
A Navigation Aid for the

Visually Impaired

For the award of

Masters of Engineering

by

Laurens P. Kallewaard B.Eng

Dublin City University

Supervised by

Professor Charles McCorkell

School of Engineering and Design

September 1997

I

I hereby certify that this material, which I now submit for assessment on the

programme o f study leading to the award o f Masters o f Engineering is entirely my

own work and has not been taken from the work o f others save and to the extent that

such work has been cited and acknowledged within the text o f my work

Signed L ID No 93701420

Date

2

1 INTRODUCTION 8

2 BACKGROUND RESEARCH 9

2 1. B a s ic D e f in it io n s 9

2 .2 . P e r c e p t io n a n d u n d e r s t a n d in g o f t h e s p a t ia l in f o r m a t io n n e c e s s a r y

FOR NAVIGATION [1-11] 10

2 2 1 R e d u n d a n c y 10

2 2 2 In v a r ia n c e 11

2 2 3 I l l u s io n s 11

2 2 4 Sp a t ia l u n d e r s t a n d in g 11

2 2 5 T h e v isu a l s y s t e m a n d n a v ig a t io n 12

2 2 6 Th e a u d it o r y sy s t e m a n d n a v ig a t io n 13

2 2 7 H a p t ic p e r c e p t io n a n d n a v ig a t io n 14

2 2 8 O t h e r se n se s u s e d f o r n a v ig a t io n 14

2 2 9 S u m m a r y 15

2.3 . EVALUATION OF EXISTING MOBILITY, ORIENTATION AND NAVIGATION AIDS 16

2 3 l Ex is t in g A id s 16

2 3 2 M o r e r e c e n t d e v e l o p m e n t s 20

2 4. F o l l o w - u p s u r v e y s o f E T A u s e 22

2.5. E n d U s e r F e e d b a c k 26

2.6 . A u d io a n d t a c t il e in t e r f a c e s 29

2.7 . D e sig n C o n s id e r a t io n s 31

2.8 C o n c l u s io n s 32

3. PROPOSALS 34

3.1 . S e l e c t in g a d e s t in a t io n 34

3.2 . E s t a b l is h in g p o s it io n [17] 35

3 2 1 In d e p e n d e n t sy s t e m s 35

3 2 2 S y s t e m s w it h e x t e r n a l c o n t r o l 37

3

3 .3 . St o r in g sp a t ia l in f o r m a t io n

3.4 . R e l a t in g n a v ig a t io n a l in f o r m a t io n t o t h e u s e r

3 5. O p t io n s

38

39

38

4. CONTROL SOFTWARE 41

4.1. T e c h n ic a l s u m m a r y 41

4.2 . So f t w a r e D e s ig n s p e c if ic a t io n s 42

4.3 T h e D r a w in g In t e r c h a n g e F il e 44

4 4. O b je c t O r ie n t a t e d D e sig n 45

4.5. T h e O O D f o r t h e c o n t r o l s o f t w a r e 48

4 5 1 T h e D r a w in g s 49

4 5 2 T h e R e a l W o r l d O b je c t s 51

4 5 3 T h e C o m p l e x C l a ss 51

4 5 4 T h e B u il d in g C l a ss 52

4 5 5 T h e F l o o r C l a ss 53

4 5 6 T h e Pl a n C l a ss 54

4 5 7 T he R o o m a n d D o o r c l a s s e s 55

4 5 8 T h e C o m p l e t e M o d e l 57

4 6 O v e r a l l St r u c t u r e 57

4 6 1 T h e A p p l ic a t io n F il e 58

4 6 2 T h e F r a m e W in d o w F il e 58

4 6 3 T h e D o c u m e n t a n d V ie w c l a s s e s 5 8

4 6 4 T h e D X F a n d F l o o r d o c u m e n t s 59

4.7 T h e C o m p l e x D o c u m e n t (C C o m p l e x D o c) 59

4 8 Id e n t if y in g a n d L o c a t in g o b je c t s o n a d r a w in g 61

4.9 AUTOMATIC CONSTRUCTION OF A ROOMLlST 63

4 9 1 T h e IdR o o m s a l g o r it h m 64

4 9 2 T h e O u t s id e 65

4 9 3 T h e Se a l e d R o o m 66

4 9 4 A l ia s in g 67

4 9 5 V ir t u a l D o o r s 68

4 9 6 L o c k in g d o u b l e d o o r s 68

4.10. T h e R o u t e F in d in g F u n c t io n s 69

4 10 1 T h e R o u t e L ist 69

4

4 10 2 C o n s t r u c t in g t h e R o u t e L ist (F l o o r c l a s s o n l y) 70

4 10 3 C a l c u l a t in g s t e p b y s t e p n a v ig a t io n a l in f o r m a t io n 73

4 11. C o n c lu s io n s a n d r e c o m m e n d a t io n s f o r A l g o r i t h m 3 91

4 111 P r o b l e m 1 91

4.12. PROBLEM 2 91

5 USER MANUAL 93

5 1 M e n u l a y o u t a n d f u n c t i o n a l i t y 93

5 2 I n i t i a l S e tu p 94

5 3 E d it in g a d r a w in g 95

5 4 B u i ld in g a n d e d i t i n g a t r e e 95

5 5 T h e R o o m L i s t E d i t o r 98

5.6. B a s ic r o u t i n g 99

5.7. C r e a t in g a C o m p le x 103

5.8. L i f t s a n d S t a i r s 104

5 9 C o m p le x R o u t in g 105

6. CONCLUSIONS 107

APPENDIX A- THE .CMP FILE 109

APPENDIX B: THE .TRE FILE 110

APPENDIX C FUNCTION REFERENCE 114

APPENDIX D-LISTINGS 116

REFERENCES 124

5

Acknowledgements
Firstly thanks to Professor McCorkell for his patience and support M any people

contributed to the project through their criticism and suggestions, especially the

members o f the EASI and BLIND-L discussion groups Thanks also to Prof

Goodrich for his help and encouragement

Thanks also to my friends for support and sessions and to Dee without whom this

thesis would never have been completed

But mostly, thanks to my parents, who gave me life, love and opportunity

6

Abstract
The explosion o f new technologies m recent times has created many as yet unexplored

possibilities m the area o f assistive technology Assistive technology may be thought

o f as any technology that alleviates the affects o f an impairment, disability or

handicap One o f the greatest challenges facing designers o f assistive technologies is

to accurately define the user requirements The background research chapter o f this

report attempts to define the user requirements for a navigation aid that can be used

any person, regardless o f visual ability, both through literature surveys and through

dialogue with potential end users The conclusions drawn from this research are used

as a basis for an investigation into possible technological solutions, culminating in a

technical summary

Subsequently, the design and implementation o f a software package capable o f

providing environmental information and navigational suggestions is discussed in the

final chapters The package is designed to be flexible enough to act as a basis for

further research and eventual implementation o f a fully functioning navigation aid

7

1. Introduction
Over the past few decades an increasing amount o f research has been carried out in an

effort to find new technologies that compensate for physical disabilities Society is

structured in a such a way that even minor physical disabilities can prevent a person

from integrating fully into society Technologies that allow people to overcome such

handicaps are therefore highly desirable

This project was prompted by the increasing number o f visually disabled students

attending the university While the overall numbers are still very small (four students

have severe impairments and four are legally blind), it is the policy o f the university

to accommodate all students regardless o f physical ability

The project is primarily concerned with the mobility o f visually disabled people

around the university campus or a similar complex o f buildings Students with severe

visual impairments can require several months o f familiarisation time This problem

is further complicated by the rapid expansion o f the university and the many building

programs being undertaken there A navigation aid capable o f giving information

about a person’s position and environment within a complex o f buildings would

therefore be a useful teaching and consulting device Furthermore, it should be

possible for the navigation aid to guide a person from one position to another

There are many problems associated with the development o f such a device One o f

the most difficult and under-rated challenges is the determination o f user

requirements Design considerations include the type o f information to be relayed to

the user, the format o f the information, as well as the methods by which the

information is requested, selected and retrieved The second chapter o f the

dissertation is solely devoted to the task o f ascertaining answers to these questions

The background research covered m the second chapter also includes a section on

existing navigation aids These aids include simple devices such as canes and tactile

maps, simple electronic travel aids such as the Sonic Torch and Polaran as well as

more complicated travel aids such as the PathFinder and the Sonic Guide

The reasons for the successes and failures o f these devices are examined and

conclusions are drawn

8

2. Background Research

2.1 Basic Definitions
The aim o f this section is to examine how both sighted and blind people perceive

environmental information and how they use this information for basic mobility tasks

This is essential if we are to make an attempt at identifying the nature and content o f

any information that may improve a blind person’s mobility skills

Firstly, it is important to know exactly what is meant when referring to words such as

impairment, disability and handicap An impairment occurs as a result o f a disease or

defect and interferes with the normal operation o f an organ A disability is present

when an im pairment interferes with the carrying out o f activities considered normal

for the average human being The term handicap is used when a person's disability

prevents them from carrying out a role considered normal in everyday life The

difference between a disability and a handicap refers to how a person 'fits in', 1 e how

a disability affects one's ability to act as part o f a society A person with a visual

disability is therefore a person whose (corrected) vision is not sufficient to allow that

person to carry out all everyday activities O f particular concern here is a person's

mobility and his or her ability to orientate and navigate without the full benefit o f

sight The people effected to the greatest extent are the people who are totally blind,

those that cannot perceive anything more than changes in light levels

M obility can be thought o f as the ability to travel independently and safely

Orientation on the other hand deals with the directions o f objects in relation to a

person and in relation to each other The ability to orientate thus allows a person to

determine the direction o f travel, the direction o f potential obstacles and the direction

o f any perceived objects within the environments Navigation deals with a person's

position within their immediate environment and their ability to travel or direct

themselves to a desired destination Navigation is therefore not possible without basic

m obility and orientation skills

9

2.2. Perception and understanding of the spatial information
necessary for navigation [1-11]

M ost people take basic mobility skills for granted and little thought is given as to how

we move within our environment. To safely (and confidently) move within a

particular environment, certain aspects about the environment must be perceived [11].

It is essential that obstacles blocking our pathways are detected in time so that they

can be avoided or negotiated. This is true for both static objects such as buildings and

lampposts as well as moving objects such as cars. Changes in the surface one is

travelling on must also be detected in time to prevent accidents, such as kerbs and

steps. In order to plan the next step in a reasonable amount o f time, a traveller must

confidently be able to detect any potential hazards. Another aspect o f independent

travel is the ability to find (and traverse) a desired path [2,3,4].

Light perception, or the sense o f sight, is ideally suited to supply the

information required for mobility, orientation and navigation. Its complete or partial

loss can therefore greatly affect everyday living. The initial parts o f this section are

directed to a discussion o f some o f the basic principles o f perception and spatial

understanding. In the latter parts o f this section, the application o f a number o f senses

to navigation are discussed.

2.2.1. R edundancy

Under well-lighted conditions, there are innumerous light rays reflected to a person's

eyes providing a vast volume o f information [3,4], The amount o f information

available can greatly exceed what is required for a person to have basic navigation

skills. This is referred to as perceptual redundancy, that is, if more information is

available than is necessary for a particular application, redundancy occurs. This, in

particular, is where visual perception is on its own. Although sound can be used in

many different ways to extract information about the environment, there is a lack o f

auditory perceptual redundancy, in other words, in comparison to the vast quantities

o f light available, most environments are largely silent. This effectively means that

the amount o f information available through the auditory system in comparison to the

visual system is meagre and blind traveller must be constantly alert for sounds that

may aid them to travel. Some blind people have reported that it is less difficult to

10

travel in the ram, since the sound the rain produces on different surfaces can reveal

much about their nature Despite this, the auditory system cannot compete with the

visual system for perception o f the environment The visual system is able to discard

information it does not consider vital for mobility, but when a person hears many

different sounds at once, it can be very difficult to extract useful information about the

nature o f these sounds The auditory system can thus get overloaded with information

more easily than the visual system

2.2.2. Invariance

In order for a perceptual system to provide useful information, it must be subjected to

stimuli that change with time [3,4] It is this requirement that allows useful

information to be extracted from the senses This is true for all the perceptual

systems, including the visual system If an image remains constant on the retina o f

the eye, it disappears This is prevented by small movements o f the eye, thus ensuring

that the image is constantly changing Invariance is important to understanding how a

travel aid such as a cane can provide useful information (see Sect 2 3)

2.2.3. Illusions

Illusions can cause a person to incorrectly perceive certain aspects about his or her

environment [3,4] M ost o f the senses are prone to illusions Two common illusions

are the M uller-Lyer illusion and the horizontal-vertical illusion The Muller-Lyer

illusion occurs when comparing two line segments o f equal length, one terminated

with arrow heads the other with arrow tails The line with arrow tails appears shorter

than the line with the arrow heads The horizontal-vertical illusion occurs when

vertical and horizontal lines are compared for length, the vertical lines usually being

underestimated Both visual and haptic (see section 2 2 7) perceptions are prone to

these illusions The haptic illusion occurs with raised lines and therefore can have

negative consequences when reading Braille maps

2.2.4. Spatial understanding

Another aspect o f navigating is the storing in the bram o f environmental information

necessary for travel [3,4,9] Mentally stored spatial information o f an area is known

as a cognitive map If a person who is familiar with route A to B becomes familiar

11

with route A to C, it should be possible for them to go directly from B to C and take

detours if the way is blocked To do this, their cognitive maps o f the routes A,B and

A,C must demonstrate a good understanding o f the positions o f objects and

destinations in relation to each other (in terms o f distances and angles) Their

cognitive map o f the area must change from two separate routes to an integrated map

that includes knowledge o f locations in relation to each other Studies have been

made to investigate the comparison between the way sighted and blind people store

this type o f spatial information When cognitive maps o f a well known building were

derived from blind and sighted subjects m one such study [9], all showed Euclidean

organisation with the sighted subjects being slightly more accurate In a follow-up

study, the same subjects were asked to make specific Euclidean judgements The

sighted subjects proved to be more precise and flexible The study concluded that

many blind people have more difficulty in organising their knowledge o f an area in

Euclidean form

2.2.5. The visual system and navigation

How is information essential for mobility extracted from the sense o f sight, and can

this information be perceived by any o f the other senses? Answering this question

will identify if it is possible to aid the blind traveller by providing information to him

or her normally only obtainable by visual m eans1

The sense o f sight can be used to detect and recognise obstacles and pathways,

estimate distances, judge motion, help us orientate and can enable a person to detect

potentially dangerous situations Sight is therefore ideally suited for mobility and

navigation A sighted person can at a glance judge safety factors involved in

locomotion How sight is used to judge the direction one is travelling in, and how it

can tell us whether or not an obstacle is on a collision course with us, has been subject

to research in the past [3] It is based on what is known as an optical expansion

pattern This refers to the way in which objects seem to expand when we get closer to

them If the expansion pattern produced is symmetrical or similarly if the centre o f

the expansion pattern is m the middle o f our visual field, we are heading directly for

1 Section 5 deals with how this information can be presented to a blind traveller

12

that point W hen walking, the point one wishes to walk towards should remain at the

centre o f the optical expansion pattern Similarly if we wish to avoid an obstacle

(such as an approaching car), we move in a direction that causes the expansion pattern

produced by the car to be asymmetrical or off-centre

Different surfaces can be detected either by the way in which one surface hides

another surface as one moves past (known as occlusion and disocclusion) or by

stereoscopic vision This allows people to detect changes in the surfaces they are

walking on and thus prevent tripping or falling Different surface textures scatter light

m different ways and/or absorb different wavelengths, enabling sighted people to

recognise different objects and thus allowing them to navigate

Sight is also well suited for orientation Frames o f reference can be used to tell a

sighted person what direction he or she is facing as well as information about his or

her position Static vertical and horizontal surfaces are best used for frames o f

reference and are available in most environments

2.2.6. The auditory system and navigation

The auditory system is another major source o f information that can be used to

locomote within an environment[3,6] Sound can be used in many different ways It

is possible to establish the position o f a sound emitting object to within a degree or

two by means o f binaural localisation or movement o f the head2 Moving objects

emitting sound can thus be tracked The Doppler effect can be used to tell if a sound

source is moving away from or towards the listener This is can be very useful when

dealing with fast moving traffic

Objects that do not emit sound can be detected using echo-location This requires a

lot o f experience but can be very useful The difference in time between when a

sound is emitted and when its echo is heard reveals information about the distance o f

the object from which the sound reflected Reflected sound can be used to avoid

large obstacles The presence or absence o f echoes can be used to establish the

position o f objects around the listener and can therefore be used to identify position

and orientation Another advantage o f echo-location is that sound can easily be

2 The accuracy obtainable by sound localisation is a function of frequency, the mid range of

frequencies being more difficult to localise accurately

13

created for the purpose The tapping o f a long cane, snapping o f the fingers or simply

footfalls can all be used to generate sound for écholocation

Sound-shadowing is a technique used to detect the presence or absence o f relatively

large objects It is based on the blocking o f sound by these objects, such as the

blocking o f traffic noise by bus shelters or other large objects This can enable a

person to avoid obstacles as well as help to establish position, for instance when

sound previously blocked by a building suddenly becomes audible, one can safely

assume to be at a comer

Sound waves are structured by the environment in a similar manner to light waves,

thus allowing objects to be uniquely identified by the sounds reflected off them or by

the sound they produce This allows a person to identify objects and hence establish

their position For example, the sound created by an appliance can help to establish

one's position in a particular room or corridor Sound may also aid orientation It is

possible to know in which direction one is walking down a busy street simply by

keeping the sound o f the traffic on one side

2.2.7. Haptic perception and navigation

Haptic3 and tactile information can also be used for the purpose o f mobihty[5] When

moving, one is always m contact with the ground, allowing (to some extent) the

identification o f surface features such as roughness (or smoothness), regularity and

slope It is possible to recognise, locate and detect discontinuities in objects using the

sense o f touch, however, since it only applies to objects in contact with us, the

unaided sense o f touch is o f little use when navigating The aided sense o f touch on

the other hand, can become the single most valuable sense for blind people (see

section 2 3)

2.2.8. Other senses used for navigation

Other senses can also provide relevant information for mobility [2,3,6] The mner-

ear, or the vestibular system is essential for maintaining orientation with respect to

3 By definition, haptic perception occurs when a person actively touches an object, while tactile

perception occurs when an object touches the person These definitions are not normally strictly

adhered to

14

gravity Besides enabling a person to keep their balance, it can tell a person the slope

o f the surface they are travelling on This is useful not only for safe travel but also for

identifying one's whereabouts The vestibular system also provides information about

linear and angular acceleration, based upon which a traveller may keep track o f his

position

Heat radiation detection can also be useful This can be used mainly to detect the

position o f the sun and can thus provide information relevant for orientation purposes

