
DUBLIN CITY UNIVERSITY

School of Electronic Engineering

Control Technology Research Unit

An Integrated Environment for
Computer-Aided Control Engineering

by

John Hickey, B. Eng.

A thesis submitted for the degree of
Master of Engineering

Supervisor : Dr. John Ringwood

September, 1989

An Integrated Environm ent for Computer-Aided
Control Engineering

Abstract

This thesis considers the construction of a system to support the total design cycle for control
systems. This encompasses modelling of the plant to be controlled, specification of the final ob­
jectives or performance, design of the required controllers and their implementation in hardware
and software.

The main contributions of this thesis are : its development of a model for CAD support for
controller design, evaluation of the software engineering aspects of CAD development, the
development of an architecture to support a control system design through its full design cycle
and the implementation of this architecture in a prototype package.

The research undertakes a review of general design theory to develop a model for the computer-
aided controller design process. Current state-of-the-art packages are evaluated against this
model, highlighting their shortcomings. Current research to overcome these shortcomings is
then reviewed.

The software engineering aspects to the design of a CAD package are developed. The char­
acteristics of CAD software are defined. An evaluation of Fortran, Pascal, C, C++, Ada , Lisp
and Prologue as suitable languages to implement a CAD package is made. Based on this, Ada
was selected as the most suitable, mainly because of its encapsulation of many of the modern
software engineering concepts.

The architecture for a computer-aided control engineering (CACE) package is designed using
an object-oriented design method. This architecture defines the requirements for a complete
CACE package including control-oriented data structures and schematic capture of plant models.
The details of a prototype package using Ada are given to provide detailed knowledge in the
problems of implementing this architecture. Examples using this prototype package are given
to demonstrate the potential of a complete implementation of the architecture.

Digital Equipment Corporation

Acknowledgements

I am indebted to my project supervisor, Dr. John Ringwood, for his continued help and
encouragement. Thanks to all the staff of the School of Electronic Engineering at Dublin City
University for their patience and help, particularly during the "playing" with the coupled-
tanks. To my fellow postgrads and friends at Dublin City University, I wish you good luck
with your respective careers.

I m ust acknowledge the help given by Brian Rasmussen in proof-reading the thesis and
helping tu rn it into a readable document.

Thanks to the people in Digital Equipment Corp. who gave me the time and the resources
to complete this research.

Finally a special thanks to John, Peter, Marie, Charles, Jo and Seamus who encouraged me
to get on with this write up and gave me the time and space to finish it.

Declaration

I hereby declare that this thesis is entirely of my own work and has not been submitted
an exercise to any other university.

Dedication

To my parents, as they enter their golden years.

CONTENTS

C hapter 1 INTRODUCTION... i

1.1 Thesis Research Areas.. 1

1.2 Motivation for Research... 2

1.3 Thesis S tructure... 2

1.4 Historical Development of CACSD Ib o ls ... 3

C hapter 2 COMPUTER-AIDED CONTROL ENGINEERING.. 7

2.1 The Control Engineering Design Process.. 7
2.1.1 General Design Model ... 7
2.1.2 Control Systems Considerations... 10

2.2 Computer-Aided Design M odel.. 11
2.2.1 General CAD Process.. 12
2.2.2 CACE Process M odel.. 13

2.3 Summary of CACE Model Requirements... 15

2.4 Evaluation of Current CACSD Packages... 17
2.4.1 Shortcomings of Current Tools... 18
2.4.2 Current Research to Overcome Shortcomings.. 19

2.5 Summary... 19

C hapter 3 SOFTWARE ENGINEERING IS S U E S .. 21

3.1 Characteristics of CAD Software... 21

3.2 Language Requirements... 22

3.3 Software Engineering Considerations.. 22

3.4 Language Evaluation... 24
3.4.1 Benchmarking... 25

3.5 Language Selection... 26

3.6 Design Method... 30

3.7 Development Tools... 31

3.8 Computing Environment.. 31

C hapter 4 MSDI ARCHITECTURE.. 33

4.1 Functional Architectural Design.. 33

4.2 Object-Oriented Architectural Design... 35
4.2.1 System Diagram... 36

4.3 User-Interface Architecture.. 44

4.4 MSDI Functional Specification .. 47
4.4.1 Modelling .. 47
4.4.2 Specification... 48
4.4.3 Design ... 48
4.4.4 Simulation....................................... ".. 49
4.4.5 Verification... 49
4.4.6 Implementation... 49
4.4.7 User-Interface... 50
4.4.8 Overall Performance.. 50

C hapter 5 MSDI PROTOTYPE IMPLEMENTATION.. 53

5.1 User-Interface... 53
5.1.1 Introduction to Parsing .. 53
5.1.2 LL(1) Parsing ... 55
5.1.3 LR(1) Parsing... 57
5.1.4 Parsing Method Selection.. 57

5.2 MSDI Translational Grammar.. 58
5.2.1 LL(1) Parsing Action ... 60
5.2.2 Prototype Parser Performance.. 65
5.2.3 Command-Mode... 67
5.2.4 Menu-Mode... 68

5.3 Modelling.. 73
5.3.1 Discretization... 73
5.3.2 Transformation of State Space Representation to a Transfer Function................. 75
5.3.3 Transformation of a Transfer Function to a State Space Representation............. 75
5.3.4 Identification... 76
5.3.5 Macro Block Definition.. 77

5.4 Specification ... 78

5.5 Design : Analysis... 79

5.6 Implementation of a Controller.. 80

5.7 Simulation.. 82

5.8 Code Generation... 85

5.9 Limitations of Prototype... 85
5.9.1 VAX Ada and VAX GKS Performance Issu es .. 86

5.10 Summary.. 86

C hapter 6 DESIGN EXAMPLES.. 87

6.1 Frequency Domain Design Example.. 87

6.2 Time Domain Design Example .. 90

iv

EXAMPLES
1- Ada implementation of Dynamic Programming... 27
2 Fortran implementation of Dynamic Programming.. .. 28
3 State Space Model Representation.. 39
4 Grammar Analyser Input F i le .. 58
5 Scanner Grammar plus Head Symbols.. 60
6 Simulating various wordlengths for Fixed Point arithmetic.................................. 84

FIGURES
1 Major Milestones in CACSD and related fields ... 4
2 Design Process Model... 8
3 Control System Design Process Model.. 11
4 General CAD Model... 12
5 CACE Process Model.. 14
6 Schematic of Language Interfaces.. 30
7 MSDI Functional Architecture... 34
8 Atomic Component Structure... 39
9 Dependency Structure... 40
10 System F o rm .. 42
11 System Diagram Representation of a model.. 43
12 User-Interface Structure ... 44
13 MSDI Architecture.. 46
14 Mathematical Software S tructure... 47
15 Example of Changes to Stacks during Parsing.. 62
16 Tokenizing In p u t .. 63
17 Initial Parser Performance in parsing "A = [a 10th order matrix]" 66
18 Parser Performance in parsing "A = [a 10th order matrix]" with scanner routines

inlined.. 67
19 Graphic Editor Windows .. 68
20 Graphic Editor Software Structure... 71
21 MSDI Top-Level M enu.. 72
22 Digital Control System.. 81
23 Simulation Timing.. 83
24 Design Example 1 : Primary Indicators... 88
25 Design Example 1 : Step response of uncompensated plant.................................. 89
26 Design Example 1 : Generalised Nyquist D iagram 90
27 Design Example 2 : Reactor D iagram .. 91
28 Design Example 2 : Step response of uncompensated plant.................................. 92
29 Design Example 2 : Step response of compensated p lant...................................... 93
30 Coupled-tanks Apparatus Schematic... 94
31 Coupled-tanks Representation.. 95
32 Coupled-tanks Open Loop Unit Step Response .. 97
33 State Feedback Compensated Plant Step response .. 98
34 Simulation of 4, 8 and 32 bit baaed state-feedback controllers............................... 99
35 Actual Responses of Apparatus for 4, 8 and 32 bit based state-feedback

controllers.. 101

vl

6.3 Full Design Example................................... .. 93
6.3.1 Modelling...i 94

6.4 Summary.. 103

Chapter 7 CONCLUSIONS...................... ~ 105

7.1 What was Achieved... 106

7.2 What was not Achieved... 106

7.3 Summary.. 107

Appendix A CACSD PACKAGE SURVEY.. 109

A.1 Lund S u ite .. 109

A.2 MATLAB and its Children...i 110

A.3 DELIGHT... I l l

A.4 CLADP... I l l

A.5 Expert System Packages.. 112

A.6 Current Developments.. 112

Appendix B LANGUAGE EVALUATION ... 115

B.l FORTRAN 7 7 .. 115

B.2 PASCAL................ 116

B.3 C and C + + ... 117

B.4 A da... 119

B.5 LISP / PROLOGUE.. 120

Appendix C FUTURE TRENDS IN DESIGN COMPLEXITY AND
TECHNOLOGY .. 123

C.l Complexity Trends .. 123

C.2 Technology Trends.. 123

Appendix D LOW LEVEL OBJECT CODE EXAMPLES... 125

Appendix E MSDI TRANSLATIONAL GRAMMAR... 147

Appendix F REACTOR EXAMPLE MODEL ELEMENTS...................................... 151

REFERENCES ... 153

v

36 Simulation of 8 and 32 bit based output feedback controllers................ 103
37 Generic Matrix Package.. 125
38 Generic Complex Package.. 138

TABLES
1 Requirements for a Modern CACE Package.. 16
2 Evaluation of CACSD Packages... 17
3 Relative Size of Major Components of a CACSD Package..................................... 22
4 Language Evaluation Summary... 25
5 Whetstone Benchmarking on MicroVAX I I .. 26
6 Comparison of Ada and C array HandUng Mechanisms... 29
7 Control Engineering Data Types.. 35
8 MSDI Atomic Components and their Evaluation Functions................................... 37
9 MSDI Data Types Supported... 40
10 Class of Dependent Components... 41
11 MSDI Symbol Table Components.. 58
12 MSDI Prototype Mathematical Symbols and Functions... 59
13 LL(1) Parsing Action.. 61
14 Operator Precedence .. 63
15 Command Mode Keywords.. 68
16 Special Keys and their functions... 70
17 Hardware Component Model Parameters.. 81
18 Relative Size of Major Components MSDI Prototype... 86
19 Coefficients in 4, 8 and 32 bit controllers.. 100
20 CAD packages to support Design Process.. 113

vii

C H A PT ER 1

INTRODUCTION

This thesis is concerned with the development of a CAD package to aid a control engineer
in taking a project from modelling to implementation. In this section, the objectives of the
research are stated, motivation for developing a new CAD package for control system design
is given and the thesis structure outlined.

1.1 Thesis Research Areas
The purpose of this dissertation is to present and support the thesis th a t an integrated
computer-aided control systems design package (CACSD), or what is called in some liter­
ature computer-aided control engineering (CACE), supporting the complete design process
can be constructed and would be of considerable use. The term CACSD is used throughout
this thesis to refer to CAD packages th a t support only part of the design process (usually
controller design using some numerical algorithm but not its actual implementation), while
CACE is used to refer to a package supporting the complete engineering of a controller. This
convention was adopted from James [1] and Taylor and Frederick [2]. This process encom­
passes modelling of the plant, specification of desired performance, design of required
controllers and their implementation in hardware and software, plus the production of sup­
porting documentation. The package developed is called MSDI. The name MSDI is meant
to convey the intention to provide a system th a t covers Modelling, Specification, Design and
Implementation of the controller.

Furthermore, this CACE package can be flexible enough to be an aid to engineers with
varying degrees of proficiency, from the experienced professional to student or part-time
users.

The thesis is concerned with the following topics :
• Definition of the design process.
• Using this definition as the basis for a CACE model to support an engineer at the various

stages of the design process.
• Review of current CACSD packages against this CACE model.
• Evaluation of the software engineering issues for this CACE model.
• Development of an architecture to support the CACE model.
• Development of an implementation of this architecture.
• Evaluation of the prototype CACE package.

INTRODUCTION 1

1.2 Motivation for Research

The research undertaken and the efforts to build a new CAD system which are described in
this dissertation have been motivated primarily by the frustration of using existing packages
which individually only address part of the controller design problem.

Another major factor was the noticeable superiority of other engineering areas in terms
of CAD systems. Integrated packages with schematic capture of designs, simulation and
verification capabilities plus implementation support have been seen since the late 1970’s in
VLSI. The adoption and integration of these ideas along with advances in related areas such
as Artificial Intelligence and Graphics into a CACSD package was seen as an opportunity
of increasing its power and usefulness.

As one looks to the 1990s the complexity of the controllers to be designed and the design
solutions possible will grow. [1, 3]. A review of future complexity and technology trends for
the design problem is given in Appendix C.

This project was initiated in anticipation of the continued growth and evolution of the design
problem as a whole. As designs continue to increase in complexity and size the CAD envi­
ronment m ust meet the increased demand for performance. As new design methodologies
and implementation technologies continue to evolve, the CAD system m ust be in a position
to evolve also, incorporating new algorithms and techniques. The ability to upgrade quickly
and provide timely support of new technologies and processes is a key requirement of the
next generation of CAD systems. It will not be sufficient in the next decade to merely toler­
ate change or cope with it through use of manual or bandaid stopgap measures. This new
generation of CAD tools must be designed around the presumption that there will be a need
for change thus ensuring that the system will be capable of evolving to meet the needs of
future design teams.

Obviously another key motive was the desire to investigate and resolve the issues involved
in a project covering such wide areas as design and CAD, software engineering, control
theory and controller implementation issues.

1.3 Thesis Structure

The thesis is divided into three main sections: evaluation of the need for a new CACE pack­
age and definition of its requirements, development of the required software architecture
and its implementation, and the evaluation of the prototype package.

Section 1, the need evaluation and requirements definition, is covered in Chapters 2 and
3. Chapter 2 defines the design process and develops a CACE model that would support
this process at each phase, reviews current CACSD packages against this CACE model and
highlights developments in other areas that can be used in CACE. Chapter 3 evaluates the
software engineering issues involved in developing a CAD system and explains why Ada
was selected as the implementation language for the package.

Section 2, development and implementation of system architecture, is covered in Chapters
4 and 5. Chapter 4 details the architecture of the package, while Chapter 5 details the
implementation of the various components of this architecture in the prototype package.

Section 3, evaluation of the package, is covered in Chapters 6, 7. Chapter 6 takes several
cases studies and shows how the package cam be used. Chapter 7 comments on the overall
research and highlights areas th a t need further work.

2 INTRODUCTION

1.4 Historical Development of CACSD Tools

In the beginning (early 1960s), there was FORTRAN, paper tape, batch processing, split
decks of programme cards and 24-hour programme turnaround. Line-printer style of plots
of time and frequency responses were standard outputs. Elsewhere, optimal control theory
was being developed and having a massive impact on control system design. Some of the
work done on CACSD in this period is detailed by Melsa and Jones in [4].

In the 1970’s there was a reaction against the high degree of automation contained in the
state-space design methods, compared to the physical insights given by the frequency domain
methods of Nyquist and Bode. Researchers turned back to frequency-domain techniques and
Rosenbrock successfully fused existing mathematical methods and the emerging availability
of interactive minicomputers and graphical terminals to tackle MIMO control system design,
using the concept of diagonal dominance and the Inverse Nyquist Array method [5]. By
the mid-1970’s, libraries of control-related subroutines were being compiled. Most of the
CACSD software was written in Fortran, used rudimentary graphic display facilities and
was question-and-answer driven.

In 1980, Cleve Moler released his MATLAB software [6]. While not specifically intended
for control system design, this software was a major advance in CACSD technology and
was actively used as a basis of many other packages such such as such as PC MATLAB
[see Appendix A]. Up to this, command-driven languages were felt to be too complicated
for the occasional user. MATLAB was command-driven and overturned this notion, proving
immensely popular with non-specialist users. A chart of major progress in CACSD and
related fields is given in Figure 1.

INTRODUCTION 3

Figure 1: Major Milestones In CACSD and related fields

1950 1960 1970 1980 1990

E a r l y
P a c k a g e s

Growth
Period

Consolidation
Period

The integrated design suites developed in the latter half of the 1980’s are classified as either
comprehensive tools or as design shells . The former tries to accommodate every possible
user requirement while the latter more realistically provides the user with a framework
and tools to realise objectives. CACSD software can be further classified as code-driven
or data-driven . Code-driven is compiled and characterised by fast execution and reduced
flexibility. Data-Driven software is interpretive, implementing operators and algorithms as
data statements interpreted during programme execution and characterised by its flexibility
and relatively slow execution speeds. Recent research and development in computer tools
for control engineering are detailed in [8] and [55].

CAD has evolved over the last 10-15 years from simply being implementations of numerical
algorithms to the powerful tools of today. Early CAD systems sought to automate the labo­
rious and computationally intensive parts of the design process. Systems such as SPICE [9]
and PNE1/6 [10] were nearly purely numerical software algorithms with very limited user-
interfaces and only dealt with segments of the design cycle. During the 1980s the buzz-words
in CAD have been user-interface and integrated systems. Commercial examples of systems
that sought to implement these ideas are MATRIXx [11], the Federated CACD System [12]
and Valid’s SCALD system [13]. Another concept being actively researched is the use of AI

4 INTRODUCTION

techniques to aid in the overall process, particularly Expert Systems. Expert Systems have
been around for over a decade, from DEC’s XCON of the 1970’s to the speech-understanding
system HEARSAY-II [14]. Two approaches have been taken in Expert System development
for Control Design. One followed by James in [1] provides the designer with little scope for
manipulating the design. The design follows a "Black-Box" type of approach where most of
the action happens automatically. The second followed by Nolan [15] aims a t building an
expert system which functions as a designer’s assistant aiding and prompting throughout,
but with the user selecting the options and making the decisions.

The advances in hardware and software technology have greatly influenced current CAD
architectures. Workstation technology allied to powerful graphical drivers and ideas such
as increasing the speed of computation through parallel architectures have created oppor­
tunities for major steps forward in CAD.

INTRODUCTION 5

C H A PT ER 2

COMPUTER-AIDED CONTROL ENGINEERING

This chapter gives a definition of the control engineering design process. Then a CACE
model is developed to support this process through its various stages. Current popular
packages are evaluated against this model. Finally, the direction of the current research to
overcome their shortcomings is summarised.

2.1 The Control Engineering Design Process

Design is one of the most complex activities that humans perform. Exactly how we perform
this function is not fully understood and is the basis of much current research in psychology
and artificial intelligence [16]. In control engineering, we are concerned with the engineering
design function. Thus, design is defined as the process of turning a concept of a product
(e.g. a car, rocket or microchip) into its ultimate realisation in hardware and software.

The next section reviews general design theory. Based on this, a model for the particular
case of control design is derived.

2.1.1 General Design Model

The engineering design process uses the creativity of the designer to formulate alternative
solutions to meet a specification. By applying his reasoning and intelligence he selects the
one tha t optimises his resources (be they time, money, profits, bandwidth, rise-time , etc.)
and satisfies the design goals. This is a very complex process th a t is full of conflicts and
uncertainties as trade-offs between several different competing constraints need to be made.
The resolution of these conflicts is based on the designer’s skill and experience.

The outcome of this process is the hardware and software th a t combine to form the final
product plus the supporting documentation, from design and performance reports to user
manuals. This supporting documentation is probably ju st as important as the system itself.
Good documentation is a prerequisite for the completion of a successful project.

During the last few decades various models of the design process have been proposed, from
Asimov [17] who essentially formulated a sequential model, to Rodenacker who considered
design a transformation process of meaning or attribute of an object[7]. The system analysis
and design technique (SADT) by Ross [18] seems to be a combination of both. Lately,
feedback between the various stages plus models for the intelligence required to perform
the design have been included [19].

The model of the design process which it is felt covers all the major stages is shown in
Figure 2. The major part of this model has evolved from many of the ideas currently
being developed in the VLSI field where general design theory is much more advanced
due to the complex problems to be solved [19, 20] and the financial support poured into

COMPUTER-AIDED CONTROL ENGINEERING 7

solving them All design variables from product concept, market factors to technological
and implementational constraints

Figure 2: Design Process Model

(speed, min. track width, etc.) are being investigated and included in the final evaluation
of a design. Only through the close integration of these diverse functions into a unified
system architecture, will it be possible to address all these constraints successfully during
the design cycle. This is often referred to as computer-aided-engineering (CAE).

The basic design starts with a specification or goal. This specification, whether to control
the speed of a motor to within 1% of its desired setting or to add two binary numbers is
not important. The specification is derived from what are called concept and higher level
processes. These blocks are included to cover the influence of markets, upper management
and other factors which provide the incentives to produce a successful design. This specifi­
cation is evaluated to check for completeness and that it can be satisfied within the resource
constraints (i.e. time, money, people, max. response time, etc.). This evaluation can take
on many forms from a project or design review [21] to a mathematical proof of consistency
and completeness [22].

Man usually solves problems through building models using decomposition, abstraction and
successive-refinement. Decomposition is a process by which a a complex object is broken
down into smaller sections to make it easier to deal with. Abstraction is a method by
which only the salient features or characteristics of an object are used to build up a simple
model to reduce complexity. Successive-refinement here means the opposite of abstraction,

8 COMPUTER-AIDED CONTROL ENGINEERING

where greater detail is added to a model of an object bit by bit to give a more accurate
representation of the object.

This process of first simplifying, then increasing the detail level of a problem (i.e. model
abstraction and successive-refinement) is needed to reduce the design complexity. The
psychologist George Miller stated th a t the limit to the number of entities humans can process
a t one time is roughly 7 plus or minus 2 [23]. Beyond this, our ability to manage the
complexity of many entities falls off sharply. A clear example of the need and use of this
process is in the development of VLSI circuits where initially the designer works a t the
behavioural level where only the overall function of the circuit is considered. Then this is
implemented down to the logic level. Then even further detail is added when it is reduced
down to fabrication mask where each function is designed down to the actual silicon level.
This is an example of abstraction and successive-refinement. The original behavioural model
should be contained in the final silicon structure but is usually impossible to discern because
of all the low-level implementational detail. Usually decomposition of the problem also takes
place as the behaviour is "broken" into separate and independent functions. Throughout
design, this process of building up a model is closely related to the specification. The end
result needs to satisfy this specification.

The synthesis/analysis/evaluation phase is a feedback loop where various design alternatives
are investigated. During this cycle a lot of knowledge on the design is built up as we
manipulate our model using decomposition, abstraction, etc. and this is represented as the
knowledge-base in Figure 2. Often this cycle can also lead to the modification of the design
specifications. Thus the two-way link between the specification and evaluation block as
requirements and constraints are better understood.

The implementation aspects block covers technology to be employed, its constraints and
limitations, the manufacturability and testability of the final design which includes such
things as design for test, assembly, reliability and yield-oriented design [24, 25]. The effects
and constraints of these underlying aspects often dictate certain modifications to the overall
design strategy. This is often handled by design rules which guide the engineer to develop a
practical solution. The product is designed using these rules of thumb and then simulated
using a very detailed implementation model to verify operation. Only through extensive
simulation can the final product be verified to meet the specification. Formal specification
techniques have been used in some limited cases which, with the use of theorem provers,
allow verification or "prove-correctness" of the final design [26]. This type of work is still
only in the research stage but the advantages of such a facility is obvious as a rigorous or
"nearly-rigorous" mathematical proof of the operation of the system could be derived giving
far greater confidence in the final system, than simulation (which by its nature can only
cover a certain number of test conditions), particularly in critical real-time or safety related
systems.

The fall out of this feedback cycle is a body of results and achievements which need to be
documented for presentation to the customer. The word customer here is used to define the
originator of the design request. It could be an external person or body, a project team who
define certain requirements that need a design solution, or marketing who define a product
need. This documentation phase is often a very tedious and laborious task th a t can take up
to 15 % of a design project’s time [27].

COMPUTER-AIDED CONTROL ENGINEERING 9

2.1.2 Control Systems Considerations

Control systems design is a specific instance of the general design process discussed in
Section 2.1.1. The basic goal of control design is to create or modify a given dynamical
system so th a t it has the specified behaviour or set of attributes. In this section we will fill
in the specific tasks th a t are performed in the various generic blocks of Figure 2.

For the discussion on the control design problem the concept and higher level process blocks
are omitted. The detailed definition of the contents of these blocks is beyond the scope of
this thesis. I t is noted though, th a t these stages in the overall process exist and that their
functions are important to the overall success of it. But, unfortunately, nearly all systems
today neglect this aspect of the process and much more research needs to be done to define
and clarify a quantitative relationship between them and the rest of the design process.

The design specification would generally take the form of both model formulation of the
system to be created or controlled plus the specification of the goals of the final design (eg.
max. rise-time, bandwidth, etc.). Both the concept of a model and of a design specification
are important.

The design specification sets the criteria or objective of the control system design. It needs
to be accurate and complete to allow the ultimate design meet the desired requirements
of the customer. This specification is generally non-static and evolves and changes during
the design process as the designer understands the constraints better and the customer
understands the cost of various parameters.

The model is basically the language or tool we use to discuss and evaluate various design
options. This model takes many different forms from the rigorous mathematical framework
of state space theory and frequency domain transfer functions to semi-formal statements
about operation. It can be developed using identification techniques or from the underlying
laws of nature. In practice, we usually only use one, i.e. the mathematical framework, in
formal discussions and decisions despite the fact th a t an informal one also exists th a t is
ju st as important to the success of the design [28]. This informal model is usually handled
conceptually by the designer as he performs his task and is usually closely related to the
formal one but cannot be directly expressed in th a t framework e.g accuracy, limitations of
formal model and areas of its possible extensions, etc. . Often this informal model is too
complex for the designer to use effectively and results in some of its bounds being breached
during the design process unwittingly by the designer unless he has a formal means of
validating all decisions against this model.

The synthesis / analysis / evaluation feedback loop in control system design is where the
various design strategies are evaluated to see their effect on the model. This cycle requires
the ability to reason about and manipulate the model, to decompose, recombine, extend,
reduce, analyse and synthesize changes. Several different methodologies can be used de­
pending on the level of analytical knowledge available. Evaluation in control design is
usually done through simulation. This simulation shows the designer the performance of
the system under various conditions in both the time domain and in the frequency domain.
This can be considered an analysis of performance. For this reason, the evaluation block
can be combined into the analysis block as analysis of dynamic/static behaviour.

In our control systems design the implementation consists of hardware and software com­
binations. Both have a significant input on the design viability in terms of speed, memory,
reliability, etc. constraints [73]. These constraints need to to be factored into the design pro­
cess to ensure its ultimate success. Considering documentation as an output of the design

10 COMPUTER-AIDED CONTROL ENGINEERING

process, the presentation and implementation components of the general design model have
been combined into one, called the implementation block, which will encompass all outputs
of the controller design process.

This refined model of the control systems design process is shown in Figure 3. The knowledge­
base components of Section 2.1.1 have been renamed as theory and assumptions to highlight
the role of the informal model.

Figure 3: Control System Design Process Model

2.2 Computer-Aided Design Model

The objective of CAD is to support the design process in such a way as to increase overall
design quality, reduce costs and increase designer productivity. The computer has enabled
many new design methods and technologies to be used due to its vast computational ability.
By introducing a computer into the design process we are increasing the complexity of it.
The only justification for this is, if its introduction simplifies the overall process to a much
greater extent. To achieve this most successfully, the designer and the computer need to
be combined in an integrated fashion. To accomplish this we need to look a t the various

COMPUTER-AIDED CONTROL ENGINEERING 11

strengths and weakness in terms of the design process, of both man and the computer. As
Pang and MacFarlane in [29] define them we can see th a t the designer’s function should be
to set goals and argue from first principles in terms of abstract concepts. He should handle
and interpret ambiguity, conflict of objectives and uncertainties in description and perfor­
mance. Computers should be used to evaluate functions, execute complex procedures, search
through complex data sets, correlate information, and generally perform laborious repetitive
tasks. The key is to join both together in a way tha t frees the designer to concentrate on
the task at hand rather than on how to operate the system.

2.2.1 General CAD Process

There are many different models for the CAP process but, in general, all recent models are
variations of the one illustrated in Figure 4.

Figure 4: General CAD Model

The knowledge-base and the database can be thought of as the location where the model
of the object being designed is stored. This model changes throughout the design process
being transformed using the various algorithms available. This process of representation
or model reduction, transformation and refinement is commonplace across all engineering
design and the CAD process needs to support it.

12 COMPUTER-AIDED CONTROL ENGINEERING

The need to control these changes of the model is one of the reasons for the popularity of
inrlnHing AI into CAD systems. Most approaches use a knowledge base of some sort where
information on the task at hand is stored. Then various inference mechanisms are used to
make decisions based on this knowledge. These mechanisms can range from very simple as
in SACON [30] to very sophisticated as in CONSULTANT [20]. Many commercial systems
do not really have what could be called a knowledge base but merely an extensive database
which can be searched and data selected to use in the execution of algorithms. Also systems
vary between whether the knowledge-base, often in the form of an expert system, calls in
the various algorithms and searches the database such as the approach followed by James
in [1], or whether the designer directly cedis in the algorithms and passes the desired data
himself as in most current commercial systems such as CLADP and Control-C. Thus the
dotted lines between the algorithms, database blocks and user-interface blocks in Figure 4.

The knowledge-base approach definitely offers the most effective method particularly in
areas of well-defined problems. They lead to a reduction in the complexity of the problem
by removing some of the entities th a t the designer has to deal with. These knowledge-base
systems allow the designer to concentrate on the design task as he issues commands on what
he wants to do rather than on how to do it. The problem with this, is th a t currently a lot
of flexibility for the designer to experiment with various approaches and algorithms is lost.
James [1] attempts to overcome this by allowing the user access to the numerical software
directly if required, but the drawback of this is th a t the mode of operation is drastically
changed thus causing the related designer reluctance to use these facilities.

The user-interface is generally highly I/O intensive by nature. A large graphical content will
be present plus symbolic manipulation based on the information being communicated, as re­
search [31] has shown th a t most engineering information is best digested and interpreted in
these forms. As the traditional medium for communicating control engineering information
about dynamical systems has been pictorial i.e. block diagrams and signal flowgraphs, it
is essential any modern CACE package provides this form of interaction with the designer.
Most earlier CAD systems neglected this aspect.

2.2.2 CACE Process Model

Based on the previous sections, to be effective, the model of the CACE process needs to
encompass model formulation, design specification, analysis and design methodologies and
implementation details. These components need to be accessed through a flexible and con­
sistent user-interface. The structure designed is shown in Figure 5.

The techniques needed to support each activity is discussed latter. But do note the need for
close linkage between the activities. This linkage is maintained to the designer through the
user-interface. Through this interface the designer is allowed to access various numerical
routines and design objects.

COMPUTER-AIDED CONTROL ENGINEERING 13

Figure 5: CACE Process Model

13
.a

1 -4

i
3

z
AI

The model presented in Figure 5 is broken into two main sections, numerical algorithms
and AI algorithms. This is to reduce the overall complexity as many of the AI techniques
th a t will be required in the various design phases of modelling, specification, etc. will be
essentially the same. Only the objects being manipulated and goals being sought will differ.
This structure will allow the incorporation of numerical software already available in an
easy manner. This is the approach adopted by most recent researchers [1, 12, 32]. The
advances in computing hardware and compiler technology make optimising algorithms for
max. speed less important than overall functionality and flexibility. This approach also
allows new numerical techniques to be incorporated into the system easier by increasing
the modularity of it.

The design-base represents a combination of both the usual database facilities plus AI fea­
tures such as rule-bases, theorem-provers, etc. . All the information known on a design
should be incorporated here e.g., the models, design decisions, why they were taken, rules
of practice, etc. . This allows a full design’s history to be reviewed and analysed plus
also gives direct support to the documentation facility th a t allows customised reports to be
generated.

The User-interface will be similar to that described in Section 2.2.1 but with a control-
theory based syntax supporting the usual data structures such as matrices, polynomials,
state space descriptions, transfer functions , etc. . This User-interface also needs to allow
the ability to link into and use models and routines developed external to the package.
This is important as many good models of systems already exist encoded in an algorithmic
manner inside a subroutine and would be difficult and time-consuming to reformulate in
terms expressible in a new CAD system.

14 COMPUTER-AIDED CONTROL ENGINEERING

2.3 Summary of CACE Model Requirements

' A central theme of the MSDI project was th a t to enhance the overall design process. There
m ust be a close integration of all steps in the process. Increasing the capability of one
section in isolation from the other design activities (such as model capture, observation and
interpretation of simulation results, data management, etc.) will not necessarily lead to a
better design environment. A main focus of the MSDI system was to address this need. The
key requirements for a CACE system to achieve this are tabulated in Table 1.

These requirements are broken down by design phase, and the key functions needed to
support each phase. Then each key function has its major attributes defined. For exam­
ple, the User-interface for a modem CACE package needs to support Schematic Capture.
This facility in turn needs to support the input of Block Diagrams, Signal Flowgraphs and
Performance Graphs i.e. the major pictorial control system representations.

The final prototype produced does not attem pt to support every one of these requirements,
but a selected subset to demonstrate the power of an integrated CACE package. All the key
functions are supported but all the major attributes are not. Over time it is hoped to flush
out the package functionality as per Table 1.

