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Abstract

This work develops a number of new algorithms for the computation of the convex 
estimate, ¿tco, of the structured singular value, fj, The basis for these algorithms lies 
in an application of the geometric form of the Hahn-Banach theorem Dual methods 
are shown to be more useful than their primal counterparts when determining Ha, In 
particular, a dual method based on a 1-norm optimisation strategy is shown to out 
perform its 2-norm based counterpart in terms of accuracy, reliability and speed It is 
proven that this 1-norm dual method converges to /¿co The algonthm has been suc
cessfully validated using a large selection of random, pseudo random and practically 
motivated problems Improvements to the basic algorithm that significantly reduce 
computation times are outlined and analysed in some detail

This work presents new applications for \i /x provides a novel way of analysing, non- 
conservatively, the effect of uncertainty m component values on filter performance It 
is shown that the problems of computing (1) maximum filter gam, (11) minimum gain 
and (in) the maximum Euclidean deviation from nominal performance on a polar plot 
can all be determined using fi theory The necessary formulations required to deal with 
these particular problems are developed In contrast to a grid search or probabilistic 
approach, using /i provides frequency response information that fully addresses the 
cross coupling effects of component uncertainty m a rigorous and repeatable fashion 
This process has been automated for Butterworth and Chebychev filters of arbitrary 
order Third order examples are used to illustrate the approach

L\ methods are used to develop new tuning rules for PID controllers This is achieved 
using the operator which can reasonably be described as a time domain analogue 
of /i. Used in conjunction with an application of the robust performance theorem, 
is used to find the PID settings that best satisfy a given time domain performance 
objective

xi
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Chapter 1

Introduction

This thesis is concerned with the structured singular value fi fj, is a function which 

precisely quantifies the effect of particular types of uncertainty on a linear system 
This introduction gives a background to the research, outlines the problem at hand, 

the objectives and methodology behind the research, as well as some of the principal 

lim itations of standard ¡i theory

1.1 Background to the Research

A precise description of uncertainty may seem to be a paradoxical goal at first glance 
However exac t  certainty about the description of the physical world is never possible 
The shop is about  2 kilometres away A bag of sugar bought in tha t shop weighs 

a p p r o x i m a t e l y  1 kilogramme All measurements are given within a band which is 

dependent on the accuracy of the instrument involved Thus the shop will be between 

1 8 and 2 2 kilometres away The same principle is applied to the models th a t are 
developed during a course of systems analysis An example of this is when a student is 

asked to describe the simple harmonic motion of a pendulum To simplify the system 
the student is allowed to a p p r o x i m a t e  Sm(0) by 9 This means th a t the location of 

the bob is described by a linear differential equation The student accepts th a t the 

model is wrong but th a t it is good eno ugh  to allow a tractable yet acceptable analysis 
of the physical system

1
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Figure 1 1 The Simple Pendulum

A tradeoff of this nature is common throughout undergraduate control work How

ever, problems arise whenever a student meets a real process, even of the tightly 

constrained classroom variety A design which performed well on paper and on a 

com puter simulation package, like S I M U L I N K ,  necessarily suffers from some kind of 

performance degradation when implemented in practice This degradation is gener
ally due to  some error or oversight in the actual system model as opposed to the 

nominal model th a t has worked well on paper Examples of this include unmodelled 

high frequency system dynamics, the effects of sensor noise and the aforementioned 
linearised approximations of nonlinear physical characteristics

1.1.1 Uncertainty Description

Robust control attem pts to overcome these problems by including a full account of 
the system uncertainty in the model description System uncertainty can be viewed 
as either structured or unstructured Unstructured uncertainty occurs when no 

information is available about the modelling errors for a given physical system except 

th a t it is bounded in some fashion The uncertainty is denoted by the operator A 

This A acts on the ideal plant P 0 m an additive or multiplicative fashion as per 
Fig. 1.2. Thus, a suitable approach is to bound the norm of the perturbation by a

2



Figure 1 2 (1) Additive and (11) Multiplicative Unstructured Uncertainty 

finite number 1 e ,
||A|| <  a

This global bounding of uncertainty can be unnecessarily conservative if some knowl

edge of its structure is available Take, for example a linear filter where the value of 

a component is allowed to vary by ±10% Perturbing the filter transfer function with 

a global A is a very crude way of representing the effect of this uncertainty

In ¿¿-analysis, the following procedure for structured uncertainty is adopted In any 

system description there are said to be n  sources of uncertainty embedded within the 
plant Each uncertain element will be denoted by Az(ju;) Each A t ( j u )  may assume 
any LTI value but is constrained to be less than a certain size This is necessary and 
actually not as large a restriction as might be anticipated In any process, system 
components are checked th a t they are operating within specified tolerances before 
integration into a larger system

Such dynamical A t ’s are called complex uncertainties It is also useful to consider 

A j’s in the set A z € [—1, +1] These At’s are called real uncertainties If both types 

of uncertainty are present then A is said to be mixed As A =  {A i, ,A „} ranges 

over its perm itted values a family of systems will be traced out The system given 

when each Aj =  0 will be termed the nominal system Any system where there 

exists a A , ^ 0  will be termed perturbed. A perturbation A where all the A2’s are

3



within their predetermined size is va lid  The symbol V  will be used to describe the 

set (or family) of all validly perturbed systems

1.2 Problem Definition

This research looks at the effect of structured uncertainty on a nominal system This 

uncertainty creates a family, T>, of systems When every element of V  is stable the 
family is said to be ro b u s tly  stable Clearly, when a controller is added to this nom
inal system, one obtains a new nominal system In a similar fashion, a performance 

objective is satisfied robustly if and only if it is met for every element of V  Deter
mining whether a particular family is satisfying a particular performance objective 

is known as an an a ly s is  problem Finding a controller so tha t the corresponding 

family of systems will perform a suitable objective robustly is known as a sy n th es is  

problem To illustrate the non trivial nature of the robustness analysis problem the 
following example is considered

1.2.1 M otivating Example

The EU space agency ARIANE 5 rocket was launched on its maiden voyage from 

French Guiana on June 4, 1996 Pivoting of exhaust nozzles located a t the base of 

the rocket’s two boosters was used to control its trajectory [Radford 96] 37 seconds 

after lift off these nozzles swivelled abnormally and broke off Ground controllers 
subsequently detonated the rocket remotely to prevent debris being strewn over a 
populated area

The official cause of the explosion has not, as yet, been published Speculation a t the 
time centred around a fault in the guidance control system caused by an abnormal 
shift in payload location within the rocket This would explain the erratic hunting 

behaviour of the exhaust nozzles and their subsequent failure It may be prem ature 

but it is tem pting to blame the failure of the launch on a lack of robustness in the 
system design

4



1.2.2 A Qualitative Definition of f i

/i theory is the title  given to  the study of the effect of Linear Time Invariant (LTI) 
structured uncertainty on an LTI system M ( s )  n  itself can be defined, qualitatively, 

as follows

Definition 1 For any LTI system with specified levels of structured uncertainty, fi is 

a measure of how well a stated objective is being achieved, if at all, by th a t system 
for all values of frequency

This objective may be robust stability and /or some other performance criteria Some 
quantitative extension of this definition is required The discussion is limited to  stabil

ity for the moment The extension to other performance measures will be considered 

later Clearly, the size of ji will be dependent on the uncertainty set in question

A procedure is required where the nominal system and the uncertainty acting on it can 

be viewed separately Fortunately this separation process can always be performed 

with LTI systems [El Ghaoui 91]

1.2.3 The Diagonal Perturbation Formulation

An uncertain system can be viewed as a compound expression of nominal and un
certain elements //-theory uses a process which separates the nominal from the 

uncertain elements The Diagonal Perturbation Formulation (DPF) is a canonical 
representation of a system after this separation process has been carried out

An Example

An illustrative example is provided to  demonstrate the steps required to convert a 

system into its equivalent D PF A basic second order system is considered where

y{s) = 1
u ( s )  s 2 +  2C cuns  +  (J%

1
(,s +  a ) ( s  +  b)

5



noting tha t

a, b =  ujn{ - (  ±  (C2 -  I)2)

Uncertainty is introduced by allowing the nominal pole locations a  and b to reside 
anywhere in disks of radius a a and a b respectively This type of uncertainty is de

scribed as complex If the pole locations were only allowed to vary in the direction of 
their respective real components then the uncertainty would be termed real Fig 1 3 
shows equivalent representations of this second order system where this complex un

certainty is explicitly taken into account This figure shows how the uncertainty can 

be “extracted” from the actual system by creating an extra input/ou tpu t pair for each 
uncertain param eter Completing this process results m the required block diagonal 

m atrix A =  diag(Ai, , A„) which acts externally on the nominal plant, M ( s )  The 
system is now said to be expressed in its DPF or M A Formulation For this second 

order system the D PF would be

y \
1

(s +  a ) ( s  +  b)

1 -1

a a( s  +  b) - a a (s  +  b)

&b ~Oi b

- ( s  +  a) ^ 

0
- a a (s  +  a ) )

(  u \u

\ lb )

1.2.4 A Quantitative Definition of /i

It is now possible to  consider a proper quantitative definition of fi Consider a system 

expressed in terms of its D PF as in Fig 1 3 This system will be robustly stable if 
and only if its nominal system is stable and

det(7 +  A ( j t o ) M ( j u ) )  ^ 0  Vu E H + , VA 6 P

Thus the following definition of /i (as in, for instance [Packard 93]) is natural

Definition 2

fxA ( M )  =  ( i n f l m f ^ A )  | d e t( / +  AM ) =  0}}) 1 (11)

where O'(A) denotes the maximum singular value of A Stating the problem in Nyquist 
terms, M A should not equal minus unity in any vector direction at any frequency

6



Figure 1 3 Conversion of a typical system to its DPF



Hence, the following quantitative (and appealing) characterisation of ¡jl& is natural 

for all A e  V  obeying a(A ) <  1,

Robust Stability (RS) ¡ma(M) < 1

Similarly,
Non Robust Stability (NRS) > 1

The question of robust stability therefore reduces to computing n  A good deal of the 
literature uses an alternative terminology to Definition 2 The m u l t i v a r i a b l e  s ta b i l i t y  

m a r g i n  can be defined as
k m { M )  =

Remark: The Frequency Decoupling Property of ¡jl

The definition of i i & { M )  indicates tha t all possible values of frequency must be con

sidered before it can be determined In practice only a relevant subset of frequency 

is taken into account The overall //a  ( M )  will be the peak value of a frequency de
pendent function jtx(cj) Thus ¿xA(M ) can be evaluated as a function of frequency m 

much the same way as the || ||oo norm of a system is determined

1.2.5 The Robust Performance Theorem

The discussion so far has been dominated by stability An im portant feature of /j,- 

theory is its ability to  handle performance specifications robustly The procedure for 
this is fairly straightforward Consider a standard D PF like tha t of (4) in Fig 1 3 
It is possible to  close the performance u / y  inpu t/ou tpu t pair with the addition of an 
extra A / as in Fig 1 4  Thus, A =  diag(A /, A«) Clearly, there will be gam and phase 
information associated with the u / y  pair Consideration of the Nyquist interpretation 

of this information requires th a t A /  may be complex valued The system can now be 

represented by the M A  loop as m Fig 1 4 The Robust Performance Theorem  
[Stem 82] states th a t a certain specification is satisfied robustly if and only if the 
augmented M A loop is stable Note how A / is scaled by a  in Fig 1 4, so as to 

better fit performance requirements This is an extremely powerful result It means 

th a t suitably defined specifications reduce to a ¡j, test on an augmented version of a

8



Figure 1 4 DPF with an additional scalar performance parameter

basic D PF There is a straightforward extension to the case of multiple specifications, 

where there must be a separate complex performance A f  for each input output pair

1.3 Objectives of This Work

The prim ary objective of this work is to efficiently and reliably calculate good esti

mates of // Consider Fig 1 4 in the context of eqn (1 1) Depending on the size of 

a  any valid A may potentially destabilise the M A loop Therefore a n y  destabilising 
A provides an upper bound on k m ( M )  The question now arises of how to get from 
an arbitrary  A to the A which yields the mmimiser of eqn (1 1) Unfortunately, this 

particular question raises the spectre of non-convexity and local extrema

1.3.1 Calculation of ¿¿co, the Need for a Convex Estim ate

When attem pting to calculate n  a basic problem arises immediately In full generality, 
the com putation of ¡jl i s  non-convex and NP complete [Demmel 92] Empirically, the 

required computing time can be observed to  grow exponentially with an increase m 

problem size Therefore, a tractable estimate is required This is achieved by the 
convexification of the underlying optimisation problem of eqn (11) Convex sets 

are attractive for a number of reasons In particular a geometric formulation of the 
Hahn-Banach Theorem can be used to determine a convergent algorithm for a certain 
convex estim ate of y  which will be denoted as f ico

9



¡j,co provides an upper bound on fj, The gap between ¡i and ¡j,co has been the subject 

of extensive research [Doyle 82] Evidence for the purely complex case suggests th a t 

this convex estim ate can be considered “good” For 25000 differently sized problem 

matrices /ico was a t worst 5% greater than  a lower bound estimate of ¡j, It should be 

noted th a t when mixed uncertainty problems are considered this gap can be made 
arbitrarily wide However, the literature suggests [Packard 91] th a t on suitably prac

tically motivated problems the gap is within acceptable levels This claim is examined 
in this thesis on a well known benchmark problem where ¡x has been calculated exactly 

[De Gaston 88]

1.3.2 Determ ination of the Best Optimisation Strategy for //

There are two possible ways to obtain bounds on ¡i The first is a lower bound 

approach, 1e ,

max p(AM ) =  ¿¿a (M)

where p ( M ) denotes the spectral radius of M  Recognised ways of solving such a 
problem include a grid search of suitable valid perturbations or an approach which 
uses a power iteration to find the spectral radius All lower bound algorithms are 
compromised by their local character which can yield answers th a t are arbitrarily far 

away from the global optimum It should be noted however, that commercial code 

exists [Balas 94] which uses a power iteration to provide a very good lower bound on 
H, particularly m the complex case

The second possible approach is to look at the following upper bound on /x -

Ha ( M )  <  f ico =  inf a ( D M D ~ 1) (1 2)
valid D

In the purely complex case a v a l i d  D  is a m atrix which is invertible and commutes 
with every valid A Thus,

Hco{M) =  ¡iC0( D M D ~ l ) 

since the following determ inants are equivalent l e ,

det(7 +  H ( D M D ~ 1))

=  d e t( / +  D ~ l A D M )

10



=  det(J +  A D “ l D M )

-  det (J +  A M )

The convexity of the problem on the right hand side of eqn (1 2) has motivated the 
use of the Hahn-Banach Theorem to locate suitable minimising D ’s An objective 
of the work is to develop a convergent algorithm that uses this theorem to compute 

Hco The efficacy of the new approach is also tested against existing commercial code 

on a broad selection of problem matrices and uncertainty structures Further, the 

estim ate and the algorithm are extended to handle real parametric uncertainty

1.3.3 N ew  Applications for f i

This research endeavours to broaden the potential application base for ¿¿-theory 

Filter Performance with Uncertain Components

//-theory provides a non-probabilistic technique for the assessment of the w o r s t  case  

effect of component uncertainty on the performance of a filter circuit This allows 
guarantees about circuit performance to be made which are very useful from a busi

ness/design perspective The problem requires that, firstly, the block diagram for the 

filter transfer function be recast in its D PF It has been shown th a t this procedure 
can be performed on any linear system [El Ghaoui 91] Secondly, it is necessary to 
map filter performance to an equivalent robust stability question An objective of this 
part of the work is to  develop a procedure which can be applied quite generally to 
the analysis of any linear filter or analogue circuit with uncertain components, thus 
dem onstrating the broad applicability of /¿-theory

The use of a repeatable process like this has major advantages over grid search or 

Monte Carlo based techniques The cross coupling effect of multiple components are 

fully taken into account using this novel application of ¡j,

11



1.4 Limitations of Standard ( i Theory

The principal lim itation of ¿x is th a t it is only defined in terms of LTI perturbations 
The facility to deal with perturbations that are nonlinear and /or time varying is 
desirable In this thesis the PID controller has been used as an example where a 
“¿/-like” robustness analysis tool for general perturbations comes in very handy PID 

performance is known to degrade when plant models are poor Precise information 

on the best possible PID performance m the face of such perturbations is possible 

using a /j construct

1.4.1 A 11 Theory for Perturbations that are not LTI

Recent results [Dahleh 95] are exploited in this work which allow computation of non

conservative robustness margins in an inexpensive manner These results are loosely 

grouped under the title  of L \  theory L \  theory is a time domain approach Time 

domain specifications are useful in tha t they are intuitively more easily understood 
than  frequency domain based alternatives

L \  methods are of particular benefit when the plant model is quite poor Large 

uncertainty sets are generally required when using poor models to provide a reasonable 

representation of the real life behaviour of a system In this work these methods have 

been applied to  the tuning of PID controllers The use of a ¿¿-like construct within 
an L i  context allows an ex a c t  assessment of how well a PID control law can fare 
when faced with a highly uncertain plant, which is subject to non-linear and /or time 
varying perturbations

Development of New Tuning Rules for PID Controllers

A subsequent objective of this work is to outline the development and implementa
tion of new PID tuning rules using a ¿f-hke construct which will be denoted as ¡xLl 

Rigorous measures of how well time domain performance specifications like worst case 

tracking error are being satisfied are possible using fj,^

12



1.5 Theoretical Framework

One of the strengths of /i is its well laid theoretical foundation In this section a brief 

overview of the basic properties of n  is provided A much more extensive summary 
is provided in [Packard 93]

1.5.1 Properties of f i

1 n  is not a norm

ju(M) of a non-zero m atrix M  can be zero if there does not exist a valid A th a t 

will destabilise the loop

2

n { a M )  =  \ a \ f i ( M )

This follows directly from the definition of a determinant

3

t i & { M ) =  1 m axp(A M ) =  1

To see this consider the existence of a valid A so th a t p(AM ) > 1 This means 

th a t there exists an x  where the vector A M x  is a scalar multiple of x  and 

||A M x|| >  ||x|| Scaling the perturbation by ¡3 so th a t the vector /5A M i =  - x  

yields a singular m atrix ( I  +  /3AM) Thus, ¿u >  ^

4

p(M ) <  a ( M )

The lower bound follows from the previous property where A would be an 
identity m atrix The upper bound can be seen by considering the inequality 

ff(M A) <  a ( M ) a ( A) Let a ( M )  =  a  Now if a (A ) < ^ then ( /  +  M A) may 
be non-singular =>• ¡x <  a  =  a ( M )

5

m(m ) =  M ^ M z r 1)

This was seen earlier

13



1.5.2 Properties of M ixed /i

The lower bound on /i in property 4 above does not hold when some of the uncer
tainties are real This is due to the added restrictions imposed on the structure of a 

valid A when real uncertainty is involved The literature [Barmish 90], [Packard 91] 

has also highlighted the fact th a t under certain conditions mixed (J, can be a discon

tinuous function of the problem data This has clear implications for any kind of 

perturbation gndding strategy th a t may be adopted for the computation of mixed 

¡i W hilst the importance of this result should not be underestimated, steps can be 

taken in practice to deal with it In particular, [Packard 91] suggests that, from an 
engineering perspective, this problem is not difficult If a large discontinuity exists 
then invariably the problem can be diminished by some extra attention being given 
to the problem/model formulation

1.6 M ethodology

There are a number of different ways in which the upper bound of eqn (1 2) can be 

calculated This thesis uses the numerical range theory of Fan and Tits [Fan 86] to 

determine it This theory is transparent, self-contained and has a pleasing geometric 
interpretation Computing this convex estimate, fico, amounts to determining whether 
0 is in a suitable convex set

This work shows tha t the Hahn-Banach Theorem can be applied to the computation 
of fj,c0 This theorem says th a t two disjoint convex sets can be separated by a plane 
Moreover, location of a suitable separating plane can show th a t two convex sets are 

disjoint A suitable norm needs to be chosen to  demonstrate tha t two sets are indeed 
disjoint This thesis aims to show th a t use of the 1-norm is the best choice The 

1-norm allows the use of Linear Programs (LPs), which are attractive due to their 

widespread usage across a large range of disciplines This combination of use of the 
Hahn-Banach Theorem allied to a linear program solver makes for a novel way of 
computing ¿ico
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1.7 Structure of this Thesis

The necessary background m aterial is presented m Chapter 2 The numerical range 
problem formulation for the computation of (j, is discussed Chapter 2 also includes 

an analysis of the current commercial packages tha t are available for the computation 

of fico The numerical range problem formulation used m this work suggests a number 

of different algorithmic strategies for ¡jlco computation A number of these possible 
approaches are also briefly discussed m Chapter 2 However, it is an objective of this 

work to dem onstrate the superiority of one strategy in particular, termed the 1-norm 
dual approach Chapter 3 is devoted to a comprehensive treatm ent of this approach 

along with some necessary extensions for improved performance Chapter 4 is de

voted to  an extensive validation and performance assessment of the algorithm This 

assessment falls into two halves Firstly, the new algorithm is compared with existing 
commercial code on a variety of different problem sizes and uncertainty structures 

Secondly, the claim th a t the 1-norm dual approach is indeed the best way to compute 

p co is justified

Chapter 5 contains the first application chapter of the work A non-probabilistic 
technique for the assessment of the w o r s t  case  effect of component uncertainty on filter 
performance is introduced A general procedure for this process which is applicable 

for any linear filter is presented Examples of autom ation of the whole process using 

Butterw orth and Chebychev filters are also included This chapter also demonstrates 
the key advantage of such a process over a grid search approach by contrasting the 

different results obtained by the two methods

C hapter 6 outlines the development and implementation of new PID tuning rules 
Rigorous measures of how well time domain performance specifications like worst 
case tracking error are being satisfied are demonstrated using an Li variation on fi, 

which throughout this work is denoted by n Ll The general procedure is given, its 
features are discussed and some comments about the limitations of such a strategy 

are also made Two examples of the approach are given Initially a second order 

system with uncertain damping factor, natural frequency and variable time delay is 

considered The new rules are shown to compare favourably with existing tuning 
strategies like those of Ziegler-Nichols The chapter concludes with a similar analysis 

of a practical, highly nonlinear pH control process The work confirms the belief th a t
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a PID control law is not suitable for such a process

Finally, a summary of the main conclusions from this work and a discussion of possible 

future research directions are given

1.8 Summary

This chapter has introduced the concept of ¿i ¿¿-analysis is a respected theory because 
of its sound theoretical foundation The basic problem of robustness analysis has 
been discussed Examples have been used to illustrate tha t it is by no means a solved 

problem The principal objective of this work is to introduce a novel method for the 
com putation of ¿¿co, the convex estimate of ¿¿, which uses the Hahn-Banach Theorem 

and a Linear Program  solver In addition new applications for ¿¿-theory have been 
suggested
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C h a p te r  2

R eview  of B ackground M ateria l

This chapter reviews the necessary background material for the work th a t has been 

carried out. Initially, the Multiform (m-form) numerical range is introduced. Next, 
the geometric form of the Hahn-Banach Theorem is discussed. This is the principal 

result th a t is required to apply the numerical range theory to the question of stability 

analysis.

The use of the Hahn-Banach Theorem motivates the study of certain optimisation 

problems which can be solved using either a primal or a dual approach. This chapter 
looks at 2-norm based primal and dual approaches which allow bounds on // to be 

calculated. This thesis argues th a t a dual approach is a better way to solve the 

optimisation problem in question. A dual approach requires the use of a Linear 

Program solver. This motivates a brief discussion of linear programming in general 
and in particular some of the linear programming issues tha t impact on the problem 
at hand.

Commercially available software is available th a t can determine bounds on fj,. A 
review of the more popular algorithms has been performed. The principal features 
and failings of existing solutions are highlighted in this chapter.

