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ABSTRACT

An 1n depth study of temporal chaotic systems, both
discrete and continuous, 1s presented. The techniques for
the characteraization of chaotic attractors are: Lyapunov
stability, dimension spectra and unstable periodic orbits.
Comparison of numerical and analytical methods clarify some
of the limitations of these techniques. A two dimensional
hyperbolic baker map with a complete set of unstable orbits
is examined. The evolution of structure and changes in the
f(a) spectrum for this map are related to changes 1in an
underlining Cantor set. Numerical calculation of unstable
periodic orbits for a related baker map with an 1incomplete
set of unstable orbits allow the investigation of the
properties of a pruned Cantor set. The effects of the
pruning on the associated f(a) spectrum are investigated.
It 1s also shown that the unstable manifold of a hyperbolic
toral map does not wind densely around the torus, but
consists of an infinite number of line segments. This
facilitates the efficient computation of the dimension
spectrum through a rotation of this manifold. A new
structure not previously observed in discrete systems is
characterized. Intermittency theory previously applied to
dissipative systems 1s applied to a variety of two
dimensional non-dissipative systems. A new type of
intermittency 1s found from a detailed comparison between
existing theory and numerical experiments. The important
and unresolved problem of the correspondence between
continuous and discrete systems 1s 1nvestigated using
analytical and numerical techniques. Properties of the
chaotic attractors of infinite dimensional delayed
differential equations are examined as a function of the

time delay and nonlinearity parameters.



CHAPTER 1

INTRODUCTION TO CHAOTIC SYSTEMS

1.1 INTRODUCTION

The growth of research papers in the area of chaos has
been spectacular in the last ten years. Some scientists
have even placed chaos alongside the two other great
revolutions of physical theory in the twentieth century-
relativity and quantum mechanics. While these theories
challenge the Newtonian system of dynamics, chaos questions
the traditional  beliefs from within the Newtonian
framework A century ago, Poincaré showed that the motion
of three bodies under gravity can be extremely complicated.
His discovery was the first evidence of what 1s now called
chaos: the ability of simple dynamical systems, without in
built randomness, to generate highly irregular behaviour.

The progress 1in dynamical systems from which chaos 1is
derived, 1s linked with the rapid development of powerful
computers. The study of chaotic dynamics reflects in part
the i1nfluence of computers on theoretical physics, for
chaotic systems are ''monintegrable", and much of the work
in the field involves numerical simulations,

Chaos 1s genuinely 1interdisciplinary as some of the
following examples 1llustrate. In chemistry, sustained
oscillations 1in chemically reacting systems, Hudson and
Mankin (1981), In biology stimulated cardiac cells, Guevara
(1981), Astronomy, the chaotic tumbling of Hyperion one of
Saturn’s satellites, Wisdom (1987); Economics, the pricing
of treasury bills, Hsieh (1991). The important link between
these disciplines 1t that they exhibit nonlinear behaviour

and chaos theory is seen as a way of analyzing these



systems.

This i1ntroductory chapter will illustrate the basic
principles of chaos in dynamical systems with a particular
example, a nonlinear electronic oscillator. The application
of chaos to turbulence i1n hydrodynamical systems 1s briefly
discussed. The type of dynamical systems that form the
basis of this thesis and of chaos will be presented 1in
Sec. 1.2.

1.2 DYNAMICAL SYSTEMS

The mechanisms which underly the onset of chaotic
motion are relatively well understood. Two generic routes
have been discovered and thoroughly analysed, period
doubling (Feigenbaum, 1978) and quasi-periodicity (Ruelle
and Takens, 1977), 1in addation to the intermittent
transition (Pomeau and Manneville, 1980). A complete
description of developed chaos 1s, however, much more
difficult to achieve This thesis 1s concerned with the
structure and evolution of developed chaos 1in temporal
chaotic systems.

Static fractals are introduced in chapter 3, these
objects may be multi-dimensional and can have exact self
similar propertaies The evolution of Cantor sets ais
examined from the point of view of their generalized
dimensions and their spectrum of scaling indices. The
relationship between one dimensional Cantor sets and
dynamical systems 1s well known, this relationship ais
extended for higher dimensional Cantor sets.

All of the systems below are initial value problems.
It 1s a common misconception that nonlinearity 1s required
for chaos The first three systems are linear and display
chaotic behaviour. The stronger condition is an infinite
set of periodic orbits (Sec. 2.6). The one dimensional
1terative map

X = A X mod 1 (1.1)

1+1
with A>1 for chaotic solutions is examined in chapter 3.



The fundamentals of chaos and the reasons for the existence
of chaos 1is examined for this simple map. The orbits of
this map can be arranged on complete and pruned trees. The
properties of the dimension spectra and the associated f(a)
spectra are examined for a range of parameter values A. The
evolution of chaos iIn this map from the onset to complete
randomized time series is investigated.

Hyperbolic systems are are studied in chapter 4. The
following two dimensional system is called the baker map

R.X .
11 0 £
N Yi/S
1+1 oL (12)
Y. . 1/ 2+R2Xi)
VAR

(Yt-S)/(1-S)

the parameters satisfy the following conditions for chaotic
behaviour, O0<R ,R2M and S™M/2. This system is the product
of a line and a Cantor set. The processes by which a
strange attractor can be created and the evolution of
structure in this hyperbolic map will be examined. An
example of some strange attractors for Eg. (1.-2) can be
seen iIn Fig. 4.2. A modified form of this map 1is the
product of a line and a pruned Cantor set. The effects of
this pruning on the associated T(a) spectrum is
investigated. The generalized dimension spectrum can be
obtained analytically for this map. A comparison with
numerically generated spectrums is presented iIn Sec. 2.5.4.

The third linear chaotic systems examined is defined
on a torus. It 1is a higher dimensional version of Eq.
(1.1) and is defined as L T->T where

a b

A= L g (1.3)

with a,b,c and d e [R To our knowledge this 1is the Tfirst
study of chaos in this map for noninteger coefficients and
determinant less than one. New results concerning the
unstable manifold allows both efficient computation of
dimension spectra and the analysis of a two dimensional



Cantor structure, not previously observed in dynamical
systems.

The following nonlinear iterative map 1s an example of

the type of nonhyperbolic system investigated in chapter 5.

X = (A - X1 - B1Y1)X1

i+l

(1.4)

Y
i+1

(A - Yi - B2X1)Yi

with the parameters A, B1 and Bz. The dynamical behaviour
of this map varies from simple to highly complex as the
parameter space 1s explored. The two main themes of this
chapter are intermittency and surface attractors (cf.
Fig.’s 5.8 and 5 9 (a) respectively). Intermittent crisas
describes sudden changes i1n a chaotic attractor as a system
parameter 1s varied This is the first study of
intermittent crises 1in non-hyperbolic systems 1like Eq.
(1.4). Numerical calculations of the intermittent constant
are compared with theoretical values, leading to the
analysis of a new type of intermittency. The properties of
chaos on a two dimensional unstable manifold are
investigated.

The above discrete systems share many properties with
continuous systems. For continuous systems three degrees of
freedom and nonlinearity are necessary conditions for
chaotic solutions. One example of three ordinary

differential equations are given below

ax/dt = Y(Z - 1 + X?) + X
dy/dt = X(3Z + 1 — X%) + ¥ (1.5)
dz/dt = —2Z(a + XY)

with constants o« and . A similar set of differential
equations formulated by Lorenz (1963) has occupied an
important place 1in the history of chaos. Egq. (1.5) is used
in chapter 6 to investigate the important and unresolved
problem of the correspondence between continuous and
discrete systems, using a variety of numerical and analytaic
techniques. The fact that very little of the behaviour of
these equations can be proved with strict mathematical



rigour is a reminder of the subjects intrinsic mathematical
diffaiculty.
First order deiay differential equations are
investigated in chapter 7 An example is given below
ax(t)
dt

Parameters are A, B and t For delay parameter T greater

=AX(t-T)? *exp(X(t-t)%)-BX(t) (1.6)

than zero, this equation 1s infinite dimensional. Using
Poincaré section techniques the evolution of chaos 1is
studied for this system. The concept of a strange attractor
with an infinite dimension is examined.

None of the above temporal systems can exhibit the
phenomenon of turbulence because they 1lack a spatial
dimension. Partial differential equations are used to model
turbulence and are not considered due to computational
constraints. An example of an set of partial differential
equations used to model a rf-biased Josephson junction
(Guerrero and .Octavio, 1989) are given 1in dimensionless
form by

329 529 1 5¢
- — t Sing = - B + pSin (Qt) (1.7)

8X dt st
p 1s the rf amplitude, B 1s a measure of the damping and Q
the rf frequency. To take i1nto account the presence of an
external applied magnetic field, they use the following

boundary conditions
s¢(0,t) _ 38¢(L,t)
8X 8X

where 1 1s a measure of the external field. The

=7 (1.8)

intermittency and the fractal attractors examined in thais
spatiotemporal system have remarkable similarity with the
purely temporal systems 1investigated in this thesis. Low
dimensional chaos has been observed in a hydrodynamical
experiment (Stavans et al., 1985), the spatial coherence
1s maintained even after the loss of temporal coherence.
This should be contrasted with weak turbulence where the
systems spatial coherence breaks down and chaotic behaviour

sets in. Stassinopoulos and Alstrom (1992) have used a set



of coupled maps (similar to Eq. (1.4) to examine
spatiotemporal chaos The temporal discreteness of coupled
maps allows for faster computation of the dynamics since no
explicit integration 1s required as 1in the simulations of

differential equations.

1.3 EXPERIMENTAL CHAOS

The following electronic experiment 1i1s used to
highlight one possible evolution of a system as a control
parameter is varied. The details are taken from Su et al.
(1989). The circuit diagram for the experiment 1s shown 1in
Fig. 1.1 It consists of a resistively coupled diode
resonator system with modulation. Ashwim (1990) has
examined similar systems of oscillators. The model that Su,
Rollins and Hunt use 1s briefly described as follows. An
1deal p-n junction diode is assumed with the additional
three characteristics
(1) The diode will not conduct until the forward voltage
drop reaches V.-

(11) When the voltage drop 1s less than Vf, the diode does
not conduct but acts as a capacitor with fixed capacitance
C

(11i) The diode does not shut off immediately, but
continues to conduct for a time equal to the reverse
recovery time T with T depending on maximum forward
currents

T = ? a T [1 - exp(—IJ/Ic)] (1.9)
where IJ 1s the maximum forward current during the ;fh
conducting cycle. T and Ic are diode parameters. Four
cycles are used waith o, being the weights. The coupled
diode resonator 1s described by the following set of

differential equations



L Jr - Vocose -Vl —R(11+12)
da
L Jr - Vocose —V2 —R(11+12)

(1.10)

av { 0, when diode 1 is conducting

11/C1, when diode 1 in nonconducting

av { 0, when diode 2 is conducting

12/C2, when diode 2 1in nonconducting

= W

where the drive voltage E(t)=Vbcos(wt), and ]],Vl, C1 and
1 Vz, C2 are currents through, voltage across and reverse
capacitance of diodes 1 and 2, respectively. L and R are
the inductance and resistance shown in Fig. 1.1. The method
of solution together with typical parameters can be found
in Su et al. (1989). Figure 1.2 shows several Poincaré
sections formed by plotting peak forward currents Il(n)
versus Iz(n) at several values of the drive voltage; all
other parameters kept fixed. The simulated diagrams are on
the left with the experiment on the right. The resemblance
of the Poincaré sections obtained from the simulation to
those measured from the real system 1s striking, including

much of the detailed structure.

MV
R
L L
e

Fig. 1.1. Caircuit diagram used to model the resistively

E

coupled diode resonator system.

Some details of the evolution shown in Fig. 1.2 is

given below. At a draive voltage lower than that used in



Fig. 1.2 (a), the Poincaré section 1s a single point. As
the voltage increased the period doubles and the Poincaré
section 1s two points Then a Hopf bifurcation occurs where
the two points open into two circles. The ratio of the
spontaneous frequency to the drive frequency is very close
to a rational number. Figure 1.2 (b) is near the critical
line for the quasiperiodic transition to chaos. Universal
scaling has been shown to occur at this point (Su et al.
(1987)) Figure 1.2 (c) has developed into a multiple piece
chaotic attractor from a torus. A two piece attractor is
shown 1n Fig. 1 2 (d), for increasing drive voltage This
development could be similar to the system examined in Sec.
5.5 2 In Fag 1.2 (e) 1s a quasiperiodic state which
occurs at high drive voltages. There is a sudden transition
to this attractor, possibly due to intermittency (cf Sec.
5.4-5.6). Finally, Fig 1 2 (f) is for a different set of

parameters, it shows a mode locked period-14 state which
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Fig. 1.2. Corresponding stimulated (left) and measured
(oscilloscope photographs on the right) Poincaré sections
formed by the peak forward currents I2 Vs I1 for the

coupled diode resonator system. (From Su et al., 1987).



has undergone a Hopf bifurcation. The size, shape, and the
position of the small circles are in remarkable agreement.
There 1s excellent detailed global agreement between
the model proposed and the experiment. The success of this
model suggests that driven diode resonator systems exhibit
chaotic behaviour because of a delay feedback effect
related to slow diffusion and long lifetime of the excess
minority carriers near the p-n junction of the diode. The
importance of delay feedback effects will be examined in
chapter 7 This 1s an example where the chaotic dynamics
leads to a greater understanding of the physics of p-n

junctions.



CHAPTER 2

TECHNIQUES FOR ANALYZING CHAOS

2.1 INTRODUCTION

Dynamical systems with only a few degrees of freedom
can, despite the deterministic nature of 1its governing
equations, exhibit random behaviour. The main tools for
characterizing the properties of a chaotic regime are the
spectrum of Lyapunov exponents the fractal dimension D
and the entropy K. Typical chaoticattractors are
multifractal (Hentschel et al. 1983), that 1s, their
dimension D and entropy K varies with the index q, (g e
(-00,+00)), thus providing a spectrum of dimension and
entropy values for the attractor. After 1introducing the
Lyapunov exponents in section 2.2 and their associated
dimension and entropy we proceed to examine the dynamical
quantities D and K in section 2.3. An alternative
representatiog in terms of the f(a) spectrum and g(A)
spectrum is examined in section 2.4. An algorithm for the
extraction of the dynamical quantities and from a
single variable time series is discussed 1In section 2.5.
Data requirements TfTor efficient computation of these
quantities are examined and recent applications to
experimental chaos arealso reviewed. Finally 1In section
2.6 chaotic orbits are explored using the well known set of
periodic orbits. The relationship between the unstable
periodic orbits and the dimensions and entropies can be
determined. Analytic dimension spectra D are compared with
numerically generated spectra. This comparison highlights
some of the difficulties in computing dimension spectra
from single variable time series.

10



2.2 LYAPUNOV STABILITY

The spectrum of Lyapunov exponents provides a summary
of the local stability properties of an attractor. Positive
Lyapunov exponents measure exponential spreading of nearby
trajectories, while negative Lyapunov exponents measure

convergence of trajectories onto the attractor.

2.2.1 LYAPUNOV EXPONENTS
The calculation of a Lyapunov exponent for a one

dimensional system will considered fairst. Consider the

logistic map in the following form
2

X1+1 = f(Xl) = 1 - AX . (2.1)
A linerization about X1 gives
€.,," Df(Xl)ei (2.2)
where Df(Xi) = —2AXl The single Lyapunov exponent is
defined as
1 N
A= lim - Ylog [DE(X) | (2.3)
N—® i=1

with 1nitial condition X For a single basin of attraction
A 1is 1independent of the ainitial value Xo. For A > 0, we
have a chaotic orbit, for A < 0 a stable (attracting )
orbit. For A = 2 the Lyapunov exponent has a value A =
0.534.

For a n-dimensional system the Lyapunov exponents are

calculated as follows. Consider the C'(rz1) vector field

X, = £(x), X e R" (2.4)
and a lainerization about X1 gives

e .= DE(X)e e e R" (2.5)
Let {e%....,e"} be any orthonormal basis in R". Then the

Lyapunov exponents AJ along the direction ¢’ are defined as

L el 1
A= lim > ¥ log (2.6)
i—w ' =1 el 1l
where || Il = v <.,.> with «<.,.> denoting the standard

scalar product on R". This expression gives us information

concerning the contraction and expansion of phase space but

11
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nothing about twisting and folding. The Lyapunov exponents
are similarly defined for a continuous system. This method
of computing the Lyapunov exponents is based on a knowledge
of the system. Algorithms have been successfully used for
computing Lyapunov exponents from a time series Zeng et al.
(1991). These algorithms have also been applied to
experiments (Eckmann et al , 1986).

The Lyapunov exponents are arranged 1in decreasing
order. The qualatative stabilaity properties of an attractor
can be conveniently summarized by indicating +,0,—,..-
according to the sign of each exponent. Thus [+,0,-] would
indicate a chaotic attractor ain three daimensional phase
space. A positive Lyapunov exponent 1s numerical evidence
for the exaistence of chaos. A Lyapunov exponent of
magnitude zero implies a continuous system since the
exponent 1n the direction of the flow can neither separate

nor merge.

2.2.2 LYAPUNOV DIMENSION AND ENTROPY
Kaplan and York (1979) have put forward a conjecture

to relate the spectrum of exponents to a dimension. They

define a quantity called the Lyapunov dimension DL given by

J
L A
D = 3 + 21 (2.7)
L
EWN
where j 1s the largest integer for which A1+....+Aj20.

Another conjecture put forward by Mora (1980) applies 1in
limited situations (Farmer 1980).

When the sum of the Lyapunov exponents, often called
the divergence, is greater than zero, Eq. (2.7) does not
apply. In this case

DL =3 (2.8)
where J 1s an 1integer representing the total number of
Lyapunov exponents 1in the system. A one dimensional map,
with A1>O, has Lyapunov dimension DL=1 0 while a two

dimensional system with A1+A2>0 has dimension DL=2.

12



The Lyapunov entropy KL 1s defined by, Pesin (1977).

k
K=Y} 2 (2.9)

where the sum 1s over the positive Lyapunov exponents. The
entropy 1s a measure of information loss in a system with
units of 1inverse time. It 1s a measure of how chaotic a
system 1is, KL=O for an ordered system while KL=m for a
random system. Although a positive Lyapunov exponent
implies chaos we will see in later chapters that this

should be interpreted with caution.

2.3 GENERALIZED DIMENSIONS AND ENTROPIES

Suppose that there 1s an attractor in phase space and
the trajectory X(t) 1s ain the basin of attraction. The
state of the system 1s measured at intervals of time t.
Most definitions of dimension use the notion of
partitioning phase space i1into boxes of size €. We define
o o1y to be jJoint probabilities
such that X(t=t) 1s 1n box i1’ X(t=2t) 1is 1in box iz,
P , and X(t=dt) 1s in box 1. Using these

d
probabilities, a generalized information of order q (q € R)

probabilities Pﬁld

1s defined as,

- a
Iq(s) = 705 1n Y P, 1) (2.10)

11, y 1

d
The concept of a fractal (non—-integer) dimension D<d of an
attractor in d dimensional phase space can be derived from
information considerations, where the dimension describes
how the 1information 1I(e) scales with varying spatial
resolution €, according to:

lim I(e)

D=- ¢35 Ine

(2.11)

On the basis of Iq(e) a continuous spectrum of dimensions
of order g (Hentschel et al. 1983) 1s introduced by
substituting Iq(c) into Eq. (2.11):

13



1 1im i, 1

a g-1 &0 (2.12)

In ¢
The most frequently used dimensions are the Hausdorff (or
fractal) dimension Do’ the information dimension D1 and the
correlation dimension Dz‘ D0 and D1 are obtained in the
limit g-0 and g-»1 respectively. For the set of generalized
dimensions 1t can be shown that [%SDq' 1f g’<«g. The
dimensions of different order measure different
distributions of points occurring on the attractor.

Using the information I(e) we can define the entropy
K,:

K= 1" 1(e) (2.13)
Substituting for Iq(e), we can also define a continuous
spectrum of entropies of order q (Renyi 1970):

iIn ¢ P4 (i, 1)
7 lim lim lim 1 1, i

K = — 1 d (2.14)
q g-1 €50 t-0 d-ow I Tn e

The limit g0, yields the so called topological entropy,
whereas the limit g»>1" 1s the metric or Kolmogorov entropy.
The qth order dimensions of an attractor are static
invariant, since they do not depend on any time scale.
However the entropy 1s a dynamic invariant property, it has

to be specified per unit time.

Table 2.1.
Dimension and entropy values, for different types of
attractors. (1<n<x).

Attractor Type Dq Kq

Period n fixed point 0.0 0.0 for all q
Period n limit cycle 1.0 0.0 for all q
2-Torus 2.0 0.0 for all q
Strange Attracctor Dq=Dq’ Kq=Kq’ q’ <q

For strange attractors the set Dq contains information
on the appearance and statistical properties of the chaotic

time series. Table 2.1 gives a summary of this dimension

14



set and entropy set for number of well known attractors.
Homogeneous attractors are defined by D = Dd and K

K .for g * q° . Quantitatively, the dimension set D and the
eﬂtropy set K permit regular systems (fixed goint and
limit cycles) to be distinguished from irregular (chaotic)

systems.

2.4 LEGENDRE TRANSFORMATIONS

The spectrum of dimensions D introduced 1i1n the
previous section is used to characterize a multifractal. A
similar characterization is obtained by the spectrum of
scaling indices, the f(a) spectrum, 1iIntroduced by Halsey et
al. (1986). Suppose there 1iIs a set embedded iIn a Tfinite
portion of d-dimensional Euclidean space. We divide the set
into N disjoint pieces S 1i1=1,2,...,N with measure P and
size e. iIn order to construct a partition function:

n P a

r(r,9,{S }) = £ -1 (2.15)
1=1 cC i
As ¢ — » oo, the partition sum diverges Iif x>x(q), becomes

zero 1f x<x(q), and may approach a Ffinite nonzero value if
x=x(q). Thus, by requiring r(x,q)=constant, it iIs possible
to define a relation between x and (¢

x@) = @D Dq (2.16)

A scaling exponent a is defined by saying that
Pq = edXi .17)
a can take on a range of values between a and a ,

max min

corresponding to different regions of the measure. The
number of times a takes on values between a* and a“"+da”
will be of the form

da*p(a” )e"f(&) (2.18)
where Tf(a") 1i1s a continuous Tfunction. The exponent Tf(a")
reflects the different dimensions of the sets upon which
the singularities of strength a® may lie. If we now divide
the system into pieces of size c and express the partition
sum (2.15) as an integral over a,

15



r'(t,q) = ¢ J do’ p (o’ )3 T (2.19)

In the limit & —— 0, the dominant contribution to the
integral 1s received when the exponent qua’-f(a’) is close

to 1ts minimum value, a saddle-point approximation 1is

performed
d_ [a'g -f(a’)] =0 (2.20)
da’ o’ =a{q) )
so that
arf _ a°f
_d o = q and m‘Z < 0 (2-21)
from whaich 1t follows: D = £ , D = o and D = .
[0} max - 00 max + 00 min

Thus for any attractor the curve f(a) will be convex with a
single maximum at g=0 and with infinite slopes at g= *w.
This leads to the following Legendre transformation (Halsey
et al., 1986) which 1s used to determine f(«):

w(@) = g [ (a-1)D_ ]

(2.22)

fla) q «(q) - (q—1)Dq

A similar transformation can be obtained for the

spectrum Kq.