The sense o f smell can be quite keen and can allow us to identify objects and areas

associated with particular odours, one o f the best examples is a bakery shop

It is possible to keep an approximate track o f one's position by using motor outflow

(efference) information To put it simply, if we intentionally turn to the right, we

expect that we have indeed turned to the right even without sensory feedback Thus if

a person takes ten steps forward from a know position, even if they are not able to

visually (or otherwise) confirm their whereabouts, they will still have a good idea of

where they are

2.2.9. S um m ary

Having looked at the various senses and how they can be used to provide to the brain

the information necessary for navigation, it would seem that all that should be

necessary is to isolate elements lacking in the non-visual channels and provide them

to a person using the other perceptual systems We have seen that a considerable

amount o f perceptual redundancy exists for the visual system, which explains why

many people with low vision have no problem locomotmg The aim then is to

provide environmental information normally obtained through vision at or above the

point at which redundancy occurs Insufficient redundancy leads to a greater amount

o f errors however it is very easy to swamp the non-visual senses with an excessive

amount o f information Studies were carried out by Brabyn and Strelow[10] to

determine the best method by which spatial information could be presented to test

subjects w ith varying degrees o f sight, in an effort to optimise sensory information

Results showed that this optimisation was impossible, as different levels o f

environmental complexity greatly affected the problems involved m optimising the

sensory information Studies such as this demonstrate the impracticality o f trying to

15

establish specific parameters such as the level and format o f information required for

navigation since different environments create different demands o f perceptual

systems Further studies by Barth concluded that a person needs to perceive at least

3 m ahead (known as preview) for relaxed travel but that sensory aids should not

exceed this distance to prevent information overload All this points to the need to

keep the informational flow relatively simple and easy to understand if the

information is to be interpreted correctly and within an acceptable period o f time

2.3. Evaluation of existing Mobility, Orientation and Navigation Aids
In the past few decades, several products have been developed whose purpose is to aid

people in dealing with disabilities or handicaps Electronic Travel Aids (ETAs) are

generally used to heighten peoples awareness o f their environments, such as assisting

them to perceive obstacles in sufficient time to avoid them The number and range o f

ETAs currently in use is very small The reasons for the general failure o f ETAs to

revolutionise blind travel, and the reasons for the fact that the ordinary long cane is

such a successful travel aid, will be discussed in this section

2.3.1. Existing Aids

2.3.1.1 The Long Cane

The long cane is one o f the most important o f all mobility aids available to the blind

traveller It is a primary mobility aid, which means that its use is sufficient to make a

person mobile This simple device can, with appropriate training, make a blind

person completely mobile The sense o f touch can only give a person information

about objects m contact with the body, however, with a long cane, this is extended so

as to enable a user detect obstacles several feet away A person’s perception o f his

immediate environment is thus increased sufficiently to enable him or her to negotiate

obstacles successfully Since obstacle detection is one o f the most important aspects

o f mobility, this skill can give a person sufficient confidence to travel freely The

cane can be used by moving it from left to right, ideally with wrist action only The

cane should thus describe a constant arc and the angles created by the cane and the

ground remain constant if no obstacles are detected In this method the invariance

16

necessary for perception is produced, known as kinaesthetic invariance. However,

this is not the only benefit that the long cane provides. The constant tapping sound

created by the cane can be used for echo-location purposes (see Subsection 2.2.6

above).

The cane is less than adequate in the detection o f obstacles that occur at waist height

or higher. For instance, many stairways in public buildings are open and can be

approached from the back and side, creating a head height obstacle that can result in

serious injury if it is not detected in time. The cane may also fail to detect sudden

drops in the surface such as those caused by street works. The objectives o f many o f

the obstacle detectors developed recently is to overcome one or more o f these

problems whilst at the same time increasing a person’s awareness o f the immediate

environment. In effect, this means that modern ETAs are designed to supplement

primary mobility aids, not replace them, in contrast to earlier aids.

2.3 .1 .2 T h e S on ic T o rc h

The Sonic Torch is the first o f the ETAs, developed by Professor Leslie Kay in the

1960's [3,7] The device is an ultrasonic, hand held obstacle detector with an audio

output. When the device is pointed at an object, an audible tone is emitted. The

closer an object is to the Sonic Torch, the lower the frequency o f the output. This

enables a user detect obstacles in time to avoid them. Very few people were able to

make use o f the device however, which was mainly attributed to the complexity and

quantity o f information presented to the traveller [3]. As discussed in Subsection

2.2.1, the auditory system is not able to process large quantities o f information to the

same extent as the visual system, therefore the information provided by the Sonic

Torch often led to confusion. The Sonic Torch, as all ultrasonic devices, suffers from

certain drawbacks which no matter how complicated the device and how clever the

output, cannot be overcome. One is the wavelength o f ultrasound. Many surfaces

consist o f grain sizes smaller than ultrasound wavelengths which means that

ultrasonic devices cannot be trusted to identify all surface types and small

discontinuities in surfaces. Another, perhaps more serious problem, is that some

surfaces reflect ultrasound instead o f scattering it. This may lead to what is termed as

a 'false negative', in that an ultrasonic device may signal no objects ahead when in fact

there may be a potentially dangerous obstacle.

17

2.3.1.3 The Mowat Sensor

One o f the more commercially successful devices, the Mowat sensor is a hand held

obstacle detector that uses pulsed ultrasound to detect obstacles [3,7] It can be set to

detect obstacles at either o f two ranges, 4 metres which is suitable for outdoor travel,

and 1 metre, which is more suitable for indoors It has a vibrating display that

responds only to the nearest target The frequency o f the vibrations is inversely

proportional to the distance o f the object detected Audio output is available as an

option No vibrations occur if the echo is below a predetermined threshold and no

information about the nature o f the detected object is presented, which although

making it less accurate than the Sonic Torch, also makes the output clearer and easier

to understand It can easily be used in conjunction with the cane or guide dog and is

low in cost Training required for the Mowat sensor is small m comparison to other

ETAs

2 3 14 The Laser Cane

This is a device specifically designed to eliminate some o f the problems with the cane

[3,7,16] It is a cane fitted with three laser sensors designed to detect obstacles at

head and waist heights as well as providing advanced warning o f step-downs The

output consists o f two (constant) auditory and one vibrotactile display, each output

specific to an obstacle within a certain range and at a certain height Since it is

incorporated into a cane, it leaves one free hand, unlike the obstacle detectors

described earlier It can be subject to producing what is known as 'false positives',

that is, on wet days it may signal the presence o f a non-existent drop which is

inconvenient but not dangerous It is however quite expensive and training is needed

for correct operation

2 3.1.5 The PathFinder

This head-mounted device divides the space m front o f a user into three zones [3]

Information about obstacles m any o f the zones is not displayed simultaneously,

instead the three zones are each given a small amount o f time Distances o f objects in

each o f the zones are represented by musical scales, altogether there are eight notes,

providing approximate distance information about objects Each note represents a

30cm bracket withm the range o f 0 to 210 cm If an obstacle is on a collision path

18

within a zone, the other zones are silenced and attention is drawn to the pending

danger. It can be particularly useful for 'shore-lining', that is, by keeping the tone

created by say, a building, constant, it is possible to walk in a straight line.

PathFinders mountable to wheelchairs are also available. Training is required for

use.

2.3.1.6 The Sonic Guide

Also developed by Professor Kay, this device provides a binaural description o f

obstacles in its path [3,12,16]. Two ultrasonic sensors mounted on spectacles allow

the device to accurately detect the position and distance o f objects. Frequency varies

with distance while the different volume levels o f the sound presented to each ear

indicates the direction o f the object, allowing the person to binaurally localise the

object. As with the Sonic Torch, auditory output is produced almost constantly. The

field o f view is about 60°. Similar to the PathFinder, the Sonic Guide can with

appropriate training not only act as an obstacle detector but also allows the wearer to

form a more complete image o f his environment. It is quite expensive.

2.3.1.7 The Polaron

The Polaron is an ultrasonic mobility aid that can be hand held or chest mounted

which detects object in one o f three ranges; 4, 8 and 16 feet[3]. The display can be

tactile or auditory, the frequency depending on the distance o f the object. One

advantage o f the Polaron is that it can also be wheelchair mounted so as to allow

shore-lining.

2.3.1.8 The Silva Compass

The Silva Compass is an ordinary magnetic compass that can be used as an

orientation aid. It has a tactual interface. The major problem encountered with this

device is its inaccuracy due to artificially generated magnetic fields, especially in

urban areas.

2.3.1.9 The Auditory Compass

This compass is a magnetic compass with audio output. Can be set for specific

destination. It suffers from the same drawbacks as the Silva compass.

19

2.3 1.10 Tactile maps

Various types o f maps designed for visually disabled people exist Strip and bead

maps show a reader suitable routes for travelling by means o f symbols, while other

types o f map show significant details o f areas

2.3.2. More recent developments

The information for this section was obtained through research on the Internet, not

through a literature survey The EASI and BLIND-L discussion groups were the mam

sources o f information

1 The Open University has developed navigation aids known as Talking Signs

(designed by D B Jones) Talking signs are devices that contain pre-recorded audio

information about surroundings and other useful information The messages are

stored in solid state memory Two types o f talking signs exist, Automatic Talking

Signs are triggered by people walking past while the Triggered Talking Signs are

triggered by people carrying a small pocket activator The size o f the transmitter is

about half the size o f a bag o f sugar and the activator about the size o f a packet o f

cigarettes Signs can be mains or battery powered Cost is about £150 for signs

and £27 for triggers The information given to passers by is the same irrespective

o f the direction o f approach The Smith-Kettlewell Rehabilitation engineering

centre is also developing a talking sign system

2 John DeW itt is currently developing a navigation system for Tampa airport,

Florida No details are available as yet

3 P rof Reg Gooledge, Jack Loomis and Klatsky developed a Personal Guidance

System (the PGS) at University College Santa Barbara It is a GPS based system,

coupled to a Geographic Information System The interface is based on virtual

auditory reality It is a backpack system that incorporates a flux-gate compass

Objects and destinations call out to users, the sound appearing to come from the

actual positions o f the objects It is hoped that with further development, the PGS

can be reduced to belt pack size

4 Dr Ronald Stephens o f the Porthsmouth Institute o f Rehabilitation Technology in

co-operation with Tony Longley o f Possum Controls Limited are working on the

OPEN project, or Orientation by Personal Electronic Navigation The system is

designed exclusively for way-finding in underground systems It is based on

narrow beam mfra-red beacons that transmit information and allow a degree o f

orientation

5 Chicago state university recently developed a system o f localised transmitters

which when placed at street intersections can produce speech signals identifying

the intersection for any person carrying a receiver

6 Several years ago a bar-code reader with speech output was developed Bar codes

can be placed at intersections, building fronts etc (presented at Closing the Gap

conference, Minneapolis, 1989)

7 The RNIB has developed a system that allows travellers to identify objects like

pedestrian crossings and phone boxes

8 The British Guide Dog Association has developed a similar system that allows

pedestrians to identify objects by means o f a triggered pre-recorded message

9 The MoBIC (M obility o f Blind and Elderly People Interacting with Computers)

consortium is developing a GPS based navigation system The system involves

two stages, the first is a pre-journey planning system and the second is the actual

outdoor device that provides the traveller with the required information

21

2.4. Follow-up surveys of ETA use
The following are studies which were conducted in an effort to evaluate the usefulness

o f ETAs

In 1973, Airasian [12] conducted a mail-questionnaire based follow-up study o f the

SomcGuide 10% reported they no longer had the device, 11% had not decided about

returning the devices while 79% reported they would keep the SonicGuides they had

In 1977, Darling, Goodrich and Wiley [13] conducted a follow-up survey o f 23 army

veterans trained to use ETAs Five did not use ETAs Twelve had sonic guides o f

which only 5 said they still made use o f O f the 6 people trained to use a Laser canes,

3 said they still used it O f the people originally trained, 35% were still using an

ETA

In 1981, M ornssette[14] conducted a telephone survey o f 15 veterans who had been

trained m the use o f the M owat sensor All reported that they used the sensor on

occasions

In 1984, Simon[15] reported on five individuals trained to use ETAs Four had been

trained to use the Laser cane and one the SomcGuide All subjects still used their

devices

Blasch, Long and Griffin-Shirley[16] conducted a national survey o f electronic travel

aid use The survey was much more comprehensive than any o f the above and

included interviews with people who no longer used their devices A total o f 298

people were interviewed O f all the participant, 40% were trained in the Mowat

Sensor, 33% the SomcGuide, 25% the Laser Cane and 2% were trained to use the

PathFinder

A total o f 37% reported they found it very easy to use their ETA, 41% fairly easy and

23% said it was difficult The table below shows the type o f ETA and the numbers

that reported having used it within 3, 30 and 180 days The most commonly used

devices were the Laser Cane and the Mowat sensor which are also the devices that

have the simplest outputs

22

Type o f aid trained on Number

trained

Use withm

last 3 days

Use within

last 30 days

Use within

last 180 days

M owat Sensor 123 35% 59% 78%

SomcGuide 109 13% 25% 40%

Laser Cane 75 53% 65% 69%

Pathsounder 10 10% 20% 60%

Table 2.1

The survey goes on to define former users as those not having used their device withm

the last 30 days There were 140 users and 158 former users

O f the users, 52% reported that they travelled more often after having been trained to

use their ETA Exactly half reported using the device equally in familiar and

unfamiliar areas, 31% said use increased m unfamiliar areas Just over 44% of users

always carried their devices with them while half o f all the ETA users reported using

their device constantly when they carried it with them Close to 65% said they used

their device both inside and out while 60% reported 'more rapid, more efficient, more

confident, safer, and less stressful travel' compared to travel before being trained in

the use o f their ETA Over 90% said they had fewer body contacts when using their

aid To 58% o f the ETA users, environmental noise was not a problem A total o f

87% said their device was comfortable and 68% o f M owat Sensor users and 47% of

SomcGuide users reported having at some time used their devices without a primary

m obility aid

All the ETA users were asked the following question, "Does using your ETA make a

big difference in your ability to negotiate these common travel situations?" The table

2 2 below shows the 'common travel situations' and the number that reported that their

travel aid made a difference

23

Common travel situation % that reported a difference

Avoiding obstacles at body level 77%

Avoiding obstacles at head level 68%

Assessing distance to and direction o f objects 61%

Avoiding pedestrians in a crowd 64%

Locating a door to a building 50%

Avoiding objects at foot level, shore-lining,

maintaining a straight line o f travel, squaring o ff at

kerbs, locating a place in line, crossing streets,

locating up and down curbs and determining the size

o f objects

<50%

Table 2.2

Another question asked was "What is the one thing you like best about using an

ETA?"

The top responses to this question are tabulated below

Response Percentage who responded m this way

Object detection 24%

Increased independence 10%

M obility (safety, ease o f travel) 9%

Table 2.3

The former ETA users reported gradual declines m the use o f their device When

asked why they no longer used their aid, the responses varied greatly, the mam ones

o f which are shown below

24

Reason for discontinued use o f aid Percentage who responded in this way

Personal or health reasons 14%

Preferred sole use o f primary aid 13%

Change m environment that decreased the

need for mobility aids

12%

Design problems such as weight 11%

General unfavourable responses such as

"I ju st didn't like it"

13%

T able 2.4

Design change recommendations for the various ETAs as reported by both ETA and

former ETA users are as follows,

Laser Cane

• Lower cost

• Improve reliability

• Reduce weight

M owat Sensor

• Improve reliability

• Improve information provided

Sonic Guide

• Reduce size

• Improve reliability

• Improve information

• Improve appearance

• Reduce cost

25

2.5. End User Feedback
This section is based on the responses received from many blind and visually disabled

people when asked their opinions and expectations o f a navigation aid It must be

pointed out at this stage that this survey was conducted over the Internet, which means

that the average participant was not the statistically average visually disabled person

m terms o f age and income However it can be argued that the largest number o f

potential users o f a navigation aid would be included in this (younger) group since

their income is more likely to allow the purchase o f travel aids and they also tend to

be more aware o f modern technology and its possibilities Responses varied greatly,

from very negative to very positive In all about 250 responses were received A

com pilation o f the responses is presented below The first part deals with the

potential disadvantages o f a fully functioning navigation aid and goes as far as to

argue against the development o f such an aid The number o f people actually against

the development o f a navigation aid was very small (less than 10) and can be regarded

as a minority

2.5.1 Why bother with a Navigation Aid7

A common assumption made by many sighted people is that cane and guide dog users

cannot travel independently without a great deal o f difficulty and stress Given proper

training in the use o f a primary mobility aid, the blind can travel wherever they

choose to go without a great deal o f difficulty and without the benefit o f a navigation

aid Learning new areas should not take a great deal o f time, information may be

easily acquired from other people and/or maps Obtaining information from other

people is a very reliable method o f supporting navigation in the sense that it is almost

always available Tactile and Braille maps are inexpensive to produce, and are

adequate for many areas

Navigation systems can enforce the popularly held opinion that travel for blind people

is an ordeal by implying that they are helpless without such a system Negative

images o f the blind may also lead to reduced employment prospects since employers

may envisage blind employees as being dependent and hence not as productive

26

People who use navigation systems may foster dependency and hence avoid areas not

fitted with navigation systems, which is contradictory to the intended purpose o f a

navigation system, namely to increase the overall mobility o f people with a visual

disability The motivation to learn how to correctly use primary mobility aids may be

eroded if navigation systems reduce the need for having these skills

2 5 2 Arguments in favour of the development of a navigation aid

While canes and guide dogs are adequate mobility aids in most everyday situations,

they offer a limited amount o f information about the environment Canes are mobility

aids, essential for travel, but they do not provide information about the layout o f an

area other than the immediate area within reach o f the cane Getting information

about one’s position within an area and the location o f objects m relation to each other

can be done by consulting maps, human guides or navigational aids Tactile maps are

good at relating fine details but are less adequate when relating an overall view o f an

area Braille maps are also available but require a good knowledge o f Braille Both

human guides and navigational aids are superior in this respect In large, complicated

environments, a navigation aid would allow a person to immediately access

information without the need for tactile maps and without constantly having to ask for

directions Asking for directions in itself is not an ordeal, but offering an alternative

to having to ask questions would make life a little easier, especially if one suffers

from speech problems

Navigation aids would be especially useful in complicated, unfamiliar environments

not likely to be frequented which would make familiarisation with the area

impractical, such as airports, railway stations and so on They could also be beneficial

on familiar routes as best described below by a respondent,

“ anything that could augment the reception of stimuli garnered by the cane

should be welcomed I disagree that a familiar route presents no problem to the

traveller The fact is that conditions change—wind currents, snow, rain,

personal attentiveness-and a navigation aid could surely supplement the

meagre information which one can get from the cane alone In my travels, I

27

have to deal with rounded corners, and how many tim es have I gone too far,

and had to retrace ”