COMPUTER-AIDED CONTROL ENGINEERING 15

Table 1 : Requirements for a Modern CACE Package
System Compo­
nent Key Functions Major Attributes Needed

User Interface Schematic Capture

Dialogue Facility

High-Level Graphics

Macros

Consistent

Help Features

Failure Response

Block-Diagrams, Signal-Flowgraphs, Performance graphs

Expression-based Syntax, Matlab-llke

Windowing, Plotting functions

Command Macros, procedures, model macros

Structured language

Online, expandable

Clear error messages

Modelling Construction

Transformation

Schematic, Control-type models e.g. State Space, Transfer
Function; Identification

Discretization, State-Space <-> Transfer Function, Linearize

Specification Capture

Validation

Specification Language

Multi-Level - Behavioural, Implementation Level

Design SISO

M IM O

Simulation

Non-Linear Techniques

Analysis

Pole Placement, PID, Optimal, Observer

Pole Placement, Optimal, INA, Observer

Time, Frequency Response

Linearisation, Simulation, Describing Function

Pole/ Zeros, Stability, Sensitivity

Implementation Simulation

Code-Generation

Hardware Limitations - computation time, reduced precision,
Software

Controllers, Interface Routines, Jacketing Routines

Documentation Generation Design Decisions, Final Structure

Database Facilities Control Data-Structures

Management

Interface to Foreign Code

Real, Complex, Matrices, Transfer Functions, State Space sys­
tems

Journalling, Modifying

Data, Procedures

Misc. Facilities Design Rule Checker

Expert Assistant

The MSDI system does not attem pt to enforce any particular design methodology. Rather,
it provides an operating environment which allows the specification and implementation of
different design styles. This is achieved through the careful design of a set of atomic tools
which can be easily assembled in a variety of ways, thereby supporting a large number of
design methodologies and verification styles.

16 COMPUTER-AIDED CONTROL ENGINEERING

2.4 Evaluation of Current CACSD Packages

Most of the current commercially available CACSD packages are methodology focused with
little development put into the overall need of the control engineer to perform his task.
Researchers such as Rimvall [33], Goodfellow and Munro [34] in recent years have striven
to overcome this problem by concentrating on the user-interface aspects of packages. But, in
general, these packages cover only part of th e design cycle, the control strategy formulation.
The front-ends tend to be alphanumeric where the Engineer enters his already developed
model so the system can use it. Little support is usually given for developing the model.
Then the controller is designed through an iterative process without reference to the the
final implementation technology or consistency checks to validate design assumptions and
actions. Generally the documentation facilities are very poor. See Appendix A for details
of the packages examined. An evaluation of them against the CACE model defined in
Section 2.2.2 is shown in Table 2.

Table 2: Evaluation of CACSD Packages

Function
Lund
Suite MATLAB1 MATRIXx2 CLADP CACE-III

User Interface Graphie Input None None Good None None

Dialogue Facility Fair Good Good Fair Fair

Macros Features Fair Good Good Fair Poor

Consistent Fair Good Good Fair Poor

Help Features Good Fair Good Fair Good

Failure Response Fair Fair Fair Fair Fair

Modelling Construction Fair Fair Good Fair Fair

Transformation Good Good Good Good Good

Specification Capture None None None None Good

Validation None None None None Good

Design SISO V. Good Good Good Good Fair

M IMO Good Good Good Good None

Simulation V. Good Fair Good Good Fair

Non-Linear Tech. Good Poor Poor Good Fair

Analysis Good Good Good Good Fair

Implementation Simulation None None Poor None None

Code-Generation None None Fair None None

1 Including control systems, identification and MIMO toolboxes

2 Including system build and autocode facilities

COMPUTER-AIDED CONTROL ENGINEERING 17

Lund
Function Suite MATLAB1 MATRIXx2 CLADP CACE-III

Table 2 (Cont.): Evaluation of CACSD Packages_______________________________

Documentation Generation Poor -Poor Poor Poor Fair

Database Facilities Control Data Struc­
tures

Poor Poor Poor Poor Fair

’Foreign' Interface Poor Fair Fair Poor Fair

Management Poor Poor Fair Poor Fair

1 Including control systems, identification and MIMO toolboxes

2 Including system build and autocode facilities

A table of packages th a t can be used for different parts of the design cycle is given in
Appendix A.

2.4.1 Shortcomings of Current Tools

While numerous CACSD packages exist today, most are focused on a particular aspect of
the design problem. The lack of packages that facilitate the implementational aspects of the
problem is a prime example. The technology to be used has a major bearing on the overall
success of the design. Such factors as speed, quantitization error, etc. need to be evaluated
in a software breadboarding manner prior to hardware implementation. Usually several
independent packages are tied together to attem pt to cover this problem but the different
structures and design goals of these packages make it very difficult to integrate them easily,
see [12] for an example of this approach.

Little validation and recording of design decisions is done in current systems and usually
the only form of verification of a design is through extensive simulation of a mathematical
model of the system and its controller, divorced from its implementational aspects.

Other disadvantages th a t characterise current tools are :
• large monolithic programs which are hard to modify to fit varying design needs—

verification and regression testing of these large programs has become a great challenge
in itself.

• many different, hard to learn, mostly textual, user interfaces with conflicting, inconsis­
tent, or redundant command syntax and semantics.

• inadequately integrated with the rest of the CAD tools such as waveform preparation,
schematics capture (design capture including complete controller specifications), and
postprocessing tools making sharing of models, pertinent data, calculations, and algo­
rithms difficult.

• inadequate simulation data collection, observation, and storage of simulation history for
future analysis.

• little provision for callable/shareable interned functions or procedures. (Almost no code
is reused, so development and meiintenance of the tools is expensive.)

18 COMPUTER-AIDED CONTROL ENGINEERING

• fundamental, often used, features and functionality may have been implemented through
layers of less than optimal workaround code often making fundamental features very
expensive timewise to use.

• inadequate accuracy and consistency checking of current models.
• Inadequate data structures, usually only the complex matrix, and database facilities.

2.4.2 Current Research to Overcome Shortcomings

Most of the currently used CACSD packages were designed around MATLAB and concepts
th a t prevailed at the early 1980s. Some of the current efforts, such as the ECSTASY project
[35], are attempting to overcome some of these disadvantages but as discussed in [55] none
of these developments focus on the specification / verification or implementational needs of
a general CACE system.

Rimvall’s IMPACT (see Appendix A and [36]) focuses on the data structures problems while
Barker, Chen and Townsend are driving research a t the University of Wales, investigating
the issues involved in the graphical input of control problems for their CES package [37].

A major step foward in CACE would be the formulation of standards for CACE packages to
follow. Standards for command language, standard data formats and programme interfaces
are currently being worked on by an International Federation of Automatic Control (IFAC)
workgroup on CACSD standards.

2.5 Summary

A model of the CACE process from design specification to implementation has been devel­
oped. It indicates the need for the support of specification of the desired controller plus the
need to add implementational detail into the overall problem to ensure th a t the final design
does in fact meet the customer’s goal. The design process was broken into the following
stages :
• Model Formulation
• Design Specification
• Design / Analysis / Simulation , etc.
• Implementation
• Documentation

The requirements for a CACE to support this process were given in Table 1. This defined
the starting point for the development of a new package for CACE called MSDI.

COMPUTER-AIDED CONTROL ENGINEERING 19

V •

C H A PT ER 3

SOFTWARE ENGINEERING ISSUES

The purpose of this chapter is to examine the requirements of the MSDI project from a soft­
ware engineering viewpoint. It explains the reasons for the adoption of an object-oriented
design approach for the software development and the selection of Ada as the major lan­
guage to be used to implement the proposed CAD system. Also the need for a secondary
language, FORTRAN, plus the requirement for a graphics package to support I/O interface
development is explained. The development tools th a t were needed to support the design
and coding phases of the project are detailed.

3.1 Characteristics of CAD Software

The end goal of this research project is to develop a working prototype of a CACE package
th a t supports the entire process of designing control systems from initial problem formu­
lation through to physical implementation of the controller. The system requirements ,
defined in Chapter 2 can be broken into categories to analyse the basic characteristics of
the requirements in general. The categories are :

User Interface
The user-interface is highly I/O intensive by nature. A large graphical content will be present
plus symbolic manipulation due to the nature of the information being communicated, as
research [31] has shown tha t most engineering information is best digested and interpreted
in these forms. Most early CACSD systems neglected this aspect as the concentration was
on numerical issues, but in recent years the design of user interfaces has become a dominant
issue in the development of CACSD tools [8] [36] [38],

Numerical Algorithms
These will be computationally intensive with some, particularly in the simulation area, being
concurrent. An example of this is the splitting of a simulation of a large model into several
parts and simulating each different piece on a different processor. Most will be dealing with
matrix computations by the nature of Control Theory [39] [40].

Data-Base
The data-base refers to those parts of the system responsible for storage/retrieval of data
from data structures built up by the system whether located in trees/graphs in memory or
file manipulation [41].

Artifical Intelligence
AI will be a part of most sections of the system like the User-interface but for the purpose
of this analysis it is sectioned it off to itself. These will deduce if certain goals are possible
from a given set of facts. These will be very computational intensive [22] [29].

Software Engineering Issues 21

Thus from the bnef analysis of the major components of the system, the implementation
language, or combination of languages needs to support
a. Intensive I/O activity, alphanumeric plus graphical
b. Intensive computational activity
c. Database manipulation
d. AI paradigms formulation

Also other major characteristics of the system are .
e. I t will be Large (> 50,000 lines of Code)
f. I t will be designed for Long-Life , 1 e , up-gradable
g. Portable
h Incremental (grow bit by b i t)

A study by Rimvall in [33] illustrates the evolution of CACSD packages from being almost
solely numerical algorithms to the much more balanced distribution between the software
components of today. A typical breakdown of code in modern packages is shown m Table 3

3.2 Language Requirements

Table 3: Relative Size of Major Components of a CACSD Package
Function Size

User-lnterface 30 %

Numerical Algorithms 30 %

Graphical Software 20 %

Symbolic Software 5 %

Database / Error handling, Memory Management 1 5 %

Thus from this it can be seen th a t no one component of the system should dominate m the
selection of the mam design language or in the selection of the design method to be used to
develop the system

3.3 Software Engineering Considerations
Many concepts developed in the last ten years have radically altered ideas on software de­
velopment. I t is cliche to say there is a software crisis [42] The development of a common
programming language was one attem pt to help overcome this crisis [43] The fundamental
cause of the software crisis is th a t massive, software-intensive systems have become unm an­
ageably complex Many of the symptoms of the software crisis cited by Fisher m [43] are
unresponsiveness, unreliability, costliness, lateness, not portable and inefficient systems
The importance of this crisis m most large projects today cannot be overlooked as software
costs tend to be dominant by a 4.1 factor over hardware. In this research project it probably
was a 40:1 factor. To overcome the crisis a structured approach throughout the project using
modem software engineering concepts was required.

22 Software Engineering Issues

Recognising th a t change is a constant factor in software engineering development , four
goals first presented by Ross, Goodenough and Irvine in [44] still dominate *
Modifiability - Controlled Change

Efficiency - Use of resources in an optimal manner

Reliability - Prevent failure in conception, design and construction plus recover from failure

Understandability - Accurate Model of real world

To achieve these goals a structured design approach is required Many design methods have
been developed m the last ten years but they can be divided into one of three classes [45]

The system is designed from a functional view point, starting with a top level
design and progressively breaking this into a more detailed design This
method is exemplified in [23]

This method focuses on the data of the problem and its related structures
This method is very popular in database type applications using variations on
the Jackson Method [46]

This method focus on the objects of a problem domain and the interrelation­
ships between them This method has grown out of work by Pamas, Liskov,
Guttag and Abbot [47] This type of approach by its nature encapsulates
many of the design principles of software engineering such as abstraction,
information hiding, modularity, etc

The selection of the implementation language(s) for a project involves tradeoffs In general
no one language will satisfy all design requirements perfectly The tradeoffs involved are the
increased complexity caused by the introduction of another language to alleviate problems
caused by deficiencies in one language versus design difficulties caused by working within
the limitations.

The design method to be used and the implementation language are related Particular
design methods are more suited to certain languages than others. Thus the implementation
languages(s) was selected and then the design method

Top-Down Structured Design

Data-Structure Design

Object-Oriented Development

Software Engineering Issues 23

3.4 Language Evaluation

Using the characteristics of CACE packages defined in Section 3.1 and the principles of
software engineering the following criteria (in decreasing order of im portance) were selected
to investigate the merits of various languages for this project.
a. Maintainability / Readability
b. Modularity / Hierarchical
c. Data Structures / Types
d. Efficiency
e. Concurrent Facilities
f. Portability

g- Error Handling
h. I/O Facilities
I. Familiarity

Maintainability and readability mean the ability of a language to aid in the process of
maintaining a programme throughout its lifecycle. Such facilities as separate compilation
effect this. The ability of a language to reflect the meaning intended by the algorithm
designer is also important.

The modular/hierarchical criteria has two aspects : the language’s support for subprogram­
ming and the languages’s extensibility in the sense of allowing programmer-defined oper­
ators and data types. By subprogramming, it is meant the ability to define independent
procedures and subroutines and communicate via parameters or global variables.

The data structures/types criteria mean the ability of a language to support a variety of
data values (integers, reals, strings, pointers, etc.) and nonelementary collections of these
such as arrays, records and dynamic data structures such as linked lists, queues, stacks
and trees. Also these criteria cover the ability of the compiler to support type checking to
verify correct usage of types.

Efficiency covers both compilation and execution. Efficiency of execution will include both
the time and space characteristics of languages.

The concurrent facilities criterion will measure the ability of a language to support multiple
threads of controls.

Portability refers to the ability of easily moving a programme from one computer system to
another. This includes compiler availability on various systems plus the inherent difficulties
in porting various languages from machine to machine.

The error handling criterion refers to the facilities a languages has for detecting and han­
dling error conditions when they occur in normal execution of a program m e. This refers to
such things as hardware interrupts on overflow or memory exhaustion.

The I/O criterion covers both terminal I/O and file handling capabilities of a language. The
reason I/O and file handling capabilities are of a relatively low weighting is because most
systems offer these in their operating systems and if necessary these system routines could
be directly called for the internals of a programme to perform I/O. This is the case for VMS

24 Software Engineering Issues

flnH UNIX. If the language is modular enough this approach could be localised to limit its
effect on portability of the overall system.

The familiarity criterion refers to the history or m aturity of a language. This includes
available textbooks, design examples and experiences.

A summary of the languages considered is given in Table 4 More details on the reason
behind the ratings are given m Appendix B

Table 4: Language Evaluation Summary
Language

Fortran
C riteria Evaluated 77 Pascal C C + + Ada Lisp Prologue

Maintainability/Readability Poor Fair Poor Poor V Good Poor Poor

Modularity/Hierarchical Poor Fair Fair Good V Good Good Fair

Data Structures/Types Poor Good Good V Good Good Fair Good

Efficiency Excell Good Good Poor Good Fair Fair

Concurrent Facilities None None None Good Good None None

Portability Good Good Good Poor Good Fair Fair

Error Handling Poor Poor Poor Good Good Poor Poor

I/O Facilities Fair Good Good Good Good Poor Poor

Familiarity Excell V Good V Good Poor Poor Good Fair

From this evaluation, Ada stands out as the best current language to implement a CACE
package. It nearest nval, C++, fails mainly m the area of readability and the availability
of good compilers The availability of good compilers for C++ can be expected in the near
future, but the language’s terseness will always be a problem for large systems development
compared to Ada

3.4.1 Benchmarking

To aid in the selection of the implementation language, the Whetstone Benchmark was run
for four language, Ada, Fortran, Pascal and C to compare their run-time efficiency The
results of this benchmark are shown m Table 5 All the compilers were VAX compilers, and
the benchmark was run on a Micro VAX II system

These initial result indicated th a t Ada was the FASTEST language despite all its run time
checks On investigation it was found th a t the OPTIMISE=TIME figures for Ada reflect the
results of automatic Inlimng of one of the benchmark subroutines. The OPTIMISE=SPACE
gives a "truer" reflection of Ada’s performance in real-world conditions

For the benchmark trials we can see th a t Fortran is generally the most efficient though
overall there is no major difference between the performance of the languages. For more
details on this benchmarking see [48].

Software Engineering Issues 25

Table 5: Whetstone Benchmarking on MIcroVAX II

Language Version Optimisation Checks
Stubbed
M ath

Stub
Rating % R eal M ath

M ath
Rating
%

Ada 1 1 Time None 1739 100 1086 100

Time All 1653 94 981 90

Space None 860 49 714 66

Space All 816 47 670 62

Nooptimize None 721 42 564 52

Nooptimize All 627 36 515 47

Fortran 4 1 Optimize None 992 57 796 73

Optimize All 744 43 624 57

Nooptimize None 889 51 727 67

Nooptimize All 720 41 596 55

Pascal 3 2 Optimize None 1011 58 787 72

Optimize All 755 43 628 58

Nooptimize None 955 55 782 72

Nooptimize All 716 41 625 58

C 2 1 Optimize None 733 42 339 31

Nooptimize None 633 36 336 31

N ote : The MicroYAX II was ru n n in g VMS V4 3 and had 9 Mb of memory.

3.5 Language Selection

Ada was chosen as the main language in which to implement the system in because
a. its powerful implementation of modem software concepts like strong typing, concur­

rence, modularity, maintainability, readability, operator overloading (the ability of of an
operator such as +,- or * to have several alternative meanings a t a given point in the
program), e tc ,

b. the overall design environment th a t Ada provides (APSE) eased the job of project man­
agement,

c. the VAX/VMS implementation provides an implementation that is only slightly less
efficient than Fortran in run-time performance;

d. the possibility of using Ada as the language for implementing the designed controllers,
thus allowing the possibility of reusing large sections of code;

e. use of a language sensitive editor reduces the burden of its verbose syntax;
t. it is easy to interface with other languages.

These advantages made it suitable despite current lack of experience with Ada A clear
example of its advantages (in terms of readability/maintainability and operator overloading)
is shown in Example 1 and Example 2. These examples display two code fragments, one in

26 Software Engineering Issues

Fortran, and the other in Ada, for the solution of the optimal control problem using dynamic
programming. This basically entails minimising the quadratic cost function of (1)

by recursively solving (2) and (3) backward m'time to find the feedback matrix F, usmg P(oo)
= 0, until the process converges to a constant matrix.

Fk_! = (R + B' Pk B)-1 B' Pk A (2)

Pk_i = A' Pk A - Fl_t (R + B' Pk B) Fk_x + Q (3)

where A and B are the system and input matrix to the state space representation of the
system respectively

N ote : The Ada coding is an extract from the MSDI implementation, while the Fortran
coding is based on the implementation used for the CAD package developed in [49]

Example 1: Ada implementation of Dynamic Programming
w i t h MATRICE, u s e MATRICE,

p r o c e d u r e DYNAMIC_PROGRAMMING (A , B , Q, R . i n MATRIX, K o u t MATRIX) i s

— C o m p u t e s t h e f e e d b a c k m a t r i x t h a t m i n i m i s e s t h e p e r f o r m a n c e i n d e x f o r A , B
— a n d t h e u s e r d e f i n e d Q a n d R

P k . MATRIX (A ' r a n g e (1) , A ' r a n g e (1)) = (o t h e r s => (o t h e r s = > 0 0)) ,
P k J L MATRIX (A ' r a n g e d) , A ' r a n g e (1)) ,
F MATRIX (B ' r a n g e (2) , A ' r a n g e (1)) ,

J I n t e g e r = 0 ,

S t o p _ C o n d i t i o n c o n s t a n t L o n g _ F l o a t = 1 O E - 1 6 ,

b e g i n

loop
F : = (INV (R + T r a n s (B) * P k * B)) * T r a n s (B > * P k * A,
P k _ l : = T r a n s (A) * P k * A - T r a n s (F) * (R + T r a n s (B) * P k * B) * F + Q,

i f C o l _ N o r m (P k - P k _ l) < S t o p _ C o n d i t i o n t h e n
e x i t ;

e l s e
P k = P k _ l ,

e n d i f ;

e n d l o o p ;

K : = F , — F i n a l c o n t r o l l e r ,

e n d DYNAMIC PROGRAMMING;

Software Engineering Issues 27

Example 2: Fortran Implementation of Dynamic Programming

s u b r o u t i n e DYNAMPROG (A , B , Q, R , K, N, I P , S I Z E)
**
* M o d u l e : D y n a m i c P r o g r a m m i n g *
* it

* T h i s m o d u l e u s e s t h e d y n a m i c p r o g r a m m i n g t e c h n i q u e t o s o l v e *
* t h e o p t i m a l c o n t r o l p r o b l e m . *
it it

I M P L I C I T DOUBLE P R E C IS IO N (A - K) , DOUBLE P R E C IS IO N (0 - Z)
INTEGER N, I P , S I Z E , IE R

DIMENSION A (S I Z E , S I Z E) , B (S I Z E , S I Z E) , Q (S I Z E , S I Z E) R (S I Z E , S I Z E)
DIMESNION K(S I Z E , S I Z E) , SU M (SIZ E E , S I Z E) , F N (S I Z E , S I Z E)
DIMENSION A T (S I Z E , S I Z E) , B T (S I Z E , S I Z E) , PN_HOLD(S I Z E , S I Z E)
DIMENSION FACTOR(S I Z E , S I Z E) , WK(S I Z E , S I Z E)
DIMENSION T E M P I(S I Z E , S I Z E) ,T E M P 2 (S I Z E , S I Z E) , T E M P I (S I Z E , S I Z E)

' F o r m T r a n s p o s e o f A a n d B
CALL MTRANS (A, AT, N , N , S IZ E)
CALL MTRANS (B , BT, I P , N, S I Z E)

J = 0

1 R e p e a t c o m p u t a t i o n o f P a n d F u n t i l F c o n v e r g e s

3 0 J = J + 1

CALL MMOL (BT, PN, T EM PI, I P , N, N, S I Z E) ' B ' . P N
CALL MMUL (T EM PI, B , TEMP2 , I P , N , I P , S I Z E) • B ' . P N B

CALL MADD (R , TEMP2 , FACTOR, I P , I P , S I Z E) ' R + B ' P N .B

1 u s e IMSL r o u t i n e L i n v 2 f t o c o m p u t e I n v e r e s e o f R + B ' . P N B
CALL L IN V 2F (FACTOR, I P , S I Z E , TEMP2 , 4 , WK, I E R)

1 C h e c k I n v e r s e C o m p u t e d 0 K.
I F (IE R N E . 0) THEN

PR IN T * , ' * * * ERROR * * * ' , IE R
RETURN

END I F

1 F i n a l l y c o m p u t e FN =■ I n v e r s e (R + B ' P N .B) B ' PN A
CALL MMUL (TEMP2 , TEM PI, TEMP3 , I P , I P , N , S I Z E)
CALL MMUL (TEMP3 , A, FN, I P , N, N , S I Z E)

C
C C o m p u te P n - 1 = A ' P n . A - F n ' . (R + B ' P k . B) . F k + Q
C

CALL MMUL (AT, PN, TEM PI, N, N ,N , S I Z E)
CALL MMUL (T EM PI, A, TEMP2 , N, N, N , S I Z E) ' A ' P n A

CALL MTRANS (FN , FNT, N, I P , S I Z E) ' FN '

1 C o m p u t e F n ' (R + B ' P n . B) F n
CALL MMUL (FN T, FACTOR, TEM PI, N , I P , I P , S I Z E)
CALL MMUL (T EM PI, FN, TEMP3 , N , I P , N , S I Z E)

CALL MXCOPY (PN , PN TEMP, N, N, S I Z E) ' S t o r e P n

1 Now c o m p u t e A ' P n A - F n ' (R + B ' P n . B) . F n + Q
CALL MXSUB(TEMP2 , TEMP3 , T EM PI, N, N , S I Z E)
CALL MADD (T EM PI, Q, PN, N , N, S I Z E)

Example 2 Cont’d. on next page

28 Software Engineering Issues

Example 2 (Cont.): Fortran implementation of Dynamic Programming
! C h e c k t o s e e i f h a s c o n v e r g e d
CALL MXSUB (PN , PN_HOLD, T EM PI, N, N, S I Z E)
CALL NORM (T EM PI, CNORM, N, N , S I Z E)

I F (CNORM .G E . I E - 1 6) THEN
GOTO 3 0

ELSE
CALL MXCOPY (FN, K, I P , N)

END I F

RETURN
END

The Ada implementation is clearly much more concise. Both packages use a Matrix facility.
The Ada Matrix package, however, can use attributes (i.e. length which computes the size
of a matrix passed in) which make them much more robust and not needing the size of the
array used for the matrices to be passed in. Thus in Ada we declare the matrices to the
exact required size, rather than in Fortran which we declare all matrices to be of a SIZE,
and then pass this parameter to the Matrix subroutines.

The functions in Ada are also much easier to read and use. Compare Matrix addition,
subtraction, multiplication and copy routines MADD, MXSUB, MMUL and MXCOPY of
Fortran to Ada’s use of operator overloading to give standard matrix equations, +, -, *,
:= . Also notice th a t all the intermediate storage variables disappear in Ada, leaving the
compiler to do the work the programmer has to do in Fortran.

Pascal and C do a better job then Fortran in some areas. But this example would be coded
similar to Fortran in them, if in a more structured fashion. This just one example of the
advantages of using Ada. A quick comparison of Ada with C is shown in Table 6 in the area
of array handling.

Table 6: Comparison of Ada and C array Handling Mechanisms
Array Operation Ada Implementation C Implementation

Assignment

Partial Assignment

Comparison

X := Y;

X(5..7) := Y(3..4);

X(I..J) < Y(1..4)

For ((I = 0; Px =&X; Py = &Y), I = 1+1, I < Y_Size)

(Px++ = Py++);

Similar loop as above

Similar to above but including explicit boolean check

The Ada language has much more powerful array manipulation than C, as illustrated
above. Almost all the "tricks" used in C programming such as copying arrays using auto­
incremented pointers are done in Ada using language features such as slicing (i.e. X(5..7)
). I t removes the need for the programmer to control these "tricks" and details this work to
the compiler.

Only one CACSD package is currently implemented in Ada (IMPACT [55]). The easy
interface of Ada under VMS to other languages was very important as most of the current
numerical software is written in Fortran (Eispack, Linpack, etc.). It would have been
foolish to have to re-write these types of packages ju st because of the adoption of a new
language. Thus Fortran was used as a secondary language throughout the numerical parts
of the system where already implemented solutions to numeric problems were available.

Software Engineering Issues 29

For graphical routine development, VAX GKS [50] was used to ensure portability between
computer systems and easy maintenance. VAX GKS is an implementation of the Graphic
Kernal System, a device independent graphic package. VAX GKS was considered the lowest
level of a graphical entity. Thus term inal dependency was removed. The interfaces between
the Ada Core , Fortran Libraries and GKS package are shown in Figure 6.

Figure 6: Schematic of Language Interfaces

For AI routines, initially it was planned to use Prologue. But early in the project, two
Ada packages were obtained, ALISP and EXPERT which forefilled the needs of AI routine
development. ALISP was a generic package that provided the necessary facilities to emulate
the capabilities commonly used in AI but not directly supported in Ada. These facilities are:
1. Definition of the primary data object, the symbolic expression.
2. Symbolic expression operators, such as create, select, manipulate and delete.
3. Packages which defined generic AI objects such as patterns, rules and rulebases.

EXPERT provided the facilities to do backward inferencing on a rulebase.

These two provided all the facilities th a t were need for the project, as AI was not considered
a major component for the prototype to be constructed. The main reasons for using them
was to avoid using another language, and to preserve the portability of the final package.

3.6 Design Method

The design method to be used for software development was based on the object oriented
method developed in [51]. The method basically consists of five steps :

30 Software Engineering Issues

Identify the Objects and their Attributes
This requires the identification of the mggor components of a problem space plus their role
in our model. This in our case included user-interface, database, etc.

Identify the Operations that affect each Object and the operations each Object must
Initiate
This requires the characterisation of the behaviour of the system or subcomponent and its
objects. The semantics of the object is established by determining the operations that may
be meaningfully performed by the object or on the object. Also this requires the identification
of any constraints on time and space that must be observed.

Establish the Visibility of each object In relation to each other
The purpose of this step is to capture the topology of objects from our model of the system.
This requires defining what objects "see" and are "seen" by a given object.

Establish the Interface of each Object
This defines what can be viewed inside a module and outside. This is where a module
specification is produced in formal notation. For this formal notation the Ada language
itself was used, as its specification/body concepts lends itself to this.

Implement each Object
This is the detailed coding of the body of an object. This involved both composition and
decomposition.

3.7 Development Tools

By using Ada to develop the CACE package much of the project management facilities were
already provided (in APSE). Other tools were used to support other design phases. The
list of tools used during the development were :
a. Language Sensitive Editor - To reduce typing overhead.
b. Ada Development Environment - To provide compiler and code management system to

control programme updates (ACS provided this).
c. Programme Code Analyser - To help identify computational dominant sections of code.
d. Source Level Debugger - To help debug source code.
e. Cross-Compiler - To generate code for target system.

3.8 Computing Environment
The package currently runs under the VMS operating system, thus mainly limiting the sys­
tem initially to the VAX architectures (e.g. 11/785, MicroVAX). The system is designed to
be highly portable and has very little linkage to the VMS operating system or VAX architec­
ture. This should allow it to be transported to other machines with minimal modification.
To date this has not been tried.

The m in im um hardware set the MSDI prototype is designed to run on with acceptable
performance is :
• 0.1 MFLOPs processing power.

Software Engineering Issues 31

• 1 M primary storage.
10 M secondary storage

• High Resolution Bit-Mapped Graphics Display
• Graphic Input Device

The target environment used for package development was a VAXStation II system with a
monochrome graphic monitor with high-speed network link to a MicroVAX II system. This
environment provided graphical design entry and created a distributed processing environ­
ment.

Future workstation environments will be much more powerful with parallel processmg and
workstations linked to large mainframes to perform the computational intensive functions
The target system used for the development was seen to be a scaled down version of such
systems.

32 Software Engineering Issues

C H A PT ER 4

MSDI ARCHITECTURE

The previous chapters suggest th a t the success of the next generation of CACE packages
should be measured by how well they integrate all the relevant engineering activities m the
modelling, specification, design and implementation of a control system.

This chapter describes and defines the architecture th a t was designed to support such a
structure for MSDI First the reasons behind this architectural design are developed, and
then the detailed functional requirements of the major components are given.

The final architecture design for MSDI was arrived a t following decomposing the problem
functionally and then by the o b j e c t - o r i e n t e d - d e s i g n (OOD) method Functional decomposition
and object-oriented decomposition produced different architectures The final design uses
mainly the OOD architecture, using the parts of the functional architecture a t a lower level.

During the discussion on the architecture, two classes of control system representation of a
plant model will be presented. One called the b e h a v i o u r a l m o d e l , and the other called the
i m p l e m e n t a t i o n a l m o d e l . The behavioural model refers to an abstract, mostly technology-
independent representation used to perform linear analysis and design Such models are
the linear, tim e-m vanant state-space and transfer function representations. The implemen­
tational model refers to a more detailed model incorporating the technology constraints used
to implement a model An example would be the word-length of a microprocessor used to
implement a control algorithm, or the A/D conversion time

4.1 Functional Architectural Design

The f u n c t i o n a l a r c h i t e c t u r a l d e s i g n divided the CACE process into stages or functions seek­
ing to modularize the system. This is the approach used for most CACSD packages to date
The MSDI functional architecture designed, shown m Figure 7, does not differ radically
from the architecture of packages such as CLADP or MATRIXx. This structure supports
the mam functional blocks as derived in Chapter 2 This model maps onto the CACE process
model th a t it needs to support.

To achieve the goals identified in Chapter 2, the functional architecture was structured into
eight major components user-interface, modelling, specification, design, simulation, verifi­
cation, implementation and database modules. Some of the minor blocks such as analysis
and documentation are not shown m Figure 7. This architecture allows individual modules
to be developed separately and upgraded independently of each other The major inter­
face between each block is the database, which itself is functionally decompoesd to allow
incremental development of the system.

MSDI ARCHITECTURE 33

Figure 7: MSDI Functional Architecture

Notes (1) Database sectioned to indicate its segmented structure
(2) Linkage between functional components is through database

coordinated by the user-mterface
(3) Direct access to database from user-mterface not shown as this is

considered a low-level feature

A major problem seen with this method is that it forces a concentration on the operations
to be performed, such as definition of a model and computation of the gam matrix required
to position the poles of a model at desired locations This type of architecture tends to­
wards making data global - instead of localizing it where it is used, thus make the system
more resilent to change Furthermore, a package based on this architecture is also less
resilent because a change m data structure tends to npple through the entire architecture,
necessitatmg major code re-writing.

As part of the functional decomposition, data-types needed to support control system en­
gineering were identified These data types are shown m Table 7 The lack of adequate
data structures, as already outlined, is one the most serious drawbacks of many control
packages Often the Complex Matrix is the only data-structure supported The MSDI a r­
chitecture supports the control oriented structures of Table 7

34 MSDI ARCHITECTURE

Table 7: Control Engineering Data Types
Data Type Typical Uses

Usually High Level Language Data
Type Integer, Real, Boolean, Stnng

Low level functions

Matrices Real, Complex Analysis and design algonthms, model representations

Polynomials Dynamical equations

Transfer Functions SISO Model representations

Transfer Function Matrix M IM O representations

State-Space Representation 4-tuple representation of a dynamical model

Domains One-dimensional structure used for range descriptions

Trajectones For time histories, signal and plot descnptions

Table Parsing action, Frequency response

Non-Linear Descriptions Non-linear model descriptions

4.2 Object-Oriented Architectural Design

The first pass of object-oriented design (OOD) revealed two mam objects, a complete system
entity and a specification entity A system entity defines the current representation of a
design It includes the plant, the designed controllers and their implementations. This
includes both the formal model and aspects of the informal model. The system entities will
change over time as we proceed through the design process, adding controllers and defining
their implementation. The operations th a t affect a system entity and those th a t it must
initiate are •
a. Formulation - definition and building of a system model from its components (1 e mainly

the definition of the plant).
b. Modification - addition, deletion and changing of components of a system.
c. Design - addition of controller components.
d. Implementation - addition of implementations of controller components
e. Simulation - simulating various stages of the system, behavioural and final implemen­

tation.
f. Analysis - Stability of a plant model, sensitivity, pole/zero locations, etc
g. Verification - verifying that a system meets a specification
h. Save/Restoration - saving and recalling of a system to/from a file.
i. Initialisation - initialising a system to empty

The specification entities operations attributes are :
a. Formulation - definition and building of specification entity.
b. Modification - Addition, deletion and changing parts of the specification.
c. Profiling - generation of a specification profile, 1 e. the time reponse and the frequency

response envelops it specifies
d. Save/Restoration - saving/recalling a specification to/from a file.
e. Initialisation - Initialising specification to empty.