In ¢ P"oa, 1)
K g mbmtint o, U (2.29)
d dt In €
Define A(H’ ﬂd) by (Eckmann and Procaccia 1986)
q =3 —_—
P (H’ nd)— exp( th(H’ nd)) (2.24)

For £ sufficiently small and fixed d, the number of times
one finds a A between A’ and A’+dA’ 1s

exp(t d g(A’)) AA’ (2.25)
Substituting Eq. (2.24) and (2.25) into Eq. (2.23), one

sees that in the limit as € goes to O,

K, ==ir (d A@) - g(A)) (2.26)

and therefore a knowledge of Kq yields both A and g(A)

according to
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(g-1)K
.27

g(A) = qg.A(@ - (@-DK

2.5  CORRELATION INTEGRALS

In this section algorithms are examined for computing
the dimensions D . Data requirements and experimental
applications will be discussed.

2.5.1 correlation Dimension
Grassberger and Procaccia (1983)a introduced an

algorithm for extracting the dimension D2 from a single
variable time series. It is based on the correlation
between points on the attractor. Consider a set (X»
i=1 N) of points obtained from a time series
X(t+ix), with a fixed 1increment r between successive
measurements. N 1iIs the total number of data points on the
attractor. The time series can be experimental or obtained
numerically from a computer experiment.

Due to the exponential divergence of trajectories on a
chaotic attractor, most pairs of points (XX ) with i*]
will be uncorrelated. Some points will be spatially
correlated and this spatial correlation is measured with
the correlation integral C2(e):

cz2u) = 12 £ ®tc-|X -X |) (2.28)

=
The Heavside fTunction O0(c— XX |) serves to count the
number of pairs (X~X”) whose distance [XKX*] is less than
e. It has been shown previously (Grassbeger and Procaccia,
1983b) that C2 (e) scales like:

Cz(c) - cD2 <2-29>
D2 is called the correlation dimension, by plotting In
%Q(C) against In c¢ the dimension D2 can be obtained from
the slope of the graph,
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d 1n Cz(e)
2 "dlIne

The above correlation integral has to be modified in order

D (2.30)

to measure dimensions greater than two. The modification

consists of embedding the time series in d dimensional

phase space, 1.e. the construction of d dimensional vectors

(X ., X _, X ) Instead of calculating the
1+1 142 1+d

separation between pairs of points we calculate the

separation between pairs of d dimensional vectors i.e. we

count the number of pairs (1,3) with:

172
2 2 2
[ (Xi+1—XJ+1) +(X1+2—XJ+ ) I (Xl+d—XJ+d) ] (2.31)

2

Hence the modified correlation integral is:

d lim 1 N d 2 172
e = ol w L0 e—[ T1%,,7X,,,] } ) (2.32)

This correlation 1integral C:(e) 1s related to the

probability defined in Eq (2.1) by,
S (2.33)

d - 2
CZ(C) ~ Z P (11,1 d

1 1
1’ "d

Consequently, combing Eq ‘s (2.23) and (2.32) leads to an

2

equation which 1involves K2, (Grassberger and Procaccaa,
1983%),

d . lim 11m Dz
Cz(s) ¥ e g0 € exp (—-dTKz) (2.34)
By calculating:
d
K(e) = < In [ c_{e) ] (2.35)
C (g)
we should faind
lim lim d
d>® €90 K,(e) = K, (2.36)
Cohen and Procaccia (1985), has developed a similar

algorithm for the extraction of the dimension D1 and the
metric entropy K1 and applied 1t to a number of well known
chaotic maps Using the two dimensional Henon map
(X,Y)—(1-AX’+Y,BX) (Henon, 1976) with A=1.4 and B=0.3, a
time series 1s generated with N=15000 data point. Shown in
Fig. 2.1 (a) 1s a plot of 1ln Cj(e) against Ine for a series
of 1increasing values of d, the series of straight 1lines
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with slope D2 are displaced from each other by the factor
exp(—dtKz2). The dimension obtained from the slope of these
lines 1s D2=1.46t0 02. The error represents the statistical
variation i1in the least square fit.

For each value of embedding dimension the Kolmogorov
entropy 1s estaimated over an appropriate scaling region in
€ The extrapolated value 1s K2=0.32iO.02 as shown 1in Faig.
2.1 (b). D, and K, are lower bounds on the Lyapunov
dimension (DL=1.26) and the Lyapunov entropy (KL=0.42)
respectively.

Cutler (1991) has done an indepth study of errors and
provides confidence 1intervals for the dimension D2 and D1'
Fractal dimensions and Lyapunov exponents can be estimated
faster and more effaiciently with the knowledge of the
optimal embedding daimension and delay time. Buzug and
Pfister (1992) have proposed two methods to obtain this

optimal embedding dimension.

2.5.2 DATA REQUIREMENTS

Estimate of the number of data points N required to
calculate a dimension D2 and a entropy K2 are considered.
To do this we will choose a one dimensional system of known
dimension and entropy The system 1s defined by

= AX1 mod 1 (2.37)

and wi1ill be considered in more detail in chapter 3. For A »
1 the system 1s chaotic waith D, = 1.0 and K, = log(a).
Boundary effects are negligible for this system. Using Eq.
(2.28)

d L lim 1im D2
Cz(e) ¥ e eoo © exp(—dTKz) (2.38)

where CZ(C)lS defined by

lim E’I_

d
Cz(e) T Now L2 (2.39)
N
where M 1s the number of pairs (i1i,3) with
d > 172
L%, X, | ] <e (2.40)
n=1

Combinaing Eq. (2.38) and Eq. (2.39),
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FIG. 2.1. (a) Correlation integral 1n Cz(c) verse 1ln ¢

for Henon map, computed with N=15000 data points. The
values of embedding dimension d are d=2 (top
curve),4,6,...,18,20 (bottom curve). (b) Values of Kz(e)
for the Henon map averaged over the scaling region in e.

The extrapolated (d — ) value is K2=0.32i0.02.
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172
M
N~ 15 (2.41)
£ ° exp(—-dtKz) )

The variables are defined as follows <=1, d=8, D2=1.0,
£=10"° and M =1. For K =log(2) the number of points
required is N = 5000, while for I%=log(4) the number of
points required 1s approx N = 8%x10*. Smith (1988) has
suggested that 42P? points are the minimum number of data
points. Nerenberg and Christopher (1990) has also made
estimates of data requirements with the inclusion of
boundary effects The importance of these two estimates 1is
that neither include the entropy in their calculations. As
can be seen from the previous example no estimate of data
requirements 1s correct which does not take into account

the entropy

2.5.3 EXPERIMENTAL APPLICATIONS
The correlation dimension and entropy have been

computed for a range of experimental systems Carroll et al.
(1989). Experaimental applacations of the correlation
dimension to a modulated semiconductor laser diode in a
cavity were carried out. The laser output was detected with
a Si1 APD and captured with a digitizing camera system
(Tektronicx DCS 01) O’Gorman (1989). Power spectrum
analysis 1indicated that the waveforms might be chaotic,
O’Gorman et al. (1991). Time series were limited to 500
data points. It i1s possible to obtain a dimension D;ﬂ.o
for a numerically generated periodic waveform consisting of
500 data points. Noise, filteraing, drift and the limited
number of data have made the determination of Dzz 1.0
impossible. Due to this difficulty the analysis was not
extended to chaotic waveforms Studies have been carried
out by Badii and Polita (1988) and Mitschke et al. (1988)
to examine the effects of filtering. These studies have
indicated that filtering increase the measured dimension,

but the entropy 1s unaffected by filtering.
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254 SPECTRUM OF DIMENSIONS
The correlation integral Eq (2.28) can be modified to

calculate the spectrum of dimension Dq, (Pawelzi and
Schuster, 1987, Atmanspacher et al., 1987).

d Lam)1 21 Y d 21/2qq—-I
Cq(e): S%I:ﬁz |:NZ®(9‘[Z |X1+d_XJ+d| ] ):I :I (2.42)
1=1| =1 n=1

Badii and Politai (1984) have developed a similar algorithm
for computing the generalized dimensions and the metric
entropies, they have used this algorithm to calculate the
Hausdorff dimension D0 for a number of well known strange
attractors. Kostelich and Swinney (1987) have compared Eq.
(2.42) for calculating D2 with the algorithm of Badii and
Politi for calculating D“ they have concluded that the
later 1s more efficient for high dimensional systems.

Two examples wi1ll 1llustrate the difficulties of
estimating the generalized fractal dimensions Dq by the
spatial correlation method Eg. (2 42). For both of these
examples analytic expressions are availilable for the Dq
spectrum. The first of these examples 1s the baker map Eq.
(4.1), this system will be examined 1n greater detail 1in
Sec. 4.2. The probability distraibution of this map 1s shown
in Fig. 2.1 (a) A taime series of 1.4%10° data points 1s
obtained, with embedded dimension d=4. An estimate of
Dq requires a suitable region in the 1ln-1n plot. The range
of scale used 1n Fig. 2.2 (b) 1s 6%10™%e<5%107%. Eq.
(2.42) was implemented for the following values of g -10 to
0 and 2 to 12 increments 0 25, which corresponds to 82
different values of g. Several curves are shown in Fig. 2.2
(b); they correspond to the values of g=10 (top curve),
6,2,0,-4,-8 (bottom curve).

The exact Dq spectrum 1s shown by the continuous line
in Fig. 2.3 (a). Two approximations are obtained from the
slopes of the graph in Fig. 2 1 (b), corresponding to

different range of scale € The dashed line (- — =) 1is for
the interval -3.9¢ 1ln €<-8.2 and the dashed dotted lane
(— —) 1s for the interval -4.4<ln £<-9.1. By a
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FIG. 2.2. (a) Multifractal distribution computed with
4%x10° iterations of Eq. (4.1). (b) Correlation integral
Cq(e) for a time series consisting of N=1.4%10°> data
points, embedded in dimension d=4. Points pertaining to the
same value of q are connected by lines. The values of q are
q=10 (top curve),6,2,0,-4,-8 (bottom curve).
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FIG. 2.3. (a) The dimension spectrum D computed with
N=1.4%10° data points and an embedding di;ension of d=4.
The solid curve is the exact Dq spectrum, (see section 4.2
for derivation). Two approximations are shown,
corresponding to different range of scale €. The dashed
line (- — — ) is for the interval -3.9< 1ln €<-8.2 and the
dashed dotted line (— — ) is for the interval -4.4¢ In

€¢<-9.1. (b) The corresponding f(a) spectrum.
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combination of these two curves, a good fit is obtained for
D . The f(a) spectrum of singularities is shown iIn Fig. 2.3
(b). It was obtained from the two approximate D _ spectra in
Fig. 2.3 (a), via the, Legender transformation Eq. (2.22).

The results of Fig. 2.2 and 2.3 deserves several
comments. The number of 1iterations used and the chosen
embedding dimension is sufficient for an accurate estimate
of D for -10Mg<l2. The deviation from the true value is
less than 1%. For this particular fractal their 1is an
unique D _ Tfor each value of . There are oscillations 1in
the In-In plot used to estimate D . These oscillations are
a fTundamental Ilimitation of the algorithm and are due to
the Ilocal nature of the measurement. As the |g] 1iIncreases
the magnitude of the oscillations increases. The
oscillations are due to 1inaccurate estimates of the
multifractal measure shown iIn Fig. 2.6. The dimension D _ 1is
independent of the length scale c for this fractal. Sim?lar
periodic oscillations (called lacunarity) have been shown
by Mandelbrot (1977) to reflect the fractal properties of
self similar strange attractors

The range g =-10 to 12 is insufficient to obtain
convergence 1in the f(a) spectrum Fig. 2.3 (b). The absolute
value of g required to obtain the extremities @ and a
approaches infinity. For the f(a) spectrum shown 1in Fig.
2.3 () 1t was checked that df/da »g to within a couple of
percent. As the magnitude of D increases it becomes
increasingly difficult to determine D for negative (
(Meisel et al ., 1992, Arneodo et al ., 1987 and Pawelzik and
Schuster, 1987).

The second example is the one dimensional circle map
Eq. (2.37) withA=2. The total number of data points 1is
N=2*105, with embedding dimension d=4. The exact D
spectrum is D =1 for all g. The In-In plot is shown in Fig.q
2.4 (&), fTor several values of . Note the absence of any
oscillations 1i1n this In-In plot. The map has a uniform
probability distributing for this value of A (cf. Sec 3.2).
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FIG. 2.4. (a) Correlation integral Cq(e) for the one

dimensional map Eq. (2.1). The time series consisting of
N=2*10° data points, embedded in dimension d=4. The values
of q are g=10 (top curve),6,2,0,-4,-8 (bottom curve). (b)
The exact Dq spectrum is shown by the dashed line and is
equal to one for all values of g. The solid line is the

estimated value from the generalized correlation integral.

26



spectrum 1s shown by the dashed line and 1s equal to one
for all values of g. The solid line 1s the estimated value
from the slope of the graph in Fig. 2.4 (a). For positave q
the answer is within 1% of the true value, while for
negative q there 1s a 7% difference. The f(a) spectrum for
this value of A 1s a point spectrum. It is apparent from
this figure that Dq does not increase with negative q, thas
does lead to inaccuracies when computing the differential
of the Dq function so as to obtain the f(a) spectrum.
Successful applications of these ideas to experimental
systems have been reported, Su et al. (1989). These
applications are concerned with the f(a) spectrum at the
onset to chaos for both the period doubling transition and

the quasiperiodic transition to chaos.

2.6 UNSTABLE PERIODIC ORBITS

In this section unstable periodic orbits (UPO’s) are
reviewed. The method of extracting these orbits from a
chaotic attractor 1s discussed and the relationship of the
stability of these orbits to dimensions and entropies 1is

examined.

2.6 1 DEFiNITION oF UPO’s

Chaotic attractors are dense with unstable periodic

orbits. A periodic orbait 1s defined as follows.

Definition 2.1. A periodic point P for F:R"—R" 1s periodic
of period m 1f F"(P)=P.

bl
Periodic orbits can be hyperbolic or elliptic.

Definition 2.2. A fixed point P for F:R—R" 1s called
hyperbolic 1f DF(P) has no eigenvalues on the units circle,
DF(P) 1s the Jacobian matrix at P. If P 1s periodic of
period n, then P 1s hyperbolic if DF"(P) has no eigenvalues
on the unit circle.
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There are three types of hyperbolic periodic orbits,
attracting, repelling and saddles.

Definition 2 3. Let F'(P)=P
1. P 1s an attracting periodic point 1f all of the

eigenvalues of DF'(P) are less than one in absolute value.

2. P 18 a repelling periodic point 1f all of the
eigenvalues are greater than one 1in absolute value.

3. P 1s a saddle periodic point otherwise, i.e. some of the
ei1genvalues of DF'(P) are larger and some are less than one

1n absolute value.

Case 3 distinguishes higher dimensional systems from one
dimensional systems. Case 1 corresponds to a stable
periodic orbit while case 2 and 3 correspond to an unstable
periodic orbit. For elliptic fixed poants, 1t 1s the
modulus of the eigenvalue that determines whether 1t 1is
attracting, repelling or saddle fixed point.

2.6.2 CompuTing UPO’s

When calculating the orbits, one first lays a grid of
points over the attractor. Typically the number of grad
points is at least 5 times larger than the number of
periodic points that one expects to find. Then starting at
each point, one solves for a periodic orbit of period n
using the map and a Newton-Raphson iteration scheme. Until
the condition F"(P)=P 1s true to a preassigned accuracy.
The different periodic orbits are recorded and then the
number of grid points 1s increased by a factor 2 or 3 to
check that no new orbits appear. Since the map 1s known,
the Lyapunov exponents can be calculated exactly and hence,
we can classify the type of hyperbolic orbit. It 1s also
possible to extract these orbits from a time seraies
Auerbach et al. (1987) and Pawelzik and Schuster (1991).
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Water and Hoppenbrouwers (1991) analyzed chaotic motion in
an experiment on a parametrically excited pendulum in terms
of unstable periodic orbits. These orbits provide a useful
quantitative comparison with the results of a numerical
simulation.

To demonstrate this procedure the unstable periodic
orbits are calculated for the Henon map (X,Y)—e(1—AX2+Y,BX)
with A=1.4 and B=0.3. With the following results.

Table 2.2
The total number of unstable periodic orbits m of period n

and the total number of cycle points.

Per n | T2 3 4 5 6 7 8 9 10

n Tt 3 1 7 1 15 29 63 55 103
m 1T 1 0 1 0 2 4 7 6 10

Nn 1s the total number of cycle points of order n, and m is
the total number of orbits of period n. The Lyapunov number
of these cycles where calculated, and hence, the dimensions
using D=1+AJWA_| The orbits of period 8 have dimension
between 1.26-1 31

A knowledge of the number of period orbaits of order n
allows an estimate of the topological entropy KO. The
topological entropy of a dynamical system can be defined as

K = —log Nn (2.43)

the n'"-order approximation is defined by

(n) _ 1
KO = 5 log N (2.44)

for the Henon map K§”=O 46 1n excellent agreement with the

positive results.

2.6.3 RELATION TO DIMENSION AND ENTROPY
In this section we discuss the relation of the

unstable periodic orbits on chaotic attractors to the
ergodic properties of these attractors. Consider a
d-dimensional twice differentiable map Xmﬂ=F(Xm). The
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magnitude of the eigenvalues of the Jacobian matrix of the
n times 1terated map F" at the 3™ fixed point are denoted

€ ,€_, € , € , € , where we order the
1) 2] uj (u+ 1) dj

eigenvalues as follows: SUZC%Z zem>1z

€ sty = The number of unstable eigenvalues 1s u.
u J

Let L be the product of the unstable eigenvalues at the

1** fixed point of F"
L =¢ ¢ € (2.45)
J 1) 2j uj
Let D=A+8 where A 1s the integer part of D and 8§ is the

fractional part of D In addition, let

8

) (2.46)

S_)(D) - 81182) CAJ(C(A+1)J

The partition function in terms of Lj and Sj is, Grebogi et
al. (1988).

r'(q,D,n) =¥ Lj"[sj(D)]"“'“ (2.47)
J
In two—dimensional case with elj>1>e2J this reduces to
I'(g,D,n) = § e g 0V (2.48)
3 1) 2)

Taking the limit n—w 1s analogous to taking the limit 1—0
in Eq. (2.15),

I'(q,D) = 1lam I'(q,D,n) (2.49)
n—ow
Setting g=1 we can compare D1 and D . We have I'(q,D)=1.

Formally expanding Eq. (2.47) around g=1 we obtain

I'(g,D,n) = 1 - (g-1)} Lj-llog(SJ(D)) + 0[(g-1)%1  (2.50)
j
Letting n—w» the coefficient of the (g-1) term is

3 Lj'llog(Sj(D)) = 0 (2.51)
b}
Inserting SJ

1 1

niim[ % LJ Og(CUSZJ CAJ) i

. (2.52)
3 ? LJ log(c(A+“j) ] =0

Solving for 8 and adding to A we have D1 equal
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D = A — 1im  ————mmmmmm (2.53)

The Kaplan-York formula states that for a typical system,

log(c ¢ ..c.)
D =A - e - — (2.54)

109 (ed«>
with A being the largest integer such thatlogfen™-_en)

>1.Comparing (2.53) and (2.54) we see thatthese equation
are the same it all orbits have the same stabilit¥ or D;«

if the orbits have approximately the same stability.
Dynamical systems will be encountered in chapter 3 and 4

where D1:DL'

2.7 CONCLUSION

In this chapter the major techniques for analyzing
chaotic dynamical systems have been introduced. They
include Lyapunov stability, generalized dimensions, T(a)
spectra and unstable periodic orbits. These techniques will
form the bases of the following chapters. The concept of
maximum Lyapunov dimension has been introduced when the
divergence of the system is greater than zero. Data
requirements for a system with negligible boundary effects
have been investigated and compared with previous studies.
A relationship has been established between the number of
data points required for the computation of D2 and Kz.
Experimental applications of D2 and K2 have been
extensively reported in the literature. Our own application
to an experimental system has shown that noise, TFfiltering,
drift and the limited number of data points are determental
to obtaining D2=1 for an experimental sine wave.

A comparison of numerically generated f(a) spectra
with analytic results has highlighted some of the
limitations of the generalized correlation integral. The
oscillations in the In-In plot are a fundamental limitation

of the multifractal measure. Inaccuracies in the
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numerically generated Dq spectrum violate the 1inequality
I%>Dq, for g<q’ leading to 1naccuracies when computing the
f(a) spectrum.

Unstable periodic orbits are of fundamental importance
in the analysis of chaos and 1ts evolution as will be
apparent from the proceeding chapters. The method of
extraction has been reviewed together with thear
relationship to Lyapunov exponents and dimensions for

uniform hyperbolic systems
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CHAPTER 3

INTERVAL MAPS AND CANTOR SETS

3.1 INTRODUCTION

This chapter i1s mainly concerned with one dimensional
dynamical systems, 1in particular interval maps and Cantor
sets. In Sec. 3.2 a hyperbolic map which is defined on a
circle 1s 1investigated using periodic orbits and f(a)
spectrums Numerical errors are examined in terms of these
orbits. In contrast the well known logistic map which 1is
nonhyperbolic 1s reviewed 1n Sec 3.3. There are many
objects in physics and mathematics that exhibit self
similar properties. Mandelbrot (1977) introduced the term
fractal to described these self similar properties and
applied 1t to a variety of natural phenomena. Some of the
simplest fractals are Cantor sets and they are examined in
Sec. 3 4 and 3 5, 1n terms of the generalized dimension and
the scaling indices The results of this chapter will be
used 1i1n the proceeding chapters to examine higher

dimensional dynamical systems.

32 CIRCLE MAP

The simplest chaotic one dimensional map 1s the map of

the circle given by,
XH1 = A X1 mod 1 (3.1)
This 1s hyperbolic for all values of A excluding A=%1. For
A=1 and an additional constant term this map can be
considered as a rotation of the circle (Cornfeld et al.,
1982). For A < |1| there are periodic solutions, while for

A > |1| there are chaotic solutions (cf. Sec 3.2.2). This
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map §sS not a homeomorphism since i1t is not one-to-one and
therefore its inverse is not defined. For A=2 this map 1is
two-to-one. Since this map is defined on a circle X=0 1is
equivalent to X=1. The Lyapunov exponent A is given hy

A= 1In |JA (3.2)
and is positive for A > |1]. The possibility of divergence
and bounded trajectories causes the map to stretch an
interval and fold a portion of the interval back on itself.
Since folding cannot take place for one-dimensional
invertible maps, such maps do not display chaotic
behaviour. The chaotic behaviour of this map 1is examined
for A e [1.,0]. The correlation dimension D2 is D2 «1.0 for
all values of A >1 (cf. Sec 2.5.2 & 2.5.4).

3.2.1 Periodic Orbits
The nth return map Tn(X)= AnX so that X is periodic of

period n if and only if AnX=X+k for some integer k, i.e. 1if
x=k/(An-1) where O07”k<An. Hence the periodic points of
period n for f are the ((An-1)th root of unity. It Tfollows
that periodic points are dense on the unit 1interval. In
Table 3.1 the periodic orbits for n=3 and A=2 are listed.

Table 3.1
Period 3 orbits and their associated symbolic dynamics for
the parameter A=2.

k Period 3 orbits Binary Seq.
0 0/7 os7 o/7 00O
1 1/7 2/7 a/7 001
2 2/7 a/7 1/7 010
3 3/7 6/7 5/7 011
4 a/7 1/7 2/7 100
5 5/7 3/7 6/7 101
6 6/7 5/7 3/7 110
7 /7 /7 /7 111

It can be seen from this table that there are two
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orbits of length three and two orbits of length one,
corresponding to a total of 23. Each of these orbits are
represented by a binary sequence. The sequence 001, 010 and
100 are equivalent. It can be seen form this table that the
orbits lie on rational points on the interval. To describe
the dynamics of Eq. (3.1) via symbolic dynamics we need to
modify the binary sequencesomewhat since there 1is an
ambiguity in the sequence associated to any rational number
of the form p/2k where p 1Is an integer. For example, 1/2
may be described by either 1 or 0. Toremedy this, we
identify any two sequences of this form with an *, where *
= 0 or 1.

