
Autonomous Mobile Robot Navigation

using Fuzzy Logic Control

Author

Michael Hunt

Supervisor

Charlie Daly

Submitted to
The School of Computer Applications

Dublin City University
for the degree of
Master of Science

June 1998

This is based on the candidate’s own work

Declaration

I hereby certify that this material, which I now submit for assessment on
the programme o f study leading to the award of Master o f Science degree, is
entirely my own work and has not been taken from the work o f others save to the
extent that such work has been cited and acknowledged within the text o f my
work.

Signed : W \ t-U/A ID No. : ^2 7t>oT* |
Michael Hunt

Date : \ \ jf,

ii

Acknowledgements

I would like to express my gratitude to my supervisor Charlie Daly whose help and
guidance was invaluable during the course o f this thesis, my friends and fellow
postgraduates who provided a pleasant atmosphere that made the whole experience
worthwhile. I also thank Dermot Hannan for his collaboration in getting the robot
up and running. I would also like to thank Simon Hayter for his help and guidance
beyond the call o f duty.

Table of Contents

CHAPTER 1: INTRODUCTION..1

1. INTRODUCTION TO THESIS...1
2. OBJECTIVE OF RESEARCH...5

CHAPTER 2: FUZZY LOGIC..6

1. INTRODUCTION... - .6
2. FUZZY SETS AND PERMISSIBLE OPERATIONS...8
3. THE FUZZY CONTROL SYSTEM... 13

3.1 Fuzzification.. 13
3.2 Inference... 14

3.2.1 Max-Min Inference......................... 14
3.2.2 Max-Dot Inference..16
3.2.3 Cartesian Product...18

3.3 Defuzzification... 19
3.3.1 Centroid Method... 19
3.3.2 Centre o f Sums.. 20

4. DERIVATION OF CONTROL RULES.. 21
5. TUNING A FUZZY LOGIC CONTROLLER... 25
6. FUZZY IMPLEMENTATIONS IN MOBILE ROBOTS...26
7. CONCLUSIONS... 28

CHAPTER 3: A REVIEW OF MOBILE ROBOT NAVIGATION..29

1. INTRODUCTION...29
2. CONTROL STRATEGIES...29

2.1 Monolithic Control Systems............................. 30
2.2 Hierarchical Control Systems...30
2.3 Distributed Control Systems.. 31
2.4 Assessment o f Control Systems... 31
2.5 Subsumption Architecture... 32

3. PATH PLANNING... 34
3.1 Pure Free Space Methods... 35

3.1.1 Voronoi Diagrams................................. 35
3.1.2 Generalised Cones................................. i.........................35
3.1.3 Mixed Representation... 38

3.2 Configuration Space (Vertex Graphs)..39
3.3 Hybrid free space and Vertex Graphs..40
3.4 Potential Fields...40
3.5 Regular Grids.. 44
3.6 Quadtree...45
3.7 Path Planning using Resistive Grids (Hardware approach).. 46
3.8 3-D Path Planning ... 47

4. NAVIGATION..47
5. CONCLUSIONS.. 54

C H A P T E R 4: P O S IT IO N E S T IM A T IO N A N D D A T A A C Q U IS IT IO N ..55

1. In t r o d u c t io n ...55
2. MECHANICAL CONFIGURATIONS... 55

2.1 Steered Wheeled Configuration.. ,...55
2.2 Differential Drive Configuration...56
2.3 Omnidirectional vehicles..56

3. SENSORS FOR PERCEPTION OF THE ENVIRONMENT... 57
3.1 Sonar Sensors.. 58

3.1.1 Construction.. 58
3.1.2 Characteristic Problems with Sonar.. .59
3.1.3 Current use o f Sonar Sensors... 63

3.2 Infrared Sensors..63
3.3 Combining different sensors................................. 63

4. POSITION ESTIMATION.. 64
4.1 Overview o f approaches taken in determining position ... 64
4.2 Specific implementations fo r updating the position o f autonomous vehicles........................ 65

5. MAPBUILDING... 69
5.1 Specific implementations taken fo r Mapbuilding... 70

6. CONCLUSIONS... 73

C H A P T E R 5: T H E D C U A U T O N O M O U S R O B O T ...75

1. In t r o d u c t io n ...75
2. SYSTEM OVERVIEW... 75

2.1 General description o f the robot and radio communication hardware.................................. 76
2.2 Block overview o f software structure..76
2.3 Using the Robot’s Sensors and Motors.. 77

2.3.1 The Sonic Sensors..77
2.3.2 The Stepper Motors.. 79

3. THE PATH PLANNER.. 80
4. NAVIGATOR.. 94

4.1 Block structure o f Pilot.. ... 94
4.2 Position Estimation................ 96
4.3 Processing o f input parameters fo r the Pilot... 100
4.4 The Pilot’s Fuzzy Rule Base and System Structure.. 102

5. RESULTS.. 106
6. CONCLUSIONS... ... 114

C H A P T E R 6: C O N C L U S IO N S ...117

1. RESEARCH SUMMARY... 117
2. CONCLUSIONS... 119

Appendix A Communication Link

Appendix B Fuzzy Controller Membership Functions

Appendix C Planning, Navigation and Communication Software

ABSTRACT

Traditionally the type of robot used in the workplace consisted mainly o f the fixed

arm variety. Any mobile robots that were commercially available required that the

environment be altered to accommodate them. This involved the installation o f

guide lanes or some form of sensor units placed at various locations around the

workplace to facilitate the robot in determining its position within the

environment.

Such approaches are costly and limit the use o f robots to environments where these

methods are feasible. The inadequacies in this technology has led to research into

autonomous mobile robots that offer greater flexibility and do not require changes

in the enviromnent. There are many technical issues to be addressed in designing

such a robot. These stem from the necessity that the robot must be able to navigate

through an environment unaided. Other problems such as the cost o f the vehicle

must be considered so that prospective customers will not be put off.

This thesis discusses the strategies taken in addressing the problems associated

with navigation in an obstacle strewn environment. Such issues include position

estimation, path planning, obstacle avoidance and the acquisition and

interpretation of sensor information. It also discusses the suitability o f fuzzy logic

for controlling a robot.

A graphical user interface runs on the PC which communicates with the robot over

a radio link. The robot uses a fuzzy logic controller to follow a planned path and

avoid unknown obstacles by controlling the velocity and steering angle o f the drive

unit. It is a tracked vehicle which is suitable for indoor use only. The results of

path planning and the robots attempts at following the paths and avoiding obstacles

are illustrated and discussed.

vi

Chapter 1

Introduction

1. Introduction to Thesis

There is the need in industry and in space exploration for robots that have greater

autonomy. Traditionally robot arms worked in a fixed environment with a fixed co­

ordinate reference frame. Mobile robots that operated in the environment did so by using

techniques that involved altering the environment. An Autonomous vehicle is a self

propelled vehicle that provides a means for transporting materials in the workplace. The

vehicles are designed to have the capability o f negotiating their own way around the

environment through some on board intelligence that can also enable them to find the

way around dynamic or static obstructions. These vehicles may receive their instructions

from some off-board controller.

There are a number o f considerations to be dealt with, when designing such a vehicle.

The navigation system must be reliable and have sufficient accuracy to ensure the safety

o f nearby humans, the environment and the vehicle itself. The vehicle must be able to

move with sufficient speed to make it a practical conveyance. The cost may also become

a prohibitive factor if the vehicle has a high degree o f complexity. If the robot is to be

capable o f performing tasks successfully in a dynamic environment it must have the

ability to respond to changes in the perceived world that affects its operation. As such, it

must be able to acquire and interpret information obtained from the surrounding

environment. Multiple sensors utilising appropriate sensor fusion techniques can help

ameliorate problems arising from the differences between the real and perceived world.

A method often used for the guidance of mobile robots is the use o f guidepaths. In

particular, vehicles used in heavy industrial environments usually follow a wire buried in

the factory floor. The wire is used as a transmitting antennae and is energised by an

alternating electrical current oscillating at a few kilohertz. A pair o f receiving antennae is

1

mounted on the base o f the vehicle which are used to straddle the buried transmitting

wire. This enables the vehicle to track the wire by maintaining a balance in the strength

o f the signals received by each o f its sensor antennae. High frequency communication

signals can also be sent on the transmission wire allowing two-way communication with

the vehicle.

Another approach taken uses photo fluorescent or reflective materials applied in stripes

on the floor to define the path network. A light source and a video adapter is then

mounted on the base o f the vehicle which operates in a similar manner to the guide wire

system by keeping the detector positioned over the path. A radio is used to communicate

with the robot or alternatively communication can be achieved through a link at a

queuing station. The optical or chemical stripes are cheaper to lay down than the

guidewire systems but require periodic maintenance and still offers no communication

link.

These systems are all classed as fixed path systems and while they are reliable, the paths

are difficult and expensive to change particularly in the case o f guidewire systems.

Guidewires cannot be installed in metal or wood block floors, under metal grates, in

elevators or in sterile environments. Optical paths suffer from abrasion or obstructions in

dirty environments and are as such, unsuitable for outdoor or heavy industrial

applications. Another problem with the hardware configuration is that vehicles produced

by one manufacturer are often incapable o f following the guidewire or communicating

with a controller produced by another manufacturer. If the system has to be updated or

expanded, the same manufacturer’s vehicles must be purchased or parallel guidepaths

must be laid down to accommodate incompatible equipment. In dynamic environments,

the fixed path vehicles may not be practical and this combined with the need for a more

flexible approach has led to research into autonomous mobile robots.

Autonomous mobile robots offer greater flexibility and can plan their own path

internally or receive electronic instructions that can be interpreted through software.

2

With this process any vehicle is capable o f communicating over the same medium.

Sometimes passive landmarks are used to facilitate the robot in negotiating its path.

Even though such methods involve altering the environment, it is far easier to insert

landmarks than it is to lay down guidewires.

There are a number o f ways control can be distributed in autonomous robots, from

hierarchical to distributed, or indeed a mixture o f both. The hierarchical structure is

commonly used and while robots may have a particular control structure in common,

typically they can appear totally different in terms of functionality, complexity and

design.

An important aspect to be considered in discussing Autonomous vehicles is the type of

path planner that is to be used. There are several methods o f path planning that can be

employed for use with robots. Every planner has its own characteristics. Some are more

suitable for use with dynamic environments than others. This is due to the type o f

planning representation used which in some cases cannot easily be altered to

accommodate new data without having to be rebuilt from the start. Other planners will

attempt to find the shortest path to a destination, but at a very high computational

expense. Some planners are developed to minimise the computational time incurred

when finding a path through a series o f obstacles.

The choice o f algorithm is dependent on the application. However, if a vehicle is to have

the capacity to work in a dynamic environment, it should be able to integrate new data

representing possible obstacles with the global map for the purposes o f re-planning. Re­

planning is necessary if the robot fails to pass some unmapped obstacle. This approach

differs from the planners that are used for fixed arm robots. Such planners safely assume

that no obstacles are encountered during the course o f planning that would warrant the

necessity to re-plan.

3

The accuracy with which the robot can maintain an estimate o f its position is very

important because it determines to a certain extent, the reliability and effectiveness o f the

robot within a working environment. An autonomous robot must be able to determine

where it is in order to perform effectively. This is a difficult task i f the environment is

not to be altered to provide information that could enable the robot to determine its

position. There are two approaches used in tandem that may be used to update the

robot’s position. One will acquire information from the sensors and the other will use

Dead Reckoning.

The integration o f data from sensors to form maps for use in position estimation is a

complex issue. The type o f problems that arise in this area are sensor dependent. Some

sensors provide excellent directional information relating to where an object is in the

robots path, but may offer a poor estimate of the robot’s distance from the object. Other

sensors can be better at obtaining distance measurements but offer poor directional

information. In many implementations within robotics, the designers utilise the

advantages of various sensors by integrating the information obtained from each sensor

to compensate for the limitations of any particular type o f sensor. Such sensors include

lasers, ultrasonics and vision.

Information acquired from the sensors may be used to facilitate the process o f position

estimation. Dead Reckoning is commonly used as a ‘local’ method for maintaining an

estimate o f the position but is subject to a number o f problems which result in an

accumulation o f errors if not corrected over time. Sensor information may be used to

periodically update and correct the information obtained using Dead Reckoning. Sensors

are also used to avoid obstacles that are not known to the global map. Obstacle

identification and avoidance is imperative for an autonomous mobile robot and only

possible through the acquisition o f information from sensors. It is therefore important to

consider what sensors to use with a robot as this can greatly enhance/limit the robot’s

capabilities.

4

The mobility o f a robot is dependent on the wheel configuration used in its construction.

There are a number of possible configurations that may be used. Some types offer

greater flexibility o f movement than others and can prove useful when operating in a

cluttered environment. Most configurations cannot allow movement in the direction of

the wheel axle. However, the omni-directional wheel has been developed to remove this

limitation.

2. Objective of Research

It is evident that if a vehicle is to exhibit a high degree o f autonomy there will be a

number o f distinct issues that must be dealt with. The following chapters discuss those

outlined above. Chapter two provides a detailed discussion o f Fuzzy Logic. Its suitability

for use as a controller that is capable o f avoiding obstacles or following a path is

discussed. Chapter three follows with a breakdown and analysis o f the control structures

used in the design o f autonomous mobile vehicles. Also considered are the various

approaches taken in path planning and navigation. Chapter four discusses wheel

configurations and sensor characteristics, describing the advantages and disadvantages of

each. It also discusses the integration or fusion o f information acquired from sensors as

an aid to position estimation and obstacle avoidance. Chapter five illustrates the work

completed with an indoor mobile robot. It describes the hardware and the operation of

the path planner and navigator. Results are presented o f the path planner and fuzzy

controller in operation. Chapter six contains the conclusions.

5

Chapter 2.

Fuzzy Logic

1. Introduction

Fuzzy set theory was first developed in 1965 by Prof. Lotfi Zadeh as an extension to

bilevel (boolean) logic. Since its introduction it has emerged as a powerful approach

to reasoning when using uncertain data. Classical set theory is useful in problems

where the output can easily be defined from knowledge o f the input. Unfortunately

many problems do not fall into this domain. The relation between input and output

may not always be readily defined and it is to such problems that fuzzy logic can

prove useful.

Fuzzy logic provides a powerful and straightforward means o f problem solving

where mathematical models are not easily definable or are difficult to develop. It has

been successfully applied in areas such as process control, pattern recognition, expert

systems and linguistics. In process control it obviates the need to develop a

mathematical model for the system while in decision making it is able to draw

conclusions from vague, incomplete or imprecise information.

The behaviour o f a fuzzy system is described linguistically, which provides these

systems with a reasoning capability similar to humans. Ambiguous statements such

as more or less or fairly fa s t are easily dealt with using fuzzy reasoning. This is

because any element in a fuzzy set has a given membership o f that set. Using fuzzy

logic, it is possible to devise a vocabulary o f terms which define on a mathematical

scale the linguistic terms used in expressing the control rules. Specific applications

includes washing machines, camcorder autofocusing o f lenses, controlling subway

systems.

The construction o f a fuzzy logic control (FLC) system is faster than traditional

methods of control. It is understandable, robust and maintainable and in general

requires much less memory and computing power than conventional methods.

6

Traditional control technology is based on a mathematical model that describes the

control process. A set o f model equations is derived from physical laws or

identification algorithms and then a set o f feedback control laws is generated to

ensure these models behave as desired. Although this is perfectly satisfactory for

simple processes, it gets more difficult as the process becomes more complex. Fuzzy

logic on the other hand is very suitable for dealing with non-linear processes having

noisy input data and has emerged in industry as one of the most promising techniques

available.

It is easy to design fast control systems with fuzzy logic. However, there is no

general procedure for deciding on the optimal number o f fuzzy control rules since a

number o f factors are involved in the decision, e.g., performance o f the controller,

satisfactory system performance, the choice o f fuzzy sets and the variables.

In Japan, there has been a great deal o f research in the use o f fuzzy logic. Several

fuzzy logic implementations on VLSI chips and fuzzy logic software development

systems have become available recently, allowing an engineer to quickly design,

prototype and implement a system without worrying about the low level

implementation o f the fuzzy calculations, and allowing flexible choice o f target

system processor and other design details after the top level design is completed.

Like conventional industrial programmable logic controllers (PLC), Fuzzy Logic

Controllers (FLC) also need hardware and software support for information

processing. Information processing is performed within a Fuzzy Logic Controller by

the Digital Fuzzy Processor (DFP). Presently, several companies in Europe and the

USA are devoted to the manufacture o f these processors.

A fuzzy logic controller is a knowledge based controller that uses fuzzy set theory

and fuzzy logic for knowledge representation and inference. One advantage over

other knowledge based controllers lies in the interpolative nature o f the control rules.

The overlapping fuzzy antecedents to the control rules provide smooth transitions

between control actions of different rules. Because o f this interpolative quality, fuzzy

7

logic controllers often require an order o f magnitude fewer rules than other

knowledge based controllers.

2. Fuzzy sets and permissible operations

Traditional bilevel logic provides for variables with values that are either TRUE or

FALSE. No value that lies between these two extremes is allowed. The most

common logic operations are AND, OR and NOT and when applied they return a

crisp value that is either TRUE or FALSE. Traditional logic is based on Classical set

theory which states that a given element is either entirely within a set or entirely

outside a set i.e. either it is a member o f that set or it is not. The two dominant

operators available in classical set theory are INTERSECTION (the basis for the

logical AND operation) and UNION (the basis for the logical OR operation).

Fuzzy set theory also has associated operations as in Classical set theory. However a

fuzzy set allows values to be partial members o f a set. Membership of a set ranges

from 0 to 1, i.e. from no membership to full membership respectively. A comparison

of a traditional crisp set and a fuzzy set is shown in fig. 1. Fuzzy sets have similar

primary operations: intersection, union and complement although they are defined

differently. Other operations such as concentration, dilation and intensification are

used as hedges for modifying the base sets.

m u)f
1

o
u

Figure 1.

A fuzzy set A o f a universe o f discourse U is characterised by a membership function

HA(U) which assigns to every element u e U a number (J-a (u) in the interval 0 to 1

that represents the grade of membership o f the element in the set A. This may be

written as follows:

A = { u ,^A(u) | u g U }

8

When U is a discrete set this may be represented as follows:

A=EnA(uj)/uj

where the summation denotes the set theory union operator rather than the arithmetic

sum and the / relates a particular membership function to an element o f the set.

Degree of membership

In fuzzy logic an element is assigned a degree o f membership within a given set. The

degree to which an element belongs to a set is given by its degree o f membership

within that set. The degree n to which an element u belongs to a fuzzy set A is given

This reads as "the degree of membership of u in the fuzzy set A ranges from 0 to 1

depend on such things as required accuracy, responsiveness and stability o f the

system, ease o f manipulation and maintenance. The most commonly used forms are

the:

• triangular type

• trapezoid type

• exponential type

• s-function

• n-function

The S-function is defined as follows:

^A(u) -> [0,1]

inclusive". The number o f fuzzy set membership functions and the shapes you choose

0 for x < a

2 for a < x < b

where b = (a+c)/22

1 , (* - «)

J c - a)
for b < x < c

1 for x > c

9

The ri-function is defined as follows:

i—r , x f S (x ; c - b , c - b / 2 , c) for x < c .(.v; a, c) =« where b is the bandwidth11 \ \ - S (x \ c , c + b l 2 , c + b) for x > c

These functions when plotted have the following appearance:

Fuzzy set Membership Functions

Triangular Trapezoid Exponential

S-Function it -Function

The following is a list o f the operations available in fuzzy set theory.

Let A and B be two fuzzy sets in U with membership functions HA and MB,

respectively.

Set union

HAuB(u) = max{nA(u),nB(u)} f o r a U u e U

Set intersection

HAnB(u) = min{|iA(u),HB(u)} for all u e U

Set complement

|i .A(u) = 1-h a (u) for all u e U

10

Set concentration

HCON(A)(u) = HA2(u) for all u e U

Set dilation

M-DIL(A)(U) = Ha'/2(u) for all u e U

Set intensification

M/NT(A)(Û
2 f l 2 0) fo r (w) < 0.5

l - 2 [l - / i ^ (w) j fo r 0.5 < /J,A(u) < 1

Some examples o f fuzzy operators are shown in Figure 2 when applied to the fuzzy

set A.

Figure 2.

Hedges

Terms such as VERY and SLIGHTLY are called hedges. Generally a hedge is a

word that when applied to a fuzzy set modifies that fuzzy set relative to its original

form. An example is shown in fig. 3 where two fuzzy sets HOT and VERY HOT are

illustrated. The term VERY when applied to the set HOT creates a new fuzzy set

VERY HOT that is the original set shifted to the right. The use o f a hedge provides a

relational capability between the base set and the hedge set. This means that should

the set HOT be modified then a corresponding shift should occur in the set VERY

HOT. The definition of a hedge will be strictly coupled to the base set[l]. For

example the hedge VERY would have a very different effect on the set COLD where

VERY COLD is shifted to the left.

11

Hedges are formed by applying fuzzy operators to a fuzzy set. In Fig. 3, the hedge set

VERY HOT is formed from the set HOT by performing the CON(HOT) to create

the new set. This set is similar in form to the original one but shifted to the right. Fig.

4 shows the effects o f same hedge when applied to the fuzzy set COLD. The new

hedge set VERY COLD is obtained by performing the CON(COLD). Notice that

the hedge shifts the set to the left in this case.

Figure 3.

12

3. The Fuzzy Control System

Fuzzy based systems are constructed so that generated outputs change in a smooth

and continuous manner, regardless o f inputs crossing set boundaries. System inputs

undergo three transformations to become system outputs. First a fuzzification process

uses predefined membership functions to map each system input into one or more

degrees o f membership. Then the rules in the rule base are evaluated by combining

degrees o f membership to form output strengths. And lastly the defuzzification

process computes system outputs based on these output strengths and membership

functions. A block diagram of a fuzzy control system[2] is shown in fig. 5.

Figure 5.

3.1 Fuzzification

Fuzzification is the process o f calculating the values to represent an input's degree o f

membership within one or more fuzzy sets. These values can then be used to

determine the degree o f truth for each rule premise. Fig. 6 illustrates an example

where the fuzzy sets are cold, cool, warm and hot. Each temperature has a degree of

membership within each o f these sets. The degree of membership is determined by a

membership function which is defined based on experience or intuition.

13

Figure 6.

3.2 Inference

The inference mechanism is that which processes the rules and determines which

actions are performed by the control process based on a specific input condition. A

rule is composed of an input and output. The input part o f a rule is called the premise

and it is composed of one or more antecedents related by fuzzy operators. The output

part o f the rule is called the consequence. When a rule fires, it fires to the degree

dependent on the truth level in each antecedent in the premise o f the rule. Under

inference, the truth value for the premise o f each rule is computed, and applied to the

conclusion part o f each rule. This results in one fuzzy subset being assigned to each

output variable for each rule.

The antecedents o f a rule are evaluated using membership functions to produce truth

levels which are combined using Fuzzy operators to produce a final degree o f

fulfilment for that rule. The antecedents correspond directly to degrees of

membership calculated during the fuzzification process. Generally a minimum

function is used so that the strength o f a rule is assigned the value o f its weakest or

least true antecedent. The degree of fulfilment (dof) o f a rule is used to determine the

strength or weighting o f the consequent in the rule. The two methods most

commonly used in calculating the weighting or degree o f fulfilment o f a rule are

Max-Min Inference and Max-Dot Inference.

3.2.1 Max-Min Inference

In Max-Min inferencing, the output membership function is clipped off at a height

corresponding to the rule premise’s computed degree o f truth. The fuzzy logic AND

operator which takes the Minimum o f the input sets, is used in computing the degree

14

of truth o f the premise. When this is performed, all o f the fuzzy subsets assigned to

each output variable are combined together to form a single fuzzy subset for each

output variable. This involves taking the pointwise Maximum over all o f the fuzzy

subsets assigned to the output variable by the inference rule, which corresponds to a

UNION of the fuzzy subsets or a fuzzy logic OR operation. Hence the name Max-

Min inference.

As an example assume a fuzzy control rule base has only two rules as follows:

Rule 1: IF x is A1 and y is B1 THEN z is C l

Rule 2: IF x is A2 and y is B2 THEN z is C2

The first step in Max-Min inference involves clipping the membership function o f

the rule output variable at the degree of fulfilment level o f the premise[3]. This may

be written as:

M-c'(u) = MIN {dof,|J.c(u)}

where |_ic(u) represents the unclipped membership function o f the output Fuzzy set

and (o.c'(u) represents the clipped membership function.

If the strength o f the ith rule is denoted by a ;, the control decision led by the ith rule

can be expressed by:

(V(w)=min[aj; ^ci(w)]

The second step in Max-Min inference process involves computing a single fuzzy

subset for the output variable. This is attained by performing a fuzzy OR (Max)

operation on the output sets. The membership o f the inferred consequence C is thus

point-wise given by:

M'c(w)=max[(j.cli (w), |_ic2’ (w)]

=> |ic(w)=max[m in[a„ ncl(w)], m in[a2, |ic2(w)]]

Figure 7 shows the max-min inference processes with respect to the different types of

inputs. In fig. 7a the fuzzy sets A' and B' have been taken as the inputs, while in fig.

7b crisp values x0 and y0 are taken as the inputs.

15

Figure 7b: max-min inference under crisp inputs

Figure 7a: max-min inference under fuzzy inputs

3.2.2 Max-Dot Inference

In Max-Dot Inferencing the output membership function is scaled (using the Dot

product) by the rule premise’s computed degree o f truth. Then the output subsets are

combined for each output variable using the OR operator {Maximum). Hence the

name Max-Dot Inference.

16

The following procedure demonstrates the process which is applied to the rule base

listed for the last example.

The first step o f the Max-Dot Inference process involves scaling the membership

function o f the rule output variable by the dof o f the premise. This may be written as:

Hc'(u) = d o f^ c(u)

where fJ.c(u) represents the unsealed membership function o f the output Fuzzy set and

|ac'(u) represents the scaled membership function. The control decision led by the ifll

rule can be expressed as:

I V (w) = a ; • | i cl(w)

The second step of the inference process involves computing a single fuzzy subset

for the output variable. The membership o f the inferred consequence C is therefore

given by:

Hc(w)= m a x [^ cl. (w) , (v (w)]

=> Hc(w)=max[(oc1 • |icl(w)), (a 2 • Hc2(w))]

Fig 8 illustrates the MAX-DOT inference processes with respect to the different

types of inputs. In fig. 8a the fuzzy sets A' and B' have been taken as the inputs. In

fig. 8b crisp values x0 and y0 have been taken as inputs.

Under the crisp input conditions, it can be noted that the fire strength ocj and a 2 o f the

rule base may be denoted by:

a 1=min[(j,A1(x0),(J.B1(y0)]

a 2=min[|a.A2(x0),p.B2(y0)]

17

Figure 8a MAX-DOT inference under fuzzy inputs

Figure 8b MAX-DOT inference under crisp inputs

3.2.3 Cartesian Product

The cartesian product has a direct application in inference where the products of

more than one universe of discourse is being considered. The operations union,

intersection and complement all operate only on a single universe o f discourse. The

cartesian product o f A and B in the product plane is defined as

/up(u,v) - /jaxb{u,v) = M IN[/&(«), for all u s U, v e V

18

An example o f where this would be used is as follows. Consider the universe of

discourse U o f an input fuzzy set A and V the universe o f discourse o f a fuzzy set B.

If these fuzzy sets have a rule associated with them of the form:

IF (input 1 is A) AND (input2 is B) THEN output is C

then the truth value of the premise is given by:

MIN[p.A(u),(.iB(v)] for all u s U, v s V

3.3 Defuzzification

The rule-evaluation process assigns weights to each action that is activated. Further

processing is required in order to decipher the meaning o f the vague or fuzzy actions

using membership functions and to also resolve conflicting actions. A number o f

methods[4] may be employed in order to reach a compromise between the various

actions that have been triggered during rule evaluation. The most common o f these

are:

• The centroid method

• The centre of sums method

3.3.1 Centroid method

The composite output fuzzy set is first built by taking the union o f all clipped or

scaled output fuzzy sets. Then a crisp output value is obtained by deriving the

centroid o f the composite output fuzzy set. Thus given fuzzy sets A, B and C the

membership function of the composite fuzzy set would be given by

Hcomp(u) = m ax{|xA'(u)^B'(u)HC'(u)}

for all u e U , where U is the output Universe o f Discourse and A', B' and C' are the

qualified output fuzzy sets corresponding to the output sets A, B and C. The centroid

or centre o f gravity is now obtained for the discrete case using the following formula.

19

n
^ /Jcomp(Uk).Uk

sk k=1 U* = Z
 ̂\ jLlcomp(Uk)

i=l

For the continuous case the following formula applies.

«* =
| /Jc0 m p (u).u .d u

\ fJcom p{u).du

In summary a centroid point on the x-axis is determined for each output membership

function. Then the membership functions are limited in height by the applied rule

strength and the areas o f the union of the output membership functions are computed.

Then the crisp output is derived by a weighted average o f the x-axis centroid points

and the computed areas, with the areas serving as weights.

The centroid method is computationally intensive and will therefore result in slow

defuzzification cycles. As the centroid method takes into account the area o f the

composite output set as a whole, should two qualified output sets overlap then the

overlapping is not taken into account. This means that the crisp output does not

constitute a complete representation o f the qualified output sets that were used as

input to the defuzzifier. One other point regarding this method is that for a vertically

symmetric membership function when only a single rule fires, the centroid method

will always return a constant value that is independent o f the input degree o f

fulfilment.

3.3.2 Centre of Sums

This method is similar to the centroid method but it takes into account overlapping

membership functions in the qualified output set. Instead o f building the output

composite using the union operator, the centre o f sums method takes the SUM o f the

output fuzzy sets. The formula for the discrete case is given by:

20

^ U k ^ JJAi(uk)

S /JA‘(Uk)
k=1 i= l

And in the continuous case:

f J1J WifcXl fJA i(U k)d u

J y 1, U A i(u k)d u
1=1

Sometimes "Singletons" are used to simplify the defuzzification process. A singleton

is an output membership function represented by a single vertical line. Since a

singleton intersects the x-axis at only one point, the centre o f gravity calculation

reduces to just a weighted average calculation o f x-axis points and rule strengths, i.e

a weighted average calculation o f all the qualified output sets. This approach is

widely used in hardware implementations.

4. Derivation of Control Rules.

There are three possible modes o f deriving fuzzy control rules[5] based on:

1. The operator's experience (verbalisation).

2. Fuzzification.

3. Identification.

1. This is the most subjective method, and directly akin to expert systems rule

acquisition, whereby a rule set is generated by interrogating an experienced

operator through structured questions. The vast majority o f application studies

have used this method to synthesise fuzzy logic controllers. The rules are derived

by placing the controller in parallel with a human expert and learning or imitating

the control actions for particular input/output situations.

2. The second method involves formulating a set o f rules from a mathematical

expression that represents the system. This system can then be validated against

the known analytical model. An example is shown below where a decelerating

21

vehicle with initial velocity v q and constant deceleration -a comes to a stop at a

distance d from where the breaks were initially applied.

Using Newton’s equation of motion: = u? + 2 a d (where v is the final

velocity, u is the initial velocity, a is the acceleration and d is the distance

travelled) the relationship between the velocity, deceleration and distance is:

d = vo?/2a (1)

The velocity and acceleration are input variables that are mapped through

equation 1 into distance. For acceleration control, this relationship needs to be

inverted to <velocity, distance>^><required. acceleration>. In mathematical terms

this is:

a = v(p/2d. (2)

In general however, the causal relationship may not be invertible. The linguistic

qualifiers for velocity, distance and deceleration may be defined as follows:

Velocity=(Very Slow, Slow, Medium, Medium Fast, Fast, Very Fast)

Distance^(Almost Zero, Very Close, Close, Medium, Medium Far, Far, Very Far)

Deceleration=(Almost Zero, Braking, Hard Braking, Very Hard Braking)

Using equation 2 as a guide, the braking rule base o f Table 1 may be obtained. An

example o f how two of the rules were derived is shown below.

Rule 1

Velocity = VS

Distance = VF

Deceleration = (VS)2/(2*VF) = (small number)/(large number) = AZ

Rule 2

Velocity = VF

Distance = AZ

Deceleration = (VF)2/(2*AZ) = (largel number)/(small number) = VHB

22

Table 1 Static breaking fuzzy rule base

distance velocity

VS S M MF F VF

AZ B HB HB VHB VHB VHB

VC B B HB HB VHB VHB

C AZ B B HB HB VHB

M AZ B B B HB VHB

MF AZ B B B HB VHB

F AZ AZ B B B HB

VF AZ AZ AZ B B B

3. The third approach is used to provide a system model for either the purpose of

output prediction and simulation or for the design o f a feedback controller. This

estimation method requires adequate representative input/output signal pairs to

provide a relational matrix which represents all, or nearly all possible input/output

situations.

Consider a causal and a time-invariant process, represented by a finite-

dimensional fuzzy relation R that maps current states S(t) into future states S(t+T)

(T is the sample period) for some input U(t), i.e.

S (t)xU (t)-+ S (t + T).

The fuzzy relation R is a collection of statements or fuzzy rules o f the form:

R,: IF S;(t) AND Ui(t) THEN Sf(t+T); i=l,2,....,N.

R may be described as a collection o f N Fuzzy rules mapping the current state S(t)

and input U(t) into the future state S(t+T). If Si(t),Ui(t) and Sj(t+T) are described

by fuzzy sets with membership functions |j,si(t), |a.ui(t), n si(UT) respectively then the

membership function for this rule is:

23

The fuzzy sets are described on finite discrete universes for practical applications.

Thus both R ; and the relational matrix R are finite discrete fuzzy relations. To

construct R, collect all N rules, Ri, as R, OR R2 OR R3 OR ... RN. Hence the

membership function of R is:

jUR(S(t), U(t),S(t + T)) = m axK . U(t),S(t + T))}
i 1

Mr(S(t), U(t), S(t + T)) = max{min{//s, juUj(l)(U(t)), jUSi(t+T)(S(t + 7))}}

The relational matrix R must be evaluated from system input/output data, its

dimensionality N being unknown a priori. Therefore every data set (S;(t),

Uj(t),...,Si(t+T)) is considered as a possible rule, and is used to update the

relational matrix R.

It is necessary however, to track systems with time-varying parameters and those

with catastrophic changes through system faults, and as such the relational matrix

must have learning and forgetting capabilities. This is accomplished through a

forgetting operator D. At each update a new version say R', is computed from the

previous version R through:

ju, (S(t), U(t), S(t + T)) = max{(D x U(t), S(t + T))),

max{min{/JSM(S(ty), /JS(l+T)(S(t + r))}}}

(3)

where D<1 is the forgetting factor causing old rules to decay slowly as new ones

are added. The value of D determines the speed of adaptation - the slower the rate

the less susceptible the modelling process is to noise. However the forgetting

factor mechanism introduces a problem due to the uneven distribution o f the input

signal space over the relational matrix. If data is heavily biased to a particular

region of R, then the forgetting factor will reduce all rules external to this region

to zero. To avoid this, the updating procedure in equation (3) only applies to those

{Rj} for which the confidence in the data set {Si(t),Ui(t) and Sj(t+T)} being

relevant to {R} is greater than a prescribed threshold 0, i.e.