The chapter concludes with some brief remarks th a t are relevant to the applications 

work th a t has been carried out. While the work on analysis of filter performance in 
Chapter 5 is pretty much self contained, some comments about L x Control Theory

17



Figure 2 1 An LTI system with uncertain A extracted

and the analysis of non-linear systems are included, being pertinent to the PID tuning 
work of Chapter 6

2.1 Multiform Numerical Range

The fundamental question of robust stability analysis is addressed using the numerical 

range formulation of Fan e t  al  [Fan 91] and [Fan 2 86] O ther useful references for this 

approach are [Holohan 94] and [Fan 88] Consider Fig 2 1 Given an LTI transfer 
function M ( s ) ,  the task a t hand is to characterise the smallest admissible perturbation 
A th a t will cause the loop to go unstable Thus for a given perturbation structure V

/ / ( M ) '1 =  km =  inf{a >  0 | d e t( I  +  a A M )  =  0 for som e A 6 V ]  

=  sup{ct: >  0 | d e t( /  +  a A M )  ^  0 VA e  T>}
a

Clearly if no such destabilising A exists then ¡ i ( M ) =  0 This leads directly to the 

following condition for a system being Not Robustly Stable (N R S ) for fixed a

N R S  «=> 3A 6 V  | de t(J  +  a A M )  =  0

Therefore,
N R S  3 x  ^  0 , A  e T >  | ( I  +  a A M ) x  =  0 (2 1)

Now, A =  d iag{A !, ,A m} is a block diagonal m atrix Let A t have dimension 

qt x q t Define the projection m atrix P k , which picks out the k t h  block of a perturbation 
structure 1C — { q i ,  ,gm} a s

Pk — d iag { 0 /9l, , 0 Iqk_l , Iqk , 0 Iqk+l , , 0 I Qm }

If one thinks in term s of the projection m atrix “picking out” a perturbation block 

of interest it is possible to see how a set of m  constraint matrices can be generated
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Each one of these matrices must be singular for a system to be NRS Clearly, d e t( I  +  
aA M ) =  0 is equivalent to requiring the existence of a vector x  of unit norm such 

th a t
P kx  +  a A P kM x  — 0 \ /k  =  1, , m

Taking norms, which introduces a notion of size to the problem, the above statem ent 

is true

&  \ \ P k x\\2 < a \ \ A P kM x \ \ 2 

< a a { A ) \ \ P kM x \ \ 2

Some practical limit must be placed on the size of a perturbation that a system is 

allowed to see Thus A is constrained so tha t <r(A) <  1 Squaring both sides yields,

\ \Pkx\\ l  <  a 2||P fcM x||22

By definition, the 2-norm ||M a;||| =  x * M * M x  and noting th a t P k =  P k ,

x * P kx  <  a 2x * M * P kM x

& x * { P k -  a 2M * P kM ) x  <  0 

Noting th a t Pfc =  P^, the following hermitian form can be introduced

A k ( a 2) =  P k -  a 2M * P kM

Thus

N R S  x* A k ( a 2) x  < 0  Vfc =  1, ,m  (2 2)

A unit sphere can be defined for a certain norm, 1 e ,

d B 2 =  { x  ||aff||2 =  1}

so tha t d B 2 denotes the unit sphere in a 2-norm sense Consider the function /  
Cn —>■ K m where

f k ( x )  =  x * A k ( a 2) x

A more intuitive representation of expr (2 2) can be obtained by consideration of the 

set W ( a 2), defined on a domain of vectors of unit norm, so that

W ( a 2) =  { w  e  U m w k =  f k(x )  s  e  3B 2}
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Thus a set of real m-dimensional w  vectors has been generated where a system being 

not robustly stable will correspond to the existence of i o ’ s  with non-positive elements 

Therefore the question of robust stability reduces to

N R S  <£> f k { x )  <  0 V/c =  1, , m

<$■ 3 w  G W ( a 2) w k < 0 V k  =  1, , m

This is an intuitively appealing geometric framework with which to compute (j, All 
values of a  th a t are less than will generate vectors where w k >  0 for some k  

Conversely a value of a  tha t is>greater than will mean that there exists some w  

with all negative coefficients Figs 2 2 and 2 3 provide an informal two dimensional 

interpretation

2.1.1 Com plex Block Augm entation

When dealing with complex only uncertainty, the geometric interpretation of Fig 2 3 
allows the param eter a  to be viewed, rather informally, as a translation scalar on 

the basic set C o ( W ( a 2)) Fig 2 3 highlights a potential problem Consider the case 

where the param eter a  is increased by a large amount so th a t it is much greater than
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Co(W(al):

Co(W(a  ¡))D
C o { w ( < 4 ) ))

Figure 2 3 Geometric interpretation of the effect of varying the value of a  In the 

figure a 3 >  a 2 =  i ico >  «1

the stability margin km It is possible th a t the translation effect would push 0 out 
of the set Thus, an algorithm which determines whether 0 is m the set C o ( W ( a 2))  

would cause an incorrect decision about robustness to be made This can be solved 

by increasing the dimension of the problem through the creation of new variables 
Expr (2 2) is equivalent to

where x m+kXm+k corresponds to some positive real number which can be generated 
from an extra  complex variable x m+k Thus

N R S  <£> x * A k( a 2) x  =  - x m+kx m+k

N R S where

x  is then a vector of dimension n  +  m

Denote the augmented form of A k { a 2) as A k { a 2) It is clear tha t 

N R S  <£> i*(A jt(a2) ) f  =  0 Vfc =  1, ,m

which is an augmented condition for system instability th a t can deal with any a



Thus, an improved W ( a 2) can be considered where

(  w i  \  (  x * A \  ( a 2) x  ^

W { a 2) =

\ J y x r Â m ( a 2) x

w  e 7Zm , x  € U'n +m

Augmentation results m an improved search criteria for robust stability The problem 

now is to determine whether the null vector is an element of the set W ( a 2) 1 e ,

N R S  ^  0 € W ( a 2)

2.1.2 Real Parameters

The discussion so far has been limited to A ’s tha t are complex valued block pertur

bations This section shows how numerical range results can be extended to include 

real valued A ’s When approaching the real case the reader should think in terms 

of everything th a t held for the complex case being true with some additional con
straints being required to take account of the fact tha t the perturbation A is real 
valued Again the existence of an x  ^  0 is required so that

( P k -  a 2A P kM ) x  =  0

<£> (P kx  -  a 2P kM x )  ^ ^  j  =  0 (2 3)

x * { P k -  a 2A P kM ) *  =  0 

Noting th a t A =  A if the perturbation is real valued, the above is true

^  x * ( P k -  a 2M * P kA ) =  0

^  (x * P k — a 2x* M * P k) ( 1 ) =  0 (2 4)
A kI  t

Evaluation of the simultaneous equations in eqns (2 3) and (2 4) requires th a t the 
determ inant of the 2 x 2  subm atrix of non-zero entries of the matrix

x * P k - a 2x * M * P k 

P kx  - a  2P kM x
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must equal zero This is true

Eqn (2 5) can be seen as the extra constraint required when a perturbation is real
Thus for a real perturbation

N R S  3 x  ±  0 | x * À k( a 2) x  =  0 an d

x* A k x  — 0

where

°)
A few comments are appropriate at this stage First the A \? terminology has been 

used to emphasise th a t the block is independent of a  This dictates that the second 

constraint is associated only with the realness of a perturbation, not its size It is

also independent of the augmentation variables (xm+i, ,%2m)

^  x*(M*Pk -  PkM)x  =  0 (2 5)

The factor j  is required to ensure th a t A k is a herm itian m atrix To see the ne

cessity for this operator consider the 2 x 2  m atrix M  where

M  =  =► M *  =

M * P X -  P XM  =  | b
' b 0

This m atrix needs to be multiplied by j  in order to make it hermitian This is also true 

in general for an n  x  n  m atrix The advantage of this approach is th a t the question 
of robust stability again reduces to one of whether 0 € VF The extra constraints 
required for real perturbations means tha t W  will have larger dimension than  W  

For an n  x n  m atrix subject to n  independent, purely real uncertain parameters, it 
should be noted th a t an arbitrary w  vector will now be of dimension 2n i e ,

w  € W  ^  w  € V } n
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2.1.3 R epeated Real Parameters

A similar approach can be used for repeated real parameters This section illustrates 

how the number of basic constraints increase when a real param eter is repeated 
Assume th a t the param eter acts on the zth and j th  row and column of the system

must hold simultaneously for some x  0 However two other conditions must now 

hold also namely

x* P 3 -  c*2 Ax * M * P } =  0

For these conditions to be true simultaneously it is necessary to have four distinct 
(augmented) A k matrices i e ,

Note th a t if this param eter had multiplicity 3, i e , it acted on three rows and columns 
simultaneously, there would need to be 9 A § R matrices If the param eter had mul
tiplicity 4 there would have to be 16 matrices and so on Unfortunately there is no 
guarantee th a t these matrices are herm itian However given any square A k and a 
vector x

m atrix M  As before, one complex Ak  matrix is required to represent the constraint 
on system performance due to a  Since the param eter is real

P tx  — a 2A P tM x  =  0

and
x * P t -  a 2& lx * M * P l =  0

P j X  -  a 2 A P j M x  =  0

and

x*Akx =  0
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ix'(-At +  Ai)x  =  0

where both the matrices \ ( A k +  A*k) and ^ ( —A k +  A*k) are hermitian To see this, the 

above can be expanded to yield

^ x * A kx  +  ^x*A*kx  =  0 a n d  (2 6)

x * A kx  +  ^ x*A*kx  =  0 (2 7)

Multiplying eqn (2 7) by j  and adding it to eqn (2 6) yields the desired requirement 

Thus the constraint
x * A RRx  =  0

can also be equivalently represented by the two constraints

x *B%r x  =  0 a n d  

x * C ? R x  =  0

where

C ? R =  +  A*K •)

Therefore 9 herm itian blocks are required to properly represent a real param eter th a t 

is repeated once, l e , which has multiplicity 2

N R S  43- 3 x ^ 0  | x*Ak(a2)x =  0 a n d

x * B RRx  =  0 * =  1, , 22 a n d

x * C RRx  =  0 * =  1, , 22

Despite the increase in dimension of the problem, it is noted th a t the question of 
robust stability still reduces to the familiar one of whether 0 is in a suitable set W

=£• \-x*{Ak +  A*k)x — 0 an d
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Example: D eterm ining the Dim ension of VF

An example may be useful to  illustrate how the dimension o i  a w  vector is adversely 

affected by repeated real parameters An LTI system is subject to 5 real uncertain 

param eters Three param eters are independent while one parameter has multiplicity 

2 and the fifth has multiplicity 3 Here an arbitrary w  will be given by

w  e  W  => w  e  n u

In this way there exists one Ak and one AR block for each unrepeated param eter Note 

th a t there will always be one block for each parameter For the param eter with 

multiplicity 2 there will be four B RR and four C RR blocks representing the constraints 

required to  ensure tha t the repeated element in A is hitting the appropriate rows and 
columns of M  simultaneously Similarly, the param eter with multiplicity 3 will have 
one Ak block, nine B RR blocks and nine C RR blocks

Dimension of w for the Full Mixed Uncertainty Problem

The previous example shows how W  can quickly become quite complicated Consider 

the following completely general problem A system with an LTI transfer function is 
subject to  the following LTI uncertain elements

1 n c uncertain complex blocks

2 n r uncertain independent real parameters

3 n TT uncertain repeated real parameters each with a (perhaps different) m ulti
plicity given by qt , i =  [1, , n TT\

The dimension of a w  vector is given by

Tlrr
N  =  n c +  2 n r +  n rr +  2 q^

i=i
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2.2 The Hahn-Banach Theorem

The mam optim isation result used m this work to estimate /x is the geometric form 

of the Hahn-Banach Theorem This section briefly presents the necessary concepts 
for a discussion of this theorem For a more detailed account consult [Lay 82] or 
[Luenberger 69]

Remark: The Need for a Convex Estimate

Unfortunately the intuitive appeal of the numerical range theory does not mean tha t 
the problem is easily solved In fact, in full generality, the problem of whether 0 6 

W ( a 2) is known to be NP hard [Demmel 92] Therefore, the convex hull of W ( a 2), 

which will be denoted as C o ( W ( a 2)) ,  is used instead This is the smallest convex 

set which contains W ( a 2) This will m turn  yield a convex estimate for fj, which will 

be denoted by ¡ico If necessary, this estimate can be improved by the use of domain 

splitting arguments [De Gaston 88] Clearly,

0 e  W ( a 2) => 0 £ C o { W ( a 2))

Therefore

NRS ^  0 e  C o ( W ( a 2))

or equivalently

0 $ C o { W { a 2))  => RS

The following optim isation strategy will determine whether 0 G C o ( W ( a 2)) for a 
certain choice of a  Introduce c ( a ) where

c ( a )  — min Uncoil 
WcoEC o{Wco(a2))

Thus,

c ( a )  > 0 => RS

2.2.1 Convex Sets

A set S  is convex if for each pair of points x , y  £  S  then all points of the form

z  =  a x  +  (3y e  S  a  >  0, (5 >  0, { a  +  (3) =  1
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Thus for all x , y  G S  the line segment joining x  and y  is also an element of S  The 
convex hull of a set S ,  denoted by C o ( S ) ,  can be defined as the intersection of all 

the convex sets th a t contain S  The convex hull of a finite set of points X\ ,  , x n + \

is known as a p o ly to p e  Each of the points Xi ,  , x n+\  is known as a vertex

2.2.2 Separating Hyperplanes

In this work, the Hahn-Banach Theorem is used to verify convex hull membership 

Before doing this a key property of a convex set is introduced Our interest lies in 

formulating hyperplanes as linear functionals The simplest example of a hyperplane 

is a line in standard cartesian coordinates Consider

H  — { ( x , y ) £ l Z 2 x  +  2 y  =  3}

This can be recast as a linear functional i e , f  1Z2 —> 71 where f ( x , y ) =  x  +  2y

and the hyperplane is H  =  { /  c} In this case

/  =  [1 2] c =  [3]

D efin ition  The hyperplane H  =  { /  c} separates the sets A ,  B  if either 

f  (a)  <  c  V a  e  A and f ( b )  >  c  V6 e  B

or

/(a )  >  c Va 6 A and f ( b )  <  c V6 € B

Removing the possibility for equality to c imposes a strict separation condition on
the two sets A ,  B

D efin ition  Consider x  G <5 such tha t x  is on the boundary of S  Let H  be a
hyperplane such tha t S  fi H  =  {a;} H  is then said to be a s u p p o r t  h y p e r p l a n e  of
the set S

The following facts about separating and support hyperplanes are standard For 

proof, the reader may consult, for instance, [Lay 82] Denote A 0 as the interior of a 
convex set A
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Properties of Separating/Support Hyperplanes

Suppose th a t A  and B  are convex sets

1 If A 0 ^  0 and B  n A 0 =  0 then there exists a hyperplane which separates A  and 

B

2 If A  is compact and B  is closed then there exists a hyperplane which strictly 

separates A  and B  if and only if A  n B  =  0

3 If x  is a boundary point of A  then there exists a t least one hyperplane supporting 

,4 at the point x

4 If for every boundary point of the set A  there exists a support hyperplane then 
the set A  is convex

2.2.3 P rim al/D ual Approaches

For any linear functional defined on a compact convex set <S, there exists x ,  x  G S  

such tha t

/(£ )  =  min f { x )  

f { x )  =  max f { x )
x£S

The existence of such extrema for convex sets will be used to determine whether 

0 G C o ( W ( a 2)) For any a  >  0

i T j  >  a  =* 0 0 C o ( W ( a 2))

c { a )  =  mm | K 0|| > 0
Wco€Co(W(a2))

c ( a )  can be ascertained by tackling this minimisation problem directly This is known 
as a primal approach

The term  duality crops up regularly in the literature In its most general sense it refers 
to two similar theories th a t are related, in an “inverse” or “mirror-image” way The 

dual space of a vector space X  will be denoted by X *  Duality finds application in this 

work by considering the dual space of linear functionals on a standard vector space
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A dual approach, m the context of the problem at hand, will mean the development 
of a suitable convergent series of linear functionals which establishes whether there 

exists a suitable /  such th a t c ( a )  > 0 This dual approach requires the Hahn-Banach 

Theorem

2.2.4 Statem ent of the Hahn-Banach Theorem

A survey of the literature will reveal several different statements of the Hahn-Banach 

Theorem This is a version from [Lay 82] which is known as the g e o m e t r i c  f o r m  of 
the Hahn-Banach Theorem

T h e o re m  2.1 S u p p o s e  th a t  A  a n d  B  are  c losed  c on vex  s e t s  o f l Z n su ch th a t  A ( l B  — 

0 I f  B  is c o m p a c t  th e n  there  ex is t s  a h y p e r p l a n e  H  th a t  s t r i c t l y  s e p a r a te s  A  a n d  B

Consider a hyperplane H  defined by a linear functional /  where

H  =  { /  c}

The Hahn-Banach Theorem states tha t if A n B  =  0 then a linear functional /  exists 

such th a t

< f , a  >  <  <  f , b  > Va e  A  V6 <E 5

A dual algorithm for the computation of /ico searches for a suitable separating plane 

/  In this case B  will be a closed ball of vanishingly small radius centred at the origin 

Thus, the existence of a separating /  determines whether 0 e  C o ( W ( a 2))

A two dimensional geometric interpretation of this theorem can be seen in Fig 2 4 
Consider the case where the set B  is a sphere whose radius is unity i e ,

B  =  { x  ||z ||2 <  1}

Consider the hyperplane H i where

H i  =  { /  c} /  =  [0,1] c — [1]

It is clear from the figure tha t if the distance from the set A  to the origin is greater 

than unity then A  n  B  =  0 This means tha t A  is separated from the open ball B  

by H x
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Figure 2 4 Two dimensional geometric interpretation of the Hahn-Banach Theorem

2.3 A Primal Algorithm for the Computation of

CO

In this chapter the 2-norm will be used to illustrate examples of primal and dual 

methods for the com putation of fico The primal problem is to find

c2(o0 =  mm | K 0||2
w co€Co(W(a2))

A sequence { w ^ }  is generated according to the following algorithm

1 Find an initial (hopefully good) u /1* e  C o ( W ( a 2))

2 Find the steepest descent direction, v^n\  from the current best

3 Do a line search to  locate w n+1, the minimum of +  (1 — a ) t )̂ n'||2

4 Increment n  Go to step 2

2.3.1 Locating Descent Directions

Consider an arbitrary  v  £  W { a 2) Let w(n) equal the best vector th a t has been found 

thus far, l e , the vector in W ( a 2) which has smallest norm It can be shown th a t v
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& < w (n), v >  < ||w(n)||2

which is true
m

&  Y , w { k ] ( x * A k X )  <  \ \ w { n ) \ \ l

k= 1

for some candidate vector x  of unit norm Thus, for this candidate x  vector
771

n)A k) x  < ||w(n)||£
k=1

Let Amw( ) denote !' Minimum Eigenvalue o f” Descent directions from w ^  can only 

exist if

is a descent direction from w ^

m

Amin(X,Wk Ak) < V!> ' , I 2
k- 1

Further, the eigenvector(s) which correspond to Amm determine the vector of 

steepest descent

2.3.2 Line Search

This subsection discusses Step 3 in the primal algorithm Determination of w (n+1) is 
achieved by analysis of the line segment

( l - e ) w (n) +  e v ^

where e € [0,1] Viewing this line as a continuous function of the param eter e, i e ,

/(e ) =  ||(1 — e ) w ^  +  ei>^||2

and noting tha t

^  =  -2 (1  -e ) ||™ (n)||2 +  2e\\v^n) \\l +  (2 -  4e) < w(n), t / n) >

it is clear th a t the required minimiser will correspond to where ^  =  0 This will
occur when

||l» | | 2  — < Ŵ n\ v ^  >
t  =

12
The algorithm  outlined in this section is computationally inexpensive and will con
tinue as long as descent directions are being located This algorithm has been imple

mented in M A T L A B  A full analysis of its performance is given in Chapter 4 of this 
thesis
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2.4 A Dual Algorithm for the Computation of f i co

The previous algorithm will (eventually) locate 02(0:) For any positive e

RS  4= Co ( W {a 2)) n  e£ 2° =  0 (2 8)

&  e < c2(a)

The Hahn-Banach Theorem says th a t eqn (2 8) holds if and only if there is a sepa

rating hyperplane d ^  0 for which

< d , e b  >  <  <  d , w co >  y w co £  C o ( W ( a 2)) ,  Vb £  B 2

&  e\\d\\2 < < d , w co> Vwco £ C o( W( a2))

e||d ||2 < < d , w >  Vty £ \ V { a 2)

d

W h

\  i ' V -'  A \  \^  Amm(2 j  || j|. Ak)  >  e
k=1 11 n ?

As this condition holds when e is made vanishingly small

m  j

^  > 0 (2 9 )*=111 ll?

The dual approach attem pts to find the linear functional (hyperplane) d tha t max

imises Xmtn in the inequality of (2 9) An algorithm is thus required which generates 

an appropriate sequence of functionals { d ^ }  Consider

d (n+l) =  d ( n ) + §  

the requirement tha t 6 increases Amtn means tha t

m A, m w(n)

Aro," (£ p w T i i i i ; /1‘ ) -  Amm(S p % ‘4t) (210)

It should be noted th a t this must be true for all minimum eigenvalues even if Xmm has 

a multiplicity th a t is greater than  one Consider a finite list of w  vectors Expr (2 10) 
implies th a t for some small positive scalar ¡5



where i =  [1, ,p ]  and p  is the multiplicity of Amm(££=i p F T jg ^ )  Each eigen
vector x ^  gives a corresponding It can be shown [Holohan 97] th a t this is true

«» < <5, w(t) >  >  0 Vi =  l, , p  and (2 11)

<  <5, d {n) >  =  0

where w ithout loss of generality 5 can be rescaled so as th a t ||<5|| =  1 The orthog

onality requirement comes from the fact th a t any component of 5 in the direction of 
will have no effect on the objective at hand

T h e need  for a Linear Program  (L P) Solver

The largest possible increase in Xmin will be attained when the LHS of the inequality 

in (2 11) is maximised The steepest possible ascent direction for \ mm can thus be 

found using an LP solver The problem at hand is to find the 5 that

M axim ises r  Subject To

<  5, >  >  T 2 =  1 , , p

and
< S , d >  =  0

O utlin e o f th e  A lgorithm

1 Determine a (hopefully good) starting linear functional (hyperplane) d ^  and 

corresponding Amm( £ fc

2 Using an LP solver, determine an ascent direction, <5, from d ^

3 Use a line search in the direction 5 to determine the d̂ n+1) which will yield the 
maximum possible increase in Amm

4 Increment n  Go to Step 2

The algorithm will continue as long as a positive r  is returned from the LP solver in 
Step 2
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Lim itations of this approach

The principal drawback of such an approach is th a t its performance depends on the 
quality of the initial hyperplane th a t is used Another drawback is the computational 

expense of the algorithm ’s requirements for a Linear Program a n d  a line search a t each 

step Despite this, a 2-norm dual approach can be useful because of the improvement 
in Xmin th a t is possible a t each iteration The level of improvement per iteration is 
radically better than  with a primal approach Bearing in mind tha t termination occurs 

when a positive \ mm has been found, a 2-norm dual approach may be competitive at 

lower accuracy levels

An analysis of the performance of such an algorithm is given in Chapter 4

2.5 Linear Programming

Any dual approach will require the use of Linear Programming (L P ) software The 

algorithm in the previous section and the algorithm presented in the next chapter 

motivates a brief discussion of the computational issues involved in linear program

ming The literature on linear programming is vast No attem pt is made in this 

thesis to provide a comprehensive treatm ent of the problem However, the solution of 
a linear program is central to the approach adopted here Brief comments which are 
relevant to the problem at hand are necessary Initially the basic problem is briefly 
reviewed This section considers the Simplex Method, which is the principal linear 

program solver used throughout this project The emphasis in this discussion is on 

the specific problems tha t the method has with the data tha t are typically given to 
the Simplex LP solver

Finally, some brief comments are made about a different Interior Point approach 
to Linear Program solution The literature [Astfalk 92], [Beran 95] suggests th a t 
interior point methods are more efficient than the Simplex Method, particularly on 
large problems
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2.5.1 Statem ent of the Problem

The linear programming problem is to maximise the objective function

Al p  - C T x

subject to the constraints

A \ x  <  B \  > 0 2 =  1, ,m i

A 2x  >  B 2 bt >  0 z =  mi +  l, , m 2

A^x  =  £¡3 frj >  0 i = m2 +  1 ,  ,m

and also subject to the primary constraints

x \  >  0, x 2 > 0, , xn >  0,

Any linear program can be expressed in this form Any solution x  tha t satisfies the 
constraints is known as a feasible solution The feasible solution that maximises the 
objective function is known as the o p t i m a l  f eas ib le  s o lu t io n  The existence of an op
tim al feasible solution is dependent on two things (1) Feasible solutions must exist 

(11) The constraint set must prevent any variable assuming such values tha t will cause 

the objective to be unbounded

2.5.2 The Simplex M ethod

First published by Dantzig [Dantzig 63] in 1948, the Simplex Method provides a 

simple and, with a few amendments, most notably one by Bland [Bland 77], deter
ministic way of calculating the optimal feasible vector for any given linear program 
The steps required in a typical simplex method can be briefly outlined as follows A 
good general reference for this work is [Spivey 70]

1 C o n s tru c t  th e  B asic  T a b le au  A basic tableau is of the form

A l p  C T  

B  - A

Initially ALP will have the value zero
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2 G e n e ra te  S lack  V ariab les  Inequalities must be turned into equalities by 

the addition of slack variables y \ ,  , ymi+m2 Initially the non-slack variables 

x \ ,  , x n will have a value of zero The slack variable y t will initially have the 

bt value corresponding to  th a t constraint

3 L ocate th e  P iv o t C olum n Looking at the objective function, the basic 

variable whose coefficient is most positive, 1 e , tha t which will most quickly 

raise ALp  from zero, is selected as the pivot column

4 L ocate th e  P ivo t E lem ent Assuming tha t an optimal solution exists and to 

keep the equations consistent, one raises A l p  by reducing the value of a basic 
variable Simplex determines the first basic variable tha t will go non-positive 

by using the choic e  rule

bh. r -1
Vh =  —  =  min{— }

®hk 1 &ik

where k  corresponds to the pivot column

5 Swap a B a sic /N o n -B a s ic  V ariable Pair. The simplex method raises the LP 

cost by swapping a basic and non-basic variable Standard row/column m atrix 
operations will allow an update of the tableau so tha t it remains in norm al 
form This means th a t a basic variable will have a coefficient of 1 in the o nl y  

row th a t it appears m

6 R ep eat S tep s 3-5 Do so until a pivot column that will increase the LP cost 
can no longer be found

7 R ead th e  O ptim al So lu tion  The optimal solution vector can be read directly 

from the first column of the tableau

2.5.3 Computer Implementation

The algorithm implemented in this project is based on the work of Kuenzi, Tzschach 
and Zehnder which is presented in the popular Numerical Recipes suite of software 
[Flannery 91] It has been implemented, (without the GOTO loops'), in M A T L A B  

When only <  constraints exist it is possible to read a basic feasible solution di

rectly from the tableau This algorithm ascertains whether a basic solution exists
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by constructing an (initially negative) auxiliary objective function from the >  and =  
constraints If this auxiliary objective can be increased to zero then a basic feasible 
solution is known to exist This approach also simplifies the row/column operations 
necessary when handling different types of constraints

The M A T L A B  implementation handles degenerate problems Degeneracy is observed 

when ties occur during the execution of the choice rule This can be a serious problem 

resulting in an infinite number of swaps between basic and non-basic variables without 

any improvement in the LP cost or termination of the algorithm The algorithm th a t 

has been used is equipped with an anti-cycling routine due to Bland [Bland 77] which 

assures finiteness Bland’s method bases the decision about which row/column to 
swap on an index of basic variables The basic variable with the lowest index on the 

list is always used and thus the number of swaps th a t occur will always be finite

2.5.4 Interior Point M ethods

Interior point methods have been presented by many authors, including Karm arkar 

[Karmarkar 84], Boyd e t  al  [Boyd 94] and Astfalk e t  al [Astfalk 92], as a means of 

solving linear programs efficiently The approach converts a standard constrained 

minimisation problem to a corresponding family of unconstrained minimisation prob

lems The m ethod uses a barrier function B F ( x ,  7 )

B F ( x ,  7 ) =  C T x  -  7 ^ l o g i x j )  (2 12)
j=i

where 7  is a positive param eter Any solution of the unconstrained optimisation prob

lem will be in the interior of the constrained solution space Let ¿ (7 ) be the minimiser 

of eqn (2 12) As 7  approaches zero, the mimmiser ¿ (7 ) approaches the optimal so
lution of the constrained minimisation problem A typical algorithm, [Astfalk 92], 
which locates a minimum in such a way is

1 Choose 70 >  0 Iteration counter k  is zero

2 Find x k which is a mimmiser of (2 12) This is achieved using a standard 
Newton-Raphson 1 e ,

d { B F { x ,  7 )) _  d C T {x)  _  j _

d x j  d x j  Xj
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3 if 7*; < e S T O P  

E L S E  7a;+i =  7fc * 995 
A; =  k  +  1 

G O T O  Step 2

The attractiveness of an interior point method lies in its computational speed The 
solution of a Newton-Raphson at each iteration is inexpensive In Chapter 4 interior 

point code developed by Boyd et  al  [Boyd 94], is compared with the Numerical Recipes 

Simplex routine

2.6 Overview of Some Commercially Available Soft
ware

This section examines some of the commercial n  software which has been available 
for some time now

2.6.1 M FD Toolbox

Early attem pts a t computing fj, allowed only complex uncertainty and limited un
certainty structures to be used One of these, which is available in the M A T L A B  

Multivariable Frequency Domain (M F D ) Toolbox is due to Ford e t  al  [Ford 90] 
The MFD Toolbox code attem pts to find the D  which will minimise the upper bound 
on (jLco, i e ,

a ( D M D ~ l ) =  mf a { D M D ~ l ) =  ¿ico (2 13)

