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Abstract.

Conventional semiconductor laser diodes have found limited applications m the areas 
of spectroscopy and sensors due to their multimode output and relatively large 
linewidth Although single mode operation is possible with the use of distributed 

feedback techniques this tends to be at the expense of tunability However operation 
of a laser diode in an external cavity gives a tunable narrow-linewidth source ideal for 
spectroscopic and sensing applications
This work details the design and construction of a tunable extemal-cavity 
semiconductor diode laser The external reflector used is a diffraction grating operating 
m the Littrow geometry The collimated first order diffracted beam is focused on the 
antireflection coated facet of a British Telecom Research Laboratory 1 3fjm laser chip 
55cm away
The cavity has been characterised using a lm  focal length grating monochromator and 
a Fourier transform infrared spectrometer The laser behaved m the predicted manner 
exhibiting a greatly reduced lasmg threshold current and single mode operation The 
device showed a grating tunable range of 37nm with intermode tuning, achieved by 
current change, of lO G H z/m A  A device linewidth of 3 3kHz was calculated and was 
found to be in good agreement with both calculated and measured results for similar 
configurations



Chapter 1: Introduction

1.0 Introduction.

The purpose of this chapter is to provide a general introduction to the topic of 

semiconductor laser diodes In particular the characteristics of laser diodes when 

operatmg in an external cavity are discussed The general types and features of 

different cavity schemes are presented along with their various applications The 

chapter commences with a brief descnption of lasmg action m general and progresses 

to the specific case of lasmg action m semiconductor materials

1.1 Lasing action.

The word laser is an acronym for Light Amplification by the Stimulated Emission of 

Radiation Consider the atomic levels E, and E, in Figure 1 1 below Radiation of 

suitable energy E = hv = E, - E,, where h is Planck’s constant and v is the frequency 

of the radiation, can interact with the atomic system m one of three ways

a) Absorption A photon may be absorbed by an atom m the lower energy state 

E, causing it to be excited into the higher energy state E,

b) Spontaneous emission An atom in level E2 can de-excite from E2 to E, with 

the emission of a photon with energy E = hv =E, - E,

c) Stimulated emission A photon of energy hv, incident on an atom in the excited 

state E2, may cause the atom to decay to the lower energy level E, with the 

emission of a photon This emitted photon will have the same phase and 

direction as the incident photon

a) A bsorption b) Spontaneous
Em ission

Figure 1 !• The three types of optical transitions.

c) S tim ulated  
Em ission
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It is obvious that a net gain in photon flux can only occur if the probability of 

stimulated emission is greater than the probability of absorption. This situation can 

only happen if the population of the state E, is greater than that of E,, ie. a population 

inversion must exist between the two 

lasing levels.

If the gain medium is placed between Mirror Mirror
R=10095 R< 10095

two reflectors ie. a Fabry Perot cavity, '■i • • Ampiifing medium • •
/  * 'Vy-Ny* * /

as in Figure 1.2, and the population

reflecting and the round trip losses

(losses due to absorption, scattering, off-axis propagation and the output beam itself) 

equal the round trip gain a useful beam may be produced. In addition, the disturbance 

propagating within this cavity takes on a standing wave configuration determined by 

the separation of the mirrors. This standing wave must satisfy the condition that the 

cavity length must be an integer number of half wavelengths. Since there can be 

several wavelengths which satisfy this condition for a given cavity length this leads 

to the formation of longitudinal modes, a feature predominant in semiconductor laser 

diodes.

1,2 Stimulated emission processes in semiconductor materials.

The main difference between electrons in semiconductors and electrons in other laser 

media is that in semiconductors all the electrons occupy, and thus share, the whole 

crystal volume while in conventional lasers (e.g. Ruby) the electrons are localised to 

their parent ion and these do not communicate with those other ions.

In a semiconductor, because of the spatial overlap of their wavefunctions, no two 

electrons can be placed in the same quantum state, i.e. possess the same eigenenergy 

(neglecting spin). Each electron must possess a unique spatial wavefunction and 

associated eigenenergy. This satisfies the Pauli exclusion principle. These electron

inversion is maintained by some external 

pump (optical, electrical) then it is 

possible to reflect the stimulated 

radiation many times in a closed system 

with continuous gain over the path. If 

one of the reflectors is made partially

Fabry Perot cavity

Figure 1.2: Fabry-Perot based  
optical amplifier.
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energies cluster in bands separated by forbidden energy gaps In an insulator the 

energy gap between the highest filled level (the valence band) and the lowest empty 

level (the conduction band) is great enough that the electrons cannot be transferred 

across by thermal excitation, thus current cannot flow However in a semiconductor 

the gap is small and, at room temperature, electrons can be thermally excited from the 

valence band (VB) to the conduction band (CB) The crystal can therefore conduct 

electricity The degree of conductivity can be controlled not only by temperature but 

also by doping Doping is the process whereby impurity atoms are added to the 

semiconductor crystal during manufacture to provide either an excess of electrons (n- 

type) or an excess of holes (p-type) This introduces new energy levels into the device 

and changes its electrical charactenstics The radiative transitions which can take place 

within these bands in a semiconductor play a very similar role to the electronic 

transitions mentioned previously m Section 1 1 In both cases electrons participate m 

the same three types of optical interaction, namely, absorption, spontaneous and 

stimulated emission In a direct band gap semiconductor, (indirect bandgap 

semiconductor materials are not used in laser diode fabrication due to the 

predominance of non-radiative decay mechanisms), m thermal equilibrium the CB 

usually contains only a few filled states and the VB only a few vacant states The 

electrons in the CB have a probability of falling into the VB, m the process of which 

a photon is created by spontaneous emission When a photon of suitable energy passes 

through such a semiconductor it has a high probability of being absorbed and passing 

its energy to one of the many electrons in the VB However it can also stimulate an 

electron in the CB to decay to the VB with the emission of a stimulated photon This 

photon has the same phase and is emitted in the same direction as the incident photon 

In thermal equilibrium this event has a very low probability of occurrence due to the 

small number of electrons in the CB However with excitation by other means e g a 

drive current, the number of electrons in the CB can be made to exceed the number 

of holes m the VB This is the process of ’pumping’ the laser into an inverted state 

Therefore the probability of photon generation by stimulated emission can be made 

greater than that ot absorption This condition is the one of population inversion 

mentioned m Section 1 1 and it is this that provides optical gam It should also be 

noted that the considerable number of electrons m the CB retain their capability of 

random recombination and so the inverted state of the semiconductor is characterised
t
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also by a high rate of spontaneous emission

The change from a limited number of individual pairs of localised electronic states, 

as m Section 11 , to the large number of relatively unlocalised states in the bands of 

a semiconductor results in a change in the lasing properties of the system [1]

• The higher concentration of electronic states in the bands of a semiconductor 

provides the capability of higher gain

• Greater interaction between the excited states in the same band leads to a rapid 

refilling of the empty states caused by de-excitation This almost instantaneous 

redistribution of earners leads to very high rates of energy generation

• In a semiconductor the electronic states may be transported through the 

material by diffusion or conduction This makes it possible to invert the 

material by the direct injection of carriers at a p-n junction

• For semiconductors, due to the large number of energy levels present the 

possibility exists for a considerable number of transitions

A semiconductor that is pumped into an inverted state provides gam to a propagating 

wave but it will not cause laser oscillation until it is enclosed within an optical 

resonator This resonator reflects a proportion of the photons back into the inverted 

region For lasing to start the stimulated emission from the inverted medium must 

compensate for the loss of photons at the output and elsewhere Therefore laser 

oscillation occurs abruptly where the pump level is increased to the point (known as 

the threshold) where the photon balance is first fulfilled This threshold current is an 

important device parameter and its 

minimisation is often sought A

typical light versus current, (LI), 

curve is shown m Figure 1 3 The 

threshold point can clearly be seen 

After threshold there is a linear 

increase in light intensity The

reflection from the ends of the 

optical resonator provide maximum 

feedback at a specific set of

wavelengths which satisfy the Fabry- Figure 1.3: Typical efficiency curve for
* a * c -m InGaAsP laser diode.Perot condition of the cavitv The
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optical field distributions at these 

wavelengths are called longitudinal 

modes In a laser diode, optical 

feedback is provided by the cleaved 

facets of the semiconductor material 

which act as mirrors, reflecting the 

light back and forth inside the gam 

medium Since the optical gam is 

h igh , re la tiv e ly  low  face t 

reflectivities will suffice The typical 

value for the refractive mdex of a 

semiconductor used in laser diode 

production is 3 5 This leads to a residual reflectivity of approximately 35%, which 

is sufficient to sustain lasing action A typical longitudinal mode spectrum is shown 

in Figure 1 4

1.3 Development of semiconductor laser diodes.

Semiconductor lasers operating in the wavelength range 11-1 65fxm can be fabricated 

using indium gallium arsenide phosphide (InGaAsP) on an indium phosphide (InP) 

substrate Room temperature operation of InGaAsP-InP lasers was first reported in 

1976 [2] A schematic diagram of this broad area laser is shown in Figure 1 5 This, 

however, was not the first report of lasing action in semiconductor materials 

The first laser diode was demonstrated in 1962 [3] just three years after the first laser 

was produced These first semiconductor lasers were homogeneous gallium arsenide 

(GaAs) p-n junctions The chip had a 

metallic base with a wire contact on the 

top The two output facets were polished 

to provide feedback while the side facets 

were roughened to prevent laser 

oscillation in that plane These devices 

had a very high threshold current and 

could only be operated at cryogenic 

temperatures The reason for this was F igu re 1.5: B road area  d iod e laser.