24

min{^sl(o(S(t)),Mu,«)(U(t))} > G

Having derived a relational matrix R, the system rule base can be used with

specific measured values of S(t) and U(t) (say, S(t)' and U(t)') to predict the

corresponding output value S(t+T)' through the composition operator -

S(t+T)'=(U(t)'xS(t)' ° R)

or as a membership function:

Ms0+7yS (t + T) = max{min{//s,(0 (S (t)), /uUV) (U (t)),{iR(S(t), U (t) ,S (t + T))} }

which must be defuzzified to get the deterministic output S(t+T)'.

5. Tuning a Fuzzy Logic Controller

A number o f approaches have been investigated for tuning fuzzy controllers, some

involve the use o f neural nets[6], others use a cell state space algorithm[7] or use the

controller’s experience to adjust the membership functions. However a general

methodology for timing controllers to attain optimum values seems unlikely because

any optimum values always depend on specific models o f the process and the control

objectives. Thus tuning controllers is more likely to be done based on the expert’s

knowledge of the controlled process and not by computation.

When tuning a fuzzy controller parameters should be tuned in order o f their

significance[8]. Thus any parameters with a global effect should be adjusted first,

followed by those with reduced degrees o f local effect.

I f the scaling factor o f a fuzzy variable is changed the definition o f each membership

function will be changed by the same ratio. This means that changing the scaling

factor affects all o f the control rules. If the peak value o f a membership function is

changed the only rules that will be effected are those that use the changed fuzzy

label. Changing the width value of a membership function affects the interpolation

between the peak value o f that function and its adjacent membership function. From

this it may be observed that any adjustments to be made towards the tuning of a

controller, should follow the sequence below:

25

1. Scaling factors of variables.

2. Peak values o f membership functions.

3. Rules.

Rules of thumb

In the design of control systems, it is usual to take an odd number o f sets and to place

the centre one in a position where it coincides with the desired value.

An overlap between membership functions o f 25% is normally chosen.

Triangular waveforms are used in the case o f a set that represents the desired value of

a control system in order to obtain a very accurate setting. Examples o f how not to

subdivide input and output signals are shown in fig. 9. The curves in fig. 9a and fig

9b do not overlap which means that there is no defined ja for a number o f values.

Values that would fall into these undefined regions cause unpredictable behaviour. In

fig. 9c the edges of the various curves spill over into various other sets which leads to

instability in the system.

(a) (b) (c)

Figure 9.

6. Fuzzy implementations in Mobile Robots.

In [9], a simple sensor based F.L. controller was developed to track a wall. This was

simulated on the Vax Station II/GPX. The car was represented as a geometrical point.

It was equipped with two sensors placed at right angles to each other. One sensor

pointing forward and the other at the side. Their simulated range was two metres.

26

The fuzzy logic control rules were derived by taking into account the linguistic

control policy used by an experienced driver. The walls with which the simulation

was tested had convex and concave turns and the results o f the simulation were

successful. The authors found that the trajectory progressively deteriorates as the

sensors’ orientation shifted from the (90°,0°) directions. In order to keep track o f a

comer a new rule was added to those that dealt primarily with the wall following.

In [10], a fuzzy and neural system was constructed and compared in a simulation for

backing a truck. The fuzzy system was found to be reliable and showed optimal

performance despite rough definition o f fuzzy membership functions and a small

number o f rules. The neural controller when it did work often followed a non-optimal

path and was computationally more expensive. Fuzzy Logic control proved to be

efficient and robust while the neural system had a high failure rate and required hours

o f training time on a SUN 3 workstation. Training the neural network with the

backpropogation algorithm required thousands o f backups and in some cases the

training did not converge. This compounded with the fact that insufficient training

data may be available for the neural system led to fuzzy logic being the more

promising approach for encoding the structured knowledge o f a control system.

In [11], a rule based motion controller was developed for an autonomous mobile

robot. A set o f rules which were experimentally derived from a generic minimum

time control rale were used to form the fuzzy logic controller.

In [12], a very reliable control system was developed for an automated guided

vehicle using fuzzy inference. The system however, employed a semi-autonomous

movement technique in which the vehicle moved partially autonomously but

basically used the guide lane. This system is limited owing to the dependence on

guide lanes.

27

7. Conclusions

There have been a number of strategies employed using fuzzy logic for controlling a

vehicle along a defined path, avoidance o f obstacles, manoeuvring vehicles for

parking etc. One o f the advantages o f the use of fuzzy control resides in the

possibility o f averaging the conclusions o f several rules to obtain an intermediary

action. The basic idea behind a fuzzy logic controller is to avoid the design o f a

strategy based on a detailed dynamic model, by taking the approach o f a human

operator to an ill-defined system. Fuzzy logic offers a new approach to robot control,

circumventing the need to develop accurate dynamic models. It has very good noise

rejection capabilities because o f the way it averages the output from several

decisions. There are also processors designed specifically to carry out fuzzy logic

computations that provide a single op code for defuzzification.

28

Chapter 3.

A Review of Mobile Robot Navigation

1. Introduction

The task of developing a Navigation system where the robot must find its way to the

destination through acquiring information from the environment raises a number o f

issues. The design o f any Navigation system for an Autonomous Mobile Robot is

largely dependent on the real time demands placed on the robot and the limitations

placed on its operation within the environment. Some designs are developed for

indoor use where the environment may be altered to facilitate position update or to

restrict the mobility o f the robot using guide lanes which will simplify the navigation

issue.

A great deal o f consideration must be given to the planning problem, if the vehicle is

to have full autonomous capabilities. The robot has to react swiftly to changes in the

environment that affect its operation, which means that information must be

processed and interpreted quickly and efficiently. Section 2 discusses the type o f

control strategies that may be employed. Section 3 discusses the various approaches

to path planning and section 4 illustrates different Navigation systems.

2. Control Strategies

A number of strategies exist concerning the ways in which data is exchanged

between modules and the ways in which control is applied among the various

components o f a mobile robot navigation system. The mobile robot system has a

number o f tasks with which it must deal with such as path planning, position

estimation, landmark recognition, obstacle avoidance and possibly world model map

building in some systems. The method o f interaction between these components in

the system gives rise to a number o f possible implementations being chosen. There

are three basic approaches that can be seen in systems to date:

• Monolithic

• Hierarchical

• Distributed

29

Each o f these is discussed in the following section.

2.1 Monolithic Control Systems

A monolithic control system is simplistic in outline. The planning and navigation is

conducted at a single representational level. There is no feedback after the initial path

is generated. This means that if a path leads down an alley that is completely blocked

(eg. box canyon), an alternative path will not be found. This is because real-time

information about the environment is not entered into the map used by the planner

and as such, there is no point in calling the planner a second time - it would return

the original solution again. A local obstacle avoidance routine is provided to deal

with dynamic situations.

This system is not suitable for a commercial robotic system. It is far too simplistic

and is not capable o f dealing with the demands o f a dynamically changing

environment because of the lack o f feedback to the path generator and the over

simplified structure. The main advantage o f this control strategy is that it can respond

very quickly to changes in the environment that dont necessitate re-planning, such as

minor obstacles that the navigator can deal with. However it would only be

considered for systems that are constrained by limited computing power and require

minimum autonomy.

2.2 Hierarchical Control Systems

Systems that are designed in a hierarchical manner exhibit a clear subdivision o f

functionality. This functionality is relegated to distinct program modules which

communicate with each other in a defined manner. Hierarchical control systems may

be very different in structural implementation but the clear segmentation o f control is

always apparent These systems are easier to develop, debug and implement than

distributed systems and can therefore be built more rapidly while still maintaining a

high degree o f functionality. A typical characteristic of the hierarchical control

structure is that for every reduction in the level o f the hierarchy, there is a

corresponding reduction in the controllers’ intelligence and scope, along with an

increase in the resolution o f the controllers’ scope.

30

2.3 Distributed Control Systems

Distributed control systems operate in an asynchronous manner. The functional

modules co-operate with each other via global data structures. These systems lend

themselves extremely well to multiprocessing. One major advantage o f this type o f

control is that if its properly designed, adding a new component into the system is

possible with the minimum of effort. This leads to greater longevity for properly

developed distributed systems. Real-time processing demands are more likely to be

satisfied because of the possibility o f transporting it to parallel processors. However

it is difficult to develop a framework for these systems in which the individual

components can execute and communicate effectively. Debugging can also be time

consuming when trying to trace the execution o f asynchronous processes.

2.4 Assessment of Control Systems

For all but the most basic mobile robot systems, a distributed or hierarchical system

should be chosen. The lack of flexibility in monolithic control systems renders them

incapable of dealing with some o f the major problems that manifest themselves in

autonomous systems. The distributed and hierarchical control systems are more

suitable for systems that require responses to situations typical o f dynamic

environments, such as paths being blocked by static or dynamic obstacles that are not

known by the global map. Real time responses can be dealt with interactively on a

local level while global plans can be dealt with a priori, using a map of the

environment which contains information about the environment beyond the range of

the sensors.

Whether a system should be hierarchical or distributed is somewhat dependent on the

application in question. Hierarchical control systems are easier to develop, debug and

implement than distributed systems. A distributed system can be harder to develop

and tracing through the instructions o f an asynchronous operation can be difficult. In

essence a hierarchical system can be built more rapidly while still having a high

degree o f functionality.

31

The distributed method if properly designed, is in theory easier to extend because

individual components can be integrated into the original system with a minimum of

effort and disturbance. Therefore a well designed distributed system will have greater

longevity owing to the possibility o f extensions being incorporated easily. Another

advantage o f distributed systems is that they are more easily converted to work on

parallel processors which means that real time demands are more likely to be

satisfied.

This effectively means that i f rapid development o f a system and high functional

capabilities are required with no extensions or additions being expected, a

hierarchical control system is to be preferred. I f high functionality with the potential

for growth is required, then a distributed system is preferable. Systems may

encompass both distributed and hierarchical control as they are not mutually

exclusive. The hierarchical structure may be applied to the global planner where it

may be broken into the mission planner, navigator and pilot with the lower level

(pilot) being distributed into various components all running asynchronously.

2.5 Subsumption Architecture

The traditional approach to robot programming handles data in a manner known as

sensor fusion which is very computationally intensive. This method involves

decomposing a robot program into an ordered sequence o f functional components.

World modelling and planning are broken down into their individual parts. Data is

collected from the sensors, then noise and conflicts in the data are resolved in such a

manner that a consistent model o f the world can be constructed. The world model

must include geometric details o f all objects in the robot’s world.

Given a goal which is usually provided by the programmer, the robot uses its model

o f the world to plan a series o f actions that will achieve the goal. This plan is finally

formulated and executed by sending appropriate commands to the actuators. This

plan may be optimised before any motions are made by the robot. The robot will not

go down a dead end and then have to backtrack because it will have the global

32

information necessary to take the correct path. However the drawback o f this method

is the large amount o f data storage and the intense computation required which leads

to problems in dynamic environments owing to the time required for the path

planning process.

Professor Rodney Brooks and the Mobile Robot Group at the MIT Artificial

Intelligence Laboratory[13] developed a new approach to the architectural structure

o f robots called subsumption architecture. This method does not resort to sensor

fusion but rather utilises the notion o f behaviour fusion. It provides a way of

combining distributed real-time control with sensor-triggered behaviours. Instead o f

analysing the validity o f the data obtained from a sensor, the sensor initiates a

behaviour. Behaviours are layers o f control systems that all run in parallel whenever

appropriate sensors fire. If there is conflicting data then it is sent to the “conflicting

behaviours” problem solver which deals with these type o f issues. Fusion is then

performed at the output o f the behaviours rather than at the output o f the sensors.

Behaviours do not call other behaviours as subroutines as they are all running in

parallel. However a lower-level behaviour may be suppressed or inhibited by a

higher-level behaviour. When the higher-level behaviour is not being triggered by a

sensor condition they will stop suppressing the lower-level behaviour and the lower-

level behaviour resumes control. Thus sensors cause behaviours to interject

themselves at all levels and there is as such no global world mode. A behaviour is

run as a process which may be thought o f as a piece o f code that runs simultaneously

with other processes or programs.

Processes are run in parallel, but on a processor that is inherently a sequential

machine they must be multitasked. This means that each process gets the processor

for a small amount o f time before the next process is then given control. Brooks used

around-robin schedular to switch between processes. G. Stoney et al[14], designed

an Autonomous Mobile Robot control system using this architecture. The robot was

able to wander around a room and avoid obstacles and slowly moving humans.

33

3. Path Planning

The task of automatic path planning introduces problems that are central to mobile

robot applications. In this context, given the mobile robot’s initial and final goal

locations and an obstacle map, the problem is to find the appropriate path from the

initial position to the goal position such that the mobile robot can smoothly travel

through the area without colliding with the obstacles.

Unlike manipulators that generally work in a fixed environment performing a set

number o f movements, when planning for mobile robots, it is more important to

develop a negotiable path quickly than to develop an “optimal” path, which is usually

a costly operation. A mobile robot may be following some previously computed path

when it finds it must modify the path to bypass some obstacle. Path planning for a

robot is therefore a continuous on-line process rather than a single off-line process.

Often attempts in planning algorithms are made to optimise the path in terms of

Euclidean distance. The time saved in travelling a shortest distance path may not be

justified by the long period of time required in planning the path and no efficient

algorithms currently exist for finding optimal paths among three-dimensional

obstacles. A compromise is to find a path that is not optimal in absolute Euclidean

distance but is optimal (shortest) using the primitive path segments. Therefore the

resultant path will not deviate significantly from the optimal path, but the time saved

justifies the simplification. The hierarchical search at different levels allows a search

at the level sufficient to find a solution path and therefore avoids excess details at the

lower levels.

A number of representations are commonly used to represent the environment for the

purpose o f path planning. These are:

• Pure free-space methods

• Configuration Space (Vertex graphs)

34

• Hybrid free space vertex graphs

• Potential fields

• Regular grid

• Quadtree

3.1 Pure free space methods

Using this strategy the space between the obstacles is represented as opposed to the

obstacles themselves. There are two main methods that fall under this category:

These are Voronoi diagrams and generalised cylinders.

3.1.1 Voronoi Diagrams

A voronoi diagram is produced by generating a set o f polygons, each representing an

enclosed region in which all contained points are closer to one particular point in a

given point set than to any other point in the set. The plane is partitioned into a net o f

non-overlapping convex polygons. The free space representation resulting from this

diagram represents space as a series o f connected straight line segments that typically

split the distance between the closest pair o f line segments o f surrounding obstacles.

This strategy is unsuitable when attempting to use it for a dynamic environment as

moving obstacles cannot be dealt with in an efficient manner. All information about

the obstacles is discarded i.e. descriptions o f the obstacles are not represented by the

graph and therefore this information is not available to high level processes.

3.1.2 Generalised Cones

This approach was developed by Brooks[15] where free space is subdivided into

generalised cones or freeways. Figure 1 shows an environment broken down into

generalised cones. The axes o f these generalised cones determine the natural

“freeways” for moving an object through the space. The path planning problem is

solved by searching through the connectivity graph where each node corresponds to

the intersection of two generalised cone axes, and each link corresponds to the cone

axis. The generalised cones are constructed such that the object translation and

rotation are permitted along the cone axes. The paths found tend to generously avoid

the obstacles rather than barely avoid them.

35

Figure 1: Generalised Cones

Chatila[16] uses convex polygons to represent the free space. This leads to a

connectivity graph where each node is a convex polygon and each link corresponds

to the common edge segments shared by adjacent polygons. Within each polygon,

any two points can be linked with a straight line segment without intersecting the

polygon boundary. An example is shown in figure 2.

Hubert A. Vasseur et al [17] used a similar method for the Navigation o f a mobile

robot within a mapped environment. The environment was decomposed into convex

polygonal cells. The paths through these cells consisted o f tangents and arcs only.

In [18], the authors discuss the importance o f planning a smooth path (a path that has

no curvature discontinuity between one tangent and the next) enabling robots to have

smooth flowing movement rather than the stop-tum and move strategy. The problem

with generalised cones is that movement is supposed to occur along the spines which

allows the path optimisation algorithm very little room to make smooth turns. They

36

propose primary convex regions (per) which are unobstructed convex regions where

each boundary covers some portion of an obstacle wall.

This method has its advantages over the others when path smoothing. Free space is

decomposed into overlapping pcrs. The overlapped regions are also convex which is

a desirable property when planning the curves that traverse them. When the pcrs are

found, a connectivity graph is built. Special points within the overlapped regions

must be chosen as candidate turning comers for use with the cubic spirals. The nodes

o f the connectivity graph connect the line segments within the pcrs. An end point o f

such a line segment is either a candidate comer inside an overlap with another per or

the initial or goal position o f the robot. Then a search algorithm e.g. A* can be used

to find the path. The process is illustrated in Fig 3.

This type o f representation however, suffers from the same problems as the Voronoi

diagram.

Steps involved in path planning. (1) Initial and goal position is given. (2)
Identify PCRs. (3) Identify candidate turning points in overlap regions (only
those on the solution path are shown). (4) Find least cost path in connectivity
graph, consistent with maximum curvature constraint. (5) Create smooth
path by inserting cubic spirals. (6) Identify subgoals as start/end points of
turns of the path.

Figure 3

37

3.1.3 Mixed representation

Brooks[19] developed an extension to the generalised cones in an attempt to counter

some of the problems that occur in the other method. A mixed representation is used,

where free space is decomposed into non-overlapping geometric-shaped primitives

that consist o f two types convex polygons and generalised cones. The algorithm

attempts to use the best of both representations as generalised cones provide a good

means for representing the narrow free space between two neighbouring obstacles.

However, they are awkward for representing a large open space because the cone

axis artificially constrains the trajectory o f the path inside the cone. On the other

hand a convex polygon is a good choice for representing large open spaces, but not

as a compact representation for narrow regions.

By providing the set o f polygonal obstacles in space, the algorithm first decomposes

concave obstacles into connecting convex obstacles in order to have a uniform

obstacle representation, which facilitates later processing. The neighbourhood

relations among these convex obstacles are identified and then used to locate critical

“channels” and “passage regions” in the free space, and to localise the influence o f

obstacles on free space description. The free space is then decomposed into non­

overlapping geometric shaped primitives where channels connect passage regions.

The channels are similar to the generalised cones presented in Brooks[15], The

passage regions are represented as convex polygons. Based on this mixed

representation a path planning algorithm can plan trajectories inside the channels and

passage regions. The perimeter of the channels and passage regions associated with

the planned path provides the boundaries o f the path that the mobile robot must stay

within during path execution.

The idea behind constructing the connectivity graph is to have an abstract graph that

facilitates the construction of channels and passage regions. Essentially the

connectivity graph identifies areas to construct channels and passage regions and it

provides a high level connectivity representation o f the free space. It is a compact

representation and reduces the computation o f free space representation.

38

At each link o f the connectivity graph a generalised cone is constructed to represent a

channel, and at each node a convex polygon is constructed to describe the passage

region.

The A* search algorithm was used to find the minimum cost path. The cost function

used is the distance between two nodes.

3.2 Configuration Space (Vertex Graphs)

A feature o f vertex graphs is that the space between the obstacles is not explicitly

represented. Lozano-Perez’s configuration space approach[20] is an example that

illustrates this category o f representation. The vertices o f an obstacle are first

modelled by a polygon. They are then grown by a distance equal to the radius o f a

circle enclosing the robot plus a small safety margin. The idea is to shrink the robot

into a single reference point, while at the same time expanding the obstacle regions

according to the object shape. The minimum distance path is found by searching the

visibility graph, which indicates all collision-free, straight-line paths among the

expanded polygonal obstacle vertices.

Moravec[21] used a representation similar to this. Obstacles were modelled as circles

rather than polygons and paths were constructed as a series o f tangents to the circular

obstacles. With this representation, planning for the optimal path is more

computationally intensive than the previous strategy. Therefore he developed a sub-

optimal algorithm that approximated the shortest path and produced the optimal

solution most o f the time.

Wang[68] considered the planning problem in configuration space and assumed the

robot was a point that moved in a two dimensional environment where the obstacles

were enlarged by half the maximum size o f the robot. The environment consisted

only o f convex polygons represented by line segments. Moving obstacles were dealt

with but were assumed to move in a fixed direction at a constant speed which was

known a priori to the robot. An accessibility graph which is a generalisation o f the

39

visibility graph was used to plan the robots path. The accessibility graph becomes a

visibility graph if all moving obstacles in the environment move with zero speed i.e.

when all obstacles are static.

The robot need not be circular and it is not required that it must be modelled by a

circle, however most systems do this in order to simplify the computations.

This method is suitable for high level planning because the robot can be treated as a

point and therefore consideration to the space occupied by the robot is not necessary.

The major disadvantage o f the configuration space approach however, is that it is

difficult to deal with object rotation, and the minimum distance path is very close to

the actual obstacles, which means that the robot is frequently in close proximity with

obstacles and constantly changing direction in tandem with the obstacle boundaries

leading to slower operation in the environment.

3.3 Hybrid free space and vertex graphs

Giralt[22] and Crowley[23] represented both free space and the obstacles by vertex

graphs thus combining aspects from free space and vertex graphs. Free space is

divided into convex regions referred to as meadows. A characteristic o f a convex

region is that any point can be reached from another point within the same convex

region without traversing a border i.e. colliding with an object. Therefore path

planning is reduced to finding a sequence o f line segments traversing the meadows.

This is easily found from a connectivity graph.

3.4 Potential Fields

This representation consists of a map where obstacles are converted into peaks and

clear paths into valleys. The robot moves in a field of forces. The destination is an

attractive pole for the end-effector, and obstacles are repulsive surfaces for the robot

where the robots’ initial position is placed at a higher elevation than its destination so

that it is attracted to the destination and repulsed from any obstacles. Therefore the

algorithm views the robot as a ball rolling towards a hole. A collision-free path, if

attainable, is found by linking the absolute minima o f the potential.

40

This technique is useful for representing uncertainty because uncertainty may be

represented by changing the slope o f the obstacle peaks. For example, high

confidence in an obstacles whereabouts will result in very steep cliffs, while

uncertain obstacles will result in slowly rising slopes. The algorithm does not attempt

to find an optimal solution and is subject to problems o f local potential energy

minima which can occur resulting in the robot becoming stable before it ever reaches

its goal. This results in extensions being added to ensure the robot does not get

trapped in box canyons.

In [24], the Virtual Force Field (VFF) method was developed and implemented on a

mobile robot (CARMEL). This method uses a 2-D Cartesian grid for obstacle

representation. Every cell (i,j) in the grid holds a certainty value c ̂that represents the

confidence o f the algorithm in the existence o f an obstacle at that location. The c;j

values are incremented when an ultrasonic sensor indicates the presence o f an

obstacle at that location (cell). As the vehicle moves, a window of 33x33 cells is

taken momentarily to belong to the active region with the robot in the centre. Each

cell (10cm x 10cm) in this region is an active cell. The active cell exerts a virtual

repulsive force F;j toward the robot. The magnitude o f this force is given by:

n = 2

All virtual repulsive forces add up to yield the resultant repulsive force Fr, i.e.

d " (i , j) \ _ d (i , j) d (i , j) where:

Xo,yo

W

Repulsive force constant.

Distance between active cell (i,j) and the robot.

Certainty value of active cell (i,j).

Width o f mobile the robot.

Robots present co-ordinates.

Co-ordinates o f active cell (i,j).

41

Simultaneously, a virtual attractive force F t is applied to the vehicle, pulling it toward

the target.

Ft = Fct x t x o x a + y t y o a
d, d,

where:

Fct is the target (attraction) force constant; d, is the distance between the target and

the robot; and Xi,y; are the target co-ordinates. The summation o f Fr and F t yields the

resultant force vector R, where R = Fr+ Ft. An example is illustrated in Figure 4,

where the robot is in the vicinity o f two obstacles. The certainty values in the cells all

contribute to the total repulsive force which causes the robot to be pushed away from

the obstacles but the attraction force to the target ensures it continues towards the

target.

Figure 4: The Virtual Force Field concept.

Figure 5: Robot fails to pass among densely spaced obstacles.

Obstacle 1

Obstacle 2
j-*

There were four problems inherent in the use o f this method when tested on their

robot:

1. Trap situations due to local minima. This occurs when the robot runs into a dead

end, for example, a box canyon.

2. No passage between closely spaced obstacles. This is illustrated in Figure 5 where

the repulsive forces from both obstacles combine to force the robot away from the

gap between the obstacles.

3. Oscillations in narrow passages. This occurs when both walls are trying to push

the robot away from them.

4. In the presence o f obstacles the robot’s motion is oscillatory.

As such, these authors recommended that alternative measures be taken for

navigation that did not exhibit these pitfalls.

Work on high level collision-free path planning based on the potential field concept

has been investigated by C. Buckley[25], Such strategies taken for robot collision

avoidance attempt to use it as a component in the higher levels o f control o f the

hierarchical robot control systems where it is treated as a planning problem with

research in this area being focused on the development o f collision free path planning

43

algorithms. These algorithms aim at providing the low level control with a path that

will enable the robot to accomplish its assigned task free o f any risk o f collision.

Krogh and Thorpe[26] suggest a generalised potential fie ld method that combines

global and local planning.

However, the potential fields are more suitable for use in the lower levels o f a multi

level representation where they can prove useful in providing the robot with a set o f

capabilities needed for local or short range navigation such as goal seeking, obstacle

avoidance and following paths. It is limited in use for complex situations due to the

occurrence o f local minima and the high computational cost that results in detecting

and avoiding such pitfalls.

3.5 Regular Grids

This representation consists o f a two dimensional cartesian grid that represents the

environment. Mitchell et al[27] developed a system based on this approach where

each pixel represented a certain area and connectivity was maintained through eight

arcs to each of the pixels nearest neighbours. A path from source to destination then

consisted o f a series of nodes connected by arcs. The problem with this

representation is that the arcs restrict movement to one o f eight directions when

traversing from one node to another. This is known as digitisation bias and would

result in paths that were excessively long and thus non optimal.

Both four and eight neighbour connectivity has been used by Thorpe[28] and a path

relaxation algorithm has been developed for overcoming the digitisation bias

discussed above.

Parodi [29] uses a similar representation to Mitchell but the global planner accepts a

rather large number of cost criteria such as energy consumption, travel time, potential

hazard.

This method has the disadvantage of being computationally intensive and would

require very powerful processors for practical applications.

44

3.6 Quadtree

Research at the University o f Maryland[30] resulted in a representation suitable for

planning purposes. Space is recursively decomposed into 2' by 21 areas. A binary

value o f one in a block represents the presence of an obstacle in that block and 0

represents free space (see example Fig 6). Decomposition stops before the lowest

level o f resolution is encountered. A path generated from a quadtree is a sequence o f

blocks through which it is possible for the robot to move. The detailed motion within

any single block is not determined at this level; a default assumption of straight line

motion through the block is assumed. Although this will not ordinarily be an optimal

path, it will be negotiable. In developing the search only the horizontal and vertical

neighbours o f any block are considered for building extensions o f paths as the use o f

diagonal neighbours which share only single points with the current node could cause

the clipping o f obstacles during path traversal. This method shares the problem of

digitisation bias with regular grids.

17 18 21 ro ro 9
G

1019 20 23 24

7
1

8 11 12

13
s

14
3

15 16

(a)

Figure 6: Quadtree representation of an Environment

The quadtree representation offers a compromise between the regular grid

representation (which is straightforward to construct but then computationally costly

to analyse) and a free space region representation (e.g. Brooks[15]) which is more

costly to construct, but on the other hand more efficient to analyse. The main

45

disadvantages o f this strategy is the loss o f uncertainty information due to a binary

encoding o f occupancy and the varying resolution for path construction. No

information on the nature o f the obstacles is contained in this representation.

This multi-resolution representation of the robots immediate environment was used

in [30] where the Hough transform [31] located landmarks o f known image

orientation and scale for position estimation. The A* search algorithm was

implemented.

3.7 Path planning using resistive grids (Hardware approach)

An interesting alternative was presented by Tarassenko et al[32], where the robot was

assumed to operate in a structured indoor environment. The robot’s working

environment could change rapidly as people moved around in the workspace so a

neural network was used to detect the obstacles and they were mapped into a

resistive grid o f rectangular or hexagonal cells. The grid is composed o f MOS

transistors and implemented in VLSI (Very Large Scale Integration) technology. The

robot’s working environment is also mapped into the grid and planning is

accomplished by connecting the start position to the power rails and grounding the

goal position. Each transistor can be programmed to be open (R„) or closed (Rq) by a

ram cell connected to its gate.

As any obstacle is represented by open transistors, most o f the current will follow the

lowest resistance path to ground avoiding the obstacles. The path from start to goal

can be found from local voltage measurements. For each node, the next node is found

by measuring the voltage drop AV between that node and each o f its nearest

neighbours (six measurements for a hexagonal grid) and taking the node with the

maximum voltage drop. Any point on the grid may represent the robots current

position or the goal, so it must be possible to connect every node in the grid to the

power rails or to ground. This approach does not fall prey to the problem o f local

minima and can be very fast. It can alternatively be implemented in a-S i technology.

46

Another implementation is described by Alexandre M. Parodi[29]. The planner is

designed for an autonomous land vehicle and is capable o f dealing with complex

problems where a specialised processor is designed to deal with the graph search.

3.8 3-D Path Planning

In [33], a hierarchical-orthogonal space approach was proposed for 3-D collision free

path planning. Using this method, the path is obtained by planning in the 3-

orthogonal 2-D projections o f a 3-D environment. Each o f the three orthogonal 2-D

subspaces are searched for sub-optimal paths consisting o f primitive path segments.

Two dimensional path searching is easy using the quad-tree representation. Thus, the

idea was extended for use in the 3-D path planner where a modified quadtree

representation was built for each one o f the orthogonal subspaces.

Octrees

Octrees are used in many 3-D representation problems because they provide a

compact data structure, allowing rapid access to information, and implement efficient

data manipulation algorithms. In [34], an algorithm was presented to construct the

octree representation of a 3-D object from silhouette images o f the object. The

execution time was found to be linear in the number o f nodes in the octree.

4. Navigation

The purpose o f navigation is to plan a path to a specified destination and then to

execute this plan, modifying it as necessary to avoid unexpected obstacles. Path

planning may be broken down into a global planning problem and a local planning

problem. Global path planning requires a pre-leamed model o f the environment

which may be a simplified description o f the real world. Local path planning

executes the steps in the global plan, correcting for changes in the world that are

encountered due to static or dynamic obstacles, during the plan execution. While

global navigation operates on a pre-stored model, local navigation requires a model

that reflects the current state o f the environment as the plan is being executed.

47

Many early works have concerned themselves with locating paths in known

environments or among unknown static obstacles. Obstacles are however, not always

static and while some methods deal with path planning among obstacles that move

along known trajectories[68], such methods may be unsuitable in real situations

where an ALV (Autonomous Land Vechicle) may face obstacles such as human

beings. If a flexible navigation system is to be developed such problems must be

considered.

A navigation system must be dynamic because each action the vehicle performs in a

real time dynamic environment will provide new information which may in turn

require modifications to its actions. Collision-free path planning is one o f the basic

requirements in navigation, For example, if a path has been planned at the global

level, local modifications to avoid obstacles may be processed at the local path

planning level by the pilot. However, if the path is completely blocked, the global

path may have to be replanned. In this case, the blockade has to be added to the map,

and the action planner may request a new global plan[29]. The replanning process

must be fast enough to eliminate long idle periods for the vehicle. The complete

autonomous vehicle capabilities must also include situation assessment, perception,

map making, communication, etc.

Primitive systems placed huge demands on the higher levels o f planning where the

function o f low level control was reduced simply to the execution o f a limited set o f

operations that served to maintain the robot along a specified path. The result was

that the robot’s interaction with its environment became dependent on the time cycle

o f high level control, which was generally too slow to meet the real time demands o f

a typical robot. This o f course limited the capabilities o f the robot when fast, precise

and highly interactive operations were needed when used in a cluttered and evolving

environment.

As such, later proposals suggested that the capability o f low level control should be

increased to cater for real-time obstacle avoidance. Collision avoidance at the local

level does not attempt to replace high level planning problems. The purpose is to

48

utilise low level control capabilities in performing real-time operations. However the

level o f intelligence still remains much less than that o f high level control.

Computationally efficient methods for real time obstacle avoidance are desirable and

serve to provide the lower level o f control with the necessary real time capabilities.

The high level planning problem is distributed between different levels o f control,

allowing efficient real-time robot operations in a complex environment. In [35], such

an attempt is made to try to extend the function o f low level control and to carry out

more complex operations by coupling environment sensing feedback with the lowest

level o f control.

The global path planning is based on a pre-leamed "network of places" (see Fig 7).

The network of places is learned in a special "active learning mode" in which the

robot explores its environment. Each place in the network is connected to a set o f

adjacent places by "legal highways".

Encode

<|t—

Sensor Model

Global
Model

T
f Network of \
\ places

I I I

I I I

I I I

(Sensor N)

Encode

i -3 E—

Match

Learning

Update

Composite
Local Model

Motion Commands

Plan
Execution

T
Path

Planning H a n ^)

Figure 7: Framework for an Intelligent Navigation System

49

Global navigation is viewed as the process o f choosing a set o f "legal highways"

which will carry the robot from its current location to the specified destination. A

legal highway consists o f a straight line path and local navigation is accomplished by

means of a finite state process. Traversing each legal highway is the job o f the

navigator. Each path is tested for blocking obstacles using the raw sensor data, the

Sensor Model and the Composite Local Model. I f an obstacle is detected, a recursive

obstacle avoidance procedure plans a new sequence o f straight line paths to the next

local goal. The recursive obstacle avoidance procedure is based on the current

contents o f the Composite Local Model.

An example of an autonomous mobile robot that is designed for use in structured or

office environments as opposed to unstructured natural environments is discussed in

[36]. It uses two sensors, an optical rangefinder and odometry. It is assumed that an

off-line path planner provides the vehicle with a series o f collision-free manoeuvres,

consisting o f line and arc segments, to move the vehicle from a current to a desired

position.

Figure 8: Block diagram of the low-level control system

50

On board the vehicle (see Fig 8), the line and arc segment specifications are sent to

control software consisting of low-level trajectory generation and closed loop motion

control. The trajectory generator takes each segment specification and generates a

reference vector at each control update cycle. The cart controller controls the front

steering angle and drive speed using conventional feedback compensation to

minimise the errors between the reference and measured states.

Connell [37] proposed a scheme for navigation that did not rely on a detailed world

map or a precise inertial guidance system. The approach is based on a multiple-agent

control system in which there are a variety o f local navigation behaviours that run in

parallel. These behaviours arbitrate among themselves to select the most applicable

action in any given situation.

The control system used was based on the Subsumption Architecture [13]. The

purpose of the robot was to wander around the laboratory and collect soda cans. The

visual localisation was achieved using a laser light-striper to find the cans. When the

robot travelled along a path it recorded the distance and the turn so that it could

retrace the same path on its return journey. This implementation was rather limited

for practical applications.

Another method o f navigation was presented in [38], o f an Intelligent Mobile

Autonomous System. A hierarchical control structure is used in which all motion

planning is distributed between three levels o f decision making as shown in Fig 9.

World representation is in 2-D with obstacles represented as polygons. A subset o f

the Cartographer performs updating o f the Navigator’s 2-D map based on range data

received from the sensor. The A* search algorithm was used.

