Abstract Project Model: A Description Of
A Generic Software Project

By Mark Johnston B.Sc.

School of Computer Applications
Dublin City University
Glasnevin

Dublin 9
Supervisor: Professor J.A. Moynihan
A thesis submitted for the degree of

Master of Science

May 1999

Declaration
I hereby certify that this material, which I now submut for assessment on the programme of study
leading to the award of Master of Science in Computer Applications 1s entirely my own work and
has not been taken from the work of others save and to the extent that such work has been cited

and acknowledged within the text of my work

Signed: M W ID No.: 3797 Ob 2P

Mark Johnston

Date: j3-S- 19399

Acknowledgements

The funny thing 1s that when I began this research I thought, this should not be too dfficult and I
probably will not need too much help In fact to be more wrong would have been difficult In
true Oscar winmng style I am aware that this thesis could not have been written without the help

of a number of splendid characters

Thanks to Robert Cochran for allowing me so much flexibility with my 9-5 hife and also for his
financial support throughout my two years at Catalyst Software I thank Marty Sanders for being
a consistent reality check on the apphication of this research to a real software tool A big thank
you to Jackie Berkery from the CSE for providing me with a validation source for this research
when there seemed to be no data points left Thanks to Stephen Brown for being as thorough as
possible with the examination of this research This has given me faith 1n this piece of work
Thank you to Renaat Verbruggen for identifying some of the weaker aspects of this research at an
early stage Finally, thank you to Tony Moymhan who supervised this research providing words

of wisdom when my tender years showed

Ths research took place within the framework of the P3 project I worked with a number of top
class individuals throughout this project especially Brian McCarthy, Rory O*Connor, Eamon
Gaffney and Sylvia Kelly, all of whom made me angry, made me laugh or made me see sense 1
thank you all for a superb 18 months

Abstract Project Model: A Representation of a Generic
Software Development Project

Abstract

Thus thesis records the research component involved when constructing a set of templates
that describe the typical software development project This set of templates 1s a major
component 1n the Prompter tool The Prompter tool was developed by a consortium of
software developers including Dublin City University, Catalyst Software and Objectif
Technologie The development of Prompter has been partially assisted under the ESSI
fourth framework 1Its goal 1s to provide decision support to the user 1n the field of
Software Project Planning

In the Prompter tool the user provides a detailed description of the starting point of their
project This detailed description 1s used to provide recommendations by a built-in
critiquing system This value of this advice 1s based upon the accuracy and relevance of
the data that the user provides ,

This research had two main objectives The first of which was to consolidate a
representation mechanism that 1s flexible enough to provide Prompter with a detailed
description of a user project The second objective was to research the state of the
average software project and attempt to categorise these typical software projects
according to size and complexity If these projects are deemed to overlap sufficiently,
these common characteristics can be added to a model describing all software projects
that are operating within these constraints These characteristics can then be added to the
tool using the description mechanism described above

Table of Contents

Chapter 1: INTRODUCTION

11 Introduction

12 The P3 Project

13 Target Users

14 Architectural Overview

141 The CORBA Standard
142 The Java Programming Language

143 GUI

144 Kernel

145 Daemons

15 Functional Overview

16 This Research 1n the Context of the P3 Project
17 Overview of Thesis

Chapter 2: THE MARKETPLACE AND THE NEED FOR A DECISION
SUPPORT TOOL

21 Introduction

22 Increasing Complexity of Software Production

23 Prompter and the Software Process Improvement Approach

24 Scope of the Prompter Tool

25 The Use of CASE Tools to Streamline the Development Process
26 Existing Tools

Chapter 3: THE CONCEPT OF AN APM

31 Introduction
32 Research Framework
33 The Concept of an APM

331 What does the APM represent

332 How does the APM fit into what Prompter intends to do
34 Project Characteristics and the Project Description Template
35 The APM Set

351 Defimtion of Project Size and Complexity

352 An Example APM Set

36 The Format of the APM

37 Imitial Research Identification of a Base Token Set
371 The Objective of the Token Data Type

372 A Token Set for Prompter

373 The Token Data Dictionary

[y

—
_‘;A\I\IO\O\(J\LD[\JN'—"—‘

16

16
16
20
20
22
23

26

26
26
27
28
29
30
32
33
35
36
37
37
38
41

Chapter 4: CURRENT INDUSTRY PRACTICES AND SOURCES OF

THE APM VALUES

41 Introduction

42 Problems encountered when performing this literature study
421 A General Absence of Metrics

4272 The Success Stories

4273 Politics

43 Sources of the APM Values

431 The Description of the Average Software Organisation

432 The European Software Institute

4321 Source 1 The VASIE Database

4322 Source 2 ESI 1997 Software Best Practice Questionnaire - Results
433 Source 3 Current Practice in Software Engineering a survey
434 Source 4 1998 Software Business Practices Survey

435 Source 5 EXE Magazine Surveys

4351 Surveyl What are you really worth?

4352 Survey 2 Development Tools 98

436 Source 6 Revision Labs

437 Source 7 The Spire Handbook

44 Summary

Chapter 5: VALIDATION OF RESULTS

51
52
521
522
523
53
531
532
533
54
541
5411
5412
5413
5414
5415
5416
5417
5418
5419
542
5421
54272

Introduction

Validation of the Project Description Template
What 15 the Project Description Template
The Validation Process

Conclusions from the Feedback Obtamned
P3 Project Validation of the Baseline APMs
Internal Validation

Validation by the EC

Validation by User Partners and Field Test
The Validation Process for the APM Set
The APM Set Arnsing from this Study
Small Size - Low Complexity

Medium Size - Low Complexity

Large Size - Low Complexity

Small Size - Medium Complexity
Medium Size - Medium Complexity
Large Size - Medium Complexity

Small Size - High Complexity

Medwum Size - High Complexity

Large Size - High Complexity

The Validation Process for the APM Set
The Validation Problem

Validation Scope

42

42
42
42
43
43

45
45
47
48
50
52
52
52
54
56
56

58

58
58
58
58
59
59
60
61
62
62
63
63
63
64
64
64
64
65
65
65
66
66
67

543 Validation of Organisational Level Default Token Values 68

544 Validation . 70
5441 Orgamsational Tokens Justified Using the Assessment Results 71
54472 Industry Level Tokens 75
5443 Project Tokens Exempt from Validation 77
55§ Summary 77
Chapter 6: CONCLUSIONS 79
61 Objective of this study 79
611 Description of the Generic Software Project 79
612 The APM Set and the Prompter tool 80
62 Creation of a Customised APM 81
63 Final Remark 83
REFERENCES 84
APPENDIX A: THE TOKEN DATA DICTIONARY 87

APPENDIX B: PROMPTER USE CASES 106

Figure 11
Figure 1 2
Figure 13
Figure 1 4
Figure 1 5
Figure 1 6

Figure 17

Figure 2 1
Figure 2 2
Figure 2 3
Figure 3 1
Figure 3 2

Figure 3 3
Figure 4 1

Figure 51

List of Figures

An architectural overview of the Prompter tool

The topology of how a system using CORBA communicates
The APM Window of Prompter

The Scenario Window of Prompter

An example of the Scenario relationship in Prompter

An example of the Scenario relationship following pruning
in Prompter

The Advice Window of Prompter 1s shown above This advice
has been offered by the Daemons component of the tool as a
result of the project description provided by the user

The dramatic increase 1n the use of computer systems

(1955 - 1985)

The changing profile 1n the relationship between hardware
and software costs

The market area towards which Prompter was aimed
Intersection area between two user projects and the APM
The APM 1s formed from a blend of organisational and
project characteristics

The Advice Taxonomy of Prompter

The importance of customer satisfaction to software developers
as provided 1n the 1998 Software Business Practices Survey
The movement from APM to IPM to RPM when

using Prompter

16
17
21
29
32

39
51

61

APM
BS
CASE
CMM
COCOMO
CORBA
EC
ESI
ESSI
ESPRIT
EU
GUI
IDL
IEE
IEEE
IPM
ISO

IT
JDK
KLOC
MIS
MS
NATO
OMG
ORB
PIE
RPM
SME
SEI
SPICE
VASIE
WWW

List of Acronyms
Abstract Project Model)
British Standard
Computer Aided Software Engineering
Capability Maturity Model
Constructive Cost Model
Corporate Object Request Broker Architecture
European Commaission
European Software Institute
European Systems and Software Imtiative

European Software Programme for Research 1n Information Technologies

European Umon

Graphical User Interface

Interface Defimtion Language
Institute of Electrical Engineers
Institute of Electrical and Electronic Engineers
Instantiated Project Model
International Standards Orgamsation
Information Technology

Java Development Kit

Kilo (1000) Lies Of Code
Management Information Systems
Microsoft

North Atlantic Treaty Organisation
Object Management Group

Object Request Broker

Process Improvement Experiment

. Refined Project Model

Small and Medium-Sized Enterprises

Software Engineering Institute

ISO TR 15504 Software Process Assessment and Improvement
Value Added Software Information for Europe

World Wide Web

Chapter 1: Introduction

1.1 Introduction

This research was performed 1n conjunction with the development of a software product known
as Prompter This chapter intends to give an overview of the Prompter tool as a precedent to
describing the research performed This will be achieved by providing an mnsight into the
framework within which the Prompter tool has been developed Thus framework was the P3
Project The target users of the end product are described which provides an mnsight into the type
of customer that was targeted An architectural overview 1s provided which briefly describes the
various components of the Prompter tool A functional walkthrough 1s provided which describes

a possible usage session of this tool Finally, a brief overview of the thesis 1s supplhied

1.2 The P3 Project

The P3 Project was a European Commission sponsored project under the ESPRIT programme
mvolving partners from France, Greece and Ireland This project had a 30 month duration and
was mtended to be completed by March 1999 At the end of month 30 there was a packaged
software tool that allowed software project managers to obtain decision support with respect to
project planming Decision support 1n the context of the Prompter tool refers to providing the
software project planner with recommendations based on the project scenario that has been
described to the tool by the user The tool delivered by the project was in fact an operational
prototype with some outstanding 1ssues to be resolved before making 1t available outside the
project team There were a number of interim deliverables during the project schedule which
were subject to external evaluation under the control of a EC appointed project officer and his

peer review group

The development team consisted of one Insh software company, Catalyst Software Ltd, a French
software company, Objectif Technologie and an Insh research institute, Dublin City University
In addition, there were two user partners that provided feedback to the development team 1n
relation to the various mnternim deliverables These user partners were Intrakom SA, Greece and
Schneider Electric, France The user partners also provided feedback 1n relation to each of the

prototypes that were incrementally delivered The four prototypes intended to incrementally add

architecture, look and feel, functionality, and finally, advice to the user All EC sponsored
project support was dependent upon the acceptance of formal deliverables which occurred at six

month breaks throughout the project

1.3 Target Users

Prompter 1s a MS Windows based software product mtended for the project manager who wishes
to employ best practices while managing a software development project In order to minimise
cost, reduce development time and maximise customer satisfaction 1t 1s necessary to control many
facets of a software project Thus 1s Prompter’s area of expertise — best practice within the
context of a specific software project The tool 1s primanly targeted at the manager of an
exclusively software project who wishes to follow the roadmap of known quality standards such
as CMM, ISO, SPICE etc Because Prompter 1s a training tool, the target user 1s the novice
project manager or even student user in traimng mode The user typically wishes to examine
what-if situations and make the best possible decision at any stage in the project In this way a
project manager can improve practices within the framework of a real project Thus tool 1s
primarily suited to the manager of a level 1 CMM 'organisation striving to introduce basic

management to achieve a stable process with a repeatable level of statistical control

1.4 Architectural Overview

An architectural overview 1s provided 1n this section Figure 1 1 on the following page shows the principle
architectural components of the Prompter tool at a high level Prompter 1s composed of three major
components GUI, Kernel and Daemons The GUI component manages user interactions with the
tool Ths part of the tool processes all user input and selections and passes them to the Kernel
The Kernel 1s responsible for managing the storage of a user’s project description and assembles
advice to be returned to the user The Daemons analyse the user’s project description and creates
advice based upon the state of the user project The Daemons use their critiquing system to
analyse the project description constructively These three components are described 1n greater
detail below Not only are these components distinctly unique 1n their functionality they were
also developed by different orgamisations within the P3 project These three components were

connected using an nterfacing standard known as CORBA The three components, GUI, Kernel

' Level 1 CMM 15 a classification of organisation maturity identified by the SEI

and Daemons were implemented using the Java programming language These technologies are

described below

GUI

Kernel Presentation
Communicator | Manager

CORBA

Kernel

Report | File Storage | Adwvice
Wnter | Repository Handler

CORBA
Daemons
Inference Daemon
Engme Library

Figure 1.1: The above diagram illustrates
a view of the architecture of the Prompter
tool at a high level

1.41 The CORBA Standard

The Corporate Object Request Broker Architecture (CORBA) 1s a standard which 1s managed by
the Object Management Group (OMG) The OMG is composed of more than 500 software
organisations concerned about standardising distributed object communication CORBA 15
essentially a software layer that allows possibly remote software components to communicate
(Iona, 1997) This communication 1s achieved via an Object Request Broker (ORB) This ORB
1s a middleware software component that acts as an intermedtate between clients and servers
The CORBA architecture 1s 1n fact an extension of the traditional client-server approach but
allows this form of communication with the following benefits

e Clents and Servers may be distributed outside of the local network

e Chents and Servers may be executing on different hardware platforms

e Chents and Servers may be executing on different software platforms

e Clents and Servers may be implemented 1in different programming languages

In order to develop software using CORBA, 1t 1s necessary to employ an ORB to perform all
necessary transactions between chients and servers Proprietary and non-proprietary ORBs are
available for commonly used programming languages such as C, C++, Visual Basic, etc The

next step mvolves defiming an interface between the client and server

Client possibly
Chient implemented in
Program Java
ﬁ A
Method calls from client
to server
|
Method calls from | Server
i Skeleton
server to the client (via :
the ORB Server stub passes on method
requests to the Object Request
Broker who knows how to locate
™~ the server
" Objeat -
- Regaest - - :
Method calls from the
client to the sgrver (via 1 Client skeleton allows the
the ORB) Chent server to transparently invoke
Skeleton | requests upon the client
Method calls from server to client
implemented as callbacks
A A 4
Server Server possibly
Program ténplemented n
++

Figure 1.2 : The above diagram shows the topology of how a system using CORBA
communicates.

CORBA allows these clients and servers to interface using the IDL (Interface Defimtion
Language) These interfaces are described in a hardware and software neutral format This
format allows the mmitial defirution of the interfaces between components followed by the
development of each side of the interface independently Thus provides the developers with a
great deal of freedom as the interface can be constructed independent of hardware or software
nuances This interface can be used 1n conjunction with the ORB to create a number of stubs

which serve as communication agents between the developer written code and the ORB

In Figure 1 2 on the previous page, the definition of an interface using the IDL leads to the
creation of both server and client stubs (also known as server and client skeletons) A set of
programs, one for client and one for server are written Any requests from the client to the server
or vice versa are forwarded to the Object Request Broker by the client/server skeleton The ORB
knows where to locate the server or client and hence forwards the requests to the relevant party
The ORB 1s responsible for the following (Iona, 1997)

e Registration of servers

e Management of operating system resources

¢ Underlying communications and synchronisation

¢ Error detection

¢ Faithful transmission of requests

1.42 The Java Programmng Language

Java 1s emerging as one of the most important development platforms 1s use today In a survey
conducted by EXE Magazine (Bennett, 1998b), 16% of the 311 respondents said that they are
using Java as a development language This 1s behind C++, Basic and Pascal, all languages that
have been available as development languages for the last decade or more Java was mutially
concerved by researchers at Sun Microsystems but really only came to the fore as a usable
software development tool in 1997 This was because version 1 1 of the JDK included
functionality that made Java more usable as a commercial development tool The language builds
upon the object onented paradigm and employs a stmilar syntax to C++ which allows developers
to make the move to Java quite gracefully However, in principle the mam selling point of Java 1s
its platform independence This means that software can be developed mn Java on one machine

and may run on any other machine that 1s equipped with the Java virtual machine, This Java

virtual machine is a runtime environment that interprets bytecodes2on thefly instead of running
native executable code which is platform specific. Java initially appeared useful only for
multimedia applications running within web browsers. This is partly because the first release of
the JDK restricted the applet in its ability to access the local machine. This image has also been
largely as a result of the reduced execution speed of Java due to the interpreted bytecodes.
However, with the development of optimised compilation tools and proprietary libraries offering
efficient solutions, the Java development platform is appearing more attractive to organisations

who wish to do more than deploy their applications across the internet.

143 GUI

It is desirable to provide desktop software tools with a user interface that is both intuitive and
familiar. Familiarity with the user interface was achieved by following recommendations for MS
Windows 95. The user interface of Prompter is designed to allow the user to interact with the
tool using the typical commands that an MS Windows product would provide. The GUI is in fact
responsible for capturing all user data and requests, formatting these and passing all information
to the Kernel. The user interface also performs preliminary checking upon the data to ensure that

invalid values are not dispatched to the Kernel.

1.44 Kernel

The Kernel provides a mechanism for maintaining the user’s project description both in dynamic
form while a session with Prompter is in progress, and in static form, committing the project
description to persistent storage. The Kernel is also responsible for loading configuration
information for the GUI at startup. The Kernel is instrumental in providing the communication
mechanism between the GUI and the Daemons. Any requests made by the user via the GUI for
processing are passed initially to the Kernel and forwarded to the Daemons if appropriate.
Because the Daemons component of the tool is responsible for creating advice, the user’ advice
requests need to be transmitted to the Daemons and the returned advice needs to be forwarded to
the user via the GUI. In this way, the Kernel provides a level of indirection between the GUI and

the Daemons.

2Bytecodes are an architecturally neutral form of binary code which allows instructions to be defined
universally and translated at runtime into a machine -specific format.

1.4.5 Daemons

The Daemons 1n Prompter consist of a number of advice agents which are each able to critique a
certain aspect of the user’s project description Each one of these agents 1s a mini-expert capable
of providing advice about a certain aspect of project management (Gaffney, 1999) There are
daemons responsible for the areas of

e Analysis and Planmng

e Estimation

e Activity Planning

e Resource Allocation

¢ Project Re-planning

¢ Measurement

¢ Risk Management

These daemons have the ability to critique the project description provided by the user and may
suggest a sensible alternative in the form of advice This occurs by the execution of a set of rules,
in their most basic form as simple if - then statements These rules examine facets of the user’s
project description, which has been provided by the user at this pomnt For further exploration of

how the user provides this information see the following section

1.5 Functional Overview

Thus section 1s intended to give a walkthrough of the functionality of the Prompter tool There
are a mynad of possible use cases for this tool as there are different classes of users for this tool
as well as different project descriptions and advice formats that can be provided for each project
A generic use case 1s emphasised here to allow the reader to understand what a session with
Prompter mvolves A more detailed set of use cases 1s provided in Appendix B Thus set of use

cases was mncluded 1n the User Requirements document for the P3 Project

The user begins by either opening a project that 1s tn progress or by creating a new project
Consider the user who 1s new to Prompter and has not previously created a project using this type
of decision support tool beforehand When the tool begins, the user 1s presented with a set of
models from which to select the one most appropriate to their particular project Ths 1s i fact

the scope of this research, to create these starting point models for the user The user’s selection

criteria may be based on project size and project complexity as can be seen in the screen shot
shown in Figure 1.3. It is important for the user to understand what these two parameters

imply in order to make a suitable selection.

