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A Simulation Approach to Modelling Quality 
and Reliability features of plant processes

The relationship between component and system reliability is a key factor in the 

improvement of plant processes and a wide variety of models have been studied, under 

the general headings of “Probabilistic Methods”, “Graph Theoretical Methods” and 

“Simulation” An outline review of these reliability models is given as a background to 

the work of the thesis and the ideas were used to steer the design of the software tool, 

which we have developed The tool is generic m the sense that it can be used for any 

production system consisting of any number of parallel production lines, although we 

have considered its application in detail for one system only In particular, we describe an 

application of reliability theory m the modelling of a plant process, which incorporates 

examples of Load-Sharing, parallel and series stages and we demonstrate how the 

production plannmg control is related to reliability considerations

The tool has been tested in reference to a real production system, for which Quality and 

Reliability features have been analysed though data collection and simulation The 

production system is located m Intel’s ESSM (European Site for System Manufacturmg) 

plant m Ireland The plant's products are the basic components of a Pentium II processor, 

based on a new technology, (known as MMX or Secc), which enables enhancements for 

multimedia and communication applications We have also applied our software tool to 

the old production line (pre-datmg Secc Technology), both for calibration purposes and 

to compare the two lines Software features mclude the ability to, mvestigate line reaction 

to changes m quality and reliability, to pmpomt problem areas, to cost failures m 

reliability, to explore degraded operation, stages with poor quality/reliability can be 

identified and Estimate the real UPH (Units Per Hour) We present an analysis of system 

performance and provide recommendations for possible improvements to the system

Abstract
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PSV I1, PSV I2

Bare Fab

Panel Mark stage 

Paste stage 

Chip Shoot stage

Pick and Place stage

Reflow stage 

Visual Inspection

Two inspections in Intel’s production line, which ensure that 

all the components, are m the correct location and have the 

right orientation

A panel consistmg of six boards

In this stage the panel takes an identification number

Its function is to apply the solder paste on the bare fab

Its mtended function is to place all the surface mounted 

components on the board

Its mtended function is to place all the surface mounted 

components on the board

It leaves the components firmly attached to the board

Inspects the panel and ensures that all the components are m 

the correct location and have the right orientation
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ICT inspection 
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Secc or MMX Tecnology

Frame

Pixel

Machine Utilisation

Equipment Availability

Coherent

Assists

Separates the panel into individual boards, which are 

required for further processing

It performs the first automatic test procedures

Gives the board its final look, putting identification laser 

Marks on all units

A stage that its function is to complete a sampled mspection 

of the boards commg from end of line

A high technology designed to improve the performance of 

complex applications and applications where large amounts 

of data and processed

A frame is a smgle image extracted from a sequence of 

movie images

A pixel is an amplitude value of an element that represents 

an image

Is the utilisation of a component/stage of a production line

Is the Total number of Equipment (Total Equip) minus any 

equipment held us reserved (Equip Res)

Detailed definition m Appendix E

Defined as any unplanned mteraction
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Unscheduled Downtime 

Failure

People Capability 

Nominal Weeks 

Yield 

UPH

Pure UPH

RunRate 

Desired Gap

Machine Availability 

Bottleneck 

Production Time

Unscheduled downtime may be due to repair of a 

component, assists and blackouts

Occurs if any interruption or variability from the 

specifications of equipment operation requires the 

replacement of a component

Capability of people working for the production line

Period for which we want to do the investigation

Quality of the product

The number of units that a component/stage of a production 

lme can produce per hour

This is the theoretical UPH and it is different for each 

product It can be estimated as (3600 seconds)/ (Cycle per 

unit)

Run Rate = UPH * Util * Yield (thousand units per week)

This gap is a safety margin, so that the production can cover 

unscheduled downtimes and accidents

Machine Availability = Machme Utilisation + Desired Gap

The slowest stage of the system

Time is the period for which the equipment is performing its 

intended function
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Engineering time
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Scheduled downtime

Unscheduled downtime

Equipment Downtime

Operation time

Non-Scheduled time
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Uptime and Equipment Downtime
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Chapter 1

Introduction to Reliability and Quality

Reliability and Quality are concerned with improvement, analysis, assessment and 

prediction of system performance The aim of Reliability and/or Quality studies is the 

achievement of best performance within the resources available Achievement of this aim 

may be expected to increase system safety, customer satisfaction and, of course, reduce 

total costs Evans (1997) defines reliability, as “the probability that a system performs its 

intended function for a stated period of time under specified operating conditions”

During every working day, a plant has the opportunity to collect records for everything 

occumng in the production line relating to Reliability and Quality In this thesis we 

present the necessity of collecting this detailed data (history of the plant) All the 

collected data, relative to Quality and Reliability, are fitted distributions and with the help 

of three different simulation models (one for Quality Section 3 2 1, one for Component 

Reliability Section 3 2 2 and one for system Reliability Section 3 4) we generate a 

simulated sample of data (Quality and Reliability data) for any duration of time for a 

given production system The production system might be exactly the same as the real 

one or with some changes By this way we investigate how a production system works 

and how it reacts to changes of the parameters governing the process (Sensitivity 

Analysis, section 1 6)

Reliability models are divided into two main categories Models that can investigate 

nonrepayable system and models that can investigate repairable systems A 

nonrepayable system is a system which, once failed, remains in that state Thompson 

(1988) noted that much of reliability theory investigates nonrepayable systems, which in 

fact is the study of lifetime distributions In this thesis we present models for repairable 

systems, and investigate their performance through simulation We discuss appropriate 

techniques for modelling the production system in the ESSM plant in Ireland (details in



section 1 6) Although this thesis is focusing on repairable systems, we also give a brief 

overview of the models and techniques for nonrepairable systems of which repairable 

systems form a specified subset

Due to the nature of this project, this thesis involves a large amount of technical terms 

such as the stages in Intel’s production line and the parameters of both Reliability and 

Quality For this reason a glossary (Page IX) gives brief definitions and explanations of 

all these terms Detailed definitions of the terms are presented at the place where a term is 

first met

1 1  Reliability Models on Nonrepairable Systems

A number of authors, including eg  Kalbfleisch and Prentice (1980) and, Barlow and 

Proshman (1996), give a mathematical approach to the definition of reliability of 

nonrepairable systems Suppose we have a system whose state at time t is described by 

X(t), a one-dimensional variable Ordinarily the period of time mtended for the system to 

operate is [0,t] Let X(u) = 1 if the device is performing adequately at time u, and X(u) = 

0 otherwise, (we assume that adequate performance at time t implies adequate 

performance during [0,t] ) X(t), being a random variable, will be governed by a 

distribution function F(x, t ) , where F(x, t) = the probability that X(t) < x

Corresponding to any state x, there is a gam, g(x) In terms of our assumptions, the gam 

from being in the functioning state x = 1 is defined to be one unit of value, so g(l) = 1, 

and the gam from being in the failed state x = 0 is defined to be 0 so, g(0) = 0 The 

expected gain G(t) at time t will be

So G(t) = P[X(t) = 1] = probability that the device performs adequately over [0, t] Thus 

G(t) is the reliability of the device In general we shall assume that, unless repair or 

replacement occurs, adequate performance at time t implies performance during [0, t]

(1  1 )



The above definitions comprise the basis for modelling a nonrepayable system To study 

this type of system, it is necessary that the structure of the system must first be defined 

This can be done with the help of Structure Functions A structure function is a 

probability expression for a system’s reliability

1 1 1  Structure Functions

Suppose that we have a system, consisting of n components, and let xt denote the state of 

ith component Where

fl ,if  the component is operatingxt = i (1 2)
[0, if the component was failed

The state of the system can be defined for the vector X = ( xj, x2, ,xn) by the structure 

function <t>(X) which will take the value 0 or 1 respectively when the system has failed or 

is operating A vector X for which <t>(X)=l is called a path and a vector for which <t>(X)=0 

is called a cut So, all the vectors are either paths or cuts and the total number of these 

vectors is 2n The Size S(X), of X , is defined as the number of components which are 

operating when the state of the system is determine by X, so that

S (* )  = i > ,  (13)
1=1

A path is a minimal path if <t>(X)=l but for every Y<X, <t>(Y)=0 (the comparison “<” 

respects the size of the vectors) So minimal paths give the minimum number of 

components required to operate for the system to operate For example suppose that we 

have a series system A senes system is a system in which all components must operate 

for the system to operate (Fig 1 1) So the structure function is

*(X) = flxl (1 4 )
1 = 1

and there is only one path with size n, and this is the minimal path of the system



Stage 1 Stage 2

Figure 1 1 Two component series system

A parallel system is a system in which only one component needs to operate (Fig 1 2) 

So, the structure function is

« W - l - f i d - , )  (15)
1=1

There are 2n -  1 paths, as every state of size greater or equal to 1 will be a path and the 

one cut, is the zero vector, X = 0 Minimal paths are all the n paths, size 1

Stage 1

Stage 2

Figure 1 2 Two component parallel system

1 1 2  K-out-of-n Models

A k-out-of-n model is concerned with systems in which at least k components must 

operate for the system to operate That means, that at least k of the x, must be equal to 1 

in order to have <I>(X)=1, with

|\if

0 > */ < k
(1 6)

Of course that means that all the vectors Y with S(Y)>k will be paths and there are 

minimal paths with size k For example, a series system is an n-out-of-n system, and a 

parallel system is a 1-out-of-n system, where n is the number of components K-out-of-n 

techniques are well described in a number of studies, such as Malinowski and Preuss

(1996), and Bruning (1996) Most reliability models refer to coherent systems and, in this 

section, we will give a brief overview for these systems Examples of noncoherent 

systems are less common than those of coherent type Both coherent and noncoherent 

systems are defined in Appendix E and well discussed by Ansell and Phillips (1994)



Estimation of reliability on some special types of systems, such as systems with identical 

components, which are placed in series, parallel or a combination of both, is well 

described by Ansell and Phillips (1994). They also gave a detailed description of the 

estimation of the reliability for k-out-of-n systems with identical components. These types 

of models can represent production systems very well but they are not very flexible with 

regard to changing the investigation from the whole production system to subsystems 

thereof, something that is really useful for sensitivity analysis which is the basic feature 

of this thesis.

1.1.3 Fault Tree Analysis

Estimation of the structure function of a system usually follows two steps. The first step 

is the analysis of all possible failures and their results and the second is the creation of the 

mathematical model. For example, faults trees have been used in order to model two 

oil/gas production platforms (Alpha and Bravo) operated by Marathon Petroleum Ireland 

Limited, (Walsh, 1994).

There are two procedures (Ansell and Phillips, 1994) for constructing a fault tree. The 

main approach is the “Top-Down” procedure, in which the analyst explores how the top 

event may occur, breaking it down to into contributing factors. This continues until the 

factors are the basic events of the systems. The other procedure is the FMEA (Fault 

Modes and Effect Analysis) which is a “Bottom-Up” procedure. An example of “Top- 

Down” procedure is the following: Suppose that we have the stage of “Screen Printing” 

from Intel’s production line. Its function is to apply the solder paste to the pads on the 

bare fabric (details in section 2.4). Taking the example of “Screen Printing is Down" as 

the top event this can be broken into the contributing factors of “Unscheduled 

Downtime”, “Scheduled Downtime”, “Engineering State” and “Standby State”. The 

event “Unscheduled Downtime” can be broken into “Repair”, “Assists” and “Facilities 

Black Out”. The last three events can be taken as the basic events (detailed definitions of 

these events are presented both in Section 2.3 and in Glossary). Figure 1.3 presents the 

fault tree of the above example. We assume that all the links between the objects are type 

OR. Other possible types of links are AND, EXCLUSIVE OR, and NOT. Because in



practise, companies do not keep detailed records of all the possible causes, it’s difficult to 

create a detailed fault tree

Figure 1 3 The basic events of the factor “ Unscheduled Downtime” which can 
cause the failure of “Screen Printing” stage

Fault trees have long been used for reliability analysis because of their concise 

representation of system failure combinations, but they can not adequately capture the 

dynamic system behaviour associated with fault and error recovery Doyle et al (1995) 

believe that for this reason, many modellers have turned to Markov chains for reliability 

assessment However, Markov chains have a major disadvantage in that it is difficult to 

determine the correct Markov model for a given system, since the modeller must specify 

each operational configuration explicitly and determine the rate at which the system 

changes from one state to another

The relative advantages of fault trees and Markov models have been exploited by two 

techniques Behavioural decomposition and Automatic conversion of the fault tree model 

to an equivalent Markov model

These methods are used in HARP (Hybrid Automated Reliability Predictor), a software 

package for reliability prediction developed under the sponsorship of NASA (1994) The 

HARP tool is an integrated reliability tool for reliability/availability prediction



1 1 4  Human -Machines Systems

Suppose we have a system that consists of several machines and a human operator Each 

machine contains several hardware and/or software components Such systems are called 

Human - Machine systems The system is on when all its components function and 

otherwise is down The purpose of the system is to perform missions successfully A 

mission is defined as what a human requires a “machine” to do Lin and Kuo (1994), 

analysed a multiple Human - Machine system and simulated the system to explore 

transient performance Prior to this work, studies concentrated on the simple problem of 

one machine and one human operator but Lin and Kuo considered a system with several 

human-machines Each human-machme was assumed to have several hardware and/or 

software components and one human operator Every mission contains several randomly 

arriving tasks and the system has two mutually exclusive states for each machine and 

each machine component namely on and off The problem was modelled as a senes 

system where all components and operators must be ready and reliable for every task in 

the mission Human-Machine systems have been widely used by the US Army, especially 

for estimation of the quality of the performance of air defence operations (Orvis, 1991) 

Stages belonging to this category can be easily found in plants For example, in Intel, the 

application discussed here, is found at the stage of “Off Line Rework Area” , where 

boards with minor or major failures are been repaired and then placed again to the line

1 2 Methodology for Nonrepayable Systems

In this section we summarise the most important approaches to estimating reliability of 

Nonrepayable Systems The techniques are again based on Fault Tree models

Fault Tree Techniques

Dugan (1989) presented the DFTS algorithm, which determines system reliability by 

enumeration of the operational states that correspond to the fault tree In this technique 

there is no need to keep the entire state space of the system or for a Markov chain 

solution A simple alternative solution (DDP) was also presented by Doyle et al (1995), 

and used existing cutset solution methods Instead of requiring a conversion of the fault 

tree to a Markov chain, the DDP algorithm combines aspects of behavioural



decomposition, sum-of-disjoint products and multistage solution methods This approach 

is used for reliability estimation of systems that can be represented as a fault tree, with 

component failures, which are statistically independent Also, discovery of component 

failures causes immediate system failure, even if adequate redundancy remains The fault 

occurrence probabilities and the probability that the system can recover when a fault 

occurs are constant or given in terms of a lifetime distribution

In addition, Heger et al (1995) presented a method for calculating top-event exact 

probability Specialised techniques for exact top-event probability quantification 

previously existed, but were limited to small problems that did not reflect realistic 

situations The method of Heger et al (1995) is called Xn-Patrec and computes the exact 

probability of top-event of a system fault-tree model as defined by its cut sets It can be 

used for any system that can be represented as a fault tree

Influence Diagrams

The use of Influence Diagrams is an approach similar to that for fault trees The 

advantages over other modelling approaches are the smaller number of nodes that are 

used and the explicit description of dependency within the system Influence diagrams 

have also been used for decision analysis For example, TreeAge Software (available 

from http//www treeage com) uses influence diagrams in order to create decision 

analysis software for manufacturing systems

1 3 Reliability Models on Repairable Systems

In this section we study systems with components that may be repaired The parameter of 

repair brings new types of models and problems The simplest case occumng is that of 

instantaneous repair That means that the system will work continuously, despite failures 

Of interest for these models is the frequency of failures More realistically, however, 

repairs take a finite period of time and may consist of events such as identifying the 

failure, sending the repair team, repair time and reinstallation The system after repair is 

taken to be working as well as it was before failure This is known as a renewal process 

The mam statistical measure for these models is the MTTR (Mean Time To Repair),



MTTF (Mean Time To Failure) and MTBF (Mean Time Between Failures) In studies of 

systems with multiple components, there is also a need to decide whether primary interest 

is in the components or the overall system In the software tool we created, we keep 

Scheduled and Unscheduled Downtime separate Hence, we estimate the mean time 

between Scheduled and/or Unscheduled failures

1 3 1  Components of Interest

The investigation we are doing is interested in system’s or subsystem’s reliability, and for 

this reason in this section we present a brief overview of the two major processes 

interested in components reliability There are two models for focusing on components of 

interest in a system consisting of n components the Branching Process and the SRP 

(Supenmposition of Renewal Process)

Branching Process

A branching process assumes that there is a set of initiating events, which follow either a 

HPP (Homogeneous Poisson Process), or NHPP (Non-Homogeneous Poisson Process) 

These events give rise to subsidiary events For any initiating event there will be a 

random number, s, of possible subsidiary events The s events then form a renewal 

process with an assumed known distribution Note that HPP occurs when the distribution 

of time between failure follows an exponential distribution and each component operates 

independently, (Ansell and Phillips, 1994) NHPP is an extension of HPP where the rate 

of failures is assumed to vary with time

Superimposition of Renewal Processes

Assume that we have a system with n components where repair is instantaneous and n 

independent renewal processes are being observed If time to next failure or the number 

of failures is of interest then the “sum” of these n sequences of the renewal processes is 

required (Ansell and Phillips, 1994)



1 3  2 System Performance

Where interest focuses on overall system performance, we must assume that repair time 

is different from zero Assuming that system performance is based on component 

performance, which is defined by a structure function (section 12 1), then the system is 

either working or has failed We can define a set of states for the component, which 

ensure system function and a set, which ensures system failure At the system level the 

System Probability is of interest, which is the probability of the system being in a given 

state at time t The usual approaches for modelling these systems include differential 

equations and simulation We concentrate our investigation on system performance and 

the effort of slow stages (bottleneck) on the overall system or a subsystem thereof For 

example in the ESSM plant the bottleneck of the system is the stage of Primary-Side Pick 

and Place (section 2 4)

Differential Equations -  Markovian Model

The mam disadvantage of these models is their complexity, which arises mainly from the 

size of the problem being considered It is assumed that in a small period of time, of 

length dt, the chance of more than one event is negligible if the components function 

independently So, it is only necessary to assume either a repair or a failure m dt After dt 

a component may fail, may be repaired or nothing may happen In the Markovian Model, 

it is assumed that the probabilities of a working component failing, (or a failed 

component working), in time dt are dependent only on the state of the system at dt and 

the size of this period (See e g Barlow and Proschman (1996) for a detailed study of 

Markov and Semi-Markov models) An alternative approach to analytical solution of 

differential equations is to use Simulation

Simulation

Simulation is the technique of imitating the behaviour of a system by means of an 

analogous situation to gain information more conveniently Types of Simulation 

approaches fall broadly into the categories illustrated below (Fig 1 4)
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Static or Monte Carlo 
Simulation

Discrete Simulation Synchronous

Simulation
Dynamic Simulation

Asynchronous

Continues Simulation

Figure 1 5  Examples of simulation methods

1 4 Methodology for Repairable Systems 

Monte Carlo Simulation

In Monte Carlo simulation, the system state and demand are random variables and 

simulation consists of generating random numbers representing the values of the 

problem The state (success or failure) of sources and links is simulated by the random 

selection of numbers uniformly distributed between 0 and 1 If the random number is in 

[0, P] (P Probability that a source or a link functions), the corresponding branch is valid, 

otherwise it is failed

Some years ago, Rice and Moore, (1983) examined a senes-system with components that 

experience binomial failures and derived a simple method based on Monte Carlo, for 

estimating confidence limits for system reliability The proposed method draws upon the 

asymptotic normality of the binomial distribution and Monte Carlo simulation 

Subsequently, Moore et a l , (1985), presented a Monte Carlo method to obtain 

approximate confidence bounds for system reliability and availability of maintained 

systems The technique uses simulated component failure and repair times to estimate the 

parameters of the failure and repair distributions Simulated values of parameters are 

obtained by generating sample failure and repair times of equal size to the original 

sample, using as parameters the estimates from the real data The parameters are again 

estimated using generated data from the same estimator to obtain simulated values 

Inserting the estimated values in the equations for reliability and availability, we obtain 

estimates for these quantities. The process is repeated for a large number of Monte Carlo
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repetitions These points are used to obtain a cumulative distribution function of system 

reliability and availability estimates by plotting the order statistics at their median ranks 

This is the basic idea of the model we are using to estimate the reliability of each stage 

and the quality of the overall system We give a detailed explanation of this in Chapter 3

Fishman, (1986), descnbed and compared the performance of four alternative Monte 

Carlo sampling plans for estimating the probability that two particular "nodes in the 

associated node set are connected Models of this type are commonly used when 

computing the reliability of a system with Randomly Failing components The four 

sampling methods are Dagger Sampling (Kumamoto et a l , 1980), Sequential 

Destruction/Construction (Easton and Wong, 1980), Estimation Based on Failure Sets 

(Karp and Luby, 1983), and Estimation on Bounds (Fishman, 1986) A brief presentation 

of the comparison of the results achieved on applying these four techniques to the 

example in Figure (15) is presented below Due to complexity of the four methods 

presented above, we explain only the last one (Chapter 3), which is the one we use We 

use one of these four techniques (for the reason presented m the next paragraph) to 

estimate the reliability of the whole production system by representing each stage of the

Figure 1  6 A network with 20 nodes (circles) and 30 arcs (lines) that Fishman (1986) 

used for the comparison of the four Monte Carlo methods

-12-



A comparison of these Monte Carlo sampling methods is given in (Fishman 1986) where 

a network with 20 nodes and 30 arcs is solved (Fig 1 5) The results show that for small p 

(probability that an arc exists), Dagger sampling performs best for p around 0 5 The 

failure sets method performs better than the others for p around 0 95 However for big 

networks, this method requires a lot of memory so that there are serious practical 

limitations By contrast, the bounds method has more limited demands on space and is a 

useful alternative method when memory is at a premium

Su et a l , (1986), developed a Monte Carlo method for reliability assessment, network 

flow estimation, and capacity planning It can be used for multisource, multisink, and 

steady state systems where each component is either good or failed and the states of 

components are mutually statistically independent Subsequently, Kumamoto, et al, 

(1987), developed a new Monte Carlo method, under a rare event assumption, for 

evaluating the top-event probability of a coherent fault tree where the basic events are 

strictly positive The problem is that since practical complex systems usually have high 

reliability and are modelled by the rare-event problem, a direct Monte Carlo method 

requires a large number of trials to provide a good estimate Consequently Kumamoto et 

al, investigated variance reduction techniques with a view to obtaining smaller variances 

of estimators compared to direct Monte Carlo with the same number of trials Techniques 

like Kumamoto et al, (1987) are very useful for evaluating the reliability and quality of 

systems like Intel’s production system, due to the high performance of the system But as 

we explain (Chapter 3), the exact estimation of the reliability of a system is not always 

what is required

1 5 Quality

We can define quality, in a broad way, as an attribute of a product that can be improved 