Eventually periodic points of period n are defined by
the following definition.

Definition 3.1 A point X is eventually periodic of period
n if there exists m >0 such that fnH X)=f1(X) for all ™.
That Is T1(X) i1s periodic for ism.

IT X=k/An then Tn(x)=k so that x is eventually Tfixed. If
the map is a homeomorphism then eventually Tixed point can

not occur.

3.2.2 Numerical Errors
In all nonlinear systems computers are used to study

the dynamics of the system, by 1iterating the systems
equations over millions of mappings periods. In what sense
do computations using finite precision and round off errors
effect the dynamics of the system?

For A>11] in EqQ. (3.1) all periodic orbits are
repelling. For Aequal to an odd integer there is chaotic
behaviour for all irrational initial conditions. While for
A equal to an even integer there 1i1s no chaotic behaviour,
regardless of 1initial conditions used because some of the
eventually periodic points can be represented accurately
with the Ffiniteprecision. When Eg. (3.1) 1is iterated the
solution tends to the fixed point zero through an
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eventually periodic point of period n. While for A
approximately an integer, (e g. A=*.0000000000000001 where
* 15 an even 1integer), eventually periodic point can not be
represented accurately hence the chaotic solutions.

The orbits of Eq (3.1) with A=2 are rational numbers
for all orbits of period n (Table 3.1). Inserting one
component of a periodic orbit into Eqg. (3.1), consecutive
1iterations will cycle around this orbit. If a computer 1is
used for the same experiment finite precision results in
the trajectory escaping from this repelling orbit after a
couple of 1iterations The escape rate from this periodic
orbit 1is SXH4=6XI2, where SXO is the 1initial separation
from the orbit The smaller SXO the longer the duration of
time spent in the vicinity of that orbit. It 1s this finite
value of SXO that 1s responsible for chaotic behaviour in
these dynamical systems. Greater numerical precision puts a
lower bound on the magnitude of 6Xo. Rannou (1974) explored
this question using an 1integer map and concluded that
chaotic motion 1s intrinsic to systems described by exact

dynamics, independent of computer noise or roundoff errors.

3.23 PROBABILITY DENSITY
The probability density has been computed numerically

for A=1.1, 2 0 & 2.5 and 1s shown in Fig 3.1. For A=2.0 the
probability density 1s uniform This uniform distribution
can be explained in terms of the uniform distribution of
periodic orbits along the unit interval While for A=1.1
and 2 5 the distribution 1s nonuniform. Peaks 1in the
probability distribution can be related to the
concentration of periodic orbits at that position along the
interval. As A tends towards infinity there is a uniform
probability density, this 1s because the time series 1is
completely random. A small entropy corresponds to a
deterministic system, while large entropy corresponds to a

completely random system, the entropy is 1lnA.
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FIG. 3.1, Probability density P(X) vs X for the circle
map. Three values of A are shown 1.1, 2.0 and 2.5.

3.2.4 F(«) SPECTRUM
Using the ©probability density calculated in the

previous section it is possible to calculate an approximate
Dq spectrum and the corresponding f(a) spectrum (Duong-vav
1987). For A=2.5 the probability density can Dbe
approximated by,

1.28 0.00 < X = 0.25

p(X) = 1.15 0.25 < X = 0.50 (3.3)
0.84 0.50 < X = 0.60
0.77 0.60 < X = 1.00

Starting with this probability density the interval [0,1]
is subdivided into n segments of size 11, each with a
constant probability Pi = a, where a is now the area chosen

in the calculation,
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X
1
a = { p(X)dx with p(x) normalized to 1 (3.4)

X
1-1

Given a chosen a, X1 can be calculated. The segment 11=
X —-X . with the corresponding Pi=a are used 1in the

1 1=

relation

1/a
P

l —
§1 4 a-1bq =1 (3.5)

1

1

to solve for Dq. The numerical results are presented in
Fig. 3.2 (a), for Dq as a function g. The Legendre
transformation Eq. (2 22) give the corresponding f(a)
spectrum as shown in Fig. 3.2 (b). To verify that thas Dq
spectrum 1s correct a calculation of the spectrum using Eq.
(2 42) was 1mplemented with N=2%10> and d=4. The results
are shown by the dashed dotted line in Fig. 3.2, for g=2 to
12. There 1s close agreement between the two dimension
sets For negative g the dimensions could not be obtained.
The spread in dimensions for q € (-20,20) 1s 0.97-1.03. For
A=1.1, Eq (2 42) 1indicate that the dimensions for g>0 are
indistinguishable from 1.0.

A similar calculation for A=2 gives Dq= 1 YV g €
{-w,o}. At this value of A=2 we have an example of uniform
hyperbolic attractors. A=1 1 and 2.5 are example of
non-uniform hyperbolic attractors. The probability density
1s related to the concentration of periodic orbits at a
particular point along the interval. For gq=0 we simply
obtain f=D0=1 0, where D0 1s the Hausdorff dimension of the
set. The Hausdorff dimension of a one dimensional unstable

manifold 1s always D0=1 0.

3.3 LOGISTIC MAP

In this section, the extensively studied quadratic or
logistic map is reviewed.

X .= F(Xl) = u X1(1—X1) (3.6)
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FIG. 3.2. (a) Dq spectrum for the circle map with A=2.5,
The continuous line is the Dq spectrum from Eq. (3.5) and
the dashed dotted 1line is from Eqg. (2.42). (b) The

corresponding f(a) spectrums of (a).
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The dynamics of this map are related to the ainfinite
dimensional delay differential ,equations in chapter 7. Of
specific interest 1s the period doubling route and the f(a)

spectra.

3.3.1 PerioDIC ATTRACTORS
For u>1 Fu has two fixed points one at 0 and the other

at X =(u-1)/u. Note that dFu(O)/dX =u and dFu(Xu)/dX =2-U.
Hence u 1s a repelling fixed point for u>1 and Xu 1s
attracting for 1<u<3. When u=3 dFu(Xu)/dX =—1. As U passes
through 3 the dynamics of Fu become 1ncreasingly
complicated A new period 2 1s born, then a period 4 etc..
This period doubling 1involves

1. A change from an attracting to a repelling orbit,
together with

2 The birth of a new periodic orbit of twice the period.

The Schwarzian derivative of a function F at X 1is

defined as

’_FIII(X) 3 FII(X)2
SF(x) = T x) 2 [W] (3.7)

The Schwarzian derivative allows us to define an upper
bound on the number of attracting periodic orbits that a
map like the quadratic map may have. It also allows us to
examine why a map makes a transition from simple to chaotic
dynamics Let us quote a number of properties for the
Schwarzian deravative, (the proofs can be found in Deveany
(1986)).
1. Suppose SF<0 and F has n critical poaints. Then F has at
most n+2 attracting periodic orbits.
If SF<0, the SF"<0 for all n>1
If F(X) has infinitely many critical points, then so
does F"(X).

The quadratic map FU(X) has one critical point (X=1/2).

Hence, for each u there exits at most three attracting

periodic orbits Of course there may be no attracting
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periodic point. In actual fact 1t can be proven that there
exi1sts at most one periodic orbit for each u. As the
parameter u 1s 1ncreased towards uw=3.5699... Fu has an
attracting periodic orbit of period 2" with n tending to
infinity as u tends to the accumulation point u_. The
attractor at u_ 1s called the Feigenbaum attractor, and the
dimension D, 1s 0.500%0.005. This 1is a very special
attractor. There 1s no sensitive dependence on 1initial

conditions and the attractor u 1s not chaotaic.

3.32 CHaoTiC ATTRACTORS® F(a) SPECTRUM
For the 1logistic map with wu=4 the probability

distribution converges rapidly to
P(X) = = [X(1-X)172 (3.8)

By the use of this, one can calculate explicitly Dq and
find (Ott et al., 1984)

{ 1 for q=2,

q/l2(g-1)] for g=z=2.

D = (3.9)

q
The Dq spectrum 1s nonanalytic at g=2. The f(a) spectrum
consists of the 1solated points f(1)=1 and £(0)=1/2. Badii
(1989) evaluated the f(a) spectrum from a histogram of the
probability distribution Linear behaviour was found
between these points. At the 1intervening values of u
between u and u=4 there are highly singular probability
distributions along the wunstable manifold (Collet and
Eckmann, 1980). The are no published f(a) spectrums for
these 1intervening values. For u>4 all points eventually
escape to infinity along a Cantor set. Details about the
orbits and their symbolic dynamics can be found in
Grassberger (1988).

34 CANTOR SETS

In this section Cantor sets are examined from the
point of view of their generalized dimensions and their

spectrum of scaling indices. Cantor sets are of fundamental
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importance to the understanding of chaos.

If a measure is constructed from an exact recursive
rule, one can easily determine the annd the f(a) spectra.
Suppose that the measure is generated by the following
process. Start with the original region which has a measure
one and length one. Divide the region in to pieces S.,
i=1,2,...,N with measure P. and 1 . Then at the first stage
a partition function is constructed,

n  Pq
r(T.q) = | -L - (3.10)

Continue the cantor construction. At the next stage each
piece of the set is further divided into N pieces, each
with a measure reduced by a factor P. and size by a factor
1 . At this stage the partition function is

r2(x,q) = r2(x,q) (3.11)

the first partition function will generate all the other r
= r". For this reason r is called a generator for the set.

3.4.1 Uniform Cantor Set
A simple example is the classical Cantor set obtained

by dividing the interval [0,1]. Start with the unit
interval but remove the open middle third i.e. the interval
[1/3, 2/3]. Each of these intervals receive the same
measure P=1/2. Next, remove from whatremains the two
middle thirds again, i.e. (1/9,2/9) and (7/9,8/9). Note
that 2n open intervals are removed at the nth stage of this
process. Thus for this measure we require

(ir
= 1 (3.12)

(5>T
which yields x = (q-1)In2/In3, D_ = 1In2/In3. In this
example a=f=D . This wuniform Cantor set is an example of a
fractal. Intuitively, a fractal is a set which is self

similar under magnification. By varying the interval size
21 we can vary the dimension D= Inp/In1 of the Cantor set
in the range [0,1]. For Dq =1 we no longer have a Cantor
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set but a line segment of uniform probability. A Cantor set
is defined by the following definition.

Definition 3.2 A set A is a Cantor set ifit is aclosed,
totally disconnected and a perfect subset of |I. A set is
totally disconnected if it contains no intervals; a set is
perfect if every point in it is an accumulation point or a
limit point of the other points in the set.

The length of the components of Antend to zero with
increasing n, A=p|] >qA is a Cantor set. Although this
example was trivial we shall see in section (4.2) the
importance of uniform Cantor set when we examine two
dimensional chaotic attractors. A more general example of a
Cantor set is the two scale Cantor set.

3.4.2 TWO Scale Recursive Sets
Let ni denote the number of pieces of length 1 and n2

the number of length 1. Further, let the respective
probabilities be P and The probabilities are
normalized such that anl +n2P2=1 The generator is given by

rn(r,q) = n £ =1 (3.13)

as n —>0 r dose not depend on n. In Fig. 3.3 (a) we show
D= x(q)/(g-1) as a function of g obtained numerically by
solving Eq. (3.13) with measure P,=0.6 and P,=0.4 and
rescaling 1,=0.1. Three different values of 2i are used
0.1, 0.3 and 0.7. Using a binomial expansion Eq. (3.13) can
be written as

r(q r) = N nm n(n-m)ping p(n-m)q (n-m) ~-T <q) ~14y
! m

m=0

Using the analytic methods of Halsey et al. (1986) analytic
expressions for the f(a) spectra can be obtained. In the
lim it n—> the largest term in the sum of Eqg. (3.14) should
dominate. To find this term we compute
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5 Inr(q,r)
as * 0 (3-15>
Using Stirling approximation, we find that Eg. (3.15) s
equivalent to

In(n/m-1)+qin(P [P )
t = — (3.16)
In(11i12)

Since we expect the maximum term to dominate the sum, we
have the second equation

n )ijlq p&n-m)q (7rln%/<n-m) X-X'Q) _y (3 .17))

v

inserting Eq. (3.16) into Eq. (3.17) leads to an equation

for n/m. After manipulation, one finds
In(n/m)In(l /2 ) - In(n/m-1)In(@ ) =
1 2 1 (3.18)
g( In(Pi)In(12) - InfPAInd" )

For a given q there will be a value of n/im which solves Egq.
(3.18) and, in turn , determine x from Eq. (3.16). The
density exponent f is determined by

m (2* =i (3.19)

using Stirling approximation, we find
(nfm-L)In(n/m-1) - (n/m)In(n/m)
fo= (3.20)
In(2i) - (nim-1)In(22)
The exponent determining the singularity in the measure, a
is determined by

PM pAn'm = (im )a (3.21)

In(P ) + (n/m-1)In(P )
a - (3.22)
In(1 - (n/im-1)In(12)
Thus, for any chosen g, themeasure scales as a(g) on
a set of segmentswhich converge to a setof dimension

f(q). As q is varied different regions of the set determine
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FIG. 3.3. (a) Dq plotted vs q for the two scale Cantor
set, with measure EH=0.6 and P2=0.4 and rescaling 12=0.1.
Three different values of 11 are used 0.1, 0.3 and 0.7. (b)
the corresponding f(a) spectrums.
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Dq. The extreme o vales are,
D =« = 1nP_/1nl and D = o = 1nP /lnl (3.23)
2 2 0 1 1

-0 max min
In Fig 3.3 (b) the f(a) curve obtained from Eq.’s (3.20)
and (3.22) 1s display with n=400 and the other parameter
values are as given 1in Fig. 3.3 (a). For gq=0 we simply
obtain f=Do where D0 1s the Hausdorff dimension of the set.
From Eg. (3 13) DO, 1s defined by the transcendental

equation

1% 1°%=1 (3.24)

With i1ncreasing 11, D0 tends to 1ts maximum value of 1.

3.4.4 THRee SCALE CANTOR SET
Some of the most interesting problems lie on supports

of continuous measure, 1i1ncluding the circle map strange
attractor and ordinary differential equations. Supports of
continuous measure have a Hausdorff dimension D°=1. (Tel,
1988)

Consider the following example: 11=O.2 12=0.4, P1=0.1,
P =0.45, n =1 and n_=2 Note that P2/12>P1/l1 and 1>1,.
Although the measure on the line segment 1s rearranged at
each step of the recursive process, the support for the
measure remains at each step the original line segment.
Thus as we would expect, D0=1. The f(a) spectrum for these
parameters is shown in Fig. 3.4. The densest region on the
line segment contract not to one point, but to a set of
points of finite dimension. The lowest value of a and D_1s
D= o = 1og(0.45)/10g(0.4)=0.87, with a corresponding
nonzero value of f=0.756. Note that there 1s always only
one segment at the lowest values of the density, so that we
sti1ll expect an to correspond to a value of f=0. It 1is
also possible to construct a Cantor set for which the most
rarefied region corresponds to a set of finite dimension.
Alternative processes that cause truncation of the f(«)

spectrum are examined in Sec 4.3.2.
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FIG. 3.4. The function f(a) for a Cantor set, with
measure P1=O.1 and P2=0.45 and rescaling 11=0.2 and 12=O.4
with n1=1 and n2=2. Note that D°° corresponds to an nonzero
value of £=0.756...

3.4.4 Two DIMENSIONAL CANTOR SETS
A two dimensional multifractal is shown in Fig. 3.5

(a). This set could be constructed by the following rule.
Start with a square and divide it into 16 pieces. Remove
all pieces except the four in the middle, which now form a
large square, and the four squares in the corners. Then
continue the procedure and divide each of the five squares
into five new ones, and so on. A each stage of the process
half of the original area is removed. As in the one
dimensional Cantor set there is still points left in the
region. These points which exist in an area of magnitude
zero are separate, forming a two dimensional Cantor dust. A
similar process can be used to generate other types of
structures in both two and three dimensions Jones (1991).
The fractal object in Fig. 3.5 (a) was generated using

a three dimensional map similar to the two dimensional map
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FIG. 3.5. (a) A two dimensional fractal, with n =1, n2=4,
PAI/2, Pz=1/8, 1~1/2 and 1~1/4. (b) the f(a) spectrum of
the fractal object in (a).
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defined by Eq (4.1). The generator for this object ais
given by Eq. (4.11) with n1=1, n2=4, 11=1/2, 12=1/4,
P1=1/2, and P2=1/8. The f(a) spectrum can be completely
determined 1n terms of these parameters Hakansson and
Russberg (1990), and 1s given in Fig. 3.5 (b). The
Hausdorff dimension for this fractal 1s given Dby
D°=1.3570.... Note the similarities of this f(a) spectrum
with the three scale Cantor set. Two important questions
concerning these structures will be answered in Sec. 4.4.3,
firstly do these structures exist in dynamical systems and

secondly under what conditions can they be found.

35 SCALING PROPERTIES

An alternative classification of a multifractal i1s in
terms of scaling functions. Feigenbaum et al. (1989)
considered the case of an equimeasure partition where Pl 1s
a constant A matrix approach 1s considered here for non
constant Pi or ll, Chhabra et al. (1989). Recently this
matrix has been formulated i1nto an eigenvalue equation
(Kovacs and Tél, 1992). The starting point for obtaining

the transfer matrix 1s the partition function
Pq
i

T
H

F(TIQ) = Z (3-25)

1

the 1ndex 1 1s written as a sequence of binary, ternary

numbers (81,...,8n) Eq (3.25) then reads
P(en,...,sl)q
'(t,q) = Y < (3.26)
€ ,..., 1(e ,...,e)
n 1 n 1

The microscopic 1information 1s carried by the so called
scaling function (Feigenbaum et al., 1986). Two scalang
functions are defined one for the probabilities and the
other for the lengths. In each case the scaling function is
the ratio of the daughter-to-mother

P(e_

op(c , .,81)

atl /...,Cl)/P(Cnl- 0181)

+1

(3.27)

ol(en+1, "81)

I(e ,...,81)/1(8n,...,81)

nt+1
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The probabilities and the lengths can be thus expressed as
a product of o¢’s which can be 1inserted into the partition
sum (3.26) to yield

q q
0}(8“+1,...,81) GP(S“,...,Cl)
F(T,CI) = Z T T
€ 1€ al(en+1,.. .,81) al(en,.. .,81)
« « (3.28)
. o e v - 8D 4 . il r o (e))
T T
o (Cn—l' >3 I , ol(el)
Summations on €,.. (€, are added these are immediately
n

compensated by Kronecker & functions-

q , ' q
UP(€n+1, . ’81) op(en,...,cz,el)
r'(t,q) = L
. e o (e .. ,€ ).c c(e’,...,e’, e )t
n+1’ = 1" n+1' U] 1'"n’ r=a2r"
€. /1€
« « (3.29)
! A>T R €
. UP(Cn—ll /82/81) ’ ’ GP( 1) 5
T T ¢€¢’',..,ec¢c!
’ 7/ 7 7
Gl(enq, ,82,81) f e , 0}(81) n n 272

A transfer matrix T 1s defined by

e ,. & | T | e, ..,e,e>
1 2 2 1
n+ n (3.30)
q
o (e ., €

=0 er, ... e e AN %)
n n’ rT2%2 o (e e )t

1' n+t’ "7

Then it follows that one is the largest eigenvalue of the
matrix T. For large n, Eg. (3.30) can be considered as an
eigenvalue equataion. The lowest order nontrivial

approximation of the transfer matrix reads

T
Ug(OJD/UI(O,O) oﬁ(o,n/of(o,n
(1)
T = (3.31)

T T
ocl(1,00/0 (1,0 ocl(1,1/0 (1,1)
P 1 P 1

Writing the general characteristic polynomial

50



c¥0,00 ¢%a,n
2 P P
AT - A +
T T
01(0,0) 01(1,1)
(3.32)
090,00 ¥, oo, ocla,m
P P P P
+ - = 0
T T T T
0 0,0 0 1, 00D 0 1,0

Such an equation 1s solved by a multidimensional
Newton-Raphson technique. The T(g) values can are obtained
from Eq. (3.13). As expected the scaling exponents are
related to the measures and lengths of the Cantor set,
O‘P(O,O)= O‘P(1,0)= P1’ crp(1,1)= op(o,1)= Pz’ 0‘1(o,o)=

o 1,0= 1 and olun»= olmﬂ)= l2 with A=1. For a

1
particular set of scaling functions there 1s a nonunique Dq

spectrum.

36 CONCLUSION

The periodic orbits of the hyperbolic circle map with
integer coefficient all 1lie on rational points on the
interval. The fundamentals of chaotic behaviour in this map
have been explained 1in terms of these orbits and the
associlated numerical error which determines the accuracy of
the orbit With non integer coefficient the probability
density 1s nonuniform and the Dq spectrum 1s not unity for
all g

The theory of Cantor sets which 1s pertinent to the
characterization of chaos in higher dimensional systems has
been reviewed Specifically the concept of evolution has
been introduced to described the changes in a uniform and a
two scale Cantor set as one of the parameters of the set 1is
change

The termination of the f(a) spectrum at a non zero
value of f has been examined using a three scale Cantor
set A two dimensional Cantor set structure has been
reviewed. The importance of this type of structure to

dynamical systems will be apparent in Sec. 4.4.3.
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CHAPTER 4

DEVELOPMENT OF CHAOS IN TWO AND THREE DIMENSIONAL
DISCRETE HYPERBOLIC SYSTEMS

4.1 INTRODUCTION

Chaos 1n two and three dimensional discrete hyperbolic
systems 1s examined in this chapter. In Sec. 4.2 the theory
that establishes the connection between the baker map and a
Cantor set 1s reviewed. Analytic expressions for the
generalized entropies are obtained. The connection between
generalized dimensions, entropies and Lyapunov exponents 1s
considered The processes by which a strange attractor can
be created and the evolution of the structure in these
attractors will be examined. In Sec. 4.3 a pruned baker map
with an 1ncomplete set of periodic orbits 1s examined.
Numerical methods are used to extract these orbits. The
effect of pruning on the Cantor set and the associated f(a)
spectrum 1s 1nvestigated. Sec. 4.4 1s based on a hyperbolic
toral mdp in two and three dimensional space. A
understanding of the properties of the unstable manifold
allow efficient computation of the dimension spectra. A new
type of structure not previously observed in dynamical

systems 1s analyzed. Conclusions are given in Sec. 4.5.

4.2 BAKER MAP

The generalized baker map 1s defined (Balatoni and
Renji, 1956 and Farmer et al., 1983) by the recursion

relations on the unit square
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R X
1

Y. IS
i+l (4.1 )
Y rl/2+R2X.)

(Y =S)/ (1=S)

with R" R2<I/2, S<1. The strange attractor is the closure
of the wunstable manifolds of the periodic points. The
attractor lies along the unstable manifold in the Y
direction with the Cantor set in the X direction. This
manifold originating from the periodic orbits consists of
an infinite number of line segments. This a wuniformly
hyperbolic system, by wuniform we mean the probability
density is constant along the unstable manifold. Because of
hyperbolicity stable and unstable directions are defined
everywhere. Hyperbolic systems are defined through the

following definition, we will confine our attention to the
plane.
Definition 4.1. Let F:R2 - » IR be continuous and Cr. A

set Ais called a hyperbolic set for F if

1. For each point p e A, there are a pair of lines Es(p)
and Eu(p) in the tangent plane at p which are
preserved by DF(p).