1 33 1 34 1 35 1 36 1 37 1 38
Wavelength (|im)

F igure 1.4: L aser spectrum  sh ow in g  
m ode structure.
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the lack of earner or photon confinement These problems were overcome with the 

development of the heterostructure laser, 1 e a laser made from different 

semiconductor materials such as GaAs and GaAlAs The most common type of 

heterostructure laser is the double heterostructure These are made from materials that 

have different band gap energies for current confinement and different refractive 

indices for photon confinement

In a double heterostructure laser the optical mode is confined perpendicularly to the 

junction plane For stable operation with a low threshold, additional confinement of 

the optical mode is required Lasers can be classified into two categones depending 

on how this confinement is achieved

(I) Gain Guided The width of the optical mode is determined by the width of the 

current pumped region which limits the region of optical gain

(II) Index Guided The lasing mode is confined by the use of a narrow region of 

higher refractive index m the junction plane Index guided lasers may further 

be subdivided into two categones, namely weakly and strongly index guided

In weakly guided lasers the active region is continuous with the index discontinuity 

provided by a cladding layer Strongly guided lasers employ a buried heterostructure 

with the active region bounded by low index layers both along and normal to the 

junction plane

Despite the fabrication difficulties associated with index guided devices (compared 

with the relative ease of fabncation of gain guided devices), their lower threshold 

currents (typically 10-15mA for index guided compared to 100-150mA for gain

u

p-InP

n-InP
L i n GaAsP

active

n-InP

(i)

Junction Stripe

(Waveguide)
p-InGaAsP

(11)
Ridge Waveguide

n-InGaAsP

Tr n InGaAsP , nn-InP . „ p-InP
Active
n-InP

(Substrate)

(111)
Planar Buried 

H eterostructure

Figure 1.6: Schem atic cross section of different types of laser structures:
(i) gain guided: (ii) w eakly index guided: (iii) strongly index guided.
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guided), stable operation and good high m odulation speed characteristics m ake them  

a m ore favoured  choice especially fo r data transm ission applications.

D epending  on the specific design, these lasers are know n by various nam es, for 

exam ple, rib  w aveguide, ridge w aveguide, channel substrate, e tched m esa buried 

heterostructure, buried crescent buried heterostructure and strip buried  heterostructure. 

E xam ples of typical laser structures are illustrated  in  Figure 1.6.

In the conventional Fabry Perot devices, feedback  is provided  by facet reflections. 

T his reflectiv ity  is constant for all longitudinal m odes and it is th is that gives rise to  

the m ultim ode output associated w ith such devices.

D istribu ted  feedback, (DFB), lasers [4] im prove the m ode selectiv ity  by m aking the 

feedback  frequency  dependent. This is 

ach ieved  through the use of a grating, 

e tched so that the thickness of one of the 

heterostructure  layers varies periodically  

along the cavity  length. The resulting 

periodic perturbation of the refractive 

index provides feedback by m eans of 

backw ard  B ragg scattering w hich 

couples fo rw ard  and backw ard travelling 

w aves. By careful choice of the grating 

period, such a device can be m ade to 

provide feedback only at selected 

w avelengths. Figure 1.7 show s a schem atic diagram  of a DFB laser diode.

1.4 The laser diode in an external cavity.

In  the previous Section it was m entioned that D FB m echanism s can provide single 

w avelength  sem iconductor lasers w ith a high degree of side m ode suppression. The 

operating  w avelength is relatively insensitive to  external influences since it is 

determ ined  by a perm anently  etched grating. A lthough this w avelength  stability  is an 

a ttractive feature of such devices it is obtained at the expense o f tunability. Coupled- 

cavity  sem iconductor lasers have the potential of offering m ode selectiv ity  along w ith 

w aveleng th  tunability. Figure 1.8 show s the m echanism  of m ode selectivity fo r

E x cited  R egion C o n ta c t

*"G rating  L ay er 
\

A c tiv e  R eg ion

S u b s tra te

C o n ta c t

O u tp u t

Figure 1.7: D istributed Feedback  
Laser (DFB) Diode.
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External /
cavity ;

//
Mirror ■'*

Effective Mirror 
reflectivity R(X)

Figure 1.8: Mode selectiv ity  m  an external cavity laser system  [After Ref. 1].

coupled-cavity lasers Feedback from the external cavity can be modelled through an 

effective wavelength dependant reflectivity of the facet facmg the external cavity This 

results m different cavity losses for different Fabry-Perot modes of the laser cavity 

In general the loss profile is periodic, as shown m Figure 1 8, due to this Fabry-Perot 

selection The mode selected by the coupled-cavity device is the FP mode that has the 

lowest cavity loss and is closest to the peak of the laser medium gam profile Due to 

the penodic nature of the loss profile other FP modes with relatively low cavity losses 

may exist Such modes are discriminated against by the gain roll-off because of their 

large separation from each other These side modes can be further suppressed if the 

reflecting mirror is made highly wavelength selective by, for example, using a 

diffraction gratmg or a wavelength selective filter

An aspect of coupled-cavity lasers that has attracted much attention is their ability to 

exhibit a smaller CW linewidth than that of a conventionally operated device In the 

case of such devices the linewidth can be reduced by up to four orders of magnitude 

(from 100MHz to 10kHz) by placing the device in an air cavity of a few centimetres

Laser
cavity

C h apter 1 P age 8



in length [5] The reason for this linewidth reduction is the increase m photon lifetime 

This results in a much larger number of mtracavity photons at a given output energy, 

therefore the single mode linewidth decreases

1.5 Coupled-cavity schemes.

Coupled-cavity semiconductor lasers can be classified into two broad categories These 

are active-active and active-passive depending on whether or not the second cavity can 

be pumped to provide gam Figures 1 9 and 1 10 show a specific example of each 

kind of device

1.5.1 Active-active: In the active-active 

schem e both sections can be 

mdependently pumped This gives an 

additional degree of freedom which can 

be used to control the behaviour of the 

device A natural choice is to use one 

active material separated by some 

means Cleaving and etching techniques 

have been used for this purpose 

Whichever technique is employed, the 

qualitative behaviour of these so called 

three terminal devices is similar with 

respect to mode selectivity and wavelength tunability The active-active scheme offers 

the possibility of electronically shifting the modes since both cavities can be 

mdependently controlled Usually one of the cavities, called the controller, is operated 

below threshold Variation in the drive current significantly alters the refractive index 

(RI) by changing the carrier density m the cavity This shift in RI causes a shift in 

longitudinal mode which results m selection of different FP modes of the cavity

1.5.2 Active-passive: In the active-passive scheme the laser is coupled to an external 

cavity that remains unpumped In its simplest form a mirror is placed a short distance 

from one of the laser facets, the facet may have an antireflection coating to increase 

the coupling between the two cavities In another scheme the external cavity consists 

of a graded index (GRIN) fibre lens, to provide greater coupling and avoid diffraction

Figure 1.9: C leaved coupled cavity  
laser.

C h apter 1 Page 9



losses In these external cavity schemes 

mode selectivity arises from the 

interference between the waves 

propagating m the two cavities An 

additional mode selective mechanism 

can be introduced if the feedback from 

the external cavity is wavelength 

dispersive This can be achieved by the 

use of a diffraction grating or a 

frequency selective filter The grating 

has the added advantage that it allows

Figure 1.10: P assive coupled cavity  
laser.

the wavelength to be tuned over a considerable range (~50nm) by rotating the grating 

Tunability can also be achieved by changing the cavity length This can be achieved 

either thermally, m which case a change in temperature changes the RI and so the 

optical length, or electronically, usually by the use of a piezoelectric transducer

1.6 Applications of external cavity laser diodes.

1.6.1 Communications

Current optical fibre communication trends have tended to concentrate on coherent 

transmission systems [6] These have shown improvements compared to standard 

intensity modulated direct detection systems High performance coherent optical fibre 

systems require narrow lmewidth laser transmitters to realise the full benefits of 

coherent detection Lmewidth requirements have been discussed previously [7] and a

Table 1: C oherent system  lm ew idth  requirem ents [After Ref.7].

Modulation
Demodulation Lmewidth to 

bit rate ratio
Suitable

Lasers
HET HOM

ASK, FSK, 
PSK

SYNC YES <0 1% Gas and 
Ext-Cav

DPSK DELAY NO <0 3% Gas and 
Ext-Cav

ASK, FSK NON-SYNC NO <20% Gas and 
Ext-Cav 

and DFB
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sum m ary is presented  in Table 1. W ork now  centres around the 1.55|am, low  fibre 

attenuation region. Presently  available 1.55um  sem iconductor lasers do not them selves 

possess sufficient phase coherence for such applications unless external line narrow ing 

techniques are used. The external cavity  is ju st such a technique. W yatt & D evlin [5] 

have dem onstrated  a linew idth reduction from  1GHz to 10kHz by the use of an 

external cavity , thus enabling the evaluation of a coherent optical com m unication 

system  to be perform ed.

1.6.2 Photoluminescence excitation spectroscopy.

O ptronics Ireland at D ublin City U niversity  is p rim arily  concerned w ith the 

characterisation of III-V  sem iconductor m aterials by photolum inescence techniques. 

A com plem entary  technique useful for 

determ ining w eak absorption, or 

absorption in  a th in  layer on  a heavily  

a b s o rb in g  s u b s tr a te ,  is p h o to ­

lum inescence excitation spectroscopy,

(PLE). The energy level diagram  for 

P L E  is show n in Figure 1.11. If the 

absorption process creates an excited 

state w hich can decay by photon 

em ission of a d ifferent (lower) energy, 

m easurem ent of the lum inescence as a 

function  of the  energy of the excitation 

source can be m uch m ore sensitive than  m easuring a very  sm all change in 

transm ission. A tunable laser is an ideal candidate for such studies. In particular an 

external cavity  diode laser is especially  useful due to the linew idth narrow ing w hich 

occurs. Furtherm ore several d ifferent diodes can be used  depending on  the w avelength 

range of interest.

1.6.3 Sensor devices.

E xternal cavity  system s have also found application as sensor devices [8]. These 

sensors consist o f a laser diode tightly  coupled to an external reflector, w ith the cavity 

length m uch shorter than the device length. The presence of this reflector creates a 

standing w ave w hich alters the effective facet reflectiv ity  of the laser diode source.

3'
V
E,-

E0 .

