
Abstract Project Model: A Description Of
A Generic Software Project

f

By Mark Johnston B.Sc.

School of Computer Applications
Dublin City University

Glasnevin
Dublin 9

Supervisor: Professor J.A. Moynihan

A thesis submitted for the degree of
Master of Science

May 1999

I hereby certify that this material, which I now submit for assessment on the programme of study

leading to the award of Master of Science in Computer Applications is entirely my own work and

has not been taken from the work of others save and to the extent that such work has been cited

and acknowledged within the text of my work

Declaration

1:Signed: /m A M X A Û ID No.: 9 ^ 9 7 O

Mark Johnston

Acknowledgements
The funny thing is that when I began this research I thought, this should not be too difficult and I

probably will not need too much help In fact to be more wrong would have been difficult In

true Oscar winning style I am aware that this thesis could not have been written without the help

of a number of splendid characters

Thanks to Robert Cochran for allowing me so much flexibility with my 9-5 life and also for his

financial support throughout my two years at Catalyst Software I thank Marty Sanders for being

a consistent reality check on the application of this research to a real software tool A big thank

you to Jackie Berkery from the CSE for providing me with a validation source for this research

when there seemed to be no data points left Thanks to Stephen Brown for being as thorough as

possible with the examination of this research This has given me faith in this piece of work

Thank you to Renaat Verbruggen for identifying some of the weaker aspects of this research at an

early stage Finally, thank you to Tony Moymhan who supervised this research providing words

of wisdom when my tender years showed

This research took place within the framework of the P3 project I worked with a number of top

class individuals throughout this project especially Brian McCarthy, Rory O’Connor, Eamon

Gaffney and Sylvia Kelly, all of whom made me angry, made me laugh or made me see sense I

thank you all for a superb 18 months

Abstract Project Model: A Representation of a Generic
Software Development Project

Abstract

This thesis records the research component involved when constructing a set of templates
that describe the typical software development project This set of templates is a major
component in the Prompter tool The Prompter tool was developed by a consortium of
software developers including Dublin City University, Catalyst Software and Objectif
Technologie The development of Prompter has been partially assisted under the ESSI
fourth framework Its goal is to provide decision support to the user in the field of
Software Project Planning

In the Prompter tool the user provides a detailed description o f the starting point of their
project This detailed description is used to provide recommendations by a built-m
critiquing system This value of this advice is based upon the accuracy and relevance of
the data that the user provides

This research had two mam objectives The first of which was to consolidate a
representation mechanism that is flexible enough to provide Prompter with a detailed
description of a user project The second objective was to research the state of the
average software project and attempt to categorise these typical software projects
according to size and complexity If these projects are deemed to overlap sufficiently,
these common characteristics can be added to a model describing all software projects
that are operating withm these constramts These characteristics can then be added to the
tool using the description mechanism described above

r

Chapter 1: INTRODUCTION 1

1 1 Introduction 1
1 2 The P3 Project 1
13 Target Users - 2
14 Architectural Overview 2
14 1 The CORBA Standard 3
14 2 The Java Programming Language 5
14 3 GUI 6
14 4 Kernel 6
14 5 Daemons 7
15 Functional Overview 7
1 6 This Research in the Context of the P3 Project 14
17 Overview of Thesis 14

Table o f Contents

Chapter 2: THE MARKETPLACE AND THE NEED FOR A DECISION
SUPPORT TOOL 16

21 Introduction 16
2 2 Increasing Complexity of Software Production 16
2 3 Prompter and the Software Process Improvement Approach 20
2 4 Scope of the Prompter Tool 20
2 5 The Use of CASE Tools to Streamline the Development Process 22
2 6 Existing Tools 23

Chapter 3: THE CONCEPT OF AN APM 26

3 1 Introduction 26
3 2 Research Framework 26
3 3 The Concept of an APM 27
3 3 1 What does the APM represent 28
3 3 2 How does the APM fit into what Prompter mtends to do 29
3 4 Project Characteristics and the Project Description Template 30
3 5 The APM Set 32
35 1 Definition of Project Size and Complexity 33
3 5 2 An Example APM Set 35
3 6 The Format of the APM 36
3 7 Initial Research Identification of a Base Token Set 37
3 7 1 The Objective of the Token Data Type 37
3 7 2 A Token Set for Prompter 38
3 7 3 The Token Data Dictionary 41

C h ap te r 4: CURRENT INDUSTRY PRACTICES AND SOURCES OF
THE APM VALUES 42

4 1 Introduction 42
4 2 Problems encountered when performing this literature study 42
4 2 1 A General Absence of Metrics 42
4 2 2 The Success Stones 43
4 2 3 Politics 43
43 Sources of the APM Values 44
4 3 1 The Description of the Average Software Organisation 44
4 3 2 The European Software Institute 45
4 3 2 1 Source 1 The VASIE Database 45
4 3 22 Source 2 ESI 1997 Software Best Practice Questionnaire - Results 47
4 3 3 Source 3 Current Practice in Software Engineering a survey 48
4 3 4 Source 4 1998 Software Business Practices Survey 50
4 3 5 Source 5 EXE Magazine Surveys 52
4 3 5 1 Survey 1 What are you really worth7 52
4 3 5 2 Survey 2 Development Tools 98 52
4 3 6 Source 6 Revision Labs 54
4 3 7 Source 7 The Spire Handbook 56
4 4 Summary 56

Chapter 5: VALIDATION OF RESULTS 58

5 1 Introduction 58
5 2 Validation of the Project Description Template 58
5 2 1 What is the Project Description Template 58
5 2 2 The Validation Process 58
5 23 Conclusions from the Feedback Obtamed 59
5 3 P3 Project Validation of the Baseline APMs 59
5 3 1 Internal Validation 60
5 3 2 Validation by the EC 61
5 3 3 Validation by User Partners and Field Test 62
5 4 The Validation Process for the APM Set 62
5 4 1 The APM Set Arising from this Study 63
5 4 11 Small Size - Low Complexity 63
5 4 12 Medium Size - Low Complexity 63
5 4 13 Large Size - Low Complexity 64
5 4 14 Small Size - Medium Complexity 64
5 4 15 Medium Size - Medium Complexity 64
5 4 16 Large Size - Medium Complexity 64
5 4 17 Small Size - High Complexity 65
5 4 18 Medium Size - High Complexity 65
5 4 19 Large Size - High Complexity 65
5 4 2 The Validation Process for the APM Set 66
5 4 2 1 The Validation Problem 66
5 4 2 2 Validation Scope 67

5 4 3 Validation of Organisational Level Default Token Values 68
5 4 4 Validation . 70
5 4 4 1 Organisational Tokens Justified Using the Assessment Results 71
5 4 4 2 Industry Level Tokens 75
5 4 4 3 Project Tokens Exempt from Validation 77
5 5 Summary 77

Chapter 6: CONCLUSIONS 79

6 1 Objective of this study 79
6 1 1 Description of the Generic Software Project 79
6 1 2 The APM Set and the Prompter tool 80
6 2 Creation of a Customised APM 81
6 3 Final Remark 83

REFERENCES 84

APPENDIX A: THE TOKEN DATA DICTIONARY 87

APPENDIX B: PROMPTER USE CASES 106

3
4
8

10
11
12

13

16

17

21
29
32

39
51

61

List of Figures

An architectural overview o f the Prompter tool
The topology o f how a system using CORBA communicates
The APM W indow of Prompter
The Scenario W indow of Prompter
An example of the Scenario relationship in Prompter
An example of the Scenario relationship following pruning
in Prompter
The Advice W indow of Prompter is shown above This advice
has been offered by the Daemons component of the tool as a
result of the project description provided by the user
The dramatic increase in the use o f computer systems
(1955 - 1985)
The changing profile in the relationship between hardware
and software costs
The market area towards which Prompter was aimed
Intersection area between two user projects and the APM
The APM is formed from a blend of organisational and
project characteristics
The Advice Taxonomy o f Prompter
The importance of customer satisfaction to software developers
as provided in the 1998 Software Business Practices Survey
The movement from APM to IPM to RPM when
using Prompter

List o f Acronyms

APM Abstract Project Model
BS British Standard
CASE Computer Aided Software Engineering
CMM Capability Maturity Model
COCOMO Constructive Cost Model
CORBA Corporate Object Request Broker Architecture
EC European Commission
ESI European Software Institute
ESSI European Systems and Software Initiative
ESPRIT European Software Programme for Research in Information Technologies
EU European Umon
GUI Graphical User Interface
IDL Interface Definition Language
IEE Institute of Electrical Engineers
IEEE Institute of Electrical and Electronic Engineers
IPM Instantiated Project Model
ISO International Standards Organisation
IT Information Technology
JDK Java Development Kit
KLOC Kilo (1000) Lines Of Code
MIS Management Information Systems
MS Microsoft
NATO North Atlantic Treaty Organisation
OMG Object Management Group
ORB Object Request Broker
PIE Process Improvement Experiment
RPM Refined Project Model
SME Small and Medium-Sized Enterprises
SEI Software Engineering Institute
SPICE ISO TR 15504 Software Process Assessment and Improvement
VASIE Value Added Software Information for Europe
WWW World Wide Web

Chapter 1: Introduction

1.1 Introduction

This research was performed in conjunction with the development of a software product known

as Prompter This chapter intends to give an overview of the Prompter tool as a precedent to

describing the research performed This will be achieved by providing an insight into the

framework within which the Prompter tool has been developed This framework was the P3

Project The target users of the end product are described which provides an insight into the type

of customer that was targeted An architectural overview is provided which briefly describes the

various components of the Prompter tool A functional walkthrough is provided which describes

a possible usage session of this tool Finally, a brief overview of the thesis is supplied

1.2 The P3 Project
The P3 Project was a European Commission sponsored project under the ESPRIT programme

involving partners from France, Greece and Ireland This project had a 30 month duration and

was mtended to be completed by March 1999 At the end of month 30 there was a packaged

software tool that allowed software project managers to obtain decision support with respect to

project planning Decision support m the context of the Prompter tool refers to providing the

software project planner with recommendations based on the project scenario that has been

described to the tool by the user The tool delivered by the project was in fact an operational

prototype with some outstanding issues to be resolved before making it available outside the

project team There were a number of interim deliverables during the project schedule which

were subject to external evaluation under the control of a EC appointed project officer and his

peer review group

The development team consisted of one Irish software company, Catalyst Software Ltd, a French

software company, Objectif Technologie and an Irish research institute, Dublin City University

In addition, there were two user partners that provided feedback to the development team in

relation to the various interim deliverables These user partners were Intrakom SA, Greece and

Schneider Electric, France The user partners also provided feedback in relation to each of the

prototypes that were incrementally delivered The four prototypes intended to incrementally add

1

architecture, look and feel, functionality, and finally, advice to the user All EC sponsored

project support was dependent upon the acceptance of formal deliverables which occurred at six

month breaks throughout the project

1.3 Target Users

Prompter is a MS Wmdows based software product intended for the project manager who wishes

to employ best practices while managing a software development project In order to minimise

cost, reduce development time and maximise customer satisfaction it is necessary to control many

facets of a software project This is Prompter’s area of expertise - best practice within the

context of a specific software project The tool is primarily targeted at the manager of an

exclusively software project who wishes to follow the roadmap of known quality standards such

as CMM, ISO, SPICE etc Because Prompter is a training tool, the target user is the novice

project manager or even student user in training mode The user typically wishes to examine

what-if situations and make the best possible decision at any stage m the project In this way a

project manager can improve practices within the framework of a real project This tool is

primarily suited to the manager of a level 1 CMM 'organisation striving to introduce basic

management to achieve a stable process with a repeatable level of statistical control

1.4 Architectural Overview
An architectural overview is provided in this section Figure 1 1 on the following page shows the principle

architectural components of the Prompter tool at a high level Prompter is composed of three major

components GUI, Kernel and Daemons The GUI component manages user interactions with the

tool This part of the tool processes all user input and selections and passes them to the Kernel

The Kernel is responsible for managing the storage of a user’s project description and assembles

advice to be returned to the user The Daemons analyse the user’s project description and creates

advice based upon the state of the user project The Daemons use their critiquing system to

analyse the project description constructively These three components are described m greater

detail below Not only are these components distinctly unique in their functionality they were

also developed by different organisations within the P3 project These three components were

connected using an interfacing standard known as CORBA The three components, GUI, Kernel

1 Level 1 CM M is a classification o f organisation m aturity identified by the SEI

2

and Daemons were implemented using the Java programming language These technologies are

described below

Figure 1.1: The above diagram illustrates
a view of the architecture of the Prompter
tool at a high level

1.4.1 The CORBA Standard

The Corporate Object Request Broker Architecture (CORBA) is a standard which is managed by

the Object Management Group (OMG) The OMG is composed of more than 500 software

organisations concerned about standardising distributed object communication CORBA is

essentially a software layer that allows possibly remote software components to communicate

(Iona, 1997) This communication is achieved via an Object Request Broker (ORB) This ORB

is a middleware software component that acts as an intermediate between clients and servers

The CORBA architecture is in fact an extension of the traditional client-server approach but

allows this form of communication with the following benefits

• Clients and Servers may be distributed outside of the local network

• Clients and Servers may be executing on different hardware platforms

• Clients and Servers may be executing on different software platforms

3

In order to develop software using CORBA, it is necessary to employ an ORB to perform all

necessary transactions between clients and servers Proprietary and non-propnetary ORBs are

available for commonly used programming languages such as C, C++, Visual Basic, etc The

next step involves defining an interface between the client and server

• Clients and Servers may be implemented in different programming languages

Method calls from
server to the client (via
the ORB

Method calls from the
client to the server (via
the ORB)

Client possibly
implemented in
Java

Method calls from client
to server

Server stub passes on method
requests to the Object Request
Broker who knows how to locate
the server

Client skeleton allows the
server to transparently invoke
requests upon the client

Method calls from server to client
implemented as callbacks

Server possibly
implemented in
C++

Figure 1.2 : The above diagram shows the topology of how a system using CORBA
communicates.

4

CORBA allows these clients and servers to interface using the IDL (Interface Definition

Language) These interfaces are described m a hardware and software neutral format This

format allows the initial definition of the interfaces between components followed by the

development of each side of the interface independently This provides the developers with a

great deal of freedom as the interface can be constructed mdependent of hardware or software

nuances This interface can be used in conjunction with the ORB to create a number of stubs

which serve as communication agents between the developer written code and the ORB

In Figure 1 2 on the previous page, the definition of an interface using the IDL leads to the

creation of both server and client stubs (also known as server and client skeletons) A set of

programs, one for client and one for server are written Any requests from the client to the server

or vice versa are forwarded to the Object Request Broker by the client/server skeleton The ORB

knows where to locate the server or client and hence forwards the requests to the relevant party

The ORB is responsible for the following (Iona, 1997)

• Registration of servers

• Management of operating system resources

• Underlying communications and synchronisation

• Error detection

• Faithful transmission of requests

1.4.2 The Java Programming Language

Java is emerging as one of the most important development platforms is use today In a survey

conducted by EXE Magazine (Bennett, 1998b), 16% of the 311 respondents said that they are

using Java as a development language This is behind C++, Basic and Pascal, all languages that

have been available as development languages for the last decade or more Java was initially

conceived by researchers at Sun Microsystems but really only came to the fore as a usable

software development tool in 1997 This was because version 1 1 of the JDK included

functionality that made Java more usable as a commercial development tool The language builds

upon the object oriented paradigm and employs a similar syntax to C++ which allows developers

to make the move to Java quite gracefully However, in principle the mam selling point of Java is

its platform independence This means that software can be developed in Java on one machine

and may run on any other machine that is equipped with the Java virtual machine. This Java

5

virtual machine is a runtime environment that interprets bytecodes’2 on the fly instead of running

native executable code which is platform specific. Java initially appeared useful only for

multimedia applications running within web browsers. This is partly because the first release of

the JDK restricted the applet in its ability to access the local machine. This image has also been

largely as a result of the reduced execution speed of Java due to the interpreted bytecodes.

However, with the development of optimised compilation tools and proprietary libraries offering

efficient solutions, the Java development platform is appearing more attractive to organisations

who wish to do more than deploy their applications across the internet.

1.4.3 GUI

It is desirable to provide desktop software tools with a user interface that is both intuitive and

familiar. Familiarity with the user interface was achieved by following recommendations for MS

Windows 95. The user interface of Prompter is designed to allow the user to interact with the

tool using the typical commands that an MS Windows product would provide. The GUI is in fact

responsible for capturing all user data and requests, formatting these and passing all information

to the Kernel. The user interface also performs preliminary checking upon the data to ensure that

invalid values are not dispatched to the Kernel.

1.4.4 Kernel

The Kernel provides a mechanism for maintaining the user’s project description both in dynamic

form while a session with Prompter is in progress, and in static form, committing the project

description to persistent storage. The Kernel is also responsible for loading configuration

information for the GUI at startup. The Kernel is instrumental in providing the communication

mechanism between the GUI and the Daemons. Any requests made by the user via the GUI for

processing are passed initially to the Kernel and forwarded to the Daemons if appropriate.

Because the Daemons component of the tool is responsible for creating advice, the user’s advice

requests need to be transmitted to the Daemons and the returned advice needs to be forwarded to

the user via the GUI. In this way, the Kernel provides a level of indirection between the GUI and

the Daemons.

2 Bytecodes are an architecturally neutral form of binary code which allows instructions to be defined
universally and translated at runtime into a machine -specific format.

6

1.4.5 Daemons

The Daemons in Prompter consist of a number of advice agents which are each able to critique a

certain aspect of the user’s project description Each one of these agents is a mini-expert capable

of providing advice about a certain aspect of project management (Gaffney, 1999) There are

daemons responsible for the areas of

• Analysis and Planning

• Estimation

• Activity Planning

• Resource Allocation

• Project Re-planmng

• Measurement

• Risk Management

These daemons have the ability to critique the project description provided by the user and may

suggest a sensible alternative in the form of advice This occurs by the execution of a set of rules,

m their most basic form as simple i f - then statements These rules examine facets of the user’s

project description, which has been provided by the user at this point For further exploration of

how the user provides this information see the following section

1.5 Functional Overview

This section is intended to give a walkthrough of the functionality of the Prompter tool There

are a myriad of possible use cases for this tool as there are different classes of users for this tool

as well as different project descriptions and advice formats that can be provided for each project

A generic use case is emphasised here to allow the reader to understand what a session with

Prompter mvolves A more detailed set of use cases is provided in Appendix B This set of use

cases was included in the User Requirements document for the P3 Project

The user begins by either opening a project that is in progress or by creating a new project

Consider the user who is new to Prompter and has not previously created a project using this type

of decision support tool beforehand When the tool begins, the user is presented with a set of

models from which to select the one most appropriate to their particular project This is in fact

the scope of this research, to create these starting point models for the user The user’s selection

7

criteria may be based on project size and project complexity as can be seen in the screen shot

shown in Figure 1.3. It is important for the user to understand what these two parameters

imply in order to make a suitable selection.