2. Es(p) and Eu(p) vary continuously with p.

3. There is a constant X > 1 such that |[DF(p)(v)|] " X|v|
for all v e Eu(p) and |DF"1(p)(v)| > A|v| for all v €
Es(p) .

Roughly speaking the term hyperbolic means that at each
point in the domain of the map there is a splitting of the
domain into a part which is strongly contracting (the
horizontal direction) and a part which is strongly
expanding (the wvertical direction). This results in an
invariant set called a strange attractor.

4.2.1 Relationship of Baker Map to Cantor Set
Using symbolic dynamics Procaccia (1987) with X(X,Y)
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=1 for ¥Y»>S and X(X,Y)=0 for Y«<S, every sequence of 1’s and
0’s is allowed, and 1in particular there are 2" orbits
belonging to an unstable orbit of period n. The eigenvalues
of the n-cycle depend only on the number of 1’'s and 0’s in
the sequence Denoting the number of 0’s by m, we have

81(n) . §™(1-g) o™ ’ 8;n) _ RT R;nm) (4.2)
Using Eq (2.48), which relates the partaition function to
the stability of the unstable orbits (Grbogi et al.,
1987),

r'(q,D) = ¥ qu c;tm) (4.3)

where the sum 1s over all allowed unstable orbits of period
n tT(g) 1s defined such that it takes into account the
dimension along the unstable manifold

t(q) = (Dq—1)(q—1) (4.4)

Eq (4 3) can only be used when the probability density is
uniform along the unstable manifold. Inserting Eq. (4.2)

into Eq. (4 3), gives

n
[(q,D) = TN s™(1-5)"™7 (R? RI"™)7H@ (4.5)
=0

where Nnm 1s the number of fixed points of the n times
iterated map which belong to periodic orbit with m 0’s in
1ts sequence. It can be shown that Nﬁn 1s the number of

ways of arranging m zeros and n-m ones,

N = [ o ] (4.6)

Apart from the power (Dq—1) Eq. (4.5) 1s equivalent to Eq.
(3.14) which was obtained for the two scale cantor set. The

parameters S, (1-S), R1’ and R2 are equivalent to P1, P,

2
11, and 12 of the two scale Cantor set. Three different D
q

spectra are shown in Fig. 3.3 (a). Paoli et al. (1989) have
observed phase transitions 1in the Dq spectrum for a

hyperbolic baker map with dimension =3.

4.2 2 GENERALIZED ENTROPY SPECTRUM
The generalized entropies and their Legendre transform
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can be defined through the following relationship (Eckmann

and Procaccia, 1986),

T (n] 8™ -9 - exp(-n v(a)) (4.7)

m=0
Where 9(q) = (q~1)Kq = AqQq —-g(A). In the limit n-—e the
largest term in the sum of the right hand side of Eq. (4.7)

should dominate. To find this term 1t 1s necessary to solve

o) n mq (n-m)q
® _ In [ n ] s™ (1-3) -0 (4.8)

Using Stairling approximation, it 1s possible to express g

as a function of n/m

: In{(n/m-1)
9= Ta(1=5)=In(3) (4.9)

The density exponent g(A)is determined by

[ n ] - exp( n g(A) ) (4.10)

where again using Stirling approximation, we find
g = 1ln(n/m) — (1-m/n)In(n/m-1) (4.11)

The exponent determining the singularity in the measure, A
is determined by

s™(1-5) "™ 9 exp(-nAq) (4.12)
or, alternatively,

mln(S) + (n-m)ln(1-8)
-n

A= (4.13)

Thus, for any chosen gq, the measure scales as A(g) on
a set of segments which converge to a set of entropy g(q).
As q 1s varied, different regions of the set determine K.
Fig 4 1 shows g(A) against A for three values of S, namefy
S5=0.2, 0.3 and 0.4. Phase transitions associated with the
spectrum of generalized entropies have been studied by Sato
and Honda (1990) for some one dimensional systems.

The following relationships can be established between
Kq and the generalized partial dimensions d(”, (Eckmann
and Rulle, 1985 and Badii and Polati, 1987).
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1)
q

(2)

K =1n¢e¢' d = -1ln e d (4.14)
q q a 4q

where a'v & d‘?’ are the partial dimensions of the
unstable and stable manifolds respectively, and €' & &  are
the generalized eigenvalues of the unstable a;d sgable
manifolds respectively. Eq (4.14) can be generalized to
more than two dimensions. For the baker map d:)=1 for all

g, while d;Z) is the fractional part of Dq.

()‘Es T T T

0.0

FIG. 4.1. g(e) for three different values of S=0.2, 0.3
and 0.4. The range of £ extends for fixed S, from -1n(1-S)
to -1n(S).

4 2.2 DEVELOPMENT OF STRANGE ATTRACTORS
The following definition is used to define a strange
attractor.

pefinition 4.2. Suppose A4 c¢ R" 1s an attractor. Then A 1s

called a strange attractor if

1. There is a trapping region, M, in the phase space R".
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M contains a chaotic invariant Cantor set A on which

[\

the dynamics are topologically conjugate to a full
shift of N symbols

3. The sensitive dependence on initial conditions on A
extends to 4

4. A 1s topologically transitive on A.

The periodic orbits are dense in A.

This definition excludes the following from being strange
attractors: all one dimensional mappings, conservative
systems and non-dissipative systems. The can be proved only
for the simplest of systems due to the difficultly of
showing that A 1s topologically transitive. A non integer
Hausdorff dimension, (greater than one for discrete systems
and greater than two for continuous systems), a positive
entropy and a Cantor set would be numerical evidence to
suggest the existence of a strange attractor.

For S=1/2 and R=R =R, the Lyapunov stability of the
n-cycle of Eq (4.1) 1is denoted by,

Aim = log s" , A;m = log |R|" (4.15)

For R = 1/2 the dimension spectrum Dq 18

Dq = 1 + log(S)/log(|R]|) (4.16)

The global dimension of the system 1s equal the dimension
of the 1individual orbits This form of the baker map 1is
equivalent to the uniform Cantor set, examined i1n section
3.4.2, with a point f(a) spectrum. Four attractors
belonging to this map are shown in Fig. 4.2 (a)-(d) for
S=1/2 and R= 0.1, 0.3, 0.4, 0.5 respectively. The
dimensions Dq are 1 3, 1 58, 1.75 and 2.0 respectively. The
first three are examples of strange attractors and are self
similar under all scales of magnification.

For all values of R the Grassberger dimension D2 of
the Y time series 1is D2~1.0, with entropy K2= log 2 = 0.7.
In the X direction D2 1s approximately the fractional part

Dq, with the same entropy As R is increased from 0 to 0.5
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the dimension of the attractor changes from 1.0 to 2.0,
while the dimension of the underlining Cantor set changes
from 0 to 1.0. The total number of orbits 1s fixed at 2".
Let us examine the underline process that is responsible

for this increase i1n dimension.
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FIG. 4.2. Attractors for the Baker map with S=1/2, (a)
R=0.1, (b) R=0.3, (c) R=0.4 and (d) R=0.5. The structure of
these attractors 1s related to the middle third Cantor set.

It 1s noted from Fig 4.2 that there is a movement of
the attractor towards X=0.5. As R is increased the unstable
orbits are redistributed causing changes in the structure
of the attractor. Since the dimension Dq in the Y direction

is constant the increase in dimension and the corresponding
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change in structure is related to changes in the Cantor
set. The Hausdorff dimension D, of a one dimensional
unstable manifold is one, therefore the increase in
Hausdorff dimension for a two dimensional system is due to
changes in the dimension of the Cantor set. This result is
true for systems like the non-uniform toral map (Sec. 4.4)

and the nonhyperbolic Henon map (Sec. 5.3).

4.3 PRUNED BAKER MAP

Consider the baker map in the following form (Graham
and Hamm, 1991 ),

LR X,
o < Y ¢ 1/2
T Y
Kig ! (4.17)
Yo 1-R (LX)
I+l 2 i 12
1-T (1Y)

with Ri=0.4 and R2=0.6 Strange attractors are obtained for
1<TA2. Strange repellers appear for T>2. In this form the
number of periodic orbits of period n is dependent on the
parameter T. In this section the allowed orbits are
extracted and used to determine the f(a) spectrum,

4.3.1 Symbolic Dynanmics

Numerical methods are wused to obtain the wunstable
periodic orbits. These orbits are pruned in a systematic
way. To display the effects of this pruning the orbits are
represented in the symbolic plane where missing blocks
correspond to pruned orbits. The symbolic dynamics of Eq.
(4.17) are determined from the Y co-ordinate of the map. N
denotes the total number of orbits of period n obtained
numerically, using the techniques described in Sec.
(2.6.2). The theoretical number of periodic orbits of
period n expected from the wuniversal grammar is Tn. The
number of periodic points belonging to periodic orbits of
length n in the map are presented in Table 4.1 for four

values of T, namely T=1.2, 1.48, 1.8 and 2.0. The smaller
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the value of T the slower the convergence of N to the
theoretical value Tn. An n order approximate to the
topological entropy, Kg, can be calculated from Eq. (2.44)
and is given in Table 4.1.

Table 4.1.
The number of periodic points belonging to periodic orbits
of length n in the baker map. The third column is the
theoretical value expected from the universal grammar. The
fourth column is the number of orbits obtained. The last
column is the nth order approximate of the ‘topological
entropy.

T Period n Th N K(f”)
1.2 24 80 268 0.2329
28 164 450 0.2182

32 341 1020 0.2165

® 0.1823

1.48 24 121 97 12654 0.3935
26 26718 2751 0 0.3932

27 39542 38736 0.3913

0 0.3920

1.8 12 1156 1152 0.5874
14 3748 3782 0.5884

18 39346 3931 4 0.5877

® 0.5878

2.0 13 8192 8192 0.6931
14 16384 16384 0.6931

15 32768 32768 0.6931

[00] o0 0 06931

Each orbit has a unique binary label and the periodic
points lie on a binary tree. The symbolic sequence of a
periodic point of period n has the form (al,g ,...,an). The
partition is at Y=0.5. The partition defines a*0 for a Y
less than 0.5 and a.=1 for Y greater than 0.5. Numerically
periodic points have been calculated for periods up to
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period 32. Any orbit on the attractor can be represented by

a pair of numbers and S called the symbolic plane
(Cvitanovic et al., 1988). 5 and j are defined as
© k
6 =1- E£dg2k where d,= Y (l-a ,) mod 2
5o ST
(4.18)
c,2 k where ¢, = Y a, mod 2
k=1 T
The symbol plane T=1.48 is shown in Fig. 4.3 (a).
Points Dbelonging periodic orbits of length 26 are
plotted. Allowed orbits are represented by blocks in the

symbolic plane.
shown in Fig. 4.3
periodic orbits of

length 16.

In contrast the symbolic plane for T=1.8 is

using periodic points belonging to
A comparison of (a) and (b)

shows that the forbidden orbits are represented by cut out
rectangles in the symbolic plane. In Table 4.2 the grammar

for the forbidden
and 1.4.
1.0 o
i
a *» H* t:
roeto
*0 0.5 L.

T7 nrn*:

LY 1.1 s:fc 1 i

Toitm by, W

0.0 T
0.0 0.5
7
FIG. 4.3,
(b) T=1.8.
Shown in Fig.

words is

given for two values of T=1.2
() (h)
1.0
f W
li
B3 T
5 0 b ﬁ?‘fU\/HE «W. sy,
S 0 5 |S||ftSVV im*." eer-0
oo ' am
*x L« mu
o7 Si sisiis li oKi*» e«
M mam. wm
a7 i wi'” 8" il
! 00 ™m-¢ N
1.0 0.0 0.5 1.0

r

The symbolic plane of the baker map (a) T=1.48,

is the strange attractor for T=1.48

and T=1.8. The attractor has a uniform probability in the Y

direction and in
on a pruned

the X direction the

Cantor set. In Fig

manifold lies
observe the

stable
4.4 we can
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effects of an increase in entropy, when the parameter T is
increased the number of orbits of period n increases
resulting new structure that was not previously present.

Table 4.2,
List of forbidden words in the baker map for T=1.2 and 1.4.

T=1,2 T=1.4

Period Forbidden Word Period Forbidden Word
3 000 3 000
3 111 3 111
6 100100 6 100100
6 110110 6 110110
7 1010100 9 110010100
7 1101010 10 1010010100
9 110010100 10 1101011010
10 1010010100 12 101010101100
10 1101011010 12 110101010100
10 1011001100 14 10101001010100
12 110100110100 14 11010101101010
12 101100101100

(a) (b)
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FIG. 4.4, Attractors for the Baker map, (a) T=1.48 and
(b) T=1.8.
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432 PRUNED CANTOR SETS- F(a) SPECTRUM

The properties of the f(«a) spectrum for this pruned
Cantor set are 1nvestigated for three values of T, namely,
T=1.48, 1.8 and 2.0. Two techniques are adopted to
calculate the f(a) spectrum. The first uses the analytic
equations of Auerbach et al. (1988), however this technique
has the draw back that the solution only converges for n
large. The second method 1s to implement Eq. (4.3)
numerically In both cases the allowed orbits are
numerically calculated.

Auerbach et al (1988) proposed the following equation
which relates the stability of the periodic orbits to the
scaling exponents,

(

A ™Mo A ™a =0 (4.19)
1 1 2 2

where o & o, are the scaling exponents in the expanding
and contracting direction respectively and AF) & A;n are
the expanding and contracting Lyapunov exponents of period
n. As we have already observed, for uniform hyperbolic
attractors the measure 1s absolutely continuous in the

expanding darection, a1=1. Therefore

@ =ora =1 -2a"/ " (4.20)
All that remains therefore 1s to 1locate the periodac
orbaits, calculate their stabilities and count how many
times the value o« falls in an 1interval of size Aa. The
total number 1s denoted by N(a). The value of f 1s
calculated as follows: The typical 1length scale 1(a)
associated with a cycle of order n is l(a)=exp(A:”). If
only contribution from lower—order cycles are found, say
k<n then l(a)=exp(h§“n/k). Finally f(a)=logN(a)/logl(a),
where f(a)=f(1+a2)=1+f2(a2).
The Lyapunov exponents for Eq. (4.17) are

(n)

Al =n 1n(T)
(4.21)
(n)
Az = m ln(Rl) + (n-m) ln(RZ)
from Eq. (4 20) o 1s therefore
o = 1 n ln(T)' (4.22)

m ln(Rl) + (n-m) ln(ﬁg)
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with f(a) given by
In(Nnm)
F(2) =1 * min(Ri) + (n-m) InTR~) (4.23)

where N is the number of orbits of period n with m O's.
For T<2, N ~may be zero, whereas for T=2 N —is simply
(m). The convergence of the f(a) spectrum (Eg. (4.22) and
Eq. (4.23)) can be illustrated for T=2, and n=15, with m=0
to n, as shown in Fig. 4.5. It consists of 16 points
represented by diamonds. The converged spectrum is shown by

the continuous line. Convergence is obtained in the limit n
going to infinity.

1.4 1.5 1.6

a

FIG. 4.5. The continuous line is the f(a) function for
the baker map Eq. (4.17) for T=2.0. The diamonds correspond
to the f(a) function obtained from all unstable orbits of
period 15, the spectrum has clearly not converged.

The second method converges for small values of n

(Jenkins et al., 1992). Inserting the eigenvalues of Eq.
(4.17) into Eq. (4.3) yields
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(g, T) =T ng | Nnm (RTlM R;n-m))-T(q> (4.24)

where the sum includes only the allowed orbits. The number
of allowed orbits of period n with m 0's are specified by
N . The sum over all values of N —gives the total number

of orbits N . For T<2 the total number of orbits, N . s
determined wusing the procedure in Sec. 2.6.2. For T=1.48
and n=27 the following coefficients were obtained
N =306, N 719062, N 719062, N . =306. For

0"m<12 and 15<m”"27 the coefficients are zero. The symmetry
of this map is reflected in these coefficients. After
calculating N for a chosen n, r(q) is calculated from Eq.
(4.24) and then the f(a) spectrum is obtained via the
Legendre transform Eq. (2.22). The calculated f(a) spectrum
is shown in Fig. 4.6. The calculations converge well, in
fact similar results were obtained for orbits of period
less than 27. For T=1.8 orbits of period 18 give the

S 16

1.0

FIG. 4.6. f(a) spectrum of the baker map for the
parameters T=1.48, 1.8 and 2.0 and were obtained from
unstable orbits of period 27, 18 and 15 respectively.
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following coefficients N1&5=54’ N1&7=1980, N&&8=9720,

Nl,;ﬂ5806, N1 O=9720, Nugn=1980’ NmJ2=54' For 0=m<6

and 12<m=18 the coefficients are zero The resulting f(a)

3

spectrum 1s also shown in Fig. 4 6
For T=1 4 all allowed orbits contribute the same «

value to the spectrum which results 1n a point spectrum.
For T=1.48 and 1 8, because of the nature of the pruning,
o and o correspond to values of f with dimension
greater than one The value T=2 corresponds to the f(a)
spectrum of the two scale Cantor set. From Eq. (4.24), the
Hausdorff dimension D0 depends 1ndirectly on T through the
coefficients Nmﬂ increasing to its maximum value of 2 at

T=2. The entropy spectrum 1is Kq=lnT for all q.

4 4 HYPERBOLIC TORAL MAP

In this section a completely different class of
dynamical system 1s introduced, the hyperbolic toral maps.
One difference between these maps and those that are
discussed elsewhere i1in this thesis, 1s that these maps are
defined on a torus rather than on Euclidean space. Even
though the maps are 1induced by linear maps on Euclidean
space the maps on the torus have extremely rich dynamical
structure.

Consider the hyperbolic toral map LA:T—aT where

a b
A:[C d] (4.25)

with a,b,c and 4 € R. LA 1s clearly differentiable since
1ts Jacobiran matrix 1s simply the matrix A, with det(A)=
ad-bc For non-integer coefficients LA 1s not a
diffeomorphism of T since the inverse 1s not unique. The

eigenvalues are given by

e, = 11 (ard) £V (a+d)’w4bc-4ad | (4.26)
and the slope of the eigenvectors 1is
C
— (4.27)

t
Only real eigenvectors will be considered. When both of the

66



eirgenvalues satisfy |eg| <1 there 1s periodic solutions. The
transition from periodic to chaotic behaviour corresponds
to one of the eigenvalues c¢rossing the unit circle. A
periodic orbit of period n has eigenvalue e”.

The transformation with integer entraies, and
determinant 1 has been the subject of many studies
(vavaldi, 1987, Isola, 1990 and Keating, 1991). A typical
example is the Arnold cat map, whose matraix A is

2 1
A=[1 1] (4.28)

This map 1s an area preserving diffeomorphism with
eigenvalues e+=ai2, where o=(1+vV5)/2 is the golden number.
Periodic p01n£s are dense in T. Let P be any point in T
with rational coordinates. P is of the form [B/k,¥/k],
where B, ¥ and k are integers. Such points are dense in T,
for we may take k arbitrarily large. P 1s periodic with
period less than or equal to k?. For integer coefficients
the orbaits are positioned on a lattice. Other studies
(Amadasi and Casartelli, 1991 and Brambilla and Casartelli,
1985) of Eqg (4.25) with non-integer coefficients and
determinant 1 have concentrated on the ellaiptic orbits and
the conservative chaos.

This hyperbolic toral system provides an i1deal testing
ground for some of the theories of chaos because of aits
simplicity To our knowledge this 1s the first study of
chaotac behaviour in this system for non—-integer
coefficients and determinant less than one. The analysis of
Eq (4.25) will proceed along the following lines: studies
of the unstable manifold will 1llustrate the mechanism for
chaos 1n this system, the development of strange attractors
and their dimension spectra and fainally the type of

structures i1n a three dimensional toral map are analyzed.

4.41 MANIFOLDS
One of the eigenvalues €_ satisfies |es|<1 and the

other e satisfies |su|>1 The stable and unstable subspace
WS

and W' are lines parallel to the eigenvectors

corresponding to the eigenvalues €_ and € - The stable and
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unstable subspace W° and W' are dense i1n T for each [x,y] €
T. In the previous studies of Eq (4.25) with 1integer
coefficients and with determinant one, 1t has been
suggested that the reason W° and W are dense 1s because
they have airrational slope and hence, these curves wind
densely around the torus (Devany, 1986 and Guckenheimer,
and Holmes 1983).

In the dissipative case where the determinant 1s <1,
there are strange attractors (|eU|>1) and the manifolds
have rational slope (Jenkins and Heffernan, 1992). For
example the following parameters a=1, b=7/5, c=2/5 and d=0
the unstable subspace has slope 2/7. Therefore, W° and W"
dose not wind densely around the torus, chaotic behaviour
1s still present since |e [>1. The subspace are dense 1in
this case because the stable and unstable manifolds emanate
from the i1nfinite number of periodic orbits. Each orbit of
period n has 1ts own subspace W° and W', which may be
degenerate with other orbats of different period. Since the
number of orbits 1s infinite the subspace 1s dense. The
manifold for this system 1s not continuous but consists of
an infinite number of line segments. The parameters a=4/3,
b=2, c¢=1/3 and d=1 also give a strange attractor with
subspace of rational slope The eigenvalues are e_=1/3 and
e+=2. The stable subspace has slope -1/2 and the unstable
subspace has slope 1/3.

For those attractors where the eigenvector is of
rational slope, there 1s only a finite number of
intersections of the stable and the unstable manifolds of
distinct faixed points (heteroclinic intersections) or of
the same fixed point (homoclinic 1intersections). As a
system parameter evolves the consequences of a finite or a
infinite number of homoclinic or heteroclinic intersections
1s not apparent from the structure or from the dimension.
Badi1 (1989) has indicated that they are the main source of
complex behaviour in dynamical systems, the above results
do not substantiate this,

This same result concerning the nature of the unstable
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manifold could have been determined from the two
dimensional baker map Like the baker map the toral map 1s
an another system where the evolution of strange attractors
can be 1investigated without the usual problems of
coexisting attractors and periodic windows within the

chaotic regime

4.4 2 DEVELOPMENT OF STRANGE ATTRACTORS
The parameters of the toral map are arbaitrary chosen

to be A=1.0, B=7/5, D=0 0 with C in the range [0,1/B]. By
varying C 1in this range the Lyapunov dimension of the
attractor changes from one to two. Shown in Fig. 4.7
(a)-(d) 1s the attractor for c¢=1/5, 2/5, 1/2, 1/B=5/7
respectively. The Lyapunov dimensions of these attractors
are 1.14, 1 37, 1.52 and 2.0. Negative 1initial conditions
give rise to a mirror 1image attractor ain the third
quadrant. Some orbits of low periodicity are shown in Table
4.3. Note that orbits appear and disappear as the parameter
C 1s 1increased Except for the fixed point zero the
attractor i1s the closure of these orbits. The total number
of orbits of period n for the values C under study 1s less
than 2". The dimension of each orbit being equivalent to
the Lyapunov dimension of the attractor. The toral map has
no homoclinic tangencies so there 1s no obvious method for
constructing a partition that allows 1dentification of the

allowed and disallowed orbits.

Table 4.3.
The number of orbits of period n for three different values

of the parameter C

c\\“3458910

0 2 T
0.3 - 1 1 12T
0.4 T 1 - 3 1 3
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FIG. 4.7. Chaotic attractors for the toral map (a) C=1/5,

(b) ¢c=2/5, (c) c=1/2,

For a hyperbolic attractor,

the expanding direction Eq.

