1

 was used as a reference point for calibrating the step-size of the 

motor movement. The sample of interest was then placed on the sample stage and positioned 

underneath the selected optical lens for measurements. In addition, the incident beam which 

impinges on the sample has to be properly focused, this being another critical step prior to 

Raman measurements.  

 In the case of improper calibrations and incident beam focusing, the results can be 

inaccurate whereby the Raman peaks may be shifted either towards higher or lower 

wavenumbers (cm
-1

) and the collected Raman spectrum intensity will be quenched, 

respectively. Apart from that, the power of the laser source was kept at low levels (~ 10 mW) 

in order to prevent Raman peak shifting induced by thermal heating or damage to the sample 

surface.  
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2.7 Photoluminescence 

 Photoluminescence is a phenomenon whereby incident light is absorbed by a 

semiconductor and later released, as illustrated in Fig. 2.23. Photoluminescence will be 

emitted when there is an electron-hole pair generated by light photon recombination [56].  

 

Figure 2.23 Typical mechanism of photoluminescence [56]. 

  

 An electron-hole (e-h) recombination can occur when the energy of the incident 

photon, ħω is equal to or larger than the band gap energy, Eg, of a semiconductor, which 

excites an electron from the valence band to the conduction band. The electron can lose 

energy during the transition through non-radiative transitions (a recombination process 

without releasing photons, where instead one or more phonons are released), or alternatively, 

the electron could fall from the conduction band into an empty state of the valence band via a 

radiative transition process, thus emitting a photon of energy E = Eg [56].  

 The excitation process is nonetheless solely dependent on the type of semiconductor, 

i.e. whether its bandgap is direct or indirect. For direct bandgaps, an electron at the valence 

band maximum executes a vertical transition to the conduction band minimum directly 
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without a change in momentum as shown in Fig. 2.24a), and the energy is conserved 

according to [56], 

            (2.26)  

 

where    and    are the final and initial state energies, respectively, and ħ  is photon energy. 

In the case of an indirect bandgap, the electron excitation process requires an additional 

momentum to reach the conduction band minimum at a non-zero wavevector. It gains this 

momentum by interacting with a phonon. Then the statement of energy conservation is [56], 

               (2.27)  

 

where    is the energy of the phonon or other lattice excitation, and the plus and minus signs 

correspond to phonon emission or absorption, respectively. Therefore, the efficiency of 

indirect absorption is much lower than that of direct absorption due to the need for an 

additional third body interaction with a phonon for indirect absorption.  

 Figure 2.24 Excitation process in a) direct bandgap, and b) indirect bandgap semiconductor 

plotted as a function of wavevector [56]. 
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2.7.1 Photoluminescence spectroscopy experimental setup 

 In this work, all photoluminescence spectra were captured at room temperature using 

a Jobin Yvon Horiba LabRAM 800 spectroscopic system with a 488nm Ar
+
 laser, which is 

the same system as discussed in section 2.6.7. The experiment was carried out under the same 

instrument geometrical conditions as for micro-Raman spectroscopy, except that the light 

emitted from the sample under test was recorded as a function of wavelength (nm).  

 Similar to μ-Raman measurements, calibration is a compulsory step prior to PL 

measurements. However, only white light was required to calibrate the spectrograph back to 

zero position as the second step of calibration mentioned in section 2.6.7 was not required for 

PL measurements. In PL measurements, improper calibrations will lead to errors in recorded 

peak shifts, and the recorded intensity might be reduced by a few orders of magnitude if the 

incident beam is out of focus. Therefore, a systematic calibration is a key factor towards 

reliable, accurate and repeatable results.  

 

2.8 Transmission Electron Microscopy (TEM) 

 TEM is recognised as a powerful methodology for imaging solid materials at atomic 

resolution. It is operated analogous to the operation of a light microscope. In contrast to light 

microscopy, the main strength of TEM is its use of much smaller wavelengths which allows 

an extremely high-resolution image as small as 0.1 nm to be attained. This has made TEM a 

vital method in providing valuable data for research in medicine, biology and materials [70]. 

 In micro-structural imaging, various elements within a sample are distinguishable via 

variations of the image contrast produced by the interaction between the electron beam and 

the sample [70]. For instance, a heavier element appears darker in a TEM image due to the 

scattering of the electrons in the sample. Additionally, diffraction contrast introduced by 
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scattering from crystal planes of a sample comprising of randomly oriented crystals will result 

a different grey-levels in a TEM image. Consequently, different elements and crystal defects 

can be resolved unambiguously through the contrast differences from a high resolution TEM 

image. Apart from that, TEM can also be performed in bright and dark field imaging modes 

[70]. This has simplified the work for verifying crystal defects, especially defects related to 

planar defects, stacking faults or particle size.  

 

2.8.1 Experimental geometry of TEM 

 In this work, cross-sectional TEM images were taken using a 400 kV JEOL JEM 

4000 EX instrument with a point resolution of 0.18 nm. All TEM work was carried out by our 

collaborators led by Dr. Jon Molina at IMDEA, Madrid. Prior to TEM, the cross-sectional 

specimen was mechanically polished and then thinned to electron transparency using a 

focused ion beam (FIB) FEI Quanta FEG dual-beam system. Prior to that, the surface was 

covered with a platinum layer in order to protect the film from the Ga
+
 ion beam during the 

process of imaging and milling in the FIB. The HR-TEM images were acquired using a 

Philips Tecnai 20 FEG TEM operated at 200 keV.  

 Fig. 2.25 shows a schematic diagram of a typical transmission electron microscope. A 

TEM image was obtained by using a high voltage electron gun. The generated electron beam 

was focused by a condenser lens onto the electron-transparent specimen. Through the 

interaction of electrons and specimen, electron diffraction patterns were formed in the back 

focal plane. Consequently, a magnified image is projected through an electromagnetic lens 

onto a CCD camera and is viewable from a monitor screen connected to a computer. 
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 Figure 2.25 Schematic diagram of a transmission electron microscopy [70].  

 

2.9 Atomic force microscopy (AFM) 

 AFM is a variant of scanning probe microscopy that can provide information on 

topographical features at resolutions as small as an atomic lattice. Due to the extremely high-

resolution demonstrated by AFM, it has been used extensively in imaging, measuring and 

monitoring the surface morphology of materials. The principle of operation of the AFM is 

based on attractive or repulsive forces measured between the surface of the specimen and a 

light, sharp tip attached to a sensitive cantilever, as illustrated in Fig. 2.26 [71]. During the 

measurements, the sharp tip moves into contact or near-contact with the surface of a 

specimen, and the interactions between tip and surface cause the cantilever to bend. Bending 

of the cantilever induces shifting of a probe laser spot and the reflected laser beam is 

measured by a position-sensitive photodiode detector. The van der Waals force plays an 

important role in countering any forces that attract the tip to the surface [71]. Any additional 

forces induced on the tip cause the cantilever to bend rather than forcing the tip against the 

surface atoms [71]. The deflection as a result of cantilever bends can therefore be used as a 
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reliable indicator for surface topography. On the other hand, a feedback mechanism is 

occasionally employed by inducing a constant force between the tip and surface during the 

measurements. This force is used to adjust the tip-to-surface distance to a constant height to 

prevent any damage to the specimen surface.   

 Figure 2.26 Principle of operation of atomic force microscopy (AFM) [71]. 

 

 All AFM work was carried out by our collaborators led by Dr Paloma Tejedor at 

CSIC, Madrid. An 5500 Agilent AFM microscope was used to examine the growth 

morphology of the specimens. Si cantilevers with a nominal radius of 10 nm were used for 

AFM measurements. 
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Chapter 3 

The challenges facing high quality GaAs heteroepitaxy on Si 

substrates 

3.1 Introduction 

Successful heterogeneous integration of GaAs on Si is a target of the electronics 

industry since compound semiconductors offer a solution to future high speed and low power 

logic applications. Nevertheless, GaAs epitaxial layers grown directly on Si substrates are 

typically highly defective (~ 10
8
 cm

-2
) due to their crystal dissimilarity. 

 This chapter gives the reader an overview of the technological challenges that have to 

be overcome to realise the successful integration of GaAs on Si substrates. These include the 

problems due to crystal dissimilarity, existing solutions proposed by various scientists, and 

the remaining challenges towards the realisation of device quality GaAs materials.   

 

3.2 Difficulties for heteroepitaxial growth of GaAs on Si substrates 

 The major challenges for the growth of defect-free heteroepitaxial GaAs layers of 

device quality have been the incompatibility of the polar GaAs compounds and the non-polar 

substrate (Si or Ge), the thermal expansion coefficient and lattice constant differences 

between GaAs and Si or Ge, as summarised in Table 3.1 [72].  As a consequence of the 

technological interest in monolithic integration of GaAs optoelectronics on Si or Ge, some of 

the problems have now been resolved by great efforts made by scientists. These will be 

reviewed in the following sections. 
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Table 3.1 Material parameters for Si, Ge and GaAs [72]. 

 

3.2.1 Incompatibility of the polar/non-polar substrate 

 A typical polar III-V compound semiconductor comprises of two (or more) elements 

from group III and group V of the periodic table. Each of these atoms of different elements 

orientates in the crystal structure of the compound material in a particular sub-lattice [72]. As 

a consequence of the distinct polarities carried by the group III element and group V elements 

that occupy the sub-lattices, the overall semiconductor lattice possesses an ionic character. 

Conversely, a semiconductor containing only one type of elemental atom is a non-polar 

material. In this case, both of the sub-lattices of the crystal structure are occupied by the same 

atoms, and thus, result in no charge difference between the atomic bonding as they are 

neutralised by the adjacent atoms that possess the same charge distributions and bonding 

symmetries. The dissimilarities in polarity have hampered the integration of III-V compound 

semiconductors onto non-polar material substrates, and result in the structural defects known 

as antiphase boundaries (APBs) [18, 73-75]. 

 Due to the fact that GaAs and Si have a face-centred-cubic (fcc) crystal structure, 

they comprise of two fcc sub-lattices. One of the fcc sub-lattices is offset with respect to the 

other by half the diagonal of the fcc cube [18, 73]. For elemental semiconductors like Si or 

Ge, both of the sub-lattices are occupied by the same atoms, and thus it is invariant to a 

rotation of 90
0
 and the [110] and [    ] directions are indistinguishable (see Fig. 3.1a)). 

Conversely, [110] and [    ] directions in GaAs are crystallographically dissimilar, as each 

Semiconductor Lattice Parameter 

(Å) 

Thermal expansion 

coefficient at 300 K (K
-

1
) 

Crystal structure 

Si 5.4310 2.6 x 10
-6 

Diamond cubic 

Ge 5.6580 5.9 x 10
-6 

Diamond cubic 

GaAs 5.6533 5.7 x 10
-6 

Zincblende 
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fcc lattice is filled by Ga and As, respectively [18, 73]. During heteroepitaxial growth of 

GaAs on Si or Ge, the Ga and As atoms may preferentially grow on the (001) surface with 

either the [110] or [    ] direction parallel with one of the [110] direction in the substrate. 

That means a Ga and As monolayer may initially form at certain areas of the Si or Ge 

substrate. At a later stage, arsenic-arsenic (As-As) or gallium-gallium (Ga-Ga) bonds form 

when two such orientated grains coalesce, which is illustrated in Fig. 3.1 b)i). These bond 

boundaries are antiphase boundaries. Alternatively, APBs could be formed by the presence of 

monolayer-high steps on the (001) surface. These monolayer steps lead to a perturbation of 

the order of the (001) planes as shown in Fig. 3.1 b)ii). It is important to eliminate the APBs 

because they are typically one of the major concerns impacting the deterioration of electronic 

and optical properties of GaAs devices [18, 73-75].  

 Great strides have been made by various scientists in resolving the problems of anti-

phase domains (APD), and ultimately, APDs appearing in GaAs epilayers on Si [18, 76, 77] 

or Ge [78-80] substrates. Successful APD suppression has resulted from using either Ga or As 

pre-layers and tilted substrates together with an optimised substrate preparation in order to get 

a clean double-step surface. This technique includes selection of appropriate pre-exposure of 

either Ga or As for a precise time in order to ensure uniform coverage of the surface by a 

monolayer, while a tilted substrate is used to provide double-layer high steps. In addition, 

Noge et al. have reported an alternative way to create a double-step surface for growing APB-

free GaAs epilayers on exact (001) substrate surfaces, which is by pre-heating the substrate at 

1000
o
C under ultra-high vacuum ambient for 30 minutes [81]. This method is however shown 

experimentally [76] to generate a much higher dislocation density in the epilayer compared to 

that of misoriented substrates.     
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 Figure 3.1 a) The two possible orientations of the GaAs zincblende unit cell, and b) 

Schematic diagram of APB formation in GaAs grown on Si. (i) APBs form due to non-

uniform coverage of pre-monolayer, and (ii) APBs appear due to the presence of monolayer 

high steps as a result of non-uniform pre-monolayer [18, 73-75]. 

 

3.2.2 The discrepancy of the thermal expansion coefficients 

 Apart from the aforementioned problem, another issue of concern is the difference in 

the thermal expansion coefficients between III-V compound semiconductors and elemental 

semiconductors, especially between GaAs and Si, where the discrepancy is as large as 60%. 

Problems arise after the growth of the GaAs layer, upon cooling down from the elevated 

growth temperature to room temperature. This is because GaAs (larger thermal expansion 
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coefficient) grown lattice matched to a Si substrate will shrink faster upon cooling, thus 

resulting in tensile thermal strains in the III-IV epilayers. These residual strains typically lead 

to the generation of additional dislocations, bending and cracking in the epilayer [76, 82].  

 Concerning the generation of thermal strains, they can happen in two distinct 

circumstances. Firstly, if the epilayer is partially relaxed at the elevated temperature during 

the growing process, it will experience a transition from compressive to tensile strains at a 

certain epilayer thickess. This transition is nonetheless dependent on the growth temperature 

and annealing process. For instance, the thickness of the transition for GaAs and InP could 

vary from  .1 μm to 1 μm as reviewed by Asai et al. and Yamamoto et al. [83, 84], 

respectively. Secondly, if the epilayer is fully relaxed at the growth temperature or annealing 

temperature, Tg, it will not experience plastic deformation during the cooling process; instead, 

the thermal misfit          will commence generation only at room temperature (RT) and 

can be represented by [84] 

                                   4.1  

where                    is the thermal coefficient mismatch between the III-V 

semiconductor and the Si substrate. As reported by Carlin et al. [21], the critical cracking 

thickness as a result of thermal strain in typical GaAs epilayers on Si is approximately 3-5 μm 

and preferentially forms in the [110] directions with a crack spacing of < 2   μm. 

  Several remedies have been proposed in order to reduce the generation of thermal 

strains in the GaAs epilayer. These including slow cooling rates [79], growth of the epilayer 

on reduced areas, which allows the growth of a crack-free epilayer [85] and neutralising the 

tensile strains generated during the cooling process by deliberately induced compressive 

strain [76].  
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3.2.3 Lattice mismatch 

 The major challenge still lies in the large lattice mismatch between the GaAs material 

and the Si substrate. Comparing their lattice constants, the discrepancies are 4.1% and 0.1% 

between GaAs and Si and Ge, respectively. Thus the integration of GaAs semiconductors on 

Si materials is much more challenging than for Ge materials. It is possible to 

pseudomorphically grow GaAs compound epilayers on Si or Ge substrates provided that the 

thickness of the epilayer is considerably small - which means keeping the epilayer below the 

critical thickness. Considering a lattice mismatched system, the misfit strain generated 

between an epilayer with lattice constant af deposited on a substrate with lattice constant of as 

can be defined by [86] 

   
     

  
 4.2  

 If a thin epilayer of larger lattice constant is pseudomorphically grown on a substrate 

with a smaller lattice constant, the in-place lattice constant of the epilayer will be 

compressively strained by the substrate. Alternatively, the in-plane lattice constant of the 

epilayer will be tetragonally tensile strained by the substrate when its lattice constant is 

smaller. In both cases, the in-plane lattice constants of the overlayer will shrink or stretch in 

order to match the substrate lattice constants, while the out-of-plane lattice constants change 

at the same time depending on the type and the amount of strain remaining in the film [82, 86-

88]. However, the epilayer will begin to relax when it reaches a certain thickness, as shown in 

Fig. 3.2. At this point, the misfit strain generated at the interface now exceeds the elastic 

strength of the coherent semiconductor-semiconductor bonds. Meanwhile, the atomic bonds 

at the interface between two materials begin to break and ultimately lead to formation of 

structural defects in the GaAs layer. These broken bonds can be depicted as a one-
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dimensional line of broken atomic bonds, which are known as misfit dislocations [82, 86-88], 

as illustrated in Fig. 3.2. 

 

 

  

  

 There are two commonly occurring circumstances that lead to the generation of misfit 

dislocations [82, 86-88]. They are schematically represented in Fig. 3.3. In the first case, the 

misfit dislocations originate from a dislocation half-loop that nucleates at the surface and 

expands towards the interface between the epilayer and the substrate at a later stage. 

Considering the second case, the existing threading segments at the interface propagate 

towards the top surface and generate the misfit dislocations.  

 Figure 3.3 Process of misfit dislocation generation. a) the half-loop forms at the surface and 

expands toward the interface, and b) by threading segments [82, 86-88]. 
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Figure 3.2 Schematic diagram of a) epilayer fully matched to substrate, b) epilayer somewhat 

relaxed, and c) epilayer fully relaxed. 



 

70 

 

  During the direct growth of GaAs material on Si substrates, large defect densities (a 

combination of misfit and threading dislocations) are generated in the epitaxial layers as a 

consequence of the significant lattice mismatch. For instance, direct growth of GaAs on Si 

has typically resulted in misfit defect densities of > 10
9
cm

-2
 [18, 89].  

 So far numerous approaches and solutions have been reported by various scientists in 

order to address the problems of highly defective heteroepitaxy. To this author’s knowledge, 

these include the use of composition-graded [20, 21] and strained interlayers (InGaAs, Ge, 

SiGe and SrTiO3) [21, 22, 25, 90] as a buffer layer. Other approaches include thermal cyclic 

annealing (TCA) [91, 92] and selective area growth on patterned substrates [25, 77, 93], using 

either molecular beam epitaxy (MBE) or metal-organic vapour phase epitaxy (MOVPE) for 

III-V epilayer growth. These have successfully brought the defect densities down to as low as 

10
5
 cm

-2
. Table 3.2 summarises the contribution of various authors in defect density 

reduction. 

 

Table 3.2 Numerous approaches have been reported by various scientists in order to address 

the problems of highly defective heteroepitaxy. 

Growth method Buffer layer Defect density (cm
-2

) Ref. 

LP-MOVPE and TCA Single strained InGaAs 1.2x10
6
 [20] 

MBE and TCA Graded Ge/SiGe  1x10
6
 [21] 

MBE SrTiO3 <1x10
5
 [90] 

MBE Ge <5x10
5
 [22] 

MBE Ge/SiGe/nanostructured Si <6x10
5
 [25] 

MOVPE and TCA a-GaAs/a-Si  <1x10
6
 [91] 

MOVPE - 5x10
8
 [92] 

MBE Relaxed Ge layers <1x10
7
 [94] 

MBE Graded Ge buffers 8x10
8
 [95] 
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Nevertheless, the solution of using a thick buffer layer is not usually cost effective 

and thermal cycle annealing might deteriorate adjacent devices previously fabricated on the Si 

substrate. This still remains an immense challenge in using GaAs material on Si to fabricate 

CMOS devices because the tolerance to dislocations is very low (at most 10
4
-10

5
cm

-2
) [18]. 