Snow especially can lead to problems even on familiar routes, covering familiar

landmarks and surface details that would usually be used to ascertain orientation and

position

Large environments can benefit from navigation systems not just for people

unfamiliar with the area, but as an optional aid that can be consulted if desired For

instance if one is visiting a less well known section o f say, a university campus a

navigation device can help in locating such sections and provide information about

them in relation to other well known sections An added benefit is that people who

use a navigation aid can easily acquaint themselves with all o f the services and

facilities available in a particular area and with which o f these services and facilities

are located conveniently

The letter shown below is from Greg Goodrich, a research psychologist at Stanford,

who has been involved in the field o f assistive technology for many years (see also

follow-up surveys o f ETAs) It is in response to the summary presented above o f the

various views and opinions expressed on the development o f a navigation aid

“I thought the summary was fair to m ost positions I do, o f course, take exception

to som e o f the positions various people proposed, but then your goal was to present

a balanced summary so they needed to be included

I do think the overall conclusion from the debate was that there is a need to pursue

the topic o f navigational aids for visually impaired travellers One could take the

position that if such a navigational aid were put in place and that it was easy to use

and inexpensive that it would be a potential service to other groups as w ell (1 e ,

retarded citizens, various people with cognitive impairments, etc) and that it would

be more cost effective in that it helped a larger number o f people In any event,

there seem s to be sufficient support to warrant a funding request for a pilot project

or initial demonstration project B y the w ay the other w ay to look at the statistics

that I've given you is that existing travel aids are inadequate^ For exam ple, in the

4That only 10% o f the legally blind in the USA use canes

28

US the National Eye Institute estimates there are 3 million severely visually

impaired individuals^ The American Foundation for the Blind reports that there

are 100,000 long cane users and less than 10,000 guide dog users That means that

the two most frequent travel aids used by visually impaired people are used by only

three and a third percent That is, 96% of the severely visually impaired do not use

long canes or guide dogs Clearly, an easily used, inexpensive and widely

available travel aid would have widespread appeal ”

2 6. Audio and tactile interfaces
W hat would be the best method o f relating navigational information to a person using

a navigation aid? The most common interface types are audio and tactile Both have

their advantages and disadvantages

Auditory perception can be very versatile and used for identifying and locating objects

at considerable distances, in contrast to tactile perception which can only be used to

detect and locate objects within the immediate vicinity Relating navigational

information through tactile interfaces has the advantage that it leaves one’s auditory

senses free to concentrate on gathering the information required for basic mobility as

well as listening to announcements, conversations and so on Other advantages that

tactile interfaces have over audio interfaces is that audio interfaces usually consist o f

loudspeakers or headphones, both o f which are not as discreet as tactile sensors Up

to 35% o f people with a visual disability also suffer from light to severe hearing loss

[1], for whom tactile interfaces are a better option

Interpreting tactile information other than locating and identifying objects may require

training, whereas audio information tends to be more self explanatory Many people

cannot read Braille and as such Braille based information should not be essential for

correct use o f the device Some diabetics may also suffer from reduced tactual

perception This would favour the use o f audio interfaces, especially if the

information presented is not continuous but no more than an occasional signal to

indicate correct or incorrect directions o f travel Tactile interfaces may also be quite

bulky Each pin in a vibrotactile display must be separated by at least 2 mm in order

for a person to be able to differentiate between them

5 As opposed to the 1 million legally blind

29

Based on the above advantages and disadvantages o f audio and tactile interfaces,

offering a choice o f interface types would seem essential in order to make the device

practical for as wide as possible a range o f people It may be possible to allow a

person to select the degree o f information coming from the tactile and audio

information sources to suit his or her needs according to their environments The user

can thus not only choose their preferred interface type, but also the degree o f

information being relayed by the device, for instance, the device may be consulted if

required or set so as to give continuous navigation signals

Complex information related to a person through the sense o f touch can best be done

through Braille or Moon, however this not only requires knowledge o f one or more o f

these alphabets, but a high level o f concentration as well Verbally communicating

complex information is very effective but also requires concentration In short, very

detailed information should be avoided unless explicitly requested by the user The

selection o f the preferred destination may however require a relatively complicated

interface such as a verbal audio or Braille tactile display Since the time that a user

will have to spend selecting destinations will be very much less than the time spent

receiving navigation signals, the effects o f using a more complicated interface for this

purpose is negligible Destinations need not be selected whilst on the move This

further validates the use o f more complicated displays when selecting destinations A

problem arises here if a person has a hearing deficiency as well as not being able to

read Braille A limited choice o f destinations may be presented to such a user through

means o f symbols

Ideally, the user interface to be used with a navigational device should accommodate

personal preference as to the degree o f information offered and as to how the

information is conveyed This would accommodate people who prefer either audio or

tactile and those who prefer a mixture For example, the selection o f the desired

destination can be done by means o f an audio interface, while the navigation signals

may be conveyed through a tactile interface The degree o f information may consist

o f two or more settings, such as a continuous indication o f a persons position in

relation to the selected destination, timed updates o f the information or more simply

the options available at junctions and so on

30

Electronic navigation aids must be used in conjunction with existing travelling

techniques if they are to provide a good service. They must in no way interfere with

the travel techniques employed by blind travellers and must in no way limit the

options available to them. In other words, a navigation aid must complement existing

travel techniques and should not attempt to replace them.

A navigation system must not limit the traveller in any way. Systems that limit the

traveller to fixed, pre-defined routes curtail the independence o f the user in the sense

that they exert a certain amount o f control over the route options available to them.

Individual preferences vary dramatically. What may be suitable for one may be less

than adequate for another. Fixed routes do not allow for this. For example, guide dog

users and cane dog users may rely on different aspects o f the environment and may

therefore choose different routes. Having to adhere to rigid routes may also demand

concentration and effect one’s ability to give sufficient attention to the various audio

and tactile queues needed for basic mobility.

The position o f the user interface is a very important factor. Hand held electronic

devices may be useful but they have the disadvantage that any user will have both

hands in use at the one time. Fitting a navigation aid to a cane has the advantage that

one hand is left free. Further the handle o f the cane is a good position for a tactual

interface. Integrating a navigation aid with a cane excludes guide dog users as using

both a cane and a guide dog is impractical. It is also important not to interfere with

the information obtained from the cane. Fitting a navigation aid may affect the cane’s

weight, rigidity and may also reduce its collapsibility. From a design point o f view,

mounting sensors on a helmet can have many potential benefits. However, head

mounted systems are conspicuous and, referring to the point made earlier about

spreading the image o f helplessness and dependency associated with blind people, are

not desirable.

Expense is a major consideration. Developing a system that is costly, keeping in

mind the large percentage o f unemployed among the blind, will limit the numbers o f

people that will benefit from the device. To give a sense o f the importance o f cost,

consider that only about 10% o f the legally blind people in the US use canes, which

are primary mobility aids and cost the relatively small sum o f $35. While there are

2.7. Design Considerations

31

many factors contributing to this low percentage6, it puts into perspective the value

placed on navigation and mobility aids by many blind people The finished product

m ust therefore be inexpensive or subsidised Alternatively, locally managed areas

such as airports and railway stations could provide a navigational system as a service

This would require that potential users be alerted as to the availability o f the system

2.8. Conclusions

2.8 1 General requirements of a navigation aid

The points listed below should be kept in mind when designing a navigational aid,

1 A device designed to assist with navigation for people with visual disabilities must

be designed in such a way as to complement existing navigational techniques

2 It must be affordable and/or subsidised

3 It must be as inconspicuous as possible so as not to make the user unnecessarily

self aware and convey an image o f dependency and helplessness

4 It should give clear and easy to understand navigation signals that do not contain

on excess o f information

5 It should be user friendly and require a minimum o f training for correct use

Navigation aids that are difficult to use and that require training will both limit the

scope o f potential users and require training instructors

6 No limits should be placed on the options and travel preferences o f the user, which

means that the system should be flexible enough to allow a user to travel as they

see fit along the route o f their choosing while providing navigational information

to the traveller if it is required

6One o f the main reasons is that despite being legally blind, many (approximately 75%) have enough

vision to allow unaided mobility

32

2.8.2 The User Interface7

1 The device should be able to display destinations which the user can select in some

suitable way and should also be able to convey simpler navigation information

2 For tactile displays, it would be preferable if the use o f a hand is not (always)

required, 1 e the user should be able to position the display on their person rather

than carry it in the hand

3 The user interface should be able to accommodate a wide variety o f user

preferences

4 The information displayed should not interfere with audio or tactile information

necessary for basic mobility

7Electrocutaneous displays which use electrodes to stimulate the skin are not considered

33

3. Proposals
This section looks at some possible navigation aid and user interface design Each

subheading deals with a different aspect o f the overall design Several solutions are

outlines as responses to these design issues

3.1 Selecting a destination
The problem o f how the user can inform a navigation aid o f the destination they wish

to go is addressed here This suggested interface could be used with any o f the

systems proposed in this section Simply typing in a desired destination is not

practical since it requires a prior knowledge o f the names that the navigation aid has

assigned to this particular destination The user should have the option o f choosing a

destination This has the added advantage o f bringing to the attention o f the user all

the available facilities and services withm a complex One possible way o f solving

this problem is to have a list o f all available destinations, divided up into

consecutively more detailed categories, for instance a university's list o f destinations

could be divided up as shown in Figure 3 1

Figure 3.1

This information can be conveyed to the user by audio or tactile information For

each category, the user may select his or her preference by either pressing an 'OK'

button when the preferred option is heard or read, or by using a numbered keypad,

each selection being associated with a number The former method is preferable from

34

the point o f view that it requires fewer keys, however a repeat last message key would

be essential. Accessing preferred destinations would be relatively quick, depending

on the number o f destinations available. Arranging the information in this format

would be useful to all people entering an unfamiliar environment, sighted or not.

3.2. Establishing position [17]
This is a very complicated part o f the development process. Accuracy, range,

structure o f environment, hardware and software as well as installation and

maintenance costs are all significant factors. Very accurate systems tend to be more

costly and complex. If the system is to be used solely outside, less accuracy is needed

but greater range is required. It is possible to divide the proposed navigation aids up

into two main categories; the first is where the navigational aid is capable o f

establishing its whereabouts independently, the second is where the position o f the aid

is established by a separate system. The latter type o f navigational systems do not

need to have their own on-board circuitry capable o f establishing their positions which

means they are less complicated, however it also means that either the established

position or the required navigation signals would have to be transmitted back to the

device. I f the navigation signals are to be transmitted back, the intended destination

must firstly be transmitted from the navigation device to the external controller.

Three dimensional positioning is essential for navigation in multi-story complexes.

Some o f the proposed systems below only allow two dimensional navigation, making

them more suitable for navigation between building unless used in conjunction with

an other technique such as user feedback to establish the third dimension.

3.2.1. Independent systems

Independent tracking systems rely on using ‘sm art’ hand held devices that are capable

o f establishing position and calculating any required information themselves.

3.2.1.1. Local transmitters

The installation o f a series o f low power transmitters in an area would allow a receiver

with prior knowledge o f the location o f each transmitter to establish its approximate

35

position Transmitters may also be mounted on obstacles to give warning to people

withm the vicinity Both infra red and radio transmission could be used for this This

method is limited in accuracy, however it is sufficient for a system that does not guide

the user every step o f the way As noted before, guiding a user every step o f the way

along a route is not desirable An advantage o f radio transmitters is that they can

easily be adjusted to cover different sized areas, thus making them suitable for both

inside and outside Infra red has the disadvantage that detectors capable o f detecting

an infra red signal must be positioned so as to have line o f sight with the transmitters

The above method allows three dimensional positioning within a complex since

transmitters can be located wherever desired

3.2.1.2. Global positioning

Global positioning (GPS) technology is advancing rapidly, and is becoming

increasingly accurate and inexpensive The output o f a portable GPS is in latitude and

longitude The major drawback that GPS has is that it requires line o f sight with

overhead satellites for correct and reliable operation This means that it cannot be

used mside or in the vicinity o f very tall buildings Another drawback is that only two

dimensional positioning can be achieved

3.2.1.3. Phased Arrays

It is possible to direct a radio signal in a particular direction quite accurately by

cancelling out the transmissions to all other directions using other, out o f phase,

transmitters Antennas working together in this way are knows as antenna arrays

Many different types o f array exist, varying in size, cost and accuracy Two or three

such arrays can 'sweep' an area with a signal that may be used to establish the position

o f the receiver A synchronisation signal is emitted in all directions The time

between this pulse and the time it takes a particular transmitter to transmit in the

direction o f the receiver is directly proportional to the direction that that particular

signal is being transmitted at Three such signals would thus establish the position o f

the receiver in two dimensions

36

Inductively excited sensors can be used to transmit data and hence establish position

Such sensors are cheap but have a very limited range

3.2.2. Systems with external control

Navigation systems with external control consist o f a portable ‘dum b’ aid which relies

on an external control system to establish position and compute any requested

information

An example o f such a system is shown in the diagram below,

3.2.I.4. Inductively coupled sensors

Portable user interface

Figure 3.2

3 2 2 1 Direction finding

Transmitted signals can easily be sourced If a navigational device emits radio

signals, triangulation techniques can be used to establish its position quite accurately

This is similar to the method described in the independent systems category

(Section3 2 1), the only difference is that there is no need for a synchronisation pulse

and the navigational signals or positions have to be transmitted to the device

3 2.2.2 Ultrasonic transmitters

Ultrasonic receivers can be used to establish the position o f an ultrasonic transmitter

Due to the relatively slow speed o f ultrasound in comparison with radio waves, the

difference between the times a particular ultrasonic signal is received by two or more

receivers can be used to establish the position o f the ultrasonic transmitter Three

ultrasonic receivers within view o f the transmitter are required to prevent inaccuracies

due to reflected signals The transmitter must first transmit a signal in order to

37

synchronise the receivers This method can be very accurate depending on the

proximity to the receivers Since many receivers are required to cover an area, three

dimensional positioning is possible

3.3. Storing spatial information
The independent tracking systems described in 3 2 1 can be used in conjunction with

navigation aids that have the circuitry required to provide navigational signals on­

board In order to provide these signals, a knowledge o f the spatial layout o f the area

is required Independent systems must therefore also have stored spatial information

or in other words a built in Geographical Information System (GIS) is needed This

may not be practical if the area to be covered is complex and requires a large amount

o f detail to be stored The spatial information can be transmitted to devices in an area

instead o f having the information on board This would make the device more

versatile In order to transmit such information, a method similar to the way teletext

information is transmitted could be used In other words information could be ‘piggy­

backed’ on signals used for direction finding This problem need not be considered

with systems with external control as described in 3 2 2

3 4 Relating navigational information to the user

3.4.1 Compass based interface

Once the position o f a person with a navigation aid has been established, data can be

relayed to that person that will allow him or her to move along an appropriate route

with respect to the intended destination The need to keep this information simple and

concise was discussed earlier One viable option o f relating this type o f data is by

means o f a programmable, non-magnetic compass The suggested direction o f travel

can easily be conveyed by this method The user interface can be as simple as left,

right or straight ahead The use o f a compass will not restrict conventional travel

techniques or limit the options o f the traveller If, for example, a user decides to

ignore the advice given by the device and travel in a different direction, the suggested

direction will simply change Systems that have predefined routes would not be able

to cope with such situations as easily and therefore limit the user options An added

38

bonus is that the compass can be used for ordinary travel outside areas fitted with

navigation systems. Such a device can be worn around the waist and can easily be

fitted with tactile and audio interfaces. What makes this method attractive is not only

its versatility, but also the fact that signals that the user is receiving allows them to

easily keep track o f the direction in which they are facing. Flux-gate compasses and

gyroscopic compasses would be suitable for this type o f system.

3.4.2 Virtual map

This option is particularly versatile. It does not require very accurate tracking. An

area can be divided into a grid, each section o f the grid appearing on the users tactile

map as they move into it. A compass is an optional extra that could assist orientation.

A less detailed display o f the overall area covered could be made available which

would make the selection o f a particular destination optional. Routes can be decided

by the traveller as with ordinary maps which in no way limits any travel options. The

main problem with this option is the likelihood that such a system would be quite

bulky, use a considerable amount o f power, and be quite expensive.

3.5. Options

3.5.1 Learning capability

It is possible to add a 'learn' option to a navigation device, in other words allow it to

automatically keep track o f the route so far travelled so that the route can easily be

retraced in the future. This could be especially useful if the end destination o f the

route is not available on the navigation system itself or if the recommended route is

not suitable. Alternatively, such a device could be used to create custom made

electronic strip maps for areas not fitted with the necessary equipment for keeping

track o f the device. The user could update the program whenever they wish. No

information about the distances between objects on the 'map' would be recorded if the

device was outside the range o f the tracking system. A typical program could run;

left, left, straight, stairs etc., while for areas within range o f the tracking device the

navigation signals would be given as before, i.e. if the user is in a certain position, the

device recommends the direction o f travel.