Therm alisation 
in to  level Et 
follows excitat­
ion from Eq

Weak absorption 
into lev e ls2,3,4 
detected by 
luminescence 
from 1 to 0

Figure 1.11: Energy level diagram  
for PLE.
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A slight change m the position of the external reflector alters the phase of the light 

reflected back into the laser chip This vanes the effective facet reflectivity and 

therefore the output intensity Several sensor configurations have been designed around 

the external cavity

Acoustic sensor - by using a thin, pliable glass membrane either coated or uncoated, 

as an external resonator, an acoustic pressure wave modulates the reflector 

Magnetic sensor - the reflector is attached to an element whose magnetic properties 

are such that a magnetic field displaces the reflector with a displacement proportional 

to the magnetic field strength

Current sensor - similar to the magnetic sensor It relies on the magnetic field 

associated with the current flowing m a wire to displace a magnetic reflector 

External cavity configurations have also been used to tune to wavelengths important 

for sensing applications

Gas Sensor - External cavity systems have also found applications as sources for 

hydrocarbon gas sensors Methane, for example, exhibits a weak overtone absorption 

at 1 3 3 jam and a strong overtone absorption at 1 66|am Laser diodes emitting at 

1 66[om cannot be fabricated using standard techniques Work is currently in progress

[9] in the fabrication of strained layer lasers designed to emit at this wavelength 

However, laser diodes emitting at 1 64|am could be tuned, using external cavity 

techniques, to emit at 1 66\xm These are of considerable use in the area of methane 

sensmg

1.7 Conclusion

This chapter has provided a general introduction to the area of semiconductor diode 

lasers The lasing process for these devices has been discussed and found to offer a 

versatility which cannot be obtained with conventional solid state or gas lasers The 

concept of operating laser diodes m external cavities has been addressed External 

cavity schemes, with both active and passive cavities have been presented Several 

quantities of importance in any further discussions about laser diodes, either operated 

m isolation, or m external cavity configurations, were introduced, namely 

Threshold current The dnve current at which the stimulated emission process 

becomes the dominant form of radiative decay

LI curve This is a plot of the variation of the output light intensity (L) against dnve

C hapter 1 Page 12



current (I) Through this curve the threshold current can be found The slope of the 

LI curve indicates the efficiency of the lasmg process for that cavity configuration, 

showing as it does the light output / mA value

Longitudinal mode Longitudinal modes are the different wavelengths that satisfy the 

Fabry Perot condition for the cavity Diode lasers, especially when operated at dnve 

currents only slightly above threshold exhibit strong multimode behaviour, as was 

shown in Figure 1 4 However, when operated in an external cavity this multimode 

behaviour collapses to a predominantly smgle mode operation 

The applications of these devices in the areas of communications, spectroscopy and 

sensors has been briefly reviewed

C h apter 1 P age 13
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Chapter 2: Theory of external cavity laser diodes.

2.0 Introduction.

In this chapter the single mode rate equations are obtained for a diode laser 

Expressions for the threshold current and the longitudinal mode spectrum are obtained 

The rate equations are then modified for the specific case of a laser operating in an 

external cavity The effect of the external cavity on both the threshold current and the 

output spectrum are investigated The chapter closes with a discussion of the lmewidth 

reduction observed in external cavity diode lasers

2.1 The rate equations for a semiconductor laser diode.

A unified approach to discussing the static, spectral and dynamic characteristics of 

semiconductor lasers with regard to their dependence on various device parameters is 

provided by the rate equations The rate equations govern the interplay between 

photons and charge carriers These equations were first developed in 1960 and have 

been used extensively to model semiconductor lasers

The electromagnetic field inside the laser cavity satisfies Maxwell’s equations So the 

starting pomt of the analysis should be the wave equation,

where,

% -  electnc field vector 

a  = medium conductivity 

e0 -  vacuum permittivity 

c = velocity of light 

7  = induced electnc polansation

However considerable simplification occurs if it is assumed that the matenal response 

is instantaneous and that the induced polarisation, CP), is directly proportional to even 

a time varying electnc field, (S’) The wave equation then becomes,

where e is the dielectric constant and includes the loss term associated with the

Eqn: 2.1

V 2̂ -  — —  (eS ’ ) = 0
c 2 d t z

Eqn: 2.2
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medium conductivity, a  

A solution to the wave equation is given by,

„, r> = i *̂  w $ iv) E sin {kjz) exP'lÜ>;' + c c E<ín: 2-3
¿ i

This equation has assumed that the laser outputs a single lateral and transverse mode 

whose field profiles are given by and (¡^ respectively In addition, the smusoidal 

vanation of the optical field m the z direction assumes facets of high reflectivities 

Although this is arguable m the case of a semiconductor laser, (R=32%), its use is

essential in order to avoid complicated boundary value problems and it does not

introduce significant errors in the above threshold case [1] The subscriptj  in equation 

2 3 denotes the j  * mode, since the cavity can support many longitudinal modes 

The wave number kj is given by,

liQ m %c T̂  't a
k -  1 = 1 Eqn: 2.4
7 c L

where is the cavity resonance frequency = 2xvJt L is the cavity length, m is an 

integer

For simplicity consider the case of a single longitudinal mode By substituting 

equation 2 4 into equation 2 2, and, assuming that E (0 varies slowly, integrating over 

the entire range of x  and y  it can be shown that [2],

g  _ q Eqn: 2.52 loo , V co d ( e ) <e> + d E + ^!<e> - k 2?c w 2 a co j d t C “

where <e) is the spatially averaged dielectric constant

Note that the second term in equation 2 5 takes into account the dispersive nature of 

the semiconductor material It can be shown, [2], that (e) approximately equals the 

effective dielectric constant of the material and may be written as,

<e> = (I + 2rjlA (j> + i [ i a / k 0 Eqn: 2.6

where k 0 = co/c and T  is the confinement factor, which accounts for the reduction m 

gain brought about by spreading of the optical mode beyond the active layer, it 

represents the fraction of the mode energy contained m the active region, is the 

change induced in the refractive index due to the presence of charge earners, |i is the 

mode index and a  is the mode absorption coefficient given by,
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a  =  ~ r s  +  a w  +  a m  E ( l n :  2 , 7

where g  is the gain of the active region, a mt is the internal losses due to recombination 

mechanisms which do not contribute to the lasing mode, a m is the facet loss and is 

given by,

1 , a  = — In
m 2 L

Eqn: 2.8

where R x and R2 are the facet reflectivities

Substituting equation 2 6 into 2 5 and using, k = \x.Q/ c, (or - Q2) = 2 oo(co - Q)  and 

(e) = |i2, yields,

A E  = _l±i(oo -  Q )£  + — {TA\x + icx/2k ) Eqn:2.9
d t  [ig \xg p

where ¡j. is the group index corresponding to the mode mdex of ¡1

By separating equation 2 9 into its real and imaginary parts the following amplitude

and phase rate equations are obtained,

_ (cc«f + a J ] A Ec*n: 2-10

H  = -_E_(cu -  Q) -  — T k \ i  Eqn: 2.11
d t  u  u, pn?

where vg = c I \ig and a  has been eliminated usmg equation 2 7 

Equation 2 10 could have been written directly since it simply states that the rate of 

amplitude growth is equal to the gam minus the loss Equation 211, which follows 

self consistently with 2 10, shows that the change in refractive index due to the charge 

earners affects the lasing frequency oo

Equation 2 10 is usually written in terms of photon number, P, usmg

p  _ gpW-p C( 2>y_HV Eqn: 2.12
2>ico J

where ft co is the photon energy, and V the active volume Since P  <*= A2, then,

A f .  = (G  -  V)P  + R Eqn: 2.13
d t  sp

where G = T v gg  is the net rate of stimulated emission, and

Eqn: 2.14
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is the photon decay rate which is used to define the photon lifetime, t p, m the cavity 

Rsp takes into account the rate at which spontaneously emitted photons are added to 

the lasmg photon population

Defining a parameter, (3C, called the lmewidth enhancement factor, [2], such that

= -

f  \

v 2 * 0 /

h g  Eqn: 2.15

equation 2 10 then becomes

= -  J L (w  -  Q )  * J_|3C(G  -  v) Eqn: 2.16
a t u 2n?

Equation 2 16 shows that when the gam changes from its threshold value the phase 

shifts as well This is understandable since a gain change is always accompanied by 

a change in refractive index This change in index changes the lasmg frequency 

The gain G  is known m terms of the carrier density, n If the number of carriers m the 

active layer is defined as

N  = j n d V  = n V  Eqn: 2.17

where V = L w d  and is the volume of the active area (length L, width w, thickness d)

The earner rate equation can be shown to be [2],

dN  I  Eqn: 2’18= — -  y N  -  G P
d t  q

where I=w  L J, with J  being the current density in the active layer, q the electronic 

charge and

Y = (A + B n  +  C n 2) = t "1 Eqn: 2.19
i?  '  nr '  e

is the earner recombination rate that defines the earner lifetime xe The terms Anr, B

and C  are the vanous recombination mechamsms, B  is the radiative recombination

rate, C  is the recombmation rate due to Auger processes and Anr accounts for all other

non-radiative recombination processes G P  is due to stimulated recombmation which

leads to a non-lmear coupling between photons and charge earners

To complete the rate equation description an expression for R appearing in equation

2 13, is required If it is assumed that a fraction of spontaneously emitted photons

goes into the lasmg mode, Rsp is given by

where r)sp = B n I yt is the spontaneous quantum efficiency
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R = 6 ri V N Eqn: 2.20i sp *sp le
Equations 2 13, 2 16 and 2 18 are the single mode rate equations that will be used m 

this chapter to describe the behaviour of the laser m the external cavity However for 

a discussion of the modal phenomena which occur these equations must be generalised 

to include the number of possible longitudinal modes for which G is positive This 

depends on the width of the gain spectrum and the frequency between modes 

The multimode rate equations are,

dP
V, ) p .  * R M  E<1": 2-21m * m' m s p  '

-  Y ' G P  Eqn: 2.22/  v m m
dN
d t

where P m represents the photon population of the mlh longitudinal mode oscillating at 

a frequency com Gm = G (coj is the mode gam and ym is the mode loss 

A quantity of practical mterest is the output power emitted from each facet This is 

linearly related to the photon population and is given by,

P ° ur = J_ftco V a  P  Eqn: 2.23»i 2 s m m

For ease of reference Table A 1 in Appendix A gives typical parameter values for a 