(^ P ro m p te r C rea ting New P ro jec t

T h is APM d e sc r ib e s th e s t a r t in g p o in t o f a p r o je c t
where th ere i s a sm all fa m ilia r so ftw a re developm ent
team w ith ex p er ien ce in d ev e lo p in g t h i s form o f
a p p lic a t io n fo r t h i s type o f environm ent and u s in g th e H

Figure 1.3: The above screen shot shows the APM window that allows the user to
select an appropriate model for their project

Figure 1.3 displays nine distinct models from which the user selects the project description

most appropriate to their project. The suitability of each model can be evaluated by selecting

the relevant model and reading the description provided in the dialog box at the bottom of the

window in Figure 1.3. Having made this choice of starting point for the project the user now

can add some project specific data to this template. As more information becomes available

to the user about their project, the initial description becomes refined by the subsequent

addition of data

8

as it becomes available to the project planner. The user adds to the project description by

answering a series of questions posed by the tool.

Domain Subdomain Token
ID

Question

Characteristics Requirements 12 How do the requirements compare in relation to what
we are accustomed to

13 How much change are product requirements likely to
be subject to during the course of development

Product 9 Evaluate the interfaces between the product and other
software/hardware components

84 What is the level of portability expected of the product

Business Drivers 59 What is the level of market competition facing this
product

Customer 92 What is the level of software usage experience at the
customer organisation

26 How well does the client understand the requirements

Application 36 How important is reusability for this application

Project Physical Resources 48 Evaluate the equipment at the disposal of the
development team

Human Resources 52 Describe the teams experience of professional software
development

Estimating 78 Describe the standard of estimating at your
organisation

Quality 61 Is your organisation capable of CMM level 2
compliance

60 Is your organisation capable of ISO 9001 compliance

72 Describe the standard of quality expected of
subcontractors

Table 1.1: The above table shows an example of the type of questions posed by the Prompter tool
when obtaining a user’s project description.

These questions are classified into domains such as characteristics, project, quality, metrics, etc.

These domains are further subdivided into sub-domains which contain a set of questions about a

specific aspect of project planning. To give a feel for the type of information this questions and

answers session intends to elicit, Table 1.1 on the previous page provides a suitable illustration.

In Table 1.1 above, the domain column is a top-level categorisation of concepts which may be

associated with project planning. Each domain may be broken down into a number of sub-

domains which contain specific questions about project planning. The user answers the questions

posed by the tool by selecting the most appropriate option from a short list of qualitative terms

9

such as [high, medium, low], A screen shot in Figure 1.4 on the following page shows, the

Scenario window of the Prompter tool with the user answering questions about a particular

aspect of their project.

Project Root Scenaiio [1]

Domain

Figure 1.4: Screen shot of the Scenario window of Prompter with the user answering questions
within the Application sub-domain of the Characteristics domain.

The user now has the option of creating alternative descriptions for their project. For

example, a project manager may wish to evaluate the impact of increasing the size of their

project team. Rather than changing the size of the project team, the user may create a clone

of their project description and change the team size in the clone. In this way the user does

not lose the project description when seeking to evaluate alternatives. Because a large part of

planning is impact evaluation and prediction, it is necessary to be able to observe the possible

effects of such changes without committing resources at such an early stage. The ability to

create a clone of your

10

current project description (can be thought of as a snapshot) is provided by Prompter These

cloned project descriptions are known as scenarios and often represent a decision point in a user

project at which the user wishes to evaluate multiple outcomes of a decision These scenarios are

arranged by the tool in a tree-like fashion Scenarios can be added or deleted by a user so that

discarded or unwanted scenarios can be removed from the project description The scenarios that

are maintained will represent the path to the refined project description In the Figure 1 5 below,

it can be seen how scenarios created in the order A-H are related

Figure 1.5: The above tree depicts the relationship
between a number of Scenarios in Prompter.

The most recently created scenario can be considered scenario H If the user decides that some of

the scenarios have become obsolete, these unneeded scenarios can be removed by pruning the

scenario tree This may give rise to the scenario tree m Figure 1 6 on the following page

11

A

C

D

E

H

Figure 1.6: The above Scenario tree
shows the result of a user pruning the tree
in Figure 1.5.

Finally, advice can be requested by the user at any stage m the project A user can select general

advice that is based upon documented best practices that is not related to any particular project

Some of the advice is taken from sources of accepted best practices in software project

management literature However, the larger part of the advice is taken from knowledge held by

members of the project with over twenty years experience in software project management The

second form of advice is based on the project description that has been provided by the user This

advice is provided by the Daemons section of the tool which analyse the user’s project

description and make suggestions based upon this (Gaffney, 1999) This is why the user provides

such a detailed project description to the tool the richer the project description, the more useful

and relevant the advice will be The user will subsequently accept or reject the advice provided

by the Daemons If the user accepts the advice, changes may be made to the user’s project

description in light of the Daemon’s recommendations This is how advice is beneficial to the

user The screen shot provided below shows the Advice window of Prompter This window

12

shows a set of advice provided by the tool according the user’s project description. This

advice appears a little superficial but the user has the ability to obtain a justification for this

advice. The functionality allows the user to find out why such recommendations were made

by the tool. This is an important feature of the tool - not only are suggestions made to the

user but also an explanation is provided as to why these suggestions were considered

necessary.

[5 Prompter Root Scenario (Project) H E ! 13

File Advices Administration Window Help

s m a i i i t i ö

I Advice

Advice ^
* Write operational scenarios to show how the product will be used and

what is actually needed.
* Provide training.
* Use formal reviews throughout project for high visibility and to instil

confidence.
* Develop appropriate quality management system.
* Develop appropriate risk mitigation system.
* Allow for hardware upgrades which might be required during the length of

the project.
* Remember the price of buying software might include both preparation

and follow-on activities.
* Develop and implement organisational standards and processes.
* Develop, improve and maintain software processes to go with the new

circumstances.
* Develop a complete, small system first to learn about the new things.
* Allocate extra time for requirements analysis.
« Use a strong requirements gathering process.
* Try to prototype as much as possible.

Delete

Figure 1.7: The Advice Window of Prompter is shown above. This advice has been offered by the
Daemons component of the tool as a result of the project description provided by the user.

13

1.6 This Research in the Context of the P3 Project

At this point, a description of the Prompter tool and a typical walkthrough has been provided As

the tool provides decision support to software project managers which is based upon a description

of a user project, it is necessary to obtain a project description m as clean and faithful a manner as

possible This means that there is a need to create a model in the tool by which this project

description can be represented This leads on to my first responsibility in the P3 project - to

construct such an initial model known as the project description template and refine this model in

parallel with the development of Prompter This model is a description mechanism for the

characteristics of a user’s software project Creating such a model requires identifying the type of

information to be represented, the ideal representation mechanism and finally establishing its

worthiness

Prompter aims to provide decision support in the area of software project planning Such

decision support is provided to the user m the form of textual advice that appears dynamically

when using the tool In order to provide such advice in a project-sensitive manner, it is necessary

to obtain a large amount of information from the user describing their project This is a tune-

consuming task and led to fears that the pain vs gain ratio would be such that the user would find

the tool difficult and uncomfortable to use For the purposes of ergonomics, it was conceived that

this tool should provide a starting point description that diminishes the responsibility upon the

user to enter information that could be reasonably inferred This starting point is in fact a

description of a generic software development project When this idea was first conceptualised,

there had been no research to verify the feasibility of constructing such a generic project

description This initial wish-list item in the system requirements of the Prompter tool became

an integral component of the tool through my research into this area From this concept, I

constructed a set of Abstract Project Models that characterise the starting point of the typical

software development project The Abstract Project Model (APM) will be described Chapter 3

1.7 Overview of Thesis

The Prompter tool has now been described and the context of this research within the

development of this product has been revealed The remainder of the thesis will deal with the

following

14

Chapter 2 describes the market place and the its need for a product such as Prompter This

involves accurately describing the category of software tool which Prompter competes with

This analysis of the domain of the Prompter tool culminates in the revelation that there is no

direct competitor to Prompter in the marketplace at present

Chapter 3 describes the concept of the Abstract Project Model and it’s design This involves

identifying the type of data that the APM seeks to model and the way in which this information

can be represented The initial research to create the token data type is also described

Chapter 4 aims to provide a description of the seven primary sources examined when performing

this study The model by which a user may describe their project is outlined in Chapter 3 The

data which must be added to this model is introduced in this chapter Sources identified by this

research are also described m Chapter 4 The validity of each source is evaluated and any

problems encountered when performing this research are stated

Chapter 5 describes the process by which this research is validated This involves a description

of how the Project Description Template and the APM set were evaluated

Chapter 6 provides the conclusions amved at following this research.

Appendix A presents the Token Data Dictionary This document is a formal deliverable from the

P3 Project which embodies the work performed to create the project description template

Appendix B provides the use cases which were a component of the User Requirements document

of the P3 Project

15

Chapter 2: The Argument for Prompter and the Abstract Project Model

2.1 Introduction

This chapter seeks to illustrate that there was a need for a tool to provide decision support to

software project managers and that there was also an opportunity for the success of such a tool.

There shall be a logical explanation as to why software vendors must streamline their process in

order to remain competitive. The manner in which the Prompter tool assists with software

process improvement is described. The scope of the tool is then revealed which shows the area

towards which Prompter was aimed. The use of CASE tools by software developers is then

investigated. This is followed by a brief description of tools which provided functionality in

areas related to Prompter. This shows that despite the presence of various tools there was no

existing package that provided the functionality of Prompter and that the features of the APM

were unique.

2.2 Increasing Complexity of Software Production

The application of computer technology in every aspect of life has become a norm. The

technological revolution involving computer systems began in earnest in the 1950s (Boehm,

1981). Since then, computer systems have become an essential part of everyday life and perform

many of the mundane tasks that were once considered both trivial and time consuming. This has

been reflected by a growth of reliance on computers and software as shown in Figure 2.1 (Boehm,

1981). It is accepted that some of the references may appear to be out of date but a search for

more recent data points was fruitless.

Year

Figure 2.1: The above diagram shows the dramatic increase in the
use of computer systems between 1955 and 1985 (Boehm, 1981).

16

1955 1970 1985

Year
Figure 2.2: The above diagram indicates the changing profile of software:
hardware costs also implying the increasing costs of maintenance to development
(Boehm, 1981).

Not only has the dependence upon computer systems in general increased, the profile of the

demand on computer software in relation to computer hardware has changed dramatically. This

change has followed the typical pareto profile changing from 80:20 to 20:80 for the cost of

hardware to software. See Figure 2.2 above (Boehm, 1981).

With the advent of silicon technology hardware prices have plummeted further aiding the demand

for computer systems. An example of the changing cost of computer hardware is that in 1962 a

typical mini-computer cost about $US 20,000. A typical PC today would cost little more than

$US 1000 (History, 1997). The cost of software in turn has soared due to the rising complexity

and size of software solutions. It was not until the software crisis was identified by the NATO

Science Committee in 1968 (Schach, 1990) that the complexity of creating large scale software

systems was taken seriously. As systems grew, the search for a solution to the software problem

appeared to become more earnest. This seemingly endless search culminated in the belief that

17

there is no silver bullet for the difficulties of software development (Brooks, 1986) Having

placed faith in the promises of new technology after new technology it finally became clear that a

set of ‘best practices' offered the only realistic way forward (Wasserman, 1996) This implies

that no one particular practice will overcome these age old issues but an adoption of a set of

practices and activities that address individual problems associated with software development

(McConnell, 1997)

This realisation that streamlining software development activities according to recommended best

practices has really been a 90s phenomenon (Yourdon, 1996) It would be incorrect to assume

that the awareness of software development hazards was non-existent until 1990, but it was not

until this point that the community at large became concerned with process improvement This

has led to the development of software specific standards1 which define a busmess as having the

capability to produce a reliable software component These accreditations such as CMM, ISO,

BS, etc are standards that are recognised internationally Primarily, these standards establish that

a software vendor has the capability to produce a reliable product However, they also seek to

assist the vendor with their productivity This improved productivity is expected to emerge from

more informed project management techniques that are recommended by these standards The

better practices that result from pursuing such standards intend to allow the software developer to

balance many conflicting interests such as

• Higher productivity

• Lower costs

• Higher quality

• Higher maintainability

• Shorter time to market

• Maximising reusability

The realisation that Software Process Improvement is an effective way to abandon the chaos of

disorganised software production is a contemporary issue

If a software organisation cannot balance the conflicting interests outlined above, the vendor will

cease to remain competitive This implies that best practices programmes are an embodiment of

1 In some cases accreditation for software development was specified for existing standards

18

the type of activities that an organisation should seek to perform in order to remam competitive

(ESPITI, 1996)

As noted by Terry Rout at SPI 982, ’some organisations feel that such standards are too

bureaucratic and restrictive to be used practically, particularly m SMEs The need to remam

competitive is often a motivational factor for management to promote software process

improvement Table 2 1 below strongly implies that there is a good business case for most

companies to follow the SEICMM process improvement approach

Category Range Median No. of Orgs.

Years of effort 1-9 35 24

Process improvement cost $ / person $490-$2,004 $1,375 4

Productivity gain / year 9%-67% 35% 4

Early defect detection gain / year 6%-25% 22% 3

Time to market gain / year 15%-23% 19% 2

Post-release defect reduction / year 10%-94% 39% 5

Savings / cost ratio 4 0-8 8 5 0 5

Table 2 1: The above table suggests that there is a good business argument in favour of software
process improvement (Yourdon, 1996).

These results shown in Table 2 1 above are based upon a small number of organisations, all based

m the US Peter Goodhew provided similar results for the European Software Industry which

presented results from over 360 software development organisations throughout Europe (ESPITI,

1996) This survey of European organisations evaluated the productivity of the organisations

against the software process maturity of the organisations The performance of the organisations

varied dramatically The more mature organisations achieved development productivity in excess

of 25 function points per person month and removed over 95% of defects before product delivery

Their estimations were often consistent to within 10% of actual cost and duration of the project

In contrast, the worst organisations had a development productivity below 5 function points per

person month and remove less than 50% of defects before delivery Their projects often

exceeded estimated by more than 40% These results show that organisations with a more mature

software process can achieve higher levels of productivity

2 SPI 98 was a conference on Software Process Improvement held in Monte Carlo, December 1998

19

2.3 Prompter and the Software Process Improvement Approach

Having outlined the business advantage to making software process improvements it is now

necessary to show how Prompter relates to this concept The Prompter tool provides decision

support to software project managers In this way Prompter recommends that the user follow the

recommendations of documented best practices and apply these practices to their projects

Prompter uses its knowledge base to advise users about how to make decisions at the project

level that should have an impact at a business level by streamlining the software production

process Over the past decade, contributions have been made by a variety of domain experts to

the software process improvement arena Prompter is equipped with a set of daemons (Gaffney,

1999) These daemons are used to give advice to a user at any time based upon the description of

the project that has been provided by the user

The software producer is aware that the user demands the best from the developer and if this level

of desired quality is not provided, the user may cancel their request or worse - offer their busmess

to a competitor This is Prompter’s niche assistmg a software producer to remain competitive

by improving their software production process within the framework of real projects One of the

primary user requirements of Prompter is to provide decision support to a project manager of a

level 1 CMM organisation and to provide advice that will assist such a user to reach level 2 This

requirement was mcluded m the User Requirements Document of the P3 Project which was a

deliverable to the EC as part of the project contract It is logical to address this section of the

market as approximately 80% of software development organisations are at the initial level

(Yourdon, 1992)

2.4 Scope of the Prompter Tool

In order to define the scope of the Prompter tool, it is necessary to consider the full categorisation

of software engineering tools As stated in the User Requirements Document of the P3 Project

software engineering activities can be divided into four broad categories

1 The activities within the software development process (1 e within the hfe cycle) -

requirements, design, coding, etc

2 The support processes which are earned out in parallel to the development process -

configuration management, resource management, quality assurance, etc

20

e g Rational Rose,

Figure 2.3 The above diagram illustrates the area of software engineering in which the
Prompter tool operates.

3 Project management activities, which start before the development and support activities,

continue on in parallel to them, and beyond them - scheduling, cost and effort allocation,

project tracking, etc

4 Process management activities, which start even earlier and continue even longer than the

project management activities Definition of and/or selection of the appropriate process,

definition of tasks, roles, metrics and analysis of the process

Prompter is not concerned with the design or writing of code or providing automated assistance

for supporting activities such as tracking and scheduling However, Prompter is directly

concerned with decision support for process management and project management while not

directly providing for these areas themselves Many tools are available that provide for activities

such as quality, configuration management, project tracking, etc Examples of such tools are

KnowledgePLAN from SPR, SLIM from QSM and ProjectView from Artemis No smgle tool

offers the unique overlap shown in Figure 2 3 This has also been shown in the Technology

Implementation Plan document which was a P3 Project deliverable to the European Commission

21

In Figure 2 3 above, the domain of software engineermg tools encompassing CASE tools, project

management tools and process management tools is illustrated Examples of project

management and process management tools are provided in section 2 6 The examples of CASE

tools used for the software development process are not described as such products are not in

competition with Prompter These tools, Rational Rose from Rose Software and Borland C++

from Borland are both intended for the software development process and used for the direct

production of software encompassing the areas of system design and implementation

Prompter is concerned with one aspect of the overlap between process and project management,

namely decision support for the planning and potentially re-planmng components within them It

does not aim to cover all aspects of either project nor process management For example

Prompter does not assist the user in creating a detailed project plan showing milestones as in MS

Project or tracking resources as m Juggler from Catalyst Software In order to provide such

decision support, it is however, necessary to overlap with aspects of project management and

tracking Such an overlap involves Prompter providing recommendations for the type of skill

mix a team should have This recommendation would be based upon the project description that

the user has provided

2.5 The Use of CASE Tools to Streamline the Development Process

The use of CASE to support the development of software systems has become an essential part of

a developers arsenal This view can be somehow misleading as over reliance on tools without the

underlying process is a naive move that is littered with pitfalls that can add to costs and extend

deadlines (Humphrey, 1989) CASE is not needed by level 1 organisations, they have more

fundamental needs However, this warning has not stemmed the increasing dependence upon

CASE In Chns Pickering's 1996 Survey of Advanced Technology, 52 6% of respondents use

CASE to aid the development process In this survey, over 37% of respondents felt that the

greatest factor preventing the use of CASE was that the benefits were not demonstrated

(Pickering, 1996)

This interest in using CASE has also spilled into project management This is evident at a very

general level in the number of MS Project and MS Schedule users among project managers

There also exist some software-specific project management tools providing features which could

be considered m competition with Prompter In Table 2 2, a classification is provided of the

primary features found in project management tools This represents the functionality found in

22

most software project management tools. It was deemed necessary by the EC to examine existing

tools within this domain despite the fact that they are not direct competitors to Prompter. It was

felt that the interest in such tools indicated an awareness of the need for more rigorous software

project planning. It also showed that there was no direct competitor to Prompter. This was

reported in the Technology Implementation Plan of the P3 Project.