 

3.3 Defect density reduction via epitaxial lateral overgrowth (ELO) 

 A promising method for defect density reduction is to use lateral overgrowth of III-V 

compounds on partially masked substrates. In this method, the epitaxial layer is selectively 

grown on a partially masked substrate [89].  

 Zytkiewicz et al. has demonstrated the ELO growth of low-defect density GaAs 

layers on silicon substrates by liquid phase epitaxy (LPE). Fig. 3.4 shows a cross-sectional 

TEM image of the LPE ELO GaAs/Si growth system [96]. The width and thickness of the 

ELO layers grown are 85 m and 11 m, respectively. As expected, the GaAs buffer layer 

grown directly on a Si substrate exhibited very high dislocation densities, ~ 10
8
 cm

-2
. In 

contrast, the dislocation densities generated within the ELO layer are greatly reduced, 

especially on the laterally grown ELO ‘wings’. Nevertheless, there are small numbers of 

dislocations still propagating from the seeding area of the buffer layer and spreading only in a 

small region throughout the ELO layer as illustrated in Fig.  .4. They are defined as ‘60
o
-

type’ dislocations due to their inclination to the interface. This implies the importance of 

keeping the thickness as low as possible in order to achieve a defect free ELO layer as 60
o
-

type dislocations are likely to propagate more widely as the layer thickness is increased [97] 
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Figure 3.4 Cross-sectional TEM image of LPE grown GaAs on Si ELO structure. The sample 

comprises a thin GaAs layer grown at low temperature (LT), 2μm MBE GaAs buffer layer 

and GaAs ELO layer on Si (001) substrate. Threading dislocations propagated from the mask-

free area through the top ELO GaAs layer, while the laterally grown ELO parts (“wings”) 

contain a much lower dislocation density [96].  

 

 In addition, similar phenomenona have been reported for ELO growth of other 

semiconductor materials. For instance, Nakamura et al. [98] has demonstrated a multi-

quantum well InGaN/GaN laser diode fabricated using ELO growth on a GaN/sapphire 

substrate. This ELO-based laser diode is capable of surviving more than 1000 hr [98] in 

favorable comparison to the conventional InGaN/GaN/sapphire laser which possesses only a 

300 hr life-time [99]. The significant improvement was solely due to the drastic reduction of 

threshold current density of the devices built on low defect density ELO-based substrates. All 

these outcomes have shown the potential of ELO technology as an option in developing high 

performance semiconductor devices containing lattice mismatched epitaxial structures.  
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3.3.1 Further defect density reduction by nanoscale ELO structures 

 ELO structures have greatly improved the material quality of lattice-mismatched 

systems by reducing the dislocation density to the range 10
5
-10

6
 cm

-2
. However, this is still 

not ideal for fabricating CMOS devices as the tolerance to dislocations is even lower (<10
5
 

cm
-2

). Therefore, further reduction of the dislocation density is necessary, and this has been 

theoretically and practically predicted as being achievable by extending the ELO technology 

to the nanoscale [28, 93, 100, 101].  

 Fig. 3.5a)-b) show cross-sectional schematic diagrams of the conventional ELO 

structure on a micron-scale masked substrate and a nanometre scale masked substrate, 

respectively. Reductions of defect density (to < 10
5
 cm

-2
) is likely to be achievable by 

nanoscale ELO structuring, as the nanoscale masks act more effectively at pinning interfaces 

for the annihilation of structural defects present at the GaAs/Si interface [28, 93, 100, 101]. 

To date, this mechanism has been identified as being responsible for the improvement in 

material quality.  

 For instance, a relatively low defect density GaAs heteroepitaxy has been reported 

using this approach by Chao et al., for the selective growth of GaAs on Si substrates using a 

nanostructured SiO2 mask [5, 102, 103]. As shown in Fig. 3.5c), the nanoscale masks can act 

more effectively as a barrier to block the dislocations from propagating towards the surface 

and this has successfully reduced the defect density of the GaAs overlayer to 3.3 x 10
5
 cm

-2
 

[103]. This achievement has shown the potential of this technique for the realisation of high 

quality GaAs on Si for next generation of commercial semiconductor industry devices. 

However, the challenges still remain to further optimise the ELO growth process in order to 

further reduce the defect density to < 10
5
 cm

-2
 for device applications. That said there are 

remaining technological challenges that need to be overcome. The main challenges are 

identified to be [104-107]: 
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i) The necessity of the deposition of a good GaAs buffer layer on Si as a substrate for 

subsequent ELO experiments. This is because the quality of the selective lateral grown 

epitaxial will be greatly affected by what it is grown upon.  Therefore, an APD-free and low 

dislocation density GaAs/Si material will be required [104]. 

ii) The complete elimination of coalescence defects. This happens when the adjacent laterally 

grown ELO stripes coalesce, and this leads to lattice misorientation and stress at the coalesced 

regions [104, 105]. 

iii) Investigation and reduction of the crystallographic tilt in the ELO layer due the patterned 

oxide masks. This crystallographic tilt can cause the ELO layer to bend, leading to a non-

uniform distribution of strain across the overlayer [106, 107]. 

 With so many diverse challenges to the realisation of high quality ELO GaAs 

materials, the selection of appropriate characterisation techniques is an essential first step to 

identify the sources of defect generation or significant effects of each growth step (i.e. growth 

and annealing temperatures, Ga/As flux ratios and layer thickness), towards the successful 

realisation of this technique. Therefore, the first aim of this thesis is to demonstrate how the 

targeted non-destructive X-ray characterisation routine shown in Fig. 1.7 can be used to 

effectively tackle different issues associated with heteroepitaxial growth and provides useful 

feedback to III-V to help optimise optimal growth processes. This will be discussed in the 

following Chapter 4.  
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 Figure 3.5 Schematic diagram of III-V layer by epitaxial lateral overgrowth (ELO) on a a) 

micron-scale patterned oxide, b) nano-scale patterned oxide. Defectivity in the laterally grown 

III-V layer reduces by extending the ELO approach to the nanoscale and c) Cross-sectional 

TEM images of GaAs/Si grown in trenches, showing dislocation blocking at the epitaxial 

layer [5, 102, 103]. 
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Chapter 4 

Characterisation of MOVPE-Grown GaAs on Ge or Si substrates 

4.1 Introduction 

 As previously discussed in Chapter 3, the most common problems that are 

encountered during the hetero-integration of GaAs materials lattice matched to Si substrates 

have been anti-phase domains, dislocations, strain and lattice tilt distributed within the GaAs 

layers due to crystal dissimilarities. This chapter has the preliminary aim to demonstrate the 

capability of the X-ray characterisation routine shown in Fig. 1.7 in examining/identifying 

various issues associated with heteroepitaxial growth.  

 In the work presented here, all GaAs materials were grown and provided by 

collaborators from Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), Spain. These 

GaAs materials have been exposed to distinct growth conditions in order to fabricate a series 

of samples with different defects (strain relaxation, dislocations, antiphase domains, lattice 

tilt), following advice from the experienced growers at CSIC. These ‘problematic’ GaAs 

materials (see Fig. 4.1) were used to demonstrate the capability of the X-ray characterisation 

routine in evaluating different defects present in the heteroepitaxial grown GaAs materials, as 

well as identifying significant effects attributable to each growth process.  

Figure 4.1 Schematic diagram demonstrating different defects appearing in a GaAs 

heteroepitaxial layer. 
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4.2 Growth of GaAs heteroepitaxial layers 

 In order to produce a series of suitable GaAs materials for the purpose of this work, 

both Ge and Si substrates were used. A series of GaAs/Ge samples with different defects were 

fabricated by modifying the growth routines that have been previously reported by Galiana et 

al. [108].  Ge substrstes were used due to the relatively small 0.1% lattice mismatch in GaAs 

on Ge (compared to a 4.1 % lattice mismatch between GaAs and Si), therefore the growth is 

more controllable.  

 For comparison, a GaAs/Si sample was also prepared using a similar growth routine. 

The direct epitaxy of GaAs material on a Si substrate is expected to be much more defective 

(> 10
6 
cm

-2
) relative to that of growth on Ge substrates. This is due mainly to the larger 4.1% 

lattice mismatch between GaAs and Si, which corresponds to a critical thickness for strain 

relaxation of ~ 1 nm [109], and a large density of dislocations is generated upon exceeding 

the critical thickness. These GaAs heteroepitaxial layers (including both GaAs/Ge and 

GaAs/Si samples) will serve as a comprehensive set of GaAs materials with different defects 

or defect densities to test the capability of the characterisation routine shown in Fig. 1.7 in 

tackling different problems associated with heteroepitaxial growth of III-V materials.  

 

4.2.1 Growth of GaAs/Ge samples 

 In this work, GaAs/Ge samples were fabricated in a 2” AIX2  /4 horizontal metal-

organic vapour phase epitaxy (MOVPE) reactor chamber. The MOVPE growth process took 

place at a pressure of 100 mbar and with a total flow of 14 slpm of palladium-purified 

hydrogen (as a carrier gas), using arsine (AsH3) and tri-methyl-gallium (TMGa) precursors, 

which are the most commonly used group III and V precursors in MOVPE for growing an un-

doped GaAs epilayer [86]. The growth of GaAs materials is formed through the surface 
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reaction between gases transported from sources containing the required chemical elements, 

as shown in Fig. 4.2. 

 Figure 4.2 Schematic diagram of an arsine (AsH3) and tri-methyl-gallium (TMGa) precursor 

MOVPE reactor. A GaAs epilayer is grown via the chemical reaction between the gases from 

the two precursors [86]. 

 

               A misoriented Ge wafer, i.e. [001] tilted 6º towards [110] was created by annealing 

the Ge substrate at a temperature of 700
o
C in nitrogen for 30 mins [110]. The Ge substrate 

was then exposed to arsine (AsH3) for 900 s at a temperature of 640ºC in order to deposit an 

arsenic monolayer across the Ge surface. An arsenic monolayer was chosen because of the 

tendency of As to self-terminate with monolayer coverage on the Ge substrate [111, 112]. 

This misoriented substrate together with an As monolayer is vital to produce a double-step 

single-domain surface to suppress the formation of APDs at the GaAs/Ge interface [113, 

114]. 

                Concerning the growth of the GaAs epilayer, the selection of an appropriate V/III 

ratio is relatively important to ensure a high quality nucleation layer. It has been reported that 

GaAs nucleation using an extremely high V/III flux ratio results in an As-rich film with 

excessive Ga vacancies that lead to a high densities of defects at the interface. Similarly, high 
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densities of misfit/threading dislocations are generated at the GaAs interface grown with a 

relatively low V/III flux ratio [115].  

               In this experiment, a 50 nm thick GaAs nucleation layer was deposited at a growth 

temperature of 500ºC under an arsenic/gallium (V/III) flux ratio of 120 [116-118]. This low 

temperature nucleation, together with the As pre-layer, has been demonstrated by Galiana et 

al. to effectively suppress the formation of APDs at the interface [119].   

               Although, the low temperature GaAs nucleation at 500°C is helpful in resolving the 

aforementioned problems, the resulting layer quality is generally unsuitable for device 

applications. Indeed, it has been reported that MOVPE-grown GaAs layers have a narrow 

optimal growth temperature within a range from 620 – 680°C [118, 120]. Therefore, a growth 

temperature at 640ºC was chosen to grow a GaAs buffer layer using a V/III flux ratio of 55, 

which subsequently formed a double-step growth. Once the growth temperature is beyond 

620°C, it is important to keep the V/III flux ratio ~60 in order to achieve a good surface 

morphology[121].  

Five different GaAs/Ge samples were grown (following advice from the collaborator 

from Spain), namely (i) Ge substrate annealed at a high temperature (700
o
C), in order to 

create a double step surface; (ii) an As layer pre-deposition, to achieve a single-domain 

surface; (iii) a GaAs nucleation layer with a thickness of 50 nm grown at a temperature of 

500
o
C ; and (iv) a GaAs layer of 600 nm grown at a higher temperature (640

o
C). A set of 

GaAs/Ge samples - 1) sample A, grown omitting steps (ii) and (iii), i.e. a GaAs layer grown at 

640
o
C just after the Ge substrate annealing at 700

o
C in H2; (2) sample B, grown omitting the 

low temperature nucleation layer and (3) sample C, grown using the full routine. In addition 

samples D and E were grown in the same way as sample B, but in each case a thicker GaAs 

overlayer was produced (see Table 4.1).  
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Table 4.1 Growth parameters for GaAs/Ge samples A-E. 

Sample High temp 

annealing 

at 700ºC   

As pre-

deposition 

at 640ºC 

Low temp (500ºC) 

GaAs nucleation 

thickness (nm) 

High temp 

(640ºC) GaAs 

buffer 

thickness (nm) 

A Yes 

Yes 

Yes 

No - 600 ± 10  

B Yes - 600 ± 10 

C Yes 50 ± 10 600 ± 10 

D Yes Yes - 800 ± 10 

E Yes Yes - 1000 ± 10 

 

 

4.2.2 Growth of a GaAs/Si sample 

 In addition to the large lattice mismatch, the existence of a native oxide (SiO2) on the 

Si surface can complicate the growth process for GaAs/Si, as a totally clean Si surface is 

mandatory to ensure a high quality GaAs layer. In the case of improper cleaning, the residue 

of silicon dioxide (SiO2) on the Si surface can lead to a polycrystalline GaAs layer [122].  

 Several methods have been implemented for Si surface cleaning; these include wet-

chemical processing with hydrofluoric acid (HF) to dissolve SiO2 [123] followed by 

annealing at a temperature of about 950°C under H2 flow in an MOVPE reactor [124], or 

thermal absorption in an MBE chamber at a temperature of 900°C [125]. Using atomic 

hydrogen in an MBE chamber at lower temperature is a feasible alternative for substrate 

cleaning, which has demonstrated its superior capability for Si substrates [126, 127]. 

 Misoriented Si substrates, i.e. [001] tilted 4º towards [110] were used in these 

experiments. They were first cleaned in a VARIAN-360 MBE system using atomic hydrogen 

irradiation at a substrate temperature of 630 ºC at a background pressure of 10
-6 

Torr (high 

vacuum and impurity free ambient) for 45 min prior to epitaxial deposition. This atomic 

hydrogen was generated by dissociation of H2 gas at a W filament (1800ºC) in a home-built 

cracker cell working at an acceleration voltage of 2.5 kV and ionisation currents in the 30-35 



 

81 

 

mA range. Ex situ cleaning by atomic hydrogen in an MBE system was chosen due to the 

restriction of the MOVPE reactor which uses conventional halogen lamps. These are not able 

to elevate the temperature to 950°C for thermal desorption of the native oxide. 

 After ex situ cleaning in the MBE chamber, the silicon substrate was transported into 

the MOVPE reactor (previously used to grow GaAs/Ge materials). The Si substrate was 

annealed at a temperature of 735°C, followed by annealing in AsH3 at 500°C in order to 

create a double-step surface with single domain As-As dimers for growing an APD-free 

epilayer [128]. Ultimately, a GaAs nucleation layer was deposited using a growth temperature 

of 500°C, using same growth parameters previously used for deposition on Ge substrates, as 

illustrated in Fig. 4.3 below. For GaAs/Si samples, the deposition temperature was kept low at 

500
o
C in order to prevent the generation of additional cracks or dislocations due to the 60% 

thermal expansion coefficient mismatch upon cooling down the epilayer from elevated 

growth temperatures [86].  

 
Figure 4.3 Flow diagram illustrating the growth stages for GaAs/Ge or Si samples, respectively. 

Misoriented Ge substrates, i.e. [001] tilted 6º 

towards [110] 

600 nm 600 nm 800 nm 1000 nm 600 nm 

Sample B Sample D Sample E Sample C 

As pre-deposition at 640
o
C 

Low temperature (500
o
C) GaAs nucleation layer 

High temperature (640
o
C) GaAs buffer layer 

Sample A 

GaAs/Ge samples GaAs/Si sample 

Misoriented Si substrates, i.e. 

[001] tilted 4º towards [110] 

 

180 nm 

GaAs/Si Sample 

As pre-deposition at 500
o
C 

50 nm 



 

82 

 

4.3 Evaluation of the dislocation density by SXRT 

These GaAs heteroepitaxy layers were first analysed using SXRT to reveal the type 

and extent of dislocations formed at the GaAs overlayer interfaces. Fig. 4.4 shows the       

large-area back reflection topographs (LABRTs) for GaAs/Ge samples A – E and the GaAs/Si 

sample, respectively. The projection of the diffraction vector,   , of the X-ray beam onto the 

plane of the recording film is represented by the arrow. 

Considering the GaAs/Ge samples, no images of extended linear dislocations are 

observed in the topograph of sample A (Fig. 4.4a). Conversely, varying densities of misfit 

dislocation networks are clearly observed in the topographs of the other GaAs/Ge samples. 

From Fig. 4.4b, sample B appears to be at an early stage of the strain relaxation process, as 

only a small number of misfit dislocation networks are observed. This is followed in 

ascending order by samples C-E as the thickness of the GaAs overlayers increases, while for 

sample A the GaAs layer is likely to be in near perfect registry with the underlying substrate. 

Comparing the topograph for each of the samples, the critical thickness tc for misfit 

dislocation generation is estimated to be ~ 600 nm, which is higher than the theoretically 

expected value (tc = 300 nm) according to the Matthew-Blakeslee model [129]. A similar 

phenomenon has been observed by Knuuttila et al. [121], where coherent growth for layer 

thickness in excess of tc is achievable by carefully selected growth parameters. Although 

sample C was grown using different routines compared to that of samples B, D and E, it is 

also found to be relaxed and contains an intermediate density of misfit dislocations (between 

B and D). This is thought to be due to the total thickness (650 nm) of sample C exceeding the 

tc of ~600 nm when the additional 50 nm thick low temperature GaAs nucleation layer is used 

prior to the deposition of 600 nm GaAs buffer layer at 640
o
C. Therefore the epilayer is 

relaxed.   
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From the dislocation networks observed in the topographs, the dislocation density 

(cm
-2

) of the particular specimen is determinable using equation 2.10, as discussed in section 

2.5.5. This method provides a non-destructive way of estimating dislocation densities 

throughout the entire film without the need for chemical etching of the layer. Analysis reveals 

the highest dislocation density (8.9 ± 0.7 x 10
5
 cm

-2
) in the thickest film – sample E, as 

presented in Table 4.2. Misfit dislocations are generated in samples B - E, once the thickness 

of the GaAs epilayer exceeds the experimental critical thickness of 600 nm, where they are 

created to accommodate the ~0.1% lattice mismatch between GaAs and the Ge substrate. 

From the topographs, there is no signature of threading dislocations being observed, and the 

observed defect images are thought to be comprised mostly of dislocation networks confined 

at the regions close to the GaAs/Ge interface.  