1 3|om buried heterostructure laser similar to those used in this work 

The steady state response of a laser may be obtained by setting the time derivatives 

of the rate equations to zero Two steady state features of importance are the light- 

current (LI) curve and the longitudinal mode spectrum

2.2 L ight-current curve.

Equation 2 13 gives the photon number, P  as

P  =
R

sp Eqn: 2.24
(y -  G)

The LFcurve is obtained by substituting equation 2 24 mto 2 18, where d N / d t  = 0 for 

steady state This yields,

ye( N ) N  + R (AO Eqn: 2.25
_Y -  G _

which can be used to obtain N  for a given I  if the functional dependence of G(N) is

C h apter 2  P age 19



known The photon number P  is then obtained using equation 2 24 The output power 

is linearly related to P  as given by equation 2 23 The quantity of interest is the 

threshold current, Ith, le the point at which stimulated emission has taken over from 

spontaneous emission In the presence of spontaneous emission the threshold is not 

sharply defined, but depends on (3V, the spontaneous emission factor The threshold 

transition becomes less severe with increasing spontaneous emission It is customary 

to define Ith in the limiting case when $sp -  0 In this case

L  =  E ( l n :  2 2 6

where Nth is the number of earners at threshold and ye is expressed as a function of 

Nth It should be stressed that equation 2 26 expresses the current through the active 

region In practice the threshold current is slightly higher due to current leakage 

outside the active la>er

2.3 Longitudinal mode spectrum.

The output spectrum of a semiconductor laser shows the presence of several 

longitudinal modes due to the Fabry-Perot nature of the device However the relative 

powers of those modes vary with dnve current /  The rate equations can be used to 

calculate the number of these modes and their relative intensities 

In order to solve the multimode rate equations 2 22 and 2 23, the gain spectrum must 

be known A simple approximation is that [2]

G, , = G n
(id) 0

1 -

r \z
CO -  (D „

Aoo

Eqn: 2.27

where co0 is the frequency at which the gam is a minimum G0, &<x>g is the spread of 

frequency over which the gam is non zero Using this the modal gain is approximated 

by

Eqn: 2.28G = Gn
m  0

1 -  ( m / M ) 2

where m is an integer which vanes from -M  to +M

Assuming that all modes have the same loss y = t p l (tp' ‘ is the photon lifetime), the 

photon number can be given by
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where

a = ^ (a)o) Eqn: 2.30
y p o

Equations 2.29, 2.28 and 2.23 can then be used to obtain the steady state carrier 

number N  which in turn determines Gm and the steady state photon population Pm for 

each current value. It is found that below threshold the power in all modes increases 

with an increase in current. However above threshold the power in the main mode 

continues to increase while the power of the side modes saturates. The level at which 

this saturation occurs is found to depend on the spontaneous emission factor Bsp.

A measure of the spectral purity of the laser is the mode suppression ratio (MSR) 

which is defined as the ratio of the power in the main mode to that of the next most 

intense side mode. Mathematically,

P  P
M S R  = —  = 1 + 0

P, x R1 p sp

C \
Aco,

A co
V g

2
Eqn: 2.31

where Acot is the longitudinal mode spacing. The term, single mode operation, implies 

a large value of MSR. However the exact value above which a laser qualifies as single 

mode is a matter of definition. In practice a value of 10 is often used. The total power 

emitted by a multimode laser may be obtained by summing over all the modes [3] ie.

P T = T  P  = Rip.{~ - 1  x M co th(j t M o * )  Eqn: 2.32
r n m y o *

This analysis has shown that the multimode characteristics can be described in terms 

of two dimensionless parameters, a  and M.  The figure 2M+1 corresponds to the total 

number of longitudinal modes that fit within the gain spectrum and experience gain. 

The parameter a  is a measure of how closely the peak gain approaches the total cavity 

loss. It decreases with increasing power. In this approach the multimode operation has 

been attributed to spontaneous emission. The laser behaves as a regenerative noise 

amplifier in which all modes with positive round trip gain undergo amplification. On 

reaching threshold the gain is approximately clamped and the power in the side modes
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saturates The MSR then increases with increasing power In practice, with an increase 

in laser power, spectral and spatial hole burning start to influence the output spectrum 

Spatial hole burning is a result of the standing wave nature of the optical mode and 

is known to lead to multimode operation [4], with increasing side mode power above 

a critical main mode power value

Spectral hole burning is related to gain boundary mechanisms At high powers this 

leads to a shifting of the mam mode towards longer wavelengths [5]

2.4 Modified rate equations for external cavity lasers.

In order to analyse the external cavity it is necessary to consider both the gam and 

loss m the two cavities while taking into account their mutual optical feedback Within 

an external cavity the facet loss becomes wavelength dependant due to the FP modes 

established

A general analysis of external cavity semiconductor lasers is extremely complicated, 

therefore several simplifying assumptions are made It is assumed that the field 

distributions associated with the lateral and transverse modes are unaffected by 

coupling to the cavity and that only axial propagation need be considered This 

reduces the problem to one dimension Note however, that coupling depends on the 

mode-width and that mode conversion losses occur due to the nature of the cavity 

The first step m the analysis is to determine the extent of couplmg between the two 

cavities In the case of a semiconductor laser coupled to an external mirror where R 

is the facet reflectivity into the cavity it is useful to define a complex couplmg 

parameter C, such that

C  = C e x p (i0 )  Eqn: 2.33

where

C = [ l  - R 2f / R  Eqn: 2 M

governs the strength of the coupling and

0 = JL Eqn: 2.35
2

is the couplmg phase

Although the multimode rate equations should be considered, the analysis is simplified
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considerably by using the single mode equations This is justified smce, for this 

application, the device must behave as a single mode device A generalisation of the 

rate equations developed in Section 2 1 can be earned out by notmg that on every 

reflection a fraction of the field m the external cavity is coupled into the active region 

Smce this fraction is complex, both the power and the phase are affected Notmg this, 

the generalised rate equations are found to be, [6], 

d P
— L = (Gj ~yj )Pj  + Rsp(Nj) +x/ cos (0±<j>) Eqn: 2-36

—  = L - y  (N )N  - G P  Eqn: 2.37
d t  q 1e J J J J

-  Q )  +  V2 6 (G - y  ) + —Lsm(0±( j ) )  Eqn: 2.38
d t  v gJ J C J J 2P

where (f> is the relative phase between the two cavities The feedback rate, xy, is the 

rate at which photons are added back into the cavity, and is given by [6]

x = J L ( P . / > , ) V4C Eqn: 2.39
J n  L

j  j

It is important to note that if the feedback rate xy = 0 then the modified rate equations 

reduce to the single mode rate equations 2 13, 2 18, 2 16

The external cavity rate equations give a full description of the behaviour of the diode 

in the external cavity This analysis is extremely complicated Therefore the remainder 

of the chapter will concentrate on a discussion of the features of external cavity 

behaviour that are of mterest m this project. These are, the light-current characteristics, 

the output spectrum and the laser linewidth

2.5 Light-current characteristics.

It is useful at this point to introduce the concept of an effective reflectivity, Reff The 

effects of the external cavity on the FP mode of the active laser can be treated by an 

effective reflectivity for the laser facet facing the external cavity [7] It is obvious that 

Reff would be strongly proportional to the coupling strength C The stronger the 

coupling between the two cavities, the higher Reff will be Recalling equation 2 34 note 

that
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C  = [ l  - R 2]*/R  Eqn: 2.40

This shows that strong coupling is dependent on weak facet reflectivity Therefore in 

order to increase coupling with the external cavity the facet facing the cavity should 

be antireflection, (AR), coated

The threshold current, as outlined in Section 2 2, is given by

= ?V«(-V„)/V„ Eqn: 2.41

where Nth is the carrier population at threshold and corresponds to the condition 

G = y, 1 e gain = loss Equation 2 14 defines 7 as

7 = v  ( a  -  a  )
« g '  m int' Eqn: 2.42

Also, modifying equation 2 8 to take account of the effective reflectivity then

a  = _L- In 
2 L *1 R >ff

Eqn: 2.43

It is obvious therefore that m the case of a semiconductor laser operating in an 

external cavity the threshold current depends on the strength of the couplmg C  Strong 

couplmg reduces Ith by increasing ReJf, thereby reducmg the cavity loss The threshold 

reduction expressed here is demonstrated by the external cavity and the results are 

presented m Chapter 4

2.6 External cavity longitudinal mode spectrum.

Fleming and Mooradian [8] have indicated that for a given drive current the external 

cavity laser generally has lower power output than the solitary laser However whereas 

the output of the solitary laser is multimode, the external cavity operates in a smgle 

longitudinal mode This smgle mode operation is not simply a result of wavelength 

selectivity provided by the diffraction gratmg used as the reflector Results with plane 

mirror reflectors have also shown stable single mode operation However the external 

cavity presented in this work makes use of a diffraction gratmg as the reflector 

Mode discrimination is found to be strongly dependant on the phase, 9, of the coupled 

light In the case of a plane mirror reflector, 1 e where the laser-air interface is the 

coupling element, the phase is found to be % /  2 This is found to be the optimum 

condition for maximum mode discrimination both theoretically [9] and experimentally
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[10] The results that are presented in Chapter 4 for the external cavity descnbed m 

this work will be seen to also show good mode descnmination

2.7 Linewidth.

In the previous discussions laser power and frequency were assumed to remain 

constant once the steady state has been achieved In practice however, laser outputs 

exhibit intensity as well as phase fluctuations The origin of these fluctuations lies m 

the quantum nature of the lasmg process itself and is beyond the scope of this work 

In general however, the intensity noise peaks near the laser threshold and then 

decreases rapidly as the drive current is mcreased Phase noise is manifested as a 

broadening of each longitudinal mode and is responsible for the observed linewidth 