This code uses standard first derivative gradient based and second derivative Hessian 
based operations to iteratively improve D  Such a “hill climbing” approach suffers 

from an unavoidable reduction in performance during its la tter stages Example 
problems can be found where this reduction in performance can occur at a significant 

distance away from /ico In addition, real/m ixed uncertainty problems are not catered 
for
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2.6.2 ¿¿Tools

The ¿/Tools Toolbox for M A T L A B  [Balas 94] has been recently introduced It offers 
significant improvements on the MFD Toolbox code It offers faster upper bound 
code for ¿¿co based on an improved form of eqn (2 13)

a ( I  +  G 2) ~ * ----------(D M D ~ l -  j G ) ( I  +  G2
Ô nTools

(2 14)

The code uses a dual process to determine a good D  For a given perturbation 
structure [Young 95]

Hco(M)  <  ---------  <= a (  ) <  1
Qt [¿Tools

The G  m atrix contains the extra constraints required for real perturbations The 

bound is exactly equivalent to the real/mixed bounds tha t are developed from the 
numerical range theory An iterative (dual) process is required to determine D  

Termination is based on when the improvement per iteration falls below a certain 

(prescribed) level This can occur, particularly in the real case, at a significant dis
tance away from ¿/co ¿/Tools largely overcomes this problem in the purely complex 
case by using a power iteration algorithm which closes in on the lower bound for ¿/ 
In the complex case this power iteration yields a v e r y  accurate bound for ¿i However 

its performance deteriorates when mixed uncertainty problems are studied

Pow er Iteration s

A power iteration is a procedure which iteratively computes the eigenvalues and 

eigenvectors of a m atrix Consider an arbitrary with ||x°||2 =  1 The following is 
an illustration of a power method

1 =  M x t" -1)

2 r (n) — z(n)

3 A<n) =  x ^ M x ^

4  Increment n  Go to Step 1
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The principal objection to power methods is th a t they are local The choice of 
has a bearing on the quality of result obtained However, they are particularly 

computationally inexpensive

Rem ark: C om parison o f a^Toois and N um erical R ange Seed a

Eqn (2 14) shows th a t in general one can think of the following relationship between 

the corresponding performance measures in the Multiform Numerical Range (a) and 

¿¿Tools (a^Toois) formulations

&nToois =  ( a ) 2

It should be noted tha t the ¿¿Tools package does not support the possibility tha t 

the performance param eter, a^Toois, may m some applications not be required to 
hit al l  the uncertain blocks in a given system A clear practical motivation for this 

requirement will be seen in the filter analysis problem of Chapter 5 Indeed, ¿¿Tools 

cannot be used in its present form to determine worst case filter performance

2.7 L i  Theory

In this section stability and performance robustness measures are considered for per

turbation structures which are no longer, of necessity, Linear and Time Invariant 
(LTI) [Dahleh 95] is accepted as the reference textbook in this area

h  signals are those whose 1-norm, defined by

roo

IbWlli  =  /  I ?/(*) I d tJt=o

is finite In the sampled data case l i signals are those where

00

lb(*Olli =  Y ,  | y { k )  | < oo
A;—0

loo signals are those whose oo-norm, defined by

\ \y{t)\\oo =  sup \ y ( t ) \
— 00<£<00
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is finite In the discrete tim e case,

\ \y{k)\\oo =  sup|y(fc)| < oo
k

The L \  system norm is induced by I signals A system is said to be Li stable 
if and only if all bounded input signal vectors (in the infinity norm) will yield a 
bounded output vector for all time L x control is a time domain approach A distinct 

advantage of a time domain approach is th a t one can work with objective functions 

th a t are intuitively appealing to the engineer For instance tracking error has a much 

more immediate meaning in terms of output quality than the energy functions which 
are minimised with a H <*> approach

As before, a set of LTI perturbations will be denoted by V  Now let T>l t v  denote a 
set of linear but time varying perturbations Further, let V NLTV denote a set of non 

linear time varying perturbations A typical general perturbation set might contain 

perturbations of the form

A ex =  d iag  [Ai, A 2, A 3], Ai € V ,  A 2 6 'Dl t v , A3 e  X V ltv

where the gam of A ex will be bounded by unity in the infinity norm sense Let this 
general perturbation set be denoted by V ex

2.7.1 A /i Construct for General Perturbation Sets

¿/-theory can be extended to a general A ex Note th a t [Dahleh 95] refers to this value 
as a S t r u c t u r e d  N o r m ,  and denotes it as S N Aext0Q( M ) The terminology is
prefered here to  emphasise the fact th a t it is not a norm Also the Structured Norm 
S N ( M ) is defined for any bounded signal set In this thesis, the f iLl notation refers 
exclusively to signals th a t are bounded in an infinity norm sense Thus

™  '  infA..{ ||A ||!  | d e t ( / - M A )  =  0}

As with standard theory, if there is no A th a t will destabilise M  then fiLl ( M )  =  0 
Therefore the use of the / / Ll notation can be considered reasonable Consider the 

following properties of which follow directly from its definition
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1 /iLl(M ) <  HMIIi

2 p Ll(M) <  mfyahd d  ||D M D ~ l \\i

3 H l A M )  =  p Ll(D M D ~ l )

4 | det(7 -  M A ) | >  0 VA e B Aeai0o &  V l A m ) <  1

In Property (2), a valid D  will be determined by the perturbation set in question

Property (4) is, in essence, a restatem ent of the small gam theorem for structured, 

non linear and time varying perturbations

E v a lu a tin g

Properties of

f^h ( M )  is computed as follows It can be taken th a t M  is square and has dimension 

n  Thus, let
(  m n (s) , , m l n (s)  ^

M ( s )  =

\  m n l ( s ) , , m nn(s)

L e t  m lJ(t)  denote the inverse Laplace transform of m t;)(s ) ,  l e ,  the corresponding 

impulse response Thus, | |^ j ( i ) | | i  denotes the integral of the absolute value of m l:)(t)  

so that
\ m ,v

f OO
(i)||i =  / | m i3( t )  | dt

J  0

In this way one can calculate the 1-norm of the impulse response of each element of 
M Define M  as

1 H^nl l i  , , ||m i„ ||i \
M  =

V ll” »nl| |l I > ||TOw»||l

T h e  spectral radius of M , p ( M ) has a number of interesting properties Proof of the 

following theorem can be found in [Dahleh 95]

T h e o re m  2.2  C o n s i d e r  a m a t r i x  M  a c t e d  on by a g e n e r a l  u n i t y  g a m  b o u n d e d  ( in  

th e  i n f i n i t y  n o r m  s e n s e )  p e r t u r b a t i o n  s e t  V ex L e t  p ( M )  d e n o t e  th e  spec tra l  ra d iu s
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o f  m a t r i x  M ,  c o n s i s t i n g  o f  the  1 - n o r m  o f  each e l e m e n t  o f  M .  T h e n  the  fo l l o w i n g  

s t a t e m e n t s  are  equivalent .

1. p ( M )  <  1

2. The system of inequalities
x  <  M x  an d  

x  >  0

has no solutions.

3. infvaiid d  | | D M D  1||1 <  1

4. p L i ( M )  <  1

Moreover it can be shown th a t =  p ( M )

This is an extremely useful and powerful result. The theorem shows tha t p ( M )  <  1 
provides necessary and sufficient conditions for stability and performance robustness. 
It is also a computationally inexpensive function to calculate. It is much cheaper for 

example than computing /iC0(M ) when a perturbation A is purely LTI. Extensive use 

of this result is made in the PID tuning work of Chapter 6 .

2.8 Non-Linear Systems

The L i  theory is of particular benefit when the system model is quite poor. A common 
example of this is when a non-linear system is approximated by an LTI system for the 

purposes of design. LTI models are valid locally in the region of an equl ibr ium  point .  

When a gain scheduled type approach is adopted several LTI systems may be required 
in different regions of operation to better describe non-linear system behaviour. It 

is inevitable th a t problems will occur with the faithfulness of linear approximations, 

particularly a t the transition points between regions. The L \  results of the previous 
section can be of benefit here. This section describes the steps required to linearise 
a model about an equilibrium point. There are many useful references for this work, 
[Kaplan 95] being a particularly well written example.
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m g

Figure 2 5 Analysis of the Simple Pendulum, an example of a non-lmear system 

2.8.1 Linearisation

Consider the state  space representation of a non-lmear system

X  =  F ( X , U )

Y  =  G ( X , U )

where F ( ), G ( ) are non linear functions of the state variables X  and input variables 

U  A simple example is the pendulum, as in Fig 2 5 Selection of state variables 

yields X \  =  9, which is the pendulum angular displacement and X 2 =  9 which is 
the pendulum angular velocity Assuming tha t there is no input signal to the system, 
analysis from first principles yields

Y  =  X i  =  G ( X , U )

An equilibrium point can be loosely defined as a position where the system can come 

to  rest In the case of the pendulum this is when

X x =  X 2 =  0

A value of state  vector X  and input vector U  where equilibrium can occur will be 

denoted by asterisks X *  and U* respectively In this case the point X *  corresponds
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to  the specific state  vector X i  =  X 2 =  0. Clearly, for this choice of state  vector

F ( X * ,  U*)  =  0

and so it is indeed an equilibrium point. Consider system behaviour about small 
deviations X *  +  x  from the equilibrium point X * .  It is assumed th a t the system is 
differentiable about the equilibrium point so th a t Taylor’s theorem can be applied.

d F ' ' d F '
F ( X *  +  x , U *  +  u)  «  F ( X ' , U * )  +  x \  —  ] U =x- +  u  ( ^77

, d U
\ u = u *

where the approximation symbol indicates that higher order terms have been dropped. 

A linearised model of this system is thus given by

where

A  =

X -- A x  +  B u

y — C x  +  D u

( d F ' \  , 0  1 "

[ d X t
1 \ x = x * —

1

1 O
1

is the Jacobian of the function F  evaluated a t the equilibrium point X * .  Since there 

is no input and the equation for Y  is already linear it can be seen that

B  =  0

C  = 1 0

2.9 Summary

In this chapter the necessary tools for the computation of the convex estim ate /ico 

of fj, have been introduced. The geometric form of the Hahn-Banach Theorem has 

been shown to provide an appealing framework for the solution of this problem. Two 

methods for calculating /zco using the 2-norm have been introduced. The limitations of 

these methods motivate the development of the algorithm outlined in the next chapter. 
Existing commercial code for ¡i-analysis has been reviewed. The principal restrictions 
of this existing code have been highlighted. Finally, L x and system linearisation results 
th a t are used in the applications chapters of this work have been introduced.

46



Chapter 3

N ew  Algorithm

The previous chapter outlined a primal and dual method, based on the Multiform 

numerical range theory, for the calculation of /ico Both methods used the 2-norm 

This chapter is devoted to an alternative computing strategy for ¡jlco This method also 

uses the numerical range formulation However a 1-norm dual optimisation strategy 

is now used, in the belief th a t it provides the best framework for computing n co The 
theory behind this new algorithm is developed and its implementation is described m 
detail A proof of convergence is given Finally a series of amendments to the basic 
algorithm are discussed which significantly reduce the time required to obtain tight 

bounds on /ico

3.1 Dual Problem

It has been shown already that

R S  &  0 $ W ( a 2) Vw

Hence

R S  *= 0 < £ C o { W ( a 2) ) \ / u

where a larger a  pushes the (convex) set C o { W )  closer to 0 The explicit reference 
to a  a n d  u  will be supressed subsequently The dual method depends on the approx
im ation of the set C o ( W )  by a polytope P  Each iteration of the method produces a
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new polytope edge, where at all times

Denote the minimum distance (in the 1-norm sense) from 0 to C o ( W )  as c^a?) The 

symbol z  will be used to denote a vertex of P  Therefore

c i(a) <  p | | i

A primal strategy would attem pt to home in on Ci(a) by locating new vertices of 

P  th a t would minimise ||z ||i This section looks at the dual of this problem, which 

makes use of the Hahn-Banach Theorem

3.1.1 Application of Geometric Hahn-Banach Theorem

Consider the case where ci (a) is some positive number 1 e ,

Cl(a) =  v  >  0 ^  0 £ C o ( W )

This is true

< * C o { W )  n  v B \  =  0 

where B {  denotes the interior of the unit ball in the 1-norm sense, l e ,

B {  =  { i e r  | ||rr||i < 1}

From the Hahn-Banach Theorem there exists a separating hyperplane for these two 

sets i e ,

3 d  ^  0 | <  d, w co >  >  <  d , v b  >  V w co e  C o ( W )  , V6 G B i

Noting tha t, since || ||oo is the dual of || ||i, this is true

& < d , w c o > >  i'||d||o0 V w co e  C o ( W )

Consider a support hyperplane for P  This plane will be denoted by d  6 5« , where 

Boo =  { x  E Cm | ||x||oo <  1} Introduce Xmin, the minimum eigenvalue of the 

herm itian m atrix £™=1 d kAk  Therefore, letting 8 B 2 denote the boundary set of the 
2-norm unit ball,

m m

^ m m i Y d k A k )  <  Y , d k { x * A kx )  V x  e  d B 2 (3 1)
fc=i *:=i

P  C  Co{W)
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z*AkX is the A;th element of a vector in the set W  Therefore,

Xmtn < < d , w  > V w  6  W

=> Amln < < d , z >  V z  e  P

The algorithm will iteratively yield extra vertices for P  The beauty of a dual ap
proach lies in the fact tha t any vertex of P  will provide a global lower bound on c\  (cv) 

It is clear th a t P  C C o ( W )  since

Armn <  N |oo ||V>co\\ 1 VlOco G C o ( W )  (3 2)

This suggests th a t finding a positive Amm is a valid way of determining whether 0 is 
in the convex hull of W  1 e ,

A m m  > 0 ^  0 #Co(W)

Therefore, this approach yields bounds on either side of Ci(a) a t each iteration \ mm 

is a lower bound and ||z ||i is an upper bound

R e m a rk  1 It is reasonably straight forward to extend the Hahn-Banach Theorem to 

harden these inequalities into equalities For any positive e

m
Cl (oj) ^  6 3 d  € B qq | A mm (^  d kA k) ^  €

k=1

However for any positive Amm tha t exists, it can be seen th a t

m

max (Amm ( y^, d/cAk)) ^  ci(q) (3 3)
k=1

Combining expressions (3 2) and (3 3) yields the im portant result,

m
max(Amm( ^ 4 A fc) =  ci (a) (3 4)
deB°° k= l

R e m a rk  2 The constraint tha t the hyperplane d  be on the boundary of the unit ball 

(in the infinity norm sense) is in fact no constraint at all as a simple rescaling shows 
tha t m m j

rnax(Amm(^ 4A fc)) = rnax(Amm( £  j ^ - A k)) 
deB°° *=i d*°  k=1 ll“ lloo
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Com m ents on the Separating Hyperplane d

Throughout this work d  e  B x  This means tha t d ( i )  € [-1 ,1] , V? It can be shown 

[Doyle 82] th a t for uncertain parameters tha t are purely complex it is sufficient to 

determine a strictly positive d i e  , d ( i )  G [0,1] This is due to the absence of equality 

constraints in the complex only case This has speed implications for calculation of 
complex as it leads to  a reduction in the number of constraints involved in the 

optimisation problem under consideration

3.2 Outline of the Algorithm

M otivated by eqn (3 4) a new algorithm for the computation of p co is now formu

lated The algorithm will consist of an outer and an inner loop The outer loop 

selects values of a  which are candidate upper or lower bounds on p c0 The new a  

should be selected so as to guarantee convergence of the outer loop and to  quickly 

provide good bounds on /¿co The inner loop takes this value of a  and answers the 

basic proximity question (i e , estimates C i ( a ) )  by maximising eqn (3 4) The fol
lowing subsections briefly outline the steps involved in each loop when calculating 
complex n co A more detailed exposition, along with possible bolt-on improvements, 

is provided in subsequent sections

3.2.1 Outer Loop

The first step in the outer loop is initialisation The outer loop’s function is the 
generation of the next value of a  for the inner loop

In it ia l is a t io n

W hen initialising, singular vectors of M  are used to provide starting constraint z ’s 

Singular vectors are attractive for a number of reasons The U, S, V  matrices tha t are 

generated by the Singular Value Decomposition (SVD) are easily obtained Engineers 

tend to have an intuitive understanding of singular values/vectors as the principal
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gams of a system in a MIMO setting They are also quite useful, as they yield 

bounds on /j,co

G e n e ra tio n  o f  c^n+1)

Let and k correspond to upper and lower bounds on kmco respectively After 

any iteration of the inner loop process one of the following decisions can be taken 

Either

Cl(a) =  0 => C  =  « (n)

or

c x{ a )  > 0  => k l™ =

When c1(a) >  0 another useful lower bound on kmco can be obtained from consid
eration of the support hyperplane d  tha t yields the positive Xmm D  =  diag(d) is a 
good scaling m atrix when attem pting to solve the d ( D M D ~ l ) minimisation problem 
for /¿co Thus,

C\(a) > 0  =>■ k l™ = m a x [ (a (D M D ~ 1))~1 , a ^ ]

The next value of seed a  is chosen to be ( k l™ +  Continuing in this fashion

will bisect the interval [ k l™,  k ] at each iteration Use of such a binary search 

strategy means th a t convergence of the outer loop is guaranteed Fig 3 1 provides 
an illustration of the outer loop algorithm

3.2.2 Inner Loop

M anipulation of eqn (3 4) shows th a t the function to be maximised is equivalent to

max Amm s u b je c t to  < d , z  >  >  Xmm

The above expression is clearly a linear program Each iteration of the linear program 

will provide a plane d  which acts as a separating hyperplane between 0 and the 

polytope P  If no such hyperplane can be found then 0 6 C o { W )  The next task is to 

find a new z or z ’s th a t will maximise A A n  eigenvalue/eigenvector decomposition, 
also known as the Characteristic Value Decomposition (C V D ) will provide new z
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Figure 3 1 Flow Diagram for the Outer Loop of the New Algorithm



vectors tha t, when added to the constraint list P  for the next iteration of the linear 

program, will increase Amm There will be three ways of exiting the inner loop in the 

basic algorithm

1 A mm >  0 When the minimum eigenvalue of the E£Li d k A k m atrix is positive 
it implies th a t C \ ( a )  > 0 Thus, it can be concluded tha t ^ > n co

2 LP returns d  — 0 When the Linear Program cannot find a non-zero 
support hyperplane for the current list of z ’s, this implies th a t c i ( a )  =  0 
Thus, £ < n co

3 M axim um  iteration  count exceeded  This optional third exit criterion can 

be included if rough bounds are required quickly It precludes the possibility of 

having too many iterations of the linear program when the value of a  is very 

close to Hco

Fig 3 2 provides an illustration of the basic inner loop algorithm

3.3 Inner Loop Analysis and Some Suggested Im
provements

This section details the necessary work involved in the various inner loop steps It 

concludes with some amendments to the basic algorithm that result in a signifi
cant improvement in computing times A quantitative analysis of how these various 
amendments improve the basic algorithm is presented in the next chapter

3.3.1 The Linear Program (LP)

The function to be maximised, Amm( E ^ i  d kA k), can be formally stated as the LP

max A su b ject to
d^Boo

1 IMHoo <  1 and
2 <  d,  w co >  >  A Vtoco 6 C o ( W )
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Figure 3 2 Flow Diagram for the Inner Loop of the New Algorithm
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Note th a t constraint 1 can be recast as

— 1 <  <  + 1  k  — 1, ,m

or equivalently,

d k < + 1 and  — d k < +1 k  = l ,  , m

In a similar fashion constraint 2 can be restated as

A — < d,  w co > <  0 V w co e  C o ( W )

Each of these two sets of constraints are linear and therefore this can be viewed as a 

linear program m m  + 1  variables where the first variable A is the only one of interest 

to the objective function Of course viewing each vector in C o ( W )  as a constraint is 

problematic as there are an infinite number of them The approximation of C o ( W ) 

by the finite polytope P  will re lax  the requirement on A, because an infinite number 

of constraints is turned into a finite list of (hopefully good) z ’s Since P  C C o ( W ) ,  

the A th a t will be maximised by such a constraint list will provide an upper bound 
on ci (a) This solution A from the LP will be denoted from now on by XLP Assume 

th a t there are N  of these constraints The linear program to be solved is then

max C T x  su b je c t to

A x  < 0

where

x T =  (A, d i ,  , dm)

C T =  ( l ,0i ,  , 0m)

A =  {Ai, A2, A3}

There are three blocks which are stacked on top of each other to construct the con
strain t tableau A The first block contains the finite list of vertices tha t have been 
accumulated thus far

[  1 ~ { z W ) T ^

A i  —

1 ~ ( ZW ) T )
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The second two blocks are concerned with constraining the solution plane d  to be 

inside the unit ball in the infinity norm sense

(  0 1 0 ,
’

'  0 -1 0 , , 0 \

a 2 —

0 0 1 , , 0
^3 —

0 0 -1 , , 0

0 0 , . l ) 0 0 , , -1 )

The standard linear program solver used throughout this work is an amended ver
sion of the public domain Numerical Recipes LP code offered in Flannery e t  al  

[Flannery 91] This version was implemented in M A T L A B  The code was found 
to  offer a good tradeoff between reliable operation and good speed It incorporates 
an anticycling algorithm and was significantly better than the linear program solver 

offered in M A T L A B ’s optimisation toolbox The Numerical^Recipes code attem pts 

to minimise rather than  maximise a given objective function This is not a restriction 

as clearly,
max C T x  =  mm — C T x

d d

3.3.2 CVD

It is natural to consider the eigenvector/eigenvalue decomposition of the m atrix 
i d kA k since

c i { a )  =  max Amtn ( j t d kA^J

This means tha t
m

Y  d kA k ^  Am in i
k~l

m

=*■ J 2 d * x * A k x  >  A m in Vx e  b 2
fc=i

where the unit eigenvector(s) x  corresponding to Amm achieve equality Thus

m

m m V w e w
k= 1

m

=> Y  d kWCOk >  A mm VWC0 6  C o ( W )
k= 1
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fc=l

Therefore this algorithm provides a global lower bound on c\  ( a )  The CVD is useful 
here because it yields the candidate unit eigenvector x  whose corresponding eigenvalue 

is a lower bound on Xmm It is very convenient to perform the CVD because M A T L A B  

is designed to provide numerically reliable eigenvalue/eigenvector decomposition code 

for herm itian matrices

3.3.3 Am endm ents to the Inner Loop

This section looks at ways in which the inner loop proximity question can be solved 
more quickly The amendments mentioned here are equally applicable to real and 
complex uncertainties

C onstraint G eneration

The biggest single improvement tha t can be made to the basic algorithm is to  ensure 

th a t “good” unit vectors do not need to be regenerated during subsequent iterations 

of an inner loop The motivation for this work can be seen in Fan et  al  [Fan 2 86] 

w ith respect to  the geometric aspects of the numerical range formulation It can be 

seen th a t different values of seed a  act, loosely speaking, as a translational operator 
on the set W  Therefore, unit vectors which produce w ’s of small norm tend to carry 

over for different seed a ’s Storage and reuse of such good unit vectors means tha t 
the number of iterations of the inner loop th a t are required is cut dramatically

C onstraint P ru n in g /P la tea u s

Consider four successive stages of the search for a positive minimum eigenvalue in 

Fig 3 3 Notice the series of plateaus th a t Amm goes through during the course of one 
seed a  While Xmin is stuck on this plateau, improvement is occurring in the upper 
bound on Ci(a) New “tight” unit vectors are being found which are generating w  

vectors of smaller norm The dual algorithm seems to exhaust the benefit of a new 

eigenvalue for a few LP/C V D  loops before moving onto a new level Once on a new

=► Y  dkz k > A mzn Vz e  P
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x 10 3 x 10 4

Iteration Iteration

Figure 3 3 Progress of Xmm for a value of a  th a t yields 0 close to the boundary of 
C o ( W )
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plateau, the unit vectors th a t were tight on the previous plateau now begin to lose 

their effectiveness

W hen an outer loop iteration has been completed there are two possible approaches 
th a t can be taken which will reduce the size of the LP tableau The first approach is 

to discard unit vectors tha t are generating tu’s th a t are a considerable distance (rule 
of thum b >  20%) away from the unit vector th a t has generated the “best” w  A 

second possibility is to say th a t only the unit vectors which cause plateau jum ps m 
Amm are of interest This approach can work in tandem with the previous approach 

1 e , one can still get rid of unit vectors th a t are not producing good w ’s While the 
former approach proved to be quite successful and was integrated into the improved 
form of the algorithm, computational experience has shown that use of the la tter 

approach does not effect any significant reduction in computing times

Tableau Form ation

The Numerical Recipes LP solver includes the facility to deal with degeneracy Notwith

standing this, the presence of lots of zeros in the problem tableau is not a good idea 

as they tend to  introduce numerical problems This is particularly likely to occur 

when dealing with real/m ixed uncertainty problems One possible improvement is to 

rearrange the linear programming problem so tha t the solution plane produces inner 

products th a t are around unity rather than zero Up to now the search has been for 
the minimum eigenvalue th a t acts as a lower bound in the following way

Ci(a) >  Amm =  mm a;*(V d fcA fc)x dfc€ [ - l , + l ]  (3 5)
x£dB2

Now consider the new plane /* =  <4 +  1 An exactly similar problem to (3 5) is

Amm < min x * ( Y f k A k -  A k) x  / fc € [0,2] (3 6)
x^oBi 'k

Amin <  Y l i f k W k  ~  Wk)
k

^  Amm < / ,  w  >- <[ ^  ] w k
k

This linear program is intuitively more appealing Using variables which are strictly 
positive ties in better with classical linear programming ideas There are also fewer

59



zeros in the LP tableau The extra software overhead, namely calculating and storing 

Y,k w ki ^  also not expensive

3.4 Improvements to the Basic Algorithm

Numerical experience has shown tha t the speed of the algorithm is greatly improved 

by certain additions, which are the subject of this section Firstly, a prescaling routine 
tha t is performed on the problem m atrix during initialisation is considered Secondly, 
amendments to the outer loop are discussed These amendments preserve convergence 
to fic0, but a t a rate faster than tha t given by a binary search The following two 
possibilities are considered -
(I) Information th a t can be gamed from the list of wco’s tha t are “close” to being 

orthogonal to the support plane d

(II) New bounds th a t can be deduced from m atrix pencil theory

For the present, the uncertainty is taken to be complex Comments about improve

ments which pertain directly to the real/mixed uncertainty problem are made a t the 
end of the section A quantitative analysis of these improvements is presented in 
Chapter 4

3.4.1 Initialisation

When initialising the algorithm, the unit vectors which generate the z ’s are of par

ticular concern It is desirable to quickly find “good” unit vectors th a t correspond 
to z ’s which are close to, or are on the boundary of C o ( W )  However there is no 

reason to expect th a t the SVD singular vectors of M  will generate constraint z ’s th a t 

are close to  the boundary of C o ( W )  Computational experience has shown th a t the 
best way to do this initially is to pre-condition the m atrix M  in question using a 

scaling algorithm due to Osborne [Osborne 60] This process produces a new m atrix 
M  which has the following properties