 Figure 4.4(a) - (f).       large area back-reflection topographs for GaAs on Ge and Si 

substrates, respectively. The projection of the diffraction vector,   , for all topographs 

is shown in (a). 
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On first inspection it appears that no individual dislocations are present in the 

topograph of the GaAs/Si sample (see Fig. 4.4 f), but we must consider the limitation of 

SXRT spatial resolution (∼  μm), as previously discussed in Chapter 2.  When, as is probably 

the case in this current example, individual dislocation line images are dense, they tend to 

merge meaning the topographs show only uniform image contrast instead of individual 

dislocation lines being observed. This implies that the dislocation density in this film exceeds 

the resolution limit for X-ray topography (i.e.          ). Indeed large densities of 

dislocations are typically formed in GaAs epilayers that are grown directly on Si substrates 

which results in a dislocation density of over             [130], as they are created to 

accommodate the 4.1% lattice mismatch between the GaAs and silicon substrate. The 

estimated defect densities for these GaAs heteroepitaxy layers are summarised in Figure. 4.5. 

 

Figure 4.5 Dislocation densities calculated from SXRT for GaAs deposited on Ge and Si 

substrates. Note that the dislocation density of GaAs/Si sample is an estimated value since no 

individual dislocations are observed from topograph. 
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4.4 Evaluation of the strain relaxation process by high-resolution X-ray 

diffraction (HRXRD). 

4.4.1 Preliminary investigation using 004 ω-2θ scan 

 If a GaAs layer is coherently grown onto a Ge or Si substrate, the GaAs material will 

be tetragonally strained due to the lattice mismatch.  Strain changes both the interplanar 

spacings of the GaAs epilayer and the angles between the reflecting planes (∆ω) and the 

surface, and therefore, leading to the splitting of peak position between GaAs and substrate in 

the ω-2θ scan (see Fig. 4.6). In an ω-2θ scan, the angular position of the GaAs overlayer is 

always measured relative to the substrate peak position located at 0 arc-sec.  

 Figure 4.6 A side view of a) tensile strained and b) compressive strained GaAs epilayers. 

Strain changes both the interplanar spacings of the GaAs epilayer and the angles between the 

reflecting planes and the surface, and therefore, leading to the splitting of the ω-2θ scan, as 

shown in c). Note that, the x-scale is not symmetrical about 0 arc-sec 
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GaAs overlayers. These scans run in the range from -300 to 500 arc-sec and from -16000 to 

2000 arc-sec for GaAs/Ge and GaAs/Si samples, respectively, based on expected peak 

positions from RADs simulations. From Fig. 4.7a, the double-axis 004 ω-2θ scans for 

GaAs/Ge samples A-E consistently show an intense GaAs peak located around ∆ω ∼180 arc-

sec. In contrast, a broad (~ 420 arc-sec) and weak intensity GaAs peak is observed around ∆ω 

∼ -5500 arc-sec in the 004 ω-2θ scan of the GaAs/Si sample (see Fig. 4.7b). This peak can be 

interpreted as being due to diffracted intensities from a mosaic and highly defective GaAs 

epitaxial layer in which each mosaic region contributing diffracted intensity throughout a 

particular angular range [131].  

The examination of these GaAs heteroepitaial layers was repeated using triple-axis 

004 symmetric ω-2θ scans (with an analyser placed before the detector to restrict its angular 

acceptance) in order to reveal finer details from these materials. Concerning the GaAs/Ge 

samples A-E (see Fig. 4.7c), it is obvious that Pendellӧsung fringes are only significant for 

the thin (600 nm) GaAs/Ge samples A and B.  These fringes become indistinguishable for 

samples C to E as the thickness of these epilayers exceeds the critical thickness of 600 nm. 

These fringes are formed by the interference effects occurring as a result of an exchange in 

energy between the  forward travelling (incident) X-ray beam and the diffracted beam from 

the GaAs and Ge layers [132, 133]. The Pendellӧsung fringes are very sensitive to crystal 

distortions or crystal defects because crystal defects destroy the perfect periodicity of the 

crystal lattice, and therefore the fringes disappear [132, 133]. Considering the samples under 

test, the disappearance of the fringes is typically an indication of the presence of dislocations 

due to these GaAs layers starting to relax [132-134]. This observation correlates well with the 

results previously discussed in the SXRT section. However, no GaAs related peak is observed 

in the triple-axis 004 ω-2θ scan for GaAs/Si sample (see Fig. 4.7d). This is most likely due to 

the GaAs overlayer of this sample being too defective, and the diffraction intensities from the 
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highly mosaic crystal structure are typically scattering X-rays at wide angles meaning they are 

too weak to produce sufficient intensities to pass through the highly restricted angular 

acceptance angle of the analyser placed before detector for triple-axis measurement. This 

agrees with the conclusion from SXRT that the GaAs/Si is defective beyond the resolvable 

SXRT limit.   

 

 

Figure 4.7 a)-b) are the double-axis and c)-d) are the triple-axis 004 ω-2θ scans for GaAs/Ge 

and GaAs/Si samples, respectively. 
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4.4.2 Evaluation of degree of relaxation using reciprocal space mapping (RSM) 

In order to obtain both the in-plane and perpendicular lattice constants 

simultaneously, these GaAs heteroepitaxial layers were evaluated using 224 asymmetric 

RSMs. The degree of relaxation of the GaAs layer was determined by using the average 

angular peak separations (         ) of two RSMs recorded by successive 180
o
 rotations of 

the sample around the [001] axis. This is important in order to eliminate the tilt [135] thereby 

ensuring a precise result (see Fig. 4.8). RSM is however inapplicable for the highly defective 

GaAs/Si sample in this case. Therefore, different characterisation routines were employed for 

characterising the strain/relaxation and crystallinity for this sample, which will be described 

in section 4.4.3. 

Figure 4.8 Schematic diagram illustrating an epilayer tilted with respect to the substrate. 

Effect of tilt on the peak splitting between the epilayer and the substrate is reversed if the 

specimen is rotated by 180
o
 about its surface normal ([001] axis), but the splitting due to the 

lattice mismatch will not be affected by such a rotation [43].   

 

An RSM can be obtained by collecting a series of triple-axis ω-2θ scans recorded 

across different ω offsets, as shown in Fig. 4.9a). Fig. 4.9b) shows the 224 reciprocal space 

map of sample E, by way of example. When one uses an asymmetric 224 RSM, the lattice 
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parameter information both in the growth axis [001] and the surface direction [110] are 

simultaneously recorded. The diffracted intensity contours of the RSM are plotted as a 

function of reciprocal space axes Qx and Qz, where Qx and Qz correspond to in-plane and out-

of-plane lattice constant of the GaAs epilayer, measured in reciprocal space (Å
-1

). Considering 

the Qx axis of sample E, both the GaAs in-plane and out-of-plane lattice points are altered 

with respect to the degree of relaxation (or strain) associated with the epilayer. From RSM, 

the extracted Qx and Qz positions can be used to calculate the in-plane (  ) and out-of-plane 

(  ) lattice constants of the GaAs epilayer, which are given by [135]:  

     
     

  
        

  

  
 
  4.3  

where h, k, l are the equal to 224 – the asymmetric reflection order being used. 

 Figure 4.9 a) Schematic diagram illustrating the triple-axis asymmetric ω-scans and ω-2θ 

scans in real space, and b) Asymmetric 224 reciprocal space map of sample E . The change in 

in-plane and out-of-plane lattice constants due to relaxation process alters the position of the 

reciprocal lattice point (Rlp) in Qx and Qz planes, respectively. 
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The degree of relaxation for samples A - E was calculated using the in-plane lattice 

constant obtained from equation 4.1 through the following relation [135]: 

              
       
       

       4.4  

where   ,               and              are GaAs in-plane lattice constant 

extracted from RSMs, GaAs lattice constant and substrate lattice constant, respectively. The 

resulting calculated values (see Table 4.2) correlate well with the dislocation densities 

estimated from SXRT, in that the degree of relaxation and dislocation density increase in 

parallel as the layer thickness increases.  Fig. 4.10 shows the dislocation densities plotted as a 

function of in-plane lattice constant for GaAs/Ge samples A-E. 

 

 

Sample 

ID 

all, in-plane 

lattice constant 

calculatedfrom 

RSMs, nm 

Degree of 

relaxation, % 

Dislocation Density, 

x10
5
cm

-2
 

A  0.56575 < 1 None visible 

B 0.56574 < 2 1.2 ± 0.7 

C 0.56569 15 4.0 ±0.7 

D 0.56561 33 7.1 ± 0.7 

E 0.56555 48 8.9±0.7 

 

Table 4.2 Degree of relaxation calculated from RSMs and defect densities estimated from 

SXRT. 
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Figure 4.10 Dislocation densities plotted as a function of in-plane lattice constant for 

GaAs/Ge samples A-E. 

 

 

Concerning the results presented so far from the GaAs/Ge samples, the use of 

different nucleation conditions (an As pre-deposition monolayer or the additional low 

temperature (500
o
C) deposited GaAs nucleation layer) do not appear to significantly influence 

the strain relaxation process. In fact, SXRT and 224 RSMs confirm that the overall GaAs 

overlayer thickness plays the more important role in determining relaxation, as dislocations 

start forming beyond the critical thickness, and therefore, increase the dislocation densities of 

the film (see Table 4.2).  
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4.4.3 Strain/relaxation and crystallinity evaluation of the defective GaAs/Si sample 

i) Determination degree of relaxation  

As previously discussed, the triple-axis or RSM measurements are inapplicable for 

the evaluation of relaxation for the GaAs/Si sample due to the defective nature of the GaAs 

overlayer. Therefore, four pairs of double-axis 004 and 224 ω-2θ scans were repeated by 

successive 90
o
 rotations of the sample around the [001] axis [46], in order to eliminate the 

effects of tilt between the epilayer and substrate and the anisotropy of the elastic strain 

distribution in this highly defective GaAs overlayer. The average angular peak separations 

were used in estimating the strain/relaxation of the GaAs layer.  

Fig. 4.11 shows both the 004 and 224 HR-XRD scans of GaAs/Si sample and the 

corresponding RADs structural simulations. The GaAs peak located at ∆ω∼-5500 arc-sec of 

004 ω-2θ scan corresponds to the GaAs peak located at ∆ω ∼ -8000 arc-sec in the 224 scan, 

which is diffracted from fully relaxed epitaxial GaAs material. The shape of the GaAs peak in 

the 224 scan is asymmetric and thus can be associated with the presence of azimuthal 

anisotropy of the elastic strain distribution [134]. Table 4.3 shows the structure parameters of 

this GaAs/Si sample obtained from the RADs simulation. Analysis of the 004 and 224 ω-2θ 

scans reveals that the epitaxial GaAs is fully relaxed with ~99-100 % relaxation. 
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Figure 4.11 Double-axis ω-2θ HR-XRD scans and corresponding simulations of GaAs/Si 

sample. 

 

Table 4.3 Structure parameters of GaAs/Si sample obtained from RADs fitting. 

 RADs - HR-XRD 

Geometry of reflection 004 224 

Peak Position, arc-sec -5493 -8041 

Thickness of GaAs layer, nm 15 19 

Relaxation, % 100 99 

Background intensity, cps 1 1 

In-plane lattice constant, Å 5.6533 5.6533 

Out-of-plane lattice constant, Å 5.6533 5.6533 

Type of stress Relaxed Relaxed 

 

ii) Polycrystalline X-ray diffraction  

In order to confirm the crystallinity of the GaAs/Si sample, the sample was also 

analysed using polycrystalline XRD. Fig. 4.12 shows the 2θ-ω X-ray diffraction spectra for 

the MOVPE-grown sample. The powder diffraction scan for MOVPE-grown GaAs/Si shows 

evidence of polycrystallinity in this film. GaAs diffraction peaks of the (111), (022), (113) 

and (004) planes are labelled in Fig. 4.12 [136].  The data clearly show evidence of 

polycrstallinity in this GaAs overlayer, but at the same time the double-axis HR-XRD 

measurements have previously confirmed the presence of some relaxed GaAs epitaxial in this 

GaAs/Si sample. This could imply a circumstance where there is some relaxed epitaxial GaAs 
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embedded in polycrystalline GaAs material. Therefore, this GaAs/Si sample was further 

investigated by crystallographic texture mapping to reveal the distribution of crystallographic 

orientation of this overlayer.  

 

Figure 4.12 2θ-ω poly-crystalline XRD measurement for GaAs/Si sample. 

 

 iii) Texture analysis by crystallographic texture mapping 

 A full X-ray pole figure is recorded by rotating the sample for a phi () range from 

0⁰ - 360⁰ for each incremental value of the chi angle (= 0⁰- 90⁰). Fig. 4.13 shows the {111} 

pole figure for the GaAs/Si sample recorded using GaAs 111 diffraction angles at 2θ = 

27.38º. The {111} pole figure shows the four-fold symmetry peaks located at Ψ = ∼ 54.7º, 

which are attributed to epitaxial GaAs orientated to the [001]. However, the peak widths in 

the pole density distribution are broadened showing that the alignment of the epitaxial grains 

is not perfect. This is thought to be the signature of misoriented GaAs grains. The 

misorientation could originate from crystal defects and dislocations generated during growth 
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[137]. In this case, the crystallites tilt slightly in various directions due to mosaicity or 

misorientations within the crystal and the four-fold symmetry peaks are broadened. In other 

words, ∆Ψ directly reflects the tilt misorientation and ∆Φ contains contributions from the tilt 

and rotational misorientations [138]. For example, if the crystallites completely align to each 

other, i.e., both tilt (and azimuth ( angles are zero, 4 symmetric points should be 

expected in the {111} pole figure (see Fig. 4.14 for a {111} pole figure of a bare silicon). One 

should see likewise for the {111} pole figure for the (001) single crystal. 

In addition, a ‘ring’ contour pattern is observed around the centre in the {111} pole 

figure. This is attributed to the diffracted intensity collected from highly textured 

polycrystalline material and it rotates with varying Φ around a centre axis parallel to the 

substrate normal along [111]. This reveals that, besides the aforementioned epitaxial material, 

there is some preferentially polycrystalline grain orientated to [111]. 

There are several peaks with weaker diffraction intensity at Ψ = ∼ 72⁰ (denoted as Tn 

in Fig. 4.13), in addition to the four-fold symmetry peaks of the epitaxial grains (labelled as 

An in Fig. 4.13). These could result from further epitaxial orientation associations between 

GaAs and Si. For example, it is well known that twins are commonly formed in zincblende 

III-V crystals by [5] planes rotating 60⁰ around [111]. This consequently leads to the 

existence of twinning angles θt = 38.94⁰ and 56.25⁰ between certain [111] lattice directions of 

the two twins [139, 140]. A detailed analysis shows that the orientations of the 8 weaker 

diffraction intensities denoted as (Tn, n = 1, 2, ... 8) are tilted at ∼ 35⁰ from the high symmetry 

point.  These are within a few degrees of the expected orientations of the {111} poles of the 

twins generated on epitaxially oriented grains [139-141]. 
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Figure 4.13 GaAs pole plot of GaAs/Si sample for 111 diffraction. Four-fold symmetry of 

GaAs epitaxial grains is denoted as ‘An’ in the pole figure. ‘Tn’ refers to diffraction 

corresponding to twin boundaries. 
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Figure 4.14 Pole plot of bare Si for 111 diffraction.  

 

In order to confirm the results presented in the pole figures section, a series of powder 

diffraction scans in the experimental range from 2θ = 26⁰ to 29⁰ were recorded. Fig. 4.15 

shows the powder diffraction XRD along a “linescan” running from the centre to the edge of 

the pole figure (chi = 0⁰ to 90⁰). From the powder diffraction scans, an intense peak located at 

2θ = 27.5
o
 and chi = 55

o
 has verified the presence of epitaxial GaAs orientated to the [001] 

direction. 

Two expected peaks have 

disappeared due to measurement 

uncertainty. Precise alignment of Φ 

and Ψ is required in recording a pole 

figure of a perfect single crystalline 

silicon sample 

Two tiny and intense peaks 

from perfect single 

crystalline silicon sample 
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Figure 4.15 A series of powder diffraction scans in the experimental range from 2θ = 26⁰ to 

29⁰ were recorded.  

  

 Generally, this section has demonstrated the capability of the X-ray diffraction 

method in evaluating the strain/relaxation in GaAs/Ge and GaAs/Si samples with different 

crystallinity, fabricated under various growth conditions. Unlike the spatial resolution 

limitation of SXRT, the resolution or accuracy of the lab-based diffraction tool is limited by 

the sampling step of 0.003
o
 in both ω and 2θ axes, corresponding in strain sensitivity of ~10

-5
. 

Series of powder diffraction 

scans were recorded varying 
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o
- 90

o
 at fixed Φ angle. 
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This is the reason why the application ranges of the lab-based XRD tool is not restricted by 

the defect density of the specimen. Different experimental geometries can be used to perform 

various types of measurement in order to extract the strain/relaxation or to understand the 

crystallinity of the GaAs heteroepitaxial layers with different problems. More importantly, 

this technique is non-invasive, thereby allowing the same sample to be measured a number of 

times, allowing comprehensive information to be extracted.  

 

4.5 X-ray diffraction investigation of antiphase domains 

 Antiphase domains are a key concern for GaAs heteroepitaxial layers, so their 

presence must also be considered. Transmission electron microscopy (TEM) is one of the 

widely used techniques in revealing and visualising the presence of APDs.  Nonetheless, the 

requirement of destructive sample preparation prior to TEM measurements has made it non-

ideal for examining the specimen, as it is excessively time consuming and costly. In contrast, 

XRD is a non-invasive technique that can be used for non-destructive characterisation of 

APDs [141-143].  

As previously described in Chapter 2, X-ray diffraction occurs when a crystal with 

(hkl) reflecting planes at the correct Bragg angle and the integrated intensity is proportional to 

      
 , where      is the structure factor of the relevant crystal plane [41].The structure 

factor is the summation of all the X-ray scattering strength from each atom (atomic scattering 

strength, fn) throughout the whole volume of the crystal [41], in which it is depending on the 

atomic position of the atoms in the crystal.  

For a cubic GaAs crystal, the scattering amplitudes from 00l-superstructure 

reflections (l = 2, 6) results from differences in the atomic X-ray scattering strengths (     

                ) between the long range ordering of Ga and As atoms in the GaAs 
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crystals (the relative position between Ga and As atoms). When an APD is present, it disrupts 

the long range periodic arrangement of the Ga and As atoms where the Ga and As positions 

are inverted by 180º with respect to adjacent domains, as depicted in Fig. 4.16a).  This results 

in a reduction of the lateral coherence length inside locally ordered GaAs crystal domains of 

this ordering, and leads to additional broadening of the superstructure reflections [142, 143]. 

Conversely, the scattering amplitudes of the 00l-fundamental reflection (l = 4) arise solely 

from the sum of atomic scattering strengths of Ga and As atoms,                     

regardless of whether all lattice sites were randomly occupied by either Ga or As atoms [142, 

143], and therefore this reflection  is not influenced by the presence of APDs.  