("Prompter Creating New Project

This APM describes the starting point of a project

where there is a small familiar software development

team with experience in developing this form of
application for this type of environment and using the H

Figure 1.3: The above screen shot shows the APM window that allows the user to
select an appropriate model for their project

Figure 1.3 displays nine distinct models from which the user selects the project description
most appropriate to their project. The suitability of each model can be evaluated by selecting
the relevant model and reading the description provided in the dialog box at the bottom of the
window in Figure 1.3. Having made this choice of starting point for the project the user now
can add some project specific data to this template. As more information becomes available
to the user about their project, the initial description becomes refined by the subsequent

addition of data

as it becomes available to the project planner. The user adds to the project description by

answering a series of questions posed by the tool.

Domain Subdomain

Characteristics Requirements

Product

Business Drivers

Customer

Application
Project Physical Resources
Human Resources

Estimating

Quality

Token
ID
12

13

84

59

92

26

36

48

52

78

61

60

72

Question

How do the requirements compare in relation to what
we are accustomed to

How much change are product requirements likely to
be subject to during the course of development
Evaluate the interfaces between the product and other
software/hardware components

What is the level of portability expected of the product

What is the level of market competition facing this
product

What is the level of software usage experience at the
customer organisation

How well does the client understand the requirements
How important is reusability for this application

Evaluate the equipment at the disposal of the
development team

Describe the teams experience of professional software
development

Describe the standard of estimating at your
organisation

Is your organisation capable of CMM level 2
compliance

Is your organisation capable of ISO 9001 compliance

Describe the standard of quality expected of
subcontractors

Table 1.1: The above table shows an example of the type of questions posed by the Prompter tool
when obtaining a user’s project description.

These questions are classified into domains such as characteristics, project, quality, metrics, etc.

These domains are further subdivided into sub-domains which contain a set of questions about a

specific aspect of project planning. To give a feel for the type of information this questions and

answers session intends to elicit, Table 1.1 on the previous page provides a suitable illustration.

In Table 1.1 above, the domain column is a top-level categorisation of concepts which may be

associated with project planning. Each domain may be broken down into a number of sub-

domains which contain specific questions about project planning. The user answers the questions

posed by the tool by selecting the most appropriate option from a short list of qualitative terms

such as [high, medium, low], A screen shot in Figure 1.4 on the following page shows, the
Scenario window of the Prompter tool with the user answering questions about a particular

aspect of their project.

Project Root Scenaiio[1]

Domain

Figure 1.4: Screen shot of the Scenario window of Prompter with the user answering questions
within the Application sub-domain of the Characteristics domain.

The user now has the option of creating alternative descriptions for their project. For
example, a project manager may wish to evaluate the impact of increasing the size of their
project team. Rather than changing the size of the project team, the user may create a clone
of their project description and change the team size in the clone. In this way the user does
not lose the project description when seeking to evaluate alternatives. Because a large part of
planning is impact evaluation and prediction, it is necessary to be able to observe the possible

effects of such changes without committing resources at such an early stage. The ability to

create a clone of your

10

current project description (can be thought of as a snapshot) 1s provided by Prompter These
cloned project descriptions are known as scenarios and often represent a decision pomnt 1n a user
project at which the user wishes to evaluate multiple outcomes of a decision These scenarios are
arranged by the tool 1n a tree-like fashion Scenarios can be added or deleted by a user so that
discarded or unwanted scenarios can be removed from the project description The scenarios that
are maintained will represent the path to the refined project description In the Figure 1 5 below,

1t can be seen how scenarios created 1n the order A-H are related

A
¢ / \
B C
D G
E
F H

Figure 1.5: The above tree depicts the relationship
between a number of Scenarios in Prompter.

The most recently created scenario can be considered scenario H If the user decides that some of
the scenarios have become obsolete, these unneeded scenarios can be removed by pruning the

scenario tree This may give rise to the scenario tree i Figure 1 6 on the following page

11

™~

H

Figure 1.6: The above Scenario tree
shows the result of a user pruning the tree
mn Figure 1.5,

Finally, advice can be requested by the user at any stage in the project A user can select general
advice that 1s based upon documented best practices that 1s not related to any particular project
Some of the advice 1s taken from sources of accepted best practices 1n software project
management literature However, the larger part of the advice 1s taken from knowledge held by
members of the project with over twenty years experience 1n software project management The
second form of advice 1s based on the project description that has been provided by the user This
advice 1s provided by the Daemons section of the tool which analyse the user’s project
description and make suggestions based upon this (Gaffney, 1999) Ths 1s why the user provides
such a detailed project description to the tool the richer the project description, the more useful
and relevant the advice will be The user will subsequently accept or reject the advice provided
by the Daemons If the user accepts the advice, changes may be made to the user’s project
description m hight of the Daemon’s recommendations Ths 1s how advice 1s beneficial to the

user The screen shot provided below shows the Advice window of Prompter This window

12

shows a set of advice provided by the tool according the user’s project description. This
advice appears a little superficial but the user has the ability to obtain ajustification for this
advice. The functionality allows the user to find out why such recommendations were made
by the tool. This is an important feature of the tool - not only are suggestions made to the

user but also an explanation is provided as to why these suggestions were considered

necessary.

[5 Prompter Root Scenario (Project) HE! 13

File Advices Administration Window Help

sm aiiitio
I Advice

Advice A

*Write operational scenarios to show how the product will be used and
what is actually needed.

* Provide training. . N o

* Use formal reviews throughout project for high visibility and to instil
confidence. .

* Develop appropriate quality management system.

* Develop appropriate risk mitigation system. . .

* ﬁ]llow for t%ardware upgrades which might be required during the length of

e project. . . o ,

* Remember the price of buying software might include both preparation
and follow-on activities. o

* Develop and implement organisational standards and processes.

* Develop, improve and maintain software processes to go with the new
circumstances. . .

* Develop a complete, small system first to leamn about the new things.

* Allocate extra time for re(iwrements analysis.

«Use a stron? requirements gather_m[q Process.

* Try to protofype as much as possible.

Delete

Figure 1.7: The Advice Window of Prompter is shown above. This advice has been offered by the
Daemons component of the tool as a result of the project description provided by the user.

13

1.6 This Research in the Context of the P3 Project
At this point, a description of the Prompter tool and a typical walkthrough has been provided As

the tool provides decision support to software project managers which 1s based upon a description
of a user project, 1t 1s necessary to obtain a project description n as clean and faithful a manner as
possible This means that there 1s a need to create a model 1n the tool by which this project
description can be represented This leads on to my first responsibility 1n the P3 project - to
construct such an mntial model known as the project description template and refine thus model
parallel with the development of Prompter This model 1s a description mechanism for the
characteristics of a user’s software project Creating such a model requires identifying the type of
information to be represented, the 1deal representation mechamsm and finally establishing its

worthiness

Prompter aims to provide decision support 1n the area of software project planning Such
decision support 1s provided to the user n the form of textual advice that appears dynamically
when using the tool In order to provide such advice 1n a project-sensitive manner, 1t 1S necessary
to obtain a large amount of information from the user describing their project Thus 1S a tune-
consuming task and led to fears that the pain vs gain ratio would be such that the user would find
the tool difficult and uncomfortable to use For the purposes of ergonomuics, 1t was conceived that
thus tool should provide a starting point description that diminishes the responsibility upon the
user to enter mnformation that could be reasonably inferred This starting point 1s in fact a
description of a generic software development project When this 1dea was first conceptualised,
there had been no research to verify the feasibility of constructing such a generic project
description This 1itial wish-list item 1n the system requirements of the Prompter tool became
an mntegral component of the tool through my research into this area From this concept, I
constructed a set of Abstract Project Models that characterise the starting point of the typical
software development project The Abstract Project Model (APM) will be described Chapter 3

1.7 Overview of Thesis

The Prompter tool has now been described and the context of this research within the
development of this product has been revealed The remainder of the thesis will deal with the
following

14

Chapter 2 describes the market place and the 1ts need for a product such as Prompter This
mnvolves accurately describing the category of software tool which Prompter competes with
This analysis of the domain of the Prompter tool culminates 1n the revelation that there 1s no

direct competitor to Prompter in the marketplace at present

Chapter 3 descnbes the concept of the Abstract Project Model and 1t’s design Thus involves
dentifying the type of data that the APM seeks to model and the way in which this information

can be represented The mutial research to create the token data type 1s also described

Chapter 4 aims to provide a description of the seven primary sources examined when performing
this study The model by which a user may describe their project 1s outlined mn Chapter 3 The
data which must be added to this model 1s introduced 1n this chapter Sources 1dentified by this
research are also described m Chapter 4 The validity of each source 1s evaluated and any

problems encountered when performing this research are stated

Chapter 5 describes the process by which thus research 1s validated This involves a description
of how the Project Description Template and the APM set were evaluated

Chapter 6 provides the conclustons arrived at following this research.

Appendix A presents the Token Data Dictionary This document 1s a formal deliverable from the

P3 Project which embodies the work performed to create the project description template

Appendix B provides the use cases which were a component of the User Requirements document
of the P3 Project

15

Chapter 2: The Argument for Prompter and the Abstract Project Model

2.1 Introduction

This chapter seeks to illustrate that there was a need for a tool to provide decision support to
software project managers and that there was also an opportunity for the success of such a tool.
There shall be a logical explanation as to why software vendors must streamline their process in
order to remain competitive. The manner in which the Prompter tool assists with software
process improvement is described. The scope of the tool is then revealed which shows the area
towards which Prompter was aimed. The use of CASE tools by software developers is then
investigated. This is followed by a brief description of tools which provided functionality in
areas related to Prompter. This shows that despite the presence of various tools there was no
existing package that provided the functionality of Prompter and that the features of the APM

were unique.

2.2 Increasing Complexity of Software Production

The application of computer technology in every aspect of life has become a norm. The
technological revolution involving computer systems began in earnest in the 1950s (Boehm,
1981). Since then, computer systems have become an essential part of everyday life and perform
many of the mundane tasks that were once considered both trivial and time consuming. This has
been reflected by a growth of reliance on computers and software as shown in Figure 2.1 (Boehm,
1981). Itis accepted that some of the references may appear to be out of date but a search for

more recent data points was fruitless.

Year
Figure 2.1: The above diagram shows the dramatic increase in the
use of computer systems between 1955 and 1985 (Boehm, 1981).

16

1955 1970 1985

Year
Figure 2.2: The above diagram indicates the changing profile of software:
hardware costs also implying the increasing costs of maintenance to development
(Boehm, 1981).

Not only has the dependence upon computer systems in general increased, the profile of the
demand on computer software in relation to computer hardware has changed dramatically. This
change has followed the typical pareto profile changing from 80:20 to 20:80 for the cost of

hardware to software. See Figure 2.2 above (Boehm, 1981).

With the advent of silicon technology hardware prices have plummeted further aiding the demand
for computer systems. An example of the changing cost of computer hardware is that in 1962 a
typical mini-computer cost about $US 20,000. A typical PC today would cost little more than
$US 1000 (History, 1997). The cost of software in turn has soared due to the rising complexity
and size of software solutions. It was not until the software crisis was identified by the NATO
Science Committee in 1968 (Schach, 1990) that the complexity of creating large scale software
systems was taken seriously. As systems grew, the search for a solution to the software problem

appeared to become more earnest. This seemingly endless search culminated in the belief that

17

there 1s no silver bullet for the difficulties of software development (Brooks, 1986) Having
placed fasth 1n the promises of new technology after new technology it finally became clear that a
set of ‘best practices' offered the only realistic way forward (Wasserman, 1996) This implies
that no one particular practice will overcome these age old 1ssues but an adoption of a set of
practices and activities that address individual problems associated with software development
(McConnell, 1997)

This realisation that streamlining software development activities according to recommended best
practices has really been a 90s phenomenon (Yourdon, 1996) It would be incorrect to assume
that the awareness of software development hazards was non-existent until 1990, but 1t was not
until this point that the community at large became concerned with process improvement This
has led to the development of software specific standards’ which define a busimess as having the
capability to produce a reliable software component These accreditations such as CMM, ISO,
BS, etc are standards that are recognised internationally Primanly, these standards establish that
a software vendor has the capability to produce a reliable product However, they also seek to
assist the vendor with their productivity This improved productivity 18 expected to emerge from
more informed project management techniques that are recommended by these standards The
better practices that result from pursuing such standards imntend to allow the software developer to
balance many conflicting interests such as

e Higher productivity

e Lower costs

¢ Higher quality

¢ Higher mamntamnability

e Shorter time to market

¢ Maximising reusabulity

The realisation that Software Process Improvement 1s an effective way to abandon the chaos of

disorgamsed software production 1s a contemporary 1ssue

If a software orgamisation cannot balance the conflicting interests outlined above, the vendor will

cease to remain competitive Thus implies that best practices programmes are an embodiment of

! Tn some cases accredtation for software development was specified for exasting standards

18

the type of activities that an orgarusation should seek to perform 1n order to remam competitive

(ESPITI, 1996)

As noted by Terry Rout at SPI 982, some organisations feel that such standards are too

bureaucratic and restrictive to be used practically, particularly in SMEs The need to remain

competitive 1s often a motivational factor for management to promote software process

mmprovement Table 2 1 below strongly implies that there 15 a good business case for most

companies to follow the SEI CMM process improvement approach

Category Range Median No. of Orgs.
Years of effort 19 35 24

Process improvement cost $ / person $490-$2,004 $1,375 4
Productivity gain / year 9%-67% 35% 4

Early defect detection gain / year 6%-25% 22% 3

Time to market gain / year 15%-23% 19% 2
Post-release defect reduction / year 10%-94% 39% 5

Savings / cost ratio 40-88 50 5

Table 2 1: The above table suggests that there 1s a good business argument in favour of software
process improvement (Yourdon, 1996).

These results shown 1 Table 2 1 above are based upon a small number of organisations, all based
mthe US Peter Goodhew provided similar results for the European Software Industry which
presented results from over 360 software development organisations throughout Europe (ESPITI,
1996) Ths survey of European organisations evaluated the productivity of the organisations
agamst the software process maturity of the orgamsations The performance of the organisations
varnied dramatically The more mature organsations achieved development productivity in excess
of 25 function points per person month and removed over 95% of defects before product delivery
Their estimations were often consistent to within 10% of actual cost and duration of the project
In contrast, the worst organisations had a development productivity below 5 function points per
person month and remove less than 50% of defects before delivery Therr projects often
exceeded estimated by more than 40% These results show that organisations with a more mature

software process can achieve higher levels of productivity

* SPI Y8 was a conference on Software Process Improvement held in Monte Carlo, December 1998

19

2.3 Prompter and the Software Process Improvement Approach

Having outlined the business advantage to making software process improvements 1t 1S now
necessary to show how Prompter relates to this concept The Prompter tool provides decision
support to software project managers In thuis way Prompter recommends that the user follow the
recommendations of documented best practices and apply these practices to their projects
Prompter uses 1ts knowledge base to advise users about how to make decisions at the project
level that should have an impact at a business level by streamliming the software production
process Over the past decade, contributions have been made by a variety of domain experts to
the software process improvement arena Prompter 1s equipped with a set of daemons (Gaffney,
1999) These daemons are used to give advice to a user at any time based upon the description of

the project that has been provided by the user

The software producer 1s aware that the user demands the best from the developer and if this level
of desired quality 1s not provided, the user may cancel their request or worse - offer their business
to a competitor Thus 1s Prompter’s mche assisting a software producer to remain competitive
by improving their software production process within the framework of real projects One of the
primary user requirements of Prompter 1s to provide decision support to a project manager of a
level 1 CMM orgamsation and to provide advice that will assist such a user to reach level 2 Thus
requirement was mcluded 1n the User Requirements Document of the P3 Project which was a
deliverable to the EC as part of the project contract It 1s logical to address this section of the

market as approximately 80% of software development organisations are at the mutial level
(Yourdon, 1992)

2.4 Scope of the Prompter Tool

In order to define the scope of the Prompter tool, 1t 1s necessary to consider the full categorisation

of software engineering tools As stated 1n the User Requirements Document of the P3 Project

software engineering activities can be divided into four broad categories

1 The activities within the software development process (1 ¢ within the hife cycle) -
requirements, design, coding, etc

2 The support processes which are carried out 1n parallel to the development process -

configuration management, resource management, quality assurance, etc

20

¢ g Ranonal Rose,

e g MS Project e g Process

Engmeer

Prompter

Figure 2.3 The above diagram illustrates the area of software engineering in which the
Prompter tool operates.

3 Project management activities, which start before the development and support activities,
continue on 1n parallel to them, and beyond them - scheduling, cost and effort allocation,
project tracking, etc

4 Process management activities, which start even earlier and continue even longer than the
project management activities Definition of and/or selection of the appropriate process,
defimtion of tasks, roles, metrics and analysis of the process

Prompter 1s not concerned with the design or writing of code or providing automated assistance

for supportmg activities such as tracking and scheduling However, Prompter 1s directly

concerned with decision support for process management and project management while not
directly providing for these areas themselves Many tools are available that provide for activities
such as quality, configuration management, project tracking, etc Examples of such tools are

KnowledgePLAN from SPR, SLIM from QSM and ProjectView from Artemis No single tool

offers the unique overlap shown in Figure 23 This has also been shown 1n the Technology

Implementation Plan document which was a P3 Project deliverable to the European Commuission

21

In Figure 2 3 above, the domain of software engineering tools encompassing CASE tools, project
management tools and process management tools 1s illustrated Examples of project
management and process management tools are provided mn section 2 6 The examples of CASE
tools used for the software development process are not described as such products are not in
competition with Prompter These tools, Rational Rose from Rose Software and Borland C++
from Borland are both intended for the software development process and used for the direct

production of software encompassing the areas of system design and implementation

Prompter 1s concerned with one aspect of the overlap between process and project management,
namely decision support for the planning and potentially re-planning components within them It
does not aim to cover all aspects of either project nor process management For example
Prompter does not assist the user n creating a detailed project plan showing milestones as in MS
Project or tracking resources as i Juggler from Catalyst Software In order to provide such
decision support, 1t 1s however, necessary to overlap with aspects of project management and
tracking Such an overlap involves Prompter providing recommendations for the type of skill
mix a team should have This recommendation would be based upon the project description that

the user has provided

2.5 The Use of CASE Tools to Streamline the Development Process

The use of CASE to support the development of software systems has become an essential part of
a developers arsenal This view can be somehow misleading as over reliance on tools without the
underlying process 1s a narve move that 1s Iittered with pitfalls that can add to costs and extend
deadlines (Humphrey, 1989) CASE 1s not needed by level 1 orgamsations, they have more
fundamental needs However, this warning has not stemmed the increasing dependence upon
CASE In Chris ‘Plckermg's 1996 Survey of Advanced Technology, 52 6% of respondents use
CASE to aud the development process In this survey, over 37% of respondents felt that the
greatest factor preventing the use of CASE was that the benefits were not demonstrated
(Pickering, 1996)

Thus interest in using CASE has also spilled 1nto project management This 1s evident at a very
general level in the number of MS Project and MS Schedule users among project managers

There also exist some software-specific project management tools providing features which could
be considered in competition with Prompter In Table 2 2, a classification 1s provided of the

primary features found 1n project management tools Thus represents the functionality found in

22

most software project management tools. It was deemed necessary by the EC to examine existing
tools within this domain despite the fact that they are not direct competitors to Prompter. It was
felt that the interest in such tools indicated an awareness of the need for more rigorous software
project planning. It also showed that there was no direct competitor to Prompter. This was

reported in the Technology Implementation Plan of the P3 Project.