But as Goetsch and Davis (1994) mentioned, quality does not refer to products only but 

also to processes, including environmental and human One way to control all these 

parameters of quality is to follow some international standards such as ISO 9000, which 

is well described by Johnson (1993) In this thesis, we will refer only to one aspect of 

quality, namely that of the product There are four major steps that an investigator must
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follow m order to achieve products with high quality As shown in Figure (1 5), any 

results that are taken from experiments must passed through analysis until the objective is 

met

Figure 1 8 The four major steps in robust design methodology 
(Shoemaker and Holmdel, 1988)

In this section, we discuss three principal methods for the inspection and testing of 

products to control the quality of output produced These are Screening, Lot-By-Lot 

Inspection and Process Inspection (Ennck, 1985)

Screening

It is well known that for 100-percent detection of defectives, Screening or 100-percent 

inspection is required However in some types of mass production, screening can be used 

sparingly only, since costs are high and the time required is long Furthermore, if 

“Destructive”-testing methods are necessary, the cost is further increased Intel uses 

screening methods in two major inspections of the production line These are designated 

PSV I1 and PSVI 2 (details in section 2 4) and help to ensure that all the components are 

in the correct location and have the right orientation And also to ensure that all the 

component placements and solder joints conform to iWS (Intel Workmanship Standards)
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Lot-by-Lot Inspection

Lot-by-Lot Inspection overcomes some of the high cost of screening Methods are well 

described by Ennck (1985) but the general principle is to inspect a relatively small 

number of sample pieces, which are randomly selected, and to judge the acceptability of 

the whole lot on the basis of their quality The disadvantage of this inspection method is 

that a sample does not always give a true picture of the entire lot from which it has been 

selected A wide range of sampling plans has been discussed, with the aim of achieving 

minimum amounts of inspections with maximum protection against sampling errors 

Examples include the Dodge-Romig System, ABC Standards etc (Grant and 

Leavenworth, 1980)

The Dodge-Romig System consists of tables of acceptance sampling plans for 

inspections These plans may be Sequential Sampling, Single Sampling (Fig 1 6), Double 

Sampling, etc and are well discussed by Grant and Leavenworth (1980), and others The 

Dodge-Romig tables originally prepared for use within the Bell Telephone System in 

order to minimise the total amount of inspection ABC Standards is a development of the 

AQL (Acceptance Quality Level) system that was first devised for the Ordnance 

Department of the US Army in 1942

Taguchi (1986) introduced robust methods, for experimental design to help identify 

improved factor levels controlling quality processes Given good results from this 

technique, many statisticians are improving upon Taguchi’s approach with the use of 

augmented several methodologies For example, Kacker and Tsui (1987) improved 

Taguchi’s method by using interaction graphs, a simple and easy tool for planning 

experiments, particularly at the production level

Intel’s production line has a stage called OQA (Outgoing Quality Assurance), and its 

function is to complete a sampled inspection of the boards coming from End Of Line, 

(details about OQA follow in section 2 4) Unfortunately, in practice this sample 

inspection does not follow statistical samplings method because of the time it takes to 

inspect a board From each product a sample of 6,000 pieces must be passed through
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OQA inspection. Thus for short builds (say 10,000 units for example), the supervisors 

are responsible for 6,000 of these units being put aside for testing. Since test time is quite 

long another lot is pulled from the line and tested on the completion of testing on the 

former lot.

Process Inspection

In this type of inspection, an inspector patrols an assigned area, checking up on 

equipment, methods of operation and occasional pieces of product from raw material to 

finished article. The purpose of process inspection is to discover defective products, 

where and when they occur, so that corrective action may take place. A limitation of this 

inspection is that inspectors cannot be stationed at all machines at all times. As a result, a 

defective product can pass away between inspectors’ visits. This type of inspection is not 

applied any more to high technology systems, such as Intel’s ESSM plant. Electronic 

equipment alerts the inspectors to failures occurring at a particular stage or in a particular 

product.

1.6 Thesis Scope

The impact of reliability and quality features in product processing is specifically 

addressed for an application relating to the board manufacturing process located in Intel’s 

ESSM (European Site for System Manufacturing) plant in Ireland. We seek to provide an 

accurate model of this process, which incorporates key historical data on quality and 

reliability aspects of a production system. Processing and analysing data for stages of the 

line or subset thereof, enables us to detect stages producing the largest number of faulty 

boards. Sensitivity analyses, applied to the system model, pose a series of “ What if...’’ 

questions for the parameters governing the process. This analysis enables us to explore 

the effect on the overall system of changes in the parameter estimates. A further feature 

of the project is the fact that ESSM recently transferred from its previous board building 

process to a higher-level technology known as Secc or MMX (Section 2.1), which 

involves parallelism of some process operations. Basic stages of production were 

otherwise unaffected. Figure 1.7, gives a schematic of how data gathering and feedback 

on the model of the system might be expected to lead to overall improvements. System



performance is measured with the help of the Output Capacity Model, which is currently

Figure 1 7 A plan for system improvement

In Chapter 2, we explain features of the new technology (MMX) recently introduced to 

the ESSM plant, contrasting this with the previous system We also present the 

production Control Process of the ESSM plant, for the current and previous production 

lines, (the test-bed for our software tool) Parameters, which determine the reliability and 

quality of the manufacturing system, are also discussed in detail and the methodology 

described

Details for both production lines are also given in Chapter 2 The flow processes are 

illustrated, and we give information about the collection of data on Quality and 

Reliability and the feedback for the production systems In subsequent chapters, Chapters 

3 & 4, we describe the methods we are using, the design of the software tool, defining the 

inputs and outputs

Tool performance is discussed in Chapter 5, with a detailed data analysis, given for 

performance features of the real system. A comprehensive sensitivity analysis 

investigates the cost effectiveness and effects of varying the parameters governing the
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processes Conclusions and recommendations are presented in Chapter 6, including a 

synthesis of the analysis in order to make recommendations for improving system’s 

performance

Empirical raw data and key software are given in Appendix A, B & C respectively 

Appendix D illustrates the capabilities of the software tool and is written in the form of a 

user-manual The full code is given in disk format
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Chapter 2

MMX Technology and Intel’s Manufacturing System

In Chapter 1 we gave an outline of the major models and techniques for investigating 

reliability and/or quality of a system The software tool, we created, was developed and 

tested for Intel’s ESSM plant in Ireland, which produces processors based on the new 

technology known as M M X  or Secc (Single Edge Contact Cartridge) This chapter gives 

an outline of MMX technology and its applicability We explain it’s function by a simple 

example and compare the old technology with the new one In Section 2 2 there is a 

description of Reliability and Quality measures and a list of the parameters, used to
f

estimate features of particular interest in Intel production Section 2 3 concentrates on the 

two production lines, to which we have applied our software tool and we give details of 

the contrasting layout in each case

2 1  Introduction in M M X Technology

Today personal computers are increasing exponentially the volume and complexity of 

data processed As a result, incredible demands are being placed on microprocessor 

performance, and it is these demands that drove Intel to define MMX technology (Bistry, 

1998) At present, the creation of complex applications, such as the Internet, 

communications, games, 3D graphics, animation and virtual reality etc demands high 

technology MMX was designed to improve the performance of complex applications and 

applications where large amounts of data and processed The basic aim is to improve the 

performance for multimedia and communication applications

2 1 1  Data Parallelism

Data parallelism is the execution of the same set of operations on a large number of data 

elements For example, when processing video frames, the same operation is performed 

between the pixels of the frame Two sequential frames usual has about 85% of their 

pixels exactly the same So, MMX improves the performance by executing two, four or 

eight of these operations at a time A frame is a single image extracted from a sequence
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of movie images, and a pixel is an amplitude value of an element that represents an 

image

Another good example is video streams Generally a video contains a lot of redundant 

information and that increases the amount of storage A scene is a logical group of shots, 

where shots, may be defined as a sequence of frames captured in a single continuous 

action in time and space In a given scene, the frames that it consists of have a lot of 

similarities and few pixels change from frame to frame So, a good representation of a 

scene would be to define the first frame in its entirety and then to define the changes from 

frame to frame This is called MMX technology

2 1  2 An example on Exploiting Data Parallelism

The figure below (Bistry, 1998) shows the representation of the differences between two 

frames
First Frame Current Frame

Encoding of current frame 
Figure 2 1  Simple video compression Encodes the differences between

current andfirst frames only

Some video compressions use this operation The differences are computed for all the

pixels in a frame A simple processor computes these differences one at a time MMX
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technology allows a parallel estimation of pixel differences and, therefore, improving the 

speed of the application

2 2 Reliability and Quality terms - Definitions

Every plant has checking procedures to determine whether or not standards are being 

met These standards are based on both product quality and process reliability In this 

thesis, we assume that quality is related to the number of faulty items that a process 

produces On the other hand reliability relates to the production line and depends on three 

parameters UPH, Equipment Availability and Machine Utilisation Both Quality and 

Reliability define the “Output” of the production line The figure below (Fig 2 2), 

illustrates all the parameters that can affect the output of a production line, as given in by 

the EVF Team in Intel (1999)

UPH x U til x iT o ta l * Equip Reserved} xU /D  x Nominal Week« x People Capability = OutputJkutea3
Figure 2 2 Parameters governing the output of a process of a production line 

In this thesis we will not deal with “People Cap ”

Below we give the definitions of all the parameters measuring Reliability (including 

those presented in Fig 2 2)

Util (Utilisation) Is the utilisation of a component/stage of a production line This 

utilisation may include scheduled downtime to allow for the setup of a machine, machine 

cleaning, conversion of the machine etc
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Equip Avail (Equipment Availability) Total Equipment (Total Equip) minus any 

equipment held us reserved (Equip Res)

U/D (Unscheduled Downtime) Unscheduled downtime may be due to repair of a 

component, assists and blackouts Assists may be defined as any unplanned interaction, 

which requires human intervention of less than six minutes to correct After six minutes it 

becomes a failure

Failure Occurs if any interruption or variability from the specifications of equipment 

operation requires the replacement of a component

People Cap (People Capability) Refers to the capability of people working for the 

production line

Nom Weeks (Nominal Weeks) Refers to the period for which we want to do the 

investigation

Yield Quality of the product Counts the number (percentage) of non-defective items 

UPH The number of units that a component/stage of a production line can produce per 

hour UPH should be fairly constant, unless the system is improved or large amount of 

unscheduled downtime occurs 

Run Rate = UPH * Util * Yield

Pure UPH This is the theoretical UPH and it is different for each product It can be 

estimated as (3600 seconds)/ (Cycle per unit)

Desired Gap Each company has a production policy, within which desirable gaps of time 

are allowed for This gap is a safety margin, so that the production can cover unscheduled 

downtimes and accidents Machine Availability is estimated based on this parameter as 

the sum

Machine Availability = Machine Utilisation + Desired Gap

The UPH of the whole production line is the UPH of the slowest stage of the system This 

stage is called the “Bottleneck!’ of the process For example, suppose that we have a 

production line, which consists of 5 process steps The UPH of each step is given in 

Figure 2 3 We can see that the capacity (UPH) of the whole production line is based on 

the slowest process, Step 3
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Process Sten 1 SteD 2 Sten 3 Sten 4 Sten ‘
Per Machine Output: 1000 85 120 505 67

# Machines per Step: 1 10 3 1 15

Capacity / process step: 1000 850 360 505 1005

Line Capacity: 360

Figure 2 3 A graphical representation of a manufacturing pipeline capacity,
(not to scale)

2 3 Production Control Process

Investigating reliability features of plant processes requires good knowledge of the 

system (the structure, the components, products etc) and of the possible states, (with the 

time spent in each one) This section presents all the possible states as SEMI Publications 

(a group of people working for Intel and analysing the production processes) presented 

them

Total time available is divided into two periods Operation and Non-Scheduled time 

Non-Scheduled occurs when the machine is not scheduled to function at periods such as 

holidays, weekends and non-working shifts Furthermore, when equipment is out of the 

line because of installation, rebuild or upgrade, its state is labelled as non-scheduled also

Operation time is further sub-divided into two periods Equipment Uptime and 

Equipment Downtime
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Total T im e

Operation Time Non-Scheduled Time

Equip
Upt

iment
ime

Equipment
Downtime

Production
Time

Stanby
Time

1 Engineering 
I Time

Scheduled
Downtime

Unscheduled
Downtime

Figure 2 4 The total time divides by equipment status

Equipment Uptime

Equipment Uptime is the sum of three periods of time Production time, Standby time and 

Engineering time Production time is the period for which the equipment is performing its 

intended function This includes regular production (including loading and unloading of 

product), rework, production tests for preventing failures and repair procedures Standby 

time is the period of time that the equipment is in a condition to function, facilities are 

available but it is not operating This includes operator unavailability (1 e breaks, 

meetings etc), product unavailability ( 1 e empty buffer) and waiting for the results of a 

production test Engineering time is the period where the equipment is in a condition to 

perform its intended function but is operational for the purpose of conducting engineering 

experiments

Equipment Downtime

This period of time includes Scheduled and Unscheduled Downtime Scheduled 

downtime occurs when the equipment is not available to perform its intended function 

due to planned downtime events This includes preventive actions designed to reduce the 

likelihood of equipment failure, setup time, which is the required time to complete 

alteration to accommodate a change, and facilities-related downtime (environmental, 

power and communications hook-ups) Unscheduled downtime occurs when the
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equipment is not in a condition to perform its intended function due to unplanned 

downtime events. This includes repair (the sum of all the repair steps: diagnosis, 

correcting actions, equipment tests and process test), problems created out of the 

specification of faulty inputs and facilities-related downtime (unplanned blackouts, 

environmental etc.).

2.4 Production Control Process -  ESSM Plant

In section 1.6, we mentioned that Intel transferred the production control process from 

the “old” technology to MMX technology. The new, higher technology, refers only to the 

technology of the product and not to the production line as such. Of course, the 

production lines changed to produce the new product. The old stages were mainly 

replaced by new stages with similar function, but with the principal differences of 

relating to the size of both the components and the machines. In this section we present 

the control process for both production systems and we give the inputs and outputs of 

each stage. Another major difference between these two systems relates to the inspection 

stages.

2.4.1 Old Production Line

The board building production line consists of fourteen steps. Almost half of them 

involve inspection of the board's quality. The first step is the preparation of the bare 

fabric (fab) for the production line, which consists of the attachment of appropriate labels 

onto the board. The next step, Screen Printing, involves application of the solder paste to 

the pads on the bare fab. The paste ultimately is the mechanical and electrical bond 

between the components and the board. The first test is performed at this stage. If the 

paste levels are too high then pressure is increased to reduce height, and vice versa if the 

paste levels are too low. The third step, SMT Placement, consists of three machines 

which accurately position components on the board. The first two are identical and deal 

with positioning of all the smaller components. The third machine is used for the 

placement of the larger and heavier components. All three machines have an automatic 

system for checking the tolerances on the parts as they go through vision processing. As 

a result, if the part is too big, too small, damaged or missing from the pick up nozzle it
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will be rejected Reflow is the next step and its function is to heat the solder paste above 

its reflow temperature for a specified period of time so that it melts and adheres to the 

components leaving them firmly attached to the board

The Post Reflow Test ensures that all the correct components are in the right location and 

in the right orientation It also ensures that all the component placements and solder joins 

conform to iWS (Intel Workmanship Standards) The operator places the overlay over the 

board and inspects the whole board in a methodical manner Typical failures include 

missing components, skewed components and damaged components All failures are fed 

back to the relevant source (step) at which they occur, 1 e a board with a failure type 

“Open Joint” is fed back to the stage of “Screen Printing” or with a failure of type 

“Missing Passive” is fed back to the stage of “SMT Placement” Manual Assembly is the 

sixth stage Its function is to insert the MTH (Manual Throughhole Mount) Connectors 

into the board The board passes between four to five operators (depending on the 

number of parts per board) who insert a variety of leaded components and connectors of 

various sizes into plated through holes Each operator has an MAI (Manufacturing 

Assembly Instruction) to tell him or her where each part goes, the orientation and any 

other information that may be relevant to the correct insertion of the part As each 

operator finishes inserting their own components they pass the board to the next operator 

and the last operator does a general check to ensure all components are accounted for and 

pushed in fully

Wave Soldering involves soldering the leads to MTH components, hence providing the 

mechanical and electrical bond, and also attaching the components to the board The 

wave profile is similar to the reflow oven profile and the process is carried out in much 

the same way After that, the board passes through another test, the Post Wave Inspection 

This is a visual inspection of the board to ensure that the solder joints and MTH 

components conform to iWS All failures are fed back to the relevant source (step) as 

they occur, 1 e a board with a failure type “Open Joint” is fed back to the stage of 

“Wave” or with a failure of type “Missing Connector” is fed back to the stage of
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“Relevant Manual Operator” Final Assembly is the next step and its function is to 

complete any additional processes that are required to produce the finished product 

The next four steps involve testing the quality of the board IC T  (In Circuit Test) is the 

first of the automatic test processes Each board is tested for continuity and sort circuits in 

the various circuits Continuity and sort circuits are created when the manufacturing 

constraints are not conforming to iWS The tolerances of the various devices are also 

tested After the board is tested it is either passed or failed on iFICS (Intel Factory 

Information Control System) A failed board is sent to "debug" to determine the cause of 

the failure The second quality test is the Functional Test Its aim is to do a complete 

power up of the board and to run a number of tests that verify the functionality of the 

board This involves similar procedures to ICT Any failed boards are again sent to 

functional debug At the EOL (End of Line) test there is one last check on all boards to 

ensure none have been physically damaged during test procedures and all parts are in 

place and conforming to iWS Last, but not least, is the Outgoing Quality Assurance 

(OQA) Its function is to complete a sampled inspection of the boards coming from EOL 

If any board fails at that stage of the process the entire line is stopped and screened The 

board is taken back to the relevant area and the root cause and corrective determined A 

number of boards that follow all go through OQA and depending on the nature of the 

failure, boards may be pulled back from the pack for re-inspection Board Pack is the last 

step Each board is placed in an antistatic bag and then is placed in a sectioned cardboard 

box

For every test, each failure causing a defective board is noted in a logbook and the 

relevant source is informed if a trend develops The route that the board must follow to 

correct the failure is also noted Figure 2 5 illustrates the flow of the process described 

above Before transferring to the new system, Intel used two identical lines of this type, 

placed in parallel
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Figure 2 5 Flow chart o f the Schematic o f Process o f the old production line
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2 4 2 M M X Production Line

In this section we describe the new production system which Intel adopted in last year 

(1998) At the beginning of the line, the inserted bare fab is a panel consisting of 6 boards 

(2 * 3) and the separation of those 6 boards takes place after the IC T  test The flow of this 

line is divided into three subsystems After the Panel Mark stage, in which the panel 

takes an identification number, it is ready for the first subsystem The stages in this 

subsystem involve working on the secondary side of the panel The first stage is the 

Secondary-Side Paste and its function is to apply the solder paste on the bare fab The 

height of the paste is measured on particular locations at specific intervals to ensure that 

it remains within the control limits If the paste heights are too high the squeegee pressure 

is increased to lower them and vice versa The next two stages are Secondary-Side Chip 

Shoot and Secondary-Side Pick and Place Their intended function is to place all the 

surface mounted components on the board The first stage places the smaller components 

(resistors, capacitors, etc) The larger components are placed into the second stage where 

the speeds of the table (table is the bare fab with the components attached on) are slower, 

reducing the possibility off the parts falling of the board under their own inertia The 

machines have an automatic system for checking the tolerances on the parts as they go 

through vision processing As a result, if the part is too big, too small, damaged, or 

missing from the pick-up tape they will be rejected The number of retries the machine is 

allowed to make is one for the first stage and zero for the second Next stage is Reflow It 

functions in exactly the same way as the Reflow stage in the old system It leaves the 

components firmly attached to the board The last stage of this subsystem is the 

Secondary-Side Visual Inspection, which inspects the panel and ensures that all the 

components are in the correct location and have the right orientation, it also checks that 

all component placements and solder joints conform to iWS

The second subsystem functions in exactly the same way and consists of exactly the same 

stages and machines The only difference is that it works on the primary side of the panel 

and the components that are placed in this subsystem are more important (e g Pentium 

chips)
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The third subsystem consists of stages that give the product the final look and ensure its 

quality By this stage, six boards are sharing the same panel Firstly, Depanel separates 

the panel into individual boards, which are required for further processing IC T  inspection 

is the next stage and functions in the same way as for the old system It performs the first 

automatic test procedures The final three stages give the final look to the product 

Covers, skirts and thermal plates are attached to each unit This is followed by a very 

important inspection, the SYS Test, which involves a complete power up of the board and 

verifies the functionality This is a similar procedure to ICT The Cover Mark stage gives 

the board its final look, putting identification laser marks on all units The last stage is the 

Final Visual inspection and Fit test At this stage an inspector ensures that the final 

product is ready to be packed

OQA inspection (Outgoing Quality Assurance) is again present in the new production 

system but is off-line Here, a sampled inspection of the boards coming from the Board 

Pack stage is completed The process is split between a visual inspection and a functional 

test If any board fails at this stage of the process the entire line is stopped and screened, 

100% inspection A specified number of boards, following a failed board all go through 

O Q A  and depending on the nature of the failure, boards may be pulled back from pack- 

off for re-inspection
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Figure 2 6 Flow chart o f the process o f MMXproduction line
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2 4 3 Comparison of the two lines

In section 2 4 1 and 2 4 2 we referred to the two production systems which Intel have 

used to produce Pentium processors Although the two systems perform similar tasks 

there are some differences between the stages For example, the new system does not 

have a “Manual Assembly” stage All stages are automated and robots are used in the 

placement and testing of the components (refer to “Manual Assembly” and “Wave 

Soldering” in section 2 4 1) There is now no need for either this sequence or for post­

wave inspection in the new production system The “Functional Test” has also been 

replaced by the “SYS test”, a more automated process The end of line inspection for the 

old system, called “EOL”, has now been replaced by “FVI Pack” (Final Visual 

Inspection) the test at the very last stage of “Board Pack”

>
Last but not least is the change of the inspection “OQA” (Outgoing Quality Assurance) 