 In reciprocal space, the existence of APDs causes a reciprocal lattice point (Rlp) 

broadening of the superstructure reflections in the Qx plane due to small lateral coherence 

lengths [135, 142, 143]– the distribution of the scattered intensity in a direction parallel to the 

sample surface (see Fig. 4.16b). In other words, these APD induced Rlp broadenings are 

directly related to the full width at half maximum (FWHM) of the triple-axis ω-scans 

performed at superstructure reflections [135, 142, 143]. In addition to the broadening effect 

due to APD, the mosaic tilt due to the presence of dislocations can also result in Rlp 

broadening in the Qx plane [135, 144]. Because the Rlp broadening induced by mosaic tilt is 

proportional to the reflection order and since the broadening due to small lateral coherence 

lengths is independent of the reflection order, the superposition of these effects can be 

separated by performing  ω-scans  at different reflection orders, and are resolved using a 

graphical method called the Williamson-Hall (WH) plot [141, 144]. The WH plot is a plot of 

the FWHM of ω-scans, in reciprocal space units (  (    )/ ) against the reflection order in 

reciprocal space units ((    ) / ), where   is the FWHM of the ω-scan,   is the X-ray 

wavelength, and 2θ is twice the Bragg angle of the reflection. The WM plot analysis is 

performed by fitting the data using a linear regression [141, 144]: 
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             4.5  

where y- and x- coordinates represent the FWHM of the ω-scan and the reflection order in 

reciprocal space units respectively,   is the mosaic tilt. The intercept of the y-axis (  ) of the 

best-fit straight line corresponds to the lateral coherence length (            ) of the GaAs 

crystal [141, 144]. 

Figure 4.16 a) Schematic diagram illustrating an APD formation in a one-dimensional GaAs 

crystal, b) APD induced reciprocal lattice broadening of superstructure reflections in Qx plane 

[135, 142, 143], and c) Schematic showing a Williamson-Hall plot. 

 

In order to evaluate the presence of APDs, the triple-axis ω-scans were repeated for 
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superstructure reflections (l = 2, 6). The ω-scan FWHM of each sample was extracted and 

analysed using WH plots. In this study, the WH plot was used mainly for evaluating the 

presence of APDs and estimating the    of the GaAs crystal, and therefore the mosaic tilt is 

excluded from this discussion. Note that, this method is not applicable to GaAs/Si samples 

due to the polycrystalline structure of the GaAs overlayer for these samples. 

 

 

4.5.1 The influence of various growth routines on APD self-annihilation in GaAs/Ge 

crystals   

i)  Influence of a low temperature deposited GaAs nucleation layer  

Considering samples A-C, growth alterations were employed in order to investigate 

the effectiveness of growth stages (ii) and (iii) in suppressing the formation of APDs. The 

WH plot for GaAs/Ge samples A-C is depicted in Fig. 4.17. The best straight-line fit was 

obtained for sample C, with the other samples consistently showing a selective broadening 

characteristic for 00l-superstructure reflections (l = 2, 6). This selective broadening is a 

signature of the presence of APDs [135, 142, 143] in the GaAs epilayers.  

From Fig. 4.17, the evaluation of the WH plot of sample A shows an average APD 

domain size      of 120 ± 20 nm. The selective broadening of the superstructure reflections 

confirms the presence of APDs in sample A, due most likely to improper GaAs nucleation 

routines [113, 114, 120], and thus, the estimated    corresponds to the average domain size of 

different APDs appearing in GaAs crystals. As growth stage (ii) was introduced for sample B, 

the WH plot analysis reveals a drastic reduction in average APD size to 21 ± 6 nm. A straight 

line fit of the WH data points was obtained for sample C when both growth stages (ii) and 

(iii) were used. This confirms that the sample C was grown under optimised conditions and is 

either completely APD-free or the APDs in the GaAs crystal have self-annihilated (see Fig. 

4.17b) at an early stage of growth [120]. These XRD results clearly highlight the importance 
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of growth stages (ii) and (iii) for the reduction of the APD size and to a more effective APD 

self-annihilation routine. Large APDs (120 ± 20 nm) are formed at the heterointerface of 

sample A due to uncontrolled initial surface nucleation of the GaAs epilayer directly onto the 

Ge substrate [111-114]. Using just the As pre-deposition (stage ii) does somewhat reduce the 

domain size by homogenising the Ge surface with As-As dimers to the order of 21 ± 6 nm 

[111, 112], yet APDs are still significantly present when the low temperature nucleation layer 

is omitted (stage iii). The implementation of growth stage (iii) could be responsible for the 

slow initial nucleation growth that allows atomic rearrangements which effectively annihilate 

APDs, as a large amount of energy is required to form the boundaries between two adjacent 

domains [142, 145].  

  

Figure 4.17a) Williamson-Hall plots of GaAs/Ge samples A-E. Inset shows the estimated 

APD size and RMS roughness values. 
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Figure 4.17b) Adjacent APBs of a domain at GaAs/Ge hetero-interface are self-annihilated. 

Therefore, a small APD size is required in order to annihilate APD at early stage of growth. 

 

 

In order to monitor how the surface morphology of the GaAs epilayer evolves as the 

growth conditions vary, these GaAs/Ge films were evaluated using AFM. These 

measurements were carried out using a Digital Instruments-Multimode IIIa microscope 

working in tapping mode. Si cantilevers (Veeco) with a nominal radius of 10 nm were used. 

AFM images with image sizes 5 µm² of samples A – E were taken. The features of all images 

were characterised by cross-section profiles and (root-mean-square RMS roughness) σ values 

were calculated and are shown inset in each image.   

The AFM images for samples A-C are depicted in Figs. 4.18a)-c), respectively. A 

relatively rough surface morphology has been observed at the GaAs surface of sample A, with 

valleys of up to 120 nm in depth. The wavy surface morphology is thought to be due to the 

presence of a high density of APBs in the GaAs layer formed by the co-existence of As-As 

and Ga-Ga domains, which has been observed by several authors [114, 146, 147]. The low σ 

value (smoother surface) for sample C confirms the result of the WH analysis, in that this 

sample is free or nearly-free of APDs or they are self-annihilated, leading to a better surface 
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morphology [114, 146-148]. In general, the surface roughening of the GaAs buffer layers is 

highly dependent on the selection of V/III flux ratios, growth temperatures, in addition to the 

presence of APDs [114, 120, 121, 146-148]. By keeping other growth conditions (i.e. flux 

ratio and growth temperatures) of the GaAs overlayer the same for samples A-C, it would be 

reasonable to assume that the surface roughening of the GaAs overlayers is most probably 

related to the presence of APDs in GaAs crystals. Surface roughening can also be due to the 

strain relief mechanism of the GaAs epilayer, but this effect is relatively small when 

compared to that of APDs effect for the samples under test. Our results show that most of the 

strain is relieved through the generation of misfit-dislocations, that are mostly confined at the 

near-interface region and do not extend towards the top surface. 

 

 Figure 4.18 (a) - (e). 5 µm x 5 µm AFM topographs for GaAs/Ge samples A - E, 

respectively. 

 

The existence of APDs was further verified by cross-sectional transmission electron 

microscopy (X-TEM). In Fig. 4.19a), APDs are clearly observed from the contrast 

discontinuities of the image at the GaAs/Ge interface for sample A and these APDs are 
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confined to a region approximately 200 nm from the interface with a domain size of around 

100 ± 30 nm and decrease significantly with distance away from the GaAs/Ge interface. The 

anti-phase boundaries (APBs) of different domains start inclining with adjacent boundaries, 

and thus, they are self-annihilated [120, 145, 149]. On the other hand, no significant densities 

of APDs albeit with the presence of a small number of misfit dislocations are observed at the 

hetero-interface of sample C. These X-TEM observations are in good agreement with and 

confirm the aforementioned XRD and AFM discussions. Note, that these APDs are of the 

order of 21-120 nm in size, hence they are too small to be resolved by SXRT.   

 

 Figure 4.19 (a) - (c). Cross-sectional transmission electron micrographs of samples A, C and 

E, respectively, demonstrating crystal defects at the GaAs/Ge interface. 

 

 

ii) Effect of GaAs epilayer thickness  

In order to observe how the APDs evolve as the GaAs layer thickness increases, we 

compared the GaAs epilayer thickness running from 600 nm (sample B) to 800 nm (sample 

D), through to 1000 nm (sample E). The WH plots of samples B, D and E are depicted in Fig. 

4.17. The selective broadening of the superstructure reflections confirm the presence of APDs 

in these GaAs films. These observed APDs in samples B, D and E are evaluated to be ~ 21-23 
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± 6 nm in size. This is expected as they were grown using identical growth routines except 

that a thicker GaAs epilayer was produced.  

From the AFM analysis, the surface morphology of these samples is relatively rough 

due most probably to the presence of APDs in the GaAs crystals [114, 146-148, 150], as 

shown in Figs. 4.18b), d) and e). The σ value (8.2 nm) of the thin-sample B (600 nm) is high 

and follows in descending order from sample D and E as the thickness of the GaAs overlayer 

increases to 800 nm and 1000 nm  (7.1 nm and 5.9 nm), respectively. The downward 

tendency of the σ values might suggest a self-annihilation of APDs with thickness. This is 

consistent with the observations reported by Li et al. [113] and Hudait et al. [120], in which 

the wavy morphology caused by APDs is completely suppressed after the growth of a thick 

GaAs epilayer.  

Fig. 4.19c) shows the cross-sectional TEM image for the 1000 nm thick sample - 

sample E, demonstrating crystal defects (both APDs and misfit-dislocations) in the GaAs 

overlayer. From Fig. 4.19c), it appears that the APDs are self-annihilated within a short 

distance from GaAs/Ge interface, which verifies the aforementioned discussions.  

Considering now all five GaAs/Ge samples under test, the results from various 

characterisation techniques suggest that the generation of APDs gives rise to sample surfaces 

whose roughness depends on the size of APDs formed at the GaAs/Ge interface. By using a 

low temperature GaAs nucleation layer and/or a high temperature GaAs epilayer, the results 

show that most of the APDs are annihilated and do not extend to the free-surface.  

Nonetheless, the formation of large APDs seems to significantly distort the surface 

morphology of the subsequently grown GaAs buffer layers. The inset of Fig. 4.17 depicts a 

clear correlation between these two parameters for samples A-E. Comparing the AFM and 

XRD results for samples A-E, one can confirm the direct correspondence of the surface 

roughening to the different size of APDs formed at the GaAs/Ge interface. Therefore, it is 
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important to annihilate the APDs as early as possible during the growth since this results in a 

relatively small σ of ~1.4 nm (sample C). 

 

4.5.2 Interaction between misfit dislocations and antiphase boundaries 

These findings highlight the importance of using a range of techniques to analyse 

heteroepitaxial layers where both dislocations and APDs are important considerations. For 

example, sample A, for which SXRT and 224 RSM measurements show to be dislocation-free 

and fully matched to Ge substrate, is shown to contain an abundance of large APDs when 

investigated with 00l-reflection (l = 2, 4, 6) ω-scans and TEM. Conversely sample B (same 

thickness), which contains smaller APDs, is found to be at the early stages of the strain 

relaxation process. This observation implies a strong interaction between APBs and 

dislocations. Similar observations have been shown by Ringel et al. [151] in the GaAs/Ge 

material system grown by migration enhanced epitaxy, although in that reference the causes 

were not explained. 

This anti-correlation between the density of APDs and the density of dislocations 

suggests that the APBs of different domains might act to block the formation of misfit 

dislocations. In general the formation of a dislocation through the strain relaxation process 

requires the lattice of the GaAs crystal to move by an extra half plane of atoms by the Peierls-

Nabarro (PN) driving force [152]. According to this model, the magnitude of the PN driving 

force is closely related to the width of the dislocation (W), which increases as W decreases as 

given by the following relation [152]: 

              4.6  

 

where G is the shear modulus and b is the Burgers vector of the dislocation.         , 

where a is the interplanar spacing and v is the Poisson’s ratio. From the PN model analysis, 
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the strong interaction between APBs and dislocations observed in sample A can be explained 

by a mechanism where APBs are responsible for the cessation of dislocation propagation by 

reducing the width of the dislocation. This is because the bonding forces of As-As or Ga-Ga 

bonds near to the APBs are highly directional, and therefore the dislocation width is narrow 

and the Peierls stress is accordingly large [152, 153]. Nonetheless, as the APDs size reduces 

from 100 nm to 25 nm for sample B, APDs no longer act effectively to block the propagation 

of misfit dislocations, and therefore, the epilayer starts to relax. 

 

Table 4.4 a) Growth parameters, and b) AFM σ value and average APDs size for GaAs/Ge 

samples A-E, respectively. 

a) Growth details  b) AFM and APDs size 

Sample As pre-

deposition 

at 640°C 

Low temp 

(500°C) 

GaAs 

nucleation 

thickness, 

nm 

High temp 

(640°C) GaAs 

buffer 

thickness, nm 

Root-mean-

square 

roughness, 

nm 

Average 

APDs 

size, nm 

A No - 600 ± 10  21.1 ± 5  120± 20 

B Yes - 600 ± 10 8.2 ± 1 21± 6 

C Yes 50 ± 10 600 ± 10 1.4 ± 0.2  - 

D Yes - 800  ± 10 7.1 ± 1 22± 6 

E Yes - 1000 ± 10 5.9 ± 1  23± 6 

 

4.6 Investigation of crystallographic tilt in GaAs heteroeptiaxy layers 

 The use of a misoriented substrate is vital to produce a double-step surface in order to 

suppress the formation of APDs at the GaAs on Ge or Si interface. However, the misoriented 

substrate always induced additional tilt into the overlayer subsequently grown upon it [154]. 

In addition, the dislocations developed during the strain relaxation process can also induce 

crystallographic tilt [154]. In order to observe the mechanism of crystallographic tilt as a 

function of relaxation degree in the GaAs/Ge samples, these samples were further evaluated 
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using two pairs of double-axis 004 ω-2θ scans recorded by successive 180
o
 rotations of the 

sample around the [001] axis. It is important to run the measurements in double-axis 

geometry (with open detector) for tilt analysis in order to obtain the effective displacement of 

the layer.  

 Two pairs of 004 ω-2θ scans have been repeated for both the X-ray incident direction 

perpendicular and parallel to the misoriented direction of the substrate in order to examine the 

tilt angle (    in both [110] and        directions, respectively. If the epilayer is tilted with 

respect to the substrate, the angular separation (∆ω) between the GaAs and Ge peak positions 

recorded at each azimuth angle will vary according to the magnitude of tilt associated with the 

film. The tilt angle for samples A-E was calculated from each of two pairs of 004 ω-2θ scans 

measured in the X-ray incident direction perpendicular (   ) and parallel (    ) to the 

misoriented direction of the substrate using the following equation [154, 155]:  

     
            

 
     

           

 
  4.7  

where              and             are the differences in diffraction angles between 

GaAs and Ge diffraction measured in opposite directions for both [110] and        directions, 

respectively. Fig. 4.20 shows the 004 ω-2θ scans of sample E measured at four different 

azimuth angles. The variation of angular displacement between the GaAs and Ge peak 

indicates the presence of tilt. 
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Figure 4.20 Double-axis 004 ω-2θ scans of GaAs/Ge sample E recorded at four azimuthal 

angles of 0°, 90°, 180° and 270°.  

 The tilt angle for all the GaAs/Ge samples A-E in both [110] and        directions are 

calculated and depicted in Fig. 4.21. The relaxation data for each sample obtained from 

section 4.4.2 is included in Fig. 4.20 for comparison. Calculation reveals approximately zero 

tilt angle in the        direction. In contrast, the GaAs epilayers of samples A-C are titled by 

about -0.0066
0
 to -0.0093

0
 (-24 to -34 arc-sec) measured in the [110] direction when the 

degree of relaxation is smaller than 15 %. The negative sign of tilt indicates that these 

epilayers are tilted towards the       direction due to the tensile strained GaAs over layers 

grown on miscut Ge substrates. However, as the degree of relaxation increases beyond 30% 

for samples D and E, the GaAs epilayers are titled by 0.0046
o
 (17 arc-sec) and 0.0086

o
 (31 

arc-sec), respectively, toward the          direction, i.e. the opposite direction to the tilt 

direction of the samples A-C. This reflects a mechanism wherein the crystallographic tilt is 

∆ω 
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highly dependent on the process of lattice relaxation. The experimental measured tilt angles 

are compared to that of theoretically calculated tilt according to Nagai’s model [155]: 

         
      

   
       

where    and     are the measured out-of-plane lattice constant of GaAs from 224 RSMs and 

bulk Ge lattice constant, respectively, while   is the miscut angle of the substrate. 

 Considering case 1 (lattice matched or slightly relaxed samples A-C), the 

crystallographic tilt can be explained by the model proposed by Nagai [155]. According to his 

model, when an epilayer is pseudomorphically grown with respect to the underlying 

misoriented substrate the lattice parameters of the overlayer are simultaneously strained in 

both horizontal and vertical directions. In this case, the out-of-plane lattice parameter of the 

overlayer is fully registered to the step sites on the surface of the misoriented substrate, and 

results in crystallographic tilt in the epilayer away from the surface normal (see Fig. 4.22). 

Base on Nagai’s model, the crystallographic tilt in samples A-C can thus be explained.  
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Figure 4.21 Crystallographic tilt plotted as a function of degree of relaxation for GaAs/Ge 

samples A-E. Squares and triangles represent the tilt angle toward the       and        

directions, respectively. 

Figure 4.22 Explanation of crystallographic tilt of a pseudomorphically grown epilayer on 

misoriented substrate using Nagai’s model [155]. 

 Concerning the second case – samples D and E represent the situation where the 

GaAs layers are relaxed through the misfit dislocations generated at the GaAs/Ge interface. In 

this case, Nagai’s model has been experimentally proved by Takagi et al. to be inappropriate 

to explain the mechanism of crystallographic tilt in a relaxed GaAs epilayer, since the 

epilayers are no longer commensurate with the surface steps of the substrate as a consequence 

of the lattice relaxation. It has been well investigated that at the early stage of the strain 

relaxation process, the 60°-type of misfit dislocations are typically predominant (especially in 

a low lattice mismatched material such as GaAs/Ge), wherein they glide from their nucleating 

source towards the GaAs/Ge interface at (111) planes [156], Therefore, it would be 

reasonable to assume 60°-type misfit dislocations are dominant in these GaAs epilayers. As 

shown in Fig. 4.21, samples D and E with relaxation higher than 30 % are tilted towards the 

        direction, and this would be consistent with crystallographic tilt due the imbalanced 

nucleation of misfit dislocations on each (111) glide plane [157, 158]. 
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4.7 Surface quality investigation by µ-Raman spectroscopy and 

photoluminescence 

 The surface quality of MOVPE-grown GaAs/Ge and GaAs/Si samples was 

characterised using the 488 nm Ar
+
 laser probe beam where the average optical penetration 

depth in crystalline GaAs is ∼90 nm [159]. 

  Fig. 4.22 shows the Raman spectra for all of the GaAs/Ge samples. Raman spectra of 

each GaAs/Ge samples shows two close, intense peaks at ∼266 cm
-1

 and ∼289 cm
-1 

corresponding to transverse optical (TO) and longitudinal optical (LO) vibration modes of 

GaAs, respectively . In each case the GaAs LO and TO Raman peaks are red shifted by ∼3 

cm
-1

 compared with the expected peak position for bulk GaAs [159]. This peak red shifting 

can result from two factors: 1) Tensile strain in the GaAs epilayer due to the 0.1 % lattice 

mismatch, and 2) Red shifting induced by the presence of excess arsenic-clusters. Arsenic 

cluster vibration modes are indeed observed within the spectral region ranging from 150 cm
-1

 

– 230 cm
-1

 [60, 160, 161]. Arsenic within the GaAs structure can contribute to the generation 

of As-As bonds and As-related point defects, such as AsGa antisite defects and Ga vacancies 

[60]. These indirectly induce changes in the average reduced mass and effective ionic charge 

that further enhances the red shifting of the Raman peaks [60]. 