2.6 Existing Tools

The tools that are currently in the marketplace that can be considered to provide functionality

similar to that provided by Prompter are as follows:

• Open Plan by Welcom Software Technology

• Project Planner by Primavera

• Process Engineer by LBMS

• SELECT Process Mentor by SELECT Software

• Project Scheduler 7 by Scitor

• ProjectView by Artemis

• Risk+ by ProjectGear Inc

• KnowledgePLAN by SPR

• SLIM - Estimate by QSM

• IntraPlan by Intra2000

Many of these tools pride themselves on features that Prompter also offers. Almost all of the

above offered

■ Scheduling/Planning capability

■ Customisation of the User Project

■ Risk Analysis

■ What if capabilities

■ Reporting abilities

■ Multi-user/groupware

These competitors do not offer Dynamic Advice based on the content of a user’s project

description or the ability to evaluate alternatives within a project via scenario analysis. From the

point of view of this study it should also be mentioned that none of these competitors provide a

starting point project description such as the APM. Both of which are two of Prompter's primary

23

features and unsurprisingly are the features that distinguish Prompter from its competitors It can

be concluded that there is no direct competitor to Prompter as none of these alternative tools

possess the key features on which Prompter is based

Feature Description
Scheduling Scheduling is a key activity for project managers and the sophistication

of the algorithm affects the usefulness of the product Aspects which

should be taken into account include, task priorities, multiple

schedules, fixed date, as soon as possible and as late as possible

Resource control Initial and ongoing control of the resources applied to a project is a key

element of project management Typically, tools assist with allocating

and monitoring resources

Cost monitoring Information regarding actual and estimated costs should be captured,

such as, timesheets, committed costs, cash flows, borrowing needs, etc

Progress tracking A wide variety of metrics are available for tracking the progress of a

project against its plans Products normally support a variety of these

types such as, percentage completion for time, cost or work, estimation

of end date or cost and baseline comparison for time or work effort

Reporting features A varied reporting mechanism is essential and should mclude a variety

of reports such as, milestone report, variance report, status per

task/team member, etc

Multiple projects In many organisations, a project manager may be responsible for more

than one project and will require software to handle aspects such as,

prioritisation between projects, splitting projects, mergmg projects,

staff/resource sharing and viewing consolidated information

Charts A variety of charting mechanisms is desirable, such as, Gantt, Pert,

Work Breakdown Structure, resource, etc

What-if capabilities A common requirement for project managers is the ablility to

investigate the effects of potential changes in the situation of a project

They may need to see the effects of adding or withdrawing a particular

resource

Data import/export In certain circumstances users may wish to import or export data to

other packages

24

Help facilities There are a number of aspects to help including, online tutorials,

Internet support, on-screen context sensitive help

Networking More and more organisations require packages to operate m a network

environment and to allow for concurrent users

Table 2.2- The above table shows the various features expected of a project management support
tool. This table is taken from the Technology Implementation Plan of the P3 Project.

Prompter has features that enable it to distinguish itself from other tools in the same area This

was shown by the Technology Implementation Plan of the P3 Project This document was

approved by the EC as a valid competitor analysis Again, it can be pointed out that none of the

products evaluated above provide a baseline project description such as the APM which acts as a

starting point to the user’s project description This feature is therefore an important asset to the

Prompter tool and further enables it to distinguish itself from the available tools descnbed above

This point not only indicates the value of the Prompter tool but also justifies the role of this

research in conjunction with the P3 project

25

Chapter 3: The Concept of an APM

3.1 Introduction

The aim of this chapter is to define the APM (Abstract Project Model), discuss it’s format and to

show how it fits into the Prompter tool This is achieved by beginning with a high level

description of the APM in the context of the Prompter tool The raison d’ etre of the APM is

approached with respect to the advantage to the user by employing the APM in Prompter The

knowledge representation technique for the APM is illustrated by showing how the default values

are accessed and used by the tool Finally, a description of how the APM will be used within the

tool, both from a user perspective and from a functional perspective is provided

3.2 Research Framework

This research was earned out in parallel with the P3 project schedule This research began in

October 1997 which was month 14 of the overall project duration Within the timeframe of the

P3 project (30 months) there were four prototypes of the Prompter tool delivered The four

prototypes were delivered as part of a Spiral lifecycle model This research involved a number of

distinct activities The activities desenbed below were earned out in a sequential manner

Following the creation of an initial set of default values which were included in the second

prototype of the Prompter tool there began a process of validating these default values using

feedback from the user partners and internal review

Activity Duration

Preparation - becoming familiar with the area of software

quality and the Prompter tool specification

3 months

Data Collection - researching the default data for the APM set 4 months

Architectural Components - design and implementation of

actual software to handle the APMs in the Prompter tool

2 months

Integration - adding the researched values to the tool 5 month

Documentation - documenting the actual research 4 months

Table 3.1: This table summarises the activities involved and their associated durations when
performing this research These durations are in calendar months and not person months.

26

Preparation involved examining the area of software quality and software process improvement

This was essential as the Prompter tool seeks to assist software managers m making

improvements in their technique of developing software During this time it was also important

to become familiar with the Prompter tool’s architectural components This was essential so that

software could be developed to manage the APM set

Data Collection involved researching the characteristics of the typical software project This

involved collecting surveys and texts contaimng previous research A large part of this time was

spent working with the VASIE database described m Chapter 4 (ESI, 1998) Towards the end of

this phase, the collected data was classified according to relevance

Architectural Components involved developing documentation and software components to

manage the handling of the APM data values by the Prompter tool This code was written using

Java and CORBA to take the APM values from an external data file and instantiate these values

into a user’s project upon the selection of a specific APM This activity was time consuming as

no representation mechanism had been decided upon for the data in the APM set I had to make

extensions to the design of Prompter to handle this This involved evaluating alternative

representations for the APM data The Token object which is discussed in section 3 7 was the

final representation decided upon

Integration involved the conversion of the selected characteristics identified by the Data

Collection phase into a format acceptable to the tool

Documentation of this research (the writing of this thesis) commenced following the integration

of the initial set of APM values into the Prompter tool The documentation phase continued in

parallel with the final refinements which were made when delivering the two remaimng

prototypes of the Prompter tool

3.3 The concept of an APM

Before speaking about the APM itself in detail it is important to mention that the APM is a

feature that is absent from any other tool in the same market area as Prompter The APM set was

constructed by this research alone This involved bringing this concept from an initial verbose

requirement to an actual component within the tool that has undergone a process of verification

27

and validation incorporating any refinements that have been identified as necessary This

requirement is shown in section 5 3 1

This section seeks to answer two important questions about the APM and Prompter These

questions are

• What does the APM represent^

• How does the APM fit into what the tool plans to do7

3.3.1 W hat does the APM represent

The APM represents a starting point for a user’s project This starting point is a generic

representation of what a user project may look like It is perhaps surprising to note that nearly all

software projects fail for the same reasons (Jones, 1996) The risks that lead to project failure are

not localised or organisation-specific but have been documented on a global scale For this

reason, it is possible to generalise quite liberally over the entire software development community

and identify improvements that all organisations can make m order to achieve higher

productivity If the necessary improvements can be identified, this means that the problems that

these improvements seek to resolve can also be identified These problems can therefore be

viewed as characteristics of a software project This is what an APM mtends to represent - the

characteristics of a software project Seen from another viewpoint, these are the characteristics

that describe the starting point of a project The APM is thus a generic description for the starting

point of the average software project This is possible because from an abstract viewpoint most

projects appear similar An example of this similarity is that the most common type of software

project is the small-to-medium size project developed m a familiar, m-house organic software

development organisation (Tarek, 1991) These are the types of concepts that the APM seeks to

model

Figure 3 1 on the following page illustrates the role of the APM m an abstract manner Inside the

rectangle are three project descriptions An APM is depicted by a circle This circle represents a

set composed of a number of default values applicable to a certain category of software project A

level 1 CMM organisation conducting a MIS project is depicted by the oval labelled Project B

Project A depicts a level 3 CMM organisation developmg a software product for an embedded

system that will perform life critical tasks. Within this rectangle and outside the three circles are

28

all possible software projects (the universal set). The APM shown below has a large

intersection area with Project B. Project A however has a small area of intersection with the

APM.

Figure 3.1: The above diagram shows the intersection area
between two user projects and an APM.

This implies that there are a large number of features common to this APM and Project B but

very few features common to the APM and Project A. It is the objective of the APM to have

a large intersection area with as many software projects as possible so the user's starting point

can be modelled by the Prompter tool.

3.3.2 How does the APM fit into what Prompter intends to do

To answer the second question, how does the APM fit into what the tool plans to do, it is

necessary to understand the objective of Prompter. Prompter aims to provide decision

support to the project manager in the planning phase of a project. To provide the user with

practical advice the tool must be provided with a description of the user’s project. Otherwise

the tool would only be facilitated to provide pointers and general guidelines to project

managers. To provide sensible project based advice a project description must be available.

To relieve the user from the time consuming nature of entering an extensive project

description, it was conceived that the availability of a default project description would

benefit the user. This can be considered loosely analogous to the concept of a letter template

for an MS Word document. This APM may not always provide the ideal default description

but it provides a starting point that is easily modified and extended.

29

3.4 Project Characteristics and the Project Description Template

As described above the APM describes a user project in a generic fashion This description thus

needs a representation mechanism A set of descriptors are required that embody the concepts by

which this starting pomt may be described At this pomt, the user has a mental picture of the

starting pomt of their project A mapping is required from the user’s mental model of their

project to a form that can be used by Prompter This mapping is performed by a descriptor

known as a token A token represents an atomic real world characteristic of a project plan

Tokens may in fact model data which is concerned with features of a project or may alternatively

describe facets of an organisation An example of such an atomic characteristic for a specific

project is team stability This characteristic represents the stability of the software development

team, or in other words the likelihood that there may be the loss of critical members during the

project An organisational characteristic may model a concept that is invariant between projects

An example of such an invariant characteristic is the organisation’s attitude towards configuration

management There are approximately 125 unique tokens used by the Prompter tool, each of

which represents a different project or organisational characteristic which may or may not be

known by a project manager during the planning phase (See Appendix A)

As explained above, a token represents a characteristic of project planning Therefore, each token

is a variable of project planning For each token, a domain1 over which the variable makes sense

must be defined The definition of a domain of possible values allows the variation between

projects to be modelled To illustrate this pomt, the example token described above, team

stability has the possible values, low, medium or high Table 3 2 below illustrates what each of

the elements in the range of possible values represents using a textual description

Each characteristic has a set of values as the previous table shows for team stability This set is

the domain over which the token makes sense An entire set of such characteristics may provide

a description of a project during the planning phase An example of such a description is

provided in Table 3 3 on the following page

30

Value

Token: Team Stability

Meaning

High The project team is stable It is unlikely that critical members will be lost from
the team before the end of the proiect

Medium It is hkely that members may leave the development team before the end of the
proiect but this should not pose a nsk to the success of the proiect

Low The project team is unstable It is highly likely that critical members will leave
the project team before the end of the project causing a nsk to the success of the
proiect

Table 3 2 The above table shows the descriptions which map to the values of low, medium and high
for the token ’team stability’.

Project Name: Futile

Project Description:

Token Name Token Range Token Value
Project Size [Small, Medium, Large] Small

Requirements Complexity [Low, Medium, High] Medium

Team Development Experience [Low, Medium, High] Low

Team Skill Mix [Low, Medium, High] Medium

Project Budget [0 “] Umt of Currency 350,000

Market Competition [Low, Medium, High] Low

Observed Standards [Present, Not Present] Not Present

Development Costs [0 °°] Unit of Currency 220,000

Project Duration [0 »] Person Months 50

Project Life Cycle [Waterfall, V, Spiral, Prototyping] Waterfall

Table 3 3 The above table shows a set of example characteristics of a project in the form of tokens.
The domain for the tokens are shown m the second column. The third column shows the instantiated
values within the domain that make up a basic project description. The above is an example of a
user’s project, not an example of an APM.

The creation of a set of tokens is equivalent to creating a project description template This

representation mechanism can be considered a project description language with a number of

slots that may be filled The more slots that are filled, the more detailed and informative the

description of the project It is precisely this project description template that allows the

definition of an APM An APM is thus a set of instantiated tokens that the user may select as an

31

appropriate starting point for their project. It is important to note that the APM will predict a set

of token values appropriate to the user but will not contain a full set of tokens for the user’s

project. Only the tokens that can be reasonably justified by this study will be included in the

APM.

3.5 The APM Set
Tokens are used in Prompter in two ways. The first way in which tokens are used is to create a

project description. However, the token set can also be used to form an APM. This is because an

APM is formed of a subset of the entire token set instantiated with particular values. The actual

values that are allocated are the primary objective of this research. An APM is therefore

composed of a number of such default token values. As described in the previous section, there

are two distinct categories of token. These categories are those that model features specific to a

project and secondly those that describe characteristics of an organisation that are independent of

projects or in fact identical for all projects at a particular organisation. An APM can be

constructed from these two token types because there is data available relating to both the typical

characteristics of a software project as well as the typical characteristics of a software

development organisation.

Figure 3.2: The APM is formed from a blend of
organisational and project characteristics

As Figure 3.2 above indicates each APM is composed of a combination of characteristics

particular to both project and organisation. The claim behind this thesis was that it was possible

to create a description of the typical software development organisation and characterise this

32

within the model such as the APM The Prompter tool intended to obtam a description of the

organisation from the user This description would be then examined by the Daemons component

of the tool and suggestions made in the form of decision support These suggestions would be

largely based upon project characteristics rather than organisational characteristics however both

are important to the tool

However, it is not quite as straightforward to create such a template for all software projects due

to the variation between projects These variations are largely related to the size and complexity

of the product Because project characteristics cannot be narrowed down to one particular model,

a set of APMs were created to handle these variations These APMs are distinguished according

to project size and complexity Before going any further it is necessary to clarify what should be

understood by the terms project size and complexity in the context of the APM

3.5.1 Definition of Project Size and Complexity

Both size and complexity are terms that appear quite subjective due to their use in everyday

conversation There is also the problem of familiarity with a particular baseline which acts as a

reference point to which to compare all others in terms of size or complexity

Size in the sense of software development is measured by two particular techniques These two

predominant techniques are known as Function Point analysis and Lines of Code measurement

Both have merits which outweigh the other as a technique of measuring software size (Furey,

1997) A discussion of both lines of code and function points is beyond the scope of this

research Size is described m Prompter as small, medium and large However, this measure of

size is not based upon the LOC or Function Point metric but based on the size of the project team

This is because neither of the measurement techniques described above are consistent enough

across the software development industry

Small Size

• Small sized team working in a familiar environment

• Project team composed of around 15 members or less

33

Medium Size

• Medium sized team possibly divided into a number of sub-teams working on distinctive

components

• Project team contains possibly more than 15 members but less than 50

Large Size

• Project team is large and distributed among a number of teams working on various

components

• The project team may be geographically distributed

• The project team may be composed of more than 50 members across the vanous activities

The three intervals of size described above have actual numbers assigned to each These explicit

sizes, 0-15,15-50 and 50+ were decided by the project manager responsible for overseeing the

delivery of the APM as a component withm the P3 Project

Complexity can be described m simple terms as how difficult it is to produce a software

component This is contributed to by many factors Some of these factors are related to the

inability to cleanly allocate the requirements to a software design Other problems are related to

the non-functional requirements of a system such as speed of execution or tight operatmg

constraints In the context of the Prompter tool, complexity can be classified as low, medium and

high The following classifications of complexity have been based on COCOMOs classification

of complexity as organic, semi-detached, embedded (Boehm, 1981) These three terms are

explained below

Low Complexity

• Familiar software development environment

• There is experience in developing related systems

• A small amount of communications overhead

• A stable set of requirements

• Stable development environment

• Low premium on early completion of the project

34

Medium Complexity

• Medium complexity represents an intermediate stage between low and high complexity with

features of both present For example, communication costs may be high but the data

processing function may be managed by well documented or proven algorithms

• Team members have an intermediate level of expenence with related systems

• The team may have a number of inexperienced members present

High Complexity

• The software will operate withm a coupled complex of hardware, software, regulations and

operatmg procedures

• The requirements are highly inflexible and the cost of making changes is high

• The software is expected to conform strictly to the specifications

• This type of project is usually working with unfamiliar software or hardware components

• Changes to the project schedule are not usually negotiable

The size of the project has been described m a qualitative manner above with respect to the

number of team members This is because of the absence of a reliable size metric m the software

development industry The most intuitive metric that can be used describes the size of the team

required to deliver a software product

Complexity is defined above in a verbose manner No gauge of measurement is provided by

which complexity can be estimated Both of these points appear to be problems This is not so

however, as qualitative terms such as low, medium and high complexity and such large ranges for

product size estimation suit a project manager’s knowledge during the planning phase of a project

This is in fact one of the only means by which a planner is equipped to categorise their project at

such an early stage

3.5.2 An Example APM Set

From the definitions for complexity and size provided above, the next step is to define a set of

APMs based upon these qualifiers Both size and complexity defined above have a range of three

possible values This yields nine possible APMs if both project team size and complexity are

used as discriminators Some combinations are m fact redundant as it is highly unlikely that any

35

software project that is large m size will be considered to be not complex Table 3 4 on the

following page summarises the characteristics of each of these nine APMs

Estimated Product Complexity

Low Medium High
Small

■ Small team
■ Familiar set of

Requirements
■ Flexible schedule

■ Small team
■ Interfaces may be

complex
* Communications

overhead
■ Team may be

uiif&mih&r

* Small team
« Highly complex

* Team unfamiliar
with, this type of
system

* In flexible schedule

Medium

Estimated
Team
Size

■ Medium sized team
* Familiar set of

Requirements
■ Flexible schedule

■ Medium sized team
* Ccramumcatioiis

overhead
» Team may be

unfamiliar

* Mecfmm&zeiJ team
* Highly complex

requirements
* Team unfamiliar

with this type&f
system

■ ¿flexible schedule

Large
* Latge possibly

disJnbuled team
* Familiar set of

Rsquttetnfcate.
* Flexible schedule

* Large possibly
distributed team

* Commtiiijiatiotts
overhead

* Team may be
iittf&iaj bar

* Large Bamberiif
interfaces

* Large possibly
djstnNtedteam

■ Highly ccropjex
requirements

■ Team unfamiliar
mtiutas iypeof
system

* ¡¿flexible schedule

Table 3 4- The above table shows an example APM set for use in the Prompter tool. Each of the
models is depicted by a box where the features of the APM are summarised. For a more detailed
description see Chapter 5 which provides the APM set and their associated descriptions.