This test used to be a part of the production line but in the MMX line is an off-line 

inspection The process of testing boards is the same as for the previous line, but is now 

separate from the production system

2 5  In Summary

Chapter 2 presented the basic system to be investigated The next chapter, Chapter 3, 

gives the model and flow processes for these two lines The mathematical model 

overviewing the system is presented and how simulation, in particular the Monte Carlo 

technique, is applied to this system We provide further discussions on the Monte Carlo 

simulation techniques and we describe the algorithms governing the simulation process 

Chapter 3 also gives details of the data and feedback gathered from the Intel ESSM plant 

in Ireland
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Chapter 3

Modelling the Production System

3 1 Monte Carlo

The name Monte Carlo was inspired by the similarity to statistical simulation of games of 

chance, but although the basic procedure of the Monte Carlo method is the manipulation 

of random numbers, these should not be employed extravagantly Of course a large 

sample of random numbers will give more accurate results for any model of mterest, but 

when systems are large and complex, each Monte Carlo repetition needs a lot of time, 

making the software tool very slow

Two subdivisions of Monte Carlo simulation mclude Direct and Indirect We use the 

Direct Monte Carlo method to solve probabilistic problems where random numbers 

directly simulate the physical processes of the original problem and the desired solution 

is mferred from the behaviour of these random numbers Another way of solvmg a 

complicated problem is to use Monte Carlo simulation to solve a similar or related 

problem with, usually, simplified features This method is called Sophisticated or Indirect 

Monte Carlo To model the Intel system, we used direct Monte Carlo simulation, 

generatmg a random number for each parameter of the problem (Hammersley and 

Handscom, 1979) For example one parameter “Scheduled Downtime” depends on the 

probability that a failure occurs and empirical frequency distributions can be determined 

for number of failures m a given period Clearly as more real data (on both Quality and 

Reliability) become available, so the distributions and simulations based on them can be 

refined For each experiment, quality and reliability measures are obtained

In the mtroduction (Chapter 1) we mentioned that we are usmg three different Monte 

Carlo models m the Software Tool we created In order to estimate the Quality of a given 

size of boards we are usmg a model where each Monte Carlo repetition represents the 

testmg of a smgle board, passing through the whole production line For example if the
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user wants to test 60,000 units (boards) for any possible failure, the Monte Carlo model 

(presented m Section 3 3) should do 60,000 loops On the other hand, estimation of 

Reliability of a each stage of the line requires a model (fig 4 8  and 4 9) where each loop 

represents a working day for each stage The procedure for estimating the reliability of 

the overall system is applied if only the reliabilities for the stages are already estimated 

(by the model m section 3 3) The idea behmd the estimation of the Reliability of the 

overall system, is for each Monte Carlo loop to generate a state of the system (able or not 

to finish its intended job) with the help of procedure “Q” and we fully describe this m 

Section 3 3 Each Monte Carlo loop of this model represents a working day

3 2 Generation of random numbers 

3 2 1  Simulation of Quality

As we mentioned above, in simulating Quality, one Monte Carlo repetition is equivalent 

to the passmg of one board through the whole production system Each mspection of the 

system can detect a specific number of failures For each failure a random number is 

generated from the Uniform distribution (with maximum value 1 and mmimum 0), and is 

compared with actual percentage of failure for this mspection This actual percentage has 

been obtained from the relevant mputs at each mspection every day The reason we are 

usmg an actual percentage m simulating quality is because the number of faulty boards 

that occurred every day is very small and almost constant Intel is handlmg Quality the 

same way with do (as actual percentage) In the Table 3 1 we can see that the percentages 

are really small as taken from the PSVI 1 mspection over a period of four weeks tune 

Demonstration of this can easily be found by the fact that stages, (for example the stages 

of Chip-Shooters, section 2 4 2) do not allow for replacement of a faulty component more 

than once for the first machme and never for the second

6/27/98 - 7/04/98 7/11/98-7/18/98 8/8/98 - 8/15/98 8/15/98 - 8/22/98

Percent o f  
having a 
failure

0 067 0  081 0 09 0 091

Table 3 1  Percent of having a board with a failure (15  possible failures) as detected in 
the PSVI 1  inspection for the duration of 4 weeks
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Another fact is that each time a new tape of components is loaded onto the machmes, 

there is a possibility that an error can be made and as a result several boards can be built 

with a wrong part To prevent this, there is an operator that verifies each stage and also a 

second “buddy” operator re-verifies them For these reasons we describe the probability 

of failure of a board by Uniform distribution in the same way with Intel We present m 

detail the procedure of Quality simulation m Section 4 6  (Figures (4 6 ) and (4 7))

3 2 2  Simulation of Component Reliability

However, simulation of Reliability works m a different way smce reliability of the system 

depends not only on Scheduled Downtime (section 2 2), which is reasonably constant 

every day, but also on Unscheduled Downtime (section 2 2) which occurs randomly 

Consequently, different statistical distributions must be fitted to Scheduled and 

Unscheduled Downtime for each stage in order to describe and predict a downtime The 

tool permits the user, after recordmg observed Scheduled and Unscheduled Downtime 

data, to do a Visual Statistical Analysis with the help of a wmdow especially created 

(Manual, Appendix) This Visual Analysis is exploratory and mcludes provisional fits of 

distributions for Scheduled and Unscheduled Downtime at each stage of the system for 

the reason described above (Fig 3 1) Each Monte Carlo repetition represents one 

working day For every loop, two random numbers are generated for each stage, one for 

Scheduled and one for Unscheduled Downtime from the distributions fitted on historical 

data at the stage of Visual Statistical Analysis After generatmg the downtime (both 

Scheduled and Unscheduled) for each stage is very easy to estimate its reliability 

Furthermore, smce real data available to us were limited, the software tool that we have 

built can also generate random numbers from various standard distributions for down 

times e g Exponential and Weibull This generation is supported by the Random Number 

Generator (Rnd function) m Visual Basic, which generates numbers between 0 and 1, 

U(0,1) At the end of this section we present how we generate random numbers following 

the Normal Distribution
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Update Data

Figure 3 1  Data processing for system improvement

The software tool uses four standard distributions (Exponential, Weibull with one 

parameter, Uniform and Normal) to which downtime data can be fitted Of course there 

are a lot of other life time distributions, (well-described by Kalbfleisch and Prentice, 

1980), such as Log-Normal, Gamma, Weibull with more than one parameter, etc , which 

may represent downtime equally well if not better for some applications The reasons we 

chose those four distributions are both because downtime data collected by Intel usually 

follows one of these four, but also because Intel is usmg those four mto some other 

models (such as Output Capacity Model, Intel EVF Team, 1999) and this will allow 

comparisons between them and our tool Of course the code of the software tool is 

flexible enough to add more types of distributions Below we present an example, on how 

we generate random numbers following the Normal distribution

Random numbers from Normal Distribution

Knowing the Mean and the Standard Deviation of the sample we can generate values 

following the normal distribution as follows We use the Rnd function to generate 

Uniform Random Numbers U(0, 1) The Rnd values presented m the formula below 

represents, of course, different numbers

Normal Random Number = Mean + SD* V -  2  * log( Rnd ) / Rnd
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Where SD is the standard deviation of the sample Statistical software package JMP 

(SAS, 1995) is usmg this formula to generate random numbers from Normal 

Distributions

3 3 Monte Carlo Method

In section 3 2 we referred briefly to the rational of how to use simulation for Quality and 

Reliability Givmg more details, Rice and Moore (1983), presented an outline of the 

Monte Carlo simulation procedure (section 1 4) m order to mvestigate a series system 

(Fig 11) This procedure consists of

1 For each mspection m turn, assign the number of failures, F,

2 Calculation of the first estimate p, = F/n,, where p, is the probability of havmg a 

failure of type i, and n, is the number of trials

3 Draw a random sample from U(0,1) for each unit passmg the mspection and compare 

it with the probability p,

4 Calculation of component reliabilities and/or quality

5 Repetition of steps 4 through 5 a total of n times

Applymg this process directly enables us to estimate Quality at mspection Repetition of 

the procedure as many times as the numbers of units that we want to mspect (usually 

large for good results) gives us the quality of each mspection m the production line For 

example, estimation of the Quality of subsystem consistmg of two mspections Ii and I2 

can achieved as follows

1 Collection of the Quality data of the plant will initially give us the total number the

number of units passed through these mspections (m, n2), and the number of units

detected with a failure (Fi, F2) for each mspection

2 The probability havmg a failure at each mspection is pi = F,/ n,

3 For as many Monte Carlo repetitions as the number of units the user wants to mspect

do step 4

4 If Rnd > p, then the board to has a failure
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In order to estimate the reliability of each stage m the production system, it is not 

necessary to know if the system consists of parallel production lines or parallel stages 

For this reason we also use the above technique, Rice and Moore (1983), m order to 

estimate the reliability of each stage Flow charts of this technique applied to both 

Quality and Reliability are presented m Section 4 6

Estimation of the Reliability of the overall production system

The above technique can be used only m series systems, hence, estimation of the 

Reliability of the overall system cannot be done usmg this technique because it is not 

common to have simple series systems without parallel stages or without havmg two or 

more repeated lines For this reason, and because the system we are mvestigatmg has 

both parallel stages and parallel production lines, we use a Monte Carlo procedure 

(Procedure Q), suggested by Fishman (1986)), a technique known as Monte Carlo 

simulation Based on Bounds (Section 1 4) This technique was initially used to estimate 

the probability that two particular nodes are connected m a given network (Fig 1 6 ) 

Fishman (1986) used Procedure Q to estimate the reliability of a network, and by 

mcorporatmg lower and upper bounds, mcreased the accuracy of Monte Carlo sampling 

In this section, we demonstrate this technique by estimating the reliability of a small 

subsystem from Intel’s new production system In section 2 4 2 we give mformation for 

each stage mentioned m this example

Suppose that we have two identical subsystems of the new production line (Fig 3 2) Both 

subsystems are producmg the same product and when one is down the product is sent to 

the other subsystem In this example, we suppose that the reliability of each stage (SMTI 

and SMT II) is equal to 0 89 We chose this probability (0 89) because it is closer to both 

SMT I and SMT II reliability If any of the stages in subsystems SMT I and SMT II is 

down the whole subsystem is down
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Subsystem 1

Subsystem 2

Figure 3 2 Two subsystems from the MMX production line in parallel

Where SMT I consists of Secondary-Side Paste Print stage, Secondary-Side Chip Shoot 

stage, Secondary-Side Pick and Place stage, Secondary-Side Reflow stage, and 

Secondary-Side Post-SMT Visual Inspection

SMT II consists of Primary-Side Paste Print stage, Primary-Side Chip Shoot stage, 

Primary-Side Pick and Place stage, Primary-Side Reflow stage, and Primary-Side Post- 

SMT Visual Inspection (Section 2 4 2 discusses details of the functions of these)

The probability that we took as constant (0 89, a hypothetical value close to reality) for 

each subsystem (SMT I & II) m the above example, has to be evaluated for each stage of 

every subsystem to estimate the system Reliability (Fig 3 3) This evaluation is made 

using the procedure outlined by Rice and Moore, (1983), Section 3 3 Smce Procedure Q 

was initially used to estimate the reliability of a production system and not a network, 

some changes are necessary The basic difference is that we do not mvestigate if any two 

particular nodes are connected (Fig 1 6 ), but do check to see if the first subsystem of any 

production line is connected with the last subsystem m another (or the same) line The 

detailed procedure, as applied to estimation of the reliability of a production system, is 

given below
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Update Dala

Figure 3 3 Estimation of the Reliability of the overall system 

3 4 Procedure 0

1 Estimation of the total number of stages (subsystems) of the production system which 

is under investigation (Number of stages at each line * Number of lmes)

2 Creation of a vector with as many elements as the total number of stages

3 For each element, sample U from U(0,1) If U > p (Where p the reliability of the stage 

that the element corresponds to) then this element will take value equal to 0 , 

otherwise 1

4 For each production line, sum the elements that correspond to identical stages If the 

sum is equal to 0, then the system is down Otherwise, contmue with the next stage

5 If the system is working then Success = Success + 1

6  Repeat steps 2 to 5 for very many Monte Carlo repetitions

7 The reliability of the system is equal to Success / Monte Carlo repetitions

Applymg the above procedure to our example (Fig 3 2), the parameters are as follows 

Total number of stages 4

Creation of a vector (Xi, X2, X3, X4), where X ]tX 3 represents the state of SMT I, and X2,

X4 the state of SMT II for each line X! can be either 1, if stage is working, or 0 if stage is 

down Comparmg the probability that a stage works (0 89 m our example, Fig 3 2) with '

the sample U from U(0,1) we generate the vectors The possible values of this vector are 

as shown m Table 3 2 For example, if the processes generate the factor

(X1 .X 2 .X 3 .X 4) = (1 ,0 ,1 ,0 )
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That means that SMT I subsystems are working m both production lines, but not the

whole system, because the units cannot move on to the next stage (SMT II)

Xj X2 X3 X4 Xi + X3 x 2  + x 4 System’s State

1 1 1 1 2 2 Workmg

1 1 1 0 2 1 Workmg

1 1 0 1 1 2 Workmg

1 0 1 1 2 1 Workmg

0 1 1 1 1 2 Workmg

1 1 0 0 1 1 Workmg

0 1 1 0 1 1 Workmg

1 0 0 1 1 1 Workmg

0 0 1 1 1 1 Workmg

1 0 1 0 1 0 Failed

0 1 0 1 0 1 Failed

1 0 0 0 1 0 Failed

0 1 0 0 0 1 Failed

0 0 1 0 1 0 Failed

0 0 0 1 0 1 Failed

0 0 0 0 0 0 Failed

Table 3 2 The possible states of a production system consisting of four stages

For 500 Monte Carlo loops this procedure give the system’s reliability to be 97 7% In 

order to check the accuracy of this result, we compare it with the mathematical model 

Before movmg to the mathematical model we must explam why we estimate system’s 

reliability by 500 Monte Carlo repetitions (Table 5 4 presents results from different 

number of repetitions) It is clear that the more Monte Carlo repetitions these are, the 

more accurate the estimated reliability will be 500 repetitions are sufficient to ensure 

good results Accordmg to Fishman (1986), with his method reduced the number of 

repetitions by usmg Bounds In this software tool we do not require a reduction of 

repetitions We want to mvestigate the extreme values of possible downtime, use 

sensitivity analysis to explore the implications of changmg features for production which
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influence downtime and ultimately to make it more predictable For that reason it is not 

necessary to use bounds m our software model, smce the user can choose the number of 

repetitions that correspond to the number of working days m this model

Fishman’s Bounds

Fishman (1986) took as Upper and Lower bounds A, B, respectively the following

A =  5 > 2 ( x ) P ( x ) (3 1)
xeX

B h J ^ O O P U )  (3 2)
xeX

where <!>i, &2 are structure functions (Section 11)

• . M - i - n o - n * . )  ( 3 3 )y=l tePj

- n n - i i o - * . ) ]  ( 3 4 )y=l teCj

and

P(x) = Y [ [ l - p ,  + ( 2 p , - l)* ,] ,x e  X  (3 5)

Where X the set of all system vectors, P„ C, (appeared m formulas (3 3) and (3 4)) the 
mmimal paths and cutsets

3 5  Mathematical Model

With the help of the Equations (1 4) and (1 5) we can estimate the reliability of a system 

with two parallel production lines In general if we have a system with m identical 

parallel production lines (exactly as found for Intel’s ESSM plant) and each production 

lme consists of n series subsystems (Fig 3 4), then a unit which exits from a subsystem 

can go mto any of the available subsystems in the next stage Each subsystem consists of 

S, stages, where i, is the number of subsystem (Fig 3 5) and when a stage m a subsystem
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is down the whole subsystem is down. The whole production system is down when all the 

subsystems are.

Figure 3.4: A system of m identical production lines

Stage 1 - ................... Stage 2 Stage Suw w w

Figure 3.5: The Subsystem i, with k stages.

So, the probability of n independent events can be computed as follows:

R=RiR.2...Rn (3.6)

where R, the reliability of the m parallel system, consists of m identical subsystems i. So: 

Ri = 1 - (1 - Pi)m (3.7)

So the reliability of system in Figure 3.4 can be estimated as:

R = [1 - (1 - P 0m] [1 - (1 - P2)m] ... [1 - (1 - Pn)m] (3.8)

where Pi, is the reliability of subsystem i, given by:

P i=Pu Pi,2  —Pi, (3.9)

with pjj the probability that stage j  in subsystem i is down and s the total number of stages 

in this subsystem.

In our example (Fig. 3.2), we assumed R, = 0.89 (to simplify the example) for every i, So 

the reliability of the s y s t e m  in Figure 3.3 is equal to:
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R = [1- (1- 0 89)(1- 0 89)] * [1- (1- 0 89)(1- 0 89)] = 0 976

We can see that the results on systems’ reliability from the Monte Carlo procedure are 

very close (1% absolute difference) to the theoretical results on the same system’s 

reliability In order to test the validity of the Monte Carlo approach further comparisons 

with the theoretical model were carried out at all stages Additional results are presented 

in Chapter 5

3 6 D ata  Gathered

The basis for the experimental simulation work was the historical data collected on both 

Quality and Reliability data from Intel’s ESSM plant For Quality this included all 

possible failures that an mspection could detect and the number o f boards found with a 

failure every day For Reliability, data mcluded downtime, gathered from Intel’s “Green 

B ook”, (which contams a daily event record) Unfortunately, collection o f data on a 

systematic basis is difficult and time consummg m a plant o f the ESSM size, where huge 

amounts of information are generated daily Consequently data were available for eight 

weeks only and empirical distributions are necessarily crude because of this It is also for 

this reason that further options on standard statistical probability distributions were 

mcorporated It is also sometimes difficult to define the exact cause o f failure, which 

leads at times to some ambiguity m the collected data Nevertheless, the tool developed 

allows for updatmg and refining, as further data become available, and consequently 

performance should improve with tune

In order to estimate parameters such as Utilisation or Run Rate, the pure UPH is required 

We have consequently collected the pure UPH for each stage, for two different products 

All tables of raw data gathered for both quality and reliability are presented m the 

appendices
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3 7 In Summary

In this chapter, we presented the Monte Carlo methods that we used and applied it to a 

small subsystem from the Intel ESSM plant The results from this example compared 

well with the mathematical model Data gathered were summarised m outline with details 

reserved for the appendices In the next chapter, Chapter 4, we discuss m detail the design 

of the software tool
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Chapter 4

Design o f the Software Tool

This chapter presents the design o f the Software tool. It gives information about the aims 

of the tool and it’s structure. It also refers to the inputs/outputs and finally gives an 

overview of the prototype. Aims and objectives have a large part to play in software 

design, in relation to outputs and inputs respectively. Both aims and objectives help guide 

in building the interface of the Tool. The next chapter, Chapter 5, gives detailed 

information on the testing of the software tool, using both historical and simulated data.

4.1 Requirements Analysis

Intel’s requirements on this project were to create a software tool that can measure 

reliability of a production system. They asked for a tool able to simulate the implications 

of unreliable stages and estimation of expected cost. Sensitivity analysis, which is a basic 

feature of simulation models, was required as an option for this software. Sensitivity 

analysis offers a basis for answering a number of conditional questions about the 

parameters governing a process, in order to make possible recommendations and 

improvements in performance.

By the collection o f data we realised that the simulation model also includes Quality 

information since this has implications for smooth-running of the system and therefore 

links to reliability measures. In particular Run Rate (Section 2.2) depends on the Quality 

of the product achieved. Hence, a Quality model is included, which of course runs 

separately from the Reliability model, so that the users can have results on Reliability, 

Quality or both (for this reason we have three different Monte Carlo models -  two on 

Reliability and one on Quality).

For the creation of an accurate model of the production system, many inputs are required. 

By talking with people from different working areas, we found that most people were

-46-



familiar only with a subset of the mputs that the software requires and consequently not 

all the users wanted to have the same results For these reasons, we separated the users 

mto three broad categories dependmg on their primary functions (Manual, Appendix D) 

Later on m this chapter, we provide mformation about these three groups Clearly 

because o f the difference m outlook, a simply accessible mterface was necessary which 

could incorporate choices for less technically focused users, whilst offering the full range 

of reports/analysis necessary

Raw data provided by Intel (downtime only data for the reasons presented m section 3 2), 

should be passed through statistical analysis m order to be used by simulation models 

Thus, the addition o f a statistical analysis component m the software tool was considered 

indispensable Section 4 2 gives detailed mformation m the Statistical Analysis wmdow  

Due to limited routme data collection by stage, the statistical analysis is not as accurate as 

it could be Hence, the importance o f data daily collection is clearly demonstrated by this 

tool

Results on Reliability and Quality are presented m different wmdows and if the users 

specify they can have a combmation o f those two The reason we kept these results m 

different wmdows is because a user does not always want both and also because running 

both Quality and Reliability models at the same time will mcreases the simulation time 

Equally, users may be mterested m the estimation of the reliability parameters of one or 

more stages or a subsystem only, rather than the reliability o f the overall system Thus, 

the models run separately m usual mode, to improve simulation efficiency, and only 

concurrently if specifically requested by the user

Sensitivity Analysis

Two different wmdows help the users to mvestigate line reaction to parameter changes 

governmg both the Quality and Reliability processes Due to the large number of outputs 

and of possible scenarios we decided to create a wmdow which can compare all the range 

of parameters mvolved After each simulation run, the user can, if required, save results 

and compare them with these for other set-ups After each simulation run, (either on
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Quality or Reliability), a window-report is available to summarise the simulation results 

This report can also estimate the time that the system given by the current model needs to 

produce a number o f one or more desired products Collection o f data relatmg to the cost 

of Quality failures was very difficult to achieve Due to the complexity o f failures, it was 

very difficult to identify the exact cost The tool has the option to estimate Quality cost 

results and also to look at a range of hypothetical costs for demonstratmg purposes

4 2 The desien for each user group

The three groups of users (section 4 1) are Engineers, Statisticians and M anagers 

Engineers are clearly very familiar with the operation of the production system They 

provided us with the data on how each stage works, the layout of the production line, the 

failures that a stage can cause, how failures are prevented and what action is taken when 

one occurs Hence, we decided that they must be responsible for the design of production 

line, its representation as a software model and the insertion o f relevant mputs This 

mcludes the number o f production lines, Real UPH and the products that the whole 

system produces Due to the complexity o f the line, we thought that a pop-up menu for its 

creation was appropriate In Figure 4 1, we illustrate the model of the ESSM plant, as an 

engineer can create it, where these basic processes are denoted by the objects listed over 

the page (Fig 4 2)
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Figure 4.1: The model of ESSM plant as the software tool can represent it

The production system, as shown in Figure 4.1, consists of combinations of these objects 

and the lines connecting them represent the way a unit passes through each stage. Details 

on the actual creation process for the model and how to view each object are presented in 

the Manual for this tool (Appendix D).