2.6 Existing Tools

The tools that are currently in the marketplace that can be considered to provide functionality
similar to that provided by Prompter are as follows:
e Open Plan by Welcom Software Technology

» Project Planner by Primavera

* Process Engineer by LBMS

e SELECT Process Mentor by SELECT Software
» Project Scheduler 7 by Scitor

* ProjectView by Artemis

* Risk+ by ProjectGear Inc

¢ KnowledgePLAN by SPR

e SLIM - Estimate by QSM

* IntraPlan by Intra2000

Many of these tools pride themselves on features that Prompter also offers. Almost all of the
above offered

m Scheduling/Planning capability

m Customisation of the User Project

m Risk Analysis

m What if capabilities

m Reporting abilities

m Multi-user/groupware

These competitors do not offer Dynamic Advice based on the content of a user’s project
description or the ability to evaluate alternatives within a project via scenario analysis. From the
point of view of this study it should also be mentioned that none of these competitors provide a

starting point project description such as the APM. Both of which are two of Prompter's primary

23

features and unsurprisingly are the features that distinguish Prompter from its competitors It can

be concluded that there 1s no direct competitor to Prompter as none of these alternative tools

possess the key features on which Prompter 1s based

Feature

Description

Scheduling

Scheduling 1s a key activity for project managers and the sophustication
of the algorithm affects the usefulness of the product Aspects which
should be taken into account include, task prionities, multiple

schedules, fixed date, as soon as possible and as late as possible

Resource control

Initial and ongoing control of the resources applied to a project 18 a key
element of project management Typically, tools assist with allocating

and monitoring resources

Cost monitoring

Information regarding actual and estimated costs should be captured,

such as, timesheets, committed costs, cash flows, borrowing needs, etc

Progress tracking

A wide variety of metrics are available for tracking the progress of a
project against 1ts plans Products normally support a variety of these
types such as, percentage completion for time, cost or work, estimation

of end date or cost and baseline comparison for time or work effort

Reporting features

A varned reporting mechanism 1s essential and should include a variety
of reports such as, milestone report, variance report, status per

task/team member, etc

Multiple projects

In many orgamisations, a project manager may be responsible for more
than one project and will require software to handle aspects such as,
prioritisation between projects, splitting projects, merging projects,

staff/resource sharmg and viewing consolidated information

Charts

A vanety of charting mechamisms 1s desirable, such as, Gantt, Pert,

Work Breakdown Structure, resource, etc

What-1f capabilities

A common requirement for project managers 1s the ablility to
mvestigate the effects of potential changes 1n the situation of a project
They may need to see the effects of adding or withdrawing a particular

resource

Data import/export

In certain circumstances users may wish to import or export data to

other packages

24

Help facilities

There are a number of aspects to help including, online tutonals,

Internet support, on-screen context sensitive help

Networking

More and more organisations require packages to operate in a network

environment and to allow for concurrent users

Table 2.2 The above table shows the various features expected of a project management support
tool. Thus table is taken from the Technology Implementation Plan of the P3 Project.

Prompter has features that enable 1t to distinguish itself from other tools 1n the same area Thus

was shown by the Technology Implementation Plan of the P3 Project This document was

approved by the EC as a valid competitor analysis Again, 1t can be pointed out that none of the

products evaluated above provide a baseline project description such as the APM which acts as a

starting point to the user’s project description Thus feature 15 therefore an important asset to the

Prompter tool and further enables it to distinguish itself from the available tools described above

This point not only indicates the value of the Prompter tool but also justifies the role of this

research 1n conjunction with the P3 project

25

Chapter 3: The Concept of an APM

3.1 Introduction

The aim of this chapter 1s to define the APM (Abstract Project Model), discuss 1t’s format and to
show how 1t fits into the Prompter tool This 15 achieved by beginming with a high level
description of the APM 1n the context of the Prompter tool The raison d’ etre of the APM 18
approached with respect to the advantage to the user by employing the APM 1n Prompter The
knowledge representation technique for the APM 1s illustrated by showing how the default values
are accessed and used by the tool Finally, a description of how the APM will be used within the

tool, both from a user perspective and from a functional perspective 1s provided

3.2 Research Framework

Ths research was carried out 1n parallel with the P3 project schedule This research began in
October 1997 which was month 14 of the overall project duration Within the timeframe of the
P3 project (30 months) there were four prototypes of the Prompter tool delivered The four
prototypes were delivered as part of a Spiral lifecycle model Thas research involved a number of
distinct activities The activities described below were carried out 1n a sequential manner
Following the creation of an mmitial set of default values which were included 1n the second
prototype of the Prompter tool there began a process of validating these default values using

feedback from the user partners and internal review

Activity Duration

Preparation - becoming familiar with the area of software 3 months

quality and the Prompter tool specification

Data Collection - researching the default data for the APM set 4 months

Architectural Components - design and implementation of 2 months

actual software to handle the APMs n the Prompter tool

Integration - adding the researched values to the tool 5 month
Documentation - documenting the actual research 4 months
L

Table 3.1 : This table summarises the activities involved and their associated durations when
performing this research These durations are in calendar months and not person months.

26

Preparation involved examining the area of software quality and software process improvement
This was essential as the Prompter tool seeks to assist software managers in making
improvements 1n their techmque of developing software During this time 1t was also important
to become familiar with the Prompter tool’s architectural components This was essential so that

software could be developed to manage the APM set

Data Collection mvolved researching the characteristics of the typical software project This
mvolved collecting surveys and texts contaimng previous research A large part of this time was
spent working with the VASIE database described in Chapter 4 (ESI, 1998) Towards the end of

this phase, the collected data was classified according to relevance

Architectural Components mvolved developing documentation and software components to
manage the handling of the APM data values by the Prompter tool This code was written using
Java and CORBA to take the APM values from an external data file and instantiate these values
nto a user’s project upon the selection of a specific APM Thus activity was time consuming as
no representation mechamsm had been decided upon for the data in the APM set 1 had to make
extensions to the design of Prompter to handle this This involved evaluating alternative
representations for the APM data The Token object which 1s discussed 1n section 3 7 was the

final representation decided upon

Integration mnvolved the conversion of the selected characteristics 1dentified by the Data

Collection phase into a format acceptable to the tool

Documentation of this research (the writing of this thesis) commenced following the integration
of the mnit1al set of APM values into the Prompter tool The documentation phase continued 1n
parallel with the final refinements which were made when dehvering the two remaining

prototypes of the Prompter tool

3.3 The concept of an APM

Before speaking about the APM 1tself 1n detail 1t 1s important to mention that the APM 1s a
feature that 1s absent from any other tool in the same market area as Prompter The APM set was
constructed by this research alone This mvolved bringing this concept from an imtial verbose

requirement {0 an actual component withuin the tool that has undergone a process of verification

27

and validation incorporating any refinements that have been 1dentified as necessary This

requirement 1s shown 1 section 5 3 1

Thus section seeks to answer two 1important questions about the APM and Prompter These

questions are
® What does the APM represent?

® How does the APM fit into what the tool plans to do?

3.3.1 What does the APM represent

The APM represents a starting point for a user’s project This starting point 1s a generic
representation of what a user project may look like It 1s perhaps surprising to note that nearly all
software projects fail for the same reasons (Jones, 1996) The risks that lead to project failure are
not localised or orgamsation-specific but have been documented on a global scale For this
reason, 1t 1S possible to generalise quite liberally over the entire software development community
and 1dentify improvements that all orgamsations can make 1n order to achieve higher

productivity If the necessary improvements can be 1dentified, this means that the problems that
these improvements seek to resolve can also be 1dentified These problems can therefore be
viewed as characteristics of a software project This 1s what an APM tends to represent - the
charactenstics of a software project Seen from another viewpoint, these are the characteristics
that describe the starting point of a project The APM 1s thus a generic description for the starting
pomt of the average software project This 1s possible because from an abstract viewpoint most
projects appear similar An example of this similarity 1s that the most common type of software
project 18 the small-to-medium size project developed in a famihar, m-house organic software

development organusation (Tarek, 1991) These are the types of concepts that the APM seeks to
model

Figure 3 1 on the following page 1llustrates the role of the APM 1n an abstract manner Inside the
rectangle are three project descriptions An APM 1s depicted by a circle Ths circle represents a
set composed of a number of default values applicable to a certain category of software project A
level 1 CMM orgamnsation conducting a MIS project 1s depicted by the oval labelled Project B
Project A depicts a level 3 CMM orgamsation developing a software product for an embedded

system that will perform life critical tasks. Withun this rectangle and outside the three circles are

28

all possible software projects (the universal set). The APM shown below has a large
intersection area with Project B. Project A however has a small area of intersection with the
APM.

Figure 3.1: The above diagram shows the intersection area
between two user projects and an APM.

This implies that there are a large number of features common to this APM and Project B but
very few features common to the APM and Project A. It is the objective of the APM to have
a large intersection area with as many software projects as possible so the user's starting point

can be modelled by the Prompter tool.

3.3.2 How does the APM fit into what Prompter intends to do

To answer the second question, how does the APM fit into what the tool plans to do, it is
necessary to understand the objective of Prompter. Prompter aims to provide decision
support to the project manager in the planning phase of a project. To provide the user with
practical advice the tool must be provided with a description of the user’s project. Otherwise
the tool would only be facilitated to provide pointers and general guidelines to project
managers. To provide sensible project based advice a project description must be available.
To relieve the user from the time consuming nature of entering an extensive project
description, it was conceived that the availability of a default project description would
benefit the user. This can be considered loosely analogous to the concept of a letter template
for an MS Word document. This APM may not always provide the ideal default description

but it provides a starting point that is easily modified and extended.

29

3.4 Project Characteristics and the Project Description Template

As described above the APM describes a user project m a generic fashion This description thus
needs a representation mechamsm A set of descriptors are required that embody the concepts by
which this starting point ﬁlay be described At this point, the user has a mental picture of the
starting point of their project A mapping 1s required from the user’s mental model of their
project to a form that can be used by Prompter This mapping 1s performed by a descriptor
known as a token A token represents an atomic real world charactenistic of a project plan
Tokens may 1n fact model data which 1s concerned with features of a project or may alternatively
describe facets of an organisation An example of such an atomic characteristic for a specific
project 1s team stabihity This characteristic represents the stability of the software development
team, or 1n other words the likelihood that there may be the loss of critical members during the
project An organisational characteristic may model a concept that 1s mmvanant between projects
An example of such an mvanant characteristic 1s the organisation’s attitude towards configuration
management There are approximately 125 umque tokens used by the Prompter tool, each of
which represents a different project or orgamsational characteristic which may or may not be

known by a project manager during the planning phase (See Appendix A)

As explained above, a token represents a charactenistic of project planming Therefore, each token
15 a variable of project planming For each token, a domamn' over which the variable makes sense
must be defined The defimition of a domain of possible values allows the variation between
projects to be modelled To illustrate this point, the example token described above, team
stability has the possible values, low, medium or high Table 3 2 below illustrates what each of

the elements 1n the range of possible values represents using a textual description

Each characteristic has a set of values as the previous table shows for team stability Thus set 15
the domain over which the token makes sense An entire set of such characteristics may provide
a description of a project during the planning phase An example of such a description 1s

provided in Table 3 3 on the following page

30

Token: Team Stability

Value Meaning

High The project team 1s stable It 1s unlikely that critical members will be lost from
the team before the end of the project

Medmum It 1s likely that members may leave the development team before the end of the
project but this should not pose a risk to the success of the project

Low The project team 1s unstable It 1s hughly likely that critical members will leave
the project team before the end of the project causing a risk to the success of the
project

Table 32 The above table shows the descriptions which map to the values of low, medium and high
for the token ’team stabihity’.

Project Name: Futile

Project Description:

Token Name Token Range Token Value
Project Size [Small, Medwm, Large | Small
Requirements Complexity [Low, Medium, High] Medium
Team Development Experience [Low, Medum, High] Low

Team Skill Mix [Low, Medium, High | Medium
Project Budget [0 o] Unt of Currency 350,000
Market Competition (Low, Medmum, High] Low
Observed Standards [Present, Not Present] Not Present
Development Costs [0 oo] Umt of Currency 220,000
Project Duration [0 oo]Person Months 50

Project Life Cycle [Waterfall, V, Spiral, Prototyping | | Waterfall

Table 33 The above table shows a set of example characteristics of a project in the form of tokens.
The domain for the tokens are shown n the second column, The third column shows the mstantiated
values within the domamn that make up a basic project description. The above 1s an example of a
user’s project, not an example of an APM,

The creation of a set of tokens 1s equivalent to creating a project description template This
representation mechanism can be considered a project description language with a number of
slots that may be filled The more slots that are filled, the more detailed and mformative the
description of the project It 1s precisely this progect description template that allows the

definition of an APM An APM 1s thus a set of instantiated tokens that the user may select as an

31

appropriate starting point for their project. It is important to note that the APM will predict a set
of token values appropriate to the user but will not contain a full set of tokens for the users
project. Only the tokens that can be reasonably justified by this study will be included in the
APM.

3.5 The APM Set

Tokens are used in Prompter in two ways. The first way in which tokens are used is to create a
project description. However, the token set can also be used to form an APM. This is because an
APM is formed of a subset of the entire token set instantiated with particular values. The actual
values that are allocated are the primary objective of this research. An APM is therefore
composed of a number of such default token values. As described in the previous section, there
are two distinct categories of token. These categories are those that model features specific to a
project and secondly those that describe characteristics of an organisation that are independent of
projects or in fact identical for all projects at a particular organisation. An APM can be
constructed from these two token types because there is data available relating to both the typical
characteristics of a software project as well as the typical characteristics of a software

development organisation.

Figure 3.2: The APM is formed from a blend of
organisational and project characteristics

As Figure 3.2 above indicates each APM is composed of a combination of characteristics
particular to both project and organisation. The claim behind this thesis was that it was possible

to create a description of the typical software development organisation and characterise this

32

within the model such as the APM The Prompter tool intended to obtan a description of the
orgamisation from the user This description would be then examined by the Daemons component
of the tool and suggestions made mn the form of decision support These suggestions would be
largely based upon project characteristics rather than orgamsational characteristics however both

are important to the tool

However, 1t 1s not quite as straightforward to create such a template for all software projects due
to the variation between projects These variations are largely related to the size and complexity
of the product Because project characteristics cannot be narrowed down to one particular model,
a set of APMs were created to handle these vanations These APMs are distinguished according
to project size and complexity Before going any further 1t 1s necessary to clarify what should be

understood by the terms project size and complexity in the context of the APM

3.5.1 Definition of Project Size and Complexity
Both size and complexity are terms that appear quite subjective due to their use in everyday
conversation There 1s also the problem of famiharity with a particular baseline which acts as a

reference pomnt to which to compare all others 1n terms of size or complexity

Size 1n the sense of software development 1s measured by two particular techmques These two
predominant techniques are known as Function Point analysis and Lines of Code measurement
Both have merits which outweigh the other as a techmique of measuring software size (Furey,
1997) A discussion of both lines of code and function points 1s beyond the scope of this
research Size 1s described in Prompter as small, medium and large However, this measure of
size 1s not based upon the LOC or Function Point metric but based on the size of the project team
Thus 1s because neither of the measurement techniques described above are consistent enough

across the software development mdustry

Small Size
¢ Small sized team working in a familiar environment

e Project team composed of around 15 members or less

33

Medium Size
e Medum sized team possibly divided into a number of sub-teams working on distinctive
components

e Project team contains possibly more than 15 members but less than 50

Large Size

e Project team 15 large and distributed among a number of teams working on various
components

e The project team may be geographucally distributed

e The project team may be composed of more than 50 members across the various activities

The three mtervals of size described above have actual numbers assigned to each These explicit
s1zes, 0-15, 15-50 and 50+ were decided by the project manager responsible for overseeing the

delivery of the APM as a component within the P3 Project

Complexity can be described in simple terms as how difficult 1t 1s to produce a software
component This 1s contributed to by many factors Some of these factors are related to the
mability to cleanly allocate the requirements to a software design Other problems are related to
the non-functional requirements of a system such as speed of execution or tight operating
constramnts In the context of the Prompter tool, complexity can be classified as low, mediom and
high The following classifications of complexity have been based on COCOMOs classification
of complexity as organic, semt-detached, embedded (Boehm, 1981) These three terms are

explained below

Low Complexity

e Familiar software development environment

e There 1s experience 1n developing related systems
¢ A small amount of communications overhead

e A stable set of requirements

e Stable development environment

e Low premmum on early completion of the project

34

Medium Complexity

e Medum complexity represents an mtermediate stage between low and hugh complexity with
features of both present For example, communication costs may be high but the data
processing function may be managed by well documented or proven algonthms

e Team members have an intermediate level of experience with related systems

e The team may have a number of inexperienced members present

High Complexity

e The software will operate within a coupled complex of hardware, software, regulations and
operatmg procedures

e The requirements are highly inflexible and the cost of making changes 1s high

e The software 1s expected to conform strictly to the specifications

e Ths type of project 1s usually working with unfamiliar software or hardware components

e Changes to the project schedule are not usually negotiable

The size of the project has been described 1n a quahtative manner above with respect to the
number of team members This 15 because of the absence of a reliable size metric 1 the software
development industry The most mtuitive metric that can be used describes the size of the team

required to deliver a software product

Complexity 1s defined above 1n a verbose manner No gauge of measurement 1s provided by
which complexity can be estimated Both of these points appear to be problems Thus 1s not so
however, as qualitative terms such as low, medum and high complexity and such large ranges for
product size estimation suit a project manager’s knowledge during the planning phase of a project

Thus 1s 1 fact one of the only means by which a planner 1s equipped to categorise their project at
such an early stage

3.5.2 An Example APM Set

From the definitions for complexity and s1ze provided above, the next step 1s to define a set of
APMs based upon these qualifiers Both size and complexity defined above have a range of three
possible values Thus yields mine possible APMs 1f both project team size and complexity are

used as discriminators Some combinations are in fact redundant as 1t 1s lughly unlikely that any

35

software project that 1s large in size will be constdered to be not complex Table 3 4 on the

following page summarises the characteristics of each of these nine APMs

Estimated Product Complexity

Low Medium High
Small Small team Small team
Small team Interfaces may be Highly somplex
Familiar set of complex TeqrRmEnis
Requirements Commumcations Team unfamiliar
Flexible schedule overhead with this type of
Team may be system
unfamihar Inflexible schedule
Medium Medunn sized team
Medium s1zed team Medm sized icam Hughly complex
Famuliar set of Commurucatiois requirements
Requirements overhead Team vnfamiiar
Estimated Flexible schedule Team may be with s type of
Team unfamrhar system
Size Inflexable schedule
Large
Large possibly Large possibly Latge possibly
distributed feam dusttibuted teat distubuted toam
Famultar set of Cammpuanieations Faghly conplex
Requusments overhead TEqUraments
Flexible schedule Team may be Team sofamsliar
uifamihar swakh s type of
Large nunber of systemn,
terfaves Inflexabile schednle

Table 3 4: The above table shows an example APM set for use m the Prompter tool. Each of the
models 1s depicted by a box where the features of the APM are summarised. For a more detailed
description see Chapter 5 which provides the APM set and their associated descriptions.