MSDI ARCHITECTURE 35

As ran be seen the system entity depends on the specification entity. The specification entity
could have been included as part of the system entity definition, but as much more research
t . h a n undertaken in this thesis is needed on the specification side, it was felt better to
encapsulate it on its own for future modification.

4.2.1 System Diagram

The system entity is defined as a type called system diagram. The term system diagram is
used to differentiate it from a block diagram which is usually used to refer to the definition of
a model representation composed of transfer functions The system diagram can be composed
of many different components such as state space models, transfer functions, signal sources,
and non-hnear components.

The system diagram is used to build up a user’s model of a system from atomic components,
composite components, structural interconnections and graphical attributes. An atomic
component is an instance of a functional representation (or model template) th a t can
be given a set of input values and can compute a set of output values via an evaluation
function (EvFn). This EvFn is an algorithmic definition of the behaviour of a component
An atomic component is devoid of any structural information and cannot be divided into
any smaller element Each atomic component can be thought of as a generic template for a
model th a t can have its parameters filled in to define its particular behaviour. An example
of an atomic component is a discrete state space model block which has its output computed
algorithmically from*

Z<fe+1 = # Zfc + T uk (4)

Vk = C xk + D uk (5)

with uk being passed to the EvFn for a state space object A particular instance of this
atomic component would define the values of 4>, T, C, D, initial state and sample interval

To achieve flexibility the MSDI architecture clearly delineates between the behavioural and
structural aspects of models It provides a uniform structural modelling framework which
contains placeholders or templates for behavioural descriptions The atomic components
defined for MSDI and their algorithmic form of EvFn are shown m Table 8.

36 MSDI ARCHITECTURE

I

Table 8: MSDI Atomic Components and their Evaluation Functions
Atomic Object Name Evaluation Function Comment

Continuous State Space x(t) = A.x(t) + B.u(t)

y(t) = C .s (t) + D.u[t)

Initial state and current

state contained in model.

Discrete State Space Xfc+1 = + T .u t

î/fc = C.Xk + D.Uk

Initial state, current state and

sample interval contained in model.

Continuous Transfer Function G(s) - Y(s)/ U(s)

Discrete Transfer Function G(z) = Y(z)/ U(z) Sample time included.

Gain y(t) - K.u(t) K is the gain constant.

Summer y (l) = E L j S i g m . u i (t) j = no. of inputs to summer. Signi
defines whether i* input is added or
substracted

Step Source y(t) = Magnitude

Pulse Source , . s (M a g n i t u d e i f t < W i d t h ;

V [> ~ { 0 i f t > W i d t h ;

Ramp Source y (t) = R a t e . t

Sine-wave Source y (t) = A m p l i t u d e . s m (2 n f t) f, frequency in Hz.

Square-wave Source y (t) = A m p l i t u d e . s i g n (s i n e (2 n f t)) f, frequency in Hz.

White Noise Source y(t) = Magnitude.random(t) + Bias random(t) is a random no. between -1
and 1.

Coloured Noise Source y(t) = Magnitude.G(white noise) G(.) represents a filter

General Wave Source y(t) = Vaiue(t); Taken from a file.

Saturators (uk i f S a t m i n < U k < S a t m a z

y k — \ S (L t m a x i f U k ^ S n t m a x î
(S d t m i n i f Uk ^ S d t m i n i

’ Max. and Min. Limits

MSDI ARCHITECTURE 37

Table 8 (Cont.): MSDI Atomic Components and their Evaluation Functions
Atomic Object Name Evaluation Function Comment

Code Block y(t) = Fn(u(t)) Fn defines a compiled subroutine

Input Block y(t) = u(t) Defines an input connection to system
diagram

Output Block y(t) = u(t) Defines an output connection to sys­
tem diagram

A composite component is defined from a structured group of atomic components Its EvFn is
defined from the way the atomic components are structured An example of such a composite
component is two state space models m series The EvFn for such a model is the same as
in (4) and (5) with T, C and D defined as .

T a C ,
T =

T i
T2Z?i

C = [D2 C, Cz], D = [Di D,\ ,

where the subscripts 1 and 2 refer to the first and second blocks Normally, a composite
component will not be so simple, as various outputs of an atomic component will feed into
different component blocks Some of these blocks may be non-linear, such as the saturator,
preventing computation of EvFn into a nice simple equation Such composite components
have their EvFn sectioned into an ordered list of atomic EvFns th a t are sequentially com­
puted, with individual outputs computed before they are needed for an input

The only composite component currently defined is
Macro-Block a group of interconnected atomic blocks that define the composite EvFn The no of I/O are

defined by the no of input and output blocks defined in the group

The structural framework is where component interconnections are defined. These intercon­
nections are made up by connecting input/output (I/O) ports of a component This connection
is represented as an abstraction of a signal conductor A port is defined as an input (or sink
node) or an output (or Source node) Output ports are considered the source of a signal on
a connection path and define the value of the signal on the path Only one source port can
drive any one connection path Each path m ust terminate at a sink or input port Therefore,
such things as connecting an input-to-input or an output-to-output are not defined From
this, an atomic component is seen to be composed as show in Figure 8

38 MSDI ARCHITECTURE

Figure 8: Atomic Component Structure

Input
Ports EvFn Output

Ports

This template is used to define the data type of each of the atomic components An example
of this is shown in the definition of a state space model in Example 3.

Example 3: State Space Model Representation
t y p e S t a t e _ S p a c e _ A t o m i c (D o m a in : T im e _ D o m a i n

N o _ S t a t e s . N a t u r a l
N o _ I n p u t s N a t u r a l
N o _ O u t p u t s N a t u r a l

r e c o r d

S t a t e _ S p a c e _ B e h a v i o u r S t a t e _ S p a c e _ R e p (D o m a i n , N o _ S t a t e s , N o _ I n p u t s , N o _ O u t p u t s) ,
I n p _ C o n n e c t i o n . 1 0 (1 N o _ I n p u t s) ,
O u t _ C o n n e c t i o n 1 0 (1 . N o _ O u t p u t s) ,

e n d r e c o r d

w h e r e S t a t e _ S p a c e _ B e h a v i o u r d e f i n e s a S t a t e S p a c e R e p r e s e n t a t i o n a l t y p e o f
d e f i n e d i n e q u a t i o n s (4) a n d (5)

Based on these atomic components, looking at the design from a bottom-up view, several
clear objects are seen to be required to support the MSDI system Most of these data types
map directly onto atomic components. These objects, which from now on are considered
available data-types, are shown-in Table 9, plus their associated major operations They
define the majority of the data types identified as needed for a control package m Table 7
Examples of the implementation of the generic matrix type, complex number and polynomial
are shown m Appendix D

= C o n t i n u o u s ,
= 0,
= 0,
= 0) i s

MSDI ARCHITECTURE 39

»

Table 9: MSDI Data Types Supported
Data Type Operations Typical Use

Complex Number Arithmetic +, -, *, / as defined over complex
field, standard functions sin, tan, cos,asin,
atan.acos, extration of real/imaj part, etc

Parameter value, part of an expression,
variable value (e g in frequency response)

Generic Matrix Matrix Arithmetic operations **, in­
verse, eigenvalue, eigenvector, standard func­
tions

Provide instances such as real matrix or
complex matrix used in state space rep­
resentations and transfer function matrix
for M IM O systems

State Space Compute output, controllability,observability, pole
placement, frequency reponse computation,
series and parallel combination

A component of a plant or a controller

Polynomial Polynomial arthmetic, evaluation Define a denominator or numerator for a
transfer function

Transfer Function Conversion from State Space form, frequency
response evaluation, series and parallel com­
bination

A controller / compensator, component of
plant model

Table add to, take from, initialize, update Storing of data (time responses, parsing
table, e tc)

Atomic components, as well as bemg used to compose a macro block, can be used to define
other atomic components tha t depend on them An example of this is a discrete state
space model, derived from a continuous model, or an implementation of a controller derived
from a controller model The system needs to monitor and maintain these dependencies as
illustrated m Figure 9

Figure 9: Dependency Structure

To achieve this, the architecture defines a class of atomic components, th a t can be instanced
with a model param eter - similar to the idea of a generic package in Ada This class of
components is shown m Table 10

40 MSDI ARCHITECTURE

Table 10: Class of Dependent Components
Atomic Component Parameter(s)

State Space Sample time, transfer function model

Transfer Function Sample time, state space model

Controller Linear model (i e state space, T F or macro)

Implementation Controller, hardware (i e wordlength, multiplication speed)

The difference between defining a state space model by (a) defining T, C, D and sample
time and (b) discretizing a continuous state space model is th a t (a) sets up an indepen­
dent state space type while (b) creates a dependent state space type which depends on the
continuous model To the user, (a) creates a new component and adds a new Icon to the
terminal surface, while (b) creates a new component but does not add a new graphic rep­
resentation or Icon to the terminal surface If this continuous model is deleted or changed,
then the dependent discrete model is updated accordingly (i.e. deleted or re-computed)
These dependencies are maintained to free the designer from tracking changes from one
model into another, and to prevent errors from entering into a design from the failure to
update a dependent model To ease manipulations within the package, these dependencies
are maintained both ways - 1 e parent-children and child-parent This idea maps onto
Maciejowski’s data base ideas [58] The mam difference is the increased flexibility as, what
Maciejowski defines as a system type is distributed across the architecture and encapsulated
in the objects tha t use or supply each data component For example, a continuous transfer
funtion controls its discrete version. This means th a t changes to a data structure, such as
a transfer function, are localized to one small section of the code

From previous description, the system diagram(SD) is composed of components that are
interconnected together to model a plant or system It contains behavioural descriptions
of the components, structural information on how they are interconnected and graphical
data on how the model is pictorially presented to the user Using the OOD approach, the
SD was modelled as being represented by three entities behaviour, connection and iconic
These are implemented through 3 separate packages called system form, connections and
icon respectively

The system form package provides the capabilities to create, modify and delete behavioural
representations. Originally it was planned to use a form to solicit and present this infor­
mation as shown in Figure 10 This type of a form would allow concise and clear data entry
and display Unfortunately, during the implementation phase VAX GKS V3 0 was found
to contain a major bug in the implicit regeneration of Regis screens This meant th a t to
implement this form as intended using only GKS, continual regeneration of the full screen
was needed This would cause major delays if many objects are displayed on the screen and
user irritation from the constant "flickering" of the screen As no form package (such as
FMS or TDMS) was available to provide this data entry format, it was decided to use a
prompt mode for data entry This m eant th a t the behavioural model’s various components
are solicited individually, m a predefined order from the user This is not seen as a major
drawback, except for experienced users, who might find this a bit inflexible A current re­
lease of VAX GKS V3 1 has this bug fixed, so it is possible to implement the original System
Form idea

MSDI ARCHITECTURE 41

Figure 10: System Form

System Form

N airn : Sample Time Domain : D iscrea

Sample Time : 1 _S ten .

Svstem Matrix : \ 1 2.1
-1 0.75]

Input Matrix : [0
1]

Output Matrix : 1 1.1 0.11

Feedback Matrix : [0 .0]

State Arre««aWility :
Stale 1 - Yes
State 2 - No

Initial State : [0
0]

Input Type : m/sec

Output Type : volts

Comments : This is a sample svstem form that represents a discrete state space
model. The model is second order with 1 input and 1 output.
The input is in dimensions nVscc while the output is in volts.

The connections package allows the user to select his I/O ports for connections and allows
a connection to be drawn between them by the user. These connections, from a user view,
can start at either an input or output port, the line drawn through various points, and
finally terminated at another port. The connections package checks the validity of the
interconnection i.e. one input port on path and one output port.

The icon package provides the graphical attributes facilities. It allows a user to position the
graphic representation or icon of a component on the display surface and to perform various
manipulations on these icons such as select, move and delete.

The system diagram type uses these three packages to implement its entity. The data
structure used to represent the system diagram type is the directed graph (digraph). A
digraph is defined as an ordered pair (V, E), where V is a set and E is a binary relation on
V. V and E can be represented geometrically by a set of vertices (vi, v2 , vs) and a set of
unidirectional edges (ê , e2,...,et) [61].

A typical data structure used to implement a digraph is a list of vertices and a list of edges.
Each vertex is stored with an incoming edge table and an outgoing edge table. Each edge
is associated with two pointers - one to its source vertex (or node) and another to its
sink. This sort of doubly linked representation allows both forward and backward graph
scanning and efficient searches for a vertex from an edge, or vice versa. There are many
advantages in using such a structure for editing and manipulating the system diagram. The
main drawback is increased complexity from simply generating a netlist. The OOD method
helped decompose this complexity to manageable sections - i.e. system form, connections
and icon packages.

42 MSD1 ARCHITECTURE

Therefore the data representation of the system diagram consists of (a) a list of nodes (ver­
tices) and (b) a list of unidirectional connections (edges). Each node record contains pointers
to the records of ils input and output connections, the type of behavioural block it is, its
behavioural model, and its graphic data (1 e where it is positioned on display surface, orien­
tation, iconic representation, etc) A connection is a topological path from one component
to another A path from a pick-off point m a connection is treated as a separate connection
although it references the same signal Each connection record contains pointers to its pre­
ceding and succeeding blocks Figure 11 illustrates how a system diagram representation
looks for a specific diagram. The link between each block represents really two links, one
each way.

Figure 11 : System Diagram Representation of a model

System Diagram Iconic Form

MSDI ARCHITECTURE 43

Note, th a t the digraph implementation is more complex than shown in Figure 11. Such
things as the behavioural models and dependencies are not flushed out to avoid clouding
its essential structure. I n actuality, the various nodes of-the System Diagram and the
connections are multi-threaded (i.e. two way links between entities). The structure actually
takes on a more n-dimensional characteristic which is not representable on two-dimensional
media.

A signal leaving a block (or more precisely, a block’s output port) may have more than
one destination via connections, which are represented diagrammatically by a set of line
segments as shown in Figure 11. Usually these line segments begin a t a block’s output
port, fork at one or more pick-off points, and terminate at several input or sink ports. The
path primitive can be described by a tree structure. The start point of the path is referred
to as the root of the tree, the junction point of two connections as an internal node, and
a sink port as a leaf. All these connections are represented by a so-called p jio d e types
(p_node stands for partial node), which contain the co-ordinate of the point, a reference to
the relative connection, a pointer to the parent or root node, and a list of children. The data
structure of the path primitives allows the connections to be logically manipulated.

4.3 User-lnterface Architecture

Design of a user-interface is perhaps the most difficult part in designing a CACE system.
It requires a delicate balance among many alternatives and apparently conflicting require­
ments. For example, an expert system user usually prefers a terse command-driven mode of
interaction whereas a novice prefers menu-driven or a detailed question-and-answer mode.
In addition, a good user-interface should help turn a novice user into an expert user in a
relatively short time.

The approach used for the MSDI architecture is to allow 2 modes of operation. Firstly, a
command-driven environment similar to MATLAB with control-based syntax, data-structures
and MSDI specific commands. The second, a menu-driven environment, using hierarchical
menus. To maintain flexibility, either environment can be called from the other by a sin­
gle command or key. The basic user-interface structure, called the man-machine interface
(MMI), is shown in Figure 12.

Figure 12: User-interface Structure

The function of the session-logging facility is to record the activity of each session. This
allows a session to be restarted, or be documented in some predefined form if required or to
allow the recall of a previous command for execution/modification.

44 MSDI ARCHITECTURE

The command-mode component of the MMI defines a command-driven parsing action Com-
- mands are textually entered, parsed and acted upon if valid This is simihar to the MAT-

LAB interface, but supporting a more complete set of control onented data types Command
"'primitives to construct and manipulate the System Diagram are needed

The menu-mode component has been designated as the graphic editor in MSDI, as it ba­
sically allows graphical manipulation of the system diagram The menus are organised to
allow the engineer to sequence through the phases of a design, seeing the options available
to him and complete operations m a minimum no of keystrokes

The functionality m both modes is the same The command mode can be seen as a very
flexible interface to manipulate entities at a much lower level, while the menu-mode is
highly structured and requires much less knowledge to use. The prototype package has
put much greater emphasis on the menu-mode, as this is seen as the primary method of
introducing a user to a new package.

Both modes of MMI share a common parser This is to allow consistency of syntax in either
mode, such as matrix definition and manipulation and function calls The command mode
is seen to have commands that equate to menu options, such as to manipulate the System
Diagram, simulate it and delete it.

The final architecture for the MSDI package is shown m Figure 13

MSDI ARCHITECTURE 45

Figure 13: MSDI Architecture

Document

Session-Logging

MSDI

MMI

Command-Mode

Command Parser Graphic_Editor_Control

Graphic_Editor

Im plem entation Simulation Analysis D esign

Lower Level Modules.

Notice that this differs from most of the architectures used for existing CACSD packages.
Typically these are decomposed functionally. The OOD method places most of these functions
at a much lower level of abstraction. They only become apparent as operations on the system
diagram or components of the system diagram - i.e. simulate the SD, design a controller for
the SD, etc. . This is as it should be, as they are simply algorithmic procedures th a t operate
on data passed to them. These design methods, analysis methods, etc. are isolated into
separate packages and accessed as required. Adding a facility, say a new design method, is
simple. Just add a new procedure to the package and another option to the design menu
and function name to the commands. Figure 14 show how these designs are composed from
lower level parts.

46 MSDI ARCHITECTURE

Figure 14: Mathematical Software Structure

Mam Programme
(Ada Code)

Design Method / Algorithm
e g INA, Optimal, Pole Placement

(Ada Code)

Intermediate Level System Analysis Algorithms
e g Frequency Response, RLS

(Ada Code)

Basic Matrix Manipulation Real, Complex,
Transfer Functions, etc (Ada Code)

Fundamental Linear Algebra Equation Solutions
e g Eispack, Lrnpack (Fortran Code)

Level 4

Level 3

Level 2

Level 1

Basic Linear Algebra Operations Complex n o , vector/scalar operations
Polynomials (Ada Code)

Level 0

A design method a t level 3, is seen to be composed of routines at the lower levels The
structure of MSDI, with levels 0-4, allow the easy integration of new methods as the majority
of the code has already been written, particularly for level 0,1 and 2

4.4 MSDI Functional Specification

The functionality this architecture was designed to support is categorised m the following
sections by design phase (i.e modelling, design, e tc) These functions are distributed
across the architecture through the system diagram entity They are grouped by design
phase to give a clear picture of the overall functionality designed-in. Also this can be seen
as a specification for a complete MSDI package

4.4.1 Modelling
The MSDI Command Language (CL) supports performance (i e specification) and imple­
mentation architectural modelling as well as the more traditional behavioural modelling An
important aspect of the MSDI CL is th a t it is viewed as a continuum between these modelling
levels This view is justified since performance evaluation can be thought of as a high-level,
almost pattern-independent verification of system model, whereas behavioural simulation
is normally considered to be a pattem -dnven exercise of the same model The MSDI CL
could also address the needs for high-level analog modelling In particular, means could be
provided for algorithmically describing complex analog components such as OPAMPs, ADCs
and DACs. These models would cater for the implementation structures we will be using
The prototype developed does not support all these models but the OOD method used allows
additional models to be added. The modelling needs are addressed by .
• Schematic-capture of block diagrams of plants or systems as the primary hierarchical

method to describe models

MSDI ARCHITECTURE 47

\

• Individual blocks can be linear, or non-linear built up using icon menu and defining the
internal behaviour of each block.**■ *

• Icons include all standard models • state space, transfer function, saturation elements,
tables, noise sources, summations, continuous /discrete forms, etc

• Copying, deleting, updating, combining of blocks, etc is facilitated
• Modelling of linear behavioural models and controller implementations (m terms of

hardware and software used) is incorporated. Non-linear behavioural models need to
be added, but are not implemented in the prototype.

• Capture of both the formed and "informal" (e.g state accessibility) models of objects
and their constraints for direct use m design process

• Facilities to interface to subroutines developed external to the MSDI system to be in­
corporated as models

• Identification facilities to analyse experimental data
• Model transformations tools to support linearization, model reduction, frequency to state

space representations and vice versa and discretization
• Database to store models

Also the command language of the user-mterface will include structured access to these
facilities 1 e menu-mode of operation

4.4.2 Specification

The specification functionality defines the criteria th a t a designer requires his design to
meet. To provide this functionality the MSDI specification component will be based on
• A set of "primary" indicators / criteria of system performance (e.g bandwith or pole

locations) from which all other criteria can be defined
• A facility to add more to this primary set in a structured manner.
• Consistency and completeness checkers of a specification
• Formulation of criteria in executable form so as to allow simulation of specifications
• Access through the CL of MSDI
• Close integration with the verification tools

4.4.3 Design
The design suite incorporates well-proven and numerically stable algorithms
designer
• Methodologies to support design of hnear, tim e-m vanant , MIMO systems

quency and time domains.
• Design methods for both controllers and observers.
• Facilities to include new methods on-line and easy integration of such methods into the

package’s "standard" suite at a latter date
• The constraints of all design methods built into methodologies to aid and warn designer

to give the

in both fre-

48 MSDI ARCHITECTURE

4.4.4 Simulation

The simulation engine provided is designed to cover the needs of the designer at both the
behavioural and zmplementational levels. The functions of this simulation component are
•• A multi-simulator approach th a t allows for all levels of simulation behavioural and

implementational Both continuous, discrete simulation, and hybrid (continuous and
discrete) are catered for

• A simulation platform capable of taking advantage of multiprocessing environments
This is envisaged to be through using Ada’s tasking facilities to distribute a simulation
run over several processors.

• Fast interactive mode of operation for initial design debugging and batch mode of oper­
ation for detailed implementation simulation at latter stages of the design process

• Both time simulation and frequency response
• Standard interface for other simulators and tools
• Facilities for both deterministic and statistical stimuli
• Examination and recording of simulation data by pointing a t nodes of a schematic as

well as standard I/O recording This can be used to dynamically collect data durmg a
simulation from various points of a system diagram, such as an actuator output or a
state variable

• In-built consistency checkers to maintain integrity of the simulation both numerically
and conceptually

• Generation of warning messages when specification criteria are breached or errors de­
tected

4.4.5 Verification

The verification tools will be developed initially to run separately from all other tools but
ultimately seen to run m the background of a design session continuously verifying actions
in real-time The requirements of this component are
• Formal reasoning mechanism to examine and prove th a t specific design criteria are

attained, can or cannot be attained when sufficient information on system and design
requirements are available

• Verify completeness of simulations to verify design criteria
• Check consistency and completeness of design strategy and implementation as against

specifications
• Verification of validity of design decisions

4.4.6 Implementation

The facilities to be included to aid in the implementation phase of the design process are
• Catalogue of hardware and software components available for incorporation into an

implementation of a design.
• Inclusion of details of their constraints and limitations

MSDI ARCHITECTURE 49

• Facilities to update component library and include new components (both hardware
and softw are).

• Integrate cross-compiler and low-level debuggers to support development of the imple­
mentation on the target architecture

• Software blocks for control strategies, drivers for hardware platforms, numerical subrou­
tines, jacketing software, fail-safe routines and inter-processor communication routines

4.4.7 User-lnterface

The MSDI user-interface will be the basis for tool integration It must provide a consistent
user interface, both textual and graphical, to all the design tools The capabilities of this
interface are
• The schematics environment th a t allows designers to enter, display and modify the

schematic-level description of their design, via a graphical interface.
• Designers able to specify their design hierarchically —able to place multiple copies of a

box, the contents of which are specified only once, elsewhere
• The system able to provide and support.

a. Input from the designer.
b output from simulations, displayed m graphical and tabular forms
c. A structured command language th a t encompasses modelling, specification, design

and implementation
d Facilities to perform basic mathematical manipulation such as matrix calculations
e. Controlled database examination and manipulation facilities
f On-line help facilities
g. Macros and other features to allow for extendibility of commands and functions

on-line
h. A path between the modelling component and the simulation tools support

• a fast interactive simulation loop and a batch oriented simulation loop
• input to the simulation system—designers will be able to communicate to the

simulation system by pointing to a symbol on their schematic, rather than by
typing m a textual name

• highlighted paths on the schematic
• path extraction for simulation (1 e extract a sub-diagram for simulation)

4.4.8 Overall Performance

The performance of the MSDI system needs to be judged on its impact on the overall design
cycle This impact cannot be measured directly without a significant amount of surveying
and usage of the MSDI system. An attem pt to quantify this, using the prototype package,
is done m the next two chapters

50 MSDI ARCHITECTURE

i

Specific performance criteria for the system th a t can be defined are :
• Response time of the system to commands to be optimised for quick updating of the user

on what is happening - within 1 sec. of command i.e. if performing an action th a t takes
more than 1 sec. to complete then the user is informed.

• All algorith m s and commands to be robust with error recovery incorporated All errors
will be logged into a file to facilitate analysis

• The documentation facility includes reports generation of a session activity.
• The accuracy of routines and models as they progress through the design cycle are

computed and available to the user
• Security of the system with controlled access of system facilities designed-m to overall

structure
• Error-handling and reporting functions included.

MSDI ARCHITECTURE 51

C H A PT ER 5

MSDI PROTOTYPE IMPLEMENTATION

This chapter outlines the details of the prototype implementation of the MSDI architecture
Major design decisions are explained Algorithms used are outlmed and reasons for their
selection given.

The final sections of this chapter give details of the limitations of the prototype and func­
tionality not mcluded Most of these functions were not considered essential to demonstrate
the power of an integrated CACE package Some particulars are given on how these can be
mcluded to the package quite easily

The description of the prototype starts a t the user-mterface and works down into the in­
ternals of the package. The main direction taken for the prototype was to support design
of embedded digital controllers The mode of operation is mainly directed towards menu­
mode with the package producing Ada code th a t can be compiled to implement the designed
controller

5.1 User-lnterface

The user-interface (also referred to as the man-machine interface) of the prototype provides
both the modes of operations as defined necessary m the previous chapter command-mode
and menu-mode They are both linked by a common parser. The next section describes
the parser developed for MSDI and how it is structured. An informal introduction to pars­
ing theory is given followed by the MSDI translation grammar. Then the details of how
command-mode and menu-mode operate sure given

5.1.1 Introduction to Parsing

Parsing is one of the most common functions performed by computer software systems Most
people learn parsing m their primary school English classes, when they learn th a t a sentence
of the English language is composed of a t least two phrases (subject and predicate) and
can possibly have more (direct and indirect objects, subordinate clauses, etc) Students of
elementary English are taught to diagram sentences, that is, decompose them into phrases,
each of which represents a unique syntactic unit, and th a t phrases themselves decompose
into subphrases tha t decompose into subsubphrases and so forth, producing a diagram th a t
any computer programmer would readily recognise as a tree. This tree structure is known
as a syntax tree, or parse tree.

Parsmg the English language is currently beyond the capability of computer software due
to the language’s rich syntax and the potential for writing ambiguous sentences A sentence
with more than one parse is said to be ambiguous.

MSDI Prototype Implementation 53

Languages with ambiguous sentences are not generally useful for communicating with a
computer. Programs tha t accept input from a file (such as a compiler for a high-level lan­
guage) or from a terminal (such as an information retrieval system) m ust have their input in
an unambiguous form tha t conforms to well-defined parsing rules. The collection of all allow­
able inputs is called a language in a formal sense, and the rules for parsing are collectively
known as a grammar The grammar actually consists of four distinct components a list of
terminal symbols, a list of nonterminal symbols, a goal symbol and a list of productions.

The terminal symbols of a language are the words and punctuation symbols of the language
For example, in English "computer" "control" and "design" are all terminal symbols. The
terminal symbols can be thought of as the leaf nodes of a syntax tree.

The nonterminal symbols of a language are the names of the phrases that compose sentences
of a languages In English, these are names like "sentence", "subject", "predicate", "direct
object" and "subordinate clause" The nonterminal symbols are the names th a t label the
nodes of a syntax tree tha t are not leaves. The set of all terminal and nonterminal symbols
taken together is called the vocabulary. A sequence of symbols of the vocabulary (both
terminal and nonterminal) is called a string

The goal symbol of a language is the nonterminal symbol from which all other phrases of
the language are subordinate It is the label of the root node of the syntax tree In the
English example above, the goal symbol is "sentence", although in reality sentences can be
grouped into larger phrases called "paragraphs", which can be grouped into larger phrases
called "chapters", etc People rarely diagram whole paragraphs In this formal sense, the
English language consists of the set of all syntactically correct sentences

The productions of a grammar are the rules by which one string can be derived from another
A production consists of two strings, a left-hand-side stnng and a right-hand-side string
The meaning of a production is th a t an occurrence of the left-hand-side stnng m some other
string A may be replaced by the nght-hand-side stnng to produce a new stnng B When
this is done, the production is said to be applied, and the new string B is said to be derived
from the old string A in one step There m ust be a t least one production whose left-hand-
side consists only of the goal symbol Those strmgs th a t consist only of terminal symbols
and that are denved from the goal symbol by repeatedly applying the productions of the
grammar are known as the sentences of the language

A very special class of grammars is when m each production the left-hand-side stnng consists
of a single nonterminal symbol Such a grammar is called a context-free grammar The
class of all languages that can be descnbed by context-free grammars are called context-
free languages These languages are particularly easy for computers to parse, because the
time it takes to parse a context-free language is proportional to the cube of the length of the
sentence m the worst case By applying further restrictions to the grammar, it is possible
to guarantee that the language can be parsed in time linearly proportional to the length of
the sentence One such set of restnctions, which will be discussed in much greater detail
m the next section is called the LL(1) property

Most high-level programming languages are described using a context-free grammar A
grammar th a t is context-free is considered a good source of documentation for a computer
language, a grammar that is not context-free is usually considered poor documentation

54 MSDI Prototype Implementation

The purpose of a parser (as a component of a computer program) can now be explained it
takes as input a sentence of a language, and outputs a derivation of th a t sentence from the
goal symbol of the language. In the case of many grammar-driven parsers, each production
is known by the order in which it appears in the grammar, and is so assigned a unique
number In this case, the output of the parser is the sequence of numbers of the productions
m the order th a t they are applied in deriving the m put sentence from the goal symbol The
bare minimum output from a parser is simply an indication of whether or not an mput
sentence is in the language bemg parsed; in this case, the parser is simply a recognizer

5.1.2 LL(1) Parsing

LL(1) is a special class of context-free grammars th a t process m put sentences linearly pro­
portional to the length of the m put string. The name "LL(1)" signifies that a parser for the
grammar can operate by *
• performing a single left-to-nght scan of the mput sentence;
• always substituting for the leftmost nonterminal symbol while deriving the input sen­

tence from the goal symbol; and
• only scanning ahead one symbol to decide which production to use when substituting

for the leftmost nonterminal symbol

This parsing method is likewise called "LL(1) parsing", and the subset of the context-free
languages that can have LL(1) grammars is known as the "LL(1) languages"

In a context-free derivation, every nonterminal symbol is capable of producmg a umque
set of strings of terminal symbols independently of where in the derivation the nonterminal
symbol appears Some nonterminals are capable of producing the special string th a t contains
no symbols at all, known as the "empty string" A production th a t substitutes the empty
string for a nonterminal symbol is known as an "empty production".

The following is the context-free grammar for a language whose sentences are expressions
The special symbol is used to separate the left-hand-side of the production from the
nght-hand-side A nght-hand-side th a t consists only of the symbol "empty" is used to indi­
cate an empty production. The symbol "$" designates an end-of-mput marker This grammar
satisfies the restrictions for LL(1) grammars, which are described below
1. G —> E $
2. E -> T E’
3. E> _> <<+" T E>

4. E’ -> empty
5. T - > P T ’
6. ip> »*» p IJU

7. T’ -> empty
8. P -> id
9. P _> "(" E ")"

Note : id represents a class of identifiers.

MSDI Prototype Implementation 55

This list of nine productions fully defines the grammar for the language of expressions.
The terminal symbols are exactly the symbols th a t appear only on the right-hand-sides of
productions, th a t is,

$, "+”, id, "(" and

The nonterminal symbols are exactly those symbols th a t appear on the left-hand-sides of
productions, th a t is,

G, E, E’, T, T’ and P.

These can be thought of as standing for goal, expression, expression-tail, term, term-tail and
primary, respectively. The goal symbol must be G because it appears only on a left-hand-side
and not on any right-hand-side.

Fundamental to the notion of LL(1) is the concept of head symbols. Each nonterminal
symbol has associated with it a set of phrases th a t it can produce, and a set of terminal
symbols th a t can follow it in some sentence. For a given nonterminal symbol s, its head
symbols are exactly those terminal symbols that can start a nonempty string derived from
s, plus those terminal symbols that can immediately follow an empty string derived from s.

In the example above,the head symbols are:
• for P, id and
• for T, the head symbols of P, that is, id and
• for E, the head symbols of T, again, id and
• for G, the head symbols of E, id and
• for E’, V , ")" and $;
• for T’, "*", "+", ")" and $.

The head symbol of E’ is "+" when production 3 is applied, and when production 4 is applied,
E’ produces an empty string. Production 1 shows that when this happens, it can be followed
by $, the end-of-input marker. Likewise, when production 9 is applied and E’ produces an
empty string, it must be followed by a ")". The head symbol of T’ is a when production 6
applies, and when production 7 applies and produces an empty string, it m ust be followed
by an E \

The properties th a t make a grammar LL(1) are :
i Every production for a given nonterminal symbol m ust have a distinct set of terminal

head symbols.
ii A production’s right-hand-side may be empty. The head symbols of empty productions

are determined by what may follow the empty phrase.
iii No left-recursive productions are allowed; th a t is, if s is the left-hand-side symbol of a

production, the right-hand-side string may not begin with s or with a nonterminal from
which can be derived some string that begins with s.

It can be seen that the sample grammar meets these restrictions. None of the productions
are left-recursive. For each nonterminal symbol, it can be shown th a t each production
having th a t symbol on the left-hand-side has a distinct set of head symbols. For example,
there are two productions with E’ on the left-hand-side, productions 3 and 4. "+" is the head

56 MSDI Prototype Implementation

symbol of production 3 and when production 4 is applied and E’ produces an empty string,
it must.be followed either by a ")" or by the end-of-file marker ($).