 A noteworthy observation occurs because the Raman laser probes only the top ~ 90 

nm of the GaAs surface. This is demonstrated by Fig. 4.24, a plot of the Raman TO/LO 

intensity ratio against normalised photoluminescence intensity. This metric acts an indicator 

of the surface quality of the sample under test as the presence of a TO peak from a (001) 

GaAs surface is a signature of lattice misorientation or disorder (dislocations) due to the 

Raman selection rules in back-scattering experimental geometry [162], as previously 

discussed in section 2.6.2. The pronounced reduction of the Raman TO/LO intensity ratio 

(ITO/ILO ratio) of sample E (ITO/LO= 0.90) with respect to samples A, B, C and D (ITO/LO= 1.25, 
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1.41, 1.30 and 1.01, respectively) reveals a lower density of lattice disorder or misorientations 

at the surface of film E [162]. From the characterisation results of X-ray techniques, it is 

obvious that GaAs overlayer of the samples B-E are relaxed through the generation of 

dislocations, but the reduction of Raman ITO/LO as a function of thickness increase from 

samples B-E indirectly implies that the lattice disorder induced by dislocations or lattice 

disorder reduces at the surface of a thicker film. The Raman spectroscopic analysis therefore 

allows us to be surface specific whereas the X-ray techniques provide data on dislocation 

densities throughout the film in its entirety. The Raman intensity ratio, ITO/LO= 1.25 of sample 

A, is relatively high, although it was found to be fully in registry with the Ge substrate by 

XRD and there are no dislocations images observed in SXRT. This lattice disorder is thought 

to be induced by the relatively rough surface as a result large APD-related defects present in 

this film. 
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Figure 4.22 Room temperature Raman spectra of GaAs/Ge samples A-E. 

  

   



 

116 

 

 The room temperature PL spectra for each of the GaAs/Ge samples A-E are shown in 

Fig. 4.23 and consistently exhibit a luminescence peak centred at ~ 870 nm, which 

corresponds to the band-to-band emission from GaAs material [86]. From Fig 4.23, one can 

observe that increasing GaAs epilayer thickness correlates with an incremental increase in 

luminescence intensity.  An anti-correlation between the Raman intensity ratio and PL 

intensity of samples B-E is observed, since the luminescence parameter is inversely 

proportional to the crystalline disorder or dislocation density, as depicted in Fig. 4.24.  

Comparing samples A-C, sample C shows relatively higher photoluminescence intensity as a 

result of an improved crystal quality, again consistent with the elimination of anti-phase 

domain related defects [140]. The use of a pre-deposition As monolayer together with a low 

temperature GaAs nucleation layer at 500°C prior to GaAs buffer layer growth is responsible 

for this, as confirmed in the previous section.  
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Figure 4.23 Room temperature photoluminescence spectra for GaAs/Ge samples A-E. 
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 Figure 4.24 Anti-Correlation between PL Intensity and Raman ITO/ILO ratios. 

 

4.7.1 Comparison between MOVPE grown GaAs on Ge and Si substrates 

 Fig. 4.25a) and b) show the μ-Raman and room temperature PL spectra for MOVPE-

grown GaAs/Ge-sample E compared to the MOVPE-grown GaAs/Si-sample.  Comparing the 

μ-Raman data, the GaAs/Ge sample shows a much lower Raman intensity ITO/ILO ratio, which 

reveals a lower density of disorder or misorientation. This is in good agreement with the PL 

result, where MOVPE-grown GaAs on Ge substrate results in better overlayer crystallinity, 

and thus produces the highest luminescence. Consequently, it appears that μ-Raman and PL 

can be used as easy and quick characterisation techniques to evaluate the surface quality of 

the GaAs heteroepitaxial layers to complement the X-ray analysis discussed in previous 

sections. 
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Figure 4.25 Room temperature a) Raman spectra, and b) photoluminescence spectra for 

GaAs/Ge- sample E and GaAs/Si sample, respectively. 

  

4.8 Summary 

 The capability of this X-ray characterisation routine in examining/identifying various 

issues that have to be overcome during the hetero-integration of III-V materials on Si 

substrates have been demonstrated. Different characterisation work flows were applied for 

characterising the ‘problematic’ GaAs heteroepitaxial materials, fabricated using various 

growth parameters. Problems such as strain relaxation, dislocation formation, antiphase 

domain formation, crystallinity and lattice tilt can be identified unambiguously by performing 

appropriate measurements, as summarised in Table 4.5 below.  

 More importantly, the non-destructive nature of this specially planned 

characterisation routine meant that a range of measurements could be made on the same 

sample many times over, allowing comprehensive information to be extracted. This 

comprehensive information can effectively help the III-V growers in gaining a greater 

understanding of various issues associated with heteroepitaxial growth, material properties, 
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and optimal growth processes in the pursuit of low defect density III-V heteroepitaxial layers 

for future high speed and low power logic applications. 

 Apart from that, I found that this non-destructive X-ray characterisation routine is not 

only applicable for characterising the III-V heteroepitaxial layers, but also can be 

appropriately modified for characterising other semiconductor materials. 

Beyond these established methods of XRD, new forms of X-ray analysis have an 

important role to play in non-destructive characterisation of IC materials. I will expand 

further on this in Chapter 5 with the introduction of a new X-ray methodology for measuring 

die stress inside encapsulated packaged chips.  

 

 

 

Application Ranges 
Resolution or 

Accuracy 

Type of 

measurem-

ent 

Analysed 

Depth 

Main Characterisation Technique 

H
ig

h
-r
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o
lu

ti
o
n

 X
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a
y
 

d
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a
ct

io
n

 

2x ω-2θ scan 

 

Crystallinity, 

strain/relaxation, lattice tilt 

Depends on the 

sampling step size = 

~ 0.003
o
 

Non-

Destructive 
> 1μm 3x ω-2θ scan 

 

Further investigation of  

crystallinity, antiphase 

domains 

Depends on the 

sampling step size = 

~ 0.003
o
 

RSM 
Precise measurement of 

strain/relaxation 

Depends on the 

sampling step size = 

~ 0.003
o
 

X
-r

a
y

 d
if

fr
a

ct
io

n
 

Polycrystalline 

XRD 

Investigation of 

polycrystallinity 

Depends on the 

sampling step size = 

~ 0.01
o
 Non-

Destructive 
> 1μm 

Crystallograph

ic texture 

mapping 

Texture analysis 
Depends on the step 

size of phi and chi  

Table 4.5 Summary of the application ranges of the specially planned characterisation routine. 
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Chapter 5 

Overview of Integrated Circuit (IC) Packaging Technology and 

Development of Lab-Based X-ray Diffraction 3-Dimensional Surface 

Modelling (XRD/3DSM) 

5.1 Introduction  

  X-ray-based metrology techniques have a variety of potential applications, not just 

for epitaxy characterisation in front-end-of-line processes. This thesis has also explored the 

novel feasibility of using X-ray diffraction with a conventional lab-based tool, as a method to 

measure stress and warpage of Si die inside chip packaging.    

The main aim of this chapter is to demonstrate how the lab-based XRD/3DSM was 

developed using a different and novel X-ray characterisation routine, for non-destructive 

analysis of strain/warpage inside fully encapsulated packaged chips. The technique is 

demonstrated at room temperature and at elevated temperatures up to 115
o
C by in situ XRD 

annealing experiments. Prior to that, the reader will be given a brief overview of IC packaging 

technology and the challenges toward the realisation of advanced System-on-Chip (SoC) or 

System-in-Package (SiP) packages for future microelectronics.  

        

5.2 Overview of IC packaging technology 

 The integration of many circuits or electronic component into the surface of a thin 

substrate of semiconductor material such as Si, is known as an Intgrated Circuit (IC) [163]. 

The IC is typically encapsulated by a moulding compound in order to protect it from being 

damaged by outside elements or environments. In addition, the IC package also plays an 
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important role in providing appropriate heat dissipation and acting as a bridge to connect the 

IC to outside world [163].  

 Historically, ICs were packaged in leaded packages such as small outline packages 

(SOP) or quad flat packages (QFP) [164] (see Fig. 5.1). SOP was widely used due to the 

extermely low fabrication cost, especially for low input/output (I/O) applications such as in 

modern memory. QFP can be viewed as an extention of SOP for applications that required 

more I/O connections. These packaging technologies have successfully enabled some level of 

miniaturisation of microelectronics through reductions of lead pitch and body size of the 

packages, but they are fast approaching fundamental limits based on the lead pitch rules [164-

166].  

 The innovation of leadless packages such as small outline no-lead (SON) or quad flat 

no-lead (QFN) packages has displaced conventional leaded packages for many applications 

[164-166]. This is due mainly to the substitution of the exposed leads by leadless terminals 

located under the package body of QFN packages, which results in a smaller body size 

compared to the conventional leaded packages, as shown in Fig. 5.1. The slim package 

construction of leadless packages together with the use of exposed copper die-pad technology 

have successfully maximised the board space, as well as improving the electrical and thermal 

performance of QFN packages by at least 50% over conventional leaded packages [165]. 

These important features of QFN packages for miniaturisation have produced for extensive 

growth in semiconductor markets for the past several years, especially for many space-

constrained products such as mobile phones, MP3 players, notebook computers, PC cards, 

and personal digital assistants [165, 166]. 
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Figure 5.1 Comparison between the conventional leaded packages (SOP, QFP) and the non-

leaded packages (SOP, QFN) [163, 166]. 

 

 Nonetheless, the continued growth of consumer and portable electronics products 

means that new packaging technologies are necessary in order to meet the ever-increasing 

demand for low cost, with increased functionality and performance electronic devices. These 

have driven the development of a new IC packaging technology called the embedded QFN 

package [167-169]. The most significant advantages of the embedding technology over the 

traditional packaging technology is allowing the component packages to be embedded into a 

substrate, and therefore freeing up space for further mounting of components on top of the 

substrates, thus ensuring a very low profile build up and a very compact 3D wiring 

architecture (see Fig. 5.2) [167-169]. In addition to that, the substitution of solder 

interconnections by through silicon vias (TSV) helps improve the electrical performance of 

the packages, as well as enabling 3D-stacking capability for highly integrated systems [167-

169]. Overall, embedding technology is a very promising and feasible technology route 

towards the realisation of high volume 3D IC integration technology for future 

QFN QFP SOP SON 
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microelectronics, such as 3D SiP or 3D SoC systems [167-169] previously discussed in 

section 1.1.1. Fig. 5.2 shows a brief overview of the evolution of IC packaging technology. 

 

 Figure 5.2 Evolution of packaging technology [163, 167]. 

 

 

 Existing advanced packaged chips are however plagued by reliability issues. Problems 

as a consequence of thermal/mechanical stress created during packaging processes are some 

of the main obstacles towards the realisation of high volume 3D IC integration technology for 

future microelectronics [54, 170-174]. The fabrication process of a complete packaged IC  is 

a tricky one as it involves the use of different materials of distinct coefficients of thermal 

expansion (CTEs), e.g. die bond pad, die attach adhesive/epoxy glue, moulding compounds 

and Cu filled TSVs [54, 170-174]. Thermal stress and warpage are frequently generated in the 

packaged chip during the thermal processing steps as a consequence of the CTE mismatch of 
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these materials [175-179]. Other factors such as the bonding of wires to the die itself [54], 

thinning of the wafer/die below 100 µm and embedding/lamination processes can also lead to 

stress and induced warpage/material deformation [180, 181]. The process-induced stresses 

can even be large enough to induce cracking or interfacial delamination in the package, which 

by potentially degrading the performance and reliability of the packaged chip, could 

ultimately lead to device failure.  

 Scanning acoustic microscopy (SAM) [182, 183], scanning electron microscopy 

(SEM) [183] and X-ray radiography [180, 181] are commonly used techniques for 

characterising packaged chip integrity such as interconnects, voids and delamination inside 

packaged chips. For instance, Figs. 5.3 a)-b) are the SAM and cross-sectional SEM images of 

a deformed packaged chip, respectively, showing the die crack which initiated from the upper 

part edge and then propagated towards the die active circuit side [183]. Although these 

techniques can image the cracks or delamination inside the packages, none of these 

techniques is capable of quantitatively measuring the magnitudes of stresses or lattice 

misorientations inside packaged chips [170], and crucially, they are destructive, i.e. the 

package has to be opened (SEM) or immersed in water (SAM). 

 Figure 5.3 a) Scanning acoustic microscopy and b) cross-sectional scanning electron 

microscopy images illustrating die cracking [183]. 

a) 
b) 
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 A recently developed synchrotron X-ray technique, based on 3-dimensional (3D) X-

ray diffraction imaging combined with 3-dimensional surface modelling (3DSM), by DCU 

researchers has, for the first time, enabled the non-destructive imaging and measurement of 

strain and internal damage in packaged Si chips [38]. This technique has been used to reveal 

defect images with x-y spatial resolutions of < 5 μm throughout the entire probed Si wafer 

volume and was used to produce 3D strain/warpage maps of the nature and extent of the 

strain fields in completely packaged QFN packaged chips. Fig. 5.4 shows an example of 

3DSM, showing the warpage/lattice deformation in the Si chip of a completely encapsulated 

QFN package, created during different manufacturing processes [38]. 

 However, an obvious drawback to widespread implementation of this technique is the 

fact that until now the techniques have required a synchrotron X-ray source. Therefore, the 

second aim of this thesis is to demonstrate how I have adapted and transferred the 3DSM 

technique to a laboratory-based XRD tool in order to non-destructively image, map and 

measure Si strain/warpage inside a fully encapsulated QFN packaged chip at various stages of 

the chip manufacturing process. 

 

 Figure 5.4 3DSM maps of misorientation of (220) Si planes inside a fully encapsulated 

packaged chip [38].  
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5.3 Development of a lab-based XRD/3DSM technique 

 The lab-based XRD/3DSM consists of a data reconstruction technique which 

monitors the 004 symmetric rocking curve (RC) full-widths-at-half-maximum (FWHMs) as a 

function of position across fully encapsulated packages, using the advanced freeform 

modelling capabilities of Solidworks
TM

 to obtain maps of warpage of the entire die inside 

packaged chips. Solidworks
TM

 is a 3D mechanical computer-aided design (CAD) program, 

which is also known as a parasolid-based solid modeller and utilises a parametric feature 

based approach to create models and assemblies [184].  

 The lab-based XRD/3DSM was developed using two main adaptations of the X-ray 

characterisation routine shown in Fig. 1.7: 

 (i) for the ω-scan, or “rocking curve”(RC), the detector angle is fixed at twice the Bragg  

angle of the crystal planes of interest and the sample is rotated through a suitable angular 

range about the Bragg angle [46]. The incident X-ray beam was reduced down to a 250 µm x 

250 µm square by using horizontal and vertical slits. The small beam size is to ensure a high 

spatial resolution, as each of the RCs contains information on the lattice deformation 

averaged across this 250 µm x 250 µm area. As shown in Figs. 5.5 a)-b), the spatial resolution 

is greatly increased by using a small horizontal slit size, but it is less dependent on the vertical 

slit size. This is due mainly to the larger X-ray beam divergence in the vertical direction, and 

therefore the vertical slits have a small impact on the vertical beam rocking curves.  

(ii) a series of spatially resolved line scans are performed across the sample under test in steps 

as small as 200 µm, and this data is reconstructed using lab-based XRD/3DSM – a modified 

version of the 3DSM reconstruction technique outlined in reference [38]. In general, the data 

reconstruction of lab-based XRD/3DSM technique includes the following major steps, as 

depicted in Fig. 5.6 below. 
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 Figure 5.5 a)-b) are the 004 rocking curves as a function of horizontal and vertical slit sizes, 

respectively.

 
 

Figure 5.6 Chart illustrating the process flow of lab-based XRD/3DSM technique. 
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5.3.1 004 Rocking curves 

 Each RC can be recorded by rotating the specimen (ω axis) through a suitable angular 

range about the Bragg angle of the Si 004 reflection, with detector (2θ axis) fixed at twice the 

Bragg angle (see Fig. 5.7a). By using this experimental geometry, the specimen is rotated 

along the [110] direction with respect to the Si surface normal [001], and therefore the 

FWHM of the RC is directly related to the lattice misorientation/warpage of the (110) plane in 

the Si die. Figs. 5.7b)-c) illustrate the RCs of a warped Si die inside the packaged chip 

compared to a perfect (001) Si specimen without warpage. In the case where the Si die is 

curved or warped, the FWHM of the RC is broadened (see Fig. 5.7b). The warpage creates a 

curvature of the Si crystal planes. Therefore there will be a range of angular positions on the 

distorted Si die for which the Bragg diffraction conditions are satisfied.  

 Fig. 5.7 a) Schematic diagram illustrating the experimental geometry of 004 rocking curve 

analysis. b)-c) are the 004 RCs of a warped Si die and a perfect Si specimen without warpage, 

respectively. 
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5.3.2 Obtaining a series of spatially resolved FWHM line scans 

 A spatially resolved RC map can be produced by integrating a series of RCs collected 

at different positions across the Si die of the package (in the x-direction) [106]. This is 

demonstrated in Fig. 5.8a), showing a RC map composed from 12 individual RCs, recorded 

as a function of x-position across the bottom edge of the Si die - with a step resolution of 200 

µm indicated by the red arrow. The RC map of the Si specimen is also shown in Fig. 5.8b) for 

comparison. Concerning Fig. 5.8a), the variation of RC peak positions (ω-ω0) across the Si 

die is a signature of warpage-induced tilt [106]. From the RC map, one can observe that the 

diffraction angle of the RC recorded from the left part of the Si die (x<1.2) occurs at larger 

diffraction angles than the centre part of the Si die (ωo), while it decreases below ωo for the 

reflections from the right-hand side of the Si die. This phenomenon explicitly confirms that 

the Si die is warped in a convex shape [106].  

 Although the RC map is useful in revealing the type of warpage or direction of tilt 

developed during the packaging processes, it is not precise enough for a deep insight into the 

deformation, for instance, in identifying the highly distorted regions of the Si die. Therefore, 

the approach that I have developed is to convert the RC map into a FWHM line scan by 

extracting the FWHM of each individual RC of the RC map, fitted using the “Asymmetric 

Double Gaussian” peak function by Quick Graph [46], the peak analysis software provided 

with the JV Bede D1 tool (see Figs. 5.8c-d). From the FWHM line scan shown in Fig. 5.8e), 

the highly distorted region (largest FWHM) can be unambiguously identified to be the centre 

part of the Si die. In contrast, the FWHM extracted from the perfect Si specimen (Fig. 5.8f)) 

is rather constant across the whole sample.  
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Figs. 5.8 a)-b) are the RC maps across the Si die in a packaged chip and the Si specimen in x-

direction, respectively, c)-d) are the fitted 004 rocking curves of a warped Si die and a perfect 

Si specimen without warpage by Quick Graph, respectively. The FWHM line scans from the 

RC maps are shown in Figs. 5.8e)-f). 