3.6 The Format of the APM

As explained n previous sections, the underlying data representation format i Prompter 1s the
token A complete project description 1s made up of approximately 125 distinct tokens (See
Appendix A) An APM however in made up of a much smaller subset (between 30 and 45
tokens) Ths 1s because the complete project description mcludes tokens that cannot be set by

default Examples of such tokens that cannot be defaulted are relating to the duration of each of

36

the stages of the project or the number of members on the project team or the traming costs that
will be incurred during the project These project specifics are added by the user of Prompter
having selected the most appropriate APM for their project An APM 1s thus composed of a set
of tokens mtiahsed with a value which has been found by this study The composite set of
tokens 1 an APM will be used as a starting pont for the user’s project description These tokens

combined will give Prompter a starting point description of the user’s project

The APM of Prompter 1s represented as a file external to the tool Each of the APM files 1s
provided to the user by the installation of Prompter The installation of Prompter adds these
APM files to a standard directory within the filespace of Prompter When the user requests the
creation of a new project, a window 1s displayed which allows the user to select the model most
appropriate to their situation See section 1 5 for a functional overview of using Prompter
When the user has selected the most appropriate model, the tool opens a data file containing the
default token values These token values are then used as a baseline to which the user will add
their project specific data such as

e Project schedule mnformation

e Team characteristics

e User environment

e Metrics data

3.7 Initial Research: Identification of a Base Token Set

Thus section describes the mnformation that the token data type was required to represent in
Prompter The techmque by which this research was performed 1s then ivestigated and followed

by a description of the Token Data Dictionary as a controlled document for Token Management

3.7.1 The Objective of the Token Data Type

The data type which represents characteristics of a user project and user organisation 1s known as
the token Before characterising any default project models 1t was necessary to formulate thus set
of tokens mnto which the default values could be placed Thus set was mtended not only to
represent the APM of Prompter but also to represent generic project information i the tool

When researching the token there were two main concerns

37

1 Intuitive to the User: A user of this tool must feel comfortable with the type of mformation
being requested by the tool If the type of data required does not map to the user’s concept of
a software project 1t will be difficult to obtamn a full or even partially valid project description
This will render any project description useless .

2. Useful to the Daemons Because Prompter’s main aim 1s to provide decision support to
software project managers, 1t 1s essential that the user project 1s represented appropriately
The advisor components of Prompter need a rich and accurate project description 1n order to
diagnose any problems or risks mn a project This 18 necessary because the Daemons examine
a number of tokens collectively and formulate advice based upon the conditions suggested by
these token values aggregately (Gaffney, 1999) If the project description cannot convey this

data, the daemons will be rendered useless

3.7.2 A Token Set for Prompter

As described above the token data type was required to be both intuitive to the user and also
useful to the Daemons It was mtended that Prompter supply the user with advice relating to a
particular set of areas within the scope of software project management These areas are shown

mn Figure 3 3 on the following page

It was necessary that the token set provide sufficient information for the daemons to provide
advice for these areas Thus required an analysis of these areas and an 1dentification of the type of
information about a software project that would allow the critique of a user’s project The P3
Project Handbook which had been written prior to the dentification of the token set provided a
List of appropriate project characteristics that would be used by the Daemons These
characteristics needed to be cast from a sumple verbose description mto the token data type as
defined n Appendix A The Handbook format 1s 1llustrated on the following page in Table 3 5
which shows a number of suggested characteristics to represent variations m the project

environment

38

L Advice areas I

Ir Analysis & planning II-———'L

—| Selectung hfecycle |

Standards l
Selecting technologies |

Ir Activity Planning

—| Idenufying activities |
L{ Scheduling

|r Project re- plannlngjl—— —“

|r Risk management

gl

Idenuficaton |

Esumation —II

Selecting method l

Analysing estimates

]l————" Resource allocation II

_L
—-LSchedullng resources

—l Team skill mix j

Identfying needs I

Measurement —Il

—-{ Metrics
Selecton I
Implementation plan—l
—{ Analysis 4]

Technical

Cost

Schedule

Operational

Support

gl

L

Analysis

1
=

Monitoring —l

Mitgation

Figure 3.3: The diagram above illustrates the Advice Taxonomy of Prompter.

Not all of the characteristics m the handbook contributed to the Token Data Dictionary Other

sources that were used were Boehm’s USAF Risk Taxonomy (USAF, 1988) and the AMI

Handbook (Pulford, 1996) These additional sources were intended to provide tokens approprate

to the areas of Measurement and of Risk Management [was not responsible for the creation of

the Token Set for these areas but for the remaining areas shown in Figure 3 3 In summary these

arcas are

Analysis and Planning
Estimation

Activity Planning
Resource Allocation

Project Re-planning

39

Flexible and supported Half-way in between? Fixed parameters and
not supported
Funding Adequate and available Partially or sporadically Not adequate, not
funded available
Equipment Available and easy to Marginal Not available or difficult
support to maintamn
Software and tools Available and adequate Marginal Not available, not
adequate
Training Not required Some training required Required
Schedule Flexible Modifiable Fixed
Budget Flexible Modifiable Fixed
Quality of product Good Better Best
Functionality of product Low Medum High
Productivity of High level language, High level language, no Low level language, all

programming effort

existing or purchased
routines

reusable code

original code

Estimated risk, based on Low Medium High
roject stability
Software supplier or No Yes, for non-critical code | Yes, for critical code
subcontractor required
Likelihood of change 1n Low Possible High
scope or objective
Ability to make changes High Medium Low
1in timely manner
External requirements to | Low Medium High
provide data or
information
Concurrent development | No Some, but not critical to Yes, critical to project
project success success
Development within No Some, but not crifrcal to Yes, critical to project

systems engineering

project success

Success

Table 3.5: The above table shows an example of a set of characteristics whuch were provided i the
P3 Project Handbook. These characteristics were analysed and rejected or added to the Token Data

Dictionary.
This work mvolved analysing the characteristic set provided by the Handbook and translating 1t
mto the format of the token The tokens that I identified are shown 1n Appendix A as part of the

Token Data Dictionary The Token Data Dictionary 1s described in the next section

Following the 1dentification of the token set that would be analysed by the Daemons, 1t was
necessary to specify a presentation mechamsm for the token set It was realised that many tokens
would be used by more than one dacmon 1in Prompter For example a token such as
Requirements Complexity would be used to provide advice pertaiming to more than one area in
the Advice taxonomy (Gaffney, 1999) It was also 1dentified that the tool would be provided with
a number of domains and subdomains These domains and subdomains would be an organisation
of the token set according to the similarity of the questions that the user 1s asked It was
considered sensible to group related tokens for ergonomic resons whereby the user answers

questions of a sumilar nature Prompter was provided with a specific set of domams and sub-

40

domains into which the tokens would be mnserted The next task was to take the tokens set and
distribute 1t among the various domains and subdomains These domains and subdomains and the

allocation of the tokens throughout are provided in Appendix A

3.7.3 The Token Data Dictionary

Having created a project description template using the token set, the next step was to control this

token set by creating a process for managing change Changes to the initial token set were

expected for the following reasons

¢ Due to evolution of the Prompter tool through a series of mcremental prototypes 1t was
foreseen that modifications and refmements would be made to the token set

e Knowledge 1dentification 1s the process of manipulating the token values 1n order to provide
advice relating to a user project If the available token values were considered unsuitable for
critiqumg a user’s project, 1t would be necessary to add tokens to model the missing project
mformation

e Feedback from the users regarding the way 1n which project information 1s requested could

result 1n modifications to the token set to increase usability

For this reason, a document known as the Token Data Dictionary containing the token set was to
be controlled using a formal system of change control and configuration management This was
essential as the developer partners suggested additions at different stages of the project and for
varying reasons This document also keeps account of the token layout m the GUI Related
tokens are grouped into domains and subdomains This layout 1s recorded in the Token Data

Dictionary The most recent version of this document 1s provided m Appendix A

41

Chapter 4: Current Industry Practices and Sources of the APM Values

4.1 Introduction

The objective of this chapter 1s to describe the seven principal sources examined when creating
the APM set These sources justified the allocation of default values to the approprnate tokens in
the APM set Because the default values are allocated on the strength of these seven sources,
there 15 a need to provide a description of each There 1s a description of the profile of the source,
the sample set used 1s described and finally an evaluation of the validity of each source 1s
provided The tokens that have been allocated default values as a result of each source 1s also
provided A number of problems were encountered performing this study These problems are

also discussed below as a preamble to the description of each source

4.2 Problems encountered when performing this literature study

A number of problems were encountered when collecting and examining the data necessary to
create the APM set of Prompter These problems were caused by a number of factors that were

unforeseen before beginmng this study Thus section will discuss these problems

4.2.1 A General Absence of Metrics

One of the key points of the SEI CMM process maturity scale 1s that the use and application of
metrics 1S not considered to be a key process area until level 4 1s achieved. This does not imply
that metrics cannot be collected at the lower levels of software process maturity, it does imply
however, that there 1s no business gain to using metrics at these levels This 1s because the
organisational maturity 1S not at an adequate level to apply these metrics accordingly (Humphrey,
1989) Inhight of this revelation it 18 no surprise to find out that there 1s a complete absence of
quantitative data describing the activities of level 1 software orgamisations This 1s because this
type of data 1s sumply not recorded The net effect in terms of this study 1s that there 1s a shortage
of useful data ponts for the APM set of Prompter The absence of valid metrics has proved the
most serious problem facing thus research Much of the useful data that has been located has been
of a qualitative nature with wordy descriptions of how software organsations approach

development practices

42

4.2.2 The Success Stories -

Much of the data published in journals and magazines citing case studies of software
organisations seem to contain bias For example, the case studtes for software process
improvements tend to highlight industry’s success stories such as Raytheon, Motorola, Hughes
Aircraft etc These producers of real-time embedded software have achieved levels of
organisattonal maturity through the CMM process improvement approach These categories of
software producer do not represent the typical software development orgamisation For the
purpose of this study, this category of software development orgarusation falls outside the scope

of those being considered

Other case studies tended to probe a specific aspect of improvement such as software reuse and
1gnore the rest of the supporting processes As a result, many such case studies failed to give an
overall picture of software production at any particular orgamsation, which 1s the type of data
which has been sought 1n this present study From all of the data collected (except for the VASIE
database described below), there were no publications describing situations where an organisation
attempted to make improvements and were not as successful as onginally mntended Many of the
case study examples collected illustrated improvements at organisations which were CMM level
2 or hagher To 1terate the point made n earhier chapters, Prompter 1s predommantly aimed at the
software orgamsation seeking to make small improvements which will increase productivity
These organisations typically have no defined software process For this reason, it 1s about this
type of orgarusation that this research seeks to collect data so that such a starting point can be
represented by the APM Unfortunately, descriptions of this type of organisation are not as

plentiful as those of the more mature developers described above

4.2.3 Politics

No orgarusation contributing to a case study or survey wishes to provide results that are used to
exemplify mediocrity The contribution of valid data often requires the blessing of senior
management Management 1s often concerned that competitors will use any published
mformation against their organisation There 1s often concern that any mvolvement in case
studies or surveys will result 1n a negative effect This concern means that orgamsations often
decline to reveal productivity data or worse, provide results that have been tainted This scenario

1s hard to 1dentify making spotled data more difficult to 1solate Due to these concerns, there 1s

43

less data available than expected describing the internal workings of the typical software

organisation

4.3 Sources of the APM Values

Each of the sources used 1n this research 1s documented below A general comment about the
source, the intended audience and an evaluation of usefulness to the task of building the APM set
1s provided The tokens that have been allocated default values as a result of the source are also

Iisted For a further description of the token and the concept 1t represents, see Appendix A

4.3.1 The Description of the Average Software Organisation

The APM of Prompter secks to model a software producer with a process maturity level
equivalent to a CMM level 1 orgamisation This categorisation of a software organisation as level
1 actually defines a number of\ charactenistics which are common to almost all level one
orgamsations For this reason, these characteristics can be implied as present m any organisation
wishing to use the APM of Prompter 1t 1s true that some orgamisations at the imtial level
perform activities that are characteristic of a more mature organisation However, this 1s rare, as
there are a number of characteristics that are common to almost all level one orgamsations

These common features are summarised below (Yourdon, 1996)

\%

Standards may be present but are generally 1gnored

Endorsed methodologies are practised informally

Y Vv

Tools may be present which are used on a haphazard basis

Estimation process 1s weak and often inaccurate

Y v

Failure to track software size changes or code and test errors

A\ 4

Schedules are often informal

\ %

Programmers consider themselves as artists not subject to rules or procedures

The characteristics described above have been verified by research 81% of software
development orgamisations assessed by SEI up to 1992 were at the imtial level No recent data
has indicated that this figure has changed considerably (CSE, 1998) Thus 1s the justification for
using the level one organisation as a baseline for the APM set The next step 1s to mvestigate

each of these charactenistics 1n detail via the sources researched below

44

4.3.2 The European Software Institute

The European Software Institute (ESI) 1s an independent authority on software process
improvement The ESI’s principle aim 1S to act as a link between process improvement
technologies and particular business needs primarily for European software development
compames It 1s through their web site that the following two sources were employed 1n this

research

4.3.2.1 Source 1: The VASIE Database

The VASIE (Value Added Software Information for Europe) database 1s maintained by the
European Software Institute (ESI, 1998) Through the VASIE database, the ESI aims to provide
value added information for the European software best practice repository and to permanently
disseminate the validated PIE (software Process Improvement Experiment) results through the
WWW All of the PIEs included in the VASIE database have been performed under the
supervision of the ESSI (European Systems and Software Imtiative) The ESSI 1s a body
established by the EC to promote software best practice through support to orgarusations
engaging in PIEs This database contains the final reports provided by organisations performing
PIEs funded by the EC under the ESSI imtiative These PIEs provide information reports of the
experiences of software organisations making software process improvements These reports
follow a set format descrnibing

¢ Background including the starting scenario, work plan and expected outcomes

¢ Work performed

¢ Results and analysis from technical, business, cultural and orgarnsational points of view

¢ Key lessons learnt from technical, business, cultural and orgamsational points of view
¢

Conclusions and future actions

The most important feature of these reports from the point of view of the APM was that there was
a description of the starting scenario provided These starting scenarios were provided as a page
of text contaiming statements describing the orgamsation and/or their projects such as

While software 1s quite well- designed from a modern technology point of view,

documentation ethics tend to be low

No formal methodology was 1n place to underwrite the quality of the requirements

capture process

45

For almost all of the PIEs analysed, the starting scenario described an organisation at the inital
level Ths data helped describe the activities of a level one orgamsation before any process
improvements were attempted As described in previous chapters thus 1s the type of software

organisation that the APM wishes to model

The VASIE database contained 141 software process improvement experuments that were

available for use 1n this research Only 50 of the 141 PIEs were considered useful for the

following reasons

= Some of the reports deviated from the report format rendering these reports difficult to use

= Some reports cited PIEs performed at stages of organisational maturity beyond the mtial
level addressed by Prompter

= Many of these PIEs were documenting improvements of a specific aspect of the software

process such as software maintenance

There were a number of positive features of using reports from the VASIE database The first of
these positive features was that there appeared to be no bias The starting scenarios always
appeared to portray the true situation before making any improvements From the description of
such a starting scenari0, the characteristics of a low maturity software organisation can be
extracted Additionally, all of these PIEs were funded by the EU A requirement of such
funding 1s that an appounted project officer would oversee the exp;nment ensuring that the report
contains only what took place during the PIE Thus helped ensure the validity of the data For the
reasons outlined above, the S0 PIEs obtained from the VASIE database proved to be the most
useful source when creating the APM Table 4 1 on the following page lists the tokens that were
allocated default values as a result of this source

46

4.3.2.2 Source 2: ESI 1997 Software Best Practice Questionnaire - Results

A questionnaire was completed by orgamsations submitting project proposals to the European
Commussion during the ESSI call in 1997 (ESI, 1997) A total of 394 valid responses were
obtamned from 20 different countries and 37 different sectors The aim of the questionnaire was to

collect data on widely recogrused software management practices The questionnaire was made

Token ID Token Name

24 TeamM1x

36 ApplicationOriginality

48 ProjectEquipment

50 ProjectSubcontractmg

52 TeamSoftwareDevelopmentExperience
59 MarketCompetition

60 StandardISO9001

66 OrganmisationCodingStandard

67 OrganisationDocumentationStandard
68 OrganisationConfigManagementStandard
70 OrgamnisationInternalProductStandard
71 SubcontractorStandardRequired

72 SoftwareReuseStandard

78 EstimationStandard

90 IndependentVandV

Table 4.1: Tokens allocated default values as a result of the VASIE
Database (ESI, 1998). For a description of each token, see Appendix A.

up of 42 questions divided into five sections

The results were presented as a series of tables, one for each of the sections listed above Each

table showed the question and the percentage (from the total responses) of positive responses to

Organusational 1ssues

Standards and procedures

Metrics

Control of the development process

Tools and technology

each question For example, the section on Metrics had the following entry

47

Management Practice Average Adoption Level
Record and feedback of estimated ~ 55%

versus actual efforts into

estimation process

Record and feedback of size into 21%

estimation process

Table 4.2: The above is an example of the type of results that are
provided by the 1997 Software Best Practice Questionnaire - Results
(ESI, 1997).

The questionnaire was structured that only yes/no answers were permitted. This fact combined
with the accompaniment of the questionnaire with an EC call for proposals could have led
respondents to portray optimistic results. This point was documented in the survey report and not
simply conjectured by my observations. This was certainly implied when the results of this
experiment were compared with the results from examining similar organisations’final reports in
the VASIE database. Another problem discovered when examining the results from the
questionnaire was that this document sought to highlight aspects of key process adoption
according to geographical location. The focus for the creation of the APM set was to be
independent of region or country. Despite the problems outlined above, this source proved useful
as many of the areas addressed within overlapped with the aims of the Prompter tool and hence

the type of data modelled by the APM.

Token ID Token Name
48 ProjectEquipment
78 EstimationStandard

Table 4.3: Tokens allocated default values as a result of the ESI 1997
Software Best Practice Questionnaire - Results. For a description of
each token see Appendix A (ESI, 1997).

4.3.3 Source 3: Current Practice in Software Engineering: a survey
This survey was carried out between November 1995 and March 1996 and published in the IEE
Journal, Computing and Control in August 1997 (Holt, 1997). The report was written by Dr. Jon

48

Holt of the University of Wales, Swansea, UK Fifty participants were obtained primarily as a
result of a letter published 1n the IEE News and a web page containing the form for the survey
Respondents ranged from single engineers, to small companies, major international companies
and some academic institutions The main aim of the survey was to find out exactly who was
using which methodologies, methods and standards, and their perception by the users The
results of this survey also provided information about

» Frequency of lifecycle adoption

» Use of design methods and methodologies

= CASE tools

» Adoption level of various process improvement technologies

The results were provided as a sertes of paragraphs describing the respondents collated responses
The questions that the respondents were asked were provided followed by the grouped results
These results were coupled with a comment by the author which justified or suggested a reason

for the result in question An example of such a set of results are illustrated in the Table 4 4 on

the folowing page
Development Model Percentage of Overall
Traditional Waterfall 30
V Model 24
Spiral 20
Other 4
No Model 22

Table 44 The above table shows the popularity of the various
hfecycle models i use today taken from Jon Holt’s survey of
Current Practice 1s Software Engineering (Holt, 1997).

The results of this survey have proved useful to this research and have proved consistent with
findings from other sources that have been documented 1n this chapter The source of the survey
appeared to be reliable through the publication of the results by the [EE This reliability was also
vertfied through actual contact with the author Of particular use from the results documented are

description of the more popular lifecycle models 1n use and conformance to standards

49

Token 1D Token Name
60 StandardISO9001
89 ProjectLifeCycle

Table 4.5: Tokens allocated default values as a result of Jon Holt’s
1997 Current Practice in Software Engineering Survey (Holt, 1997).