39

3.5.2 Obstacle detection

A navigation aid will indirectly provide information to a traveller about static objects

by suggesting routes that are free o f static obstacles, however movable obstacles such

as cars, pedestrians, temporary obstructions and so on may present a problem to the

visually disabled pedestrian Despite the fact that navigation aids as described above

should complement primary mobility aid use, electronic detection o f temporary

obstacles may prove beneficial It may be possible to include temporary obstacle

detection by adding extra sensors Information about these obstacles could be

presented to the traveller in exactly the same fashion as for static objects, 1 e a route

could be suggested away from the obstacle An extra indicator could be used to

identify whether or not a temporary obstacle has been detected Such an option could

also be beneficial to the user outside the area in which the navigation aid is functional

It is important that such an addition should be optional to the user as the information

received may be more complicated and thus lead to confusion

3 5.3 Audible clicks

As described in section 2 2 6, sound can be used for echolocation Adding a feature

onto a navigation aid system that allows a user to hear clicks emitted at chosen

intervals may be useful for some individuals, such as guide dog users who do not have

the benefit o f the sounds created by the cane when it strikes the ground This option

would probably be more useful in areas outside the range o f the intended use o f the

navigation aid

40

4. Control Software
4.1. Technical summary
All the system proposals outlined in chapter 3 be split up into the sections shown

below

Figure 4.1 Overall System Block Diagram

The system shown above consists o f a central controller whose job it is to interface

with the positioning system, architectural database and user interface and to calculate

the required information For example in response to a user’s request for information

on how to get from a location A to B, the controller would have to

• retrieve the user data from the user interface

• request user location data from the Positioning System

• obtain the appropriate drawings from the architectural database

• calculate the required navigational information

• supply the information to the user via the user interface

The above procedure seems quite straightforward The greatest challenge is the actual

calculation o f navigational information The control software must be able to access

and extract useful information from architectural drawings Ideally it should also

allow these drawing to be edited to include temporary obstacles or structural changes

41

I f these functions are implemented on a central controller its functionality may be

extended

As previously mentioned, extensive field testing o f any navigational aid will be

required before a design can be finalised The function o f the controller can therefore

be extended to act as a development tool Typical applications could include

1 Feasibility testing for various types o f Positioning System (PS)

2 M any PSs require the installation o f a network (e g localised transmitter PS)

Such networks could be modelled on the control software and tested for suitability

before actual installation o f the networks

3 Various navigation systems could be tested for suitability for existing and yet to be

constructed building complexes Work can begin as soon as architectural drawings

are available

4 The software could also be used as an automated stand-alone information point

such as the type commonly seen in shopping complexes

5 The software could be used for pre-journey route planning

6 A standardised interfacing system could allow the software to control many forms

o f user interface, ranging from virtual maps to Braille and audio interfaces

As the controller software is central to the operation o f a PS, the project will

concentrate on the development o f the software required for the controller The

following sections deal with the design and implementation o f this software

4.2. Software Design specifications
The software must be able to

• Access drawings in an architectural database

• Display these drawings and allow features to be inserted and deleted

• Identify any given part o f a drawing

• Locate any requested position or feature

• Understand the relationships between drawings and features in the drawing, for

example it must understand how two particular floors o f the same building are

interconnected or how two adjacent rooms on a floor are connected

42

• Calculate routes between any two points in a complex o f buildings (inside and

outside) and choose the one that best fits the user defined criteria

• Output various detail levels, ranging from step by step guidance to general

directions

One o f the first considerations to be taken into account is the choice o f language and

platform In the last few years a new programming style has gamed immense

popularity, both for its versatility and adaptability This technique is known as Object

Orientated Design OOD allows code to be updated with much greater ease than

traditional design methods This feature is especially important in this application,

where system specifications may well be required Object orientated designs can be

carried out on several different programming languages, the most popular Object

Orientated Programming (OOP) platform being C++

The choice o f platform must take into account several factors, popularity, ease o f use,

and suitability for the given program specifications Since the program must produce

results in the shortest possible time, speed is a major consideration UNIX

workstations would be ideally suited but are not in wide spread use For PC based

systems, the two most popular operating systems are DOS and Windows The major

advantage that Windows has over DOS is its memory management system Sixteen

bit W indows programs can access up to 16Mbytes o f memory, while ordinary DOS

programs are still limited to 64 Mbytes DOS extender programs allow multi

megabyte programs to be written on DOS, but do not have the virtual memory system

incorporated into Windows Many Windows programs have what is known as MDIs

or M ultiple Document Interfaces This means that a program can open documents (

1 e access data) without have to discard or close any documents that may already be

open This feature is especially useful for a program that may have to access several

drawings in order to calculate the required information Windows thus has the

advantage o f a superior memory management system, ease o f use and tremendous

popularity The implementation choice is thus a Windows program to be written

using the M icrosoft Visual C++ package This package contains a library o f classes

which greatly eases the development o f Windows based applications

43

One o f the most fundamental features o f the software is the accessing o f drawings

stored in digital format Existing CAD programs such as AutoCAD, Sketch, Insite

etc all allow a user to save information in a standardised format that enables drawings

created on such packages to be accessible in other packages Such files are known as

Drawing Interchange Files or DXF files If the software to be developed is capable o f

reading these DXF files, communication with dedicated architectural databases, such

as Insite is possible

Each drawing may consist o f any combination o f lines, circles, arcs and solids on one

or more o f the layers Any program capable o f translating a DXF file into an actual

drawing must be able to understand the DXF protocols and translate them to actual,

‘on screen’ images Each DXF file includes information about the dimensions used

on the drawings, zoom and scroll information, text styles, line types, layer names and

so on

Drawings made with CAD packages have the ability to split up the drawing into

different layers This can be a very useful attribute It not only allows different

features to be separated, such as elevators and stairs, but also allows a limited amount

o f three dimensional information to be stored For example, a layer may be reserved

for information about head-height obstacles and other potential hazards

Different details associated with different layers

Layer 1
Layer 2
Layer 3

4 3. The Drawing Interchange File

Figure 4.1

44

4.4. Object Orientated Design
M uch o f the following chapter deals with terms such as objects, classes, instances,

virtual functions etc A short introduction to OOD is given here [18]

The underlying principle to an object orientated design is that it consists o f a series o f

inter-related objects, each object being modelled on a real world entity For example,

if we wish to write a program to regulate the rental o f say, bicycles, we could create a

software object representing a bicycle Each bicycle will thus have a software

representative

Figure 4.2

W hen implementing this in code, we would create a software class called Bicycle8

W ithin this class we could store such parameters as, date o f purchase, rental status,

date o f last check-up and so on We can classify this information as either public or

private Private data refers to data that can only be accessed from within the class or

through interface functions Public data can readily be accessed For instance, we

could make the rental status public, which means that we can easily set or check its

status The date o f purchase data on the other hand, will only need to be set once and

will never need to be changed We could therefore make this data private and add a

function to the Bicycle class which returns the date o f purchase

8 Frequent references to objects and classes will be made throughout most of this chapter A capital

letter will be used when referring to specific object or classes such as the Bicycle class

45

I f we wish to distinguish between say ordinary bicycles and mountain bikes, we do

not need to write a completely new class for the mountain bicycle Instead, we can

use a feature called inheritance A new class called, say, MountamBike can be

created that inherits all the features o f the Bicycle class and can have features o f its

own, for instance it may contain information about its tyre size

Suppose we wish to add functions to calculate the cost o f rental The cost is based on

the amount o f hours the bicycle has been rented for I f the mountain bikes are more

expensive to rent, we could add separate functions to calculate cost to both the

Bicycle and M ountamBike classes, however, since the MountamBike class is based

on the Bicycle class, this would not be very efficient A better solution is to use what

is known as polymorphism, or put simply, to over-ride an inherited function with a

new one Thus, if we put a function called say, R etum B ike() in the Bicycle class, we

can override this function in the MountamBike class to calculate the appropriate value

for mountain bikes (see example code below)

There is another feature that makes Object Orientated Programming very powerful It

is called the virtual function To continue with the example o f the bicycle shop, let us

suppose that the mountain bikes are only a recent addition to the rental shop and that a

considerable amount o f code has been written using the Bicycle class That same

code must now be made compatible with the MountamBike class I f we define the

ReturnBike() function in the Bicycle class as virtual however, we may not have to

rewrite any code The following example is intended to illustrate how the virtual

function works

Class Bicycle
{
private

BOOL rented,
mt time,

// True if the bicycle been rented out

public
Bicycle(),
~Bicycle(),
void Rent(int),
virtual mt RetumBike(int),

// Call this to construct a Bicycle object
// Call this to destroy a Bicycle object
// Rent bike
// Calculate rental

46

Class M ountamBike public Bicycle // MountamBike inherits all o f class Bicycle’s
// data and functions

{
private

mt tyre_size, // can add extra data to derived classes
public

int ReturnBike(int), // M ountainBikes version o f ReturnBike

}.

//
// This section implements the functions declared above
Bicycle B icycle()
{
rented = FALSE,
hours = 0, // Every new Bicycle has 0 hours usage initially
}

void Bicycle Rent(int start_time)
{
rented = TRUE,
time = start_time,
}

mt Bicycle RetumBike(int retum_time)
{
rented = FALSE,
return((time - retum _time) * 5), // 5 pounds an hour
}

M ountamBike M ountainB ike() B icycle() // When we create a M ountamBike we
// also call the Bicycle

constructor, since // MountamBike is based
on Bicycle
{
}

int M outainBike RetumBike(int return_time)
{
rented = FALSE,
return((time - retum_time) * 7), // 7 pounds an hour for mountain bikes
}

47

///
// SomeFunction() is intended as an arbitrary function that uses a Bicycle pointer

void SomeFunction(Bicycle *pBike) / /A function that takes a Bicycle pointer as a
// parameter

{

mt cost = pBike->ReturnBike(retum_time), // Call to the ReturnBike() function

}

///
//
//The M am program

void Main(v o id)
{
Bicycle B ikel,
M ountainBike Mbike,

SomeFunction(& Bikel),

SomeFunction(& M bike),

function
version

version o f

}

Having introduced some o f the mam concepts o f OOD, we can now consider the

implementation o f the control software using these methods

4.5 The OOD for the control software
It is the software’s job to provide information to a user The content o f this

information will be based on actual, existing objects For example, information about

a users current whereabouts or information o f how to get from one point to another

cannot be calculated without prior knowledge o f the layout o f an area The method by

// Create a Bicycle object
// Create a MountainBike object,

// Pass a pointer to B ikel as a parameter
// to SomeFucntion

// Note that a pointer to a MountainBike is being passed
// to the function This is allowed since M ountainBike

// is based on Bicycle Because the ReturnBike
// was declared as virtual, the MountainBike
// will still be called withm SomeFunction
// There is therefore no need to create another

// Som eFunction() for MountainBikes

48

which the software must interface with real world objects is through architectural

drawings

Figure 4.3

4.5.1. The Drawings

A method must be chosen whereby the drawing retrieved from the architectural

database can be stored m memory Each drawing will have a different number o f

drawing objects such as lines or circles associated with it and can have a unique

number o f layers and so on This brings the question o f memory management to

mind It is not good enough to set aside say ten layers for each drawing with a fixed

number o f lines on each layer Dynamic memory allocation is required Consider the

diagram below

Figure 4.4

The above diagram is known as an entity relationship diagram There are two types o f

arrow used in such diagrams, the single tailed arrow and the double tailed arrow A

single tailed arrow implies that only one o f the entities being pointed at is contained

within the entity from which the arrow originates A double tailed arrow means that

one or more o f the entities being pointed at may be stored

49

The Layerlist entity or object shown above can store any number o f Layer objects

using linked list techniques The Layer object contains information such as the layer

name, the default colour o f any drawing objects associated with it and whether the

layer is active The Layer object also contains one Linelist, one Solidlist, one Arclist

and one Circlelist Each o f these list can contain any number o f elements The list

objects are thus responsible for allocating and de-allocatmg memory as objects are

added or deleted Each Line object contains information about the start and end co­

ordinates o f the line and can contain other information such as colour etc The Circle

objects store a centre point and a radius and so on Other features such as text can

also be added

When the above diagram is implemented in code, it can be used to store a complete

drawing Firstly a Layerlist object is created An appropriate amount o f Layers can

then be added to this object Individual Line and Arc objects etc can be added to

each o f these layers Every object stored in the lists can called on to draw itself This

gives full control over which layers to display and which features on that layer to

display

It is important not to confuse the above diagram with a diagram showing which

classes inherit properties from another The hierarchical relationship between the

drawing objects is shown below

Figure 4.5

The base class, Point, contains functions common to all the objects, including zoom

tools It also contains a single x,y co-ordinate The Circle class thus inherits the x,y

co-ordinate from Point and also has radius information The Arc class inherits all this

plus it contains start and stop angles The Line class has the Point class’s x and y, and

50

also has an x,y o f its own It would be possible to substitute this x,y for another Point

There is however little sense in doing this, since this second point would only be

required to store a simple x and y co-ordinate and does not need to have access to the

functions stored m Point as these functions are already inherited The Solid class

contains a Line and has another two sets o f x,y co-ordinates, which can be used to

draw a four sided figure

4.5.2. The Real W orld Objects

The next design problem that needs to be tackled is the question o f how to teach the

computer to interpret architectural drawings A drawing is in essence merely a

collection o f lines and text The problem is further complicated by the fact that no

single drawing can show all the necessary information for navigating around a

complex o f buildings For example it is not possible to show the details o f all the

floors m a building on just one drawing The computer must therefore also have an

understanding o f the relationships between drawings To overcome this problem, a

solution was developed in which a set o f drawings representing a complex o f

buildings is reduced into a single model A simplified entity relationship diagram is

show below

Complex >-----► Building >— ► Floor »— ► Room ► Door

Figure 4.6

This diagram is intended as an overview o f the relationships between the entities in

the model The overall model is considerably more complex Each entity will be

explained in turn in the following sections

4.5.3. The Complex Class

This class is representative o f an actual complex o f buildings Like its real world

counterpart, it contains a set o f buildings Its purpose is to keep track o f the

relationships between these buildings in terms o f position and orientation The

51

Complex class can thus be used to co-ordinate the route finding algorithms that

calculate paths between buildings

Figure 4.6

The diagram above shows the Complex class and its dependencies It inherits the

function necessary for storing a list o f buildings from a class called BuildingList A

Plan object (see Section 4 4 4) is part o f the Complex class’s data The Plan is

essentially an overall plan drawing o f the actual complex o f buildings from which the

individual buildings in the BuildingList can be identified and located It should be

noted that all the objects contained within the model can be accessed either directly or

indirectly through the Complex class Individual buildings may be accessed directly

which in turn gives access to any objects contained within these buildings

The Complex class can save any information stored in it in file format The files used

have the extension CMP The CMP format is given in Appendix A

4.5.4. The Building Class

Each instance o f the Building Class represents an actual building in the real world

Each building thus has a unique name (and/or identification code) and may contain

any number o f floors, stairs, rooms and so on

The mam components o f the Building class are thus a list o f the Floors it contains,

plus a record o f the Stairs and Lifts that connect these Floors The FloorList class acts

as a base class from which the Building class inherits the ability to add, delete and sort

any number o f Floors The Floor class is dealt with in more detail m Section 4 5 5

The Stair and Lift objects contained in the Building class require a little more

explanation A building can have any number o f staircases and lifts Each o f these

52

can be connected to one or all o f the floors in a building Both the Stair and Lift

classes are based on the RoomCapsule class This class keeps a record o f which

floors the staircase leads to and also the name o f the Room or stairwell that contains

the stairs on each o f these floors The reason why the relevant Rooms (or pointers to

them) cannot be stored directly m the Stair class but use the RoomCapsule class

instead is that each Room object is already contained within a linked list (called

RoomList, see Section 4 4 3) It cannot therefore be inserted in another linked list

directly The use o f the RoomCapsule class overcomes this problem The Building

class can thus contain any number o f Stair and Lift objects, each o f which can in turn

contain any number o f connecting Floors and Rooms

Figure 4.8

4.5.5. The Floor Class

One o f the most fundamental classes is the Floor class This class is responsible for

directly loading and saving the architectural drawings It contains the identification

algorithm tools (see Section 4 6) as well as the routing tools It is through this class

and its derivative, the Plan class, that most o f the required navigational information is

calculated The diagram below shows the Floor class and the objects contained withm

it

53

Figure 4.9

The class contains information about

• Layer assignments (1 e which drawing layers contain the walls, doors etc)

• Colours, such as fill colours, wall colour and so on ^

• Drawing limits and scaling factors This data along with colour and layer

inform ation is required by the identification algorithm

• Names, such as room, stair and lift labels as well as the overall floor name

• All the rooms on the floor

And contains tools to

• Load files in DXF format

• Load and save files in FLR format (see Appendix B)

• Load and save the TRE file containing the RoomList contents

• Find and identify given locations (Section 4 8)

• Call the route finding algorithms (Section 4 9)

• Automatically identify objects in a given drawing and build up the resulting

RoomList

4.5.6. The Plan Class

The Plan class is derived directly from the Floor class It is used to store a plan

drawing o f the overall complex o f buildings Whereas the Floor class is used to

calculate navigational information for inside buildings, the Plan class is used for

outside o f buildings The route-finding algorithms in the Floor class are defined as

virtual functions The Plan class overrides these to calculate outside paths and routes

54

The same sections o f code responsible for calling the Floor route finding tools can call

the Plan route finding tools

4.5.7. The Room and Door classes

These classes are used to build up a tree or list whose elements are connected in

exactly the same way as the rooms and doors on a given floor The entity relationship

diagram for these classes is show below The RoomList is contained within a Floor

object (Section 4 5 5)

Roomlist >— > Room Doorlist >— > Door Room

Figure 4.10

A fully interconnected tree can have many connections To illustrate how these

connections are made, consider the diagram o f a very simple floor drawing given

below

Room 1 V. Room 3
r\

Room 2

Figure 4.11

The RoomList for the above floor would look like

Figure 4.12

55

The first door m R oom l thus leads to Room2, the second door to Room3 and so on

At this stage, it is possible to see the advantages o f constructing such a model Once

the model is made, it is no longer necessary to consult the drawing for information

about the location or identification o f objects It is also possible to determine the

relationships between objects from the model

The Room class contains an x,y position and a name and number It can be ‘locked’

to route finding algorithms by setting the Locked flag The complete software

package contains an editor that allows the Room information to be edited, for example

a Room may be locked or unlocked, or Doors may be removed or added at will

Every Room object also contains a list o f Aliases, or names that the Room may also

be known as The reason for this is explained m the section on the identification

algorithms (see Section 4 8)

Figure 4.13

The Door class contains information about its position and has x,y co-ordinates for

both inside and outside the actual door A Door object can also be locked The

difference between locking a Door and locking a Room, is that a locked Room cannot

be accessed by any door, while a room containing a locked door may still be accessed

through another door

56

Figure 4.14 shows the class structure o f the complete design. It gives an overview o f

how each class is related to the others.