(n)
1

A

(n)

+ A«
2

is sufficient for the calculation of the f(a) spectrum.

(d) c=1/B=5/17.

=0

the toral map it 1s incorrect to take a1=1

measure does exhibit

expanding direction as illustrated in Fig.

complicated

when the measure is uniform in
(4.18)

(4.29)

For

because the
singularities 1in the

4.8 for C=2/5.

Thus a second equation relating o and o, 1S needed. This

relationship has been obtained by

Gunaratne and Procaccia

(1987) and the validity of it will be checked by applying

it to the toral map. This second equation is given as
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Fig. 4.8. Probahbility density for C=2/5. Note the non
-uniformity of the attractor along the unstable manifold.

_p () (n)
Al a1+i5\2 a
For the toral map

, 2 (4 F¢)

A1<2n) 3 2A () (4.31)
but in general this relationship is not true as is the case
for the Henon map. Inserting Eq. (4.31) into Eq. (4.30) we
again find that0*=1. Hence this newrelationship does not
take into account the singularities along the wunstable
manifold. Eq. (4.29)-(4.31) indicate that the D_ spectrum
is constant with a point f(a) spectrum. Forthe one
dimensional version of this toral map (Eq. (3.1)) it has
already been shown that non-uniformities along the unstable
manifold lead to a nonconstant D_spectrum.

A computation of the spectrum of dimensions D_ has
been undertaken for this map. The results are presented
in Fig. 4.9 for theparameter C=2/5. The time series
consisted 0fN=4*105 data points using anembedding
dimension ofd=10. The attractor in Fig. 4.7 (b) was

rotated through the angle a=-0.33906 rads, so that the
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unstable manifold is parallel to the X axis. X and Y
correspond to the rotated time series. The spread in the
dimensions for positive q, where q € (0,20), is quite
small, i.e. D e (1.301-1.325) for X, D e (1.318-1.336)
for X' and Dq e (0.375-0.380) for Y', with errors of
£0.015, 0.015 and 0.008 respectively. These dimensions
should be compared to the Lyapunov dimension D =1.367. The
dimensions calculated form the time series Y' are reduced
by one approximately, which would indicate that the
associated Cantor set has been decoupled from the unstable
manifold. The rotated X' time series gives similar
dimension results to that of the nonrotated time series X.
A surprising result that does not satisfy Eq. (4.14) for
the partial dimensions. The expected dimensions form X'
time series is D»1.0.

-20 0 20
g

FIG. 4.9. The D_ spectrum for C=2/5 with N=4*105 data
points. The results for three different time series are
shown. X' and Y' correspond to rotated time series.
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From Eq (2 21) the f(a) spectrum satisfies the
conditions df/da =q and 3°f/d%«<0. These two conditions
make Dq,>Dq for g’<q, it 1s obvious from Fig. 4.9 that this
is not true for the negative regions of the spectra
computed from X’ and X time series. Hence the dimensions
for negative q are inaccurate, but included for
completeness. The essential result is that the fluctuations
along the unstable manifold have only a minor effect on the
dimensions Dq with Dq approximately constant for positive g
indicating a point f(a) spectrum. Similar calculations have
been carried out for C=1/5 and 1/2, with Dq in close

agreement with DL.

4.4.3 STRUCTURE OF ATTRACTOR IN THREE DIMENSIONAL TORAL MAP
The purpose of this section 1s to examine the possible

structures that can exist in R° for discrete systems. A new
types of structure not previously observed in dynamical
systems 1s analyzed. Consider the hyperbolic toral map.
LB:T—aT

a b
B = d e f (4.32)
g h 1

were the parameters of this matrix are € R. Being able to
locate the unstable manifold 1s an important property that
will be made use off in this section. The eigenvalues €, of
the matrix B will be chosen together with six of the
parameters. The other three will be obtained by solving
three simultaneous equations The Lyapunov exponents are
defined by A =ln|e | and are ordered as follows AL >0 > A
z A3. The six parameters pre-selected are b=1 c=1/4, e=0,
f=1/5, g=0, h=1 and shown in Table 4.4 are the chosen
eigenvalues and the resulting parameters a, d and 1
obtained from the solution of a set of simultaneous
equations.

The eigenvector corresponding to the eigenvalue 81=1'4

is rotated with the following matraix.
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X’ Cos{B)Cos(a) —Cos(B)Sin(a) -Sin(B) X
Y’ Sin(a) Cos(a) 0 Y (4.33)
z’ Sin(B)Cos(x) Sin(B)Sin(«) Cos(B) Z

|

This rotation aligns the unstable direction parallel to the
X axis. The rotation angles a and B are given 1in Table 4.4,

Coordinates X‘, Y'and Z‘ describe the rotated frame.

Table 4.4
The parameter values a, d and 1 for the chosen eigenvalues
€1 €, and €, obtained from solving a set of simultaneous
equations, with el=1 4 When the attractor is rotated a and
B are the angles used 1in Eq. (4.33), they are given in

radians.

€ € a d 1 o B

.09993 0.06568
.35526 0.18864

.51680 -0.12716 -0.11679
.82191 -0 47867 =0 42190
.95000 -0.63250 -0.55000 .45360 0.22105
97185 -0.46205 1 42815 .05428 -1.09213
.72471 -0.04578 1.27523 -0.22108 -1.05369
.37155 -0.68650 1 62845 0.39068 -0.72664

o O O O

- O O O O o
N R R
|
(@]
> = 00 0 9 u;

The types of structures that will be observed depends
on the sign and magnitude of the eigenvalues and hence, the
angles between the three eigenvectors. The first case
considered 1is e, = -—¢g, with Lyapunov dimension [k=1—h1/hz
and by varying the magnitude of Az in the range (-o, —A1/2)
this dimension changes from 1-3. Fagure 4.10 illustrates
the type of structure obtained when two contracting
directions compete i1in the formation of a strange attractor.
For eigenvalues 82=0 5 and e3=—0.5, the rotation angles «
and B are given in Table 4.4, with the attractor shown in
Fig 4 10 (a), for a projection onto the Y’-Z’ plane. Thas
attractor has a two dimensional Cantor set structure when
viewed 1in this plane with dimension DL=1.485. A rotation
and a projection onto the X’-Z’ plane 1s shown in Fig. 4.10
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Fig. 4.10., Three attractors for Eq. (4.32). (a) A
projection onto the Y’-Z’, with 82=—83=0 .5 and (b)) a
projection onto the X’-2’ plane. (c¢) Y¥Y’-Z’ plane, with

e
2

with ¢

=—¢€

=—83=0.7 and (d) a magnification of (c). (e) Y’'-Z’ plane,

-0.8, and (f) a magnification of (e).
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(b), successive magnifications indicate a one dimensional
Cantor set. The computationof the correlation dimension
from the three rotated timeseries produced the following
results: D2=1.46+0.03 for the X' time series and
D;0.47£0.02 for Y' and Z' time series. The same results
were obtained for the two dimensional case in the previous
section. Shown in Fig. 4.10 (c) is the attractor in the
Y'-Z' plane for ez=0.7 and c”=-0.1, with a magnification of
the indicated region shown in (d). The structure of the
attractor is a two dimensional Cantor set when viewed
perpendicular to theunstable manifold and a one
dimensional Cantor set when viewed parallel to the unstable
manifold The dimension of this structure is D =1.94,
Similar plots are shown in (e) and (f) for 02=0.8 and
93:-0.8. The dimension is D, =2.508 and there is a notable
filling of phase space.

An optimum separation of eigenvectors is obtained when
c2=-¢3. For each of the three figures above the
eigenvectors have sign {+ for ¢ f o 1 e and
{+,-, +} for e, When the eigenvectors associated with e
and c3 are parallel, then the two dimensional structure is
not present as is illustrated in Fig. 4.11 (a) for ¢2=0.5
and ¢3=0.5. The projection onto the Y'-Z' plane has a one

2

0.7 y T lm ’ [ l'('a)' 0.7 *E To--e T «----.-ﬁ—b-)
. ~Amie e
0.0 0.0
@i \Ld— * o »b>
t* ~f>>e00
y'* * Ji
0.7 o |y Iy QE—
-0.3 0.0 0.3 - 1.2 0.0 1.2
Y X

Fig. 4.11. The 3D toral map, with e2=0.5 and ¢3=0.5. (a)
A projection onto the Y'-Z' plane, (b) X'-Z' plane.
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Zl

dimensional structure, while the projection onto the X’-2’
plane in (b) has properties of a one dimensional Cantor
e3=—0.1,, the

attractor onto the Y’-Z’ plane 1s shown in Fig. 4 12 (a).

projection of the

set. For €2=0.7 and

This attractor appears to be one dimensional, successive
magnifications do not reveal a two dimensional structure.
The Lyapunov DL=1.94,
complete filling of the surface in (b). In both cases the

dimension 1is there 1s nearly a
two dimensional Cantor set is not present. These examples
1llustrate how the magnitude of the eigenvalues and the
direction of the eigenvectors can produce dramatic effects

on the structure of the attractor.

(a) ' _(b)

T v v r v T v v -
0.0 , : > 0.0 AT
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e ';l;\\ .' . - 3! ’?x ‘_A, o
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Fig. 4.12. The 3D toral map, with €2=0.7 and 83=—0.1. (a)
A projection onto the Y’'-Z’ plane, (b) X‘'-Z2‘ plane.

As a final example an attractor with the following
eigenvalues 81=1'4’ €2=1.2 and €3=0.4 1s considered, with
dimension DL=2.566. At each point in phase space there is
expansion in two directions. A visualization of the Cantor
set involves taking slices through the attractor. Shown in
Fig. 4.13 (a) is the attractor for a rotation by the angles
given in Table 4.4, Y’'-Z’ is plotted when X’ 1s an element
of (-0.001,0.001). The Cantor structure can be clearly seen

from the magnification shown in (b).
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Fig. 4.13. The attractor of Eq. (4.32). (a) Y'-Z’ plane,
with 82=1.2 and c3=0.4, and (b) a magnification of (a).

4.5 CONCLUSION

The local structure of the hyperbolic baker attractor
1s the product of a line and a Cantor set. The evolution of
structure in the baker map 1s directly related to this
Cantor set. It was established that the increase in the
Hausdorff dimension Do is due to changes in the
distribution of the unstable periodic orbits. A baker map
with an incomplete set of orbits corresponds to a pruned
Cantor set. The f(a) spectrum of these pruned Cantor sets
have two properties different from normal Cantor sets: one,
the maximum of the f(a) spectrum is affected by the degree
of pruning and, two, the wings of the spectrum converge not
to one but to a set of dimensions greater than one. In the
absence of theoretical guidance, the intrinsic properties
of the curves would be hardly distinguishable from
numerical artifacts. The increase in Hausdorff dimension Do
1s due to changes in the structure of the Cantor set, we
feel that this is true for typical non-hyperbolic chaotic
systems of dimension less than two.

Furthermore, 1t was shown that the unstable manifold
of a hyperbolic toral map does not wind densely around the
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torus, but consists of an infinite number of line segments.
This leads to the efficient computation of the dimension
spectrum Dq through a rotation of this manifold with the
result that the spectrum Dq, for g>0 1is approximately
constant. By analyzing a three dimensional toral map it has
been shown that whenever two contracting directions compete
in the formation of a strange attractor a two dimensional
Cantor set structure 1s to be expected. This structure was

obtained from a optimum choice of the eigenvalues.
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CHAPTER 5

NON-HYPERBOLIC SYSTEMS AND INTERMITTENCY

5.1 INTRODUCTION

The main theme of this chapter 1s intermittency 1in
non-hyperbolic systems, also of importance 1s the study of
surface attractors, evolution of structure, dimensions and
unstable periodic orbits for this type of system. The term
"intermittent crisis'" 1s used primarily to describe sudden
changes 1n a chaotic attractor as a system parameter 1is
varied It has been shown that a good agreement exists
between numerical results and a quantitative theory, put
forward by Grebogi et al. (1987), for a broad class of low
dimensional dissipative systems. The main purpose of this
chapter is to investigate the applications of this theory
to crises in non-dissipative systems and to investigate the
properties of the chaotic attractors for these systems.
Statistical behaviour near each crisis 1s investigated,
leading to the analysis of a new type of intermittency that
is present in both dissipative and non-dissipative systems.

In Sec. 5.2, the theory of intermittency formulated by
Grebogi et al. (1987) 1s reviewed. The relationship between
the c¢raitical exponent, ¥, and the eigenvalues of an
unstable periodic orbit are given for both the heteroclinic
and homoclinic tangency. In Sec. 5.3. we discuss the
chaotic behaviour of the Henon map. The gradual merging of
a two piece attractor into a one piece attractor 1is
explained in terms of the unstable orbits on the attractor.
A three dimensional version of the Henon map is given which
has a chaotic attractor of dimension greater than two and

exhibits an intermittent crisis. In Sections 5.4 — 5.6 an
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in depth study is carried out for three different non
dissipative mappings. A detailed knowledge of the location
of the stable and unstable manifolds of the periodic orbit
that collides with the attractor allows both an
identification of the type of crisis and a comparison with
existing theory. The properties of the chaotic attractors
in these systems are examined, together with their
evolution. In Sec. 5.7 the symbolic dynamics are examined
for a non-dissipative attractor.

5.2 THEORY OF INTERMITTENCY

In  dynamical systems, as a system parameter IS
varied, it is not unusual to encounter sudden changes in a
chaotic attractor. The term crisis induced intermittency is
used to characterize the temporal behaviour which occurs
due to the switching between two (or more) chaotic
attractors. This term has also been used to describe the
sudden destruction of a chaotic attractor (Grebogib et al.,
1986). Crisis can be represented as follows:

(chaos 1)—> (ChaOSZ)_> (chaos 1)—» (chaosz)—> ---------------

where chaosj and chaos2 represent chaotic attractors in
different regions of phase space and usually of different
dimensions. This type of intermittency 1is to be contrasted
with that type of intermittency discussed by Pomeau and
Manneville (1980).

(chaos)—» (approx. peri.)—» (chaos)—» (approx. peri.)—> —

An example of this latter type will be discussed in Sec.
5.6.1.

Let A denote a relevant system parameter, and let Ac
denote the value of A at the crisis, with the intermittency
occurring as A increases through AC. For A less than A,
there s chaosl, while for A greater than AC there ics
chaosi and chaos2. The temporal dependence of the system
can be characterized by a time , x, which is the average

duration spent on the chaosi attractor. For a large class
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of systems with a crisis the dependence of T on a system
parameter, A, 1s

T ~ (A= )77 (5.1)
¥ 1s <called the «critical exponent. For a successful
estimate of ¥ 1t may be necessary to calculate the critical
value Ac to eight decimal places.

A quantitative theory has been developed by Grebogi et
al. (1987) for the determination ¥ for a broad class of low
dimensional dissipative systems. In particular, they
consider two dimensional maps for which the crisis 1s due
to a tangency of the stable manifold of an unstable
periodic orbait with the unstable manifold of another or the
same periodic orbit, and are defined as follows
(i) Heteroclinic tangency The stable manifold of an
unstable periodic orbit (B) 1is tangent to the unstable
manifold of an unstable periodic orbit (C) on the
attractor.

(ii) Homoclinic tangency. The stable and unstable manifolds
of an unstable periodic orbit are tangent.

The critical exponent obeys two distinct formulas
depending on the type of tangency. The following equations
apply to two dimensional discrete systems are three
dimensional continuous systems. In the case of a
heteroclinic crisis, we have

v =3 - ln|a| / 1n]a,| (5.2)

where a and a, are the expanding (|a1| »>1) and contracting
(|a2| <1) eagenvalues, respectaively, of the periodic orbit
C. In terms of Lyapunov exponents Eq. (5.2) gives

1
¥ =3 - Ai/hz (5.3)

It 1s obvious that ¥ 1s related to the Lyapunov dimension
D by 1
Y = DL— -2- (5-4)
In the case of a homoclinic crisis

7 = 1n|g,| / 1n|g B | (5.5)

where 81 and Bz are the expanding and contracting
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eigenvalues of the periodic orbit. In terms of Lyapunov
exponents Eg. (5.5) gives

Z =\, 2 (%) (5.6)
In terms of D,
7 = (5.7)
2D -4
For strictly dissipative maps la a |<1. For the

heteroclinic case y lies in the range 1/2 sr- 3/2, with
y—>3/2 as |oijC*|—=>L. For the homoclinic case y lies in the
range 1/2 +7* 0, with y—*0 as [818321— =« Larger values of
? correspond to long chaotic transients which tend to
persist over larger parameter ranges.

For two dimensional maps that are strictly dissipative
these two types of crisis appear to be the only kinds of
crisis which can occur. Experimental observations of
chaotic bursting in a fluid have been reported by Metcalfe
and Behringer (1992). The results of this experiment agree
with the scaling given by Eq. (5.1).The existence of a
spectrum of critical exponents related to a spectrum of
generalized dimensions D might be inferred from Eq. (5.4)
and Eq. (5.7) In the following parts of this chapter, the
application of Eg. (5.3) and Eg. (5.6) to non dissipative
systems will be considered.

5.3 HENON MAP

In what follows, a brief account is given of one of
the most extensively studied attractors; the  Henon
attractor. The Henon map (Henon, 1976) still motivates
research despite being one of the simplest discrete systems
that exhibits chaotic behaviour but the wunderstanding of
its dynamics is still incomplete. Previous studies have
included: Chaotic transients [ intermittency (Grebogib et
al., 1986), fractal basin boundaries (Grebogi3 et al., 1986
and Alligood and Yorke, 1989), coexisting attractors with
fractal basins of attraction (Grebogi et al., 1983), period
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doubling bifurcations (Derrida et al., 1979), Cantor sets
(Henon, 1976), and f(a) spectra (Gunaratne and Procaccia,

1987)
The Henon map Hab:R® —>R? is given by
X =1+Y - AX2
1+ 11 1 (5.8)
Yi+|_ Bxi

where A and B are parameters. The Jacobian is defined by

N1

The symbol DH denotes the matrix of partial derivatives of
H. Note that det(DH)=-B, thus the Jacobian determinant is
constant and independent of X and Y. The mapping H is a
diffeomorphism of IR as long as B*0. A mapping is a
diffeomorphism if it is one-one, onto, C° and its inverse
is also C* The inverse mapping H-1 is given by

X =Y /a |

Y= X1+ av?in?

i+l

(5-10)

For 0 < B * 1 there exist ana & bwith b > 1 such that
H  is topologicallyconjugate to H1 i.e.

HABOR = Ro H'1b (5.11)
The linear homeomorphism R is given by
X =-Y (5.12)
Y = -X

Mappings which are topologically conjugate are completely
equivalent in terms of their dynamics. In fact the mapping
H | is equivalent to the inverse mapping H-1 for

B=1 , A=|a (5.13)

One may easily check that orbits of Ha go over via R to
orbits of H1.
The fixed points of the mapping H , are given by

) = (B—1)1V2{/§8—1)2+4A) A X1,2 (5.14)

1,2 1,2

The eigenvalues of these two fixed points are
ei 2= -AX t V(AX2+B) (5.15)
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For B=0 3 the fixed point (&sz) is a saddle point for
every value of A. The other fixed point is asymptotically
stable for A<0.3675 where a flip into a period 2 orbat
occurs. A period doubling cascade occurs for increasing A.
Derrida et al. (1979) has verified that the cascade
converges to the universal Feigenbaum numbers y and 8. The
Henon map which 1s nonhyperbolic has of yet not being
proved to be a strange attractor, but extensive numerical
investigation suggests the existence of a strange
attractor. In particular Benedicks and Carleson (1991)
prove that the attractor is the closure of the unstable
manifold. The fact that a trajectory 1s dense on the
unstable manifold excludes the existence of stable periodic
orbits. Unfortunately, neither the theorem nor its proof
produces any explicit parameter values for which the Henon
map 1s chaotic. A hyperbolic piecewise linear version of
the Henon map was proposed by Lozi (1978) and Misiurewicz
(1980) was able to demonstrate that the Lozi map has a true
chaotic attractor.

The inverse mapping can be used to compute stable

manifolds of the unstable periodic orbits. Shown in Figqg.

0.6 ' /

-0.6
-1.5

1.5

FIG. 5.1, Stable and unstable manifold for the Henon map
at A=1.4 and B=0.3.
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5.1 is the stable manifold of the period one fixed point.
The local stable manifold WS o, is used to compute the
global stable manifold shown in this figure. At a point
mqoc and qu: are tangent to the stable and wunstable
eigenvectors (Eq. (5.15)). While the invariant manifold of
flows are composed of the unions of solution curves, those
of maps are unions of discrete points. The attractor which
is the closure of the wunstable manifold is also shown.
Figure 5.2 (a) shows the results of a numerical experiment
with the classical parameters A-1.4 and B=0.3. A typical
strange attractor |like that in Fig. 5.2 (a) exhibits a
Cantor set structure along directions transversal to the

0.5
> 0.0
-0.5 0.16
2
C
0.190 () 0.190 Vi v o
0.180
0.185 0.188
0.62 0.64 0.66 0.632 0.634 0.636
X X

FIG. 5.2. The Henon attractor at A=1.4 and B=0.3. (see
text for details). From Henon (1976).
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unstable manifolds. Successive points distribute themselves
on a complex system of lines. A magnification of the square
in Fig. 5.2 (a) yields Fig. 5.2 (b) and this process is
repeated to give 5.2 (c) & (d). This system of lines
constitute a strange attractor. The self similarity visible
in Fig. 5.2, is a typical property of a set which s
invariant under time evolution, and makes it a fractal set.

The Lyapunov exponents and are computed as a
function of the parameter A (with B=0.3) and fixed initial
conditions. The results are shown in Fig. 5.3 (a). Note
there is only one independent exponent since X+A=In|b]|.
A>0 corresponds to chaotic attractors while "<0 gives
rise to a periodic attractor. With greater resolution many
more transitions from chaotic to periodic attractors would
be apparent. The Lyapunov dimension for the same range of A
is shown in (b). Excluding the periodic windows there is an
overall increase in the entropy Ki and the dimension DI for
increasing A. The increasing entropy corresponds to new
orbits while the ‘increasing dimension is related to the
distribution of these orbits. Three different Cantor sets
are shown in Fig. 5.4 for the parameter values A=1.07, 1.21
and 1.40 with dimensions DI=1.075, 1.209 and 1.260 and
entropies K*= 0.098, 0.318 and 0.422 respectively. As the
parameter A is increased more complicated structures with
larger dimensions are apparent. Interspersed with these
strange attractors, and arbitrarily close to them are
stable solutions (Fig. 5.3). The type of structure observed
here (although interspersed with stable solutions) should
be contrasted with the pruned baker map (Sec. 4.3) where a
similar evolution of structure and dimension was observed.

53.1 Attractors Merging
Chaotic attractors consisting of many pieces are

common to a wide range of dynamical systems. When the
orbits on the attractor cycles sequentially through the
individual pieces, then they can be mapped onto each other
(as in Sec. 5.4.3). The example examined here consists of a
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two piece attractor merging into a one piece attractor
where the orbits do not cycle sequentially. The merging
process 1is gradual as opposed to a craisis induced
intermittency.