51

Figure 9: Conceptual structure of Intelligent Mobile Autonomous System

The Cartographer is the central data-base and manages all passing and updating o f

information to each subsystem. The planner is the highest level in the control

hierarchy which performs path planning on a global scale. The planner produces a

list o f subgoals which become goals for the Navigator. The Navigator receives these

subgoals and must find the optimum path in an obstacle strewn environment in which

the “map” of the world may be completely known, partially known, or completely

unknown. The output o f the Navigator is a list o f nodes between the milestones

which becomes the input o f the pilot. The pilot is responsible for calculating real

motion trajectories between the path nodes generated by the Navigator while

performing low level collision and obstacle avoidance. Their approach utilised a

knowledge-based controller with constant feedback from a camera system.

A vision system for autonomous ground navigation was presented by the Computer

Vision Laboratory at the University o f Maryland[30]. They employ a hierarchical

control system where they segment the visual navigation task into three levels, called

long range, intermediate range and short range navigation. Decision making

capabilities among levels generally flows from levels o f greater abstraction to levels

52

of lesser abstraction while status information concerning the achievement o f these

goals flows in the opposite direction.

At the long range a plan is generated, identifying the start location, the goal, and a

low resolution path for moving from the start to the goal. This path is chosen based

on basic considerations of the terrain to be crossed and the capabilities o f the robot.

In order to maintain the position, landmarks are identified and by triangulation the

current position is updated. At the intermediate range, generally safe directions of

travel are examined. This involves assessing the nature o f the terrain in the robots

immediate visual environment and identifying those portions o f that environment

through which it is feasible to move. These navigable portions o f the environment

which correspond to segments o f road in the vehicle's field o f view are referred to as

corridors o f free space. With short range navigation any decisions made are based on

a detailed topographic analysis o f the immediate environment, and enables the robot

to determine safe positions for travelling, and to navigate around obstacles in the

immediate environment.

In [39] a new collision avoidance scheme was proposed for autonomous land vehicle

navigation in indoor corridors. The global path for normal ALV navigation in a

corridor was assumed to be known in advance. As the corridor environment could

change due to moving obstacles a local navigation path was recalculated in every

navigation cycle in order to conduct indoor collision free navigation. A three­

wheeled vehicle was used and the scheme dealt with static obstacles with no a priori

position information as well as moving obstacles with unknown trajectories.

Based on the predicted positions of obstacles, a local collision-free path was

computed by the use of a modified version of the least-mean-square-error (LMSE)

classifier used in pattern recognition. Wall and obstacle boundaries were sampled as

a set o f 2D co-ordinates, which were then viewed as feature points to the ALV

location to reflect the locality o f path planning. The trajectory o f each obstacle was

predicted by a real-time LMSE estimation method. The manoeuvring board

technique used for nautical navigation was employed to determine the speed of the

53

ALV for each navigation cycle. Smooth collision-free paths were found in the

simulation results.

Steele and Starr [40] decomposed the navigation process o f a robot into two

supporting processes: (1) using a graph search method to plan a path for avoiding all

known static obstacles, and (2) using a field potential method to control the motion

o f the robot when unexpected obstacles were encountered.

5. Conclusions

Generally for the design of an Intelligent Autonomous System, a global planner will

have a map available to it for the purpose o f generating a global plan. The manner in

which the data is made available to the path planner will depend on a number of

considerations. These will take into account the pros and cons specific to the

representation (e.g. memory requirements, time constraints, extendibility to moving

obstacles). Control will be distributed using the hierarchical (more common) or the

distributed approach. The only commonality between the hierarchical representations

discussed is the clear flow of control that may be observed as one descends the

hierarchy. At the top level, high intelligence and low resolution of the environment

gives way to low intelligence and high resolution at the bottom level o f the hierarchy.

54

Chapter 4

Position Estimation and Data acquisition

1. Introduction

This chapter first discusses the mechanical configurations that are available in robotic

vehicles (section 2). This is an important issue because some configurations will

impose limits on the robot’s capabilities that others will not. After considering how

the vehicle will move it seems logical to discuss how it can perceive the environment

through the use o f one or more different types o f sensors. Hence section 3 discusses

various sensor types including their drawbacks. I f a robot is to be o f any use it must

be able to maintain an accurate estimate of its current position within the

environment. Position estimation is discussed in section 4 and following that, section

5 provides an insight into the various techniques used in map building. Map building

requires the availability o f sensor data and is used in autonomous vehicles to provide

information about the current environment to facilitate position estimation and

obstacle avoidance.

2. Mechanical Configurations

The mechanical configuration of the most common wheeled vehicles falls into one of

two categories, steered-wheeled vehicles or differential-drive vehicles. The following

sections discuss each o f these along with a novel development using the Ilonator

wheel.

2.1 Steered Wheeled Configuration

The configuration for the steered wheel type typically consists o f a single-steered

front wheel with a fixed rear axle. The most common example is the tricycle

configuration that’s used in many robots. However, four wheeled vehicles can also

be considered to be within this category i f the two steered wheels are approximated

by a single wheel at the centre. The steered wheel vehicles are incapable o f turning

on a point due to the physical limits associated with the maximum steering angle.

55

This may cause the vehicle to have a large turning radius and thus make the task of

manoeuvring more difficult in a cluttered environment.

2.2 Differential Drive Configuration

The most common example of a differentially driven vehicle is the military tank, in

which differences between the speed o f the two tracked wheels determines or

controls the steering. Differential drive vehicles have the advantage over the steered

wheeled configurations of possessing a zero turning radius.

2.3 Omnidirectional vehicles

A disadvantage common to both o f these vehicle configurations is that they do not

permit arbitrary rigid body trajectories. For example, neither vehicle can move

parallel to its fixed axle. This is not true o f other mechanical configurations. The

development o f the Ilonator wheel has allowed the construction o f a further category

of vehicle. The wheel itself consists o f a hub about which are mounted twelve rollers,

each making a 45° angle to the wheel orientation. This development provides the

wheel with the capabilities to move in any direction and not just tangential to the

wheel direction, without slipping (see fig 1). A very detailed discussion o f the

kinematics o f steered wheeled, differential drive, omnidirectional, and balled

wheeled vehicles can be found in a paper by Muir and Neuman[41].

rollers

ro lle r^
axis

wheel axis

Figure 1: Omnidirectional Wheel

56

3. Sensors for Perception of the Environment

The range o f applications for robotic devices both in industrial and research

applications is very extensive. Robotic systems with high levels o f autonomy that are

capable o f working in unstructured environments with little a priori information can

be applied to many areas o f industry. I f a robot is to manoeuvre through its

environment and execute any sort o f reasonably intelligent task, it should be able to

navigate through its world based on sensory information. In contrast with stationary

arm robots that are fixed to a global co-ordinate frame, a mobile robot may have little

or no knowledge about its environment and due to errors that accumulate when using

odometry for position estimation (shaft encoders are subject to integral error owing

to wheel slippage and the finite resolution inherent in its use), sensing the

environment is necessary.

To achieve this degree of independence, the robot system must acquire an

understanding of its surroundings through manipulating a rich model o f its

environment. A variety of sensors are available that allow robots to interact with the

real world as they provide mechanisms for which meaningful information can be

extracted from the data provided. Systems with little or no sensing capability are

usually limited to fixed operations in highly structured working areas and cannot

provide any substantial degree of autonomy or adaptability.

There are many methods available for obtaining range data. Jarvis [42] discusses

among others, contrived lighting techniques (including striped lighting and grid

coding), depth from occlusion, texture gradient and focusing, some methods range

from stereo or motion, and triangulation-based and time-of-flight rangefinders.

O f these, contrived lighting techniques are not generally useful to systems operating

in unstructured environments, while stereo vision systems and active rangefmding

devices prove useful within unstructured environments. Cameras however, require

computationally intensive processing which can prohibit their use. Triangulation-

based rangefinders suffer from “gaps” in the data due to obstructions. In the time-of-

57

flight category, the main two representatives are ultrasonic and laser rangefinders.

Sonar systems have lower resolution but are much less expensive than laser-based

sensors. Phase-shift-based laser rangefinders are subject to a 2n uncertainty. Both

sensors suffer from absorption and specular reflection problems, but measurement

precision is much higher with laser rangefinders.

Sensors most commonly used for perception of the environment are bumper

switches, shaft encoders, sonar transducers, photocells and infrared proximity

sensors, cameras, infrared beacons and laser range finders.

3.1 Sonar Sensors

Ultrasonic range sensing has attracted attention in the robotics community because of

its simplicity in construction and low cost. They also provide an inexpensive means

o f obtaining three dimensional information about the surrounding environment.

While they are cheap, flexible and robust, they do however have their drawbacks as

is discussed in detail within this section.

3.1.1 Construction

An ultrasonic range sensor is composed o f a capacative transducer consisting o f a

very thin metalized diaphragm supported over a specially machined backplate. The

simplest arrangement causes a short burst o f constant-frequency signal to be emitted

from the transducer. The transducer then switches to receive mode and waits for the

return echo. The distance to an object is then found by measuring the time o f flight

between a transmitted pulse and a returned echo and multiplying by the speed of

sound. The distance measure, however, is not necessarily the distance in the direction

the sensor is pointing, since the width o f the beam may cause an echo from one edge

to be returned before the echo from the centreline.

Other more sophisticated methods can yield equivalent narrow pulse effects by using

wide pulse and wide bandwidth techniques which have the advantage o f additional

signal energy. Ultrasonic energy, particularly at very high frequencies is quickly

58

attenuated in air. Consequently many practical macroscopic ranging systems operate

in the frequency range below about 250 kHz.

3.1.2 Characteristic Problems with Sonar.

Ultrasonic sensors have their limitations. Due to the expanding signal beam of the

sensor, determining the direction o f the detected object poses problems because the

acoustic beam expansion o f the transmitted signal allows return echoes to be

obtained from any angle inside the cone of propagation. The direction ambiguity can

be reduced to some extent by increasing the operating frequency or diameter o f the

sensor, but some ambiguity will still remain. Related to this problem is the inability

o f an ultrasonic sensor to see an opening in front o f it if the gap is less than the

beamwidth. In fig. 2 an object is assumed to be directly in the path o f the sensor,

because the edges are smeared by the ultrasonic sensor and an echo is returned.

Figure 2: Smearing out of edges

Other problems arise due to the acoustic impedance of air being quite low compared

to the typical acoustic impedance’s of solid objects which are much larger (in both

medium density and propagation velocity), so that all solid surfaces appear as

59

acoustic reflectors. Also because o f the large wavelength of sound (in the order o f 3-

5mm), most surfaces appear to be acoustic mirrors i.e. many surfaces seem smooth

and small surface detail will be undetectable.

Surfaces that are not orthogonal to the direction o f acoustic propagation will reflect

signal energy away from the source, and the surface may not be detected i.e. if the

object surface is oblique with respect to the sensor axis the surface may not be seen,

particularly with a narrow beam sensor. A sonar beam incident on such a surface

bounces off at an angle equal to the angle o f incidence, and can be reflected off other

objects before being detected. Hence, the transducer can measure a much longer

distance than it should. Fig. 3 a is an illustration of the effects o f specular reflections

where the mirror image of another object is seen rather than the mirror (object) itself.

Fig. 3b shows how a ghost object is seen due to the sensor being positioned at an

oblique angle to the wall which acts as a reflector.

Figure 3: (a) Specular Reflections (b) Ghost Object

There may be additional error when using multiple frequencies to compensate for

different types o f surfaces that absorb more energy at different frequencies. The time

o f flight measurement begins with the rising edge o f the first pulse transmitted and

ends with the detection o f the first echo. However that echo is not necessarily

associated with the first pulse, the one from which the time o f flight is measured,

hence additional error can be introduced. Errors also occur when one sensor receives

60

the pulses emitted by another (crosstalk) which can lead to objects being observed in

empty regions.

Other errors arise because o f acoustic amplitude fluctuations. The magnitude o f the

range is dependent on the velocity of sound in air, however changes in the medium

properties due to atmospheric effects, such as temperature, air currents and humidity

variations or gaseous composition affects the speed o f sound introducing errors.

Under these conditions smooth flat surfaces can appear to be quite rough to a

scanning ultrasonic sensor. Some advantage can be taken o f acoustic scatter from

textured surfaces which may allow them to be detected (but not accurately located) at

oblique surface angles that would not otherwise be detectable. For large object

surfaces, the effects o f diffraction is negligible. For ranges in the order o f lm , the

predominant source of range error is thermal variation in the air.

Problems of signal distortion of the reflected (received) signal occurs with curved

surfaces (both convex and concave) due to multi-path effects o f the finite diameter

acoustic beam interacting with the reflection surface. Planar surfaces reflect signals

o f nearly the same shape as the transmitted signal at any target range, particularly at

far range. This does not change significantly at close range. However the curved

surfaces reflect distorted signals and the amount o f distortion is range dependent. The

mechanism is illustrated in fig 4. Because o f the many acoustic flight path lengths

over the reflection surface the composite reflected signal will be smeared in time.

This phenomenon is also present with a planar target at close range but the effect is

less significant. This has the effect of stretching the reflected pulse and making the

apparent round-trip time longer for curved surfaces than for planar surfaces. Thus

timing errors are introduced due to signal distortion.

61

Figure 4: Mechanism for Reflected Signal Distortion

This problem may be decreased by reducing the diameter o f the transducer or

focusing the acoustic beam on the reflection surface. In this way the effective target

surface coverage is small and the multi-path variation is reduced. Focused beams can

be obtained with transducers operating at high frequencies (see fig. 5 which depicts a

focused beam). The second way of reducing the effect is to transmit pulses with

sharper leading edges and detect the return of the first edge thus getting the range to

the closest reflection surface. The result is that surfaces with cavities or holes will

cause problems for an ultrasonic transducer.

Figure 5: Radiation Pattern at 140 Khz

62

3.1.3 Current use of Sonar Sensors

Traditionally, active and passive sonar systems have been used for military

intelligence applications in marine environments. Active sonar systems are used for

communications, navigation, detection, and tracking, while passive sonar systems are

used in surveillance. However non military marine sonar systems have spread.

Typical applications include navigation, charting, and fishing.

Applications also extend to the medical field for use in medical imaging [43]. Active

ultrasonic systems are used in medicine to build maps for human inspection. Other

applications include rangefmding devices for industrial control applications, as well

as camera auto focus systems [44], Specific applications o f sonar sensors in robotics

include simple distance measurements [45], localising object surfaces [46],

determining the position of a robot in a given environment, and some ad hoc

navigation schemes. Research has also been conducted in the simulation o f sonic

sensors. This was investigated by Daly[69] who developed a simulator for a mobile

robot using ultrasonic sensors. This work allows an individual to test controllers for a

robot without worrying about hardware considerations.

3.2 Infrared Sensors

Infrared sensors also have their own problems. Unlike sonar, the time of flight o f the

light pulse from an infrared sensor cannot easily be measured. The sensor can only

indicate whether any returned pulse was detected. So although distance to an object

cannot be ascertained, the absence or presence o f an object can be determined with

very good angular resolution. Smooth surfaces do not have the same problems with

specular reflection as they do with sonars, because of the much shorter wavelength of

infrared light. However the more expensive laser range finders can determine both

range from the sensor and location o f the reflection surface due to the narrow beam

used.

3.3 Combining different Sensors

Multiple sensors can be used on a mobile robot so that it can perceive its

environment with better accuracy than if either sensor were used alone. Sonar and

63

infrared sensors have different properties that can be used in a complementary

fashion, where the advantages of one compensate for the disadvantages o f the other.

A robot may then combine the information from the two sensors to build a more

accurate map. A sonar range finder can provide an estimate o f the distance to an

object with a high degree of resolution, but has poor angular resolution due to its

wide beamwidth. In contrast, the infrared sensor, though not able to measure distance

accurately, has good angular resolution in detecting the absence or presence o f an

object. By using both sensors it is possible to build a better map o f ones

surroundings. The infrared sensor, can find the edges o f doorways and narrow

passages that would otherwise be blurred by the sonar’s. Flynn[47] uses such an

approach to obtain a more accurate map o f the environment. Guidelines are also set

when to ignore the sonar data given infra-red readings resulting in a more reliable

map.

4. Position Estimation

An autonomous vehicle must be capable o f determining its current position so that it

may travel through an environment and perform its tasks. Many methods have been

used in order to determine the position o f a vehicle. A vehicle will always have some

onboard odometric navigation system. These systems are very accurate but inevitably

they suffer from drift which increases, if not corrected, over long distances. The

vehicle may also have access to a satellite positioning system which provides it with

a global estimate o f its location. The global positioning approach does not suffer

from drift but is not as accurate as an inertial system. Furthermore since such systems

rely on components that are external to the vehicle there is no guarantee that they will

be available when needed.

4.1 Overview of approaches taken in determining position

It is possible to compute the position of the vehicle by visually identifying objects of

known appearance, scale and location and then triangulating to determine the current

position. This involves using high-level computationally intensive vision systems

such as stereo vision as a means of navigation. However the computation involved is

not always practical for real-time systems. These systems are then used to

64

update/correct the current position estimate obtained from some local means such as

odometry.

However due to noise and difficulties in interpreting the sensory information it is not

always easy to recognise naturally occurring reference points. Alternative means

have been proposed to counteract these problems. By placing easily recognisable

beacons in the robot’s workspace the robot may be able to determine its position by

means o f triangulation. A number o f beacons have been investigated [48] for this

purpose including comer cubes and laser scanning systems, bar-code, spot mark, or

infrared diodes, and associated vision recognition systems, and sonic or laser beacon

beams. However this means that the environment has to be modified which may not

always be practical or desirable.

The Dead Reckoning Navigation System is based on the measurement o f the

rotations o f the wheels and/or some directional information. The advantages o f dead

reckoning using odometry sensors is that it is both simple and inexpensive. However,

it is prone to a number of errors. Wheel slippage can cause distance to be

underestimated, while surface roughness and undulations may cause the distance to

be overestimated. Variations in load can distort the odometer wheels and introduce

additional errors. If the load can be measured then distortion can be modelled and

accounted for. A more accurate solution is to provide a pair o f knife-edge nonload-

bearing wheels solely for odometry. However very small errors will still accumulate

and eventually render the systems useless if the vehicle’s environment is not sensed

for key landmarks in order to annul these problems.

4.2 Specific implementations for updating the position of autonomous vehicles

In [49], a stereo vision system was used to locate obstacles, plan a path around them

and track the motion of the robot as it moved. A path planner based on a grid

combinatorial search and incremental path smoothing was implemented. Interest

operators were used to pick points to be tracked from image to image. The motion

solver determined the motion that minimised the error between where points were

seen and where they should have been seen given that motion. The predicted vehicle

65

position was included as one of the points in the least squared process, weighted

more or less depending on the assumed precision o f the prediction. In none o f the

runs was vision as accurate at calculating the translation error, as was straight dead

reckoning based on motor commands, though in the best runs vision determined the

required rotations more accurately.

A system proposed by [30] comprised o f three modules, called the MATCHER, the

FINDER, and the SELECTOR. These interacted to establish the vehicle’s position

with a new level o f uncertainty. The MATCHER located likely positions for one or

more landmarks in an image and rated these positions to some measure o f

confidence. The FINDER controlled the focal length and the pointing direction o f the

camera to acquire specified images for a set o f landmarks and directed the

MATCHER to find possible positions for these landmarks in the images. It then

eliminated possible positions for individual landmarks which were inconsistent with

the positions found for other landmarks. The FINDER then evaluated the remaining

possible positions to determine the actual positions o f the given landmarks. The

SELECTOR identified a set of landmarks whose recognition in images o f

appropriate angular resolution would improve the position estimate o f the vehicle by

the desired amount. It then directed the FINDER to establish likely positions in such

images for subsets of those landmarks. With these positions, the SELECTOR then

computed new estimates o f the vehicle position and position uncertainty and directed

the FINDER, if necessary, to locate additional subsets o f landmarks.

A system proposed for position estimation by [36] and tested on Blanche (a mobile

robot) consisted of an a priori map of its environment, represented as a collection o f

discrete line segments in the plane; a matching algorithm that registered range data

with the map, and then estimated the precision o f the corresponding match/correction

which was optimally combined with the current odometric position to provide an

improved estimate of the vehicle’s position (see fig 6). The entire autonomous

vehicle was self contained with all processing being performed on board except for

the global path planner which was external to the vehicle.

66

Figure 6: Position estimation subsystem

A rotating optical rangefmder returned a series o f points after scanning the room.

These points were matched to their corresponding line segments in the stored map

using a least square solution that found a congruence that minimised the total squared

distance between the image points and their target lines on the map (see fig 7). The

solution o f the least squares linear regression was a displacement and rotation which

was then applied to update and correct the robots’ current position. One difficulty

with this approach is that the geometric interpretation is done very early and is

therefore going to be greatly effected by noise and uncertainty in the data.

Edlinger et al[50] used a laser rangefmder on an autonomous vehicle for navigation

in unknown or partially known environments. The vehicle had a tricycle

configuration. Dead reckoning was accomplished by using two shaft encoders that

67

updated the position. This was then fused with information acquired by using the

sensors which consisted of four crosswise arranged triangulation laser range finders

mounted on a rotating device. By updating the position using the sensors the

translational and rotational errors were removed.

Correlation was achieved using a statistical analysis o f the environment. This

involved computing an angle histogram which is defined as the distribution

frequency of the angles of the lines between neighbouring points. The highest peak in

the histogram gave the angle a o f the main orientation o f the robot. The whole laser

scan was subsequently rotated by the angle a and the x/y histograms (defined as the

distribution frequency of the x/y values o f the rotated laser points) were calculated.

The highest peaks in these histograms marked the main borders o f the environment.

This method however assumed that a high percentage o f objects in the environment

had orthogonal surfaces.

A more primitive system was used in [51], where the vehicle measured its own

position by using measuring wheels and corrected the accumulated error at regular

intervals using its current position relative to a mark board. The correction interval

was about every 50m at which mark boards had to be placed in pre-determined

positions. The programmed course consisted of straight lines and arcs. The position

and heading were calculated from the rotations o f the measuring wheels (not the

drive wheels) using rotary encoders. When the current position o f the robot was

calculated relative to the mark board, the robot referred to the location data o f the

mark board in memory and then calculated the position and heading to correct the

accumulated error o f the location unit. Two optical rangefinders were attached to the

vehicle for this purpose.

Miller[52] uses sonar sensors to determine the position o f a robot. It assumes that an

accurate map of the environment is known and performs a search to determine where

the robot would have to be to explain a given set o f distance readings. The method

does not take into account the errors that occur in actual sonar data. A similar

68

approach is used by Drumheller [53] who also assumes an accurate map o f the

environment is available, but is able to cope with noisy data.

5. Mapbuilding

It is important for manipulators and mobile robots to be capable o f acquiring and

handling information about the presence and localisation o f obstacles and empty

spaces in their working environment. Operations that involve spatial and geometric

reasoning require a knowledge of the surrounding environment. Building up such a

description involves the complex task of extracting range information from the real

world.

There are numerous range measurement systems that have been proposed in the

literature [42]. O f these, the most suitable for mobile robots are stereo vision

systems[54], and active rangefmding devices [55], because these do not require

artificial environments or contrived lighting. However, due to the inherent limitations

in any kind o f sensor, it is advantageous to aggregate information coming from

multiple readings, so a coherent world-model can be constructed that reflects the

information acquired. This world model may then facilitate the execution o f essential

operations such as path planning, obstacle avoidance, landmark identification,

position and motion estimation.

New data must quickly be integrated into a model i f the demands o f a real time

environment are to be met. The robot should be capable o f building the model while

navigating through the environment. The choice o f representation to model the

environment is therefore very important, because it determines the efficiency with

which new measurements can be integrated into the map. Some strategies employed

use a grid that is projected over the environment model where the resulting pixels are

the basic elements. Other methods use high-level geometric basic elements such as

lines or planes described by parameters. With these representations generality is

being traded for speed.

69

It is often necessary to resolve conflicts between conflicting measurements when

updating the global model with new data. A heuristic or a statistical approach may be

used for integrating the measurements. Using the statistical method, a Bayesian or a

maximum likelihood estimator is used to find the environment model that gives the

best explanation of the measurements.

5.1 Specific Implementations taken for Mapbuilding

In [56], a grid representation o f the environment is used where every pixel is

assumed either occupied or empty, independent o f its neighbour’s status. This

assumption makes it impossible for this strategy to take into account the interference

effects caused by multiple reflecting points such as specular reflections.

Thorpe [28], presented a sonar-based mapping and navigation system for an

autonomous mobile robot operating in unknown and unstructured environments. The

system had no a priori map o f its surroundings. It acquired data from the real world

through a set of sonar sensors and used the interpreted data to build a sonar map o f

the environment. High resolution maps consisting o f a grid o f cells with regions

classified as empty, occupied, and unknown were generated. Empty space was given

high suitability while regions in the immediate vicinity o f obstacles had low

suitability. A relaxation algorithm was used to find locally optimum paths. The

model was used in a sonar mapper, map matcher and path planner developed for

navigating the Denning Sentry.

Mapping was divided into a number of separate stages using the sonar sensors. The

sensor data was first pre-processed, screened, and associated with the current sensor

position. Each reading was interpreted using probability density functions (see fig 8),

where every sonar reading added a thirty degree cone o f empty space, and a thirty

degree arc o f occupancy. Readings observed from one position o f the robot being

used to build a view, which stored empty, occupied, and unknown areas. This view

was then combined with the sonar map. For the recognition o f previously mapped

areas and positional update, they developed a way of matching two sonar maps by

convolving them. The method gave the displacement and rotation that resulted in the

70

successful integration o f one map with the other, along with a degree o f confidence

o f the match.

Figure 8.

Every sonar reading provided partial evidence about a map cell being occupied or

empty. Different overlapping readings taken that supported each other increased the

certainty o f the cells in question, while evidence that a cell was empty would weaken

the certainty o f it being occupied and vice versa. Thus correct information was

incrementally enhanced and wrong data was progressively cancelled out.

Results attained after taking several hundred readings produced an image with a

resolution often better than 15 centimetres despite spurious data from individual

readings. This method proved successful in dealing very reliably with uncertainty,

surviving disturbances such as humans around the robot and was tested on the

Denning robots as they went around long trajectories in cluttered environments that

took a few hours to complete. Three second map building and three second map

matching pauses were used at important points to repeatedly correct their position.

71

The following method was used to match two maps giving the rotation and

displacement that best integrated one with the other. Cell values were negative if the

cell was empty, positive if occupied and zero if unknown. A measure o f the goodness

o f the match between two maps at a trial displacement and rotation was found by

computing the sum of products o f corresponding cells in both maps. An occupied cell

falling on an occupied cell contributed a positive increment to the sum, as did an

empty cell falling on an empty cell (the product o f two negatives). An empty cell

falling on an occupied one reduced the sum, and any comparison involving an

unknown value caused no change to the sum. Faster methods just consider the

occupied cells as the above approach is very slow. A hierarchy o f reduced resolutions

o f each map can be generated in order to speed up the computation a bit further.

A three dimensional version of the sonar map builder was implemented by Ken

Steward[57] o f MIT and Woods Hole for use with submersible craft. The program

was tested under large simulated errors and proved reliable in its reconstruction o f

large scale terrain in a 128x128x64 array using about 60,00 readings taken from a

sonar transducer with a seven degree beam. The program ran on a Sun computer and

processed the sonar data fast enough to keep up with the approximately one second

pulse rate of the transducers on the two available submersibles. Another test was

performed using real sonar data from a scanning transducer on an underwater robot

that swam over the remains o f a civil war battleship providing impressive results.

Serey and Matthies[58] adapted the grid representations for a stereo vision based

navigator running on their "Neptune" mobile robot. A dynamic programming method

was used to match any edges that crossed a particular scanline in the two stereo

images, in order to produce a range profile. The space from the camera to the range

profile formed a wedge shape which was marked empty while cells along the profile

itself were marked occupied. This map was then used to plan obstacle avoiding paths.

Matthies and Elfes[59] combined the sonar and stereo vision programs to builds

maps that integrated data from both sensors. This was also run on the Neptune.

72

In [47], the robot remained stationary while it scanned the area o f interest with its

head-mounted and near-infrared sensors, taking 256 separate readings. This

procedure was repeated in a number o f locations. These readings were then merged

with the infrared data where edges and large depth discontinuities such as doorways

were integrated using information taken from the infrared data (open doorways were

not discernible to the ultrasonic sensor because of beam divergence). The refined

map was then converted to a representation suitable for planning intelligent tasks.

This was achieved by first transforming the refined data to an intermediate

representation, a modified version o f the curvature primal sketch[60], which is

convenient for merging separate views between robot moves. The curvature primal

sketch representation can then easily be converted into a polygonal representation o f

the world suitable for path planners.

One o f the traditional methods in mobile robot research has been the use o f stereo

vision systems to extract range information from pairs o f images[61]. A major

problem with this technique in real-world navigation is the intrinsic computational

expense o f extracting three-dimensional information from stereo pairs o f images

limiting the number of points that can be tracked. Another problem is that traditional

stereo vision required features that contained high-contrast edges or points that could

be easily tracked along several images [62]. As a result, practical stereo vision

navigation systems such as [61], only build sparse depth maps o f their surroundings,

selecting points to be matched and tracked using an interest operator. They handle in

the order of 30-50 points and generating the 3D map can be time consuming.

6. Conclusion

One o f the most important functions o f a mobile robot is the ability to compute its

position accurately in order that it can perform a specific task. The use o f Dead

Reckoning is not sufficient to maintain an accurate estimate o f the vehicle position

due to the continuous accumulation of errors that is characteristic o f this method.

Another method must be used in conjunction with it to offset the problem. These

methods can vary - the environment may be altered in some way (e.g. contrived

lighting techniques) to facilitate the robot update its position. Guide wires may be

73

laid down which simplifies the problem. However altering the environment is costly

and may not always be a viable alternative. In order to support full autonomous

capabilities the robot must be able to determine its position using sensory

information.

Many groups building mobile robots rely on sonar sensors for mapping the

environment because they seem to require little processing to produce a two

dimensional map o f the environment. As they are relatively cheap an array o f them

can be hung around the robot or alternatively they can be mounted on a rotational

device to provide 360° sensing. However as discussed earlier in the chapter there is a

wide range of errors inherent in using ultrasonic readings. It is also evident that a

good deal o f effort must be spent on overcoming them. To correct ultrasonic data

requires a large number o f readings which may not be possible in the limited time

span a robot has in performing its task. Therefore while ultrasonic readings may

seem to require little processing, much time will be spent on cleaning up the errors

which offsets the original reasons for first choosing them.

Sonar sensors cannot, be used over long distances without much higher energy

outputs than those o f the standard cheap sensor being required. These sensors will be

expensive and will still be subject to atmospheric effects. Stereo vision systems are

expensive and require intensive computation to acquire any information about the

environment. Laser rangefmders do not suffer from the problems that ultrasonics

have and while they are more expensive, information can readily be obtained from

them. Ultrasonic sensors are more suitable as backup sensors for avoiding obstacles

rather than for use with position estimation.

74

Chapter 5

The DCU Autonomous Robot

1. Introduction

This chapter describes the work completed with a mobile robot purchased from

Tag[63], by the department o f Computer Applications. The robot is controlled from a

PC where a map o f the environment is entered through a graphical interface and the

path is then generated from the source to the destination. Following this, the path is

downloaded to the robot via a radio link. The navigator software on the robot,

attempts to maintain the vehicle along this path and avoids any obstacles not known

to the planner should they be encountered.

The operation o f the path planner and navigator are discussed in detail. The path

planner will quickly find a path through a cluttered environment because it only

needs to consider the obstacles that lie directly within its path as opposed to all o f

those present in the environment, however it was found to have some limitations that

are discussed in section three. The navigator consists mainly o f the pilot which is

implemented using fuzzy logic. Fuzzy logic is used to determine whether the robot

should avoid an obstacle or follow the desired path. Fuzzy rules are also used to

maintain the robot along a path or to avoid obstacles depending on the situation. The

results from actual tests are presented and they illustrate the effectiveness o f the pilot

software.

2. System overview

This section gives an outline o f the overall system by providing a brief description of

the hardware used and the way the software is structured. It also discusses the sensors

and the motors used with the robot. The main processor card along with the D/A and

A/D cards is also described. These cards all communicate over an STE bus within the

robot.

75

2.1 General description of the robot and radio communications hardware

The Tag robot is a tracked vehicle suitable for indoor use only. Two stepper motors

are used to drive the vehicle which has three pods, each containing an ultrasonic,

infrared and tactile sensor. Cards slotted into the robot communicate over an STE

bus. It has a sixteen bit 80188 microprocessor along with two A/D and D/A cards

used for interfacing with the sensors and motors respectively. Two light sensitive

sensors attached to the left and right axle o f the robot are used to determine its

position. Pulses from these sensors are clocked into two timer counters which

interrupt the processor to update the position, when a certain number o f pulses have

been detected. On every control cycle the timer is also read to update the position.

The Robot

Communication with the robot is accomplished using a two-way FM radio link

consisting o f a modem, transmitter, receiver and line driver. Data is transmitted

using frequency-shift keying (fsk), a method which requires small bandwidth. For

more detailed information see Appendix A.

2.2 Block overview of software structure

The navigator software endeavours to maintain the robot along a path that is

downloaded from the PC. The navigator serves to inform the pilot of the next desired

position and orientation o f the robot as it progresses from one path segment to the

next, along a planned path. The pilot consists of a Fuzzy logic controller, which

based on sensor information, avoids unmapped obstacles that lies within the robot’s

76

path. The PC contains a graphical user interface (GUI) that enables the static

obstacles to be entered and recorded in a map. The user first enters the destination

and start co-ordinates. The start co-ordinates are required only upon initialisation and

are sent to the robot along with the final destination. The path planner is then run and

based on its knowledge of the environment, a collision free path is constructed

around any obstacles that would obstruct the robots passage to its destination. This

information is then downloaded to the robot. The software for the path planner,

navigator and the communication link between the PC and the robot is shown in

Appendix C.

2.3 Using the Robot’s Sensors and Motors

In order for the controller to perform correctly, it was necessary to obtain detailed

information on the input sensors and on the output motors. This section first

discusses how the returned readings from the sonar sensors were interpreted. It

explains how a graph o f the sonar readings versus distance was plotted. Tests that

were used to acquire information on the motor’s speed are then discussed.

2.3.1 The Sonic Sensors

In order to plot the sonar readings versus distance, a program on the PC sent requests

to the robot via serial link to send back the sensor readings. A box was placed in

front o f the robot at the minimum range and was moved progressively out towards

the maximum range at which the sonars could detect activity. The box was moved in

steps o f 15 cm and the sonar readings were noted.

The sonar sensors can output anything from 0-10 volts and their maximum range was

tuned to 2 metres. This maximum range setting can be extended to 2.5 metres but at

the cost o f a reduction in the accuracy o f the detected object. The Analog to Digital

(A/D) card has a range of 0-255 corresponding to an input ranging from 0-10 volts.

Therefore when the A/D was connected to the sonar sensors, the returned readings

from the sensors varied from 0-255. These values were supplied directly to the fuzzy

controller without converting them back to voltages or distance readings. Table 1

shows the relationship between these readings versus distance.