Figure 4.2: The three objects with which we represent the production system:
Stage, Inspection, Failure respectively

The Statisticians group is responsible for insertion of Reliability and Quality data. Each 

day, machines and operators collect data from the production system. For that reason we 

created an input window that will allow users to insert data for each working day 

(Manual, Appendix D). Each time the user inserts new data, the database is accessed and 

the chart shows them the current status. Due to the complexity of the system and the 

potential volume involved, all data are not always simultaneously recorded. For this 

reason, a window allowing the user to insert data (both Quality and Reliability data) for
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more than one day was created The difficulty faced for this group o f users was m the 

statistical analysis o f this data Hence, the software needed to tackle this difficulty The 

raw data (Quality and Reliability data recorded) inputted on a daily basis by the 

statisticians should be changed to frequency data (frequency o f having a downtime 

between e g 30 and 40 mmutes) This is achieved by taking the mmimum and maximum 

values (downtime) of the sample and dividing the space between the two values mto 

twenty sections (of equal length, Fig 4 3) Downtime values are mapped to then- 

appropriate sections m order to calculate the number o f values that fall withm each of the 

twenty sections The relevant frequency graph can now be traced (Fig 4 4) Incidentally, 

the space is divided mto twenty sections as it was found that this division provided the 

smoothest graph We are applymg this procedure for both Scheduled and Unscheduled 

Downtime

Smce frequency data are available a Statistical Analysis can take place The user chooses 

the distribution, usmg parameters (such as mean value and standard deviation) given by 

the software tool, and a visual comparison (an example is illustrated m Fig 4 4) o f the 

distribution and the data will take place The reason we chose a Visual Statistical 

Analysis mstead o f the mathematical is because o f the complexity of the last method, 

making the tool slower Also companies like Intel are already usmg tools (such as JUMP 

or Excel) for the statistical analysis, and the purpose of this tool is not simply to do 

statistical analysis For the last reason, we allow users to insert the estimated distributions 

m the tool when these are available from other software tools, even if historical data are 

not mserted

Downtime from taken from the history of the plant

I t I " I 'I I l "' l 'I I I I I ■ t I - I I I; I I
Mm Max

Figure 4 3 Grouping of the inserted data
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Figure 4.4: Fitting of the downtime data (red line) by a Normal distribution (green line)

Simulation models will use the distribution fitted to the downtime data (as shown above) 

in order to give results to the “Managers" group. The interest of this group of users is on 

taking results on reliability and/or quality, comparing them, and the sensitivity analyses 

for the production line in order to produce reports and provide input to the discussion 

making process. For this reason, we decrease the number of inputs that this group must 

give to minimum. If Quality results are desired, the hypothetical number of units that a 

manager wants to “inspect” by the inspections should be inserted. For Reliability results, 

the number of weeks must be inserted. Due to the separation of the Quality and 

Reliability results, two different windows are used to present information. The results 

(both on Quality and Reliability) are presented in a graphical way but numerical results 

are also available. What is really required is not only a tool providing current system 

results, but also a tool which can provide the basis for system improvement. Creation of a 

window, which allows conditional scenarios for the system to be compared, was the next 

step. For example, the comparison of three different scenarios of “Unscheduled 

Downtime” for the production line presented in Figure 4.1, is presented below (Fig. 4.5). 

Were, “Scenario 1” represents the Unscheduled Downtime (in minutes) for a duration of 

100 weeks (700 working days, 24 working hours per day), “Scenario 2” is same with 

“Scenario 1 ” with only difference the downtime rate in the first stage “Panel Mark” and 

“Scenario 3” is the same with “Scenario 2” except that represents downtime for a 

duration of 150 weeks (1050 working days).
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Figure 4.5: Comparison of “Unscheduled Downtime” of three different scenarios

4.3. Nature of Tool 

Structure

The software tool is based on an object-oriented language, Visual Basic, and the 

estimation of outputs achieved through simulation methods, (Chapter 3). We use two 

types of simulation techniques: Simple Monte Carlo is used to investigate Quality 

features and Reliability of a given stage, and Procedure Q (a variant of Monte Carlo, 

Section 3.2), to estimate the reliability of the whole production system. The tool is 

compatible with Microsoft Excel and it can load data from an Excel file or save data in 

Excel format. The compatibility with Excel is needed, both because a large number of 

databases are built as Excel files, but also because it is easier for the user to handle a 

large amount of data, such as downtime history of a plant, through grid control (data 

inserted in cells the same way with Excel). Although it is compatible with Excel as
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regards data insertion, we did not manage to succeed m the online transfer of the outputs 

from Excel’s fittings methods to our software tool Hence, the statistical analysis wmdow 

was required

The basic problem we had to face when called to save and retrieve data from grid tables 

was the size of the tables We did not put a specific size of grid table because this would 

reduce the flexibility and limit the data On the other hand, it is very difficult to retrieve 

data from a file where the number of columns and rows is unknown because, if the size of 

the grid table is smaller than the size of the table m the wmdow, data will be lost If the 

size of the table is larger than the saved size, then the tool will have to spent more tune 

retrievmg empty grids This led us to insert the exact size of the grid table as an mput to 

the file Every time the user is savmg a file, the tool writes the size (No of columns, No of 

rows, separated by the symbol “I” e g “32112”) m the first grid box (0,0), where no data 

is bemg kept Loading a file should follow the process

1 Load the first grid box (0,0) only and read the number mdicatmg table size as above

2 Separate the number of columns from the number of rows

3 Close the file and create the grid table by usmg the size as mdicated m the previous 

step

4 Load the whole file

The layout of the data m the grid table depends on the type of data For each type of data 

(such as Downtime, Quality, Distributions etc) there is a different way of presentation 

Details for each layout are presented m Appendix D

4 4 Required information

The tool automatically asks for data and leads the user m msertion of all Quality and 

Reliability mformation m order to produce the most-up-to-date results Formats for data, 

together with typical screen images that are generated, are summarised m Appendix D 

(Software Manual) For a comprehensive use of this software tool the following 

mformation is required

-53-



1. Detailed plan of the process with inputs and outputs to each stage, together with 

information on fault-sourcmg and track-back, online repair options and cost related to 

those repairs For example, the stage o f Post Reflow Inspection feeds back boards to 

Screen-Prmtmg or to SMT Placement All possible reasons for feedback must be 

known e g open jomt leadmg to screen-prmtmg

2. Down time of each stage and likely causes Each stage consists o f several machmes 

and each machme consists of several components Down time for each component of 

each machme and details of the causes are required For example, the stage o f SMT 

placement consists of three machmes Data mvolvmg the down tune of each 

component must be related to each machme for accurate assessment of distribution of 

downtime involved

3. Quality mformation, relatmg to number of faulty boards at each stage and the exact 

cause of failure For example, the stage of SMT placement is responsible for boards 

with missmg components, skewed components, and damaged components It is also 

necessary to specify which of the three machmes from this stage produced the faulty 

board

4. Cost o f repairing a board correspondmg to a given fault For example, a board with a 

damaged component will pass to the off-line rework area Pure UPH of each stage for 

each product must be available

5. We also wished to have suggestions from Intel’s team on possible changes m the 

parameters of the production line such as mcreasmg the specific component reliability 

and processmg o f possible scenarios, for example, addmg redundancy m a specific 

stage of the line

4 5  Assumptions for Dynamic Simulation

Currently, there are five identical production lines m the Intel ESSM plant Each line

consists o f subsystems and each subsystem, o f stages When a stage is down, the

subsystem, to which it belongs, is down Hence, the assumptions made are

A. A subsystem behaves like a stage By making this assumption, we decrease the degree

of complexity m the mathematical and simulation model
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B. When a stage (subsystem) is down, units are sent to the nearest working stage Thus, 

we assume that the buffer of a stage is infinite and that there is always more than one 

item m the queue This means that a stage/subsystem that is not down is always busy In 

practice, there is a safety buffer o f three slots that can keep a stage working for three 

hours, even if the previous buffer is down

C. The data that we have are from two production lmes (#1, #2) and we make the further 

assumption that all production Unes are working at the same rate This means that they all 

have the same probability of producmg a faulty board and the same probability that a 

stage is down This assumption is not big at all if we think that the stages are identical 

and the products have minor differences

D. A stage o f a production lme services more than one product, (this is simply achieved 

by changmg the set-up o f the machme) One product might result m faster machme 

throughput than another product, and this may mcrease the probability o f unscheduled 

downtime when servicing this product The difference between the two probabilities is 

very small, so we make the further simplifying assumption that the unscheduled down 

time rate of a stage is the same for all product types

4 6 Design of Quality and Reliability Procedures

The software tool is based on two mam procedures (Chapter 3) The first is the “Mam 

Procedure o f Quality Inspection” (Fig 4 6) and “Reliability Inspection” (Fig 4 8) Each 

mspection o f a production lme exammes a specified number of boards for various 

different failures For each mspection and for each board o f the chosen mspection, the 

“Inspection Procedure” (Fig 4 7) is called, which exammes the board for all the possible 

failures that the current mspection can detect If a failure occurs, it mcreases the number 

of boards with this failure by one and adds the cost of this failure to the total cost

-55-



Figure 4 6  Quality Inspection Procedure
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Figure 4  7 Illustrates the procedure called  by Quality Inspection procedure (Fig
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Figure 4 8 illustrates the “Mam Procedure for Reliability Features” This mvestigates the 

three basic parameters Real UPH, Down Time and Availability for each day of the 

simulation time and for each subsystem o f the system (these three parameters have been 

defmed m Chapter 2) supporting this investigation by the “Reliability Procedure” (Fig 

4 9) Knowledge of both scheduled and unscheduled downtime can be estimated (Fig 

4 9) the real UPH (equation 4 1) of the system and it’s Availability (equation 4 2)

REAL UPH = UPH * (DOWNTIME -  AVAILABILITY) (4 1)

AV AIL ABILITY=DOWNTIME -  Unscheduled DOWNTIME (4 2)
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Figure 4 8 P rocedure for R e lia b ility  F eatures
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Figure4 9' Illustrates the basic body o f Reliability procedure
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4 7 In Summary

In this chapter (Chapter 4) we presented the design of the Software Tool and the reasons 

leading us to create the interface o f the tool in the way we did Some wmdows were 

presented along with the logic on which they were based Appendix D presents the 

Software Tool and gives detailed mformation on how to use the wmdows described m 

this chapter with the help of a Manual Chapter 5 gives the results o f the testmg of the 

Software Tool
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Chapter 5 

Production Line and Tool Performance

In this chapter we present the results of the Software Tool applied in the ESSM plant. 

Due to the size and capabilities of the Software Tool (22 different windows) there is a 

manual in Appendix D and it is recommended that the reader reads this first. The 

Software Tool is a large part of this thesis and the Manual is important. All the windows 

presented in this chapter are explained in Appendix D in detail. Of course, using a real 

production system (ESSM plant) for the test of the Software Tool increases the densityof 

the technical terms in this chapter. However, a good validation of the models is obtained 

by comparing the Software Tool with the real system and with the data provided from 

Intel. All specialist terms are summarised in the Glossary and clarified here for ease of 

reading.

5 .1 Data Manipulation

We referred in previous chapters (Chapter 3 & 4) to the importance of data collection in a 

production plant. Historical data (Section 3.6), subjected to statistical analysis, provides 

useful insight into both the day-to-day operation of the system and into the realism of the 

model. For example, at the stage of “Systest”; Figure (5.1) illustrates Systest downtime 

for the “Specify Data on Reliability” window, (Appendix D, section D.4.1). Scheduled 

Downtime may give extreme values due, for example, to the cleaning of a stage or a 

reload of components. In the data, available to us, a Downtime of 327 minutes in one day 

is recorded with the second longest downtime being 155 minutes. The reason for the 

former event was the damage to two vital components of the robot, which carries out the 

inspection. It took 280 minutes (almost 5 hours) to replace them. A statistician, reviewing 

this sample data, would normally note this as an outlying event, but it is nevertheless 

information, which should be supplied both to engineering and accounting. We present 

results showing the effect of inclusion and exclusion of the outlying values in the 

downtime distributions. It seems clear that serious machine damage will always
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constitute an extreme or outlying value but other repair work will represent a routine 

contribution to downtime data.

Figure (5.2) presents the fit for Unscheduled Downtime, using an Exponential 

distribution, including the extreme value of 355 minutes. Figure (5.3) presents a similar 

fit for the data, excluding the extreme value and with a difference in the mean time of 10 

minutes. The first Exponential distribution has a mean downtime of 40.3 minutes whereas 

the second has a mean of 30 minutes.
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Figure 5 .1: Scheduled and Unscheduled Downtime for “Systest” (minutes per day)
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Figure 5.2: Fitting Unscheduled Downtime (including all the values). 
X axis represents frequency of the events 

[ refer to plant process in last chapter... ]

Figure 5.3: Fitting Unscheduled Downtime (excluding extreme values). 
Y axis represents the frequency of Downtime.

In Figures (5.2) and (5.3), the red line gives the actual data value and green line the 

theoretical fit. The empirical distribution chosen by the tool for each stage (excluding 

extreme values) was tested with the help of x2 -test. For example at the stage of “Systest” 

the X  test f°r fitting an Exponential Distribution with mean value 30 minutes (green line 

in Fig. 5.3), to the Unscheduled Downtime is presented in Table (5.1). %2 value = 12.99 

on 6 degrees of freedom with n-tail the value 12.59 at 5%. Of course %2 -test is very crude
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on 6 degrees of freedom with n-tail the value 12.59 at 5%. Of course %2 -test is very crude 

for such small samples and low expected frequencies but the reason we present this is 

because the user will use this test in the future when the sample is expected to be much 

larger. However, it should be noted that for the specific test data presented here, a Fisher 

Exact test or Kolmogorov-Smirnov would be more appropriate. We should also not that 

this is a rather ad hoc method of dealing with outliers. One possibility for more 

sophisticated fitting might be the use of a conditional distribution in situations where 

frequencies are very low (large proportions of zeroes), using a further distribution to 

model actual downtime. For such a small data set, this might be rather elaborate but 

would, in general, reflect the influence for major events. This would require some 

changes of the tool such as the addition of the formula of the distribution and the inverted 

function as well. Of course, the addition of the distribution should take place in the key 

code of the tool and it will inform all the others windows dynamically about this change.

§ X '-lesl : Frequency(f) of 

historical data

Probability Frequency of 

E(30)
(f-fe)2/fe

1 17 0.47 15.04 0.255426

2 5 0.24 7.68 0.935

3 3 0.13 4.16 0.323462

4 2 0.07 2.24 0.025714

5 1 0.04 1.28 0.06125

6 1 0.03 0.96 1.126667

7 2 0.01 0.32 8.82

8 1 0.01 0.32 1.445

Total 32 1 32 12.9925
■ .....

Table 5 .1: A X  -test for the fitting of the Exp(30) to Unscheduled Downtime of “Systest”

The next section (Section 5.2) presents results on Quality and Reliability for the new 

production line (ESSM plant) as it currently works. Section (5.3) presents the sensitivity 

analysis of the production line, investigating various scenarios, and Section (5.4) presents 

the same results as Section (5.2), but this time for the old production system. A
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comparison of the two production lrnes is presented as well in the same section Chapter 

6 presents conclusions and recommendations made after the estimation o f both Quality 

and Reliability from various possible scenarios Most of the graphs presented below are 

exactly as presented by the software Tool itself

5 2 Results on Quality and R eliability fo r  In tel’s ESSM p lan t

Simulation Results on Quality

The simulation results on Quality are from the mspection of 10,000 units Inputs, mserted 

by statisticians (historical data) over a period of 4 weeks, relate to 112,495 units 

mspected o f product “DSP1 C”, and 37,938 units from product “P3XP 512k” The 

products DSP1 C and P3XP 512k are two different types of processors

For the first product, “DSP1 C”, simulation results (based on the historical data discussed 

before) are presented m Figure (5 4) It is clear, from the simulation results that the 

inspection o f “Systest 1, 2, 3” detects the larger number of faulty boards with 98 04% 

success (of failures = 1 9 6  units) From the same simulation results (Fig 5 4), the 

mspection o f “PSVI Pri” (which mspects if the components are well placed m the 

primary side of a board) records few faulty boards, with the percentage o f good boards 

being 99 66% That means that “PSVI Pri” detects 162 faulty boards less than “Systest 1, 

2, 3” That number is statistically quite significant when we know that the number of 

faulty boards detected by “DEK Pri” was 37 in a sample of 10,000 boards, meanmg 81% 

fewer faulty boards than “Systest”
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Number of Faulty Boards at Each Stage: Simulation Results
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Figure 5.4: Simulation results on Quality, where 10,000 items inspected (number of

faulty boards at each stage)

The large number of faulty boards detected by the “Systest” inspection can be explained 

by the fact that is comprehensive inspection, checking all parts of a board (hardware and 

software). Hence, the number of failures that this inspection detects is unsurprisingly 

larger than the number detected by less comprehensive inspections. The four major 

failures as shown in Figure (5.5), (codes: 8127, IB77, 8129 and IB81), are failures 

relating both to hardware (8129) and software (8127, IB77, IB81). While failures of the 

first two relate to the inability to install DOS, failure 8129 relates to the unsuccessful 

power-up of the board and failure IB 81 occurs when the board fails to boot. A detailed 

list of possible failures is provided in the appendices.
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Figure 5.5: Number of boards with each failure 

Simulation results on Reliability

Reliability results were estimated with the help of the simulation model for a period of 

100 weeks. Figures for simulated Scheduled and Unscheduled results may be requested 

every day, but the tool automatically presents weekly figures by default. From this we 

can see the extreme values of simulated downtime, and how often they have occurred. 

Figure (5.6) illustrates the scheduled downtime for each stage as estimated by simulation 

for the period of 100 weeks. The Simulated Scheduled downtime in subsystem SMT II, 

as shown in Figure (5.6), is much bigger than the Scheduled downtime in subsystem 

SMT I. This generally occurs due to the different types of components in each subsystem. 

SMT II is responsible for placement of major components (Section 2.4.2), which are 

more expensive than those in SMT I. It is for this reason that more checks (to ensure the 

quality of the boards), take place in these stages, increasing the Scheduled downtime. 

Where SMT I, consists of stages “Dek Sec”, “CP6 Sec”, “IP3 Sec”, “Atmos Sec”, “PSVI 

Sec” and “MHS Sec”. SMT II consists of “Dek Pri”, “CP6 Pri”, “IP3 Pri”, “Atmos Pri”, 

“PSVI Pri” and “MHS Pri”. All the stages referred above are presented in Chapter 2 in 

detail. In the glossary there is also a summarised description of the stages.
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Figure 5.6: Simulated Scheduled Downtime (in minutes) for the duration of 100 weeks

The inspection stages of “Systest” and “ICT” have the longest Scheduled downtime, a 

consequence of the complexity of these stages, and a reflection of the importance of high 

reliability. The “CM” stage, (which deals with covering the board and giving it the final 

look, fig. 2.6) although it has the second longest Scheduled downtime is less important. 

The downtime at this stage, as estimated by the simulation model, is high due to the 

loading of the components which are used to cover the boards. The downtime in this 

stage is not as vital as in “Systest” because of the large values for pure UPH that “CM” 

has, making it a very fast stage. Detailed presentation of the Simulated Scheduled 

downtime, as given by the software tool, is presented in Figure (5.7). We also notice a big 

difference between the simulated downtime each week. There are weeks with less than 

thirty minutes downtime and weeks with more than seventy minutes. This might happen 

because our historical data includes the general cleaning of a given stage, together with 

set-up for a different product. Such factors destroy the true failure data in the statistical 

sense, since the information does not relate directly to reliability but rather to the 

availability of the system. Hence the data, though valuable for costing, is not a measure 

of system performance. For this reason identifiable extremes of this type would normally 

be omitted from distributions which were designed to reflect the operation of the system 

under normal conditions. Again this raises questions of good statistical practise which 

might be more rigorously addressed as noted earlier.
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Figure 5.7: Simulated Scheduled downtime (minutes) at the stage of 

“Systest 1 ,2,3” for each week

On the other hand, Unscheduled Downtime is clearly more unpredictable and the 

identification of major events is far more difficult to achieve, and relies on detailed 

records being available. Figure (5.8) presents Simulated Unscheduled Downtime as given 

by the tool. Inspection stages (such as “Systest”) again have more downtime compared to 

other stages. As expected, SMT I (which consists of all the Secondary stages as described 

above), causes more downtime than SMT II (which consists of all Primary stages), due to 

the relative importance of the primary stages.
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Figure 5.8: Unscheduled Downtime fo r  the duration o f  100 weeks
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Some stages such as “Panel Mark”, have both Scheduled and Unscheduled Downtime 

which equal zero. The reason for this is that for the period of time for which historical 

data were supplied, no downtime occurred or was recorded (due to the low importance of 

these stages). Despite this, we include them in the model, because we want to present the 

whole production system and the facility exists for assigning distributional values to these 

quantities. The choice of distribution is simple, and further sophistication would be 

expected in further development.

Due to the complexity of the robot in the inspection stage “Systest”, Unscheduled 

Downtime is very unstable in that stage (Fig. 5.9). The minimum downtime recorded is 

110 minutes and reaches a maximum of almost 600 minutes. The robot consists of a big 

“arm” which takes all the boards from the buffer to the inspection place and then on to 

the next stage. On occasion, the “arm” can jam, causing Unscheduled Downtime. The 

reason for the presence of three identical robots in each line is due to their slow speed 

(Pure UPH = 150, for each robot).

100 weeks for “Systest” stage

The software tool, in addition to the description of downtime, can estimate a number of 

parameters as given as in Figure (5.10) for the whole production line and for the 

visualisation example, we choose product DSP1.C: (one type of the boards produced in 

ESSM plant ).
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Figure 5.10: Estimation of the parameters for the whole production system

We assume that the Yield required is 100% and the Desired Gap (Section 2.2) is 10%. 

The reason we choose a Desired Gap of 10% is because that is Intel’s policy. For the 

whole system, the bottleneck is the “Systest” with Real UPH of 383.3. The pure UPH of 

that stage is 450 and due to Downtime (both Scheduled and Unscheduled) it drops by 70 

units (more than 14.8%). Machine Utilization is 73.5% and RunRate is 55,580 units per 

week. The table below presents a comparison of the basic parameters for the two main 

subsystems (SMT I and SMT II), for the whole system.

PRODUCT:

D SP1.C

Machine

Utilization(%)

Real UPH RunRate

(k/week)

Bottleneck

Production Line 73.52 383.31 55.58 SYSTEST 1,2,3

SMT I 86.58 458.31 79.544 PSVI Sec

SMT II 86.69 449.36 76.032 PSVI Pri

Table 5.2: Comparison of the basic parameters for “DSP1.C” units 
(Yield=100%, and desired Gap = 10%)

As expected, the two Subsystems, SMT I and SMT II, have almost the same Real UPH. 