One of the predominant features of the external cavity output spectrum is its narrow 

linewidth It is therefore important that this linewidth reduction be quantifiable for the 

cavity presented in this work Due to the length of the new optical cavity the 

spontaneous-recombination phase fluctuations m the laser linewidth can be 

dramatically reduced The reason for this is as follows the number of spontaneous' 

photons above threshold remains constant whereas the number of stimulated photons 

above threshold contmues to rise Therefore the spontaneous phase fluctuations m the 

laser frequency could be expected to be inversely proportional to the stimulated power 

The full width half maximum (FWHM) of the power spectrum is given by the 

Schawlow-Townes formula [11]

where Avc is the FWHM of the FP cavity, P m is the power of the mode, nsp is the 

number of spontaneous photons m the mode (Note above threshold ns approaches 

u n ity )

Avc is related to the photon lifetime xp and therefore, to the cavity loss For a diode 

operating outside an external cavity the cavity bandwidth is [12]

where n is the refractive index of the active region, /?, and R z are the facet

sp
Eqn: 2.44

m

Eqn: 2.45
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reflectivities, / is the length of the active layer and a  is the photon loss This equation 

must be modified in order to characterise the diode under external cavity operation, 

where the photon lifetime is significantly longer due to loss-free propagation over a 

distance L »  nl

In this case L corresponds to the length of the external cavity T  is a measure of the 

coupling efficiency into the active layer and takes into account the transmission 

characteristics of the collimation optics Rg is the reflectivity of the grating 

Wyatt and Devlin, [13], have used the above approach to determine the lmewidth of 

a 1 5[am InGaAsP-InP laser operating in an external cavity similar to that presented 

here They found good agreement between predicted lmewidth and that measured 

experimentally usmg heterodyne beat frequency measurements A reduction of four 

orders of magnitude from 1GHz to 10kHz (measured) was demonstrated by using the 

diode m an external cavity configuration

2.8 Conclusion.

In this chapter the behaviour of laser diodes when operated m an external cavity 

configuration has been examined The observed reduction in threshold current has 

been explained in terms of the effective reflectivity of the cavity Single mode 

operation of the laser in an external cavity has been seen to be due to the interaction 

between the cavity loss profile and the gain roll-off of the active medium In Chapter 

3 the experimental setup of a practical external cavity diode laser using a 1 3pm 

InGaAsP-InP laser chip as the active medium is described

Eqn: 2.46
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Chapter 3: Experimental Setup

3.0 Introduction.

Details of the design and construction of the external cavity are provided in this 

chapter The cavity, illustrated schematically m Figure 3 1, is discussed in terms of its 

electronic, thermal, optical and mechanical requirements There is also a discussion 

of the detection and analysis systems used m the characterisation of the device as a 

whole The chapter commences with a description of the laser diode itself and the 

system requirements necessary for its safe operation

C ollim ation

Figure 3.1: A generalised  external cavity laser diode.

3.1 The laser diode.

The laser diodes used throughout this project were all planar buried heterostructure 

mdex guided devices The active layer is InGaAsP lattice matched to an InP substrate, 

designed to emit nominally at 1 3|om in the near mfra-red These devices were 

supplied by British Telecom Research Laboratories, (BTRL) Ipswich U K The active 

region of the device is approximately 100|om long, 2¡am in width and 0 5pm m 

thickness This small cross sectional area gives rise to a highly divergent, partially 

polarised output The laser chip is bonded to a pure diamond heat sink which m turn 

is bonded to a brass mounting stud. This is shown m Figure 3 2 Electrical connections 

are made via the brass stud and one of the two tags, which has a very fine wire
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C ontact Tag Semiconductor Chip

b o n d ed  b e tw ee n  it and the  

semiconductor Although the chip is 

normally bonded p side down, there 

have been lasers supplied bonded n side 

down Therefore care must be taken 

with the polarity of the electrical 

connections All the lasers supplied for 

use m this project have had an 

antireflection coating (AR) applied to 

one output facet This is a BTRL 

proprietary multilayer coating which

reduces the facet reflectivity and allows greater coupling of the light with the external 

cavity

Figure 3.2: The laser stud.

3.2 Laser current source.

Before the laser can be inserted m any drive circuitry certain handling precautions 

must be observed

1) The laser must only be handled while wearing a grounded, conductive wrist 

strap

2) Only a grounded soldenng iron should be used and only for the time / 

temperature recommended by the supplier

3) All work must be done on a conductive bench mat

4) The device must be handled with care Chip mounted diodes as used m this 

project have little or no mechanical protection

Obviously the ease with which laser diodes can be damaged or destroyed must be 

taken into consideration when a drive circuit is bemg designed The circuit used to 

drive the laser for this project is shown in Figure 3 31 The circuit is battery dnven, 

thus reducing the amount of noise and keeping transient suppression requirements to 

a minimum The slow start section (shown here in a dashed box) delays the switch on 

of the circuit proper The duration of this delay, which is set by C2 and C3, is longer 

than the settling time of the voltage regulator and ensures that voltage transients, due

1 PCB foil and parts list for all circuits are provided m Appendix B
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Figure 3.3. The laser current supply circuit. Component values are given m  
Appendix B.

to this regulator, and also switching surges, do not reach the laser The circuit itself 

is an Automatic Current Control, (ACC), m which the current to the laser is controlled 

by the 10k& potentiometer For safe operation this is always turned to minimum 

(anticlockwise) before the laser is turned on or off The operation of the circuit is as 

follows with the current to the laser set, the output of the op-amp is such that the 

voltage at point A is equal to the set voltage Any change m the current through the 

laser will cause a corresponding change m the voltage at point A This causes an 

imbalance between the two inputs of the op-amp, which is then compensated for at 

the output, thus returning the current to the set value The purpose of the resistor and 

capacitor at both the laser head and the op-amp output is to slow the circuit response 

to sudden changes The current is indicated by an LCD panel meter m series with the 

laser Cross talk of the screen update frequency to the laser power lines has been 

filtered out to prevent damage to the laser The power supply lines to the laser head 

have been shielded to reduce pick-up Further RC filters have been added to decrease 

the remaining noise levels The circuit provides current from 0-110mA with a 

measured peak to peak drift value of < 0 2m V /hr, which corresponds to 0.012 ppm 

per hour drift in the drive current This is considered adequate for this application
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3.3 Temperature control.

Since variation in temperature is a 

mechanism by which the output of the 

laser diode may be tuned, it is obvious 

that control of device temperature is 

critical for stable operation at a single 

wavelength The thermal control of the 

laser diode is based around a THOR 

C ry o g en ics  E3010 tem p era tu re  

controller This instrument is designed to 

control accurately the temperature of a

+5V

Figure 3.4: P eltier current supply.

sample to within ± 0 01°C of a set value Although primarily designed for control of 

samples m cryogenic applications, its versatility is such that it is suitable for 

temperature control of the laser diode in this project Use of a Peltier effect device as 

a heat pump to draw both ambient, and evolved heat, away to a heatsink provides a 

greater degree of freedom, allowing operation above and below room temperature The 

circuit used to supply the Peltier device with the 1 Amp necessary is shown m Figure 

3 4 The stability of the output of this circuit ensures that it does not contribute to 

device temperature fluctuations The reference voltage is supplied by a 1 26V 

temperature compensated bandgap voltage reference source The rest of the circuit is 

a series pass circuit with the error signal denved from the drop across the sensing 

resistor in the currents path to ground The high current path is shown in bold The 

Darlington pair serves to reduce the 

drive current to a few milliamps, thus 

allowing conventional operational 

amps hflers to be used In order to 

reduce the effects of 1 2 R heating of 

Rsense, and the subsequent drift in Peltier 

current, Rsense is made up of 10 resistors 

operated m parallel to reduce the 

individual loadmg The thermal system 

is shown schematically m Figure 3 5 

Heat is pumped from the diode mount to

Figure 3.5: Tem perature control 
block diagram.
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the heatsink by the Peltier The temperature of the mount, Tra, is sensed by the 

thermocouple, and the amplified sensor output is fed to the controller This output is 

compared to the set voltage, corresponding to the set temperature, Tset Heat is 

supplied to the mount, by a resistive heater, according to the temperature difference 

AT = Tm - Tset In order to ensure optimum response without overshoot or oscillations 

the rate of heat supplied, Q, must be proportional to

1) The temperature difference, AT

2) The rate of change of this difference, d (AT) / dt

3) The integral over time of this difference, j AT dt

These three terms are adjusted independently by the controller to match the thermal 

charactenstics of the system To obtain the best response the derivative and integral 

terms must be set In order to do this the controller is operated m proportional mode 

only (i e no derivative or integral action) and the error monitored for increasing gam 

settings At a certain gam setting the temperature of the mount begins to oscillate 

about its set point due to the proportional action of the controller The period, (t), of 

this oscillation is then used to calculate values for the derivative and integral 

capacitors (CD and Cl respectively) according to

CD = 6 50x10'" t (|oF)

Cl = 3 07x103 t (jiF) 

where the numerical constant have been provided by the manufacturer Low leakage 

capacitors of these values are then inserted into the slots provided at the rear of the 

controller Full three term PID control is then available, matched to the thermal 

charactenstics of the laser diode mount

Error signals of ± 0 1°C / hr have been monitored using this system, this more than 

satisfies the BTRL recommendation of ± 1°C for an external cavity in the present 

configuration [1]

3.4 Optical layout.

Figure 3 6 shows the cavity layout including an indication of the degree of freedom 

of each of the various components The light output from the laser is collimated from 

both facets This is done using two Ealing 25-0027 Infrared Achromatic microscope 

objectives These objectives, although designed primarily for optical fibre applications, 

are ideal for use in the external cavity since, m addition to their achromaticity at
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Figure 3.6 External cavity optical layout.