 

5.3.3 Importing data into Solidworks
TM

  

 A series of FWHM line scans were repeated at 200 or 400 µm steps (for high or low 
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the Si die (in the y-direction), controlled using an automatic motorised x-y sample stage on 

the JV Bede D1 diffractometer. Each FWHM line scan with x, y, z coordinates was saved in a 

text file in which the x and y coordinates correspond to the on-chip location where each RC 

was recorded, and z represents the FWHM extracted from each RC recorded at each x-y 

position. These text files were imported into Solidworks
TM

 using the “Curve Through XYZ 

Points” tool in Solidworks
TM

, and these formed a series of spline curves through points 

specified in x, y, z coordinate data (see Fig. 5.9a). The spline curve was created automatically 

by Solidworks
TM

 through the formation of a sequence of curve segments (base on polynomial 

models) to connect the imported FWHM data points [185, 186], forming a continuous line 

(see Fig. 5.9b as an example).  

 

 Fig. 5.9 a) A series of recorded FWHM line scans are imported into Solidworks
TM

, and b) A 

spline curve formed automatically by Solidworks
TM

 using the imported FWHM extracted 

from each RC. 
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5.3.4 Data reconstruction by Solidworks
TM

  

 The final step of the lab-based XRD/3DSM was to connect these spline curves using 

the boundary surface feature in Solidworks
TM

 [38]. Each spline curve was selected 

sequentially from the first horizontal spline curve to the last horizontal spline curve, and they 

were connected to create a boundary surface mesh across these spline curves, as shown in Fig. 

5.9a). These spline curves were formed into a solid surface lab-based XRD/3DSM model (see 

Fig. 5.9b).  

 Although the “Curve Through XYZ Points” tool and the boundary surface feature are 

easy and straightforward to use through Solidworks
TM

, the mathematics behind how the spline 

curves and the boundary surface were created are rather complex. These are beyond the scope 

of this thesis, but more information can be found in references [186, 187]. 

 Fig. 5.9 a) Boundary surface feature used to connect the spline curves, and b) A solid surface 

model of  lab-based XRD/3DSM, demonstrating the lattice misorientations of the (110) plane 

in an example Si die inside a fully encapsulated packaged chip. 
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5.4 In Situ XRD Annealing Experiments  

 The lab-based XRD/3DSM technique is also applicable at elevated temperatures up to 

115
o
C by in situ XRD annealing experiments. This process is a good way of replicating the 

thermal response of the packaged chip at temperatures it may encounter during manufacture 

and operation.  

 These annealing experiments were carried out using the same Jordan Valley’s D1 X-

ray diffractometer through the following procedures: 

 

i) Fitting an Anton Paar DHS 1100 heating stage 

The system was equipped with an Anton Paar DHS 1100 heating stage, as shown in Fig. 5.10 

(see Table 5.1 for Anton Paar specifications) [188]. This allows one to perform in situ XRD 

annealing experiments without the need to remove the specimen from the sample stage or 

further XRD set-up alignment prior to the heating experiments. The in situ stage ensured the 

position of the specimen mounted on the heating stage remained constant, both prior to and 

after each heating experiment was carried out, ensuring very high repeatability and reliability 

of results. 

 Fig. 5.10 Photo of the Anton Paar DHS 1100 fitted to the sample stage of the Jordan Valley’s 

D1 X-ray diffractometer system [188]. 

Ceramics heating plate Graphite dome 

Specimen 
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Table 5.1 Specifications of Anton Paar DHS 1100 heating stage [188]. 

Specifications  

Operating temperature 25
o
C to 1100

o
C 

Atmospheres Vacuum (10
-1

 mbar), air, inert gas, nitrogen 

Max. operating pressure Max. 0.3 bar above atmospheric pressure 

Transmission (incident and diffracted 

rays) 

~ 65% 

Diameter/Height/Weight 128 mm/51 mm/450 g 

 

 

ii)  Mounting the sample onto the stage 

The sample was mounted onto the chemically resistant ceramic heating plate (see Fig. 5.10), 

and then covered by a graphite dome (see Fig. 5.11). This allows the in situ XRD annealing 

experiments to be carried out in various ambients, such as vacuum, air and nitrogen. 

 

 

iii) Aligning the sample in the beam 

Prior to the annealing experiments, the sample was properly aligned in the beam for 

diffraction using the procedures previously discussed in section 2.4.5. 

 

 

 

Fig. 5.11 Schematic diagram showing the experimental setup of in situ XRD annealing 

experiments.  
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iv) Performing the in situ XRD annealing experiment 

During the in situ XRD annealing experiments, the annealing temperature was monitored 

using a thermocouple controlled temperature unit (Anton Paar TCU 200). The system has a 

temperature range of 25
o
C to 1100

o
C with an accuracy of 0.1

o
C. The annealing temperature 

can be set through the front control panel of the TCU 200 unit. 

When the sample is heated to the desired temperature, the XRD/3DSM measurements 

can be performed following the sample procedure as described in section 5.3. 

 

5.5 Summary 

 The evolution of IC packaging technology has been briefly reviewed. Manufacturing-

induced thermal stress created during the fabrication of packaged integrated circuits can 

potentially lead to device failure. Therefore, the need to develop metrologies that can be used 

to effectively measure stress/strain in systems-on-chip or systems-in-package is identified by 

the International Technology Roadmap for Semiconductors (ITRS). 

 A novel lab-based technique called X-ray diffraction 3-dimensional surface modeling 

(XRD/3DSM) for non-destructive analysis of manufacturing process-induced stress/warpage 

inside completely encapsulated packaged chips has been developed using a triple-axis Jordan 

Valley Bede D1 X-ray diffractometer. Results from this technique will be shown in the 

following chapters 6 and 7, through the charactersation of die stress and warpage inside 

encapsulated commercially available ultra-thin QFN packages, as well as die stress and 

warpage in embedded QFN packages at various stages of the chip manufacturing process.  
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Chapter 6 

Characterisation of Die Stress and Warpage Inside Commercially 

Available Ultrathin-QFN Packages 

6.1 Introduction 

 In order to confirm the feasibility of the lab-based XRD/3DSM technique, I have 

applied this technique to characterise die stress and warpage inside fully encapsulated 

commercially available ultra-thin Quad Flat Non-lead (UQFN) packages. For the UQFN 

package under test, warpage is investigated as a function of the large thermal stresses, 

mimicking those that are developed during the die attach process, and the moulding 

compound encapsulation process as a consequence of the coefficient of thermal expansion 

(CTE) mismatch between different materials. These are carried out by in situ XRD annealing 

experiments, as well as finite element analysis (FEA). 

 

6.2 UQFN packages 

 In this study, a commercially available 28-pin UQFN flash microcontroller 

(Manufacturer Part No.PIC16LF1827-I/MV) from Microchip is examined. Fig. 6.1a) is a 

cross-sectional schematic diagram of a typical UQFN package, in which a die is attached onto 

a lead frame by die adhesive film/epoxy glue, and finally encapsulated by a moulding 

compound. The contact pads of the UQFN package are connected to the die using wire-

bonding technology creating thin wires. The physical dimensions and the material properties 

of the UQFN package under test are estimated from X-ray radiographic images of the UQFN 

package (see Fig. 6.1b) and references [189-192], as summarised in Table 6.1. 

file:///F:/PHD%20work/working/Phd%20thesis/Re-arranged/combine/Quality%23_ENREF_189
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Figure 6.1a) Cross-sectional schematic diagram of a typical QFN package, and b) X-ray 

radiographic image of the UQFN package under test. 

 

Table 6.1 UQFN package physical attributes. 

Attribute Materials Dimension, mm 

Width Length Height 

Lead frame/Exposed pad   Copper alloy 2.80 2.80 0.150 

Die adhesive  Silver Epoxy 0.70 0.70 0.025 

Die Silicon 2.20 2.40 0.150 

Cap Epoxy Resin 4.00 4.00 0.175 

Overall dimension  4.00 4.00 0.500 

 

6.3 Characterisation of die stress inside UQFN packages 

6.3.1 Lab-based XRD/3DSM 

 Fig. 6.2a) shows the XRD/3DSM of a UQFN package recorded at phi = 0
o
, which is, 

in effect, a 2D map of the warpage/lattice deformations which have developed in the Si die 

during the packaging process. The sample was then rotated successively by 90
o
 around the 

[001] axis (surface normal) and the mapping and reconstruction processes were repeated, in 

order to evaluate the lattice misorientations of the two orthogonal (110) crystallographic 

Moulding Compound 

 Die 

Die adhesive  

Lead Frame 

Contact 

a) 
b) 

1000 µm 

Thin wire 
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planes in the Si die, as shown in Fig. 6.2b) –i.e. a XRD/3DSM recorded at phi = 90
o
. Each of 

the XRD/3DSMs is built up from a total of 5 horizontal (phi = 0
o
) and vertical (phi = 90

o
) 

FWHM line scans, respectively – using a 400 µm step size between two adjacent FWHM line 

scans. Fig. 6.2c) shows the approximate position where the horizontal and vertical FWHM 

line scans were recorded. 

 Measurements at phi = 0
o
 and 90

o
 are required in order to investigate the lattice 

misorientations of the two orthogonal (110) planes. This is because XRD/3DSM performed at 

phi = 0
o
 collects only the lattice tilt information of one (110) plane, which is parallel to the 

scanning direction of the RC measurement (see Fig. 6.2d). Using the crystal axes shown in 

Fig. 6.2c), the XRD/3DSMs recorded at phi = 0
o
 and 90

o
 correspond to the diffractions from 

either the (110)/        or                crystallographic planes, respectively. Each of the 

XRD/3DSM took approximately 90 minutes scan time, and more details are summarised in 

Table 6.2. 

 

Table 6.2 Details and scan times for each XRD/3DSM. 

Type of scan Details 

004 Rocking 

curve 

Sampling 

step size 

Count time 

per point 

ω-scanning 

range 

 

Approximate scan time 

per RC 

0.005
o 

0.5 sec 0.7
o 

1.5 minute 

FWHM line scan Distance between two RCs were 

recorded 

Approximate scan time 

per FWHM line scan 

200 micron 18 minutes 

XRD/3DSM Distance between two FWHM line scans 

were recorded 

Approximate scan time 

per map 

400 micron 90 minutes 
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 Figures 6.2a)-b) are the XRD/3DSMs of the UQFN package recorded at phi = 0
o
 and 90

o
, 

respectively, and c) is a schematic diagram illustrating the approximate locations of the line 

scans at phi = 0
o
 and 90

o
 for the UQFN package. Fig. 2d) demonstrates the ω-scan/RC scan 

direction versus the lattice tilt direction at phi = 0
o
.  

 

 The XRD/3DSMs of the UQFN package clearly reveal that the warpage is relatively 

low at the corners of the Si die and increases gradually approaching the centre part of the die.  

Warpage can be defined as a distortion where the surface is bent or twisted out of shape, 

especially from a straight or flat form. This non-uniformly distributed warpage is thought to 

be most probably due to the process-induced thermal stress as a result of the CTE mismatch 

between different materials. These will be mainly attributable to the die attach process [175-

179], and smaller stresses are generated during later processing stages, for instance, during 

the moulding compound encapsulation process and thermal cycling reliability testing. In 

a) b) 
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general, the die attach process comprises of the attachment of the die onto the lead frame and 

the curing of the bonding adhesive at an elevated temperature (> 100
o
C) [189, 192]. 

Considering a similar die attach process was used for the UQFN package under test, wherein 

an epoxy glue was applied to the Si die, and that the thermosetting adhesive crosslinks and 

hardens during the adhesive curing process, this most likely generates thermal stress upon 

cooling down to room temperature [175-179], as illustrated in Figs. 6.3a)-b). This stress 

occurs because the copper lead frame possesses a much larger CTE and is likely to undergo 

greater expansion at the time at which the Si die was bonded onto the copper lead frame and 

cured at an elevated temperature (> 100
o
C). The thermal stress is formed upon cooling down 

the materials to room temperature as a result of the much faster shrinking rate of the 

underlying copper lead frame (contraction force or compressive stress), and this therefore 

induces warpage in the Si die, forming the lattice deformation as observed by XRD/3DSMs in 

Figs. 6.2a)-b).  

 

 

6.3.2 Synchrotron X-ray topography (SXRT) 

 In order to validate data obtained from the lab-based XRD/3DSM, the UQFN 

package was also investigated by SXRT. The 220 reflection for large area transmission 

topographs (LAT) has been chosen. This is because the 220 reflection (second order of 110 

Figure 6.3 a)-b) demonstrate the formation of warpage by thermal stress due to CTE 

mismatch between different materials. 

 

At > 100
o
C At 25

o
C (Room temperature) 

Die attach process taking place at an 

elevated temperature of >100
o
C 

Thermal stress is formed upon cooling down 

to room temperature, creating warpage 

Contraction force 

a) b) 
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reflection) [193] contains diffraction intensities arising from the (110) plane in the Si die. 

Therefore, this allows us to make a direct comparison of the results obtained from the lab-

based XRD/3DSM and SXRT, for which the 220 LAT topographs recorded at phi = 0
o
 and 

90
o
 provide us the lattice tilt of the two orthogonal (110) planes in the Si die. 

  Figs. 6.4 are the 220 LAT topographs of the UQFN package recorded at phi = 0
o
 and 

90
o
, respectively. The projection of the diffraction vector,     of the X-ray beam onto the plane 

of the recording film is represented by the arrow. For both cases, the topograph is consistently 

elongated in the direction parallel to     , which is due mostly to the high degree of 

warpage/lattice misorientation in the Si die [38]. This is because the greatest sensitivity of 

SXRT occurs when      is parallel to the direction of the lattice tilt [38]. For ease of 

comparison, these LAT topographs are normalised in order to eliminate the geometric 

distortion parallel to     , as shown in Fig. 6.5. The hemispherical features marked by S shown 

in the topographs are the diffracted intensity from the edges of the warped Si die. These 

features are formed by orientation contrast phenomena due most likely to the deviation of the 

Bragg angle as a consequence of the strain-induced tilt of the diffraction planes [38]. At phi = 

0
o
, only the lattice misorientation in one (110) plane is observed, therefore LAT at phi = 90

o
 is 

required in order to reveal the lattice misorientations of the two orthogonal (110) planes. 

These observations of LAT topographs confirm the XRD/3DSM results discussed in previous 

section, where the most highly distorted region is identified to be towards the centre of the Si 

die (marked by S) for which the diffracted intensity is “defocused” and recorded at different 

locations on the film. Apart from that, four elliptical features marked by D are consistently 

observed in the LAT topographs of the UQFN package. These are as a result of the strain 

field patterns from the epoxy glues applied around the four corners of the Si die, as previously 

observed in X-ray radiographic images.  
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 In addition, the UQFN package was also investigated by large area back reflection 

(LABR) topography. The      LABR topograph of the UQFN package is shown Fig. 6.6a). 

The darker hemispherical features in the LABR topograph (e.g. see arrow A) are due to the 

strain induced tilts in the Si towards the central regions of the edges of the die, leading to the 

apparent bowing of the recorded die edges as seen in the LABR topograph (see Fig. 6.6b). 

However, the strain field patterns due to the epoxy glues are not visible on the LABR 

topograph. This is because, in back reflection mode, the X-ray beam probes only the top ~ 60 

um of the Si die, which itseld is ~15  μm thick; therefore it provides only the lattice 

information from the region near to the top surface. The similar nature of the distortion 

observed from LAT and LABR topographs confirm the XRD/3DSM results obtained from 

lab-based XRD measurement. 

 

 

Figure 6.4 220 LAT topographs of the UQFN package recorded at phi = 0
o
 and 90

o
, 

respectively. 
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a) 

Figure 6.5 Normalised 220 LAT topographs of the UQFN package recorded at phi = 0
o
 and 

90
o
, respectively, as shown in Fig. 6.4, in order to eliminate the geometric distortion parallel 

to     . 
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Figure 6.6a) is the      large area back reflection topograpy of the UQFN package, and b) 

Formation of darker hemispherical features (“A”) in the LABR topograph due to the strain 

induced tilts in the Si towards the central regions of the edges of the die.  

 

6.3.3 In Situ XRD annealing experiments 

 This warpage as a result of CTE mismatch of different materials is expected to relax 

back if a thermal load is applied to the UQFN package. In order to verify and observe how the 

warpage of the Si die evolves as a function of temperature, I have performed in situ XRD 

annealing experiments using the Anton Paar heating stage at temperatures ranging from 25
o
C 

to 115
o
C in 30

o
C steps, recorded at phi = 0

o
. For each temperature, the UQFN package was 

heated using a heating rate of 5
o
C/minute. 
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  For each case, the RC FWHM was extracted from the highly distorted region of the 

UQFN package, and is shown in Fig. 6.7. The warpage (FWHM) was greatly reduced as the 

UQFN package was heated up from 25
o
C (FWHM = ~0.19

o
) to 115

o
C (FWHM = ~0.09

o
). 

These observations from in situ XRD annealing experiments imply that thermal process-

induced strain relief has occurred at elevated temperatures. The greater expansion rate of the 

underlying copper lead frame most plausibly relaxes the Si warpage. This same experiment 

has been repeated on a second UQFN package, and the extracted FWHM of the highly 

distorted region is also shown in Fig. 6.7. Repeat experiments consistently show a similar 

trend of tilt reduction as a function of temperature, and thus demonstrate a high 

reproducibility and reliability of results. The slight variation of warpage measured from both 

chips can be interpreted as due most probably to slight physical differences from chip-to-chip. 
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Fig. 6.7 The extracted RC FWHM as a function of temperature, illustrating the reduction of 

warpage in packaged chips as temperature increases. 
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6.3.4 Stress estimation 

 The lab-based XRD technique can be used to quantitatively estimate the warpage 

stress induced in each chip during the packaging process, using the angular offset between the 

peak positions of RCs measured at two adjacent regions [194]. This ‘warpage stress’ is a 

biaxial stress (σxx + σyy) – the sum of stress from two in-plane directions due to the contraction 

forces, as previously discussed. Considering a warped chip shown in Fig. 6.8, the upper half 

and lower half of the chip will be experiencing tensile and compressive stresses, respectively, 

whereas the centre region is stress-free due to the neutralisation of the stresses from the top 

and bottom of the surfaces. When one assumes the top and centre regions of the chip are two 

curved regions sharing the same central angle (∆θ = angle between the surface normals of 

positions X1 and X2) but having different arc-lengths, the stress can be estimated through the 

following relation [194]: 

          
                     

                    
  

    
  

 (6.1)  

Through the stress-strain relationships relationships[194], 

                        
 

 
  

    
  

   (6.2)  

where  E = Young’s modulus of Silicon. From Fig. 6.8, we know that        and   

          and this means Eq. 6.2 can be simplified to [194] 

            
 

 
  

 

  
   (6.3)  

The radius (R) can be calculated through the following relation [194], 

   
 

  
  (6.4)  

where    and   are the peak position difference and the distance between the surface normals 

of positions X1 and X2, respectively. Using this relation, the warpage stresses across the 
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whole Si die can also be reproduced using the same XRD/3DSM technique. These are 

demonstrated in Figs. 6.9 showing maps of warpage stresses across the entire Si die in the 

UQFN package measured at phi = 0
o
 and 90

o
, in which the warpage stress is comparatively 

low around the corners of the Si die due to lower warpage or lattice misorientation, as 

previously discussed.  