3.6 The Format of the APM

As explained in previous sections, the underlying data representation format m Prompter is the

token A complete project description is made up of approximately 125 distinct tokens (See

Appendix A) An APM however in made up of a much smaller subset (between 30 and 45

tokens) This is because the complete project description includes tokens that cannot be set by

default Examples of such tokens that cannot be defaulted are relating to the duration of each of

36

the stages of the project or the number of members on the project team or the training costs that

will be incurred during the project These project specifics are added by the user of Prompter

having selected the most appropriate APM for their project An APM is thus composed of a set

of tokens initialised with a value which has been found by this study The composite set of

tokens in an APM will be used as a starting point for the user’s project description These tokens

combined will give Prompter a starting point description of the user’s project

The APM of Prompter is represented as a file external to the tool Each of the APM files is

provided to the user by the installation of Prompter The installation of Prompter adds these

APM files to a standard directory withm the filespace of Prompter When the user requests the

creation of a new project, a window is displayed which allows the user to select the model most

appropriate to their situation See section 1 5 for a functional overview of using Prompter

When the user has selected the most appropriate model, the tool opens a data file containing the

default token values These token values are then used as a baseline to which the user will add

their project specific data such as

• Project schedule information

• Team characteristics

• User environment

• Metrics data

3.7 Initial Research: Identification of a Base Token Set

This section describes the information that the token data type was required to represent in

Prompter The technique by which this research was performed is then investigated and followed

by a description of the Token Data Dictionary as a controlled document for Token Management

3.7.1 The Objective o f the Token Data Type

The data type which represents characteristics of a user project and user organisation is known as

the token Before characterising any default project models it was necessary to formulate this set

of tokens into which the default values could be placed This set was intended not only to

represent the APM of Prompter but also to represent generic project information m the tool

When researching the token there were two main concerns

37

1 Intuitive to the User: A user of this tool must feel comfortable with the type of information

being requested by the tool If the type “of data required does not map to the user’s concept of

a software project it will be difficult to obtain a full or even partially valid project description

This will render any project description useless

2. Useful to the Daemons Because Prompter's main aim is to provide decision support to

software project managers, it is essential that the user project is represented appropriately

The advisor components of Prompter need a rich and accurate project description in order to

diagnose any problems or risks in a project This is necessary because the Daemons examine

a number of tokens collectively and formulate advice based upon the conditions suggested by

these token values aggregately (Gaffney, 1999) If the project description cannot convey this

data, the daemons will be rendered useless

3.7.2 A Token Set for Prompter

As described above the token data type was required to be both intuitive to the user and also

useful to the Daemons It was intended that Prompter supply the user with advice relating to a

particular set of areas withm the scope of software project management These areas are shown

m Figure 3 3 on the following page

It was necessary that the token set provide sufficient information for the daemons to provide

advice for these areas This required an analysis of these areas and an identification of the type of

information about a software project that would allow the critique of a user’s project The P3

Project Handbook which had been written prior to the identification of the token set provided a

list of appropriate project characteristics that would be used by the Daemons These

characteristics needed to be cast from a simple verbose description into the token data type as

defined in Appendix A The Handbook format is illustrated on the following page in Table 3 5

which shows a number of suggested characteristics to represent variations m the project

environment

38

 c A d v i c e a r e a s

—| Selecting lifecycle |

—| Standards {

—| Selecting technologies |

^ ----

Identifying activities |

Scheduling

1 1

R t s l ^ n a n a g e m e n ^ ^ J J —

Estimation

Selecting method

—J Analysing estimates

1Resource allocation

—j Identfying needs

—| Scheduling resources |

Team skill mix 14

-C

Selection

Implementation plan

41 Analysis

Identification

Schedule

Operational

Support

Analysis

M itigation

Monitoring]

Figure 3.3: The diagram above illustrates the Advice Taxonomy of Prompter.

Not all of the characteristics m the handbook contributed to the Token Data Dictionary Other

sources that were used were Boehm’s USAF Risk Taxonomy (USAF, 1988) and the AMI

Handbook (Pulford, 1996) These additional sources were intended to provide tokens appropriate

to the areas of Measurement and of Risk Management I was not responsible for the creation of

the Token Set for these areas but for the remaining areas shown m Figure 3 3 In summary these

areas are

• Analysis and Planning

• Estimation

• Activity Planning

• Resource Allocation

• Project Re-planning

39

Flexible and supported Half-way in between? Fixed parameters and
not supported

Funding Adequate and available Partially or sporadically
funded

Not adequate, not
available

Equipment Available and easy to
support

Marginal Not available or difficult
to maintain

Software and tools Available and adequate Marginal Not available, not
adequate

Training Not required Some training required Required
Schedule Flexible Modifiable Fixed
Budget Flexible Modifiable Fixed

Quality o f product Good Better Best
Functionality o f product Low Medium High
Productivity of
programming effort

High level language,
existing or purchased
routines

High level language, no
reusable code

Low level language, all
original code

Estimated risk, based on
project stability

Low Medium High

Software supplier or
subcontractor required

No Yes, for non-cntical code Yes, for critical code

Likelihood of change in
scope or objective

Low Possible High

Ability to make changes
in timely manner

High Medium Low

External requirements to
provide data or
information

Low Medium High

Concurrent development No Some, but not critical to
protect success

Y es, critical to project
success

Development within
systems engineering

No Some, but not critical to
project success

Yes, critical to project
success

Table 3.5: The above table shows an example of a set of characteristics which were provided in the
P3 Project Handbook. These characteristics were analysed and rejected or added to the Token Data
Dictionary.

This work involved analysing the characteristic set provided by the Handbook and translating it

mto the format of the token The tokens that I identified are shown m Appendix A as part of the

Token Data Dictionary The Token Data Dictionary is described in the next section

Following the identification of the token set that would be analysed by the Daemons, it was

necessary to specify a presentation mechanism for the token set It was realised that many tokens

would be used by more than one daemon in Prompter For example a token such as

Requirements Complexity would be used to provide advice pertaining to more than one area in

the Advice taxonomy (Gaffney, 1999) It was also identified that the tool would be provided with

a number of domains and subdomains These domains and subdomains would be an organisation

of the token set according to the similarity of the questions that the user is asked It was

considered sensible to group related tokens for ergonomic resons whereby the user answers

questions of a similar nature Prompter was provided with a specific set of domains and sub­

40

domains into which the tokens would be inserted The next task was to take the tokens set and

distribute it among the various domains and subdomains These domains and subdomains and the

allocation of the tokens throughout are provided m Appendix A

3.7.3 The Token Data Dictionary

Having created a project description template using the token set, the next step was to control this

token set by creating a process for managing change Changes to the initial token set were

expected for the following reasons

• Due to evolution of the Prompter tool through a series of incremental prototypes it was

foreseen that modifications and refmements would be made to the token set

• Knowledge identification is the process of manipulating the token values in order to provide

advice relating to a user project If the available token values were considered unsuitable for

cntiqumg a user’s project, it would be necessary to add tokens to model the missing project

information

• Feedback from the users regarding the way m which project information is requested could

result in modifications to the token set to increase usability

For this reason, a document known as the Token Data Dictionary containing the token set was to

be controlled using a formal system of change control and configuration management This was

essential as the developer partners suggested additions at different stages of the project and for

varying reasons This document also keeps account of the token layout in the GUI Related

tokens are grouped into domains and subdomains This layout is recorded m the Token Data

Dictionary The most recent version of this document is provided m Appendix A

41

Chapter 4: Current Industry Practices and Sources of the APM Values

4.1 Introduction
The objective of this chapter is to describe the seven principal sources examined when creating

the APM set These sources justified the allocation of default values to the appropriate tokens m

the APM set Because the default values are allocated on the strength of these seven sources,

there is a need to provide a description of each There is a description of the profile of the source,

the sample set used is described and finally an evaluation of the validity of each source is

provided The tokens that have been allocated default values as a result of each source is also

provided A number of problems were encountered performing this study These problems are

also discussed below as a preamble to the description of each source

4.2 Problems encountered when performing this literature study
A number of problems were encountered when collecting and examining the data necessary to

create the APM set of Prompter These problems were caused by a number of factors that were

unforeseen before beginning this study This section will discuss these problems

4.2.1 A General Absence o f Metrics

One of the key points of the SEICMM process maturity scale is that the use and application of

metrics is not considered to be a key process area until level 4 is achieved. This does not imply

that metrics cannot be collected at the lower levels of software process maturity, it does imply

however, that there is no business gam to using metrics at these levels This is because the

organisational maturity is not at an adequate level to apply these metrics accordingly (Humphrey,

1989) In light of this revelation it is no surprise to find out that there is a complete absence of

quantitative data describing the activities of level 1 software organisations This is because this

type of data is simply not recorded The net effect m terms of this study is that there is a shortage

of useful data points for the APM set of Prompter The absence of valid metrics has proved the

most serious problem facing this research Much of the useful data that has been located has been

of a qualitative nature with wordy descriptions of how software organisations approach

development practices

42

4.2.2 The Success Stories

Much of the data published m journals and magazines citing case studies of software

organisations seem to contain bias For example, the case studies for software process

improvements tend to highlight industry’s success stones such as Raytheon, Motorola, Hughes

Aircraft etc These producers of real-time embedded software have achieved levels of

organisational maturity through the CMM process improvement approach These categories of

software producer do not represent the typical software development organisation For the

purpose of this study, this category of software development organisation falls outside the scope

of those being considered

Other case studies tended to probe a specific aspect of improvement such as software reuse and

ignore the rest of the supporting processes As a result, many such case studies failed to give an

overall picture of software production at any particular organisation, which is the type of data

which has been sought in this present study From all of the data collected (except for the VASIE

database described below), there were no publications describing situations where an organisation

attempted to make improvements and were not as successful as originally intended Many of the

case study examples collected illustrated improvements at organisations which were CMM level

2 or higher To iterate the point made in earlier chapters, Prompter is predominantly aimed at the

software organisation seeking to make small improvements which will increase productivity

These organisations typically have no defined software process For this reason, it is about this

type of organisation that this research seeks to collect data so that such a starting point can be

represented by the APM Unfortunately, descriptions of this type of organisation are not as

plentiful as those of the more mature developers described above

4.2.3 Politics

No organisation contributing to a case study or survey wishes to provide results that are used to

exemplify mediocrity The contribution of valid data often requires the blessing of semor

management Management is often concerned that competitors will use any published

information against their organisation There is often concern that any involvement in case

studies or surveys will result m a negative effect This concern means that organisations often

decline to reveal productivity data or worse, provide results that have been tainted This scenario

is hard to identify making spoiled data more difficult to isolate Due to these concerns, there is

43

less data avadable than expected describing the internal workings of the typical software

organisation

4.3 Sources of the APM Values
Each of the sources used in this research is documented below A general comment about the

source, the intended audience and an evaluation of usefulness to the task of building the APM set

is provided The tokens that have been allocated default values as a result of the source are also

listed For a further description of the token and the concept it represents, see Appendix A

4.3.1 The Description o f the Average Software Organisation

The APM of Prompter seeks to model a software producer with a process maturity level

equivalent to a CMM level 1 organisation This categorisation of a software organisation as level
\

1 actually defines a number of characteristics which are common to almost all level one

organisations For this reason, these characteristics can be implied as present m any organisation

wishing to use the APM of Prompter It is true that some organisations at the initial level

perform activities that are characteristic of a more mature organisation However, this is rare, as

there are a number of characteristics that are common to almost all level one organisations

These common features are summarised below (Yourdon, 1996)

> Standards may be present but are generally ignored

> Endorsed methodologies are practised informally

> Tools may be present which are used on a haphazard basis

> Estimation process is weak and often inaccurate

> Failure to track software size changes or code and test errors

> Schedules are often informal

> Programmers consider themselves as artists not subject to rules or procedures

The characteristics described above have been verified by research 81% of software

development organisations assessed by SEI up to 1992 were at the initial level No recent data

has indicated that this figure has changed considerably (CSE, 1998) This is the justification for

using the level one organisation as a baseline for the APM set The next step is to investigate

each of these characteristics in detail via the sources researched below

44

4.3.2 The European Software Institute

The European Software Institute (ESI) is an independent authority on software process

improvement The ESI’s principle aim is to act as a link between process improvement

technologies and particular business needs primarily for European software development

companies It is through their web site that the following two sources were employed in this

research

4.3.2.1 Source 1: The VASIE Database

The VASIE (Value Added Software Information for Europe) database is maintained by the

European Software Institute (ESI, 1998) Through the VASIE database, the ESI aims to provide

value added information for the European software best practice repository and to permanently

disseminate the validated PIE (software Process Improvement Experiment) results through the

WWW All of the PIEs included m the VASIE database have been performed under the

supervision of the ESSI (European Systems and Software Initiative) The ESSI is a body

established by the EC to promote software best practice through support to organisations

engagmg in PIEs This database contains the final reports provided by organisations performing

PIEs funded by the EC under the ESSI initiative These PIEs provide information reports of the

experiences of software organisations making software process improvements These reports

follow a set format describing

♦ Background including the starting scenario, work plan and expected outcomes

♦ Work performed

♦ Results and analysis from technical, business, cultural and organisational points of view

♦ Key lessons learnt from technical, business, cultural and organisational points of view

♦ Conclusions and future actions

The most important feature of these reports from the point of view of the APM was that there was

a description of the starting scenario provided These starting scenarios were provided as a page

of text containing statements describing the organisation and/or their projects such as

While software is quite well- designed from a modern technology point of view,
documentation ethics tend to be low

No formal methodology was in place to underwrite the quality of the requirements
capture process

45

For almost all of the PIEs analysed, the starting scenario described an organisation at the initial

level This data helped describe the activities of a level one organisation before any process

improvements were attempted As described in previous chapters this is the type of software

organisation that the APM wishes to model

The VASIE database contained 141 software process improvement experiments that were

available for use m this research Only 50 of the 141 PIEs were considered useful for the

following reasons

■ Some of the reports deviated from the report format rendering these reports difficult to use

■ Some reports cited PIEs performed at stages of organisational maturity beyond the initial

level addressed by Prompter

■ Many of these PIEs were documenting improvements of a specific aspect of the software

process such as software maintenance

There were a number of positive features of using reports from the VASIE database The first of

these positive features was that there appeared to be no bias The starting scenarios always

appeared to portray the true situation before making any improvements From the description of

such a starting scenario, the characteristics of a low maturity software organisation can be

extracted Additionally, all of these PIEs were funded by the EU A requirement of such
t

funding is that an appointed project officer would oversee the experiment ensuring that the report

contains only what took place during the PIE This helped ensure the validity of the data For the

reasons outlined above, the 50 PIEs obtained from the VASIE database proved to be the most

useful source when creating the APM Table 4 1 on the following page lists the tokens that were

allocated default values as a result of this source

46

Token m Token Name

24 TeamMix

36 ApplicationOnginality

48 ProjectEquipment

50 ProjectSubcontractmg

52 T eamS oftwareDevelopmentExpenence

59 MarketCompetition

60 StandardIS09001

66 OrgamsationCodingStandard

67 OrganisationDocumentationStandard

68 OrgamsationConfigManagementStandard

70 OrgamsationlntemalProductStandard

71 SubcontractorStandardRequired

72 SoftwareReuseStandard

78 EstimationStandard

90 IndependentVandV

Table 4.1: Tokens allocated default values as a result of the VASIE

Database (ESI, 1998). For a description of each token, see Appendix A.

4.3.2.2 Source 2: ESI 1997 Software Best Practice Questionnaire - Results

A questionnaire was completed by organisations submitting project proposals to the European

Commission during the ESSI call in 1997 (ESI, 1997) A total of 394 valid responses were

obtained from 20 different countries and 37 different sectors The aim of the questionnaire was to

collect data on widely recognised software management practices The questionnaire was made

up of 42 questions divided into five sections

• Organisational issues

• Standards and procedures

• Metrics

• Control of the development process

• Tools and technology

The results were presented as a series of tables, one for each of the sections listed above Each

table showed the question and the percentage (from the total responses) of positive responses to

each question For example, the section on Metrics had the following entry

47

Management Practice Average Adoption Level

Record and feedback of estimated

versus actual efforts into

estimation process

55%

Record and feedback of size into

estimation process

21%

Table 4.2: The above is an example of the type of results that are
provided by the 1997 Software Best Practice Questionnaire - Results
(ESI, 1997).

The questionnaire was structured that only yes/no answers were permitted. This fact combined

with the accompaniment of the questionnaire with an EC call for proposals could have led

respondents to portray optimistic results. This point was documented in the survey report and not

simply conjectured by my observations. This was certainly implied when the results of this

experiment were compared with the results from examining similar organisations’final reports in

the VASIE database. Another problem discovered when examining the results from the

questionnaire was that this document sought to highlight aspects of key process adoption

according to geographical location. The focus for the creation of the APM set was to be

independent of region or country. Despite the problems outlined above, this source proved useful

as many of the areas addressed within overlapped with the aims of the Prompter tool and hence

the type of data modelled by the APM.

Token ID Token Name

48 ProjectEquipment

78 EstimationStandard

Table 4.3: Tokens allocated default values as a result of the ESI 1997
Software Best Practice Questionnaire - Results. For a description of
each token see Appendix A (ESI, 1997).

4.3.3 Source 3: Current Practice in Software Engineering: a survey

This survey was carried out between November 1995 and March 1996 and published in the IEE

Journal, Computing and Control in August 1997 (Holt, 1997). The report was written by Dr. Jon

48

Holt of the University of Wales, Swansea, UK Fifty participants were obtained primarily as a

result of a letter published in the IEE News and a web page containing the form for the survey

Respondents ranged from single engineers, to small companies, major international companies

and some academic institutions The main aim of the survey was to find out exactly who was

using which methodologies, methods and standards, and their perception by the users The

results of this survey also provided information about

■ Frequency of lifecycle adoption

■ Use of design methods and methodologies

■ CASE tools

■ Adoption level of various process improvement technologies

The results were provided as a series of paragraphs describing the respondents collated responses

The questions that the respondents were asked were provided followed by the grouped results

These results were coupled with a comment by the author which justified or suggested a reason

for the result in question An example of such a set of results are illustrated m the Table 4 4 on

the following page

Development Model Percentage of Overall

Traditional Waterfall 30

V Model 24

Spiral 20

Other 4

No Model 22

Table 4 4 The above table shows the popularity of the various
lifecycle models in use today taken from Jon Holt’s survey of
Current Practice is Software Engineering (Holt, 1997).

The results of this survey have proved useful to this research and have proved consistent with

findings from other sources that have been documented in this chapter The source of the survey

appeared to be reliable through the publication of the results by the BEE This reliability was also

verified through actual contact with the author Of particular use from the results documented are

description of the more popular lifecycle models in use and conformance to standards

49

Token ID Token Name

60 StandardIS09001

89 ProjectLifeCycle

Table 4.5: Tokens allocated default values as a result of Jon Holt’s
1997 Current Practice m Software Engineering Survey (Holt, 1997).