1 3um , all internal optical surfaces are single layer antireflection coated This coating 

reduces parasitic reflections which can contribute to the formation of a multiple cavity 

system These objectives are large area, long working distance optics, an important 

feature since close access to the diode facet is difficult to achieve 

The wavelength dispersive element used is a diffraction grating The collimated light 

from the AR coated facet is incident on this grating which has 1200 lines/mm This 

photoreplica grating is blazed for 1 5[am and has approximately 30% efficiency into 

the 1st order diffracted beam, the remaining light being lost to reflection and other 

orders The grating is mounted m the Littrow geometry [2] 1 e mounted such that the 

1st order diffracted is co-axial with the incident beam and therefore retraces its path 

to the active region of the laser This is a common configuration for all grating tuned 

external cavity lasers and was first used m semiconductor laser external cavities m 

1970 [3] Since the degree of dispersion is directly proportional to the number of lines 

of the grating illuminated [4] the importance of a large diameter collimated beam is 

apparent It is, however, an over simplification of the situation to assume that the fmal 

resolution depends only on that of the grating The small area of the active region acts 

as a resolving aperture, thus increasing the wavelength resolution In addition, several 

conditions must be satisfied for laser oscillation to occur at a given wavelength

(1) The Fabry-Perot condition must be satisfied for that wavelength by the cavity
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(j-Scope objective 
I

(II) The Littrow condition must be satisfied

(III) The active medium must be able to provide gain at that wavelength 

Once these conditions are fulfilled laser

oscillation may be sustained 

The output from the uncoated facet is 

fibre coupled to the detection and 

analysis systems The fibre used for this 

is Anhydride G, a Tech Optic visible-IR 

fibre with a 600jj.m core This plastic 

coated silica (PCS) fibre is 99 99% 

transmitting at 1 3|j.m Due to the 

difficulty involved in cleaving such large 

diameter fibres the end faces are 

polished to increase coupling efficiency

Figure 3.7: Fibre launch stage.

by reducing launch losses The fibre launch stage is shown m Figure 3 7 This Martok 

launch stage uses a microscope objective to focus the light on to the fibre face The 

fibre itself is held m a v-groove and is adjustable over the plane of focus of the 

objective

3.5 M ounts.

The laser diode mount is illustrated in Figure 3 8 As can be seen the laser is mounted 

to a copper block which houses the heater element To protect the laser m case of 

short circuit of the heater to the block,

the laser is kept electrically isolated 

from the block by a thin piece of mica 

The good thermal conductivity of the 

mica ensures that the temperature 

control of the laser is not compromised 

This block is connected to the heat sink 

by the Peltier heat pump Thermal 

isolation from the sink is achieved by a 

layer of hard-setting epoxy resin This 

resin exhibits excellent thermal barrier
Figure 3.8: The laser mount.
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characteristics This entire unit is then mounted on an optical post The design of this 

post allows a small degree of rotational and pitch adjustment, thus allowing the laser 

to be aligned along the optical axis

The collimation optics are mounted m Photon Control translation stage units allowing 

3 axes of linear motion, x, y and z These stages are designed for light load (up to 

30kg) applications and run on hardened ball and race track Backlash along the 

direction of travel has been reduced by preloading each axis This results m an 

improved performance for these low cost stages Each x,y,z unit is mounted on a 

spacer block such that the optic axis, OA, is approximately half way on the z stage 

travel

The grating is fitted, via an adaptor ring, to a Newport Research Corp precision 

gimbal optic mount This mount provides ultra stable positioning of the grating The 

mount has 360° coarse and ± 5° fine adjustment for both axes of rotation This mount 

has been fitted to a Photon Control xyz translation stage which allows the cavity 

length to be varied by 25mm without the need for repositioning The complete 

external cavity is fixed to a 3’ by 1’ Photon Control optical breadboard, tapped with 

M6 holes on a 1" grid

3.6 Drives.

It is obvious from the cavity design that specific elements have their own adjustment 

requirements Varying degrees of adjustment sensitivity are needed, from coarse to 

ultra fine To this end several different drives appear m the cavity design. For coarse 

adjustment of the collimation objectives standard micrometers are used on all axes 

These micrometers are magnetically coupled to the translation stages to minimise 

backlash They provide 25mm of travel for all axes and are readable to 0 01mm 

However for fine adjustment of the objective into the cavity itself, where high 

resolution positioning is required, piezo electric transducers are used These low 

voltage (0-150Volts) piezo give 30|um of continuous adjustment, which ensures 

optimum coupling both into the passive cavity and, on diffraction, into the active 

region of the laser These LP Piezomechamk transducers are controlled using a 3 axis 

voltage regulator

For adjustment of both the rotational (0 X) and tilt (®z) axes of the grating, Newport 

Research Corporation differential micrometers are used These provide 13mm of
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coarse adjustm ent readable to  0.01m m  and 0.2m m  of fine travel readable to 0.5^un. 

T his allow s accurate, sub arc-second adjustm ent of the grating orientation.

Finally , adjustm ent of the fibre position in the focal p lane of the launch objective is 

m ade using tw o adjustm ent screw s on the launch stage. Focus adjustm ent from  this 

stage is crude, being achieved by sliding the objective along a track. In practice a 

com prom ise is reached  using the output co llim ation  objective.

3.7 Detection and analysis systems.

For light versus current characteristics, w here spectral inform ation is not required, the 

ou tpu t from  the cavity  is m onitored by a M A C A M  Photom etries germ anium  detector. 

U sing a sim ilar m ount to  that of the fibre launch stage previously  discussed, the output 

from  the fibre is focused onto this sm all area detector using  a m icroscope objective. 

T he output from  this detector is fed directly  to  the am m eter since, due to  the high 

in tensity , am plification is unnecessary.

Figure 3.9: Grating spectrom eter based analysis system .

W here spectral inform ation is required the system  as show n in Figure 3.9 is used. This 

com prises a lm  focal length SPEX  m onochrom ator fitted  with an IR grating. The 

ou tpu t from  the fibre is focused on the entrance slit of this m onochrom ator. The
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spectrally resolved output is focused on a North Coast germanium detector operating 

at liquid mtrogen temperature The detector output is passed to conditioning 

electromcs which can provide gam (usually set at unity due to the high intensity of 

the laser light) and scales the voltage range making it PC compatible The data 

acquisition is PC controlled with the user selecting the wavelength range, scan speed 

and wavelength increment between successive data points This system is primarily 

designed for photoluminescent (PL) studies of semiconductor samples and is therefore 

optimised to detect the weak light levels associated with PL work The relatively high 

power of the external cavity laser therefore requires either defocussmg or the use of 

neutral density filters to reduce the power m order not to overload the detector 

electromcs The wavelength resolution of this system is approximately 1 x lCTVm 

which restricts its usefulness where high resolution measurements are to be made

Beamspli tter  _

Fixed 
mirror

I I Moving 
mirror

InSb
Detector

[iVax 2000

^_/J Collection
optics

Fibre from 
external  cav i ty

Figure 3.10: The FTIR system .

For high resolution measurements, eg hnewidth, a BOMEM Founer transform infra 

red spectrometer, (FTIR), is used This instrument is based around a scanning 

Michelson interferometer where changes in the optical path differences between the 

two beams give rise to intensity changes at the output This changing intensity is 

focused on a detector and recorded as an mterferogram The Founer transform of this
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mterferogram yields the spectrum The instrument is shown schematically m Figure 

3 10 The resolution of the FTIR is determined by the distance over which the 

movable mirror is scanned For this project, a resolution of 1 5 x lO '^m  was the best 

achievable The mterferogram data is fed to the vector processor, a dedicated 

mathematics unit which performs the transform The resulting spectral data is then 

processed by a MICRO-VAX computer and the spectrum displayed on the host 

terminal

3.8 Conclusion.

The design and construction of the grating tunable external cavity diode laser have 

been discussed in this chapter Details of the laser system with regard to thermal, 

electronic requirements and handlmg techniques have been addressed The 

experimental systems used to characterise the performance of the external cavity laser 

have also been discussed The results of this characterisation are presented in the next 

chapter
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Chapter 4: Results

4.0 Introduction.

In this chapter the performance of the external cavity is evaluated The presence of 

optical feedback in the active region of the diode is established by the associated 

reduction in the device threshold current The tuning range of the cavity, both by 

grating rotation and by altering other diode parameters, is found The formulae 

developed in Chapter 2 are used to estimate the reduced laser linewidth due to cavity 

operation

4.1 O peration  o f  the external cavity.

One of the desirable properties of an external cavity system is accessibility of any 

external cavity longitudinal mode across a broad tuning range A wide tuning range 

requires that the grating bandwidth be narrow in comparison to the internal mode 

spacmg, which is typically lnm  Therefore a grating bandwidth of 0 1 -0  2nm FWHM 

is considered adequate With 1200 lines per mm at a wavelength of 1 3[am this implies 

a beam width perpendicular to the grating rulings of 0 5 - 1  0cm [1] In order to 

achieve this the diode should be mounted with its junction plane parallel to the grating 

rulings since,

i) the large beam divergence perpendicular to the junction plane will then

illuminate the maximum number of lines

11) tuning will be across the narrow face of the active region, thus decreasing the

sensitivity to focus and grating misalignments 

However m actual operation, it was confirmed that the diodes used emitted 

predominantly TE polarised light The highest first order grating reflectivity is 

obtained when the electric field vector is perpendicular to the grooves, which, for TE 

propagation in the diode, requires that the junction plane be oriented m this direction

[2] Also, since the collimated beam profile was circular, with a diameter of 1cm, and, 

smce the diode focus was under sensitive control using piezoelectric actuators, it was 

decided to use this configuration m order to minimise the cavity loss 

Recalling Section 2 5, note that the coupling strength, C,  into the cavity is given by

C  = [1 - R 2] l/!/ R  Eqn: 4.1
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Therefore, in an external cavity, the laser diode facet facing the passive cavity must 

be antireflection, (AR), coated in order to maximise the intercavity coupling. The 

results presented here have been taken with a diode AR coated with a British Telecom 

Research Laboratory, (BTRL), proprietary AR coating. An important point to note at 

this stage regarding this coating is that at drive currents in excess of 1.5 Ith the coating 

integrity can be lost and the coupling strength dramatically reduced [3]. Therefore all 

the results presented in this chapter were taken at drive currents of less than 1.5 Imth, 

where r"th is the threshold current associated with the mth mode. This has serious 

consequences for the mode suppression ratio, (MSR), and is discussed later in this 

chapter. It is therefore important to monitor the output power during the alignment 

process.