4.5.8. The Complete Model

Complex

Plan BuildingList

1r
Bui ding — ► Building — ► Building

i r y y r y
Line Solid Arc Circle

f 1 f 1 ' i r

Line
~ T

Solid

RoomC RoomC
y r y

RoomC RoomC

Arc

TextList

Text

Text
T ~

Figure 4.14

4.6. Overall Structure

Floor

This section describes the basic structure o f the program. Windows programming is

not as straightforward as DOS programming. The program must comply with

Windows protocols, such as calls to update the displayed information. The MS Visual

C++ package provides a basic structure for a Windows application and takes care o f

basic window functions and message passing. This structure, or skeleton application,

57

is based on the Microsoft Foundation Classes (MFC) [18] When starting a new

application, the user is provided with an Application file, a Frame W indow file, a

Document file a View file, as well as resource and project files A brief introduction

to the purposes o f each o f these files follows

4.6.1. The Application File

This file contains a class derived from the MFC CWinApp class Each application

can have only one CWmApp derived class This class is used to initialise and run an

application It responsible for such tasks as setting background colours, registering

the different types o f Documents available (see 4 6 3), as well as creating and

displaying initial Frame windows

4.6.2. The Frame W indow File

The frame window ‘fram es’ a view It can also contains tool and status bars It is the

mam application window Client windows are contained within the frame window

4.6.3. The Document and View classes

The Windows document is the part o f a program responsible for the programs mam

data storage Each document can have one or more views associated with it, each

view showing some or all o f the documents data

Figure 4.15

Each W indows application can have a number o f different document types, each

designed for a specific purpose The different documents with their associated views

can have their own menus, giving the user the opportunity to call the functions and

58

menus appropriate to the document Three document types will be used in this

application, the DXF, Floor and Complex documents

4.6.4. The DXF and Floor documents

These two documents have similar functions The DXF docum ent’s primary purpose

is to store and maintain data from DXF files, while the Floor document deals with

FLR files The menus associated with both documents are the same The only

difference between the two documents is that the DXF document will not allow the

file to be saved in DXF format, but only in FLR form The DXF document will thus

mainly be used to take in drawings from a database, where the user can edit them as

appropriate and then save them in FLR form The Floor document is thus used with

files prepared by the DXF document Both document types’ primary storage is a

Floor object The DXF document is defined by the CDXFDoc class and the Floor

document by the CFloorDoc class

The mam functions associated with these documents are

• create, edit or delete drawing objects or layers

• format the drawing colours and layers

• set user options for building the RoomList tree

• build and edit the tree* (Section 4 9)

• display the tree

• identify the object under the mouse* (Section 4 9 1)

• locate a user specified object* (Section 4 8)

• calculate the routes between two mouse specified points* (Section 4 10)

• calculate the routes between two rooms* (Section 4 10)

The functions with an asterix are functions are member function o f the Floor class

4 7. The Complex Document (CComplexDoc)
The complex document stores a Complex object All the data needed to describe a

complex o f buildings can thus be stored m this document When first loaded, a

complex document will display the Plan object associated with the docum ent’s

Complex object The document contains most o f the functionality o f the DXF and

floor documents with the notable exception o f the edit features Upon creation, the

complex editor is automatically displayed This editor allows a Complex object to be

59

created A plan drawing, buildings and their associated floors can be attached to the

Complex Special tools in the editor allow buildings to be located on the plan

drawing and stored in memory List o f stairs and lifts connecting the floors in a

building may automatically be compiled after the creation o f the Complex Another

function o f the complex document is to map the entry and exit points o f a building

onto the plan drawing (see Chapter 5 for user instructions)

The complex document can be used to display any floor within the complex and may

also be used to calculate routes from any point withm the complex to another Section

4 10 will deal with the specifics o f the routing algorithm For now, it is enough to

know that a routing algorithm is associated with each Floor object The return value

for calling these functions is a list o f lines representing the route from any point on

that floor to another It is thus the job o f the complex document to calculate which

floors (and/or plan) need to be accessed for a particular route, switching to or creating

the views for these floors, collecting (and scaling) all the returned path values,

deciding which paths need to be displayed on which floors and finally calling on all

the floors involved to display these paths

W hen a user tells the program that he or she wants the route between, say, a room on

the first floor o f one building to a room on the ground floor o f another building, the

following steps are necessary to calculate this route

• locate the origin and destination buildings and floors

• Since two separate buildings are involved, the route is split up into three parts,

• from the origin to the outside

• from outside building one to outside building two

• from outside building two to the destination

• In order to access the outside from the origin, the ground floor needs to be

accessed The route for the origin building is therefore further divided down into

the following parts,

• from the origin to all the stairs and lifts leading to the ground floor,

• from all the stairs and lifts on the ground floor that have access to the first floor

to all the exits on the ground floor

60

• All open views must now be checked to see if any o f the required floors are already

being displayed If any o f the required floor views are found, they are instructed as

to what path needs to be calculated

• Any floors not already being displayed must have views created for them must be

informed o f the required path calculations

• The plan view must calculate the routes between the two buildings

• Once all the route calculations are complete, all the route data is collected from the

appropriate views The data collected from each view is scaled using the view ’s

drawing scale Individual routes may now be compared regardless o f which view

created them

• The overall routes are constructed and the one best fitting the user output type

specifications is selected

• Each view is now informed which o f their calculated routes they must display

4.8. Identifying and Locating objects on a drawing
This is one o f the simplest yet most essential functions o f the program If the program

cannot correctly identify or locate a feature or area it cannot provide the user with

information about it, similarly it cannot calculate a route from A to B if these points

cannot be found

The identification o f areas such as rooms is based purely on the text provided with the

text layer o f the drawing Every drawing should contain textual information about the

areas shown, split into four categories as show below,

C ategory N um ber C ategory

1 number

2 description

3 Assigned department

4 Area

Figure 4.16

61

Category 2 would consist o f a description o f the function o f the area or room, for

example OFF-AD could mean that that particular room is an OFFice used for

Administration This type o f textual description is very common, however allowances

have been made for different nomenclature systems Rooms can have similar

functions and belong to the same departments, however each room must have a

unique number The accepted standard for numbering is that each room is assigned a

number that starts with the number o f the floor they are on The ground floor rooms

are prefixed by the letter ‘g ’ This floor number or letter is stored m a Floor class data

member called roomlabel

The function Find is a member function o f the Floor class Its declaration is as

follows

coords Floor Find(resize, char*, CDC*, m t),

‘coord’ is a simple data structure that contains an x and a y co-ordinate The textual

description o f the object to find is pointed at by the char* If the object is found, it is

highlighted on the screen with the colour specified by the mt and its co-ordinates are

returned The resize parameter is a structure containing information about the current

zoom status o f the drawing This information is necessary since co-ordinates o f

objects change (relative to the screen) for different magnification factors The CDC*

param eter is a DeviceContext class, necessary for all graphical functions

The implementation o f the algorithm is straightforward All the available text is

simply scanned for the given description If a match is found, the next task to be

undertaken is to ascertain if the text is written directly in the area it describes or if it

has an associated arrow or line pointing to the area in question Any such arrows

should be contained on the textlayer o f the drawing The immediate vicinity o f the

text m question is scanned to see if any lines originate there I f a line is found, it is

followed and the co-ordinates are deemed to be at the end o f this line If no lines are

found, the co-ordinates are simply given as the co-ordmates o f the text

All items matching the description are highlighted Only the co-ordinates o f the last

match are returned The function is also able to take wild cards, for example

id_items("OFF*") would identify all the rooms used as offices on the screen (by

highlighting them)

The Identify function is also a member o f the Floor class Its declaration is

62

CStrmg Floor Identify(int, int, CClientDC*, resize),

The function returns a textual description o f the area under the xy co-ordinates given

by the two integer parameters The algorithm used is simply the reverse o f the Find

tool Firstly, the area is highlighted in the current fillcolour The screen colour given

by the co-ordinates o f each text group is subsequently checked Those text groups

that point at or are in an area filled by the highlighted colour must describe that area

Both o f the above functions were thoroughly tested on a variety o f drawings The

results were satisfactory One error occurred where an arrow did not terminate m the

area it described but merely pointed at it This situation can only be rectified by

editing the drawing to extend the arrow to terminate in the correct area Two errors

occurred when arrows did not originate close enough to its associated text This led to

experimentation with the area around a text group that can be termed as ‘immediate

vicinity’ I f this range is extended too far, arrows originating in nearby text groups

may be mistaken as originating from the current text group The original choice (12

pixels with zoom factor 1) was found to be the best When creating or editing the

drawings, care must thus be taken to position any arrows withm a reasonable distance

to the text and to terminate the arrows in the area in question It must be pointed out

that the error rate was very low given that the over all number o f tests conducted was

over 250

4.9 Automatic Construction of a RoomList
For even a medium is sized building, the amount o f rooms m a building can be quite

large The full RoomList can be thus be very complex The Floor class contains a

tool that automatically builds up its associated RoomList Its prototype is given by

void Floor IdRooms(resize, CDC*, BOOL, BOOL),

The two Boolean variables are option parameters, the first tells the algorithm whether

to automatically lock double doors (see Section 4 9 6) and the second indicates

whether the aliasing function should be activated or not (see Section 4 9 4)

63

In Section 4 8 we saw how each room m a building is has a textual description

associated with it The IdRooms algorithm starts by calling up each text group in

turn If the text describes a room (as determined by the roomlabel, user definable

include and ignore strings and a check to see if the co-ordinates o f the text lies within

the walls o f the building), a Room object is constructed for it This object is

constructed with the room number, description and x,y co-ordinates as a parameter

Each Room contains a DoorList Constructing this is the next step undertaken

Firstly, the Find() function is called with the Room co-ordinates as parameters This

highlights the room in question with the current fill colour Next the ID Doors

function is called The principle behind this function is that doors are represented on

drawings by arcs By checking which arcs are affected by the fillcolour, the doors

associated with a room can be identified It is not enough to simple know whether a

door is associated with a particular room however, since each Door object also stores

the positions o f the co-ordinates o f the msides and outsides o f the doors In order to

find these co-ordinates, the call to IdRooms() is made immediately after instructing

the View class to draw the floor with the doors closed, as shown in the figure below

4.9.1. The IdRooms algorithm

Room A

1

F igure 4.17

This allows the ID _D oors() function to determine the inside and outside co-ordinates

o f the door by taking test points at the three positions shown In this example, test

points 2 and 3 are shaded, which tells us that the vertical arm o f the arc represents the

open door and the horizontal arm the closed door The remaining test point must

64

therefore be on the outside o f the door In this manner the complete DoorList can be

constructed The algorithm then continues adding Room objects to the RoomList

Once this task is completed, we have a complete list o f available rooms and doors,

however, we still do not know where each door from a given room leads

Consider the example above, we have two Rooms, A and B Say each o f these Rooms

has one Door object associated with it The only difference between these objects is

the inside, outside set o f co-ordinates (and perhaps the Lock status) Both Door

objects are based on the same arc The algorithm thus scans the RoomList and

compares all the Door objects in each Room to the others W hen two Door objects

are found to share the same arc, they are each assigned pointers to the Rooms to

which they lead (1 e in the example, a pointer to Room B would be added to the Door

in Room A and vice versa)

An im portant aspect has not been considered m the above explanation however, that is

doors that lead to the outside o f the building In fact, the entire outside has been

ignored

4.9.2. T he O utside

Each Room object in the RoomList represents a dimensioned space on a drawing

There is no reason why this concept cannot be extended to let a Room object represent

the outside The outside has access to rooms inside in a similar way to which a room

inside has access to other rooms in the building, 1 e through a series o f doors A

Room object called Outside can therefore be created with a DoorList containing all

the doors which have access to the inside o f the building It is not quite as easy to

assign specific co-ordinates to the outside In fact, the co-ordmates are set at (-1,-1)

for the outside Room since the actual co-ordinates are never explicitly required Each

ground floor is assigned a single Room representing the outside which is linked into

the RoomList in exactly the same manner as all other Room objects

65

After all the Room objects have been linked together, a verification check o f all the

Doors are made If any Doors do not contain Room pointers, 1 e if they do not lead

anywhere, an error o f some sort has occurred Consider the example given below

(taken from an actual drawing)

4.9.3 The Sealed Room

N > c Z

Figure 4.18

The section shown above shows a typical ladies toilet m a public building Only one

room is identified, yet this room leads to four other rooms A Room object

representing room 222 will thus be added to the Floors RoomList This object will

have five doors, but only four will contain pointers to other rooms It is unreasonable

to expect each toilet cubicle to be individually named, labelled and added to the

RoomList Instead, a Room object labelled as Sealed is created This object is the

default Room to which all unconnected Doors are pointed to The Room is labelled as

Sealed because it is locked In other words, it cannot be used as a throughway when

calculating a route from A to B No fixed co-ordinates are provided as the sealed

Room is never accessed directly A user cannot ask to be directed to a location

accessible only through a Door object pointing to the sealed Room since these

locations are not uniquely identified Other examples o f where Door objects with

sealed Room pointers would occur are walk-in wardrobes and unlabeled storage

rooms

66

Aliasing occurs when a room is not uniquely identified but can be associated with

several names The drawing below is taken from an actual floor drawing

4.9.4. Aliasing

GOOSA

SW

PP

It can be seen that both GOOSA and GOOLA are connected without any doors This

situation can also occur in large rooms such as laboratories where different sections

may be individually labelled The problem that arises due to this is that the IdRooms

algorithm as it stands would create two separate, yet completely identical Room

objects (except for name) for both areas This leads to many complications The most

significant problem would occur with the route finding algorithms, which would

attempt to create routes through both o f these Rooms despite the fact that they are the

same Further complications occur with Door objects leading to the area The Door

class only contains one Room pointer, not two

If we refer back to Section 554 5 7, we can see that the Room class contains a list o f

objects called Aliases The Alias class is the solution to the problem outlined above

I f the aliasing option is selected, the IdR oom s() algorithm will not create two separate

Rooms for areas not uniquely named, but will create one Room with an Alias list

After each Room object created by the algorithm, the Fm dA hases() function is called

This function is similar to the Identify() function m operation and scans all text

groups for text positioned in the highlighted area Checking for potential aliases is

computationally intensive, the more rooms associated with a floor, the longer the full

IdR oom s() algorithm will require to run For this reason, the user may specify not to

check for aliases

67

V.

Virtual doors are used to give access to an area that does not have access in the normal

way As before, a description o f the problem to be discussed can best be accompanied

by a drawing

4.9.5. Virtual Doors

100SA

SW

PP

100CA

CORR

PP

Figure 4.20

The drawing shows a corridor (100CA) connected to a stairwell (100SA) No doors

have been specified but a line has been drawn over the mouth o f the stairwell The

IdR oom s() algorithm will not be able to associate the stairwell with the corridor in

this case The virtual door is used to overcome this problem A virtual Door is a user

created Door object that does not have a real world representative It does not appear

on the drawing and is used only by the model to identify which rooms are connected

to each other

4.9.6. Locking double doors

M any public areas have access through one or more sets o f double or swinging doors

Such a set o f doors will be treated as two separate doors in the model, each leading to

the same area This is not a problem in itself, but causes the route finding algorithms

to calculate separate routes for the individual doors where one route may be sufficient

An option exists in the IdR oom s() function that recognises when double doors occur

and automatically locks one o f these doors Doing this prevents the route finding

algorithms from using one o f the doors m a set o f double doors and can speed up the

overall routing process considerably

68

4.10 The Route Finding Functions
Route finding is by far the m ost complex task required In order to produce a step by

step route from a room in a building to another room in a different building a huge

amount o f calculations are required It must be kept m mind that m order to calculate

say, the shortest route, all the other routes need to be calculated for comparison Due

to the complexity o f the problem, the route finding tools have many private helper

functions Both the Floor and Plan classes contain route finding tools The tools in

the Floor class are primarily for calculating routes between the rooms o f a particular

floor, while the tools in the Plan class deal with routes between buildings See

Section 4 5 for details about the route finding management functions The prototypes

defined in the Floor class are as follows (see Appendix D for listings)

virtual RouteList get_path_from (char *, char *),

virtual DataList Move_Along(Routehst*,Lmelistlist*,resize,float,BOOL, CClientDC*),

The first function calculates a RouteList (see Section 4 10 1) from the origin (as

given by the first char *) to the destination (given by the second char *) The second

function can take the returned RouteList and use it to calculate paths o f higher

accuracy than described by the RouteList Both o f these functions are overridden in

the Plan class

4.10.1. The RouteList

The RouteList is used exclusively to store a list or tree o f Door and Room objects

which can be used to travel from one point to another on a given floor Such a list can

consist o f no more than say, an origin Room, a Door and a destination Room In most

cases however, the routes are not quite as simple The elements contained within the

RouteList are o f the Route class Each Route contains a pointer to a Door and a

Room as well as containing a RouteList o f its own, resulting m the structure shown in

Figure 4 21 below

69

F igure 4.21

Each RouteList can thus contain any number o f Route elements and each Route

element in turn can contain any number o f Route elements through its own RouteList.

It is thus possible to construct a multi-branched tree using the Route and RouteList

classes. Each branch o f the tree can split up into any number o f other branches which

can split up in turn as shown in the diagram below.

At the top o f the tree is the destination, while branch extremities represent the origin.

The branches connecting the origin and destination represent all the possible routes

that can be taken when travelling from one to another.

4.10.2. C onstruc ting the R outeL ist (F loor class only)

A RouteList from one point to another is constructed by calling the

get_path_from(char *origin, char *destination) tool. The first task undertaken by this

function is the identification o f the areas described by the origin and destination

strings, which are passed in as parameters. This is done simply by scanning the

RoomList until Room objects with names or numbers matching the origin and

destination strings are found. The challenge now is to find all the Room and Door

objects that will lead us from the origin Room to the destination Room. The basic

principle behind the algorithm is to check all the doors in a room to see if they lead to

the destination. All the Door and Room elements that are found to lead to the

destination are added to the RouteList. Every unlocked door that does not lead to the

70

destination is ‘entered’ and the algorithm called recursively This process is repeated

until all possibilities are explored

Destination
door 1
door 2

Room 4
door 3

door 1

Room 3
door 2

door 1
door 2

door1 R oom 2
door 2

Start door 1

Figure 4.23

Consider the above simplified drawing o f a building In order to travel from the start

room to the destination room, the get_path_from("start","destination") function would

operate as follows,

Step 1

The start and destination rooms are identified from the RoomList,

Step 2

Each Room object contains a special flag, called the ‘checked’ flag This flag is set in

the origin and destination Rooms This is done to prevent the search algorithm from

searching rooms that have already been explored

Step 3

Doors 1 and 2 in room Start are checked to see if they lead to the destination room

Step 4

Since neither door leads to the destination, get_path_from("Room2","destination") is

called Both o f Room 2's doors are checked for the destination The room leading

from door 2 is

entered since the checked flag in the room leading from the first door is set to 1

71

The Room 2 checked flag is set to 1 and build_path("Room 3",Mdestination") is called

which after the appropriate checks sets the checked flag m Room 3 to 1 and calls

build_path("Room 4",'"destination")

Step 6

Door 2 in Room 4 leads to the destination The destination room and door 2 are

added to the RouteList Door 3 is subsequently checked to see if that leads to an

unexplored room or also to the destination The checked flag in this room is now set to

2, indicating that this room leads either directly or indirectly to the destination A

pointer to the current RouteList element is also stored in the room The reason for this

is that if the room is again entered, the algorithm will be able to jo in the RouteList at

this point w ithout having to actually search for the destination again

Step 7

Control is handed back to the build_path("Room 3 "/'destination") call Since the

search has been successful, Room 3 and door 2 are added to the RouteList The

checked flag is set to 2 and the current RouteList element pointer is set for Room 3 as

was done for Room 4

Step 8

Room 2 is re-entered where the checked flag and current RouteList element pointer

are set as for Rooms 3 and 4 The RouteList is updated and control is returned to

build_path(" Start"," destination")

Step 9

The RouteList is updated to contain door 1

Step 10

The second door o f the Start room is checked to see if it is unexplored The checked

flag is seen to be 2, which implies that this room leads to the destination The second

door is therefore also added to the RouteList at the point pointed to by the RouteList

element pointer contained in the room leading from door 2

Step 11

The start room is added to the RouteList and the completed list is returned

Step 5

72

Figure 4.24

The above diagram shows the routes established. The point at which the two routes

jo in up is shown in Room 4.