77

Range(m) Sonar Readings

0.20 255

0.62 255

0.77 236-252

0.92 187-206

1.07 136-156

1.22 89-113

1.37 33-57

1.52 7-26

1.67 6-19

1.82 6-17

1.97 6

Table 1: Distance versus Sonar Readings

From Table 1 it may be observed that for objects beyond a distance of 0.62 metres,

the sonar readings vary between upper and lower limits. The readings for any given

distance vary within a bound of 20 units i.e. 0.094 volts. The following plot shows a

graph of the maximum and minimum readings plotted against distance. It is evident

from the graph that the plot is linear between the range 0.77-1.40 metres.

Graph of Sonar Readings versus Distance

78

2.3.2 The Stepper M otors

A pair o f stepper motors are used to drive the robot. They take voltages from 0-12

volts and are capable o f a maximum speed o f 0.28 m/s. Tests were performed to

obtain a graph of speed versus motor voltages. This involved timing the robot as it

traversed a five metres stretch within a lab. The average speed of the robot was then

calculated for different voltage levels sent to the robot. The speed could then be

found by using the equation speed = distance / time. This procedure was repeated

three times for every voltage level. Table 2 shows the results of the tests.

Voltage Speedl (m/s) Speed2 (m/s) Speed3 (m/s) Average Speed

(m/s)

1 0 0 0 0

2 0 0 0 0

3 0.0466 0.0466 0.0467 0.0466

4 0.0781 0.0781 0.0781 0.0781

5 0.1111 0.1111 0.1111 0.1111

6 0.1515 0.1515 0.1471 0.15

7 0.1851 0.1851 0.1851 0.1851

8 0.2174 0.2174 0.2174 0.2174

9 0.25 0.25 0.25 0.25

10 0.2632 0.2703 0.2632 0.2654

12 0.2778 0.2778 0.2778 0.2778

Table 2: Motor Voltage versus Average Speed

The plot below shows the graph of these results. It is evident from the graph that the

speed is linearly dependent on the voltage levels applied to the motors for voltages

less than nine volts. Above nine volts the rate o f increase in speed starts to diminish.

It is also clear that the speed of the robot is sensitive to the voltage applied to the

motors. This is due to the weight o f the battery which being the heaviest part o f the

robot, limits the maximum speed substantially.

79

M otor Voltages

Graph of Motor voltages versus Average Speed

3. The Path Planner

The planning algorithm implemented in this thesis was developed by Charles W.

Warren[64], It combines some features o f graph search and potential fields in its

approach to path planning. The algorithm can plan a path around irregularly shaped

objects in two or more dimensions. The method quickly finds a path even in very

cluttered environments which is why it was chosen.

A simple explanation o f how the algorithm may be applied follows. This is then

further developed to cater for concave obstacles. Assuming that the obstacle is

convex then the following approach will suffice.

An example is illustrated in fig. 1 where an object is shown with the start and goal

positions outlined. The centre point within the obstacle refers to its centre o f gravity.

A trial vector is drawn from the start to the goal position. This vector intersects the

object so an intermediate goal is needed. This goal is chosen such that the path will

be forced away from the centre o f the object. To determine the immediate goal, the

point mi must first be found. Mi is the midpoint of the line segment Lj that passes

through the obstacle. A vector is drawn from the centroid through this point and is

80

projected until free o f the object plus a small distance 8. This new point becomes the

intermediate goal IG1.

Figure 1: Illustration of procedure for path planning

The previous goal is then pushed onto a FILO (first in last out) stack. The process is

then repeated by drawing a vector from the start position to the intermediate goal

IG1. This also passes through a forbidden region so a new intermediate goal IG2 is

needed. This is determined by drawing a vector from the centroid through m 2 the

midpoint o f the segment L2 crossing the obstacle. IG1 is pushed onto the stack and a

new vector is drawn from the start to IG2. In this case the path is clear, and IG2

becomes the new starting position. Then an intermediate goal is popped off the stack

and the whole procedure is run again until the goal is reached.

This procedure works well with convex obstacles because the centroid lies within the

obstacle. I f it is used with a concave obstacle the centroid does not necessarily he

within the object and the algorithm can end in an infinite search. An illustration of

one scenario is shown in fig. 2.

81

Figure 2: Problem with concave obstacles using the planning approach outlined

This is an example of an object where the centre o f gravity lies outside the obstacle.

If the start position is A and the destination is B, then when the first trial vector is

drawn it will intersect the obstacle along the segment L2. A vector from C is drawn

through the midpoint of the segment L2 and produced to B 1. This process is continued

until the intermediate goal converges at the point E at which point the algorithm will

hang. Similarly, if A is produced to D, the resulting intermediate goal will be in the

opposite direction and repetition of the process will again result in convergence at the

point E. To circumvent this situation a new technique for determining the

intermediate goal is used. On the first iteration o f the procedure, a path is forced in

some direction. It is necessary to continue forcing the path in this direction. This is

done by using the midpoint o f the previous stage as the start vector for determining

the intermediate goal.

82

An illustration of this procedure is shown in fig. 3. The vector is drawn from the start

position to the destination and then a vector from the centroid through the midpoint

o f the segment crossing the forbidden region is produced to find the first intermediate

goal IGI. A line from the start to this still results in traversing a forbidden region, so

IG2 is found by creating a vector from m, through m 2 until clear o f the obstacle. This

procedure is continued except that the previous midpoint is used as the starting

vector for finding the intermediate goal.

Figure 3: Actual method used for path planning

In fig. 4 this algorithm is applied to the concave obstacle that was previously

discussed. The start position is A and the destination is B. When a line is drawn from

A to B, it intersects the obstacle along the line segment L,. A line is drawn from the

centroid C through the midpoint o f L t and produced to B 1. When A is joined to B 1 it

still intersects the obstacle along the segment L2, so the midpoint o f L, is produced

through the midpoint o f L2 and extended to B2. This process is repeated until the

point B6 is reached. When a line is joined between A and Bc it does not intersect the

obstacle so this point becomes the new start position. Note that the points B 1 to B 5

are not used to connect B6 to the destination B because it can not be assumed that B5

can be reached from B6 and B4 from B5 etc.

83

Figure 4: Algorithm applied to a concave obstacle where A is the start position and B is the
destination and B6 is the first point found that will form part of the path from A to B.

Fig. 5 shows the next stage of the algorithm. A line is drawn from A 1 (previously B6)

to the destination B. This intersects the obstacle along the line segment L I5 so a line

is drawn from C through the midpoint of Lj and produced to B 1. When a line is

drawn from A 1 to B 1 it is still found to intersect the obstacle along L2, so a line is

drawn from the midpoint o f L, through the midpoint o f L2 and produced to B2. A

line is then drawn from A 1 to B2 which is still found to intersect the obstacle along L3-

, so a line is drawn from the midpoint of L2 to the midpoint of L3 and produced to B3.

84

A line from A 1 is drawn to B3 which is found to be clear o f the obstacle so B3 is the

next point on the path and is renamed A2 in figure 6.

A 1
B 6 in previous figure)

Figure 5: Algorithm applied to new start position A1 (B6)

In figure 6 the process is repeated using the point A2 as the starting position. A2 is

joined to B and intersects the obstacle along L,. A line is drawn from C through the

midpoint o f Lt and produced to B1. When A2 is connected to B 1 it intersects the

obstacle along L2, so a line is drawn from the midpoint o f L, through the midpoint o f

L2 and produced to B2. B2 becomes the next point on the path because A2 can be

connected to it without touching the obstacle.

85

Finally, in figure 7 the last of the points are found. A3 is joined to B and intersects the

obstacle along L ;. A line from the centroid C is drawn through the midpoint o f Lj and

produced to B 1. A3 can be joined to B 1 without intersecting the obstacle so B 1

becomes A4, the next point on the path. A4 can also be connected to B without

intersecting the obstacle so all of the points may now be listed in sequence from start

to finish: A - A 1. A2 - A3 - A4 - B.

86

Figure 7: Algorithm applied to point A3 (B2)

This method was chosen because it allows a path to be generated quickly even in a

very cluttered environment, facilitating quick decision making. But it has some

problems that are outlined below:

87

If the start and destination happen to have the centroid o f the obstacle on the same

line segment, then the algorithm will fail. This situation is not discussed in the

paper, so it was dealt with by choosing at random a direction at 90° to the path

from which the centroid is produced to find an intermediate goal.

The objects are grown by an amount equal to the radius o f a circle that will

encapsulate the robot. But points are extended an epsilon distance beyond the

object. This epsilon distance must not be such that an intermediate goal is found to

be within another object. This means that for any objects that are grown to

accommodate the robot and are within or equal to an epsilon distance o f each

other, these should be joined together to form one object. Figure 9 shows an

example of this where two obstacles are first merged into one before planning

commences.

The algorithm does not necessarily get the shortest distance, as may be observed

in figure 7.

As is typical o f graph search methods the found path tends to follow close to the

obstacles and can mean that the robot has to go at a slower speed because o f the

continuously changing direction o f the path. Free space methods on the other hand

do not have this problem.

The algorithm cannot deal with maze type obstacles such as the one illustrated in

figure 8.

Figure 8: M aze type obstacle

Figure 9: A pair of objects that are too close are merged together

Multiple objects

The method employed for dealing with multiple objects is quite simple. The objects

are dealt with as they are encountered. An example is shown in fig. 10 where two

objects are blocking the path to the destination. The first object is dealt with as was

previously described and when this is accomplished, the second object is dealt with

separately using the same procedure.

89

A peculiarity o f the algorithm is shown in fig. 11 where the path went one way but

was subsequently forced back the other way to complete the path to the destination.

This problem is easily rectified by using a path shortening heuristic.

Figure 11: Path Reversal

The planning algorithm is implemented using a recursive function written in C (see

Appendix C for software implementation). A graphical interface is used to enter and

display the environment. Implementing this planner involved getting the centroid and

area o f an obstacle and being able to determine whether a point was within an object

or not. The centroid[70][71] o f an object whose mass is uniformly distributed is

given by the following equations:

a <x <b, 0 <y <f(x)

M x = \ [{ f { x) f . d x

M y = ^x.f(x).dx

A= j*f(x).dx

xc = My/A and y c = Mx/A

where A is the Area o f the obstacle and xc, and yc are the co-ordinates o f its centroid.

The planner must be able to determine whether a point is within or outside an

obstacle. The obstacle may be convex or highly concave. In [65], a convoluted

90

algorithm is described to determine this. Rather than using this method I used the

following strategy as illustrated below in Figure 12.

Figure 12: Determining points within an obstacle

The point is added as an extra point in the boundary o f the obstacle and the area of

the new obstacle is found. If the area is smaller than the area o f the original object,

then it is within the object, else if the area turns out to be larger, then the point is

outside the object.

The area o f a general polygon is calculated using the following technique:

The four extremities of the polygon are first found such that it can fit within a

rectangle parallel to the X and Y axes. In figure 13 these points are a, d, e, and h.

Starting from the point farthest left and moving anti-clockwise, the area enclosed

between each segment and the x-axis is either added or subtracted from the polygon

The x co-ordinates o f the points are used to determine whether the area is added or

subtracted. If the next point has a greater value o f x than the previous one, then the

91

area under the segment is added to the total area of the polygon, else it is subtracted.

Note that the X and Y axes are translated to the base o f the polygon such that a will

be on the Y axis and h will be on the X axis.

This approach is now applied to figure 13. Let the variable A represent a running

total of the area as it is being calculated. Let it be initially set to zero. Starting at

point (a) and moving in an anti-clockwise direction, the points (a,b) are first

encountered. Clearly bx > ax, so the area between the segment (a,b) and the x-axis is

added to A. The next segment is (b,c) but in this case cx<bx so the area under (c,b) is

subtracted from A. The next segment has dx > cx, so the area under (d,c) is added to

A. The next segment is (d,e) and ex > dx so the area under this segment is added to A.

This process is continued until the last point (a) is reached. In this example (h,a) is

the last segment to be processed.

Two examples of the path planner in operation are shown below in figures 14 and

15. The objects within the environment were entered with the use o f a mouse and the

92

start and destination points for the robot were selected. The planner then plans a path

around the obstacles. These paths may be seen in both diagrams.

H r I d I P a O l) I C l « n r I O n i t 1

Figure 14: Path planning in object strewn environment

or I I itetH?.. 1 I _au il_J

Figure 15: Another example of the path planner in operation

93

4. Navigator

This section describes the sensor-based navigation method used to control the robot

in an indoor environment. When the planner sends the list o f path segments to the

navigator, the navigator will pass each of these points in turn to the pilot.

4.1 Block Structure of Pilot

The pilot then attempts to maintain the robot along these co-ordinates. If an obstacle

impedes the path then the robot will try to pass it in order to complete its mission.

The process o f navigation is therefore split up into two main functions:

1. To maintain the robot along a planned path if it is not impeded.

2. To avoid detected obstacles and return to the path.

Each of these tasks are implemented independently using fuzzy logic. Fuzzy logic is

also used to determine which task should be performed at any one time. Figure 16

shows a more detailed structure of the pilot. Fuzzy logic is used to select suitable

rules for tracing a path or avoiding obstacles depending on the situation. I f an

obstacle is detected, the rules for avoiding obstacles become dominant over those for

tracing a path until the obstacle is bypassed. This mechanism for choosing rules is

necessary because it is not possible for the robot to avoid obstacles safely by

combining 50% of each of the outputs. The final outputs for the steering (S) and

speed (V) are the weighted sums of both outputs given by the equations below:

S = Sa * K + St * (1.0 - K)

V = Va * K + Vt * (1.0 - K)

where St is the steering angle output for tracing a path and Sa is that for avoiding

obstacles, Vt is the speed output for tracing a path and Va is that for avoiding

obstacles, and K is the weighted coefficient which varies between 0 and 1 inclusive.

As an obstacle gets nearer, K tends towards one which means that the rules for

tracing a path are removed and avoidance takes over. Similarly as K tends to zero it

94

may be seen that the rules for avoidance are removed from the final output while the

rules for tracing become predominant.

Figure 16: Structure of Pilot

Figure 17 shows the relationship between the fuzzy variables and the rulebases where

the circles represent different rulebases and the rectangles represent the fuzzy

variables. The Tracepath object serves to hide more detail where two rulebases are

required. The contents o f this object is shown in Figure 18. The arrows indicate

whether the variables are used as inputs or outputs.

Note that Df, Df2, D1 and Dr are fuzzy input variables associated with the distance

obstacles are from the front, left and right sensors. The fuzzy variables D and A are

related to the distance and orientation of the robot from the path and are discussed in

more detail later.

Figure 17: Block diagram of fuzzy controller

95

4.2 Position Estimation

The Navigator must know where the robot is currently located in order to guide the

Robot on its journey and the pilot must also be aware of the current co-ordinates so

that it may curtail any deviations from the path. Therefore position estimation is

crucial to effective operation. The equations for maintaining the position o f the robot

are developed as follows:-

Figure 19 shows the path o f the robot where it moved from the point o to the point p

along the arc op. The robot was initially oriented at an angle o f 0 and was displaced

through an arc of A0 as it moved along the arc op. If the co-ordinates at o have the

values (Xn.l5Yn [) and the displacement to the new position p is (AX7„AYJ, the

problem therefore is to get the value of AXn and AYn where the new position at p

(Xn,Yn) becomes:

Xn = Xn_1 + AX„

Yn = Yn.1+AY„.1

where

AX„ = |op|.cos (pof) (a)

AY„ = |op|.sin (pof) (b)

96

So w e m u st fin d Z p o f and |op|

Figure 19: Initial and final position of the robot after moving through an arc of A0

First look at Z pof

Using figure 20 it will be proven that ZAop = A0/2

Note that as |pc| = |co| = r.

=> Zecp = Zeco = A0/2

Zeoc = 90° - AO/2

But ZAoc = 90°

Now ZAop = ZAoc - Zeoc

ZAop = 90 - (90° - A0/2) = A0/2

97

Figure 20: Illustration of the relationship between the present and previous position of the
robot.

Figure 21: Illustration of the drive system of the robot

Figure 21 shows the robot going through an angle o f A0 where the left track moves a

distance o f AD, and the right track moves a' distance o f ADr. From this it may be

observed that:

98

A0.(R+W) = ADr

A6.R = AD,

=> A0 = (ADr - AD J/W

From Fig 20

ZPof = ZAof - ZAop

i.e. ZPof = G„.| + A0„/2 { if A0„ = (ADr - AD ,)/W } (1) or alternatively

ZPof = 0n., - A0„/2 { if A0n = (AD, - AD r)/W } (2)

We will stick with (1) in our analysis.

Using equation 1, it is worth noting that A0 will have a negative value in figure 20

because as the robot moves from o to p it moves in a clockwise direction which

means that AD, > ADr. Now to find | op |.

From fig 20:

sin (A0/2) = x/r

=> r.sin (A0/2) = x

|op| = 2x

|op| = 2r.sin (A0/2)

But r = R + W/2

=> |op| = 2(R + W/2)sin (A0/2) (3)

Using the formula s = r6 to get the length o f an arc s, o f radius r and angle 6

(radians), we will remove the unknown R from eqn (3):

AD„ = (R + W/2) A0

ADn/A0 = R + W/2 now substituting into (3)

|op| = 2(AD„/A0) sin (A0/2)

|op| = (ADn sin (AG/2))/(A0/2)

Substituting for |op| and Z P of in equations (a) and (b) we get:

AX„ = (sin (A0/2) / (A0/2)) ADn cos (0„., + A0„/2)

AY„ = {sin (A0/2) / (A0/2)) ADn sin (0„., -I- A6n/2)

Thus the final equations become:

I. X„ = X„., + (sin (A0/2) / (A0/2)) AD„ cos (0„ , + A0„/2)

II. Y„ = Y„., + (sin (A0/2) / (A0/2)) AD„ sin (0„_, + A0ri/2)

IE. 0n=0„.,+A0„

99

where:

AD„ = arc op = (ADr + AD,)/2

ADr = (Rnumpulse * WheelRadius * 2 * Pi)/Numseg

AD, = (Lnumpulse * WheelRadius * 2 * Pi)/Numseg

and A0n is given in (1)

Note: Rnumpulse is the number of pulses counted by the Right Timer

Lnumpulse is the number of pulses counted by the Left Timer

Numseg is the number of segments on the wheel.

4.3 Processing of input parameters for the Pilot

The input parameters required by the pilot shown in fig. 22 (a) are the Distance (D)

from the path and the angle (A) at which the robot is oriented from the path. These

two parameters are used as input to the rulebase for tracing along a planned path.

Positive values for the parameters D and A mean that the robot is to the left o f the

path (+D) and is oriented anti clockwise (+A). Similarly negative values for these

parameters mean that the robot is to the right side o f the path (-D) and oriented

clockwise (-A).

The magnitude of D is the perpendicular distance from (Xn, Yn) to the path. To

determine whether D is left or right (+/-) o f the path the following equations may be

used:-

XI = Xn - ((W/2) * sin(a n g))

Xr = Xn + ((W/2) * sin(ang))

Y1 = Yn + ((W/2) * cos(ang))

Yr = Yn - ((W/2) * cos(ang))

where ang is the angle of the path, W the width of the robot, (Xn, Yn) the current

position o f the centre o f the robot and (XI, Yt), (Xr, Yr) are points to the left and right

o f the robot respectively. These equations are used to obtain points to the left and

right side o f the robot so it can determine which side is furthest from the path. If the

left side o f the robot is farther from the path than the right side, then it is to the left of

100

the path. Note that ang is the angle of the path segment - not the orientation o f the

robot, and that ang must range from -Pi to + Pi. The angle A is just the difference in

angles o f the path and orientation o f the robot.

The parameters df, d, and dr, shown in fig 22 (b), denoting the distances measured by

the front, left and right sensors respectively, are used in the rulebase by rules

performing the obstacle avoidance procedures. These parameters are assigned the

voltage readings read from the ultrasonic sensors which give an indication o f the

distance an obstacle is away from the robot. There is no need to translate the voltages

directly to distance as there is a non-linear relationship between the two and

unnecessary pre-processing of the information would therefore result. The fuzzy rule

base translates the voltages automatically to represent distances that are FarAway,

Far or Close etc. so the pre-processing stage is eliminated by just using the raw data.

When an object is detected by the sensors, the fuzzy variable K is altered to reflect

this in the weighting of the rules. This is achieved again by using the voltages to

represent object free distances that are categorised into a number o f memberships,

e.g. a high voltage is mapped to the VeryClose membership function (VeryClose

means that the distance between some object and the robot is almost zero - indicating

an eminent collision) and then using this information to weight K appropriately. The

specific rules used to weight K are outlined towards the end of the next section.

101

4.4 The Pilot’s Fuzzy Rule Base and System Structure

This section illustrates the rules used for maintaining the robot along a planned path

when no obstacle is encountered. These rules monitor the distance (D) and the angle

(A) and strive to reduce these measurements to zero as the robot moves along the

path.

The abbreviations used are NB, NM, NS, PS, PM, PB. This is the standard

terminology for rulebases that require a large number o f rules. The first letter o f the

abbreviation is an N or P which means negative or positive. This reflects whether an

input is negative or positive or if an output is to be increased or decreased. The

second letter is B, M or S for Big, Medium or Small respectively. This part reflects

the magnitude of the inputs or the degree to which an output must be changed.

Therefore PB means Positive Big and when associated with the speed variables Vt or

Va, it means increase the speed to a maximum. ZZ stands for Zero. DF, DL and DR

are fuzzy input variables associated with the distance obstacles are from the front, left

and right sensors. DF2 is another fuzzy variable associated with input from the front

sensor. See Appendix B for the membership functions associated with the fuzzy

variables.

These rules were chosen by first drawing numerous diagrams o f the robot (see figure

22 (a)) in different positions by varying the values o f A and D. The response chosen

was based on the action a driver would take under the circumstances. A small level

o f experience helps in choosing what the drivers action will be but it is mostly

common sense. If the robot is far away from the path and veering even further away

then swift action is required by quickly changing the direction o f steering towards the

path and slowing down the speed:

IF (A is PM) AND (D is PB) THEN (St is NB)
IF (A is PB) OR (A is PM) THEN (V, is PS)

If the robot is on the path and its orientation is in line with the path then increase the

speed to a maximum and keep the steering angle at zero:

102

IF (A is ZZ) AND (D is ZZ) THEN (Vt is PB)
IF (A is ZZ) AND (D is ZZ) THEN (St is ZZ)

I f the robot detects that an obstacle is in front o f it and that there is an obstacle to its

right side then turn left sharply and slow down in case it hits something:

IF (DF is VeryClose) AND (DR is Near) THEN (Sa is StrongTumLeft)
IF (DF2 is Close) THEN (Va is PS)

After the initial rules were chosen simulations were first run to test for different

situations. At this stage it became apparent if there were more rules required to deal

with certain situations. The same method was used to develop rules for the obstacle

avoidance part o f the controller.

Tuning the rules was first done through simulation. To test the tracing rulebase,

different values o f A and D were put into the controller to test each o f the rules.

Inputs were first chosen to trigger individual rules. If the response to the input was

inadequate the relevant fuzzy variable had to be tuned by adjusting the peaks o f the

membership function. The second step involved choosing inputs that were members

of more than one membership function in order to trigger a number o f rules. If the

outputs turned out to be incorrect, the overlap of the two membership functions was

altered. The third step fixed faults in the rules for the controller. I f the output o f the

controller was still not returning the required magnitude or the correct sign, the rules

themselves were altered because conflicting rules caused indecision in the output.

This worked very well as long as sufficient thought went into considering the variety

of inputs that could occur. I found it was very important to check ambiguous inputs

that did not readily fall into one specific membership function . These inputs tested

the transition stages between rules and were very useful in fine tuning the

membership functions. Such inputs at first, returned miscellaneous outputs before the

membership functions were properly tuned.

103

The same method was used for the avoidance rulebase. Values were fed into the

controller that would normally be coming from the sensors. This was tested as before

and after simultation returned satisfactory results it was tested in the physical

environment. Changes were then made to the rulebase if the robot reacted too slowly

or too quickly to a given situation or if it didnt stay far enough away from an

unmapped obstacle when trying to avoid it.

The following rules are used to trace along a path:

Rules for Speed Control (Tracing)

IF (A is NB) OR (A is NM) THEN (V, is PS)
IF (A is PB) OR (A is PM) THEN (V, is PS)

IF (A is NS)
IF (A is NS)
IF (A is NS)
IF (A is NS)
IF (A is NS)
IF (A is NS)
IF (A is NS)

IF (A is ZZ)
IF (A is ZZ)
IF (A is ZZ)
IF (A is ZZ)
IF (A is ZZ)
IF (A is ZZ)
IF (A is ZZ)

IF (A is PS)
IF (A is PS)
IF (A is PS)
IF (A is PS)
IF (A is PS)
IF (A is PS)
IF (A is PS)

AND (D
AND (D
AND (D
AND (D
AND (D
AND (D
AND (D

AND (D
AND (D
AND (D
AND (D
AND (D
AND (D
AND (D

AND (D
AND (D
AND (D
AND (D
AND (D
AND (D
AND (D

s NB) THEN (V, is PS)
s NM) THEN (V, is PS)
s NS) THEN (V, is PM)
s ZZ) THEN (V, is PM)
s PS) THEN (V, is PB)
s PM) THEN (V, is PM)
s PB) THEN (V, is PM)

s NB) THEN (V(is PM)
s NM) THEN (V, is PM)
s NS) THEN (V, is PM)
s ZZ) THEN (V, is PB)
s PS) THEN (V, is PM)
s PM) THEN (V, is PM)
s PB) THEN (V, is PM)

s NB) THEN (V, is PM)
s NM) THEN (V, is PM)
s NS) THEN (V, is PB)
s ZZ) THEN (V, is PM)
s PS) THEN (V, is PM)
s PM) THEN (V, is PS)
s PB) THEN (V, is PS)

Rules for Steering Control (Tracing)

IF (A is NB) THEN (S, is PB)
IF (A is PB) THEN (S, is NB)

IF (A is NM) AND (D is NB) THEN (S, is PB)
IF (A is NM) AND (D is NM) THEN (S, is PB)
IF (A is NM) AND (D is NS) THEN (S, is PB)
IF (A is NM) AND (D is ZZ) THEN (S(is PM)
IF (A is NM) AND (D is PS) THEN (S, is PM)
IF (A is NM) AND (D is PM) THEN (S, is PS)
IF (A is NM) AND (D is PB) THEN (S, is PS)

IF (A is NS) AND (D is NB) THEN (S[is PM)
IF (A is NS) AND (D is NM) THEN (S, is PM)
IF (A is NS) AND (D is NS) THEN (St is PM)
IF (A is NS) AND (D is ZZ) THEN (S, is PS)
IF (A is NS) AND (D is PS) THEN (S, is ZZ)

104

IF (A is NS) AND (D is PM) THEN (S, is NS)
IF (A is NS) AND (D is PB) THEN (S, is NS)

IF (A is ZZ) AND (D is
IF (A is ZZ) AND (D is
IF (A is ZZ) AND (D is
IF (A is ZZ) AND (D is
IF (A is ZZ) AND (D is
IF (A is ZZ) AND (D is
IF (A is ZZ) AND (D is

NB) THEN (S, is PM)
NM) THEN (S, is PM)
NS) THEN (S, is PS)
ZZ) THEN (S, is ZZ)
PS) THEN (S, is NS)
PM) THEN (S, is NM)
PB) THEN (S, is NM)

IF (A is PS) AND (D is NB) THEN (S, is PS)
IF (A is PS) AND (D is NM) THEN (S. is PS)
IF (A is PS) AND (D is NS) THEN (S, is ZZ)
IF (A is PS) AND (D is ZZ) THEN (S, is NS)
IF (A is PS) AND (D is PS) THEN (S, is NM)
IF (A is PS) AND (D is PM) THEN (S, is NM)
IF (A is PS) AND (D is PB) THEN (S, is NM)

IF (A is PM) AND (D
IF (A is PM) AND (D
IF (A is PM) AND (D
IF (A is PM) AND (D
IF (A is PM) AND (D
IF (A is PM) AND (D
IF (A is PM) AND (D

is NB) THEN (St is NS)
is NM) THEN (St is NS)
is NS) THEN (S, is NM)
is ZZ) THEN (S, is NM)
is PS) THEN (S(is NB)
is PM) THEN (St is NB)
is PB) THEN (S, is NB)

The following rules are used to avoid an obstacle by tracking around its side:

Rules for Steering (Avoidance)

IF (DF is FarAway) AND (DL is Near) THEN (Sa is WeakTumRight)
IF (DF is Close) AND (DL is Near) THEN (Sa is MedTumRight)
IF (DF is VeryClose) AND (DL is Near) THEN (Sa is StrongTumRight)

IF (DF is FarAway) AND (DR is Near) THEN (Sa is WeakTumLeft)
IF (DF is Close) AND (DR is Near) THEN (Sa is MedTumLeft)
IF (DF is VeryClose) AND (DR is Near) THEN (Sa is StrongTumLeft)

IF (DL is Close) AND (DF is not VeryClose) THEN (Su is Centre)
IF (DR is Close) AND (DF is not VeryClose) THEN (Sa is Centre)

IF (DL is VeryClose) AND (DP is nol VeryClose) THEN (Sa is MedTumRight)
IF (DL is FarAway) AND (DF is not VeryClose) THEN (S„ is MedTumLeft)
IF (DR is VeryClose) ANI) (DF is nol VeryClose) THEN (S, is MedTumLeft)
IF (DR is FarAway) AND (DF is nol VeryClose) THEN (S, is MedTumRight)

Rules for Speed (Avoidance)

IF (DF2 is VeryClose) THEN (V, is ZZ)
IF (DF2 is Close) THEN (V, is PS)
IF (DF2 is Far) THEN (Va is PM)
IF (DF2 is VeryFar) THEN (Va is PM)

The following rules are used to weight K:
IF (DF is VeryClose) THEN (K is PB)
IF (DF is Close) THEN (K is PM)
IF (DF is FarAway) AND (DL is FarAway) AND (DR is FarAway) THEN (K is ZZ)
IF (DF is FarAway) AND (DL is Near) THEN (K is Near)
IF (DF is FarAway) AND (DR is Near) THEN (K is Near)
IF (DF is FarAway) AND (DL is Near) AND (DR is Near) THEN (K is ZZ)

105

The overall system is shown in figure 23 where the planner sends down the path

points to the navigator. The navigator relies on the pilot to control the robot by

reading the sensor information and determining the speed and steering angle that

should be sent to the drive unit to maintain the robot along the desired trajectory.

5. Results

To get the following experimental results, the robot was set in a series of different

surroundings. The physical environment was entered on the PC along with the

robots’ starting position. The robot was then given a destination point and the path

planner generated a path around any obstacles lying between the robots’ current

position and the destination point. This information was then sent to the robot which

duly followed this path if possible. The robot periodically updates the PC on its

current position and this information is reflected on the graphical screen in real time.

Some tests show what happens when the PCs environment was incomplete and did

106

not totally reflect the actual environment of the robot. In such cases a path was

planned through an uncharted obstacle and the results show the robots ability to

avoid it and get back onto the path.

Note that where the angle o f the robot relative to the path was large at the starting

point the oscillations along the path are greater because it takes the robot more time

to converge on the path as well as track it. This is the typical operation of a PI[72]

(Proportional and Integral) controller where the oscillations are centred around the

desired steady state output.

Figures 23 to 32 illustrate different situations within the robot’s environment

providing an insight into the operation of the planner and controller. The distance

between each grid line is one meter and the line segments representing the robot’s

width are also scaled accordingly. Thus each segment represents the robots’ position

and orientation taken at that instant in time. The centre o f a segment corresponds

with the centre o f the robot and the ends o f the segment correspond with the robot’s

left and right sides.

The orientation of the robot at the start was always set to zero and it can be seen that

in situations (fig 23 to fig 30) where the initial orientation o f the path from the robot

is less than about ninety degrees the controller converges on the path very quickly

with little or no deviation from the path. In fig 31 and 32 the initial orientation o f the

path from the robot is greater than ninety degrees so initially there are much greater

deviations around the path before the robot converges. The following picture shows a

typical situation where the robot must track an obstacle.

Figures 24 to 27 show situations where the obstacle avoidance part o f the controller

takes over completely from the path following controller. These situations occurred

where there were unexpected obstacles in the way o f the path. When the robot passed

the obstacles and the sensors detected nothing else in the way, control was returned

to the path follower and the robot converged on the path once again. Figures 24 and

26 illustrate what happened when rectangular objects were placed in the path o f the

107

path and Figure 27 illustrates the result o f a cylindrical object being placed on the

path. The other main point to note is that it can be seen that the robot slows down

slightly when going around an unexpected obstacle. This can be observed from the

proximity o f the points taken over constant time intervals.

Sample manoeuvre

108

Orl^ I Path I Qeno I Clenr | BMi* J

Figure 23: PathPlanuer and Fuzzy Controller in operation

G rid I P a th I .Pen*? I 1 Q^U J

Figure 24: Robot encounters an unmapped obstacle

109

i G r t r i . l P a t h 1 P f t n o I J X L s a . 'l J _ Q m * * 1

Figure 25: Robot encounters two unmapped obstacles

Figure 26: Robot encounters an unmapped obstacle

G r i t) I P a t h J O e n o I C l e a r [q u i t J

Figure 27: Robot encounters an unmapped obstacle

O i- ir t I P a t i - L j _ J B e n o I .C J«S < *cJ

Figure 28: Path Planner and Fuzzy Controller in operation

G r i d I P a t h I D a n o I _ C J g g > ~ 1 Q M * t)

Figure 29: PatliPlanner and Fuzzy Controller in operation

G r l t i I P a t h J P«3W?-1 Cleat- I Q u i t I

Figure 30: PatliPlanner and Fuzzy Controller in operation

112

P i - i d I P a t h I O P n o I e t a ?

Figure 31: Initially the Robot was offset a t 145° from the direction of the path

Figure 32: PathPlanner and Fuzzy Controller in operation

113

6. Conclusions

The path planner works very well in normal situations and is very quick at finding a

solution even when there are a large number o f obstacles in the room. This is because

it need only concern itself with the obstacles that lie in the path o f the robot and its

destination. There are situations where the planner cannot be used. The algorithm

breaks down when used in a maze and it is not possible to extend its use to this area

because the algorithm becomes meaningless when dealing with situations where

there may only be one object consisting of a spiral.

Attempts were made to extend the use o f this planner to situations where it would

normally break down. Obstacles lying too close together, preventing safe passage of

the robot were merged into one. During planning if the centroid o f an obstacle was

found to be on the path, the path was pushed away from the centroid in a direction

chosen at random. However the algorithm would not be suitable for use in a

commercial vehicle because o f its inability to deal with the situations outlined earlier.

The robot would have greater autonomy if the planner was run on the robot. Though

more modifications are also necessary. The robot should contain a map o f the local

environment that is constantly updated by the sensors so that the robot can correlate

its actual position with the calculated position from the shaft encoders. It would do

this by comparing the global map to the local map until an optimal match is found.

Using this infonnation the robot can correct any errors that occur from relying on the

shaft encoders over long periods o f time. This process must be run regularly in the

robot. This procedure emphasises the importance of suitable sensors.

If ultrasonic sensors are used, an array o f twelve to sixteen sensors is common on

many systems. The sensors should be long range to give the robot adequate warning

o f some hindrance to its safe passage. The Tag robot had only three ultrasonic

sensors with a maximum possible range of two and a half metres. The sensors had

reduced accuracy when tuned to this maximum range. This is unsatisfactory to

114

maintain a knowledge of the robots local domain, as possible landmarks will most

likely be out of range.