1 Hco{M)  =  n C0( M )

2 The condition number, k ( M ) ,  of the m atrix M  is minimised
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3 i i c o { M )  <  a ( M )  <  a ( M )

In practice, using the m atrix M  produced by Osborne’s scaling routine provides (1) 

a much tighter initial upper bound on ) and (11) a much better set of starting
vectors for the inner loop To see this consider the basic version of the preconditioning 

m ethod due to Osborne [Osborne 60] which is outlined in Fig 3 4

N om en cla tu re

R j  is the 2-norm of the ; th  row vector w i t h o u t  the element

S j  is the 2-norm of the j th  column vector w i t h o u t  the M ( j , j ) element 
D  =  d ia g ( l, 1, , ( g ) - i , l ,  , 1)

This method attem pts to “diagonalise” the m atrix M  using similarity transformations 
by iteratively reducing the size (norm) of the off diagonal elements The basis for this 

approach lies in results from eigenvalue sensitivity theory [Golub 89] Minimising the 

condition number of the scaled m atrix D M D ~ l is desirable since

a _ ( D M D ~ l ) <  n co <  a ( D M D ~ x)

Hence, reducing k ( D M D ~ 1) will tighten the bounds on p c0

3.4.2 M atrix Pencils

An application of the Generalised Characteristic Value Decomposition (G C V D ) 
[Golub 89], [Gantmacher 60] to the problem at hand is now described Consider 
a positive quadratic form i e ,

m
y  dkAk  > 0
k=l

Each A k can be viewed as the sum of two matrices, one th a t is independent ( B k) and 

one th a t is dependent (C*) on a  Thus,

Ak  — B k  — a 2Ck
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Figure 3 4 Flow diagram for Osborne’s preconditioning algorithm
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m
Y d k ( B k -  a 2Ck)  > 0  (3 7)
k- 1

Consider the C k block th a t is dependent on a  Increasing the value of a  sufficiently 

will produce an indefinite form when YJk=i d kC k is of full rank, l e ,

36 | Am m [ p  d k { B k -  (a 2 +  <5)C ^ =  0

One can think of <5(£™=1 d kC k) as being a clearance factor Thus

( m m \
Y , d k { B k -  a 2C k) - ¿ ( £ 4 ^ )  = 0  (3 8)

fc=1 k= 1 /

Consider this m atrix  pencil First note th a t there is a unitary m atrix U  such tha t

m
Y d k ( B k -  a2Ck) = UAU*
k= 1

where A is a diagonal m atrix Thus eqn (3 8) is equivalent to asking whether the 
m atrix

t/A lT  -  6C

is singular, where C =  d kC k Pre and post multiplication yields

A ~ $ U * ( U A U *  -  6C)UA.~*  (3 9)

Note th a t this operation does not preserve the eigenvalues of the original m atrix 
However, it does not affect their sign or its rank Expression (3 9) has the following 
equivalent representations,

1 -  6A~̂ U*CUA-l2
taking the SVD again yields

=  1 -  bVAcV*
where Ac is a diagonal m atrix Pre and post multiplying by V* and V gives

=  V*{X -  5VACV*)V 

=  1 -  6Ac

An equivalent representation of the form is then
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The eigenvalues of Ac  can be read directly The smallest 8 tha t will smgularise the 

original m atrix will therefore correspond to

SMp  =  min(A_1)AeA c

To avail of this result remember th a t determination of any positive Amm yields a lower 
bound on the maximum possible minimum eigenvalue

* m l  <  <  max(Amm) =  d ( a )
a

Time considerations dictate that the inner loop always terminates before attaining 

this maximum Up to this point knowing whether Amm is positive has been sufficient 

By letting the inner loop run, the gap between Xmm and Al p  gets smaller The above 
m atrix pencil theory shows how a tight, positive lower bound on c i(a) can be viewed 
as a bound on how far a form can be translated from its current position whilst still 
preserving its positive character This means tha t a new improved lower bound on

krrico IS

=  (i“ '"’)2 +  ■ w )*

3.4.3 Tight Constraints

Further improvements to the upper and lower bounds on ¡j,c0 can be made by consid

ering additional information th a t can be deduced from good constraints It should 
be noted th a t the bounds derived in this subsection 3 4 3 are not rigorous, l e , it is 

impossible to  say whether the new bound is an upper or lower one on ¡ico Despite 
this drawback it is possible to gain information tha t will improve on the speed of a 
binary search

N on -zero  XLP

Consider the finite constraint list th a t is generated during the inner loop Further

more, consider the inner product generated by the solution hyperplane d  with an 
arbitrary  vertex

<  d , z W > >  ALp  >  ci (a)
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The current value of XLP can be used as a scaling param eter that will translate the 
current polytope to a position where 0 is a vertex Therefore the current plane d  no 

longer separates 0 from C o ( W )  Considering expr (3 7) it can be seen that

< d, z $  -  c? Z q > >  AhP

=> 35 | < d, z ĝ — ( a 2 +  8 ) z ^  >  =  0

In effect some vertex of the polytope is being translated to 0 The aim is to find the 
smallest 8 required which, when acting as an offset for the current a , would enable 0 

to be a boundary point of C o ( W )  l e , 0 G d ( C o ( W ) )  Note that this does NOT mean 
th a t there may not exist some other plane d  which may act as a suitable separating 
hyperplane For this reason it cannot be said whether this offset provides an upper 

or lower bound on /ico However, depending on how close the gap is between \ LP 

and Amin it can be expected th a t this new bound on /ic0 will be quite tight Another 

iteration of the inner loop is necessary to determine what kind of bound it is Thus, 
what is required is the smallest 5 so tha t

8 <  d , z §  > >  A i p  V?

&  8 >  --------------- Vz
_  < d , 4 } >

Therefore
=  ((a W )J +  (|)s

where 8 is generated according to the rule

min <5 I 8 >  — —  V*
"  < d , z $ >

Note tha t knowledge of the z  vectors where < d,  z $  >  is close to 8 provides a suitable 

basis for pruning constraints This keeps the amount of good constraints tha t are 
brought from iteration to iteration (and thus tableau size) manageable

Inform ation  From  Amm

Upper bound information can also be gamed from an accurate value for Xmm once it 
is known whether cx(a) is zero or not Remember th a t from expr (3 7)

m

Y d k { B k -  a 2C k) >  Xminl
k=1
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=>< d, z $  -  oi2Zq > > Amm Vi

C ase 1: c ^ a )  > 0 thus Amin P ositive

The task is to increase a 2 by 8 so as 0 G d C o ( W )  for this choice of plane d  This 
problem is equivalent to finding the smallest 8 th a t will reduce Amin to zero for the 

finite list of tight constraints tha t have been accumulated Using a similar argument 

to before
< d , -  (a 2 +  8 ) z q I > > 0

<£> 8 <  d,  z ^ ] > < Amm Vi

This means th a t the smallest 8 required to push Amm negative for the current d  is 

given by
r Amm Xmm
8 =  m a x ------ t-:—  =  ---------------- rr—

* < d , Zq  >  min, < d, Zq >

It should be noted a t this point th a t the list of constraints being assessed to determine 
8 will be necessarily incomplete This suggests tha t the smallest 8 would be larger 

than required for the current d  in order to push 0 inside C o ( W )  Again, it is not 

possible to  say whether a plane d  exists tha t will separate 0 from C o ( W ) Therefore 
this is another estim ate for p co where a further inner loop iteration is required to 

determine whether it is an upper or lower bound However, use of good constraints 
should mean th a t the new bound

«(n+l) =  ((a (n))2 +  ( ^  

can a t least improve on a binary search

C ase 2: c i ( a )  =  0 thus \ min N egative

Here the task is to reduce a 2 by <5 so th a t 0 e  d C o ( W )  For the current list of 

constraints no hyperplane can be found th a t will separate 0 from P  C C o ( W )  Denote 

the largest (negative) Amm th a t has been found so far as A ^n This value will be less 

than the smallest inner product < d * , w *  >  generated by an optimal hyperplane d* 

and the best w*  Consider the non-zero hyperplane d^n~ ^  tha t the LP returns on its
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A i l  <  mm < S - n~ l \ z ^ >
I

Now calculating a <5 which will make A ^n positive is only valid for the current list of 

constraints Therefore finding a <5 so that

A77lin +  8 < d, > >  0

means th a t a separating hyperplane can be found between 0 and the current potytope 

P  However, it may be possible that another constraint might invalidate this claim 
Therefore the smallest 5 given by

c Amm Am m
o =  m ax -------- rr—  =  ------------------ tt—

1 < d, Zq >  minj < d, Zq  >

should provide a tight bound on ¡ico Again there is no information about whether
iniit is an upper or lower bound Another drawback when Xmin is negative is the gap 

th a t may exist between Xmm and A^]n when the inner loop terminates When A mm 

is positive the algorithm can proceed until A ^n and A¿p are arbitrarily close to each 

other Since Al p  always acts as an upper bound on Amm, the [Amin , Xmln] gap can 
be made arbitrarily small This is not true when A ^n is negative The algorithm 

term inates when it has determined tha t 0 6 C o ( W ) At this point the gap between 

Xmm and ^mm may be significant This will have an adverse effect on the quality of 
the bound on fico th a t is obtained

C om parison o f M atrix  P en cil and T ight C onstraint B ounds

Numerical experience has shown th a t m most cases the m atrix pencil theory lower 

bound provides a better estimate for p c0 However, it should be noted tha t the 
necessary constraint pruning software provides these bounds as a byproduct Also, 

by considering only good constraints through the use of a proper pruning strategy it 
does not take long to ascertain whether these new bounds are upper or lower ones

penultim ate iteration For the finite list of z ’s tha t have been computed
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3.5 Improvements with Real Uncertainty

Improvements to the basic algorithm tha t are applicable to real/mixed uncertainty 

problems are now considered

It should be noted tha t in particular, tha t the above m atrix pencil theory only applies 

to  the case of purely complex uncertainty Also, the information that is derived from 

tight constraints can be limited by the peculiar geometry of the C o ( W )  generated in a 
mixed uncertainty environment Therefore it is necessary to determine improvements 
on a basic binary search strategy th a t are of use in the mixed/real case In this 
subsection a rigorous upper bound on /ico is considered which is applicable to both 

the purely complex and the mixed case At the end of the section two special cases 

are briefly considered Speed improvements are possible using sample perturbation 

bounds and early term ination of the linear program The former can be considered 

an outer loop method whilst the latter should be viewed as an improvement to the 
inner iteration

R igorous Lower B ound

The basis for the bound involves consideration of expr (3 7), 1 e ,
m

Y ,  d k ( B k — a 2C k) >  AmmZ
k~ 1

The problem at hand is to consider what S can be added to a 2 so as tha t Xmm will 

still be positive for the current plane d  In this way (a 2 +  6)2 will still act as a lower 
bound on k mco It is necessary to find a (5 so th a t

m
Y , d k { B k  — (a:2 +  6 ) C k )  > 0
fc=1

This will be certainly true if
m

¿ £ ( d * A )  <  \ mmi
k=1

which m turn  will be the case if 5 is selected so tha t

^   Amin

~  *(EE=i d kC k)
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The maximum singular value of the Tik=i (dkCk)  matrix corresponds to its maximum 
principal gain. Thus, a new lower bound tha t will allow improvement on a binary 

search follows if is selected according to

=  ((“ W)2 +  <5)̂  (3.10)

Note th a t no rigorous improvement to a standard binary search has been found when 

o »  corresponds to an upper bound on kmco

S am p le  P e r tu r b a t io n  B o u n d s

This subsection considers further refinement of the lower bound on mixed/real /ico. At 

the moment the standard practice is to find permissible matrices that make the loop 
( I  +  M A) singular [Young 95]. In [Young 90] a power method is presented which 

finds candidate destabilising A ’s. A simpler method which can provide reasonable 
bounds during initialisation is to assume that at least one complex block exists. In any 

robust performance problem there will always exist at least one complex parameter. 

If one assumes th a t all the permissible real uncertainties assume their nominal values 
then

/i C0(M ) >  max{Mjj} i  complex
i

where the candidate A corresponds to d i ag(0 ,0 , . . . ,  A*, . . . ,  0,0). A suitable grid 

search of other perturbation A ’s may also be useful.

E a r ly  L in ea r P ro g ra m  T e rm in a tio n

Determination of a very accurate value of ci(o;) can be a very time consuming exercise 

from which little benefit may be derived, given the geometry of the mixed uncertainty 

case. If a positive Amin exists for a certain seed value of a  then it could be argued 

th a t there may be no benefit in using further computations to find the best plane 

th a t will maximise A i p .  Consequently there may be no need to compute the optimal 

Al p  and Amin for a given batch of constraints. The implementation of this strategy 

is quite straightforward. The LP solver is amended so tha t it terminates when any 

feasible non-zero vector, not necessarily the optimal solution, has been located.
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R E T U R N

Figure 3.5: Flow Diagram for the Initialisation phase of the Improved Algorithm

The drawback of such a strategy is th a t the separating d  plane does not provide posi
tive Amjn’s as quickly during the CVD part of the algorithm. In practice, term inating 

the LP early has provided very mixed results on a selection of problems. Hence, it is 
not considered further.

3.6 Implementation of Changes to the Basic Algo
rithm

This section outlines the algorithmic changes tha t have been made. Conveniently, 
the m ajority of the changes can be seen as simple modifications to the original code. 
Fig. 3.5 illustrates the new initialisation phase. The inner and outer loop improve
ments require the generation of B k and C k blocks where, as before, A k =  B k -  a 2C k. 

In any given iteration of the inner loop the initial constraint tableau is formulated 

from either existing tight unit vectors from a previous iteration or, when starting the 
process, from Osborne singular vectors.
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It has been found th a t maximum benefit can be derived from constraint storage and 

pruning if the following strategy is adopted. When a positive Amin has been located 

the inner loop continues until a tight bound on Ci(a) has been located. At this 

point pruning is performed. This produces a small list of tight constraints which 

provide polytope vertices tha t are near the boundary of C o ( W ) in terms of this level 

of accuracy. Now, where it is applicable, the m atrix pencil, tight constraint and 

singular value bounds outlined in the previous sections are determined. W ith these 
good constraints a simpler form of the inner loop is executed where the only question 
of interest is whether or not 0 G C o ( W ) .  This simpler inner loop can be run in 
conjunction with a straightforward binary search until it is noticed that a significant 
number of iterations of the inner loop are required before termination. At this point 

the value of these constraints has been exhausted. To move onto a new plateau it is 

necessary to once more run the longer form of the inner loop.

This strategy is conveniently implemented by adding new code either side of the basic 

algorithm. Flow diagrams for this new code are presented in Figs. 3.6 and 3.7.

3.7 Proof of Convergence

The purpose of this section is to prove th a t the inner loop converges to C i ( a ) .  The 

outer loop, at worst, can always fall back on a binary search so its convergence 

is always guaranteed. A convenient reference for the standard real analysis results 
referred to in this section is [Smith 90]. To prove tha t the algorithm is convergent, 
let A min be the solution of the following problem

m
Amin — max Xmin ( £  dfcAfc) (3.11)

deBx k= 1

and similarly let \ LP be the solution of

ALP =  max ALP \ \ LP < < d , w c o >  V w c o e C o ( W )  (3.12)
d^Boo

These two problems provide lower and upper bounds on Ci(a) respectively. The 
problem at hand then is to show that

A min — c l ( a ) Alp
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A l̂ < CM) < A ("p

Consider a sequence { }^Li which is bounded above by Amin. Let

m
A ml =  max [A^” 1’ , Amin( £

k— 1

so tha t the n th  minimum eigenvalue in the sequence corresponds to the best th a t has 

been found so far. In this way the sequence is bounded, monotone and non-decreasing. 

Similarly the sequence is bounded, monotone and non-increasing. To see

this, consider tha t after n iterations of the linear program there are a finite number 
of constraints such that

A¿"p < < d, > 'i i

Adding a new constraint can only t ig h te n  the requirement on A ¿p. Certainly, since 
the old constraints are still there the minimum cannot be any higher than it was for 

a previous iteration. Hence,
>(n+l) ^  \(n)
a L P  — a l p

Consider the following lemma for the sequence {A ^n}. The argument carries over 
exactly for {A^p}

L em m a  3.6.1 T h e  b o un de d  m o n o t o n e  sequ enc e  {A^]n}, converges  to the  m a x i m u m  

d e s c r ib e d  in  eqn. ( 3 .1 1 ) .

P r o o f  The Bolzano-Weierstrass theorem dictates th a t such a sequence must have at 
least one accumulation point. Let such an accumulation point be denoted by Amin- It 
is necessary to prove th a t Amin — Amin- Assume, for the purposes of contradiction, 
th a t A min is not the maximum in question. Therefore,

qyv I A ^  > A ■-Ji y I /'min — /'mvn

which, in turn

=> *m l  >  A min Vn > N

Remove the finite sequence {A^ n}^=1 from the infinite sequence {A ^n}. This leaves 

the (still infinite) sequence {A[T"-Tl}^ lAr+1. The definition of an accumulation point 

dictates th a t this removal of a finite sequence of elements will not affect Amin’s status 
as an accumulation point of the infinite sequence tha t remains. Let N(Amin, 5)  denote

After the n th  iteration
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the interval centred at Amm with a radius of ||Amm — A ^ | |  < <5 as the 5 -ne ig hb ou rh ood  

of Amtn Now since { A ^ J ^  is monotone

=> N(Amin,<$) =  0

i e , all points in the <5 neighbourhood of Xmm will have been removed This is a 
contradiction of Amm being an accumulation point Hence

\(") <  \ V/n
A m m  — A m m  V'*

As a corollary, it can be seen tha t since there can be no other Xmm in the interval 

[Amm, Amjn] then

Amm — Amm

□

A similar approach shows th a t the bounded monotone sequence { A ^ p } ^  will con

verge to A i p  It is now possible to  prove th a t no gap exists between A mOT and XLP 

Proceeding by contradiction assume that Xmm <  Xl p  Now for some suitable max

imising support hyperplane d  G B ^ ,

m
Xmm =  Xmm ( ̂  dk A./-)

k=  1

m
=>■ Amm =  mm x*(Y<ikAk)x Vx <E dB2

X k=l

Thus, there exists a certain w  G C o ( W ) for which

A mm = < d , w > <  Ild llo o lH i =  11*11!

Noting th a t any vector w  G C o ( W ) must provide an upper bound on ALp ,  this yields 
the desired contradiction Therefore, it can be concluded th a t the new algorithm 
converges to  c\  (a )

3.8 Summary

A new algorithm for the computation of ¡j,co has been presented The new algorithm 

applies the Hahn-Banach theorem and uses a linear program solver at the heart of a
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1-norm dual optimisation strategy Convergence has been demonstrated for the basic 

form of the algorithm

Several improvements to the basic algorithm have been described These improve
ments provide new bounds on p c o  which improve on the binary search approach used 
by the basic algorithm These new bounds can be divided into rigorous, so called 
hard, upper bounds on ¡j ,c o and soft candidate bounds The hard bounds are clas
sified as those which arise from m atrix pencil theory and the use of singular values 
The former is applicable only to the case of complex uncertainty while the la tter is 

equally applicable to mixed uncertainty problems Soft bounds are deduced from the 
analysis of constraints th a t produce vectors close to the boundary of the convex set 
m question

The biggest single improvement tha t can be made to the basic algorithm is the reuse 
of good constraints in subsequent inner loop iterations A significant reduction in 

software overhead is possible if a sensible constraint pruning strategy, based on an 
analysis of these good constraints, is adopted The concept of whether a vector is 
close to the boundary and thus whether a constraint is tight, is a dynamic one which 

needs to be updated as the algorithm progresses Judicious pruning controls the size 
of a linear programming tableau and also improves computing times

Convergence of the improved form of the new algorithm carries over, since the conver

gence properties of the inner loop are unchanged by any of these amendments Since, 

at worst, a binary search can still be used for the outer loop it can be concluded th a t 

the improved form of the basic algorithm also converges to ¡j ,c o
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R E T U R N

Figure 3 6 Flow Diagram for the M atrix Pencil Additions to the Basic Algorithm
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Use last non-zero d , from Tableau

5 * ^ L ß > ----------------

Y

Tight x  =  [Tight x  , x

Update List of ^i’lght Constraints

N

P =  P +  1

R E T U R N

Figure 3 7 Flow Diagram for Constraint Pruning Additions to the Basic Algorithm
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Chapter 4

Algorithm  Performance

A significant amount of computational work has been carried out using the new 
algorithm developed in the previous chapter The aims of the first half of this chapter 

are to illustrate its effectiveness in a number of different areas These are -

1 V alidation  The algorithm can successfully calculate p co when faced with an 

arbitrary  m atrix

2 F lex ib ility  The new algorithm has the capability to deal with a variety of 

different uncertainty structures and performance questions

3 C om parison The new algorithm should be competitive with existing commer
cially available software packages

The second half of this chapter justifies this decision to select a 1-norm dual optim i
sation strategy for the application of the Hahn-Banach Theorem This is achieved by 

comparing this strategy with other possible approaches, i e , 2-norm based methods 
This chapter also considers possible reductions to the amount of time spent inside an 

LP solver, which is a significant limiting factor on algorithm performance
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4.1 Reliability of the Basic Algorithm

The first task is to demonstrate th a t the new algorithm works correctly

4.1.1 Complex Uncertainty

The new algorithm was tested on groups of 50 randomly generated n  x n  matrices, 
where n  G {3, , 10}, amounting to 400 matrices in all Initially, complex scalar

uncertainty was used Each m atrix was pre-conditioned using Osborne’s m ethod The 
new algorithm was term inated when bounds on ¿¿co had been calculated to within 10% 
of each other For each matrix, software from the Multivariable Frequency Domain 

(M F D ) Toolbox due to Ford et  al [Ford 90] was also used to calculate an upper 

bound on ¡jlc0

For all problem matrices the new method successfully produces bounds either side of 

the bound generated by the MFD code Table 4 1 illustrates a selection of the results 

for the 10 x 10 case

4.1.2 R eal/M ixed  Uncertainty

Next, the algorithm was tested using mixed/real uncertainty structures The test con

sisted of seven groups of 20 randomly generated n x n  matrices, where n  G {3, , 9},

amounting to 140 matrices in all In each case the matrices were scaled so as th a t 
¡jlco for complex scalar uncertainty was equal to one correct to four decimal places 

The first uncertain param eter is complex whilst the others are constrained to be real 
This choice of mixed perturbation set is motivated by the practical example, (to 
come in the next chapter), where robust performance information is required when 
real param eters are allowed to vary Clearly, this results in a reduction in ¡j,co Again, 

the bounds were calculated to within 10% using the new method The commercially 
available ¿¿Tools [Balas 94] package was also used on each problem
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T ab le  4.1 C o m p a riso n  o f b o u n d s  for C o m p lex  ¡j,co 

on R a n d o m  10 x 10 P ro b lem s

M F D N e w  A l g o r i t h m

Upper Lower

4.5477780e+01 4.6949562e+01 4.4713868e+01
4.0735292e+01 4.1628459e+01 3.9646152e+01

4.2691216e+01 4.4521960e+01 4.2401867e+01

3.9937359e+01 4.0759074e+01 3.8818166e+01
4.0991701e+01 4.2691438e+01 4.0658512e+01

3.7832464e+01 3.9045092e+01 3.7185802e+01
3.9598388e+01 4.1565733e+01 3.9586412e+01
4.1936080e+01 4.2882196e+01 4.0840187e+01
4.1948770e+01 4.2660314e+01 4.0628871e+01
3.8056896e+01 3.9108405e+01 3.7246100e+01
4.2501650e+01 4.3296810e+01 4.1235057e+01
4.0853072e+01 4.2084179e+01 4.0080170e+01
4.2081735e+01 4.2514627e+01 4.0490121e+01
4.0827317e+01 4.0868582e+01 3.8922459e+01
3.8852742e+01 3.9301678e+01 3.7430170e+01
3.8280309e+01 3.8542513e+01 3.6707155e+01
4.2787983e+01 4.3011945e+01 4.0963758e+01
4.2541183e+01 4.4136459e+01 4.2034723e+01
4.1917550e+01 4.2821906e+01 4.0782767e+01
3.8156433e+01 3.9399928e+01 3.7523741e+01
4.4306751e+01 4.5624946e+01 4.3452330e+01
4.3219731e+01 4.3870193e+01 4.1781136e+01
4.2441299e+01 4.3390625e+01 4.1324405e+01
4.1256513e+01 4.3155041e+01 4.1100039e+01
4.2494935e+01 4.4091988e+01 4.1992370e+01
4.1423625e+01 4.2706359e+01 4.0672723e+01
4.0089373e+01 4.1058700e+01 3.9103524e+01
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Table 4 2 illustrates, using the 9 x 9  case, how the two sets of bounds complement 
each other The bounds are mutually consistent in every case This verifies th a t both 

suites of software are calculating the same bound on ¿/ It should also be noted from 

Table 4 2 th a t the ¿¿Tools software produces bounds in the mixed uncertainty case 
th a t can be a significant distance from each other It is not possible to instruct the 

//Tools software to return with bounds that are within a specified distance of each 
other

T ab le  4.2 C o m p a riso n  of b o u n d s  for M ix ed  ¿/co 

on  R a n d o m  9 x 9  P ro b lem s

¿/Tools New Algorithm
U p p e r L o w e r U pp er L o w e r

9 5180946e-01 9 4404890e-01 9 4418788e-01 9 4379956e-01

8 6362178e-01 8 3319262e-01 8 3714047e-01 8 3612690e-01

9 4226577e-01 7 7905954e-01 9 2928673e-01 9 2886588e-01

5 0757599e-01 7 7454764e-02 5 0551365e-01 5 0508452e-01

6 0486305e-01 5 1724870e-01 5 8385521e-01 5 8384955e-01
9 2431295e-01 9 2054541e-01 9 2065533e-01 9 2037948e-01
7 5357929e-01 3 6771778e-01 7 3647304e-01 7 3457545e-01
6 1827381e-01 6 1756959e-01 6 1782457e-01 6 1782303e-01
6 9627845e-01 6 8596537e-01 6 8615863e-01 6 8585786e-01
6 8340370e-01 6 4391253e-01 6 4802947e-01 6 477450le-01
7 3598597e-01 6 9301243e-01 7 3585870e-01 7 3582907e-01
8 8772607e-01 8 8515638e-01 8 8520088e-01 8 8519940e-01
7 2130193e-01 4 9271686e-01 6 8280543e-01 6 8258569e-01
8 8330906e-01 8 2031115e-01 8 7249073e-01 8 7242408e-01
9 4461395e-01 9 3386788e-01 9 3395356e-01 9 3376206e-01
8 4652827e-01 8 2070436e-01 8 3898033e-01 8 3870618e-01
9 7194397e-01 9 1093383e-01 9 2742062e-01 9 2682111e-01
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4.1.3 Effect of Problem Size on Computing Times