The two piece attractor is shown in Fig. 5.5 (a) for
the parameter A=1.12. Sequential iterations of the mapping
do not alternate between the two pieces. These two pieces
merge to form the attractor in (b) at A=1.2. The unstable
period one fixed point is shown in these figures and the
unstable directions are 1indicated. The attractors are
located on opposite sides of the stable manifold. It has
been seen that orbits of high periodicity provide a dense
coverage of the attractor as A is increased and that there
is a one to one correspondence between the location of the
orbits and the chaotic attractor. A similar expansion of
the attractor has been observed for the baker map Eg.
(4.17).
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Fig. 5,5. The Henon attractor, at B=0.3. (a) A=1.12, (b)
A=1 .2
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5.3.2 HIGHER DIMENSIONAL INVERTIBLE MAPS
Consider the map H, 5 R’ — R’ given by

X =1 —AY? + 2

1+1 1 1
Y1H= —Xi (5.16)
7 = —-BY

1+1 1

where A and B are parameters. The mapping H 1is a
diffeomorphism of R’ as long as B#0. One can compute
readily that the determinant Jacobian is B and hence
constant and independent of X and Y. An n dimensional
discrete map with constant Jacobian has been introduced by
Baier and Klein (1990) and a three dimensional map with
constant Jacobian which exhibits chaotic behaviour with
dimension D close to three has been analyzed by Peplowski
and Stefanski (1988).

One piece of a four piece attractor is shown in Fig.
5.6 (a) for B=0.17. The dimension DL=1.55 with Lyapunov
exponents A1=O 089, A2=—O 162 and A3=—1.692. For B»0.177
there 1s an intermittent crisis. Due to the presence of
periodic windows and attractors of different structure the
critical wvalue BC can not be determined. Since the
intermittency takes place from an attractor of dimension
D =1.55, Eq (5.3) and Egq. (5.6) may apply. The
intermittent transition 1s to an attractor of dimension
2)2. Similar types of intermittency will be examined in
the following parts of this chapter using two dimensional
maps.

The attractor shown in Fig. 5.6 (b) with B=0.3 has
dimension DL=2 15 with Lyapunov exponents Al=0.147,
A2=0.077 and A3=—1.43. Since A1+12>0 the dynamics take
place on a surface. A section through this attractor
reveals a Cantor set of low dimension. The dynamics on a
surface can be examined using the two dimensional mappings

of the following three sections.
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54 USHIKI MAP

Consider the two dimensional map U :R° — R® given by
(Ushiki et al , 1980),

X = (A - X - BY)X

1 1 1 i

141

(5.17)

Y

11 (A - Y1 - Ble)Yi
with the parameters A, 81 and B2, such that

A> 1, 15> B /B, = 0 (5.18)
The X axis and the line defined by the equation A—BIX—Y =0
are mapped onto the X axis. Likewise the Y axis and the
line defined by the equation A—BZY—X =0 are mapped onto the
Y axis. This set 1s bounded by a quadrangle which is
denoted by D, and U(D)c<D. Hence, there is a bounded domain
(trapping region) which 1s a necessary condition for chaos.

There are four fixed points

(A=1)(1-B,)  (a=1)(1-B)

T-B_B '"T-B_B ] (5.19)
1 2 1 2

(0,0), (A=1,0), (0,a-1), [

three of which are on the boundary of D and the other is
within the interior of D. This chaotic map has been derived
from a system of two ordinary differential equations using
an Euler’s finite difference method. Differential systems
with three degrees of freedom are needed for chaotic
behaviour which implies that the chaotic mapping above has
no direct association with the two differential equations.
Three regions of the parameter space A are explored with
B1=0.1 and B2=0.15 and the type of behaviour observed 1is a
good representation of the chaotic behaviour of this and

the proceeding maps.

5.4.1 INTERMITTENCY BETWEEN A DISSIPATIVE AND A

NON-DISSIPATIVE ATTRACTOR.
A dissipative attractor i1s shown in Fig. 5.7 (a) for

A=3.74572. This 1s a period eight chaotic attractor, of
which one piece 1s shown Apart from a slight distortion
the other pieces have i1dentical fractal structure. Fig. 5.7

(b) (for A=3.74571) shows the location of some relevant
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periodic orbits, of period 8, 16, 120. Their stability and
orbital dimensions are given 1n Table 5.1. The period 8 1is
a repelling orbit with two positive Lyapunov exponents.
Since thais is a period eight chaotic attractor all orbits
on the attractor must be some multiple of eight. In fact
the orbits of 1lowest periodicity on the attractor are
orbits of period 120, of which there are two. Consecutive
orbits are of periods 128, 136, 144,.... Surrounding this
attractor are orbits of all periods most of which are
repelling The Lyapunov exponents of the attractor are
A1=O 0191 and A2=—0.0582 with Lyapunov dimension DL=1.33.
The correlation dimension 1s D2=1.24t0.01, which as
expected 1s a lower bound on D . Successive magnifications
indicate a structure which 1s self similar. It should be
noted from Table 5 1 that the orbital dimensions of the
period 120's 1s greater than DL. As the orbital periodicity
increases there 1s convergence towards DL and for period
400, Dmbmz1.28.
Table 5.1.

The orbital dimension and Lyapunov exponents of the
unstable period orbits in Fig. 5.7 (b) for the parameter
A=3.74571

Period Al AZ Dorbit
8 0.02129 0.02125 2
16 0.041742 -0.01708 2
120 0 01976 -0.04068 1.486
120 0.01912 -0.03618 1.528

The unstable and stable manifolds of the period 16
orbit 1s shown in Fig. 5.7 (a). The stable manifold
consists of 11 disconnected pieces which bound the
attractor. All 1iterations inside this stable manifold
terminate on the attractor. The attractor appears to be the

closure of that part of the unstable manifold which 1s
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(a) A dissipative attractor for A=3.74572.
(b) The

manifolds of the period 16 orbit are also shown.

attractor for A=3.74571. The symbols identify the following

orbaits,

period 120 and diamonds period 120.

triangle period 8,

asterisks period

16,
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bounded by the stable manifold segments as 1llustrated.
This manifold was obtained by plotting a set of 1initial
points that pass through the period 16 orbit, exaiting via
the unstable manifold At the resolution used the stable
manifold consists of 11 pieces; higher resolution could
result in more than 11 pieces.

The period 16 orbit collides with the attractor as A
1s reduced below a critical value Ac= 3.7457099470....
Figure 5.8 shows Yi versus i1 for three different values of
A. In Fig. 5.8 (a) A 1s greater than AC, while Figs 5.8 (b)
and (c) show results for successively smaller A values
below Ac. It 1s evident from this diagram that the time
between bursts 1s seen to decrease with increasing AC—A.

Figure 5 9 (a) shows the non-dissipative chaotic
attractor after the aintermittency for A=3.745<AC. The
diamonds shown 1in this figure indicate the position of the
dissipative attractor at A=3.74571. The area occupied by
the dissipative attractor 1is 1less than 0.3% of that
occupied by the non-dissipative attractor. This attractor
at A=3.745 has mainly repelling periodic orbits and the
associated Lyapunov exponents are A1=0.26 and A2=0.06.
Because A1+A2>O the Lyapunov dimension DL=2 from Eg. (2.8)
while the correlation dimension computed from 40000 points
18 D;ﬂ.SSiO 05. This type of chaotic behaviour with two
positive Lyapunov exponents has also been observed in
coupled logistic maps (Hogg and Huberman, 1984) and in a
two dimensional discrete map (Kitano et al., 1984).

The result of an experiment to determine the cratical
exponent, 7%, 1s shown in Fig. 5.9 (b). The calculation of
the average lifetime, 7T, from the data of the numerical
experiment was done as follows. The initiation of a burst
is via the unstable manifold of the period 16 orbit and by
choosing a suitable region on the unstable manifold of the
period 16 orbit, 1t 1s possible to detect such an burst. By
placing a box around one of the period eight chaotic
attractors 1t 1s possible to detect the termination of a

burst. Hence, the accurate computer determination of T for
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an arbitrarily long orbit is facilitated. The result, from
Fig. 5.9 (b), for the critical exponent is y=0.78+0.02.

The attractor before the crisis is the closure of the
unstable manifold of the unstable periodic orbits on the
attractor. Details of the possible collisions are, a
homoclinic tangency (involving the stable and wunstable
manifold of the period 16 orbit) or a heteroclinic tangency
(involving the stable manifold of the period 16 orbit with
an unstable manifold of an orbit on the attractor). The
unstable manifolds on the attractor have orbits of period
16, 120, 128 etc.. A homoclinic tangency is ruled out
because the period 16 orbit has positive divergence.
According to Grebogi et al. (1987) for a heteroclinic
tangency, where the orbit that collides with the attractor
also bounds the attractor, the second orbit involved must
be of the same period. Clearly the theory does not cover
this case, since there is only one period 16 orbit. It is
not possible to isolate the contribution of each orbits
unstable manifold from the attractor. Hence, the global
eigenvalues are wused in Egq. (5.3) for a heteroclinic
tangency, the exponent is y=0.82 which is in close
agreement to the computed value. Therefore a heteroclinic
type tangency is concluded to be responsible for the
crisis.

5.4.2 Intermittency Between a Line Attractor and a

Non-Dissipative Attractor.
In  this section, intermittency between a line

attractor and a surface attractor is analyzed. At A=3.572
in Egq. (5.17) there is a line attractor (at « 44° in the
X-Y plane) with Lyapunov exponents A"0.0499 and A2=-0.2027
and dimension D"=1.246. There is a steady increase in this
dimension as A increases. At A=3.581 the Lyapunov exponents
are A1:0.1012and A=-0.055 with dimension D=2. Correlation
dimension studies give D2=0.91£0.01 for all line attractors
for A e (3.572, 3.581 ), see Table 5.2. This dimension is
consistent with what is expected for a one dimensional
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chaotic attractor. When the geometrical properties of the
attractor are taken 1into account DL=1. This example
1llustrates the caution which 1s needed when using the
Kaplan Yorke conjecture

Three time series are shown i1n Fig. 5.10 for three
values of the parameter A (successive Y1 are 7joined by
straight lines), after a rotation through » -44° so that
the line attractor i1s parallel to the X axis. Note the
change in scale between Fig. 5.10 (b) and (c). The cratical
value for the intermittency was Ac=3.581833641 ..... and
numerical calculation of the critical exponent ¥, for 1078
¢ (A-B) <107%°
places. This value of ¥ indicates that the durations of the

gives a ¥ that 1s zero to four decimal

bursts are extremely short. Shown in Fig. 5.11 (a), for
A=3 582 >Ac, is one piece of a chaotic period four 1line
attractor. Orbits of period 4, 8, and 16 are located on
this 1line and all have one positive and one negative
Lyapunov exponent For the range A=3.572 to AC the negative
Lyapunov exponent decreases 1in value from -0.2027 to
—-0.055, making the line attractor less attracting. The band
of period 12 and 24 orbits, with two positive Lyapunov
exponents, shown 1n this plot, block a trajectory from
visiting the complete attractor shown in Fig. 5.11 (b)
resulting in the ¥ being approximately =zero as étated
earlier. For this particular case the orbit that causes the
intermittency has not been identified.

For A=3 6 there 1is a surface attractor with two
positive exponents (similar to Fig. 5.11 (b) at A=3.583).
According to the Kaplan Yorke conjecture DL 1s undefined
(Egq. (2.7)) while Egq. (2.8) gives the maximum value of
DL=2. As given 1n Table 5.2, the correlation dimension is
D2=1.55. To validate that DL=2 1t would be necessary to
show that the following inequality 1s true DozDL. The
results for a of calculation of D0 will be given 1in the

next section
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Table 5.2
Comparison of the correlation dimension, D2, and the
Lyapunov dimensions, DI, for line and surface attractors.
D2 was computed wusing 40000 points, the statistical
variation in the slope is £ 0.01.

A D, D, Type of Chaos
3.572 0.91 1.246 line
3.575 0.91 2 line

3.581 0.91 2 line
3.600 1.55 2 surface

5.4.3 Attractor Merging, Intermittency and Evolution
Initially at A=3.635311 in Eq. (5.17) there is a 72

piece chaotic attractor. Two of these 72 pieces are shown
in Fig. 5.12 (a) with the dimension D=1.21. It is apparent
that the pieces are related geometrically. Also located on
this figure is the fundamental orbit of period 72, with
orbital dimension Dorbit:1.347. The other orbit shown is of
period 36, with Dorbit:1.45. As A is increased the two
pieces of the attractor shown converge towards the period
36 orbit and for A >3.63531143... the 72 piece attractor
has been reduced to a 36 piece attractor. This should be
compared with the Henon map, where a two piece attractor
merges to form a one piece attractor (Sec. 5.3.1). At the
critical value A=3.635318594.. each of 36 attractors
simultaneously experience a collision with the stable
manifold of a period 36 orbit. This orbit has Lyapunov
exponents A,=0.0371 and Ay=-0.0308. The manifold of the
orbit that collides with the attractor is shown in Fig.
5.12 (b) and in this case the stable manifold does not
bound the attractor. At the intermittent crisis a
trajectory crosses over from one side of the stable
manifold before shooting out along the unstable manifold.
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FIG. 5.12. (a) The attractor for A=3.635311 <A . The
symbols identify the following orbits, asterisk period 72,
crosses period 36. (b) The attractor for The
directions of the wunstable and stable manifolds of the
period 36 orbits are indicated.
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attractor for A=3.63534 >A_, one piece shown.
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Shown iIn Fig. 5.13 (@) is three of these pieces for
A<A . A period 36 orbit thatcollides with the attractor s
alsg shown with an orbit of the same period on the
attractor. This dissipative attractor has Lyapunov
exponents "=0.0151 and A2=-0.0302 and dimension DI=1.50.
Following the «crisis there is a 12 piece attractor, as
illustrated in Fig. 5.13 (b) where one of the 12 pieces s
shown. Orbital dimensions give DL=2 for this attractor.
This is substantiated by the absence of structure. The
dimension is plotted against the parameter A in Fig.
5.14 (a) for the region of interest. As indicated in this
diagram there is a sharp increase in dimension for A>A .
For comparison purposes D2 and DI are given in Table 5.3
for four values of A.

The calculation of the average Ilifetime t from a
numerical experiment is shown in Fig. 5.14 (b). The
computed critical exponent is r=0.78+.01. For each value of
A, r was computed using the technique described in Sec.
5.4.1. The orbit that collides with the attractor produces
a result in clear disagreement with the above y when its
eigenvalues are inserted in Eq. (5.6) for a homoclinic
tangency. Hence this leads to the possibility of a
heteroclinic tangency with the period 36 orbit on the
attractor with Lyapunov exponents {*=0.0159 and A2=-0.0307
and dimension DI=1.52. Inserting these exponents into Eq.
(5.3) gives y=1.02, significantly greater than the
numerical value. This theoretical value assumes that the
bursts are of a longer duration than those measured
numerically. This orbit's wunstable manifold has not been
identified to be involved in the crisis. It is interesting
to note that the global eigenvalues give "=1.00.

A calculation of D, D, and D0 is given in Table 5.3
for four values of A. Attempts were made to calculate D
from the generalized correlation integral Eq. (2.42). For
the first two values of A in Table 5.3 it has been verified
that D2< D Dg. Despite using extremely long time series
(4*105 data points), conclusive results were not obtained
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to prove that D = DL, when DLz 2 due to the large error in
D,- This 1s one of the difficulties encountered when trying

to determine the Dq spectrum.

Table 5.3
Comparison of correlation dimension D2, Lyapunov dimension
D and Hausdorff dimension D0 for different types of
chaotic attractors. D2 was computed from 15000 data points,
sampling at the period of the attractor.

A D2 DL D0 Type of Chaos
3.635311 1.115+0 003 1.24 1.2820.03 72 piece
3.635315 1.35%0.02 1.40 1.43%0.03 36 piece
3.635330 1.41x0 02 1.96 12 piece
3.635340 1.55+0 05 2 R 12 piece

55 WARWICK MAP

Chaos 1in the two dimensional mapping W 'R —s R® given by

X = (2xf+ 2Y

1+1

P - A)X-0.5(X - Y9
; R (5.20)
Y = (2X° + 2Y" - A)Y+ X Y

1+1 i 1 i i i
which 1involves the adjustable parameter A, 1s considered
(Stewart, 1989). The evolution of chaotic behaviour and
intermittency are examined as the parameter A is increased.
Table 5.4 summarized the behaviour of the unstable periodic
orbits as the parameter A 1s 1ncreased and the global

Lyapunov exponents, together with DL and Dz.

5.5.1 INTERMITTENCY BETWEEN Two DISSIPATIVE ATTRACTORS
Initially there 1s a 90 piece chaotic attractor at

A=1 8932 with a Lyapunov dimension DL =1.1. The fundamental
orbit on this attractor is of period 90 and all successive
orbits are a multiple of this. Each of these 90 pieces 1is
visited periodically and they have the same symmetry. It is

a fractal attractor with an unstable and a stable manifold
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The manifolds of the period 90 orbits.
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with one positive and one negative Lyapunov exponent

Through an intermittent crisis for A > Ac=
1.893205605... the number of pieces are reduced from 90 to
18 as 1llustrated in Fig. 5.15 (a) for A=Ac. The
intermittency has resulted from the collision of a period
90 wunstable periodic orbit with the 90 piece chaotic
attractor. Also located on this plot are two orbits of
period 90, asterisks denoting the orbit on the attractor,
crosses denoting the orbit that collides with the
attractor. One of the 90 pieces is shown in Fig. 5.15 (b)
together with the positions of the manifolds of both period
90 orbits. The intermittent crisis occurs when a trajectory
crosses the stable manifold of the period 90 orbit shooting
out along the wunstable manifold. This 1s defined as a
heteroclinic tangency. The Lyapunov exponents of the period
90 orbits on the attractor are A1=0.0119 and 7\2=—O.0655,
(Table 5.4) which when substituted into Eq. (5.3) gives a
value of ¥=0.682.

7.7 ' ' '

10810(7)
o
N

0.1 . ,

—7.2 —4.5 -1.8
loglo(A"Ac)

FIG. 5.16. Logwt Vs Logw(A—Ac). The slope is
7=0.049%0.005.
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The result of a numerical experiment to determine ¥ 1s
shown 1in Fig 5.16. For 1078 < (A—AC) <107 °
critical exponent 1s ¥=0 049%0.005. Significantly less then

the computed

the minimum of 1/2 for both types of craisis. In this cases
the attractor before and after the aintermittency 1is
dissipative The reason for the small values of ¥ ais
apparent from Fig. 5.16, once an intermittent burst has
started it 1s quickly terminated by colliding with another
piece of the attractor. This new type of intermittency only
takes place for an attractor with more than one piece and
1s due to the direction of the unstable manifolds. A second
example of thais type of intermittency will be 1llustrated
in Sec. 5.6.2 between a dissipative and a non-dissipative

attractor.

552 EvVOLUTION
O0f specific interest here is the evolution of the

chaotic attractors of Eg. (5.20) for the parameter value A
in the range A=1 8932-1.8965 The chaotic development we
shall consider here 1nvolves the transition from a strange
attractor, with a one dimensional unstable and stable
manifold, to an attractor with a two dimensional unstable
manifold We first examine the Lyapunov exponents, the
corresponding Lyapunov dimension and the correlation
dimension for different values of the parameter A. More
specific 1nformation about the chaotic attractor can be
obtained by examining the unstable periodic orbits (see
Table 5.4)

Five pieces of a period 90 chaotic attractor are shown
in Fig. 5.17 (a). A Period 90 orbait 1s located on the
attractor. Other orbits shown are of period 18 and 36. For
A greater than AC there is another coexisting attractor
with 1ts own basin of attraction. These two coexisting
attractors merge together to form the attractor in Fag.
5.17 (b) at A=1.8938. Orbits of period 18 and 36 are
located on this attractor which has a dimension DL=1.36. It
should be noted from Table 5.4 that one of the period 18

orbits has the maximum D =2.0.
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Table 5.4
Summary of periodic orbits stability for a range of values of A

A Period Al Az Dorbit D2

1.8932 90 0.0119  —0.0655 1.182

90 0.0158 —0.0689 1.229

o 0.0065 —0.0596 1.109 1.06
1.8938 18 0 0434 -0 0587 1.739

18 0.0435 —0.0591 1.735

18 0.0527 -0.0476 2

36 0 0433 —0.0498 1.868

36 0 0434 -0 0507 1.867

o 0 0286 -0 0732 1.391 1.36
1.8955 18 0.0613 —-0.0334 2

18 0.0613  -0.0336 2

18" 0.0654 —0.0017 2

36 0 0630 —0.0071 2

36 0 0629 —0.0071 2

m 0 0446  —0.0375 2 1.55
1.8965 18 0 0695 —0.0213 2

18 0 0694 —0.0207 2

18 0 0750 -0 0437 2

18 0 0736 0.0152 2

18 0 1077 0.0172 2

36 0 1076 —0.0180 2

36 0 0719 0.0047 2

36 0 0775 0.0004 2

36 0 0718 0.0041 2

36 0.0864 —0.0471 2

36 0 0863 —0.0471 2

36 0.0778 0.0003 2

o 0.0608 —0.0331 2 2
1.9500 o 0.2746 0.0933 2 ~2
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In Fig. 5 18 (a) the attractor is shown for the
parameter value A=1.8955. Orbits of period 36 not
previously present exist outside the attractor. The period
18 orbit ceases to be on the attractor in Fig. 18 (a) due
to the decrease i1n the magnitude of the Lyapunov exponent
A (denoted by a * in Table 5.4). The global structure of
the attractor has 1increased in complexity. The Lyapunov
dimension of this attractor 1is DL=2 while the correlation
dimension 1s D2 = 1.55.

At A=1 8965 in (b) the attractor has expanded to
include those orbits on the fringes. A gradual merging of
the 18 pieces into 6 pieces has taken place and there is no
structure in this attractor due to the fact that A1+%¥O
with the dynamics taking place on a surface. Figures 5.17
to 5.18 have shown the gradual evolution of structure for
the parameter range A=1.8933 to 18965. The dimensions DL
and D2 have both increased from 1 to the maximum value 2.
At A=1.95 there 1s an one piece attractor which occurs

through a process of merging.

5.6 DISPPREY MAP

Two more intermittent examples will be presented. The
first is an example of a transition from a stable periodic
attractor to a chaotic one. This 1s the type of
intermittency considered by Pomeau and Manneville (1980).
The second example substantiates the result obtained in
Sec. 5.5.1 for the value of the critical exponent 7y « 1/2,
with 7=1/2 being the minimum for both the homoclinic and
heteroclinic tangency discussed 1in Sec. 5.2. The following
map 1s chosen (Maynard Smith 1986), and 1s referred to as

the dispprey map

X

1+1

Y

1+1

A X1(1—X ) - X Yi
! ! (5.21)

XY /B
1
As the parameters are varied in Eqg. (5.21) the solutions

undergo a remarkable sequence of bifurcations, ranging from
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simple to highly complex chaotic attractors. B 1s fixed at
0.31.

5.6.1 TYPE 2 INTERMITTENCY
The intermittent transition from a periodic to a

chaotic attractor is classified into three types. Type 1
occurs when a eigenvalue crosses a unit circle at (+1);
type 2: complex crossing, and type 3; crossing at (-1).
Type 1 1s a saddle node Dbifurcation, type 2 a Hopf
bifurcation and type 3 an inverted ©period-doubling
bifurcation. At A=3.57 there 1s a stable periodic attractor
of period 62 with two negative Lyapunov exponents.
Intermittent bursting consisting of 1laminar and chaotac
regions occurs as A 1s increased through the critical value
Ac= 3.5701978616... The chaotic attractor and the periodic
attractor are shown 1in Fig. 5.19 (a) for A > Ac. A
numerical calculation of the craitical exponent, 7, 1s shown
in (b). The estimated 7 = 0 206%0.003. An examination of
the Lyapunov exponents of the period 62 orbit at Ac
indicates that the exponents are complex conjugates.
Although this intermittency has been classified as type 2,
this 1s the first observation of intermittency between a
periodic and a non dissipative surface attractor. A
theoretical verification of the numerical exponent, 7,

15 required.