5.1.3 LR(1) Parsing
LR(1) parsing, and its derivatives SLR(1) and LALR(1), is a very different technique for
recognising context-free languages Basically, input symbols are pushed onto the parser’s
stack (shifted) until it is determined th a t a production applies, a t which time the top ele­
ments of the parse stack are collapsed down to a nonterminal (reduced). Thus, the entire
nght-hand-side string is seen before recognising the nonterminal that it is derived from
The goal symbol is derived if the parse succeeds Since the terminal nodes are recognised in
the parse tree before the nonterminal nodes, this method is called bottom-up parsing The
name ”LR(1)" signifies th a t the parser operates by :
• performing a single left-to-nght scan of the input sentence;
• deriving the input stream from the goal symbol by substituting a t each step for the

rightmost nonterminal symbol (the steps occur m reverse since, in a bottom-up parse,
the goal symbol is actually derived from the input stream);

• only scanning ahead one symbol to decide whether to shift or to reduce

5.1.4 Parsing Method Selection

Other parsing schemes are available such as precedence parsers but the design choice for
the grammar parser for MSDI was between LL(1) and LR(1) because of their power and
efficiency LL(1) was chosen over LR(1) because of its direct implementation approach and
the need for large tables for LR(1) The limitatation of no left-recursive productions for
LL(1) was not a major problem m the development of the MSDI grammar.

In summary, LL(1) parsing was seen as a simple, elegant way of parsing a context-free
language Bearing m mind the LL(1) restrictions, it is easy to write a grammar th a t im­
mediately conforms to those restrictions. LL(1) parsing is called predictive (or top-down)
because a production applies when its head symbol is being scanned, therefore the nonter­
minals m the parse tree are recognised before we actually know which subphrases lie under
them.

Up to now, the parsing action discussed has merely to recognise a valid input sentence The
goal of the parsing is actually to translate valid input sentences into their defined actions
This is accomplished easily by extending the context-free grammar into a translational
grammar (TG). The translation grammar has added constructs to perform actions defined
in the sentence As a leftmost derivation of the input stnng is constructed, actions are
executed as directed by calls to various action routines which are defined as part of the
language. These action routines make use of a parser symbol table which contains definitions
of current symbols or variables The structure of the MSDI parser symbol table is shown in
Table 11.

MSDI Prototype Implementation 57

Table 11: MSDI Symbol Table Components
Record Function

Name Access Key to table for addition, deletion, etc. of data

Type Data Type - Real, Complex, Matrix, String, Polynomial, etc.

Value Actual value of parameter - depends on type

This symbol table was implemented as a hash table. The maximum no. of entries allowed
in the prototype implementation was 250. This is easily extended.

5.2 MSDI Translational Grammar

To implement the LL(1) parser, a grammar analyser and skeleton translator (called GAST)
was written. I t takes as input a grammar file written as shown in Example 4 and produces
two files : an internal format for the grammar (which is produced by the grammar analyser)
and a procedure perform, which structures the calls into action routines. This latter file is
in Ada, and is embedded into the skeleton translator (ST) along with the action routine
definitions. The skeleton translator is a template which needs production rules and actions
added. Once the ST is fleshed out with these grammar specifics it is ju st compiled. This
allowed flexible development of the MSDI Grammar.

Example 4: Grammar Analyser Input File
Express -> Term Expresses
Expresses -> ASOP Term Expresses

-> "null"
Term -> Factor Terms
Terms -> MDOP Factor Terms

-> "null"
Factor -> "(" Express ")"

-> Operand
ASOP -> II II

-> II _ II

MDOP -> *****
-> II J It

Operand -> Identifier
-> Number

! addition/subtraction operations

! multiply/divide operations

The grammar analyser (GA) reads in the grammar from the file line by line. It then checks
that each line is a valid production. Each left-hand-side (LHS) must be separated from the
right-hand-side (RHS) by Successive productions with the same LHS may follow each
other without the LHS being specified. The previous LHS is used as a default.

An algorithm by Lewis, et al, reproduced in [63], is used to check th a t the grammar is
LL(1) and compute the head symbols for each production. Terminals are divided into two
categories : literal and group. A literal stands for itself in a production, such as "+", or

A group stands for a set of actual tokens such as Identifier which represents the whole
set of identifiers in productions.

58 MSDI Prototype Implementation

A scanner, called Get_Token, is one of the predefined action routines. I t has been designed
as a generic template th a t is instanced with the grammar deliminators and the keyword
group Keywords are a group of reserved words th a t denote specific actions Table 12 lists
the keywords defined for the prototype plus their functions The other symbols are also
included m this table.

Table 12: MSDI Prototype Mathematical Symbols and Functions
Symbol or Keyword Function

+. Standard mathematical operations for real, complex, polynomial, transfer functions and
matrix types

cos, sin, tan Standard mathematical functions for real, complex, polynomial, transfer functions and
matrix types

', diag, ident Matrix Transpose, construction of diagonal matrix and identity matrix

inv Matrix inversion

eigen Computation of eigenvalues and vectors of a matrix

root Compute roots of a polynomial

eval Evaluate a polynomial for a specific value

pole Compute poles of a transfer function

zero Compute zeros of a transfer function

svd Compute singular value decomposition of a matrix

Calling Get_Token returns the next token m the parse sequence The scanner itself reads
m the the input character by character until a deliminator is reached (such as a space, tab,
or a deliminator token such as +, - or *) It then checks if this input just read m is a valid
token This is basically a preliminary parse driven by the grammar shown in Example 5
During this scan of the token, it determines whether a token is a literal or a group 1 e its
class If it is a hteral then the token’s class is set to "empty". Otherwise the class is set
to the name of the group 1 e Identifier, Numeric or Keyword In either case, the actual
characters th a t compose the token in the input are assigned to the token’s value When the
end of the input sentence is reached the class of the token is set to EOS (end-of-sentence)
This signals to the parser th a t the input sentence has been fully scanned Thus a Token is
composed of (a) a class and (b) a value

The scanner also provides facilities to indicate where an error in an input has been detected
(i.e the point at which the parse of a legal input aborted). This separation of the mam
parsing and the scanning of a sentence into legal tokens is illustrated in Figure 16 The
main reason for doing this was to ease the development of the mam grammar It could also
have been incorporated into the main MSDI grammar.

MSDI Prototype Implementation 59

Example 5: Scanner Grammar plus Head Symbols

P r o d u c t i o n s H e a d S y m b o l s

OPERAND

ID E N T IF IE R

NUMBERJTYPE

SPEC IALJ3YM B 0L

L I S T

NUMBERS

EXPONENT

SIGN NUMBER

NATURAL NUM

END NUMBER

-> ID E N T IF IE R
-> NUMBERJTYPE
-> SPECIAL_SYMBOL

-> LETTER L I S T

- > NUMBER NUMBERS FRACTION_PART
- > . NUMBER NATURAL_NUM EXPONENT

- > S_S

- > LETTER L I S T
- > NUMBER
- > " n u l l "

-> NUMBER NUMBERS
-> " n u l l "

FRACTION PART - > NUMBER NATURAL NUM EXPONENT
- > EXPONENT

- > " E " S IGN_NUMBER
- > " n u l l "

- > + / - NUMBER END_NUMBER
- > NUMBER END_NUMBER

- > NUMBER NATURAL_NUM
- > " n u l l "

- > NUMBER END_NUMBER
- > " n u l l "

A . . z]
0 . . 9]

S _ S]

A z]

0 9]
•]

S _S]

A z]
0 9]
D e l i m]

0 . . 9]
, E , e , D e l i m]

•]
E , e , D e l i m]

E , e]
D e l i m]

+ / -]
0 9]

0 9]
E , e , D e l i m]

0 9]
D e l i m]

NOTE

S_S

NUMBER

LETTER

D e l i m

% %

= S p e c i a l S y m b o l s i e

= 0 , 1 , 2 , 3 , 4 5 , 6 , 7 , 8 , 9

= A, B . Z , a , b z

= D e l i m i n a t o r s a s d e f i n e d p r e v i o u s l y

= A c t i o n R o u t i n e

5.2.1 LL(1) Parsing Action

The mam LL(1) parser is an implementation of a simple machine The machine contains a
push-down store and a stream of input symbols. In its initial state, the stack contains the
goal symbol The significance of this is th a t the parsmg machine is predicting th a t it will see
an entire sentence The stream contains a sequence of terminal symbols th a t hopefully form
a sentence Initially, the machine is looking a t the first terminal symbol a t the beginning of
the stream.

60 MSDI Prototype Implementation

The LL(1) parsing machine makes simple, discrete moves. In each move, it only looks a t the
symbol on top of the stack and the symbol currently a t the head of the stream. The top-of-
stack symbol represents the phrase th a t the parser expects to see next in the input stream
The action taken depends on whether this symbol is a terminal symbol or a nonterminal
symbol:

CASE 1
Top-of-stack symbol is a terminal. In this case, the top-of-stack symbol must match
the current input symbol. If so, pop the top symbol off of the stack and advance the
input one symbol; otherwise, signal a syntax error.

CASE 2
Top-of-stack symbol is a nonterminal. In this case, the current input symbol must
be a head symbol of a production of the stacktop symbol. If so, pop the top symbol
off of the stack and push each symbol of the right-hand-side string onto the stack
in reverse order; otherwise, signal a syntax error.

If after performing either of these actions the stack becomes empty and the entire input
stream has been read, the mput stream is known to contain a syntactically correct sentence

The following example illustrates the mechanism of the LL(1) parser In this example, the
expression grammar will be used and the parser will recognise the sentence "id * id + id $"

Table 13: LL(1) Parsing Action
Step Stack Input

0 G id * id + id

1 $ E id * id + id

2 $ E ’ T id * id + id

3 $ E' T ’ P id * id + id

4 $ E ’ T * id + id $

5 $ E ' T P - id + id $

6 $ E ’ T ’ + id $

7 $ E’ + id $

8 $ E’ T id $

9 $ E ’ r P id $

10 $ E’ T ’ $

11 $ E’ $

12 $ $

At this point, the input is accepted as being a vahd sentence of the expression language The
LL(1) parsing machine as implemented above has the following optimisation1 if a production
apphes whose right-hand-side string begins with a terminal symbol, th a t term inal symbol
m ust match the current input symbol, so instead of pushing the terminal symbol onto the
stack and popping it off m the next step, the m put is simply advanced one symbol In the
example, th a t optimisation eliminates five steps.

MSDI Prototype Implementation 61

Complex expressions cannot be directly evaluated. They need to be broken up into smaller
subexpressions which are computed in an order defined by operator precedence. The proper
combination of the results of evaluating these subexpressions yields the value of the origi­
nal expression. The algorithm used in the MSDI translational grammar for subexpression
evaluation requires two auxiliary stacks, called operator jstack and operand_stack The first
stack holds operators, the second holds operands of these operators, or more correctly it
holds their names (or pointers). An example is used to explain the operation of these
two stacks Assume the input to be parsed is "w=(A+2)*3" where A has been previously
defined as 5. Figure 15 shows the changes to these two stacks during the calls to the action
routines.

Figure 15: Example of Changes to Stacks during Parsing

Aequals
5 in tip
symbol table

opeia!or_stack <jpaand_stack operatorjstack operand_stack

M

7 *

= w =

opaator_stack aperand_stack operalor_stack

(c)

21
= w

opeiator_stack opexand_stack opsator_stack

(e)

(b)

operai)d_stack

(4)

W set equal
to 21 in the
symbol table

operard_stack

ffl

Initially both stacks are empty Then the five symbols are pushed onto the stacks { w,
a, 2 } onto operand_stack and { =, + } onto operator_stack Note the brackets are not
pushed onto the stack but are parsed to set up a computation of subexpression When ")"
is reached the subexpression is evaluated and result stored top-of-operand_stack (ì e 7)
Then the next operator and operand are added to stack and the operation performed The
mathematical precedence of operations for MSDI is contained in the grammar and follows
standard mathematical rules

62 MSDI Prototype Implementation

Table 14: Operator Precedence
Operators Precedence

A »t Highest Precedence Operators

V Multiplying Operators

+ 1 ■ Unary Adding Operators -

+ 1 ■ Binary Adding Operators

The complete translational grammar used in the prototype is shown in Appendix E Fig­
ure 16 illustrates the structure of the translational grammar component of the MSDI user-
mterface

Figure 16: Tokenizlng Input

Input Sentence

□ Tokens

□

Symbol
Table

Translational
Grammar

* 563
+ A

Stack
Operand

Stack

Arithmetic
Stacks

MSDI Prototype Implementation 63

The prototype has a natural matrix environment. A m atrix is entered similar to the way it
is written on paper. I t starts with a "[" and ends with A "]" The enclosed rows and columns
define the matrix Similar to MATLAB rows can be separated by or started on new lines.
For example, the following are both valid ways to enter a 3x3 m atnx using the prototype
a. A = [1 2 3 ; 4 5 6 ; 7 8 9]
b.

A = [1 2 3

4 5 6

7 8 9]
)

Polynomials and transfer functions are entered in a similar manner Rather than use the
approach implemented in MATLAB and its derivatives, a syntax closer to the written form
is used. MATLAB’s syntax requires th a t coefficients are entered in arrays ordered from the
highest power to the lowest power, including padding zeros where no coefficient exists m
the transfer function An example of how MATLAB defines transfer functions versus the
MSDI form is shown for the transfer function’

= j q f c

The MATLAB definition is

num = [0 1 0]
denom = [1 2 - 1]

while the MSDI form is much closer to the way it is written on paper

GKs) = {s} / {sA2 + 2*sAl -1}

or

Num(s) = {s}
Denom(s) = {sA2 + 2*sAl -1}
GKs) = Num/ Denom -

Note { } denote a polynomial expression.

This is much closer to how transfer functions are expressed in written form The increased
readability of this form is expected to overcome the increased number of keystrokes needed
to enter it. This is particularly true for infrequent users of the package The prototype
removes the need for compressing MIMO transfer functions into a two-dimensional form -
i e with a common numerator for all transfer functions m the m atrix Individual elements
of the transfer function matrix can have different numerators. Internally, when required,
the package computes a common numerator for the transfer function m atnx.

The transfer function can also be entered in factored or zero-pole-gam for such as

GKs) = k * ({s+1 }*{s+2}) / ({s+3}*{sA2+3*s-4})

64 MSDI Prototype Implementation

The approach taken internally is to multiply this expression out when it is to be used in
algorithms such as conversion to a state space form A more sophicated approach is needed
to preserve the entered form to reduce round-off errors being introduced Transfer function
representations have been proven to be more sensitive to the coefficients of the terms than
state space models, i.e. sensitive in terms of attributes like pole and zero locations to small
changes in coefficients.

M atnx, polynomial and transfer function mathematical operations are entered as close to
their written form as possible Some examples are shown below:

Prod = A * x Matrix multiplication by a vector or matnx

Transpose = B' Matrix transpose

Open_Loop = G * H Transfer function multiplication

In summary, the mathematical environment allows matnx, polynomial and transfer function
operations to be written directly They are expressed as close as possible to the way they
would be on paper Dimensioning of the variables and their conversion between different
representations is automatically accomplished by the software

5.2.2 Prototype Parser Performance

To check the run time performance of the parser a test case was run It consisted of matrix
assignment of a 10th order m atnx The measurement of the time used in each procedure
was recorded using the VAX Performance Code Analyser (PCA) for 100 test runs The
performance data collected is shown in Figure 17

This test run indicated th a t the parser spent 44 % of its time tokemzing the input in the
scanner Further analysis revealed that the most of this 44 % spent m procedure Token_
String was used calling the routine rather than in executing it To improve the scanner
run-time performance all the scanner procedures were mimed as well as the action routines
of the parser. Inlming means th a t the compiler is directed to expand a routine where it is
called rather than calling the routine and passmg parameters The test was re-run The
performance data for this new run with the scanner routines and parser action routines all
mimed is shown in Figure 18

The time taken to complete the parse decreased by 32% The trade-off is the increased
storage space needed for the executable image of the test programme (which consists of a
loop tha t iterates through the parse 100 times) The mimed test program executable file
was 10 % bigger than previously As storage space is not a major issue on a VAX and the
parser component only represents about 8-9% of the final executable image for the prototype,
the inline method was used This increased the size of the final prototype from 1849 blocks
to 1869 blocks A block equals 512K.

MSDI Prototype Implementation 65

Figure 17: Initial Parser Performance in parsing "A = [a 10th order matrix]"
VAX P e r f o r m a n c e a n d C o v e r a g e A n a l y s e r

P a r s i n g o f A = [1 0 t h o r d e r m a t r i x] 1 0 0 t i m e s - N o l i n i n g

CPU S a m p l i n g D a t a (1 3 8 9 5 d a t a p o i n t s t o t a l) -

B u c k e t Name + --------+ --------- H--------+ -------- + -------- + -------- + -------- H--------- H----------+ ---------+
T G \ T G \S C A N \ I

TOKEN STRING 1 0 3 | * 44 *9%
T G \ TG\TG_GRAMMAR\ |

L I S T OF ELEMENTS . | * * * * * * * * * * * * * * * * * 1 5 .2 %
TG\TG\TG_GRAMMAR\ |

UNSIGNED_FACTOR | * * * * * * * * * * * * 11 2%
T G \ T G \ SCANN |

GET_T0KEN 1 0 2 | * * * * 3 .2 %
T G \ T G \S C A N \ |

TOKEN_CLASS | * * 2 1%
TG\TG\TG_GRAMMAR\ |

MATRIX_DEF . . | * * 2 .1 %
T G \ T G \ SCAN\ GET_T0KEN 1 0 2 \

READ_DELIMINATORS | ** 2 1%
T G \ T G \ SCAN\ GET_TOKEN 1 0 2 \ SCANNER_GRAMMAR\

OPERAND . | * * 2 .1 %
T G \ I

TG I* 1 1 %
T G \ T G \ SCAN\ GET_TOKEN 1 0 2 \ SCANNER_GRAMMAR\

EXPONENT . | * 1 .1 %
IS_DELIM INATOR | * 1 1 %
NUMBERS I* 1 1 %

TG\TG\TG_GRAMMAR\ |
ASOP . . . I* 1 1 %
FACTOR I * 1 1 %

PLOT Com mand S u m m a ry I n f o r m a t i o n
N u m b e r o f b u c k e t s t a l l i e d . 14

CPU S a m p l i n g D a t a -

D a t a c o u n t i n l a r g e s t d e f i n e d b u c k e t 6 2 3 8 44 9%
D a t a c o u n t m a l l d e f i n e d b u c k e t s 1 2 4 3 6 89 5%
D a t a c o u n t n o t m d e f i n e d b u c k e t s 1 4 5 9 10 5%
P o r t i o n o f a b o v e c o u n t i n P 0 s p a c e . 1 4 5 9 10 5%
N u m b e r o f PC v a l u e s m P I s p a c e 0 0 0%
N u m b e r o f PC v a l u e s i n s y s t e m s p a c e 0 0 0%
D a t a p o i n t s f a i l i n g / STACK_DEPTH o r / MAIN_IMAGE 1 1 1%

T o t a l n u m b e r o f d a t a v a l u e s c o l l e c t e d . 1 3 8 9 5 10C1 0%

Com mand q u a l i f i e r s a n d p a r a m e t e r s u s e d
Q u a l i f i e r s

/ CPU_SAMPLING /DESCENDING /NOMINIMUM /NOMAXIMUM
/NOCUMULATIVE /NOSOURCE /NOZEROS /NOSCALE /NOCREATOR_PC
/NOPATHNAME /NOCHAIN_NAME /WRAP /NOPARENT_TASK
/ F I L L = " 0 " , " x " , " + ")
/NOSTACK_DEPTH /MAIN_IMAGE

N o d e s p e c i f i c a t i o n s *
PROGRAM_ADDRESS BY ROUTINE

No f i l t e r s a r e d e f i n e d

This profiling of the parser code in Figure 17 and Figure 18 is include not only to demonstrate
the effect of inlining but also to show how all the other parts of the prototype were tested
for various design options and algorithm performance. As the prototype is developed this
type of testing will be become increasingly important to tune the package.

66 MSDI Prototype Implementation

*4-

f

Figure 18: Parser Performance in parsing "A = [a 10th order matrix]" with scanner rou­
tines inlined.

VAX P e r f o r m a n c e a n d C o v e r a g e A n a l y s e r

P a r s i n g o f A = [1 0 t h o r d e r m a t r i x] 1 0 0 t i m e s - I n l i n e d R o u t i n e s

CPU S a m p l i n g D a t a (9 4 0 1 d a t a p o i n t s t o t a l) - " * "

B u c k e t Name + h + --------+ H + -------- + — — ■+-------- + --------+ ---------+
T G \ T G \ I

APPEND COL • | * 1 1 ,9 %
TG\TG\TG_GRAMMAR\ I

L I S T OF ELEMENTS | * 10 9%
ADA$ELAB~MSDI\ |

ADA$ELAB MSDX | * 5 .9 %
T G \T G \S C A N \ I

TOKEN STRING 1 0 3 | * 5 .0 %
T G \ TG\TG_GRAMMAR\ |

NEXT ROW . ^ j * 5 0%
UNSIGNED FACTOR | * 5 .0 %

M M I\M M I\ |
PROCESS COMMAND 1 1 | * * * * * * * * * * * * * 3 .0 %

T G \ T G \ TGJSRAMMAR\ |
FACTOR . . . | * * * * * * * * * * * * * 3 .0 %
MATRIX DEF . . | * * * * * * * * * * * * * 3 .0 %

MENU_PARAMETERS_\ |
MENU_PARAMETERS_ | * * * * * * * * 2 0%

T G \T G \S C A N \ I
GET_TOKEN___ 1 0 2 | * * * * * * * * 2 .0 %

T G \ T G \ SCAN\GET_T0KEN 1 0 2 \ SCANNER_GRAMMAR\
ID E N T IF IE R . | * * * * * * * * 2 0%
OPERAND . . | * * * * * * * * 2 0%

T G \ I
TG . . | * * * * 1 0%

T G \ T G \ I
PARSE 1 1 I * * * * 1 0%

T G \ T G \ SCAN\ GET_TOKEN 1 0 2 \
S CANNE R_GRAMMAR . | * * * * 1 0%

T G \ T G \ SCAN\ GET_TOKEN 1 0 2 \ SCANNER_GRAMMAR\
DELIM_TOKEN | * * * * 1 0 %
IS_DELIMINATOR | * * * * 1 0%
KEYWORD | * * * * 1 0%
L I S T . . | * * * * 1 .0 %

TG\TG\TG_GRAMMAR\ |
EXPRESSES . | * * * * 1 .0 %
FUNCTION_OP . | * * * * 1 0%

T G _ \ I
TG_ | * * * * 1 0 %

I

5.2.3 Command-Mode
The command-mode operation of the MSDI prototype is not as well defined as the menu­
mode It basically operates similar to MATLAB The anomalies in the MATLAB syntax have
been removed (1 e. using the symbol ’ to transpose of a matrix, operator overloading, etc)
to give a language closer to the way control engineers actually write.

The list of keywords available is given in Table 15. These represent a limited capability No
primitive commands to manipulate the system diagram are included. The reason for these
limitations is th a t menu-mode was seen as the primary interface mode for the prototype.

MSDI Prototype Implementation 67

Table 15: Command Mode Keywords
Command
Name Syntax Description

Discretize (1, T) = Discretize (A,B, Period) Discretize a matrix pair using a sample time penod

Simulate simulate(1, T, C, D, Length) simulates a discrete model described by the 4-tuple through
Length sample periods

Freq_Response freq_response(A, B, C, D, Start_
Freq, Stop_Freq, No_Points)

Computes frequency response and draws it in Bode form

Pole_Place K a poie_place (A, B, Poles) Computes the state feedback matrix to locate the closed-
loop poles as defined by the vector of complex poles

Show Show A or Show cos(A+2) Displays the value of a variable or expression

Ged ged Ctanks Starts up menu-mode using system diagram named Ctanks
The default SD is empty

Exit exit Terminates command-menu either exiting package or re­
turning to menu-mode

A major shortcoming seen m using this type of mode was th a t the keywords could not be
abbreviated. Long descriptive keywords were initially selected to ensure clarity. Either
short keywords or allowing abbreviations is needed

5.2.4 Menu-Mode
The menu-mode is driven by what is called the graphic editor This editor allows access to
the system diagram and supports its manipulation The graphic editor consists of 4 distinct
parts - menu window, graphics window, status window and text window. The screen layout
of these areas/windows is shown in Figure 19

Figure 19: Graphic Editor Windows

Status Phase Error

Menu
Wmdow

Graphic
Wmdow

Text Wmdow

68 MSDI Prototype implementation

Menu-mode makes extensive use of VAX GKS. The VAX GKS library of routines provides
control functions, output functions, input functions and segment functions th a t the prototype
uses GKS allows low-level graphic primitives to be drawn such as lines, markers and fill
areas. The inbuilt co-ordinate systems means the application can work in world co-ordinates
(defined by the application programme) while GKS handles translating these into device co­
ordinates for displaying objects on the screen Transformations are available in GKS to
affect the composition of the graphical picture For a full description of VAX GKS refer to
[50],

Each window is implemented m VAX GKS as a separate view and transformation. This
allows easy reference among the windows Each window is defined and controlled by sepa­
rate packages - for example the graphic window is controlled by the Icon package and the
Graph package, while the menu window is controlled by the Graphic_Editor_Control pack­
age These packages, along with the generic window package are the only packages th a t
refer to VAX GKS. This isolates VAX GKS’s interface to the prototype to just four packages
A different graphic driver could potentially be used to port the prototype, to say a PC, with
only these four packages needing to be re-tested.

The menu window is the section of the terminal display th a t is reserved for the various
menus The main menu active a t a particular time will be displayed here Each menu
option is displayed in a segment This was the method chosen over using a GKS choice
logical device because it gave increased flexibility. Individual options can be made detectable
as required

The graphic window is where various system diagram entities (1 e blocks and their inter­
connections) and other graphs (eg. simulation) will be drawn The system diagram was
implemented as defined m the previous chapter using the system form, icon and connections
packages

The text window is where alphanumeric interaction using the keyboard is displayed It
consists of three lines of text To provide this function consistently across various terminals,
a generic windowing package was written. This package uses single character data entry
to solicit input from the user Single character entry was used to allow special keys such as
Control-W to be used. The special keys defined and their functions are shown in Table 16
This windowing package was latter enlarged to provide a common windowing environment
across terminals such as VT240, VT340s which do not have any windowing facility and
VS200/GPXs which have VWS windows The prototype implementation only uses this win­
dowing package and none of a terminal’s inbuilt functionality if it has any This generic
package is used to provide pop-up windows for text I/O and graphic display in the selected
area of the terminal surface

MSDI Prototype Implementation 69

Table 16: Special Keys and their functions
Key(s) Function

[CTRL] W 2 Refresh the entire screen

[CTRL] P2 Spawn to command mode in a pop-up window

[CTRL] U2 Exit or abort for a pop-up window or action

PF2 Display Help

PF31 Decrease cursor step size

PF41 Increase cursor step size

PF17 Copy screen to a file

1 Only defined on VT240s and VT340s

2 [CTRL] followed by a letter means that the control key is pressed down at the same time as the letter key

On VT240s and VT340s the arrow keys are used to move the graphic cursor around. VS200s
and GPXs use the mouse The left button triggers a selection or pick operation, while the
middle button triggers an abort or break operation

The status window displays indicators of the current status of the package and on which
phase it is in. This window is subdivided into three parts' status, phase and error. The status
part displays the status on the current option i e. selection, working, complete or error The
phase part displays the current phase the system is in i e modelling, specification, design,
simulation, etc The error index part displays the error index or uncertainty computed for
any numerical calculations This index is only displayed following numerical calculations

The software structure of the graphic editor is shown m Figure 20. The Graphic_Editor_Control
package provides the menu control functions - display menu, selection of an option, perform
option and deletion/exit from menu It controls the opening and closing of GKS for the
package The Graphic_Editor_Control package also initialises the MSDI predefined win­
dows, views and transformations

70 MSDI Prototype Implementation

Figure 20: Graphic Editor Software Structure

To ease the changing of the graphical output of the prototype or porting it to be used on
other terminals, the key parameters for the prototype have been isolated into the Menu_
Parameters, Graphic_Parameters and Entity_Parameters packages Thus, for example, to
change the size of an icon only its size m the Graphic_Parameters package needs to be
changed

Figure 21 shows the initial display a user sees on entering menu-mode

MSDI Prototype Implementation 71

Figure 21: MSDI Top-Level Menu

The top-level menu allows the user to select the operation needed to be performed. The
available options, and what they do are:

Option Operation Performed

Model Enter modelling phase for the current system diagram

Specify Enter specification phase for the current system diagram

Design Enter design phase for current system diagram

Implement Enter Implementation phase for current system diagram

Save Save the current system diagram to a file

Restore Recall a current system diagram from a file

Analysis Enter analysis phase for current system diagram

Simulation Simulate current system diagram

Freq Response Compute frequency response of current system diagram

Pnnt Print a system diagram to a graphic printer

Attributes Enter attributes setting menu to set system parameters

Report Generate a design report

Clear Clear current system diagram to empty

The term entering a phase means that the user enters a sub-menu that provides the relev ant
options for th a t particular operation or phase.

72 MSDI Prototype Implementation

The attributes option takes the user into a submenu th a t allows system parameters to be
modified if required. Attributes such as the colour of an icon, its size or the text font can be
changed. -■

The report option automatically generates a report of the design session using the informa­
tion stored in the session log. This report displays the system diagram, defines the contents
of each block, draws simulations and frequency plots saved during the session and design
options selected. This report is outputted in a straightforward manner in a form to be pro­
cessed by VAX Document, a word processor package. VAX Document uses predefined tags
to format a report into paragraphs, tables and graphic files. For more details on VAX Docu­
ment see [72]. The report is outputted, including these tags, with the graphics being stored
in file in Postscript form. To get a hardcopy of the report the VAX Document processor is
used to read the file and convert it into the device specific format.

A menu is exited by generating a break condition. This is achieved by pressing [CTRL] U
on VT240s and VT340s and the middle button on the mouse on VS200 and GPXs.

5.3 Modelling

The modelling phase is where the user develops/constructs a model of the plant. Controllers
are not added in the modelling phase as they were considered to be a different type of object.
After using the prototype for a few design studies, this was found not to be the case. In
reality the controller should be considered just another object to be added to the system
diagram and should be added from the same menu as a state space model or signal source.
The design phase should be an option in the modelling phase, giving access to the design
methods.

The plant can be modelled by adding, deleting, copying, moving, modifying, rotating or
transforming entities. The prototype supports all the atomic components defined in Figure 8
and interconnections between them.

The user fills in the behavioural template of the object to be added and then dynamically
locates the icon on the graphic window. Other operations such as modifying, moving, ex­
amination and deletion simply allow the user to select (using the graphic cursor, which
is defined as a moving cross) the object from the graphic window and then perform the
operation.

5.3.1 Discretization

The transformations available in the prototype are :
1. Discretization - of both state space models and transfer functions.
2. Transform a state space model into transfer function form.
3. Transform a transfer function into state space form.
4. Identification of a transfer function from input-output data.

The only discretization method implemented in the prototype is based on the the discretiza­
tion of a state space representation producing a zero-order hold equivalent. The discretiza­
tion algorithm uses the Pade Series approximation of an exponential of a matrix. Transfer
function discretization is implemented by internally converting the transfer function to its
state space representation, discretizing this state space model and then converting the dis­
crete state space model to its transfer function representation.

MSDI Prototype Implementation 73

The discretization method used assumes th a t a continuous model is driven by a zero-order
hold and the output is sampled. This is the normal case in computer control D/As normally
drive the plant with a constant signal between sampling intervals and A/Ds sample the
output. The "simulation" or numerical solution of the continuous state space model also
uses this algorithm during a simulation of the system diagram.

The discretization process requires the solution of x(t) = A x(t) + B u{t) , with x(0) = x0

The solution for this can be written as

*(i) = eA(i- to) x0 + r eA(f_r) u(r) d r (6)
h 0

Using (6) and assuming a constant input between sampling intervals the Pade series ap­
proximation was used. This algorithm was selected based on a survey of computational
techniques for matrix exponentials given in [65]. The Pade approximation for eA is defined
by-

Rpq = \Dpq(A)\ 1 Npq(A) (7)

where
N (P + g - j) ! P’

and
n < ^ (p + g - j) 1 ?1

P ¿5 (p + 9 M « - j) ' M) j

The roundoff error difficulties and the computing cost is minimised by exploiting a funda­
mental property unique to the exponential function eA = {eA j m y n

The algorithm chooses m to be equal to the largest power of 2 th a t sets the < 1, where
|| || defines the column norm of a matrix Using this eA!m can be reliably computed, and
then the matrix ((e A/m) m) can be computed by repeated squaring

For situations where the Pade algorithm fails numerically, a backup routine is tried This
is the Taylor series approximation based on the Talyor senes expansion for an exponential
defined by

eA = I+A + ^ + (8)

This method requires about double the work to compute the discrete model compared to the
Pade approximation But it uses a different approach which does not require the calculation
of a matrix inverse This gives us a redunancy built-in to make the discretization process
more robust

Many other discretization methods are used today by engineers such as pole matching and
bilinear transformation. These would need to be available m a complete MSDI implemen­
tation

74 MSDI Prototype Implementation

lb convert from state space representation to frequency domain representation Leverner’s
algorithm is used The transformation is changing a 4-tuple (A, B, C, D) to a transfer
function of the form:
G(s) = C { s l - A) - 1 B + D

, C T + D

Leverrier’s algorithm computes adj(sI-A) and the coefficients of I sI-A I recursively. It
calculates the coefficients in the expansions

a d j (s i - A) = jRn_x sn_1 + + Rq

and

5.3.2 Transformation of State Space Representation to a Transfer Function

|s i — A\ — s n + an_ i sn ̂ + + oq

as follows.