This subsection considers the increased computing time required to generate bounds 
within a given distance of each other when problem size is increased The number 
of floating point operations, f lops ,  required to arrive at the bounds of Table 4 1 in 

subsection 4 11 were as follows

T ab le  4.3 F L O P S  R e q u ire d  V s. P ro b le m  Size

for Complex fj,co calculation

MFD New A1gorithm

N A v e r a g e W o r s t A v e r a g e W o r s t

3 4 1391640e+04 7 5077000e+04 1 6223940e+04 4 8838000e+04

4 6 8252520e+05 7 5706980e+06 8 1368620e+04 2 7788100e+05

5 2 5701669e+06 2 1239972e+07 2 1997250e+05 6 1101700e+05

6 5 1444434e+06 3 7661396e+07 5 3629888e+05 2 4621900e+06

7 1 3604973e+07 4 8709478e+07 1 2911863e+06 4 9182090e+06

8 3 3935867e+07 8 4697246e+07 2 0061604e+06 4 8031250e+06

9 4 5495608e+07 1 1293525e+08 3 6704778e+06 1 240548 5e+07
10 9 1166564e+07 1 5248893e+08 5 3119635e+06 1 4353530e+07

Table 4 3 shows the average and worst case flops required by the new algorithm to 

determine the bounds on ¡jlco for complex only uncertainty For comparison purposes, 
the flops required by the MFD algorithm are also listed Note tha t the two algorithms 
have different term ination conditions so rigorous speed comparisons cannot be made 
using this da ta  It should be noted tha t the upper bound produced by the MFD code 
will generally be much closer to /¿co than the upper bound generated by the basic 
form of the new algorithm, when both are given the same computing time

In a similar fashion, Table 4 4 presents average and worst case flops required by the 

new algorithm  and //Tools to calculate bounds on ¡j,co for the m ixed/real case The 

first thing to note is tha t mixed uncertainty problems require a significantly greater 

com putational effort than  a purely complex problem of similar size. In this case, the 

new algorithm requires an order of magnitude more flops to generate bounds within 
10% of each other
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T ab le  4 .4  F L O P S  R e q u ire d  V s. P ro b le m  Size
for Mixed ¿¿co Calculation

¿x Tools New A1gorithm

N A v e r a g e W o r s t A v e r a g e W o r s t

3 7 7940950e+04 1 0438900e+05 2 2811610e+05 5 3049100e+05
4 1 6178200e+05 2 4652500e+05 1 1284165e+06 2 9312970e+06

5 2 6486980e+05 3 4461800e+05 2 9537872e+06 6 1191670e+06

6 1 6178200e+05 2 4652500e+05 1 1284165e+06 2 9312970e+06

7 6 5679335e+05 7 7821400e+05 1 6604177e+07 3 3623160e+07
8 9 4500340e+05 1 2021720e+06 5 1820302e+07 2 5860051e+08

9 1 3624298e+06 2 0719260e+06 5 7217077e+07 1 3064019e+08

The exponential nature of the growth in computing times can be clearly seen if 

one graphs the results obtained as in Fig 4 1 The continuous line is the average 

flops required whilst the broken line represents the worst case problem tha t was 

encountered It can be seen tha t computing times for the new algorithm compare 

favourably with ¿¿Tools on low order mixed uncertainty problems However, the new 

algorithm begins to exhibit problems when m atrix size begins to exceed n  =  7

4.2 Improvements to the Basic Algorithm

To appreciate the benefits of the suggested improvements outlined in the previous 
chapter, particularly with smaller problem sizes, the accuracy of the bounds gen
erated must be taken into account Significant improvements to the speed of the 
algorithm can only be judged in this context For example, computing times can
not be significantly reduced for the problems presented in the last section, if bounds 

withm 10% of each other are all tha t are required This is due to the significant soft
ware overhead required in solving the extra linear programming problems th a t are a 

feature of the improvements Also, it should be stated a t the outset that, despite the 
improvements, existing commercial code for the computation of p co will, in general, 
deliver bounds faster than  the new algorithm

However, the new algorithm does possess some key advantages over existing strategies
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Figure 4 1 Time Required by New Algorithm (Top) and MFD Code (Bottom) to 
Compute Bounds W ithin 10% of ^ co Against Increasing Problem Size
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New Algorithm (Full) Vs. MFD (Dots) on an Ill-Conditioned Matrix

Figure 4.2: Time Required by New Algorithm (Full) and MFD (Dot) to Compute 
bounds on /ico for a particular ill-conditioned matrix.

It is more reliable than the MFD Toolbox code. It consistently offers tight upper 

and lower bounds on problem matrices with purely complex or mixed uncertainty 

structures. This is particularly evident when the m atrix in question is ill-conditioned. 
The new algorithm offers consistently better mixed // bounds than those offered by 
the //Tools software.

4.2.1 Reliability

Consider the ill-conditioned benchmark 3 x 3  problem presented in [Doyle 82]. This 

m atrix maybe rescaled so as tha t p co — 1 correct to four decimal places. It is clear 

from Fig. 4.2 th a t the MFD code (dotted line) has problems getting close to //co. In 

contrast, it can be seen how the New Algorithm (full line), calculates tight bounds in 
a fraction of the time. Extensive numerical experience has failed to isolate a problem 

where the new algorithm experiences difficulty in locating tight bounds on p co.
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4.2.2 Accuracy

Existing commercial algorithms tha t use gradient methods to compute p co necessarily 

suffer performance problems during later iterations Reductions in speed and “stitch

ing” , where little improvement is noted for a number of iterations, has been widely 
reported [Fan 91] For example, this can be observed when a more accurate upper 
bound is requested from the ¿/Tools software Numerical experience indicates tha t 
the new algorithm does not suffer from these problems

Take, for example, the 3 x 3  problem just presented in the previous subsection Com

putation speed depends on how quickly the new algorithm can determine whether 

a certain a  is a valid upper or lower bound on kmco =  Two values of a  are

chosen One is less than kmco whilst one is greater However, both are correct to five 

significant figures The graph in Fig 4 3 illustrates the progress of the upper bound 

on ci (a) through to the conclusion of the inner loop, where a  >  kmco Fig 4 4 repeats 
this process for a  <  kmco The figures show how the algorithm correctly recognises 
th a t the two candidate a ’s are above and below kmco respectively No stitching is 
noticed In both cases the algorithm progresses to the correct answer at a rate which 

is better than  linear This behaviour has also been observed on arbitrary problem 

matrices with complex and mixed uncertainty structures

For this benchmark 3 x 3  problem, bounds on ¿¿co have been calculated accurately 
to  twelve decimal places At each iteration of the inner loop the progression to an 
answer was better than  linear For the record, the bounds on fxc0 for the problem in 

[Doyle 82], rescaled by correct to 12 decimals are -

Hco E (0 99980166004654, , 0 99980166004658)
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Figure 4 4 Progress of Lower Bound on c ^ a )  when a  <  kmco
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To compare the accuracy of the bounds generated by the new algorithm with existing 
commercial code and to provide further validation, 20 pseudo-random matrices with 

p co — 1 were generated using a construction due to Fan [Fan:2 86]. Table 4.5 lists 

the bounds obtained by the New Algorithm alongside those due to /¿Tools and the 
MFD Toolbox. Notice the excellent agreement between the bounds provided by all 

three algorithms. All, in general, produce tight bounds on /¿co. However the MFD 

code does stitch on two occasions. Table 4.6 lists the number of flops required by 

each method to arrive at these bounds.

T ab le  4.5 C o m p a riso n  o f T ig h t B o u n d s  for C o m p lex  /ico

M F D /x 1

U p p e r

ools

L o w e r  /  P o w e r

N e w  A l  

U ppe r

g o r i t h m

L o w e r

1.0000000e+00

1.0000000e+00
1.0000000e+00
1.0035227e+00
1.0000000e+00

1.0000001e+00
1.0000001e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000001e+00
1.0000001e+00

1.0000001e+00
1.0000000e+00

1.0080876e+00

1.0000000e+00

1.0000000e+00
1.0000000e+00

1.0000000e+00

1.0009313e+00
1.0013121e+00

1.0003828e+00
1.0036257e+00

1.0092200e+00

1.0007105e+00

1.0005578e+00
1.0007517e+00

1.0022791e+00
1.0000004e+00
1.0007049e+00
1.0000088e+00
1.0005955e+00

1.0011454e+00
1.0003084e+00

1.0039969e+00

1.0009142e+00

1.0002782e+00

1.0000720e+00
1.0034524e+00

1.0000000e+00
1.0000000e+00

1.0000000e+00
1.0000000e+00

1.0000000e+00

1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00

1.0000000e+00

1.0000000e+00
1.0000000e+00

1.0000000e+00

1.0000000e+00

1.0000000e+00

1.0000000e+00

1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00

1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00
1.0000002e+00
1.0000000e+00
1.0000000e+00
1.0000000e+00

1.0000000e+00
1.0000000e+00

1.0000000e+00

1.0000000e+00

1.0000000e+00
1.0000000e+00

1.0000000e+00

1.0000000e+00
1.0000000e+00
1.0000000e+00

1.0000000e+00
1.0000000e+00

1.0000000e+00

1.0000000e+00
1.0000000e+00
1.0000000e+00
9.9999988e-01
9.9999999e-01
1.0000000e+00
1.0000000e+00

1.0000000e+00
1.0000000e+00
1.0000000e+00

1.0000000e+00

1.0000000e+00

1.0000000e+00
1.0000000e+00
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T ab le  4.6 F lops R e q u ire d  for 
T ig h t B o u n d s  on C o m p lex  ¿¿co

MFD /j, Tools New Algorithm

7.8815000e+04 
5.6398000e+04 

2.7517000e+04 
5.1762400e+05 

7.2450000e+04 
6.9285000e+04 

1.2511300e+05 
2.6346000e+04 
5.1917000e+04 

1.9148500e+05 
5.2787000e+04 

7.8744000e+04 

1.5524600e+05 
8.2768000e+04 

4.8451000e+04 

6.4854400e+05 
3.6440000e+04 
2.6969000e+04 
3.4511000e+04 

5.2955000e+04

3.8101000e+04
2.1649000e+04

4.1194000e+04

1.7352000e+04

4.3118000e+04

1.7856000e+04
3.4130000e+04
3.6624000e+04

1.9946000e+04
3.6200000e+04

2.9341000e+04

2.8555000e+04

2.0099000e+04

1.8493000e+04

3.6101000e+04

1.9341000e+04

2.0577000e+04
3.5193000e+04

1.6374000e+04

1.7227000e+04

6.6114230e+06 
3.9717730e+06 

5.2260150e+06 

3.6287500e+06 

3.5454010e+06 
2.8232370e+06 
6.0607740e+06 
1.1420925e+07 
3.2802370e+06 

3.7046840e+06 

2.9231390e+06 

3.5717770e+06 
4.3156270e+06 

2.9882630e+06 

6.6144560e+06 

3.5399170e+06 

4.3991600e+06 
3.8425680e+06 
2.8145150e+06 

3.7489020e+06

Clearly, the new algorithm has spent a lot longer at the problems. However, it is not 

possible to allow the commercial packages to run until bounds with a prescribed level 
of accuracy have been achieved. Thus, the fairest means of algorithm comparison 

can be a difficult question. The gradient method used by both ¿¿Tools and the MFD 

Toolbox for the upper bound indicates tha t further improvement in their respective 
upper bounds will be slow. This is particularly noticeable for mixed ¿x. For example, 

any improvements to the ¿¿Tools bounds of Table 4/2 are computationally expensive 
to obtain.
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Im p ro v e d  A ccu ra c y  V s. F lops R e q u ire m e n t

The basic form of the new algorithm uses a simple binary search between the upper 

and lower bounds on p c o  to yield an extra place of decimals per three inner iterations. 

It is difficult to produce a similar rule of thumb for the improved form of the algorithm. 

The improvement per iteration is no longer a constant for any given matrix. Typical 
values of bounds versus flops required after each iteration are presented in Table 4.7 

for a sample problem generated using Fan’s construction [Fan:2 86].

T ab le  4.7 S am p le  B o u n d s V s.F lo p s  
R e q u ire d  for C o m p lex  /j co

L o w e r U p p e r F l o p s

9.9988246e-01

9.9998417e-01
9.9999957e-01
9.9999999e-01
9.9999999e-01

1.0000000e+00

1.0023858e+00
1.0000389e+00

1.0000026e+00
1.0000000e+00
1.0000000e+00

1.0000000e+00

5.7120100e+05

4.9664900e+05
6.1309600e+05

1.0016250e+06
6.0996000e+05
1.4832960e+06

This table demonstrates the behaviour of the algorithm that has been observed in the 

m ajority of cases. The gap between the upper and lower bound is only being bisected 

during iterations 4 to 6. This suggests th a t the improvements to the new algorithm 
are having little or no effect at this point. Therefore, the significant software overhead 
required to exactly calculate Ci(a) during the latter stages may not be a judicious use 
of computing time. Consequently the flop count for the new algorithm in Table 4.6 
should be considered conservative.

R e m a rk  - O n  C o m p u tin g  T im es  w ith  M ix ed  U n c e r ta in ty

For the mixed case, it takes significantly longer to determine bounds of similar ac

curacy to those which can be attained with complex only uncertainty. This is not
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unexpected The absence of bounds due to m atrix pencil theory and “tight” con

straints is a factor Also, the geometric extension from the complex only to the 
mixed uncertainty case is not straightforward Indeed, the geometry of the mixed 
case leads to vectors with many component zeros, thus causing an accumulation of 
vectors close to the null vector This results m the need for a significantly greater 

number of iterations of the inner loop to determine comparable bounds on mixed /.l c o

4.2.3 M ixed /R eal Uncertainty

Next, the effect of the singular value bound for mixed uncertainty problems which was 
discussed in Chapter 3 is considered This is a rigorous lower bound on mixed p c o  

Table 4 8 illustrates the effectiveness of this bound Note th a t an improved bound is 
only determined when the seed a  is larger than p c o

Table 4.8 Effect of Singular Value Bound on Calculation of Mixed p c o

Iteration U p p e r  ̂ L o w e r ^ Standard Improved L o w e r ^ n + l ^

1 0 673419054 0 448946036 0 538735243 -

2 0 673419054 0 538735243 0 598594714 -

3 0 673419054 0 598594714 0 633806168 -

4 0 673419054 0 633806168 0 653012416 -

5 0 673419054 0 653012416 0 663058761 0 660520606
6 0 660520606 0 653012416 0 656745052 0 655979658
7 0 655979658 0 653012416 0 654492674 0 654336575
8 0 654336575 0 653012416 0 653673825 -

9 0 654336575 0 653673825 0 654005032 0 653979405
10 0 653979405 0 653673825 0 653826579 -

11 0 653979405 0 653826579 0 653902983 -

Clearly, the improvement is not dram atic However the bound does allow the new 

algorithm to do better than a binary search for mixed uncertainty problems
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Remark - On Flexibility with Mixed Uncertainty

It is a straightforward process with the new algorithm to specify that the rescaling 
or gam param eter a  only acts on certain blocks of a given problem matrix There 

is no facility to do this with the /¿Tools software The requirement to be able to do 
this can occur quite naturally in practice For example, when the effect of component 

uncertainty on filter performance is analysed later on, it will be seen that it is essential 

th a t the real blocks representing the component uncertainty are independent of a

4.3 1-N orm  V s. 2-N orm  M ethods

The aim of this section is to justify the use of a 1-norm dual optimisation strategy 

over its 2-norm primal or dual counterpart The focus will be on two key areas

(1) The proximity problem which is a t the heart of the numerical range formulation 
(u) Which m ethod produces better bounds on ¡ i c o  in an equivalent time 

W hilst this section achieves this aim, by relaxing accuracy requirements, certain situ
ations can occur which tend to favour either of the 2-norm methods For completeness 

these situations are briefly mentioned Throughout this section, the effect of possible 

improvements to the basic form of the algorithm in question is not considered

4.3.1 The Proxim ity Problem

The objective of this section is to show that a 1-norm dual method is the best way 
to determine whether 0 6 C o { W ( a ) )  Initially its performance is compared with a 
2-norm primal method in a standardised environment Again, consider the 3 x 3  
problem presented in [Doyle 82] Complex uncertainty is used Two seed values of 
oil, a 2  are chosen

Oil >  k m co => 0 6  C o ( W ( a i ) )

«2 <  k m c o  =► 0 £  C o { W { a 2 ) )

However both ot\ and a 2 are equal to k mco correct to five significant figures The 

progress of the upper and lower bounds on c ( a )  for either method is recorded for 

both candidate a ’s This progress is presented on linear and logarithmic axes m
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(II) (IV)

Figure 4 5 Comparison of 1-norm dual ( i ) , ( n )  with 2-norm primal (111),  ( i v )  when 

verifying th a t 0 £  C o ( W )  for a  >  k m c o

Figs 4 5 and 4 6 Separate axes have been used to highlight the difference between 

the two norms used to generate C \ ( a )  and 0 2 ( a )

The 1-norm dual approach converges to an answer more quickly than the 2-norm 
primal m ethod Indeed for both a x and a 2  the 2-norm approach will fail to answer 
the proximity question in any reasonable amount of time Encouragingly, the 1-norm 
dual m ethod seems to  offer only modest growth m the number of iterations required 
with increasing accuracy The log plots th a t are presented in the figures suggest 

th a t these curves follow a trend which is roughly linear or better This motivates 
the conjecture th a t a 1-norm dual method offers an exponential rate of convergence 
for computing c ^ a )  2-norm primal methods, m common with many gradient based 
optim isation strategies, suffer from rapid growth in the computation time required 

when a  tends toward the actual value of k m c o  Moreover, as higher levels of accuracy 

are required, 2-norm primal methods will require a much greater number of iterations 

(and thus time) for convergence For reasonable computing times and, given the finite
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precision of computer arithmetic, it is necessary to work with some arbitrary e When 

c2(a) <  e one a s s u m e s  tha t 0 will be inside Co(W(a))

Consider the construction due to Fan [Fan 2 86], which produces psuedo random 

matrices with p c o  =  1 Further, consider three candidate a ’s

1 a t  =  1 =  k m c o  => 0 € d C o ( W ( a l ) )  l e ,  c ( a %)  -  0

2 o,n — 1 +  10 ^  =£• 0 (7o(W(q!w))

3 a ul =  1 -  10“ 14 => 0 t C o ( W ( a m ))

These ce’s are as close to each other as the operating precision of the standard DOS 

based version of M A T L A B  will allow The 1-norm dual, 2-norm primal and dual 
algorithms are applied to such matrices A maximum computing time of 200 seconds 
was allowed for each algorithm It should be noted tha t the 1-norm dual algorithm 
does not require anything like this amount of time to solve this problem Typical 

progress is presented on logarithmic axes in Fig 4 7 For ease of comparison, the

upper and lower bounds on Ci(a) and c 2 ( a )  are plotted on the same axes only m
Fig 4 7 Strict equivalence of the distances should not be inferred as different norms 
are involved To underline the advantages of a 1-norm dual approach, it is instructive 
to  look at the bounds stored by each algorithm during the last ten iterations, for each 
value of a ,  in tabular form

These tables clearly show how the 1-norm dual algorithm is sensitive to the smallest 

possible variations in a  when detecting whether c i ( a ) ^  0 The other algorithms fail 
to achieve this task
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T a b le  4 .9  F in a l I te ra t io n s  o f  E ach  A lg o r i th m

fo r  a % =  kmco

1-norm D ual 2-norm P rim a l 2-norm  Dual

Low er Upper Lower Upper Lower Upper

-1 6177e-13 3 6971e-13 -4 5060e-10 1 6048e-05 -2 4504e-09 1 1663e-04

-3 8056e-14 2 9447e-13 -4 5060e-10 1 6048e-05 -2 4504e-09 1 1663e-04

-3 8056e-14 1 0602e-13 -4 5060e-10 1 6048e-05 -2 4504e-09 1 1663e-04

-1 7266e-14 6 5854e-14 -4 5060e-10 1 6046e-05 -2 4504e-09 1 1663e-04

-6 7145e-15 3 4322e-14 -4 5060e-10 1 6045e-05 -2 4504e-09 1 1663e-04

-6 7145e-15 1 3610e-14 -4 5060e-10 1 6045e-05 -2 4504e-09 1 1663e-04

-1 6820e-15 8 5651e-15 -4 5060e-10 1 6045e-05 -2 4504e-09 1 1663e-04

-1 6820e-15 3 3401e-15 -4 5060e-10 1 6042e-05 -2 4504e-09 1 1663e-04

-1 5458e-15 9 5363e-16 -4 5060e-10 1 6041e-05 -2 4504e-09 1 1663e-04

-4 4351e-16 8 2161e-16 -4 5060e-10 1 6041e-05 -2 4504e-09 1 1663e-04

-4 4351e-16 0 0000e+00 -4 5060e-10 1 6041e-05 -2 4504e-09 1 1663e-04

T a b le  4.10 F in a l I te r a t io n s  o f  each A lg o r i th m

fo r  a n =  kmco + 10“ 14

1-norm D ual 2-norm P rim a l 2-norm Dual

Low er Upper Lower Upper Lower Upper

-1 6902e-13 5 1506e-12 -1 5930e-10 6 3161e-06 -4 0014e-07 7 4686e-04

-1 6902e-13 8 8553e-13 -1 5930e-10 6 3157e-06 -4 0014e-07 7 4686e-04

-1 6902e-13 7 4508e-13 -1 5930e-10 6 3156e-06 -4 0014e-07 7 4686e-04

-1 6902e-13 3 6241e-13 -1 5930e-10 6 3156e-06 -4 0014e-07 7 4686e-04

-4 5384e-14 2 8716e-13 -1 5930e-10 6 3156e-06 -4 0014e-07 7 4686e-04

-4 5384e-14 9 8799e-14 -1 5930e-10 6 3155e-06 -4 0014e-07 7 4686e-04

-2 4543e-14 5 8644e-14 -1 5930e-10 6 3155e-06 -4 0014e-07 7 4686e-04

-1 4084e-14 2 7062e-14 -1 5930e-10 6 3154e-06 -4 0014e-07 7 4686e-04

-1 4084e-14 6 3552e-15 -1 5930e-10 6 3154e-06 -4 0014e-07 7 4686e-04

-8 9619e-15 1 3099e-15 -1 5930e-10 6 3154e-06 -4 0014e-07 7 4686e-04

-8 9619e-15 0 0000e+00 -1 5930e-10 6 3154e-06 -4 0014e-07 7 4686e-04
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Table 4.11 F inal Ite ra tio n s  of each A lgorithm
for a m =  k m c o  -  10"14

1-norm Dual 2-norm Primal 2-norm Dual
L o w e r U p p e r L o w e r U p p e r L o w e r U p p e r

-3 0764e-14 3 0174e-13 -1 5464e-08 3 l234e-05 -4 0014e-07 7 4686e-04
-3 0764e-14 1 1324e-13 -1 5464e-08 3 1234e-05 -4 0014e-07 7 4686e-04
-9 9878e-15 7 3143e-14 -1 5464e-08 3 1233e-05 -4 0014e-07 7 4686e-04
4 8962e-16 7 3143e-14 -1 5464e-08 3 1232e-05 -4 0014e-07 7 4686e-04
4 8962e-16 4 1586e-14 -1 5464e-08 3 1231e-05 -4 0014e-07 7 4686e-04
4 8962e-16 2 0958e-14 -1 5464e-08 3 1231e-05 -4 0014e-07 7 4686e-04
5 5302e-15 1 5821e-14 -1 5464e-08 3 1229e-05 -4 0014e-07 7 4686e-04
5 5302e-15 1 0639e-14 -1 5464e-08 3 1228e-05 -4 0014e-07 7 4686e-04
5 6176e-15 8 1499e-15 -1 5464e-08 3 1228e-05 -4 0014e-07 7 4686e-04
6 8691e-15 8 0738e-15 -1 5464e-08 3 1226e-05 -4 0014e-07 7 4686e-04
6 8691e-15 6 8383e-15 -1 5464e-08 3 1225e-05 -4 0014e-07 7 4686e-04

The 2-norm dual algorithm fails to make any distinction between the values of a  

th a t are either side of k m c o  At these accuracy levels the author has yet to  find 

an example where the 2-norm dual approach can produce correct answers despite 

using multiple different starting  points In contrast, the final bounds of the 2-norm 

primal approach are sensitive to variations m a  This demonstrates the algorithm ’s 
convergence properties However, the results indicate th a t an extremely long period 
of tim e may be necessary for this convergence to occur Bear in mind th a t the upper 
bound on c2(o:m) still needs eight decimal places worth of improvement to  arrive at 
an answer similar m precision to th a t provided by the 1-norm dual algorithm It is 
also unclear, a  p r i o r i , whether the 2-norm primal upper bound on c 2 ( a n )  is “small 
enough” to be assured th a t C 2 ( o t n )  does in fact equal zero

In Figs 4 8 and 4 9 the performance of the 1-norm dual algorithm is plotted The 

2-norm primal and dual curves are similar to their counterparts in Fig 4 7 and are 
om itted for reasons of clarity The results plotted in the figures are typical for all the 
matrices th a t were analysed
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Figure 4 8 Bounds on l o g ( c i ( a n ) )  using a 1-norm dual method a n  —  k m c o  +  10~14
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Figure 4 10 Bounds on c ( a )  using 1-norm dual (Full), 2-norm primal (Dashed) and 

2-norm dual (Dot) methods

4.3.2 Relaxing Accuracy Requirements

Calculation of k m c o  to the kind of accuracy levels detailed above is sometimes unnec
essary Given th a t there is less software overhead involved in both 2-norm methods, 
either may give quicker answers to “rough” proximity problems Consider a typical 

example of a m atrix with k m c o  —  1 generated using Fan’s construction Two candidate 

a ’s were used, a a  =  9 and =  1 1 The bottom  graph of Fig 4 10 shows how, for 

a a , the 2-norm primal algorithm is the quickest to determine th a t 0 0  C o ( W ( a a ) )  

Clearly, at this level of accuracy, the time required for convergence is not a prob
lem The top graph of Fig 4 10 shows how, at lower accuracy levels, the 2-norm 
dual approach can term inate without finding a positive minimum eigenvalue This 
term ination indicates th a t one does not exist For both a a  and a b the 2-norm dual 
approach is outperformed by the other two methods

It is now shown th a t these results are typical of what can be expected in general An

101



indication of the limits at which the 2-norm approaches can be effective is also given 

Two distinct questions are considered

1 For a fixed value of a ,  how do the three algorithms fare at reducing the upper 
bound on c(a) to below an abitrarily small e W hether this e  is ‘small enough” 
is a heuristic decision tha t can be open to question

2 For a fixed value of e, how do the three algorithms fare at determining tha t 

c ( a )  <  e  This is equivalent to asking how the performance of the various 

algorithms deteriorate as ||a  — k m c o \\ —>• 0

A batch of 20 3 x 3 matrices were generated randomly This was to counter the 

possibility tha t Fan’s construction may impose a possible bias in favour of one or other 

algorithm For each m atrix, k m c o  was scaled equal to 1, correct to seven decimal places 

Throughout, entirely similar results to those outlined in Fig 4 10 were achieved for 
the batch of matrices Fig 4 11 answers question 1 by illustrating the performance of 
the algorithms with a seed a  tha t is 0 1% larger than k m c o  The average time required 
for c ( a )  <  e  where

✓ , , ,v v 1 — I n d e x  c
e =  (u ( M ) )  *  10 io * 10

is graphed for each algorithm In the figure the full line represents the 1-norm dual 

method The dashed line represents the 2-norm primal and the dotted line represents 

the 2-norm dual I n d e x  corresponds to the x-axis m the figure The scaling procedure 

is necessary to  yield a normalised measure of c ( a )  for a m atrix M The nature of 
the 1-norm dual curve is indicative of a “jum p” to zero, similar to th a t which occurs 
in Table 4 10 This verification th a t a non-zero hyperplane which would separate 0 
from the C o ( W )  does not exist, is typical of standard LP behaviour

The second question gives a better feel for when the 1-norm dual superiority really be

gins to  be felt The 20 3 x 3 matrices used m the previous experiment were considered 
again Five different possible upper bounds were selected [1 1, 1 01, 1 001, 1 0001, 

1 00001] All these values are greater than k m c o  to varying degrees In each case, the 

tim e taken to  verify th a t these were indeed valid upper and lower bounds on k m c o  

for each problem was recorded For this experiment the performance of the 1-norm 

dual algorithm is clearly superior, on average, when validating an upper bound on 

k m c 0  This superiority becomes more marked as the distance between k m c o  and the
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Time Vs Value of Seed Alpha

Figure 4 12 Time required for bounds on c ( a )  <  e  where a  varies from 0 1% to 

0 00001% > k m c o

upper bound gets smaller Fig 4 12 illustrates th a t the time required by the 2-norm 

primal algorithm to reduce 0 2 ( 0 )  to less than an arbitrary e  increases exponentially 

as 11a — k m c o  || —>• 0 In contrast the time required by the 1-norm dual algorithm shows 

a rate of increase tha t is close to linear

This experiment is repeated for similar batches o f n x n  matrices where n  6 [3, , 8]
Fig 4 13 demonstrates th a t these trends are repeated for increasing n  where n  < 7  

At this point linear programming difficulties begin to impact unfavourably on the 
dual approach

It is also possible to dem onstrate th a t the 1-norm dual approach catches up to its 2- 

norm primal counterpart when searching for positive minimum eigenvalues at higher 

accuracy levels To do this, the 20 3 x 3 problems were considered again Four 

different lower bounds were selected [0.9, 0.99, 0 999, 0 9999] For this experiment 
the 1-norm dual approach is outperformed by the 2-norm based primal algorithm for
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Figure 4 13 Time required for bounds on c(a) <  e where N  € [3, , 8]
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these random problems However, there is a significant closing of the gap between 
the two approaches as a  increases For a  =  0 9999, the difference in performance is 

negligible In all cases the 2-norm dual approach was outperformed by its 1-norm dual 
analogue on average A good starting vector is essential for a 2-norm dual approach 

Devoting time to locating such starting vectors may close this gap in performance 
However, it is always likely tha t problems will arise with certain matrices

4.3.3 Computing Bounds on ¡ico

A level playing pitch comparison of the three different approaches was performed 
by determining upper and lower bounds on ¡ i c o  for a selection of random problems 
using a 386 PC Complex non-repeated scalar uncertainty was used throughout No 

pre-scaling of matrices was performed before analysis with each method Table 4 12 

shows the amount of time required by the respective algorithms to obtain bounds 

tha t are within 1% of each other

An oo in a column indicates tha t the algorithm in question did not produce bounds 

within 1% of each other in the maximum allowed time The table lists times for 
1-norm dual, 2-norm primal and dual approaches Also listed is a column which 
combines a 2-norm prim al and dual approach This is necessary for convergence to  be 
guaranteed in a 2-norm setting This column is calculated by doubling the computing 

tim e required by the algorithm that first arrives at a solution for a given value of a  

It is of interest to  note th a t all the algorithms produced mutually consistent bounds 

for a given problem The tables indicate that the 1-norm dual algorithm is superior 
to 2-norm type algorithms when calculating upper and lower bounds on p c o
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Table 4.12 Comparison of Various Algorithms 
for the Determination of 1% bounds on /ico.