4.3.4 Source 4 :1998 Software Business Practices Survey

The 1998 Software Business Practices Survey represents the ninth annual survey of the business

and operating practices of the US software industry (Price, 1998) The 1998 survey was

completed by 716 of the 16,517 compames that were invited to participate The survey was

conducted in January 1998 and was typically completed by respondent companies’chief

executive officer Questions sought actual and projected information The questions m the

survey sought information on the number of products, target markets, international activity and

the number and assignment of employees Other questions sought information on revenue,

profitability, capital-raising activities and demographic information Beyond these questions

about general business practices, the 1998 survey focused primarily on customer support, pacing,

marketing and distribution processes

The survey results were published as a series of questions and the percentage responses to each

question of the overall survey respondent total For example the following chart provides an

example of the results to the question From the following list, please rank the top five issues of

concern to your company and the top five issues of concern to the software industry

50

Effect of internet

Short term cash flow

Profitability

Retaining Key Employees

Cost Effective Marketing

Managing Growth

Recruiting Quality Employees

Customer Satisfaction

0 200 400 600 800 1000 1200 1400

Figure 4 .1 : The b ar chart above shows the importance of customer satisfaction to software
developers as provided in the 1998 Software Business Practices Survey (Price, 1998).

This survey was a valid source of business-related issues of use to this research. Information was

supplied about application type and organisation profile. This survey provides a reliable source

of data due to the extensive size of the sample set. This is reinforced by the acceptance of the

survey for independent publication and also owing to the historical establishment of this annual

report. Despite the validity of the data, much of the results proved unusable in the context of this

research as the report was aimed predominantly towards the marketing and sales aspects of the

software industry.

Token ID Token Name

36 ApplicationOriginality

59 MarketCompetition

Table 4.6: Tokens allocated default values as a result of the 1998
Software Business Practices Survey (Price, 1998).

51

4.3.5 Source 5: EXE Magazine Surveys

EXE magazine published two separate surveys which provide usable information about software

development m the UK Both of these surveys are summarised below

4.3.5.1 Survey 1: What are you really worth?

The first of these surveys is intended to give software engineers an idea of what to expect in terms

of salary and working conditions (Bennett, 1998a) This survey targets certain sectors and points

to areas of high financial growth The survey was based upon 316 replies to a questionnaire

Also included was information about

■ Software development platform

■ Hardware development platform

■ Type of software being produced - bespoke, system, embedded, etc

■ Percentage of in-house users for developed software

Although the theme of this article was not software process improvement or description of

software organisations many of the results proved useful for understanding the type of product

developed by the average Bntish software development organisation This source can be

considered to be useful due to the number of organisations participating m the survey

Additionally, the results found from this survey were not contradictory to any of the findings

made through the other sources Although the organisations used in this survey were taken from

the British software development industry there is no reason to believe that these results would be

any different if the organisations had been located elsewhere

4.3.5.2 Survey 2: Development Tools ’98

The second set of survey results published by EXE was intended to give a report of the following

areas (Bennett, 1998b)

■ Development environment - software and hardware platform

■ Tools employed to aid the development process

■ Beliefs and opinions about contemporary issues such as YR2K, CORBA, etc

This survey gathered the results of 311 respondents who replied to the questionnaire over

telephone The respondents were chosen at random from EXE’s readership The gathering of

results was conducted over a two-week period between July and August 1998

52

As with the first EXE survey performed, the theme of the report was largely outside the scope of

this research. Despite this, the survey touched off areas of interest providing information about

software/hardware platform usage, team profile, application type and development

methodologies. The results of this survey appeared equally valid to those taken from the first

EXE survey however there is a suspicion that some of the same organisations were used as input

to both surveys.

Platform Percentage of responses for this platform

(respondents can select more than one platform)

PC 95%

Workstations 42%

Embedded 22%

Mini 12%

PSA 6%

Mainframe 5%

Games consoles 2%

Other 1%

Table 4.7: An example of the results from the Development Tools ’98 survey
published in EXE Magazine (Bennett, 1998b).

The format for both surveys described above was identical. Results were collated and

percentages of responses were provided as a series of tables. An example from the second EXE

survey, Development Tools 98 is provided in Table 4.7 above. These responses are to the

question, which of the following software platforms do you develop software for?

Token ID Token Name

24 TeamMix

36 ApplicationOriginality

48 ProjectEquipment

50 ProjectSubcontracting

52 T eamS oft wareDevelopmentExperience

59 MarketCompetition

60 StandardIS09001

53

66 OrgamsationCodingStandard

67 OrgarasationDocumentationStandard

68 OrgamsationConfigManagementStandard

70 OrgamsationlntemalProductStandard

71 SubcontractorStandardRequired

72 SoftwareReuseStandard

78 EstimationStandard

90 Independent V andV

Table 4.8: Tokens allocated default values from the Development Tools ’98 (Bennett,
1998b) and What are you really worth (Bennett, 1998a) surveys published in EXE
Magazine.

4.3.6 Source 6: Revision Labs

The highlights of a survey published on the web site of Revision Labs provides results obtained

from 29 respondents (Revision Labs, 1997) The survey aimed to provide relevant information

regarding current software testing and quality assurance practices as well as future trends m the

use of third party resources The survey was posted on Revision Labs’ website from April 1 to

August 1997 The survey provides results regarding

■ Lifecycle model used

■ Quality practices used - e g formal testing, white box testing, test coverage analysis, etc

■ Quality measurement techniques

■ Amount of development subcontracted ,

■ Amount of testing performed externally

■ Application type

■ Company size

The results from Revision Labs’ survey were provided as a series of questions followed by a bar

chart or table showing the distribution of the responses among the optional answers Table 4 9 on

the following page shows the responses to the question, what is the most important way that you

measure quality7

54

Quality Practice Percentage of Overall

Total Defects (by severity) 39

Defects by KLOC 11

Defects per Function Point 4

Product Reviews 7

Measuring Quality 7

Customer Satisfaction Surveys 14

Customer Support Calls 18

Table 4.9: The above table shows the quality practices of most
relevance to software developers from Revision Labs’ 1997 survey
(Revision Labs, 1997)

It is felt that the results from this survey, although mteresting and within the scope of what the

APM of Prompter seeks to model, there are discrepancies that cannot be overlooked The

problems begin with the absence of details of who performed the survey and whether or not a

technique of validating responses was used It is reasonable to be sceptical about a questionnaire

that can be accessed via the web without respondent validation The sample set for the survey

appears quite small and if there are invalid data present the error injected by this erroneous data

will have greater effect There were no tokens that were allocated default values on the strength

of this survey alone There were a number of tokens that had their default values collaborated by

the results of this survey

Token ID Token Name

36 ApplicationOnginality

50 ProjectSubcontractmg

71 SubcontractorStandardRequired

Table 4.10: Tokens whose default values were collaborated by the
Revision Labs’ 1997 survey (Revision Labs, 1997).

55

4.3.7 Source 7: The Spire Handbook

The SPIRE Handbook (Centre for Software Engineering, 1998) was created with a view to

assisting small software development organisations to achieve business benefits from employing

software process improvement Tins handbook provides an explanation of the business and

technical aspects of software process improvement A walkthrough of the various practices that

should be associated with any improvement is also provided Included in the handbook are a

number of case studies of software process improvement experiments that took place during the

SPIRE project (Centre for Software Engineering, 1998) These six case studies provide a

description of the organisational profile, the improvement actions taken and a record of the

lessons learnt from the experiment These summarised PIE reports took a similar format to those

taken from the VASIE database described in section 4 3 2 1 above This included a description of

the starting point, the improvement project, lessons learned and plans for the future The starting

point was the part of the case study that was useful This section provided a verbose description

of the software organisation prior to any improvements Although the reports were not found to

be very detailed, the scenario described appeared no different from any of the other organisations

in the VASIE Database (source 1) before making such process improvements from a pomt of

having no defined formal process Tins data therefore reinforced the characteristics identified

through the use of the more detailed PIEs obtained from the VASIE database The default token

values allocated as a result of source 1, the VASIE database were reinforced by the SPIRE

Handbook Case Studies

The PIEs described in the SPIRE handbook can be considered to be valid descriptions of software

organisations at level 1 The integrity of the handbook can be relied on for a number of reasons

Primarily, these reports took the form of a summary of a PIE which took place within the context

of the SPIRE project The handbook was also published by the Centre for Software Engineering

in Dublin, an independent consulting orgamsation providing software process improvement

framing m Ireland and Europe

4.4 Summary

This chapter aimed to show the validity of each of the sources mvestigated in this study The

validity of each source has been shown through a description of the sample set and an evaluation

of its relevance to the study The most important source used has been the VASIE database

provided by the ESI with over 50 PIEs used to create the APM set The validity of this source

56

has been enhanced by the focus of software process improvement in these reports This involved

the use of experienced of software process improvement mentors and tramers who were

responsible for ensuring that the reports created were accurate

57

Chapter 5: Validation of Results

5.1 Introduction

This chapter describes the validation process for the results of this study This validation begins

with an evaluation of the project description template as a representation mechanism for a project

description in Prompter The process by which the APM set was validated by the project

partners is then described Finally, a validation using data from external organisations is

descnbed

5.2 Validation of the Project Description Template

This section will describe briefly the project description template, the validation mechanism m

place and any conclusions to be made from the feedback obtained This mvolves examining the

suitability of the project description template for its intended purpose

5.2.1 What is the Project Description Template

A bnef reminder of the project description template will be provided m this section The project

description template is the set of characteristics by which a user may describe their project This

concept was explained in greater detail m section 3 4 This template is made up of a number of

tokens each representing a unique concept m software project planning A full set of these may

provide a detailed picture of the scenario in place at a software development organisation when

embarking upon a project As Section 3 7 1 descnbed, it is important that this format is

sufficiently

■ Intuitive to the user

■ Useful to the daemons

5.2.2 The Validation Process

The first step taken in the validation process was to ensure that the project descnption template

existed in a controlled manner with a defined process for change and version control A group

was formed with a representative from each of the development organisations in the P3 project

Each representative was responsible for validating changes to this document and relaying any

changes to the rest of their internal development team This token management group was lead

by the author of this thesis and was hence responsible for all

58

(

• Configuration Management

• Change Controf

• Version Control

The next step taken was to send the project description template to the user partners of the P3

project for validation The document was reviewed for a period of one month with a deadline

proposed for all responses Both user partners had elected individuals responsible for

disseminating the document among their internal teams at their organisations This document

was reviewed by these internal teams The internal teams at the user organisations were typically

composed of software project managers with a number of years experience of software project

planning For this reason it was believed that these teams were equipped with the skills necessary

to provide a valid critique of the project description template

The final step involved the analysis of the feedback from the user partners This feedback was

made up of a number of general remarks about the document, a detailed description of the tokens

that were deemed to be inaccurate, irrelevant or badly defined Finally, a section of ’missing

tokens’ was provided This section described tokens that the reviewers expected to see but felt

were omitted This feedback was examined by the token management group within the project

and also by senior project managers from the developer organisations

5.2.3 Conclusions from the Feedback Obtained

The user feedback was provided in a structured format with clear suggestions for changes,

refinements and additions to the project description template The feedback from the users

proved highly useful to the verification of the project description template This process of

validation opened up an extra channel of communication with the user partners and provided

essential feedback to the developer team about the essential components of the tool

5.3 P3 Project Validation of the Baseline APMs

The validation process for the baselme APM set of Prompter occurred at a number of stages most

of which did not take place in parallel These stages are briefly

• Internal validation

• Validation by the EC

• Validation by user partners and field test

59

Each of these activities will now be described m detail

5.3.1 Internal Validation

The internal validation of the baseline APM set was by reference to the requirements described in

the User and System Requirements deliverables for the P3 project The following excerpt from

D3 1 System Requirements Document of the P3 project illustrates the relevant requirements

• Process Selection

FR-110 Prompter shall provide the capability to select
process models (both standard and company
specific) from a repository of such models

FR-120 It shall provide the capability to instantiate the
selected process with an initial set of suggested

parameters

"The tool shall have an underlymg set of Abstract Project Models (APM),

from which the user generates an Instantiated Project Model (IPM)

appropriate to their situation This will be done by selecting one of the pre­

defined standard process models - for example, the standard model for that

organisation - although there will be a mechanism to generate a new

template derived from the APM from scratch Some initial fine-tuning of

the selected template can be done at this stage The output of that is the

IP M "

"This will then be refined and deepened (analysing several scenarios if

required) with the assistance of advice from the daemons to form the fmal

Refined Project Model (RPM) This last step can be repeated during the

project by updating the key parameters arising from actual progress to date

This can be illustrated thus (see Figure 5 1 on the following page) "

60

Figure 5.1. The diagram above shows the
movement from APM to IPM to RPM.

"If the APM set conforms to these requirements, it will be deemed suitable for delivery with the

final tool This will be decided by the Project Managers of the development organisations in the

P3 project"

5.3.2 Validation by the EC

Throughout the duration of the P3 project there have been project reviews by an independent

examining board representing the European Commission This group was responsible for

ensuring that the project progressed according to plan and that all interim deliverables were

achieved This meant that the project was obliged to deliver a pre-commercial prototype at the

end of the 30 month project This tool was obliged to fulfil the system and user requirements

unless otherwise agreed This group representing the EC were expected to identify any

weaknesses or risks to the project A typical result of such weaknesses and risks would have been

failure to deliver the product accordmg to specification and schedule

There were five reviews throughout the duration of the project The 3rd and 4th project reviews

involved presentations of both the tool and the APM as a component of this tool The APM was

validated against the requirements described for this tool At both reviews the APM was deemed

to be acceptable according to the requirements stated for Prompter The requirements for APM

component of Prompter have been shown in section 5 3 1

61

5.3.3 Validation by User Partners and Field Test

The two user partners in the P3 consortium were responsible for verifying the suitability of the

tool for its intended purpose If the user partners felt that certain aspects of the tool were not

according to specification, it was their responsibility to draw attention to this The P3 project

delivered four initial prototypes The final prototype was delivered at the end of the project

which was a pre-commercial prototype Each delivered prototype incrementally added key

functional aspects of the tool

Each of these prototypes was delivered at stages m the project illustrated m Table 5 1 below

These prototypes were validated by the user partners according to the objective for each

prototype The EC were provided with a copy of each prototype which was used to evaluate the

progress of the project

Prototype Delivery Date Objective

1 (Noumea) 11/06/98 Look and feel of GUI components

2 (Salonika) 19/10/98 Functionality

3 (Burgundy) 18/12/98 Advice and knowledge provision

4 (Tipperary) 28/02/99 Complete tool - pre commercial prototype

Table 5.1: The above table shows the four prototypes which were constructed when building the
Prompter tool

On the delivery of each prototype, the user partners examined the progress to date according to

the functionality intended for the current prototype As the APM is an important component of

the tool, the user partners have evaluated its suitability according to the user and system

requirements described in section 5 3 1 Feedback regarding the APM was received for the

Salonika and Burgundy prototypes Comments were received regarding the appearance of the

APM in the GUI (see Figure 1 3) There were no negative comments regarding the default token

values within the APM set

5.4 The Validation Process for the APM Set

A process of validation internal to the project for the APM set was described m the previous

section This feedback was received m a diluted form in the sense that the reviewers were

concerned with the entire tool and not just the APM set For this reason it was considered

62

necessary to perform a more comprehensive validation of the APM set The following sections

will give the results of this more comprehensive validation

5.4.1 The APM Set Arising from this Study

This study resulted in the creation of mne alternative models which characterise a genenc

software project during the planning phase The nine models are distinguished by project size1

and complexity Both size and complexity have three possible values Size is described as small,

medium and large Complexity is described as simple, medium and complex For a more

detailed discussion of this topic see section 3 5 1 Each of the nine models created by this study

is described in the following sections by a short narrative description There is some repetition

across the models This repetition occurs because there are mne possible combinations of the

characteristics complexity and size Each of these models is described below

5.4.1.1 Small Size - Low Complexity
This APM describes the starting point of a project where there is a small software development

team that is familiar with working as a unit The team has experience in developing this form of

application for this type of environment and using the relevant technologies There is not a great

deal of communications overhead with the client The requirements are stable and not overly

complex Changes can be negotiated with the customer The development team is composed of

15 members or less

5.4.1.2 Medium Size - Low Complexity
This APM describes the starting point of a project where there is a medium sized software

development team with experience in developing this form of application for this type of

environment and using the relevant technologies There is not a great deal of communications

overhead with the client The requirements may be considered to be stable and not overly

complex Changes to the project schedule can be negotiated with the customer There may be

extra communications present as the team size is between 15 and 50 members

1 Project size actually refers to project team size

63

5.4.1.3 Large Size - Low Complexity

This APM describes the starting point of a project where there is a large software development

team with experience in developing this form of application for this type of environment and

using the relevant technologies There is not a great deal of communications overhead with the

client despite the size of the product The requirements are not overly complex and can be

considered to be stable Changes to the project schedule can be negotiated with the customer

The team is large with possibly more than 50 members and may be distributed geographically or

between a number of organisations

5.4.1.4 Small Size - M edium Complexity

This APM describes the starting pomt of a software project of small size and medium complexity

The requirements are reasonably complex, the team has an intermediate level of experience with

related systems The requirements can be expected to change during the course of the project

The user may be unwilling to accept changes to the project schedule Many of these projects

display characteristics of complex and non-complex software projects This model is a level of

indirection between the two There are some new technologies being employed The team size is

small - around 15 members or less

5.4.1.5 M edium Size - M edium Complexity

This APM descnbes the starting point of a software project of medium size and complexity The

project team is between 15 and 50 members and has an intermediate level of experience with

related systems The requirements are reasonably complex and can be expected to change during

the course of the project The user may be unwilling to accept changes to the project schedule

Many of these projects display characteristics of complex and non-complex software projects

This model is a level of indirection between the two There are some new technologies being

employed

5.4.1.6 Large Size - M edium Complexity

This APM descnbes the starting pomt of a software project of large size and medium complexity

The team is large with possibly more than 50 members and may be distnbuted geographically or

between a number of organisations Internal communication linkages within the project may be

64

difficult due to large team size The requirements are reasonably complex, the team has an

intermediate level of experience with related systems There are some new technologies being

employed The requirements can be expected to change during the course of the project The

user may be unwilling to accept changes to the project schedule Many of these projects display

characteristics of complex and non-complex software projects This model is a level of

indirection between the two

5.4.1.7 Small Size - High Complexity

This APM describes the situation where there are tight constraints, a complex set of requirements

that are not flexible to change The project team is small in size with around 15 members or less

with possibly low communications overhead The requirements are not easily mapped or

decomposed to software components and are likely to be highly volatile The product may be

part of a systems software project or within a real-time or critical run-time environment The

project team may not be familiar with developmg this type of software and the deadline is not

flexible The team is possibly unfamiliar with this type of product

5.4.1.8 M edium Size - High Complexity

This APM describes the situation where there are tight constraints, a complex set of requirements

that are not flexible to change The project team is medium sized with between 15 and 50

members The requirements are not easily mapped or decomposed to software components and

are likely to be highly volatile The product may be part of a systems software project or within a

real-time or critical run-time environment The project team may not be familiar with developmg

this type of software and the deadline is expected to be inflexible

5.4.1.9 Large Size - High Complexity

This APM describes the situation where there are tight constraints, a complex set of requirements

that are not flexible to change The project team is large in size with more than 50 members and

may be distributed geographically or between a number of organisations Communication

overheads will be high due to the project size and the complexity factor The requirements are

not easily mapped or decomposed to software components and are likely to be highly volatile

The product may be part of a systems software project or within a real-time or critical run-time

65

environment. The project team may not be familiar with developing this type of software and the

deadline is not flexible.