Rn—t — I ^n—1 — tr(A Rn—1)
Rn-2 = A Rn-1 + an-1 I a.n-2 = _12 t r { A R n _ 2)

- 1/io - A i i , + a i 7 ao = ntrM Rp)

where n is the order of the system, tr means the trace of the matrix and I defines an (nxn)
identity matrix

Leverrier’s method gives a straight foward error check on numerical performance from

Error — A Rq + o.q I

Other methods are available th a t are more efficient In general, they involve the conver­
sion of A, by similarity transformation into companion form The coefficients of det(sI-A)
and adj(sI-A) are easily obtained from this form But this method is subject to numerical
difficulties and there does not seem to be any convenient way of checking the results

5.3.3 Transformation of a Transfer Function to a State Space Representation
The converse problem of converting from transfer function form to state space form (also
called realisation) implemented in the prototype assumes that the transfer function matrix
is m strictly proper form (i e G(s) —► 0, as s —► oo) The prototype ensures transfer functions
are maintained m this form, by dividing them out if the order of numerator > order of
denominator and adding the integer part of the result to the feedforward term

The algorithm used expresses each column of G(s) (or G (z)) as a polynomial vector divided
by a common denominator Defining the least common denominator of the ith column as

sn, + 1+ + t̂0

and the corresponding numerator vector as’

S n ‘ 1 + + < 3 , 0

MSDI Prototype Implementation 75

the state space representation is defined as •

A=

A i 0 0
0 A2 0 0

B =

C =

B x 0 0
0 b2 o 0

0
Cl

0 Br,

c„

where:
0 1 0 0

A, =
0 0 1 0 0

B, =
0

Ll

Ct = [<7t0 q,n,-1]

This state space form is controllable by construction but not necessarily observable Another
conversion algorithm should be added to ensure the construction of an observable form

5.3.4 Identification

The other transformation included m the prototype was least squares identification of a
transfer function from experimental data The identification is broken down into two stages
1. Choice of model structure best suited for fitting the data
2. Analysis to derive the coefficients associated with the chosen model order

The identification is implemented recursively to avoid the construction of large matrices
This algorithm derives the coefficients of a discrete transfer function

G{z) = + fc0
zn + an_i zn 1 + + ao

76 MSDI Prototype Implementation

The identification procedure is an iterative one. F irst the order of the model to be identified
is selected. Then jthe coefficients for this model are computed using the recursive least
squares algorithm. A figure of merit is then calculated which indicates how closely the
shape of the model characteristic compares with th a t of the plant. This figure of merit
calculated is the loss function:

V = e2 = (A(z) .(y - ym))2 .

where A(z) is the denominator of the transfer function computed and y is the output sequence
used to identify the model. The terms ym are obtained by driving the computed transfer
function with the input sequence used to identify the model. The loss function V will always
decrease when the model order is increased. To test if the reduction in the loss function is
significant when the number of parameters is increased from n x to n2 the following test is
used:

s p. = Vl ~ V* * N ~ n2
Vjj «2 — n i

where Vi is the value of the loss function for a model with nj parameters, and N is the
number of input-output pairs. It has been shown th a t the quantity S.F.(i.e. the significant
factor) should be at least 3 for the corresponding reduction to be significant with a 5%
confidence level (see [66]).

5.3.5 Macro Block Definition

The define option allows the creation of a macro block. It takes the current system diagram
and forms an EvFn based on its composition. This macro is stored under a unique name in
the database. It can be recalled at any time for inclusion into a diagram. An empty macro
can also be created. This is a macro which only has its number of I/O ports defined. No
internal structure or EvFn is defined. This is achieved by adding a macro not already in the
database. A macro template is added to the system diagram. The contents of this macro
block can be defined at a later stage.

This facility was included to allow top-down design strategies to be tested. This is where a
design or plant model is not defined until latter on in a design cycle. During the use of the
prototype, this empty macro facility was not found to be very useful.

An extract option allows a sub-set of the current system diagram to be selected for use in
a simulation or design work. This allows a sub-set of a complex design to be extracted and
worked on in isolation.

Other options in the modelling phase allow titles to be added to the diagram or individual
nodes. Notes can be made on decisions taken. These notes are recorded in the database in
sequential order. These notes can be recalled at various times or printed out in the design
report.

An auto-relayout option has been included to aid the user to produce aesthetically acceptable
diagrams for an arbitrary layout. The algorithm used is basic. I t snaps icon block centres
to predefined grid points on the graphic window, and sets all connection lines to change
direction at 90 degrees. This usually helps "clean" up a diagram. To achieve a much higher
level of performance as would be needed by a commercial system, an algorithm based on

MSDI Prototype Implementation 77

tree or flow diagram layouts would need to be developed. Currently work on this aspect of
CACE is being investigated in the University of Wales, under Chen, Barker and Townsend
.for their CES package. Another good starting point is [67]

5.4 Specification

The specification section as outlined in the previous chapter requires a set of primary indi­
cators of performance that can be combined to form other criteria This is a major research
area on its own. Solutions to this problem have been defined by researchers for very specific
problem areas. An example is Jam es’s work in [1] on the design of SISO lead-lag controllers

To support the design facilities in the prototype the following criteria were defined to specify
performance. The are divided into tune domain and frequency domain criteria. The time
domain criteria are.
• M0 - Max overshoot of response divided by final value.
• ta - time to settle within 2% of the final value

The frequency domain criteria included are .
• BW - Bandwidth
• Gain Margin
• Phase Margin

The prototype only aids m specification for SISO systems. The time domain specifications
assume the user is trying to approximate a second-order system It uses the defined M0 and
ta to compute the damping factor and natural frequency using

\MMq)\
\ A t2 + (In (M0)2)

3 912023

For continuous models, the poles are computed using the normal second-order equation
The equation poles for the discrete model are (assuming they are located inside the unit
d isc) ___

z — g T s a m p U ' r s _ (— w n i +] w n y l — ~ T sam ple.)

where T ^ ^ k is the sample period of the discrete model These models give the dominant
pole locations.

The specification section of the MSDI package needs to be researched further It needs to
be built up and encompass verification. The verification could use temporal logic together
with other AI techniques to prove characteristics of a model This would be particularly
worthwhile for systems with safety implications This is a field of much active research
today, particularly in the realm of software engineering As control theory is a much more
m ature field it should be possible to use the developments in theorem proving and temporal
logic to great advantage

78 MSDI Prototype Implementation

5.5 Design : Analysis
The design phase is where controllers are added to the system diagram to improve overall
performance. The final objective of controller design is to create an implementation tha t
will meet the specified goals. Theoretical formulation is only one step on the road The
prototype package concentrates on supporting the development of digital controllers All the
design methods available support linear-time*invariant MIMO models. The design methods
included are :
1. Pole Placement
2. Optimal Controller design
3. Inverse Nyquist Array
4. Observer design

The algorithm used for pole placement determines a state feedback matrix K for a MIMO
continuous or discrete state space model by preliminary reduction of the model to Hessenberg
canonical form using orthogonal similarity transformations. If all the states are not defined
as accessible an observer can be designed Observers are designed using the same algorithm
as pole placement as the control problem and the state estimation problem are equivalent
Either full order or reduced order observers can be designed depending on the number of
states accessible

The optimal control problem solved is as shown in (1), (2) and (3). The prototype solves this
using the Dynamic Programming algorithm outline in Example 1.

Both the pole placement and the optimal design methods allow either state feedback or
output feedback to be used For output feedback, an observer is first designed to estimate
the states and then a state feedback controller is designed

The Inverse Nyquist Array (INA) algorithm allows the array to be drawn by itself or to have
the Gershgorm circles superimposed to indicate dommance The user iteratively specifies
the compensator required to give the required performance after decoupling I/O pairs. This
method only works for a model with the same number of inputs as outputs

The INA algorithm makes use of a key algorithm m the package which computes the fre­
quency response of a model This algorithm computes the response using the state space
representation This state space model is converted into upper Hessenberg form using Eis-
pack routines From this converted form the response is easily calculated using

= C (j w t I — A)~^ B + D

for all wt of interest

This algorithm is based on the work of Laub in [68]

The analysis options are used m conjunction with the design options to assess the perfor­
mance of system diagram / block m the system diagram The analysis functions available
allow the calculation of poles and zeros, eigenvalues and eigenvectors, controllability and
observability. These analysis functions are based on Linpack and Eispack Fortran routines
The controllability and observability functions use the singular value decomposition (SVD)
to compute the rank of the controllability and observability matrices :

MSDI Prototype Implementation 79

Controllability Matrix = \B, A B, A n~ x B \

Observability Matrix =

C
C A

.C A n—1

The frequency response of of hnear models is given using the algorithm described above
The results can be plotted m Bode or Nyquist form The user selects the frequency range
of interest and the no. of points to be computed in this range The algorithm takes care to
account for phase crossing of the +/-180 degree line.

One extra option added to analyse performance gives the "primary" indicators of performance
defined by McFarlane and Pang in [29] These are frequency domain indicators They are
composed of the characteristic value decomposition (CVD) and singular value decomposition
(SVD) of the model. The CVD is an indicator of the stability of the model (1 e via the
generalised Nyquist criteria) and the SVD is an indicator of the closed-loop performance
of the model Also the difference between the magnitude of the characteristic gains (from
the CVD) and the magnitude of the principal gains (from the SVD) is an indicator of the
robustness of the system 1 e performance m the presence of modelling errors McFarlane
and Pang have termed these as the primary indicators of a model as they provide a complete
description of the system This option allows the graphical presentation of the CVD and the
SVD of the model to the user Tabulation or computation of a specific value of one of the
loci is available from the graphical representation of these CVDs and SVDs

5.6 Implementation of a Controller

The implementation of a controller is where the hardware/software needed to implement
the designed controller is selected. The prototype does not provide support for continuous
controllers. It only supports digital controllers

The digital controller structure the prototype supports is shown in Figure 22 It is composed
of A/Ds and D/As to interface to the continuous plant (if needed) and a microprocessor
executing an algebraic algorithm Choosing an appropriate microprocessor, A/D, D/A and
algorithm are important to achieve the performance required Factors such as computation
speed, wordlength and conversion time are important

80 MSDI Prototype Implementation

Figure 22: Digital Control System

The prototype provides a library facility where the user can add definitions of available
microprocessors, A/D, D/A The algorithms available are built into the package and cannot
be added to. These algorithms are state feedback, state feedback with full or reduced state
esitimation, a a PID self-tuner The parameters th a t the user can define for these hardware
components are shown in Table 17

Table 17: Hardware Component Model Parameters
Hardware Com­
ponent Parameters

Microprocessor Wordlength, computation time for floating-pint, fixed-point and integer operations, truncation
method

A/D Conversion time , word-length, analog range

D/A Conversion time , word-length, analog range

The algorithms are direct implementations of the controllers designed For example for
output feedback the observer and state feedback algorithm computes first the estimated
state vector x via

*k + l = $ x k + T uPtk + K [yp k - H x k}

(see Astrom and Wittenmark m [39]), where up is the vector of control inputs to the plant
and yp may contain plant measurement variables as well as reference inputs or measured
external disturbances , in the case of reference and disturbance modelling The observed
state vector is then used n r

u v , k = - L x k

where L is a constant state feedback matrix

MSDI Prototype Implementation 81

i

lb analyse the effect of an implementation on the overall performance of the system simu­
lation is used. This is called implementational simulation as the implementation, with its
finite arithmetic and wordlengths, and inherent conversion times, is driven by ouputs of the
plant and desired settings This is different from behavioural simulation where the constant
matrix is driven, m double precision arithmetic with delays to conversions and computation
time ignored.

5.7 Simulation

Simulation of the system diagram can be performed at either the behavioural level or the
implementational level.

For any simulation the system diagram is analysed first to ensure it can be simulated - i.e
all entities defined (e.g no empty macro template) Then the system diagram is ordered
This ordering starts a t what are classified as independent entities An independent entity
does not have its current output dependent on its current input. These entities are signal
sources, state space with no feedforward matrix, transfer functions and macro blocks with no
inputs Then the diagram is recursively passed over selecting blocks th a t can be simulated
if their input is driven by an output previous ordered above them When all the blocks are
reachable (1 e inputs are driven by an output in the ordered h s t) a m aster clock time is
selected.

The programme computes the lowest common divider for all the different sample times in the
diagram The user, can if desired, override this automatic clock period setting Each entity
m the ordered hst has its own individual clock which is initialised to zero Then at each
tick of this master clock (during the simulation run) the ordered diagram is sequentially
stepped through First the individual clock of the entity is checked to ensure th a t its output
should be computed at this time Each pass over the ordered diagram adds the master clock
period to the entity’s individual clock. When an individual clock is found with its clock > its
defined sample period, the output is computed and the clock re-set to zero An example of
this is shown in Figure 23 for a diagram with two entities Block 1 has a sample period of
0 5 seconds Block 2 has a sample period of 1 0 second The m aster clock is computed to be
0 5 seconds Thus the output of block 1 is computed at every tick of the master clock while
block 2 ’s output is only computed every second tick

82 MSDI Prototype Implementation

Figure 23: Simulation Timing

C lock
R elationships

M aster C lock

n u T j n u T ^ u n _ n _ n _ n _ n j i B lo ck 1

HL n m J T B lo ck 2

1 2 3 4

T im e (sec)

N o te Outputs com puted on the trail ed ge o f a pulse

Ada’s ability to create new types made implementation simulation possible The implemen­
tation simulation is based on converting a connection signal (which is a double precision
number) into the wordlength of the D/A, A/D and microprocessor Fixed-pomt arithmetic is
the most widely used in practice because the high speeds th a t can be achieved compared to
floating point The fixed point format supported m the prototype is the usual two’s comple­
ment representation Here the decimal value of a number is

r = 2 - B
1-2

-6i_! 2l~l + J 2 bJ 23
1=0

, wherebjeO, 1

where 6; , j= 0, .. , 1-2 represent the binary digits i.e bits, bt_i carries the sign information, 1
is the total wordlength, and B determines the location of the binary point A 4-bit fractional
two’s complement representation is
0 875 0 111

0 125

0
- 0 1 2 5

- 1

0 001
0 000
1 111

1 000

MSDI Prototype Implementation 83

This example also illustrates the asymmetrical range of fixed-point arithmetic. This needs
to be included in our simulation model.

The main advantage in using fixed-point (i.e. in two’s complement representation) com­
pared to floating point is the simplicity of the hardware for adding and subtracting. No
distinctions need to be made as to what the signs and magnitude of operands are and a
single adder unit plus a simple complementer circuit is sufficient to perform addition and
subtraction. This is the main reason why most digital controllers use fixed-point today

To implement this fixed point type in the package, Ada’s predefined fixed-point type is used
declaring it to the range and absolute accuracy of the microprocessor. Then a representation
clause is used to ensure the declared type is exactly the size required (i.e. VAX Ada compiler
not defaulting to a larger wordlength). A representation clause defines how a data type is
mapped to the underlying machine. Example 6 illustrates how this is accomplished.

Example 6: Simulating various wordlengths for Fixed Point arithmetic

No_Bits : constant := 8; — define no, of bits for
— fixed-point type.

— Define the max. and min. values in the range.
— Note : Must account for sign-bit.
Min_Value : constant := -2.0 ** (No_Bits - 1);
Max_Value : constant := 2.0 ** (No_Bits - 1) - 1; -- Account for

— nonsymmetric
range.
type Bit_type is delta 2.0 ** (- (No_Bits - 1)) range Min_Value..Max_Value;

— Define the representation cluse to ensure exact No Bits used,
for Bit_type'small use (2.0 **(-(No_Bits - 1));

This Bit_Type may not be implemented in exactly the number of bits we define but the
compiler ensures th a t any arithmetic is scaled to use the absolute delta of 2jVo“Blis_1. The
delta refers to the size of spacing between the model numbers of a fixed point type.

A data type is create for 2, 4, 8, 16 wordlengths. Any hardware defined in between these
ranges is mapped on to one of these types. During simulation the continuous signal is
converted by the A/D. If saturation occurs (i.e. continuous value outside defined range
for the A/D) the max. or min. of the A/Ds analogue range is used. This simulates what
would happen in an real piece of hardware. The output of the A/D is the input converted
to its the fixed-point type. This quantizes the input as happens in real hardware. The
algorithm is executed using this input. The mathematics of the algorithm are computed in
the microprocessors wordlength. Then the output of the controller algorithm is fed into the
D/As which perform in a similar fashion to the A/Ds but convert the fixed-point type to the
continuous (i.e. double precision) type.

Computation delays are simulated by delaying outputting the result of the algorithm by a
certain time. This time is computed by the programme as a sum of the delays in the A/Ds,
D/As and time spent performing computations in the algorithm.

If overflow or underflow occurs in any of the calculations in the fixed-point arithmetic the
value to be calculated is set to the max. or min. available in the defined wordlength.

84 MSDI Prototype Implementation

5.8 Code Generation

The prototype also supports the automatic generation of code for a controller implemen­
tations. This code generation process first outputs a generic matrix package which will
support the mathematical operations required. Then the D/A and A/D driver programmes
are written. These programmes are entered by the user when he adds a A/D or D/A type
to the library. After this the control algorithm with the fixed-point or floating point type is
written output. The design controller parameters are written into this procedure.

This entire file is written m Ada can then be compiled using a Ada compiler The intention
is to have a cross-compiler to target small microprocessor implementations such as would be
used in embedded systems Such a cross-compiler would be XD-Ada from System Designers
To test the prototype a PC target was used compiling the code with the Janus PC Ada
compiler from RR Software The principle is the same The Janus Ada compiler and linker
provide a command to trim off all procedures not used from an executable file This means
that using the generic Ada package does not h it run-time performance An example of this
is shown m the next chapter

This implementation support - both simulation and code generation - is seen as one of the
strong points of the prototype implementation Using this method the implementation ef­
fects on a controller’s performance can be gauged This is preferable to trying to analytically
determine from the effects of round-off, etc When non-hnear modelling is included in the
package, a full "software breadboarding" of a controller can be carried out prior to selecting,
buying or building any hardware.

5.9 Limitations of Prototype

The prototype supports the main techniques need to complete a design from scratch except
non-linear modelling and simulation This is the major limitation of the prototype

Also novel algorithms cannot be added to the library for inclusion in implementation simu­
lation and code-generation This needs to be added particularly if the package is to be used
for research work on implementation strategies

The command-mode is not as well defined as the menu-mode Also command macros need
to be added This could be accomplished similar to MATLAB M files by parsing a file line
by line This would be slow compared to online commands This would be a problem for
design methods being implemented as macros One idea tested during the project was the
compiling of each macro into an executable file Each macro command would be parsed into
Ada code, compiled and linked into executable file (during the evaluation performed the
object file had to be exported due to the nature of the Ada compilation system) This did not
produce very satisfactory results because of the activation time associated with swapping
one executable file for another and then back again To obtain the performance needed the
conclusion drawn was th a t the macro command should be parsed mto an intermediate form
which can be parsed faster by the MSDI command parser This intermediate form would
be syntatically proven already when the macro was defined so much of the work required
to parse it would not be required again This is area th a t needs further research

Another limitation is the lack of support for continuous controller implementations Models
of standard 3-term controllers could be included in the library of hardware.

MSDI Prototype Implementation 85

5.9.1 VAX Ada and VAX GKS Performance Issues

One of the key points discovered during the project was the different way VAX Ada and VAX
Fortran store arrays on memory. This means care needs to be taken when interfacing Ada
to a Fortran routine. Arrays being passed to Fortran need to be transposed before being
passed to the Fortran routine. Arrays being passed back from the Fortran routine also need
to be transposed. This is only a problem for arrays of two or greater dimensions.

The VAX Ada implementation of certain constructs led to poor performance and had to
be removed where possible in critical code sections. Two examples are the ’image/’value
attributes. These create very poor runtime code. Another was when a large array (greater
than 1000 storage elements) is initialised when it is declared. For this situtation, the current
compiler VI.4 produces 10 times the amount of code as when the array is initialised using a
loop in the body of the procedure. These issues are tied to the use of the VAX Ada compiler
V1.4.

One of the problems found with VAX GKS V3.* was that rounding errors often meant th a t
borders around a window or view were drawn off the screen. To overcome this, each trans­
formation’s world co-ordinates were defined with an added component (min. - 1.0e-6, max.
+ 1.0e-6) to eliminate the rounding effect. The active world co-ordinate range used was then
(min., max.).

The prototype package has been tested on VT240, VT340, VS200 and GPX terminals. Some
problems were seen on the VS200 using V2.2 of VWS (such as dropping characters when
typing f a s t). Using a V3.0 or higher removed these problems.

5.10 Summary

The final prototype produced was able to take a design problem from initial modelling to
final implementations. The main body of a full MSDI package has been implemented. A
fuller set of analysis and design tools needs to be included. Also the command-mode of
operation needs to be brought up to the level of the menu-mode.

The prototype contains over 65,000 lines of Ada code. The relative sizes of the major com­
ponents outlined in chapter two are :

Table 18: Relative Size of Major Components MSDI Prototype
Function Size

User-lnterface 34 %
Numerical Algorithms 26 %
Graphical Software 28 %
Symbolic Software 2%
Database / Error handling, Memory Management 10 %

The current executable image for the prototype (when compiled using /opt=time/debug) is
1869 blocks. This image could be reduced by approx. 30% when V2.0 of the VAX Ada
compiler is released. All VI.* versions did not support code sharing between generics. V2.0
does support sharing of code between generics. As an object-oriented design method was
used for the prototype, heavy use of generics has been.

86 MSDI Prototype Implementation

C H A PT ER 6

DESIGN EXAMPLES

This chapter demonstrates the use of the prototype package The first two examples con­
centrate on the type of analysis that can be performed on a model The third example takes
a design from modelling to final implementation and evaluation of performance

First a transfer function representation of a MIMO system is analysed using frequency
domain techniques Then a control system is designed for a state space representation of
an exothermic catalytic reactor Finally a complete design using the prototype is presented
for a coupled-tanks apparatus This complete design is from initial modelling to the final
implementation of the controller m hardware and software

6.1 Frequency Domain Design Example

The plant model, taken from [69], is a two-input and two output system The model definition
was added in command-mode as follows

> Gll(s) = { s-1 }/({s+1}*{s+2}*1 25)
> G 1 2 (s) = { s } / ({s + 1 } * { s + 2 }*1 2 5)
> G21(s) = { -6 }/({s+1}*{s+2}* 1 25)
> G 2 2 (s) = { s - 2 } / ({s + 1 } * { s + 2 }* 1 2 5)
> 1
> G(s) = [Gil(s) G12(s)

» G21(s) G22(s)]
>

This model has two poles at -1 and -2 It is a minimum phase system but it is conditionally
stable The primary indicators (1 e the CVD and SVD for frequency range of interest) are
shown in Figure 24 A simulation of the step response at input 2 of this uncompensated
plant is shown m Figure 25 A generalised nyquist diagram for this plant model is shown
in Figure 26

Note :
E l and E2 on the diagrams represent the CVD curves
P I and P2 on the diagrams represent the SVD curves

DESIGN EXAMPLES 87

Fig
ure

24

:
De

sig
n

Ex
am

ple

1
: P

rim
ary

In

di
ca

to
rs

DE
SIG

N
EX

AM
PL

ES

Figure 25: Design Example 1 : Step response of uncompensated plant

C Ê-13

FUSS SumlaUon 11113-13 RESCALZ
TITLE

CO-ORDINATE
TABÜLATS
HERON
3 A VS

RESTORE

Enter Step S ue < 0 QQOOOEH) > » 1
Enter Sample Period » 0 01
Enter the Snu la tioa Sun Length (in sec) » 1 0

STUB StlKtUi

C E-13
0 02

0 00

-0 02

-0 04

-0 OS

- 0 08

PHASE Sim ulation 1 MS-U

I II3
IM IUH IHM
im liMIBW
im 1ÏÏM1.2Him imam
im UM UMim mum im tüis-i mm
im JNMUIMim im sm
im m -i\m

RESCALE
TITLE

CO-ORDINATE
TABULATE
RERUN
SAVE

RESTORE

Enter Saiple Period » 0 01
Enter D ugrai Na*e » e i l step2
Enter the S uu lation Run Eaigth in sec » 10

Example of Pop-up window displaying table
Note :

of simulation results.
DESIGN EXAMPLES

Figure 26: Design Example 1 : Generalised Nyqulst Diagram

c e + o :

6.2 Time Domain Design Example

The second example is based on the model developed m [70]. The linear model of bed one
was used to demonstrate how to design a controller The iconic representation of the system
diagram for this model is shown in Figure 27 The elements of the state space models is
shown are Appendix F

90 DESIGN EXAMPLES

Figure 27: Design Example 2 : Reactor Diagram

The unit step response for this plant model is shown in Figure 28.

DESIGN EXAMPLES

Figure 28: Design Example 2 : Step response of uncompensated plant

A controller was design for the reactor model using the optimal control design facilities The
controller was computed by defining Q and R for the cost function as follows .

> Q = d i a g ([2 . 0 0 . 1 1 . 0 0 . 2 0 . 5 5 . 0 1 0])
> R = d x a g ([5 0 1 0])

The designed feedback controller was given as

K = [0 3 7 6 6 8 4 0 . 5 3 3 7 8 0 . 5 0 9 9 4 0 . 1 5 6 5 4 1 4 6 7 6 4 5 - 7 8 5 7 8 9 6 3 6 7 2 7
7 . 4 3 7 2 5 7 0 . 3 4 0 0 5 0 . 7 2 0 5 3 0 . 6 8 3 7 4 0 3 2 0 1 7 4 0 . 2 8 4 9 3 . 1 5 1 9 2 1]

The step response for the compensated system is shown in Figure 29

92 DESIGN EXAMPLES

\
t

Figure 29: Design Example 2 : Step response of compensated plant

C E - 1 H

The definition of this controller has no real purpose other than to demonstrate some of the
capabilities of the prototype. The pole placement design method could have been used just
as easy to define the location of the poles of the closed-loop model where desired.

6.3 Full Design Example

The last example of using the prototype is the design of a controller for a coupled-tanks
apparatus The coupled-tanks apparatus is a laboratory experimental n g th a t captures the
basic characteristics of fluid level control problems. Fluid control is a very widespread and
important technology in industry. In most of these processes a desired amount of liquid
must be available at all times for the successful completion of the operation, for example in
the blending of chemicals

The basic experimental ng consists of two hold-up tanks which are coupled by an orifice
The input is supplied by a variable speed pump, which supplies water to the first tank
The onfice allows this water to flow into the second tank The water, which flows into tank
2, is allowed to drain out via an adjustable tap, and the entire assembly is mounted in a
large tray which also forms the supply reservoir for the pump The basic design problem is
to control the level of the water in the second tank by varying the speed of the pump A
schematic of the coupled-tanks apparatus is shown in Figure 30.

DESIGN EXAMPLES 93

Water in (q i)

Figure 30: Coupled-tanks Apparatus Schematic

HI

Water
out

H2

H3

Tank 1 Tank 2

Water is pumped from the reservoir into the first tank and is measured by a flow meter
which is in the flow line between the pump and tank 1 The depth of fluid is measured using
parallel track depth sensors which are stationed in tank 1 and tank 2 These devices perform
as an electrical resistance which vanes with the water level. The changes in resistance are
detected and provide an electncal signal which is proportional to the height of the water

The apparatus is set up so th a t the motor dnve can be dnven by a voltage between zero
and ten volts and the depth sensor outputs can provide outputs in the range zero to ten
volts. For the design study, the depth sensors were set to supply a voltage between zero
and five volts because of the A/Ds to be used to implement the controller. The A/Ds used
were MetraByte’s DASH-8, an 8 channel 12-bit high speed A/D board. The D/As consisted
of MetraBtye’s DAC-02, a 12-bit D/A board.

6.3.1 Modelling

The linear model for the apparatus [71] (denved using flow balances, and considering small
vanations in flowrates and water heights) is:

hi
.^2.

T 1
ft

-ti

A

h i +
r i

A
hq . 0 . (9)

For the design study Hi = 15 0 cm., H% = 9.5 cm., #3 = 3 cm., Qt = 2000cc/min., A=98 c m 2

94 DESIGN EXAMPLES

The model for the plant was derived using the identification facilities. A step was applied
to the pump drive and 50 output measurements were made a t 5 sec. intervals. The loss
function and confidence factor as the order of the model increased was :

Order V S.F.

1 0.782 0.1041E+35 ~ -

2 0.4137 0.1041 E+35

3 0.4051 0.1552

This indicated that a second order model was suitable. The model identified was:

G (z) - 1 . 9 4 6 8 3 8 E - 2 z + 4 . 2 6 8 8 1 8 E - 2

2
z - 1 . 4 9 8 7 3 6 + 5 . 1 9 7 1 2 1 E - 2

This model has poles at (0.9539167, 0.5448191299). This model was transformed into a
state space model and the iconic representation of the diagram used for open loop simulation
is shown in Figure 31.

Figure 31: Coupled-tanks Representation

DESIGN EXAMPLES 95

The response of the model to a unit step response is shown in Figure 32.

96 DESIGN EXAMPLES

Figure 32: Coupled-tanks Open Loop Unit Step Response

CE+03

0 20 0 40 0 . 6 0 0 80 1 00
T ime (se c) CE+3D

A controller was designed using pole placement. The desired poles were set to (0 6 +/- 0 2)
The controller state feedback m atnx computed was

K - [0 3 7 0 2 8 7 9 1 9 7 3 4 8 6 5 - 0 1 0 1 2 6 4 0 2 3 8 4 1 8 5 7 9]

The step response of the compensated closed loop plant is shown in Figure 33

DESIGN EXAMPLES 97

Figure 33: State Feedback Compensated Plant Step response

Then an implementation was defined using 12 bit D/A and 8 bit A/D with the microprocessor
being defined as 4 bit, 8 bit and 32 bit in turn. The simulation of these implementations for
a unit step response are shown in Figure 34.

98 DESIGN EXAMPLES

Figure 34: Simulation of 4, 8 and 32 bit based state-feedback controllers

C E + O]

32 bit wordlength

LE + OJ

8 bit wordlength

CE + 0 3

4 bit wordlength

The reason for the difference in performance between the three implementations was caused
by the different wordlengths used. This roundoff occurs both in the controller parameters
and for the calculations made during the test runs. The differences in the coefficients of
the feedback gain matrix K is shown in Table 19. Notice th a t the coefficients have change
significantly for the 4 bit wordlength implementation.

DESIGN EXAMPLES 99

Table 19: Coefficients in 4, 8 and 32 bit controllers
Wordlength K(1.1) K(1,2)

4 0 2 5 0 0 000

8 0 3671875 -0 093750

32 0 370287919734865 -0 1012640238418579

The roundoff in the feedback gam matrix is really pronounced in the 4 bit implementation
This together with the roundoff involved m the computations is the reason for the changed
performance. Based on this, a minimum of an 8-bit wordlength microprocessor should be
used to implement this controller

The code generation facility in the prototype was used to produce an implementation of the
controllers This code was compiled using the RR Software Janus Ada compiler and run
on IBM PC The code produce specified 4, 16 and 32 bit fix-pomt mathematics The code
produced to run on the PC implements these despite the fact the underlying processor is
16-bit. The recorded performance of these three controllers is shown in Figure 35

100 DESIGN EXAMPLES

Figure 35: Actual Responses of Apparatus for 4, 8 and 32 bit based state-feedback
controllers

32 bit wordlength

8 bit wordlength

The actual response obtained is as predicated by the simulation of the implementations.
The benefits of an implementation level simulation are th a t the final implementation can
be checked out, through simulation, before applying the controller to the real plant. This

DESIGN EXAMPLES 101

is important particularly for cases where the plant may be damaged by a poor performing
controller or the hardware to implement a controller is expensive.

Ib further demonstrate the power of the prototype package, an output feedback controller
was design The observer poles were designed to be located a t (0.6, 0 6) which gave an
observer feedback matrix o f .

Ko = [8 . 1 2 5 0 0 0 0
7 . 7 8 9 0 6 2 5]

The output feedback algorithm computes

y = C * s t a t e s

O = - K * s t a t e s + v

S t a t e s = A * s t a t e s * B * u + k o (H e i g h t 2 - y)

w h e r e A, B , C d e f i n e t h e s y s t e m , i n p u t a n d o u t p u t m a t r i c e s o f t h e s t a t e s p a c e
r e p r e s e n t a t i o n o f t h e p l a n t t o b e c o n t r o l l e d . S t a t e s c o n t a i n s t h e v a l u e o f t h e
e s t i m a t e d s t a t e s (S t a t e s i s s e t t o z e r o i n i t i a l l y) K i s t h e s t a t e f e e d b a c k
g a i n m a t r i x a n d Ko i s t h e o b s e r v e r f e e d b a c k m a t r i x

The simulation of this controller for 8 and 32 bit processors is shown in Figure 36.

102 DESIGN EXAMPLES

Figura 3& Simulation of 8 and 32 bit baaed outouf feedback controllers

i

CE+OJ

ce+oa

32 b i t

wordlengt

8 b i t

wordlengtl

T he a c tu a l perfo rm ance seen in ru n n in g th e se tw o o u tp u t feedback con tro lle rs on th e coupled
ta n k s a p p a ra tu s w as a g a in very sim ilar to th e s im u la te d responses.

6.4 Summary
Som e o f th e cap ab ilitie s o f th e p ro to type h a v e b een d e m o n s tra ted in th e p reced ing 3 exam ­
p les . T h e f ir s t tw o exam ples show som e o f th e d iffe ren t ty p es of an a ly s is a n d design th a t
c a n be perfo rm ed u s in g th e package.

T he fin a l exam p le d e m o n s tra te s th e a d v a n ta g e s o f h a v in g im p lem en ta tio n level sim u la tion
o f a contro ller. F o r th is exam ple i t w a s seen a d e s ig n e r w ould n eed to u se a t m in . a n 8-bit
m icroprocessor to im p lem en t th e re q u ire d s ta te feedback controller. T h e o u tp u t feedback
co n tro lle r could n o t b e im p lem en ted o n a 4 b i t con tro lle r a t a ll, a s th e coefficients o f the
o b se rv er feedback m a tr ix a re g re a te r th a n th e m ax . v a lu e ava ilab le . To im p lem e n t th is
o u tp u t c o n tro lle r on a 4 -b it m icroprocessor th e e n tire p rob lem w ould need ed to b e scaled to
g e t th e coefficients to fit in to th e n u m b e r ran g e .