The most important thing is that after subsystem SMT II (75,756 units weekly), the 

RunRate drops to 62,003 units (a decrease of 18%) due to downtime in subsequent 

stages. For the second product, “P3XP 512k”, the parameters which change are Pure
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UPH and, consequently, RunRate The comparison is illustrated in Table 5 3, where we 

see again a loss of boards (17%) due to the downtime of the other stages

PRODUCT: 

P3X P 512k

Machine

Utilization(%)

Real UPH RunRate

(k/week)

Bottleneck

Production Line 73 52 159 14 21 98 PSVI Sec

SM T I 86 69 177 24 26 65 PSVI Sec

SM T II 87 28 159 34 26 83 PSVI Pn

Table 5 3 Comparison o f the basic parameters fo r  “P3XP 512k” units 
(Yield=100%, and desired Gap = 10%)

Due to the link between Quality and Reliability it is also of interest to look at the same 

parameters for a Yield not equal to 100% Table (5 4) presents these for the first type of 

products (DSP1 C), where we can clearly see the difference in RunRate

PRODUCT:

D SP1.C

Yield (%) RunRate

(Yield=100%)

RunRate

(k/week)

Yield estimated 

by inspection:

Production Line 97 83 62 003 60 657 SYSTEST 1,2,3

SMT I 99 89 77 150 76 655 PSVI Sec

SM T II 99 68 75 756 76 523 PSVI Pn

Table 5 4 Comparison o f the basic param eters fo r  “DSP1 C ” units

The Runrate of the whole system falls by 2%, which means a decrease in production rate 

of 1,500 units per week The reliability of the whole production line as estimated by the 

Monte Carlo model (Section 3 4) is illustrated in the figure (Fig 5 11) below The 

function of this window is outlined, (Appendix D, Section D 5 4), and in Section (3 4) we 

presented the procedure followed for the estimation
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Estimation of the Total Reliability

We evaluate system reliability by doing 500 Monte Carlo repetitions. Performance 

measurements on various experiments sizes using the Monte Carlo method, are given in 

Figure (5.12). Here the estimated reliability refers to the reliability of the whole 

production line. As shown in Figure (5.12), the number of 500 Monte Carlo repetitions is 

a number giving good results within a minimum time (around one minute for 500 

repetitions and around 2 minutes and 15 seconds for 1000 repetitions).

R e l i a b i l i t y

R e l i a b i l i t y

Stages Reliability % | Reality Hypothesis A
I

Panel Mark 100 1 1
Dec Sec 99.411 1 1
CPS Sec 99.845 1 1
IP3 Sec 99.869 1 1
Atmos Sec 99.549 1 1
PSVI Sec 99.411 1 1
MHS Sec 99.933 1 1
DekPri 99.321 1 1
CP6 Pri 99.959 1 1

dIP3 Pri «771  1 1

W orking Hours per d a y : 

W okring D a y s  per w e e k : 

Parallel Lines:

24

|Pafa«el Stages Refresh

Rea l Number of Parallel Stages: |~

Hypothetical Number of Stages:

Insert

Insert

■ ■ ■ ■ ■ ■ ■ m i n i m i  [ M o r % C a r io l|  System  Reliability (%): 0.85

Figure 5.11:  Estimation of the reliability of the whole production line

As was expected a number of 1000 repetitions give a good estimation but it needs more 

time to give a result that is very close to the result given by 500 repetitions. The range of 

the results on reliability for 100 repetitions is almost 5%, which is not very acceptable. 

Note that the mathematical model (Section 3.5) gives Reliability 84.41%. That means 

that the Maximum Absolute Error in 1000 repetitions is 2.7%, 3.3% in 500 repetitions 

and 7.6% in 100 repetitions. These results come from 30 trials in each repetition. The 

frequency of the results are shown in Figure (5.12), where we can see that 500 repetitions 

gives accurate results in good time.
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M o n t e  C a r l o  P r e c i s i o n

C0)D
?k.

Figure 5.12: Monte Carlo results on system Reliability

5.3 Impact of Sensitivity Analysis on the ESSM plant 

Quality Sensitivity Analysis

Sensitivity Analysis for Quality will be performed here for the stage principally 

responsible for faulty boards, namely “Systest” (see Fig. 5.4). From the data gathered, we 

see an increase (Fig. 5.13) of failures detected in the week defined by dates 8/15/98 -  

8/22/98. We have no information on the exact reason(s) for this problem; possibly there 

was a failure in the set-up of a machine resulting in the production of a large number of 

faulty items. We will simulate data this last week (8/15/98 -  8/22/98) with a reduced 

failure rate on the major faults (8127, IB77, 8129 and IB81). In this way, we are trying to 

overcome the problem which occurred that week (8/15/98 -  8/22/98).

k
It -II — 1---------------  -

78 -8 0 8 0 - 8  2 82 -84  84  -86  86  -8 8 8 8 -8 9

T o t a l  S y s t e m  R e l i a b i l i t y

□  1 0 0 0

■  5 0 0

□  1 0 0
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6/27 - 7/04  

7/11-7/18  

8/8-8/15  

8/15-8/22

SYSTEST
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0.008
0.007
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0.005

0.004
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0.002
0.001

0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Failures

Figure 5.13: Failures detected per week (from real data)

Decrease of the failure for real data by 40% rate for the four specified failures in the last 

week, gives a failure rate of the week (8/15/98 -  8/22/98) equal to the failure rate of the 

previous week (8/8/98 -  8/15/98). This change of the percentage for the four failures 

(8127, IB77, 8129, IB81), increases the “Systest’s” Yield from 97.83% to 98.86%, giving 

simulated results as shown in Figure (5.13). Comparing these simulated results (Fig 5.13) 

with the results of Quality (obtained from the simulation of the real situation) from Figure 

(5.5) we can see the difference in failure rates. Hence, the problem is immediately visible 

and may be affected, e.g. wrong set-up of a machine, which can increase the number of 

faulty boards by 30% in even one inspection only. Here, 210 faulty boards were detected 

from simulated historical data, 134 faulty boards from the sensitivity analysis scenario as 

given above -  Sample size: 10,000 units). Clearly the cost of an action to prevent a 

similar problem is less than the repair cost of the boards. Prevention of a similar problem 

can be achieved by tracing back the failures and then pointing the exact source of the 

problem and even providing historical reasons for its occurence.
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Types of Failures at Stage: Systest 1.2.3
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Figure 5.14: Simulation Quality results for 10,000 units with different failure rates. 

Reliability Sensitivity Analysis

As for Reliability, we investigate the sensitivity of system performance to the values of 

Reliability parameters using single distributions of assumttions, for the stages causing the 

most downtime ? (“Systetest”, “CM”). Again, the case for omitting the extreme values is 

pragmatic but simplistic in sophisticated terms as discussed earlier. From the real data, 

“Systest” has a mean Scheduled Downtime of 29.15 minutes. Without the two extreme 

values (100, 125 minutes respectively) the mean Scheduled Downtime drops to 24 

minutes. “CM”, in duration of 40 days, had Scheduled Downtime in only 5 days as given: 

{10, 90, 180, 40, 360} with a mean Scheduled Downtime equal to 17. You cannot just go 

around replacing values. If extreme values are considered to 180 and 360 ( say ) then 

replacement of these terms by "an average" value of, say, 90 leads to a considerable drop 

in scheduled downtime of around 8 minutes per day. However, the sample size is small 

and this can be regarded as a crude sensitivity analysis only. There are only five non-zero 

values in 40 days and the use of more sophisticated conditional forms for such a high 

proportion of zeroes is clearly indicated. Downtime fits are clearly dependent on events 

occurring at all, which would suggest that the use of a conditional distribution and 

modelling the process in tow stages would be more appropriate. These limitations mean 

that the analysis can be considered only a first approximation and again suggest that 

adaptation of the tool to reflect these more finely-grained features of the data might be
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neceessary. The sensitivity may also be expected to improve as more real data becomes 

available.

Reducing the mean Scheduled Downtime in “Systest” from 29 to 24 minutes is the first 

scenario: Scenario 1. Changing “CM” mean Scheduled Downtime from 17 to 8 minutes 

is Scenario 2, and Scenario 3 is a combination of both scenarios 1 & 2. The table below 

presents the simulated results on the Scheduled Downtime of these three scenarios 

compared with the simulated results of the current system. The comparisons focus on the 

RunRate and the Range of the Scheduled downtime, with:

Range = Maximum Downtime - Minimum Downtime

PRODUCT: DSP1.C RunRate (k/week) Range of Downtime

Current system 55.50 “Systest”: 325 
“CM”: 192

Scenario 1 55.57 “Systest”: 295

Scenario 2 55.82 “CM”: 121

Scenario 3 56.17 “Systest”: 295 
“CM”: 121

Table 5.5: Simulated resu ts on Runrate and Scheduled Downtime range

Clearly Scenario 3 increases Runrate by 1.2% (Table 5.5), and it makes the Scheduled 

Downtime at “CM” stage more stable (i.e. the downtime range is smaller by 37%). 

Scenario 2 although it increases the RunRate by only 0.6%, it makes the “CM” stage 

more predictable, which is of considerable importance in practical terms. Scenario 1 

shows that we cannot really change Scheduled Downtime in “Systest” because the range 

of downtime dropped only by 9% which means that few extreme Scheduled Downtime 

values are found at this stage. This would indicate that tighter control operates to keep
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this stage running. For this reason we think that Scenario 2, is easier to achieve in terms 

of reducing Scheduled Downtime in “CM” (Fig. 5.15).

As regards Unscheduled Downtime, it is clear that “TGD” and “Systest” are responsible 

for most of it.

In Scenario 4 we try to investigate the line’s reaction if prevention of at least one large 

Unscheduled Downtime at the stage of “Systest” can be achieved. In any one day, 

“Systest” has a total of 327 minutes of downtime. If two extreme Unscheduled 

breakdowns (327, 155 minutes each) can be excluded, the mean downtime (unscheduled) 

drops by 10 minutes per day (30.25) at “Systest”. This will be Scenario 4. In the same 

way Scenario 5 looks at the effect of changing of “TGD” mean Unscheduled Downtime, 

from 28.7 to 19.7 minutes per day. Scenario 6 considers a combination of Scenario 4 & 5.
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PRODUCT: DSP1.C RunRate (k/week) Range of Downtime

Current system 55.50 “Systest”: 570 

‘TGD”: 330

Scenario 4 56.11 “Systest”: 340

Scenario 5 55.86 ‘TGD”: 280

Scenario 6 56.45 “Systest”: 340 

‘TGD”: 280

Table 5.6: Simulated results on Runrate and Unscheduled Downtime range

Table (5.6) shows the importance of preventing Unscheduled Downtime in thousands of 

units. Scenario 4 is shown to be the best because, by preventing only two unscheduled 

problems in duration of 40 days (as shown from the real data), we can increase RunRate 

by 1.1% and at the same time ensuring that “Systest” has a more stable Unscheduled 

Downtime (40% reduction of the range of the Unscheduled Downtime).

Clearly a combination of Scenario 2 & 4 gives even better results on Runrate. RunRate 

increases by 1.5% and a combination of all the scenarios together, gives a RunRate of 

57.23 (an increase of 3.11%). Thus, preventing one serious unscheduled machine 

breakdown (in the stages ‘TGD” and “Systest”) and reducing Scheduled downtime by 7- 

10 minutes per day in the stages “Systest” and “CM”, the production line outputs 1,730 

more products per week. Again these are crude "extreme cases" of sensitivity analyses 

but, in real terms, even minor improvements will reflect considerable savings in cost.

Sensitivity Analysis on both Reliability and Quality

Putting together the results given by Sensitivity Analysis on the Reliability and Quality, 

we can see that the system, subjected to analysis of key problem areas and the effect of 

adjusting performance in these, produces 590 more boards than the current production 

line at "normal" operation levels.
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w m m c t i

M P I C

Yield (%) RunRate based on 

Yield (k/week)

Yield estimated 

by inspection:

C urrent System 97 83 55 89 SYSTEST 1,2,3

Sensitivity A nalysis 98 86 56 48 SYSTEST 1,2,3

Table 5  7 Comparison o f  the R unR atefor one production line before and after
Sensitivity Analysis

The software tool also provides the required time for producing a number of products In 

the current system, as given by Simulated Real data, the time needed to produce 150,000 

units o f “DSP1 C” and 80,000 units of “P3XP 512k” (these are the maximum numbers 

of the production control planning at each product) is 889 5 working hours compared to 

the 894 5 that it was before

5  4 The o ld  production line

Historical data collected on the old production lme were available for just twelve days on 

both Quality and Reliability For unknown reasons the production lme was also down m 

one whole day givmg a period of 720 mmutes downtime so that effectively the analysis is 

based on eleven days only Although the data collected are therefore far from ideal, either 

for individual lme assessment on production lines or for comparison with the new system, 

we attempt a crude performance assessment for the old and new production system 

Another problem is that deta iled  data on the old lme were not available, due to the 

change over to the new lme Unfortunately, therefore, we do not have pure UPH of each 

stage, and the exact downtime for an individual stage, but rather for a group of stages, m 

this case for “SMT” which consists of all the chip-shooter stages for both secondary and 

primary side

The simulation model o f Quality based on the historical data for the given days gave us 

the following results on the number of detected failures at each mspection (Fig 5 16) 

The horizontal axis represents the number of faulty boards detected at each mspection 

Simulations were generated for the same parameter settmgs (and 10,000 units)
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Comparing with results from the new production line (Fig. 5.4), we can see that the 

difference in the number of faulty boards from the old production line is almost double.

Figure 5.16: Quality results on the old production line, after the 
inspection of 10,000 units

Although “Post Wave Inspection” detects more faulty boards we present a detailed view 

of the failures at the “Wave” inspection, due to the importance of this stage. A detailed 

look at the “Wave” inspection (Fig. 5.17) gives us the number of failures for each failure 

and clearly “Scndary Passive” failure (which occurs when there is a hardware problem in 

the secondary side of the board) exists in more than 40 units. As shown, in Figure (5.18), 

“Post Reflow Inspection” detects the larger number of faulty boards and, as expected, 

“OQA” the smallest. “OQA” inspection was used to check for all types of failures 

(hardware and software) and thus, took more time to inspect a board. This inspection 

assures the quality of the final product, and for that reason the probability of a failure 

being detected at this, the final stage, was very small.
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Figure 5.17: Detailed results on Quality fo r the inspection stage “Wave”

Inspection: W ave T yp es of Faults of Chosen Inspection:

Minimum Reliability Inspection: Post ReflOW 

Maximum Reliability Inspection: OQA

Reliability of Chosen Inspection (%): 98.67
[bkcei ■»-1

Wave

Sen dory Passive 

Solidary Active 

Manual THM 

Primary P assive

Figure 5.18: Yield at each inspection

Reliability Simulations for Scheduled Downtime, give us the total downtime as presented 

in Figure (5.19). Due to the difficulty in comparing the downtime at each stage between 

the two production systems, we illustrate only the total reliability of the old system. The 

Monte Carlo method gives a total Reliability of 65.6% (result based on 15 runs only with 

minimum value 64.4% and maximum 66.3%). The Reliability of the old system as 

examined by these experiments is almost 20% less than that of the new system, but 

should be viewed with extreme caution because of the fact that data are crude for the old 

line and no rigorous attempt at quantification of performance at the various stages had 

been made. From the Simulated historical data we can obtain “SMT” reliability which is 

estimated at 94.15%. If we assume that this stage consist of “SMT I” and “SMT II” as 

given in the new MMX line then we can do a crude comparison with the current set up.
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Figure 5.19: Simulated Scheduled Downtime of the whole system (old line) in minutes

“SMT I” has a reliability of 98.02% and “SMT II” 98.11% as taken from the simulated 

real data for a period of 1000 weeks for more accurate results. Multiplying, we see the 

reliability of the stage, lets say, “SMT I & II”, 98.18%. The Reliability of the old system 

is lower by 4% in the stage “SMT” which as illustrated in Figure (5.19) does not 

contribute much to the total downtime.

Overall we suggest that the change from the old production line to a more automated 

system, reduced the total Downtime, and increased the total quality of the boards.

The Software tool performed very well when it was tested in the real Production System. 

The flexibility of the tool to investigate different types of models helped us to test it 

under a lot of conditions. In general we can conclude that the speed of the results 

depended on the number of boards that the user wanted to inspect and/or the number of 

days that the user wanted to estimate the reliability. This Software Tool combines two 

different subjects, Quality and Reliability and provides results for both type of 

parameters.

As presented in Chapter 5, the Unscheduled is more unpredictable. However the main 

point we wish to emphasise is that just the two stages (Systest and TGD) are responsible
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5

for the 80% of the problem This suggests that an approach that concentrates on these 

two stages will reduce the total downtime by a respectable percent of change 

The new production line is presented more flexible to changes and of course more 

reliable Due to the small amount of data for the old production line a good comparison is 

quite difficult and any comparisons fall mto the realms of speculation Despite this, by 

chapter 5 should at least suggest that the present boards are of a higher quality with a 

decreasmg the percent of failures
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Chapter 6

Conclusions

This thesis has focused on the estimation of the Reliability and Quality aspects of 

production lines in Intel ESSM plant, with some attempt to build in more generic features 

applicable to other similar systems. Both Reliability and Quality are estimated with the 

help of Simulation models. We have presented a number of methods enabling us to 

investigate Reliability and Quality (starting with generic models and finishing with the 

model we use), and have given details on the production system for which our software 

tool was designed and on which it has been tested. The model of the production system 

that we used has been presented and a manual of the software tool provided together with 

the necessary information on how to use the Tool.

The software tool, relies on detailed results on downtime from the models for each stage 

of the system that is under investigation. This thesis also shows the importance of 

detailed data collection in a plant, since this acts as primary inputs for any Simulation 

model and its quality may be expected to determine more accurately both Quality and 

Reliability aspects as well as providing the basis for better Sensitivity Analysis. 

Sensitivity Analysis provides us with the opportunity to make possible suggestions on 

system improvement and clearly many more examples could have been included here. 

The reason we chose them as demonstration of the Software Tool was the high increase 

of the performance of the ESSM production line. This Tool proves the increase on both 

Reliability and Quality aspects by changing from the old production line into a higher 

lever technology, and the sufficiency that an automated system gives.

This Software Tool provides some very important points on system improvement to each 

group of users. Managers, with the help of detailed cost data (not available to us) can 

make changes and compare them not only with regard to Reliability and Quality aspects 

but also with regard to cost as well. Problem areas can be pinpointed. For example, in
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ESSM there are two stages, “Systest” and “TGD”, responsible for almost the 80% of 

Unscheduled downtime On Quality we focused our mterest on the “Systest” mspection 

and we spotted four failures causing a big Quality problem Bottlenecks can also be 

located by this Tool with mformation on Real UPH, and RunRate not only for the overall 

system but for subsystems as well Information like this can be used for production 

control plannmg smce, the total time needed to produce a number of units from one or 

more products is available from this software

Statisticians have enough data to test the whole production line with changes focused on 

the problem areas The Tool encourages them to insert more and more data, givmg them 

more accurate results all the time Detailed data collection is very rare, and through this 

software we want to show its necessity From a statistical analysis pomt of view, the Tool 

provides a visual fittmg o f the data mto distributions allowing the users to watch the 

extreme values and the importance o f including/excluding them from the model The 

most importance feature is the testmg facility l e  the consequences of usmg new 

materials or of outputtmg new products, which can be estimated without usmg the real 

lme, but a model of the system

From an engmeermg pomt of view, the Tool provides enough mformation on changmg 

the production line’s layout by either adding/removing redundancy or changmg the total 

number of the lines Engmeers can do experiments on the real production and then, when 

they have collected enough data, contmue their experiments m the model provided by this 

tool The failures responsible for the larger numbers can be traced back allowing 

engmeers to improve the quality o f the products Of course, a contmuous communication 

between these three groups (Managers, Engmeers and Statisticians) and the feedback of 

their ideas mto the Software Tool, will mcrease systems performance m all three area

Further Research

A possible suggestion on further research o f this thesis would be the expansion o f the 

Software Tool to mvestigate two or more different production systems at the same time 

The Tool provided here can mvestigate one or more identical lmes Investigating more
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than one type would be useful to smaller factories where they work with more than one 

type o f production lme This could help the user to test different layouts of the systems 

and the flexibility of two different systems workmg together

Another improvement of the tool could take place in the statistical analysis section The 

availability o f some fittmg tests from the tool itself, would be very useful for statisticians 

who would not then have to use other software packages Clearly the most difficult part is 

the daily collection and insertion o f detailed data Thus, an on-line feed of data from the 

production system to this Tool would be a very good improvement

The language we used (Visual Basic 5) is extremely good at creatmg high user friendly 

mterfaces and we are satisfied by its performance Some people workmg m Intel used the 

Software Tool and it was demonstrated to others All of them are really satisfied with the 

mterface and the results provided from the tool However some improvement m the speed 

of estimating results (both Reliability and Quality) could be achieved by usmg another 

programmmg language
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APPENDIX A

Quality and Reliability

Empirical Raw Data for both Production System



shiftdate shift lineid description m inutes jost

23/02/98 A 2 DEK MACHINE 30
23/02/98 A 2 SMT EQUIPMENT 30
23/02/98 A 2 IFT MACHINE 20
23/02/98 A 2 MEETINGS 10
23/02/98 A 2 NPI/ECO 119
23/02/98 A 2 UNDERLOADED 45
23/02/98 A 2 RELOADS 50
23/02/98 A 2 MATERIAL AVAILABILITY 145
23/02/98 A 2 IFICS DOWNTIME 60
23/02/98 A 2 CLEANUP 10

24/02/98 A 2 QUALITY 20
24/02/98 A 2 IP MACHINE 30
24/02/98 A 2 START UP 12
24/02/98 A 2 MISSING TARGETS 22
24/02/98 A 2 NPI/ECO 30
24/02/98 A 2 CLEANUP 10
24/02/98 A 2 MEETINGS 15
24/02/98 A 2 SMT EQUIPMENT 40
24/02/98 A 2 DEK MACHINE 10
24/02/98 A 2 RELOADS 80

25/02/98 A 2 QUALITY 15
25/02/98 A 2 MEETINGS 12
25/02/98 A 2 ATE DOWN 15
25/02/98 A 2 RELOADS 32
25/02/98 A 2 START UP 10
25/02/98 A 2 CLEANUP 8
25/02/98 A 2 UNDERLOADED 120