4.3.4 Source 4: 1998 Software Business Practices Survey

The 1998 Software Business Practices Survey represents the minth annual survey of the business
and operating practices of the US software industry (Price, 1998) The 1998 survey was
completed by 716 of the 16,517 companies that were mnvited to participate The survey was
conducted 1n January 1998 and was typically completed by respondent companies’ chief
executive officer Questions sought actual and projected mnformation The questions in the
survey sought information on the number of products, target markets, international activity and
the number and assignment of employees Other questions sought mnformation on revenue,
profitability, capital-raising activities and demographic information Beyond these questions
about general business practices, the 1998 survey focused primarily on customer support, pricing,

marketing and distribution processes

The survey results were published as a series of questions and the percentage responses to each
question of the overall survey respondent total For example the following chart provides an
example of the results to the question From the following list, please rank the top five issues of

concern to your company and the top five issues of concern to the software industry

50

Effect of internet

Short term cash flow
Profitability

Retaining Key Employees
Cost Effective Marketing
Managing Growth

Recruiting Quality Employees

Customer Satisfaction

0 200 400 600 800 1000 1200 1400

Figure 4.1: The bar chart above shows the importance of customer satisfaction to software
developers as provided in the 1998 Software Business Practices Survey (Price, 1998).

This survey was a valid source of business-related issues of use to this research. Information was
supplied about application type and organisation profile. This survey provides a reliable source
of data due to the extensive size of the sample set. This is reinforced by the acceptance of the
survey for independent publication and also owing to the historical establishment of this annual
report. Despite the validity of the data, much of the results proved unusable in the context of this
research as the report was aimed predominantly towards the marketing and sales aspects of the

software industry.

Token ID Token Name
36 ApplicationOriginality
59 MarketCompetition

Table 4.6: Tokens allocated default values as a result of the 1998
Software Business Practices Survey (Price, 1998).

51

4.3.5 Source 5: EXE Magazine Surveys
EXE magazine published two separate surveys which provide usable information about software

development mn the UK Both of these surveys are summarised below

4.3.5.1 Survey 1: What are you really worth?

The first of these surveys 1s intended to give software engineers an 1dea of what to expect 1n terms
of salary and working conditions (Bennett, 1998a) This survey targets certamn sectors and points
to areas of high financial growth The survey was based upon 316 replies to a questionnaire

Also included was information about

= Software development platform

s Hardware development platform

= Type of software being produced - bespoke, system, embedded, etc

* Percentage of in-house users for developed software

Although the theme of this article was not software process improvement or description of
software organisations many of the results proved useful for understanding the type of product
developed by the average British software development orgamsation This source can be
considered to be useful due to the number of organisations participating in the survey
Additionally, the results found from this survey were not contradictory to any of the findings
made through the other sources Although the organisations used 1n this survey were taken from
the British software development industry there 1s no reason to beheve that these results would be

any different 1f the orgarusations had been located elsewhere

4.3.5.2 Survey 2: Development Tools 98

The second set of survey results published by EXE was mtended to give a report of the following
areas (Bennett, 1998b)

* Development environment - software and hardware platform

* Tools employed to aid the development process

» Beliefs and opinions about contemporary 1ssues such as YR2K, CORBA, etc
Ths survey gathered the results of 311 respondents who replied to the questionnaire over

telephone The respondents were chosen at random from EXE’s readership The gathering of

results was conducted over a two-week period between July and August 1998

52

As with the first EXE survey performed, the theme of the report was largely outside the scope of
this research. Despite this, the survey touched off areas of interest providing information about
software/hardware platform usage, team profile, application type and development
methodologies. The results of this survey appeared equally valid to those taken from the first
EXE survey however there is a suspicion that some of the same organisations were used as input
to both surveys.

Platform Percentage of responses for this platform

(respondents can select more than one platform)

PC 95%
Workstations 42%
Embedded 22%
Mini 12%
PSA 6%
Mainframe 5%
Games consoles 2%
Other 1%

Table 4.7: An example of the results from the Development Tools *98 survey
published in EXE Magazine (Bennett, 1998b).

The format for both surveys described above was identical. Results were collated and
percentages of responses were provided as a series of tables. An example from the second EXE
survey, Development Tools 98 is provided in Table 4.7 above. These responses are to the

question, which of the following software platforms do you develop software for?

Token ID Token Name

24 TeamMix

36 ApplicationOriginality

48 ProjectEquipment

50 ProjectSubcontracting

52 TeamSoftwareDevelopmentExperience
59 MarketCompetition

60 Standard1S09001

53

66 OrgansationCodingStandard

67 OrganisationDocumentationStandard

68 OrganusationConfigManagementStandard
70 OrgamsationInternalProductStandard

71 SubcontractorStandardRequired

72 SoftwareReuseStandard

78 EstimationStandard

90 IndependentVandV

Table 4.8: Tokens allocated default values from the Development Tools 98 (Bennett,
1998b) and What are you really worth (Bennett, 1998a) surveys published in EXE
Magazine.

4.3.6 Source 6: Revision Labs

The hughlights of a survey published on the web site of Revision Labs provides results obtamed

from 29 respondents (Revision Labs, 1997) The survey aimed to provide relevant information

regarding current software testing and quality assurance practices as well as future trends 1 the

use of third party resources The survey was posted on Revision Labs’ website from April 1 to

August 1997 The survey provides results regarding

Lifecycle model used

Quality practices used - e g formal testing, white box testing, test coverage analysis, etc
Quality measurement technmiques

Amount of development subcontracted

Amount of testing performed externally

Application type

Company size

The results from Revision Labs’ survey were provided as a series of questions followed by a bar

chart or table showing the distribution of the responses among the optional answers Table 4 9 on

the following page shows the responses to the question, what 1s the most important way that you

measure quality?

54

Quality Practice Percentage of Overall
Total Defects (by severity) 39
Defects by KLOC 11
Defects per Function Point 4
Product Reviews 7
Measuring Quality 7
Customer Satisfaction Surveys 14
Customer Support Calls 18

Table 4.9: The above table shows the quality practices of most
relevance to software developers from Revision Labs’ 1997 survey
(Revision Labs, 1997)

It 1s felt that the results from this survey, although interesting and within the scope of what the
APM of Prompter seeks to model, there are discrepancies that cannot be overlooked The
problems begin with the absence of details of who performed the survey and whether or not a
technique of validating responses was used It 1s reasonable to be sceptical about a questionnaire
that can be accessed via the web without respondent validation The sample set for the survey
appears quite small and 1f there are invalid data present the error njected by this erroneous data
will have greater effect There were no tokens that were allocated default values on the strength

of this survey alone There were a number of tokens that had thewr default values collaborated by

the results of this survey

Token 1D Token Name

36 ApplicationOriginality

50 ProjectSubcontracting

71 SubcontractorStandardRequired

Table 4.10: Tokens whose default values were collaborated by the
Rewvision Labs’ 1997 survey (Revision Labs, 1997),

55

4.3.7 Source 7: The Spire Handbook

The SPIRE Handbook (Centre for Software Engineering, 1998) was created with a view to
assisting small software development organisations to achieve business benefits from employing
software process improvement This handbook provides an explanation of the business and
technical aspects of software process improvement A walkthrough of the various practices that
should be associated with any improvement 1s also provided Included in the handbook are a
number of case studies of software process improvement expertments that took place during the
SPIRE project (Centre for Software Engineering, 1998) These six case studies provide a
description of the orgamsational profile, the improvement actions taken and a record of the
lessons learnt from the experiment These summarised PIE reports took a sumilar format to those
taken from the VASIE database described in section4 3 2 1 above Thus included a description of
the starting point, the improvement project, lessons learned and plans for the future The starting
pownt was the part of the case study that was useful Ths section provided a verbose description
of the software organisation prior to any improvements Although the reports were not found to
be very detailed, the scenario described appeared no different from any of the other orgamisations
in the VASIE Database (source 1) before making such process improvements from a pomt of
having no defined formal process Thus data therefore reinforced the characteristics identified
through the use of the more detailed PIEs obtained from the VASIE database The default token
values allocated as a result of source 1, the VASIE database were reinforced by the SPIRE
Handbook Case Studzes

The PIEs described in the SPIR{E handbook can be constdered to be valid descriptions of software
organisations at level 1 The mtegrity of the handbook can be relied on for a number of reasons
Primarily, these reports took the form of a summary of a PIE which took place within the context
of the SPIRE project The handbook was also published by the Centre for Software Engineering
in Dublin, an independent consulting organisation providing software process improvement

training m Ireland and Europe

4.4 Summary

This chapter aimed to show the validity of each of the sources investigated in this study The
validity of each source has been shown through a description of the sample set and an evaluation
of 1ts relevance to the study The most umportant source used has been the VASIE database
provided by the ESI with over 50 PIEs used to create the APM set The validity of this source

56

has been enhanced by the focus of software process improvement 1n these reports This involved
the use of expertenced of software process improvement mentors and tramners who were

responsible for ensuring that the reports created were accurate

57

Chapter 5: Validation of Results

5.1 Introduction

This chapter describes the validation process for the results of this study This validation begins
with an evaluation of the project description template as a representation mechansm for a project
description in Prompter The process by which the APM set was valhidated by the project
partners 1 then described Finally, a vahidation using data from external orgamsations 1S

described

5.2 Validation of the Project Description Template

This section will describe briefly the project description template, the validation mechanism mn
place and any conclusions to be made from the feedback obtamned This involves examining the

surtability of the project description template for 1ts intended purpose

5.2.1 What 1s the Project Description Template

A brief reminder of the project descnption template will be provided 1n this section The project
description template 1s the set of characteristics by which a user may describe their project This
concept was explained in greater detail in section 34 Thus template 1s made up of a number of
tokens each representing a unique concept in software project planning A full set of these may
provide a detailed picture of the scenario 1n place at a software development orgamsation when
embarking upon a project As Section 3 7 1 described, 1t 1s important that this format 1s
sufficiently

= Intumtive to the user

= Useful to the daemons

5.2.2 The Validation Process

The first step taken 1n the validation process was to ensure that the project description template
existed 1n a controlled manner with a defined process for change and version control A group
was formed with a representative from each of the development orgamsations 1n the P3 project
Each representative was responsible for validating changes to this document and relaying any
changes to the rest of their internal development team Thus token management group was lead

by the author of this thesis and was hence responsible for all

58

e Configuration Management
e Change Control

e Version Control

The next step taken was to send the project description template to the user partmers of the P3
project for validation The document was reviewed for a period of one month with a deadline
proposed for all responses Both user partners had elected individuals responsible for
disseminating the document among their internal teams at their organmisations This document
was reviewed by these iternal teams The internal teams at the user orgarusations were typically
composed of software project managers with a number of years experience of software project
planning For this reason it was believed that these teams were equipped with the skills necessary

to provide a vald critique of the project description template

The final step involved the analysis of the feedback from the user partners This feedback was
made up of a number of general remarks about the document, a detailed description of the tokens
that were deemed to be inaccurate, irrelevant or badly defined Finally, a section of ‘missing
tokens’ was provided This section described tokens that the reviewers expected to see but felt
were omitted This feedback was examined by the token management group within the project

and also by senior project managers from the developer organisations

5.2.3 Conclusions from the Feedback Obtained

The user feedback was provided 1n a structured format with clear suggestions for changes,
refinements and additions to the project description template The feedback from the users
proved highly useful to the verification of the project description template This process of
validation opened up an extra channel of commumcation with the user partners and provided

essential feedback to the developer team about the essential components of the tool

5.3 P3 Project Validation of the Baseline APMs

The vahdation process for the baselme APM set of Prompter occurred at a number of stages most
of which did not take place in parallel These stages are briefly

¢ Internal validation

¢ Validation by the EC

¢ Validation by user partners and field test

59

Each of these activities will now be described 1n detail

5.3.1 Internal Validation
The internal validation of the baseline APM set was by reference to the requirements described 1n
the User and System Requirements deliverables for the P3 project The following excerpt from

D3 1 System Requirements Document of the P3 project illustrates the relevant requirements

o Process Selection

FR-110 Prompter shall provide the capabulity to select
process models (both standard and company
specific) from a repository of such models
FR-120 It shall provide the capability to instantiate the
selected process with an mitial set of suggested
_parameters

"The tool shall have an underlying set of Abstract Project Models (APM),
from which the user generates an Instantiated Project Model (IPM)
appropriate to therr sttuation This will be done by selecting one of the pre-
defined standard process models - for example, the standard model for that
orgamnsation - although there will be a mechanism to generate a new
template derived from the APM from scratch Some mmtial fine-tuning of
the selected template can be done at this stage The output of that 1s the
IPM"

"Thus will then be refined and deepened (analysing several scenarios if
required) with the assistance of advice from the daemons to form the final
Refined Project Model (RPM) Thus last step can be repeated during the
project by updating the key parameters arising from actual progress to date

Thus can be illustrated thus (see Figure 5 1 on the following page) "

60

Abstract Project

Model & Templates
User mput of Instantiated Project
project-specific Model

information

y

Refined Project
Model

Figure 5.1. The diagram above shows the
movement from APM to IPM to RPM.

"If the APM set conforms to these requirements, 1t will be deemed suitable for delivery with the
final tool This will be decided by the Project Managers of the development orgamusations in the
P3 project "

5.3.2 Vahdation by the EC

Throughout the duration of the P3 project there have been project reviews by an independent
examimng board representing the European Commussion This group was responsible for
ensuring that the project progressed according to plan and that all interim deliverables were
achieved This meant that the project was obliged to deliver a pre-commercial prototype at the
end of the 30 month project Ths tool was obliged to fulfil the system and user requirements
unless otherwise agreed This group representing the EC were expected to 1identify any
weaknesses or risks to the project A typical result of such weaknesses and risks would have been

failure to deliver the product according to specification and schedule

There were five reviews throughout the duration of the project The 3™ and 4™ project reviews
mnvolved presentations of both the tool and the APM as a component of this tool The APM was
validated against the requirements described for this tool At both reviews the APM was deemed
to be acceptable according to the requirements stated for Prompter The requirements for APM

component of Prompter have been shown 1n section 5 3 1

61

5.3.3 Valdation by User Partners and Field Test

The two user partners mn the P3 consortium were responsible for verifying the suitability of the
tool for its mtended purpose If the user partners felt that certain aspects of the tool were not
according to specification, 1t was their responsibility to draw attention to this The P3 project
delivered four imtial prototypes The final prototype was delivered at the end of the project
which was a pre-commercial prototype Each delivered prototype incrementally added key

functional aspects of the tool

Each of these prototypes was deltvered at stages m the project 1Hustrated in Table 5 1 below
These prototypes were validated by the user partners according to the objective for each
prototype The EC were provided with a copy of each prototype which was used to evaluate the

progress of the project

Prototype Dehvery Pate Objective
1 (Noumea) 11/06/98 Look and feel of GUI components
2 (Salonika) 19/10/98 Functionality
3 (Burgundy) 18/12/98 Advice and knowledge provision
4 (Tipperary) 28/02/99 Complete tool - pre commercial prototype

Table 5.1: The above table shows the four prototypes which were constructed when building the
Prompter tool

On the delivery of each prototype, the user partners examined the progress to date according to
the functionality intended for the current prototype As the APM 1s an important component of
the tool, the user partners have evaluated 1ts suitability according to the user and system
requirements described i section 5 31 Feedback regarding the APM was received for the
Salonika and Burgundy prototypes Comments were recerved regarding the appearance of the
APM m the GUI (see Figure 1 3) There were no negative comments regarding the default token
values within the APM set

5.4 The Validation Process for the APM Set

A process of validation mnternal to the project for the APM set was described in the previous
section This feedback was received 1 a diluted form 1n the sense that the reviewers were

concerned with the entire tool and not just the APM set For this reason 1t was considered

62

necessary to perform a more comprehensive validation of the APM set The following sections

will gtve the results of this more comprehensive vahidation

5.4.1 The APM Set Arnising from this Study

Ths study resulted 1n the creation of mine alternative models which characterise a generic
software project during the planning phase The nmine models are distinguished by project size'
and complexity Both size and complexity have three possible values Size 1s described as small,
medium and large Complexity 1s described as sumple, medium and complex For a more
detailed discussion of this topic see section 3 5 1 Each of the mne models created by this study
15 described 1n the following sections by a short narrative description There 15 some repetition
across the models This repetition occurs because there are nine possible combinations of the

characteristics complexity and size Each of these models 1s described below

5.4.1.1 Small Size - Low Complexity
This APM describes the starting pomnt of a project where there 1s a small software development

team that 1s famihar with working as a unit The team has experience 1n developing this form of
application for this type of environment and using the relevant technologies There 1s not a great
deal of commumnications overhead with the client The requirements are stable and not overly

complex Changes can be negotiated with the customer The development team 1s composed of

15 members or less

5.4.1.2 Medium Size - Low Complexity

This APM describes the starting pomt of a project where there 1s a medium sized software
development team with experience 1n developing this form of application for this type of
environment and using the relevant technologies There 1s not a great deal of communications
overhead with the client The requirements may be considered to be stable and not overly
complex Changes to the project schedule can be negotiated with the customer There may be

extra commurcations present as the team size 1s between 15 and 50 members

! Project size actually refers to project team size

63

5.4.1.3 Large Size - Low Complexity

This APM describes the starting point of a project where there 1s a large software development
team with experience in developing thus form of application for this type of environment and
using the relevant technologies There 1s not a great deal of communications overhead with the
client despite the size of the product The requirements are not overly complex and can be
considered to be stable Changes to the project schedule can be negotiated with the customer
The team 1s large with possibly more than 50 members and may be distributed geographically or

between a number of organisations

5.4.1.4 Small Size - Medium Complexity

This APM describes the starting point of a software project of small size and medium complexity
The requirements are reasonably complex, the team has an mtermediate level of experience with
related systems The requirements can be expected to change during the course of the project

The user may be unwilling to accept changes to the project schedule Many of these projects
display characteristics of complex and non-complex software projects This model 1s a level of
mdirection between the two There are some new technologies being employed The team size 15

small - around 15 members or less

5.4.1.5 Medium Size - Medium Complexity

This APM describes the starting point of a software project of medum size and complexity The
project team 1s between 15 and 50 members and has an intermediate level of experience with
related systems The requirements are reasonably complex and can be expected to change during
the course of the project The user may be unwilling to accept changes to the project schedule
Many of these projects display charactenistics of complex and non-complex software projects
This model 1s a level of indirection between the two There are some new technologies being

employed

5.4.1.6 Large Size - Medium Complexity
This APM describes the starting point of a software project of large size and medium complexity
The team 1s large with possibly more than 50 members and may be distributed geographucally or

between a number of orgamsations Internal communication linkages within the project may be

difficult due to large team size The requirements are reasonably complex, the team has an
intermediate level of experience with related systems There are some new technologies being
employed The requirements can be expected to change during the course of the project The
user may be unwiling to accept changes to the project schedule Many of these projects display
characteristics of complex and non-complex software projects This model 1s a level of

indirection between the two

5.4.1.7 Small Size - High Complexity

This APM describes the situation where there are tight constraints, a complex set of requirements
that are not flexible to change The project team 1s small 1n size with around 15 members or less
with possibly low communications overhead The requirements are not easily mapped or
decomposed to software components and are likely to be highly volatile The product may be
part of a systems software project or within a real-time or critical run-time environment The
project team may not be familiar with developmg this type of software and the deadline 1s not

flexible The team 1s possibly unfamiliar with this type of product

5.4.1.8 Medium Size - High Complexity

This APM describes the situation where there are tight constraints, a complex set of requirements
that are not flexible to change The project team 1s medum sized with between 15 and 50
members The requirements are not easily mapped or decomposed to software components and
are likely to be highly volatile The product may be part of a systems software project or within a
real-time or critical run-time environment The project team may not be familiar with developing

thus type of software and the deadline 1s expected to be inflexible

5.4.1.9 Large Size - High Complexity

This APM describes the situation where there are tight constraints, a complex set of requirements
that are not flexible to change The project team 1s large in size with more than 50 members and
may be distributed geographically or between a number of orgamsations Communication
overheads will be hugh due to the project size and the complexity factor The requirements are
not easily mapped or decomposed to software components and are likely to be highly volatile

The product may be part of a systems software project or within a real-time or critical run-time

65

environment. The project team may not be familiar with developing this type of software and the

deadline is not flexible.