It must be pointed out that to get from the inside o f a building to the outside or vice

versa, a RouteList can be build up in exactly the same way. Remember that the

outside is simply looked at as another Room object and can be dealt with in exactly

the same way. The finished RouteList can provide us with basic instructions when

attempting to get from A to B. The algorithm takes a negligible amount o f time to

produce results even for large RoomList and is thus highly efficient. For more

detailed navigational information however, the M ove_Along() function described in

Section 4.10.3 below must be used.

4.10.3. Calculating step by step navigational information

Calculating step by step navigational information is very difficult. Consider what is

required. Given any two points in a complex o f buildings, calculate all the possible

routes between these two points, avoiding all obstacles in the way. Looking at the

overall task, it would seem close to impossible. However, we have already made

considerable progress in reducing the overall problem to a series o f smaller problems.

Instead o f attempting to calculate the overall routes, we can calculate all the routes

inside separately to the outside routes. Inside the building we can calculate the routes

73

on each floor separately, again simplifying the problem By using the

get_path_from() function we can quickly build up an overall picture o f potential

routes It is a logical progression to calculate the step by step information on the

smallest possible scale available to us, that is, instead o f graphically calculating step

by step information for the overall A to B route, we can simply calculate step by step

information for each Room in the RouteList and jo in all the results together

It is the task o f the M ove_Along() function to extract useful information from the

RouteList and to call the appropriate functions for calculating the step by step routes

The prototype for M ove_A long() is as follows

DataList M ove_Along(RouteList *, Lm elisthst *, resize, float, mt, CClientDC *dc)

The return value is a DataList A DataList is used to extract useful information from

the RouteList The DataList can be used to construct a simple room to room route

that has no obstacle avoidance information The Lm elisthst is a list o f Linelists and

contains a full list o f step by step paths They are calculated with a user defined offset

(given by the float parameter) and using either Algorithm A or B (given by the mt

parameter) These will be explained in Section 4 10 3 2 and 4 10 3 2 1 Let us first

take a closer look to see how the DataList is constructed

4.10.3.1. The DataList

This M akeDataList() function called by Move_Along() takes in the RouteList

created previously The RouteList is processed in order to discard unnecessary

information All the rooms (with the exception o f the start and destination rooms) are

not needed for plotting the actual routes withm each o f the rooms, it is the position o f

the relevant doors within these rooms that is required A DataList is thus constructed

with each element in the list representing the entry and exit door for each room in the

RouteList I f all the elements in this list were drawn, a rudimentary path from A to B

would be produced, however no regard would be given to any potential obstacles in

any o f the rooms For the above example, the DataList would look like the figure

given below In this simple case, the DataList would return the same paths as the

Lm elisthst Note that each node has an assigned number These node numbers are

74

also stored in the DataList Each line segment can be uniquely described by the node

it originates from and the node it leads to

Destination

1

2

3 5

" -1

Origin ~

4

Figure 4.25

The construction o f the DataList is not overly complex The algorithm starts by

taking the first element in the RouteList I f the RouteList in this contains elements, it

calls itself until a Route element is found with no elements in its RouteList At this

stage, it starts adding elements to the DataList I f a Room is passed through (1 e all

the rooms with the exception o f the start and end rooms), the co-ordinates o f the

entrance Doors are stored along with the co-ordinates o f the exit Doors in Data

members The actual co-ordinates o f the Room are o f no concern Node numbers are

assigned as the list is being constructed

Figure 4.26

In the diagram above we can see a DataList with 4 nodes crossing a room from door

to door The arrows at the door indicate the direction to the outside o f the room This

information is also stored in the DataList It is used by Algorithm A to calculate the

75

best direction o f travel. The finished DataList may be returned if that is all that is

required or it may be used by Algorithms A or B to construct an even more detailed

output. Each element in the DataList is taken in turn and the appropriate call is made,

depending on whether Algorithm A or B is to be used.

4.10.3.2. The Search A lgorithm s

Several different types o f algorithm were experimented with. Two were eventually

selected for implementation in the program. A brief description o f the algorithms

used is given below.

4.10.3.2.1. Algorithm 1

This algorithm is in essence a trial and error technique. It attempts to travel in a

straight line from its origin to its destination. When an obstacle is encountered, the

algorithm must make a decision on which direction to take in order to negotiate the

obstacle. This decision is based on the direction o f the destination with respect to the

current position. Consider the simple room scenario depicted below.

F igure 5.27

Suppose the algorithm is required to travel from Door 1 to Door 2. The diagonal

straight line represents the most direct route possible. The algorithm will attempt to

travel along this line until it hits the obstacle. At this point, it must make a decision as

to how to negotiate the obstacle. The destination, Door 2, is below and to the right.

Based on this, a path around the obstacle is looked for to the right o f the point where

the direct path hits the obstacle. At the point labelled Comer 1, the obstacle

76

disappears. The path is now split into two parts, from Door 1 to Corner 1 and from

Com er 1 to Door 2. Both o f these sections must now be checked for obstacles. The

algorithm is consequently called twice recursively, once to calculate the path from

Door 1 to Corner 1 and once for Comer 1 to Door 2. The former call will see the path

split up once again when it encounters the second obstacle. The second recursive

calls will thus check the paths from Door 1 to Corner 2 and Corner 2 to Corner 1 for

obstacles. The final path is solid line shown avoiding the obstacles.

W hile this algorithm is fast, it cannot deal with complex environments. Consider the

diagram below.

This environment is not much more complex than the first one. However, consider

what would happen when the path between Corner 1 and Door 2 is checked for

obstacles. At this point, the first real problem is encountered. The conditions under

which the obstacle is hit are the same as for the previous obstacle, i.e. the destination

is the bottom right, therefore the algorithm moves right instead o f left as it obviously

should. Upon encountering the vertical part o f the object, the algorithm can be called

on to move up, left, up, right and subsequently continue on a direct path, however, it

is evident that no matter what it does at this point, it will not reach the destination. It

would be possible to move up along the wall and back-track left along the top wall,

however, this would not result in anything positive. The error resulted when the

algorithm travelled right instead o f left at the second obstacle. One solution to this

problem is to use recursion at every point where two direction are possible. If one

77

direction proves fruitless, the other direction is chosen The mam problem with this

approach is that it is quite difficult to detect at what point the search has proved

fruitless The example above shows an outcrop on the lower obstacle, which can

successfully be negotiated, however the wall is reached after this obstacle, not the

destination The shape o f the far wall and upper wall is similar to the shape o f the

obstacle, but it can not be negotiated This shows the difficulty m deciding at what

point the search has proved fruitless

The only points at which the search can positively be said to have failed are the start

point and any point m an area previously searched

It can be argued that for every obstacle encountered, all the possibilities should be

explored in order to achieve an optimum result However, implementing this would

exasperate the problem o f identifying the point at which a search proves fruitless

4 10 3 2 2 Algorithm 2
This algorithm is based on Algorithm 1 One o f the difficulties with improving

Algorithm 1 was deciding on a point at which the search can be deemed to have

failed If certain assumptions are made about the complexity o f obstacles, situations

may occur at which we can say that a fault has occurred, or that the search has failed

Consider the obstacles shown below The arrows indicate the direction o f travel

In the first scenario shown, the obstacle encountered comes upward and subsequently

comes down again I f we assume that an obstacle such as this cannot lead to the

destination, we can determine that a fault occurs at the point where the obstacle turns

down again Similarly for obstacle two we can determine a fault point In this case

the destination co-ordinates has the same vertical component as the vertical part o f the

direction o f travel
Obstacle 2

Obstacle 1
Destination

Figure 4.29

78

obstacle At the top o f the obstacle, the path is forced to turn away from the

destination A fault may also be said to occur at this point Many other such

scenarios may be formed to determine faults Note that errors occur for these

obstacles only for the approximate directions o f travel shown If this direction o f

travel is reversed, a fault need not occur Remember from Algorithm 1 that the path

may get split up into various sections through recursive calls I f any o f these sections

thus encounter a fault, the direction o f travel may be reversed for that section and the

fault may be bypassed Similarly if the overall path fails, the direction o f travel may

be reversed and a second attempt made to construct a path The room shown below

can be used to demonstrate practical examples o f some o f the obstacles described

above

The original direction o f travel is from Door 1 to Door 2 (the straight diagonal line)

which hits the obstacle shown In an effort to avoid the obstacle, the path follows the

dotted line, taking it past the destination At the point where the path is forced to turn

back again (the solid arrow), an obstacle similar to the second obstacle shown above

is deemed to have been met and a fault occurs Reversing the direction o f travel will

result in the scenario shown below O h c t a r ' l f * t v n i 1 9 Door 1

Figure 4.31

The obstacle is dealt with easily, resulting in the path shown A fault dud

type o f obstacle can also occur in this room

the first

79

Starting point

Figure 4.32

In Figure 4 32, the starting point is a given point in the room The obstacle forces the

path up, left and down, at which point the fault occurs The direction o f travel is

reversed, resulting in the obstacle being dealt with as shown

Starting point

In the scenario shown in Figure 4 33, two obstacles are met The first one is where

the direct diagonal line hits the vertical wall and forces the algorithm to negotiate the

obstacle by going down and across At this point the path is split into two The first

part is between Door 1 and the comer o f the obstacle while the second part is between

the corner and the starting point The second part encounters a further obstacle but

this can easily be dealt with, resulting in the final path shown Further improvements

may be made to the algorithm m an effort to predict the direction o f travel considered

m ost likely to yield results

80

Figure 4.34

In Figure 4 34, the direction o f travel is from Door 1 to Door 2 Remember that the

D ataList contains information about the direction to the outside for each door I f we

compare the direction o f travel to Door l ’s direction to the outside, we see that they

are within 90° o f each other In other words, the direction o f travel is towards the

outside Knowing this, we can expect to encounter obstacles the moment the

algorithm attempts to start routing from Door 1 to Door 2 However if we reverse the

direction o f travel, this is not necessarily true Therefore, if we find the direction o f

travel to be m the same direction as the outside, we can reverse the direction o f travel

and prevent the routing algorithm from starting at an obstacle

To conclude, Algorithm 2 is quite effective in dealing with rooms that are not overly

complex The vast majority o f rooms will fall into this category The algorithm may

be continuously improved by teaching it to recognise more fault situations However,

the resulting path is not necessarily the optimum path and the algorithm is not

guaranteed to be able to deal with all situations Despite this, it was implemented as

Algorithm A Tests with the finished algorithm showed it to be fast and free o f errors

It must be pointed out though, that none o f the test maps contained rooms o f excessive

complexity

4 10 3 2 3 Algorithm 3
In order to overcome the shortcomings o f previous algorithms this algorithm was

developed It is intended to be a robust routing algorithm able to deal with highly

complex environments The mam problem with the algorithms above is that they deal

with obstacles as they meet them In other words, the algorithm has no knowledge o f

81

the layout o f the room through which the route is to be constructed This can lead the

algorithm to explore sections o f the room which can never lead to the required

destination This algorithm is capable o f learning about the layout o f a room, and

mathematically calculate a route through the room

The algorithm consist o f three parts, listed below,

LineList Floor Traverse_RoomB(Data *lm, float offset, CClientDC *dc)

void Floor A lgorithmBX(Linehsthst *ret, Data *lm, float offset, CClientDC *dc)

void Floor A lgonthm BY(Linelisthst *ret, Data *lm, float offset, CClientDC *dc)

The first member function shown here is responsible for calling the other two

functions when required, collecting their data and processing this data to produce the

final LineList for the path

The Linelisthst parameter in the Algorithm B member functions is used to return data

The offset parameter is used to determine both the distance that the eventual route will

keep clear o ff corners and the minimum size o f room sections to be explored The

Data param eter is used to pass in start and end co-ordinate values to the algorithm and

also contains directional information

In order to understand the T raverse_R oom B () algorithm it is easier to examine the

other member functions first The workings o f the AlgorithmBX can best be

explained by means o f example

Figure 4.35

82

The diagonal line m Figure 4 35 represents the direct route from the origin to the

destination The algorithms previously described would have attempted to follow this

line until an obstacle is encountered This algorithm however, does not do that

Upper checks
| j U U

f

u a u ii U ki it a

I
n n n pi n r

i n n
________-----------------------------------Lower checks

M ----- -

Figure 4.36

The algorithm starts by travelling in the horizontal direction o f the destination (the

horizontal arrow), checking above and below it as it travels along (represented by the

vertical arrows m Figure 4 36) The upper and lower checks not only detect when an

obstacle is hit, but can also detect whether they are travelling beside an obstacle or

empty space The points at which the checks hit an obstacle is recorded in the

Linelistlist parameter, while the wall detection is used to find new sections o f the

room as shown below

Unexplored section

new edge detected

Bottom wall

Figure 4.37

The last lower check m Figure 4 37 travels beside a wall for some distance before

detecting the bottom wall Since the wall it travels beside does not continue all the

way to the bottom wall, an unexplored section o f the room lies to the left It can be

argued that the destination lies to the right o f the check, while the new section lies to

the left therefore this new section need not be explored However this assumption is

not true for all cases which means that exploration o f this new section is required

83

Exploring new sections o f a room can be done by calling the algorithm recursively

The start point for this recursive call will be the point half way between the detected

edge and the bottom wall There is one major difference between this call o f the

algorithm and the previous one That is that the destination must now lie in the

opposite direction to the direction o f travel The Data parameter passed into the

algorithm contains information about start and end co-ordinates as well as information

about the direction o f the destination in relation to the start co-ordmates This

directional information is adjusted for the above example so that the algorithm knows

that the direction o f exploration must be in the opposite direction to the direction o f

the destination

Figure 4.38

Figure 4 38 shows the recursive call exploring the bottom section o f the room The

solid vertical line shown is used to seal o ff the explored sections o f the room from the

unexplored sections W ithout this seal, it would be possible for the search to circle

around indefinitely searching areas explored previously

W hen a search reaches a blind end as in Figure 4 38, the algorithm returns an empty

Linelistlist to the function that called it That calling function now proceeds as before,

travelling in a horizontal direction towards the destination When the right hand wall

is met, the lower check detects the doorway to the right

84

Figure 4.39

This results in a second recursive call (Figure 4 39), which successfully finds the

destination A Linelistlist is returned with information about the layout o f the

doorway This information is added to the information already gathered about the

layout o f the room and passed back to the calling Traverse_RoomB() function This

Linelistlist thus consists o f separate LineList, each containing information about a

specific section o f the room explored The Linelistlist for the above example would

thus consist o f only two LineList The first list would cover most o f the room, while

the second would cover the doorway leading to the destination If it were to be

displayed, it would look like this

IT

CL LineList 2

F igure 4.40

Note that the Linelistlist is never actually used for display purposes The only visible

attributes o f the search algorithm are the lines used to seal o ff explored sections before

recursive calls

85

A lgorithB Y () is virtually identical to A lgonthm B X () with the notable exception that

the direction o f travel is in the vertical direction The reason for the two versions will

become clear in the next section which will discuss the Traverse_Room B() algorithm

The Lm elistlist resulting from an A lgon thm B Y () call for the above example would

look like the figure below

LineList 1

LineList 2

LineList 3

H-

Figure 4.41

The Lmelistlist now contains three sections as opposed to only two for the

algorighmBX() call Note also that the search started by travelling vertically down

towards the destination This left the top section o f the room completely unexplored

If the search for the destination in the downward vertical direction were to have

proved fruitless, the upper section would have been explored

4 10 3 2 4 The Traverse_RoomB() algorithm
This algorithm is responsible for calling both the X and Y versions o f algorithm B and

processing the data The result is a LineList which contains the path from origin to

destination Both X and Y versions are processed in a similar way As before, the

method used to process this data can best be explained by example Consider the

room shown in the figure below

86

By visual inspection it can be seen that the path from the origin to the destination is

blocked by an obstacle We can see the layout o f the obstacle and with little

conscious effort can see how the route must be altered to accommodate the obstacle

An obstacle can be any shape or size, such as the one shown below This obstacle,

though much more complex in shape, can still be easily negotiated with little thought

How does the brain accomplish this?

Figure 4.43

The obstacle shown above has many points and planes, most o f which can be ignored

when considering a path around the obstacle The only point that must always be

dealt with, no matter what shape or size the obstacle, it the point that is farthest away

from the direct route Identifying this point is therefore the most fundamental step in

calculating a route around an obstacle

87

Figure 4.44

Once this point has been identified, the first step in plotting a path around the obstacle

can be taken The path may now be split up into two, from the origin to this point on

the obstacle, and from this point to the destination It is now a simple matter o f

repeating the above process o f identifying the most distant point on the obstacles (if

any) and splitting the path up into further sections

Figure 4.45

The question now remains how to identify the furthest points on any given obstacle.

The Linelistlists returned by Algorithms BX and BY can be used for this. The

Linelistlist below was calculated by the algorithB Y () function.

F igure 4.46

The diagonal arrow represents the direct path from origin to destination. I f the path

was not blocked by any obstacles, this line would lie between the start and end points

o f all the Line elements in the Linelistlist. The problem is thus to check all the Line

elements to see if they meet this criteria, and if they do not, to calculate the

perpendicular distance between the diagonal line and the nearest point on the Line

element. The best method for achieving this is to:

• Calculate the line equation for the line representing the direct route.

• Each Line element returned by the A lgorithm BY () has a fixed y co-ordinate.

The x co-ordinate o f the point on the direct line for this y co-ordinate can now be

calculated using the equation o f the direct line.

• The start and end x co-ordinates o f the Line element may now be compared to the x

co-ordinate o f the direct line.

• If the Line element does not intersect the direct line, its perpendicular distance

from the line must be calculated.

• If this distance is greater than any previously calculated, record the position o f the

Line element within the Linelistlist.