26/02/98 B 2 ATE DOWN 90
26/02/98 B 2 START UP 60
26/02/98 B 2 MATERIAL AVAILABILITY 85
26/02/98 B 2 NPI/ECO 150
26/02/98 B 2 IP MACHINE 10
26/02/98 B 2 MISSING TARGETS 43
26/02/98 B 2 IFT MACHINE 15
26/02/98 B 2 RELOADS 40
26/02/98 B 2 SMT EQUIPMENT 10

27/02/98 B 2 CHANGE OVER 30
27/02/98 B 2 QUALITY 60
27/02/98 B 2 RELOADS 40
27/02/98 B 2 ATE DOWN 200
27/02/98 B 2 MISSING TARGETS 85
27/02/98 B 2 IFT MACHINE 15

28/02/98 B 2 START UP 15
28/02/98 B 2 QUALITY 40



28/02/98 B 2 RELOADS 48
28/02/98 B 2 ATE DOWN 15
28/02/98 B 2 IFT MACHINE 60
28/02/98 B 2 CHANGE OVER 80
28/02/98 B 2 MISSING TARGETS 93

02/03/98 B 2 ATE DOWN 15
02/03/98 B 2 WAVE 60
02/03/98 B 2 QUALITY 60
02/03/98 B 2 RELOADS 38
02/03/98 B 2 MISSING TARGETS 173
02/03/98 B 2 IFT MACHINE 50

03/03/98 B 2 UNDERLOADED 720

04/03/98 B 2 MISSING TARGETS 87
04/03/98 B 2 CLEANUP 180
04/03/98 B 2 MATERIAL AVAILABILITY 60
04/03/98 B 2 MEETINGS 90
04/03/98 B 2 QUALITY 120

05/03/98 A 2 MISSING TARGETS 10
05/03/98 A 2 IP MACHINE 15
05/03/98 A 2 MEETINGS 15
05/03/98 A 2 QUALITY 60
05/03/98 A 2 START UP 10
05/03/98 A 2 SMT EQUIPMENT 25
05/03/98 A 2 CLEANUP 10
05/03/98 A 2 DEK MACHINE 10
05/03/98 A 2 RELOADS 65

06/03/98 A 2 MEETINGS 12
06/03/98 A 2 RELOADS 70
06/03/98 A 2 START UP 10
06/03/98 A 2 DEK MACHINE 10
06/03/98 A 2 MISSING TARGETS 54
06/03/98 A 2 IP MACHINE 15
06/03/98 A 2 SMT EQUIPMENT 25
06/03/98 A 2 CLEANUP 10
06/03/98 A 2 UNDERLOADED 20

07/03/98 A 2 START UP 40
07/03/98 A 2 DEK MACHINE 5
07/03/98 A 2 SMT EQUIPMENT 5
07/03/98 A 2 RELOADS 70
07/03/98 A 2 MEETINGS 135
07/03/98 A 2 MISSING TARGETS 38
07/03/98 A 2 CLEANUP 12



Post Reflow Inspection

| Defect Item jPe/ect I Qty - 23/2 Qty - 24/2 Qty - 25/2 Qty - 26/2 Qty - 27/2 Qty - 28/2 Qty - 2/3 Qty - 3^3 Qty - 4/3 Qty - 5/3 Qty - 6/3 Qty - 7/3 |

Fine Pitch Bidge 9 16 54 10 8 2 5 2 6 4 1
Shift/Skew 4 10 2 1 1 3 6
Missing Part 1
Open Joint 1 2 6 4 6 3 11 2
Damaged 1

U-Lead JMissing_Part__L

I No befect Found I No Defect Found | '

Primary Passive Shift/Skew 1 3 1 3 3
Misoriented 1
Missing Part 3 1 10 1 2
Open Joint 2
Bndge 1

éullwing Bidge 1
Shift/Skew 6 1 2 2 1 1
Missing Part . 1

Quality 
Per Defect

92 57%
98 29%
99 94% 
97 78% 
99 94%

99 30%
99 94%
98 92%
99 87%
99 94%

I 99 94% I

99 94% 
99 17% 
99 94%

| 99 87% I

Quality Per 
Defect Item

| 88 85% I

| 97 98% ~|

I 99 94% I 

I 99 05% I 

| 99 87% I

Observed 101 215 218 125 142 123 108 61 169 173 140
Failed 14 29 52 18 16 3 10 12 12 16 7
FPA 86 14% 86 51% 76 15% 85 60% 88 73% 97 56% 90 74% 80 33% 92 90% 90 75% 95 00%

¡Quality of the Stage 8S06% ~|

Q1 Sum of Failed’  mean quality 80 87% 
Q2 two days of 27/2 
Q3 The route of the test



Secondary Cure

Scndary Passive Shift/Skew 3 12 4 6 2 8 1
Missing Part 14 3 7 1 1 5 13 9
Adhesive Defect 1
Extra Part 2
Contaminated 3
Wrong 1

|BGA |Shitt/Skew I ‘

| No Defect Found |No Defect Found |

I Primary Passive | Missing Part |

jFine Pitch ¡Damaged |

Scndary Active Shin/Skew 7 22 1 3
Missing Part 1
Wrong 2

Observed 83 213 238 92 148 140 115 1 32 186 175 137
Failed 7 13 10 5 12 8 4 0 1 5 9 10
FPA 91 57% 93 90% 95 80% 94 57% 91 89% 94 29% 96 52% 100 00% 96 88% 97 31% 94 86% 92 70%

Quality 
Per Defect

97 69% 
96 60% 
99 94% 
99 87% 
99 81% 
99 94%

97

-V?O
'"

00CO

99 94%
99 87%

I 99 94% I 

I 99 55% 1 

I 99 94% I 

I 99 87% I

Quality Per 
Defect Item

I 93 95% 1

I 97 70% ~1

I 99 94% T  

I 99 55% I 

I 99 94% ~\ 

I 99 87°/. ~|

lQuality_onhe_Stage____i9M4% _J

Q1 2 Damaged when 1 have been observed’  
Q2 Sum of Failed’  mean quality 95 02%



Post Wave Inspection

| Defect Item | Defect |Qty - 23/2 Qty - 24/2 Qty - 25/2 Qty -26/2 Qty - 27/2 Qty - 28/2 Qty - 2/3 Qty-3/3 Qty-4/3 Qty - 5/3 Qty-6/3 Qty-7/3|

Manual THM Tilted 8 5 9 1 4 2 2 1 3 7 1
Missing Pari 2 1 1 2 1 7 8 1
Lead not Thru 2 2 3 5 2 6 5 3
Misoriented 18 8 1
Damaged 1
Misinserted 1

are Fab) |DajnagecT I
[TaEeT I Damaged T

Scndary Passive Shift/Skew 1 4 1 10 5 1
Missing Part 8 4 11 536 4 4 3 3
Adhesive Defect 1 4
Contaminated 2 1 1
Extra Part 1 1 1
Open Joint 1 4

Quality 
Per Defect

97.22%
98.51%
98.19%
98.25%
99.94%
99.94%

98.58%
62.89%
99.68%
99.74%
99.81%
99.68%

Primary Passive Open Joint 
Shift/Skew 
Damaged 
Bridge

2
1
1

99.87%
99.94%
99.94%
100.00%

Scndary Active Missing Part 1 99.94%
Shift/Skew 10 99.35%

| No Defect Found | No Defect Found | 2 1 1 2 I 99.61 %

Wave Excess Solder 1 99.94%
Open Joint 4 99.74%
Bridge 100.00%

Fine Pitch Open Joint 1 99.94%
Damaged 2 99.87%
Bridge 100.00%

I 99.87% I 

I 99.94% I

Observed : 65 216 2S0 78 154 109 153 3 31 H7Ô 188 127

Failed : 6 5 11 8 17 20 18 2 7 14 17 6 Quality of the Stage:

Qualify Per 
Defect Item

| 92.27% |

| 61.31% T

|  99 .7 4%  1

| 99 .2 9%  1

| 99.S1 %  1  

| 99.S 8%  1

| 99 .8 1%  T

|~ 99 .87%  |

| 99 .9 4%  1

55.41 %



In Circuit Test

I befect Item ¡Defect |Qty -23/2 Qty -24/2 Qty - 2S/2 Qty -26/2 Qty -27/2 Qty -28/2  Qty -2 /3  Q ty-3 /3  Q ty-4 /3  Q ty-5 /3  Q ty-6 /3  Q ty^7^1

Manual THM Missing Part 1
Lead not Thru 1 1 1 1
Damaged 5 2 1 1

¡Passive (Defective | 2 19 9 1 2 2 1

Pnmary Passive Open Joint 1 1 2
Shift/Skew 1 1 3 1 1
Extra Part 1
Wrong 1 1
Misoriented 1
Missing Part 1 2 5 1 1 1
Insufficient 1
Damaged 2 30 1 2 4 4
Bridge 1

Fine Pitch Open Joint
Wrong
Misoriented
Shift/Skew
Bad Rework
Damaged
Bridge

1 2 2 1 3  1
8

1
1 1 1

1
2

1 2  6 1 1 5  1 4

J-lead Open Joint
Misoriented
Damaged
Bridge
Shift/Skew

1 2  1 1 
1 1 

1
22 1 

1

B6A Open Joint 3 3 2 6
Damaged 1
Bndge 4 44 1

I 3 6 7 9 9 8 2 1

PÔB(BarePab) Open Circuit 3 2 2 1
Damaged 1

|Scndary Passive | Wrong | T

Wave Open Joint 1
Bridge 1

Gullwing Open Joint 1 1
Shift/Skew 1
Bridge 1

Quality 
Per Defect

99 94%  
99 82%  
99 88%

I 99 7 0 %  I

99 76%
99 70%
100 00% 
100 00% 
100 00%
99 51%
100 00%
99 39%
100 00%

99 45%
99 51%
99 94%
99 94%
99 94%
99 88%
99 33%

99 94%
99 94%
99 94%
98 60%
99 94%

99 57%
100 00% 
96 96%

| 98*24°7o"  I

99 94%
99 94%

I 99 94%  |

100 00% 
99 94%

99 94%
99 94%
99 94%

Quality Per 
Defect Item

| 6 4 %  ~~|

| 99 70%  1

[ 98 37%  I

I 98 01%  T

| 98 36%  I

| 96 55%  ~1

| 98 24%  1

I 99 88%  I

I 99 94%  j 

I 99 94%  1

I 99 82%  I



|THM Comp ¡Defective

¡Solder Ball ¡Secondary Side

¡SH M O O  Failure |befecfive

[Com pjn^SockefJM isorlen^

JNô etect_Foî £Ĵ o_defect_Foi£i£
Observed 95 233 220 89 154 110 0 170 83 175 187 131
Failed 18 56 24 6 21 8 0 38 55 17 13 3
FPA 81 05% 75 9 7 % 89 09% 93 26% 86 36% 92 73% 0 00% 77 65% 33 73% 90 29% 93 05% 97 71%

I 100 00%! 
I 99 88%  ~] 

I 99 94%  1 

I 99 88%  I 

I 99 94%  ~|

I Quality of the Stage*

I 100 00% I 
| 99 38%  ~|

I 99 9 4 %  I 

I 99 8 8 %  ~\ 

I 99 9 4 %  ~\

8866% I

50 60%

Q1 What about 2/3?
Q2 #Failed > Observed’



Functional Test 
I befect Item | Defect | Qty - 23/2 Qty - 24/2 Qty

E [Defective" I
■ 25/2 Qty - 26/2 Qty - 27/2 Qty - 28/2 Qty - 2/3 Qty - 3/3 Òty - 4/3 Qty - 5/3 Qty - 6/3 Qty - l h  \

12
[No^Defect_FoundJNoJ3efect^oundJ__3_

|Scndary Passive | Shift/Skew | 2

I Primary Passive | Wrong

10

Manual THM Lead Not Thru 1 1 1
Defective 1 2 1 2
Shift/Skew 1

Fine Pitch Bridge
Shift/Skew

1 1
1

1

Open Joint 1 1 1 1 2
Misoriented 1

PCÓ /Bare Fab) Short 1
Open Circuit 1

BÔA Open Joint 1 1
Bridge 1 2 1

J-Lead Bridge 1
Contaminated 1

I 99 63%  I 

I 99 89%  ~\

99 84%  
99 68%  
99 95%

| 99 95%  I

99 84%  
99 95%  
99 68%  
99 95%

99 95% 
99 95%

99 89%  
99 79%

99 95%
99 95%

Quality 
Per Defect

Quality Per 
Defect Item

96 64% 0 9664

I 99 6 3 % ~ 1  

I 99 8 9 %  ~|

I 99 4 7 %  I

I 99 9 5 %  "1

I 99 4 1 %  "1

I 99 8 9 %  I 

I 99 6 8 %  I 

I 99 8 9 %  I

Wave Open Joint 1 99 95% 99 9 5 %

Observed 106 230 222 74 143 106 170 285 44 171 187 137 Quality of the Stage 94 50 %

Failed 8 2 3 2 4 10 11 8 13 5 10 6

FPA 92 45% 99 13% 98 65% 97 30% 97 20% 90 57% 93 53% 97 19% 70 45% 97 08% 94 65% 95 62%

56 19%



End Of Line

| Defect Item \ Defect I Òty - 23/2 Qty - 24/2 Qty - 25/2 Qty - 26/2 Qty - 27/2 Qty - 28/2 Qty - 2/3 Qty - 3/3 Qty - 4/3 Qty - 5/3 Qty - 6/3 Qty - 7 /31

Wave Open Joint 16 1 4 8
Excess Solder 2
Bridge 1
Insufficient 1

IN o  Defect Found |No Defect Hound 1

|Gullwing | Damaged |

I No Repair Hist | Process Violât

Scndary Passive Contaminated 8 3 4 5 4 2
Insufficient 1 1
Missing Part 4 1 3 3 5 5 1
Open Joint 3 3 1 1
Damaged 1 1 1 2 1
Shift/Skew 3 1 2 2 2

Scndary Active Damaged 2
Shift/Skew 1
Wrong 1

Manual THR/T Lead Not 1 hru 6 1 3 1 5 1
Tilted 1 2 5 1 3 4
Damaged 4 1 3 1 3 2 1 1
Misinserted 1

Primary Passive Shift/Skew 1 3 1
Damaged 1 1
Contaminated 1
Insufficient 1 1
Extra Part 1 1
Missing Part 1 1 1 1
Open Joint 2

Label llleggible 9 3 1 2
Damaged 1 1 2

J-Lead Damaged 1
Shift/Skew 1

Fine Pitch Open Joint 1 2 1
Shift/Skew - 1

observed 94 219 230 78 139 104 165 145 45 173 179 141
Failed 20 13 7 15 21 20 16 15 6 0 2 3
FPA 78 72% 94 06% 96 96% 80 77% 84 89% 80 77% 90 30% 89 66% 86 67% 100 00% 98 88% 97 87%

Quality 
Per Defect

98 31%
99 88%  
99 94%  
99 94%

98 48%
99 88%
98 71%
99 53%
99 65%
99 42%

99 88%  
99 94%  
99 94%

CO CO 01%
99 07%
99 07%
99 94%

99 71%
99 88%
99 94%

CO CO 88%
99 88%
99 77%
99 88%

99 12% 
99 77%

99 94%  
99 94%

I 99 88%  ~]

99 77%  
99 94%

| 99 53%  I 

I 99 71%  1 

IQuality of the Stage*

Quality Per 
Defect Item

| 98 0 8 %  |

1 95 >5°/. I

I 99 7 7 %  1

I 97 11°/, 1

I 98 9 5 %

I 98 8 9 %  ~1 

I 99 8 8 %  ~|

L 99 8 8 % ]
I 99 7 1 %  ~]

I 99 5 3 %  T  

| 99 71°/, |

87 8 9 %  ~|

56 82 %



I Defect Item | Defect

Outgoing Quality Assurance

I Qty - 23/2 Qty - 24/2 Qty - 25/2 Qty - 26/2 Qty - 27/2 Qty - 28/2 Qty - 2/3 Qty - 3/3 Qty - 4/3 Qty - 5/3 Qty - 6Ì3 Qty - 7 /3 1

IB5T |Open Joint |~

I Fine Pitch jOpen Joint |

Manual tH M Defective 1 2
Damaged 1

I No Defect Found | No Detect Found |

Primary Passive Extra Part 1 1
Open Joint 1
Missing Part 2

|Scndary£assiveJM issing_Part__|_

^o_RepairHist__|ProcessVio[al__|_

[Wâ _ | O p e n J o in t_ _ | _

IScndary Active ¡Wrong I
Observed 103 217 233 63 139 41 148 169 50 167 172 150
Failed 0 0 0 0 4 1 3 5 3 0 0 0
VPk 100 00% 100 0 0 % 100 00% 100 00% 97 12%  97 56% 97 97% 97 04% 94 00% 100 00% 100 00% 100 00%

I 99 88%  I

CO CO 88%

CO CO 94%
99 88%

I 99 88%  ~| 

I 99 94%  I 

I 99 94%  1 

I 99 94%  1

Quality 
Per Defect

Quality Per 
Defect Item

99 94% 99 94 %

| 99 94°/o | 99 94 %  |

99 82%  
99 94%

| 99 76°/» |

I 99 8 8 %  I

I 99 7 0 %  I

I 99 8 8 %  ~l 

I 99 9 4 %  ~] 

I 99 9 4 %  I 

I 99 9 4 %  I

IQuality of the Stage 98 9 8 %  j

73 98%
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Inspection D EK (Secondary) Product DSP1 A
Volume 37335 64722

Failure \ Date(m/d) 6/27 - 7/04 7/11-7/18 8/8-8/15 8/15-8/22
No Defects No Data

8238-FIDUCIAL NOT FOUND 
8133-DROPPED BY OTHER EQUIP 
8131-DROPPED BY DYNAPACE 
AS10-ASSEMPLY MISSING

0 04550% 17

0 11200% 42 
0 11200% 42

0 00927% 6 
0 00927% 6

Inspection_____________ [CT__________ Product_____________ DS1P A
Volume 22303 33787 66958 37610

Failure \ Date(m/d) 6/27 - 7/04 7/11-7/18 8/8-8/15 8/15-8/22

8O2O-DROPPED BOARD 
AS10-ASSEMPLY MISSING 
8131-DROPPED BY DYNAPACE 
5001-ELECT FAIL
8022-REMOVED FOR ENGINEERING 
8240-FAILED ICT/FA LOOP 3X

0 013% 3 
0 021% 5 
0 017% 4 
0 051% 12

0 059% 20 
0 036% 12 
0 059% 20

0 003% 1

0 02840% 19 
0 01940% 13 
0 08810% 59 
0 00149% 1 
0 00149% 1

0 00266% 6 
0 07440% 28 
0 00266% 1



Inspection PSVI1 Product DS1P A
Volume 37234 64710

Failure \ Date(m/d) 6/27 - 7/04 7/11-7/18 8/8-8/15 8/15-8/22

8041-DAMAGED COMPONENT 0 0028% 1 0 00309% 2
8049-COMPONENT SKID 0 0028% 1 0 01880% 7 0 00618% 4
8092-SURFACE FM 0 0028% 1 0 00269% 1
8043-MISALIGNED 0 0055% 2 0 00269% 1 0 00309% 2
8090-LEAD DAMAGE 0 015% 3 0 0140% 5 0 01070% 4 0 00155% 1
8044-MISSING COMPONENT 0 0170% 6 0 00155% 1
8051-SOLDER ON FINGERS 0 052% 10 0 0360% 13 0 02150% 8 0 06030% 39
8032-EMBEDDED FM 0 00155% 1
8034-BOARD SCRATCHES 0 00155% 1
8057-FM ON FINGERS 0 00155% 1
8045-SURFACE DAMAGE TO FINGERS 0 00309% 2
8100-LIFTED LEAD 0 00309% 2
8094-INSUFICIENT SOLDER 0 01610% 6 0 00464% 3
8093-COMPONENT FM 0 00537% 2
8011-CARD MISSING 0 01610% 6



Inspection PSVI2 Product DS1P A
Volume 37234 64710

Failure \ Date(m/d) 6/27 - 7/04 7/11-7/18 8/8-8/15 8/15-8/22
No Data

8012-REJECT UNDEFINED 0 00152% 1
8057-FM ON FINGERS 0 00152% 1
8049-COMPONENT SKID 0 00305% 2
8045-SURFACE DAMAGE TO FINGERS 0 00457% 3
8043-MISALIGNED 0 01880% 7 0 00762% 5
8051-SOLDER ON FINGERS 01500% 33 0 02960% 11 0 00914% 6
8094-INSUFICIENT SOLDER 0 0610% 13 0 01370% 9
8044-MISSING COMPONENT 0 0470% 10 0 00269% 1 0 01980% 13
8031-BREA AWAY 0 02290% 15
8050-WARPED/TWISTED CARD 0 04840% 18 0 02740% 18
8046-CRACK/BROKEN CARD 0 03960% 26
8041-DAMAGED COMPONENT 0 07530% 28 0 06250% 41
8034-BOARD SCRATCHES 0 0047% 1
8100-LIFTED LEAD 0 0140% 3



Inspection SYSTEST Product DS1P A
Volume 34862 63452

Failure \ Date(m/d) 6/27 - 7/04 7/11-7/18 8/8-8/15 8/15-8/22

8011-CARD MISSING 0 0000% 0 0 0033% 1 0 0000% 0 0 0000% 0
8083-LOOSE/MISSING ASSEMPLY 0 0000% 0 0 0033% 1 0 00000% 0 0 00000% 0
8126-FAIL UNIX 0 0048% 1 0 0066% 2 0 00574% 2 0 00473% 3
IB75-Fail_WindowsNT_4 0 0150% 3 0 0330% 10 0 02580% 9 0 02360% 15
IB82-Fail_Hardware_Ch 0 0240% 5 0 0330% 10 0 07170% 25 0 07880% 50
8022-REMOVED FOR ENGINEERING 0 0680% 14 0 0390% 12 0 05740% 20 0 03470% 39
8128-FAIL WINDOWS 95 0 0240% 5 0 0390% 12 0 04020% 14 0 03470% 22
IB73-Fail_Windows_95 0 0240% 5 0 0430% 13 0 04880% 17 0 03150% 20
8124-FAIL WINDOWS NT 0 0190% 4 0 0490% 15 0 05160% 18 0 03150% 20
8127-FAIL DOS 0 0730% 15 0 1700% 53 0 43900% 153 0 64100% 407
IB77-Fail_dos 0 0780% 16 01800% 56 0 43600% 152 0 69000% 438
8129-FAIL POWER UP 0 0190% 40 01800% 56 0 25800% 90 0 27600% 175
IB81 -Fail_OS_Boot 0 0190% 40 01800% 56 0 25000% 87 0 26300% 167
8085-THERMAL PLATE/COVER/SKIRT DAMAGED 0 0048% 1 0 0000% 0 0 00000% 0 0 00158% 1
8133-DROPPED BY OTHER EQUIPMENT 0 0000% 0 0 0000% 0 0 00000% 0 0 00630% 4
8131-DROPPED BY DYNAPACE 0 0000% 0 0 0000% 0 0 02290% 8 0 01260% 8
IB10-Fail_Shorts_Test 0 0000% 0 0 0000% 0 0 00287% 1 0 0000% 0