DESIGN EXAMPLES 103

The computation time for the coupled-tanks example was not a factor. The sample time of
5 sec. far exceeds to time to perform the simple calculations, even for the case of output
feedback This facility would be useful where a very fast process such as a robot is being
investigated.

The code-generation facilities made it very easy to test implementations. The only draw­
back found was th a t to change an algorithm (say to use a different type of output feedback
algorithm than the one used) a change m the prototype source code is needed. The code­
generation facility needs to allow the user to enter the algorithm in a predefined m athemat­
ical form. Ideas on how to do this have been outlined in the previous chapter.

104 DESIGN EXAMPLES

C H A PT ER 7

CONCLUSIONS

The research outlined in this thesis derives a model for computer-aided control engineering.
This model was derived by first looking at the general problem of engineering design, then
looking at the particular situation of control engineering design. The model derived is
similar in nature to model proposed by Rimvall [38] and Denham [28]. The main difference
is that this model is considered to be ideally implemented within one package. A review
of current state-of-the-art packages revealed th a t few attempted to encompass the entire
design process from modelling to implementation. A summary of the packages reviewed is
given in chapter 2 along with some current research to overcome their shortcomings.

A software architecture is then derived based on this CACE model. Functional architec­
tural design and object-oriented architectural design was carried out to evaluate the best
type of architecture. The object-oriented method was preferred because it resulted in an ar­
chitecture th a t localises data structures and operations. This localising or modularising is
much better than the functionally designed architecture which tended to leave much of the
data structures global. These global structures would have made modifying the architecture
difficult once it was implemented (i.e. would result in a large amount of code re-writing).

The object-oriented design focused on two objects, a system diagram and a specification
object. The system diagram object was the key design decision for the architecture. This
system diagram was implemented using a digraph representation. Details on how this di­
graph was implemented is given in chapter 4. The system diagram is composed of atomic
components th a t can be interconnected. These atomic components have an evaluation func­
tion (EvFn) associated with them that dictates how they respond to stimuli. This idea of
a system diagram helped to implement Maciejowski’s idea of a system data type. By using
the OOD method and system diagram object, this system data type could be consider im­
plicitly implemented in the architecture. This implementation of the system data type is
spread over the entire package rather than in one structure. This helped to remove the
main criticism of the system data type concept i.e. tha t it was too inflexible.

Taking a bottom-up look at the design problem, control-oriented data-types were identified.
These data types were needed for the architecture to overcome one of the key problems of
many current packages - i.e. lack of appropriate data types. A list of these control-oriented
data types and their required operations is given in chapter 4.

The software engineering requirements for developing a CACE package were defined. These
requirements are listed in chapter 3 and they include readability, separate compilation,
portability and data structures. The current popular languages in use were evaluated
against this list of software requirements. Ada was selected as the most appropriate lan­
guage for the implementation of a CACE package because of its encapsulation of many
modern software engineering principles into its design. This included such things as pack­
aging concepts, operator overloading, tasking and exception handling. For the future, C++
is seen as a possible alternative once commercial compilers become available for it.

Conclusions 105

A prototype package was developed that implemented this defined architecture. This proto­
type concentrated on developing the system diagram object through a menu driven interface.
A control-based syntax was used for the input parser to allow the user to enter data in a way
as close as possible to the way he would write it on paper. This prototype provided facilities
for the simulation of a controller’s implementation and a code generation facility to increase
an engineer’s productivity. This code generation facility relieves the engineer of the need to
write new code every time he wants to implement a controller. This prototype was used for
several design examples including a complete design exercise from modelling to implemen­
tation for a coupled-tanks apparatus. The simulation of the controller performance in the
prototype corresponded closely to the actual performance achieved.

7.1 What was Achieved

A model for CACE was developed. An architecture, taking into account the software engi­
neering aspects, to support this CACE model was developed using object-oriented design.
This architecture is seen as a key to implementing a integrated environment for computer-
aided control engineering. This architecture was implemented using Ada in a prototype
package. This prototype package is the first developed using the object-oriented design
method.

Software implementational issue that affect the prototype are highlighted and discussed.
Tools written to aid the development of this prototype included a grammar analyser and
skeleton translator called GAST. GAST translates an input LL(1) grammar file into an Ada
programme that can parse inputs according the inputted LL(1) grammar.

Facilities to support the implementation of digital controllers have been designed into the
architecture and have been included in the prototype. These facilities include simulation at
the implementation level - i.e. simulation of the algorithm being performed on quantized
inputs from A/Ds on a fixed word-length microprocessor, with the outputs being quantized
by a D/As. Code-generation of a predefined selection of algorithms has been included in the
prototype.

Also, as part of the development of the prototype, several generic packages were created.
These packages included matrix, polynomial and transfer function manipulation facilities,
tree, digraph and linked-list data structures creation and manipulation plus many mathe­
matical algorithms such as pole placement and inverse nyquist array design. These packages
on their own represent a significant body of useful routines or a toolbox of algorithms for
control engineers. Thus, for future projects (particularly if using Ada), these routines can
save a significant amount of time and effort. The idea is similiar to the use of the Fortran
coded Eispack and Linpack libraries. Higher level routines can be developed from these
basic packages in the fashion shown in Figure 14.

7.2 What was not Achieved

A full implementation of the architecture (called M SDI) was not performed. Only a selection
of facilities in terms of specification of controller performance, design methods available and
user defined algorithms for simulation and code-generation have been included. Complete
facilities in these areas were considered to be beyond the scope of the current research. At
various points in the thesis the facilities tha t are not included in the prototype are looked
at and suggestions made on how they could be incorporated into the package.

106 Conclusions

The ideas investigated in this thesis have lead to the development of an architecture th a t
can support the full control systems design process. The implementation of this architecture
has been considered by looking a t the software engineering aspects and by implementing
the key ideas in a prototype package. Over time it is hoped th a t this prototype will evolve
to encompass the complete MSDI architecture.

7.3 Summary

Conclusions 107

APPENDIX A

CACSD PACKAGE SURVEY

A.1 Lund Suite

These programmes represent a senes of efforts a t Lund Institute of Technology to develop
CACSD tools. The initial projects date back to the early 1970s starting with a DEC PDP
15 with 32Kb of memory and 256 Kb disk. They were written in standard Fortran for
portability.

The design goal for the man-machine interface (MMI) was to develop tools for the expert
user rather than the novice which led to adopting a command dialogue interaction. This led
the developers to command abbreviations and MACRO facilities to allowed for extendibility
The MMI was called IN TRAC

The data structures were derived from control theory i e. Matrices, polynomials, State Space
descriptions, continuous and discrete time , etc.

Several individual packages were developed .

Package Name Description

SIM NON Simulation and optimisation of nonlinear continuous and discrete time systems

IDPAC Data analysis, spectral analysis, correlation analysis and parameter estimation of linear
M IM O models

POLPAC Polynominal operations and designs

MODPAC Transformation of models

DYMOLA Symbolic development of models from basic equations

LISPID Batch oriented estimation of parameters in linear stochastic systems

This suite is currently implemented on a VAX 11/780 with 2 M memory and 600 M disk
Each package would need at a minimum of a PC with 1M of virtual storage and a floating
point accelerator for acceptable performance

The main developers of the packages were Astrom, Wieslander, Elmqvist, Kallstrom and
Ostberg Currently the packages have stabilised since the early 1980s

Comments
This suite probably represents the evolution of CACSD packages INTRAC was an excellent
early attem pt to move away from menu dnven interfaces But its current lack of graphical
inputs and inconsistencies m commands between packages and within packages is a prob­
lem. Simnon is a powerful tool but models need to be developed in a textual manner rather
than in the more natural graphical form and batch oriented simulation for larger systems
is not possible. The data-base facilities are poor.

CACSD Package Survey 109

A.2 MATLAB and its Children

MATLAB was released by Cleve Moler in 1980 and has grown to be among the most im­
portant developments in CACSD. It is a milestone m the history of interactive programmes
with an easy-to-use, command-driven interface to Lmpack and Eispack software and was
called "the best piece of software available for 75 bucks" [6] Several packages have grown
out of this initial package incorporating such things as control algorithms and graphical
output. These include :
• PC-MATLAB and its associated toolboxes.
• PRO-MATLAB and its associated toolboxes
• CTRL-C
• MATRIXx
• IMPACT

PC and PRO- MATLAB come with optional toolboxes for control, identification and mul­
tivariable frequency design th a t cater for specific control problems The integrity of these
toolboxes from a numerical viewpoint is due in large measure to the inclusion of people such
as Alan J Laub and John N Little on the development teams.The systems are extendible
with the use of M-files and script files The use of the comments m these files as part of the
on-line help is very useful.

CTRL-C was developed from MATLAB with the goal to allow .
a. Easy matrix manipulation - basically from MATLAB
b. Uniform file handhng - adding m UNIX-like notation
c. Direct manipulation of data - system transparent to user , nothing hidden
d. Extensibility - basically MATLAB Macros

All data is stored in a large stack. It includes both 2-D and 3-D graphics

In MATRIXx .developed by Integrated Systems In c , the mam feature different from the
MATLAB family is the facility provided by SYSTEM_BUILD th a t allows graphical develop­
ment of systems by block diagrams plus the ability to use windowing Nonlinear components
such as saturators, etc, can easily be included in the design Facilities for using Fortran
code to define a subsystem are also included

IMPACT was developed by Rimvall a t ETH Zurich [36] to help overcome the shortcomings
of MATLAB m the areas of data structures available and to provide a powerful command
language. It differs from the others also m th a t it is developed in Ada instead of Fortran
I t also goes a long way in removing the inconsistencies of syntax of MATLAB by using
overloaded operators. Rimvall included a QUERY mode that would help novices to use the
IMPACT system without being overwhelmed by its complexity

All of these systems can be used on a variety of systems from PCs to workstations The
more advanced such as IMPACT and MATRIXx would need a workstation to derive the full
benefits from their inbuilt facilities for graphics, user-mterface, computations, etc

110 CACSD Package Survey

Comments
One major shortcoming of MATLAB and its children is the lack of appropriate data struc­
tures with only the complex m atnx as the single basic data structure. An exception is
IMPACT which supports a set of Control-Onented data structures.

Another critical aspect common to these packages is the absence of an efficient database
management system to help the user with the organisation of data and also to provide
easier ways to interface different systems and software packages

Also the lack of operator overloading (except m IMPACT) leads to inconsistent use of
symbols and operations (e.g. to multiply two polynomials, the command CONV is used into
of and an in-fixed * operator)

Finally the lack of run-time performance of user-defined functions as the functions and
macros are interpretive means there is often a large overhead associated with using them
A method of "Compiling" them into the system to improve efficiency would be very useful.

A.3 DELIGHT

DELIGHT is an interactive CAD infrastructure originally developed for optimisation studies
by Mayne (Imperial College) and Polak (Berkeley). I t has operating system-like capabil­
ities with string manipulation, I/O handling and file management I t includes a graphics
package and matrix package

Its command language is based on the language RATTLE Macros and aliasing of commands
can be defined and used The command language is quite versatile but relatively unstruc­
tured It provides an editor to browse through a session’s activities with a history/undo
facility

The original control system definition utility used a Pohsh list method of system intercon­
nection but this is being updated to a menu driven graphical input facility th a t would allow
block diagrams to be edited and simulated

Most of the design algorithms available on the system are biased towards optimisation

Comments
The most impressive part of DELIGHT is the macro and aliasing facilities The macro
features need to be made more robust to make them more consistent with the rest of the
system. The upgrade to graphical input of systems is a step in the right direction There
is no true database management system with the internal workspace being dumped into
binary files (which makes them not portable) for saving the session.

A.4 CLADP

CLADP was developed m Cambridge University mainly by Maciejowski and Edmunds m
the early 80s building on many of the ideas and theories of A G.J MacFarlane.

The package is written entirely m Fortran The User-Interface is mainly menu-driven
with the driver being little more than a multi-position switch. Simple commands such
as "NYQUIST" cause particular actions to be set in motion Extended command lines with
arguments are not used.

CACSD Package Survey 111

A macro facility is implemented using files. Macros of CLADP commands are stored in files
and executed by calling them from the keyboard. Macros can be called from within other
macros. This is a simple but relatively effective for the command interface used on CLADP.

The main emphasis of the package is on frequency design and analysis techniques. The
indicators of design information are usually present in frequency domain concepts such
as stability (Nyquist/Bode), gain (Bode),- etc. . The design algorithms available are
very extensive in frequency domain. State space methods are available but no way as
extensive.Matrix facilities are available th a t would allow the frequency domain and the state
space methods to be extended and enlarged. Limited simulation facilities are implemented
for the time domain. The simulation assumes a linear model is used (as assumed in all
of CLADP). TSIM is usually used in conjunction with CLADP to increase the simulation
capabilities. TSIM is a very powerful simulator widely used for both linear and non-linear
simulation.

Comments
The user-interface of CLADP is generally poor compared to many other packages with much
less flexibility for the engineer. The underlying numerical algorithms are very extensive and
robust and particularly in the frequency domain are much more sophisticated than most
other packages. Simulation is poor unless TSIM is used in conjunction with it.

A.5 Expert System Packages

CACE-III, the expert system designed by James et al. [1] at the Rensselaer Polytechnic In­
stitute automatically designs a compensator for a given SISO plant, and provides a designer
with little scope for the manipulating the design. Nolan [15], in contrast to this, has aimed
at building an expert system which functions as a designer’s assistant. He considers that
the expert system should be able to carry out block diagram analysis of a given system, and
provide the designer with assistance in selecting the type of compensation required. His
type of expert system would link with a conventional control system CAD package which
would provide the appropriate analysis and synthesis software required.

Birdwell [52], with his CASCADE package, is also working on developing an expert design
package. His packages focuses on the LQG problem.

Comments
Most of these packages are focused on a very narrow section of the control system design
problem. This is an area undergoing much research today but it will be some time before a
commercial package addressing the full design cycle will be available.

A.6 Current Developments

The Environment for Control System Theory, Analysis and Synthesis, or ESCTACY, is a
project funded by the SERC’s Control and Instrumentation subcommittee to develop a new
software infrastructure for CACSD. Its primary goals are :
a. To provide a common software base to assist the ready transfer of CAD tools between

various academic groups.

b. To act as a means of transferring the control system design tools already developed in
the academic world into industrial use in a consistent framework.

112 CACSD Package Survey

c. To provide a common software base for the development and testing of new design
algorithms and facilities.

A report of the progress of this project is given m [35]. Basically it aims to provide a common
operating environment and database facilities for control system design packages

CES, under development m the University of Wales, by Barker, Chen and Townsend [37]
aims to provide a graphical environment for CACE. In provides for block-diagram and signal-
flowgraph entry. I t then can convert between the two forms. The internal representation
used for both system models is a signal-flowgraph representation as it is more efficient.

Table 20 summaries the currently available packages th a t can be used at various stages of
the control engineering design process

Table 20: CAD packages to support Design Process
Phase Function Package Names

Modelling Symbolic Manipulation (Dynamic
Equations)

Schematic Capture

Identification

Non-Linear Dynamic Model

Linearisation

Model Reduction

Macsyma

Matrix-x, Simbol

IDPAC, CTRL-C, MATLAB1

Tutsim, MATRIX-x, Simbol

MATLAB1, CTRL-C, MATRIX-x, Lund Suite,
CLADP, Impact

MATLAB1, CTRL-C, MATRIX-x, Lund Suite,
CLADP, Impact

Specification S ISO design CACE-III

Design S ISO / M IM O

Simulation - Linear

Simulation - Non-Linear

Non-Linear Techniques

Analysis

MATLAB1, CTRL-C, MATRIX-x, Lund Suite,
CLADP, Impact

MATLAB1, CTRL-C, MATRIX-x, Lund Suite,
CLADP, Impact

TSim2, Simbol, ACSL, PMSP, Simnon

CLADP, Lund Site

MATLAB1, CTRL-C, MATRIX-x, Lund Suite,
CLADP, Impact

Implementation Simulation/Code Generation

Documentation

MATRIX-x, Mascolt, RTS

Delight, CACE-III

1 assuming appropriate toolbox

CACSD Package Survey 113

APPENDIX B

LANG UAGE EVALUATION

B.1 FORTRAN 77

Maintainability/Readability
Limited Data Abstraction Capabilities - Related to the limited data type problem which
means th a t objects cannot be modelled in the most natural way but only in a quasi-numerical
way.

No separate compilation facilities.

Modularity/Hierarchical
Not Modular - Does not lend itself easily to modular design and usually produces flat-
designs with most data of the data being global, particularly with only pass by reference
mechanisms.

Does not allow new operators to be defined to extend language constructs.

Not recursive

Data StructuresATypes
Not Strongly Typed - Usually allows implicit declarations which lead to bugs caused by
spelling mistakes which the compiler does not pick-up plus related use of loose control of
mix-typing.

Limited Data Types - Only allows use of predefined types (r e a l , integer, boolean, character
) and the programmer cannot create new ones.

No List Structures - Which means th a t dynamic structures are very difficult to build and
m ust be customised by the programmer.

Efficiency
Efficient - Fortran compilers tend to produce the most optimised code due to their limited
constructs and their length of time in active use (since the sixties).

Concurrent Facilities
Not Concurrent - Only single thread of control catered for, causing problems in modelling
solutions tha t are naturally concurrent.

Portability
Compilers - Most computer systems have available Fortran Compilers.
Porting - Different flavours for different computers, if Fortran 77 strictly used without the
usually advanced features made available in various compilers, porting can be relatively
easy.

Language Evaluation 115

Error Handling
No built-in facilities. This is usually handled by calls to the operating system.

I/O Facilities
Advanced I/O facilities are'usually implementation dependent particularly for direct access
files.

Familiarity
Very large body of programmes developed using Fortran, particularly numerical libraries
such as Eispack and Linpack. Many well documented design methods with reed design
cases available.

GENERAL COMMENT
Fortran is often the first language th a t an engineer learns due to its ease of use in small
programmes It has been used in many engineering packages over the years particularly
in numerical software where designers were often concerned with efficiency (i.e Linpack /
Eispack). These advantages m efficiency are not as important today with the improvements
in hardware and compiler technology. The drawbacks make it unsuitable for large scale
systems (though it still is used today because of the inbuilt inertia in many engineers to
move to a "new" language)

B.2 PASCAL

Maintainability/Readability
No separate compilation facilities m standard Pascal (though available m many implemen­
tations)

Data Abstraction - Ability to create new types aids the maintainability and readability
greatly

Modularity/Hierarchical
Procedural - Facilitates the breaking up of a design into modules, though generally tending
towards a functional decomposition of a problem Most implementations of the language
allow "external" procedures.

Recursive

Data Structures/Types
Typing - Enforces exphcit declaration of all parameters used

Linked lists available

Poor stnng processmg facilities

Efficiency
Efficient - Comparable to Fortran though usually not as highly optimised

116 Language Evaluation

Concurrent Facilities
Not Concurrent - Though lately "Concurrent Pascal" has been introduced to overcome this
problem.

Portability
Again tends to be implementation dependent though not as much as Fortran.

Error Handling
None Available in the language.

I/O Facilities
Only Sequential File operations.

Familiarity
Many text books available with design methods and case studies of projects using Pascal.

GENERAL COMMENT
Pascal is good at teaching people structured design , containing some of the modem ideas
on software engineering though not enough to make it truly useful. It was developed as
a teaching aid, and in general this is the scope of its use , or in the development of small
type applications (though its slightly difficult way of handling strings and arrays can cause
difficulties in these areas compared to C). Many current implementations such as Turbo
Pascal support additional facilities and provide such a good design environment th a t Pascal
has become a popular modern language for small to medium size (> 10 K lines) engineering
projects.

B.3 C and C ++

Maintainability/Readability
Very terse - Bad for Maintainability / Readability

Modularity/Hierarchical
Procedural - Allows for procedures and functions plus passing of variables by reference or
value.

Not Extensible - Does not allow new operators to be created or operator overloading.

Independent Compilation of functions.

C++ has generic template facilities and does allow the creation of new operators and operator
overloading.

Recursive

Data Structures/Types
Pointers - A very powerful feature , though often seems to be abused to the point of blurring
Structure and can cause subtle run-time problems if not carefully analysed/controlled.

Typing Optional - Allows for "hacking"

Language Evaluation 117

Coercion - Permits a variety of different types to coexist within a single expression implicitly
doing the conversions.

C++ has inheritance which allows particular instantations of a "generic" type to be made
like say instant a MOSFET from a type FET.

Efficiency
Efficient - Though this can be implementation dependent

C++ today only has translators to standard C thus tends to be inefficient

Low Features - Allows a programme direct access to hardware if needed.

Concurrent Facilities
"Standard" C not concurrent.

C ++ concurrent

Portability
Very Portable - Standard C is powerful enough to cater for the needs of most apphcations
without the need of implementation dependent features

Few C++ compilers/translators available.

Low Level Features - Need to be carefully used as can lead to porting problems

Error Handling
Not Available in C

Support m C++.

I/O Facilities
Standard Terminal I/O functionality.

File I/O - Sequential supported , others are implementation dependent

Familiarity
Some good textbooks available today for C, though not as many as for Fortran or Pascal
C++ textbooks are very scarce

GENERAL COMMENT
C is a very powerful language th a t is often badly implemented (1 e allowing too many
implicit operations). It is probably the most popular "new" language m the engineering
commumty This, more often than not, is because it facilitates "hacking". Its low level
features are very powerful allowing a user direct access to hardware if required. C, in some
respects, could be considered to be a "Portable Assembler" C++ overcomes many of the
drawbacks of C but is mainly in an experimental stage, with usually only translators to C
constructs available thus not maintaining the efficiency of C.

118 Language Evaluation

Maintainability/Readability
Very Verbose - leads to very readable programmes.

Supports Separate compilation - allows separation between specification and implementa­
tion.

Modern Software Concepts - Designed to incorporate and support many of these ideas

Modularity/Hierarchical
Modular - Programme built up through library units (i.e. packages, procedures, functions)
which can all be compded individually.

Data Abstraction - New types can be created to mirror the real life problem being modelled
This includes restricting mtegers and real types to specific ranges.

Generics - Allow a programme to build up design solutions from software templates (e.g a
Sort routine for anything - reals, integers, strings or arrays) thus allowing greater software
reusability and brings the idea of software ICs closer.

Recursive

Data Structures/Types
Strongly Typed - All variables must be declared Also the compiler checks across module
interfaces to ensure they are consistent.

Abstraction - Can create new types.

Attributes - Allow structures to be robust

Access Types - allow dynamical structures to be built up, though usually garbage collection
(1 e. releasing memory allocated automatically when no longer "pointed" to.)currently not
implemented in current compilers

Low-Level Features - Allows direct access to hardware features.

Does not provide for inheritance

Does not have a procedure type - can lead to problems m system-type work

Efficiency
Strong typing and range check could lead to inefficient run-time performance m applications
when compared to other languages.

Optional Turn-off of Error -Checking - Lead to faster apphcations

Long Compilation times - due to cross-module interface checking

Concurrent Facilities
Tasking facilities available for concurrent programmes

Language Evaluation 119

Portability
Compilers - Currently limited no. of available compiler^, though growing.

Porting - Rigidly defined in a standard and all-compilers m ust be validated by the US Dept,
of Defence (DoD).

Error Handling
Exception Handling - Error mechanisms implemented to control programme execution after
the detection of an error condition.

User Definable - User can define his own errors and handling routines.

I/O Facilities
File Handling - Sequential and random access facilities.

Terminal I/O - Basic because idea is that user defines and builds up his own I/O packages.

Low-Level - An implementation defined package for primitive I/O.

Familiarity
Lack of Experience - It is a new language with few design examples to use as a guide
in developing a programme in it and few performance details to see its implementation
limitations.

Limited number of textbooks.

GENERAL COMMENT
Ada is designed to be used for large programmes. It was designed by an initiative of the DoD
to help in the software crisis. Some of its constructs cause it to produce not as optimised code
as Fortran compilers. The language encompasses a design environment where programmes
are compiled into a library thus aiding in project management aspects. Its generic facilities
are extremely important (though not as powerful as those implemented in C++). It lends
itself to real-time environments with its low-level features and tasking constructs.

B.5 LISP / PROLOGUE

Maintainability/Readability
Poor, due to syntax mainly (e.g. Lisp’s Setq (+(A,B))

Modularity/Hierarchical
Lisp very modular - declarative language

Prologue - Written in sentence - can be difficult to modularize

Different design philosophy required compared to other languages.

Data Structures/Types
Lisp - Based only on lists

Prologue - Allows multiple types to be built

Usually limited in precision thus not suitable for numerical work.

120 Language Evaluation

Efficiency
Both languages are highly computation intensive due to their list processing and backtrack'
ing mechanisms.

Very poor for numerical applications - slow.

Often Interpreted not compiled.

Inferencing Engines - Powerful mferencmg mechanisms (though Prologue is often only
implemented with backward chaining paradigm)

Concurrent Facilities
Not available

Portability
Compilers - Many different compilers available for different computer systems

Porting - Very difficult due to the many different flavours or dialects of each language.

Error Handling
Not available

I/O Facilities
Poor on their own

Familiarity
Lisp is an "old" language with many textbooks and application studies Prologue is newer
and is not as well documented and "teased" out m design studies

GENERAL COMMENT
Lisp and Prologue are really AI languages (though people have used them for general
applications) which allow the encapsulation of knowledge and deduction of facts from this
knowledge through their mferencmg mechanisms They tend to be very inefficient, in th a t
current hardware topologies are not oriented to support their type of operation easily They
are often used in the implementation of expert systems.

Language Evaluation 121

APPENDIX C

FUTURE TRENDS IN DESIGN COMPLEXITY AND TECHNOLOGY

C.1 Complexity Trends

The Control Engineering design problem, like nearly all facets of engineering, is growing
in size and complexity. The 1960s and 1970s saw industrial applications mainly focus on
analog implementations of the 3-term controller. The conventional control system for a
mechanism or industrial process incorporated (many still do incorporate) many small units
of pneumatic and/or analogue electronic controllers. Each of these usually was dedicated to
a particular task, with little communication with other units.

The micro-processor has revolutionised the architecture of control systems. Microprocessors
now often substitute for the conventional electronic controllers. Such units may control a
single loop or a number of loops simultaneously. The control function itself is implemented
in software while the hardware functions of these controllers are mainly restricted to the
conversions between analogue and digital signals.

During the 80s there has been a gradual increase in the acceptance of more complex control
strategies such as optimal design. These methods require the power of both sophisticated
CAD systems to aid the designer to effectively create the design and powerful, reliable mi­
croprocessor based systems to implement them. The reduction in the price of microprocessor
hardware and their increased reliability plus the need for increased performance in more
complex design problems are the reasons for their gradual acceptance in industry. The lead­
ers in the use of this type of technology have been, as in many other areas, the military
and space agencies. Many current aircraft have sophisticated control systems which the
pilot would be unable to fly the plane without [53]. Robotics is another area where new
techniques are being investigated as a means of increasing performance.

The complexity that these systems demand is ever increasing, e.g. tighter specifications of
performance, optimisation of controller and plant parameters in the face of multiple design
objectives. Instead of single independent loops, systems today are tending towards tightly
coupled loops to maximise performance. Also the needs for reliability, particularly in safety-
related areas, such as auto-pilot systems, demand performance far greater than those of
the 1970s. These considerations must be factored into the design process to ensure that a
satisfactory controller meeting the design objectives can be achieved.

C.2 Technology Trends

Technology has rapidly changed in the last decade and will continue for the foreseeable
future. We have moved from very expensive mainframe computers to the inexpensive PCs
and workstations of today. Already research and design teams are working on such products
as application oriented workstations (for AI, CAD, etc.) plug systems th a t combine parallel
processing and graphic technology into a workstation (e.g. Stellar). RISC will attem pt to

Future Trends in Design Complexity and Technology 123

dislodge CISC technology in microprocessors. The areas of development in which we are
likely to see major technological advances are :
• Miniaturisation o f electronics - One of the greatest forces in change in the future as it

makes designs both faster and cheaper.
• Input technology / Human Interfaces - Both the specific input devices and the screen

"look" are areas in which developments are still forthcoming The availability of every
decreasing m-pnce hardware has opened up new possibilities in input devices. Artificial
intelligence and graphics should prompt developments in the Human Interface area

• Handling o f Image Information - The incorporation of non-coded information into
databases is an important direction in computing Specifically, the abihty to capture im­
ages of the physical surroundings efficiently and rehably in computerised form is being
actively researched The increasing availability of vision technology and the cheapness
of storage open up opportunities in this area.

• Parallelism - The increasing use of parallel architecture is being pushed to increase
price/performance, as well as to achieve the greatest performance from a computer

• System Software - The key advances have been and will continue to be , the crystallising
of interfaces (both human and inter-program), the use of higher levels of abstraction
and greater subsystem functionality. The availability of cheap hardware is permitting,
if not driving, the trend toward increasingly complex applications

124 Future Trends in Design Complexity and Technology

APPENDIX D

LOW LEVEL OBJECT CODE EXAMPLES

Figure 37: Generic Matrix Package

- - PACKAGE MATRICE (S p e c i f i c a t i o n)

— V e r s i o n 1 - 0 0 2

— F a c i l i t y U s e r N u m e r i c a l C o m p u t a t i o n L i b r a r y

— A b s t r a c t : T h i s g e n e r i c p a c k a g e p r o v i d e s a l l t h e e l e m e n t a r y
— o p e r a t i o n s r e q u i r e d f o r m a t r i x c o m p u t a t i o n s T h e e x c e p t i o n s

d e f i n e d m p a c k a g e MATRIX_EXCEPTION a r e i m p o r t e d f o r u s e i n
t h e b o d y o f t h i s p a c k a g e .