The large number o f sensors required is twofold. First enough must be present to

reduce the errors inherent from using ultrasonic sensors. Secondly a commercial

robot will not have the time to travel a path at leisure. Reading huge quantities o f

information about the surrounding environment to reduce errors using one sonar

sensor is a time consuming process. Information must be readily available through

the use o f a large number of sensors. This allows a robot quick access to information

on the surrounding environment in all directions. Other systems use one ultrasonic

sensor which is rotated to fmd information on the surrounding environment. The

robot is stopped while this information is being scanned. This procedure is too slow

and information is available in only one direction at any given time.

Acquiring information on the surrounding environment has also another purpose

apart from obstacle avoidance and position estimation. I f a corridor is blocked

another route must be found if one is available. The fuzzy controller will fail to pass

the obstacle because there is no way through, so the planner must be run again. Thus

the global map should be updated with this new information about the environment

so that it will not consider the present corridor as a possible route. It is therefore clear

that a local map is necessary for effective autonomy and that the quantity and quality

o f sonic sensors - when used, is an important issue.

The fuzzy logic controller turned out to be easy to tune and worked extremely well. It

converged quickly on the path and circumvented the need for developing detailed

mathematical models and equations to control the robot. The controller is also easy to

extend or modify for different situations. It was possible to design the controller in a

modular manner. Modules that performed different functions (e.g. for obstacle

avoidance) could be written individually without worrying about what another

module was doing. Each module could then be weighted or chosen as was

appropriate to be part o f the final output. Choosing the rules for the controller turned

out to be straightforward as it was possible to translate ones own understanding of

115

the problem into a list o f rules covering possible situations. The rules were possible

to design in a tabular manner which made the process o f design a relatively quick

exercise.

116

Chapter 6

Conclusions

1. Research Summary
Fuzzy logic proved to be an easy and effective method for constructing a controller

for the pilot. It provided a means to circumvent the ‘necessity’ o f deriving a

mathematical model of the desired controller which can be time consuming and

difficult. The controller was designed quickly and once the rules were established,

tuning them to improve the results was the only part o f the entire procedure which

involved testing on a trial and error basis.

The path planner turned out to have a number o f problems. It did not necessarily

work where an object displayed a high degree o f concavity. W arren’s paper states

that the algorithm will not work for maze type obstacles. This was one o f the

problems encountered and the reason it fails is due to the fact that such obstacles

end up with the centroid being calculated to be outside o f the obstacles’ perimeter,

thus rendering the algorithm useless. The other problem arose from the merging of

two concave obstacles. This is necessary in cases where their close proximity

would prevent the robot from passing between them. In such circumstances the

merged object is not entirely concave and one can end up with the centroid again

being calculated to be outside the obstacle. The planner was extremely quick when

it did provide a solution but is not acceptable for a commercial application because

o f the potential of running into an infinite loop should it encounter a local minima.

The algorithm is therefore limited in it’s use because it is not possible to rectify the

problem except perhaps detect when a minima has occurred. A great deal o f time

was spent trying to increase the capabilities o f this algorithm and should further

attempts be made towards increased functionality, the programmer runs the risk o f

losing the initial advantage o f the algorithm which aims at a fast solution to the

path planning problem.

The ultrasonic sensors used in this development had low range and poor resolution

and it became apparent that the ultrasonics were more suitable as backup sensors

117

for the avoidance of obstacles rather than for use with position estimation. The

infra-red sensors had a low range, designed only to compensate for the blind-zone

o f the sonar sensors. As such it was not possible to fuse information in a manner

that would correct the sonar readings at longer ranges.

Any attempt at removing the erroneous data from a sensor map which is derived

from sonar readings, involves alot of computation and the data will still be

uncertain as it isn’t possible to remove the possibility o f specular reflections

causing incorrect readings. Moreover there is only limited time available to take

the readings as the robot negotiates it’s way along the path and therefore a sparse

map can result that requires intensive computation to reduce the noise. The use o f a

stereo vision system means a high degree o f computationally expensive processing

will be required to extract the required information. The hardware required for

such a system is also more expensive than for other sensors. Lasers can provide

sufficient information from the environment with very little pre processing

required to obtain an estimate o f the position. The problem with these sensors is

that for long distances a high power laser would be needed. High powered laser

sensors are very dangerous to a persons eyes with the glare from such a sensor

being enough to cause serious damage. This limits their use to fairly small

distances. It would therefore seem that a reasonable approach for acquiring

information from the environment is to use an array o f twelve or more high quality

ultrasonic sensors combined with infra-red sensors o f similar range. The fusion of

information between the two helps complement the weaknesses o f both.

The control used should be hierarchical, distributed or perhaps a combination o f

the two depending on the nature o f the project and the long and short term goals to

be achieved. Subsumption architecture was used by Brooks to redefine the

approach taken to autonomous vehicles which was subsequently used by

Connell[37] and Stoney et al[14]. Connells’ implementation was very simplistic

however, demonstrating it’s ability to collect cans. His implementation used path

remembering to return to the base which was far too simplistic to be suitable for

anything other than a demonstration. Stoney’s attempt was more convincing. There

118

has been further development in this area with subsumption being used to plan

paths. However this method inevitably falls into the same trap as the potential

fields approach when no global search method is used for path planning, resulting

in the robot travelling down box canyons in an effort to fmd it’s destination.

2. Conclusions

Overall it became clear that fuzzy logic was useful where the control o f robots is

concerned. Designing a rulebase was relatively straightforward and proved even

easier to tune. The fuzzy controller was successful at following a defined path and

at avoiding obstacles. It enabled the robot to make it successfully back to the path

after it had been forced off it by some obstacle unknown to the planner.

The sensors on this robot were not o f the quality necessary to accurately get an

idea o f what type o f obstacle was surrounding it. The planner would not have the

ability to readily make use o f this information because it would need to be able to

deal with uncertain data. Because o f the drawbacks associated with the planner, it

is not suitable for use in a commercial environment. It is difficult to fmd a medium

between a planner that works well with uncertain data and one that works

efficiently, because inevitably if the inputs are uncertain, there is the need for vast

quantities o f data to reduce the uncertainty o f the surrounding environment. It is

better to combine different types of sensors that can remove a good deal o f the

uncertainty which means that there is less need for intensive processing.

The fuzzy controller was adept at utilising uncertain data to avoid obstacles but

there is room for further research into a planner that would fit into this

implementation more effectively. The planner should be able to integrate new data

into a map o f the environment should the need for re-planning occur. It could also

be used to facilitate the robot in determining its whereabouts within the

environment, with a view to correcting any drift that occurs with the dead

reckoning system.

119

Bibliography

[1] The Huntington Group Technical Report; IEEE Control Systems '91

[2] Fuzzy Logic in C; Greg Viot, Dr. Dobb’s Journal, February '93

[3] Fuzzy Logic and it’s applications; Dr Jun Yan, D.C.U., Computer

Applications, '92

[4] Fuzzy Logic; D P Burton & G M Lyons, University o f Limerick, 17th

December '93

[5] Intelligent identification and control for autonomous guided vehicles using

adaptive fuzzy-based algorithms; C. J. Harris & C. G. Moore, Eng. Appli.

o f AI, Vol. 2, December '89

[6] Neural Networks & Fuzzy Systems; Bart Kosko, Prentice Hall '92

[7] Automated calibration of a fuzzy logic controller using a cell state space

algorithm; Samuel M. Smith & David J. Comer, IEEE Control Systems '91

[8] A practical guide to tune fuzzy controllers; Li Zheng, IEEE '92

[9] Fuzzy logic strategies to control an autonomous mobile robot; Ricardo

G arcia Rosa & M aria C. Garcia-alegre, Cybernetics and systems: An

International Journal '90

[10] Comparison of fuzzy and neural truck backer-upper control system; Seong-

Gon & Bart Kosko, University of Southern California '92

[11] Fuzzy rule-based motion controller for an autonomous mobile robot; M.

Kemal Ciliz & Can Isik, Robotica '89, vol. 7, pp 37-42

[12] Highly reliable automated guided vehicle control with fuzzy inference;

Tsuneo Tsukagoshi, Hiroo Wakaumi, NEC Res. & Develop., Vol. 32, No.

2, April '91

[13] A Robust Layered Control System for a Mobile Robot; R. Brooks, IEEE

Journal of Robotics and Automation, RA-2, April '86, pp. 14-23

[14] An Autonomous Mobile Robot Control System using Subsumption

Architecture; G. Stoney, C. R. Drone, J. Leaney, B. Walker, D. Semler,

School o f Electrical Engineering, University o f Technology, Sydney,

Australia, '91

[15] Solving the find-path problem by good representation o f free space; IEEE

transactions on System, Man, and Cybem., SMC Vol. 13, No. 3, '83

[16] Path planning and Environment Learning in a Mobile Robot System; Raja

Chatila, Proc. o f the European Conference on AI, Orlay, France, July '82

[17] Navigation o f a car-like mobile robot using a decomposition o f the

environment in convex cells; Hubert A. Vasseur, Frangois G. Pin, Jack R.

Taylor, IEEE Proc. of the International Conference on Robotics and

Automation, Apr. '91

[18] Planning a smooth path for autonomous vehicles using primary convex

regions; Akira Hayashi, Benjamin J. Kuipers, Dept, of Computer Sciences,

The University o f Texas at Austin

[19] Natural Decomposition of free space for path planning; R. Brooks, J.

Zamiska, D. T. Kuan, IEEE '85

[20] Automatic planning of Manipulator Transfer Movements; Thomas Lozano-

Perez, IEEE Trans, on Sys., Man and Cybem., Vol. SMC-11, No. 10,

Oct. '81

[21] Robot Rover Visual Navigation; H. Moravec, UMI Research Press, Ann

Arbor, Michigan '81

[22] Mobile Robots; G. Giralt, Robotics and AI, NATO ASI Series '84, Vol.

FI l , p p 365-393

[23] Navigation for an intelligent mobile robot; J. Crowley, IEEE Conf. on

Applications of AI, Dec. '84

[24] Potential Field Methods and their inherent limitations for mobile robot

navigation; Yoram Koren, Johann Borenstein, International Conference on

Robotics and Automation, IEEE Proceedings April '91

[25] The Application o f Continuum Methods to Path Planning; C. Buckley,

Stanford Univ., Dept, of Mechanical Engineering, Ph. D. thesis '85

[26] Integrated path planning and dynamic steering control for autonomous

vehicles; B. H. Krogh, C. Thorpe, Proceedings o f the IEEE International

Conference on Robotics and Automation, CA, Apr. 7-10, '86,

pp 1664-1669

[27] Planning Strategic paths through variable terrain data; J. Mitchell, D.

Keirsey, Proceedings o f the SPIE Conference on Applications o f AI, VA,

May '84

[28] Path Relaxation: Path Planning for a Mobile Robot; C. Thorpe, National

Conference on AI, Austin Texas, Aug. 8, '84

[29] Multi-Goal Real-Time Global Path Planning for an Autonomous Land

Vehicle using a high speed graph search processor; A. M. Parodi, IEEE '85

[30] Visual algorithms for Autonomous Navigation; Fred P. Andresen, Larry S.

Davis, Roger D. Eastman, Subbarao Kambhampati, IEEE '85, Computer

Vision Lab., Centre for Automation Research, University o f Maryland

[31] Generalising the Hough Transform to detect arbitrary shapes; D. Ballard,

Pattern Recognition, 13, 111-122, '81

[32] Parallel Analogue Computation for Real-Time Path Planning; Lionel

Tarassenko, Gillian Marshall, Alan Murray, Felipe Gomez-Castaneda,

VLSI for Artificial Intelligence and Neural Networks, New York, '91

[33] A Hierarchical-Orthogonal-Space approach to collision-free path planning;

E. K. Wong, K. S. Fu, IEEE '85

[34] Octree Generation from silhouette views o f an object; Jack Veenstra,

Narendra Ahuja, IEEE Journal o f Robotics and Automation, Vol. RA-2,

No. 1, Mar. '86

[35] Dynamic world modelling for an intelligent mobile robot using a rotating

ultra-sonic ranging device; James L. Crowley, IEEE '85, The Robotics

Institute, Camegie-Mellon University, Pittsburgh, Pennsylvania

[36] Blanche- An experiment in Guidance and Navigation of an Autonomous

Robot Vehicle; Ingemar J. Cox, IEEE Transactions on Robotics and

Automation, Vol. 7, No. 2, Apr. '91

[37] Navigation by path remembering; Jonathan Connell, SPIE Vol. 1007

Mobile Robots III '88

[38] Simulation o f Path Planning for a system with Vision and Map Updating;

E. Koch, C. Yeh, G. Hillel, A Meystel, C. Isik, IEEE '85

Collision Avoidance by a Modified Least-Mean-Square-Error

Classification Scheme for Indoor Autonomous Land Vehicle Navigation;

Ling-Ling Wang, Journal o f Robotic Systems '91

Mobile Robot Path Planning in Dynamic Environments; J. P. H. Steele, G.

P. Starr, Proc. IEEE Int. Conf. Systems, Man, Cybernet., Beijing and

Shenyang, China, '88

Kinematic modeling for feedback control o f an omnidirectional wheeled

mobile robot; Patrick F. Muir, Charles P. Neuman, '87 IEEE, Dept, o f

Electrical and Computer Eng., The Robotics Inst., Camegie-Mellon

University, Pittsburgh

A Perspective on range finding techniques for computer vision; R. A.

Jarvis, IEEE Trans. Pattern Anal. Machine Intell., Vol. PAMI-5, Mar. '83

Ultrasound in Medical diagnosis; G. B. Devey, P. N. T. Wells, Sci. Amer.,

Vol. 238, May '78

Ultrasonic range finders; Polaroid Corporation '82

An integrated navigation and motion control system for autonomous

multisensory robots; G. Giralt, R. Chatila, M. Vaisset, 1st International

Symp. Robotics Research, Cambridge, '84

Locating object surfaces with an ultrasonic rangefinder; M. K. Brown,

Proc. IEEE Int. Conf. Robotics and Automation, St. Louis, MO, Mar. '85

Combining Sonar and infrared sensors for mobile robot Navigation; A M.

Flynn, The International Journal o f Robotics Research, Vol. 7, No. 6,

Dec. '88

Survey o f Automated Guided vehicles in Japanese factory; T. Tsumura,

Proc. IEEE Int. Conf. Robotics and Automation, '86, pp. 1329-1334

Experiments and thoughts on Visual Navigation; C. Thorpe, L. Matthies,

H. Moravec, Camegie-Mellon Univ., IEEE '85

Accurate Position Estimation for an Autonomous Mobile Robot fusing

shaft encoder values and laser range data; Thomas Edlinger, Ewald von

Puttkamer, Rainer Trieb, Computer Science Dept., University of

Kaiserslautern, Erwin-Schroedinger-StraPe, Germany

[51] An Autonomous Guidance system for a self-controlled vehicle; Hideo

Arakawa, Takero Hongo, Gunji Sugimoto, Koichi Tange, Yuzo Yammota,

8th Jul. '86, IEEE log No. 8611671

[52] A spatial representation system for mobile robots; C. Miller, Proc. IEEE

Int. Conf. Robotics and Automation, St. Louis, MO, Mar. '85

[53] Mobile robot localisation using sonar; AI Lab, Mass. Inst. Technol., AI-M-

826 ,Jan '85

[54] Towards Autonomous Vehicles; H. P. Moravec, Robotics Research

Review, The Robotics Inst., Camegie-Mellon University, Pittsburgh, '85

[55] Outdoor scene Analysis using range data; M. Herbert, T. Kanade, Proc.

IEEE Int. Conf. Robotics and Automation, San Francisco, CA,

Apr. 7-10, '86

[56] Integration of Sonar and Stereo range data using a grid-based

representation; A. Elfes, L. H. Matthies, IEEE International Conference on

Robotics and Automation, pp. 727-733, '88

[57] A Non-Deterministic approach to 3-D Modelling Underwater; W. K.

Stewart, 5th Symposium on unmanned untethered Submersible Technology,

Univ. o f New Hampshire, June '87

[58] Obstacle avoidance using 1-D Stereo Vision; B. Serey, L. H. Matthies,

CMU Robotics Institute Report, Nov. '86

[59] Sensor Integration for Robot Navigation: Combining Sonar and Stereo

Range Data in a Grid-Based Representation; IEEE Decision and Control

Conference, Los Angeles, CA, Dec. '87

[60] The Curvature Primal Sketch; J. M. Brady, MIT AI Lab Memo 758, '84

[61] Experience with Visual Robot Navigation; L. H. Matthies, C. E. Thorpe,

Proc. IEEE Oceans, Washington, D.C., August '84

[62] The Stanford Cart and the CMU Rover; Proc. IEEE, Vol. 71, Jul. '83

[63] The Technology Applications Group; Bolams Mill, Dispensary St.,

Alnwick, Northumberland

[64] A Vector Based Approach to Path Planning; Charles W. Warren, IEEE

Proceedings, April '91

[65] Solving the Two-Dimensional Findpath Problem using a Line-Triangle

Representation o f the Robot; B. K. Bhattacharya, J. Zorbas, Journal o f

Algorithms 9, pp 449-469, '88

[66] Computer Control o f Wireless links; Jan Axelson, Microcomputer journal,

March/April '94

[67] Ramsey Electronics; 793 Canning Pkwy, Victor, NY 14564

[68] A Study of Mobile Robot Motion Planning; Bang Wang, 1994

[69] The Development o f a Simulator for an Autonomous Mobile Robot; Keith

Daly, 1995

[70] Calculus A Complete Course, 3rd edition; Robert A. Adams

[71] Modern Calculus and Analytic Geometry; Richard A. Silverman

[72] Control Systems Engineering & Design; S. Thompson

Appendix A

Communication Link

The wireless link sends data at 1,200 bits per second (bps). The transmitter’s range

is up to one quarter o f a mile. On the transmit side, a modem chip receives the

computer’s digital data and converts it into audio tones. The transmitter is a low-

cost stereo broadcaster, built from a kit, that frequency-modulates the tones onto a

carrier frequency in the FM broadcast band. On the receive side, an ordinary FM

radio detects the carrier, extracts the audio tones and makes them available at an

earphone jack. A second modem chip translates the tones back into digital data for

the receiving end. With two sets o f transmitters and receivers, each tuned to a

different frequency, it was possible to send and receive at the same time, for full-

duplex communications. One advantage o f using FM is that the FM receivers tend

to automatically select the strongest signal and reject weaker interfering signals.

Theory o f Operation

Shown in Fig. 1 is a block diagram o f one end of the link. The other end contains

identical components but is tuned to complementary transmitting and receiving

frequencies. The transmitting computer sends the data to its’ serial port. The PC

can be any computer that has an asynchronous RS-232 serial port that transmits at

300 or 1,200 (bps). A MAX232 chip translates the RS-232 potentials into 5-volt

logic levels. An AMD 7910 modem chip encodes the voltages as sine waves, with

different frequencies that represent Is and 0s.

Figure 1: Block diagram of one end of the wireless link.

1

The FM transmitter sends the sine waves to a receiver tuned to the transmitter’s

carrier frequency. The receiving modem converts the tones back into digital data,

and a second MAX232 chip converts the data to RS-232 voltages for the receiving

end. The conversion of digital data into audio tones before transmission called

frequency shift keying (fsk), is an important feature o f this transmitter. The reason

is that the stereo transmitter, and the FM broadcast band it uses, are intended for

transmitting audio frequencies which consist o f sine waves at 15 KHz or less. The

modem’s output falls within this band.

Binary
Digits

Digital
Voltages

FSK
Voltages

I t I I I I
I i I i I Ji I I I I I

R M R J U I A M J I R R A JI t r i i I I i l I II I I I

Figure 2: Frequency-shift keying (FSK) encodes binary data as frequencies, with different
frequencies representing 0 and 1.

In contrast, a 1200 bps digital transmission consists o f square pulses that are made

up o f sine waves o f many different frequencies (the Fourier series shows the

different components), many much greater in frequency than the 1,200 bps

transmission rate. Fig. 2 shows how fsk works when converting digital data to

sinusoids or vice versa. The modem chips also provide a means o f detecting the

transmitted tones and reject noise and interference that the receiver may pick up.

The transmitter uses a special BA1404 stereo transmitter chip, that contains a

stereo modulator, FM modulator and r-f amplifier. The transmitter used [66] [67] is

one o f many low power FM transmitters on the market. But as opposed to some

others that were tried during the course of this thesis, this one was able so stay on

frequency without drifting after a few minutes. A walkman, used as a receiver is

tuned into the appropriate frequency and an Am7910 is used for the modem chip.

For transmitting at 88 to 108 MHz, a %-wave antenna would range from 27 to 34

2

inches in length. In this case an antenna of one meter was used. Transmission was

at 1,200 bps. The carrier frequencies were at 88 Mhz and 101 Mhz. There were a

number o f other possible frequencies that could be used each one having a 200

Khz bandwidth and 25 Khz guard bands.

3

Appendix B

Fuzzy Controller Membership Functions
Dr Df Dl

K

Df2

1

D

Vt Va

2

s t
NB NM NS ZZ PS PM PB

Sa
StrorigTumRighl MetfTumRfght WeafcTumRiQlii Center WeakTumLeft MedTumLeft StronqTumLeft

3

Appendix C

Software for the Planner, Navigator and
Communication link

/* */
/* HEADER FILES FOR ROBOT SOFTWARE */
/* */

Header : d6int.h
Function: The addresses for the configuration of serial port

(muart) of the robot

#ifndef D61NT

#define D6INT

/* 8626 MUART registers */
#define MUART
//define MUARTCOMM1
#define MUART_COMM2
#defme MUART_COMM3
//define MUARTMODE
#define MUART_P 1_CTRL
#define M U ARTJNT_EN A BLE
#defme MUART_SET_INT
#define MU ART_R ESET1NT
#define MUART_COMPORT
#define MUART_P1
#define MUART_P2
#define MUART_T1
#define M UARTT2
//define MUART_T3
#define MUART_T4
#define MUART T5
#define MUART STAT

0
(MUART * 2)
((MUART + 1) * 2)
((MUART + 2) * 2)
((MUART + 3) *2)
((MUART + 4) * 2)
((MUART + 5) *2)
MUART INT ENABLE
((MUART +
((MUART +
((MUART +
((MUART +
((MUART +
((MUART +
((MUART +
((MUART +
((MUART +
((MUART +

6) * 2)
7) *2)
8) *2)
9) *2)
10) * 2)
11) * 2)
12) * 2)
13) * 2)
14) * 2)
15) * 2)

#defme comport MUART COMPORT

#defme TRUE
#define FALSE

#define tx_ints_on() outportb(MUART_INT_ENABLE,THREINT);

/* Two serial port macros */
#defme xmit_ready()
#define byte_ready()

(inportb(Oxle) & 0x20)
(inportb(Oxle) & 0x40)

/* The 80188 PIC */
#define INTI
#define EOI

0xff3a
0xFF22

#defme BAUD_96
#defineBAUD 12

0x04
0x07

1

typedef struct queue
{

int count;
int front;
int rear;
int maxsize;
unsigned char *data;

} QUEUE;

#endif

Header : ada.h
Function: The addresses of the analog to digital and

digital to analog ports

#ifndef ADA

#define ADA
0x40E0
0x4FE0
0x4 2C0

#define BOARD 1
//define BOARD2
#define BOARD3

#define
#define
#define
#define
#defme
//define
#define
#define

DAC1
DAC2
DAC3’
DAC4
DAC5
DAC6
DAC7
DAC8

PORT
PORT
PORT
PORT
PORT
PORT
PORT
PORT

0x40E8 /* Board no + dacl or dac2 */
0x40E9
0x4FE8
0x4FE9
BOARD3+0 /* 0x42C0 */
BOARD3+2 /* 0x42C2 */
BOARD3+4 /* 0x42C4 */
BOARD3+6 /* 0x42C6 */

#defme
#define
#define
#define
#defme
//define
//define
//define
//define
//define
//define
//define
//define
//define
//define
//define

CHANNELJ
CHANNEL_2
CHANNEL3
CHANNEL4
CHANNEL_5
CHANNEL_6
CHANNEL_7
CHANNEL_8
CHANNELS
CHANNEL_10
C H A N N E L ll
CHANNEL12
CHANNEL_13
CHANNEL14
CHANNEL15
CHANNEL 16

0x08 /* Mux_no (1-2) + Channel no (0-7) */
0x09
OxOA
OxOB
OxOC
OxOD
OxOE
OxOF
0x10
0x11
0x12
0x13
0x14
0x15
0x16
0x17

//define MUX_OFF_ADR OxOOOA
//define EOC 0x80

#endif

Header : sensors.h
Function: sets up the structure to contain all the sensor

information

#ifndef SENSDATA

#defme SENSDATA

struct sens{
unsigned char Leftultra;
unsigned char Leftinfra;
unsigned char Lefttouch;
unsigned char Front_ultra;
unsigned char Front infra;
unsigned char Front touch;
unsigned char Right_ultra;
unsigned char Rightinfra;
unsigned char Right touch;

};

struct motors {
unsigned charrff;
unsigned char rfr;
unsigned char Iff;
unsigned char lfr;

};

#endif

/ * . = ^ . = . = . = . = . = . = . = . = . = . = - = - = . = . = . = . = . = . = - = ^ . = . = ^ . = - = - = - = - = - = - = - = - = - = - = - =

Header : packet.h
Function: sets up the variables used in setting up a packet

#ifhdef PACKETS
#define PACKETS

#defme DOWNLOADPATH OxFl
#define DOWNLOAD_MAP 0xF2
#defme DOWNLOAD MOTORS 0xF3
#define RQST SENSOR INF 0x03
#define ACKNOWLGE 0x01
#define SEND AGAIN 0x02
#defme PKT SIZE 1024
#defme DLE 0x10
#define STX 0x02
#define RETRY 4000
typedef struct __packet
{

unsigned char type;
unsigned int count;
unsigned char data[PKT_SIZE];
unsigned int checksum;

} PACKET;
#endif

3

Header : pic.h
Function: sets up the addresses and values used to access and

program the PIC

//ifndef PIC

//define PIC

#define COUNT 10
#define PIC MASK 0xff28
#define TIMEROCNT 0xFF50
//define TIMERO CONTR 0xFF56
//define TIMERO COUNT 0xFF52
//define TIMER 1 CNT 0xFF58
/fdefine TIMER 1 CONTR 0xFF5E
//define TIMER I COUNT 0xFF5A

//endif

Header : fuzzy.h
Function: sets up the prototypes for the fuzzy control program

//include "lilcomp.h"

//ifndef FUZZY_LOGIC

//define FUZZY_LOGIC

struct _UBY_b_point { UBYTE x; FUBYTE y ; };

struct _SBY_b_point { SBYTE x; FUBYTE y ; };

struct _SWO_b_point { SWORD x; FUBYTE y ; };

void Controller (SWORD A, SBYTE D, UBYTE Df, UBYTE Dl, UBYTE Dr, FLOAT *K,
SBYTE *Sa, SBYTE *St, UBYTE *Va, UBYTE *Vt);

//endif

4

Header : proto.h
Function: function declarations

#include "fuzzy.h"
#include "tilcomp.h"
#include "sensors.h"

#ifndef PROTO
#define PROTO

double toradians(double d);
void initialisations(void);
int get_pkt(void);
void download_sensors(void);
void load motors(void);
void test_controller(void);
void comm_init(unsigned char);
void load_path(void);
void loadmap(void);
void init_arrays(void);
void initar(void);
void controlmotors(void);
void test_controller(void);
int fiidncarstseg(void);
void calc_motor_value(float S,unsigned int *lmotor,unsigned int *rmotor);
void updateposn(float *Xold, float *Yold);
void getangleA(SWORD *A, float Xold, float Yold);
void LeftorRight_disD(int *left, int *right, SBYTE *D);
void send motors(struct motors * motorvals);

int room_on(QUEUE *q);
int data_on(QUEUE *q);
static void put_on(QUEUE *, unsigned char);
static unsigned char get_from(QUEUE *);
void set_vector(unsigned int, void interrupt (*isr) ());
void comm_initl(unsigned char baud, int rxqsize, int txqsize);
int cinc(int x, int y);
int cincr(int x, int y,int incr);
static void interrupt tx_handler(void);
static void interrupt rx_handler();
void interrupt pic ldist();
void interrupt pic_rdist();
void distanceints(void);
static void put_on_pkt(unsigned char c);
void send(unsigned char type);
void loadrpkt(QUEUE *rxq);
int pktinteg(void);
void transmit(unsigned char);
int checkforpkt(QUEUE *rxq);
int headr(void);
static void pkt initl(void);
static unsigned char read fromfQIJEUE *q, int *front);

/* external read routine in sens.c and motors.c */
extern void read_sens(struct sens *);
extern void motor(unsigned int c,unsigned int dac_port);
#endif

5

/* The ROBOT SOFTWARE */
/* robot.c */
/* This downloads the path + envimment map from */
/* the PC to the robot and runs the fuzzy controller */

#include <dos.h>
#include <stdlib.h>
//#include <conio.h>
//#include <alloc.h>
#include "d6int.h"
#include "pic.h"
#include "packet.h"
#include "ada.h"
#include "sensors.h"
#include "proto.h"
#include "fuzzy.h"
#include "tilcomp.h"

const unsigned THREINT = 0x20;
const unsigned RXQ SIZE = 1024;
const unsigned TXQ SIZE = 1024;
const unsigned RX_INT = 0x10;
const unsigned RX_INT_VECTOR = 0x44;
const unsigned TX INT VECTOR = 0x45;

static const unsigned M O D E 8O86 = 0x02;
static const unsigned FRQ_1 KHz = 0x01;

static const unsigned COMM3 SET = 0x80;
static const unsigned RXENABLE = 0x40;
static const unsigned INT_ACK = 0x20;
static const unsigned NESTED_INT_ENABLE = 0x10;
static const unsigned MUART MODIFICATION = MUART_STAT;

static QUEUE rxvq, *rxq = &rxvq;
static QUEUE txvq, *txq = &txvq;
static PACKET tpkt,rpkt;

volatile static unsigned int rightdist=0,leftdist=0;

#define MAXPATHLEN 200
//define X^ROW 0
#defineY_ROW 1
#defme MAX_LEN 40
#define MAXOBJS 25

#define W 0.205
#define PI 3.14159
#defme R_TO_D 57.29578
#defme WheelRadius 0.015
#define NUMSEG 3.0

static struct motors motor vals;
struct sens sensors;

6

typedef struct obj
{

int type;
unsigned int numpoints;
unsigned int points[2][MAX_LEN];

} OBJ;

OBJ map[MAXOBJS];

//extern void init_cios(void);
int numpoints=0;
float V=0.0;
float Xn=0.0,Yn=0.0,quita=0.0;
int cur=0,avoidance=0;
FLOAT K=0.0,K_OLD=0.0;

static unsigned int ppath[MAXPATHLEN][2];

Routine: main
Function : Initialise everything and constantly check for any

requests coming from the PC
. = . M - = - = . = . = - = . = . ^ = . = . = ^ ^ = - = - = . = - = . = . = . = . = . = ^ - = ^ = - = . = . = . = . = . = . = . = * /

void main(void)
{

initialisations();
II init_cios();
while(1)
{

get_pkt(); /* listen for packets */
mn_controller(); /*will only run if the robot is following a path */

}

void run_controller(void)
{

Xn=ppath[cur] [X_ROW];
Y n=ppath[cur] [Y_ROW];
Xn=Xn/10.0; // convert to meters
Yn=Yn/10.0;

while (cur<numpoints-l) /* While the robot hasnt reached its destination */
{

if (sqrt(((((noat)Xn* 10.0)-(noat)ppatli[cur+1][X_ROW])*(((float)Xn* 10.0)-
(float)ppath[eur+1] [X_ROW])) + (((Yn*10.0)(float)ppath[cur+l][Y_ROW])'ft
(({float)Yn*10.0)-{float)ppalh[cur+l]fY_ROW]))) < 2 .0)

cur++;
else if(sqrt{ ((((float)Xn*10.0)-(float)ppath[cur+l][X_ROW])*(((float)Xn*10.0)-

(float)ppath[cur+1] [XROW])) + (((Yn*10.0) -
(float)ppath[cur+l][Y_ROW])*(((float)Yn*10.0)-
(float)ppath[cur+1][Y_ROW]))) < \

7

sqrt(((((float)Xn*10.0)-(float)ppath[cur][X_ROW])*(((float)Xn*10.0)-
(float)ppath[cur][X_ROW])) + (((Yn*10.0)-
(float)ppath[cur][Y_ROW]) * (((float)Yn*10.0)-
(float)ppath[cur] [Y_ROW]))))

{
if (sqrt(((((float)Xn* 10.0)-(float)ppath[cur][X_ROW])*(((float)Xn* 10.0)-

(float)ppath[cur][X_ROW])) + (((Yn*10.0)-
(float)ppath[cur][YJROW]) * (((float)Yn*10.0)-
(float)ppath[cur][Y_ROW]))) > \

sqrt(((((float)ppath[cur+1] [X_RO W])-(float)ppath[cur] [X_ROW]) *
(((float)ppath[cur+1] [X_RO W])-(float)ppath[cur] [XROW]))+
(((ppath[cur+l] [YROW]) -(float)ppath[cur] [Y_ROW])*
(((float)ppath[cur+1] [Y_ROW])-(float)ppath[cur] [Y ROW]))))

cur ++;
}
if (cur >= (numpoints-1))

break;

if (avoidance == 1)
{

cur = fndnearstseg(); // Find the nearest path segment to the current position
if (K<0.4)

avoidance=0;
}
test_controller(); /* One cycle of fuzzy logic controller */
get_pkt(); /* want to listen for packets when following a path */
delay(200);

}
stop_motors();

}

Routine: test_controller
Function : Processes the input parameters for the fuzzy logic

controller calls the fuzzy controller and then processes
the outputs and sends them to the motors

void test_controller(void)
{

SBYTE Sa=(SBYTE)0;
SBYTE St=(SBYTE)0;
UBYTE Vt=(UBYTE)0;
UBYTE Va=(UBYTE)0;

SWORD A=0;
SBYTE D=(SBYTE)0;

float Xold=0.0, Y old=0.0,S=0.0;
int left=0,right=0,flag=0;
unsigned int lmotor=0,rmotor=0;
static unsigned int rightultra=0,leftultra=0;

read_sens(&sensors); /* Get the info from the sensors */
rightultra = (unsigned int)sensors.Right_ultra;
leftultra = (unsigned int)sensors.Left_ultra;
K O L D = K;

updateposn(&Xold,&Yold);
LeftorRight_disD(&left,&right,&D);
getangleA(&A,Xold,Yold);

if (K > 0.6) // Check for avoidance
{

if((A>40) || (A<-40))
avoidance = 1;

}

/* process the input for the controller */

/* Call the fuzzy logic controller */

Controller (A, D, sensors.Frontultra, sensors.Leftultra, sensors.Rightultra, \
&K, &Sa, &St, &Va, &Vt);

/* process the output for the controller */

V = (1.0-K)*(float)Vt + K*(float)Va;
S = (1.0-K)*(float)St + K*(float)Sa;

calc_motor_value(S,&lmotor,&rmotor);

m otorvals ,rff=(unsigned char)rmotor;
motor_vals.rfr=0x00; /* reverse right disabled when going forward */
motor_vals. lff=(unsigned char)lmotor;
motor_vals.lfr=0x00; /* reverse left disabled when going forward */
send_motors(&motor_vals); /* Output results to motors */

j^ i :ji * * * * * H* H« * * * ^ * * * H* * * * * # * H« * * H< * * * * * * ^ * * * * ^ * * * # + * # * * * *