5.4.2 The Validation Process for the APM Set

In order to apply the APM set to real software projects it is necessary to ensure that the default
values found by this study are accurate. One way of making such an evaluation is to compare the
conjectured default values with data from actual software organisations running real software
project under the constraints described above. These organisations must be representative of the
organisation being modelled in the APM of Prompter. Ideally, this validation should involve a

comparison between each of these default token values and the validation data.

5.4.2.1 The Validation Problem

The APM seeks to model the planning phase of a software project of a level 1 CMM organisation.
It would be ideal to compare the internal workings of a number of level 1 CMM software
development organisations with the default values of the APM. This would provide the
appropriate feedback to this study with which to evaluate the suitability of the conjectured default
token values. Unfortunately, this sort of organisation is not as accessible as it would initially

appear.

The Prompter tool addresses software development issues that are unheard of to the level 1CMM
organisation. Activities such as configuration management, subcontract management, estimation
or metrics are frequently misunderstood by organisations lacking a formal software process. It is
common for level 1organisations to answer assessment guestionnaires in an over-optimistic
manner. This is caused by a misunderstanding of the complexity of the issues mentioned above.
For example, configuration management according to the CMM s a key process area with ten
individual activities assigned to it. Until such complexities are understood clearly, organisations
are often under the illusion that they practise such activities in a manner that is actually

characteristic of a more mature organisation.

The implication of this problem is that it is impossible to ensure the suitability of the default
token values in the APM set by asking a software organisation lacking a software process. This is

because this type of organisation is not equipped with a sufficient understanding of the key

66

process areas which Prompter addresses Conversely, 1t 15 not possible to validate the default
values by asking such questions of an organisation with an understanding of these 1ssues Thus 15
because these are typically not CMM level 1 The problem 1s that those suitable to provide the
answers are those who do not understand the questions and those who understand the questions
do not provide the appropnate answers This catch-22 situation implies that a techmque of

extracting the organisational profile of a level 1 organisation 1s required

In order to find an appropnate data set 1t was decided to consult the Centre for Software
Engmeering in Dublin This organisation performs software process improvement traimng and
assessments for ISO, CMM and SPICE It was 1dentified that an appropriate data set could be
provided by using an orgamsational maturity assessment taking place at the beginning of a

process improvement programme This source 1s described n section 5 4 3

5.4.2.2 Validation Scope

Each of the APMs in Prompter 1s composed of approximately 25 default token values These
default token values have been allocated as a result of the work described in Chapter 4 Not all of
these default token values require validation The reason for this discrimination between those
that require validation and those that do not will be described 1 this section From the point of
view of APM validation there are three distinct levels of default token values These are as

follows

Project Level Tokens: The project tokens are those that are dependent upon the user’s choice of
APM The user of Prompter selects the particular APM having read a narrative describing the
characteristics of what type of project the APM represents Figure 1 3 of Chapter 1 shows the
user’s selection of the APM These values do not require justification Thus 15 because the
default token values are a result of the defimition of the project For example, an APM defined as
High Complexity’ and Large Team Size’ will have individual tokens to represent each of these
project characteristics The user actually chooses these values through a verbose description of
the APM so therefore these token values are not true defaults Instead, these values are a
tokersed representation of the characteristics that the user has 1dentified for their project For

this reason, it was not necessary to use any sources mn order to allocate or validate such defaults

67

Industry Level Tokens: These default token values represent specific features of the software
industry at large rather than individual organisations. Additional justification is not required here
because these default token values are based on industry surveys described in Chapter 4. These
default token values are independent of organisational or project characteristics such as software
process maturity or software organisation size. An Example of such a token is Team Volatility”
This token can be reasonably inferred because this factor is documented for the software industry
at large, i.e: it is well documented that software personnel switch between employer frequently
rendering project teams rather volatile. Another such token is Project Life Cycle’which defaults
to none because there is no one lifecycle model that is used by the majority of software

organisations - in this case, the value defaults to no lifecycle.

Organisational Level Tokens: These default token values require empirical validation. This is
because these default token values describe aspects of the software development organisation or
the way in which their projects are usually run’. Each of these default token values relates to the
maturity of the organisation’ software process - assumed in this study to be equivalent to level 1
CMM. These tokens represent characteristics such as the presence of a standard for
documentation or configuration management. These tokens are in fact identical across the APM
set. This is because these tokens describe characteristics that are independent of a particular
project. These characteristics are usually independent of project complexity and size and are

considered to be features of a particular organisation.

5.4.3 Validation of Organisational Level Default Token Values

The data that has been used to validate the APM set is described in this section. This took the
form of results of a process maturity assessment of companies engaging in 1ISO 9001 training.
This training was conducted at the Centre for Software Engineering, Dublin in 1998. For reasons
of confidentiality, the companies involved in the training program cannot be named. The collated
results from fourteen companies were used to verify the suitability of the organisational default

values described in section 5.4.2.2 above.

The organisations involved in this training program appeared to be typical of a level 1 CMM
organisation seeking to make improvements to their software process. For this reason the results
of these assessments could be seen to represent the type of software organisation being modelled

by the APM anti addressed by the Prompter tool. Section 5.4.2.1 describes the problems

68

associated with using data from software organisations lacking a knowledge of the key process
associated with software process improvement The results from this assessment are partially
affected by the problems described above This was confirmed by discussing this 1ssue with the

_course tramer and co-ordinator However, there were some approaches taken to resolve this
problem during the assessment Each of the areas to be evaluated was explained briefly to the
orgamsations prior to the assessment It was also explained to the participating orgamisations that
the results of the assessment would be private to the organisation and the Centre for Software
Engmeering In situations where such results are made public there 15 a tendency to portray a
more optimistic scenario than the more realistic one With the absence of such a bias, the

integnity of the results could be relied upon somewhat more

The pre-traming programme assessment 1tself 1s composed of 143 individual questions The

answer to each question 1s provided using the following three pomnt scale

Rating Meaning

S Sometimes/Never

Use this rating 1f the statement 1s never true, or sometimes true (1 e 1s true less than
one-third of the time) This value implies that practice 1s poor regarding the
question being asked

U Usually/Often

Use thus rating 1f the statement 1s usually true, or often true (1 e between one third
and two thirds of the time) Thus value implies that good practice 1s sporadically
implemented where good practice 1s implemented on some projects but not at an
organmisation wide level

M Mostly/Always

Use this rating 1f the statement 1s usually true, or often true (1e between one third
and two thurds of the tme) This value implies that good practice 1s implemented
regarding the particular question being asked

Table 5.2. The above table illustrates the options available to participating orgamsations when
responding to the ISO for Small Companies self assessment.

The 143 questions are spread between 14 key-activities of software development These

activities cover lifecycle activities, supporting activities and orgamsation level activities The

activities are as follows

e User Requirements

e Software Requirements
¢ Architectural Design

¢ Production

69

e Transfer

¢ Maintenance

e Project Management

¢ Configuration Management
e Validation and Venfication
¢ Quality Assurance

e Process Management

¢ Procurement

¢ Tramng

¢ Management Responsibility

From the 143 questions distributed among the 14 activities of which the answers to 45 can be
considered of use to the validation process for the APM set of Prompter In some cases there1s a
one-to-one mapping between a question 1n the self-assessment and a particular token in the APM
set of Prompter In other situations there are a number of questions when the results of which are
combined an overall picture 1s given which can be used to justify a particular token For
example, there are 21 questions for the activity of Configuration Management but there 15 only
one token to represent the state of this activity in Prompter There 1s also a clear mapping
between the range of possible responses 1n the self-assessment to the number of options available
for instantiating each token value in Prompter The majority of the tokens in the APM set of
Prompter have either a range of two or three possible options Often these options have a clear
mapping to the techmque 1llustrated 1n Table 5 2 above reflecting poor, mediocre or satisfactory

practices

5.4.4 Validation
This section validates the actual tokens that have been allocated with default values in the APM

set of Prompter This will involve a walkthrough of the orgamisational level tokens for which
validation 1s required followed by the industrial level and project level tokens The three classes
of token have been described in section 5 4 2 2 above Each of the tokens cited below 1s defined

formally 1n Appendix A

70

5.4.4.1 Organisational Tokens Justified Using the Assessment Results

This section provides the validation of the organisational tokens in the APM set of Prompter. The
question (or possibly guestions) provided in the assessment that maps to this token is provided
followed by a summary of the collated responses received. The association between the default

token and the results obtained from the pre-training assessment is then made.

Token: Standard1S09001
Token ID: 60
Explanation: This token can be set to either true or false. This token is set to true if the

organisation is 1ISO 9001 for software compliant.
Default Value: False
Justification: From the fourteen organisations involved in completing the self assessments,

none had ISO 9001 certification.

Token: StandardCMMLevel2
Token II): 61
Explanation: This token can be set to either true or false. This token is set to true if the

organisation achieves the standard laid out by the CMM level 2 assessment.
Default Value: False
Justification: From the fourteen organisations who completed the self assessments, 70%
have no defined process for the estimation or scheduling of activities. These
are typical characteristics of level one practices. This implies that the majority
of these organisations have not got the capability to achieve level 2 with their

current processes.

Tokens: StandardCMMLevel3,
StandardCMMLevel4,
StandardCMMLevel5

Token lds: 62, 63, 64

Explanation: This token can be set to either true or false. This token is set to true if the

71

Default Value:

Justification:

Token:
Token ID:

Explanation:

Default Value:

Justification:

Token:
Token ID:

Explanation:

Default Value:

Justification:

orgamsation achieves the standard laid out by the CMM level 3 - level 5
assessments

False

The justification for Token 60 - StandardCMMLevel2, shows that the default
of non-conformance for CMM level 2 1s justified If an orgamusation does not
reach CMM level 2, the same organisation cannot possibly be at level 3, 4 or 5

as 1t 1 not possible to skip over levels

StandardISO15504

65

This token can be set to either true or false Thus token 1s set to true if the
organisation 1s ISO 15504 (SPICE) for software compliant There 1S no
assessment for ISO 15504 however there are a set of processes that must be
followed

False

There are no clear figures for the number of orgamsations who have adopted
the SPICE standard However, 1t 1s reasonable to assume that the majority of
software orgamsations are unaware of the presence of SPICE as a standard let
alone using 1t as a guide to better practices The defaulting of this token 1s
Justified by the poor adoption of the alternative standards such as CMM and
ISO 9001 both of which are clearly more popular than SPICE

OrgarusationCodingStandard

66

Ths token can be set to either true or false This token 1s set to true if the
organisation has a defined standard that 1s in place and followed for developing
code

False

From the self assessment described above only 14% of organisations
participating claimed that they had a clear standard that was n place and
documented and referenced m all design Iiterature This shows that there 1s a

low presence of formal coding standards that are followed strictly This

72

Token:
Token ID:
Explanation:

Default Value:

Justification:

Token:
Token 1D:
Explanation:

Default Value:

Justification:

Token:
Token ID:
Explanation:

Justifies the false default value

OrganisationDocumentationStandard

67

This token can be set to either true or false This token 1s set to true 1if the
orgamsation has a defined standard that 1s i place and followed for
documentation of all project deliverables

False

From the self assessment described above only 14% of organisations
participatimg claimed that they had a clear standard that was m place and
documented and referenced n all design Iiterature This shows that there 1s a
low presence of formal documentation standards that are followed strictly

Thus justifies the false default value

OrganisationConfigManagementStandard

68

This token can be set to erther true or false This token 1s set to true if the
orgamsation has a defined standard that 1s in place and followed for controlling
all items that should be subject to configuration management

False

From the self assessment described above only 35% of organisations
participating clatmed to have a good standard of configuration management
Thus figure 1s considered to be overly optimistic as many of the organisations
were unsure about what configuration management really implies Thus result
however still implies that the majority of the participating organisations do not
have a configuration management process that 1s n place, defined and

followed

OrgansationInternalProductStandard
70

This token can be set to etther true or false This token 1s set to true if the

73

organusation has a defined standard that 1s 1n place for evaluating the product
that 15 being developed by the project in question

Default Value: False

Justification: ~ From the self assessment described above six questions were mcluded which
evaluate the internal evaluation of a product before final delivery to the
customer Only 26%‘0f the responses received indicated that a defined

standard 1s m place and applied to the evaluation of a product before final

delivery
Token: SubcontractorStandardRequired
Token ID: 71

Explanation: This token can be set to either true or false Ths token 18 set to true if the
organisation has a defined standard that 1s m place for subcontractors that are
involved n delivering sub-components of the product being developed

Default Value: False

Justification: From the self assessment described above six questions were mncluded which
evaluate the processes that are in place to manage subcontractors A total of 84
responses were present to these questions, less than 10% of which indicated
that an adequate process of subcontractor management was in place This

indicates that the default value of such a standard being absent is a reasonable

assumption
Token: SoftwareR euseStandard
Token ID: 72
Explanation: This token can be set to either true or false This token 1s set to true if the

orgamusation has a defined standard that 1s 1n place for the evaluation of
components that are reused or off-the-shelf

Default Value: False

Justification: From the self assessment described above, two questions were included which
evaluate the processes that are 1n place to evaluate components that are
designated for reuse or procured as an externally developed subcomponent A

total of 27 responses were provided to these questions, less than 10% of which

74

Token:
Token ID:

Explanation:

Default Value:

Justification:

indicated that an adequate process of subcontractor management was m place
Thus ndicates that the default value of such a standard being absent 1§ a

reasonable assumption

EstimationStandard

78

This token can be set to erther true or false This token 1s set to true if the
orgamsation has a defined standard that 1s 1n place for the estimation of project
schedule and duration

False

The self assessment contains one particular question which asks if estimating
of activities 1s performed n accordance with defined procedures 70% of
responses 1ndicated that there 1s no such process The remaimng 30% was
divtded between those who claimed to have a defined process 1n place and

practised and those who apply the standard on some projects

5.4.4.2 Industry Level Tokens

Thus section does not provide a further validation of the industry level tokens These values are

based on surveys described in Chapter 4

Token:
Token ID:

Explanation:

Default Value:

Justification:

TeamVolatility

23

This token represents the turnover of team membership during the course of
the project These changes can be due to a team member leaving the
orgamsation or being simply re-assigned to another project This token can be
set to one of the followmng less than one-third, between one-third and two-
thirds, more than two-thirds

Between one-third and two-thirds

The default for this token may 1n fact be influenced by project characteristics
Team member turnover may be caused by a variety of reasons such as pohtical
motivation, personality 1ssues or complexity of the task at hand Ths token

has instead been set as such as a function of the global profile of the software

75

Token:
Token ID:

Explanation:

Default Value:

Justification:

Token:
Token ID:
Explanation:

Default Value:

Justification:

Token:
Token ID:

development industry The primary characteristics of which are the transience
and shortage of skilled software development personnel which has been well
documented throughout the industry This was actually documented m
Software Project Dynamics (Tarek, 1991) which indrcates that the annual
turnover rate is observed to be 25 1% but as high as 34% at some

organisations

ProjectEquipment

48

The token represents the availlability of appropnate equipment to the software
development team for the duration of the project The options for this token
are less than adequate, adequate and more than adequate

Adequate

The default for this token may 1n fact be influenced by organisational and
project dependent characteristics However, the cost of equipment for the
development of software has dropped considerably 1n latter years The cost of
hardware and development tools has become considerably less than the cost of

personnel This token has been set as a function of this global characteristic

ProjectLifeCycle

89

Thus token represents the hifecycle for the project in question This may be set
to V Model, Waterfall, Incremental, Spiral, Prototype or no lifecycle chosen’
No Iifecycle chosen

Surveys quoted 1in Chapter 4 show that there 1s no Iifecycle model 1n existence
that 1s applied to the majority of software projects There 15 a wide variety of
models that are in use including those that are tarlored to a particular

organisation

Independent V and V
90

76

Explanation:

Default Value:

Justification:

This token represents the level of external verification and validation 1n this
project The range of options for this token are as follows No external V and
V, External V and V at some stage 1n the project, V and V at each milestone in
the project

No external V and V

External V and V 1s an activity that 1s usually only mcluded for contractors
mvolved m defence projects Such contracts are usually part of a real time
system or safety critical component of such a system Level 1 CMM
organisations do not have the resources or processes to perform an activity
such as external V and V This 1s the category of organisation bemng
represented 1n the APM set It has been defaulted so that the typical Prompter
user 1s not required to provide a response to a question that can be reasonably

conjectured

5.4.4.3 Project Tokens Exempt from Validation

There 1s also a class of tokens that do not require any kind of validation These token values

although allocated as default have been chosen by the user Thus choice of token values 1s made

by choosing the project description most appropriate to the starting scenario of the project

Section 5 4 1 describes the nine APMs using a short narrative Each of the statements in this

narrative map to a corresponding default token value These default token values simply translate

the statements acknowledged by the user 1nto actual token values that can be used sensibly by

Prompter This 1s almost a mechanical process and therefore demands no validation apart from

venification that these tokens have been translated correctly The concepts that are defaulted by

this process are those such as

® Project team size

® Product requirements stability, complexity and volatiity

e Team familiarity with the product being developed

e Customer schedule flexibility

5.5 Summary

This chapter has reviewed the vahidation process for the APM set that resulted from this study

The chapter began by describing the validation process for the project description template

Project based validation has shown that this component achieved all of its objectives The project

77

based validation process for the APM set was then described Finally, validation of the APM by

use of process improvement assessments was described

78

Chapter 6: Conclusions

6.1 Objective of this study

There were two primary objectives of this study The first objective was to create a template that
permits the description of a software project in the Prompter tool This was followed by the core
component of this study which was to create a set of Abstract Project Models that characterise a

set of typical software projects at the planmung stage The outcome of both aspects of this study 1s

recorded below

6.1.1 Description of the Generic Software Project

In order to describe the generic software project 1t was first necessary to construct the project
description template which could represent this generic project description Construction of the
project description template was the mitial objective of this research The project description
template would enable the defimtion of project characteristics and hence would act as a
representatton mechamsm for both user projects and APMs m Prompter The process by which
this model was created 1s described in Chapter 3 This model was created by examining the data
that required representation and also 1dentifying the complete set of use cases for this information
within the Prompter tool These use cases have been taken from the User Requirements
document of the P3 Project and are provided in Appendix B In Chapter 3, a smtable model was
constructed that allows the description of a project using approximately 120 umque project

characteristics

Having created the project description template 1t was necessary to describe the generic software
project This involved characterising the starting point of the typical software development
organisation and their software projects Organisational characteristics were found to be largely
invanant of project type and most orgamsations displayed the same type of approach to software
development at an organusational level Many of these common characteristics were based upon
weaknesses 1dentified 1n the software process of level 1 orgamsations Projects on the other hand

have been minimised to a set containmng nine models which are distinguished based upon size and

complexity

In conclusion, 1t can be said that the creation of a template enabling the description of a user

project was a success The creation of a generic project model required some distinction between