- - A u t h o r J o h n H i c k e y C r e a t i o n D a t e • 0 1 / 0 2 / 8 7

w i t h T E X T _ I 0 , u s e T E X T _ I 0 ,

g e n e r i c

t y p e ELEMENT i s p r i v a t e ;
—+
 1- ELEMENT d e f i n e s t h e t y p e t h e i n d i v i d u a l c o m p o n e n t s u s e d t o
— + c o n s t r u c t t h e m a t r i x
—+

ELEMENT_ZERO ELEMENT;
—+
 1- ELEMENT_ZERO d e f i n e s t h e n u l l e l e m e n t v a l u e f o r t h e g e n e r i c
— + t y p e .
—+

ELEMENT_ONE ELEMENT,
—+
 (• ELEMENT_ONE d e f i n e s t h e I d e n t i t y e l e m e n t v a l u e f o r t h e g e n e r i c
 H t y p e l e m u l t i p l y a n e l e m e n t b y t h i s v a l u e a n d t h e r e s u l t i s t h e
 H s a m e e l e m e n t .
—+

Figure 37 Cont’d. on next page

Low Level Object Code Examples 125

Figure 37 (Cont.): Generic Matrix Package
DEFAOLT_FORE
DEFAULT_AFT :
DEFAULT_EXP :
—+
— + D e f i n e t h e d e f a u l t f o r m a t f o r t h e G e t a n d P u t E l e m e n t r o u t i n e s .
—+

: T E X T _ I O .F I E L D ;
T E X T _ I O .F I E L D ;
TEXT 1 0 . F I E L D ;

w i t h f u n c t i o n " + " (L E F T , RIGHT
w i t h f u n c t i o n (L E F T , RIGHT
w i t h f u n c t i o n " * " (L E F T , RIGHT
w i t h f u n c t i o n " / " (L E F T , RIGHT
w i t h f u n c t i o n " > " (L E F T , RIGHT

i n ELEMENT) r e t u r n ELEMENT i s < > ;
i n ELEMENT) r e t u r n ELEMENT i s < > ;
i n ELEMENT) r e t u r n ELEMENT i s < > ;
i n ELEMENT) r e t u r n ELEMENT i s < > ;
i n ELEMENT) r e t u r n BOOLEAN i s < > ;

w i t h f u n c t i o n " * * " (LEFT : i n ELEMENT; RIGHT : i n INTEGER) r e t u r n ELEMENT i s < > ;
w i t h f u n c t i o n " A B S " (X
w i t h f u n c t i o n C O S (X
w i t h f u n c t i o n S I N (X
w i t h f u n c t i o n T A N (X
w i t h f u n c t i o n (X
—+
— + T h e s e p r o c e d u r e d e f i n e t h e a d d i t i o n , s u b t r a c t i o n , m u l t i p l i c a t i o n
 1- a n d d i v i s i o n , r e l a t i o n a l , u n i a r y a n d a b s o l u t e v a l u e p r o p e r t i e s f o r
 h ELEMENT t y p e s n e e d e d f o r t h e p a c k a g e .
—+

i n ELEMENT) r e t u r n ELEMENT i s < > ;
i n ELEMENT) r e t u r n ELEMENT i s < > ;
i n ELEMENT) r e t u r n ELEMENT i s < > ;
i n ELEMENT) r e t u r n ELEMENT i s < > ;

i n ELEMENT) r e t u r n ELEMENT i s < > ;

w i t h p r o c e d u r e G E T (X : o u t ELEMENT; WIDTH : i n T E X T _ I 0 .F I E L D : = 0) i s < > ;
w i t h p r o c e d u r e G E T (F I L E : i n TEX T _ 1 0 . F I L E _ T Y P E ; X : o u t ELEMENT; WIDTH : i n T E X T _ I 0 . F IE L D

w i t h p r o c e d u r e P O T (X : i n ELEMENT; FORE : i n T E X T _ I 0 .F I E L D : = 2 ; AFT : i n T E X T _ I 0 . F I E L D :
EXP : i n T E X T J E O .F IE L D : = 3) i s < > ;

w i t h p r o c e d u r e P U T (F I L E : i n T E X T _ I 0 . F I L E _ T Y P E ; X : i n ELEMENT; FORE : i n T E X TJEO . F IE L D :
AFT : i n T E X T _ I 0 . F IE L D : = DEFAULT_AFT; EXP : i n T E X T _ I 0 .F I E L D : = DEFAULT_EXP) i s < > ;

—+
 h P r o c e d u r e s G e t a n d P u t d e f i n e I / O o p e r a t i o n s f o r ELEMENT t o t h e
 h t e r m i n a l a n d a f i l e .
—+

p a c k a g e GEN_MATRICE i s

t y p e MATRIX i s a r r a y (INTEGER r a n g e < > , INTEGER r a n g e <>) o f ELEMENT;
—+
 1- MATRIX d e f i n e s t h e t y p e s u p p o r t e d b y t h i s p a c k a g e . I t c o n s i s t s
— + o f a t w o d i m e n s i o n a l a r r a y o f t h e g e n e r i c t y p e ELEMENT.
—+

— I n p u t / O u t p u t R o u t i n e s

p r o c e d u r e G E T (A : o u t MATRIX) ;
p r o c e d u r e G E T (F I L E : i n T E X T _ I 0 . F I L E _ T Y P E ; A : o u t MATRIX) ;

p r o c e d u r e P U T (A : i n MATRIX) ;
p r o c e d u r e P U T (F I L E : i n TEXT 1 0 . F I L E TYPE; A : i n MATRIX) ;

— A d d i t i o n a n d S u b t r a c t i o n R o u t i n e s
- - ERROR : N o n _ C o n f o r m a b l e r a i s e d i f n o t m a t h e m a t i c a l l y d e f i n e d

o p e r a t i o n f o r L e f t / R i g h t p a r a m e t e r s u s e d .

f u n c t i o n " + " { L E F T ,R IG H T : i n MATRIX) r e t u r n MATRIX;
f u n c t i o n L E F T ,R IG H T : i n MATRIX) r e t u r n MATRIX;

Figure 37 Cont’d. on next page

126 Low Level Object Code Examples

Figure 37 (Coni): Generic Matrix Package

— U n i a r y F u n c t i o n
f u n c t i o n X : i n MATRIX) r e t u r n MATRIX;

— S c a l a r a n d M a t r i x M u l t i p l i c a t i o n
— ERROR • N o n _ C o n f o r m a b l e r a i s e d i f n o t m a t h e m a t i c a l l y d e f i n e d
— o p e r a t i o n f o r L e f t / R i g h t p a r a m e t e r s u s e d .

f u n c t i o n " * " (L E F T ,R IG H T • m MATRIX) r e t u r n MATRIX;
f u n c t i o n " * " (L E F T ,R IG H T i n MATRIX) r e t u r n ELEMENT,
f u n c t i o n " * " (LEFT . i n ELEMENT, RIGHT : m MATRIX) r e t u r n MATRIX;
f u n c t i o n " * " (LEFT • i n MATRIX; RIGHT i n ELEMENT) r e t u r n MATRIX,

M a t r i x E x p o n e n t
f u n c t i o n " * * " (LEFT i n MATRIX, RIGHT m NATURAL) r e t u r n MATRIX,

- - T r a n s p o s e o f M a t r i x

f u n c t i o n TRANS (A m MATRIX) r e t u r n MATRIX;

— M a t r i x I n v e r s i o n
— ERROR DIMENSION_ERROR r a i s e d i f n o t a s q u a r e m a t r i x
— SINGULAR r a i s e d w h e n t h e m a t r i x i s s i n g u l a r i e n o i n v e r s e

f u n c t i o n I N V (A i n MATRIX) r e t u r n MATRIX,

— M a t r i x T n g n o m e t n c f u n c t i o n s
f u n c t i o n COS(A m MATRIX) r e t u r n MATRIX;
f u n c t i o n S I N (A i n MATRIX) r e t u r n MATRIX,
f u n c t i o n TAN(A m MATRIX) r e t u r n MATRIX;

— M u l t i p i c a t i o n b y I n v e r s e o f R i g h t

f u n c t i o n " / " (L E F T ,R IG H T i n MATRIX) r e t u r n MATRIX,
f u n c t i o n " / " (LEFT i n MATRIX; RIGHT i n ELEMENT) r e t u r n MATRIX,

— M a t r i x U t i l i t i e s

f u n c t i o n ID E N T ITY (S I Z E
f u n c t i o n COL_NORM (A
f u n c t i o n ROW_NORM (A
f u n c t i o n TRACE (A

m NATURAL) r e t u r n MATRIX,
m MATRIX) r e t u r n ELEMENT;
i n MATRIX) r e t u r n ELEMENT,
i n MATRIX) r e t u r n ELEMENT,

- - F o r m I d e n t i t y m a t n x
— C o m p u te t h e c o l u m n n o r m o f

- - C o m p u t e t h e r o w n o r m o f A
— C o m p u t e s t h e t r c e o f t h e m,

f u n c t i o n IS_Z E R O (A • i n MATRIX) r e t u r n BOOLEAN, — R e t u r n s T r u e i f M a t r i x i s a l l z

e n d GEN MATRICE,

Figure 37 Cont’d. on next page

Low Level Object Code Examples 127

Figure 37 (Cont): Generic Matrix Package

w i t h IN T E G ER _TE X T _IO , T EX T_IO , MATRIX_EXCEPTION;
u s e INTEGER TEXT 1 0 , TEXT 1 0 , MA£RIX_EXCEPTION,

p a c k a g e b o d y GEN_MATRICE i s

------ S p e c i f i c a t i o n f o r t h e l i n e a r s o l v e r p a c k a g e --------

---- L U _ B A C K --------

p a c k a g e L 0 BACK i s

t y p e C0L_VECT0R i s a r r a y (INTEGER r a n g e < >) o f ELEMENT;
t y p e VECINT i s a r r a y (INTEGER r a n g e < >) o f INTEGER,
— +
— + T h e s e t y p e s a r e n e e d e d f o r t h e I n v e r s e r o u t i n e u s i n g
— + p a c k a g e L0_BACK
— +

p r o c e d u r e DEC (n i n INTEGER,
n d i m m INTEGER,

a m o u t MATRIX,
i p m o u t V E C IN T ,

1 e r i n o u t INTEGER) ,

p r o c e d u r e SOL (n : m INTEGER,
n d i m i n INTEGER,

a i n MATRIX,
b i n o u t COL VECTOR,

i p i n VECINT) ,

e n d L0_BACK,

-------- BODY o f l u _ b a c k i s a s f o l l o w s --------

p a c k a g e b o d y LU_BACK i s

o n e c o n s t a n t ELEMENT = ELEMENT_ONE,
z e r o c o n s t a n t ELEMENT = ELEMENT ZERO;

p r o c e d u r e DEC (n i n INTEGER, n d i m i n INTEGER,
a i n o u t MATRIX, i p m o u t VEC INT,
l e r i n o u t INTEGER) i s

t s t a r ELEMENT,
m, n m l , k , k p l , i . INTEGER,

b e g i n
l e r • = 0 ;
i p (n) = 1 ,

Figure 37 Cont’d. on next page

128 Low Level Object Code Examples

i f n > 1 t h e n
n in i • = n - 1 ;
f o r k i n 1 . . n m l l o o p

k p l . = k + 1 ,
m . = k ;

f o r i m k p l . n l o o p
i f a b s (a (i , k)) > a b s (a (m , k)) t h e n
m •= i;

e n d i £ ;
e n d l o o p ;

i p (k) : = m;
t s t a r = a (m , k) ;

i f m / = k t h e n
i p (n) = - i p (n) ,
a (m, k) : = a (k , k) ;
a (k , k) = t s t a r ,

e n d i f ;

i f t s t a r = z e r o t h e n
ì e r • = k ,
i p (n) •= 0 ,
r e t u r n ,

e n d i f ,

t s t a r = o n e / t s t a r ,

f o r i i n k p l . . n l o o p
a (i , k) : = - a (i , k) * t s t a r ;

e n d l o o p ;

f o r 3 i n k p l . . n l o o p
t s t a r • = a (m , 3) ,

a (m , 3) . = a (k , 3) ,
a (k , 3) = t s t a r ;
i f t s t a r / = z e r o t h e n

f o r 1 i n k p l n l o o p
a (i , 3) = a (1 , 3) + a (1 , k) * t s t a r ,

e n d l o o p ,
e n d i f ,

e n d l o o p ;
e n d l o o p ,

e n d i f ,

k . = n ,

i f a (n , n) = z e r o t h e n
1 e r = k ,
i p (n) = 0 ;

e n d i f ,

e n d DEC,

Figure 37 Cont’d. on next page

Figure 37 (Cont.): Generic Matrix Package

Low Level Object Code Examples 129

Figure 37 (Coni): Generic Matrix Package

P r o c e d u r e S O L

p r o c e d u r e SOL (n : i n INTEGER;
n d i m : i n INTEGER,
a . m MATRIX;
b : m o u t COL_VECTOR,
i p : i n VECINT) i s

t s t a r : ELEMENT,
i , k , k b , k m l , k p l , m, n m l • INTEGER ;

b e g i n
i f n / = 1 t h e n

n m l : = n - 1 ,

f o r k m l n m l l o o p
k p l • = k + 1 ,
m •= i p (k) ,
t s t a r . = b (m) ,
b (m) : = b (k) ,
b (k) = t s t a r ;
f o r i i n k p l n l o o p

b (i) = b (i) + a (i , k) * t s t a r ;
e n d l o o p ,

e n d l o o p ;

f o r k b m 1 n m l l o o p
k m l : = n - k b ,
k = k m l + 1 ,
b (k > : = b (k) / a (k , k) ,
t s t a r = - b (k) ,
f o r i i n 1 k m l l o o p

b (i) = b (i) + a (i , k) * t s t a r ,
e n d l o o p ,

e n d l o o p ;

e n d i f ;
b (1) = b (1) / a (1 , 1) ,

r e t u r n ;

e n d SOL,

e n d LU_BACK,

— T h i s p r o c e d u r e a l l o w s e l e m e n t s o f a n a r r a y t o i n p u t e d

p r o c e d u r e GET (A o u t MATRIX) i s
b e g i n

f o r I m A 'R A N G E (1) l o o p
p u t (" E n t e r Row ") , p u t (I) , p u t (" ") ,
f o r J m A 'R A N G E (2) l o o p

n e w _ l i n e ,
p u t (" > ") , GET (A (I , J)) ,

e n d l o o p ,
e n d l o o p ;

e n d GET;

Figure 37 Cont’d. on next page

130 Low Level Object Code Examples

Figure 37 (Cont.): Generic Matrix Package

— T h i s p r o c e d u r e g e t s t h e m a t r i x f r o m a f i l e

p r o c e d u r e GET (F I L E . i n F I L E J T Y P E , A : o u t MATRIX) i s
b e g i n

f o r I m A 'R A N G E (1) l o o p
s k i p _ l i n e (F I L E) ;
f o r J m A 'R A N G E (2) l o o p

GET (F I L E , A (I , J) > ;
e n d l o o p ;

e n d l o o p ,
e n d GET,

— T h i s p r o c e d u r e O u t p u t s t h e c o n t e n t s o f a m a t r i x

p r o c e d u r e PDT (A i n MATRIX) i s
b e g i n

f o r I i n A 'R A N G E (1) l o o p
n e w _ l m e ,
f o r J i n A 'R A N G E (2) l o o p

P D T (" ") ; P O T (A (I , J)) , P U T (" ") ,
e n d l o o p ;

e n d l o o p ;
n e w _ l i n e ,

e n d PUT,

- - T h i s p r o c e d u r e O u t p u t s t h e c o n t e n t s o f a m a t r i x

p r o c e d u r e POT (F I L E i n F IL E _ T Y P E ; A . m MATRIX) i s
b e g i n

f o r I i n A 'R A N G E (1) l o o p
n e w _ l m e (F I L E) ,
f o r J m A 'R A N G E (2) l o o p

P U T (F I L E , A (I , J)) ,
e n d l o o p ,

e n d l o o p ,
e n d PUT,

— T h i s f u n c t i o n r e t u r n s t h e su m o f t w o m a t r i c e s .
— ERROR N o n _ C o n f o r m a b l e r a i s e d i f n o t m a t h e m a t i c a l l y d e f i n e d

o p e r a t i o n f o r L e f t / R i g h t p a r a m e t e r s u s e d

f u n c t i o n " + " (L E F T , RIGHT i n MATRIX) r e t u r n MATRIX i s
C MATRIX (L E F T 'R A N G E (1) , L E F T 'R A N G E (2)) ,

b e g i n
i f ((L E F T 'L E N G T H (1) /= R IG H T 'L E N G T H (1)) o r (L E F T 'L E N G T H (2) /= R IG H T 'L E N G T H (2))) t h e n

r a i s e NON_CONFORMABLE, — d i m e n s i o n a l e r r o r e x c e p t i o n ------
e l s e

f o r ROW i n L E F T 'R A N G E (1) l o o p
f o r COL i n L E F T 'R A N G E (2) l o o p

C(ROW,COL) = LEFT(ROW ,COL) + RIGHT(ROW, COL) ,
e n d l o o p ,

e n d l o o p ;
r e t u r n C;

e n d i f ,
e n d " + " ,

Figure 37 Cont’d. on next page

Low Level Object Code Examples

t

— T h i s f u n c t i o n r e t u r n s t h e d i f f e r e n c e o f t w o m a t r i c e s .
— ERROR . N o n _ C o n f o r m a b l e r a i s e d i f n o t m a t h e m a t i c a l l y d e f i n e d

o p e r a t i o n f o r L e f t / R i g h t p a r a m e t e r s u s e d .

f u n c t i o n L E F T , RIGHT m MATRIX) r e t u r n MATRIX i s
C . MATRIX (L E F T 'R A N G E (1) , R IG H T 'R A N G E (2)) ,

b e g i n
i f ((L E F T 'L E N G T H (1) /= R IG H T 'L E N G T H (1)) o r (L E F T 'L E N G T H (2) /= R IG H T 'L E N G T H (2))) t h e n

r a i s e NON_CONFORMABLE, — d i m e n s i o n a l e r r o r e x c e p t i o n ------
e l s e

f o r ROW i n L E F T 'R A N G E (1) l o o p
f o r COL i n L E F T 'R A N G E (2) l o o p

C(ROW,COL) = LEFT(ROW,COL) - R IG H T (R O W ,C O L),
e n d l o o p ,

e n d l o o p ;
r e t u r n C,

e n d i f ,
e n d

— U m a r y S u b f u n c t i o n
f u n c t i o n (X m MATRIX) r e t u r n MATRIX i s

ANS MATRIX (X ' r a n g e (1) , X ' r a n g e (2)) ,
b e g i n

f o r ROW i n X ' r a n g e (1) l o o p
f o r COL m X ' r a n g e (2) l o o p

ANS(ROW,COL) = - X(ROW,COL) ,
e n d l o o p ,

e n d l o o p ,
r e t u r n ANS;

e n d

— T h i s f u n c t i o n r e t u r n s t h e p r o d u c t o f t w o m a t r i c e s
— ERROR N o n _ C o n f o r m a b l e r a i s e d i f n o t m a t h e m a t i c a l l y d e f i n e d

o p e r a t i o n f o r L e f t / R i g h t p a r a m e t e r s u s e d

f u n c t i o n " * " (L E F T , RIGHT m MATRIX) r e t u r n MATRIX i s
C MATRIX (L E F T 'R A N G E (1) , R IG H T 'R A N G E (2)) ;
INDEX INTEGER,
TOTAL ELEMENT •= ELEMENT_ZERO,

b e g i n
i f (L E F T 'L E N G T H (2) / = R IG H T 'L E N G T H (1)) t h e n
raise NON_CONFORMABLE; — dimensional error exception ---

e l s e
f o r ROW i n L E F T 'R A N G E (1) l o o p

f o r COL m R IG H T 'R A N G E (2) l o o p
TOTAL = ELEMENT_ZERO,
f o r INDEX m L E F T 'R A N G E (2) l o o p

TOTAL = TOTAL + L E F T (R O W ,IN D E X)* R IG H T (IN D E X ,C O L) ,
e n d l o o p ,
C(ROW,COL) . = TOTAL;

e n d l o o p ,
e n d l o o p ,
r e t u r n C,

e n d i f ,
e n d

Figure 37 (Cont.): Generic Matrix Package

Figure 37 Cont’d. on next page

132 Low Level Object Code Examples

— T h i s f u n c t i o n r e t u r n s t h e p r o d u c t o f t w o m a t r i c e s a s a n E l e m e n t t y p e .
— ERROR N o n _ C o n f o r m a b l e r a i s e d i f n o t m a t h e m a t i c a l l y d e f i n e d

o p e r a t i o n f o r L e f t / R i g h t p a r a m e t e r s u s e d .
““ t
f u n c t i o n " * " (L E F T , RIGHT . i n MATRIX) r e t u r n ELEMENT i s

A MATRIX(1 . 1 , 1 . 1) ,
b e g i n

i f (L E F T 'L E N G T H (1) / = 1 a n d R IG H T 'L E N G T H (2) / = 1) t h e n
r a i s e NON_CONFORMABLE, — d i m e n s i o n a l e r r o r e x c e p t i o n ------

e l s e
A •= LEFT * R IGHT,
r e t u r n A (1 , 1) ,

e n d i f ;
e n d " * " ,

Figure 37 (Cont): Generic Matrix Package

- - S c a l a r M u l t i p l i c a t i o n o f a M a t r i x o n l e f t .

f u n c t i o n (LEFT m ELEMENT, RIGHT i n MATRIX) r e t u r n MATRIX i s
LEFTRIGHT MATRIX (R IG H T 'R A N G E (1) , R IG H T 'R A N G E (2)) ,

b e g i n
f o r ROW i n R IG H T 'R A N G E (1) l o o p

f o r COL i n R IG H T 'R A N G E (2) l o o p
LEFTRIGHT(ROW,COL) = L E F T *R IG H T (R O W ,C O L);

e n d l o o p ,
e n d l o o p ,
r e t u r n LEFTRIG HT,

e n d

- - S c a l a r M u l t i p l i c a t i o n o f a M a t r i x o n r i g h t

f u n c t i o n " * " (L E F T m MATRIX, RIGHT i n ELEMENT) r e t u r n MATRIX i s
LEFTRIGHT MATRIX (L E F T 'R A N G E (1) , L E F T 'R A N G E (2)) ,

b e g i n
f o r ROW i n L E F T 'R A N G E (1) l o o p

f o r COL m L E F T 'R A N G E (2) l o o p
LEFTRIGHT(ROW,COL) = R IG H T * L E F T (R O W ,C O L);

e n d l o o p ;
e n d l o o p ,
r e t u r n LEFTRIG HT,

e n d " * " ,

T r a n s p o s i t i o n o f M a t r i x

f u n c t i o n TRANS (A i n MATRIX) r e t u r n MATRIX i s
C • MATRIX (A 'R A N G E (2) , A 'R A N G E (1)) ,

b e g i n
f o r ROW i n C 'R A N G E (1) l o o p

f o r COL m C 'R A N G E (2) l o o p
C(ROW,COL) = A (C O L ,R O W),

e n d l o o p ,
e n d l o o p ,
r e t u r n C,

e n d TRANS,

Figure 37 Cont’d. on next page

Low Level Object Code Examples 133

Figure 37 (Cont): Generic Matrix Package

T h i s i s a f u n c t i o n t o c o m p u t e t h e I n v e r s e o f a M a t r i x u s i n g
— LO d e c o m p o s i t o n .

— ERROR : DIMENSION_ERROR r a i s e d i f n o t a s q u a r e m a t r i x
SINGULAR r a i s e d w h e n t h e m a t r i x i s s i n g u l a r i e . n o i n v e r s e

f u n c t i o n I N V (A • m MATRIX) r e t u r n MATRIX i s

u s e LU_BACK;

TEMP : M ATRIX(A 'R A N G E (1) , A 'R A N G E (2)) ;
ANS MATRIX(A 'R A N G E (1) , A 'R A N G E (2)) ;
B COL_VECTOR(A 'R A N G E (1)) ,
I P . V E C IN T (A 'R A N G E (1)) ,
IE R . INTEGER,
N INTEGER = A ' L A S T (1) ,

b e g i n
i f A ' l e n g t h (l) / = A ' l e n g t h (2) t h e n

r a i s e DIMENSION_ERROR,
e l s e

f o r COL i n A ' r a n g e (1) l o o p

TEMP . = A ;

f o r I m A ' r a n g e (1) l o o p
i f I = COL t h e n

B (I) : = ELEMENT_ONE,
e l s e

B (I) = ELEMENT_ZERO, — C o l u m n s o f I m a t r i x
e n d i f ,

e n d l o o p ,

LU_BACK. D E C (N, N, T E M P , I P , I E R) ,
LU_BACK. S O L (N , N , T E M P , B , I P) ,

f o r I i n A ' r a n g e (1) l o o p
ANS (I , COL) = B (I) ,

e n d l o o p ,
e n d l o o p ,

r e t u r n ANS,

e n d i f ,

e x c e p t i o n
w h e n NUMERIC_ERROR = > r a i s e SINGULAR;

e n d INV,
— M a t r i x T r i g o n o m e t r i c F u n c t i o n s
f u n c t i o n COS (A m MATRIX) r e t u r n MATRIX i s

ANS MATRIX(A ' r a n g e (1) , A ' r a n g e (2)) ,
b e g i n

f o r I i n A ' r a n g e (1) l o o p
f o r J m A ' R a n g e (2) l o o p

A N S (I , J) . = COS(A (I , J)) ,
e n d l o o p ;

e n d l o o p ,

r e t u r n ANS;
e n d COS,

Figure 37 Cont’d. on next page

134 Low Level Object Code Examples

f u n c t i o n S I N (A : m MATRIX) r e t u r n MATRIX i s
ANS . MATRIX(A ' r a n g e (1) , A ' r a n g e (2)) ,

b e g i n
f o r I m A ' r a n g e (1) l o o p

f o r J m A ' R a n g e (2) l o o p
A N S (I , J) = S I N (A (I , J)) ;

e n d l o o p ;
e n d l o o p ,

r e t u r n ANS,
e n d S I N ,

f u n c t i o n TAN (A • i n MATRIX) r e t u r n MATRIX i s
ANS MATRIX(A ' r a n g e (l) , A ' r a n g e (2)) ,

b e g i n
f o r I i n A ' r a n g e (1) l o o p

f o r J i n A ' R a n g e (2) l o o p
A N S (I , J) = TAN(A (I , J)) ,

e n d l o o p ,
e n d l o o p ,

r e t u r n ANS;
e n d TAN,

— M u l t i p l i c a t i o n b y I n v e r s e o f R i g h t .
— ERROR • NON_CONFORMABLE r a i s e d w h e n m a t r i c e s c a n n o t b e m u l t i p l i e d
— SINGULAR r a i s e d w h e n R i g h t p a r a m e t e r i s s i n g u l a r

f u n c t i o n " / " (L E F T , RIGHT i n MATRIX) r e t u r n MATRIX i s

C MATRIX (L E F T ' r a n g e (1) , R I G H T ' r a n g e (2)) ,
INV_RIGHT MATRIX (R I G H T ' r a n g e (1) , R I G H T ' r a n g e (2) > ;

b e g i n

i f (R I G H T ' l e n g t h (1) = 1 a n d R I G H T ' l e n g t h (2) = 1) a n d — S c a l a r D i v i s i o n
(L E F T ' l e n g t h (2) = 1) t h e n

f o r ROW i n L E F T ' r a n g e (1) l o o p
C (R O W ,1) . = L E F T (R O W ,1) / R I G H T (1 , 1) ,

e n d l o o p ;
r e t u r n C,

e l s e
i f (L E F T ' l e n g t h (2) / = R I G H T ' l e n g t h (1)) t h e n

r a i s e NON_CONFORMABLE, — d i m e n s i o n a l e r r o r e x c e p t i o n ------
e l s e

INV_RIGHT : = INV (RIGHT) ,
r e t u r n (LEFT * INV_RIGHT) ,

e n d i f ,
e n d i f ,

e n d

Figure 37 (Cont): Generic Matrix Package

f u n c t i o n " / " (LEFT i n MATRIX, RIGHT i n ELEMENT) r e t u r n MATRIX i s
ANS . MATRIX (L E F T ' r a n g e (1) , L E F T ' r a n g e (2)) ,

b e g i n

f o r I m L E F T ' r a n g e (1) l o o p
f o r J m L E F T ' r a n g e (2) l o o p

ANS (I , J) •= LEFT (I , J) / R IGH T,
e n d l o o p ;

e n d l o o p ;

Figure 37 Cont'd. on next page

Low Level Object Code Examples 135

Figure 37 (Cont): Generic Matrix Package
r e t u r n ANS;

e n d
f u n c t i o n " * * " (L EFT : i n MATRIX, RIGHT . i n NATURAL) r e t u r n MATRIX i s

— T h i s f u n c t i o n c o m p u t e s t h e m a t r i x e x p o n e n t LEFT m u s t b e
— m a t r i x . I f n o t D i m e n s i o n _ E r r o r i s r a i s e c f .

a s q u a r e

TEMP . MATRIX(L E F T ' r a n g e (1) , L E F T ' r a n g e (1)) : = I D E N T I T Y (
b e g i n

i f L E F T ' l e n g t h (1) / = L E F T ' l e n g t h (2) t h e n
r a i s e DIMENSION_ERROR,

e l s e
i f RIGHT = 0 t h e n

n u l l ,
e l s e

f o r POWER m 1 .R IG H T l o o p
TEMP . = TEMP * L E F T ,

e n d l o o p ;
e n d i f ,

L E F T ' l e n g t h (1)) ;

r e t u r n TEMP;
e n d i f ;

e n d

f u n c t i o n ID E N T ITY (S I Z E i n NATURAL) r e t u r n MATRIX i s

— F u n c t i o n I d e n t i t y r e t u r n s a n I d e n t i t y m a t r i x o f d i m e n s i o n S I Z E .

IDENT MATRIX(1 S I Z E , 1 . S I Z E) = (o t h e r s => (o t h e r s =
b e g i n

f o r I i n 1 . S I Z E l o o p — S e t D i a g o n a l E l e m e n t s
I D E N T (I , I) = ELEMENT ONE, — t o b e I d e n t i t y E L e m e n t .

e n d l o o p ,

=> ELEMENT_ZERO)

r e t u r n IDENT,
e n d ID E N T ITY ,

f u n c t i o n COL_NORM (A m MATRIX) r e t u r n ELEMENT i s

— F u n c t i o n COL_NORM c o m p u t e s t h e c o l u m n n o r m o f t h e m a t r i x A, i . e t h e
— m a x v a l u e o f t h e su m o f t h e a b s o l u t e v a l u e s o f a n i n d i v i d u a l c o l u m n

MAX_COL_NORM ELEMENT = ELEMENT_ZERO;
COL_NORM • ELEMENT,

b e g i n
f o r J m A ' r a n g e (2) l o o p

COL_NORM = ELEMENT_ZERO,
f o r I i n A ' r a n g e (1) l o o p — A d d u p c o l u m n e l e m e n t s A b s o l u t e v a l u e s .

COL_NORM = COL_NORM + A B S (A (I , J)) ;
e n d l o o p ,

i f COL_NORM > MAX_COL_NORM t h e n — S e e i f c u r r e n t c o l u m n n o r m i s l a r g e s t s o f a r
MAX_C° L_N0R M = COL_NORM; — I f s o r e c o r d i t .

e n d i f ,
e n d l o o p ;

r e t u r n MAX_COL_NORM;

e n d COL_NORM;

Figure 37 Cont’d. on next page

136 Low Level Object Code Examples

Figure 37 (Cont): Generic Matrix Package

f u n c t i o n ROW NORM (A x n MATRIX) r e t u r n ELEMENT i s

— F u n c t i o n ROW_NORM c o m p u t e s t h e r o w n o r m o f t h e m a t r i x A , i . e t h e
— m a x v a l u e o f t h e s u m o f t h e a b s o l u t e v a l u e s o f a n i n d i v i d u a l r o w .

MAX_ R°W_NORM • ELEMENT . = ELEMENT_ZERO;
ROW_NORM ELEMENT;

b e g i n
f o r I m A ' r a n g e (1) l o o p

ROW_NORM : = ELEMENT_ZERO,
f o r J m A ' r a n g e (2) l o o p — A d d u p r o w e l e m e n t s A b s o l u t e v a l u e s

ROW_NORM : = ROW_NORM + A B S (A (I , J)) ,
e n d l o o p ;

i f ROW_NORM > MAX_ROW_NORM t h e n — S e e i f c u r r e n t r o w n o r m i s l a r g e s t s o f a r
MAX_R0 W_N°RM = ROW_NORM; — I f s o r e c o r d i t

e n d i f ,
e n d l o o p ;

r e t u r n MAX_ROW_NORM;

e n d ROW_NORM,

f u n c t i o n TRACE (A i n MATRIX) r e t u r n ELEMENT i s

— R e t u r n s t h e t r a c e o f m a t r i x , i e . s u m o f t h e p r i n c i p a l d i a g o n a l
— v a l u e s

TRACE_VALUE ELEMENT = ELEMENT_ZERO;
b e g i n

f o r I i n A ' r a n g e (1) l o o p
TRACE_VALUE •= TRACE_VALUE + A (I , I) ,

e n d l o o p ,

r e t u r n TRACE_VALUE;

e x c e p t i o n
w h e n CONSTRAINT_ERROR =>

r a i s e DIMENSION_ERROR,

e n d TRACE,

f u n c t i o n I S _ Z E R O (A : i n MATRIX) r e t u r n BOOLEAN i s

— T h i s p r o c e d u r e c h e c k s i f e a c h e l e m e n t i n A i s ELEMENT_ZERO a n d
— r e t u r n s T r u e i f i t i s , a n d f a l s e i f n o t

b e g i n
f o r I i n A ' r a n g e (1) l o o p

f o r J i n A ' r a n g e (2) l o o p
i f A (I , J) / = ELEMENT_ZERO t h e n

r e t u r n FA LSE;
e n d i f ;

e n d l o o p ;
e n d l o o p ;

r e t u r n TRUE;

e n d I S ZERO,

Figure 37 Cont’d. on next page

Low Level Object Code Examples 137

Figure 37 (Coni): Generic Matrix Package

e n d GEN_MATRICE;
—+

Figure 38: Generic Complex Package

— F A C IL IT Y
— GEN_COMPLEX (S p e c i f i c a t i o n)

— ABSTRACT

— T h i s g e n e r i c p a c k a g e i m p l e m e n t s t h e t y p e C o m p l e x a n d i t s r e q u i r e d f u n c t i o n s
— A l s o o v e r l o a d e d T e x t _ I O f u n c t i o n s a r e p r o v i d e d .