The cavity is aligned by the use of an infra-red, (IR), viewer, to ensure that the beam 

coupled into the cavity is properly collimated. Then, with the grating in place, the 

returned diffracted beam is located and adjusted so that it falls on the collimating 

microscope objective. At this point it is critical that the output power be monitored 

since feedback can now occur. At the onset of feedback the drive current must be 

continuously adjusted during the fine alignment to ensure that it does not exceed the

1.5 Ith limit.

4.2 T hreshold  current reduction in an external cavity.

In Section 2.5 it was demonstrated that the threshold current dependence of a laser 

diode on the facet loss is given by

Eqn: 4.2

where Rcff is the effective reflectivity brought about when the diode is operated in an 

external cavity. Assuming that the modal conditions are fulfilled, and therefore 

ignoring the effects on the output spectrum, Reff can be thought of, to some degree, as 

restoring the original facet reflectivity. Therefore an AR coated laser diode in an 

external cavity would be expected to exhibit a lower threshold current and an 

increased efficiency than the same AR coated laser operated in isolation. It is worth 

noting that for the external cavity presented here it is unlikely that RCJf could ever be

1 . a  -  —  In 
m 2 L
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greater than or even equal to the original, (uncoated), facet reflectivity (/?,) due to the 

low efficiency of the grating (=30%), the losses due to collimation and the loss 

associated with the fact that only one mode (wavelength) is being selected for 

feedback Although operating in the cavity does decrease the power in these other 

modes, it does not eliminate them, thus they contnbute to loss in the cavity Therefore 

a lowermg of the threshold current, accompanied by an increase m the efficiency, is 

a useful indication of the presence of feedback The strength of this feedback is 

indicated by the magnitude of this reduction The threshold current was measured as 

follows For a given drive current, with the cavity aligned to a particular longitudinal 

mode, the output was focused onto a germanium detector It is important to ensure 

that the detector is operated over its lmear region This is usually achieved by 

reducing the incident intensity through the use of neutral density filters At this 

position the light versus current (LI) curve was obtained Subsequently, with the 

external cavity blocked and therefore the diode operating m isolation, a second LI 

curve was obtained The results of this are presented m Figure 4 1 The results are as 

predicted, with a large increase in the observed efficiency of the diode on operation 

in the external cavity Note that m the absence of feedback there appears to be no

Drive Current (mA)

F igu re 4.1* L ight vs. cu rren t (LI) curves both  w ith  and w ith o u t feedback .
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sharply defined threshold current, indicating that the residual reflectivity of the laser 

facet is very low This tends to obscure the observable reduction in threshold current 

However this threshold reduction can be seen quiet clearly in Figure 4 4 later, where 

the threshold reduces as the efficiency of the feedback increases

4.3 O utput spectra  from  the external cavity.

External cavity operation of a semiconductor laser diode offers single mode selectivity 

and wavelength tunability This longitudinal mode selectivity is due to the wavelength 

dependence of the effective reflectivity [4] The mode discrimination is brought about 

by the phase 9 of the light coupling from the external cavity back into the lasmg 

medium Side mode suppression is brought about by the fact that the active medium 

gam profile falls off as a function of wavelength and this interacts with the periodic 

loss profile However once a mode is selected, the higher photon population at this 

wavelength entering the active region increases the probability of a stimulated event 

at this wavelength This further reduces both the spontaneous output and also output 

into residual modes Additional mode selectivity can be brought about if the feedback 

is made wavelength dispersive This is the situation in the cavity presented here, 

where the reflector used m the cavity is a 1200 lines per mm diffraction grating The 

use of the grating has the further advantage that the output spectra can be tuned across 

the modes by rotating the grating In order to record the output spectra for various 

grating angles the grating spectrometer system shown m Figure 3 9 was used With 

the external cavity aligned initially to one mode the effect of grating rotation could 

be investigated The results of this investigation are shown in Figure 4 2 

The top spectrum shows the output of the laser diode operated without feedback and 

at a drive current of 100mA As can be seen the laser exhibits the characteristic 

multimode operation The modal power distribution follows a Lorentzian distribution 

(shown in outline) as predicted in theory [4] The lower spectra were taken at 1 3 Imth, 

where Imth corresponds to the threshold current of the principle mode This principle 

mode is selected by the grating angle The mode suppression ratio, (MSR), averages 

to 10 3 for these tuned spectra The MSR could be improved were it not for the 

sensitivity of the AR coating to high optical powers, since, m the above threshold 

regime the power m the side modes saturates and only the principle mode increases 

with increasing current
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Wavelength (|J.m)

F igu re 4.2: O utput sp ectra  from  th e  ex tern a l c a v ity  a) w ith o u t feedb ack , 
b ),c ), d) w ith  feedb ack  from  th e  gratin g  at var iou s an gles.
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4.4  C haracterisation  o f  the external cavity tuning range.

On operation in the external cavity the expected reduction in threshold current has 

been observed. The minimum threshold achieved was 27mA. This is in contrast with 

a threshold of approximately 18mA for similar laser diodes prior to AR coating, thus 

showing that the original threshold value is unlikely to be achieved in a cavity in this 

configuration. As was seen in Figure 4.1, the laser, when operated in isolation, 

exhibited no well defined threshold current due to the low residual facet reflectivity. 

Since the threshold current varies with the effective reflectivity (which is wavelength 

dependent) a plot of Ith versus wavelength is a very useful indication of the tuning 

range over which the external cavity operates. It is expected that mode selection at the 

extremes of this tuning range would be difficult due to lower gain and that therefore 

an increased threshold current would be observed.

In order to obtain this information a measure was first made of the total grating 

displacement over which feedback was achievable. LI curves were then taken as the 

cavity was tuned across this range. For each point, operating at 1.3 Ith for that mode, 

a spectrum was recorded using the grating spectrometer system shown in Figure 3.9. 

This data was then imported into SPECTRA-CALC, a spectrum analysis package. The 

single mode wavelength for each case was noted and a plot of threshold current 

against wavelength was made. This is shown in Figure 4.3. For ease of reference, the 

differential micrometer reading, corresponding to the grating angle, is also presented 

on the same plot. As can be seen, feedback, and therefore single mode operation, is 

achievable over a 0.037[am (37nm) range from 1.317|j.m to 1.354(jm for the diode 

used.

Recalling equation 2.26 it is seen that

where Nth corresponds to the threshold photon population at G = y. Then

I AX) G ( X ) ' 1 Eqn: 4.4tn
i.e. the threshold current is wavelength dependant due to the dependence of the gain 

on the effective reflectivity. Therefore the shape of the curve in Figure 4.3 reflects the 

shape of the gain spectrum associated with the external cavity. As can be seen the 

gain is reasonably flat over the central region of the tuning range. This should be
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Figure 4.3: Grating tuning range of the external cavity laser diode.

reflected by the modes efficiencies The mode efficiency can be measured from the 

slope of the LI curve for that mode Several LI curves, taken over the tuning range, 

are shown in Figure 4 4 As is clear, the efficiencies at the tuning extremes are lower 

than those of the central region as expected Also the efficiencies over the central 

region are very similar to each other, reflecting the flatness of the gam spectrum

4.5 E ffect o f  the injection current on the output spectrum .

Other methods, apart from rotation of the gratmg, by which the output wavelength of 

the laser can be tuned include device temperature and device current [5] Changing the 

device temperature changes the band-gap of the semiconductor material and also the 

optical path length due to thermal expansion It was initially hoped to investigate this 

temperature tuning, however it was found that the laser mount exhibited mechanical 

drift due to heater oscillations caused by the temperature controller This caused an 

oscillation of the focus position which was unacceptable for operation The cavity was 

therefore operated such that thermal equilibrium was achieved solely through the use 

of the Peltier heat pump. Also, temperature tuning is known to affect the life 

expectancy of laser diodes since a decrease of a factor of 5 is seen for a sustamed
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Figure 4.4: LI curves for various w avelengths over the tuning range, 

temperature increase of 10°C [5]. In addition, since very little was known about the 

AR coating, the possibility of damage due to differences in the thermal expansion 

coefficients could not be ignored. Therefore large range temperature tuning was not 

attempted. However the effect on the output spectrum of the injection current was 

investigated.

Changes in the cun-ent affect both the diode temperature and the carrier density which 

in turn changes the refractive index, and these affect the lasing wavelength. For time 

scales longer than ljos, however, this current tuning can be thought of as a method of 

changing the device temperature since the carrier density contribution to the refractive 

index is small [6]. With the laser tuned to a particular mode, the effect of the drive 

current was monitored using the grating spectrometer system. For each value of drive 

current the output spectrum was recorded. From these the single mode wavelength 

variation as a function of drive current could be seen. The resultant profile is shown 

in Figure 4.5. This form of tuning is a useful method of accessing wavelengths 

unavailable with the grating alone and is frequently used as such. The plot shows a 

tuning rate of lOGHzmA ' 1 (6.1 x 10'6[im mA'1). Figure 4.5 also demonstrates a feature 

common to temperature and current tuning, namely, mode hops. These unexpected
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F igu re  4.5. T he e ffect of th e  in jection  cu rren t on  th e  o u tp u t spectrum .

wavelength jumps arise when the active medium refractive mdex is altered The losses 

for the lasmg mode become greater than those associated with a nearby mode The 

laser output then jumps to this mode Typically the mode hop is of the order of 3 x 10‘ 

4|om (0 35nm) as is found in Figure 4 5 [5] The presence of mode hops has been

associated with the appearance of 

discontinuities, or kinks, m the LI curve 

Figure 4 6 shows such an LI curve This 

kink is caused by the change m efficiency, 

(which is proportional to cavity losses), 

which causes the mode hop Figure 4 7 

shows the behaviour of the output spectrum 

of the laser under the same external cavity 

conditions as the LI curve was taken The 

spectral output demonstrated a repeatable 

jump of 8 5 x 10'Vm (8 5nm) It should be 

noted, however, that mode hops of this 

magnitude are rare

Dnve Current (mA)

F igu re  4.6: LI cu rve  p red ictin g  m ode  
hop.
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4.6 Linewidth.