79

projects 1n order to make the APM useful to the user This was as a result of the amount of
vanation between projects depending upon varying size and complexity The creation of a set of
baseline models 1llustrated the need to distinguish between orgamusational characteristics and
project charactenistics The same organisational metrics appeared for all project types but the
project related characteristics depended upon both team size and the complexity of the product

being developed

6.1.2 The APM Set and the Prompter tool

The P3 project was mtended to deliver a prototype decision support tool My task was to provide
a project description template and a set of baseline models 1n the form of the nine APMs Ths
feature was expected to free the user from the need to enter a considerable amount of imnformation
into the tool - information that could be reasonably predicted from industry surveys The project
description template was expected to provide a mapping from the user’s external view of their
project to the crifiquing system’s view of the data which 1t uses to provide project related advice
The creation of the project description template resulted in the introduction of a component
known as the Token Data Dictionary which 1s a tightly controlled and managed document The
Token Data Dictionary will undergo further refinements beyond the end of this research in

parallel with the commercialisation of the Prompter t0ol

The creation of the APM set required a mapping from the sources mvestigated to the project
description template created as the mutial research Because I was responsible for the creation of
both of these components, the evolution of the project description template and the APM set
could be performed 1n parallel The way in which both the project description template and the
APM set have been developed have proved appropriate to the original requirements as shown in
Chapter 5 Thus has been confirmed by the user and developer partners review of both

components from a project perspective This was shown i sections 5 2 and 5 3

The creation and addition of the APM set to Prompter was reviewed by the user partners mn the
P3 project as well as the EC The APM set was viewed as appropriate and an important
component of the tool From the onginal requirements of the Prompter tool, the APM set was
deemed to have more than sufficiently represented the starting pomnt of a target user of Prompter
There was also a need to validate the results of this study at another level This additional
validation used a number of process maturity assessments used In a process improvement

programme by the Centre for Software Engineering, Dublin, These assessments showed that the

80

{

default values found actually represented the profile of a level 1 CMM orgamsation The
validation process involved confirming the mapping between the observations made 1n this study
and the resulting APM set It has been shown through feedback received that the APM set
constructed 1s sufficient for the current version of the tool and hence this study achueved its
primary objective - to characterise the project starting point of a level 1 CMM orgamsation m a
model known as the APM

An ancillary objective of this research was to allow the exceptional user of Prompter to create a
baseline model of their organusational specific starting point This functionality was added to the
Prompter tool using the design evolved through this study and has been considered to be a useful
extension to the tool The option of creating a user specific APM 1s described 1n the following

section

6.2 Creation of a Customised APM

This section proposes the user option of creating a baseline model that 1s specific to an
organisation This 1s an additional feature of the tool that 1s of use to user’s not fitting the profile

of the average software development orgamisation

The APM model appears quite useful to the typical user but 1s the exception to the rule 1solated
by thus set of default models? The answer 1s yes The need to cater for the typical software
orgarusation 1s a priority for the P3 project This implies that the atypical software project 1s not
supported by the APM set within the tool Thus 1s because a business decision was made to aim
this tool at the level 1 CMM organisation seeking to improve 1ts software development process
This 15 a sensible choice as this category of user 1s represented as approximately 80% of software
developers However, the more mature software development orgamsation will be facilitated in a
different manner Because software organisations beyond the mmtial chaotic level have reached a
pomnt where an aspect of repeatability has been introduced, 1t 1s frequent that processes are
common to all projects within the orgamsation This implies that such organisations have a
defined process 1 place that 1s reused from project to project It 1s necessary for such a user to be

able to define their process

81

Prompter provides functionality for the user to create their own baseline model This
functionality was provided by a Save As option 1n the tool The user begins by choosing to create
a project description without employmg an APM This 1s stmilar to creating an MS Word
document wtthout using a template of any kind The user goes through a questions and answers
session providing descriptions of a generic software project This description mvolves questions
about the following

e Product being developed

¢ Orgamsational charactenstics

¢ Available resources

e (Customer and user

¢ Busmess drivers

e Project environment

¢ Project plan and schedule

The user has the option of defaulting any of these token values 1If the user feels that any
particular value may vary from project to project this token value can be left ummtiahised This
value may thus be mmitialised when the user refines the project description having apphed the
baseline APM

Thas project may subsequently be saved as an APM This description may be reused by other
users as a starting point for their project In this way, a company specialising in products that
require a process umque to that orgamsation may describe 1ts activities once and reuse this
description agam and again This functionality 1s of particular use to large orgamisations where a
predefined procéss 1s mn place Thas functionality may be of benefit to a software developer at a

level of organisattonal maturity higher than the chaotic imtial level

Software project management has many concepts in common with other forms of management
With a view to this point, the posstbility of applying Prompter and the APM set to other domains
has been discussed There appears to be no reason why a project description template could not
be created for non-software projects An APM set could also be created if the relevant project
data pomnts are available through similar sources that were applied in thas study For thus reason it

appears possible that a set of doman-specific APMs could also be created

82

6.3 Final Remark

The concept of the APM began as a user requirement for the Prompter decision support tool
Thus requirement was evolved to a functional component i the Prompter tool by this research
alone In parallel with the realisation of the APM set, the project description template was
created The project description template was created which provided an appropriate
representation mechamsm for a project description in the Prompter tool Both the APM set and
project description template were included in the final P3 Project Deliverable to the EC and
remain core components of the Prompter tool of which version 1 1 was released to the market in
June 1999 This research succeeded 1n its primary objective, to create an Abstract Project Model
which was intended to be a description of a generic software project to be used in the Prompter
tool This was achieved by examimng a number of sources, revealed in Chapter 4, and creating
default token values based upon the organisational characteristics revealed by these sources
These characteristics were deemed to be indicative of the target user of the Prompter tool, the
level 1 CMM orgarusation seeking to make process improvements through the use of

recommended best practices

83

References

(Boehm, 1981)

(Brooks, 1975)

(Brooks, 1987)

(CSE, 1998)

{DeMarco, 1982)

(ESI, 1997)

(ESI, 1998)

(ESPITI, 1996)

(Bennett, 1998a)

(Bennett, 1998b)

(Furey, 1997)

(Gaffney, 1999)

{Hustory, 1997)

Boehm, Barry W, 1981 Software Engineering Economics New
Jersey, United States Prentice Hall

Brooks, Frederick P Jr, 1975 The Mythical Man Month
Philippines Addison -Wesley

Brooks, Frederick P Jr, 1987 No Silver Bullet Essence and
Accidents of Software Engineering , IEEE Computer, (April
1987), 10-19

Centre for Software Engineering, 1998 The SPIRE Handbook
Dublin Centre for Software Engineering

DeMarco, Tom, 1982 Controlling Software Projects New
Jersey, Umted States Prentice Hall

European Software Institute, 1997 1997 Software Best Practice
Questionnaire [online] Available from

http //www es1 es/Publications/Reports/tr-sbpgaor? huml
[Accessed 15 May 1998

European Software Institute, 1998 VASIE PIE Database
[online] Available from http //www es1 es, 1998 [Accessed 20
Febrnary 1998]

ESPITI - ESPRIT Project 11000, 1996 Training for SPI
European Needs and Solutions, Berlin

Bennett, James, 1998 What are you really worth? EXE The
Software Developers Magazine, 12 (11), 20-22

Bennett, James, 1998 Development Tools 98 EXE The
Software Developers Magazine, 13 (4), 38-39

Furey, Sean, 1997 Why Should we use Function Points, [EEE
Software, 14 (2), 28-31

Gafiney, Eamon, 1999 The Development of an Agent Based
Critiguing System Architecture for a Project Management Tool
Prompter, Ireland Dublin City Umiversity

History, 1997 A History of the Computer Min [online]

Available from http //www pbs org/nerds/timeline/mint html
[Accessed 11 April 1998]

84

(Holt, 1997)

(Humphrey, 1989)

(lona, 1997)

(Jones, 1992)

(Jones, 1996)

(Mair, 1992)

(McConnell, 1997)

(OMG, 1998)

(Pickering, 1993)

(Pickering, 1996)

(Pressman, 1994)

(Price Waterhouse, 1998)

(Pulford, 1996)

(Rakos, 1991)

(Revision Labs, 1997)

(Rubin, 1992)

Holt, Dr. Jon, 1997. Current Practice in Software Engineering: A
Survey, Computing and Control Engineering Journal, 8 (4),
167-172.

Humphrey, Watts S., 1989. Managing the Software Process.
United States: Addison -Wesley.

lona Technologies, 1997. OrbixWeb Programmer’s Guide.
Dublin, Ireland.

Jones, Capers, 1992. Assessment and Control ofSoftware Risks.
New Jersey, United States: Prentice Hall.

Jones, Capers, 1996. Our Worst Development Practices, IEEE
Software, 12 (6), 102-104.

Mair, P., 1992. CASE: A State ofthe Market Report, Unicom.

McConnell, 1997, Software’s Ten Essentials, IEEE Software, 14
(2), 144-145.

OMG, 1998, The Common Object Request Broker: Architecture
and Specification, MA USA, Object Management Group.

Pickering, Chris, 1993. Survey of Advanced Technology. Kansas,
United States: Systems Development Inc.

Pickering, Chris, 1996. Survey of Advanced Technology. Kansas,
United States: Systems Development Inc.

Pressman, Roger S., 1994. Software Engineering: A

Practitioners Approach. (3rded) Maidenhead, England:
McGraw-Hill.

Price Waterhouse LLP, 1998. 1998 Software Business Practices
Survey. (9thed) Massachusetts, United States: Price Waterhouse.

Pulford, Kuntzmann-Combelles, Shirlaw, 1996. A Quantitative
Approach to Software Management. Workingham, England:
Addison Wesley.

Rakos, John J., 1991. Software Project Managementfor Small to
Medium Sized Projects. New Jersey, United States: Prentice
Hall.

Revision Labs, 1997. Revision Labs Inc: Software Testing
Survey Results [online]. Available from:
http://www.revlabs.com/surresult.ntml [Accessed 10 June 1998]

Rubin. Howard, 1992. The Software Engineer’s Benchmark
Handbook. United States: Applied Computer Research Inc.

http://www.revlabs.com/surresult.html

(Sanders, 1994)

(Schach, 1990)

(Sommerville, 1989)

(Tarek, 1991)

(USAF, 1988)

(Wasserman, 1996)

(Yourdon, 1992)

(Yourdon, 1996)

Sanders, Joc and Curran, Eugene, 1994 Software Quality
Addison Wesley

Schach, StephenR , 1990 Software Engineering, Homewood,
IL United States, Richard D Irwin, Inc , and Aksen Associates,
Inc

Sommerville, Ian, 1989 Software Engineering (3™ ed)
Workingham, England Addison-Wesley

Tarek, Abdel-Hamid and Madnuck, Stuart E , 1991 Software
Project Dynamics An Integrated Approach New Jersey, United
States Prentice Hall

USAF, Department of the Air Force, 1988, Software Risk
Abatement Umted States AFSC/AFLC Pamphlet 800-845

Wasserman, Anthony I, 1996, Towards a Discipline for
Software Engineering, IEEE Software, 13 (7), 23-31

Yourdon, Edward, 1992 Decline and Fall of the American
Programmer New Jersey, United States Prentice Hall

Yourdon, Edward, 1996 Rise and Resurrection of the American
Programmer, New Jersey, Umted States Prentice Hall

86

Appendix A: The Token Data Dictionary

87

1. Introduction

This appendix describes and specifies all the Tokens that will be stored n the project database and
mampulated by the Prompter tool Each token described below 1s a variable of project planning that
may be used by the Prompter tool Each of the tokens described 1n this appendix may have a number
of optional token values It 1s the selection of a value from a number of possible values that allows a
project description to be buillt up The mstantiation of a token with a particular value 1s typically
performed by the user The instantiation of a number of default tokens has been the primary objective
of this research The tokens that store these default instantiations are listed in Chapter 5 The complete
token set and a definition of each 1s provided below

The Token Data Dictionary had been created using the following headings

ID Identification (index) number from 1 to N

Name Given name of the token

Type Datatype of token, wnt, boolean, etc or possible a more complex structure
Defimition An simple definition of what the token means

Values Values the token may take on and the associated meaning

Source This column describes any sources used to create this token This source has

been one of three principal references These are as follows

1) The USAF Risk Taxonomy developed by Barry Boehm (USAF, 1988)

2) The P3 Project Handbook Vol II which describes a number of key
charactenistics which should be considered when planning a software
project This document was an internal project deliverable

3) The AMI Handbook whuch assists the practical application of metrics at
software orgamsations (Pulford, 1996)

88

2. Tokens
ID Name Type Definition Value Source
ProjectTeamScale Int In relation to what we are 3 = more than twice as big USAF Risk Taxonomy
accustomed to, the size of the 2 = about the same (USAF, 1988)
project team 1s 1 = smaller
ProjectSchedule Int In relation to what we are 3 = more than twice the length USAF Risk Taxonomy
accustomed to, the duration of | 2 = about the same (USAF, 1988)
the project 1s 1 = shorter
ProjectDevelopmentEnvironmentMatu | Int The development environment 3 = relatively novel/untested USAF Risk Taxonomy
nty to be used 1s 2 = fairly mature/tested (USAF, 1988)
1 = very mature/tested
ProjectTechmcal TargetMaturtty Int What 1s the technical target 3 = relatively novel/untested USAF Risk Taxonomy
environment (target 2 = fairly mature/tested (USAF, 1988)
environment = 1 = very mature/tested
hardware/software environment
that the product 1s runmng on)
ProjectExternalCommumcationsComp | Int The commurucations linkages 3 = complex USAF Risk Taxonomy
lexity with any collaborators or 2 = not complex (USAF, 1988)
subcontractors are 1 = no external lmkages
ProjectChientCommunications Int Communications linkages with | 3 = complex USAF Risk Taxonomy
the clients are 2 = not complex (USAF, 1988)
1 = no client communications
ProjectImports Int Level of dependence of the 3 = critically dependant on imports | USAF Risk Taxonomy
project on ‘risky’ 1mports (eg 2 = somewhat dependant on (USAF, 1988)
reusable components, etc) 1mMports
1 = not dependant on 1mports
ProductCohesiveness Int In relation to what we 3 = large or cannot be broken down | USAF Risk Taxonomy
accustomed to the product 1s mto normal-size work packages (USAF, 1988)

2 = medium si1zed or fairly easily
broken down mto normal-size work
packages

89

10

12

13

14

ProductOperationallnterface

ProductSupportabilityProcedures

Produ ctSupportabilityPersonnel

RequirementsComplexity

RequirementsVolatility

Requi rementsinflexibility

Int

Int

Int

Int

Int

Int

Interfaces between the product
and other software and
hardware components it must
work with in the final user
environment are

In terms of supportability there
are

In terms of supportability
personnel

In relation to what we are
accustomed the requirements
are

During the course of
development, product
requirements are likely to be
sub ject to

In relation to inflexibility of

90

1= small or easily broken down
into normal-size work packages
3 = badly defined or subject to
uncontrolled change

2 = quite well defined and subject
to tightly controlled change

1= very well defined and subject
only to tightly controlled change
3 = nonexistant or inadequate
supportability procedures

2 = some concerns about
supportability

1 = procedures are in place and
adequate

3 = significant discipline is
necessary, there is a mix of
concerns

2 = minor discipline is necessary,
there is a mix of concerns

1 = they are in place, sufficient and

experienced

3 = complex and can be allocated
to software only with difficulty

2 = not complex and easily
allocated to software
components/modules

1= simple and easily allocated to
software components/modules

3 = extensive revision

2 = some revision

1 = little or no revision

3 = impossible to agree changes to

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy

15

16

17

18

19

20

ProjectTechnology

RequirementsApplication

ProjectTools

TeamFamiliarity

TeambDesignerKnowledge

TearnApplicationDomainExperience

Int

Int

Int

Int

Int

Int

functional and other
specification concerns, if we
meet problems in development,
it will be

The project technology can be
described as

The applications can be
described as

The tools involved in the
project are

The project manager has a
good knowledge of the skills
and productivity of

In terms of application domain,
the designer is considered to
have

In terms of the technical tasks
of developing software for this
application domain

91

functional and other specifications
2 = moderately difficult to agree
changes to functional and other
specifications

1 = not difficult to agree changes to
functional and other specifications
3 = new and little experience

2 = existent with some inhouse
experience

1= mature, existent, with in-house
experience

3 = real-time embedded with strong
interdependency

2 = embedded with some system
interdependency

1 = non real-time with little system
interdependency

3 = invalidated with major
development required

2 = available, validated with some
development required

1 = documented, validated and in
place

3 = less than one-third

2 = between a third and two-thirds
1 = more than two thirds

3 = little knowledge

2 = a good knowledge

1 = an excellent knowledge

3 = nobody on the team has good
experience

2 = a small proportion have good
experience

(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

21

22

23

24

25

26

27

28

TeamDevelopersExperience

TeamTechnicalTargetEnvironmentExp

erience

TeamVolatility

TeamMix

TeamCriticalMemberLoss

ClientRequirementsUnderstanding

ClientFamiliarity

ConstraintsComputerResources

Int

Int

Int

Int

Int

Int

Int

Int

With regard to experience of
the development environment to
be used, the team has

The experience of team
members of the technical target
environment

During the course of the
project, turnover of team
membership will probably be
In terms of project team there
is

The loss of one or more critical
team members during the
project is

In terms of understanding
requirements the client has

In terms of working with this
client, the organisation has

The computer resources for the
project can be described as

92

1= alarge proportion have good
experience

3 = no experience

2 = some experience

1 = extensive experience

3 = very few or only a small
proportion have good experience
2 = asignificant proportion have
good experience

1 = most or all have good
experience

3 = more than two-thirds

2 = between a third and two-thirds
1= less than a third

3 = some disciplines not
represented

2 = some disciplines
inappropriately represented

1= agood mix of software
disciplines

3 = very likely
2 = likely
1= unlikely

3 = some understanding

2 = a good understanding

1= an excellent understanding
3 = no experience

2 = moderate experience

1 = extensive experience

3 = new development, inflexible
with no growth capacity

2 = available with some growth
capacity

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

USAF Risk Taxonomy
(USAF, 1988)

1 = mature and flexible, growth
capacity within the design

29 ConstramntsPersonnel Int The project personnel are 3 = high turnover, little or no USAF Rusk Taxonomy
experience and not available (USAF, 1988)
2 = available, not in place, some
experience
1 = available, inplace, expenienced
and stable
30 ConstraintsStandards Int In terms of standards 3 = no talloring required, none USAF Risk Taxonomy
applied to contract (USAF, 1988)
2 = some tailoring required, all not
reviewed for applicability
1 = they are appropriately tailored
for the application
31 UserProficiency Int Users level of proficiency 3 = Very demanding, large number | USAF Risk Taxonomy
of users (USAF, 1988)
2 = Expert m field
1 = Not an expert
32 CustomerAccessibility Int How accessible 1s the customer | 3 = Not easily available USAF Risk Taxonomy
2 = External, knowledgeable (USAF, 1988)
1 = External available
33 ApphicationType Int With reference to previous 3 = New, complex, highly USAF Risk Taxonomy
applications, how does this one | mteractive (USAF, 1988)
compare 2 =Re-Engimneering
1 =New, complex, many wnterfaces,
advanced tech
34 DevelopmentOrganisation Int Level of proficiency 3 = Some experience USAF Risk Taxonomy
2 = Good team, experienced (USAF, 1988)
1 = Expenienced m technology
35 ApplicationReuse Int The emphasis of reusability for | 3=High, reusability essential P3 Project Handbook Vol
this application 1s 2=Medium, bemng borne m mind IT - Internal Project
1=Low, not important Document
36 ApplicationOrigmality Int The emphasis of onginahity 3=High, application must be P3 Project Handbook Vol