5.4.2 The Validation Process for the APM Set

In order to apply the APM set to real software projects it is necessary to ensure that the default

values found by this study are accurate. One way of making such an evaluation is to compare the

conjectured default values with data from actual software organisations running real software

project under the constraints described above. These organisations must be representative of the

organisation being modelled in the APM of Prompter. Ideally, this validation should involve a

comparison between each of these default token values and the validation data.

5.4.2.1 The Validation Problem

The APM seeks to model the planning phase of a software project of a level 1 CMM organisation.

It would be ideal to compare the internal workings of a number of level 1 CMM software

development organisations with the default values of the APM. This would provide the

appropriate feedback to this study with which to evaluate the suitability of the conjectured default

token values. Unfortunately, this sort of organisation is not as accessible as it would initially

appear.

The Prompter tool addresses software development issues that are unheard of to the level 1 CMM

organisation. Activities such as configuration management, subcontract management, estimation

or metrics are frequently misunderstood by organisations lacking a formal software process. It is

common for level 1 organisations to answer assessment questionnaires in an over-optimistic

manner. This is caused by a misunderstanding of the complexity of the issues mentioned above.

For example, configuration management according to the CMM is a key process area with ten

individual activities assigned to it. Until such complexities are understood clearly, organisations

are often under the illusion that they practise such activities in a manner that is actually

characteristic of a more mature organisation.

The implication of this problem is that it is impossible to ensure the suitability of the default

token values in the APM set by asking a software organisation lacking a software process. This is

because this type of organisation is not equipped with a sufficient understanding of the key

66

process areas which Prompter addresses Conversely, it is not possible to validate the default

values by asking such questions of an organisation with an understanding of these issues This is

because these are typically not CMM level 1 The problem is that those suitable to provide the

answers are those who do not understand the questions and those who understand the questions

do not provide the appropriate answers This catch-22 situation implies that a technique of

extracting the organisational profile of a level 1 organisation is required

In order to find an appropriate data set it was decided to consult the Centre for Software

Engmeering in Dublin This organisation performs software process improvement training and

assessments for ISO, CMM and SPICE It was identified that an appropriate data set could be

provided by using an organisational maturity assessment taking place at the beginning of a

process improvement programme This source is described m section 5 4 3

5.4.2.2 Validation Scope

Each of the APMs m Prompter is composed of approximately 25 default token values These

default token values have been allocated as a result of the work described in Chapter 4 Not all of

these default token values require validation The reason for this discrimination between those

that require validation and those that do not will be described in this section From the point of

view of APM validation there are three distinct levels of default token values These are as

follows

Project Level Tokens: The project tokens are those that are dependent upon the user’s choice of

APM The user of Prompter selects the particular APM having read a narrative describing the

characteristics of what type of project the APM represents Figure 1 3 of Chapter 1 shows the

user’s selection of the APM These values do not require justification This is because the

default token values are a result of the definition of the project For example, an APM defined as

High Complexity’ and Large Team Size’ will have individual tokens to represent each of these

project charactenstics The user actually chooses these values through a verbose description of

the APM so therefore these token values are not true defaults Instead, these values are a

tokemsed representation of the characteristics that the user has identified for their project For

this reason, it was not necessary to use any sources in order to allocate or validate such defaults

67

Industry Level Tokens: These default token values represent specific features of the software

industry at large rather than individual organisations. Additional justification is not required here

because these default token values are based on industry surveys described in Chapter 4. These

default token values are independent of organisational or project characteristics such as software

process maturity or software organisation size. An Example of such a token is Team Volatility’.

This token can be reasonably inferred because this factor is documented for the software industry

at large, i.e: it is well documented that software personnel switch between employer frequently

rendering project teams rather volatile. Another such token is Project Life Cycle’ which defaults

to none because there is no one lifecycle model that is used by the majority of software

organisations - in this case, the value defaults to no lifecycle.

Organisational Level Tokens: These default token values require empirical validation. This is

because these default token values describe aspects of the software development organisation or

the way in which their projects are ’usually run’. Each of these default token values relates to the

maturity of the organisation’s software process - assumed in this study to be equivalent to level 1

CMM. These tokens represent characteristics such as the presence of a standard for

documentation or configuration management. These tokens are in fact identical across the APM

set. This is because these tokens describe characteristics that are independent of a particular

project. These characteristics are usually independent of project complexity and size and are

considered to be features of a particular organisation.

5.4.3 Validation of Organisational Level Default Token Values

The data that has been used to validate the APM set is described in this section. This took the

form of results of a process maturity assessment of companies engaging in ISO 9001 training.

This training was conducted at the Centre for Software Engineering, Dublin in 1998. For reasons

of confidentiality, the companies involved in the training program cannot be named. The collated

results from fourteen companies were used to verify the suitability of the organisational default

values described in section 5.4.2.2 above.

The organisations involved in this training program appeared to be typical of a level 1 CMM

organisation seeking to make improvements to their software process. For this reason the results

of these assessments could be seen to represent the type of software organisation being modelled

by the APM anti addressed by the Prompter tool. Section 5.4.2.1 describes the problems

68

associated with using data from software organisations lacking a knowledge of the key process

associated with software process improvement The results from this assessment are partially

affected by the problems described above This was confirmed by discussing this issue with the

course tramer and co-ordinator However, there were some approaches taken to resolve this

problem during the assessment Each of the areas to be evaluated was explained briefly to the

organisations prior to the assessment It was also explained to the participating organisations that

the results of the assessment would be private to the organisation and the Centre for Software

Engmeering In situations where such results are made public there is a tendency to portray a

more optimistic scenario than the more realistic one With the absence of such a bias, the

integrity of the results could be relied upon somewhat more

The pre-training programme assessment itself is composed of 143 individual questions The

answer to each question is provided using the following three point scale

Rating Meaning

S Sometimes/Never
Use this ratmg if the statement is never true, or sometimes true (i e is true less than
one-third of the time) This value implies that practice is poor regarding the
question being asked

u Usually/Often
Use this ratmg if the statement is usually true, or often true (l e between one third
and two thirds of the time) This value implies that good practice is sporadically
implemented where good practice is implemented on some projects but not at an
organisation wide level

M Mostly/Always
Use this rating if the statement is usually true, or often true (i e between one third
and two thirds of the time) This value implies that good practice is implemented
regarding the particular question being asked

Table 5.2. The above table illustrates the options available to participating organisations when
responding to the ISO for Small Companies self assessment.

The 143 questions are spread between 14 key-activities of software development These

activities cover lifecycle activities, supporting activities and organisation level activities The

activities are as follows

• User Requirements

• Software Requirements

• Architectural Design

• Production

69

• Transfer

• Maintenance

• Project Management

• Configuration Management

• Validation and Verification

• Quality Assurance

• Process Management

• Procurement

• Training

• Management Responsibility

From the 143 questions distributed among the 14 activities of which the answers to 45 can be

considered of use to the validation process for the APM set of Prompter In some cases there is a

one-to-one mapping between a question in the self-assessment and a particular token m the APM

set of Prompter In other situations there are a number of questions when the results of which are

combined an overall picture is given which can be used to justify a particular token For

example, there are 21 questions for the activity of Configuration Management but there is only

one token to represent the state of this activity in Prompter There is also a clear mappmg

between the range of possible responses in the self-assessment to the number of options available

for instantiating each token value in Prompter The majority of the tokens in the APM set of

Prompter have either a range of two or three possible options Often these options have a clear

mapping to the technique illustrated in Table 5 2 above reflecting poor, mediocre or satisfactory

practices

5.4.4 Validation

This section validates the actual tokens that have been allocated with default values in the APM

set of Prompter This will involve a walkthrough of the organisational level tokens for which

validation is required followed by the industrial level and project level tokens The three classes

of token have been described in section 5 4 2 2 above Each of the tokens cited below is defined

formally in Appendix A

70

5.4.4.1 Organisational Tokens Justified Using the Assessment Results

This section provides the validation of the organisational tokens in the APM set of Prompter. The

question (or possibly questions) provided in the assessment that maps to this token is provided

followed by a summary of the collated responses received. The association between the default

token and the results obtained from the pre-training assessment is then made.

Token:

Token ID:

Explanation:

Default Value:

Justification:

StandardIS09001

60

This token can be set to either true or false. This token is set to true if the

organisation is ISO 9001 for software compliant.

False

From the fourteen organisations involved in completing the self assessments,

none had ISO 9001 certification.

Token:

Token II):

Explanation:

Default Value:

Justification:

StandardCMMLevel2

61

This token can be set to either true or false. This token is set to true if the

organisation achieves the standard laid out by the CMM level 2 assessment.

False

From the fourteen organisations who completed the self assessments, 70%

have no defined process for the estimation or scheduling of activities. These

are typical characteristics of level one practices. This implies that the majority

of these organisations have not got the capability to achieve level 2 with their

current processes.

Tokens:

Token Ids:

Explanation:

StandardCMMLevel3,

StandardCMMLevel4,

S tandardCMMLevel5

62, 63, 64

This token can be set to either true or false. This token is set to true if the

71

Default Value:

Justification:

Token:

Token ID:

Explanation:

Default Value:

Justification:

Token:

Token ID:

Explanation:

Default Value:

Justification:

assessments

False

The justification for Token 60 - StandardCMMLevel2, shows that the default

of non-conformance for CMM level 2 is justified If an organisation does not

reach CMM level 2, the same' organisation cannot possibly be at level 3, 4 or 5

as it is not possible to skip over levels

StandardIS015504

65

This token can be set to either true or false This token is set to true if the

organisation is ISO 15504 (SPICE) for software compliant There is no

assessment for ISO 15504 however there are a set of processes that must be

followed

False

There are no clear figures for the number of organisations who have adopted

the SPICE standard However, it is reasonable to assume that the majority of

software organisations are unaware of the presence of SPICE as a standard let

alone using it as a guide to better practices The defaulting of this token is

justified by the poor adoption of the alternative standards such as CMM and

ISO 9001 both of which are clearly more popular than SPICE

OrgamsationCodingStandard

66

This token can be set to either true or false This token is set to true if the

organisation has a defined standard that is m place and followed for developing

code

False

From the self assessment described above only 14% of organisations

participating claimed that they had a clear standard that was in place and

documented and referenced m all design literature This shows that there is a

low presence of formal coding standards that are followed strictly This

organisation achieves the standard laid out by the CM M level 3 - level 5

72

justifies the false default value

Token:

Token ID:

Explanation:

Default Value:

Justification:

Token:

Token ID:

Explanation:

Default Value:

Justification:

Token:

Token ID:

Explanation:

OrgaiusationDocumentationStandard

67

This token can be set to either true or false This token is set to true if the

organisation has a defined standard that is in place and followed for

documentation of all project deliverables

False

From the self assessment described above only 14% of organisations

participating claimed that they had a clear standard that was m place and

documented and referenced m all design literature This shows that there is a

low presence of formal documentation standards that are followed strictly

This justifies the false default value

OrgamsationConfigManagementStandard

68

This token can be set to either true or false This token is set to true if the

organisation has a defined standard that is in place and followed for controlling

all items that should be subject to configuration management

False

From the self assessment described above only 35% of organisations

participating claimed to have a good standard of configuration management

This figure is considered to be overly optimistic as many of the organisations

were unsure about what configuration management really implies This result

however still implies that the majority of the participating organisations do not

have a configuration management process that is in place, defined and

followed

OrgamsationlntemalProductStandard

70

This token can be set to either true or false This token is set to true if the

73

Default Value:

Justification:

Token:

Token ID:

Explanation:

Default Value:

Justification:

Token:

Token ID:

Explanation:

Default Value:

Justification:

organisation has a defined standard that is in place for evaluating the product

that is being developed by the project in question

False

From the self assessment descnbed above six questions were included which

evaluate the internal evaluation of a product before final delivery to the

customer Only 26% of the responses received indicated that a defined

standard is in place and applied to the evaluation of a product before final

delivery

SubcontractorStandardRequired

71

This token can be set to either true or false This token is set to true if the

organisation has a defined standard that is in place for subcontractors that are

involved in delivering sub-components of the product being developed

False

From the self assessment descnbed above six questions were included which

evaluate the processes that are in place to manage subcontractors A total of 84

responses were present to these questions, less than 10% of which indicated

that an adequate process of subcontractor management was in place This

indicates that the default value of such a standard being absent is a reasonable

assumption

SoftwareReuseStandard

72

This token can be set to either true or false This token is set to true if the

organisation has a defmed standard that is m place for the evaluation of

components that are reused or off-the-shelf

False

From the self assessment descnbed above, two questions were included which

evaluate the processes that are in place to evaluate components that are

designated for reuse or procured as an externally developed subcomponent A

total of 27 responses were provided to these questions, less than 10% of which

74

indicated that an adequate process of subcontractor management was m place

This indicates that the default value of such a standard being absent is a

reasonable assumption

Token:

Token ID:

Explanation:

Default Value:

Justification:

EstimationStandard

78

This token can be set to either true or false This token is set to true if the

organisation has a defmed standard that is in place for the estimation of project

schedule and duration

False

The self assessment contains one particular question which asks if estimating

of activities is performed in accordance with defined procedures 70% of

responses indicated that there is no such process The remaining 30% was

divided between those who claimed to have a defined process in place and

practised and those who apply the standard on some projects

5.4A.2 Industry Level Tokens

This section does not provide a further validation of the industry level tokens These values are

based on surveys described m Chapter 4

Token:

Token ID:

Explanation:

Default Value:

Justification:

TeamVolatility

23

This token represents the turnover of team membership during the course of

the project These changes can be due to a team member leaving the

organisation or being simply re-assigned to another project This token can be

set to one of the following less than one-third, between one-third and two-

thirds, more than two-thirds

Between one-third and two-thirds

The default for this token may m fact be influenced by project characteristics

Team member turnover may be caused by a variety of reasons such as political

motivation, personality issues or complexity of the task at hand This token

has instead been set as such as a function of the global profile of the software

75

Token:

Token ID:

Explanation:

Default Value:

Justification:

Token:

Token ID:

Explanation:

Default Value:

Justification:

Token:

Token ID:

development industry The primary characteristics of which are the transience

and shortage of skilled software development personnel which has been well

documented throughout the industry This was actually documented m

Software Project Dynamics (Tarek, 1991) which indicates that the annual

turnover rate is observed to be 25 1% but as high as 34% at some

organisations

ProjectEquipment

48

The token represents the availability of appropnate equipment to the software

development team for the duration of the project The options for this token

are less than adequate, adequate and more than adequate

Adequate

The default for this token may in fact be influenced by organisational and

project dependent characteristics However, the cost of equipment for the

development of software has dropped considerably m latter years The cost of

hardware and development tools has become considerably less than the cost of

personnel This token has been set as a function of this global characteristic

ProjectLifeCycle

89

This token represents the lifecycle for the project m question This may be set

to V Model, Waterfall, Incremental, Spiral, Prototype or ho lifecycle chosen’

No lifecycle chosen

Surveys quoted in Chapter 4 show that there is no lifecycle model m existence

that is applied to the majonty of software projects There is a wide variety of

models that are in use including those that are tailored to a particular

organisation

Independent V and V

90

76

Explanation:

Default Value:

Justification:

This token represents the level of external verification and validation in this

project The range of options for this token are as follows No external V and

V, External V and V at some stage in the project, V and V at each milestone in

the project

No external V and V

External V and V is an activity that is usually only included for contractors

involved m defence projects Such contracts are usually part of a real time

system or safety critical component of such a system Level 1 CMM

organisations do not have the resources or processes to perform an activity

such as external V and V This is the category of organisation being

represented m the APM set It has been defaulted so that the typical Prompter

user is not required to provide a response to a question that can be reasonably

conjectured

5.4.4.3 Project Tokens Exempt from Validation

There is also a class of tokens that do not require any kind of validation These token values

although allocated as default have been chosen by the user This choice of token values is made

by choosing the project description most appropriate to the starting scenario of the project

Section 5 4 1 describes the nine APMs using a short narrative Each of the statements in this

narrative map to a corresponding default token value These default token values simply translate

the statements acknowledged by the user into actual token values that can be used sensibly by

Prompter This is almost a mechanical process and therefore demands no validation apart from

verification that these tokens have been translated correctly The concepts that are defaulted by

this process are those such as

• Project team size

• Product requirements stability, complexity and volatility

• Team familiarity with the product being developed

• Customer schedule flexibility

5.5 Summary

This chapter has reviewed the validation process for the APM set that resulted from this study

The chapter began by describing the validation process for the project description template

Project based validation has shown that this component achieved all of its objectives The project

77

based validation process for the APM set was then described Finally, validation of the APM by

use of process improvement assessments was described

78

Chapter 6: Conclusions

6.1 Objective of this study
There were two primary objectives of this study The first objective was to create a template that

permits the description of a software project m the Prompter tool This was followed by the core

component of this study which was to create a set of Abstract Project Models that characterise a

set of typical software projects at the planning stage The outcome of both aspects of this study is

recorded below

6.1.1 Description of the Generic Software Project

In order to describe the generic software project it was first necessary to construct the project

description template which could represent this generic project description Construction of the

project descnption template was the initial objective of this research The project description

template would enable the definition of project characteristics and hence would act as a

representation mechanism for both user projects and APMs m Prompter The process by which

this model was created is described in Chapter 3 This model was created by examining the data

that required representation and also identifying the complete set of use cases for this information

within the Prompter tool These use cases have been taken from the User Requirements

document of the P3 Project and are provided m Appendix B In Chapter 3, a suitable model was

constructed that allows the descnption of a project using approximately 120 unique project

charactenstics

Having created the project descnption template it was necessary to descnbe the generic software

project This mvolved charactensing the starting point of the typical software development

organisation and their software projects Organisational charactenstics were found to be largely

invanant of project type and most organisations displayed the same type of approach to software

development at an organisational level Many of these common charactenstics were based upon

weaknesses identified in the software process of level 1 organisations Projects on the other hand

have been minimised to a set containing nine models which are distinguished based upon size and

complexity

In conclusion, it can be said that the creation of a template enabling the descnption of a user

project was a success The creation of a generic project model required some distinction between

79

projects in order to make the APM useful to the user This was as a result of the amount of

vanation between projects depending upon varying size and complexity The creation of a set of

baseline models illustrated the need to distinguish between organisational characteristics and

project characteristics The same organisational metrics appeared for all project types but the

project related characteristics depended upon both team size and the complexity of the product

being developed

6.1.2 The APM Set and the Prompter tool

The P3 project was intended to deliver a prototype decision support tool My task was to provide

a project description template and a set of baseline models m the form of the nine APMs This

feature was expected to free the user from the need to enter a considerable amount of information

into the tool - information that could be reasonably predicted from industry surveys The project

description template was expected to provide a mapping from the user’s external view of their

project to the critiquing system’s view of the data which it uses to provide project related advice