 

 

Fig. 6.8 Schematic diagram illustrating the relationship between warpage stress and warpage-

induced curvature of wafer [194]. 

 

 

Fig. 6.9 XRD/3DSMs showing the distribution of warpage induced stresses across the whole 

Si die recorded at phi = 0
o
 and 90

o
 (left/right). 
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6.3.5 Finite element analysis (FEA) 

 For the purpose of developing a deeper understanding of the experimental results, I 

have also adopted a very simple FEA analysis in this study. In general, FEA is a widely used 

numerical technique for predicting a model’s response to various influences such as forces, 

torques, periodic excitations, and heat [195, 196]. It is very useful, especially for analysing a 

large or complicated model where analytic solutions are not possible or difficult. The 

fundamental concept behind the FEA is to break any complex model into thousands of small 

tetrahedral elements and solving each of the individual elements numerically [195, 196].  

 In this work, FEA was done with an “Add-In” advanced feature of Solidworks
TM

, 

called Solidworks
TM

 Simulation. The Solidworks
TM

 Simulation was used to perform two types 

of FEA studies; i) Static analysis – to predict stresses and displacement caused by 

static/mechanical loading, and ii) Thermal analysis – to predict stress and displacements due 

to thermal expansion. The results predicted from FEA will be used for direct comparison with 

the experimental measurements.  

 The 3D model used in the Solidworks
TM

 simulations was sketched according to the 

physical dimensions of the UQFN package as summarised in Table 6.1. The FEA simulations 

were performed using the following procedure: 

 

Step 1- Construction of the parts using Solidworks
TM

: 

Different parts of the UQFN package were sketched using the physical attributes summarised 

in Table 6.1. 

 

Step 2- Combination of multiple parts into an assembly: 

These different parts were imported accordingly into an assembly and combined in order to 

form a 3D solid model. 
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Step 3- Discretization of structure: 

A mesh was created in order to break the complex 3D solid model into a large number of 

small tetrahedral elements, forming the 3D FEA model which is required for FEA simulation 

[195, 196]. Each of these elements occupies a small but finite sub-domain of the original part, 

and they are called finite elements because there are a known number of elements in a 3D 

FEA model. Each element is connected to the adjacent element via “nodes”, in which they act 

to define the shape and also to convey physical reactions from one element to another of a 

FEA model [195, 196]. For the UQFN package, the finite element model of the full UQFN 

package was created based on 65034 3D brick elements nodes and 41590 mesh elements to 

produce tetrahedral meshing, as depicted in Figs. 6.10.  

 

 

 

Fig. 6.10 The 3-dimensional FEA model of the UQFN package used in this study a) Fully 

encapsulated UQFN package, and b) The cap is removed for viewing internal features.  
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Step 4- Material assignment to each part of the 3D FEA model: 

Each part of the 3D FEA model was assigned their respective different material properties, 

using the Solidworks
TM 

Simulation material library. The properties of the materials used in the 

FEA simulation are shown in Table 6.2.  

 

Table 6.2 Properties of materials used in FEA simulation [189-192]. 

Attribute Materials Young’s 

modulus 

(GPa) 

CTE (10
-

6
/K) 

Poisson’s 

ratio 

Lead frame/Exposed pad   Copper alloy 110 24 0.370 

Die adhesive  Silver Epoxy 12 65 0.394 

Die Silicon 169 2.69 0.3 

Cap Epoxy Resin 2.4 55 0.35 

 

 

Step 5- Creation of the deformed 3D FEA model: 

Mechanical loading was applied to the die adhesive layer (in both x- and y- directions) in 

order to form a 3D FEA model with warpage (Fig. 6.11b) which is similar to that of 

experimentally measured results (see Fig. 6.11c)) – a biaxial stress (σxx + σyy) of ~ 70 MPa 

around the region A indicated by red arrows in Figs. 6.11b) and 6.11c). This deformed 3D 

FEA model was used as a model for the simulation study of temperature effects.  

file:///F:/PHD%20work/working/Phd%20thesis/Re-arranged/combine/Quality%23_ENREF_189
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Figure 6.11 a)-b) illustrating the deformed 3D FEA model created by applying the mechanical 

load to the die adhesive layers, and c) is the XRD/3DSM at phi = 0
o
 obtained from lab-based 

XRD measurements at 25
o
C. 

 

Step 6- Effect of thermal loading:     

Thermal loading was applied to the deformed 3D FEA model in order to observe the 

transition of warpage inside the packaged chip. As an example, the simulation result at 115
o
C 

is illustrated in Fig. 6.12b).  

1000 µm 

Mechanical load applied in both x- & y- directions 

Warpage stress (σxx + σyy ) at region A = ~ 70 MPa 

(FWHM, o) 

FWHM = ~0.19
o
 

a) 

b) 

c) 

A  
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Fig. 6.12 Transition of warpage in the packaged chip as a function of temperature. a) 

Deformed 3D FEA model at 25
o
C, b) Deformed 3D FEA model at 115

o
C, c) and d) are the 

XRD/3DSMs at phi = 0
o
 obtained from lab-based XRD measurements at 25

o
C and 115

o
C, 

respectively. 

 

 For comparison, the distributions of biaxial stress (σxx + σyy) across the Si die obtained 

from FEA simulation at 25
o
C and 115

o
C are depicted in Figs. 6.13a)-b), respectively. In 

addition, the distributions of the biaxial stress (σxx + σyy) across the Si die (across the highly 

distorted region A indicated by the red arrow in Fig. 6.13) at the x-z cross section are also 

shown in Figs. 6.14. From Fig. 6.14a), it is obvious that the upper half and lower half of a 

warped Si die region are experiencing tensile and compressive stresses, respectively. This 

At 25
o
C At 115

o
C 

Simulation Results – 

Deformed 3D FEA models of the fully encapsulated UQFN 

package. Note that the cap is removed only visualisation purposes. 

Experimental Results – 

XRD/3DSMs of UQFN package at phi = 0
o 

a) b) 

c) At 25
o
C 

500 µm 

(FWHM, o) 
FWHM = ~0.19

o
 

d) At 115
o
C 

500 µm 

FWHM = ~0.09
o
 

1000 µm 

500 µm 
500 µm 

A A 

A A 

A 

A 

B 

B 

B B 
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observation has further confirmed the previous assumption used to estimate the biaxial stress 

from the XRD results, as previously discussed in section 6.3.4. As the thermal load was 

applied, the underlying copper lead frame expands more rapidly than that of Si die at elevated 

temperature, and compensates and relaxes the warpage generated initially during the die 

attach process, as shown in Figs. 6.12, 6.13 and 6.14. 

 

 

Figure 6.13a)-b) show the distributions of the biaxial stress (σxx + σyy) across the Si die 

obtained from FEA analysis at 25
o
C and 115

o
C, respectively. 

a) At 25
o
C 

Biaxial stress (σxx + σyy) 

Corresponds to region A indicated by red arrow in Fig. 6.12a) 

Die 

adhesive 

layers 

b) At 115
o
C 

Biaxial stress (σxx + σyy) 
MPa Tensile 

Compressive 
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Figure 6.14a)-b) show the distributions of the biaxial stress (σxx + σyy) across the Si die at the 

x-z cross section (across the highly distorted region A indicated by red arrow in Fig. 6.13), 

obtained from FEA analysis at 25
o
C and 115

o
C, respectively. 

 

 

 For a deeper comparison, the stress (σxx + σyy) extracted from simulations is compared 

to that of experimental results recorded at phi = 0
o
 (around the regions A and B indicated by 

the red and blue arrows in Figs. 6.12, 6.13, 6.14), as shown in Fig. 6.15. The excellent 

agreement between the simulation and experimental results confirms the aforementioned 

discussion, where the thermal process-induced strain relief has occurred at elevated 

temperatures. Therefore, it is believed that most of the stress appears to develop during curing 

of the die-attach adhesive due to the difference in expansion of the Si die and lead frame, as 

reported by several authors [177-179, 193]. 

a) At 25
o
C 

Biaxial stress (σxx + σyy) at the x-z cross section  

b) At 115
o
C 

Die adhesive layer 

Upper half experiencing tensile stress 

Lower half experiencing compressive stress 

Die adhesive layer 

Top surface 

Bottom surface 

Biaxial stress (σxx + σyy) at the x-z cross section  

Stress reliefs as thermal load is applied 

MPa Tensile 

Compressive 
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Figure 6.15 Effect of temperature on the stress transition in the silicon die. The stress is 

measured and calculated around the region A (region B) marked by the red arrows (blue 

arrows) in Figs. 6.12. 

 

 These findings have important implications for the manufacturing and control of 

stress development in the Si die. Considering the UQFN packages under investigation, it is 

well known that thermal stress can impact on the reliability and functionality of integrated 

devices fabricated on a deformed Si die [169, 197, 198]. Therefore, reduction of process-

induced stress is a fundamental issue that needs to be addressed for the realisation of high 

volume 3D IC integration technology for future microelectronics. Diagnosing such stresses 

will also be key and laboratory-based XRD using 3DSM can serve as a straightforward, non-

20 40 60 80 100 120
20

30

40

50

60

70

80

90

100

 

 

S
tr

e
s
s
 (

M
P

a
)

Temperature (
o
C)

 Experimental Results at region A

 Simulation at region A

20 40 60 80 100 120
20

30

40

50

60

70

80

90

100

 

 

S
tr

e
s
s
 (

M
P

a
)

Temperature (
o
C)

 Experimental Results at region B

 Simulation at region B



 

157 

 

destructive and in situ characterisation methodology for providing detailed information on the 

lattice warpage/strain developed in packaged chips including during crucial elevated thermal 

processing steps. 

 

6.4 Summary 

 In this chapter we have demonstrated a novel laboratory-based X-ray diffraction 

analysis technique (XRD/3DSM) which can map major warpage features non-destructively in 

fully encapsulated packaged chips. Tilt direction and stress can also be evaluated separately 

from the rocking curve maps and peak deviations between rocking curves measured at two 

adjacent regions. In the commercially available UQFN packages tested in this study, 3DSM 

reveals that distortions are considerably lower at the corners of the Si die, but significantly 

larger at the central regions of the die. In situ XRD annealing experiments and FEA 

simulations confirmed that most of the stress is developed during the die attach process. 

 The transfer of this technique from a synchrotron X-ray source environment to a 

laboratory tool makes such lab-based non-destructive imaging and evaluation of 

warpage/strain characterisation of Si wafer die inside packaged SoC/SiP using XRD/3DSM a 

realistic possibility within a fab environment. 
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Chapter 7 

Characterisation of Die Stress and Warpage in Embedded Quad-Flat 

No-Lead (QFN) Packages 

7.1 Introduction 

 The previous chapter has demonstrated the concept of X-ray diffraction 3-

dimensional surface modelling (XRD/3DSM) through the implementation of this technique 

for characterising die stress inside fully encapsulated ultra-thin QFN (UQFN) packages. In 

order to demonstrate the feasibility of XRD/3DSM in characterising a packaged chip with a 

more complex structure, I have also applied this technique to investigate embedded QFN 

packages at different manufacturing processing steps. 

 

7.2 Embedded QFN packages 

 The second types of package investigated in this study are embedded QFN packages 

[167, 180], provided by Fraunhofer IZM Berlin. They consist of a 5 mm x 5 mm active die 

bonded Si chip (50 µm thick), embedded face-up on a substrate, with a peripheral bond pad 

pitch of 100 µm. The overall dimension of the package is measured to be 10 mm (W) x 10 

mm (L) x 160 µm (H) in size (see Fig. 7.1).  

 

Figure 7.1 Cross-sectional schematic diagram for the embedded QFN package [167, 

180].  

 

Resin-coated-copper 
Copper Via 

Si 
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 The five major embedding/processing steps of these embedded QFN packages are 

listed below [167, 180]: 

i) Chip attach – the Si die is bonded onto the core substrate using a 20 µm thick double 

layered die attach film (DDAF). Prior to the chip attach process, a 6-8 µm thick copper layer 

was electrolytically deposited on the core substrate. 

ii)  Embedding by lamination - The die bonded chip is laminated by a ~ 100 µm thick resin 

coated copper (RCC) dielectric layer from the top side of the chip, using a standard printed 

circuit board (PCB) multilayer vacuum lamination process. 

iii) Microvia drilling – Microvias were drilled through to the chip pads using a pulsed 355 nm 

UV laser, following by a via cleaning process to remove the residual of epoxy resin in order 

to ensure good adhesion of the subsequent electroplated copper. 

iv) Copper metallisation – A conductive palladium layer was deposited on top of the epoxy 

surface prior to via electroplating of copper. 

v) Structuring of conductor lines – The chip was exposed to negative photoresists by using a 

laser direct imaging (LDI) system, and followed by an acidic spray etching in order to reveal 

the Cu line patterning. These Cu lines will serve as connectors to the bond pads, as well as 

capturing pads on the chip. Finally, the packaging process is complemented by the Cu 

structuring on the bottom side of the package. These packages were processed in a large panel 

format and they were separated using a laser or a standard (wafer) saw. More details 

regarding the QFN chip embedding, assembly and processing steps can be found in references 

[167, 180]. For the embedded QFN packages, I investigated these packaged chips after two of 

the most potentially decisive processing steps marked by black rectangular boxes in Fig. 7.2. 
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Figure 7.2 Schematic diagram showing the process sequence for embedded QFN package 

[167, 180]. 

 

7.3 Characterisation of die stress and warpage inside embedded QFN packages for 

selected chip manufacturing process steps 

 Similar to the UQFN packages, the embedded QFN packages were also characterised 

using XRD/3DSMs recorded at phi = 0
o
 and 90

o
 in order to examine the lattice 

misorientations of the two orthogonal (110) planes in the Si die. For the embedded QFN 

package, the FWHM lines were recorded across the Si die using a step size of 200 µm, and 

therefore the resolution is higher relative to the XRD/3DSM of the UQFN packages, in order 

to reveal finer detail in the Si die for this more complex embedded package. Each of the 

XRD/3DSM surfaces is built up from a total of 26 horizontal (phi = 0
o
) and 26 vertical (phi = 

90
o
) FWHM line scans, respectively. During the reconstruction of XRD/3DSM for the 

embedded QFN packages, additional connectors were added between two adjacent splines. 

This was done to allow a more precise flow of the boundary surface between adjacent splines 

with a large change in slope [38, 199].  The estimated scan time for each XRD/3DSM is 

approximately ~ 15 hours (more details are shown in Table 7.1).  

i) Chip Die Bond 

to Substrate 

ii) Vacuum 

lamination of RCC 

material 

iii) Laser drilling 

of micro vias 

iv) Copper 

metallisation 

v) Structuring of 

conductor lines 
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Table 7.1 Details and estimated scan time for each XRD/3DSM. 

Type of scan Details 

004 Rocking 

curve 

Sampling 

step size 

Count time 

per point 

ω-scanning 

range 

 

Approximate scan time 

per RC 

0.01
o 

0.2 sec 3.5
o 

80 sec 

FWHM line scan Distance between two RCs were 

recorded 

Approximate scan time 

per FWHM line scan 

200 micron 31 minutes 

XRD/3DSM Distance between two FWHM line scans 

were recorded 

Approximate scan time 

per map 

200 micron 15 hours 

 

 Chip die bond to substrate, vacuum lamination, laser drilling of microvias, copper 

metallisation and structuring of conductor lines are the five major embedding/processing steps 

of these embedded QFN packages. To reiterate, I have focused on characterisation at two 

stages of embedded QFN manufacture, as shown in Fig. 7.2.  

 

7.3.1 Copper metallisation 

 During the first of these, copper metallisation, the Si die is laminated by a ~ 100 µm 

thick RCC dielectric layer and covered entirely by a copper layer. Fig. 7.3 is an optical image 

of the embedded QFN package after copper metallisation, showing an embedded Si die fully 

encapsulated by the copper layer.  
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 Figs. 7.4a)-b) show the XRD/3DSMs of a typical chip following copper metallisation 

recorded at phi = 0
o
 and 90

o
, demonstrating lattice misorientation/deformation of (110) planes 

in the Si chip. From Figs. 7.4a)-b), it is obvious that a distinctive ‘rippled’ profile with a peak-

to-peak pitch of 550 – 600 µm has developed up to or during this processing step. Lattice 

misorientations are higher around the edges of the Si die (FWHMmax = 0.44
o
 ± 0.02

o
), 

corresponding to an estimated stress in the range ~ 90 MPa - 140 MPa, which are marked by 

red ovals in Figs. 7.4a)-b). The development of these features is thought to be due either to 

the microvia laser drilling process or the vacuum lamination process.  

 In order to confirm this, an X-ray radiographic image of the chip after copper 

metallisation is shown in Fig. 7.4c). The X-ray radiographic image clearly demonstrates the 

cross-hatch pattern across the entire QFN package. This is almost certainly a result of the 

fibreglass weave pattern of the core substrate. The dimension of this cross-hatch pattern is 

measured to be ~ 550 - 600 µm, which correlates well to the peak-to-peak pitch of the 

‘rippled’ profile observed from XRD/ DSM. Note that, while X-ray radiography reveals this 

ripple pattern, it is unable to quantitatively reveal stress or warpage, as XRD/3DSM can. The 

Figure 7.3 An optical image of the embedded QFN package after copper metallisation of 

micro-vias.  

Embedded Si die – 

laminated and 

encapsulated by copper 

layer 

Mirco-vias 

1000 µm 
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lattice deformation developed after copper metallisation is thought to be due to vacuum 

lamination process-induced stress, as these features are not consistent with the patterning of 

the microvias, which are located around the periphery of the Si die (see Fig. 7.4c). During the 

lamination process, the die bonded Si chip on the core substrate is covered from the top side 

with an RCC layer in a pressurised chamber. A pressure > 12 bar is required to ensure 

sufficient flow of the RCC dielectric in order to prevent the formation of voids around the 

chips [172]. It is likely that stress is generated during this process as a consequence of the use 

of high pressure. The Si chip will be pressed against the substrate due to the clamping force, 

leading to the development of a distinctive ‘rippled’ profile on the Si chip, following the 

fibreglass weave surface morphology of the core substrate.  

 In addition, the embedded QFN package was also examined using synchrotron X-ray 

topography (SXRT) in order to reveal the type and extent of lattice misorientations formed in 

the Si die. Fig. 7.5 shows the      LABR topograph of the package after the copper 

metallisation of vias, which comprised of 24 optical microscopy images patched together, 

captured from two different topographs. The contrast discontinuities in the topograph are due 

to the lattice misorientations in the Si die. This is again thought to be related to the “ripple” 

profile features discussed in previous section, in which these features formed as a 

consequence of strain-induced tilt, created during the lamination process. Considering a 

deformed Si die with “ripple” profile features, the diffracted intensities will be respectively 

focused and defocused for “convex” and “concave” types of misorientations (see Fig. 7.6). 