The method for processing a Linelistlist returned by AlgorithmBX() is similar except

that the roles o f the x and y co-ordinates are reversed. Once the most distant point has

89

been established in this manner, the path can be split into two and the algorithm called

recursively

Origin Destination

Figure 4.47

Consider the situation above A call to algorithBY() would result m a single line

being returned, identical to the line shown that also represents the direct path The

method described above for using the Linelistlist to detect and negotiate obstacles

cannot be used in this case The direct line shown is parallel to the element(s) in the

Linelistlist and therefore does not have a single point o f intersection The above case

is an extreme form o f this situation In fact the closer slope o f the direct line

approaches that o f the slopes o f the Linelistlist elements the more inaccurate the data

processing becomes until the situation above arises where processing becomes

completely impossible To maintain a high degree o f accuracy and prevent the above

situation from occurring, the Traverse_RoomB() algorithm makes use o f both

algorithms B X () and B Y ()

0° Angle o f direct path

Figure 4.48

The figure above shows how the Traverse_RoomB() algorithm decides whether to

use the BX or BY algorithms

90

4.11 Conclusions and recommendations for Algorithm 3

4.11.1. Problem 1

Algorithm 3 is much more thorough than both algorithms 1 and 2 Its mam draw back

is the amount o f processing required m order to calculate paths, this can make the

algorithm relatively slow One potential solution is to make the algorithm operate in

two stages The first stage would operate as before, with Algorithms BX and BY

being used to explore the room as before The returned Linelistlists can be translated

into a simple LineList that describes the layout o f the room In essence it is a method

for identifying which lines o f the drawing represent the walls o f the room

Subsequent calls to calculate paths through the room can then use this LineList

instead o f relying on the relatively slow Algorithms BX and BY I f speed is essential,

it is not inconceivable that each room is ‘explored’ and a LineList describing its

interior stored prior to the system coming on line In this way, all future calls will be

fast

4.12 Problem 2
Another potential problem with algorithm 3 is how it deals with obstacles o f the type

shown below

Figure 4.49

While the algorithm will deal with the obstacle shown in Figure 4 49, it will not do so

efficiently and may not produce optimum results

91

Figure 4.50

Figure 4 50 shows what happens when the algorithm meets the obstacle The two

thick vertical lines shown seal o f the explored area from the unexplored area The

curved arrows show the future direction o f the search As it stands, the search that

finds the destination first, l e the search that is started first, will cause the algorithm to

terminate and report success Search 2 will therefore never happen even though it

may produce a shorter path While this is not a difficult problem to overcome, it is

evident that if search two is instigated, it will explore an area partially explored by

search 1 The total speed o f the algorithm will therefore be reduced further This

problem will not arise if the suggested solution to problem 1 is implemented

successfully

92

5. User Manual
The program, named ‘SiteAid exe’, requires a Pentium PC with 8Mbytes o f memory

This chapter will describe how to set up and run the program

5.1. Menu layout and functionality

Complex, building,

floor, stair and lift

options

- Calculate routes as

defined by user

Toggle text

display on/off I \

Identification

tools

File View W indow jottings Complex

epj a \ /

Cad W indows Application -
Build

Options

D rU .C M P /
Routes lo o ls Output PFS Help

. già

DCU.CMF

Build room list
Show list
List Editor
Delete List
Stairs and Lifts
Map Buildings

±JJ

Set bu ild op tion s ,<

Figure 5.1

93

It is common practice to split a drawing up into layers o f specific objects, such as

doors or walls Four mam object types need to be identified, walls, doors, stairs and

lifts The program will automatically examine the layer names on load up time in an

effort to establish what type o f objects reside on what layer These layer assignments

may be examined and edited by selecting the ‘Layers’ option m the settings menu

The diagram below shows this dialogue box

5.2 Initial Setup

LAY ERS

NO.

D is p la y la y e r

Visible when routing

A SS IG N M EN T S

A R M ISC
ARW ALL
AR W IN D O W
ARDO O R
A R ST A IR
ARCOLUMN
A R SH A P E
ARL IN E
ARELVTR
ARTEXT

Wall Layer N umber

Door Layer Number

['¡I ! ^
Stair Layer Number

i ̂ i ̂ ¡1 I s

Lift Layer Number

OK

CANCEL

[2_

[l

fi"

Figure 5.2

In this example, all the layers m the drawing are listed, along with the assigned layers

for each object type Initially, the program assumes that all doors are drawn on the

ARDOOR layer This in not true for this drawing however, since the doors are

actually drawn on the same layer as the walls The door layer assignment is therefore

changed to the ARWALL layer, which is layer number 2 The layer dialogue box also

allows a user to set which layers are normally visible and which layers are visible

during route calculation For example, the ARMISC layer above contains information

such as the arrow indicating the direction o f the stairs as well as the drawing scale

This layer will normally be visible, but should not interfere with route calculations

94

Selecting the Edit option on the main menu will toggle the Edit menu on and off The

edit menu allows a user to add or edit drawing objects N ew drawing layers may be

added or existing layers may be selected

5 3. Editing a drawing

5.4 Building and editing a tree

A tree may automatically be built up for a drawing by selecting the ‘Build room list’

option from the ‘Build’ menu Build options may be specified in ‘Build options’

dialogue box These options include aliasing and double-door locking (see Section

4 9 6) The ‘Labels’ section o f this dialogue box allows the user to specify any labels

needed for the construction o f the list The floor label is the letter used to prefix all

the room names This label is automatically chosen but may be changed by the user

The stair and lift names are used to identify stairwells and lifts and to establish the

inter-connections between floors The ignore and include filter strings are used to

identify areas that do not follow the standard room naming procedure (see Section

4 9 5)

95

BU ILD OPTIONS
, , .'SfVf f ’
SETT IN G S

jj*

1
Lock Double Doòr

- ~ ^1r~ «.“% j J- ' ¡¡i|| p, j i* i '1 IT|1 »iitwmimm 1 , \
Alliasing '" H S, , ,

! ¿jj k-*=~

®i

OK

in«1. Cancel ,

1 if 1 ii'niii y
LA B E L S "

i ffmé

jll [Ijl̂ il Ill ll 11 I I

"Floor label I , ((
Stair name

Lift name 1

SW

Ignore Filter String
.... i l

LIFT

Include Filter String
/ N !

Figure 5.4

The tree produced by the ‘Build room list’ option may be seen by selecting ‘View

Tree’ from the ‘Build’ menu This allows the user to visually inspect the tree for any

errors that may have occurred as a result o f incorrectly placed labels The diagrams

below show a simple floor plan and its schematic equivalent

96

Cad W indows Application - [El .FLR]
= | File Edit View W indow Settings Room s Routes
Tools PFS Help

Ready

Figure 5.4 A

Cad W indow s Application - [E l .FLR]
= | File Edit View W indow Settings R oom s
Routes Too ls P F S Help

i X J la-

Ready

Figure 5.4 B

97

I f the Build algorithm discovers rooms with no access, the user is alerted as to their

existence At this stage, a ‘virtual door’ may be added or alternatively, the drawing

may be edited to amend the problem A virtual door is a door that is added to the tree

without having a physical representation on the drawing The user is prompted as to

the position o f the virtual door and its inside and outside co-ordmates

— 1 C a d W in .d o w s A p p l i c a t i o n - [Q 2 F L R] | ^ '
B B U IL D M E S S A G E n g s R o o m s R o u t e s T o o l s P F S H e lp

ROOM 2 3 2
D O E S NOT HAVE A C C ESS 3

| A d d V irtu a l D o o r |* | ^ C a n c e l ||

n~T
B uild tre e

Figure 5.5

5.5. The Room List Editor

A room list may be manually edited by using the Room List Editor The editor

displays all the available rooms m a selection list Details o f each room may be

examined by selecting one o f the rooms m the list All aliases and connecting rooms

will be displayed The rooms co-ordinates and lock status are also displayed These

may be altered by the user as required Door positions and locks may also be updated

The editor also allows rooms and doors to be created or deleted

98

Room List Editor

239 [♦J 200CB 225 Lf
240 200E1 - 206 J
241 208
242 207
243 200SA
244 200SA •
245 j 200SA
246 203
247 216
250 258
251 205
252 202
253 256
254 - 256
257 --: 204
258 204
200CA Sealed
200CC 215
200CD ̂ r 214 :=
200CE'inni i j S' 213 2« _

' ! f, |! 'u ¡toi ___ i -- “

TO -

INSIDE X.Y

OUTSIDE X.Y

LOCKED

203

138 7 222 5

138 7 224 5

□
Set new Door values

Next Room
Cancel

OK

Figure 5.6

5.6. Basic routing

Plotting routes from one room to another may be done m either o f two ways The

mouse may be used to select specific origin and destination points, or the user may

simply select an origin and destination room

Plot path from.

102 105

ìià*OK iCancelàr

111____MM 4 ___

Figure 5.7

99

The user can select the route type to be displayed by choosing the Route options

dialogue box Route types include Shortest, Simplest, Longest, and All The

Simplest route option displays the route with the least amount o f turns Note that the

type o f route that is being displayed can be changed after the routes have been

calculated

Route Options

-out^ ut^
Route'type

Route No

I

S holtest

Output type Step by Step

'S E T T IN G S ’;

Algorithm

Scale*

Offset

ALGORTHM B

Figure 5.8

A choice o f output types is also presented to the user in this dialogue box, step-by-

step, door-to-door and room-to-room The step-by-step output is the full point to

point route type, the door-to-door output displays a simple door to door route that

does not include information about obstacles withm the any o f the rooms crossed

The room-to-room output simply consists o f a list o f rooms that can be used to get

from one room to another The last two output options do not require the use o f either

A lgorithm A or B and are therefore very fast

100

•rii Jf
R eady

Figure 5.9 Shortest Route

Ready

Figure 5.10 All Routes

101

Cad Windows Application - [Q1 .FLR]
File Edit View Window Settings Rooms Routes Tools PFS Help

i1 |FJh

J

iléE
Ready I"

Figure 5.11 Simplest Route

«1 File Edit View W indow Settings Room s Routes lo o ls PFS Help

H
jJ

♦j

Ready

Figure 5.12 A route displayed on the room schematic

102

When creating or updating a complex, the complex editor is used It is a tool by

which buildings may be added and mapped on an overall map o f the complex The

user specifies the name o f the complex, the name o f the plan file and any buildings

which are contained in the complex The floors o f each building are listed in the

floors selection list

5 7. Creating a Complex

Name DCU ...„ - OK

! in Cancel
Plan file name », H MINICMP 1 5.

BUILDINGS , ' ' ^ F l TOORS ^ 1'

BUILDINGS
BU SS IN ESS SCHOOL

,! E1
EG

M ,i «

' Add Building j
"

' i J1 Eclit“ Building

_
Delete Building j

~Æ - '

1 Set Building X.Y 's
*

Figure 5.12

Individual buildings may deleted or edited by selecting them m the buildings selection

list and clicking the appropriate button The ‘Set Building X ,Y ’s ’ button

automatically links the currently selected building to the complex and assigns co­

ordinates to the building These co-ordinates may be viewed or edited in the building

editor tool The building editor also allows floors to be added or deleted from

buildings and building name and label to be set The building label is a unique

alphabetic identification code that must precede the names o f all the floors m a

building For example, the ground floor o f the ‘business school’ building shown

below is labelled ‘Q ’ and has three floors, QG, Q1 and Q2 By using this method,

CO M PLEX EDITOR

103

every room in the complex may be uniquely identified, e g QG02 is a room on the

ground floor o f the business school

Figure 5.13

After all the buildings have been added to the complex, it is necessary to map the

entry and exit points o f each building onto the plan drawing o f the complex To

update or add the entry and exit points for a building, load the ground floor map for

that building and select the ‘Map buildings’ option from the ‘Build’ menu

5.8. Lifts and Stairs

Once a building has been added to a complex the stair and lift connections between

the floors are automatically constructed These connections may be examined or

edited using the stair and lift editor shown in Figure 5 14 below

104

Buildings

BUILDINGS
BUSSINESS SCHOO

STAIRS AND LIFT EDITOR

« f ü* i*... Connections^'Stairwells

GOOSA
GOÜSB

100SC
200SC

Delete Stairwell ifn ..
- I |8 É i & i Ü

i sM'i
______________ M.
Move Connection 1

■„>,..^¿5^:.

OK.

-Cr-anceU

Figure 5.14

All the buildings withm a complex are listed in the ‘Buildings’ selection list The user

may select any o f these buildings and examine the connections between the floors o f

that building The ‘Stairwells’ selection list shows the lowest sections o f all the lifts

and stairs in the building Selecting an entry in the ‘Stairwells’ selection list will

result m all the connections o f that entry being shown in the ‘Connections’ selection

list In figure 5 14, we can see that the business school has three staircases starting on

the ground floor, and one on the second floor The stairwell ‘G 00SC” s connections

are shown It can be seen that this staircase connects all three floors The last

staircase shown in the ‘Stairwells’ list has no listed connections, this is because it

leads to the roof and therefore does not connect any floors together

5 9. Complex Routing

W hen plotting the route between two buildings in a complex, all the relevant maps are

automatically displayed with the routes shown on them The diagram below shows a

very simple complex with two buildings

105

Cad Windows Application - (DCU.CMP]

Figure 5.15

I f for example a route needs to be calculated from room ‘A ’ on the first floor o f the

‘Buildings office’ building to room ‘B ’ on the ground floor o f the ‘Business School’,

then the following routes have to be calculated and displayed

1 From room ‘A ’ to all the stairs and lifts with access to the ground floor

2 From all the stairs and lifts on the ground floor with access to the first floor to all

the exit points

3 From all the exit points from the ‘Buildings office’ to all the entry points on the

ground floor o f the ‘Business school’

4 From all the entry points to room ‘B ’

Figure 5 15 shows the shortest route between the two buildings

106

6. Conclusions

W hile the design o f a practical navigation aid is still very complex, it is an achievable

goal with the help o f m odem technological advancements The many factors involved

in the design, manufacture and testing o f a practical navigation aid necessitate a large

investment in man-hours The purpose o f this work has been to establish a solid

foundation upon which to base further research and development Two fundamental

areas were covered that o f establishing reliable design criteria and specifications, and

the development o f software which can be used to yield any required navigational

information These achievements can serve as a test bed for further research The

investigation into the requirements o f a navigation aid carried out yielded some very

important points that must be taken into consideration The strength and reliability o f

these results do not rest solely on the opinions o f people who have been involved m

the design o f assistive technologies for a significant number o f years, but more

importantly, on the opinions o f the people whom the technology is designed to

benefit All too often well meaning designers develop products that while technically

excellent, are simply not practical for reasons as simple and mundane as comfort or

cost The mam results condensed from the end-user survey are repeated here A

navigation device must complement existing travel aids, be affordable,

inconspicuous, provide clear and concise information, be easy to use and learn and

last but not least, the device should not limit the personal freedom o f the user in any

way

The package developed can prove to be very beneficial for any future work carried

out It can be used for feasibility testing and modelling o f positioning systems,

advance planning and testing o f actual navigation aid systems withm building

complexes, as well as stand alone applications such as pre-journey route planners and

information points W hilst the package works well as it stands, its object orientated

architecture allows for easy expansion and modification The design model may be

added to without restriction For instance, the model currently consists o f a complex

containing buildings which in turn contain such objects as rooms, stairs Extra

abstract objects representing such things as streets, parks, roads and so forth could

107

/

easily be integrated into the model Larger abstractions can also be added, for

example the complex o f building could become part o f an area, town or city

Even though the work carried out for this project is not inconsiderable, it only

scratches the surface o f the total amount o f work that needs to be carried out to bring

about a fully functioning, practical navigation aid The software should be field tested

by utilising it in stand-alone information points Such points could be used by sighted

and visually impaired people alike, provided the correct interfaces are supplied This

would in turn prompt further research to be carried out into interfacing the software

with the real world through practical user-interfaces The user interface is responsible

for relating information to the user from the navigation device as well as notifying the

device o f user requests The communication between the user interface and the device

is thus also a major design consideration If the navigation aid’s control hardware is

external, the use o f terrestrial radio direction finding techniques for establishing

position may be utilised as a means o f communication

Proposals for user interfaces have been forwarded in this thesis but a considerable

amount o f research is still required, such work requires extensive field testing in order

for truly suitable interfaces to be developed

Another area which requires more extensive research, is the development o f a

practical, reliable and inexpensive positioning system capable o f operating in a

complex o f buildings, both outside and inside the buildings The accuracy and

reliability o f this system will dictate the practical usage o f the navigation aid For

example, it would be pointless for a user to request directions to a destination from

their current location if their current location cannot be established with a reasonable

degree o f accuracy

The field testing o f designs is o f extreme importance, bringing everything from major

design errors to tiny flaws to light Test results may be used to improve existing

designs or lead to new innovations until a viable, practical navigation aid is perfected'

108

Appendix A: The .CMP File

The following is the format used in the CMP file The indentation is used to illustrate

that the indented information will be repeated the number o f times indicated on the

line preceding the indentation

Name o f Complex

No o f Buildings contained in it

Building name

Building label

No o f floors in Building

Floor filename

No o f Stairs

No o f flights

Stairwell name

No o f Lifts

N o o f possible stops

Names o f connecting rooms

Plan filename

109

This file type replaces the DXF file, which is much slower to load and save Its

format is as follows

Tree information flag - this is 0 if no TRE file exists

limmaxx - limminx - limit information

limmaxy - limminy

topx

topy

bottomx

bottomy

wallno

doorno

textno

stairno

liftno

No o f Layers

layer name

frozen

colour

No o f Lines

x

Appendix B: The .FLR File

the layer on which the walls are drawn

- this is 1 if the layer should not be displayed

y
x l

yi
No o f Solids

y
x l

yi
x2

y 2

x3

110

y3

No o f Arcs

x

y

r

a l

a2

No o f Circles

x

y

r

TextLayer name

frozen

colour

contd /

No o f Text items

x - Text x,y height and contents

y

h

text string

No o f Lines

x

y

x l

y i

No o f Circles

x

y

r

No o f Virtual Arcs - virtual arcs are for rooms with no apparent access They are

-not normally displayed

x

111

y
r

a l

a2

112

Appendix C: Function Reference

coords Find(resize r, char*Area, CDC* pDC, mt nColour);

Finds the coordinates o f the object with given label or description as identified by the

A rea parameter The area will be filled with the colour specified by nColour The

first parameter, r, tells the function at what zoom level the drawing should be

refreshed This parameter and the ccurrent device context is common to most

funcions

CString Identify(int x, int y, CClientDC* pCDC, resize r);

Identifies area with given coordinates x,y The function returns the label associated

with the area

void IdRooms(resize, CDC*, BOOL, BOOL);

Automatically identifies all the rooms on a floor and builds up the RoomList

virtual RouteList get_path_from (char * A real, char *Area2);

Calculates a Routelist from the origin identified by A real to Area2 This fucntion is

used in conjunction with the move_along function

virtual DataList move_along

(Routelist* route, Linehsthst* list,resize r,float,BOOL, CClientDC* pCDC);

This function is used m conjunction with get_path_from function It takes the

returned Routelist from this function

LineList Floor: :traverse_roomB(Data *lin, float offset, CClientDC *dc)

This member function is responsible for implememtmg the third search algorithm It

depends on two helper functions, algorithmBX and algorithmBY, to return vertical

and horizontal search data which is then processed by this function to produce the

final LineList for the overal path

void Floor: :algorithmBX(Linelistlist *ret, Data *lin, float offset, CChentDC *dc)

113

Helper function o f traverseroom B It implements a horizontal search in any given

space and returns the data to its calling function

void Floor::algorithmBY(Linehsthst *ret, Data *lin, float offset, CCIientDC *dc)

Helper function o f traverse_roomB It implements a vertical search in any given

space and returns the data to its calling function

114

Appendix D: Listings

The Get Path From Algorithm

//The function 'get_path_from' creates a routelist (if possible) containing
//the route elements (i.e. rooms or doors etc.) which must be passed in
//order to get from the origin to the destination. The function firstly
//checks if the two inputted names (here and there) correspond to two existing
//rooms. If so, the doors in the origin room are checked to see if they lead
//directly to the destination, in which case the Routelist consists simply of the
//origin, the door(s) leading to the source and the source. If, as will be the
//case in most situations, to doors from the origin room do not lead directly
//to the destination, the room leading from the first door is entered and
//control is passed to the 'finddest' algorith which takes three parameters,
//a pointer to the current Route element, the current room and the
//the destination room. The current Route element is passed in so that new
//Route elements may be added to the Routelist. All the doors from the "new"
//room are subsequently checked and if the destination is not found, the room
//leading from the first door is entered and the algorith is called
//recursively. Each room entered is given a status as described by the
//parameter checked contained in each room. A zero flag indicates that the
//room has not been entered before, while a 1 indicates that the room has
//been checked before and may or may not lead to the destination. This is
//done to prevent the algorithm from re-entering rooms already being checked
//by previous calls to 'find dest' or 'get_path_from' and thus prevents the
//algorithm from going around in circles. A status o f 2 is assigned to any
//room that is know to lead to the destinaion. When such rooms are
//re-encountered, the current Route element is made to point to the Route
//element for the current room. By joining routes in this manner, the total
//search time for all possible roots is decreased. Routes are joined together
//by means o f the Room member function 'join()' which together with 'link()'
//allow the algorithm to remember the address of the Route element associated
//with a particular room. The last operation carried out is the reseting of
//all the rooms 'link' and 'visited' values.