/* end process the output for the controller */

void calc motor_value(float S,unsigned int *lmotr,unsigned int *rm otr)
{

float m=0.0,sigm=0.0;
unsigned int rmotor=0,lmotor=0;

// convert outputs to motor values
m = 30.0/53.0; // (0x55-0x20)(max velocity)/(active voltage range incl zero vel)

// incorporate velocity into o/p
lmotor = V/m + 0x20;
rmotor = V/m + 0x20;

9

sigm = 48.0/85.0*S; // (0x55-0x25)(active voltage range)/85(active steering range)
if(S > 0) // incorporate steering into o/p
{

rrnotor = rmotor + sigm/2.0;
lmotor = lmotor - signi/2.0;
if (lmotor > 0x55)
{

rmotor = rmotor - (lmotor - 0x55);
lmotor = 0x55;

}
else if (rmotor < 0x20)
{

lmotor = lmotor + (0x20 - rmotor);
rmotor = 0x20;

}
}
else
{

rmotor = rmotor + sigm/2,0;
imotor = lmotor - sigm/2.0;
if (rmotor > 0x55)
{

lmotor = lmotor - (rmotor - 0x55);
rmotor = 0x55;

}
else if (imotor < 0x20)
{

imotor = rmotor + (0x20 - lmotor);
Imotor = 0x20;

}
}
*lmotr = lmotor;
*rmolr = rmotor;

Routine: getangleA
Function : Get the angle A of the robot relativce to the path

void getangleA(SWORD *A,float Xold, float Yold)
{

float angl=0.0,ang2=0.0;
float num=0.0,den=l .0;

// get angl
if((Y n=Y old)& & (X n=X old))

angl=0;
else
{

num = Y n- Yold;
den = Xn - Xold;
angl = atan2(num,den);

}

10

// get ang2
num = (float)ppatli[cur+l][Y_ROW] - (float)ppalh[cur][Y_ROW];
den = (float)ppath[cur+l)[X_ROW] - (fioat)ppath[cur][X_ROW];
ang2 = atan2(nnm,den);

angl = angl*R_TO_D;
ang2 = ang2*R_T0_D;
if (ang2>90)
{

if(angl <-70)
{

//angl = 180;
*A = -180 - angl;
return;

}
}
else if (ang2 < -90)
{

if(angl>70)
{

//angl =-180;
*A = 180 - ang 1;
return;

}
}
*A = ang2 - angl;

}

Routine: get_pkt
Function : This function gets a packet sent from the PC

int get_pkt(void)
{

static int flag=0;
if(checkforpkt{rxq)=FALSE) /* Wait for a pkt */
{

flag++;
if (flag=200)

flag=0;
return FALSE; /* No packct in waiting */

}

if(pktintegO=TRUE) /* Is it good */
{

switch(rpkt.type)
{

case DOWNLOAD_PATH: send(ACKNOWLGE);
load_path();
return 1;

case DOWNLOADMAP: send(ACKNOWLGE);
loadmapO;
return 2;

case DOWNLOAD_MOTORS: send(ACKNOWLGE);
//can be used to stop the robot from the pc

11

load_motors();
return 3;

case RQ STSEN SORIN F: download_sensors();
return 4;

}
}
else
{

rxq->count=rxq->front=rxq->rear=0;
}
return 7;

}

Routine: load_path
Function : This routine downloads the planned path from the

PC

void load_path(void)
{

unsigned int ij=0;
unsigned char lo_byte,hi_byte;

for(i=0;i<rpkt.count;i++);
{

lo_byte=rpkt.data[i++];
hi_byte=rpkt.data[i++];
ppath[j][X_ROW]= h i_byte«8 + lo_byte;
lo_byte=rpkt.data[i++];
hi_byte=rpkt. data[i];
ppath[j][Y_ROW]= h i_byte«8 + lo_byte;
j++;

}
numpoints = j

}

/ * = . = . = . = . = . = . = . = . = . = . = . = . = . = ^ = . = . = . = ^ . = . = . = . = . = . = . = . = - = . = . = . = - M . = . = . = - =

Routine: load_map
Function : This function downloads the map of the environment

into an array of obstacles

void load_map(void)
{

unsigned int numobjs, ty p e,numpoints;
int ij,obj,offset;

numobj s=(unsigned int)((rpkt.data[l]«8)+rpkt.data[0]);
offset=2;

for(obj=0 ;obj <numobj s; obj++)
{

type=(unsignedint)((rpkt.data[offset+l]«8)-Hrpkt.data[offset]);
offset+=2;
numpoints=(unsigned int)((rpkt.data[offset+l]«8)-Hrpkt.data[offset]);

12

map[obj].type=type;
m ap [obj]. nump O] nts=nump o ints;

for(i=0;i<numpoints;i++)
{

map[obj].points[X_ROW][i]=(unsigned int)((rpkt.data[offset+l]«8)+
rpkt.data[offset]);

offset+=2;
map[obj].points[Y_ROW][i]=(unsigned int)((rpkt.data[offset+l]«8)+

rpkt.data[offset]);
offset+=2;

}
}

}

offset+=2;

Routine: download_sensors
Function: The following functions download information to the pc

Both sensor information and current position are
transmitted

void download_sensors(void)
{

unsigned char lo _byte,hi_byte;

read_sens(&sensors);
// This puts sensors ultra-sonic and infra-red and touch on queue

put_on__pkt(sensors.Left_ultra);
put_on_pkt(sensors.Left infra);
put_on_pkt(sensors.Left_touch);
put_on_pkt(sensors.Front ultra);
put_on_pkt(sensors .Frontinfra);
put_on_pkt(sensors.Front_touch);
put on_pkt(sensors.Right ultra);
put_on_pkt(sensors .Right infra);
put_on_pkt(sensors .Righttouch);

lo_byte = Xn & OxFF;
hi_byte = (Xn » 8) & OxFF;
put on_pkt(lo_byte);
putonjpkt(hi_by te);

lo byte = Yn & OxFF;
hi byte = (Yn » 8) & OxFF;
put_on_pkt(lo_byte);
put_on_pkt(hi_by te);

send('d');

13

/ * ------- --- -- ------------- --- r - = ■=.,= = = = = = = - r t .T , .- .---------= - = ^

Routinee: load_motors
Function : This is used to stop the robot from the PC

void load_motors(void)
{

int i;

for(i=0 ;i<rpkt. count;i++)
{

motor((unsigned int)rpkt.data[i],DAC5_PORT);
i++;
motor((unsigned int)rpkt.data[i],DAC6_PORT);
i++;
motor((unsigned int)rpkt. data[i],DAC7JPORT);
i++;
motor((unsigned int)rpkt. data[i],DAC8_PORT);

}

=*/

Routinee: load_motors
Function : This is used to stop the robot from the PC

void send_motors(struct motors * motorvals)
{

motor((unsigned int) motorvals->rff,DAC5_PORT);
motor((unsigned int) motorvals->rfr,DAC6 PORT);
motor((unsigned int) motorvals->lff,DAC7_PORT);
motor((unsigned int) motorvals->lfr,DAC8 PORT);

}

double toradians(double d)
{

return ((double)(d) * PI /180.0);
}

R outine: updateposn
Function : As the robot moves the position must be updated

void updateposn(float *Xold, float *Yold)
{

float right_dist=0.0,left_dist=0.0;
float del_quita=0.0,sign=0.0,del_Dn=0.0;

// update the position

leftdist = leftdist + inport(TIM EROCNT);
rightdist = rightdist + inport(TIMERl_CNT);

// Clear the variables
outp ort(TIMER0_CNT, 0);
outport(TIMER 1_CNT,0);

right_dist=(rightdist*WheelRadius*2.0*PI)/NUMSEG;

14

d e lD n = (right_dist + left_dist)/2.0;
del_quita = ((-rightdist + left_dist)*180.0)/(W*PI);

if(del_quita!=0)
{

*Xold = Xn;
*Yold = Yn;
Xn = Xn + (((sin(toradians(del_quita/2.0))/(toradians(del_quita/2.0))) * de lD n)

* cos(toradians(quita+(del_quita/2.0))));
Yn = Yn + (((sin(toradians(del_quita/2.0))/(toradians(del_quita/2.0))) * del Dn)

* sin(toradians(quita+(del_quita/2.0))));
quita = quita + delquita;

}
else
{

*Xold = Xn;
*Yold = Yn;
Xn = Xn + (del_Dn*cos(toradians(quita)));
Yn = Yn + (del_Dn*sin(toradians(quita)));

}
sign=quita>0 ? 1:-1; // keep quita in range -360 -> 360 for neatness
if (quita<-360.0 || quita>360.0)

quita = quita-sign*360.0;

leftdist=rightdist=0;

left_dist=(leftdist*WheelRadius*2.0*PI)/NUMSEG;

R outine: LeftorRight_disD
Function: Find D the distance from the path

void LeftorRight_disD(int * left, int *right, SBYTE *D)
{

float num=0.0,den=l .0>rdist=0.0,ldist=0.0,Dis=0.0;
float Xr=0.0,Yr=0.0,Xl=0.0Yl=0.0;
float m=0.0,a=0.0,b=0.0,c=0.0,ang=0.0;

// find whether robot is left or right of path

/* */
if(ppath[cur+l][X_ROW]!=ppath[cur][X_ROW]) // if not 90 or -90
{

num = ((float)ppath[cur+l][Y_ROW] - (float)ppath[cur][Y_ROW]);
den = ((float)ppath[cur+l][X_ROW] - (float)ppath[cur][X_ROW]);
m = num/den;
a =m ;
b =-1;
c = (float)ppath[cur][Y_ROW] - m*(float)ppath[cur][X_ROW];
c = c/10.0;
j*____________________ */
ang = atan2(num,den);

Xr = Xn - ((W/2.0) * sin(ang));
XI = Xn + ((W/2.0) * sin(ang));

15

Yr = Yn + ((W/2.0) * cos(ang));
Y1 = Yn - ((W/2.0) * cos(ang));

num = (a*Xr) + (b*Yr) + c;
num = (num > 0) ? num : -num;
den = sqrt((a*a) + (b*b));
rdist = num/den;

num = (a*Xl) + (b*Yl) + c;
num = (num > 0) ? num : -num;
den = sqrt((a*a) + (b*b));
ldist = num/den;

}
else if(ppath[cur+l][Y_ROW]>ppath[cur][Y_ROW]) // +90
{

Xr = Xn-(W /2.0);
Yr = Yn;
XI = Xn + (W/2.0);
Y1 = Yn;

ldist = XI - (ppath[cur][X_ROW]/10.0);
rdist = Xr - (ppath[cur][X_ROW]/l 0.0);
ldist = (ldist>0) ? ld ist: -1.0*ldist;
rdist = (rdist>0) ? rd ist: -1.0*rdist;

}
else // -90
{

Xr = Xn + (W/2.0);
Yr = Yn;
XI = Xn - (W/2.0);
Y1 = Yn;

ldist = XI - (ppath[cur][X_ROW]/10.0);
rdist = Xr - (ppath[cur][X_ROW]/10.0);
ldist = (ldist>0) ? ldist: -1.0*ldist;
rdist = (rdist>0) ? rd ist: -1.0*rdist;

}

if (rdist < ldist)
{

*left = 1;
*right = 0;

}
else if (rdist >ldist)
{

*left = 0;
♦right = 1;

}
else *left = *right = 0;

// Get D the distance from the path
i f(ppath [cur+1] [X_RO W]! =ppath [cur] [X_RO W])
{

num = (a*Xn) + (b*Yn) + c;
num = (num > 0) ? num : -num;
den = sqrt((a*a) + (b*b));
Dis = num/den;

16

I

}
else
{

Dis = Xn - (ppath[cur][X_ROW]/10.0);
}
Dis = Dis * 100; // Convert to cm
Dis = (Dis>0) ? Dis : -Dis; //Dis should be positive at this point

if (Dis > 40) Dis = 40; //clip
if (*right = 1) Dis = -Dis;
*D = (SBYTE) Dis;

R outine: fndnearstseg
Function : It checks to see if the robot should try to follow

the next path segment

int fndnearstseg(void)
{

in tm in = 1000,i,tmp=cur;
float dis = 0.0;

for (i=cur;i<numpoints-l;i++)
{

dis = (float)sqrt((((Xn*10.0)-(float)(ppath[i][X_ROW]))*((Xn*10.0)-
(float)(ppath[i] [X_ROW]))) + (((Yn* 10.0)-(float)(ppath[i] [Y_ROW]))*
((Yn* 10.0)-(float)(ppath[i] [Y R O W]))));

if (dis < min)
{

min = dis;
tmp = i;

}
}
return tmp;

}

j**** * **j
/* */
/* Interrupt handling routines for the robot */
/* */
y***y

R outine: tx_handler
Function : Interrupt routine, called when the serial chip generates an

interrupt. This could be to signify that some data has arrived
or that the transmitter section is ready to transmit another
character. To find out which, read the interrupt identification
register (IIR).

=.==_=^=_=.=_=.=— ^=-=-=-=,= =-=-=♦/

17

static void interrupt tx handler(void)
{

unsigned char c;

/* If the transmit register is empty */
if (data_on(txq)) /* and there is somcat on the Q ... */
{

c = get_from(txq);
/* Dont need to check if buffer is empty as it interrupts only when it is */
outportb(MUART_COMPORT, c); I* ... transmit it */

}
outportb(MUART_COMM3, 0x88);

/* End of interrupt command for the MUART controller */
/* Required for nested interrupt mode */

outport(EOI, 0x8000); /* Issue an end of interrupt command to the internal PIC */

Routine: rxhandler
Function : The isr that is called when a character is received. The

character is subsequently queued and it then tells the
PIC that the interrupt is finished.

static void interrupt rxhandlerQ
{

asm pushf
if {byte_ready())

if (roomon(rxq))
put_on(rxq, inportb(MUART_COMPORT));

asm popf
/* End of interrupt command for the MUART controller */
outportb(MUART_COMM3, 0x88); /* ... required for nested interrupt mode */

/* Issue an end of interrupt command to the internal PIC */
outport(EOI, 0x8000);

}

/* Status o f queue */
int room_on(QUEUE *q)
{

return q->count < q->maxsize ;
}

int data_on(QUEUE *q)
{

return q->count;
}

/* Some queue handling functions */
static unsigned char get_from(QUEUE *q)
{

unsigned char c;

_disable{);

18

c = (.]->data[q->front|;
q->front = cinc(q->front, q->maxsize);
q->count--;
_enable();

return c;
}

static unsigned char read_from(QUEUE *q, int * front)
{

unsigned char c;

_disable();
if (*front=-10)

*front=q->front;

c = q->data[* front];
*front = cinc(*front, q->maxsize);
_enablc();

return c;
}

/* ---
Routine: put on
Function : Put a character on the interrupt queue once it has been

received

static void put_on(QUEUE *q, unsigned char c)
{

_disable();
q->data[q->rear] = c;
q->rear = cinc(q->rear, q->maxsize);
q->count++;
_enable();

}

/* Some queue handling macros *!
int cinc(int x, inty)
{

return (x + 1) % y;
}

/* Some queue handling macros *t
int cincr(int x, int y,int incr)
{

return (x + incr) % y;
}

/ * = . = . = . = . = . = . = - = - = . = . = . = . = J . = . = . = . = _ = . = . = - = . = ^ . = - = - = - = - = - = - = - = - = - = - = - = - =

Routine: comm initl
Function : Responsible for calling all the initailisation routines

that set up the interrupt queues + take over specific
interrupt vectors

19

static void comm_initl(misigned char baud, int rxqsize, int txqsize)
{

comm_init(baud); // Baud rate etc

H Allocate space for buffers
if (rxqsize)
{

rxq->count=rxq->front=rxq->reai~0;
rxq->maxsize = rxqsize;
rxq->data = (unsigned char *) malloc(rxq->maxsize);

set_vector(RX_INT_VECTOR, rx handler);

/* Enable receiver interrupts *1
outportb(MUART_lNT_ENABLE, (inportb(MUART_INT_ENABLE) |

RXJNT));
}

if (txqsize)
{

txq->count=txq->front=txq->rear=0;
txq->maxsize = txqsize;
txq->data = (unsigned char *) malioc(txq->maxsize);

set_vector(TX_INT_VECTOR, tx handler);

oulportb(MUART_INT_ENABLE, (inportb(MUART INT ENABLE) |
THREINT));

//tx_ints_on();
}

f* Program the int i line on the 80188 for cascade... */
/* ... and level triggered mode ... */
/* ... 'cos it's connected to the 8256 MUART */
/* ... and unmask int 1 (see 80188 data sheet p.32, fig 29) */
outport(INTl, 0x30);

_enablc();'
}

Routine: set_vector
Function: Take over an interrupt vector by pointing it to an isr

void set_vector(unsigned intnum, void interrupt (*isr)())
{

char far *far *ivt = (void far *) 0;

char far *far *vector = ivt + intnum;

_disable();
^vector = (char far *) isr;
_enable();

}

20

!*=-=-■
R outine: com m sinit
Function : Initialise the muart to the correct baud rate and to

generate an interrupt when a character arrives so
that the character will be queued in a buffer and not
lost

void comm_init(unsigned char baud)
{

outportb(MUART_COMM 1, MC>DE_8086 | FRQ I KHz);
outportb(MUART_COMM3, COMM3_SET | RX ENABLE | INT_ACK |

N ESTEDINTEN ABLE);
outportb(MUART_RESET_INT,OxEF);
outportb(MUART_MODIFICATION, 0);

outportb(MUART_COMM2,baud);
}

Routine: distance_ints
Function: Initialise the timer counters to generate interrupts

every ten pulses. Also enables the PIC to recognise
the interrupt requests coming from the timer counters

void distanceints(void)
{

disable();
set_vector(8,pic_ldist); /* set interrupt vector address */
outport(TIMER0_CC)NTR,0xE005); /* continuous ints */
outport(TIMERO_COUNT,OxOA); /* the count at which the timer interrupts */

set_vector(18,pic_rdist); /* as above*/
outport(TIMERl_CONTR,0xE005);
outport(TIMERl_COUNT,OxOA);
outportb(PIC_MASK,inport(PIC_MASK) & Oxfc);

/* Enable timerO & timerl in pic mask reg */
enable();

Routine: pic_rdist
Function : Updates the distance the right track has moved.

This happens once every ten pulses when the timer
counter counts to ten

void interrupt pic_rdist()
{

rightdist = rightdist + COUNT;

/* Issue an end of interrupt command */
/* (if you leave out this the PIC won't interrupt again) */
outport(EOI, 0x8000); /* Tell the internal PIC that we're finished */

}

21

/*=
Routine: pic_ldist
Function : Updates the distance the left track has moved.

This happens once every ten pulses when the timer
counter counts to ten

void interrupt pic_ldist()
{

leftdist = leftdist + COUNT;

/* Issue an end of interrupt command */
/* (if you leave out this the PIC won't interrupt again) */
outport(EOI, 0x8000); /* Tell the internal PIC that we're finished */

/***/
/* */
/* Packet handling routines for the robot */
/* */
/***/
/ * = - = - - = = = = = — - = - ^ - . =

Routine: Initialise the receive + transmit packets
Function : finds the centroid of a given obstacle

/

static void pkt_initl(void)
{

int i;
tpkt. count=tpkt. checksum=0;
rpkt.count=rpkt,checksum=0;

for(i=0; i<PKT_SIZE ;i++)
{

rpkt.data[i]=tpkt.data[i]=0;
}

}

Routine : put_on_pkt
Function : Puts a character on the transmit packet to be transmitted

= =-=.=. = — -.=.= ^ = */

static void put_on_pkt(unsigned char c)
{

tpkt. data [tpkt. count] =c;
tpkt.count++;
tpkt.checksum=tpkt.checksum+c;

22

Routine: send
Function : Sends an entire packet

- ~ ^ - = - = - = - = - = - = - = - = - = _ = - = - = - = - = ^ = , = . = - = - = - ^ = - = - = - = . = , = _ = - = - = - = - = - = . = . = * /

void send(unsigned char type)
{

int i;
unsigned char lo_byte,hi_byte;

transmit(DLE);
transmit(STX);
tpkt.type=type;

transmit(tpkt.type); /* 1. transmit the type */

lo_byte=(unsigned char)(tpkt.count & OxOOff); /* 2. transmit the count low byte first */
hi_byte=(unsigned char)((tpkt.count & OxffOO)/256);
transmit(lobyte);
tran smit(hi by te);

for(i=0;i<tpkt.count;i++) /* 3. transmit the data */
transmit(tpkt. data[i]);

lo byte=(unsigned char)(tpkt. checksum & OxOOff);
/* 4. transmit the checksum low byte first */

hi_byte=(unsigned char)((tpkt.checksum & OxffOO)/256);
transmit(lo_by te);
transmit(hi_byte);

tpkt.count=tpkt.checksum=0;

* - =- - _ =- _
Routine: pktinteg
Function : Checks the integrity of a packet

int pktinteg(void)
{

unsigned int i,sum=0;

if (rpkt.type=ACKNOWLGE) return(TRUE);

for(i=0;i<rpkt.count;i++) /* see if the checksum sums up the data */
sum=sum+(unsigned int)(rpkt.data[i]); /* in the pkt */

if(sum==rpkt.checksum) retum(TRUE);
else retum(FALSE);

}

23

Routine: transmit
Function : Transmits a byte from the serial port using the muart

void transmit(unsigned char val)
{

while(!xmit_ready()); // Wait till you can transmit
outportb(comport,val);

}

Routine: checkforpkt
Function : waits till an entire pkt has been received and then loads

it up as a pkt. The packet format is as follows:
1. type
2. count (int) no. of data bytes
3. data
4. checksum (int) sum of data bytes only

Note that if the type is a control pkt then the data may
contain a RQST or an ACK

-=-=.=.=-=-=-=-=-=-^-=-= ,.= , =-=-=-=-=.=-^ . = */

int checkforpkt(QUEUE *rxq) /* receives an entire packet */
{

unsigned char lo_byte,hi_byte;
unsigned int num=0,cnt,i;
static unsigned int check=0;

if(headr()==FALSE)
{ // must strip bad header else you'll be

// reading the same stuff each time
retum(FALSE);

}
else
{

num=data_on(rxq);
if(num >5)
{

cnt=0;
cnt=rxq->data[cincr(rxq->front,rxq->maxsize,4)]*256 & OxffOO;
cnt=cnt+rxq->data[cincr(rxq->front,rxq->maxsize,3)];

if(num>=cnt+7)
{

get_from(rxq);
get_from(rxq);
rpkt.type=get_from(rxq); /* 1. receive the type ...*/

/* get integer count */ /* 2. receive the count ...*/
lo_byte=get_from(rxq); /* received low byte of count first */
hi_byte=get_from(rxq); /* high byte of count next */
rpkt.count=hi_byte*256;
rpkt.count=rpkt. count & OxffOO;
rpkt.count=rpkt.count | lo byte;

/* 3. receive the data ...*/
for(i=0; i<rpkt. count; i++)

24

{
rpkt.data[i]=get_from(rxq);

}
/* 4. receive the integer checksum ... */

lo_byte=get_from(rxq);
hi_byte=get_from(rxq);

/* rx the low byte of the checksum first */
ipkt.checksum=hi_byte*256; /* then the high byte */
rpkt.checksum=rpkt.checksum & OxffOO;
ipkt.cliecksum=rpkt.checksum | lo_byte;
return TRUE;

}
}
chcck++;
if{check=1500)

rxq->count=rxq->front=rxq->rear=0;

/* count gives the number o f data bytes */

}
return FALSE;

int headr(void)
{

unsigned char c=FALSE;
int front=-10;

if(data_on(rxq)>=2)
{

c = read_from(rxq,&front);

if (c = DLE)
{

}
else
{

}
}
return (int)c;

switch (read_from(rxq,&front))
{

case D L E :
rxq->count=rxq->front=rxq->rear=0;

c=FALSE;
break;

case STX :
c = TRUE;
break;

default:
rxq->count=rxq->front=rxq->rear=0;
c = FALSE;
break;

}

rxq->count=rxq->front=rxq->rear=0;
c=FALSE;

25

/* INITIALISATION Routines */
/I***/
void initialisations(void)
{

comm_initl(BAUD_12,RXQ_SIZE,0); /* comm port interrupts and queues */
distance_ints(); /* distance sensor interrupts via 80188 internal PIC */
pkt_initl();
init_arrays();
init_ar();
outport(TIMER0_CNT,0);
ou1port(TI M ER1 _CNT,0);

}

void init arrays(void)
{

int i;

}

for(i=0;i<MAXPATHLEN ;i++)
ppath[i][0]=ppath[i][1]=0;

void init_ar(void)
{

int obj j;
for(obj=0;obj<MAXOBJS;obj++)
{

for(j=0;j<MAX_LEN;j++)
map[obj].pointstX_ROW][j]=map[obj].points[Y_ROW][j]=0;

}
}

26

/*
/*
/*

Sensors.c
*/
*/
*/

#include <dos.h>
#include "ada.h"
#include "packet.h"

void dac(long,unsigned in t);
unsigned char adc_chan(long , in t);
void read_sens(struct sens *);

Routine: read sens
Function: read the ultrasonic,infrared,and touch sensors

unsigned char channel;

channe l=CHANNEL J ;
sensors->Left_ultra=adc_chan(BOARD2, channel);
channel++;
sensors->Left_infra=adc_chan(BOARD2,channel);
channel++;
sensors->Left_touch=adc_chan(BOARD2, channel);
channel=channel+2;
sensors->Front_ultra=adc_chan(BOARD2,channel);
channel++;
sensors->Front_infra=adc_chan(BOARD2,channel);
channel++;
sensors->Front_touch=adc_chan(BOARD2,channel);
channel=channel+2;
sensors->Right_ultra=adc_chan(BOARD2,channel);
channel++;
sensors->Right_infra=adc_chan(BOARD2,channel);
channel++;
sensors->Right_toucli=adc chan(BOAR 1)2,channel);

/* Analog - Digital Converter */
unsigned char adc_chan(long BOARD NO, int channel)
{

long STATUS, MULTIPLEXOR;

MULTIPLEXOR=BOARD NO+MUX_OFF ADR;
outportb(MULTIPLEXOR,channel); // Tell the A/D to start
outportb (MULTIPLEXOR, channel);

STATUS=BOARD_NO+MUX_OFF_ADR;
while(inportb(STATUS)&EOC); // Wait till the value is converted
return ((inportb(BOARD_NO+OxOO()8)));

*/

}

}

27

/*
/*
/*

Motors.c
*/
*/
*/

#include <dos,h>
//include "ada.h"

void dac(long ,unsigned in t);
void motor(unsigned int c,unsigned int dacjiort);

Routine: motor
Function : write a value out to a motor port

void motov(unsigned int c,unsigned int dac port)

dac(dac_port,c);
}

/* Digital - Analog Converter */
void dac(long ADRSS, unsigned int volt)
{

unsigned int mvolt=0,hibyte=0,lobyte=0;

mvolt = v o lt« 4 ;
hibyte=mvolt&0xFF00; /* Swap the high byte and the low byte */
hibyte=hibyte/256; /* as outport writes the high and low */
hibyte=hibyte&OxOOFF; /* bytes the wrong way around for the *1
lobyte=mvolt&OxOOFF; I* SDAC12-4 D/A board */
lobyte=lobyte*256; /* Note: this procedure is only required */
lobyie=lobyte&0xFF00; /* for the SDAC12-4. The other boards */
mvolt=lobyte|hibyte; /* require one byte (0-255) and range *1
outport(ADRSS,mvolt);

}

28

/* */
/* HEADER FILES FOR THE PC SOFTWARE */
/* */

** **
** MODULE : Packet.h **
** **
** DESCRIPTION : Defines variables used in a packet **
** **

#ifndef PACKETS

#defme PACKETS

#define DOWNLOAD PATH OxFl
#define DOWNLOAD MAP 0xF2
#defme DOWNLOAD MOTORS 0xF3
#define RQST_SENSOR_INF 0x03
#define ACKNOWLGE 0x01
#defme SEND_AGAIN 0x02
#define PKT_SIZE 1024
#define DLE 0x10
#define STX 0x02
#define RETRY 64000

typedef struct j a c k e t
{

unsigned char type;
unsigned int count;
unsigned char data[PKT_SIZE];
unsigned int checksum;

} PACKET;

#endif

** **
** MODULE : Pclnt.h **
* sH **
** DESCRIPTION Defines the comm port addresses **
** **

#ifndef PCINT

#define PCINT

#define TRUE 1
#defme FALSE 0

29

//define COM_PARAMS
(_COM_CH R8 LCOM_STOP 1 |_COM_NOPARITY|_COM_ 1200)
//define P 82590 0x20
//define P8259 1 0x21
//define END OF INT 0x20
//define BIOSDATA ({int far *) (0x400000L))

#define IER (comport+1)
//define HR (comport+2)
//define LCR (comport+3)
//define MCR (comport+4)
//define LSR (comport+5)
//define MSR (comport+6)

//define IEROFF 0
tfdefine MCROFF 0
//define RDAINT 1
//define OUT2 0x08

/* Two serial port macros *1
#define xmit_ready() (inp(LSR) & 0x20)
//define byte_ready() (inportb(LSR) & 0x40)

typedef struct queue
{

int count;
int front;
int rear;
int maxsize;
unsigned char *data;

} QUEUE;

#ifdef cplusplus
//define CPPARGS...

#else
#define CPPARGS

ft end if

//end if

y**
** **
** MODULE : DEFS.H **
** **
** DESCRIPTION : Header Tile to be included in the three **
** main source files, it contains all definitions necessary **
** in thees files. **
** **
**̂ /

#ifndef DEFS

//define DEFS

//define FALSE 0
//define TRUE I

30

/*
* Icon and window information
*/

#define ICONW 16
#define ICONH 16
#define NUM_FILLS_WIDE 16
#define BORDER 4
#define MAXPOLYSIZE 40
#define DIMENSION 8.0

//define OBJWINLEFT 510
#define OBJWINTOP 60
#define OBJWININCX 20
#define OBJWININCY 20
#define OBJWINOFFSET 80

/*
* Path and motion planning definitions

#define CORNER R
#define BACK_R
#define INCREMENT
//define PATH APROX

0.2
1.414213562 * CORNER R
0.1
10

/*
* Definitions for the planning and drawing functions.
*/

#define NUMGOBJECTS 50 /* Max num of objects allowed */
#define MAXOBJPARTS
#define TXT
#define POLY
#define CIRCLE
#define LINE
#define PATH
#define COS45
#define SIN45
#define NODE_RADIUS
#define GOBJECT_COLOR
#define MOBJECT COLOR

12
0
1
2
3
4
0.707106781
0.707106781
8
YELLOW
LIGHTBLUE

#define PATH COLOR LIGHTGRAY

/*
* Defines for speed entry function
*/

#defme BUTUP_PTR 0
#define BUTDOWN_PTR 1
#define BUTOK PTR 2

/* Instances o f type button for speed */
/* entry window */

/*
* Button and Menu definitions.
*/

#define OUTLINE 6
#define BUT_WIDTH 50
//define BUT_HEIGHT 10

31

#define BUTSPACE
#defme M AXN UM BU TTONS
#define BUTTON_UP
#define BUTTON-DOWN

#defme MENU_ITEM_SPACE
#define MENUl_OPTIONS
#define MENU2_OPTIONS

/*
* KEYS !
*/

//define CTRL_Z

^define ESC
//define RETURN
//define CR
//define LF
//define BS
//define TAB_CHAR

#define LEFT_ARROW
//define RIGHTARROW

#define UP ARROW
#define D O W NARROW

#define HOME KEY
#define END_KEY
#define PGUP
#define PGDN
#defme INS
#define DEL
//define BACKSPACE
#define TAB
//define BACKTAB

//define FU N C J
//define FUNC_2
//define FUNC_3
#define FUNC_4
#define F U N C J
//define FUNC_6
//define FUNC_7
//define F U N C J
//define FUNC_9
//define FUNC_10

#define RIGHT_SHIFT
#define LEFT_SHIFT
//define CTRLLOCK
#defineALT_LOCK
//define SCROLL_LOCK
#define NUMLOCK
#define CAPSLOCK
#define INSERTLOCK

//define S DIST

/* Direction to push button */

25
16
0
1

3
2
3

Oxla

27
13
OxOd
10
0x08
0x09

203
205

72
80

199
207
201
209
210
211
8
9
143

187
188
189
190
191
192
193
194
195
196

1
2
4
8
16
32
64
128

.2

32

Adeline EXT
#define MAXNUM
^define EPSOLON

.2
99999
0.0000001

tfendif

J% D|: * * * * * * He * He s|e $ 5j£ * * * * * * * >|C $ He * jfc * »fe $ * * $ * * * * * * * * $ * * $ $ * * * * * * * sfe

** **
** MODULE : sensors.h **
** **
** Sensor structure **
3̂ He * * He jf* He He He He * He He He He He" He He *. He * He * He * * He He’He He He He Ĥ *^* He He He He He He He Ĥ He He HêH H*He He He He He He He He He He He He He He * * He He He He He He He H* J

flifndef SENSORS

^define SENSORS

struct sens {
unsigned char Leftultra;
unsigned char Leftinfra;
unsigned char Left_touch;
unsigned char Frontultra;
unsigned char Frontinfra;
unsigned char Front_touch;
unsigned char Right_uitra;
unsigned char Right_infra;
unsigned char Righttouch;

};

#endif

y *

He He He*
** MODULE : DATA.h **
** **
** DESCRIPTION : Source file which contains all variable **
** and structure declarations which are required to be **
** global to the system. **

*$**/

^include "defs.h"

//ifndef DATA

^define DATA

/*
* structure for objects in drawing window.
*/

/* Button structure */
extern struct BUTTON
{

int left, top, right, bottom;
int xcorrection, ycorrection; /* Correction due to mouse using */

};

33

extern struct graphobj
{

int type;
int numpoints;
double *points;

};

extern struct GRAPHICSOBJ
{

int type;
int oldtyp;
int left, top;
int right,bottom;
int numpoints;
int numparts;
int oldnum;
double *points;
double *extent_points;
struct graphobj *gobj[MAXOBJPARTS];

};

/*
* This structure is used for passing lines and simplifying parameter lists.
*/

extern struct LINESTRUCT
{

double x l,y l;
double x2,y2;

};

/*
* Used to stored the planned path on completion of its planning !
*/

extern struct PATHOBJ
{

int numpoints;
double *points;

};

typedef struct apoint
{

int num;
double x;
double y;
int PERM;
int D E N D ;

} point;

extern struct centre_grav{
int obj;
double xc;
double yc;

};

typedef struct acoord
{

double x;

/* full screen coordinates. */

34

typedef struct pth
{

double x;
double y;
struct plh *next;

} pathpomts;

extern struct OBSTRUCT
{

double x;
double y;
int obj;
struct OBSTRUCT *next;

double y;
} coord;

/* Global variables */

extern int maxx, maxy;
extern int wl, wr, wt, wb;
extern int mwl, mwr, mwt, mwb;
extern int owl, owr, owt, owb;
extern int rwl, rwr, rwt, rwb;
extern int globaliillstyle;
extern int globailinesiyle;
extern int globaltextstyle;
extern int gridon;
extern int TRAIL;

/* Main window coordinates */
/* Message window coordinates */
/* Obstacle window coordinates */
/* Robot window coordinates *1