Inspection_________DEK(primary)_____ Product______________DS1P A
Volume 34862 63452

Failure \ Date(m/d) 6/27 - 7/04 7/11-7/18 8/8-8/15 8/15-8/22
No Data

AS10-ASSEMPLY MISSING 
8021-XED OUT BOARD 
8238-FIDUCIAL NOT FOUND 
8131-DROPPED BY DYNAPACE

0 0047% 1 
0 0093% 2

0 0140% 5 
0 0310% 11

0 0122% 8
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APPENDIX B

Possible Failures

Detected From Inspections 

(MMX Line)



Loss Code Decoder Ring
ODE DESCRIPTION CODE DESCRIPTION
001 MISSING 8128 FAIL WINDOWS 95
001 ELECT FAIL 8129 FAIL POWER UP
310 MIXED PRODUCT 8130 FIT GAGE
311 CARD MISSING 8131 DROPPED BY DYNAPACE
312 REJECT UNDEFINED 8132 DROPPED BY OPERATOR
320 DROPPED BOARD 8133 DROPPED BY OTHER EQUIP
321 XED OUT BOARD 8134 FA NOT DONE
322 REMOVED FOR ENGINEERING 8135 ASSEMBLY DAMAGED
323 DROPPED 8136 EQUIPMENT RELATED LOSS
024 SCRAPPED 8137 SUPPLIER RELATED LOSS
325 WARPED COVER 8138 OPERATOR RELATED LOSS
026 OPEN COVER 8139 MISROUTED YTOT
027 BURRS 8140 CLIP POP-OFF
328 HP/HS FINISH 8141 BENT BRIDGE ON LABELED COVER
329 HP/HS ORIENTATION 8142 BENT CLIPS ON LABELED COVER
030 HP/HS DAMAGE 8143 OTHER DAMAGE ON LABELED COVER
331 BREAK AWAY 8144 DROPPED LABEL
032 EMBEDDED FM 8145 LABEL ID MATRIX UNREADABLE
033 HEAT SLUG VOID 8146 LABEL ORIENTATION
034 BOARD SCRATCHES 8147 FM ON LABELED COVER
035 MISSING FINGER 8148 MARK LABEL BUBBLE
336 FINGER NODULE 8149 FAILED ACUITY
337 FINGER VOID 8150 FAILED PPL
338 MISSING LEAD 8151 MARKED OFF INK PAD
339 PEELED/CRACKED TERMINATION 8152 MARKED OFF LABEL
040 COMP. BODY PIT/VOID/INDENT 8153 MARKED OFF COVER
041 DAMAGED COMPONENT 8154 MISPROCESSED
042 MISORIENTED COMPONENT 8155 PASTE SAT TOO LONG
043 MISALIGNED 8156 PANEL HOLE SIZE
344 MISSING COMPONENT 8157 MISPLACED PANEL COMPONENT
345 SURFACE DAMAGE TO FINGERS 8158 MISROUTED XTOT
346 CRACK/BROKEN CARD 8159 MISROUTED Y1
347 SCORCHING 8160 COVER DROPPED/DAMAGED
348 BOARD MISREGISTRATION 8161 COVER INCOMING DAMAGE
349 COMPONENT SKID 8163 SOLDER ON BLADE
350 WARPED/TWISTED CARD 8164 CONNECTOR BODY CHIPPED/CRACKED/BROKEN
351 SOLDER ON FINGERS 8165 CONNECTOR BLADE NOT PLATED/FM/DISCOLORED
352 EXCESS REWORK 8166 CONNECTOR BODY FM/STAIN/DISCOLORED
353 LIFTED LANDS 8167 SUBASSEMBLY MISALIGNED
355 EXCESS THERMAL GREASE 8168 ENCLOSURE BURRS
356 THERMAL PLATE EXPOSED BASE METAL 8170 ENCLOSURE FM/STAIN/DISCOLORATION
357 FM ON FINGER 8171 ENCLOSURE SCRATCHES
358 FM ON HEAT SINK 8172 NON-UNIFORM EDGE RADIUS
359 FM ON SPRING CLIP 8173 DENTS
)60 HEAT SINK PEELING/FLAKING 8174 MARK LABEL FM/STAIN/DISCOLORATION
)61 HEAT SINK METAL BURRS 8175 MARK LABEL MISALIGNMENT/TILT
)62 HEAT SINK BENT FINS 8176 MARK LABEL PEEL/LIFT
)63 INSULATOR PAD MISSING 8177 MARK LABEL DAMAGE
)64 INSULATOR PAD MISPLACED 8178 FLIPPED COMPONENT
)65 INSULATOR PAD SEPARATION 8179 DAMAGED PIECE PART
)66 SPRING CLIP METAL BURRS 8180 DOUBLE-LABELED COVER
)67 SPRING CLIP MISSING 8221 MARK INCOMPLETE
)68 SPRING CLIP ON LATCHED 8222 LASER MARK CONTENT
)69 SPRING CLIP LOOSE OR DAMAGED 8223 LASER MARK MISPLACEMENT/MISORIENTATION
)70 LABEL DAMAGED 8224 MARK PLACEMENT
)71 DISCOLORATION/STAIN 8226 MARK CONTRAST



372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
IPO
roi
102
103
105
106
I07
108
109
MO
LLL24
25
26
27

Loss Code Decoder Ring

LABEL MULTIPLE 8227 DOUBLE MARK
COVER/SKIRT/LATCH ARM BURR/FLASH 8230 MARK OTHERS
FM ON SKIRT 8231 MARK BLISTERS
FM ON COVER 8232 LASER MARK MISSING
FM ON THERMAL PLATE 8233 LASER MARK ILLEGIBLE
MOLD INCOMPLETE 8234 MARK SERIALIZATION INCORRECT
TURN OFF 8235 MARK 2D MATRIX UNREADABLE
KNIT LINE 8236 MARK HANDLING DAMAGE
LABEL BUBBLES OR PROTRUSION 8237 MARK DELAMINATION
LABEL ALIGNMENT 8238 FIDUCIAL NOT FOUND
LABEL VOID 8239 FAILED ICT RETEST
LOOSE/MISSING ASSEMBLY 8240 FAILED ICT/FA LOOP 3X
LABEL PEEL/LIFT 8241 FINGER EXPOSED BASE METAL
DAMAGED PEICE PART 8242 CRACKS
VOIDS, BLISTERS, OR POROSITY 8243 COVER/SKIRT/LATCH ARM SCRATCHES
COMPONENT STAIN 8244 COVER/SKIRT/LATCH ARM CHIPS/ROLLED EDGES
TOMBSTONE 8245 EXCESS INK
WRONG COMPONENT 8246 PAD PRINT PEELING/FLAKING
LEAD DAMAGE 8247 PAD PRINTING ILLEGIBLE
BENT LEAD 8248 LABEL TILT
SURFACE FM 8249 LABEL ROTATION
COMPONENT FM 8251 LABEL POSITION X/Y
INSUFFICIANT SOLDER 8253 LABEL INCOMING DAMAGE
SOLDER BALLS 8254 FAILED EEPROM PROGRAMMING
EXCESS SOLDER 8260 COMPANION CARD DEFECT
COLD SOLDER 8414 FOREIGN MATERIAL/DISCOLORATION
SOLDER PROJECTION 8440 LEADS OTHER
TOUCH UP FAIL 8520 CHIP/CRACK
LIFTED LEAD 8530 MISALIGNED LID/CAP/COVER
SOLDER BRIDGING 8540 THERMAL PLATE SCRATCHES
GREASE ON BOARD 8580 FOREIGN MATERIAL ON SURFACE
ATTACH FAILURE 8590 PACKAGE - OTHER
SOLDER IN TOOLING HOLES 8600 OTHERS
DEWETTING 9000 ASSEMBLY REWORK
DAMAGED COMPONENT (OLGA) 9002 TEST REWORK
CRACKED/CHIPPED/BROKEN DIE AS10 ASSEMBLY MISSING
CONNECTOR BLADE BENT/MISALIGNED DP10 MIS ROUTED
CONNECTOR BODY DAMAGED HS20 MECHANICAL
CONNECTOR MISALIGNED/MISORIENTED RW10 TOUCH UP SUCCESSFUL
FAIL WINDOWS NT RW11 REWORK IDENTIFIED
FAIL O/S 2 
FAIL UNIX 
FAIL DOS
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D . 1 In trodu ction

This manual is geared towards the users of “Quality &  Reliability” and contains all the 

required information for using this software tool. With the help of this tool the user can 

represent a production system and simulate the quality of the products and the reliability 

aspects of a system. It allows the user to gauge the reaction of this production system to 

changes relating to the parameters governing the process. This reaction can be assessed 

through the graphical and numerical representation of results. The results on quality 

include the number and type of products with failure and the cost of this failure as default 

in a given duration of time (defined by the user). Results can also be changed 

dynamically for other parameter values that the user is interested in. The results on 

reliability include Scheduled and/or Unscheduled downtime, and important parameters 

such as Availability, Real U PH  (Units Per Hour), Utilisation etc. Sensitivity analysis is 

also built in as a basic feature of this software. To illustrate this aspect, some graphical 

comparisons of the different scenarios that the user investigated are also given. 

Estimation of reliability of the manufacturing system is another capability of this tool, 

which has more generic approach. The reliability of a production system consisting of 

one or two or more parallel lines and multiple (parallel) stages can be estimated.

The “Quality &  Reliability Tool” is designed for use by three types of users (Section 4.2): 

The first category, “Engineers”, is of people who know the production line and all the 

types of failures that a product can have. The second group of users, “Statisticians”, 

would be concerned with the inputs of the tool and its assessment, collection of data and 

its analysis and so on. Both these groups require knowledge in detail of the data, although 

from rather different viewpoints. The third group, “Managers”, involves those users who 

are interested in an overview of the results and the effects of sensitivity analyses on 

outputs and efficiency of the production line.

D .1 .1  A n o te  f o r  the u sers

This manual is divided into three main Sections. Each Section contains data for a 

particular group of users. The first section “Creation of the Production Line” is written 

for the users of the first group: “Engineers”. The second section “Production Line
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Analysis” can be used by analysts and “Statisticians” and the third section “Cost and 

Production Implications” is for the last group of users.

D .2  C h o o s in s  a u ser

When the software tool is started, it asks for the type of user as is shown in Figure D.l. 

Depending on what group the user belongs, the tool allows him to do different things. For 

example, what an engineer can do is completely different from what a statistician or a 

manager can do.

Q U A L I T Y  

R E L I A B I L I T Y

J D H B d
Engineers
Managers
Statisticians

F igu re  D . l :  The to o l a sks f o r  the g ro u p  th a t the u ser  b e lon g

The “Engineers” group is responsible for the accurate representation of the production 

line. This is created with the help of a pop up menu. O f course, the facilities available to 

other types of users depend on what the Engineers provide, so that a clear representation 

of the system is very important. The engineers must also provide some information about 

the production process, such as the number of lines, the types of products that the system 

produces and the pure U PH  for each product for each production stage.

The “Statisticians” group has the responsibility for designating the inputs and outputs for 

suitable analysis. The inputs involve information about the number of faulty items that 

have been detected with a particular type of failure and information about the downtime
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(Scheduled and Unscheduled) This software tool helps the statistician to do a visual 

statistical analysis of the data

The “Managers” group is interested in the synthesis of the results and production of 
reports and summaries A manager can both view the analyses and make mmor changes 
to the data m order to see the reaction of the line to changes, 1 e “What if’ exploration A 

number of different scenarios can be compared with each other, providmg the base for 
system evaluation Estimation of the total reliability of the system is also available from 
this software tool, 1 e what is the reliability of a production system consistmg of several 
parallel lines and several parallel stages
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D .3  C rea tio n  o f  the P ro d u c tio n  Line

The “Production Line” window is illustrated in Figure (D.2). The production line 

presented on this window is one of the five identical lines located in Intel’s E S S M  plant. 

This line is the same as the one illustrated in Figure (4.1). The engineers must represent 

the system or a subsystem thereof by giving the production stages and the inspection 

stages of the system with all possible failures that each inspection can detect. The extra 

information that an engineer gives includes the names of inspections, stages, and failure 

types, the number of production lines and the pure UPH.

E 3  THE P R O D U C T IO N  L IN E

F igu re  D .2 : The s ta g e  o f  the s y s te m ’s c rea tio n

Inspection's Name: Systest 1.2,3 
Abie to detect the following failures: 
8011-CARD  M ISSING 
8083-LOOSE/MISSING A S S E M P L Y  
8126-FAJLUNIX 
IB75-Fail_WindowsNT_4 
IB82-Fail_Hardware_Ch

I N T E L  

E S S M  Production Line
3

Faïure

Selected Qbtect

View

Clear Surface

Destination

Statistics

Reliability

Quality

CoofcSnates

X : (sTTscT 

Y : p ò

ILE
Toolbox

F3e Tool fìox Statistics Results Help
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D .3 .1  H o w  to rep resen t a  system

At the top right of the screen there is a “Toolbox” area (Fig. D.3). These tools help the 

user to represent the system. The system always starts with either a stage or an 

inspection. By  clicking the “Inspection” button the user selects an inspection object, as 

shown at bottom of the “Toolbox” area (Fig. D.4) and puts it into the large area of the 

screen. After each inspection, the user (engineer) must give types of failures that the 

previous inspection can detect. The objects (Inspections, Failures, Stages) inserted in this 

window are automatically available for all the users. So, after the “Inspection” object, the 

user must insert the failures in the same way. Every time the user puts an object into the 

screen, an input dialog box asks for the name of that object.

r  T odbox

..JmRection..,

Failure

Stage

View

Selected Object:

Clear Surface

Failure

Stage

Selected Object:

Inspection

Clear Surface j

F igu re  D .3 : The to o lb o x  a rea  F igu re  D .4 : A n In spec tion  has been  se le c te d

By clicking the “Inspection” button the user selects an inspection object. He/she can 

place this object in the screen, thus creating a representation of the line. When the
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“View” button is pressed, the user, by clicking on any object in the screen, can view the 

data already given on this object. For example, by clicking on the “Systest” inspection the 

detectable failures are shown in the “Current Object” box as illustrated in Figure (D.5).

C U R R E N T  O B J E C T

Inspection's Name: Systest 1,2,3 A

Able to detect the following failures:
8011-CARD M ISSING . . .

8083-LOOSE/MISSING A SSEM PLY
8126-FAIL UNIX
IB75-Fail WindowsNT A
IB82-Fail Hardware Ch d

F igu re  D .5 : The box  w h ere  the g iven  d a ta  o f  an o b je c t d isp la y e d  
w hen the “V ie w ” bu tton  is se lec ted .

The “Notes” box (Fig. D.6) aims to help the user by keeping any additional information 

for the system, such as the names of the products, the date of creation of his system etc, 

which will help him/her to overview the system.

NOTES--------
HI

i N T E L

ESSM  Production Line

d

F igure D .6 : The “N o te s ” box  can  sa ve  an y  in form ation  a b o u t the system .

The “Destination” area at the bottom right of the screen (Fig. D.7) helps the user to watch 

the co-ordinates of the mouse in the pop up area in order to better position the selected 

object. It can also give the user the opportunity of visiting the “Statistics”, “Reliability” 

or “Quality” windows (details are given below).
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uesunaiion

Statistics

Reliability

Quality 

Coordinates 

X I 1658.50

Y  ; 1358.50

F igure D . 7: The “D estin a tio n  ” a rea

D .3 .2  The m enu b a r

At the top of the “Production Line” window there are five menu lists. These lists allow 

the user to manipulate the data file, to move between the windows or to find some help 

topics. We give detailed information only for the menu lists of this window. The menu 

lists in the other windows contain much the same functions.

The “F ile  ” m enu lis t

This menu is a common file menu (Fig. D.8). It gives options to create a New file, or to 

Open an existing one. The user can Save an update of a file or Exit the program.

PI THE P R O D U C T I O N  LINE

Tool Box Statistics Results Help

New File Ctrl+N
Open Ctrl+0

Save Ctrl+S

£xit Ctrl+E

F igure D .8 : The “F i le ” m enu lis t
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The “T o o lb o x ” m enu lis t

From this menu (Fig. D.9) the user can choose an object (just like from Toolbox area) at 

the right of the screen (Fig. D.3). From the Nodes menu list, corresponding objects are 

available such as Inspection, Failure and Stage.

E t h e PRODUCTI ON LINE

file T ool Box Statistics Results Help

Inspection
Failure
Stage

F igu re  D .9 : The “T o o lb o x ” m enu lis t  

The “S ta tis t ic s ” a n d  “R e s u lts ” m enu lis ts

These two menu lists give to the user the option of moving between the windows. From 

the first one (Fig. D.10) the user can visit the Historical Data, Specify Data or Insert 
Data windows for both Quality and Reliability aspects. These three windows are the 

interfaces for the “Statisticians” or analysts. From the second list (Fig. D.l 1) the user can 

go to the results windows. Dynamically the user can change to several types of results. 

Details on the above windows are given in the next two sections.

| B  THE PRODUCTI ON LINE

File Tool Box Statistici: Results Help
i

Statistics -----------------------------
Quality ► I

Q  Specify Data 

Insert Data 

Statistica] Analysis

F igu re  D A O : The “S ta tis t ic s ” m enu lis t
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|E ] T H E  PRODUCTION LINE

File T ool Box Statistics Results Help

Failure 

Reliability ► Cost

F igu re  D . l l :  The “R e s u lts ” m enu lis t

The “H elp  ” m enu lis t

The software tool also provides a Help Topics and an About window (Fig. D.12) which 

aid the user to provide appropriate results.

0 THE PRODUCTION LINE

Fite Tool Box Statistics Results Help
j

• Help T opics Ctrl+H

About Ctrl+A

F igu re  D .1 2 : The “H e lp ” m enu lis t

D .3 .3  “D e ta i ls ” w in d o w

On clicking the D e ta ils  button (Fig. D.3) the engineer gives details on the layout of the 

lines and information about them. The “Details” window (Fig. D.13) is shown and U PH  

data and the number of production lines must be inserted. Each product has a different 

UPH, depending on the complexity of the product, (number of components that should be 

attached). Hence, a pure U PH  must be given for each stage and for every product. Figure 

(D.13) presents the pure U PH  for two products (D S P 1 .C  and P 3 X P  5 1 2 k ) as inserted in 

the software tool.
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Details

OK

Details about UPH — ------- —

Number of parallel lines:

Add Product

Insert the Pure UPH for each stage: 

Cell's Data:|

DSP1.C P3KP512k Jk.

Panel Mark 900 900
Dec Sec 570 201
CP6 Sec 553 192
IP3 Sec 633 220
Atmns Sw. R?? 1R3 ▼

F igu re  D .1 3 : The w in d o w  in w hich  U P H  a n d  la yo u t d a ta  in serted  

D .3 .4  In Sum m ary

The “Production Line” window helps the engineer to set up the system. The system 

consists of the Stages and the Inspections of the production line, and of the types of 

failures that can be detected. There are also details on the number of parallel lines and the 

U PH  of each stage. The following two sections give details on what the other two groups 

of users (i.e. Managers and Statisticians) can do.
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D .4  P ro d u c tio n  L in e A n a lysis

The window “Statistics” (Fig. D.14) will be displayed in two different ways: From the 

starting window (Fig. D .l) by selecting “Statisticians” user or by following the link 

“Statistics” (Fig. D.7) from the “Production Line” window.

S ta t is t ic s

File Map Statistics Results

Inspections
Help

Failures Stages
Dec Sec
PSVI Sec Inspection 
Dek Pri Inspection 
PSVI Pri Inspection 
ICT
Systest 1.2.3

8238-FIDUCIAL t 
8133-D RO PPED £\ 
8131-DROPPED i 
ASJO-ASSEM PL Y 
8041-DAM AGED i 
8049-COM PONE* 
8092-SU RFACE F
8043-M /SAL fGNEi 
8090-LEAD DAMA
8044-M /SS/N G  C L zl

Panel Mark
Dec Sec 
CPG Sec 
IP3 Sec 
Atmos Sec 
PSVI Sec 
MHS Sec 
Dek Pri 
CP6 Pri 
IP3 Pri

Ml

J j

Simulation

Run

Quit

Production Line

Open File

Change Data

Change

|[nspections j*j[ ¡Failures [stages
Specify Quality Data 

Insert Quality Data

Specify Reliability Data I 

Insert Reliability Data

F igu re  D . 14: The w in d o w  “S ta tis tic s  ”

This window is divided into three areas: “Simulation”, “Change Data” and information 

about the Inspections, Stages and Failures (Fig. D.14). A  statistician would typically 

insert data involving downtime and number of failures at each stage. The three lists 

(Inspection, Failures, and Stages) give information on the corresponding objects and the 

user can also change the name of each object. From this window the name of an object 

can easily be changed by choosing the name from the drop down lists, correcting them 

and pressing the button “Change”.

The “Simulation” area consists of four buttons: The “Run” and “Production Line” buttons 

can send the user to the “Results” and to the “Production Line” windows respectively.
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The “Quit” button exits the “Quality and Reliability Tool” and the “Open File” opens an 

existing file.

The “Change Data” area has four important buttons: The “Specify Quality Data” button, 

the “Insert Quality Data” button, the “Specify Reliability Data” button, and the “Insert 

Reliability Data” button. These buttons are illustrated in the following windows:

D .4 .1  The “S pec ify  Q u a lity  D a ta ” w in d o w

The “Specify Quality Data” window (Fig. D.15) helps the user to add the information 

associated with the current day. Every day, each inspection of the production line finds a 

number of items with a specific type of failure. So, if the user wants to insert this kind of 

information, he/she must first choose an inspection from the drop down list “Change 

Inspection”.