Problem 1-norm Dual 2-norm Primal 2-norm Dual Combined 2-norm

1 4 00400 oo 22 08000 40 10400
2 4 74000 oo 24 55700 46 95200
3 6 35500 oo 10 11800 17 79800

4 7 54700 oo 9 94700 18 67400
5 10 06200 oo oo oo
6 7 25000 oo 4 36100 5 44800
7 4 25700 oo 10 96300 21 92400
8 17 58700 oo 23 43600 5 43800
9 5 92700 oo oo oo
10 8 26000 oo 38 13500 9 73200
11 6 38800 oo 24 55700 4 51600
12 4 66400 oo 25 64500 43 72000
13 6 30500 oo 10 72100 18 17000
14 7 96400 oo 5 47600 7 24000
15 5 46500 oo 18 02100 19 50000
16 6 67900 00 24 15600 21 98200
17 9 09500 oo 10 65000 9 06000
18 715100 oo oo oo
19 7 97500 oo 35 08000 70 16000
20 7 48600 00 12 95700 25 90200

107



4.4 The Gap

Throughout this thesis the emphasis has been on the computation of ¿xco rather than 
¡ i  To examine the nature of this gap in a practical situation, consider the problem 
introduced by De Gaston and Safonov [De Gaston 88] where ¡jl was calculated ex
actly For the same problem bounds on ¡ i c o  were calculated using the new algorithm 

Fig 4 14 illustrates th a t the ¡ i , p Co  gap can be significant This is particularly true

Figure 4 14 A practical problem which illustrates the gap between // (Full) and /¿co 
(Dashed)

at the frequency of interest, i e , where f j , is a maximum This suggests th a t while 

H c o  is indeed a reasonable bound on work is necessary to reduce conservatism for 
practically motivated problems
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4.5 Linear Program m ing Variations

Many different ways m which the significant percentage of time th a t is spent inside the 

linear program solver can be reduced have been considered in the previous chapter 
This section briefly mentions some of the computational experience gathered during 
the course of the project The treatm ent is no by means exhaustive but does suggest 

th a t while improvements to the computing times are possible, more work is required 

in this vast area before the LP solver section of the work can be regarded as complete

4.5.1 Interior Point M ethods

Public domain Interior Point LP code due to Boyd e t  a l  [Boyd 94] was compared 

with the Numerical Recipes simplex code, implemented m M A T L A B ,  on a UNIX 

platform Recent survey literature [Beran 95] suggests th a t Boyd’s code is the best 

interior point solver available at the present time 20 3 x 3, 5 x  5 and 8 x 8  randomly 

generated problems were considered The flops required to obtain bounds within 1% 

of each other were recorded and are presented in Table 4 13

Table 4.13 Comparison of Simplex and 
Interior Point LP Solvers.

Sim plex Interior Point Percentage
N A v e r a g e W o r s t A v e r a g e W o r s t Improvement
3 6 0305e+05 6 4538e+06 5 3273e+05 2 4869e+06 13 2
5 7 7891e+05 1 5771e+07 8 9730e+05 5 3771e+06 15 2
8 1 5374e+07 4 612e+08 1 2344e+07 9 1613e+07 28 3

The table shows th a t the Interior Point method offers superior computing times to 

a simplex based LP solver on average In addition the interior point method does 
not exhibit the same dram atic increase in flops required when n  >  7  However the 

rate of increase of flops required with problem size is still exponential The code also 

exhibits a tendency, (in tandem  with the simplex LP code offered in the M A T L A B  

optimisation Toolbox), to have term ination difficulties when a  tends toward k m c o
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The numerical recipes algorithm is clearly more reliable when the LP cost is very 

small Indeed, the code due to Boyd tends to crash when \ \ k m c o  — a || <  10~6 More 

work is necessary m this area

Analysis of the Simplex algorithm performance shows th a t computing times suffered 

more from increasing the number of constraints than the number of variables This 
suggests tha t research into the formation of a suitable dual problem, which would 

transpose constraints and variables, may be rewarding

4.5.2 Changing the Dk range

Some brief comments are now made about the nature of the solution hyperplanes for 
the linear programming problems th a t have been solved throughout this work When 

dealing with complex only uncertainty the following optimisation problem is solved, 
subject to suitable constraints on the A k  matrices

max Amm(£ o M fc )  (4 1)
“fce[o,+i] k

Similarly for the case of mixed real/complex param eter uncertainty the problem at 

hand is to

max Amm(y^  dfcAfc) (4 2)

It should be noted th a t expr (4 2) can also solve the purely complex problem The 

Numerical Recipes LP solver includes the facility to deal with degeneracy As dis

cussed earlier, lots of zeros in the problem tableau should be avoided as they tend to 
introduce numerical problems To this end, the following general linear programming 
problem was considered -

max Am i n ( J 2 f k A k  ~  (4 3)
f h £ [  0 , 2 ] f.

At the end of an inner loop iteration this means th a t the solution hyperplane should 

not contain a surfeit of zero elements A representative sample of work has been 

carried out solving the problems related to expressions (4 2) and (4 3) There seems 

to be no appreciable difference between the performance of the LP solver on either 

question This was true on the average and for any exceptional cases th a t were 

considered However, expr (4 3) was chosen as the question to be solved throughout 
this work for intuitive reasons
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4.5.3 Settling for Sub-Optimal Feasible Vectors

Term inating the linear program early did in fact offer a marginal improvement on the 
basic algorithm outlined in the previous chapter. However, the level of improvement 

was considerably inferior to the other conflicting possible improvements (i.e., tight 

constraints, m atrix pencil theory) for purely complex uncertainty. There was also 

little or no benefit to be seen in the mixed case when compared with the, of necessity 

alternative, approach using the singular value bound. Therefore, no comprehensive 

com putational work investigating early linear program termination was carried out.

4.6 Sum m ary

The accuracy and reliability of the new algorithm has been demonstrated on a large 

variety of random, pseudo-random and practically motivated complex and mixed 
uncertainty problems.

Analysis of com putation times have shown that the improved form of the new al

gorithm is competitive, though slower, when compared with existing commercially 

available code for the determination of bounds on

The new algorithm is more reliable than the MFD Toolbox code when convergence of 
the bounds to a certain level of accuracy needs to be guaranteed. The new algorithm 

also offers improvements, when compared with the ¿¿Tools code, for the calculation 

of /j .c o . This is particularly true with mixed uncertainty structures. The convergence 
properties of the new algorithm guarantee tha t bounds on p c o  can be specified within 
a user defined distance of each other. The new algorithm generates these bounds 

without recourse to a power algorithm. The new code also offers greater flexibility in 

th a t it allows a performance param eter to hit only user specified blocks of a problem 
matrix.

Linear programming difficulties begin to adversely affect the new algorithm ’s perfor

mance when problem size is greater than 7. The use of an interior point linear program 
solver can improve but not obviate these difficulties. These difficulties seem to be de
pendent more on the number of variables than  the number of constraints which exist
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in a given problem This suggests th a t the use of dual linear programming methods 
could be a useful direction for further improvement

A general proximity problem is motivated by the application of the Hahn-Banach 

Theorem to the question of stability analysis A 1-norm dual approach has been 

shown to be, in general, superior to its 2-norm based primal and dual counterparts 

when attem pting to solve this problem Moreover, it has also been dem onstrated th a t 
bounds which are accurate correct to the operating precision of the given computer 
platform are possible using a 1-norm dual approach
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Chapter 5

Analysis of Filter Performance

No manufacturing process is perfect It is not possible to manufacture, for instance, 
capacitors with the e x a c t  desired capacitance The cost of circuit elements also in
creases rapidly with lower tolerance ratings This raises the question of how to as

certain what effect a 1% variation, say, in the value of these capacitors will have on 

the transfer functions of filters constructed using these elements Indeed m many 

engineering applications it may be wise to determine the worst case system response 

For example, a worst case upper and lower bound on filter gain in response to any 

possible (bounded) variation in component values allows g u a r a n t e e d  achievement of 

certain design specifications It is also desirable to have a precise idea of what can 
happen at each frequency of interest

The structured singular value ¿x, or more precisely its convex estimate /xco, can be 
used to solve this problem In this chapter it is shown how to recast various filter sen
sitivity problems into equivalent system stability questions The framework required 
to autom ate the process for any linear system is discussed and typical examples using 
B utterw orth and Chebychev filters are presented
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5.1 Problem Formulation

This section explains how the problem is arranged so tha t ¿¿-theory can be brought 

to bear on it Initially the simple low-pass R C  filter of Fig 5 1 is used as an example 

For higher order filters it is convenient to introduce system building blocks so as to 

prevent repetition From a f i  perspective however, no new point of principle arises for 

any linear filter whatever the complexity The R C  filter thus conveys all the key ideas 
without the introduction of a huge amount of new nomenclature Hence, a discussion 

of the mechanics of these bulding blocks is postponed until later

5.1.1 Uncertainty Description

Consider a system th a t is finite dimensional, linear, time invariant (FDLTI), and 
with n  uncertain parameters A i, , A„ embedded within it Although uncertain, 
these param eters are constrained to he within a certain set Let V  denote this set, 

the set of perturbations to be considered The set V  is, of course, problem specific 

In this case, each A i, , A„ can be thought of as a real perturbation to the ideal 

param eter values, and will be viewed as an n-tuple A =  diag(Ai, , A n) It will 

prove convenient to view the n-tuple as being arranged as a diagonal m atrix A The 

system obtained when each A t =  0 is termed the n o m in a l or the u n p e r tu rb e d  
sy s te m  For the simple R C  filter this unperturbed system would be the familiar

K s) _ 1
a ( s )  1 +  R C s

By convention, and without loss of generality, the bounds on each param eter may 

be arranged to  be unity So each A 2 can take on any value m the interval [—1, +1] 

This leaves a family of systems, one system for every permissible perturbation A e  V  

applied to the nominal system Suppose tha t the nominal or specified values of the 
resistor and capacitor are R o  and C 0 , and the actual values are R  and C  Suppose 
further th a t both elements have a tolerance rating of ±  10% A A, is associated 
with each uncertain component Since each A i, , A n is constrained to lie within 

the set [—1, +1], an appropriate scaling is required to reflect the tolerances for each 

component. The actual component values can then be expressed as

i2 =  /2o( l  +  0 1A1), C  =  C 0 {  1 + 0  1A2)
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b(s) _  1
a(s) 1+ R C s

-oo

Figure 5.1: Low pass RC Filter with elements that may vary, at worst, by 10%. 

a{s) K*)

Figure 5.2: Equivalent block diagram representation of Fig. 5.1.

(where the 0.1 in this example represents a 10% tolerance on each component). Both 
param eters Ai and A 2 have values which are unknown, but which are known to lie 
in the interval [—1, +1]. Thus, the 2 x 2  diagonal matrix A lies in the set

V e g  =  {A e  C2x2|A =  diag{Ai, A2}, A b A 2 G [-1 , +1]}

The transfer function of the filter is

Ks) _  1  1_______________= r (  A)
a(s)  1 +  R C s  l  +  i?oC o (l+ 0 .1 A i) ( l  +  0.1A2)s lS’ '

The ideal or nominal transfer function can be denoted by (7(5,0). This equation 
describes a FDLTI system with 2 uncertain parameters embedded in it. As A ranges 
over V eg, G(s ,  A) traces out a family of systems. A block diagram representation of 
G(s ,  A) is shown in Fig. 5.2.

5.1.2 The Diagonal Perturbation Formulation

It is possible to “extract” the uncertainty tha t is embedded within Fig. 5.2. This 

extracted uncertainty is then viewed as an external A acting on the nominal system,

i.e., the nominal system is what is left behind when this uncertain A has been ex

tracted. To illustrate, look a t the equivalent realisations of the system of Fig. 5.2
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(l)

«1 n  1 2  r 2

( n )

Figure 5 3 Extraction of uncertain A ’s from simple RC filter of Fig 5 2
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b ( s )  a ( s )  b ( s )

G ( s ,  A) =
H ( s )

A

Figure 5 4 The Diagonal Perturbation Formulation (DPF)

which are shown in Fig 5 3 Each A t  is extracted from the system as in Fig 5 3(n) 

The output from A* will form the external input i t  to an augmented nominal system 
Similarly the corresponding output r t  from this nominal system is the input to A* 
By calculating the MIMO transfer function from a ( s ) ,  i x and i 2  to b ( s ) ,  r x and r 2  one 
can move to an equivalent representation of G ( s ,  A) using two blocks and a feedback 
loop Note th a t the A is still G V e g , but it is now o u t s i d e  the augmented form of 

G ( s ,  A) This augmented nominal system is denoted as H ( s ) ,  as in Fig 5 4, to em

phasise its independence from A The diagonal structure of A ensures th a t each Aj 
is associated with one uncertain element only This rearranged representation of the 
original system G ( s , A) is called its D i a g o n a l  P e r t u r b a t i o n  F o r m u l a t i o n  ( D P F )  Any 

linear transfer function can be expressed m terms of its DPF [El Ghaoui 91]

For the simple R C  filter, this process yields

(  A 0 \  {  1 " 0 1 R o C °  ~ °  1 R °  1 1

H  o a 2 ) ’ * (s) = s - 0W7oS ~01^  1 7 7 ^ 5
V '  \  CoS - 0 1C0 - 0  I R o C o s

It can be already seen how rearranging a problem into its D PF can require a good 
deal of very tedious work

5.1.3 Formal Statem ent of the Filter Robustness Problem

A precise definition of worst case filter performance is now given using the terminology 
th a t has been introduced thus far

The maximum transfer function gam from input a(s) to output b ( s )  may be w ritten 
as

=  a | £  =  lG m az(s)| (5 1)
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Figure 5.5: Illustration of the different perturbations that cause the worst possible 

deviation from the nominal response.

|Gmai(s)| thus determines the maximum filter gain over all frequency as A ranges 

over all permissible perturbations in V .

Similarly, the minimum transfer function gain is given by

m i n i f y  I =  min |G (s,A )| =  |Gmi„(s)| (5.2)

which will determine the minimum possible filter response for all values of frequency. 
Solution of the optimisation problems in eqns. (5.1) and (5.2) will determine two 

distinct A ’s tha t bound worst case filter gain above and below.

It is also possible to  determine the A th a t will yield the maximum deviation, in a 
Euclidean distance sense, from the nominal response on a polar plot.

max |G(s, A) -  G (s,0)| =  |Gdet,(s)| (5.3)

Therefore |Gdeu(s)| corresponds to the maximum difference between the nominal and 

the actual filter transfer function on a polar plot. To illustrate how the solution of 

eqn. (5.3) does not necessarily coincide with one of the perturbations in eqns. (5.1) and 

(5.2) consider Fig. 5.5. The figure shows the nominal response of the filter forming the 

centre of a set in the complex plane. It should be noted tha t this set is a considerable 

simplification of the uncertainty tha t exists in this problem. Notwithstanding this, 

the figure serves to illustrate the point at hand. The maximum and minimum gains at 

this frequency will correspond to the maximum (1) and minimum (2) distances from
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the origin to the set The maximum deviation from the nominal, (3), corresponds to  
the maximum Euclidean distance from the centre of the set to a boundary point on 
a polar plot Thus, distance (3) can be seen as the farthest point from the nominal 
tha t a valid A can perturb the filter response to in gain a n d  phase terms This 
consideration of phase information is the principal reason why it maybe useful to 

consider bounds other than those which arise from eqns (5 1) and (5 2)

5.2 A n Equivalent S tability  Problem

An analogy between the problem at hand and tha t of determining the effect of per
turbations to  a plant m feedback control systems is now drawn Any perturbation or 
uncertainty in the plant model has an effect on the filter transfer function from a ( s )  

to b ( s )  This transfer function can be viewed as the closed loop response of H { s ) ,  

(the “open loop” response) which is connected via a perturbation A on a feedback 

loop Viewing the uncertain elements as “external” in a feedback system suggests 

an analogy with p  Indeed, /j-analysis can exploit the a  p r i o n  knowledge that exists 

about the internal structure of the uncertainty in a system and treat it in a worst case 

sense It will now be shown how, when appropriate constructions are used, p ,  is the 

non-conservative measure of the worst case effect of uncertainty on filter behaviour

5.2.1 Application of the Robust Performance Theorem

The filter sensitivity problem is now recast as an equivalent robust stability question 
The argument to be used is based on an application of the Robust Performance 
Theorem [Stem 82], which is now discussed briefly Consider the system of Fig 5 6 

There are n  uncertain parameters A i, , An which correspond to variations in com

ponent values These A ’s are constrained to be real valued The additional “fictitious” 
uncertain param eter m this case will be a bound on the gain of the filter, k A / say, as 
illustrated in Fig 5 6 Here, A; is a positive real scalar, and A / is viewed as unknown, 

but is constrained to have modulus <  1 a t each frequency, l e ,

A /  £ V f  where V j  —  {A/ €  C  | , |A /(jw )| <  l}
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Figure 5.6 Incorporating fictitious performance param eter into the DPF

Unlike A 1; , A n, the fictitious param eter Ay is allowed to be complex valued The

fictitious term  k A f  is included as an additional element in the diagonal m atrix A 

Therefore,

V =  {A  e C(n+1)x(n+1)|A  =  ^  k̂ f ^  |  , A e D , A / 6

Now there is an equivalent representation of H ( s )  whose input/ou tpu t pairs are con
nected exclusively by one A block Consider this self contained two block feed
back loop Let the filter gain k  be fixed and given for the moment By consider
ing the Nyquist stability criterion, it is clear th a t if there is a A € V  for which 

|G(s, A )| >  k ' 1 , then there is a A /  e  V f  for which the system is unstable (having 

a loop gam >  1) Conversely, if |G(s, A)| < k ~ l , for all A e  P , then the system is 

stable for all A / 6 V f  (having a loop gain < 1 for every permissible perturbation) 

Thus, the maximum possible “size” of \ G ( s ,  A)| is bounded by Ar1 if and only if a 
certain system is robustly stable As k  is increased, the first value of k  for which this 
feedback system may become unstable corresponds to the largest possible |G(s, A)| 
being k ~ l  There will therefore be a distinct value for k  where instability occurs at 
each frequency This is an im portant feature in tha t one frequency is decoupled from 
another Information of this kind means tha t the engineer can now think in frequency 
response terms, an obvious benefit in the present context of filter design
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(i)

Figure 5.7: Determination of worst case deviation from nominal filter performance.

5.3 C om puting W orst Case F ilter Sensitiv ity

At this point, the problem at hand is to compute Gmai(s), G m i n ( s )  and G d e v ( s )  

over a frequency range of interest. Each of the above functions reduce directly to an 

evaluation of // for a certain matrix.

Maximum Filter Gain, G m a x ( s )

Maximum filter gain can be computed from

G m a x ( s )  =  (min{fc| de t(l +  A ( s ) H ( s ) )  =  0})-1 (5.4)
Ae©

which corresponds to  the smallest k  for which the system may be unstable (i.e., not 
robustly stable). Thus,

GrnaA*) = »(H(s))=k~1(H(s))

Gmax(s) therefore yields the largest possible value of H ( s , A )  at each value of fre
quency.
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M axim um  Euclidean D eviation, G dev{s)

The perturbation th a t will cause this worst case Euclidean deviation from nominal 
performance, can be discovered by consideration of the arrangement in Fig. 5.7(i). In 

the figure, using a DPF of G ( s ,  A), the ideal filter response has been subtracted from 

the actual filter response. Clearly this gives a different transfer function, say from 

from a ( s )  to b ( s ) ,  which will be of the form

G ( s ,  A) — G ( s ,  0)

where A ranges over all A ’s in V .  Thus the problem at hand is to determine, a t each 
frequency of interest

max |C?(s, A) — G ( s ,  0)| =  G d e v ( s ) (5.5)

Fig. 5.7 illustrates equivalent representations of this problem. Standard algebraic 

m anipulations can be used to move between Fig. 5.7(i) and Fig. 5.7(ii). Maximum 
filter deviation from nominal performance can be computed by determination of the 
smallest k  th a t will make the loop in Fig. 5.7(ii) go unstable. Thus

G d e v { s ) =  (min{&| d e t(l +  k A ( s ) H ( s ) )  =  0})_1 (5.6)
Aev

Therefore,

Gdev{s) = = k~x{H(8))

Notice how the uncertainty set description is unchanged for either eqn. (5.4) or
eqn. (5.6)

Minimum Filter Gain, G m i n ( s )

A problem with the application of the robust performance theorem arises when a t
tem pting to determine the minimum possible filter gain. The theorem is only of use 

in finding the maximum allowable gain before a loop goes unstable. In order to de
termine the minimum gain from G ( s ,  A) it is necessary to place it on the feedback 

path of a suitable system such as the one illustrated in Fig. 5.8. Again each of the 

representations in the figure are equivalent. Note th a t the e in this figure is a constant
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(0 (il)

Figure 5 8 In order to determine the minimum gam from G ( s ,  A) it is placed on the 

feedback path of a suitable closed loop system

gam term  which can be assumed to be arbitrarily large Evaluating the closed loop 

response of Fig 5 8(i) yields

Thus for large e

M  =  6

a(s) 1 +  G(s, A)e

K s) ~  1
a ( s )  G ( s ,  A)

Evaluation of this closed loop system shows th a t its gain will be a maximum when 

the gam of G ( s ,  A) is a minimum It is instructive to consider the loop equations in 
Fig 5 8 (11) Clearly,

b{s) =  e{d(s) -  b{s))

=> b(s) =  e(a(s) -  (Hn b{s) + H12i(s)))

It should also be noted th a t

r(s) =  H2ib{s) +  H22i(s)

Rearranging it can seen th a t

b ( s ) ( l  +  eHn ) =  e ( a ( s )  -  HX2i(s))

b { s )  =  e(l + e H n ) ~ 1 ( a ( s )  +  H l 2 i { s ) )

a{s)
b ( s )  —  e ( l  +  e H u )

- l 1 - H 12 i(s)
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Similarly,

'(s) — e( 1 +  eHn)  1 H 21 — #21-^12 +  - - f )XH22
a(s)
i(s)

Let the transfer function m atrix  between output vector b(s),r(s) and input vector 

a(s),*(s) be denoted as H(s)  Thus,

1t-o
1 1

i?
1

H l 2 ' a{s)

. r (s ) . #21 H 22 . 1 .

where

H n H 12 
H 21 H 22

— e(l +  eHn) -1 1 - H 12

H21 +  1+e~ 11 H‘22

Since the system has now been rearranged into a a robust stability question of stan
dard form, the Robust Performance Theorem can be applied Thus,

Gmm{s) =  (min{&| det(l +  kA(s)H(s))  =  0}) 1 
Aev

(5 7)

where such a k will correspond to the minimum gam possible from G (s, A) Therefore,

Gmm(s) =  i i (H ( s ) ) = k ml (H(s))

5.4  T he D P F  for A ny Ladder Filter

To be useful, this process needs to be expanded to circuits of a non-tnvial nature 
This section considers the necessary extensions required to autom ate the generation 
of the D PF for an arbitrary ladder filter In any ladder realisation there are generally 

only a few basic building block elements to consider These blocks are connected in 

series to generate higher order filters For a Butterworth or Chebychev design there 
are only four to  consider, namely

(I) The Source Resistance

(II) The Series Inductor 
(ill) The Parallel Capacitor 
( i v )  The Load Resistor.
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— ^ W ( 2) Kmi( 3) — ^ 7i (4) Knit(4)

■^W l(l) I o u tW  —  -^¿71(2) -^ 0 U t(3 ) —  -^¿71(4) ^ o u t (  4)

Figure 5.9: 2-port representation of the four building blocks used for a second order 

Butterw orth design.