The creation of the project description template resulted m the introduction of a component

known as the Token Data Dictionary which is a tightly controlled and managed document The

Token Data Dictionary will undergo further refinements beyond the end of this research m

parallel with the commercialisation of the Prompter tool

The creation of the APM set required a mapping from the sources investigated to the project

description template created as the initial research Because I was responsible for the creation of

both of these components, the evolution of the project description template and the APM set

could be performed in parallel The way in which both the project description template and the

APM set have been developed have proved appropriate to the original requirements as shown in

Chapter 5 This has been confirmed by the user and developer partners review of both

components from a project perspective This was shown m sections 5 2 and 5 3

The creation and addition of the APM set to Prompter was reviewed by the user partners in the

P3 project as well as the EC The APM set was viewed as appropriate and an important

component of the tool From the original requirements of the Prompter tool, the APM set was

deemed to have more than sufficiently represented the starting point of a target user of Prompter

There was also a need to validate the results of this study at another level This additional

validation used a number of process maturity assessments used in a process improvement

programme by the Centre for Software Engineering, Dublin. These assessments showed that the

80

default values found actually represented the profile of a level 1 CMM organisation The

validation process involved confirming the mapping between the observations made in this study

and the resulting APM set It has been shown through feedback received that the APM set

constructed is sufficient for the current version of the tool and hence this study achieved its

primary objective - to characterise the project starting pomt of a level 1 CMM organisation in a

model known as the APM

An ancillary objective of this research was to allow the exceptional user of Prompter to create a

baseline model of their organisational specific starting pomt This functionality was added to the

Prompter tool using the design evolved through this study and has been considered to be a useful

extension to the tool The option of creating a user specific APM is described m the following

section

6.2 Creation of a Customised APM

This section proposes the user option of creating a baseline model that is specific to an

organisation This is an additional feature of the tool that is of use to user’s not fitting the profile

of the average software development organisation

The APM model appears quite useful to the typical user but is the exception to the rule isolated

by this set of default models7 The answer is yes The need to cater for the typical software

organisation is a priority for the P3 project This implies that the atypical software project is not

supported by the APM set within the tool This is because a business decision was made to aim

this tool at the level 1 CMM organisation seeking to improve its software development process

This is a sensible choice as this category of user is represented as approximately 80% of software

developers However, the more mature software development organisation will be facilitated in a

different manner Because software organisations beyond the initial chaotic level have reached a

point where an aspect of repeatability has been introduced, it is frequent that processes are

common to all projects within the organisation This implies that such organisations have a

defined process in place that is reused from project to project It is necessary for such a user to be

able to define their process

81

P rom pter provides functionality for the user to create their own baseline model This

functionality was provided by a Save As option m the tool The user begins by choosing to create

a project description without employing an A PM This is similar to creating an M S Word

document without using a template of any kind The user goes through a questions and answers

session providing descriptions of a generic software project This description involves questions

about the following

• Product being developed

• Organisational charactenstics

• Available resources

• Customer and user

• Business drivers

• Project environment

• Project plan and schedule

The user has the option of defaulting any of these token values If the user feels that any

particular value may vary from project to project this token value can be left uninitialised This

value may thus be initialised when the user refines the project description having applied the

baseline APM

This project may subsequentiy be saved as an A PM This description may be reused by other

users as a starting pomt for their project In this way, a company specialising in products that

require a process unique to that organisation may descnbe its activities once and reuse this

description again and again This functionality is of particular use to large organisations where a
r

predefined process is m place This functionality may be of benefit to a software developer at a

level of organisational maturity higher than the chaotic initial level

Software project management has many concepts in common with other forms of management

With a view to this point, the possibility of applying P rom pter and the A P M set to other domains

has been discussed There appears to be no reason why a project description template could not

be created for non-software projects An A P M set could also be created if the relevant project

data points are available through similar sources that were applied m this study For this reason it

appears possible that a set of domain-specific APM s could also be created

82

6.3 Final Remark

The concept of the A PM began as a user requirement for the P rom pter decision support tool

This requirement was evolved to a functional component in the P rom pter tool by this research

alone In parallel with the realisation of the A PM set, the project description template was

created The project description template was created which provided an appropnate

representation mechanism for a project description in the P ro m p ter tool Both the A PM set and

project description template were included m the final P3 Project Deliverable to the EC and

remain core components of the P rom pter tool of which version 1 1 was released to the market m

June 1999 This research succeeded m its primary objective, to create an Abstract Project Model

which was intended to be a description of a generic software project to be used in the P rom pter

tool This was achieved by examining a number of sources, revealed m Chapter 4, and creating

default token values based upon the organisational charactenstics revealed by these sources

These charactenstics were deemed to be indicative of the target user of the P rom pter tool, the

level 1 C M M organisation seekmg to make process improvements through the use of

recommended best practices

83

References

(Boehm, 1981)

(Brooks, 1975)

(Brooks, 1987)

(CSE, 1998)

(DeMarco, 1982)

(ESI, 1997)

(ESI, 1998)

(ESPITI, 1996)

(Bennett, 1998a)

(Bennett, 1998b)

(Furey, 1997)

(Gaffney, 1999)

(History, 1997)

Boehm, Barry W , 1981 Software Engineering Econom ics New
Jersey, United States Prentice Hall

Brooks, Frederick P Jr,1975 The M yth ical M an M onth
Philippines Addison -Wesley

Brooks, Frederick P Jr, 1987 No Silver Bullet Essence and
Accidents of Software Engineering , IE EE Computer, (April
1987), 10-19

Centre for Software Engineermg, 1998 The SPIRE H andbook
Dublin Centre for Software Engineering

DeMarco, Tom, 1982 Controlling Software P ro jec ts New
Jersey, Umted States Prentice Hall

European Software Institute, 1997 1997 Software B est P ractice
Q uestionnaire [online] Available from
http //www esi es/Publications/Reports/tr-sbpqaor? html
[Accessed 15 May 1998]

European Software Institute, 1998 VASIE PIE D atabase
[online] Available from http //www esi es, 1998 [Accessed 20
February 1998]

ESP IT I - ESPR IT Project 11000, 1996 Training fo r SPI
E uropean N eeds and Solutions, Berlin

Bennett, James, 1998 What are you really worth7 EXE The
Software D evelopers M agazine, 12(11), 20-22

Bennett, James, 1998 Development Tools 98 EXE The
Software D evelopers M agazine, 13 (4), 38-39

Furey, Sean, 1997 Why Should we use Function Points, IEEE
Software, 14 (2), 28-31

Gaffney, Eamon, 1999 The D evelopm ent o f an A gent B ased
Critiquing System A rchitecture fo r a P ro jec t M anagem ent Tool
P rom pter, Ireland Dublin City University

History, 1997 A H istory o f the C om puter M ini [on line]
Available from http //www pbs org/nerds/timelme/mim html
[Accessed 11 April 1998]

84

(Holt, 1997)

(Humphrey, 1989)

(Iona, 1997)

(Jones, 1992)

(Jones, 1996)

(Mair, 1992)

(McConnell, 1997)

(OMG, 1998)

(Pickering, 1993)

(Pickering, 1996)

(Pressman, 1994)

(Price Waterhouse, 1998)

(Pulford, 1996)

(Rakos, 1991)

(Revision Labs, 1997)

(Rubin, 1992)

Holt, Dr. Jon, 1997. Current Practice in Software Engineering: A
Survey, Computing and Control Engineering Journal, 8 (4),
167-172.

Humphrey, Watts S., 1989. Managing the Software Process.
United States: Addison -Wesley.

Iona Technologies, 1997. OrbixW eb Program mer’ s Guide.
Dublin, Ireland.

Jones, Capers, 1992. Assessment and Control o f Software Risks.
New Jersey, United States: Prentice Hall.

Jones, Capers, 1996. Our W orst Development Practices, IEEE
Software, 12 (6), 102-104.

Mair, P., 1992. CASE: A State o f the M arket Report, Unicom.

McConnell, 1997, Software’s Ten Essentials, IEEE Software, 14
(2), 144-145.

OMG, 1998, The Common Object Request Broker: Architecture
and Specification, M A USA, Object Management Group.

Pickering, Chris, 1993. Survey o f Advanced Technology. Kansas,
United States: Systems Development Inc.

Pickering, Chris, 1996. Survey o f Advanced Technology. Kansas,
United States: Systems Development Inc.

Pressman, Roger S., 1994. Software Engineering: A
Practitioners Approach. (3rd ed) Maidenhead, England:
McGraw-Hill.

Price Waterhouse LLP, 1998. 1998 Software Business Practices
Survey. (9th ed) Massachusetts, United States: Price Waterhouse.

Pulford, Kuntzmann-Combelles, Shirlaw, 1996. A Quantitative
Approach to Software Management. Workingham, England:
Addison Wesley.

Rakos, John J., 1991. Software Project M anagement fo r Small to
M edium Sized Projects. New Jersey, United States: Prentice
Hall.

Revision Labs, 1997. Revision Labs Inc: Software Testing
Survey Results [online]. Available from:
http://www.revlabs.com/surresult.html [Accessed 10 June 1998]

Rubin. Howard, 1992. The Software Engineer’s Benchmark
Handbook. United States: Applied Computer Research Inc.

85

http://www.revlabs.com/surresult.html

(Sanders, 1994)

(Schach, 1990)

(Sommerville, 1989)

(Tarek, 1991)

(USAF, 1988)

(Wasser man, 1996)

(Yourdon, 1992)

(Yourdon, 1996)

Sanders, Joe and Curran, Eugene, 1994 Software Quality
Addison Wesley

Schach, Stephen R , 1990 Software Engineering, Homewood,
IL United States, Richard D Irwin, Inc , and Aksen Associates,
Inc

Sommerville, Ian, 1989 Software Engineering (3trded)
Workingham, England Addison-Wesley

Tarek, Abdel-Hamid and Madruck, Stuart E , 1991 Software
Project Dynamics An Integrated Approach New Jersey, Umted
States Prentice Hall

USAF, Department of the A ir Force, 1988, Software R isk
Abatement Umted States AFSC/AFLC Pamphlet 800-845

Wasserman, Anthony 1 , 1996, Towards a Discipline for
Software Engineering, IEEE Software, 13 (7), 23-31

Yourdon, Edward, 1992 Decline and Fall o f the American
Programmer New Jersey, Umted States Prentice Hall

Yourdon, Edward, 1996 Rise and Resurrection o f the American
Programm er, New Jersey, Umted States Prentice Hall

86

Appendix A: The Token Data Dictionary

87

1. Introduction
This appendix describes and specifies all the Tokens that will be stored in the project database and
manipulated by the P rom pter tool Each token described below is a vanable of project planning that
may be used by the P rom pter tool Each of the tokens described in this appendix may have a number
of optional token values It is the selection of a value from a number of possible values that allows a
project description to be built up The instantiation of a token with a particular value is typically
performed by the user The instantiation of a number of default tokens has been the primary objective
of this research The tokens that store these default instantiations are listed in Chapter 5 The complete
token set and a definition of each is provided below

The Token Data Dictionary had been created using the following headings

ID Identification (index) number from 1 to N
Name Given name of the token
Type Datatype of token, mt, boolean, etc or possible a more complex structure
Definition An simple definition of what the token means
Values Values the token may take on and the associated meaning
Source This column descnbes any sources used to create this token This source has

been one of three principal references These are as follows
1) The U SAF Risk Taxonomy developed by Barry Boehm (USAF, 1988)
2) The P3 Project Handbook Vol I I which describes a number of key

charactenstics which should be considered when planning a software
project This document was an internal project deliverable

3) The A M I Handbook which assists the practical application of metncs at
software organisations (Pulford, 1996)

2. Tokens
ID Name Type Definition Value Source

1 ProjectT eamScale Int In relation to what we are
accustomed to, the size of the
project team is

3 = more than twice as big
2 = about the same
1 = smaller

USAF Risk Taxonomy
(USAF, 1988)

2 ProjectSchedule Int In relation to what we are
accustomed to, the duration of
the proiect is

3 = more than twice the length
2 = about the same
1 = shorter

U SAF R isk Taxonomy
(USAF, 1988)

3 ProjectDevelopmentEnvironmentMatu
nty

Int The development environment
to be used is

3 = relatively novel/untested
2 = fairly mature/tested
1 = very mature/tested

U SAF Risk Taxonomy
(USAF, 1988)

4 ProjectT echmcalT argetMaturity Int What is the technical target
environment (target
environment -
hardware/software environment
that the product is running on)

3 = relatively novel/untested
2 = fairly mature/tested
1 = very mature/tested

U SAF Risk Taxonomy
(USAF, 1988)

5 ProjectExtemalCommumcationsComp
lexity

Int The communications linkages
with any collaborators or
subcontractors are

3 = complex
2 = not complex
1 = no external linkages

U SAF R isk Taxonomy
(USAF, 1988)

6 ProjectClientCommunications Int Communications linkages with
the chents are

3 = complex
2 = not complex
1 = no client communications

U SAF R isk Taxonomy
(USAF, 1988)

7 Projectlmports Int Level of dependence of the
project on ‘risky’ imports (eg
reusable components, etc)

3 = critically dependant on imports
2 = somewhat dependant on
imports
1 = not dependant on imports

U SA F Risk Taxonomy
(USAF, 1988)

8 ProductCohesiveness Int In relation to what we
accustomed to the product is

3 = large or cannot be broken down
mto normal-size work packages
2 = medium sized or fairly easily
broken down mto normal-size work
packages

U SAF Risk Taxonomy
(USAF, 1988)

89

1 = small or easily broken down
into normal-size work packages

9 ProductOperationallnterface Int Interfaces between the product
and other software and
hardware components it must
work with in the final user
environment are

3 = badly defined or subject to
uncontrolled change
2 = quite well defined and subject
to tightly controlled change
1 = very well defined and subject
only to tightly controlled change

U SAF Risk Taxonomy
(USAF, 1988)

10 ProductSupportabilityProcedures Int In terms of supportability there
are

3 = nonexistant or inadequate
supportability procedures
2 = some concerns about
supportability
1 = procedures are in place and
adequate

U SAF Risk Taxonomy
(USAF, 1988)

11 Produ ctS upportabilityPersonnel Int In terms of supportability
personnel

3 = significant discipline is
necessary, there is a mix of
concerns
2 = minor discipline is necessary,
there is a mix of concerns
1 = they are in place, sufficient and
experienced

U SAF Risk Taxonomy
(USAF, 1988)

12 RequirementsComplexity Int In relation to what we are
accustomed the requirements
are

3 = complex and can be allocated
to software only with difficulty
2 = not complex and easily
allocated to software
components/modules
1 = simple and easily allocated to
software components/modules

U SAF Risk Taxonomy
(USAF, 1988)

13 RequirementsVolatility Int During the course of
development, product
requirements are likely to be
sub ject to

3 = extensive revision
2 = some revision
1 = little or no revision

U SAF Risk Taxonomy
(USAF, 1988)

14 Requi rements Inflexibility Int In relation to inflexibility of 3 = impossible to agree changes to U SAF Risk Taxonomy

90

functional and other
specification concerns, if we
meet problems in development,
it will be

functional and other specifications
2 = moderately difficult to agree
changes to functional and other
specifications
1 = not difficult to agree changes to
functional and other specifications

(USAF, 1988)

15 ProjectT echnology Int The project technology can be
described as

3 = new and little experience
2 = existent with some inhouse
experience
1 = mature, existent, with in-house
experience

U SAF Risk Taxonomy
(USAF, 1988)

16 RequirementsApplication Int The applications can be
described as

3 = real-time embedded with strong
interdependency
2 = embedded with some system
interdependency
1 = non real-time with little system
interdependency

U SAF Risk Taxonomy
(USAF, 1988)

17 ProjectTools Int The tools involved in the
project are

3 = invalidated with major
development required
2 = available, validated with some
development required
1 = documented, validated and in
place

U SAF Risk Taxonomy
(USAF, 1988)

18 TeamFamiliarity Int The project manager has a
good knowledge of the skills
and productivity of

3 = less than one-third
2 = between a third and two-thirds
1 = more than two thirds

U SAF Risk Taxonomy
(USAF, 1988)

19 T eamDesignerKnowledge Int In terms of application domain,
the designer is considered to
have

3 = little knowledge
2 = a good knowledge
1 = an excellent knowledge

U SAF Risk Taxonomy
(USAF, 1988)

20 T earn ApplicationDomainExperience Int In terms of the technical tasks
of developing software for this
application domain

3 = nobody on the team has good
experience
2 = a small proportion have good
experience

U SAF Risk Taxonomy
(USAF, 1988)

91

1 = a large proportion have good
experience

21 T eamDevelopersExperience Int With regard to experience of
the development environment to
be used, the team has

3 = no experience
2 = some experience
1 = extensive experience

U SAF Risk Taxonomy
(USAF, 1988)

22 T eamT echnicalT argetEnvironmentExp
erience

Int The experience of team
members of the technical target
environment

3 = very few or only a small
proportion have good experience
2 = a significant proportion have
good experience
1 = most or all have good
experience

U SAF Risk Taxonomy
(USAF, 1988)

23 Team Volatility Int During the course of the
project, turnover of team
membership will probably be

3 = more than two-thirds
2 = between a third and two-thirds
1 = less than a third

U SAF Risk Taxonomy
(USAF, 1988)

24 Team Mix Int In terms of project team there
is

3 = some disciplines not
represented
2 = some disciplines
inappropriately represented
1 = a good mix of software
disciplines

U SAF Risk Taxonomy
(USAF, 1988)

25 T eamCriticalMemberLoss Int The loss of one or more critical
team members during the
project is

3 = very likely
2 = likely
1 = unlikely

U SAF Risk Taxonomy
(USAF, 1988)

26 ClientRequirementsUnderstanding Int In terms of understanding
requirements the client has

3 = some understanding
2 = a good understanding
1 = an excellent understanding

U SAF Risk Taxonomy
(USAF, 1988)

27 ClientFamiliarity Int In terms of working with this
client, the organisation has

3 = no experience
2 = moderate experience
1 = extensive experience

U SAF Risk Taxonomy
(USAF, 1988)

28 ConstraintsComputerResources Int The computer resources for the
project can be described as

3 = new development, inflexible
with no growth capacity
2 = available with some growth
capacity

U SAF Risk Taxonomy
(USAF, 1988)

92

1 = mature and flexible, growth
capacity within the design

29 ConstraintsPersonnel Int The project personnel are 3 = high turnover, little or no
experience and not available
2 = available, not in place, some
experience
1 = available, inplace, experienced
and stable

U SAF R isk Taxonomy
(USAF, 1988)

30 ConstraintsStandards Int In terms of standards 3 = no tailoring required, none
apphed to contract
2 = some tailoring required, all not
reviewed for applicability
1 = they are appropriately tailored
for the application