5.6 2 INTERMITTENCY BETWEEN A DISSIPATIVE AND A

NON-DISSIPATIVE ATTRACTOR.
Shown in Fig. 5 20 (a) is one piece of a 15 piece

chaotic attractor for A=3.740921008... Each piece 1is
visited sequentially. As A 1s reduced the critical value
for aintermittency 1is Ac=3.740921006... Figure 5.20 (b)
shows the chaotic attractor after crisis for A=3.74 <Aa
This 1s a non dissipative attractor with dimension DL=2.
Before the crisis the Lyapunov exponents are A1=0.032 and
A2=—0.064, with dimension DL=1.5. It is interesting to note

that the period 15 orbat located on the attractor is non
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dissipative with exponents {*=0.045 and A2=-0.037 (compare
with  Warwick map, table 5.4 at A=1.8955). Consecutive
orbits on the attractor have periods that are multiples of
15, with DI<2. The period 15 orbit that collides with the
attractor is also shown in (a), with its stable and
unstable manifolds. This orbit has Lyapunov exponents
X1=0.0732and X=-0.163 with D,=1.45. The stable manifold of
this orbit bound the attractor. Intermittent bursting
occurs when an trajectory crosses the stable manifold
shooting out along the unstable manifold. This is described
as a heteroclinic tangency. A numerical calculation of the
critical exponent gives y=0.0007+0.0002 for 10"8<
logiQ(Ac-A) <10~3'5. This magnitude of 'y indicates short
transitions to the non dissipative attractor. Upon shooting
out along the wunstable manifold the trajectory quickly
collides with another piece of the period 15 chaotic
attractor. In this example a heteroclinic tangency has been
identified, a period 15 orbit's stable manifold bounds the
attractor and another orbits of period 15 on the attractor
iIs non-dissipative. The eigenvalues of the attractor give
y=1.0, for a heteroclinic tangency (Eq. (5.3)), in total
disagreement with the numerical y. As A is increased past
3.741 intermittent bursting also occurs. Small parameter
windows  exist, consisting of periodic and chaotic
attractors of different structure. This has prevented the
calculation of the critical wvalue AC and hence, a
comparison of the numerical exponent y with the theoretical

5.7 UNSTABLE PERIODIC ORBITS AND THE SYMBOLIC DYNAMICS

In the case of the baker map the extraction of the
periodic orbits and the identification of each orbit by a
unigue symbolic name was a useful method for the
characterization of the topology of the attractor. In this
framework each periodic orbit Xp, p=1,..., n of period n is
identified by a symbol name S, p=1,...,n, where for the



baker map Sp can take on two symbolic values such as 0 and
1. This 1s usually done by dividing the phase space into
two or more regions and giving each one of them a symbolic
name

Two methods have been proposed for partitioning the
attractor. Grassberger and Kantz (1985) studied the Henon
map and constructed the partition by fairst calculating a
set of points of homoclinic tangencies (between stable and
unstable manifolds), then choosing a subset of them as
primary tangencies and connecting them with a line. For the
parameter values they studied, this line provides a good
partition in the sense that, each periodic orbit has a
unigue symbolic sequence.

In the method of Biham and Wenzel (1989) the symbolic
sequence 1s chosen and the associated periodic orbit is
then calculated. Thus, the construction of the partition is
an integral part of the process. They proceed as follows.
For the Henon map Eq (5.8)

F (X) = -X _+1 -ax® +bX__ (5.22)
A system of coupled differential equations 1s assumed
dx
HEI = Sl FI(X) i=1,...n , (5.23)

with periodic boundary conditions Xnﬂ(t)=X1(t) For the
Henon map Sl=t1. If F1=O then Xi 1s an orbit of the Henon
map. Thus, periodic orbits of the Henon map correspond to
stationary solutions of (5 23) Grassberger and Kantz
(1989) discuss some of the 1limitations of the above
technique.

When thas technique 1s applied to the three
dimensional Henon map Eg. (5 16), the partition is a two
dimensional manifold in a three dimensional phase space and
thus hard to construct and visualize. Primary tangencies
could not be used to construct a partition for the four
pirece chaotic attractor shown in Fig. 5.6 (a) with A=1.2
and B=0.17

In the Henon map the number of periodic orbits of
period n 1s less than 2". The above technique can be
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modified to calculate orbits i1n a system where the total
number 1s = 4". Consider the Ushiki map Eq. (5.19) four
symbols are required to represent the dynamics say O0,1,2,3.
Each of the four fixed points are represented by one of
these symbols. The coupled differential equations are given

as follows;

Xm
—d_t': - Sl[—X1+1+ (A h Xl h BlYl)Xi] (5.24)
le
d_t = T1[_Y1+1+ (A - Yl - B2X1)Y1]
for 1=1,. ,n with boundary conditions Xnﬂ(t)=X1(t) and

Ynﬂ(t)=Y1(t) Two differential equations have to be used.
The coefficients S1 and T are both *1. For example to
calculate S1 and T1 for a particular orbits of period 4, of
which there 1s a possible 256, a symbolic sequence 1s
chosen say 3231 in binary form this is 11101101. Converting
the 0’'s to -1's the les and Tl's are given by
(S1,T1,SZ,T2,S3,T3,S4,T4) = (1,1,1,-1,1,1,-1,1). The above
calculations were implemented for the attractor at A=3.6
(similar to Fig. 5 11 (b)) The attractor is partitioned
into four regions The partition is unique in the sense
that each orbit has a unique symbolic sequence. It should
be noted that for this particular attractor homoclinic

tangencies can not be calculated.

58 CONCLUSION

In summary 1intermittent crisis, due to a heteroclainic
tangency has been 1nvestigated. This type of craisis occurs
when the stable manifold of an unstable periodic orbit
collides with the chaotic attractor. Two types of
heteroclinic crises have been observed by examining the
statistical behaviour near each crisis point. For the first
type the observed behaviour agrees with a theoretical model
based on the stability of an unstable periodic orbat,
despite the fact that one o0of the attractors i1s a
non—-dissipative surface attractor. The second type of
crisis produces a numerical ¥ less than the theoretical 7.
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Crises have been analyzed where the numerical ¢y 1is
significantly less than the minimum theoretical value of
¥=1/2 for both a homoclinic and heteroclinic tangency. This
type of crisis only occurs for multiple piece attractors
regardless of whether the attractor 1i1s dissipative or
non-dissipative The placing of the colliding orbit’s
unstable manifold 1in relation to the pieces of the
attractor has a profound effect on the craitical exponent 7.
Further study 1s needed 1n order to obtain a theoretical
understanding of this particular crisis. This type of
crisis 1s likely to be encountered in experimental
simulations similar to the coupled nonlinear oscillators of
Buskirk and Jeffraies (1985)

Although the theory of Grebogi et al. (1987) has been
confirmed to apply for some crises 1in non-dissipative
systems the following inconsistencies have been found
(1) clear evidence has been obtained to show that for a

heteroclinic tangency periodic orbit’s (B) and (C)
need not be of equal period, even when the stable
manifold of periodic orbit (B) bounds the attractor
(Sec 5.4.1).

(11) the distinction between a heteroclinic and homoclinic
tangency 1s not obvious particularly in light of the
example 1in Sec.’s 5.4.1, 5.4.3 and 5.5.1.

(111) although an attractor may be dissipative the
individual orbits on the attractor need not be
dissipative as 1n the examples of Sec.’s 5.5.2 and
5.6 2, this has obvious limitation for a heteroclinic
tangency.

(1v) the unstable manifolds of the individual orbits on
the attractor can not be 1solated from the attractor.

The non-dissipative surface attractors with two
positive Lyapunov exponents, encountered 1in these two
dimensional maps can be thought of as arising from three
dimensional dissipative maps. Dimension calculations for
these surface attractor are consistent with the following

inequality Diﬂ%;Do and attractors have been found where
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D2=DL=2 with 2 been the maximum dimension of a surface.
This 1s substantiated by the absence of structure in the
attractor. The evolution of chaos 1in these maps 1s
consistent with the analytic results for the baker map of
Sec. 4.2

A numerical technique has been extended to calculate
unstable periodic orbits for a system requiring four
symbols This technique has been applied to the Ushiki map,
a good partition 1s obtained in the sense that each orbit

has a unique symbolic label
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CHAPTER 6

POINCARE MAPPINGS OF DIFFERENTIAL  EQUATIONS

6.1 INTRODUCTION

The 1dea of reducing the study of a continuous time
system (flows) to the study of an associated discrete time
system (maps) 1s due to Poincaré (1899) who first utilized
1t i1n his studies of the three body problem in celestial
mechanics The problem 1s defined as: given a three
dimensional chaotic differential systemn, find a two
dimensional map from which 1t originates. The objective of
this chapter 1s to examine the circumstances under which it
is possible to construct a global map. The Wiggins (1991)
approach 1s the construction of a local map about some
fixed point. Bernussou (1977) constructs approximate maps
for nonlinear differential systems with periodic
coefficients These maps are used to examine local
properties One area not considered is Hamiltonian systems
where the forcing 1s through Dirac impulses. For this type
of system, maps are routinely constructed (Lowenstein
(1991) and Normura et al. (1992)). The chapter 1s organized
as follows; In section 6.2 three dimensional differential
systems are introduced together with their Poincaré return
maps which are obtained numerically. Section 6.3 considers
the possibility of constructing a Poincaré map from a

numerical and analytic standpoint.

62 DIFFERENTIAL SYSTEMS

The following set of coupled differential equations
have been used by Rabinovich and Fabrikant (1979) to model

a plasma.
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dx/dt = Y(Z — 1 + X?) + ¥X
dy/dt = X(3Z + 1 — X?) + ¥¥Y (6.1)
dz/dt = -2Z(a + XY)

The Jacobian determined is given as 2(y-a). With the
parameters chosen to be ¥=0.87 and «a=0.11. The phase space
solution obtained numerically 1s shown in Fig. 6.1 (a) with
the corresponding Poincaré section in (b). The Poincaré
section 1s constructed from the set of points that
intersect the surface Y=-1 with dY/dt»>0. The correlation
dimensions are D2=2.19 for (a) and D2=1.19 for (b).

1 J j T 1.2 ' " '
el
L 4 s :,.l, b\\ 4
"R
N —1t { 0.8} \ \~\\\
" O\\ \
! - i ) .
-3 . . . 0.4 ) X .
0 1 2 0.4 0.8 1.2

X X

FIG. 6.1. (a) The phase space attractor for Eq. (6.1)
plotted in the X-Z plane. (b) The Poincaré section.

The Japanese oscillator equations are defined as
dx/dt = Y
dy/dt = X — x> - AY + BCos(t)

with A=0.1 and B=10. This 1s a periodically forced

(6.2)

oscillator with a «cubic stiffness term. It 1s an
nonautonomous system in R>. However, the appropriate phase
space to use is R°*S since the third variable, time figures
into the system as the argument of the periodic function.
Its phase space and Poincaré section are shown in Fig. 6.2
(a) and (b) respectively. The Poincaré section 1is
constructed from the set of points X(2nm), dX(2nm)/dt. In

125



the next section the possibility of obtaining a functional

set of discrete equations for these numerical Poincaré maps

(b)

is examined.
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FIG. 6.2. (a) The phase space attractor for Eq. (6.2)
plotted in the X-dX/dt plane. (b) The Poincaré section.

6.3 POINCARE MAPS

The construction of a Poincaré section reduces the
dimension of the system by one. The goal 1s to produce a
map that corresponds to the differential system as the
control parameter 1s varied. The behaviour of the solution
of maps presents more variety than those of differential
equations of the same order. For instance in maps there 1s
the case of an eigenvalue equal to -1, whereas there 1s no
analog of this 1n differential systems. Due to sensitive
dependence on 1nitial conditions the chaotic solutions of
the discrete and continuous systems would diverge. How
rapidly the two solutions would diverge would depend on the
magnitude of the positive Lyapunov  exponents. Two
approaches will be adopted: (a) construct the Poincaré
section from the differential system numerically and use a
curve fitting routine to obtain the equations for the map
and (b) use analytic methods to construct equations from

the differential system. The former method is equivalent to
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forecasting the future of a continuous system using a

discrete system, Farmer and Sidorowich (1987).

B.3.1 CONSTRUCTION OF A POINCARE MaP

Given a time series (X“Yg) i=1,N the equations are
constructed as follows. Assume knowledge of the general
form of the equations. For a second order polynomial would
have the form

Ko = a1Xf +a2Y? +a3X1Y1 +a4X1 +a5Yi T

(6.3)
Yo = B1X? +BzY? B Y, BX HBY, *B,
By randomly selecting six points from the attractor
together with their consecutive points the above 12
equations can be solved for the unknown coefficients @ and
Bl, using a standard mathematical routine. The validity of
this construction has been tested by applying it to some
well-known dynamical systems; The Henon Map Eq. (5.8) and
the Ushiki Map Eq. (5.17) which are second order
polynomials and the Warwick Map Eq. (5.20) a third order
polynomial. In each case all coefficients have been
obtained to a specified accuracy. The construction 1is
independent of the data points used and the order of the
polynomial above a critical value, periodic or chaotic data
sets may be used The main limitation of this method 1is
that the form of the equations are required for the
construction. Giona et al (1991) wuses a construction
method that does not need any kind of parameter fitting,
and 1s used to examine local prediction of chaotic times
series. Baake et al. (1992) use a boundary-value-problem
approach for fitting ordinary differential equations to
chaotic data. Although twelve data points are sufficient
for a second order polynomial construction, a least square
fitting routine can be implemented which uses a
predetermined number of data points, the results are not
improved for the above three test sets.
When these methods are applied to Poincaré sections
obtained from Eq. (6 1) and (6.2) no functional map 1is
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obtained. To rule out the possibility that the map can not
be constructed due to sensitive dependence on initial
conditions the construction was 1implemented for periodic
orbits. Due to the difficultly in obtaining periodic orbits
of large period only second and third order polynomials
were used. Again no map was obtained. To examine the
reasons for this failure, analytic methods will now be

considered

6.3.2 PoiNncarRe MaP oF QuasiPERIODIC ORBITS
Consider the second order linear differential equation

g-z—x + A ax B )I%COS (V1it) (6.4)

a’t at i=1
with periodic forcing. A=0.2 and B=0.3. For N=3 we have
three 1ncommensurable frequencies (V1/2m,v2/2n and V3/2m)
and the motion 1s on a 3-torus while, for N=2 the motion is
on a 2-torus Our goal here 1s to study the nature of the
solutions of Eq. (6.4) 1in the context of Poincaré maps.
Recall (see Wylie and Barrett (1982) ) that the general
solution of Eq (6.4) 1s the sum of the solution of the
homogeneous equation B=0 and a particular solution B=#0.

The homogeneous solution 1is Xh(t) with characteristic

equation
m°+ A m= 0 (6.5)
and since the roots are m1=0 and m2=A, the solution is
X (t) =C + Cze_At (6.6)
The particular solution Xp(t) 1s of the form
N
Xp(t) =Yy a Cos (Vit) + B Sin (V1it) (6.7)

1=1
The constants o and Bi are determined by substaitution and

are given by

@ = —2_ , p= DB __ (6.8)
(1+A°) V1 (i+A%)
As t— o, Xh(t)= C1+C2. We will set C1 and C2 to =zero.

Therefore the phase space solution is
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X(t) =
1

™M=z

a Cos (Vit) + BlSin (Vit)
1

(6.9)
N
Y(t) =7 —aiVT Sin (Vit) + BiVT Cos (Vit)

1=1

where Y(t)= dX(t)/dt. The Poincaré map is constructed from
the set of points (X(t),Y(t)) for t=2nmn+¢ where n is an
integer, and ¢ €(0,2n). By varying ¢ we can select
different Poincaré maps. For ¢=0 the co-ordinates of the

points on the Poincaré map are given by

N
X =Y ocCos (Vi2mnn) + B Sin (V1i2nn)
) (6.10)
Y =7 —aiVI Sin (Vi2mn) + BiVT Cos (V1i2mn)

i=1
where Xn=X(2nn) and Yn=Y(2nn). The Poincaré map is defined
as

X =F( X,Y ) and Y =G( X,Y ) (6.11)
n n n+ n n

n+1 1
What remains 1s to determine the functions F and G. The
phase space solutions for N=2 is shown in Fig. 6.3 (a) with

the corresponding Poincaré map in (b).

0.6 03—
> 0.0} 0.0} ]
—06L_. . - . . 03l . . .
-0.6 0.0 0.6 -0.3 0.0 0.3
X X

Fig. 6.3. (a) Phase space solution for a 2 torus and (b)

the Poincaré section

For N=2 the Poincaré map of the quasiperiodic orbit is an

invariant ellipse defined by the following map
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X

n+1

XnCos(Vgn) + Yn51n(V§n)/V7

(6.12)
Y

n+l

V2 anln(vgn) + YnCos(Vgn)

This map was obtained by substituting Eg. (6.10) into Eq.
(6.11). The constants o and B1 have been neglected since
they only off set the ellipse and do not effect the
dynamics. The 1nitial conditions for this map (Xo’Yo) are
related to the parameter ¢. Different initial conditions
correspond to different invariant ellipses. The fixed point
1s at the origin with complex eigenvalues given by
Cos(v8m) * 3Sin(v8m). As expected the modulus of the
eigenvalues are one.

The phase space solutions for N=3 is shown in Fig. 6.4
(a) with the corresponding Poincaré map in (b). For N=3 no
Poincaré map can be formulated from Eq. (6.11).

(a) (b)

1.0 ' ’ ¥ 0.4 ’ ﬁqf - ’

A
] S ]

>“ 0.0 3 000 (c .":'\:?' s:.j
v.": J

I ) ! *i

-1.0 , . ; -0.4 N

-1.0 0.0 1.0 -0.4 0.0 0.4
X X

Fig. 6.4. (a) Phase space solution for a 3 torus and (b)

the Poincaré section.

The reason for this can be explained with the
following example. Consider the Legendre’s differential
equation

£X’ + (1-t)X’ +nX=0 (6.13)
where n 1s a positive integer. It 1s a second order
autonomous system in R°. For n=3 the polynomial solution is

given by
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X(t)= 6-18t+9t%—t>
Y(t)= —18+18t-3t2
where Y(t)=dX/dt Although all solutions of Eqg. (6.13) are

infinite for large t, 1s there a map which describes this

(6.14)

approach to infinity. The Poincaré map consists of those
points for which t 1s an integer. Is there function F and G
such that

(—4-3t+6t2-t%) = F {(6-18t+9t°-t3), (-18+18t-3t%)}
(6.15)

(-3+12t-3t?) G ((6-18t+9t%-t>), (=18+18t-3t%)}
It is obvious from Eq (6 15) that the forward evolution of

the variable X can not be determined from previous discrete

values of X.

6.4 CONCLUSION

In this chapter the connection between differential
and discrete systems has been examined. It has been shown
by means of analytic and numqucal considerations that only
in a limited number of cases 1s there a one to one
correspondence. These 1nclude some linear systems and the
well known chaotic differential systems with delta

functions.
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CHAPTER 7

DELAYED DIFFERENTIAL EQUATIONS

7.1 INTRODUCTION

An first order ordinary differential equation can be
written i1in the form
dx(t)
dt
In this equation the function f(X(t)) and 1ts derivatives

- £(X(t)) (7.1)

are all evaluated at the same instance in time t. A more
general type of differential equation can be written in the
form
dX(t)
dt
In this case the present rate of change of X(t) depends

(7.2)

= £(X(t),X(t-1))

upon the value at the times t and t-t where Tt is the delay
time. An introduction to 1linear delayed differential
equations (DDE’s) can be found in Driver (1977) and
references cited within In this book references can be
found for DDE’s applied to the following problems: control
systems, nuclear reactors, neutron shielding, transistor
circuits, transmission lines and the production of red
blood cells. Delayed differential equations are infinite
dimensional, because 1t 1s necessary to specify a infinite
number of i1nitial conditions to calculate the function X(t)
for a time greater than t.

Typical nonlinear differential equations of interest

are

dax(t) aX(t-7)

- T:XTE:?TN - bX(t)
a, b and t are constants Farmer (1982). This equation was
proposed by Mackey and Glass (1977) to model blood
production i1n leukemia patients.

(7.3)
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ax(t) _ um _ _
X(t) _ um [1—sCOS [ X(t=T)+X, 1 - X(t) ] (7.4)

u,n,T,XB,t, and & are constants. This equation models a
hybrid optical device, Derstine et al (1983).

dXx(t)
dt

=IA

[A—uSINz[ X(t—'c)+XB ] - X(t) ] (7.5)

A,n,T,XB,t, and u are constants. This equation models a

acoustic optical device, Vallee and Delisle (1985).

¢

GELE) - X(t-1)(A-0.01X(t-T)} - X(t) (7.6)
dgét) = A SIN{X(t-T)} - X(t) (7.7)

A and T are constants, Olivera and Malta (1987), which
arise 1in biology to describe the i1solated population of
Drosophila Stervants flaies.
The following DDE
ax(t)
dt
and Eq. (7.3) and Eq (7 7) are examined in detail in this

= A X(t-t)% *exp( X(t-t)%) - B X(t) (7.8)

chapter. The properties of the solution of the nonlinear
tlme—deléyed differential equations are 1investigated as a
function of two parameters: the delay <t and the
nonlinearity A The structure and evolution of the
attractors will be examined while emphasizing the
connections with the previous chapters. To date the most
extensive numerical study of chaos in a delayed
differential equation has been done on the Mackey Glass DDE
(cf. Eq. (7.3)) by Farmer (1982).

Numerical integration was carried out with a fourth
order Runge-Kutta method The integration step 1s a
function of A and t. The accuracy of the integration, for
some trial cases, was tested by using smaller integration
steps and examining the effects on the Lyapunov dimension.
A random 1initial function provides rapid convergence onto
the attractor, the results are consistent with a constant

initial function.
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7.2 EXPERIMENTAL DDE’S

In this section we review experimental results whose
time evolution 1s described by delayed differential
equations. In Fig. 7.1 an acoustic optical bistable device
1s shown The acousto-optic device has delayed feedback and
the system is modelled by Eq. (7.5). Experimental details
can be found in Chrostowski et al. (1983). The sine squared
term in this equation 1s due to the modulation effect of
the acoustic optic crystal.

VARIABLE
BRAGG CELL ATTENUATOR

n 1Y ORDER
1 |::::| T
[ He -Ne LASER r* == O
Z s PHOTODIODE
DRIVER
0
DELAY
VARIABLE
dc BIAS
+
EXTERNAL
SIGNAL

Fig. 7.1. Experimental layout of a delayed acoustic-optic
system, (From Vallee and Delisle (1985)).

The universal Feigenbaum constant &8 which describes
the rate of period doubling has been measured
experimentally, Vallee et al. (1985), and found to agree
with theory. The bifurcation sequence, in the presence of
addictive and multiplicative noise, shows excellent
agreement between theory and experiment, Vallee et al.
(1984). Periodic windows within the chaotic domain have
also shown excellent agreement between experiment and

numerical simulations, Vallee and Delisle (1986). An
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alternative experiment based on a potassium dihydrogen
phosphate (KDP) crystal has been studied by Derstine et al.
(1983).