93

37

38

39

40

41

42

43

ApplicationGenerality

ApplicationComplexity

ProductFunctionality

ProductQuality

ProductDependability

ProductPerformance

ProductHCIRequirements

Int

Int

Int

Int

Int

Int

Int

when developing this
application is

The generality of the
application may be classed as

The complexity of the
application may be classed as

The functionality of the
product is required to be

The quality level of the product
is required to be

The level of dependability
required of the product is
The performance of the product

IS

Users must interface with the
product

94

original to succeed

2=Medium, limited competition
I=Low, competition irrelevant
3= Quite general, applicable to a
variety of domains

2=Medium, may be applied to
varied domains

1= Domain specific

3=Complex, extensive training
may be required

2=Medium complexity, instruction
will be necessary

I=Not complex, no prerequisites
for users

3= High, product must provide
extensive functionality
2=Medium, an intermediate
amount of functionality is required
I=Low, little emphasis on
extensive functionality

3=High level of quality required
2=Medium

I=Low

3=High, failure unacceptable
2=Medium, failure tolerated but
not desired

I=Low, can tolerate failure
3=Essential for acceptance
2=Preferred for acceptance
I=Not critical to its acceptance
3=always

2=sometimes

I=never

Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

44

45

46

47

48

49

ProductMaintenanceCosts

CustomerFinancialCapability

ProjectConcurrency

ProjectBudget

ProjectEquipment

ProjectTeamTraining

Int

Int

Int

Int

Int

Int

The cost of maintaining this
product is

The customers ability to further
finance this project is

The degree to which concurrent
development can be applied to
this project is

The Budget for this Project is
in thousands

The equipment at the disposal
of the development team is

The level of training required
for the development team is

95

3= High, this product will need
continuous maintenance
2=Medium. this product will
require a limited amount of
maintenance

1= Low, this product will require
little or no maintenance

3=Low, the customer has expended
their budget for this project
2=Medium, a possible increase in
investment is foreseeable but would
require justification

1= High, the customer is closely
associated with the project and will
provide full financial backing

3= Low, few tasks can be
parallelised

2=Medium, some tasks are
inherendy sequential but some may
be parallelised

1= High, most tasks may be
performed in parallel

User entered value

3=Less than adequate
2=Adequate

I=More than adequate

3=Team requires an entirely new
set of skills

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project

50

51

52

53

54

55

ProjectSubcontracting

StaffSize

TeamSoftwareDevelopmentExperience

SafetyCriticalUserEnvironment

EconomyCriticalUserEnvironment

UserCulture

Int

Int

Int

Int

Int

Int

The proportion of the project
that will be subcontracted is

The number of staff on the
project is

Overall the teams experience of
professional software
development is

How essential is this product to
the safety of the user

How essential is this product to
the economical success if the
user

The user has a software usage
culture which is

96

2=Some training is required to
augment current skills
I=None, no training required -
current skills are adequate
3=41% - 100%

2= 11% -40%

1=0- 10%

User entered value

3= Low, the team is inexperienced
2= Medium, the team has worked
on software projects before

1= High, the team has extensive
experience of software
development

3=Essential, failure compromises
the safety of the user

2=Medium, the product must
degrade gracefully to preserve user
safety

I=None, no danger to the user
pending failure

3=Essential, failure compromises
the economical success of the user
2=Medium, failure must not be
frequent and when failure occurs
the user must be notified

I=None, no economical risk to the
user pending failure

3=Not very mature, the user does
not have much previous software

Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document.

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project

56

57

58

59

CustomerSchedule

UserTrainingRequired

UserApplicationDomainExperience

MarketCompetition

Int

Int

Int

Int

The customer schedule is

The level of training required to
allow the user to use the
product is

The amount of experience the
user has in the application
domain is

The level of market
competition facing this product
is

97

usage experience

2=Medium, the user has limited
software usage experience
I=Mature, the user has experience
in using various software products.
3= inflexible, changes will cause
schedule problems

2=fairly flexible, changes may
require unfavourable alterations to
schedule

1= very flexible, changes to
schedule are open to negotiation
3=High, user has very little
familiarity with this type of
product

2=Medium, some training will be
needed

I=Little or no user training will be
required

3=Low, the user has little
experience of this application
domain

2=Medium, the user is familiar
with this line of business

I=High, the user has a recognised
level of expertise in this area of
business

3=High, the market is flooded with
alternative products

2=Medium, there are a number of
alternative products for the user
I=Low, this product has a
particular market niche or this

Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

product 1s dedrcated to a specific
user

60 StandardIS0O9001 Boolean | Your orgamisation meets the True=Yes P3 Project Handbook Vol
requirements set to reach ISO False=No II - Internal Project
9001 certification Document
61 StandardCMMLevel2 Boolean | Your organisation meets the True=Yes P3 Project Handbook Vol
requirements set to reach False=No I - Internal Project
CMM Level 2 certification Document
62 StandardCMMLevel3 Boolean | Your organisation meets the True=Yes P3 Project Handbook Vol
requirements set to reach False=No IT - Internal Project
CMM Level 3 certification Document
63 StandardCMMLevel4 Boolean | Your orgamsation meets the True=Yes P3 Project Handbook Vol
requirements set to reach False=No 1I - Internal Project
CMM Level 4 certification Document
64 StandardCMMLevel5 Boolean | Your organisation meets the True=Yes P3 Project Handbook Vol
requirements set to reach False=No II - Internal Project
CMM Level 5 certification Document
65 StandardISO15504 Boolean | Your organisation wishes True=Yes P3 Project Handbook Vol
follow the ISO 15504 (SPICE) | False=No IT - Internal Project
standard Document
66 OrganisationCodingStandard Boolean | Your organusation has a coding | True=Yes P3 Project Handbook Vol
standard which 1s m place and | False=No IT - Internal Project
followed Document
67 OrganisationDocumentationStandard | Boolean | Your organisation has a True=Yes P3 Project Handbook Vol
documentation standard which | False=No IT - Internal Project
15 1 place and followed Document
63 OrganmsationConfigManagementStand | Boolean | Your orgamsation has a True=Yes P3 Project Handbook Vol
ard standard 1n place and followed | False=No II - Internal Project
for Configuration Management Document
69 CustomerProductStandard Boolean | The customer has an evaluation | True=Yes P3 Project Handbook Vol
procedure for the product False=No II - Internal Project
Document
70 OrganisationInternalProductStandard | Boolean | A defined internal standard for | True=Yes P3 Project Handbook Vol

98

71

72

73

74

75

76

77

78

79

80

81

SubcontractorStandardRequired

SoftwareReuseStandard

HardwareCost

SoftwareCost

TravelCost

EffortCost

TrainingCost

EstirnationStandard

HardwareCostAccuracy

SoftwareCostAccuracy

TravelCostAccuracy

Boolean

Boolean

Int

Int

Int

Int

Int

Boolean

Int

Int

Int

product evaluation is in place

A defined standard is in place
for evaluation of
subcontractors

A defined standard is in place
that is expected of software
that is reused/off-the-shelf
The hardware cost of
developing this product is X
number of thousands

The software cost of
developing this product is X
number of thousands

The travel cost of developing
this product is X number of
thousands

The effort cost of developing
this product is X number of
thousands

The training cost of developing
this product is X number of
thousands

You have a formal standard of
estimation used on all projects

The accuracy of your hardware
cost estimation is

The accuracy of your software
cost estimation is

The accuracy of your travel

99

False=No

True=Yes
False=No

True=Yes
False=No

User entered value

User entered value

User entered value

User entered value

User entered value

True=Yes
False=No

3=Not Very accurate
2=Average approximation
I=Very accurate

3=Not Very accurate
2=Average approximation
I=Very accurate

3=Not Very accurate

[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi

82

83

84

85

86

87

88

89

EffortCostAccuracy

TrainingCostAccuracy

ProductPortability

ExpectedDuration

ActualDuration

WorkEnvironmentErgonomics

ActivityDuration

ProjectLifeCycle

Int

Int

Int

Int

Int

Int

Int

Int

cost estimation is

The accuracy of your effort
cost estimation is

The accuracy of your training
cost estimation is

The portability of your product
is

The duration of your project is
expected to be X weeks

The actual duration of your
project is X weeks

The environment in which your
team operates is

The duration of this Activity is

The life cycle chosen for this
project is

100

2=Average approximation
I=Very accurate

3=Not Very accurate
2=Average approximation
I=Very accurate

3=Not Very accurate
2=Average approximation
I=Very accurate

3= High, the product will operate
on multiple platforms

2= Medium, certain modules are
platform specific

1= Low, required for a specific
platform

User entered value

User entered value

3=Unsuitable, the atmosphere is
detrimental to the comfort of the
team

2=Mixed, the atmosphere may be
compromised by disturbances
I=Ideal, the atmosphere suits
software development

User Entered Value

5=Spiral Model
4=Evolutionary Model
3=Incremental Model

[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

2=Waterfall/V
1=None

90 IndependentVandV Int The level of independent 3= Low, there 1s little or no P3 Project Handbook Vol
Vertfication and Validation at | external verification and validation | II - Internal Project
each stage of the project 1s 2= Medwum, there 1s verification Document
and valhidation at each stage of
development
1= Hagh, the project schedule and
continuity depends on external
verification and valhidation
91 EstimatedProjectRisk Int Thus 15 a result of risk Output value P3 Project Handbook Vol
calculation for this project II - Internal Project
The user will not set thus token Document
— this 18 an output result token
92 CustomerSoftwareCulture Int The level of software usage 3=Low, the customer does not have | P3 Project Handbook Vol
experience at the customer much previous software purchasing | II - Internal Project
organisation experience Document
2=Medium, the customer has
Iimuted experience mn general
software use but not 1n this
particular application area
1=High, the customer has
purchased software applications of
this nature previously
93 MetnicDevelopmentBug Int Number of bugs observed 2 = each week Metrics suggested by the
during a development phase 1 = each month AMI Handbook (Pulford,
0 = rejected 1996)
94 MetricValidationBug Int Number of anomalies observed | 2 = each week Metrcs suggested by the
durmg the validation tests 1 = twice a month AMI Handbook (Pulford,
0 = rejected 1996)
95 MetricReportedAnomalie Int Number of classified anomalies | 3 = each week Metrics suggested by the

101

96

97

98

99

100

101

102

103

104

MetricOriginBug

MetricErrorLocation

MetricTestingCoverage

MetricErrorKLOC

MetricPhaseDelay

MetricMilestone

MetricProductSize

MetricProductivity

MetricReview

Int

Int

Boolean

Boolean

Boolean

Boolean

Int

Int

Boolean

reported

Number of bugs whose origin
is requirements/design/coding
against time of discovery

Error location

Testing coverage of each
testing phase

Number of errors/KLOC (high
level design review errors, code
inspection errors, unit test
errors, integration test errors
etc.)

Delay of each phase and
percentage of deviation

Percentage of milestones on
time

Expansion ratio of product size

Productivity: KLOC/person-
month

Number of hours to prepare a

102

2 -
1=
0=
1=

each month

at each milestone
rejected

each week

each month

at each milestone
rejected

each week

each month

at each milestone
rejected

adopted

rejected

at each review

= rejected

at each milestone
rejected

at each milestone
rejected

twice a month
each month
rejected

each week
twice a month
each month
rejected

at each review

AM 1 Handbook (Pulford,
1996)

Metrics suggested by the
AM 1 Handbook (Pulford,
1996)

Metrics suggested by the
AM 1 Handbook (Pulford,
1996)

Metrics suggested by the
AM | Handbook (Pulford,
1996)
Metrics suggested by the
AM | Handbook (Pulford,
1996)

Metrics suggested by the
AM | Handbook (Pulford,
1996)
Metrics suggested by the
AM | Handbook (Pulford,
1996)
Metrics suggested by the
AM | Handbook (Pulford,
1996)
Metrics suggested by the
AM | Handbook (Pulford,
1996)

Metrics suggested by the

105

106

107

108

109

110

111

112

113

114

MetricEffort

MetricTestProductivity

MetricRework

MetricProductivityError

MetricBugFix

MetricComponent

MetricNonRegression

MetricNewCode

Metric Change

MetricUnresolvedError

Int

Boolean

Int

Int

Boolean

Boolean

Boolean

Int

Int

Int

review vs. number of errors
reported and time to fix it
Effort spent per phase;
deviations

Number of test cases passed
per unit of time

Total effort in rework/phase

Productivity: KLOC with a
fixed number of errors/person-
month

Average time to fix a bug (over
a month, over a year)

Maximum number of
components to be corrected in
case of error or change request
Average number of test cases
to ensure non-regression

Percentage of new code in a
system

Percentage of changes which
introduce faults

Number of unresolved

103

2=

rejected

= each week
= twice a month
= each month

rejected
adopted

= rejected

each week
twice a month
each month

= rejected
= each week

twice a month

= each month

rejected
adopted
rejected

adopted

= rejected

adopted

= rejected

twice a month

= each month

rejected

twice a month
each month
rejected
twice a month

AM 1 Handbook (Pulford,
1996)
Metrics suggested by the
AM 1 Handbook (Pulford,
1996)

Metrics suggested by the
AM 1 Handbook (Pulford,
1996)
Metrics suggested by the
AM | Handbook (Pulford,
1996)

Metrics suggested by the
AM | Handbook (Pulford,
1996)

Metrics suggested by the
AM | Handbook (Pulford,
1996)
Metrics suggested by the
AM | Handbook (Pulford,
1996)
Metrics suggested by the
AM | Handbook (Pulford,
1996)
Metrics suggested by the
AM | Handbook (Pulford,
1996)
Metrics suggested by the
AM | Handbook (Pulford,
1996)
Metrics suggested by the

115

116

117

118

119

120

121

122

123

User Requirements Duration

System Requirements Duration

Software Requirements Duration

Architecture Design Duration

Detailed Design Duration

Implementation Duration

System Integration And Test Duration

Acceptance Testing Duration

Operational Testing Duration

Int
[0..100]

Int
[0..100]

Int
[0..100]

Int
[0..100]

Int
[0..100]

Int
[0..100]
Int

[0..100]

Int
[0..100]

Int
[0..100]

problems/number of solved
ones

The duration of this Activity is
as a percentage of overall
duration

The duration of this Activity is
as a percentage of overall
duration

The duration of this Activity is
as a percentage of overall
duration

The duration of this Activity is
as a percentage of overall
duration

The duration of this Activity is
as a percentage of overall
duration

The duration of this Activity is
as a percentage of overall
duration

The duration of this Activity is
as a percentage of overall
duration

The duration of this Activity is
as a percentage of overall
duration

The duration of this Activity is
as a percentage of overall
duration

104

1= each month
0 = rejected
User Entered Value

User Entered Value

User Entered Value

User Entered Value

User Entered Value

User Entered Value

User Entered Value

User Entered Value

User Entered Value

AM 1 Handbook (Pulford,
1996)

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
Il - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

P3 Project Handbook Voi
[l - Internal Project
Document

105

Appendix B: Prompter Use Cases

106

1. Use Cases

Thus section outlines the Use-case analysis for process selection and project mnstantiatton Thus
use-case analysis 1s a direct extract from the User Requirements document of the P3 Project Thus
document was deliverable to EC as part of the P3 project contract These use-case diagrams are
different to an actual use-case with the developed Prompter tool This 1s due to the refinement
and elimination of various user requirements throughout the project Despite the disparity
between the developed product and these use cases, these use cases still provide an nsight mnto
how Prompter was mtended to be used

Roles and actors

The mamn actor in Prompter 1s the project manager During the process selection phase the project
manager performs different roles, as described 1n the Prompter Handbook

e Firstly, the project 1s described the main characteristics of the project are specified and
the business drivers and goals 1dentified

e Preparation for the process selection, checking the coherence of what has been defined
e Selecting the process with help of these elements

e [nstantiating the process into a project1¢ feeding the framework of the process with the
values of the project

Use cases diagrams

Describing the Projact

«Characteristics Prompter

~,
/ N

uses Checking items on
size, duration

“extends”

1
1
I
I

Feeding Prompter
with charactenistics
of the project

extends

Defining degree
of flexibility

Wniting textual
comments on the
project = roadbook

> Prompter

ldentitying business
drivers

“extends”

extends’

Using default set
denved from
characteristics

Choosing personnal
drivers through a list

Setting prionity
on drivers

Process selection

- Prompter

Asking advice to get
the best adapted template
in hbrary

extends

extends

Choosing a template

oxtends
electing a process in librar

Asking tor advice
on the template

extends

extends

extends Arranging himits

of adaptation

etting advice on the
adaptation rufes

Trying another one

Instanciating the Project

Projectinstantiation

PN

L Prompter

/
Adapting tem plates
feeding ?)rncoss data uses " Visualizing Instanciated
wHh project values project

extends

extends

Adaptiing siructure
Where allowed

extends

Matrics custiomizing
Praeclising extra risks
where allowed

108

Use Cases description

o Describing the project characteristics

description : the user has to feed Prompter with general data on the project 1f 1t 1s long or short
, 1f 1t 18 a sub-project or 1f there are partners, 1f new technologies are used or if a similar project
as already been undertaken, the degree of flexibility of the project, etc in order to make clearer
any constraints on the project Writing textual comments on the project, even if not directly used
by Prompter for assessment, may be a good way to provide the project manager with a kind of
“road book” or “diary” of the project Much of this may be achieved by checking or annotating
predefined items suggested by the Tool

end : charactenstics of the project are known by the Tool

e Describing the project business goals

description : the user has to identify the project business drivers These can be done
automatically because the tool could provide a default list derived from project characteristics
The users may also want to defined special goals and drivers by setting the priority of general
drivers that Prompter provides

end : busiess drivers are defined

e Preparing for process selection

description : this step 1s provided to allow the user to verify if what has been provided to
Prompter 1s what was mtended Prompter will also use this step to check coherence of the user
choices If these are OK, then Prompter will allow the user to go further and to select the process
If not or 1f the user 1s not satistied with his choices, he can re-enter the previous steps and change
what 1s wrong

end : the user 1s sure that his choices are coherent and that therefore Prompter should be able to
find a process adapted to the charactenistics of his project

e Process Selection Choosing the APM

description : this step 1s where the choice of the relevant process for the project 1s done Much
advice can be provided by Prompter depending on whether the user knows the life-cycle to be
chosen, or needs to consider several possible choices, or lets Prompter propose the best 1t can
find 1n process library Rules of adaptation of the process to the current project 1s also dealt with
in thus step and the user may ask information on 1t or may be allowed, for certam processes, to
tatlor this adaptation

end : the framework of the project 1s defined Instantiation can be done

e Project Instantiation APM — IPM

description : the user fills the structure of the project with the real data The process can be
adapted according to the rules defined before, the metrics customised and risks factors added that
are peculiar to 1ts project

end : the project defined and ready to be worked with Summary views of the project are
displayed

109