U SAF Risk Taxonomy
(USAF, 1988)

31 UserProficiency Int Users level of proficiency 3 = Very demanding, large number
of users
2 = Expert m field
1 = Not an expert

U SA F Risk Taxonomy
(USAF, 1988)

32 Customer Accessibility Int How accessible is the customer 3 = Not easily available
2 = External, knowledgeable
1 = External available

U SAF Risk Taxonomy
(USAF, 1988)

33 AppkcationType Int With reference to previous
applications, how does this one
compare

3 = New, complex, highly
interactive
2 =Re-Engineenng
1 =New, complex, many mterfaces,
advanced tech

U SA F Risk Taxonomy
(USAF, 1988)

34 DevelopmentOrgarusation Int Level of proficiency 3 = Some experience
2 - Good team, experienced
1 = Experienced m technology

U SA F Risk Taxonomy
(USAF, 1988)

35 ApplicationReuse Int The emphasis of reusability for
this application is

3=High, reusability essential
2=Medium, bemg borne m mind
l=Low, not important

P3 Project Handbook Vol
II - Internal Project
Document

36 ApplicationOrigmality Int The emphasis of originality 3=High, application must be P3 Project Handbook Vol

93

when developing this
application is

original to succeed
2=Medium, limited competition
l=Low, competition irrelevant

II - Internal Project
Document

37 ApplicationGenerality Int The generality of the
application may be classed as

3= Quite general, applicable to a
variety of domains
2=Medium, may be applied to
varied domains
1= Domain specific

P3 Project Handbook Voi
II - Internal Project
Document

38 ApplicationComplexity Int The complexity of the
application may be classed as

3=Complex, extensive training
may be required
2=Medium complexity, instruction
will be necessary
l=Not complex, no prerequisites
for users

P3 Project Handbook Voi
II - Internal Project
Document

39 ProductFunctionality Int The functionality of the
product is required to be

3= High, product must provide
extensive functionality
2=Medium, an intermediate
amount of functionality is required
l=Low, little emphasis on
extensive functionality

P3 Project Handbook Voi
II - Internal Project
Document

40 ProductQuality Int The quality level of the product
is required to be

3=High level of quality required
2=Medium
l=Low

P3 Project Handbook Voi
II - Internal Project
Document

41 ProductDependability Int The level of dependability
required of the product is

3=High, failure unacceptable
2=Medium, failure tolerated but
not desired
l=Low, can tolerate failure

P3 Project Handbook Voi
II - Internal Project
Document

42 ProductPerformance Int The performance of the product
is

3=Essential for acceptance
2=Preferred for acceptance
l=Not critical to its acceptance

P3 Project Handbook Voi
II - Internal Project
Document

43 ProductHCIRequirements Int Users must interface with the
product

3=always
2=sometimes
l=never

P3 Project Handbook Voi
II - Internal Project
Document

94

44 ProductMaintenanceCosts Int The cost of maintaining this
product is

3= High, this product will need
continuous maintenance
2=Medium. this product will
require a limited amount of
maintenance
1= Low, this product will require
little or no maintenance

P3 Project Handbook Voi
II - Internal Project
Document

45 CustomerFinancialCapability Int The customers ability to further
finance this project is

3=Low, the customer has expended
their budget for this project
2=Medium, a possible increase in
investment is foreseeable but would
require justification
1= High, the customer is closely
associated with the project and will
provide full financial backing

P3 Project Handbook Voi
II - Internal Project
Document

46 ProjectConcurrency Int The degree to which concurrent
development can be applied to
this project is

3= Low, few tasks can be
parallelised
2=Medium, some tasks are
inherendy sequential but some may
be parallelised
1= High, most tasks may be
performed in parallel

P3 Project Handbook Voi
II - Internal Project
Document

47 ProjectBudget Int The Budget for this Project is
in thousands

User entered value P3 Project Handbook Voi
II - Internal Project
Document

48 ProjectEquipment Int The equipment at the disposal
of the development team is

3=Less than adequate
2=Adequate
l=More than adequate

P3 Project Handbook Voi
II - Internal Project
Document

49 ProjectT eamT raining Int The level of training required
for the development team is

3=Team requires an entirely new
set of skills

P3 Project Handbook Voi
II - Internal Project

95

2=Some training is required to
augment current skills
l=None, no training required -
current skills are adequate

Document

50 ProjectSubcontracting Int The proportion of the project
that will be subcontracted is

3=41% - 100%
2= 11% -4 0 %
1 = 0 - 10%

P3 Project Handbook Voi
II - Internal Project
Document

51 StaffSize Int The number of staff on the
project is

User entered value P3 Project Handbook Voi
II - Internal Project
Document.

52 TeamSoftwareDevelopmentExperience Int Overall the teams experience of
professional software
development is

3= Low, the team is inexperienced
2= Medium, the team has worked
on software projects before
1= High, the team has extensive
experience of software
development

P3 Project Handbook Voi
II - Internal Project
Document

53 SafetyCriticalUserEnvironment Int How essential is this product to
the safety of the user

3=Essential, failure compromises
the safety of the user
2=Medium, the product must
degrade gracefully to preserve user
safety
l=None, no danger to the user
pending failure

P3 Project Handbook Voi
II - Internal Project
Document

54 Economy CriticalUserEnvironment Int How essential is this product to
the economical success if the
user

3=Essential, failure compromises
the economical success of the user
2=Medium, failure must not be
frequent and when failure occurs
the user must be notified
l=None, no economical risk to the
user pending failure

P3 Project Handbook Voi
II - Internal Project
Document

55 UserCulture Int The user has a software usage
culture which is

3=Not very mature, the user does
not have much previous software

P3 Project Handbook Voi
II - Internal Project

96

usage experience
2=Medium, the user has limited
software usage experience
l=Mature, the user has experience
in using various software products.

Document

56 CustomerSchedule Int The customer schedule is 3= inflexible, changes will cause
schedule problems
2=fairly flexible, changes may
require unfavourable alterations to
schedule
1= very flexible, changes to
schedule are open to negotiation

P3 Project Handbook Voi
II - Internal Project
Document

57 UserTrainingRequired Int The level of training required to
allow the user to use the
product is

3=High, user has very little
familiarity with this type of
product
2=Medium, some training will be
needed
l=Little or no user training will be
required

P3 Project Handbook Voi
II - Internal Project
Document

58 UserApplicationDomainExperience Int The amount of experience the
user has in the application
domain is

3=Low, the user has little
experience of this application
domain
2=Medium, the user is familiar
with this line of business
l=High, the user has a recognised
level of expertise in this area of
business

P3 Project Handbook Voi
II - Internal Project
Document

59 MarketCompetition Int The level of market
competition facing this product
is

3=High, the market is flooded with
alternative products
2=Medium, there are a number of
alternative products for the user
l=Low, this product has a
particular market niche or this

P3 Project Handbook Voi
II - Internal Project
Document

97

product is dedicated to a specific
user

60 StandardlS09001 Boolean Your organisation meets the
requirements set to reach ISO
9001 certification

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

61 StandardCMMLevel2 Boolean Your organisation meets the
requirements set to reach
C M M Level 2 certification

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

62 StandardCMMLevel3 Boolean Your organisation meets the
requirements set to reach
C M M Level 3 certification

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

63 StandardCMMLevel4 Boolean Your organisation meets the
requirements set to reach
C M M Level 4 certification

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

64 StandardCMMLevel5 Boolean Your organisation meets the
requirements set to reach
C M M Level 5 certification

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

65 StandardlS015504 Boolean Your organisation wishes
follow the ISO 15504 (SPICE)
standard

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

66 OrgamsationCodingStandard Boolean Your organisation has a coding
standard which is m place and
followed

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

67 OrganisationDocumentationStandard Boolean Your organisation has a
documentation standard which
is in place and followed

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

68 OrgamsationConfigManagementStand
ard

Boolean Your organisation has a
standard in place and followed
for Configuration Management

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

69 CustomerProductStandard Boolean The customer has an evaluation
procedure for the product

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

70 OrgamsationlntemalProductStandard Boolean A defined internal standard for True=Yes P3 Project Handbook Voi

product evaluation is in place False=No II - Internal Project
Document

71 SubcontractorStandardRequired Boolean A defined standard is in place
for evaluation of
subcontractors

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

72 SoftwareReuseStandard Boolean A defined standard is in place
that is expected of software
that is reused/off-the-shelf

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

73 HardwareCost Int The hardware cost of
developing this product is X
number of thousands

User entered value P3 Project Handbook Voi
II - Internal Project
Document

74 SoftwareCost Int The software cost of
developing this product is X
number of thousands

User entered value P3 Project Handbook Voi
II - Internal Project
Document

75 TravelCost Int The travel cost of developing
this product is X number of
thousands

User entered value P3 Project Handbook Voi
II - Internal Project
Document

76 Effort Cost Int The effort cost of developing
this product is X number of
thousands

User entered value P3 Project Handbook Voi
II - Internal Project
Document

77 TrainingCost Int The training cost of developing
this product is X number of
thousands

User entered value P3 Project Handbook Voi
II - Internal Project
Document

78 EstirnationStandard Boolean You have a formal standard of
estimation used on all projects

True=Yes
False=No

P3 Project Handbook Voi
II - Internal Project
Document

79 HardwareCostAccuracy Int The accuracy of your hardware
cost estimation is

3=Not Very accurate
2=Average approximation
l=Very accurate

P3 Project Handbook Voi
II - Internal Project
Document

80 SoftwareCost Accuracy Int The accuracy of your software
cost estimation is

3=Not Very accurate
2=Average approximation
l=Very accurate

P3 Project Handbook Voi
II - Internal Project
Document

81 T ravelCost Accuracy Int The accuracy of your travel 3=Not Very accurate P3 Project Handbook Voi

99

cost estimation is 2=Average approximation
l=Very accurate

II - Internal Project
Document

82 EffortCostAccuracy Int The accuracy of your effort
cost estimation is

3=Not Very accurate
2=Average approximation
l=Very accurate

P3 Project Handbook Voi
II - Internal Project
Document

83 T rainingCost Accuracy Int The accuracy of your training
cost estimation is

3=Not Very accurate
2=Average approximation
l=Very accurate

P3 Project Handbook Voi
II - Internal Project
Document

84 ProductPortability Int The portability of your product
is

3= High, the product will operate
on multiple platforms
2= Medium, certain modules are
platform specific
1= Low, required for a specific
platform

P3 Project Handbook Voi
II - Internal Project
Document

85 ExpectedDuration Int The duration of your project is
expected to be X weeks

User entered value P3 Project Handbook Voi
II - Internal Project
Document

86 ActualDuration Int The actual duration of your
project is X weeks

User entered value P3 Project Handbook Voi
II - Internal Project
Document

87 WorkEnvironmentErgonomics Int The environment in which your
team operates is

3=Unsuitable, the atmosphere is
detrimental to the comfort of the
team
2=Mixed, the atmosphere may be
compromised by disturbances
l=Ideal, the atmosphere suits
software development

P3 Project Handbook Voi
II - Internal Project
Document

88 A ctiv ity Duration Int The duration of this Activity is User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

89 ProjectLifeCycle Int The life cycle chosen for this
project is

5=Spiral Model
4=Evolutionary Model
3=Incremental Model

P3 Project Handbook Voi
II - Internal Project
Document

100

2=WaterfaU/V
l=None

90 IndependentVandV Int The level of independent
Verification and Validation at
each stage of the project is

3= Low, there is little or no
external verification and validation
2= Medium, there is verification
and validation at each stage of
development
1= High, the project schedule and
continuity depends on external
verification and validation

P3 Project Handbook Vol
II - Internal Project
Document

91 EstimatedProjectRisk Int This is a result of risk
calculation for this project
The user will not set this token
- this is an output result token

Output value P3 Project Handbook Vol
II - Internal Project
Document

92 CustomerSoftwareCulture Int The level of software usage
experience at the customer
organisation

3=Low, the customer does not have
much previous software purchasing
experience
2=Medium, the customer has
limited experience m general
software use but not m this
particular application area
l=High, the customer has
purchased software applications of
this nature previously

P3 Project Handbook Vol
II - Internal Project
Document

93 MetncDevelopmentBug Int Number of bugs observed
during a development phase

2 = each week
1 = each month
0 = reacted

Metrics suggested by the
A M I Handbook (Pulford,
1996)

94 MetncValidationBug Int Number of anomalies observed
durmg the validation tests

2 = each week
1 = twice a month
0 = reiected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

95 MetncReportedAnomalie Int Number of classified anomalies 3 = each week Metrics suggested by the

101

reported 2 = each month
1 = at each milestone
0 = rejected

A M I Handbook (Pulford,
1996)

96 MetricOriginBug Int Number of bugs whose origin
is requirements/design/coding
against time of discovery

3 - each week
2 = each month
1 = at each milestone
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

97 MetricErrorLocation Int Error location 3 = each week
2 = each month
1 = at each milestone
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

98 Metri cT estingCoverage Boolean Testing coverage of each
testing phase

1 = adopted
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

99 MetricErrorKLOC Boolean Number of errors/KLOC (high
level design review errors, code
inspection errors, unit test
errors, integration test errors
etc.)

1 = at each review
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

100 MetricPhaseDelay Boolean Delay of each phase and
percentage of deviation

1 = at each milestone
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

101 MetricMilestone Boolean Percentage of milestones on
time

1 = at each milestone
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

102 Metri cProductSize Int Expansion ratio of product size 2 = twice a month
1 = each month
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

103 MetricProductivity Int Productivity: KLOC/person-
month

3 = each week
2 - twice a month
1 = each month
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

104 MetricReview Boolean Number of hours to prepare a 1 = at each review Metrics suggested by the

102

review vs. number of errors
reported and time to fix it

0 = rejected A M I Handbook (Pulford,
1996)

105 MetricEffort Int Effort spent per phase;
deviations

3 = each week
2 = twice a month
1 = each month
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

106 MetricT estProductivity Boolean Number of test cases passed
per unit of time

1 = adopted
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

107 MetricRework Int Total effort in rework/phase 3 = each week
2 = twice a month
1 = each month
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

108 MetricProductivityError Int Productivity: K LO C with a
fixed number of errors/person-
month

3 = each week
2 = twice a month
1 = each month
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

109 MetricBugFix Boolean Average time to fix a bug (over
a month, over a year)

1 = adopted
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

110 MetricComponent Boolean Maximum number of
components to be corrected in
case of error or change request

1 = adopted
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

111 MetricN onRegression Boolean Average number of test cases
to ensure non-regression

1 = adopted
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

112 MetricNewCode Int Percentage of new code in a
system

2 = twice a month
1 = each month
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

113 Metric Change Int Percentage of changes which
introduce faults

2 = twice a month
1 = each month
0 = rejected

Metrics suggested by the
A M I Handbook (Pulford,
1996)

114 MetricUnresolvedError Int Number of unresolved 2 = twice a month Metrics suggested by the

103

problems/number of solved
ones

1 = each month
0 = rejected

A M I Handbook (Pulford,
1996)

115 User Requirements Duration Int
[0..100]

The duration of this Activity is
as a percentage of overall
duration

User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

116 System Requirements Duration Int
[0..100]

The duration of this Activity is
as a percentage of overall
duration

User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

117 Software Requirements Duration Int
[0..100]

The duration of this Activity is
as a percentage of overall
duration

User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

118 Architecture Design Duration Int
[0..100]

The duration of this Activity is
as a percentage of overall
duration

User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

119 Detailed Design Duration Int
[0..100]

The duration of this Activity is
as a percentage of overall
duration

User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

120 Implementation Duration Int
[0..100]

The duration of this Activity is
as a percentage of overall
duration

User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

121 System Integration And Test Duration Int
[0..100]

The duration of this Activity is
as a percentage of overall
duration

User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

122 Acceptance Testing Duration Int
[0..100]

The duration of this Activity is
as a percentage of overall
duration

User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

123 Operational Testing Duration Int
[0..100]

The duration of this Activity is
as a percentage of overall
duration

User Entered Value P3 Project Handbook Voi
II - Internal Project
Document

104

i

io
o

Appendix B: Prompter Use Cases

106

1. Use Cases
This section outlines the Use-case analysis for process selection and project instantiation This
use-case analysis is a direct extract from the User Requirements document of the P3 Project This
document was deliverable to EC as part of the P3 project contract These use-case diagrams are
different to an actual use-case with the developed Prompter tool This is due to the refinement
and elimination of various user requirements throughout the project Despite the disparity
between the developed product and these use cases, these use cases still provide an insight into
how Prompter was intended to be used

Roles and actors

The mam actor in Prompter is the project manager Dunng the process selection phase the project
manager performs different roles, as described in the Prompter Handbook

• Firstiy, the project is described the m ain characteristics of the project are specified and
the business drivers and goals identified

• P reparation f o r the p ro cess selection, checking the coherence of what has been defined
• Selecting the p ro cess with help of these elements
• Instantiating the p ro cess into a p ro jec t 1 e feeding the framework of the process with the

values of the project

Use cases diagrams

Describing the Project

‘Business goals

Process selection

P r o j e c t in $ t a n t i a t i o n

108

• Describing the project characteristics
description : the user has to feed Prompter with general data on the project if it is long or short
, if it is a sub-project or if there are partners, if new technologies are used or if a similar project
as already been undertaken, the degree of flexibility of the project, etc in order to make clearer
any constraints on the project Writing textual comments on the project, even if not directly used
by Prompter for assessment, may be a good way to provide the project manager with a kind of
“road book” or “diary” of the project Much of this may be achieved by checking or annotating
predefined items suggested by the Tool
end : characteristics of the project are known by the Tool

• Describing the project business goals
description : the user has to identify the project business drivers These can be done
automatically because the tool could provide a default list derived from project characteristics
The users may also want to defined special goals and drivers by setting the priority of general
drivers that Prompter provides
end : business drivers are defined

• Preparing for process selection
description : this step is provided to allow the user to verify if what has been provided to
Prompter is what was intended Prompter will also use this step to check coherence of the user
choices If these are OK, then Prompter will allow the user to go further and to select the process
If not or if the user is not satisfied with his choices, he can re-enter the previous steps and change
what is wrong
end : the user is sure that his choices are coherent and that therefore Prompter should be able to
find a process adapted to the characteristics of his project

• Process Selection Choosing the APM
description : this step is where the choice of the relevant process for the project is done Much
advice can be provided by Prompter depending on whether the user knows the life-cycle to be
chosen, or needs to consider several possible choices, or lets Prompter propose the best it can
find in process library Rules of adaptation of the process to the current project is also dealt with
in this step and the user may ask information on it or may be allowed, for certain processes, to
tailor this adaptation
end : the framework of the project is defined Instantiation can be done

• Project Instantiation APM -> IPM
description : the user fills the structure of the project with the real data The process can be
adapted according to the rules defined before, the metrics customised and risks factors added that
are peculiar to its project
end : the project defined and ready to be worked with Summary views of the project are
displayed

Use Cases description

109