The following result pertains to the chaotic behaviour
in the hybraid optical device. Dimension and correlation
entropy measurements have been made by Hopf et al. (1986).
Measured dimensions were found to be significantly less
than dimensions consistent with the Kaplan-Yorke
conjecture. When the correlation dimension of a continuous
system 1s plotted as function of the sampling time, there
are two plateaus corresponding to the dimension of the
Poincare section and the dimension of the complete system.
It 1s possible that inconsistencies 1n this experimental
result could be explained in terms of these plateaus.

7.3 HOPF BIFURCATION

The fact that a DDE 1in one variable actually describes
a time evolution i1n an infinite dimensional functional
space enables 1t to undergo a Hopf bifurcation, a property
that requires at least two degrees of freedom in an
autonomous system of ordinary differential equations. A
Hopf bifurcation occurs when a parameter in the system 1s
changed resulting in a bifurcation from a fixed point to a
limit cycle By examining the stability of this fixed poaint
1t 1s possible to determine the parameter value for this
bifurcation. Assume the following general form

dx(t)
dt

The fixed points of this equation are obtained by setting
dx/dt =0, and X(t)=X(t—t)=Xp. A linear stability analysis

involves examining the stabilaity about the fixed point X :
P

= g(X(t-T))-bX(t) (7.9)

dsx(t) _  &F SF
dt = sx0ey SX(8) + sxregy X(E-T) (7.10)
where F(X(t),X(t-t))= g(X(t-t))-bX(t). The partial
derivatives are evaluated at the fixed poaint Xp.
deXE) = psx(t) +g’ (X )8X(t-7) (7.11)
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assume solution 0f the form SX(t)=X*exp(At) and
SX(t-x)=X*exp(A(t-x) ). Substituting into Eg. (7.11)

A= g'(X Lexp(-Ar) - b (7.12)
If Eq. (7.12) is separated into its real and imaginary
parts, A=r+iw, with a little rearrangement it becomes

r(w) =-b -wi/tan(wr) hoon2)
w(r) =[g" (X I0)2 exp(-2rx)-(r+b)2 112

Marginal stability occurs when the largest solution is r=0,
l.e.

p oo tanLNGPe) (RT3
For Eq. (7.3) (with a=0.2, b=0.1 and <c¢=10) a Hopf
bifurcation occurs for r>4.53. Numerically we have found
the existence of a Hopf bifurcation for Eg. (7.8) (with
A=1.6 and B=0.3) at x =3.52. Longtin (1991) examines the
postponement of the Hopf bifurcation in Eg. (7.3) with the
inclusion of additive and multiplicative noise.

7.4 FOURER ANALYSIS AND PHASE PORTRAITS
The first DDE investigated is

= A X(t-x)24exp( X(t-x)2) - B X(t) (7.15)

Parameter values are A=1.6 and B=0.3. The qualitative
changes in the nature of the attractor will be described as
the parameter x is varied. A linear stability analysis
shows that, with A given as above, there is a stable fixed
point attractor for x<3.52. For 3.52<x<8.75 there is a
stable [limit cycle. At x=8.75, the period of the Ilimit
cycle doubles, initiating a period doubling sequence which
accumulates at x=11.65. Olivera and Malta (1987), has
verified that the period doubling sequence is characterized
by the two universal constants «=2.502907.... and
5=4.66920.... For x>11.65 numerical simulations show
chaotic attractors at most parameter values, with [limit
cycles interspersed in between. The period doubling route
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is the only route observed in the differential equations
considered here. Boe and Chang (1991) examine coupled DDE's
and observe the quasiperiodic route to chaos both
experimentally and numerically. The nature of the periodic
solution 0f DDE's have been extensively studied
(Mallet-Paret et al. (1989)). Each of the functions
considered here have a negative Schwarzian derivative (Eq.
(3.7)) for some of the parameter space x and A. Using this
derivative it is possible to examine the existence and
unigueness of the periodic solutions. Type 3 intermittency
has also been observed in a DDE with Gaussian nonlinearity,

(@)

0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

><

0.5 0.5
0.5 1.0 1.5 2.0 0.5 1.0 1.5 2.0

X(t) X(t)

FIG. 7.2. Phase plots obtained by plotting X(t) against
X(t-x) for Eq. (7.8), with A=1.6 and B=0.3. (a) x=10, (b)
x=12, (c¢) x=18 and (d) x=200, where x is the delay
parameter.
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Hamilton (1992).

Phase plots (Fig. 7.2) and power spectra (Fig. 7.3)
are employed to study the qualitative nature of the
attractor. These are sufficient to distinguish periodic
behaviour from chaotic behaviour but provide [little
information to distinguish between different types of
chaotic behaviour. The phase plots are obtained by plotting
x(t) against x(t-r). Each power spectrum consists of 100
averages of 4096 samples at intervals At=5 time units.
integration step was Ah=0.025. AIl power spectraare on
semi-log scale.

(a) (b)
(c) (d)
0.00 0.05 0.10 0.00 0.05 0.10
¥ \%
FIG. 7.3. Power spectra of the phase plots shown in Fig.
7.2. Each spQctrum consists of 100 averages of 4096 samples

taken at intervals At=5.
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The power spectrum of the limit cycle in Fig. 7.2 (a),
for t=10, is shown in Fig. 7.3 (a) and consists of delta
functions. The broadening of these delta functions is due
to the finite length of the time record. The fundamental
frequency is labeled with a L and the harmonics are labeled
with n/m where, n and m are integers. The frequency of this
fundamental is f=0.0396, therefore the period is T=25.245.
The actual period of this period two orbit 1is T2=50.49
which is equivalent to the sum of the two secondary peaks
close to the fundamental. In summary the power spectrum
does not have a fundamental at the period of the orbit but
at Tn/n where n is period of the orbit.

A chaotic attractor for t=12 is shown in Fig. 7.2 (b)
with its corresponding power spectrum in Fig. 7.3 (b). For
this chaotic attractor the spectrum contains sharp peaks
with a broadband component. The sharp peaks have altogether
disappeared for r=18 in Fig. 7.3 (c). At t=200 the spectrum
is shown in Fig. 7.3 (d). The broadband component has many
harmonics separated by a Af=4.9%10~. This spectrum would
indicate that the individual orbits which constitute the
attractor have frequency components that are rationally
related. It appears from Fig 7.2 that as z is increased the
phase space plots increase in complexity, specifically the
difference between (b) and (c). This point will be
investigated further in the next section where dimension
and structure is examined.

7.5 STRUCTURE OF ATTRACTOR AS A FUNCTION  OFDELAY
PARAMETER x AND GAIN PARAMETER A.

From the analysis so far a number of important
questions remain unanswered. What is the reason for the
increased complexity of the phase space? Is there an Cantor
set associated with the attractor? How does the dimension
and entropy change with the parameters A and z? What is the
maximum dimension of an infinite dimensional system? Up to
what dimension is the concept of a strange attractor
useful? A more detailed understanding requires an
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examination of the Poincaré section and a computation of
the Lyapunov spectrum

Shown 1n Fig. 7.4 1is the Lyapunov dimension plotted as
a function of the delay parameter t, in the range 11.0 to
20 0 with increments 0.2. From the onset of chaos at T=11.8
there is a steady increase 1n dimension from DL=2.0 to 4.0.
The four largest Lyapunov exponents are plotted in Fig.
7 5. There are two positive Lyapunov exponents 1in thais
region, one is zero, indicating that along the flow there

4'Ir"'vv'YvIt'

1 e
10 12 14 16 18

FIG. 7.4. The Lyapunov dimension DL as a function of <t

for T 1n the range 11.0 to 18.0 with increments of 0.2.

NG
OOO” / =2 ]

< —002}

L]

—-0.04

-0.06[
10 12 14 16 18

FIG. 7.5. The four largest Lyapunov exponents as a
function of Tt for Tt in the range 11.0 to 18.0 with
increments of 0.2.
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is neither contraction or expansion, while the other
exponent is equivalent to the Lyapunov entropy KL. The
Lyapunov exponents calculated represent the global
stability of the system and 1t 1s possible that individual
orbits have stability such that there are more than two
positive Lyapunov exponents for the parameter range of
interest. After an 1initial increase 1n KL, there are only
small fluctuations about the average value I&=0.014. The
constant value of KL indicates that the number of orbits in
the system 1s constant

The causes for the 1increase in dimension (Fig. 7.4)
can be found by examining the geometrical structure of an
attractor. To observe the structure we will examine the
Poincaré section of the attractors shown in Fig. 7.2. By
plotting X(t-T) against X(t-2t) when dX(t)/dt>0 and X(t) 1is
constant we obtain an adequate representation of the
Poincaré section. The plane of intersection 1s chosen to be
X(t)=1.5 For the limit cycle shown in Fig. 7.2 (a) the
Poincaré section would consist of two dots.

Shown 1in Fig 7.6 (a) 1s a cross section of the
attractor for t=12.0, with magnifications shown in (b) and
(c). The structure 1s reminiscence to that observed for the
discrete systems in Chapters 4 and 5. Repeated
magnifications show that there 1s a nested set of
attracting curves, up to a maximum possible magnification
which 1s dependent on the numerical integration step. These
figures strongly suggest that the cross section might
indeed be a Cantor set. The dimension 1is DL=2.28. A
probability distribution of the cross section in Fig. 7.6
(a) shows complicated singularities along the unstable
manifold Dorizzi et al. (1987) concluded that the chaotic
solution of DDE’s behaves as a Gaussian-Markovian process
for an one dimensional probability distributions. This is
clearly not the case when the probability daistribution 1is
examined 1n a dimension space of two or greater. It 1is
interesting to note that the first three negative Lyapunov
exponents have similar magnitude. The two dimensional

Cantor set structures observed in Sec. 4.4 are not present
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FIG. 7.6. A cross section of the attractor for T©=12.0.
The sections are constructed by plotting X(t-t) against
X(t-2t) when X(t)=2.0 and X(t+At)»>2.0. In this figure as
well as Fig.’s 7.7-7.9, the magnifications shown in (b) nd
(c) are constructed by plotting only those points that lie

within the box indicated. The dimension is DL=2.28.

which would indicate that the eigenvectors of the Lyapunov
exponents have common directions. At t=13.0 the dimension
has increased to DL=2.51, which is reflected in a more
complex structure as shown in Fig. 7.7. For =14, the
dimension is greater than three (DL=3.05) despite the fact
that there are only two positive Lyapunov exponents. An
analogous situation for discrete systems 1s when the
dimension is greater than two despite the existence of only
one positive Lyapunov exponent (Sec. 4.4.3). The structure
of the attractor i1s shown in Fig. 7.8, again an increase in
complexity is evident. At t©=18 there are still only two
positive Lyapunov exponents, with expansion along one
manifold As 1s shown 1i1n Fig. 7.9 the structure 1is

reminiscent of a scatter plot. The associated dimension for
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FIG. 7.7. See caption of Fig. 7.6. The delay parameter is
=13.0 with dimension DL=2 .51.
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FIG. 7.8. See caption of Fig. 7.6. The delay parameter is
t=14.0 with dimension D =3.05.
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this value of T is DL=3.74.
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FIG. 7.9. See caption of Fig. 7.6. The delay parameter is

t=18.0 with dimension D =3.74. '

Are chaotic attractors with periodic components in
their power spectra of low dimension and simple structure?
This was the case for t=12. It was observed that these
periodic components disappeared as T increased. This type
of attractor occurs after the onset of chaos. There is a
periodic window between t=34 and 36. A phase space plot of
an attractor at ©=40 with DL=6.1 1s shown in Fig. 7.10. For
T=12 and t=40 the phase space plots are closely related and
both have a power spectrum consisting of sharp peaks with a
broad band component (cf Fig. 7.3 (b) & Fig. 7.11). This
1llustrates that chaotic attractors with periodic
components in their spectra can have complicated structures
and large dimensions.

The study of the effect that the parameter A has on
the system will proceed along similar lines. Parameter
values are fixed at =10 and B=0.3. The dimension DL is

shown in Fig. 7 12 for A in the range 1.6-2.8 with
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FIG. 7.10. Phase space plot for t=40.
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increments of 0.02. Windows of periodic behaviour, with
attractors of dimension 1.0, exist within the chaotic
regime. The four largest Lyapunov exponents are shown in
Fig. 7.13. The dimension exceeds three despite the fact
that there are only two positive Lyapunov exponents. A
third lyapunov exponent becomes positive but the dimension
never exceeds 3.8. For A greater than 2.66 there are only
periodic solutions because the delay function,
f(X)=AX24exp(—X2), tends to zero as X increases. This
reduces the DDE to a linear ordinary differential equation.

Although not shown, an examination of the Poincaré section
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for increasing dimension shows a similar increase in the
complexity of the Cantor set.

FIG. 7.12. The Lyapunov dimension as a function of A for
A in the range 1.8 to 2.8 increments of 0.02.

A
FIG. 7.13. The four largest Lyapunov exponents as a

function of A for A in the range 1.8 to 2.8 increments of
0.02.

7.6 COMPARATIVE DIMENSION STUDIES

The above results were obtained by wusing Lyapunov
exponents, as a comparison we will examine the Hausdorff
dimension D, and the correlation dimension D,. The
calculation of these dimensions are based on the Mackey
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Glass delay differential equation (Eq. (7.3)). In table 7.1
we list the dimensions DO|, D2 and DL for four different
chaotic attractors as a function of the delay parameter z.

For large z the Lyapunov method is the most efficient
method for computing dimensions as spatial methods and box
counting methods require extremely large data sets (Sec.
2.5.2) for sufficientconvergence. In all cases the
following inequality is satisfied D> > . The errors
quoted for Dgq and D2 are based on a least squares fit.
Attempts have Dbeen made to compute the spectrum of
generalized dimensions D and entropies K for the
parameter r=23.0 (Pawelzil? and Schuster (19§7)). Their
computed spectrum shows incomplete convergence.

Table 7.1.
A comparison of the Lyapunov dimension DI, correlation
dimension D, and Hausdorff dimension D, for four different

2
chaotic attractors of the Mackey Glass Egq. (7.3).

D2 DL Do

T Eq. 2.30 Ref. 1 Eq. 2.7 Ref. 2 Ref. 3

17 2.00+0.03 1.95+0.03 2.13+0.03 2.10+£0.03 2.10%0.02
23 2.46+x0.04 2.44+0.03 2.77+0.04 2.82+0.03 2.65+0.02
30 2.91+0.09 3.00+0.20 3.60+0.05 3.58+0.04 3.68%0.06
100 8.5 %1.0 > 7.5 9.8 +0.3 ~ 10 12.6+0 .2

a
Ref. 1 Grassbeger and Procaccia (1983).
Ref. 2 Farmer (1982).

Ref. 3 Termonia and Alexandrowicz (1984).

7.7 ASYMPTOTIC STUDIES OF CHAOTIC ATTRACTORS AS A
FUNCTION OF PARAMETERS A AND r

In Sec. 7.5 low dimensional chaos ( DlI<4 ) resulting
from a variation of the parameter z and A was examined. |In
this section Eq.'s (7.7) and (7.8) are examined for a range
of parameters that give attractors of dimension in the
range 5 to 50.
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The dimension D of Eq. (7.8) is plotted as a function
of t in Fig. 7.14 for t in the range 20-200 with an
increment of 20. The dimension 1increases linearly with t.
For t=100 the dimension is of the order of DL=18, with 10
positive Lyapunov exponents. The value of 3 in the
Kaplan-York formula, Eq. (2.7), is 20. In comparison to
this for T=200, DL=38 with 20 positive exponents and Jj=38.

40 T
& 20t ]
4
0 .
0 100 200
T

FIG. 7.14. The Lyapunov dimension DL as a function of =
for Tt in the range 20.0 to 200.0 with increments of 20.0.

Thus the dimension is approximately equal to j for large t.
Le Berre et al. (1987) relates the dimension D to the
delay time <t divided by the correlation time of the
feedback driving force for three dynamical systems. The
entropy KL 1s plotted in Fig. 7.15 and is approximately
constant, indicating that the total number of periodaic
orbits in the system is constant. In order for KL to remain
approximately constant as T increases the positive Lyapunov
exponents must decline as 1/t (Farmer 1980). These
attractors with large dimensions have local rates of
expansion 1in each direction that are quite small. Error
bars are shown on this plot to indicate the statistical
variation in the entropy, no error bars will be shown if
the fluctuation in the computed quantity is ainsignificant.
The dimension in Fig. 7.14 depends on the ratio of the

Lyapunov exponents and i1s not sensitive to the fluctuations
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1n the exponent. Increments of 20 were used to evaluate DL
and KL, whereas a finer increment could reveal periodic
windows within the chaotic regime. The deviation from the
constant value of KL in Fig. 7.15 1s due to the existence
of one such periodic window.

Tests have been carried out by Kaplan and Glass (1992)
to determine the nature of these highly delayed attractors
for T as large as 200. These tests discriminate between the
nature of a time series generated from deterministic
chaotic systems and that generated from random stochastic
systems. The results seem to indicate that these highly
delayed attractors are deterministic in nature. This result
1s not surprising since no random driving force 1s present

in these delayed equations.

0‘02 L4 T 4
o 0.01t |
i |
0.00 N . .
0 100 200
T

FIG. 7.15. The Lyapunov entropy KL as a function of T
for t 1n the range 20.0 to 200.0 with increments of 20.0.

To complete this chapter high dimensional attractors
are examined for Eq. (7.7) which has a Sine delay term.
Shown in Fig. 7.16 (a) is the Lyapunov dimension DL as a
function of Tt for Tt in the range 10.0 to 90.0 with
increments of 20.0. The value of the parameter A being 1.0.
In (b) DL is shown as a function of A for A in the range
1.0 to 12.0 increments of 1.0. In this case T is kept
constant at 10.0. In each case there 1s an approximate

linear 1increase 1n dimension. For the same range of
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parameters the entropy KL is plotted as a function of T in
Fig. 7.17 (a) and as a function of A in Fig. 7.17 (b). The
constant entropy in (a) is consistent with the results
obtained from Eq. (7.3). The entropy as a function of A 1is

(o) (b)
S0 so

0 " M A i 0 4 A L A

0 100 0
T

FIG. 7.16. (a) The Lyapunov dimension DL as a function of

12

>

T for T in the range 10.0 to 90.0 with increments of 20.0.
(b) D as a function of A for A in the range 1.0 to 12.0

with increments of 1.0.
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FiG. 7.17. The Lyapunov entropy KL as a function of t for
T in the range 20.0 to 200.0 with increments of 20.0. (b)
KL as a function of A for A in the range 1.0 to 12.0 with
increments of 1.0.

linearly increasing. Note the change in scale between these
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plots

Does the discrepancy between these plots 1indicate a
difference 1n the nature of the chaotic behaviour? There 1is
a difference between a variation of the parameter t and a
variation of the parameter A The maximum amplitude of X(t)
1s essentially independent of T but increases with A. In
both cases the local rates of expansion in each direction
are small compared to this maximum amplitude of X(t). This
would indicate that these highly delayed attractors

obtained from a variation of T or A have a similar nature.

7.8 CONCLUSION

This chapter has investigated the chaotic behaviour of
first-order DDE’s with a single delay in the parameter
space A and tT. The development of the chaos as the
parameter T or A 1s 1increased proceeds with a Hopf
bifurcation and a change in complexity of the structure of
the attractor with an associated change i1n dimension. From
a dimension and Poincaré section analysis evidence has been
obtained to associate the changes in structure of the
attractor to a Cantor set. Although it is not possible to
obtain the properties of this Cantor set. The low dimension
attractors are qualitatively similar to those found 1in
systems of ordinary differential equations.

There 1s no limit to the dimension of the attractors
1n these i1nfinite dimensional systems. The nature of these
highly delayed attractors for both A and T 1s such that
they have local rates of expansion in many directions. The
magnitude of this expansion 1s small compared to the
amplitude of the time series X(t)

It has been shown how the frequencies in the power
spectrum relates to the period of the orbit. This should
prove useful 1n further studies connected with the

extraction of the individual unstable periodic orbits.
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CHAPTER 8

CONCLUSION

One of the main themes of this thesis, has been the
study of the evolution of structure within the chaotic
attractors of temporal chaotic systems. This evolution of
structure in a two dimensional hyperbolic baker map was
analyzed and quantitatively related, via 1ts f(a) spectrum,
to an associated Cantor set.

Most dynamical systems do not have a complete set of
periodic orbits. To simulate this type of system a modified
form of the baker map was analyzed. The attractors of this
map were directly related to, and characterized by, a
pruned Cantor set It was shown that the f(a) spectrum of
these pruned Cantor sets have two properties different from
normal Cantor sets: one, the maximum of the f(a) spectrum
1s affected by the degree of pruning and, two, the wings of
the spectrum converge not to one but to a set of dimensions
greater than one

Nonuniform hyperbolic systems 1include the toral and
circle map. Using the unstable periodic orbits of the one
dimensional circle map, we have 1llustrated the mechanism
for chaotic behaviour which 1s 1ndependent of round off
errors and numerical precision. Nonuniformities along the
unstable manifold resulted 1n a nonconstant Dq spectrum
which can not be inferred from the dimension of the
periodic orbits A dissipative toral map was analyzed in
detail for the first time More efficient estimates of the
Dq spectrum were obtained by a rotation of the unstable
manifold. This rotation had the effect of decoupling the
Cantor set from the attractor New results concerning the
unstable manifold show that this manifold does not wind

densely around the torus but consists of an infinite number
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of line segments. The -evolution of structure for this
system proceeds with an increase 1In complexity of the
Cantor set and an 1increase 1In the Lyapunov dimension DI
from one to two.

Two dimensional Cantor set structures have been well
documented in the literature. By analyzing a three
dimensional dissipative toral map it has been shown that
whenever two contracting directions compete in the
formation of a strange attractor a two dimensional Cantor
set is to be expected. As the structure of this set evolves
there 1i1s a TFilling of phase space with a corresponding
increase in the dimension . This 1is the Tirst observation
of this type of Cantor set iIn a dynamical setting.

Nonhyperbolic systems can display intermittent crises
as the system evolves. The statistical behaviour near each
crisis was 1iInvestigated and lead to the analysis of a new
type of intermittency that is present in both dissipative
and non-dissipative systems. The numerical result for the
critical exponent y are significantly less than the minimum
theoretical value of y=1/2 for both a homoclinic and a
heteroclinic tangency.

The 1intermittent systems that were examined 1in this
thesis have important consequences for all types of
intermittency. When the colliding orbit®"s unstable manifold
is on the attractor, the distinction between a homoclinic
and heteroclinic tangency is unclear. This is because it 1is
not possible to decompose the chaotic attractor iInto
individual manifolds. The theoretical evaluation of the
critical exponent y is dependent on the stability of one
particular orbit and this orbit may be non-dissipative even
though the attractor is dissipative, which has obvious
consequences for evaluating y.

For a two dimensional chaotic attractor with positive
divergence the dynamics take place on a two dimensional
unstable manifold. This non-dissipative attractor can be
considered as arising from a three dimensional dissipative
system. When Ai+A2>0, DI assumes its maximum value of 2.
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Surface attractor have been observed with D2=DL=2. The
evolution of structure in these nonhyperbolic system is
consistent with the changes 1in dimension and entropy for
the baker map In contrast to the intermittent crisis, a
process has been observed that involves the gradual merging
of attractor pieces. This process was characterized in
terms of the unstable periodic orbits.

The evolution of <chaos 1in a continuous infinite
dimensional delay differential system was consistent waith
that observed in the discrete case for both a variation of
the gain A and delay t. There 1is no limit to the dimension
of the chaotic attractors in this system. It was found that
the dimension increased, on average, linearly with A and =,
although the entropy 1s constant for increasing <t and
linearly 1increasing for A. The nature of these highly
delayed attractors for both A and T 1s such that they have

local rates of expansion in many directions.
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