/* Flag to tell if the robot trail is to be shown */

extern int PATHPICKED;
extern int PATH INVALID;
extern int globalwindowcolor;
extern int cuirentmovingobj;
extern int nextmovingobj;
extern int currentobj;
extern int nextobj;
extern int left_arrow;
extern int right_arrow;

/* Used for writing on windows */

extern int Buttoncolor;
extern int buttonptr;
extern int currbutton;

extern int sx,sy,gx,gy; /* Source and goal nodes */
extern double worldsx,worldsy,worldgx,worldgy;

extern int num cnodes; /* 0 & 1 are source & goal */

extern struct BUTTON Buttons[MAXJNUM BUTTONS];
extern struct PATHOBJ path;
extern struct MOVINGOBJ mobjects[2];
extern struct GRAPHICSOBJ gobjectsfNUMGOBJECTS];
extern struct centre grav centroid[NUMGOBJECTS];

tfendif

35

** **
** MODULE : proto .h **

** prototypes **

#include "data.h"
#include "Pclnt.h"

#ifndef PROTO

#define PROTO

void stopmotors(void);
int upload_sens struct(unsigned char);
int download_motors(unsigned char);
int download_path(unsigned char);
int download_map(unsigned char);
void download(void);
void initialisations(void);
void put_jpoly_on_pkt(int obj);
void put_circle_onj>kt(int obj);
void start(void);
void draw_robot(void);
double toradians(double d);

static void put_on(QUEUE *, unsigned char);
static unsigned char get_from(QUEUE *);
void SetRxQueue(int rxqsize);
void cleanup(void);
void setup(short portnumber,unsigned commparams);
int cincr(int x, int y,int incr);
static void interrupt far rx_handler(CPPARGS); /* interrupt prototype */
void interrupt (*old_handler)(CPPARGS); /* interrupt function pointer */
int room_on(QUEUE *q);
int data_on(QUEUE *q);
static unsigned char get_from(QUEUE *q);
int ccinc(int x, int y);
static void put_on_pkt(unsigned char c);
int send(unsigned char rqst);
void loadrpkt(QUEUE *rxq);
int pktinteg(void);
void transmit(unsigned char);
int send_pkt(unsigned char rqst);
int waitforpkt(QUEUE *rxq);
int headr(void);
static void pkt initl(void);
int intersect(struct LINESTRUCT lnl,struct LINESTRUCT ln2,double *x,double *y);

#endif

/* The PC SOFTWARE */
/* client.c */
/* This downloads the path + envimment map to the */
/* ROBOT and requests information periodically */
/* from the ROBOT to update the GUI on the PC. */

/* The PC COMMUNICATIONS with the ROBOT */
/* COMMS.c */
/* This downloads the path + envimment to the robot */

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <dos.h>
#include <bios.h>
#include <conio.h>
#include <math.h>
#include <graphics.h>

#include "sensors.h"
#include "data.h"
#include "Pclnt.h"
#include "Packet.h"
#include "proto.h"

static unsigned int Ieftdist=0,rightdist=0;
static QUEUE rxvq, *rxq = &rxvq;
static QUEUE txvq, *txq = &txvq;
static short comport=0,

port_number=0,
int_number=12,
int_enable_mask=Oxef,
int_disable_mask=Ox 10;

static PACKET tpkt,rpkt;
const unsigned RXQ SIZE = 1024;
const unsigned TXQ SIZE = 1024;
struct motor {

unsigned char rff;
unsigned char rfr;
unsigned char Iff;
unsigned char lfr;

};
static struct motor motor_vals;

struct sens sensors;

#define MAXPATHLEN 200
#defme X_ROW 0
#define Y_ROW 1
#defme MAX_LEN 40
#define MAXOBJS 25

37

#defme W 0.205
#defmePI 3.14159
#defme R_TO_D 57.29578
#define WheelRadius 0.015
#define NUMSEG 3.0

static unsigned int ppath[MAXPATHLEN][2];
static unsigned int Xn=0,Yn=0,quita=0;

extern pathpoints gpath;
extern void messagebox(char *messagestr);
extern void calc_circ_points(double *points, double *EXTENTpoly);

Routine: start
Function : This is where the fun starts - The robot gets told about its

environment and informs the pc what it is at by keeping the
pc updated on its whereabouts. It is called when the person
clicks download from the GUI.

void start(void)
{

initialisations();
download();
while(!kbhit())
{

while (send_pkt(RQST_SENSORINF)! =4);
/* Rqst sensor + position info to update display */

draw_robot(); /* Update the PC while the robot is moving */
delay(200);

}
stop_motors() /* The motors are probably stopped anyway if the

robot completed its path else I interruped it */
}

* - - =_=_ _ _ =_=_=_
R outine: download
Function : Downloads the path and environment map to the robot

void download(void)
{

while (send_pkt(DOWNLOAD_PATH)!=l); /* Rqst to download the path */
while (send_pkt(DOWNLOAD_MAP)!=2); /* Rqst to download the map */

}

Routine : download_jpath
Function : Download the path to the robot

38

int download_patli(unsigned char iq st)
{

int i;
unsigned int xval,yval;
unsigned char lo_byte,hi_byte;

pathpoints *pathptr;

pathptr=&gpath;
while(pathptr!=NULL)
{

xval=(unsigned int)(pathptr->x* 10); // convert to cm
yval=(unsigned int)(pathptr->y*10);
lo_byte= (unsigned char)(xval & OxOOFF);
hi_byte= (unsigned char)((xval»8) & OxFF);

put_on_pkt(lo_byte); /* Put xval onto the packet */
put_on_pkt(hi_byte);

lo_byte= (unsigned char)(yval & OxOOFF);
hi_byte= (unsigned char)((yval»8) & OxFF);

put_on_pkt(lo_byte); /* Put yval onto the packet */
put on_pkt(hi_bytc);

pathptr=pathptr->next;
}

if(gpath.next!=NULL) reUirn send(rqst);
else messagebox("No Path lias been generated");

return FALSE;
}

Routine: download_map
Function : Download a map of the environment to the robot

int download_map(unsigned char rq s t)
{

int obj;

put_on_pkt((unsigned char)(nextobj & OxFF)); /* lo byte */
put_on_pkt((unsigned char)((nextobj » 8) & OxFF)); /* hi byte */

for(obj=0; obj<nextobf; obj++)
{

switch(gobjects[obj].type)
{

case POLY:
put_poIy_on_pkt(obj);
break;

case CIRCLE:
put_circle_on_pkt(obj);
break;

39

}
return send(rq st);

}

}

Routine : put poly_on_ pkt
Function : If the object is a polygon this function downloads it

void put_poly_on_pkt(int obj)
{

int j;

put_on_pkt((unsigned char)(gobjects[obj].type & OxFF)); /* lo byte */
put_on_pkt((unsigned char)((gobjects[obj].type»8) & OxFF)); /* hi byte */

put_on__pkt((unsigned char)(gobjects[obj].numpoints & OxFF)); /* lo byte */
put_on_pkt((unsigned char)((gobjects[obj].numpoints»8) & OxFF)); /* hi byte */

for(j=0;j<gobjects[obj].numpoints*2;j++)
{

put_on_pkt((unsigned char)((unsigned int)(gobjects[obj].points[j]) & OxFF));
put_on_pkt((unsigned char)(((unsigned int)(gobjects[obj].points[j])»8) &

OxFF));
}

}

R outine: put_circle_on_pkt
Function : If the object is a circle this function downloads it

void p u tc irc le o n pkt(int obj)
{

hit j;
double circ array[18];

put_on_pkt((unsigned char)(gobjects[obj].type & OxFF));
put _on_pkt((unsigned char)((gobjects[obj].type»8) & OxFF));

put_on_pkt(0x09);
put on_pkt(0x00);

calc_circ_points(gobjects[obj].points,circ_array);
for(j=0;j<18;j++)
{

put_on_pkt((unsigned char)((unsigned int)(circ_array[j]) & OxFF));
put_on_pkt((unsigned char)(((unsigned int)(circ_array[j])»8) & OxFF));

}
}

double toradians(double d)
{

return ((double)(d) * PI /180.0);
}

40

Routine: draw robot
Function : Draw the robot on the Pcs display

void draw robot(void)
{

int Xll=0,YU=0,Xrr=0,Yrr=0,savecolor=0;
float Xra=0.0,Yra=0.0,Xla=0.0,Yla=0.0;

Xra = (float)Xn - ((W/2.0) * sin(toradians((float)quita)));
Xla = (float)Xn + ((W/2.0) * sin(toradians((float)quita)));
Yra = (float)Yn + ((W/2.0) * cos(toradians((float)quita)));
Yla = (float)Yn - ((W/2.0) * cos(toradians((float)quita)));

WORLDtoPC((double)Xra,(double)Yra,&Xrr,&Yrr);
WORLDtoPC((double)Xla,(double) Yla,&X11,&Y11);
hidemouse();
savecolor = getcolor();
setcolor(YELLOW);
line(Xll, Yll,Xrr, Yrr);
setcolor(savecolor);
showmouse();

}

Routine: upload_sens_struct
Function : Gets position and sensor information from robot

- . ^ . = . = . = . = _ = _ = _ = . = . ^ . = . = — ^ - = - = - = - = — — =*/

int upload_sens_struct(unsigned char rqst)
{

unsigned char lo_byte,hi_byte;
unsigned int tmp=0;

if (send(rqst)==TRUE)
{

s ens ors .Left_ultra=rpkt. data [0];
sensors .Left_infra=rpkt. data[1];
s ensors. Left_touch=rpkt. data [2];
sensors .Front_ultra=rpkt. data[3];
sensors.Front_infra=rpkt.data[4];
sensors.Front_touch=rpkt.data[5];
sensors.Right_ultra=rpkt.data[6];
sensors.Right_infra=rpkt.data[7];
sensors.Right_touch=rpkt.data[8];

// the code below is for the tachometer,
lo b y te = rpkt.data[9];
h ib y te = rpkt.data[10];
tmp = h i_by te«8 ;
Xn= tmp + (lo_byte & OxFF);

lo_byte = rpkt.data[l 1];
h ib y te = rpkt.data[12];

41

Imp = hi_byte«8;
Yn= tmp + (lo byte & OxFF);

return (TRUE);
}
else return FALSE;

}

Routine: stopm otors
Function : Stop the robots motors from the pc

void stop motors(void)
{

int i;

tpkt.count=tpkt.checksum=0;
motor_vals.rff=0x0;
motor_vals.rfr=OxO;
motor_vals.lff=OxO;
motor_vals.lfr=OxO;
while (send_pkt(DOWNLOAD_MOTORS) !=3); /* send motor values */

}

Routine: download motors
Function : called when we call stop motors

downloads values to the motors in the following order:
right full forward
right full reverse
left full forward
left full reverse

int download_motors(unsigned char rqst) /* Called when stop motors is used */
{

int i;

tpkt.count=tpkt.checksum=0;
put_on_pkt(motor_vals.rff);
put_on_pkt(motor_vals.rfr);
put_on_pkt(motor_vals.lff);
put_on_pkt(motor_vals. 1 fr);

return send(rqst);
}

void initialisations(void)
{

setup(1 ,COM_P ARAMS);
SetRxQueue(RXQSIZE);
pkt_initl();

}

42

#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <dos.h>
#include <bios.h>
#include <conio.h>
#include <math.h>
#include <graphics.h>

#include "sensors.li"
^include "data.h"
#include "Pclnt.h"
#include "Packet.h"
#include "proto.h"

Routine: rx_handler
Function : The handler thats callcd when a character is received by

asm pushf

if (byte_ready())
if {roomon(rxq))

put_on(rxq, inp(comport));

asm popf
/* Issue an end of interrupt command to the internal PIC */

the PC

static void interrapt far rx_handler(_ CPPARGS)
{

_disable();

outp(P8259_0, END O FIN T);
_enable();

Routine :
Function

room on
Status of queue

int room_on(QUEUE *q)

return q->count < q->maxsize

Routine:
Function

room on
Status of queue

43

int data_on(QUEUE *q)
{

return q->count;
}

static unsigned char get_from(QUEUE *q)
{

unsigned char c;

_disable();
c = q->data[q->front];
q->front = ccinc(q->front, q->maxsize);
q->count--;
_enable();

return c;
>

static unsigned char read_from(QUEUE *q, int * front)
{

unsigned char c;

_disable();
if (*front=-10) *front=q->front;

c = q->data[* front];
* front = ccinc(*front, q->maxsize);
_enable();

return c;
}

static void put_on(QUEUE *q, unsigned char c)
{

clisable();
q->data[q->rear] = c;
q->rear = ccinc(q->rear, q->maxsize);
q->count-H-;
_enablc();

}

/* Some queue handlingmacros */
int ccinc(int x, int y)
{

return (x + 1) % y;
}

/* Some queue handling macros *1
int cincr(mt x, int y,itit incr)
{

return (x + incr) % y;
}

Routine: SetRxQueue
Function : Set the size of the receive queue

44

void SetRxQueue(int rxqsize)
{

// Allocate space for buffers
if (rxqsize)
{

ixq->coimt=rxq->front=ixq->rear=0;
rxq->maxsize = rxqsize;
rxq->data = (unsigned char *) malloc(rxq->maxsize);

}
}

void setup(short portnumber,unsigned commparains)
{

int intmask;
comport=*(BIOS_DATA+port_number);
if(po rt_num ber=0)
{

int_enable_mask=Oxef;
int_disable_mask=Ox 10;
int_number=12;

}
if'(porlnum ber==l)
{

int_enablemaslc=0xf7;
int_disable_maSk=8;
int_numbei~l 1;

}
_disable();
old_handler=_dos_getvect(int_number);
_dos_setvect(int_number,rx handler);
_disable();
_bios_senalcom(_COM_INIT,port_number,commparams);

outp(MCR,OUT2);
outpflER, RD A INT);
intmask=inp(P8259_l) & int_enable_mask;
outp(P8259_l,intmask);

*****:*: ************************ ***************/
// These remove bug they arise owing to an
// installed mouse driver
outp(IIR,0x01);
outp(LSR,0x60);
y1**************** ************ *********************/’
_enable0;

}

void cleanup(void)
{

int intmask;
_disable();
outp(IER,lEROFF);
outp(MCR,MCROFF);
intmask=inp(P8259_l) | in td isablejnask;
outp(P8259_l,intmask);
_dos_setvect(i n t_number,o 1 d_handler);

enableQ;
}

45

/* packet, c */

Routine: pkt initl
Function : Initialise the receive and transmit pkts

static void pkt_initl(void)
{

int i;
tpkt. count=tpkt. checksum=0;
rpkt.count=rpkt.checksum=0;
for(i=0;i<PKT_SIZE;i++)
{

rpkt.data[i]=tpkt.data[i]=0;
}

}

R outine: send_pkt
Function : send a packet to the robot

int send_pkt(unsigned char rqst)
{

/* If rqsting to send data ...*/
switch (rqst) /* download the appropriate data */
{

case DOWNLOAD_MOTORS:
if(download_motors(rqst)=TRUE) return 3;
else return FALSE;

}

case RQST SENSOR INF:
if(upload_sens_struct(rqst)=TRUE) return 4;
else return FALSE;

case DOWNLOADPATH:
if(download_path(rqst)==TRUE) return 1;
else return FALSE;

case DOWNLOAD MAP:
if(download map(rqst)=TRUE) return 2;
else return FALSE;

}
return FALSE;

static void put_on_pkt(unsigned char c)
{

tpkt.data[tpkt.count]=c;
tpkt.count++;
tpkt. checksum=tpkt. checksum+c;

}

46

int send(unsigned char rqst) /* Sends an entire packet */
{

int i;
unsigned char Io_byte,hi_byte;

transmit(DLE);
transmit(STX);

tpkt.type=rqst;

transmit(tpkt.type); /* 1. transmit the type *!

lo_byte=(unsigned char)(tpkt.count & OxOOff); /* 2. transmit the count low byte first */
hi_byle=(unsigned char)((tpk1.count & 0xff00)/256);
transmit(lo_byte);
transmit(bi_byte);

for(i=0;i<tpkt.count;i++) /* 3. tr ansmit the data */
transmit(tpkt.datap]);

!o_byte=(unsigned char)(tpkt.checksum & OxOOff);
/* 4. transmit the checksum low byte first */

hi_byte=(unsigned char)((tpkt.checksum & 0xfft)0)/256);
transmit(lo_byte);
transmit(hi_byte);

tpkt.count=tpkt.checksum=0;

/* Wait for the data */
i f(wa i t forpkt(rxq)= FA LSE)
{

rxq->count=rxq->front=rxq->rear=0;
_disable();
outp(IIR,0x01);
outp(LSR,0x60);
jenableQ;

return FALSE;
}

if(pktinteg()==TRUE)
{

switch(rqst)
{

case DOWNLOAD MOTORS:
case DOWNLOADPATH:
case DOWNLOAD_ MAP:

if(rpkt.type=ACKNOWLGE)
retnm(TRUE);

else return FALSE;

case RQSTSEN SORJNF:
if(rpkt.type— d') retum(TRUE);
else return FALSE;

}

47

else //bad pkt
{

rxq->count=rxq->fiont=Txq->rear=0;
}
retum(FALSE);

}

}

Routine: pkinteg
Function : Check the packet integrity

. - . - = = = ;-- - - - = r ,* /

int pktinteg(void)
{

unsigned int i,sum=0;

if (rpkt.type=ACKNOWLGE) return(TRUE);

//if (rpkt.count=0) retum(FALSE);
for(i=0;i<ipktcount;i++) /* see if the checksum sums up the data */

sum=sum+(unsigned int)(rpkt.data[i]); /* in the pkt */

if(sum=rpkt.checksum) retum(TRUE);
else retum(FALSE);

Routine: transmit
Function : Transmits a byte from the serial port using the muart

.= _ = _ = _ ^ = _ = _ = _ = .= ^ = .= _ = -= _ = _ = _ = _ = _ = -= -= .= .= .= _ = .= ^ .^ = .= .= -= .= -= -= -— . = * /

void transmit(unsigned char val)
{

while(!xmit_ready()); // Wait till you can transmit
outportb(comport,val);

}

Routine : waitforpkt
Function : waits till an entire pkt has been received then loads it up

as a pkt. The following describes the pkt format:
1. type
2. count (int) no. of data bytes
3. data
4. checksum (int) sum of data bytes only
Note that if the type is a control pkt
then the data may contain a RQST or an ACK

int waitforpkt(QUEUE *rxq) /* receives an entire packet */
{

unsigned char lo_byte,bi _byte;

48

unsigned int num=0,cnt;
unsigned int i,retry=0,delay=0;

while(headr()==FALSE && delay<5)
{

retry++;
if(retry==RETRY)
{

retry=0;
delay++;

}
}
if(delay == 5) return FALSE;
retry=delay=0;
while(delay<5)
{

num=data_on(rxq);
if(num >5)
{

cnt=0;
cnt=rxq->data[cincr(rxq->front,rxq->maxsize,4)]*256 & OxffOO;
cnt=cnt+rxq->data[cincr(rxq->front,rxq->maxsize,3)];
if(num>=cnt+7)
{

getfrom(rxq);
getfrom(rxq);
rpkt.type=get_from(rxq); /* 1. receive the type ...*/

/* get integer count */ /* 2. receive the count ...*/
lo_byte=get_from(rxq); /* received low byte of count first */
hi_byte=get_from(rxq); /* high byte of count next */
rpkt.count=hi_byte*256;
rpkt.count=rpkt.count & OxffDO;
rpkt.count=rpkt.count | lo_byte; /* 3. receive the data ...*/

for(i=0 ;i<rpkt. count;i++)
/*count gives the number of data bytes*/

rpkt.data[i]=get_from(rxq);
/* 4. receive the integer checksum ... */

lo_byte=get_from(rxq);
hi_byte=get_from(rxq);

/* rx the low byte of the checksum first */
rpkt.checksum=hi_byte*256; /* then the high byte */
rpkt.checksum=rpkt.checksum & OxffOO;
rpkt.checksum=rpkt.checksum | lo byte;
return TRUE;

}
}
retry++;
if(retry==RETRY)
{

retry=0;
delay++;

}
}
return FALSE;

}

49

Routine: headr
Function : Looks at the header of a packet to check where it starts

int headr(void)
{

unsigned char c=FALSE;
int front=-10;

i f(data_on(rxq)>=2)
{

c = read_from(rxq,&front);

if (c = DLE)
{

switch (read_from(rxq,&front))
{

case D L E:
c=FALSE;
break;

case ST X :
c = TRUE;
break;
default:

c = FALSE;
break;

}
}
else
{

}
}
return (int)c;

rxq->count=Txq->front=rxq->rear=0;
c=FALSE;

50

j ** * **** * * * * * *** ****** * ****** * ** * ** * *********************** * *********** * **** j
/* Centroid.c */
/* These routines calculate the centroid of an obstacle. The supporting */
/* routines for calculating the area of a polygon are included */
f* along with functions to test if points are witin obstacles */
/***/

//include <stdio.h>
//include <graphics.h>
//include <stdlib.h>
//include <stdarg.h>
//include <alloc.h>
//include <math.h>
//include <time.h>
//include "mouse.h"
#include "calc.h"
//include "gtext.h"

//include "defs.h"
//include "data.h"
//include "proto.h"

Routine: calc centroid
Function : finds the centroid of a given obstacle

void calc_centroid(int obj)
{

double Area=0,Mx=0,My=0,xc=0,yc=0;
int ir,it,il,ib,i;
double left,right,top,bottom;
int PCx,PCy,sign=0,numpoints=0;
int delta=0,oldelta=0,tst=0,defsign=0;

i f(gobj ects [obj]. type=ClRCLE)
{

xc=gobjects[obj].points[0];
yc=gobjects[obj].points[1];

}
else
{

numpoints=gobjects[obj].numpoints;
getipolybounds(numpoints,&gobjects[obj].points[0],&il,&it,&ir,&ib);

ifXiKir)
{

if((it>=il) && (it<=ir))
{

sign=defsign=l;
}
else sign=defsign =-1;

for(i=il;i<ir;)
{

51

if(i“ il||tst=TRUE)
{

ifl(gobjects[obj].points[cinc(i,nunipoints)*2]==gobjects[obj].points[i*2])
tsl=TRUE;

else
{

oldelta=delta=(gobjects[obj|.points[cinc(i,mimpoints)*2]-
gobjects[obj].points[i*2]) >=0 ? 1 : -1;

tst=FALSE;
}

}
else
{

della=(gobjecls[obj].points[ciiic(i,numpoints)*2]-
gobjects[obj].points[i*2]) >=0 ? 1 : -1;

if(delta!=oldelta)
sign=defsign*-l;

else sign=defsign;
}

calcarea(obj,i,&Area,&Mx,&My,sign);
i=cinc(i,numpoints);

}
defsign=sign=(sign>0) ? -1 : 1;
tst=FALSE;
for(i=ir;i!=il;)
{

if(i=ir||tS t=TR U E)
{

if(gobjccts(obj].points[cinc(i,numpoints)*2]=gobjects[obj].poin1s[i*2])
tst=TRUE;

else
{

oldelta=deHa=(gobjects[obj].points[cinc(i,numpoints)’*r2]-
gobjects[obj].points[i>|:2]) >=0 ? 1 : -1;

tst=FALSE;
}

}
else
{

delta=(gobjects[obj].pomts[cmc(i,nuttipoints)*2]-
gobjects[obj].points[i*2]) >=0 ? 1 : -1;

if(della!=oldelta)
sign=defsign*-l;

else sign=defsign;
}

calcarea(obj,i,&Area,&Mx,&My,sign);
i=cinc(i,numpoints);

}
}
else
{

if((it>=ir) && (it<=il))
{

sign=defsign=l;
}

52

else
{

sign=defsign=-1;
}

for(i=ir;i<il;)
{

ifl[i=ir||tst=TRUE)
{

if{gobjects[obj],pomts[cinc(i,mimpoints)*2]==gobjects[obj].points[i*2])
tst=TRUE;

else
{

oldelta=delta=(gobjects[obj].points[cinc(i,numpoints)*2]-
gobjects[obj].points[i*2]) >=0 ? 1 : -1;

tst=FALSE;
}

}
else
{

della=(gobjccts[obj].points[cinc(i,numpoints)*2]-
gobjects[obj].points[i*2]) >=0 ? 1 : -1;

if(delta!=oldelta)
sign=defsign*-l;

else sign=defsign;
}

calcarea(obj,i,&Area)&Mx,&My>sign);
i=cinc(i,numpoints);

}
defsign=sigu=(sign>0) ? -1 : 1;
tst=FALSE;
for(i=il;il=ir;)
{

i f (i= i 11 |tst=TRUE)
{

if(gobjects[obj].pointsfcinc(i,numpoints)*2]=gobjects[obj].points[i*2])
tst=TRUE;

else
{

oldelta=delta=(gobjects[obj].points[cinc(i,numpoints)*2]-
gobjects[obj].points[i*2]) >=0 ? 1 : -1;

tst=FALSE;
}

}
else
{

delta=(gobjects[obj].points[cinc(i,numpoints)*2]-
gobjects[obj].points[i*2]) >=0 ? 1 : -1;

ifi(delta!=oldelta)
sign=defsign*-1;

else sign=defsign;
}

calcarea(obj,i,&Area,&Mx,&My,sign);
i=cinc(i,numpoints);

53

}

/*=

xc=(My/Area);
yc=(Mx/Area);

}
centroid[obj] .obj=obj;
centroid[obj].xc=xc; /* Store the results in an array so I can access them quickly later */
centroid[obj] .yc=yc;
WORLDtoPC(xc,yc,&PCx,&PCy); /* The pc screen coordinates of the centroid */
hidemouse();
setcolor(BLUE);
circle(PCx-wl,PCy-wt,3);
setcolor(YELLOW);
showmouse();

}

Routine: cinc
Function : increments the variable i to point to the next

coordinate in the polygon

int cinc(int i,int numpoints)
{

return (i+=l)%(numpoints-l);
}

Routine: calcarea
Function : adds or subtracts an area to the overall area of the

polygon as its being calculated

void calcarca(int obj, int i,double * area,double *Mx, double *My, double sign)
{

double xl,x2>yl,y2,deltax=0,deltamx=0,deltamy=0,ym=0,deltaarea=0,xm=0;

x1 =gobjects[obj].points[i*2];
y 1 =gobj ects [obj] .points [i*2+1];
x2=gobjects[obj].points[cinc(i,gobjects[obj].numpoints)*2];
y2=gobj ects [obj] .points [cinc(i,gobj ects [obj] ,numpoints)*2+1];

if(xl!=x2)
{

deltax=x2-xl;
deltax=(deltax>0) ?deltax :-l*deltax;
ym=(yl+y2)/2;
deltaarea=deltax*ym;
* area=* area+sign* deltaarea;

xm=(xl+x2)/2;
deltamy=deltax*xm*ym;
*My=*My+sign* deltamy;

deltamx=deltax*((ym*ym)/2);
*Mx=*Mx+sign*deltamx;

54

Routine:
Function

getipolybounds
get the indexes to the boundary points of the
polygon.

=*/

void getipolybounds(int numpoints, double *poly, int *il, int *it,
int *ir, int *ib)

{
int i;
double left,top,right,bottom;
left = MAXNUM;
top = 0;
right = 0;
bottom = MAXNUM;

for (i=0;i<numpoints;i++)
{

if (poly[i*2] < le ft){ left = poly[i*2]; *il=i;}
if (poly[i*2] > right){ right = poly[i*2]; *ir=i;}
if (poly[i*2+l] > to p) { top = poly[i*2+l]; *it=i;}
if (poly[i*2+l] < bottom){ bottom = poly[i*2+l]; *ib=i;}

}
}

/*=
Routine: findig
Function : finds the point xg,yg as in algorithm

void findig(int obj,double xc,double yc, double xl,double y l, double x2, double y2, double *xg,
double *yg, double *xm, double *ym)
{

struct LINESTRUCT linel={0,0,0,0},line2={0,0,0,0};
int i,j,maxi;
double interx=0,intery=0;

for(j=l ;j<=2;j++)
{

fmdmidpnt(j,xc,yc,xl,yl,x2,y2,&linel,xm,ym);
setviewport(wl,wt,wr,wb, 1);

if(gobj ects [obj]. type==CIRCLE)
maxi=8;

else maxi=gobjects[obj].numpoints -1;

for(i=0; i<maxi; i++)
{

line2.xl=gobjects[obj].extent_points[i*2];
line2.yl=gobjects[obj].extentjpoints[i*2+l];
line2.x2=gobjects[obj].extent_points[i*2+2];
line2.y2=gobjects[obj].extent_points[i*2+3];

if(intersect(line 1 ,line2,&interx,&intery)) break;
}

55

calcig(xc,yc,*xm,*ym,interx,intery,xg,yg);
if(!pointinobj(*xg,*yg)) break;

setviewport(0,0,maxx,maxy, 1);

int intersect(struct LINESTRUCT lnl,struct LINESTRUCT ln2,double *x,double *y)
{

double bigx=0,bigy=0,smallx=0,smally=0,xa=0,ya=0;

if(calc_line_interc(lnl,ln2,&xa,&ya))
{

getbig(ln2.xl,ln2.yl,ln2.x2,ln2.y2,&bigx,&bigy,&smallx,&smally);
if((xa<=bigx) && (xa>=smallx) && (ya<=bigy) && (ya>=smally))
{

if(distance(xa,ya,lnl.xl,lnl.yl) > distance(xa,ya,lul.x2,lnl.y2))
{

*x=xa;
*y=ya;
return 1;

}
}

}
return 0;

}

void fmdmidpnt(int j, double xc,double yc,double xl,double yl,double x2,double y2,struct
LINESTRUCT *lnl,double *xm,double *ym)
{

struct LINESTRUCT linel={0,0,0,0};
double m=0,ml=0,c=0,r=0,h=0,k=0,b=0,num=0,den=0;
double xa=0,ya=0,xb=0,yb=0,dl=0,d2=0;

linel.xl=xc;
linel.yl=yc;

*xm=linel .x2=(xl+x2)/2;
*ym=linel .y2=(y l+y2)/2;

/* This if statement calculates the value of xm,ym for special case */
if(((int)(xc* 100)=(int)(*xm* 100)) && ((int)(yc*100)==(int)(*ym*100)))
{

/* If the path happens to cut through the center of gravity */
/* a line at 90 degrees to the path is drawn to intersect the */
/* circle. */

if((int)(x 1 * 100)==(int)(x2* 100))
{

m=0;
c=yc;
*xm=line 1 .x2=xc+. 1;
ym=line 1 ,y2=m(*xm)+c;

}
else if((int)(y 1 * 100)=(int)(y2* 100))
{

*xm=linel ,x2=xc;

}

56

*ym=linel .y2=yc+0.1;
}
else
{

ml=(yl-y2)/(xl-x2);
m =-l/m l;
c=yc-m*xc;

*xtn=line 1 ,x2=xc+. 1;
*ym =linel ,y2=m *{*xm)+c;

}
}

il'(j=2) I* If the first ig was inside another obj try going the other way */
{

if((int)(xc* 100)=(int)(*xm* 100))
{

if(*ym>yc)
*y m=] ine I , y2=yc-EXT;

else *ym=linel.y2=yc+EXT;
}
else
{

m = (yc-*ym)/(xc-*xm);
c = yc-m*xc;
r = S D IS T ;
h = xc;
k = yc;
b = 2*(h-m*(c-k));
nura = ((2*(m*(c-k)-h))*(2*(m*(c-k)-h)))-4*

(1 +m* m) * ((h* h) +((c-k) *(c-k))-(r* r));
den = 2*(l+m*m);

xa = (b+sqrt(num))/den;
xb = (b-sqrt(num))/den;
ya = m*xa+c;
yb = m*xb+c;
dl = distance(*xiTi,*ym,xa,ya);
d2 = distancc(*xni,*ym,xb,yb);
if(d 1 <d2)
{

!|'xm=linel.x2=xb;
*ym=linel.y2=yb;

}
else
{

*xm=linel ,x2=xa;
* y m=line 1 .y 2=ya;

}

}
ln l->x l= line l.x l;
lnl->yl= linel.yl;
Inl->x2=linel.x2;
Inl->y2=linel.y2;

57

Routine: calcig
Function : finds the point xg,yg as in algorithm

„ = _ = _ ^ = _ = _ = _ = .= _ = — ------=-=-=-=-=-=*/

void calcig(double xc,double yc,double xm,double ym,double interx,double intery,double
*xg,double *yg)
{

double xa=0,ya=0,xb=0,yb=0,d 1 =0,d2=0;
double m=0jc=0,r=0,h=0,k=0,b:=0,num=0,den=0;

/* This if statement calculates the value of xg,yg */
if((int)(xc* 100)=(int)(xm * 100))
{

*xg=interx;
if(intery>yc)

*yg=intery+S_DIST;
else *yg=intery-S_DIST;

}
else
{

m = (yc-ym)/(xc-xm);
c = yc-m*xc;

r = SD IST ;
li = interx;
k = intery;

b = 2*(h-m*(c-k));
num = ((2*(m*(c-k)-li))*(2*(m*(c-k)-h)))-4*(l+m*m)*

((h*h)+({c-k)*(c-k))-(r*r));

den = 2*(l+m*m);

xa = (b+sqrt(num))/den;
xb = (b-sqrt(num))/den;
ya = m*xa+c;
yb = m*xb+c;
d 1 = distance(xc,yc,xa,ya);
d2 = distance(xc,yc,xb,yb);

/* Note */
/* I f the path intersects the object */
/* on only one extension point then */

if(dl<d2) /* xm,ym will be equal to that point */
{ /* as x l= x 2 and y l= y 2 . *1

*xg=xb;
*yg=yb;

}
else
{

*xg=xa;
*yg=ya;

}
}

}

58

Routine : check visible
Function : checks if two points are visible to each other

by finding if a line joining them intersects with
any obstacle boundary.

int visible(double x l, double y l, double x2, double y2, coord *interl, coord *inter2, int *objt)

int i;
struct LINESTRUCT polyline={0,0,0,0},pathline={0,0,0,0};
struct OBSTRUCT *ptr,*head,root={0,0,0,NULL};
double interx=0,intery=0;
double bigx=0,bigy=0;
double smallx=0,smally=0;
int obj;
int maxi;

ptr=&root;
root.next=NULL;

pathline.xl = x l ;
pathline.yl = y l;
pathline.x2 = x2;
pathline.y2 = y2;

setviewport(wl,wt,wr,wb, 1);

for (obj=0;obj<nextobj;obj++)
{

if (gobjects [obj], type = CIRCLE)
maxi = 8; /* circle */

else maxi = gobjects[obj].numpoints-l;

for (i=0; i<maxi; i++)
{

polyline.xl = gobjects[obj].extent_points[i*2];
polyline.yl = gobjects[obj].extent_points[i*2+l];
polyline.x2 = gobjects[obj].extent_points[i*2+2];
polyline.y2 = gobjects[obj].extent_points[i*2+3];

if (calc_line_interc(polyline,pathline,&interx,&intery))
{ /* Check if it's a valid intersection */

getbig(polyline.xl, polyline.yl, polyline.x2, polyline.y2,
&bigx, &bigy, &smallx, &smally);

if ((interx <= bigx) && (interx >= smallx)
&& (intery <= bigy) && (intery >= smally))
{

getbig(pathline.xl, pathline.yl, pathline.x2, pathline.y2,
&bigx, &bigy, &smallx, &smally);

if ((interx <= bigx) && (interx >= smallx)
&& (intery <= bigy) && (intery >= smally))
{
pti'->next = (struct OBSTRUCT *)malloc(sizeof(struct OBSTRUCT));