—  ^¿71 (2 ) ^ O U i(3 )  —  ^¿71(4) 4)

Figure 5.10: Fig. 5.9 redrawn with / out(Ti) now acting as an input to a block.

Although totally different formulae are used to generate the component values in 
each case, only the four component blocks outlined above are used. Though the 
component blocks will be different, the same general principle also holds for other 

ladder filters. Each building block is represented in terms of the inverse of its h  

param eters using standard two port analysis techniques. Fig. 5.9 illustrates how 

these two port representations are connected together.

At this point a problem arises. The blocks in Fig. 5.9 contain two inputs V i n  and 
I i n  and two outputs V o u t  and I o u t . The transfer function variation th a t is of interest 

is represented by the V i n ,  V o u t  pair. When an input voltage V i n  is applied, the cor

responding I i n  is an unknown. Therefore the /¿„,/out pair represent variables th a t 

cannot be described a  p r i o r i .  This problem is solved by r e v e r s i n g  the direction of 
the input/output, pair using a feedback loop. This can always be done using simple 
algebraic manipulations. I o u t is viewed as an input to the basic block and I i n  as an 
output from the block. Feeding the output from block n  back to the input of block 
n  -  1 results in the equivalent representation of Fig. 5.10. It can be seen from this 

figure th a t /¿n(1) can now be regarded as a redundant output from the system.
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Figure 5 11 Steps to the D PF for the 2-port representation of source and load resis

tances

It is necessary to generate the equivalent DPF for each building block Figs 5 11 and 

5 12 show how this is achieved in each case Again, one introduces uncertainty as in 
Fig 5 11 (Column (11)), and then extracts it as in Fig 5 11 (Column (m)) In this 

way the problem is reformulated as an augmented nominal system H (s ) th a t is “h it” 
by an external A Any Butterworth or Chebychev filter is made up of some form of 
interconnection of these elements For example the voltage output from the source 
resistor must form the voltage input to the first series inductor element In turn  the 
output of this series inductor element is fed back to the input of the source resistor 

stage In the general case, this may be achieved using an interconnection matrix 
Fig 5 13 shows how the outputs from one element can become the inputs to another 
by using the interconnection m atrix N  N  will contain only ones or zeros, with any 

row containing a t most one non-zero element

Fig 5 13 can be represented equivalently by Fig 5 14 In Fig 5 14 one should view the
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( l )  ( l l )  ( i l l )

Figure 5 12 Steps to the DPF for the 2-port representation of series inductance and 

parallel capacitance

connection path between N  and H(s),  the augmented “nominal” system, as a vector 

of dimension 2n  Again, standard algebraic manipulation will convert the system of 
Fig 5 14 to  th a t of Fig 5 4
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Figure 5 13 The use of an interconnection m atrix  for larger problems

5.5 Tw o E xam ples

The approach outlined in the preceding sections is now applied to the following two 
specific examples The design requirements are as follows -

B utterw orth filter, order =  3 
Chebychev filter, order =  3

Cutoff frequency =  1 kHz
Bandpass Ripple (Chebychev only) =  10%

Source Resistance =  10 fi
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a ( s )  * > { s )

Figure 5.14: Equivalent representation of the system in Fig. 5.13.

Load Resistance =  10 Q

Circuit element tolerances =  1%, 5% and 10%

Standard doubly term inated LC ladder realisations were used. Initially Gmai(s) and 
G m i n i s ) ,  the maximum and minimum possible filter gain respectively, are considered 

when the component values are allowed to vary. The code used provides upper and 
lower bounds on //co. Thus, the full lines either side of the nominal response in 

Figs. 5.15 and 5.16 represent an upper bound on G m a x { s )  and a lower bound on

Gmin (s)-

G d e v { s )  is plotted for Butterworth and Chebychev in Figs. 5.17 and 5.18 respectively. 

In all cases these bounds are derived by estimating //co at each frequency. As a conse
quence the upper bound will err on the side of caution in terms of filter performance. 

This allows guarantees to be made about how well a certain filter will perform when 

component values vary. The true // will lie somewhere between this bound and the 
lower bound generated by grid or random search techniques. To illustrate how large 
this gap can be consider Figs. 5.19 and 5.20. These show how a random search and /¿co 
yield different bounds on filter performance. By their nature, random or grid search 

methods will yield a result th a t under estimates worst case filter gain. A distinct 

advantage of //-analysis is the way th a t it offers a repeatable and non-probabilistic 

u p p e r  bound on worst case filter sensitivity. The bounds generated using the //-theory 

offer a considerable improvement on conventional bounds generated using differential 

sensitivity calculations, //-analysis fully addresses the effects of multiple component 
uncertainties, including cross-coupling effects and inter-dependencies, an issue which 
differential sensitivity analysis avoids.
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Nominal Performance 10% Uncertainty

5% Uncertainty 1% Uncertainty

Linear Frequency

Figure 5 15 Upper (Full) and Lower (Dash) bounds on Gmax(s), Gmm(s) for a But- 
terw orth filter of Order 3
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Nominal Performance 10% Uncertainty

5% Uncertainty 1% Uncertainty

Linear Frequency Linear Frequency

Figure 5 16 \Jpper(Full) and Lower (Dash) bounds on Gmax(s), Gmm(s) for a Cheby- 
chev filter of Order 3
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Maximum Deviation from Nominal Performance

Linear Frequency

Figure 5.17: Upper ( F u l l )  and Lower ( D a s h )  bounds on G d e v ( s )  for a Butterworth 

filter of Order 3.

The graphs suggest th a t Chebychev filters are more sensitive to component variations 

than their Butterworth counterparts. The effect on the bandpass region is particularly 

noticeable, especially near the cutoff frequency. The uncertainty analysis also shows 
the significant effect tha t component tolerances have on roll-off performance, often an 
im portant factor in the selection of Chebychev over Butterworth filters. The graphs 
also indicate the benefits to be derived from moving to higher quality components. 
Indeed, the analysis gives the engineer clear information on the cost/performance 
tradeoffs th a t are an inevitable factor in any filter design.

5.6 Sum m ary

A novel method for analysing the effect of uncertainty on filter performance has been 

presented. Worst case performance has been mapped directly to a robust stabil-
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Maximum Deviation from Nominal Performance

Linear Frequency

Figure 5.18: Upper(F«//) and Lower ( D a s h )  bounds on G d e v ( s )  for a Chebychev filter 
of Order 3.

ity question, by extracting the uncertainty from the block diagram representation 

of the filter transfer function. This process of uncertainty extraction results in a 

perturbation A acting on an augmented D i a g o n a l  P e r t u r b a t i o n  F o r m u l a t i o n  of the 

nominal system, n  is an operator on this formulation which, given the appropriate 

constructions, translates directly into non-conservative worst case bounds on filter 
performance.

The method has been illustrated using standard Butterworth and Chebychev filters. 
The proposed approach provides clear frequency response information tha t fully ad
dresses the interactive effects of component uncertainties. Since any linear transfer 
function can be expressed in terms of its DPF, the method described is applicable 
quite generally to all linear circuits and linear digital filters.

There are numerous other applications for such a procedure. A selection of these are 
mentioned at the end of this thesis.
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Figure 5 19 Comparison of random search (dashed lines) and \i bounds for Butter- 
worth F ilter of order 3 with 10% tolerances
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Figure 5 20 Comparison of random search (dashed lines) and // bounds for Chebychev 
Filter of order 3 with 10% tolerances
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C h a p te r  6 

A New A pproach  to  P ID  Tuning

PID control is the most widely used control law in industry today. It is widely ac

cepted tha t PID controllers do not perform well and/or are difficult to tune in certain 

situations. The performance of systems th a t are tuned conventionally may degrade 
significantly when the plant is poorly modelled, is non-linear, has variable time de

lay and /o r has many operating points. Many different approaches exist [Morari 89], 
[Astrom 95] th a t can improve the robustness of PID controllers. In this chapter a 

new method, based on L \  methods, is proposed. This will allow the development of 
controllers th a t will minimise tracking errors for a family of plants. This different 

objective function is the main distinguishing feature of the new method. This thesis 
contends th a t such a robust time domain approach is natural for many engineering 

applications.

6.1 P roblem  Form ulation

To begin, the problem is set up in a standard fashion. Fig. 6.1 shows a block diagram 

of the system configuration under consideration. The block P 0  is the Linear Time 

Invariant (LTI) nominal model of the plant. This model can be a relatively crude 

approximation of the actual plant. The parallel combination of P 0  and A is viewed 

as the actual physical plant. Here, A is thought of as a bounded gain dynamical 

subsystem th a t perturbs the plant away from its nominal value. A key feature of this
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Figure 6.1: System Configuration

approach is th a t this perturbation may be non-linear and /or time varying. Covering 

the uncertainty in P 0  by such a general perturbation allows difficult problems to be 
incorporated in the formulation.

Since this work is concerned with new tuning rules for PID controllers, the K  in 

Fig. 6.1 will be of the form

K { s )  =  K P  ( l  +  ^  +  K d s )

The PID tuning problem is to find appropriate values for the controller constants 

K p , K j  and K D . The control objectives th a t are of interest throughout this chapter 

are th a t K ( s )  should stabilise the perturbed system and yield good command track
ing. To ensure th a t the latter performance specification can be achieved, a prefilter 
R ( s )  will be required. In this way the reference input r ( t )  of Fig. 6.1 should be 
considered a low pass filtered version of the command input c ( t ) .  Good command 

tracking means th a t y ( t )  should follow or track r ( t )  closely. Thus, the error signal 
d ( t )  should be uniformly small over time.

A controller K  will guarantee stability r o b u s t l y  if there exists no permissible A which 

causes the corresponding perturbed system to be unstable. Moreover, it is also re

quired th a t the command tracking objective must hold, not only for the nominal 

system, but for all systems traced out by the family of valid perturbations. This 

is termed a r o b u s t  command tracking objective. Thus, a certain level of command 
tracking can be guaranteed for every permissible A.
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The essential idea behind the approach is to allow the perturbation set to “cover” 
model lim itations Best results can be expected in cases where the plant model is 
quite poor A PID controller is located with o p t i m a l  immunity to the effects of A, 

taking both stability and command tracking properties into account The procedure 

allows rigorous determ ination of bounds on how well the “best” PID controller can 

do in terms of these objectives Hence, decisions can be made about whether PID is 

a suitable strategy or if a different control law is necessary to achieve the required 

objectives

6.2 A pplication  o f L \  T heory to PID  Tuning

Consider the formulation of Fig 6 1 Suppose tha t the A block were removed Then 

the 2 x 2  transfer function m atrix from the input vector [ ] to the output vector
V c(0 )

(  \ can be easily computed Introduce a suitably partitioned transfer function
V d ( t )  j

m atrix M  where
M(s) = (  ">.■(») * M « )  )

y m 2i(s) m 22(s) J

Let TnlJ(t), (i , j  = 1,2) denote the inverse Laplace transform of m tJ(s), i e , the 
corresponding impulse response Let ||mtJ(i) ||i denote the integral of the absolute 
value of m t J  (t ) so th a t

The element by element norms of these impulse responses can be grouped together

The input and output of A are denoted by a ( t )  and b ( t )  respectively From the 
definition of an induced norm it can be seen th a t for the system of Fig 6 1

to form the the m atrix M ,  1 e ,

IKiWlli IK2WII1
| | r c i 2 i ( i ) | | i  l l m ^ i ) ! ! !
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Therefore this quantity represents the maximum amplitude gam in the time domain 
of the system block A, maximised over all bounded inputs with the exception of the 

signal which is identically zero The basis for this work is in the following theorem 
This follows directly from [Dahleh 95] and the robust performance theorem [Stem 82]

T h e o re m  6.1 With reference to Fig 6 1, the closed loop system is stable and d(t) 
is bounded above by

I M I l o o  <  ^ - | | c ( i ) | | o o

for every A which obeys

l|A ||, <  -a  i

if  and only if

=  „ ( ' “ ■»’""W II* “ > I K 2« I | i \  <  J
\  a 2| |^2i ( 0 Hi a 2\\m2 2(t)\\i )

Here, p(M ) refers to the spectral radius of the m atrix M  This theorem is used to 

determine how well a combination of controller K(s),  LTI plant model P0(s) and a 
perturbation class V ex will robustly track commands

L \  theory is especially suited to this problem Like H o o  theory an L x approach 

provides a measure of worst case system performance as A varies through a broad 
range of possibilities V ex However, being a time domain approach, specifications 

like command tracking can be treated rigorously hlx-theory provides necessary and 

sufficient conditions for robust stability and performance Moreover, computation of 
Hn  is much less expensive than standard /i for purely LTI perturbations

6.3 D escrip tion  o f th e  Approach

The proposed procedure for tuning PID controllers using L x methods can be described 
as follows -

1 Determine the maximum allowable gam of A, viz , This is estim ated from 

simulations of a representative sample of (possibly non-linear, time varying)
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perturbation A ’s This quantity gives an indication of the maximum “size” of 
uncertainty set to  be covered Choosing such a gam bound on A amounts to 

describing the level of validity of the nominal model

2 Theorem 6 1 is used to  determine the worst case tracking error with the cur
rent PID controller constants Viewing o i l  as fixed and given, determine the 
maximum value of a 2 for which < 1

3 is now optimised over the available design variables K P , K r  and K q

This corresponds to minimising the tracking error

4 The optimised controller is again analysed for robustness using Theorem 6 1 

F e a tu re s

The mam features of the approach can be listed as -

1 The approach treats robust performance (l e , robust command tracking) as well 

as robust stability, thus providing immunity to imperfections in the LTI model 
of the system

2 The approach handles non-linear and /or time varying perturbations Indeed, 

if LTI perturbations are all th a t can occur then standard n  theory should be 
used, as f x L l  will be unnecessarily conservative

3 Appropriate optimisation software can be used to determine the controller which 
yields optimal robust stability and robust command tracking Optimally robust 
values for a PID controller are generally obtainable numerically If the best PID 

controller does not offer acceptable performance then another control law should 
be used

4 The necessary computations are relatively straightforward and (compared with 
standard /¿) inexpensive

5 The approach is easily extended to include other time domain performance 

objectives, such as disturbance rejection
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Lim itations

1. The underlying optimisation problem is non-convex. Thus, standard optimisa

tion routines are not guaranteed to yield the global optimum and may yield less 

favourable local minima. It is envisaged tha t an optimisation strategy using a 

genetic algorithm may be of benefit here.

2. It should be noted tha t V e x  is a very general perturbation set. Thus, the process 
of “covering” uncertainty by a A G V e x  where the only constraint on A is th a t 

||A ||i <  ^  is potentially overly conservative and very demanding for a PID 
controller.

3. The approach is best suited to problems where the available plant models are 
necessarily quite poor. In a case where a precise model is available, other 

methods can be expected to yield better results.

4. A quantitative comparison with other tuning methods th a t promise improved 

robustness such as those in [Morari 89] or [Astrom 95] is difficult given the 
different objective function tha t is being employed in this approach.

6.4 A  Second Order Exam ple

This section illustrates the development of an “Li-tuned” PID controller using the 
proposed methodology. The procedure adopted is described, and the performance 
of such a controller is compared with its Ziegler-Nichols tuned counterpart. As 
[Astrom 95] illustrates, there are a plethora of different tuning methodologies th a t 
could be chosen as a benchmark for comparison. Anyone of these can be used as a 
starting point from where improvement in terms of a tracking error objective function 

will be possible. The tuning rules of Ziegler-Nichols aim for a reduction in tracking 

error to 25% of the worst case value in the first period of oscillation [Ziegler 42]. This 
is a time domain specification and is a reasonable starting point for improvements in

The main limitations of the approach are as follows :-
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the context of the objective at hand. Fig. 6.2 illustrates this typical rule of thumb
B  1 
A  ~  4

Note th a t this objective is not the same as th a t of minimising the worst case track
ing error. Making improvements in this objective will necessarily compromise any 

properties th a t an earlier set of tuning rules might have.

6.4.1 Problem  Outline

The system to be controlled is modelled as a critically damped second order plant 
with natural frequency u n  —  1 rad/sec and a damping factor £ =  0.7. The system 
is assumed to  have a transport delay of D  =  1 second at the plant input. Thus the 

nominal plant is

P° ^  =  s2 +  1.4s +  1 
In the actual plant the value of the parameters i o n , (  and D  are not known exactly and

may deviate significantly from their nominal values. Thus the actual plant transfer

function is „ „
e ~ s  u

p ( s )  -     z n ___
U  S2 +  2Cu;n +  a;2

To enable the existence of a worst case tracking error tha t is less than unity a pre

filter R ( s )  is required. This was taken to be a first order low pass filter with a time 

constant of 2 seconds. This was selected arbitrarily and seems reasonable in terms of 
the nominal plant parameters.

The PID controller constants th a t will minimise the stated objective are now required. 
Thus, worst case tracking error will be minimised for a set of general perturbations. 
In Theorem 6.1, the only restriction on an element of this set is tha t its 1-norm must 

be no greater than the size of the worst perturbation from the grid of parameters. 

For this particular example, the uncertainty that is considered is LTI. Thus, the size 
of the maximum allowable perturbation gain may be estimated by allowing the three 

param eters u n , £ and D  to vary by ±  20% over a grid. It should be stressed th a t the 

theory allows a l l  perturbations to be “covered” even if they are non-linear or time 
varying. When the only perturbations tha t can occur in practice are limited to the 

grid used in this example then the results tha t are obtained can be expected to be 
conservative.
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Figure 6 3 Block Diagram arrangement to determine the effect of a grid of pertur
bations on the nominal system

6.4.2 Procedure

The following procedure is adopted -

1 Tune the nominal system using a benchmark method Although Ziegler-Nichols 

tuning rules are used in this example, any other method can also be used as a 

starting  point The ultim ate gam K y  was found to be 1 98 and the ultim ate 

period Tv  was found to be 5 seconds This yields PID controller constants of

K P = 1 98* 6 =  1 18, K i  = — -  =  0 4, K D =  5* 125 =  0 625 
5 * 5

2 Determine the effect of a representative sample of perturbations to the nominal 
system This was achieved using the block diagram arrangement of Fig 6 3 
which was implemented using SIMULINK [Checkoway 92]

A grid of perturbations were generated by allowing u n, £ and D to vary in the 
range ±  20% For each element of this grid the maximum am plitude of the 

tracking error ||d(i)||oo and the maximum amplitude of the plant input ||u(t)||oo 
were recorded The worst case ratio of tracking error versus plant input was 

recorded This gives a rough measure of the “size” of perturbations th a t need 
to be covered For this grid the worst case ratio was found to be -

IMOIloo 0 2659 

~  H t ) | | o o  “  10149
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Figure 6 4 Block Diagram arrangement to determine

3 Determine Hlx for the current controller settings using the block diagram ar
rangement of Fig 6 4

SIMULINK determines the 2 x 2  m atrix which consists of the 1-norms of the 

element by element impulse response of this system to the output signals from 
two perturbation A ’s, Ai and A 2 The top row which is hit by Ai corresponds 
to the size of system uncertainty tha t is being covered It is weighted by the a i  
th a t was computed in the previous step When this impulse response is being 
calculated the input from A 2 to the bottom  row is set to zero For reasons 

of numerical accuracy it was more appropriate to input a suitably scaled step 

function to the system and then differentiate the output A 2 corresponds to 

the performance param eter a 2 is then selected, where ^  corresponds to a 

certain worst case tracking error If SIMULINK  returns a 2 x 2 m atrix whose 

spectral radius is less than  1 then it can be said tha t this performance objective 

is achievable by the current controller for the entire uncertainty set

4 By direct application of Theorem 6 1 a  search for the PID Tuning constants
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th a t will make the spectral radius of the impulse response m atrix less than 
unity is performed If the spectral radius is greater than  unity, the fact th a t the 

problem is linear in a 2 can be exploited so th a t SIMULINK need not be run 

again The spectral radius is rescaled to be less than 1 by use of a suitable a 2 
This corresponds to the best possible worst case tracking error that is possible 
with this controller If this is not good enough the search for new PID constants 

continues If there exists no new controller settings tha t will further reduce 

then it can be concluded tha t the performance objective cannot be achieved 

with this control law

This process yielded L\ tuned settings for the problem at hand which were 

K P =  0 69, Kj  =  0 43, K D = 0  68

6.4.3 Results Analysis

Initially the robust stability indices can be compared, i e , Mu,  the (1,1) element of
the M  m atrix is considered for 20% param eter uncertainty

R o b u s t S ta b ility

Ziegler-Nichols Li
1 9971 1 0889

This immediately indicates tha t robust stability cannot be guaranteed if a PID control 
law is to be used and 20% param eter uncertainty is allowed Clearly, this rules out 

any claims being made about robust performance However, it is also clear th a t 

an L\  tuned approach offers nearly twice the stability margin of its Ziegler-Nichols 

tuned conterpart Table 6 1 outlines, for the component uncertainty levels where 

robust performance guarantees can be made, a comparison of worst case tracking 

error between the two controllers The table shows tha t an L\ tuned approach can 

buy an extra 8% of param eter uncertainty whilst m aintaining robust stability
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Table 6.1 Com parison of Tuning Rules for P ID  Controllers

U Ziegler-N ichols

% Uncertainty Tracking Error Mu Tracking Error M n
1 2 7259417e-01 054 4 1095409e-01 099

2 2 8429308e-01 108 4 6270461e-01 199

3 2 9744384e-01 163 5 2919897e-01 299

4 3 1248093e-01 217 6 1778391e-01 399

5 3 2973756e-01 272 7 4165950e-01 499

6 3 4977655e-01 326 9 2715831e-01 599

7 3 7335926e-01 381 1 2363977e+00 698
8 4 0145055e-01 435 1 8531002e+00 798

9 4 3562110e-01 490 3 6809706e+00 898

10 4 7796492e-01 544 3 3884844e+02 998

11 5 3180992e-01 598 - -

12 6 0244154e-01 653 - -
13 6 9933413e-01 707 - -
14 8 4106776e-01 762 - -

15 1 0667778e+00 816 - -

16 1 4823393e+00 871 - -

17 2 5085742e+00 925 - -

18 9 1739832e+00 980 - -

The performance measure shows a similar trend Fig 6 5 illustrates how an L\ tuned 
controller provides much better robust performance in the first 10% of maximum 
allowable param eter uncertainty In the region where the param eter uncertainty is in 
the range [10%, ,18%] a Ziegler-Nichols tuned controller cannot guarantee robust
stability

Although no guarantee th a t a system will be robustly stable when it is subject to an 

arbitrary  20% perturbation can be given, it is im portant to realise th a t this is a very 

exacting requirement Perturbations of this nature may not occur m practice It is 

now dem onstrated how an L\ approach can offer improved performance if only the 
perturbations from the original grid are considered The step response for the nominal
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Worst case Tracking Error Vs. Parameter Variation

Figure 6.5: Comparison of Worst case Tracking Error with variable component un
certainty for L \  (Full) and Ziegler-Nichols (Dashed) tuned controllers.

system together with the “worst” system from the allowed grid of perturbations is 
shown for the Ziegler-Nichols tuned controller in Fig. 6.6. The corresponding L \  tuned 

response is given by Fig. 6.7. The L i  tuned system provides an improved response to 

the worst case perturbed system from the grid without adversely affecting nominal 
system performance.

It is of interest to note th a t the process does NOT make a significant difference to the 

worst case tracking error tha t is experienced. However, in the L \  case, the response 

is clearly less oscilliatory, i.e., the benefit of having a controller with a lower value for 

M n can be observed. This suggests th a t the prefilter is a significant limiting factor 
on further improvement in the performance objective.

To illustrate the improved stability robustness with an L x tuned approach a further 
reduction is made to the system damping factor. For £ =  0.38, Fig. 6.8 shows that 

the Ziegler-Nichols controller is on the verge of instability. However, the L { system
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Tracking Error {Nominal} Output {Nominal}

Tracking Error {Perturbed} Output {Perturbed}

Seconds Seconds

Figure 6 6 Step Response of Nominal and the Worst case Perturbed System which 
is tuned using Ziegler-Nichols Rules
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Tracking Error {Nominal} Output {Nominal}

Tracking Error {Perturbed} Output {Perturbed}

Seconds

Figure 6 7 Step Response of Nominal and the Worst case Perturbed System which 
is tuned using L\ Rules
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Ziegler—Nichols Wn = 1.2; zeta = .38; D = .8

L1 W n  =  1 .2 ; z e ta  =  .38 ; D  =  .8

Figure 6.8: Illustration of increased Stability Robustness with an L x Tuned Controller.

continues to perform well. Thus it is concluded that, despite the fact no guarantees 
about system performance with 20% param eter uncertainty can be given, an L x tuned 

controller has better immunity to shortcomings in the plant model.

The graphs illustrate the tradeoff between robust stability and robust performance. 
An increase in the level of robust stability (ax) can only be achieved by a sacrifice 
in the level of robust performance, i.e., a reduction in a 2. An iterative procedure 
based on determining whether p (M ) < 1 for a particular combination of a x and a 2 
quantifies this tradeoff and allows the engineer to make an informed decision.