Routelist Floor::get_path_from(char *here, char *there)
{

Room *pRoom=NULL;
Room *origin=NULL;
Room *destination=NULL;
Door *thru=NULL;
Route *position=NULL;
Route *pRoute=NULL;
Route *pRoute2=NULL;
Routelist path;
RouteCapsule *pRt = NULL;
RouteCapsule *pLast;
CString Here = here;
CString There = there;

int n w = l; //Flag used by getjiext functions to indicate first call
int chk=l;

115

//Firstly, check to see if the roomlist is available
if (rmhst no_of_rooms() == 0)

{
AfxMessageBox("No rooms in list", MB_OK, 0),
return(path),
}

if (Loaded == 0)
{
AfxMessageBox("Floor not loaded", M B O K , 0),
return(path),
}

//Find the origin and destination rooms
do

{
pRoom=rmlist get_next_room(nw),
nw=0,
if (pRoom '= NULL)

{
CString RoomName = pRoom->number,
if (RoomName CompareNoCase(here) == 0) origm=pRoom,

else if (RoomName CompareNoCase(there) == 0) destination=pRoom,

Allias *alls = pRoom->GetAllias(), //also check any allias names
while (alls '= NULL)

{
RoomName = alls->numberval(),
if (RoomName CompareNoCase(here) == 0) origm=pRoom,
else if (RoomName CompareNoCase(there) == 0) destmation=pRoom,
alls = alls->newmemval(),
}

}
}

while ((pRooml=NULL)&&((origin==NULL)||(destmation==NULL))),

// Do some preliminary check to see if the origin and destination selections are valid
if (origm==NULL)

{
AfxMessageBox("Origin not found",MB_OK,0),
retum(path),
}

else if (destination==NULL)
{
AfxMessageBox("Destmation not found",MB_OK,0),
return(path),
}

if (origin == destmation)
{
AfxMessageBox("Select different Origin and Destmation rooms", MB OK, 0),
return(path),
}

if (strcmp(here, "Outside") == 0) //Its easier to go from a room to the Outside
{

BO O L success = 0, //Has the destm ation been found“?

116

pRoom = origin,
origin = destination,
destination = pRoom,
}

//Start at the origin and search for the destination
ongin->visited(l),

//Add the destination to the routelist
position=(path addroute(destination)), //the addRoute function returns a pointer to the element added

//Enter each o f the unlocked doors in a room in turn to see if it leads to the destination If it
//does not, call the 'finddest' function
if (chk)

{
nw=l,
for (int i=0, i<origin->no_of_doors(), ++i)

{
thru=origm->get_next_door(nw), // Get doors in room one by one
nw=0,

if ((thru->roomval() == destination) && (thru->GetLock() == 0)) // Check to
//see if the destination has been found

{
success = 1,
thru->connect_no(-1),
pRoute=position->addRoute(Route(thru)),
pRoute->addRoute(Route(origin)),
chk = 1,
}

else
{
chk=(thru->roomval())->checkval(), //Has the room leading from the door

//been checked
if ((thru->roomval())->GetLock() == 1) chk=3,

// is the room or the door locked7
else if (thru->GetLock() == 1) chk=3,
}

if (chk==0)
{
pRt=find_dest(position,thru->roomval(),destination), //Enter the room
pLast=pRt,
if (pRt->GetContents(),=NULL)

{
success = 1,
pRoute=pRt->GetContents(),

//If the destination is found, add the Room through wich it was found(l) Set the link value in that
//room so any subsequent routes discovered that pass through that room can join directly to that
//route(2)
//Next, add the door that leads to the room(3) and the origin(4) If more than one route was
//dicovered(5&6),
//then the room, door and origin must also be added to these routes (7)

pRoute2=pRoute->addRoute(Route(thru->roomval())), //1
(thru->roomval())->link(pRoute2), //2

117

thru->connect_no(-1),
//Increase connect no by 1 (for delete purposes)
pRoute2=pRoute2->addRoute(Route(thru)), //3
pRoute2->addRoute(Route(origin)), //4
pRt=pRt->newmemval(), 1/5
if (pRt'=NULL) pRoute2=pRt->GetContents(),
else pRoute2=NULL,
if (pRoute2,=NULL) //6
do

{
pRoute2->change_newroute(pRoute->newrouteval()), 111
if (pRt,=NULL) pRt=pRt->newmemval(),
if (pRt'=NULL) pRoute2=pRt->GetContents(),
else pRoute2=NULL,
}

while (pRoute2'=NULL),
}

pLast->Delete_all(),
delete(pLast),
}
else if (chk==2) //If the room has a check value o f 2, it leads to the destination

//Join the routes at this point and add the door and origin as before
{
pRoute2=(thru->roomval())->jom(),
thru->connect_no(-1),
pRoute2=pRoute2->addRoute(Route(thru)),
pRoute2->addRoute(Route(origin)),
}

}
}
nw=l,
do
{

pRoom=rmlist get_next_room(nw),
nw=0,
if(pRoom'=NULL)

{
pRoom->visited(0),
pRoom->link(NULL),
}

}
while (pRoom,=NULL),

if ('success) path delete_all(), //If the destination wasn’t found, return an empty routelist

return(path),
}

118

void Floor algorithmBX(Linehstlist *ret, Data *lin, float offset, CClientDC *dc)
{
Lmelistlist recurs,
Linelist store,
int x=(int)lin->xval(),
int y=(int)lin->yval(),
int xl=(int)lin->xlval(),
int yl=(int)lin->ylval(),
int uptempy,downtempy,tempx,
int newfronty,newbacky,
int swop=0,swop2,direction,oldswop,oldswop2,truedirection,success=0,
COLORREF test,
COLORREF test2,
COLORREF front,
COLORREF back,
COLORREF backcolour=dc->GetBkColor(),
COLORREF oldfront,
COLORREF oldback,
mt limit=0, //debug only
CPen pen,
CPen pen2,

pen2 CreatePen(PS_SOLID, 1, backcolour),
pen CreatePen(PS_SOLID, 1, wallcolour),
CPen *p01dPen=dc->Select0bject(&pen),
if (x l>x) direction=l,

else if (xl<x) direction— 1,
else direction=(int)lin->desc2val(),

truedirection=direction,
if (lin->descval()==500) direction=-direction,
tempx=x+(direction*(mt)(-1)),

//The front and back test points are used to find other possible routes If a test point encounters
//a wall, followed by more blank space, followed by another wall, an opening has been found This
//opening must also be checked Thus when a test point encounters a wall, it uses the swop variables
//to check if this is the first or second time a wall is encountered If it is the first, the co-ordinates
//are stored, if it is the second, a recursive call is made to explore the openmg

do
{
tempx+=direction,
uptempy=y+l,
downtempy=y-l,
front=dc->GetPixel(tempx+l,y), //Find the colours m front and behind the current point
back=dc->GetPixel(tempx-1 ,y),
oldfront=front,
oldback=back,
if (front==wallcolour) sw op=l, else swop=0,
if (back==wallcolour) sw op2=l, else swop2=0,
oldswop=swop,
oldswop2=swop2,

do //Move up from temp x,y loop
{
-uptempy,

The Algorithm!} listing

119

test=dc->GetPixel(tempx,uptempy); //Test new spot
test2=dc->GetPixel(tempx+1 ,uptempy); //Test in front (test2)
if ((test2!=front)||((swop==2)&&(test==wallcolour))) //If the test is different to the

//last test or wall is reached...
{
++swop; //then add 1 to the swop variable and
front=test2; //set last test colour =to current test colour
if (swop==2) // If this is the first difference detected...

{
newfronty=uptempy; //then store the current x and y

}
else if(swop==3) //else if this is the 2nd change...

{
if (abs(uptempy-newfronty)>(offset)) //check to see how

//big the gap is
{
Data pass;
if ((truedirection==l) ||

((truedirection==(-1)) &&
(tempx<xl)))

pass = Data(tempx+1,
(uptempy+newfronty)/(float)2,
0,x 1 ,y 1, direction, 0,0);

else pass=Data(tempx+l,
(uptempy+newfronty)/(float)2,
500,x 1 ,y 1,direction,0,0);

dc->Mo veT o(tempx,uptempy+1);
dc->LineT o(tempx,ne wfronty-1);
algorithmBX(&recurs,&pass, offset, dc);
dc->SelectObject(&pen2);
dc->MoveT o(tempx,uptempy+1);
dc->LineT o(tempx,newfronty-1);
dc->SelectObj ect(&pen);
if (recurs.Iist_pointer()!=0) success=2;
}

if (front==wallcolour) swop= 1; else swop=0;
}

}

test2=dc->GetPixel(tempx-1 ,uptempy); I IT est behind
if ((test2!=back)||((swop2==2)&&(test==wallcolour)))

{
++swop2;
back=test2;
if (swop2==2) newbacky=uptempy;

else
if (swop2==3)
{
if (abs(uptempy-newbacky)>(offset))

' {
Data pass;
if ((truedirection==(-l)) ||

((truedirection== 1)&&(tempx>x 1)))
pass=Data(tempx-l,
(uptempy+newbacky)/(float)2,
0,x 1 ,y 1, direction, 0,0);

else pass=Data(tempx-l,

120

(uptempy+newbacky)/(float)2,
500, x l ,y l , direction, 0,0),

dc->MoveT o(tempx,uptempy+1),
dc->LineT o(tempx,newbacky-1),
algonthmBX(&recurs,&pass,offset,dc),
dc->SelectObject(&pen2),
dc->MoveT o(tempx,uptempy+1),
dc->LineTo(tempx,newbacky-1),
dc->SelectObj ect(&pen),

if (recurs list_pointer()'=0) success=3,
}

if (back==wallcolour) swop2=l, else swop2=0,
}

}
}

while ((test==backcolour)&&('((tempx==x 1)&&(uptempy==y 1)))&&(success==0)),
if ((tempx==xl)&&(uptempy==yl)) //If end found then

{
success+=l,
uptempy-=2,
goto stop,
}

front=oldfront, //Reset these values for down check
back=oldback,
swop=oldswop,
swop2=oldswop2,

do //Move down from temp x,y loop
{
++downtempy,
test=dc->GetPixel(tempx,downtempy),
test2=dc->GetPixel(tempx+l,downtempy),
if ((test2,=front)||((swop==2)&&(test==wallcolour)))

{
++swop,
front=test2,
if (swop==2) newfronty=downtempy, //test front

else
if (swop==3)
{
if (abs(downtempy-newfronty)>(offset))

{
Data pass,
if ((truedirection==l) ||

((truedirection==(-1))&&(tempx<x 1)))
pass=Data(tempx+1,

(downtempy+newfronty)/(float)2,
0,x 1 ,y 1,direction,0,0),

else pass=Data(tempx+l,
(downtempy+newfronty)/(float)2,
500,x 1 ,y 1 .direction,0,0),

dc->MoveT o(tempx,downtempy-1),
dc->LineT o(tempx,newfronty+1),
algorithmBX(&recurs,&pass,offset,dc);
dc->SelectObject(&pen2),
dc->MoveTo(tempx,downtempy-1),
dc->LineTo(tempx,newfronty+1),

121

dc->SelectObject(&pen);
if (recurs.Iist_pointer()!=0) success=2;
}

if (front==wallcolour) sw op=l; else swop=0;
}

}

test2=dc->GetPixel(tempx-1 ,downtempy); //Test behind
if ((test2! =back)| |((swop2==2)&&(test==wallcolour)))

{
++swop2;
back=test2;
if (swop2==2) newbacky=downtempy;

else
if (swop2==3)
{
if (abs(downtempy-newbacky)>(offset))

{

Data pass;
if ((truedirection==(-l)) ||

((truedirection== 1)&&(tempx>x 1)))
pass=Data(tempx-1,
(downtempy+newbacky)/(float)2,
0,xl,yl,direction,0,0);

else pass=Data(tempx-1,
(downtempy+newbacky)/(float)2,
500,x l ,y l .direction,0,0);

dc->MoveTo(tempx,downtempy-1);
dc->LineTo(tempx,newbacky);
algorithmBX(&recurs,&pass,offset,dc);
dc->SelectObject(&pen2);
dc->MoveTo(tempx,downtempy-1);
dc->LineTo(tempx,newbacky);
dc->SelectObject(&pen);

if (recurs,list_pointer()!=0) success=3;
}

if (back==wallcolour) sw op2=l; else swop2=0;
}

}
}

while ((test==backcolour)&&(! ((tempx==x 1)&&(downtempy==y 1)))&&(success==0));
if ((tempx==x 1)&&(downtempy==y 1))

{
success+=l;
downtempy+=2;
}

stop: ++limit;
if (!(((direction== 1)&&(success==3))||((direction==(-1))&&(success==2))))

{
if (success==l) swop=0; else swop=2; //Set success flag
if (direction==l) store.addline(

Line(tempx,downtempy-swop,tempx,uptempy+swop)); //Add data
else store.addline(Line(tempx,uptempy+swop,tempx,downtempy-swop));

//swop up and down data for opposite direction
if (success>=2)

{

122

store jom_lists(recurs list_no(0)), //join up the lists & add to list
ret->addlist(store),
for (int i= l, Krecurs hst_pomter(),++i)

ret->addlist(recurs list_no(i)),
}

}
else

{
ret->addlist(store),
for (int i=0, Krecurs list_pointer(),++i)

ret->addlist(recurs listno(i)),
}

}
while ((limit<1000)&&(dc->GetPixel((tempx+direction),y)'=wallcolour)

&&(success==0)),
if (success==l) ret->addlist(store),
if (limit>=1000)

{
AfxMessageBox("Limit error, check Algobx cpp",MB_OK,0),
ret->delete_all(),
exit(0),
}

dc->Select0bject(p01dPen),
if (success==0)

{
ret->delete_all(), //If the end is not found, do not return data
}

}

123

References

1, Gill, J M (1986) International Survey o f Visual Aids for the blind

Royal National Institute for the Blind

2, Dodds, Allan (1992) Rehabilitating blind & visually disabled people, a

psychological approach

3, Dobree, John H , Boulter, Eric (1982) Blindness and visual handicap, the facts

4, Herbert L Pick, Jr Perception, Locomotion, and Orientation , pp 73-89,

W elsh, R L , Blasch, B B editors (1980) Foundations o f Orientation and Mobility

5, Herbert L Pick, Jr Tactual and Haptic Perception, pp 89-115,

Welsh, R L , Blasch, B B editors (1980) Foundations o f Orientation and Mobility

6, W illiam R W iener Audition, pp 115-187,

Welsh, R L , Blasch, B B editors (1980) Foundations o f Orientation and Mobility

7, Billie Louise Bentzen Orientation Aids, pp 291-357,

W elsh, R L , Blasch, B B editors (1980) Foundations o f Orientation and Mobility

8, Leicester W Farmer Mobility Devices pp 357-412,

Welsh, R L , Blasch, B B editors (1980) Foundations o f Orientation and Mobility

9, Rieser, Lockman and Pick, (1976) The role o f visual experience in spatial

representation Perception and Psychophysics, 19, 117-121

10, Brabyn, J A , Strelow, E R (1977) Computer-analysed measures o f human

locomotion and mobility Behaviour Res M ethods & Instrumentation, 9

124

11, Barth, J L (1978) The effects o f preview constraint on perceptual motor

behaviour and stress level in a mobility task

12 , Airasian, P (1973) Evaluation o f the binaural sensory aid AFB research bulletin,

26,51-71

13, Darling, N , Goodrich, G , Wiley, J (1977) A follow-up survey o f electronic travel

aid users Bulletin o f Prosthetics Research, 10, 82-91

14, M orrisette, D , Goodrich, G , Hennessey, J (1981) A follow-up survey o f the

Mowat Sensor's applications, frequency o f use, and maintenance reliability,

Journal o f Visual Impairment & Blindness, 75, 244-247

15, Simon, E (1984) A report on electronic travel users Three to five years later,

Journal o f Visual Impairment & Blindness, 78, 478-480

16, Blasch, B B , Long, R G , Gnffm-Shirley, N (Nov 1989) Results o f a National

Survey o f Electronic Travel Aid use Journal o f Visual Impairment & Blindness

17, Kallewaard, L (1993) Direction finding using Antenna Arrays D C U Internal

Report

18, M icrosoft Visual C++ Development Books

MFC reference guide,

C + + reference guide

125