Therefore, the diffracted intensities will be recorded at slightly different positions on the 

topograph due to the deviation of the Bragg angles, creating distinctive bumpy features 

(darker contrast in the topograph shown in Fig. 7.5) across the embedded chip.  From the 

LABR topograph, the bumpy features around the central region of the chip consistently 

showing a peak-to-peak pitch of ~ 850 µm. The shape of these features are however vary 
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Figure 7.4 a)-b) are, respectively, the XRD/3DSMs of a QFN chip recorded at phi = 0
o
 

and 90
o
, from different viewpoints (left/right), illustrating lattice deformation of the (110) 

planes in the Si chip after copper metalisation, and c) X-ray radiographic image of 

package after copper metallisation showing the embedded chip and microvias located 

around the edges of the embedded Si die (right, shows a magnified view of the centre of 

the left image). 
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significantly as we approach the edges of the Si die, especially towards the edges of the right 

corner of the Si die- with the feature size/pitch approaching  ~ 1000 µm, as shown in Fig. 7.5. 

This observation explicitly shows a phenomenon where the larger magnitude of lattice 

misorientation around the right corner edge of the chip causes the X-rays to diffract at slightly 

different diffraction angles (see Fig. 7.6). This is consistent with the results obtained from lab-

based XRD measurements, where the lattice misorientations are higher around the edges.  

 These observed feature sizes from the topographs (~850 to ~ 1000 µm) is nonetheless 

different to that of the fibreglass substrate induced weave feature sizes of ~550 – 600 µm 

measured from lab-based XRD. This is thought to be due mainly to these images being 

formed by different mechanisms for these different techniques. Considering the LABR 

topographs, the feature size is estimated from the diffraction pattern recorded on the 

topograph formed by the diffracted intensities arising from the misoriented crystal planes in 

the deformed Si die. As shown in Fig. 7.6, the diffraction intensities will be recorded at 

slightly different locations on the topograph depending on the magnitude of lattice 

misorientation across the Si die, and therefore it will be difficult to predict the actual feature 

size of the deformed Si die from the topograph. In contrast, the warpage map of the lab-based 

XRD/3DSM is plotted using the FWHM extracted from the RC recorded at each x-y position 

across the Si die, for which the largest FWHM corresponds to the highly distorted region of 

the chip. In other words, the feature size of the deformed chip will be reflected through the 

change of RC FWHM measured at each x-y position due to the variation of magnitude of 

lattice misorientations, but not the different diffracted positions recorded on the topograph, as 

is the case for the LABR technique. From this point of view, XRD/3DSM seems to be a better 

technique for providing detailed information or to pinpoint the precise location of the lattice 

warpage developed in packaged chips.  
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Figure 7.5      large area back reflection topography (bottom image) of the embedded 

QFN package after the copper metallisation of vias, recorded from the lower part of the 

chip marked by a black square box in the optical image (top image). 

 

1000 µm 

500 µm 

LABR topograph recorded 

from lower part of the chip 

Lattice misorientations 

are higher around the 

edges of the chip 

~1000 µm 

Diffracted intensities 

are defocused 

Diffracted intensities 

are focused 



 

167 

 

 

 

7.3.2 Structuring of conductor lines 

 The final processing step (see Fig. 7.2) of the embedded QFN package is the Cu 

structuring on the bottom side of the package. The XRD/3DSMs recorded at phi = 0
o
 and 90

o
 

Figure 7.6 The diffracted intensities are focused and defocused due to the strain-induced tilt, 

arising from a deformed Si chip. 
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are shown in Figs. 7.7a)-b), respectively, clearly illustrating that different types of lattice 

deformation/warpage have developed after this processing step. The stresses in the highly 

distorted regions (FWHMmax = 0.48
o
 ± 0.02

o
) are estimated to have increased slightly to ~120 

MPa - 170 MPa, corresponding to the region marked by a red ellipse in the warpage map.  

 The large warpage developed after structuring of conductor lines is thought to be 

linked to manufacturing induced-stresses, which may result from two major factors. Firstly, 

the placement accuracy during the die bonding or die placement process has been reported to 

be one of the most crucial processes for chip embedding [172]. This is because a small 

misalignment of chip position can potentially result in insufficient support from either the top 

or bottom surface of the chip [38, 172], and subsequently leads to warpage. In addition, the 

CTE mismatch between silicon and copper-filled TSVs can also induce thermo-mechanical 

stress, leading to material deformation, delamination and cracking in the packaged chip [173, 

174]. These results agree well to that of results previously obtained using 3DSM technique 

performed using synchrotron radiation source, in which a similar warpage feature has been 

observed for the chip after the final processing step [38].   
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 Fig. 7.8 shows the      LABR topograph of the embedded QFN package after 

structuring of conductor lines, which is patched from optical images captured from two 

different topographs. The highly distorted region is identified to be the central region of the 

darker elliptical feature (denoted by E) in the topograph - the bottom left part of the chip. This 

feature is formed on the topograph by the same diffraction mechanism as previously 

discussed, in which the diffracted intensities from the highly distorted region are “defocused” 

and recorded at slightly different position on the film, appearing to be lighter on the 

topograph due to intensity loss. As a result of this the images around the central region are not 

Fig. 7.7a)-b) are the XRD/3DSMs recorded at phi = 0
o
 and 90

o
, respectively, from different 

viewpoints (left/right), showing warpage/lattice deformation of the (110) planes inside the 

packaged chips after the structuring of conductor lines. 
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included due to the difficulty of patching these together due to a lack of patterning/features on 

the topographs. The LABR result correlates well to that of the warpage map obtained from 

the lab-based XRD/3DSM, which confirmed that the development of large warpage is mostly 

linked to the manufacturing process induced stress. 

 

 

 

7.4 Summary 

  The feasibility of the lab-based XRD/3DSM technique has been further confirmed 

through the characterisation of die stress inside fully encapsulated QFN packaged at various 

Figure 7.8      large area back reflection topography (bottom image) of the embedded 

QFN package after the structuring of conductor lines, recorded from the lower part of the 

chip marked by red square box in the optical image (top image). 
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stages of the chip manufacturing process. For the embedded QFN packaged under 

investigation, different magnitudes of stress/warpage are generated during different 

manufacturing processes. More specifically, XRD/3DSM clearly revealed major changes of 

lattice misorientation/warpage in the Si die after the structuring of conductor lines from the 

manufacturing process steps for copper metallisation. 

  The novel lab-based XRD/3DSM technique can serve as a straightforward, non-

destructive and in situ characterisation methodology in an attempt to gain a better 

understanding of the sources and distribution of strain inside packaged chips, and thereby 

help to improve the manufacturing efficiency, performance and reliability of advanced 

packaging products. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

 The aggressive scaling of silicon (Si) complementary metal-oxide-semiconductor 

(CMOS) technology for the past 40 years has resulted in greater integrated circuit (IC) 

functionality and improvements in metal-oxide-semiconductor field-effect transistor 

(MOSFET) performance helping to fulfil the demands of a modern technological society. 

Nonetheless, traditional Si CMOS scaling is becoming increasingly difficult as physical limits 

are approached at the 16 nm node and beyond. A significant issue is the limited charge carrier 

mobility in Si, and so new channel materials that carry relatively higher mobility carriers have 

been used, such as strained Si. Other materials such as gallium arsenide (GaAs), indium 

gallium arsenide (InGaAs) and germanium (Ge) are currently under consideration for 

replacing the conventional Si channel for next generations of low power and high speed 

electronics. The continued downscaling of CMOS technology following this route is defined 

by the International Technology Roadmap for Semiconductor (ITRS) as the “More-Moore” 

(MM) approach. However, challenges still remain for the realisation of high quality III-V 

material on Si for CMOS devices because the tolerance to dislocations is very low            

(<10
5
 cm

-2
). 

 As previously discussed in Chapter 3, the most common issues that have to be 

overcome for the realisation of high quality III-V materials on Si substrates are anti-phase 

domains, dislocations, strain and lattice tilt distributed within the III-V layers due to their 

crystal dissimilarities. A non-destructive X-ray characterisation routine which can be used to 

effectively help III-V growers in tackling these problems has been designed. The significant 

benefit of X-ray techniques is that they are non-invasive, thereby allowing the same sample to 
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be measured a number of times, allowing comprehensive information to be extracted. The 

feasibility of the X-ray characterisation routine has been demonstrated through the 

characterisation of a series of deliberately fabricated “problematic” (with defects such as 

antiphase domains (APDs), dislocations, strain/relaxation, lattice tilts) GaAs materials 

deposited on Ge and Si substrates, using Metal-Organic Vapour Phase Epitaxy (MOVPE) 

under various growth conditions.  

 A range of these X-ray characterisation routines has been used to investigate GaAs 

heterostructures deposited on Ge and Si substrates, as summarised in Table 4.5. Considering 

the GaAs/Ge samples under investigation, synchrotron X-ray topography (SXRT) and triple-

axis high-resolution X-ray diffraction (HRXRD) revealed increasing dislocation density and 

degree of relaxation in the thicker GaAs epilayers (samples C, D and E). In contrast, thin (600 

nm) films (samples A and B) showed few dislocations and very little relaxation. This result 

implies a lack of correlation between the dislocation density and the nucleation routine. 

Conversely, triple axis HRXRD ω-scans, atomic force microscopy (AFM) and transmission 

electron microscopy (TEM) measurements showed that the surface roughness is closely 

correlated to the APD sizes formed in the GaAs crystal. The formation of large APDs led to 

rougher surface morphologies. Raman and PL measurements were unable to detect 

dislocations at the GaAs/Ge interface due to the laser penetration depth being ~90 nm in 

GaAs, but did allow for near-surface defectivity measurements. 

 GaAs/Si samples were found to be very defective. This is as expected for III-V 

material deposited directly on a Si substrate due to the large lattice mismatch. Dislocation 

density estimation using SXRT and crystallinity evaluation using triple-axis HRXRD are 

inapplicable for this type of sample due to the limited SXRT spatial resolution of ~ 3 µm and 

diffraction intensities produced by the highly mosaic GaAs crystals being too weak to be 

detected, respectively. However, different versions of the characterisation routines can be 
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implemented for detailed analysis of this defective sample. Double-axis HRXRD ω-2θ scans 

reveal the existence of some relaxed epitaxial GaAs present in the overlayer. Powder 

diffraction and X-ray crystallographic mapping confirm the presence of some epitaxial GaAs 

preferentially oriented along [001] embedded in the highly-textured polycrystalline structure.  

 Overall, this work demonstrates the importance of using a series of appropriate 

characterisation methodologies for identifying the presence of different crystal defects or the 

significant effects of each growth process. X-ray techniques can serve as a rapid 

characterisation methodology to help III-V growers in gain a greater understanding of various 

issues associated with heteroepitaxial growth, material properties, and optimal growth 

processes towards the achievement of low defect density III-V layers of device quality (< 10
5
 

cm
-2

). 

 According to industry experts, the future of modern nanoelectronics may well depend 

on a second trend, which is the implementation of diverse functionality within modern ICs. 

This “More than Moore” (MtM) approach will be realised through the manufacture of 

complex Systems on Chip (SoC) and Systems in Package (SiP), evolving towards fully three-

dimensional ICs (3D ICs). However, progress in this direction is hampered by the lack of a 

compelling metrology in order to measure non-destructively and in situ the process induced 

warpage, strain and other defects inside silicon die. Therefore, a novel laboratory-based 

technique called X-ray diffraction 3-dimensional surface modelling (XRD/3DSM) has been 

developed in order to address this major stumbling block in the development of “More than 

Moore” (MtM) integrated circuit technology. 

 XRD/3DSM  has been domenstrated at room temperature and at elevated 

temperatures up to 115
o
C by in situ XRD annealing experiments. The feasibility of the 

technique has been confirmed through the characterisation of die stress inside both the fully 
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encapsulated commercially available ultra-thin quad flat no-lead (UQFN) packages and the 

embedded QFN packages at different manufacturing of processing stage. 

 The lattice misorientations of two (110) orthogonal planes in the Si die created during 

packaging processes can be obtained via the reconstruction of 004 symmetric rocking curve 

(RC) full-widths-at-half-maximum (FWHMs) as a function of position across fully 

encapsulated packages performed at phi = 0
o
 and 90

o
, using the lab-based XRD/3DSM 

technique. More importantly, the warpage stress can also be quantitatively estimated using the 

angular offset between the peak positions of RCs measured at two adjacent regions, and the 

map of warpage stress across the entire Si die can also be reconstructed using the same 

XRD/3DSM technique. 

 In the commercially available UQFN packages tested in this study, XRD/3DSM 

reveals that warpage is considerably lower at the corners of the Si die, but significantly larger 

at the central regions of the die. Most of the stress is found to be developed during the die 

attach process, in which these have been confirmed by in situ XRD annealing experiments 

and finite element analysis simulations. XRD/3DSM has also been implemented for the 

investigation of die stress in a more complex embedded QFN package, which clearly reveals 

that different magnitudes of stress/warpage are developed during different 

embedding/packaging process. From SXRT have confirmed and validated the results obtained 

from the lab-based XRD/3DSM.  

 Results have demonstrated that lab-based XRD/3DSM is a promising technique 

which can be used to deliever useful feedback to the manufacturer for packaging process 

optimisation. Importantly, it is a non-destructive method and can be used for packaged 

systems all the way from virgin wafer pieces through various packaging steps to the 

completed package.  
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8.2 Future Work 

 The X-ray characterisation routine has been shown to be very useful for investigating 

the structural quality of the III-V heterostructure throughout the film in its entirety. Future 

work could focus on the grazing-incidence X-ray diffraction (GIXRD) technique. In grazing-

geometry, the incident X-ray beam makes a very small angle with the sample surface where 

the penetration depth is limited to a few tens of nm, and this technique is very surface-

sensitive. Therefore, the inclusion of GIXRD techniques will certainly make the X-ray 

characterisation routine more valuable i.e. it can be used not only for characterising the film 

quality in its entirety, but also for surface characterisation. 

  

Concerning the lab-based XRD/3DSM technique, there are several different aspects 

of exploration that are possible in order to improve the XRD/3DSM technique for future 

metrology challenges: 

 

i) Resolution of XRD/3DSM 

The resolution of the XRD/3DSM method is dependent on two major aspects: i) The spatial 

resolution of the incident X-ray beam, and ii) The step size between two FWHM line scans. 

The existing XRD/3DSM technique was built using the FWHM extracted from RCs recorded 

using a 250 µm x 250 µm incident X-ray beam. Further improvement of spatial resolution is 

achievable by using a small beam size, i.e. a 100 x 100 µm
2
 or 50 x 50 µm

2
 beam size could 

be used. In addition to that, a reduced beam size could also be used together with a smaller 

step size (distance between two FWHM line scans) in order to further improve the resolution 

of the XRD/3DSM model.  
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ii) The scan time of XRD/3DSM model 

The scan time of the lab-based XRD/3DSM is dependent mainly on the number of data points 

(RC FWHM) of the surface map. More specifically, it actually depends on how long it takes 

to measure a single RC. One obvious method to reduce the scan time of a RC is by using a 

smaller count time (exposure time). The existing RC was recorded using a 0.2 second count 

time in order to achieve an adequate signal-to-noise ratio (S/N), but a further decrease in 

count time would mean a reduction in S/N, and therefore the RC pattern would almost 

certainly be too noisy to analyse. However, the loss in S/N can be compensated for if we are 

able to increase the intensity of incident X-ray beam. A possible way is to further increase or 

optimise the voltage or current settings of the X-ray source from current values of 45 kV, 40 

mA to some point below the maximum limit of 60 kV, 55 mA, or indeed to replace the 

existing X-ray source with a more powerful X-ray source. With the improved incident X-ray 

intensity, the diffracted intensities collected from the specimen with respect to the background 

noise will be increased drastically, and therefore a very smooth and clean RC can be obtained 

even when a smaller count time is used (eg. see Table 8.1).  
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Chip size 

(mm) 

Scan step 

size (mm) 

Beam 

size (mm) 

Count 

time per 

point (s) 

Approximate 

scan time for 

each XRD/3DSM 

Notes 

x y x y 

XRD with current X-ray intensity 

5 5 0.20 0.20 0.25 0.2 15 hours High resolution 

5 5 0.20 0.40 0.25 0.2 7 hours Med. resolution 

5 5 0.20 0.80 0.25 0.2 3.5 hours Low resolution 

XRD with higher X-ray intensity 

5 5 0.20 0.20 0.25 0.05 90 minutes High resolution 

5 5 0.20 0.40 0.25 0.05 45 minutes Med. resolution 

5 5 0.20 0.80 0.25 0.05 20 minutes Low resolution 

 

 Another possible way to reduce the scan time is to perform reflection topography by 

using the same D1 system with the topography accessory. In order to ensure that as much of 

the crystalline region as possible is in the Bragg diffraction condition most, if not all, of the 

beam conditioning at the X-ray source should also be removed. This would ensure that the 

emergent beam is as polychromatic and divergent as possible in order to mimic the presence 

of a white beam. A relatively thin slit (eg. 50 µm x 3 mm) could be used to record a series of 

topograph images across the entire Si die, and these images could be reconstructed using 

3DSM technique to form the warpage model. 

 Apart from that, a fine meshed slit system could also be used to perform X-ray 

Reticulography [200]. An early proof-of-concept series of X-Ray Reticulography experiments 

for the non-destructive examination of warpage in packaged chips has been demonstrated 

using the SXRT technique [200]. In these experiments, the meshed slit is located between the 

Table 8.1 Estimated scan time for each XRD/3DSM with different X-ray intensity sources. 
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incoming X-rays and the sample in order to initially decompose the incident beam into a 

series of micro-beams. For instance, Figs. 8.1a)-b) show the transmission topograph and 

transmission X-ray recticulograph for a fully encapsulated Si chip inside a QFN package. 

From Fig. 8.1b), the deviations from the periodic regularity of the mesh pattern reflect 

localised lattice misorientation in the packaged chip. These earlier results have demonstrated 

the potential of this technique, and therefore it is believe that this technique could ultimately 

be transferred into the laboratory. 

 

Figure 8.1a)       transmission topograph image of a QFN packaged chip, and b)       X-ray 

transmission recticulograph of the same region as in a).  

                                                                                                                               

iii) XRD/3DSM Optimisation 

As previously discussed in section 5.2, the warpage model of XRD/3DSM was made up of 

RC FWHM extracted by using “Quick graph”. However, data fitting using “Quick graph” 

might be too time consuming to extract the all the data for future high resolution XRD/3DSM 

model, and therefore other software might be needed to improve the efficiency of this 

technique, as well as making this technique more user-friendly. Programming languages such 

as C/C++ or Matlab could be used to write a more sophisticated software in order to 

automatise the data fitting process.    

a) b) 
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iv) Other applications 

In the future this technique will be expanded to measure more sophisticated packaging 

technologies as they become available. These include the implementation of this technique for 

characterising the die stress/warpage inside advanced packages such as SoC, SoC/SiP and 

3D-SiP or even for the characterisation of die stress inside microelectromechanical systems 

(MEMS).  

 In addition to that, the continuous increase in demand and the advancement of 

technology is ensuring that power integrated circuits (eg. power MOSFETs) play an important 

role in order to control the generation, distribution, storage and use of energy more effectively 

[201]. However, the thermal stresses generated due to the CTE mismatch in package materials 

has also been identified as a major obstacle to the development of power electronic devices. 

Therefore, this technique could be used to monitor thermal stress/warpage in power integrated 

circuits to provide quick feedback towards process improvement in order to improve their 

efficiencies. 
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