6.5 pH Process Example

A second example is now studied which is based on the application of L x methods 
to a practical pH process. This process is a laboratory scale rig and is described at
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Figure 6 9 Laboratory setup for pH control 1 Liquid Tank , 2 Mixing Pum p , 3 

pH Meter , 4 Peristaltic Pum p , 5 Acid Tank

length in [Tadeo 97]

6.5.1 Problem  Outline

An illustration of the plant in question is provided in Fig 6 9 Pure water is input 

from a storage tank which is located on the left of the figure The flow rate of the 

water is a variable which is dependent on the height of water in the tank The control 
objective is to keep the acid concentration of the solution in the mixing tank constant 

a t a pH of 4 0 This is achieved by the addition of tightly controlled amounts of HC1 

from the acid tank on the right of the figure Acid flow rate is set using a peristaltic 
pump The following nomenclature is used throughout this section

(a) Nd denotes the acid concentration in the tank (O utput Variable, y)
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(b) N a denotes the input acid concentration (Constant)

(c) q0 is the liquid mass flow (Variable)

(d) qa is the acid mass flow (Input Control Variable , u)

(e) V  is the volume of liquid in the mixing tank

From first principles it can be shown that [Perez 95]

ip  i  at \ d N d  q 0N d  q a N d  q a ^ a  1 >
F i(N d, q0, qa) = = ----- y -----------y ~  +  —  (6 l )

As can be seen this is a non-linear equation in the respective system variables Note 

tha t there is also a significant time lag in the plant between the actual tank concen

tration Nd  and the measured value N™ th a t is fed back to the controller input This

delay is approximated by a first order lag element 1 e ,

N T  =  r r — ^1  +  S T

M odel Sim plification

The following model simplifications are now considered Note th a t this fits in nicely 

with the stated aim of describing system performance using a “poor” model

1 Constrain System  Resources. It is assumed that pure water is supplied to 

the mixing tank, th a t the input HC1 is of constant concentration and th a t there 
is perfect mixing of the solution

2 A ssum e a Constant Volum e of Liquid in Tank. The problem is consid
erably simplified by assuming th a t the acid and water are being pumped into 
a tank which is already full to overflowing This assumption, which is how the 
rig is set up in practice, means tha t V  =  63cm3 can be viewed as a constant

3 V iew  the W ater Flow R ate, q0, as a Constant. The rate at which water 

is supplied to  the mixing tank depends on the height of water in the storage 
tank
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In this simplified analysis, eqn. (6.1) is viewed as a non-linear function in only two 

variables i.e.,

(6.2)

M odel Linearisation

The bilinear nature of eqn. (6.1) lends itself to a pretty simple linearised model. 
The model equilibrium points are also readily estimated using measured data. Let 
an asterisk beside a variable, (e.g. q*Q), denote its equilibrium point. Following 

Tadeo [Tadeo 97], the generalised equilibrium position for this system is taken to

At equilibrium 75% of the maximum amount of acid is being added to the mixing 

tank. The reference acid concentration is taken to be

N a =  7.08 x 10' 2M ol.L~x

It is now possible to evaluate the Jacobian for this problem. Using eqn. (6.1)

dFi _  (q0 + qa)

be [N^,q*0,q*a] where
N*d =  1.6 x 10' 3M ol.L~l 

q*0 =  7.74 cm3s _1

q*a =  0.75 * .0045cm3s_1

d N d

which evaluated at the equilibrium position is

-0.1229

dqa V
which again evaluated at the equilibrium position is

=  b =  0.0011

Thus, the linearised model in state space form reduces to

Nd =  a{Nd) +  b{qa) =  -0.1229(7Vd) +  0.0011(9a) (6.3)
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This equilibrium position is valid for a particular rate of water flow, q0, into the 
mixing tank The actual flow rate of water is subject to significant variation This 

uncertainty can be reasonably represented as an additive perturbation to the nominal 

value of a Thus the “actual” value of a, denoted by aact, can be given by

a Qci =  a  +  - ^ - W a

where W a is a suitable weighting factor on the uncertain param eter Note tha t a 

normalisation based on the volume of the tank is necessary when calculating this 

weighting factor In a similar fashion the variation m the actual concentration of the 
acid in the mixing tank can be viewed as an additive perturbation to the equilibrium 
param eter b Thus,

bact = b + Wb 

In this way eqn (6 3) can be rewritten as

N ,  =  +  ( & - ^ ) 9„ (6 4)

which better represents the uncertainty acting on the model This, coupled with 

a first order measurement lag yields a pretty crude linear approximation of the pH 

process at hand

6.5.2 Procedure

Step 1 is to determine oti, the maximum perturbation gam to  be covered Fig 6 11 

gives a block diagram representation of the linearised system th a t is used for this 

task The requisite grid of perturbations is generated by considering the following 
limited variation in system uncertainty

A qo - ±0 Qcm3s~l

A Nd =  ±8 4 x 10~3Mol I T 1 

A t =  ±2s

Again the system was tuned initially using Ziegler-Nichols rules This yielded PID 
controller constants of

K P =  2, K r =  0 35 K D =  0 1
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r(t)

Figure 6 10 Block diagram arrangement to determine for the grid of perturbations
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Step I /P

Step I /P

Figure 6.11: Block diagram arrangement to determine /¿^ for a set of perturbations 

bounded in size by a x.

The worst case output d(t) and the worst case input to the perturbation u (t) is again 
recorded using SIM ULINK. In this case,

Q!i = \ m \ u

IK*)llc =  0.3321

An arbitrary  tracking error of 100%, i.e., a 2 = 1, was selected for the performance 

step. The block diagram arrangement of Fig. 6.11 is used to determine the impulse 
response m atrix for the linearised system. In this arrangement the saturation element 

has been viewed as a non-linear perturbation A to the linear nominal system. This 

is necessary for the use of a differentiator element a t the output to be valid in this 

procedure. This adds extra conservatism to the procedure, as the family of A ’s being 

covered is now larger. For this example the element by element norms of the impulse
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response m atrix, M , and fiLl is given by

s  =  /  1 7895 1 3290 \  g  = 3 ^

^ 2 3276 1 4423 j

This m atrix clearly illustrates th a t a lot of work needs to be done to guarantee robust 

stability let alone performance Iterating on the design variables, K P, K j  and K d m 

order to improve system robustness yields the following controller settings

K P =  3 02, K f  =  0 09, K d =  2 26

For this vector of design variables the impulse response m atrix and is given by

. 0 8024 0 7920 .
M  =  p(M)  = 1 8826

1 1 1622 1 0306 '

6.5.3 R esults Analysis

As before, robustness margins are initially considered

R obust Stability

Ziegler-Nichols Li
1 7895 0 8024

The stability margin associated with the L x tuned controller is better than double th a t 
of its Ziegler-Nichols tuned counterpart However even a modest tracking requirement 
like the 100% selected in this experiment cannot be guaranteed with a PID type law 
This reflects the demanding nature of the process and the conservative uncertainty 
set imposed by the design procedure The simulation work confirms the belief th a t 
only a lim ited amount of success can be expected with a PID control law on this 

problem The process suggests th a t it should not be hard to find a valid disturbance 

tha t will violate such a performance requirement This can be seen quite easily if a 
small am ount of sensor noise is introduced into the model on the feedback path The 

design procedure suggests th a t the best course of action when minimising tracking 

error on this process is to wind down the integral element of the controller action
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Figure 6 12 Nominal response of the Ziegler-Nichols Tuned System for the linearised 
pH process

The nature of the system response when integral control is used justifies this course 

of action in practice

Figs 6 12, 6 13, 6 14 and 6 15 show th a t an L x tuned controller does significantly bet

ter than  its Ziegler-Nichols tuned counterpart when attem pting to control the system 
subject to the grid of perturbations used in the design procedure The L x controller’s 
increased stability robustness can be clearly seen with this limited uncertainty set 

when a programme of step changes, (the dashed lines), are input to the system For 

this grid of perturbations the Ziegler-Nichols tuned controller is already on the verge 
of instability, whilst the L x tuned controller continues to operate acceptably The 

figures clearly show how the worst case tracking error is radically improved with an 

L x tuned controller This example also shows how the design procedure provides an 

optimal PID controller for the performance objective at hand
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Figure 6 13 Worst case Perturbed response of the Ziegler-Nichols Tuned System for 
the linearised pH process

160



Figure 6 14 Nominal response of the Li Tuned System for the linearised pH process

0 50 100 150 200 250 300 350 400
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Figure 6 15 Worst case perturbed response of the L\ Tuned System for the linearised 
pH process
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Minutes

Minutes

Figure 6 16 Acceptable step response for the L\ tuned PID controller on the actual 

pH plant

6.5.4 Practical Validation

These PID parameters have been tested by Dr Tadeo on the actual pH plant a t the 

University of Valladolid [Tadeo 96] It was found that, in terms of stability robustness, 
the L \ design compares favourably with other PID control settings th a t have been 
used Fig 6 16 shows th a t a reasonable response to certain step commands close to 
the equilibrium point is possible However as Fig 6 17 illustrates, it is also quite easy 

to  find a step command th a t will cause the system to exhibit an unacceptably large 

worst case tracking error These graphs show that a PID approach is not the correct 

solution to this problem A full //-synthesis approach is outlined in [Tadeo 97]
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Minutes

Figure 6 17 Unacceptable step response for the L\ tuned PID controller on the actual 
pH plant
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6.6 Summary

A new methodology for evaluating and tuning PID controllers has been proposed 

which is based on L\ methods The L x theory allows convenient evaluation of maxi
mum command tracking error for a given combination of controller settings, nominal 
plant and gam-bounded uncertainty class The new approach provides a rigorous way 

of assessing how well PID controllers achieve robust command tracking and robust 

stability

The main features of this new method are th a t -
(I) It is an easy to use, computer based, design approach which does not require the 
engineer to  be a robust control specialist

(II) The approach generally yields controller settings th a t gives the best possible robust 

performance when attem pting to  meet time domain control objectives

(III) It takes full and due account of the (substantial) limitations of the plant model, 
1 e , of the fact th a t P0 is a relatively crude approximation of the actual plant

The efficacy of the method when plant parameters are subject to wide variation and/or 

substantial uncertainty has been illustrated by examples a t a computer simulation 

level W hen used to  tune PID controllers, the new method can be used to  improve the 

robustness of this most popular of control laws provided a correct choice of objective 

function to  be minimised is made The procedure has also been applied to a practical 

non-linear pH process with some success on a narrow grid of perturbations However, 

the new procedure clearly demonstrates th a t a PID control law is not suitable for this 

process given the performance requirements and the system non-linearities th a t are 
involved

The breadth of the uncertainty set tha t ¡jlL i covers compared with standard n  for 
purely LTI perturbations can be seen as both a strength and a weakness While 

it is true tha t (Jin can offer reasonable results with quite poor system models, it is 

also a fact th a t such a general uncertainty set can place unreasonable requirements 

on controller performance This conservatism can be clearly seen in the pH process 
example where it is impossible to obtain a PID controller tha t will promise any kind 

of reasonable performance It is clear tha t further work is necessary to reformulate 

the problem in such a way th a t the uncertainty sets which are used would be more
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reflective of the actual perturbations th a t a system can be subjected to In this way 
conservatism will be minimised as a controller will not be asked to provide robustness 
guarantees against perturbations th a t cannot occur in practice
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Chapter 7

Conclusions

This thesis has developed a new way of estimating ¿/co tha t is reliable, efficient and 

global in character. The new approach compares favourably with existing commercial 

code in terms of the quality of bounds th a t are generated and the range of perfor

mance questions th a t can be dealt with. New applications for ¿x theory have been 
developed, n  has been shown to be an appealing way of determining the worst case 
effect of component uncertainty on filter performance. Finally, a ¿¿-like theory has 
been developed which allows the time domain performance of PID controllers to be 

determined in a rigorous manner. This chapter reiterates the main findings of this 

work and concludes with a look at some possible future research directions.

7.1 Development of New Algorithms for the Com
putation of ¡ico

Throughout this work the convex estimate of denoted here by /xco, has been studied 
since in full generality n  is not computable. It has been shown th a t the geometric form 
of the Hahn-Banach theorem can be applied to the problem of computing fj,co. This 

theorem provides the basis for an optimisation problem th a t is easily understood 

without the introduction of a large amount of new terminology. In essence, the 
question of robust stability reduces conveniently to whether 0 is an element of a
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certain set. This counters a popular criticism of the ¿x approach to robust control, 

namely its inaccessibility.

Several new algorithms for the computation of ¡jlco, all using the Hahn-Banach theo
rem, have been presented. This thesis has demonstrated the clear superiority of dual 
methods over a corresponding primal approach when computing //co. In addition, the 
dual method which uses a 1-norm based optimisation strategy has distinct advantages 

over its 2-norm based analogue in terms of accuracy and reliability.

Convergence

An algorithm which uses the Hahn-Banach theorem to compute p,co requires an inner 

loop and an outer loop. The inner loop determines whether a separating hyperplane 

between a convex set and 0 can be found for a certain level of system uncertainty

a. The outer loop selects suitable candidate values of a. In its basic form a binary 
search can be used to select these candidate values. A binary search guarantees 

convergence for the outer loop. Convergence has also been demonstrated for the 

inner loop problem. The existence, or otherwise, of a separating hyperplane can 

always be ascertained. Hence the algorithms tha t have been developed will converge 

to fxco.

Im provem ents to  the Basic A lgorithm

Improvements have been made to the basic algorithm which reduce computing times 
significantly. These changes affect both the inner and outer loops of the algorithm. 
The outer loop changes focus on the selection of new bounds on /ico which improve, 

or at least do no worse than, a basic binary search approach. These new bounds can 
be divided into hard, rigorous, upper bounds on fico and soft bounds which are known 
to be good choices for the next iteration of the inner loop.

Hard bounds on /¿co can be obtained from an application of a prescaling procedure 

due to Osborne which minimises the condition number of a candidate matrix. Good 

bounds are also possible from an application of results in matrix pencil theory. M atrix 

pencil theory introduces transformations tha t change the size but preserve the sign of
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the eigenvalues of a m atrix Thus, given a system gain tha t ensures robust stability,
1 e , a confirmed upper bound on ¡jlco, the use of pencil theory allows a new, tighter 
upper bound on /.ico to be generated Pencil theory is only applicable to problems 

where the uncertainty set is constrained to be complex Soft bounds on fxco can 

be computed during the inner loop These are deduced from an analysis of vectors 

close to  the boundary of the convex set in question These bounds are not rigorous 

since they are based on the nature of the current best separating hyperplane The 

existence of a hyperplane th a t may invalidate claims made on the basis of these tight 

constraints is a possibility Hence, this analysis yields bounds th a t are close to, but 
which may be on either side of ¡j,co

Improvements are also possible in the performance of the inner loop itself A signifi
cant software overhead can be reduced during computation if the constraints used in 
the generation of the first linear programming tableau a t the start of an iteration are 

known to be good This can be achieved if selected good constraints are stored after 
each iteration of the inner loop The concept of a good constraint is clearly a dynamic 

one th a t needs to  be reviewed after each iteration of the inner loop Judicious use 

of constraint pruning based on only keeping good constraints significantly reduces 
computing times

Appropriate changes to the basic form of the algorithm have been made so as to 

preserve convergence At worst, the outer loop in an improved form of the algorithm 

can use a binary search as a starting point From here other candidate bounds are 

accepted or rejected on the basis of whether they are better than the binary search 

bounds which are already m existence The convergence properties of the inner loop 
are unchanged by analysis and storage of good constraints Thus, it can be concluded 
th a t the inner loop is still convergent

7.2 Validation of and Computational Experience 
with the New Algorithm

The new algorithm  has been validated using a wide range of matrices which have been 

generated using several different strategies The basic validation has been achieved
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with problems th a t are pseudo-randomly generated using a construction due to Fan 
This construction ensures th a t the candidate matrices have ¡jlco =  1 The algorithm 

has also been tested successfully on a large number of completely random and prac

tically motivated, purely complex and mixed uncertainty problems

In all cases, the new algorithm guarantees the location of bounds on fxc0 within an 
arbitrary  distance of each other Analysis of the improved form of the new algorithm 
has shown tha t computation times are competitive, albeit slower, than existing com
mercially available code for the computation of /j Bounds tha t are accurate correct to 

M A T L A B ’s operating precision have been demonstrated on arbitrary problems using 

the new algorithm In addition it is always possible to calculate these bounds m a 

reasonable period of time

The new algorithm succeeds m offering improved flexibility on the type of performance 

questions th a t can be posed Parametric, block and repeated uncertain elements can 

be dealt with th a t are independent or dependent on a given performance scalar In 

this respect the new code has a greater range of applicability than  the well known 
¿¿Tools software The new algorithm also improves on ¿¿Tools in terms of the accuracy 
and reliability of the bounds on ¿¿eo being calculated This is particularly true when 
analysis of a mixed uncertainty problem is necessary The convergence properties of 
the new algorithm  guarantee th a t bounds on ¿¿co can be computed to within user 
defined tolerances

Limitations in linear programming performance are acting as a barrier to computation 

times For a Simplex LP solver, difficulties begin to arise when problem sizes become 
larger than  7 This is a m ajor restriction on the applicability of dual algorithms 
to practically motivated problems One solution may be to use an interior point LP 
solver to determine //co While this improves computation times, an exponential rise in 
FLOP requirements is still observed with increasing problem size The interior point 
code used in this work is recognised as the best tha t is currently available However, 
it has also dem onstrated reliability problems The use of a Simplex algorithm with 

appropriate anti-cycling software guarantees th a t a solution will be found In order 

to preserve convergence properties of the new algorithm, it is considered appropriate 
to stick with a Simplex LP solver, at least for the time being
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T he G eneral P roxim ity  Problem

The use of the Hahn-Banach theorem has meant th a t a lot of time has been spent 
estim ating whether 0 belongs to a convex set. The convergence properties of the 
algorithm often dictate th a t this set is configured so that 0 is extremely close to 

its boundary. The computational experience gained during the course of this work 
justifies some comments in this area tha t are of general interest. A 1-norm dual 
approach has been shown to be, in general, superior to its 2-norm based primal and 

dual counterparts when attem pting to solve this proximity problem. A 1-norm dual 
approach allows set membership decisions to be made whose accuracy are limited 

only by M A T LA B ’s operating precision. This level of accuracy is orders of magnitude 

better than th a t which is possible using a 2-norm primal or dual approach.

7.3 Worst Case Filter Sensitivity W ith Uncertain 
Components

A novel method for analysing the effect of uncertainty in component values on filter 

performance has been presented. This has been achieved through novel applications 

of the robust performance theorem. Worst case filter performance can be assessed 

by extracting the uncertainty from the block diagram representation of the filter 
transfer function. This process of uncertainty extraction results in a perturbation A 
acting on an augmented Diagonal Perturbation Formulation of the nominal system. 
Analysis of the lim itations th a t stability requirements place on such a formulation 
allows the effect of uncertainty on filter performance to be completely characterised. 
The structured singular value is an operator on the DPF  which translates directly 
into non-conservative worst case bounds on filter performance.

Separate robust stability questions have been formulated which allow different effects 

of uncertainty to be ascertained. The basic DPF  creates a feedback loop which al

lows G max{s, A) to be determined. Gmai(s, A) is the maximum possible gain of a 

filter when components are allowed to vary within prespecified levels. Subtraction of 
the nominal response from the basic DPF  results in the determination of Gdev(s, A). 
G dev(s, A) represents the maximum Euclidean distance th a t uncertain components
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can perturb a nominal filter response to on a polar plot. Hence, Gdev(s, A) also 
provides information on the phase effects of component uncertainty. Inclusion of 

Gmaxis, A) on the feedback path of a suitably defined system loop allows the com

putation of Gmin(s, A). Gmin(s ,A)  represents the minimum possible gain of a filter 

when component values are allowed to vary.

Any linear transfer function can be expressed in terms of its DPF. Thus, this proce

dure can be applied to any circuit which exhibits a linear frequency response. The 

method has been illustrated using Butterworth and Chebychev filters. Ladder net

work realisations are particularly good applications for this process because they tend 
to have a large number of similar components. Two port representations of each dif
ferent component can be cascaded so as to construct the final filter in a structured 

manner. This perm its the construction of software which can assess the effect of un
certain components on a standard filter of arbitrary order. The proposed approach 

provides clear frequency response information tha t fully addresses the interactive ef
fects of component uncertainties. The results gathered clearly show the effect on a 

design procedure of moving from 10% to 1% ratings on perm itted component varia

tion. This provides rigorous, repeatable data which can aid the designer making an 
informed choice about component selection.

7.4 Development of New Tuning Rules for PID  
Controllers

A new way of evaluating and tuning PID controllers has been proposed in this thesis 
which is based on L\ methods. The new approach relies on viewing, possibly substan
tial, modelling errors associated with a system as perturbations. These perturbations 
can be non-linear and /o r time varying. The only restriction is on the size of these 
perturbations. By specifying the size of the allowed perturbation it is possible to 
“cover” all uncertainty using a single A.

An application of a time domain based robust performance theorem means tha t an 

evaluation of maximum command tracking error for a given combination of controller 

settings, nominal plant and gain-bounded uncertainty class is now possible. This
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requires the introduction of the iil x operator. Although different from standard n 
in th a t it is time domain based, it serves the same purpose as a measure of stability 

margin for robust performance questions. The breadth of the uncertainty class tha t 

this operator supports can be seen as a double edged sword in tha t a limitation of 
the approach is its conservatism. As yet, \iLl does not support the use of engineering 

judgem ent in limiting the types of perturbation th a t a system will be exposed to in 

practice.

However, this new approach does possess many attractive features. The computation 

of ¡jlLi is straightforward, certainly much less taxing than standard fi. The approach 

is easily used and does not require the engineer to have a large amount of specialist 

knowledge. The new approach provides controller settings which yield the best pos

sible tracking error for the combination of linear nominal system and gain bounded 

perturbation class. A linearised nominal system can quite possibly be a pretty crude 

approximation of the actual plant. The new approach also takes full and due account 
of any lim itations in the plant model.

Validation of the Approach on a Second Order System

A validation of the approach has been completed at a computer simulation level. 

A second order system which is subject to substantial parameter uncertainty and 
tim e delay variation has been defined. The “best” possible PID controller which will 

minimise tracking error over the nominal and entire set of perturbed systems has 

been found. The process allows a look up table of worst case tracking error versus 
allowed % param eter uncertainty to be generated. Provided the objective function 
to be minimised is chosen correctly, these new tuning rules can quantify and improve 
the robustness of this ubiqutous control law.

PID  control o f a pH process

This new tuning procedure has also been applied to a practical non-linear pH process 

with some success on a narrow grid of perm itted perturbations. The pH process has 

been linearised about equilibrium points tha t have been determined from test data. 

Application of the new procedure shows th a t it is relatively straightforward to  de
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termine a level of uncertainty tha t will guarantee robust stability. This is achieved 
by imposing large restrictions on the size of the perturbations to the nominal model. 
However, despite the existence of a large stability margin it is not possible to find 

controller constants so th a t h l1 < 1 even when the tracking error objective is merely 

to within 100%. The breadth of the uncertainty set covered by ^ Ll renders it impos

sible to guarantee any kind of a reasonable tracking error using a PID control law. 

W hilst a PID law is not suitable for this problem, the application of this new proce
dure clearly demonstrates the need to reduce conservatism by a better description of 

the real disturbances th a t act on the system. A benefit of this new approach is tha t 

precise information about just how well a PID law can or cannot do is available to 

the engineer in the design phase of a project.

7.5 Future Research Directions

To conclude, a few comments are made about possible avenues for further research. 

These are grouped into four principal areas.

1. How algorithm performance can be improved.

2. Further application areas for the analysis of component uncertainty.

3. How conservatism can be reduced in the PID tuning work and how the search 
for the “best” controller can be improved.

4. The need to make ^  more accessible.

7.5.1 Algorithm  Performance

The validity and reliability of the new algorithm have been demonstrated in this work. 

However, more work is required to improve computation times. This is particularly 
true with larger problems. It is fair to say th a t comparison with a finely tuned 
piece of commercial software is a stiff task. However, more than 50% of the new 
algorithm ’s time is spent inside an LP solver. Dramatic improvements in computing

174



times should be possible when the linear programming difficulties tha t have become 

apparent during the course of this work are resolved

For an LP solver based on the Simplex method the best approach would seem to be 

to further reduce the number of constraints th a t need to be handled This would 

require an analysis of constraints during the execution of an inner loop It should be 

noted th a t the number of variables under consideration remains constant during an 

inner loop iteration A reduction in the number of constraints would therefore seem 
to be possible by consideration of the dual form of the linear programming problem 

in question Another possibility is to actually get inside the simplex solver itself and 

see whether the number of constraints being used can be reduced “on the fly”

Another avenue would be to study interior point methods to see whether the reliability 
problems th a t have been observed can be addressed It is noted th a t computation 

times, while better, are also still an issue for interior point LP solvers While n co 

is regarded as a good estimate of //, the example studied during this work shows 

th a t a significant gap remains, particularly for practically motivated examples This 
gap reduces the room for manoeuvre tha t an engineer has in controller design A 

branch and bound strategy, which would consider ¿zco for suitably defined subsets of 
the particular uncertainty class in question will reduce the conservatism associated 
with a convex estim ate

A similarity also exists between the problem addressed by the new algorithm and the 

solution of certain Linear M atrix Inequality (LMI) problems It will be interesting to 

see how the performance of the algorithm compares with existing solutions to  suitable 
problems

7.5.2 Analysis of Component Uncertainty

This thesis has shown how /x can help the designer make an informed decision about 

the effect of moving from components with 10% tolerances to their 1 % counterparts 

The procedure presented in this thesis can be expanded so as to provide the designer 

with complete differential sensitivity information about particular filter implementa
tions
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There are numerous different application examples where exact information of just 

how badly a frequency response can deviate from nominal behaviour can be really 

useful. Audio applications provide perhaps the best case in point. Audio buffs pay 
exorbitant sums for minute perceived improvements in sound quality. Analysis of 
audio amplifiers using /j will yield an exact measure of the payback involved in using 
high quality components. These techniques can also be used to yield the error margin 

associated with the use of linearised models of transistor behaviour. This will be of 

particular benefit to designers who need to know exactly how wrong simulations of 

transistor behaviour using a package like PSPICE  can be.

Further work is necessary to investigate the feasibility of autom ating the whole process 

of uncertainty extraction and DPF generation. It would seem reasonable th a t an 

object oriented approach might yield the best results. This would mean defining a 

system element in terms of a standardised set of inpu t/ou tpu t equations. The process 

of cascading these elements should be simplified using this process.

7.5.3 PID  Tuning Work

There is a need to develop mathem atical operators th a t can reduce the gap between 

the restrictive LTI uncertainty set tha t is handled by // and the restriction free uncer

tainty set tha t caters for. At the moment the performance requirement th a t n Ll 
places on a controller is very severe, due to the broad scope of this uncertainty set. 
It is necessary th a t the theory develops so tha t the engineer is given the flexibility to 

tightly specify the perturbation set tha t is likely to be incident on a nominal model.

The search for the “best” PID controller tha t will minimise worst case tracking error 
is non-convex. It is possible th a t the gridding methods th a t have been used thus 

far to determine controller constants have yielded local rather than global solutions. 
One alternative is to use an improved search strategy using a genetic algorithm which 
could well overcome this limitation.

In order to move beyond the simulation level there is a need to improve on the 

preliminary practical data tha t has been collected thus far. The L\ theory has been 

developed for the sampled data  domain so no new point of principle would seem 
to arise through the use of digital controllers. The simulations have proved quite
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sensitive to sensor noise so an investigation of the extra filtering requirements that 
are required during a practical implementation would seem to be necessary

7.5.4 Accessibility

Further work is also necessary on the user interface to the software The focus thus 

far has been on designing functional code It should be emphasised tha t this work 

is not purely cosmetic It is im portant th a t the code is flexible enough to deal with 
a variety of performance questions without the engineer having to engage in a large 
learning curve For example, this would be seen as a major drawback of the ¿¿Tools 
software ¡i will only gain acceptance when the support tools are accessible

Judging by the literature, there is also a need for more application work using a fi 
approach Acceptance of // w ill be accelerated by comprehensive compantive analysis 

with say, fuzzy or adaptive strategies on benchmark problems tha t can be easily 

repeated One example of this would be a flexible beam problem similar to tha t 

mentioned in [Doyle 92] This problem can be constructed so as to be relatively 

challenging quite inexpensively Each type of design strategy will have strengths in 
different areas More real problem data is required to rigorously define what each of 
these strengths will be
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