— AUTHOR
— J o h n H i c k e y

w i t h T EX T_IO ,

g e n e r i c

t y p e ELEMENT i s d i g i t s < > ,
 h D e f i n e s t h e t y p e t o b e u s e d a s t h e b a s i s o f t h e c o m p l e x n o .

t y p e ELEMENT_MATRIX i s a r r a y (INTEGER r a n g e < > , INTEGER r a n g e <>) o f ELEMENT,
— + D e f i n e s a m a t r i x f o r E l e m e n t v a l u e s

w i t h p r o c e d u r e G E T (X o u t ELEMENT, WIDTH T E X T _ I O .F I E L D •= 0) i s < > ,
w i t h p r o c e d u r e G E T (F I L E m T E X T _ I O .F I L E _ T Y P E , X o u t ELEMENT, WIDTH TEX T_IO F IE L D

w i t h p r o c e d u r e P U T (X m ELEMENT, FORE i n TEX T_IO F IE L D = 2 , AFT • TEX T_IO F IE L D
EXP TEX T_IO F IE L D : = 3) i s < > ,

w i t h p r o c e d u r e P U T (F I L E TEX T_IO F I L E _ T Y P E , X i n ELEMENT, FORE i n TEX T_IO F IE L D
EXP TEX T_IO F IE L D = 3) i s < > ,

—+
 1- P r o c e d u r e s G e t a n d P u t d e f i n e I / O o p e r a t i o n s f o r ELEMENT t o t h e
 H t e r m i n a l a n d a f i l e

w i t h f u n c t i o n SQRT (X m ELEMENT) r e t u r n ELEMENT i s < > ;
w i t h f u n c t i o n ATAN (X i n ELEMENT) r e t u r n ELEMENT i s < > ;
 1- M a t h e m a t i c a l f u n c t i o n s o f E l e m e n t u s e d w i t h i n t h e p a c k a g e

p a c k a g e GEN_COMPLEX i s

t y p e COMPLEX i s p r i v a t e ,
—+
— + C o m p l e x N u m b e r D a t a t y p e
—+

Figure 38 Cont’d. on next page

138 Low Level Object Code Examples

Figure 38 (Cont): Generic Complex Package
t y p e COMPLEX_MATRIX is array (INTEGER range <>, INTEGER range <>) of COMPLEX;
—+
— + Complex Matrix
—+

type COMPLEX_VECTOR is array (INTEGER ran-ge <>) of COMPLEX;
—+
— + Complex Vector
—+

Addition Property

function "+"(LEFT, RIGHT : COMPLEX) return COMPLEX;
function "+"(LEFT : ELEMENT; RIGHT : COMPLEX) return COMPLEX;
function "+"(LEFT : COMPLEX; RIGHT : ELEMENT) return COMPLEX;

Subtraction Property

function LEFT, RIGHT : COMPLEX) return COMPLEX;
function (LEFT : ELEMENT; RIGHT : COMPLEX) return COMPLEX;
function LEFT : COMPLEX; RIGHT : ELEMENT) return COMPLEX;

— Multiplication Property

function "*"(LEFT, RIGHT : COMPLEX) return COMPLEX;
function "*"(LEFT : ELEMENT; RIGHT : COMPLEX) return COMPLEX;
function "*"(LEFT : COMPLEX; RIGHT : ELEMENT) return COMPLEX;

Division Property

function "/"(LEFT, RIGHT : COMPLEX) return COMPLEX;
function "/"(LEFT : ELEMENT; RIGHT : COMPLEX) return COMPLEX;
function "/"(LEFT : COMPLEX; RIGHT : ELEMENT) return COMPLEX;

— Complex Conjugate, Extract Real/Imaginary Part, Length

function CONJ (NUM
function RE (NDM :
function RE (NUM :
function IM (NUM :
function IM (NUM :
function NORM (NUM

: COMPLEX) return COMPLEX;
COMPLEX) return ELEMENT;
COMPLEX_MATRIX) return ELEMENT_MATRIX;
COMPLEX) return ELEMENT;
COMPLEX_MATRIX) return ELEMENT_MATRIX;
: COMPLEX) return ELEMENT;

function MAGNITUDE(NUM : in COMPLEX) return ELEMENT;
function PHASE (NUM : in COMPLEX) return ELEMENT;
function MAGNITUDE(NUM : in COMPLEX_MATRIX) return ELEMENT_MATRIX;
function PHASE (NUM : in COMPLEX_MATRIX) return ELEMENT_MATRIX;
function TRANS (A : in COMPLEX_MATRIX) return COMPLEX_MATRIX;

Form Complex type from Real and Imaginary parts

function FORM_COMPLEX (RE , IMG : in ELEMENT) return COMPLEX;
function FORM_COMPLEX (RE : in ELEMENT) return COMPLEX;

Figure 38 Cont’d. on next page

Low Level Object Code Examples 139

Figure 38 (Coni): Generic Complex Package

I n p u t _ O u t p u t F u n c t i o n s

p r o c e d u r e GET (NOM : o u t COMPLEX) ;
p r o c e d u r e POT (NOM • i n COMPLEX) ,
p r o c e d u r e PO T_L IN E (NOM . m COMPLEX) r

p r o c e d u r e GET (MAT : o u t COMPLEX MATRIX) ,
p r o c e d u r e POT (MAT : m COMPLEX_MATRIX >;

p r o c e d u r e GET (MAT : o u t COMPLEX VECTOR) ;
p r o c e d u r e POT (MAT ■ i n COMPLEX_VECTOR) ,

D e f i n e P r i v a t e T y p e C o m p l e x f o r C o m p l e x
R e p r e s e n t a t i o n

p r i v a t e

t y p e COMPLEX i s
r e c o r d

RE : ELEMENT •= 0 . 0 ,
IM ELEMENT = 0 0 ,

e n d r e c o r d ,

e n d GEN_COMPLEX,
— P a c k a g e C o m p l e x b o d y w h i c h i m p l e m e n t s t h e f u n c t i o n s f o r t y p e
— c o m p l e x

w i t h T E X T _ IO , IN T E G ER _TE X T _IO ,
u s e T E X T _ IO , IN TEG ER _TEX T_IO ;

p a c k a g e b o d y GEN_COMPLEX i s

A d d i t i o n F u n c t i o n s

f u n c t i o n " + " (L EF T, RIGHT COMPLEX) r e t u r n COMPLEX i s
ANS COMPLEX ,

b e g i n
ANS RE = LEFT RE + R I G H T .R E ,
ANS IM = LEFT IM + RIGHT IM,
r e t u r n ANS;

e n d " + " ;

f u n c t i o n " + " (LEFT ELEMENT; RIGHT COMPLEX) r e t u r n COMPLEX i s
ANS COMPLEX ,

b e g i n
ANS RE = LEFT + RIGHT RE;
A N S. IM = RIGHT IM ;
r e t u r n ANS,

e n d " + " ,

f u n c t i o n " + " (LEFT COMPLEX; RIGHT ELEMENT) r e t u r n COMPLEX i s
ANS COMPLEX ,

b e g i n
ANS RE • = LEFT RE + R IGH T,
A N S. IM : = L E F T . IM,
r e t u r n ANS,

e n d " + " ;

Figure 38 Cont’d. on next page

140 Low Level Object Code Examples

— S u b t r a c t i o n F u n c t i o n s

f u n c t i o n " - " (L E F T , RIGHT COMPLEX) r e t u r n COMPLEX i s
ANS COMPLEX ,

b e g i n
AN S.RE • = LEFT RE - RIGHT RE,
A N S .IM . = LEFT IM - R I G H T . I M ;
r e t u r n ANS;

e n d

Figure 38 (Cont): Generic Complex Package

f u n c t i o n " - " (L E F T ELEMENT; RIGHT . COMPLEX) r e t u r n COMPLEX i s
ANS COMPLEX ,

b e g i n
A N S .RE : = LEFT - R IG H T .R E ,
ANS IM = - R I G H T . IM,
r e t u r n ANS;

e n d

f u n c t i o n " - " (L E F T • COMPLEX, RIGHT ELEMENT) r e t u r n COMPLEX i s
ANS • COMPLEX ,

b e g i n
A N S .RE : = LEFT RE - R IGH T,
A N S .IM . = LEFT IM,
r e t u r n ANS;

e n d

M u l t i p l i c a t i o n F u n c t i o n s

f u n c t i o n " * " (L E F T , RIGHT COMPLEX) r e t u r n COMPLEX i s
ANS COMPLEX ,

b e g i n
ANS RE = (L E F T .R E * R I G H T .R E) - (L E F T . IM*RIGHT I M) ;
A N S .IM = (LEFT IM*RIGHT RE) + (LEFT R E*RIGHT I M) ,
r e t u r n ANS,

e n d

f u n c t i o n " * " (LEFT • ELEMENT, RIGHT • COMPLEX) r e t u r n COMPLEX i s
ANS . COMPLEX ,

b e g i n
A N S .RE = L EFT*R IG HT RE,
A N S .IM = LEFT*RIGHT IM;
r e t u r n ANS,

e n d " * " ,

f u n c t i o n (LEFT COMPLEX, RIGHT ELEMENT) r e t u r n COMPLEX i s
ANS COMPLEX ,

b e g i n
ANS RE = LEFT R E *R IG H T ;
ANS IM = LEFT IM *RIG HT,
r e t u r n ANS,

e n d

Figure 38 Cont’d. on next page

Low Level Object Code Examples 141

— D i v i s i o n F u n c t i o n s

f u n c t i o n " / " (L E F T , RIGHT : COMPLEX) r e t u r n COMPLEX i s
ANS . COMPLEX ;

b e g i n
i f RIGHT IM = 0 . 0 t h e n — I f o n l y R e a l - p a r t

ANS •= LEFT / ELEMENT(R IG H T .R E) ,
e l s e

A N S .RE = ((L E F T RE*RIGHT RE) + (L E F T . IM * R IG H T .IM)) /
(R IG H T .R E * * 2 + R IG H T I M * * 2) ;

ANS IM = ((L E F T I M * R I G H T .R E) - (LEFT R E * R IG H T . I M)) /
(R I G H T . R E * * 2 + R I G H T . I M * * 2) ,

e n d i f ;
r e t u r n ANS,

e n d " / " ,

f u n c t i o n " / " (L E F T ELEMENT; RIGHT COMPLEX) r e t u r n COMPLEX
ANS COMPLEX ;

b e g i n
i f RIGHT IM = 0 0 t h e n — I f o n l y R e a l p a r t

A N S .RE = LEFT / ELEMENT(RIGHT RE) ;
ANS IM = 0 0 ,

e l s e
A N S .RE = (LEFT*RIG HT R E) / (R I G H T . R E * * 2 + R I G H T . I M * * 2) ;
ANS IM = (L E F T * (- R I G H T . I M)) / (RIGHT R E * * 2 + R IG H T I M * * 2) ;

e n d i f ,
r e t u r n ANS,

e n d " / " ,

f u n c t i o n " / " (L E F T COMPLEX, RIGHT ELEMENT) r e t u r n COMPLEX i
ANS . COMPLEX ,

b e g i n
ANS RE = (LEFT R E / R I G H T) ,
ANS IM = (LEFT I M / R I G H T) ,
r e t u r n ANS,

e n d " / " ;

— C o m p l e x C o n j u g a t e F u n c t i o n

f u n c t i o n CONJ (NtJM COMPLEX) r e t u r n COMPLEX i s
b e g i n

r e t u r n (RE=>NUM RE, IM =>(-N O M I M)) ,
e n d CONJ,

Figure 38 (Cont.): Generic Complex Package

F u n c t i o n s t o r e t u r n R e a l a n d I m a g i n a r y p a r t s o f C o m p l e x
N u m b e r

f u n c t i o n RE (NUM COMPLEX) r e t u r n ELEMENT i s
b e g i n

r e t u r n NUM RE,
e n d RE;

Figure 38 Cont’d. on next page

142 Low Level Object Code Examples

f u n c t i o n RE <NDM : COMPLEX_MATRIX) r e t u r n ELEMENT_MATRIX i s
TEMP : ELEMENT_MATRIX(N U M ' r a n g e (1) , N U M ' r a n g e (2)) ,

b e g i n
f o r I m N U M ' r a n g e (1) l o o p

f o r J i n N O M ' r a n g e (2) l o o p
T E M P (I , J) = R E (NOM(I , J)) ;

e n d l o o p ,
e n d l o o p ;

r e t u r n TEMP;
e n d R E ;

Figure 38 (Cont.): Generic Complex Package

f u n c t i o n IM (NUM • COMPLEX) r e t u r n ELEMENT i s
b e g i n

r e t u r n NOM IM ;
e n d IM;

f u n c t i o n IM (NOM COMPLEX_MATRIX) r e t u r n ELEMENT_MATRIX i s
TEMP ELEMENT_MATRIX(N O M ' r a n g e (1) , N O M ' r a n g e (2)) ,

b e g i n
f o r I m N O M ' r a n g e (1) l o o p

f o r J m N O M ' r a n g e (2) l o o p
T E M P (I , J) = I M (NOM(I , J)) ,

e n d l o o p ;
e n d l o o p ,

r e t u r n TEMP,
e n d IM,

F u n c t i o n t o c o m p u t e t h e NORM o f a c o m p l e x n u m b e r

f u n c t i o n NORM (NOM COMPLEX) r e t u r n ELEMENT i s
b e g i n

r e t u r n SQRT(NOM R E * * 2 + NOM I M * * 2) ;
e n d NORM,

f u n c t i o n MAGNITUDE(NUM m COMPLEX) r e t u r n ELEMENT i s
b e g i n

r e t u r n SQRT(NUM R E * * 2 + NUM I M * * 2) ,
e n d MAGNITUDE,

f u n c t i o n PHASE (NUM i n COMPLEX) r e t u r n ELEMENT i s
P I E • c o n s t a n t ELEMENT = 2 2 0 / 7 . 0 ,
ANGLE ELEMENT,

b e g i n
ANGLE = (ATAN (NUM IM / NUM RE) * 1 8 0 0 / P I E) ;

— Now a c c o u n t f o r C o m p l e x L o c a t i o n a s ATAN o n l y r e t u r n s a n u m b e r f r o m - 9 0 t o 90
i f NUM RE < 0 0 a n d NUM IM > = 0 0 t h e n

ANGLE •= ANGLE + 1 8 0 0 ,
e l s i f NUM RE < 0 0 a n d NUM IM < 0 0 t h e n

ANGLE = ANGLE - 1 8 0 0 ,
e n d i f ;

r e t u r n ANGLE;

e x c e p t i o n

Figure 38 Cont’d. on next page

Low Level Object Code Examples 143

Figure 38 (Coni): Generic Complex Package
w h e n NUMERIC_ERROR = > — i . e . A T a n (I n f i n i t e) = 90 d e g

i f NUM.IM < 0 . 0 t h e n
r e t u r n - 9 0 . 0 ;

e l s e
r e t u r n 9 0 . 0 ;

e n d i f ;

e n d PHASE;

f u n c t i o n MAGNITUDE(NUM : i n COMPLEX_MATRIX) r e t u r n ELEMENT_MATRIX i s
TEMP : ELEMENT_MATRIX(N U M ' r a n g e (1) , N U M ' r a n g e (2)) ;

b e g i n
f o r I i n N U M ' r a n g e (1) l o o p

f o r J i n N U M ' r a n g e (2) l o o p
T E M P (I , J) : = MAGNITUDE(N U M (I , J)) ;

e n d l o o p ;
e n d l o o p ;

r e t u r n TEMP;

e n d MAGNITUDE;

f u n c t i o n PHASE (NUM : i n COMPLEX_MATRIX) r e t u r n ELEMENT_MATRIX i s
TEMP : ELEMENT_MATRIX(N U M ' r a n g e (1) , N U M ' r a n g e (2)) ;

b e g i n
f o r I i n N U M ' r a n g e (1) l o o p

f o r J i n N U M ' r a n g e (2) l o o p
T E M P (I , J) : = PH A S E (N U M (I , J)) ;

e n d l o o p ;
e n d l o o p ;

r e t u r n TEMP;

e n d PHASE;
f u n c t i o n TRANS (A : i n COMPLEX_MATRIX) r e t u r n COMPLEX_MATRIX i s

TEMP : COMPLEX_MATRIX(A ' r a n g e (2) , A ' r a n g e (1)) ;
b e g i n

f o r I i n A ' r a n g e (2) l o o p
f o r J i n A ' r a n g e (1) l o o p

TEMP (I , J) : = A (J , I) ;
e n d l o o p ;

e n d l o o p ;

r e t u r n TEMP;
e n d TRANS;

— F o r m a C o m p l e x D a t a E l e m e n t f r o m R e a l a n d IMG p a r t s

f u n c t i o n F0RM_C0MPLEX (RE, IMG : i n ELEMENT) r e t u r n COMPLEX i s
b e g i n

r e t u r n (RE, IMG) ;
e n d FORM -COMPLEX;

f u n c t i o n F0RM_C0MPLEX (RE : i n ELEMENT) r e t u r n COMPLEX i s
b e g i n

r e t u r n (RE, 0 . 0) ;
«A d F0RM_C0MPLEX(-

Figure 38 Cont’d. on next page

144 Low Level Object Code Examples

Figure 38 (Cont): Generic Complex Package

— I n p u t / O u t p u t t o t e r m i n a l R o u t i n e s

p r o c e d u r e GET (NDM : o u t COMPLEX) i s
b e g i n

n e w _ l i n e , p u t (" E n t e r R e a l P a r t > ") ,
g e t (N U M . R E) ,
n e w _ l i n e ; p u t (" E n t e r I m a g i n a r y P a r t > ") ,
g e t (N U M I M) ;

e n d GET;

p r o c e d u r e PUT (NUM i n COMPLEX) i s
b e g i n

p u t (' (') , p u t (N U M R E) , p u t (" , ") ;
p u t (N U M I M) ; p u t (') ') ;

e n d PUT;

p r o c e d u r e PU T_LIN E (NUM : m COMPLEX) i s
b e g i n

p u t (' (') , p u t (NUM R E) ,
p u t (" , ") , p u t (N U M I M) , p u t (') ') ,
n e w _ l i n e ,

e n d P U T _ L IN E ;

p r o c e d u r e GET (MAT o u t COMPLEX_MATRIX) i s
TEMP • COMPLEX_MATRIX (MAT' RANGE(1) , MAT'RANGE(2)) ,

b e g i n
n e w _ l i n e (2) ,
f o r I m TEMP' RANGE(1) l o o p

f o r J m TEM P'RANGE(2) l o o p
p u t (" E l e m e n t ") , p u t (I) , p u t (' , ') , p u t (J) ,
p u t (" > ") , g e t (T E M P (I , J)) ,

e n d l o o p ,
e n d l o o p ,

e n d GET,

p r o c e d u r e PUT (MAT m COMPLEX_MATRIX) i s
b e g i n

n e w _ l i n e (2) ;
f o r I m MAT'RANGE(1) l o o p

n e w l i n e ,
f o r _ J i n MAT'RANGE(2) l o o p

n e w _ l m e ,
p u t (MAT(I , J)) , p u t (" ") ,

e n d l o o p ,
e n d l o o p ,

e n d PUT;

Figure 38 Cont’d. on next page

Low Level Object Code Examples 145

i

p r o c e d u r e GET (MAT : o u t COMPLEX_VECTOR) i s
TEMP : COMPLEX_VECTOR (MAT'RANGE) ;

b e g i n
n e w _ l m e (2) ,
f o r I i n TEMP'RANGE l o o p

p u t (" E l e m e n t ") , p u t (I) ;
p u t (" > ") , g e t (TEMP (I)) ,

e n d l o o p ,
e n d GET,

p r o c e d u r e POT (MAT . m COMPLEX_VECTOR) i s
b e g i n

n e w _ l i n e (2) ,
f o r I i n MAT’ RANGE l o o p

n e w _ l i n e ;
p u t (MAT(I)) ,

e n d l o o p ,

e n d PUT;

e n d GEN COMPLEX,

Figure 38 (Cont): Generic Complex Package

146 Low Level Object Code Examples

APPENDIX E

MSDI TRANSLATIONAL GRAMMAR

This appendix details the grammar used for the prototype Version of MSDI to parse an input
sentence tokenized by the scanner utility. The Translation Grammar is LL(1).

EMPTY corresponds to the end of sentence, i.e. EMPTY TOKEN from Scanner (Token_
Class = Empty).

Deliminators = [” , ASCII.HT]

DelimJIbkens = [’=’, ’+, ” , 7 , ’[’, ’]’, ’A’, w]

Keywords = Discretize, Exit, Simulate, Show, Inv, Cos, Sin, Tan, GED, Eigen, Diag, Ident.

Exec_Stmt

Assign_Stmt

Assign_Type

Keyword_Stmt

-> Assign_Stmt
-> Keyword_Stmt
-> "null"

-> Identifier Assign_Type "=" Express

-> "(" Variable ")"
-> "null"

> "Discretize" Discrete_Stmt
> "Show" Express
> "Simulate" Sim_Stmt
> "Exit”
> "Ged"

[Ident_type]
[Keyword_Type]
[Empty]

[Ident_Type]

[(]
[=]

["Discretize"]
["Show"]
["Simulate"]
["Exit"]
["Ged"]

Discrete Stmt -> "(" Identifier Identifier_List ")"
Discrete_Out ["("]

Discrete_Out

Sim_Stmt

Dynamic_Part

Feedforward_Part

Express List

Identifier_List

Express

Expresses

-> " / " "Output" "=" Identifier Identifier_List [” / ”]
-> "null" [Empty]

> Dynamic_Part Feedforward_Part

> Express Express_List Express_List

-> Express_List
-> "null"

-> "," Express

-> Identifier

-> Term Expresses

-> ASOP Term Expresses
-> "null"

[Express]

[Express]

[]
[Empty]

[]

[]

[Head(Factor)]

[-,+]
[Empty, ",",)]

MSDI Translational Grammar 147

•i

Term

Terms

-> Factor Hi_Preced_Op Terms

-> MDOP Factor Hi_Preced_Op Terms
'-> "null"

[Head(Factor)]

[/,*]
[-,+,Empty,", ",)]

Hi-Preced_Op -> "A " Factor Hi_Preced_Op
It / If

-> "null"

Factor -> ASOP Unsigned_Factor
-> Unsigned_Factor

Unsigned_Factor -> (Express)
-> Operand
-> Matrix_Def
-> Poly_Def
-> Function OP

Function OP

ASOP

MDOP

-> "Cos" "(" Express ")"
-> "Sin" "(" Express ")"
-> "Tan" "(" Express ")"
-> "INV" "(" Express ")"
-> "Diag" "(" Express ”)"
-> "Ident" "(" Express ")"

-> +
-> -

- > *

-> /

M a t n x _ D e f

Row

Next_Row

List_of_Elements

Poly_Def

Poly_Term

Poly_Power

Power

Poly_Terms

1 [" Row Next Row "]"

-> Factor List of Elements

-> Row Next_Row
-> EOL Next_Row
-> "null"

-> Factor List_of_Elements
_ S 11 »»' /
-> "null"

-> '{" Poly_Term Poly_Terms "}"

-> Variable Power
-> Factor Poly_Power

-> Variable POWER
-> "null"

-> "A" Integer
-> "null"

-> ASOP Poly_Term Poly_Terms
-> "null"

[A]
[' 1

[*, Empty, "," ,)]

[+, -]
[Head(ün Fac)]

(]
Num_Type, Ident]
[]
{]
Function_names]

Cos]
Sin]
Tan]
INV]
Diag]
Ident]

+]
-]

*]
/]

t]

Head(Factor)]

Head(Factor)]
Empty]
] 3

Head(Factor)]
, 3
Empty,]]

{ Ì

Variable 3
Head(Factor)]

+/ ~t } 3

A]
+i -f } 3

+, - 3
1 3

148 MSDl Translational Grammar

Head(Unsigned_Factor) = (, Ident, Num_Type f [, INV, Cos, Sin,
Tan, Eigen, {

Head(Factor) = Head(ASOP) + Head(Onsigned_Factor)
= + , - , (, Ident, Num_Type, [, Function_Names

Function_Names = INV, Cos, Sin, Tan, Eigen

Variable = an Identifier that is set by Assign_Type first, then
compared to this Variable_type for reference later i n
parse.

Note

Procedure for adding a Function .

(1) Add the new function name to the Keywords m TG_ ada
(2) Add new keyword to Perform (Monadic Operations) m TG ada

- add to perform procedure options
- add action routine to perform function.

(3) Add the new function_name to Function_Op
(4) Update Documentation with new function

MSDI Translational Grammar 149

APPENDIX F

REACTOR EXAMPLE MODEL ELEMENTS

For Reactor State Space Model .
A = [
9.764E-01 -1.672E-03 1.522E-03 -1.569E-03 1 764E-03 -2 477E-03 1 519E-03

814E-01 -2.949E-03 2 578E-03 -2 755E-03 3 803E-03 -2.326E-039.077E-03
5 440E-03
-1.686E-03
-3.771E-03

828E-02
116E-03
369E-03

-8.951E-04 -8 536E-03

9 850E-01 -3 969E-03
2.303E-02
6.826E-03
-5.776E-03 1.709E-02

2 869E-03

1.465E-04 -7 578E-03 -8.367E-03 1.415E-02

.599E-03 -4.732E-03
9 858E-01 -4 281E-03 4 762E-03 -2 811E-03
2.485E-02 9.827E-01 -3.261E-03 1 659E-03

974E-02 9 781E-01
.995E-02 7 .886E-03

-1.125E-03
9.726E-01

B = [2.56193279E-02
1.50561591E-02

-1 10366099E-03
-5 43357878E-03
2 63209210E-03
6 35339621E-03
6 41673940E-03

1.76716092E-04
6 39012050E-04
9 44330516E-04
9.06964715E-04
1 00908396E-03
1.25555413E-03
1 35241377E-03

C = [
-3.755E-01 8 200E-01 4.8340E-01 -1 698E-01
2 118E-01 -2 439E-01 5.7660E-01 7 193E-01

-8 520E-02 8 600E-02 -1.1990E-01 3.097E-01
-8 460E-02 -1 912E-01 -2.8040E-01 -3 298E-01

1 229E-01 -1.427E-01 8 40E-02
-2.745E-01 2.758E-01 -1 585E-01
9 534E-01 -4 021E-01 2 112E-01
-3 012E-01 -1 621E-01 0 000E+00

Reactor Example Model Elements

REFERENCES

1. James, J., "Considerations concerning the construction of an expert system for Control
System Design"; Ph.D. Thesis, Rensselaer Polytechnic, 1986.

2. Taylor, J. and Frederick, D., "An Expert System Architecture for Computer-Aided Con­
trol Engineering"; Proc. of IEEE, Vol 72, no. 12, pp. 1795-1805 Dec. 1984.

3. Noton, M., "A Survey of Control Methodologies Applied to Spacecraft Control and Guid­
ance", Proc. of Control’88, Oxford, U.K., 1988.

4. Melsa, J.L. and Jones S.K., "Computer Programs for Computational Assistance in the
Study of Linear Control Theory", 2nd edition, New York, McGraw-Hill, 1973.

5. Rosenbrock, H.H., "Computer-Aided Control System Design", Academic Press, New
York, 1974.

6. Moler, C., "MATLAB User’s Guide", Dept, of Computer Science, University of New
Mexico, Albuquerque, U.SA, 1980.

7. Hickey. J., "Design Process Model Development Report", Research Report CTRU8803,
Control Technology Research Unit, Dublin City University, Jan. 1988.

8. Jamshidi, M. and Herget C.J., (Eds), "Computer-Aided Control Systems Engineering",
North Holland, 1985.

9. "SPICE User Guide", University of California at Berkeley, US, 1978.
10. "PNE/6, Multiple Input/Multiple Output Design Package", Notes for Guidance to stu­

dents, Internal Document, Computer Services Dept., Ulster Polytechnic, 1980.
11. Shah, S., Floyd, M., and Lehman, L., "MATRIXx: Control Design and Model Building

CAE Capability", in [8].
12. Sprang, A., "The Federated Computer-Aided Control Design System", Proc. of IEEE,

Vol 72 No. 12, pp. 1724-1731, Dec. 1984.
13. -, "Structured Computer Aided Logic Design", User Guide , Valid Systems Inc.
14. Erman, L.D et al, "Hearsay-II Speech Understanding System : Integrating Knowledge

to Resolve Uncertainty", Computing Surveys 12, 1980.
15. Nolan, P.J., "An Intelligent Assistant for Control System Design", Proc. of 1st Inter.

Conf. on Application of AI in Engineering Problems, Uni. of Southampton, U.K., 1986.
16. Yoshikawa, H., "CAD Framework Guided by General Design Theory", CAD Systems

Framework, Proc. of IFIP, Norway 1982.
17. Asimov, M., "Introduction to Design", Prentice-Hall, 1962.
18. Ross, D.T., "Structured Analysis for Requirement Definitions", 2nd Int. Conf. on Soft­

ware Engineering, 1976.

REFERENCES 153

19. Warman, E.A."Man in a Machine Environment", Proc. Man-Machine Communication
in CAD/CAM, IFIP, 1980.

20f ”Begg, V., "Developing Expert CAD Systems ", Addison Wesley, Reading MA, 1984.
21. Yourdon. E., "Classics in Software Engineering", Prentice-Hall, Englewood Cliffs, N.J.,

1979.
22. Bjomer, D. and Jones, C., "Formal Specification and Software Development", Prentice-

Hall, Englewood Cliffs, N.J., 1982.
23. Yourdon, E. and Constantine, L., "Structured Design : Fundamentals of a Discipline of

Computer Program and System Design", Prentice-Hall, 1979.
24. Deming, E., "Out of the Crisis", Cambridge University Press, Cambridge, Melbourne,

Australia, 1986
25. Byrne, D. and Taguchi, S., "The Taguchi Approach to Parameter Design" ASQC Annual

Conf. Transactions, 1986.
26. Nelson, G.,"A Generalisation of Dijkstra’s Calculus", Digital Systems Research Centre,

Research Report 16, 1987.
27. Harrison, F.L., "Advanced Project Management", McGraw-Hill, 1985.
28. Denham, M., "Design Issues for CACSD Systems", Proc. of IEEE, Vol 72 No. 12, pp.

1714-1723, Dec. 1984.
29. Pang G. and MacFarlane, A., "An Expert Systems Approach to Computer-Aided Design

of Multivariable Systems", Springer-Verlag Berlin, Heidelberg, 1987.
30. Bennett, J.S and Engelmore R., "SACON A Knowledge-Based Consultant for Structural

Analysis", Proc. of Sixth Inter. Joint Conf. on Artificial Intelligence, Tokyo, 1979.
31. Haber, R.N. and Wilkinson, L., "Perceptual Components of Computer Displays", IEEE

Computer Graphics and Applications, Vol 2, No. 3, 1982.
32. Williams, S., "The Changing Face of CACSD Tools", Computer-Aided Control System

Design, Institute of Measurement and Control, Salford UK, July 1986.
33. Rimvall, M., "Man-Machine Issues in CACSD", Computer-Aided Control System Design,

Institute of Measurement and Control, Salford UK, July 1986.
34. Goodfellow, S. and Munro, N., "Integra, an Input Translation Facility for Computer

Aided Control System Engineering" Proc. 3rd IFAC Computer Aided Design in Control
and Engineering Systems, Lyngby, Denmark, 1985.

35. Munro, N., "Ecstasy - A Control System CAD Environment", Proc. of Control’88, Oxford,
UK, 1988.

36. Rimvall, M., "Man-Machine Interfaces for CACSD and implementational aspects", PhD
thesis, ETH Zurich, 1987.

37. Barker, H., Chen, M., Jobling, P. and Townsend, P., "Interactive Graphics for the
Computer-Aided Design of Dynamic Systems", IEEE Control Systems Magazine, pp.
19-25, June 1987.

38. "Proc. 3rd IFAC symposium on Computer-Aided Design in Control and Engineering
Systems" , Lyngby, Denmark, 1985.

39. Astrom, K.J., Wittenmark, B., "Computer Controlled Systems", Prentice-Hall, Engle­
wood Cliffs, N.J., 1984.

154 REFERENCES

40. Laub, A.J., "Numerical Linear Algebra Aspects of Control Design Computations", IEEE
Trans, on Auto. Control, Voi AC-30, No. 2, pp. 97-108, Feb. 1985.

41. Date, C.J., "An Introduction to Database Systems", Prentice-Hall, 1985.
42. Brooks, "The Mythical Man Month", Addison-Wesley, Reading, MA, 1975.
43. Fisher, D.A, "A Common Programming Language for the Department of Defence - Back­

ground and Technical Requirements ", Report P-1191, Institute for Defense Analysis,
Arlington, Va, June, 1976.

44. Ross, D.T, Goodenough, J.B. and Irvine, C.A., "Software Engineering : Process, Princi­
ples and Goals", Computer, May, 1975.

45. Sommerville, I., "Software Engineering", Addison-Wesley, Reading, MA, 1985.
46. Jackson, M., "The Jackson Design Methodology, Infotec State of the Art Report, Struc­

tured Programming, 1978.
47. Parnas, D.L., "On the Criteria to be used in Decomposing a System into Modules",

CMU-CS-71-101, Communications of the ACM, Vol. 15, No. 12, Dec., 1972.
48. Hickey, J., "Software Engineering Considerations for CACE", Research Report CTRU8807,

Control Technology Research Unit, Dublin City University, Jan. 1988.
49. Hickey, J., "A CAD package for the Design of Digital Control Systems", Project Report

for B.Eng, N.I.H.E, Dublin, 1984.
50. 'VAX GKS Reference Manual", V3.0, Digital Equipment Corp.
51. Booch, G., "Software Engineering with Ada" , Benjamin/Cummings Publishing Com­

pany, 1986

52. Birdwell, J.D., Cockett, J.R., Heller, R., Rochelle, R., Laub, A.J., Athans, M., and H at­
field, L., "Expert Systems Techniques in a Computer-Based Control System Analysis
and Design Environment", Proc. 3rd IFAC symposium on Computer-Aided Design in
Control and Engineering Systems, Lyngby, Denmark, 1985.

53. Williams, D. and Friedland B.,"Modern Control Theory for Design of Autopilots for Bank-
to-Turn Missiles", American Control Conference, Voi 2, 1986.

54. Hvelplund H., "Modelling System Specifications on A Finite State Machine", Proc. 3rd
IFAC Computer Aided Design in Control and Engineering Systems, Lyngby, Denmark,
1985.

55. Hickey, J., "Survey of Current CACSD Packages", Research Report CTRU8804, Control
Technology Research Unit, Dublin City University, Jan. 1988.

56. James, J., Taylor, J. and Frederick, D. "An Expert System Architecture for Coping with
Complexity in Computer-Aided Design", Proc. of 3rd. IFAC Symposium on CAD in
Control and Engineering Systems, Lyngby, Denmark, August, 1985.

57. Feur and Gehani, "Comparing and Assessing Programming Languages Ada , C and
Pascal ".

58. Maciejowski, J.M, "Data Structures for Control System Design", Proc. EUROCON 84,
Brighton, 1984.

59. Hickey, J., "Development of MSDI Architecture", Research Report CTRU8805, Control
Technology Research Unit, Dublin City University, Jan. 1988.

60. "IEEE Control System Magazine", Vol. 2, No. 4, 1982.

REFERENCES 155

61. Liu, C.L., "Elements of Discrete Mathematics", Liu New York: McGraw-Hill, 1977.
62. Hickey, J., "A Study of Parsing Methods", Research Report CTRU8808, Control Tech­

nology Research Unit, Dublin City University, Mar 1988.
63. Pyster, A., "Compiler Design and Construction", Van Nostrand Reinhold, 1980.
64. "VAX Document User Manual, Volume 1", VI .0, Digital Equipment Corp
65. Moler, C., and Van Loan C., "Nineteen Dubious Ways to Compute the Exponential of a

Matrix", Siam Review, Vol 20, No. 4, pp 801-836, 1978.
66. Gustavsson, I., "Comparison of Different Methods for Identification of Industrial Pro­

cesses", Automatica, vol. 8,1972.
67. "A Layout Algorithm for Dataflow Diagrams", IEEE Trans on Software Engineering,

Vol. SE-12, No. 4, April 1986
68. Laub, A.J., "Efficient Multivariable Frequency Response Computations", IEEE Trans.

Aut. Control, AC-26, pp. 407-408, 1981
69. MacFarlane, A G J, and Postlethwaite, I., "The Generahsed Nyquist Stability Criterion

and Multivariable Root Loci", Int. J Control, 25, 1977.
70. Edmunds, J M., "A Design Study using the Characteristic Locus Method", in Design of

Modern Control Systems, IEE Control Engineering Series 20, Peter Peregnnus L td ,
1982

71. "Coupled-Tanks Apparatus - Modelling and Experimenting", Internal Document, School
of Electronic Engineering, Dublin City University

72. "VAX Document, User Guide Volume 1", Digital Equipment Corp., 1988.
73. Hanselmann, H , "Implementation of Digital Controllers - A Survey", Automatica, Vol

23, No 1, pp 7-32, 1987

74. Dorato, P , "Theoretical Developments in Discrete-Time Control", Automatica, Vol 19,
No. 4, pp 395-400, 1983.

156 REFERENCES