59

ptr=ptr->next;
ptr->x=interx;
ptr->y=intery;
ptr->obj=obj;
ptr->next=NULL;
}

}
}

}
}
if (root.next!=NULL)
{

getinter(&root,intcrl,inter2,objt);
return(FALSE); /* Not visible */

}
setviewport(0,0,maxx,maxy, 1);
retum(TRUE); /* Visible */

void getinter(struct OBSTRUCT *head,coord *interl, coord *inter2,int *obj)
{

double d=0,oldist=MAXNUM;
struct OBSTRUCT *ptr,*ptrl;
int flag=0;

pti—head->next;
if(ptr!=NULL)
{

do{
ifi((d=distance(ptr->x,ptr->y,curr->x,cinT->y)) <oldist)
{

oldist=d;
inter!->x=ptr->x;
interl->y=ptr->y;
*obj=ptr->obj;

}
ptr=ptr->next;

}while(ptr!=NULL);
ptr=head->next;
do{

if(ptr->obj==5i‘o b j)
{

if(((d=distance(pti-->x,ptr->y,cun'->x,cun->y)) >oldist) &&
(!((ptr->x==interl->x) && (ptr->y=interl ->y))))
{

oldist=d;
inter2->x=pti->x;
inter2->y=ptr->y;
flag=l;

}
}
ptr=ptr->next;

}white(ptr !=N U LL);
if(flag=0)

inter2->x=interl ->x;
{

60

mter2->y=inter 1 ->y;

ptrl =pti-head->next;
do{

ptr=ptr->next;
free(plrl);
ptrl=ptr;

}while(ptr!=NULL);
head->ncxt=NULL;

}
}

}

R outine: pointinobj
Function : checks if a point x l,y l is in any of the obstacles

int pointinobj(double x l, double y 1)

struct LINESTRUCT polyline={0,0,0,0},pathline={0,0,0,0};
double interx=0,intery=0,xc=0,yc=0;
double bigx=0,bigy=0;
double smallx=0,smally=0,oldist=0,d=0;
int i, obj, maxi, flag=0,j,endpt=FALSE;

setviewport(wl,wt,wr,wb, 1);

for (obj=0;obj<nextobj;obj++)
{

if (gobjects[obj].type = CIRCLE)
maxi = 8; /* circle */

else maxi = gobjectsfobj].numpoints- i ;

get_centroid(obj,&xc,&yc);
pathline.xl = x l;
pathline.yl = y l;
pathline.x2 = xc;
pathline.y2 = yc;

for (i=0; i<maxi; i++)
{

polyline.xl = gobjects[obj].extent_points[i*2];
polyline.yl = gobjects[obj].extent_points[i*2+l];
polyline.x2 = gobjects[obj].extent_points[i*2+2];
polyline.y2 = gobjects[obj].extent_i5oiiits[i*2+3];

if (calc_ 1 ine interc(polyline,pathline,&interx,&mtery))
{ /* Check if it's a valid intersection */

getbig(polyline.xl, polyline.yl, polyline.x2, polyline.y2,
&bigx, &bigy, &smallx, &smaily);

if ((interx <= bigx) && (interx >= smallx)
&& (intery <= bigy) && (intery >= smally))

{

61

I

getbig(pathline.xl, pathline.yl, pathline.x2, pathline.y2,
&bigx, &bigy, &smallx, &smally);

if ((interx <= bigx) && (interx >= smallx)
&& (intery <= bigy) && (intery >= smally))
{

flag++;
d=distance(interx,inteiy,xc,yc);
if(d>oldist)
{

j=i;
oldist=d;
if((interx=polyline.xl)& &(intery=polyline.yl))

endpt=TRUE;
if((interx=polyline.x2)&&(intery=polyline.y2))

endpt=TRUE;

}
}

}
}

}
if(flag=0)

return(TRUE);
else
{

if (flag— 1) retum(FALSE);
else
{

if(endpt=TRUE) /* You'll get 2 intersections if the point */
retum(FALSE); /* intersects one of the polygon points */

else /* Else special case where point may be inside an obstacle
ie dont want to plan a path within an object!!!*/
return(isvisib(obj,x 1 ,y 1 J));

}
}

}
setviewport(0,0,maxx,maxy,l);
rcturn(FALSE);

Routine: isvisib
Function : This decides if a point is within or outside an

obstacle, j is the number of points

int isvisib(int obj,double xl,double yl.int j)
{

double areal=0,area2=0,*ptr;
int i=0,maxi;

setviewport{ wl,wt,wr,wb, 1);

if (gobjects[obj].type = CIRCLE)
maxi = 8; /* circle */

62

else maxi = gobjects[obj].numpoints-l;

area 1 =getarea(gobjects[obj].cxtentjoints, maxi);
ptr=malloc(sizeof(double)*(gobjects[obj].numpoints+l)*2);
for(i=0;i<=j;i++)
{

ptr[i*2]=gobjects[obj].extent_points[i*2];
ptr[i*2+l]=gQbjects[obj].extent_points[i*2+l];

}
ptr[i*2]=xl; /* i==j+l */
ptr[i*2+l]=yl;
for(i=j+1 ;i<maxi+1 ;i++)
{

ptr[(i+l)*2]=gobjects[obj].extent_points[i*2];
ptr[(i-i-l)*2+l]=gobjects[obj].extent_points[i*2+l];

}
area2=getarea(ptr,maxi+l);
free(ptr);

if(areal>area2)
return(TRUE);

else return (FALSE);

Routine: getarea
Function : To find the area of the polygon it finds the indexs to

the polygons boundary points. Then starting from the base
it will add on or subtract the area enclosed by the next
segment depending on its slope.

double getarea(double *ptr,int maxi)
{

double Area=0;
int ir,it,il,ib,i;
int sign=0,defsign=0;
int delta=0,oldelta=0,tst=0;

getipolybounds(maxi+1 ,ptr,&il,&it,&ir,&ib);

if(il<ir)
{

if((it>=il) && (it<=ir))
{

sign=defsign=l;
}
else sign=defsign =-1;

for(i=il;i<ir;)
{

if(i= il||tst=TR U E)
{

63

else
{

oldelta=delta=(ptr[cinc(i)maxi-H)*2]-plT[i*2]) >=0 ? 1 : -1;
tst=FALSE;

}
}
else
{

delta=(ptr[cinc(i,maxi+l)*2]-ptr[i*2]) >=0 ? 1 : -1;
if(deIta!=oldelta)

sign=defsign*-l;
else sign=defsign;

calarea(i,maxi,&Area,sign,ptr);
i=cinc(i,maxi+l);

}
defsign=sign=(sign>0) ? -1 : 1;
tst=FALSE;
for(i=ir;i!=il;)
{

if(i— ir||lst=TRUE)
{

if(ptr[cinc(i,maxi+l)*2]==ptr[i*2])
tst=TRUE;

else
{

oldelta=delta=(ptr[cinc(i,maxi+l)*2]-plr[i*2]) >=0 ? 1 : -1;
tst=FALSE;

}
}
else
{

delta=(ptr[cinc(i,maxi+l)*2]-ptr[i*2]) >=0 ? 1 : -1;
if(delta!=oidelta)

sign=defsignM ;
else ssgn=defsign;

}

calarea(i,maxi,&Area,sign,ptr);
i=cinc(i,maxi+l);

}
}

ifi(psr[cmc(),maxi+])’l‘2]==ptr[i*2])
tst=TRUE;

if((it>=ir) && (it<=il))
{

sign=defsign=l;
}
else
{

sign=defsign=-1;
}

for(i=ir;i<il;)
{

64

{
if(ptr[cinc(i,maxi-H)*2]=ptr[i*2])

tsi=TRUE;
else
{

oldelta=delta=(ptr[cinc(i,maxi+l)*2]-ptr[i*2]) >=0 ? 1 : - l ;
tst=FALSE;

}
}
else
{

delta=(ptr[cinc(i,maxi+l)*2]-ptr[i*2]) >=0 ? 1 :-1;
ifi(delta!=oldelta)

sign=defsign*-l;
else sign=defsign;

}

calarea(i,maxi,&Area,sign,ptr);
i=cinc(i,maxi+l);

}
defsign=sign=(sign>0) ? -1 : 1;
tst=FALSE;
for(i=il;i!=ir;)
{

if(i= il||tst=T R U E)
{

if(ptr[cinc(i,maxi+l)*2]===ptr[i*2])
tst=TRUE;

else
{

oldelta=delta=(ptr[cinc(i,maxi+l)*2]-ptr[i*2]) >=0 ? 1 : -1;
tst=FALSE;

}
else
{

delta=(ptr[cinc(i,maxi+l)*2]-ptr[i*2]) >=0 ? 1 : -1;
if(delta!=oldelta)

sign=defsign*-l;
else sign=defsign;

}

calarea(i, maxi,&Area, sign, ptr);
i=cinc(i,maxi+l);

}

if(i= ir ||tst=T R U E)

}
return(Area);

}

/*=
Routine: calarea
Function : It adds or subtracts the area enclosed by the points

depending on whether it encloses the polygon

65

void calarea(int i,int maxi,double * area,double sign,double *ptr)
{

double x 1 ,x2,y 1 ,y2,deltax=0,ym=0,deltaarea=0;

xl=ptr[i*2];
yl=ptr[i*2+l];
x2=ptr[cinc(i,maxi+1)*2];
y2=ptr[cinc(i,maxi+1) *2+1];

if(xl!=x2)
{

deltax=x2-xl;
deltax=(deltax>0) ?deltax :-l*deltax;
ym=(yl+y2)/2;
deltaarea=deltax* ym;
*area=*area+sign*deltaarea;

}
}

R outine: pointinobject
Function : Is a point within an obstacle. If it is when its added

to a polygon the polygon will have a smaller area
than the original polygon

^ . = . ^ = . = . = J . = . = ^ . = . = . = . = . = . = . = . = . = . = . = . = . M . = . = . = . = ^ . = . = - = J - = - = - = * /

intpointinobject(int obj, double x l, double y l)
{

struct LINESTRUCT polyline={0,0,0,0},pathline={0,0,0,0};
double interx=0,intery=0,xc=0,yc=0;
double bigx=0,bigy=0;
double smallx=0,smally=0,oldist=0,d=0;
int i,maxi,flag=0,j,endpt=FALSE;

if (gobjects[obj].type == CIRCLE)
maxi = 8; /* circle */

else if((gobjects[obj].oldtyp == CIRCLE) && (gobjects[obj].numparts = 1))
maxi = 8;

else
maxi = gobjects[obj].numpoints-l;

get_centroid(obj,&xc,&yc);
pathline.xl = x l;
pathline.yl = y l;
pathline.x2 = xc;
pathline.y2 = yc;

for (i=0; i<maxi; i++)
{

polyline.xl = gobjects[obj].extent_points[i*2];
polyline.yl = gobjects[obj].extent_points[i*2+l];
polyline.x2 = gobjects[obj].extent_points[i*2+2];
polyline.y2 = gobjects[obj].extent_points[i*2+3];

if (calc_line_interc(polyline,pathline,&interx,&intery))
{ /* Check if it's a valid intersection */

getbig(polyline.xl, polyline.yl, polyline.x2, polyline.y2,
&bigx, &bigy, &smallx, &smally);

66

if ((interx <= bigx) && (interx >= smallx)
&& (intery <= bigy) && (intery >= smally))
{

getbig(pathline.xl, pathline.yl, pathline.x2, pathlinc.y2,
&bigx, &bigy, &smallx, &smally);

if ((interx <= bigx) && (interx >= smallx)
&& (intery <= bigy) && (intery >= smally))
{

flag++;
d=distanee()nterx,intery,xc.yc);
if{d>oldist)
{

H ;
oldist=d;
if((interx=polyIine.xl)

& & (inteiy=polyline.yl))
endpt=TRUE;

if((inlerx==poIyline.x2)
&&(intery==poIyline.y2))
endpt=TRUE;

}
>

}
}

}
if(flag=0)

retnrn(TRUE);
else
{

if (f la g = l)
return(FALSE);

else
{

if(endpt=TRUE) /* You'll get 2 intersections if the point */
return(FALSE); /* intersects one of tlie polygon points */

else /* Else special case where point may be inside */
return(isvisib(obj,xl,yt j));

}

67

** **
** MODULE : PLANNING.C **
** **
** DESCRIPTION : **
** This module contains the planning algorithm and a number **
** of supplimentay funcitions to support it. Such functions include **
** thise for calculating free space extent nodes, **
** **
***************** He ***/

//include <stdio.h>
//include <graphics.h>
//include <stdlib.h>
//include <stdarg.h>
//include <alloc.li>
//include <math.h>
//include <time.li>
^include "mouse.h"
//include "calc.h"
//include "gtext.h"

^include "defs.h"
//include "data.h"
#include "proto.h'1

I*
* Variables global to this file.
*/

point s,g;
point extent_nodcs[100];

double total_distance;
int MAXEXTENTS= 100;
pathpoints gpath={0,0,NULL},*end,*curr;

Routine : path_motion
Function : controls the setting up and calculating of the

planned path

void pathmotion(void)
{

get nodes();
if (plan_pathO)

clisplay_planned_path();
}

/*-=-=-=-= .=-=.=-=-=-=.=^=.=-=.=.=-=-=-=-=.=^=.=-=-=^=-=-=-=-=-=.=-=-=
Routine : get_nodes
Function : gets and marks start and end nodes for planned

path.
-= -= -= -= .= --^ -= -= -= ------= -= -= ---= -= -= -----= -= -= ---^ = -= -= -= -

68

void get_nodes(void)
{

int STARTCHOSEN = FALSE;
struct textsettingstype savetext;

gettextsettings(&savetext);

messagebox("Select Start and end nodes");

mousebuttonreleased(LEFT_BUTTON);
mousebuttonreleased(RIGHT_BUTTON);
setviewport(wl,wt,wr,wb, 1);

settextjustify(CENTER_TEXT,CENTER_TEXT);

while(l)
{

while (liuousebuttonreleased (LEFT_BUTTON));
if (!START_CHOSEN)
{

gctmousecoords(&sx,&sy);
if (sx < wl || sy < wt || sy > wb)
{

setviewport(0,0,maxx,maxy, 1);
return;

}
STARTCHOSEN = TRUE;
hidemouse();
setcolor(LIGHTBLUE);
outtextxy(sx-wl,sy-wt,"S");
setcolor(YELLOW);
circIe(sx-wI,sy-wt,NODE_RADIUS);
showmouseQ;

PCtoWORLD(sx,sy,&worIdsx,&worldsy);
s.x = worldsx;
s.y = worldsy;
s.num = 0;

}
else
{

gelmousecoords(&gx,&gy);
if (gx < wl || gy < wt || gy > wb)
{

setviewport(0,0,maxx,maxy, 1);
return;

}
hidemouseQ;
setcolor(LlGHTBLUE);
outtextxy(gx-wl,gy-wt,"G");
sctcolor(YELLOW);
circle(gx-wl,gy-wt,NODE_RADIUS);
showmouse();
PCtoWORLD(gx,gy,&worldgx,&woiidgy);
g.x = worldgx;
g.y = worldgy;
g.num = 1;

69

break;

} /* end while 1 *!
setviewport(0,0,maxx,maxy,l);
ST ART_CHOSEN = FALSE;
settextjustify(savetext.horiz,savetext,vert);
settextsty 1 e(savetext. fonI, savetext.direction, savetext.charsize);

}

Routine: display_planned_path
Function : Sets up the path in the path structure using the
preceed array to guide it. Note all points are converted to world
coordinates. Lastly this function displays the path by drawing
lines from start to goal nodes via the path.

void display_planned_path(void)
{

int first;
int pcx 1 ,pcy 1;
int oldpcxl,oldpcyl;
int i j ;
pathpoints *tmp,*curr;
char buf[50];

totaldistance = 0;
setviewport(wl, wt,wr, wb, I);
PATH JPICKED = TRUE;

/* Loop for displaying the path */
iiidemouse();
setcolor(PATII_COLOR);
curr=tmp=&gpath;
while(l)
{

WORLDtoPC(tmp->x,tmp->y ,&oldpcx 1 ,&oldpcy 1);
lmp=tmp->next;if(tmp=NULL) break;
WORLDtoPC(tmp->x,tmp->y,&pcxl ,&pcy 1);
line (pcx 1 -wl,pcy 1 -wt,oldpcx 1 -wl,oldpcy 1 -wt);
lotal_distance += distance(curr->x,curr->y,tmp->x5tmp->y);
curr=tmp;

}
setcolor(YELLOW);
showmouseO;
sprintf(buf,"Path Length is %f meters",total_distance);
messagebox(bul);

setvie wport^.O.maxx^naxy, 1);

70

Routine : plan_path
Function: sets up the variables for the pathplanner routine which

plans the path.

int p]an_palh(void)
{

coord sl={0,0},gl={0,0}; /* Start.goal */

sl.x=s.x;
s I .y=s.y;
gl.x=g.x;
gi-y=g-y;

/* growobjs(); */

gpath.x=s.x;
gpath.y=s.y;
gpath.next=NULL;
cnd=&gpath;

if(pathplanner(sl,gi)) /* Find the path between start + destination */
{

end->next=(struct pth *)malloc(sizeof(slract pth));
end=end->next;
end->x=g.x;
end->y=g.y;
end->next=NULL;

removeloopsQ; I* Cut out any loops */
return 1;

}
else return 0;

}

^ = -= -= -= -= - - -= -= -= - - - - - - -= -= - - - : = .=

Routine : pathplanner
Function : recursively calls itself to find its way around obstacles

int pathplanner(coord p i, coord p2)
{

coord inter 1={0,0} ,inter2={0,0};
double xc=0>yc=0jxm=0,yni=0,xg=0,yg=!0,xranew=0,ymnew=0;
int obj=0,oldobj=0;

curr=end;
if (visibie{pl.x, pl.y, p2.x, p2,y, & inter 1, &inter2, & obj))
{

/* outtcxtxy(200,200,"No barriers between S and G ");*/
return(TRUE);

}

get_centroid(obj,&xc,&yc);

71

finciig(obj,xc,yc,inter 1.x,interl.y,iii{er2,x)intei'2.y,&xgJ&yg,&xrn,&ym);

end->next=(struct pth *)malloc(sizeof(struct pth));
end=end->next;
end->x=xg;
end->y=yg;
end->next=N ULL;
oldobj=obj;

do{
if (visible(pl .x,pl.y,xg,yg,&iiiterl,&mter2,&obj) = 0)
{

if(oldobj!=obj)
{

get_centroid(obj,&xm,&ym);
oldobj=obj;

}
fiiidig(obj,xm,ym,interl .x,interl .y,inter2.x,inter2.y,&xg,&yg, &xmnew,&ymnew);
addpath(xg,yg);

}
else break;

}while(l);
pl.x=xg;
pi-y=yg;
pathplanner(p 1 ,p2);
return(1);

}

Routine : get centroid
Function : gets the centroid of an object from an array where

the points were previously calculated + stored.
. ^ = . = . = . = . = ^ . = . = . = . = . = . = J - = ^ = .= .= .= .= .= .= .= ^ = ^ = .= _ = .= .= .= .= .= ^ = .= .= .= .= + /

void get_centroid(int obj,double *xc,double *yc)
{

* xc=centroid [obj] .xc;
*yc=centroid[obj].yc;

}

Routine : removeloops
Function: remove any loops where the path might have looped

back and went in another direction to find its way
around an object.

void removeloops{)
{

pathpoints *tinp;
coord inter 1 = {0,0},inter2= {0.0};
int obj;

tmp=curr=&gpath;
tmp=tmp->next; if(tmp==NLJLL) return;
tmp=tmp->next;
while(l)

72

while (Imp!=N U LL)
{

if(visible(curr->x,curr->y,tmp->x,tmp->y,&interl,&inter2,&obj))
shortenpath(curr,tmp);

tmp=tmp->next;
}
tmp=curr=curr->next;
tmp=tmp->next; if(tmp=NULL) break;
tnip=tmp->next; if(tnip ==NULL) break;

}
}

Routine : shortenpatli
Function : remove all unwanted nodes from curr to tmp

void shortcnpathfpathpoints *curr,pathpoints *tmp)
{

pathpoints *pl,*p2;

p l=p2=curr->next;
while(p2!=tmp)
{

p2=p2->next;
free(pl);
pl=p2;

}
cun->ncxt=mip;

}

{

Routine: dclete_path
Function : deletes the path from screen and memory

void deletejmth(void)
{

pathpoints *tmpl,*tmp2;

if (PATII_PICKED)
{

PATHPICKED = FALSE;
tmp 1 =tmp2=gpath.next;
while(tmpl!=NULL)
{

tmp2=tmp2->next;
free(tmpl);
tmpl=tmp2;

}
gpath.next=NULL;
clearworkarea();
display_aU_objects();

}
}

73

Routine : intersect angle
Function : Calculates the acute angle between two lines.

double intersect_angle(struct LINESTRUCT linel, struct LINESTRUCT line2)
{

double m l, m2;
double theta;

m l = slope(linel.xl, linel.yl, linel.x2, linel.y2);
m2 = slope(line2.xl, line2.yl, Iine2.x2, Iine2.y2);
if ((ml * m2) = -1.0)

theta = 90.0;
else
{

theta = atan((ml - m2) / (1 - ml*m2)) * R TO D;
if (theta < 0.0) /* Make sure the angle is positive */

theta = - theta;
if (theta >= 90.0) /* Make sure the angle is the acute angle */

theta = 180.0 - theta;
}
retum(theta);

}

R outine: slope
Function : Calculates the slope of the line formed by two points

double slope(double x l, double y l, double x2, double y2)
{

if (x2 == x l)
retum(lOOOOO); /* Simulate infinity ! */

else retum((y2 - yl)/(x2 - x l));
}

R outine: distance
Function : Calculates the distance between two points

double distance(double x l, double y l, double x2, double y2)
{

retum(sqrt((x2 - xl)*(x2 - x l) + (y2 - yl)*(y2 - y l)));
}

Routine: addpath
Function : adds a new node onto the path

void addpath(double x,double y)
{

pathpoints *tmp;

tmp=cuiT->next;
curr->next=(struct pth *)malloc(sizeof(struct pth));

74

curr->next->x=x;
curr->next->y=y;
curr->next->next=tmp;

}

* - = = =-=-=
Routine: growobjs
Function : calculates the extents along the objects for

use in planning the path.

void growobjs(void)
{

int i;

for (i=0;i<nextobj;i++)
{

if (gobjects[i].type = POLY)
calc_p o lyextent(i);

else if (gob jects[i] .type == CIRCLE)
c alc_cir cleextent(i);

}
}

R outine: calc_circle_extent
Function : Calculates the extent points of a circle.

Eight points are used in this program.
Calculations in integers as points are in PC screen
coordinates.

void calc_circle_extent(int obj)
{

double radius;
/* double C_R;*/

radius = distance(gobjects[obj].points[0],gobjects[obj].points[l];
gobjects[obj].points[4],gobjects[obj].points[l]);

/*C_R = (CORNER R * 1.1) + (0.1 * radius);*/

/* Point 1 : North */
gobjects[obj].extent_points[0] = gobjects[obj].points[0];
gobjects[obj].extent_points[1] = gobjects[obj].points[l] - radius - SD IST;

/* Point 2 : North-East */
gobjects[obj].extent_points[2] = gobjects[obj].points[0] + (radius + SD IST) * COS45;
g obj ects [obj]. extentjp oints [3] = gobjects[obj].points[l] - (radius + SD IST) * SIN45;

/* Point 3 : East */
gobjects[obj].extent_points[4] = gobjects[obj].points[0] + radius + SD IST ;
gobjects[obj].extent_points[5] = gobjects[obj].points[l];

/* Point 4 : South-East */
gobjects[obj].extent_points[6] = gobjects[obj].points[0] + (radius + S DIST) * COS45;
gobjects[obj].extent_points[7] = gobjects[obj].points[l] + (radius + S_DIST) * SIN45;

75

/* Point 5 : South */
gobjects[obj].extent_points[8] = gobjects[obj].points[0];
gobjects[obj].extent_points[9] = gobjects[obj].points[l] + radius + S_DIST;

/* Point 6 : South-West */
gobj ects [obj]. extent_points [10
gobjects[obj].extent_points[l 1

/* Point 7 : West */
gobj ects [obj]. extent_p oints [12
gobj ects [obj]. extent_points[13

/* Point 8 : North-West */
gobjects [obj]. extent_points [14
gobj ects [obj] ,extent_points [15

/* Point 9 : Center */
gobj ects [obj] .extent_points [16
gobjects[obj] ,extent_points[17

}

Routine: calc_poly_extent
Function : calculates the extent around a polygon.

Calculations in integers as points are in PC screen
coordinates.

void calc_poly_extent(int obj)
{

int ij;
double xl,yl,x2,y2,prox,proy;
double projx, projy;
double interx,intery;
double m_ratio,n_ratio,m,n;
struct LINESTRUCT *lines;
int PCx2,PCy2;

lines = (struct LINESTRUCT *) malloc (sizeof(double)*4*(gobjects[obj].numpoints-l));

for (i=0;i<gobjects[obj].numpoints -1 ; i++)
{

x l = gobjects[obj].points[i*2];
x2 = gobjects[obj].points[i*2+2];
y l = gobjects[obj].points[i*2+l];
y2 = gobjects[obj].points[i*2+3];

m ra tio = distance(xl, y l, x2, y2) + EXT;
n_ratio = EXT;
m = m_ratio - EXT;
n = n_ratio;

prox = (m ratio * x2 - n ra tio * xl) / (m_ratio - n r a t io);
proy = (m_ratio * y2 - n ratio * y l) / (m_ratio - n ratio);
projx = (m_ratio * x l - n ratio * x2) / (m ratio - n_ratio);
projy = (m_ratio * y l - n ratio * y2) / (m_ratio - n_ratio);

= gobjects[obj].points[0] - (radius + S_DIST) * COS45;
= gobjects[obj].points[l] + (radius + S DIST) * SIN45;

= gobjects[obj].points[0] - radius - S DIST;
= gobjects[obj].points[l];

= gobjects[obj].points[0] - (radius + S DIST) * COS45;
= gobjects[obj].points[l] - (radius + S DIST) * SIN45;

= gobjects[obj].extent_points[0];
= gobjects[obj].extent_points[l];

76

if(pointinobjarr(gobjects[obj].points,gobjects[obj].numpoints,prox,proy))
{

prox = x2 - (n * (x2 - x l)) / m;
proy = y2 - (n * (y2 - y l)) / m;

}
if(poinlinobjarr(gobiects[obj].points,gobjects[obj].numpoints,projx,projy))
{

projx = xl + (n * (x2 - x l)) / m;
projy = yl + (n * (y2 - y 1)) / m;

}

if (i+1 = gobjects[obj].numpoints -1)
{

lines[0].x 1 =prox;
lines[0].yl = proy;

}
else
{

lines[i+l].xl =prox;
lines[i+l].yl =proy;

}
i f (i = o)
{

lines[gobjects[obj].numpoints - 2].x2 = projx;
lines[gobjects[obj].numpoints - 2].y2 = projy;

}
else
{

lines[i-l].x2 = projx;
lines[i-l].y2 = projy;

}
}

for (i=0;i<gobjects[obj].numpoints -1; i++)
{

if (i = gobjects[obj].numpoints - 2)
j = 0;

else j = i+1;

calc_line_interc(lines[ij,lmes[j],&inteix,&mtery);
gobjects[obj].extent_points[i!|‘2] = interx;
gobjects[obj].extent_points[i’l‘2+l] = intery;

}
gobjects|obj].exte!U_points[i*2| = gobjects[obj]. extcntpo ints [0];
gobjeets[obj].cxtent_points[i*2+1] = gobjects[obj].extent_points[l];

for (i=0;i<gobjects[obj].numpoints -1; i++)
{

WORLD toPC(gobjects[objj.exte]n_points[iIH2],gobjects[obj].extent_points[iHt2+ l])
PCx2,&PCy2);

hidemouse();
setcolor(WHITE);
cirele(PCx2-wl,PCy2-wt,3);
setcolor(YELLOW);
showmouse();

}
free(lines);

77

— -= = = = = l= = ..= =l =_=_=.— . =
Routine: calc_line_intcrc
Function : Calculates the intersection points

between two lines

int calc_line_interc(struct LINESTRUCT 11 .struct LINESTRUCT 12, double *x, double *y)
{

double axl, ayl, ax2, ay2;
double bxl, by l, bx2, by2;
double am,bm;

axl = 11 .xl;
ayl = 11 .yl;
ax2 = 11.x2;
ay2 = ll.y2;

bxl = 12.x 1;
byl = 12.y l;
bx2 = 12.x2;
by2 = 12.y2;

if (ax2-axl ==0)
{

if (bx2-bxl = 0)
{

return(FALSE);
}
bm = (by2 - byl) /(bx2 - bxl);
*x = axl;
*y = by2 + bm * (ax2 - bx2);

}
else
{

am = (ay2 - ayl) /(ax2 - axl);
if (bx2-bxt = 0)
{

*x = bxl;
*y = ay2 + am * (bx2 - ax2);

}
else
{

bm = (by2 - byl) /(bx2 - bxl);
if (am = bm)
{

return(FALSE);
}
*x = (- (bm * bxl) + byl - ayl + (am * axl)) / (am-bm);
*y = ayl + am * (*x - axl);

}
}
return(TRUE);

}

78

/*■
Routine: get_extent
Function : calculates the extent around a circle or polygon,

Calculation in doubles for world coordinates
-=-=-=.=-=-^-=-=-=-=-=.=.=.^. --- -- - ^-=-=-=-=-=-= = =*/

void get_extent(int numpoints,int type,double *WORLDpoly, double *EXTENTpoly)
{

switch(type)
{

case CIRCLE: calc_circ_extent(WORLDpoly,EXTENTpoly);break;
case POLY : calc_pol_extent(numpoints,WORLDpoly,EXTENTpoly);break;

}
}

Routine: calc_circ_extent
Function : calculates the extent around a circle.

Calculation in doubles for world coordinates

void calc_circ_extent(double *points, double *EXTENTpoly)
{

double radius;

radius = distance(points[0],points[l],points[4],points[l]);

/* Point 1 : North */
EXTENTpoly[0] =points[0];
EXTENTpoly[l] =points[l] - radius - S DIST;

/* Point 2 : North-East */
EXTENTpoly[2] = points [0] + (radius + S_DIST) * COS45;
EXTENTpoly[3] = points[l] - (radius + S_DIST) * SIN45;

/* Point 3 : East */
EXTENTpoly[4] = points[0] + radius + SD IST;
EXTENTpoly[5] =points[l];

/* Point 4 : South-East */
EXTENTpoly[6] =points[0] + (radius + S DIST) * COS45;
EXTENTpoly[7] =points[l] + (radius + S_DIST) * SIN45;

/* Point 5 : South */
EXTENTpoly[8] =points[0];
EXTENTpoly[9] = points[l] + radius + S_DIST;

/* Point 6 : South-West */
EXTENTpoly[10] =points[0] - (radius + S_DIST) * COS45;
EXTENTpoly[l 1] = points[l] + (radius + S_DIST) * SIN45;

/* Point 7 : West */
EXTENTpoly[12] =points[0] - radius - S DIST;
EXTENTpoly[13] =points[l];

/* Point 8 : North-West */
EXTENTpoly[14] = points[0] - (radius + S_DIST) * COS45;

79

EXTENTpoly[15] =points[l] - (radius + S DIST) * SIN45;

/* Point 9 : Center */
EXTENTpoly[16] = EXTENTpoly[0];
EXTENTpoly[17] = EXTENTpoly[l];

Routine: calc_poly_extent
Function : calculates the extent around a polygon.

Calculation in doubles for world coordinates

void calc_pol_extent(int numpoints,double *points,double *EXTENTpoly)
{

int i,j;
double xl,yl,x2,y2,prox,proy;
double projx, projy;
double interx,intery;
double m_ratio,n_ratio,m,n;
struct LINESTRUCT *lines;
int PCx2,PCy2;

lines = (struct LINESTRUCT *) malloc (sizeof(double)*4*(numpoints-l));

for (i=0;i<numpoints - 1; i++)
{

x l =points[i*2];
x2 = points [i*2+2];
y l =points[i*2+l];
y2 = points [i*2+3];

m ratio = distance(xl, y l, x2, y2) + EXT;
n_ratio = EXT;
m = m_ratio - EXT;
n = n_ratio;

prox = (m ra tio * x2 - n ra tio * x l) / (m_ratio - n r a t io);
proy = (m_ratio * y2 - n ratio * y l) / (m_ratio - n_ratio);
projx = (m_ratio * x l - n ratio * x2) / (m ratio - n ratio);
projy = (m ratio * y l - n_ratio * y 2) / (m ratio - n_ratio);

if(pointinobjarr(points,numpoints,prox,proy))
{

prox = x2 - (n * (x2 - x l)) / m;
proy = y2 - (n * (y2 - y l)) / m;

}
if(pointinobjarr(points,numpoints,projx,projy))
{

projx = x l + (n * (x2 - x l)) / m;
projy = y l + (n * (y2 - y l)) / m;

}

if (i+1 = numpoints -1)
{

80

lines[0].xl =prox;
lines[0].yl = proy;

}
else
{

lincs[i+l].xl =prox;
lines[i+l].yl = proy;

}
if (i = 0)
i

lines[numpoints - 2].x2 = projx;
lines[numpoints - 2].y2 = projy;

}
else
{

lines[i-l].x2 = projx;
linesfi-1].y2 = projy;

}

for (i=0;i<numpoints -1; i++)
{

if (i = numpoints - 2)
j = 0;

else j = i+l;

calc_line_interc(lincs[i],lines[j],&interx,&intery);
EXTENTpoly[i*2] = interx;
EXTENTpoly[i*2+1] = intery;

}
EXTENTpoly[i*2] = EXTENTpolyfO];
EXTENTpoly[i*2+l] = EXTENTpoly[l];

for (i=0;i<numpoints -1; i++)
{

WORLDtoPC(EXTENTpoly[i*2],EXTENTpoly[i*2+l],&PCx2,&PCy2);
hidemouse();
setcolor(WHITE);
circle(PCx2-\vl,PCy2-wt,3);
seteolor(YELLOW);
showmouseQ;

}
free(lines);

}

 -
Routine: get_poIy_bounds
Function : gets the top and bottom bounds of an object

void getpolybounds(int numpoints, int *PC'poly, int *left, int *top,
int *right, int *bottom)

{
int i;
*left = getmaxxQ;
*top = getmaxy();

81

*righl = 0;
•bottom = 0;
for (i=0;i<numpoints;i-H-)
{

if (PCpo!y[i*2] < *Ieft) *left = PCpoly[i*2];
if (PCpoly[i*2] > *right) *right = PCpoly[i*2];
if (PCpoly[i*2+l] <* top) *top = PCpoly[i*2+l];
if (PCpoly[i*2-i-l] > *bottom) *bottom = PCpoly[i*2+l];

}
}

/*-=-=-°-=
Routine: mallocerror
Function : exits program if not enough memory

void mallocerror(void)
{

closegraph();
printf("Not enougli memory to run program\n");
exit(l);

}

82