Section 2 7 descnbed the origin of the linewidth associated with laser diodes It also 

predicted the reduction of the linewidth by several orders of magnitude when such 

diodes are operated in external cavities Using the modified Schawlow-Townes 

formula the linewidth was shown to be

2 r  =
j t / z v  (Av )2

.n
s p

Eqn: 4.5

At a cavity length, L,  and a power of 0 lm W  a linewidth of 3 3kHz is predicted for 

the external cavity presented m this work1 In this calculation a measured grating 

efficiency of 30% was used T, the coupling efficiency, was estimated to be =2%  

when taking into account the transmission characteristics of the microscope objective 

used for collimation It is important to note that this represents strong feedback smce 

the amount of feedback is larger than the coated facet reflectivity Obviously such 

narrow lmewidths require special measurement techniques [7] However, smce this

1 See appendix A for additional laser parameters
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system is designed for use as a source for spectroscopic applications, it is important 

to ensure that the laser Imewidth is less than the instrument broadening of the 

spectrometer to be used Therefore an attempt was made to measure the Imewidth 

using the BOMEM FTIR shown m Figure 3 11 With the external cavity tuned to a 

single mode the output was fibre coupled to the input of the FTIR Figure 4 7 shows 

the resultant spectra for cavity lengths of 55cm and 24cm The maximum resolution 

of the FTIR was 4 5GHz (corresponding to a wavelength resolution of the order of 

2xl0°um ) It is clear therefore that the Imewidth measurement is instrument limited

Wavelength, (fim)

Figure 4.8: FTIR spectra for cavity lengths o f 55cm and 24cm showing instrum ent 
lim ited linew idths of 4.5GHz.

to 4 5GHz Consequently it cannot be stated that the Imewidth has been measured to 

any meaningful degree of accuracy Nevertheless the experimental results are 

presented m order to demonstrate that the external cavity is a useful narrow-Imewidth 

source for use in a spectroscopic application based around the FTIR However the 

calculated Imewidth for this work is in good agreement with both calculated and 

measured values of similar external cavity configurations [8]
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4.7 Aging of laser diodes.

During the first 50 - 100 hours of operation in the life of a laser diode the tuning 

properties change dramatically [5] This is due to out-diffusion of the laser material 

from the active region, defect formation and defect migration Wavelengths, accessible 

at the beginning of a laser’s life may become inaccessible as the device ages and vice 

versa This agmg can be seen by comparmg Figure 4 3 and 4 7 In Figure 4 7 the 

mode hop is from a wavelength of 1 3545(am As can be seen m Figure 4 3, this lies 

outside the initial tuning range of the device These two data sets were taken some 

time apart in the devices history Aging of the diode has pushed the output to longer 

wavelengths

4.8 Conclusion.

In this chapter the characterisation results obtained for the grating tunable external 

cavity have been presented Good agreement is found between the device behaviour 

and that both predicted theoretically and reported m literature The cavity was found 

to be tunable over a range of 0 037um (37nm) by the use of the grating The effects 

of current tuning were investigated and a tuning rate of lOGHzmA 1 was established 

The problem of mode hops obscuring some of the tuning range was identified A 

device Imewidth of 3 3kHz was calculated using the modified Schawlow-Townes 

formula Although this could not be verified experimentally it is m agreement with 

similar configurations previously published
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Chapter 5: Conclusions

5.0 Summary of work.

The design and construction of a grating based tunable external cavity semiconductor 

laser has been presented m this work The current to the laser diode was supplied by 

a battery driven automatic current control circuit This ensured noise free continuous 

operation of the diode from 0 -1 1 0  mA The temperature of the diode was initially 

controlled by the use of a PID controller at a set temperature of 21°C Heat evolved 

by the laser was drawn away using a Peltier-effect heat-pump This form of control 

was found to be madequate since it introduced mechanical drift m the lasers position 

This was investigated and found to be due to the mount design rather than to any 

problems with the temperature controller itself Since the focused spot size of the lens 

used is of the order of the dimensions of the active region, a stabilised position is 

essential in order to avoid mode instabilities This form of control was therefore 

abandoned and the diode temperature allowed to reach an equilibrium position through 

the use of the Peltier alone

The external cavity was established between the antireflection coated (AR) laser facet 

and a diffraction grating, mounted m the Littrow geometry, used as the wavelength 

dispersive feedback reflector The laser output was coupled into this cavity through 

an antireflection coated achromatic microscope objective lens 

The cavity was characterised using a 1 3¡am laser diode provided by British Telecom 

Research Laboratories The influence of the AR coatmg on the couplmg strength has 

been established It was shown that the device behaviour depended on the strength of 

this couplmg The importance of optical feedback on the laser threshold current has 

been discussed through the concept of an effective reflectivity The expected reduction 

m threshold current due to optical feedback has been demonstrated experimentally 

The tuning range available by rotation of the grating was measured using a gratmg 

based spectrometer system The external cavity demonstrated a tuning range of 37nm 

for the laser chip used The importance of the drive current on the output spectrum 

was also established A current tuning rate of 10 GHz mA'1 was found experimentally 

This was shown to be a useful method whereby gaps in the grating tuning range could 

be filled Discontinuities within the current tuning curve were shown to be due to the 

presence of mode hops These are caused by changes m the gain profile brought about
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by a change m the optical path length due to thermal expansion The kinks on the 

light / current (LI) curve, indicative of the presence of mode hops, have also been 

demonstrated

Using the modified Schawlow-Townes formula, the Imewidth of the single mode 

output of the external cavity was calculated to be 3 3 kHz This is in agreement with 

results presented for similar cavity configurations presented in the literature An 

instrument limited Imewidth of 4 5 GHz (corresponding to 2 x 10'5urn @ A. = 1 3¡am) 

was recorded when attempts were made to measure the Imewidth using a Fourier 

Transform Infra-red Spectrometer

5.1 Suggestions for further work.

The problems of mechanical stability displayed by use of the temperature controller 

should be addressed To this end the laser mount should be redesigned One possible 

design would include fixing the diode stud to a material with a low coefficient of 

thermal expansion, e g INVAR which has a  -  1 2 x 10’6 K_1 compared to a value for 

copper of a  = 1 7 x 10"3 K 1 Temperature control could then be achieved by a copper 

fm with an indium contact to the laser stud

The entire cavity should be temperature stabilised to reduce drift due to thermal 

expansion of the individual components or mounts This could be achieved by 

mounting the entire cavity on an INVAR rail and enclosmg it m a temperature 

controlled case If this case were made gas tight the cavity could then be purged with 

dry nitrogen gas m order to remove water vapour The cavity could then be operated 

at lower temperatures without the problem of condensation on the facets 

The timing charactenstics associated with a pulsed current configuration should be 

mvestigated The results presented here are for a device under continuous operation 

By using a pulsed current supply to drive the diode, the effects of refractive mdex 

changes, due to the change m earner density caused by the current pulse, could be 

investigated It would also be possible to operate the laser at higher powers 

The AR coating should be characterised, or on site AR coatmg of the facets with SiO 

should be undertaken This would enable a more extensive charactensation of the 

external cavity to be undertaken

An increase m the effective reflectivity is desirable in order to both extend the tuning 

range and increase the output power It is proposed that a gold coated grating, with
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a high reflectivity and I s* order diffraction efficiency, would significantly increase the 

cavity reflectivity In addition, a high quality AR coated microscope objective should 

be used to collimate the beam into the cavity This would increase the coupling into 

the active region and further reduce the Imewidth Further efforts should be made to 

determine the device Imewidth experimentally This entails the design and construction 

of a heterodyne or homodyne beat frequency analysis system
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Appendix A

Parameter Symbol Value

Cavity length L 250|am

Active-region width w 2¡om

Active-layer thickness d 0 2|am

Confinement factor r 03

Effective mode index fi 3 4

Group refractive index 4

Lmewidth enhancement factor fc 5

Facet loss 45cm'1

Internal loss ®~int 40cm’1

Gam constant a 2 5x1 O'1 W

Carrier density at transparency n0 lx lO i8cm‘3

Non radiative recombination rate A r lx l  08s 1

Radiative recombmation rate B lx lO '^cm V 1

Auger recombination rate C SxlO '^cm V1

Threshold earner population N¡h 2 14xl08

Threshold current I* 15 8mA

Carrier lifetime at threshold 2 2ns

Photon lifetime 1 6ps

Table of typical InGaAsP laser diode parameter values
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Appendix B

Q uantity Item Supplier Code

1 3’x l ’ Optical Breadboard Photon Control LCB-3-1

3 xyz Stage Photon Control TS-75-25Hxyz

2 Microscope Objective Adaptor Ring Photon Control AR50-RMS

1 Gimbal Mount Newport Research Corp 605-2-OM

2 Fibre Launch Stage Martok /

20m PCS Fibre Tech Optic Cl-0125-80

1 Diffraction Grating Optometries /

2 Differential Micrometer Newport Research Corp DM -13

2 Piezo Electric Actuator LP Piezomechanik /

1 Germanium Detector Macam Photometries GD-101

2 Microscope Objective Ealing Electro-Optics 25-0027

R equired com ponents for the external cavity laser diode

A ppendix  B .l



Parts List for Laser current source.

R,n x lOkQ Pot 
R, x 2kQ 
R2_j46 x 2 7k£2 
Ri x 100Q

Rsense X ^

C, x 2 2\x£
C, x IOOmF
C3 x 4 7|xF
C4 x 0 l|iF
C5 x lOOnF
D: x IN4001
Tj x BC108
T2J x 2N3053
1 X 3140 Op-Amp
1 x 7805 Voltage Reg

Parts List for P eltier current source.

l x  BC108 
l x  TIP121
1 x Peltier Heat Pump 
1 x 1 26Q 
1 x 240Q
1 x ZN423 Voltage 

Reference Source 
1 x 3140 Op-Amp

PCB foil for Peltier Current Supply.
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