Spec ify Data

File Map Statistics Results Help

Inspection: Systest 1.2.3

T y p e s  O f  F a i l u r e s :  Insert Data

Inspected Items: [¡00

D S P 1 . C

8011-CARD MISSING 
8083-LOOSE/MISSING A'
8126-FAIL UNIX 
IB75-FalLWindowsNT 4 
1882-Fail Hardwaie.Ch 
8022-REM0VED FOR EN
8128-FAIL WINDOWS 95 
IB73-Fai Windows_95 
8124-FAIL WINDOWS N1
8127-FAIL DOS 
1877-Fail dos
8129-FAIL POWER UP 
1881-Fail OS Boot 
8085-THERMAL PLATE/l ( 
8133-DROPPED BY 0TH_^J

Number of items with this failure: [s~

Open Easting File

Cost of having one unit failed (£) : ¡0

 3I Failure

Add Data

January ▼ j1999 j r

: I 1 2

3 4 5 6 7 8 9

10 11 12 13
: 15l 16

17 18 19 20 21 22 23

24 25 26 27 28 29 30

31

Preview File

New Fie

(Graphics

0.6

0.5

0.4

0.3

0.2

0.1

0.0
8011 8083 8126 IB75 B82 8022 8128 B73 8124 8127 ©77 8129 IB81 8133 8131

Statistics

Run

Quit

1010

0.6
0.5

0.4

0.3

0.2

0.1

0.0

Figure D. 15: The "Specify Data" window
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After that, he/she inserts the data at the “Insert Data” area (Fig. D.16), indicates the 

failure that has been detected and enters the number of items with this type of failure. 

This is repeated until all information on failed items has been inserted. Every time the 

user adds a new number of items with a given failure, the “Add Data” button (Fig. D.16) 

must be clicked. No failure is indicated by inserting “0” in the appropriate record.

Inspected Items: |l00 Number of items with this failure: ¡5

|C hange Inspection ▼ ]  | January _▼] |1999 _▼]

28 29 31 1 2

Cost of having one unit failed (£.): 0 3 4 5 6 7 8 9

10 11 12 13 14 $ 16

| Failure »] 17 18 19 20 21 22 23

24 25 26 27 28 29 30

Add Data | 31 1 8

F igu re  D .1 6 : The “In sert D a ta ” a re a  a d d s  the d a ta  o f  the d a y

At the bottom of this window (Fig. D.15) there is a graphical representation of the data 

for the current inspection. It shows the percentage of failures at this inspection. At the top 

left of the screen the user can see all the possible failures that this inspection can detect. 

From the drop-list “Graphics” the user can choose the representation of the data as 2- 

Dimensional or 3-Dimensional. By pressing the “Ctrl” button the user can rotate the 3- 

Dimensional graphics.

At any time, the user can change the input file and add data into another file by clicking 

the “Open Existing” file. He/she can also create a new file or preview the open file. The 

preview of a file shows the user all the data that has been inserted through the “Insert 

Data” window (details in next paragraph).

The user can again move from window to window easily either with the help of menu 

lists (Fig. D.17) or by the buttons at the right side. By clicking the “Run” button, the 

“Results” window is shown. The "Statistics” button brings him/her to the previous
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window, “Statistics”. There are also buttons to quit the software, to open a file or to 

preview an open file.

E  Specify Data
File Map Statistics Results Help

F igu re  D .1 7 : W in d o w ’s  m enu lis t

The “M ap”, “Statistics” and “Results” menu lists helps the user to perform specific 

analyses as similarly described in Section (D.3.2). The “Specify Quality Data” window 

also has a “File” menu list (Fig. D.18). From this list, the option of printing the graph is 

available. The Add Data and Preview options do the same as the “Add Data” and 

“Preview” buttons.

PÏ
Map Statistics Results Help

Inspection:

Insert Data

t j

Open Ctrl+0
Save Ctrl+S

Add D ata Ctrl+D
Preview Ctrl+P

Print Graph Ctrl+G

Exit Drl+E

Inspected Items: j^ O  

|Change Inspection j£ ]

F igu re  D .1 8 : "File" m enu lis t f ro m  "Specify D ata"  w in d o w
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D .4 .2  The “I n s e r tD a ta ” w in d o w

This window (Fig. D.19) enables addition of data. The user goes into this window when 

he/she wants to create a new input file, to preview an existing file or to add data for one 

or more days.

Insert Data

Map Statistics 

File Name:

Results Help

DSP1.C

B IRD

Add Columns

Cell's Data: 22303

INSPECTION FAILURE 7/6/98 11/7/98 8/8/98 8/15/98 ............... i .......3
8131 -DROPPED BY DYNAPACE 0 0 42 0 J

A S K W S S E M P L Y  M ISSING 0 0 42 0

PSVI Sec Inspection |gl|

8041 -DAMAGED COMPONENT 0 1 0 2 I I I

8049-COMPONENT SKID o 1 7 4
8092-SURFACE FM 0 1 1 0 |||||

8043-M ISAUGNED 0 2 1 2
8090-LEAD DAMAGE 3 5 4 1

8044-MISSING COMPONENT 0 E 0 1
8051-SOLDER ON FINGERS 10 13 8 39 1111

8032-EMBEDDED FM 0 0 0 1 f i

8034-BOARD SCRATCHES 0 0 0
8057-FM ON FINGERS 0 0 0 1

SURFACE DAMAGE TO FINGERS 0 0 0 2
8100-UFTED LEAD 0 0 0 2

8094-INSUFICIENT SOLDER 0 0 6 3 S h

8093-COMPONENT FM 0 0 2 0

8011-CARD M ISSING 0 0 6 0
Dek Pri Inspection

AS10-ASSEM PLY  M ISSING 1 0 8 o
RfOT-XFn HUT RRARD ? n 7 n z l

L u — _________ ÜÜÜ mmsmm

1 I |
Open File Save File New File Back Quit

F igu re  D .1 9 : The “In sert D a ta ” w in d o w  a n d  the g r id  a rea

The grid box at the middle of the screen presents the failures and inspections as the 

mechanic has defined them. The user can add the number of defective items for one or 

more days into a new or existing file for a particular type of product. If  the user wants 

results about the cost of failures, he/she must add the relative information (relevant cost 

per item) to the grid box. Again, this window allows the user to visit all the windows 

through the menu lists (Fig. D.20) in the same way as discussed in the previous section.
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File Map Statistics Results Help

Inseit Data

F igu re  D .2 0 : The m enu lis ts  o f  "Specify D a ta "  w in d o w  

D .4 .3  The “S p ec ify  R e lia b ility  D a ta ” w in d o w

This window helps the user to add the information associated with the current day’s 

downtime. Every day, each stage of the production line may fail short of the desired 

productivity (Fig. D.21). This may be due to various factors, and this tool divides them 

into two categories: Scheduled and Unscheduled reasons. Thus, if the user wants to insert 

this kind of information, he/she must first choose a stage from the drop down list 

“Change Stage” and insert the minutes of downtime (both Scheduled and Unscheduled 

Downtime). The differences between this window and the “Specify Quality Data” 

window are the “Insert Data” area and the presentation of both the scheduled and the 

unscheduled downtime, rather than quality data.

Insert Data

Hours of work: 

jChange  Stage "3
Minutes of Scheduled Downtime:

Minutes of Unscheduled Downtime: |0~

Add Data

I January ▼"! 11999 ▼"]lljill — ——   ; I mJ
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F igu re  D .2 1 : The in sertion  o f  re lia b ility  d a ta  f o r  e v e ry  d a y
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D .4 .4  The “In ser t R e lia b ility  D a ta ” w in d o w

We mentioned (Section D.4.2) that the user has the option to insert quality data with the 

help of the “Insert Quality Data” window. Two windows like this exist for importing 

reliability data. The first refers to Scheduled Downtime (Fig. D.22) and the other to 

Unscheduled Downtime.

F igu re  D .2 2 : The “In ser t R e lia b ility  D a ta  ” w in d o w  f o r  S ch ed u led  D o w n tim e  d a ta

In these two windows there is a button called “S ta tis tic a l A n a ly s is ”. This button takes the 

user to the “Statistical Analysis” window in which a visual statistical analysis of the data 

can be done. Quality data are treated like probabilities so, a statistical analysis to fit them 

to distributions is not necessary for the reasons discussed in Section (3.2). Reliability data 

are treated as downtime distributions, so a statistical analysis in order to fit them to 

distributions is necessary. We present this window in next section (Section 4.5). The
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simulation model uses all the data that has been inserted into the above windows in order 

to generate random numbers of downtime and failures reflecting reality.

D .4 .5  V isual S ta tis tic a l A n a ly s is  o f  R e lia b ility  D a ta

Statistical distributions (such as Exponential, Weibull etc.) must be fitted to downtime 

data (both Scheduled and Unscheduled). The user selects a stage from the “Stages” 

combo box (Fig. D.23) and looks at the frequency of downtime (depending on their 

choice) illustrated (in red) at the bottom of this window.

Statistical A na lys is

£ile Map Statistics Results Help

Suggested Parameters

Mean Downtime: 40

Scheduled Downtime 

Unscheduled Downtime
OK

¡SYSTEST  1.2.3 ^

I Exponential

Accepteted Back

Standard Deviation: ¡59.2246 Mean Downtimeime:| 40.3 Run I Graphics

HHQ

Distributions Parameter |Pararci
PSVIPri Exponential 2.125
MHS Pri Exponential 275
Depanel Exponential 15
ICT Exponential 4.125

TGD Exponential 29.8
ATPAS Exponential t\ m
ACES Exponential 17 Ü
SYSTEST 1,2,3 Exponential H

H  1 ■ ± r

0.4S

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

Downtime Distribution

F igu re  D .2 3 : V isual S ta tis tic a l A n a ly s is  o f  R e lia b ility  D a ta

The user may then attempt to fit the data to a standard distribution. The user must decide 

if extreme values (such as 310 minutes in our example) are to be included. If not the 

mean time must be reduced. From the combo box “Distributions”, some common
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distributions can be selected Before pressing the “OK” button the user must insert the 
parameter(s) of the chosen distribution The software provides some suggestions about 
the values of the parameters by giving the “Standard Deviation” and the “Mean 
Downtime” By pressing “OK” the distribution is illustrated (in green) and if the selection 
is the appropriate one, the “Accepted” button must be clicked This should be contmued 
for all the stages and for both Scheduled and Unscheduled Downtime

If a statistical analysis of the data is already done by other software packages (such as 

JJJMP, Microsoft Excel etc) the user needs just to select the stage, the distribution and 
inserts the parameters In this way historical data on reliability is not required to be 

mserted m this window and the step of statistical analysis is not necessary

D 4 6 Footnote

The “Statisticians” group has the responsibility for msertmg the data associated with the 

production line This is crucial smce that data are used to simulate further scenarios If 
downtime distributions are already known, the user can avoid reliance on historical 
downtime data, which may be limited (Section 3 6) This implies knowledge of what 
constitutes a realistic distributional form for the failure times At this stage, no data have 

been generated by the tool through the simulation models Data available to the tool will 
allow domg this as described m the next section
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D .5  C o s t a n d  P ro d u c tio n  Im p lica tion s

“Managers” tend to be interested only in the results of the simulation model and 

comparisons between some possible scenarios, together with information on associated 

costs. Sensitivity Analysis is available for both this group and the “Statisticians” group, 

in order to test the reaction of the line to changes on the parameters governing the 

process. After each simulation run, the user gets an analytical report and there is also the 

option of keeping the results for further comparisons with other results and scenarios.

0 S im u la tion  R e su lt s  on  Q uality

File Control Results Sensitivity Statistics Map Help

Number of Faulty Boards at Each Stage: Simulation Results

25

Dec Sec PSVI Sec Inspection Dek Pri Inspection PSVI Pri Inspection ICT Systest 1,2,3
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Quit
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F igu re  D .2 4 : The p resen ta tio n  o f  the Q u a lity  resu lts

The user has separate results on Quality and on Reliability. For this reason there are two 

different windows for presenting the results. In Figure (D.24) the window for Quality is 

illustrated. The only difference between these two windows is the combo box of the top 

right of the window. For Quality this combo box is necessary in order to choose the
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product that the user wants the results on. On Reliability results this is not necessary 

because downtime doesn’t depend on the type of product.

The window “Simulation Results on Quality” (Fig. D.24) has input the number of items 

that we want to inspect. At the top right of the screen there is an area “Parameters” (Fig. 

D.25). In the blank box in this area the user inputs the number of items for inspection. 

The “Control Buttons” (Fig. D.26) area consists of five buttons. The first controls the 

Simulation process. With the help of the other three the user can visit the “Statistical 

Analysis” window, visit the “Report” window (details in section D.25) or can insert the 

results into the “Scenarios” window (details in section D.26) in order to compare them. 

The button “Quit” exits the tool.

Parameters-------------------
Number of Items: IT 00

Sensitivity Analysis

Simulation and Graphics —  

Inspected Items: |

[Graphics ~^j

Control Buttons— --------------

Start

Statistical Analysis

Report

Insert to "Scenario"

Quit

Change Inspection ▼ |

F igu re  D .2 5 : The “P a ra m e te r s” a n d  F igu re  D .2 6 : The “C o n tro l B u tto n s”
a rea
“Simulation and Graphics” area

There are two graphical representations of the results. The one at the top presents the 

number of faulty items that have been detected at each inspection. Below that there is a 

representation of the number of items with a specific failure at a given inspection. The 

inspection can change from the “Change Inspection” combo box into the “Control 

Buttons” area. The user can also change the results from the number of faulty items to the 

cost of having those failures, and vice versa, by clicking on “Cost Results” and “Failure 

Results” respectively (Fig. D.27).
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Cost Results

Numerical Results

Print Results

Results Control--------------

Failure Results

F igu re  D .2 7 : P resen ta tio n  o f  resu lts  re la tin g  w ith  cost.

By pressing the “Cost Results” button the charts of the cost of having faulty items is 

shown. This window also allows movement between the windows with the menu lists 

“Results”, “Statistics” and “Map” (Fig. D.28). The menu list “Control” controls the 

simulation just like the “Control Buttons” area does. The user can simulate any saved 

production line or Save and Print the results from the “File” menu list. There is a menu 

list “Sensitivity” with the option Sensitivity Analysis. This option works in the same way 

as the “Sensitivity Analysis” button in “Parameters” area (Fig. D.25).

a
File Control Results

Sim ulation R e su lts  on Quality

Sensitivity Statistics Map 

Number of Faulty Boards at Each Stage:

Help

F igu re  D .2 8 : The m enu lis ts

Reliability results are presented in a window similar to this one (Fig. D.24). The user can 

change from Scheduled to Unscheduled downtime with the help of the “Results Control” 

area the only difference being that there is no option for cost results (Fig. D.29) in this 

area, since cost for downtime is very difficult to estimate.
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I Results Control

Scheduled Downtime

Unscheduled Downtime

Numerical Results

Print Results

Figure D.29: The Results Control area for the Reliability Results

When the “Numerical Results” button is clicked the Reliability or Quality results are 

presented in grid form. Figure (D.30) presents the window displayed when “Numerical 

Results” button is clicked from the “Simulation Results on Reliability” window. The 

“System Reliability” button helps the user to estimate the system’s reliability with the 

help of simulation. More details on this follow in Section D.4.
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F igu re  D .3 0 : N u m erica l p re sen ta tio n  o f  re lia b ility  resu lts  
(bo th  S ch ed u led  a n d  U n sch edu led)

D .5 .1  S en sitiv ity  A n a lysis

The option Sensitivity Analysis from the “Sensitivity” menu list (or from the 

corresponding button, Fig. D.25) helps the user to investigate this reaction through the 

window shown (Fig. D.31). This tool can answer the following types of questions:

• What if no failures are record?

• What is the impact of one or more failures?

• What if a failure has a larger or a smaller probability of occurring?

• What is the cost reduction when the chance of a failure changes?

• What is the impact on real U P H ’s when downtime rate is changing?

Sensitivity Ana lysis

| Products ■r]

Change Failures

an Inspection j [ ]

C  Remove a failure from this inspection

|Choose a failure

[ H H
i Quality Simulation

Change Quality — -----------------------

Percent of Change: ¡5 0  

C  Dicrease Quality 

C  Increase Quality

Apply Quit

I
Reliability Distributions

|Stages ¡Distributions j * ]

Parameter 1 :
C  Scheduled Downtime .

Reliability Simulation 
C  Unscheduled Downtime -------------------------------■ Parameter 2:

F igure D .31 The "Sensitivity A n a lysis"  W indow

The “Change Failures” area (Fig. D.31) helps the user to answer the first two types of 

questions. If he/she wants to remove a failure, he/she chooses the option “Remove a
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failure from this inspection”, and he/she also chooses the removing failure and the 
mspection where this failure occurs from the combo box Clicking on the “Quality 
Simulation” button the simulation runs again for the chosen product (“Products” combo 
box)
Other questions can be handled by the “Change Quality” area (Fig D31) The user 
chooses the mspection and the failure from “Change Failures” area as before, and 
declares whether he/she wants to mcrease or decrease quality and then sets chance of a 
failure with the help of “Percent of Change” (Fig D 31) When the scenario is ready the 
user clicks the “Quality Simulation” button If the user wants to make more than one 
change, he/she must click on the “Apply” button every time a change is ready The 
“Quality Simulation” button will give the user the results of the new system

In the same way the user can change the downtime rate (Scheduled or/and Unscheduled) 
from the “Reliability Distributions” area The user can change the downtime rate by 
changmg the distribution or by changmg the mean downtime of a stage By these 
changes, the user can watch the reaction of some parameters such as Real UPH, RunRate, 
Utilisation, etc
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D .5 .2  R e p o r t R e lia b ility  /  Q u a lity

From the “Control” menu the user can choose the Reliability option. On choosing this, 

the "Report Reliability / Quality" window is shown (Fig. D.32). This window collects 

information from both the Reliability and the Quality results. Results for the main 

Reliability parameters: Machine Utilization, Real UPH, Availability and RunRate are 

displayed here (terms explained in Chapter 2 (Section 2.2) in detail).

R eport Reliability /  Quality

Reliability
Choose a  stage or a Subsystem:

10
100

Desired Gap (%):

Yield (%):

Machine Utilization:

Real U P H :

Availability (%):

RunRate (k/week):

Bottleneck:

(units

Estimate

Exit Report

Scenarios

Inspection:

Minimum Reliability Inspection:

Maximum Reliability Inspection:

Reliability of Chosen Inspection (%): 
[choose'Inspection ▼ |

Types of Faults of Chosen Inspection
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Figure D 32 The “Report Reliability/Quality” window analyses the percentage 
that a stage in the system is reliable

At the top of the window, in the “Reliability” area there is list box from which the user 
holding down the “Ctrl” key can chose one or more stages Then by choosmg a product 
from the “Units” combo box or by clicking on the button estimate, the user can obtam 
mformation a chosen system or subsystem and details on any bottleneck The user can 
also change “Yield” and “Desired Gap” (Section 2 2) The first depends on the Quality 
mformation of the policy that the company follows In Intel they have a desired gap of 

10%

If Quality results are estimated (that means that results have been generated by 

simulation), the user can view the mspection which produces the largest number of faulty 

items or the mspection with the least faults (area at the bottom of this wmdow, 
“Quality”) By choosmg an mspection from the combo box, the user can see the 
probability of havmg a failure from this mspection as estimated from the simulation 

Percentage of failure is used as Yield input at the top of the wmdow

In this wmdow the user can also answer the question “How much time will it take to 
produce Ni items of A, N2 items of B, where A and B are different products After 

selectmg the product A m the area at the middle of this wmdow and inputting the number 
Nl at the “Number of Units” box, the user clicks the “Insert” button Similarly for B The 
Estimate” button gives the approximate time required

5 5 3 Scenarios

The user can keep a set of results from different runs of the simulation model (both 
Reliability and Quality) by clicking the button “Insert to Scenarios” (Fig D 26) Those 
results can be compared and the user can identify areas that cause problems, stages with 

low reliability and quality Suggestions for changes can be achieved with the help of this 

wmdow (Fig D 33) In Figure (D 33), the two scenarios are the same except for the fact 
that the second has a shorter average downtime - 10 and 5 mmutes less at the stages of 
“Systest 1,2,3 ” and “CM” respectively
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F igu re  D .3 3 : The “S c e n a r io s” w in dow , f o r  co m p a rin g  the sim u la tion  resu lts

At the right side of this window, there are two areas: “Downtime” and “Quality”. From 

the “Downtime” area, the user can compare Reliability results with comparisons focusing 

on the Downtime (both Scheduled and Unscheduled), Utilization and Real U PH  for each 

product. In the same area, the user can read information about the scenarios he/she 

compares and can watch each scenario presented as a chart at the middle of the window. 

The charts can be 2-Dimensional or 3-Dimensional, bars or lines, depending on what the 

user choose from the combo box “Graphics”. Holding down the “Ctrl” button and 

moving the mouse at the same time can rotate the 3-D graphics. At the bottom of this 

window there are three buttons from where the user can “Reset Window” (deletes all the 

scenarios), can hide the window, “O K ” button, and “Print Graph”. From the “Quality”
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area the options are almost the same; the only difference the being comparison of the 

Yield between the scenarios for each product.

5 .5 .4  R e lia b ility

In Figure (D.30) the window displays numerical results for Reliability. At the bottom of 

this window there is a button called “System Reliability” which helps the user to test the 

reliability of the whole system. The user can estimate the reliability of the real system or 

of a hypothesised system. Adding a stage in a system can increase reliability, but 

sometimes adding redundancy is not always the best way to achieve this. The cost might 

be too large and the results might not be worth such a cost. The “Reliability” window is 

shown (Fig. D.34).

Reliability

R e l i a b i l i t y

Stages Reliability X Reality U i i n n l U a M Anypotnesis 1

Id

Working Hours per day: 

Wokring Days per week: 

Parallel Lines:

Real Number of Parallel Stages: 

Hypothetical Number of Stages:

24

HBE3

[Parallel Stages ^  Refresh |

Insert

Insert

Monte Carlo I System Reliability (%):

F igu re  D .3 4 : The “R e lia b ili ty ” w in d o w  a n d  the re lia b ility  es tim a tio n  w ith  the 
help  o f  M on te  C a rlo  S im ulation .

In the grid box in this window, the user can see the number of parallel stages in the line. 

If the number is different to the one entered in the “Production Line” window he/she can 

change it with the help of the boxes at the right of the window and by choosing the stage 

from the combo box and then clicking the “Insert” button. The “Reality” column must 

always show the real number of parallel stages. In the “Hypothesis” column the user must 

insert the number of stages that he/she wants to investigate. By  clicking the “Monte
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Carlo” button, the reliability will be presented at the right bottom comer of this wmdow 
The number of the production lines can be changed as well as the number of the working 

days that the factory is working and the shifts The estimated reliability is based on the 
results generated by the simulation model in the “Reliability Results” wmdow

D 5 5 In summary

In this chapter we gave mformation on how the user can attain Reliability and Quality 
results The results are bemg generated from the simulation models, which are based on 

the historical data given by the “Statisticians” We also presented the option of 
mvestigatmg the reaction of the production line to changes in the parameters defining it 

The user chooses the scenarios for the sensitivity analysis from the “Sensitivity Analysis” 
wmdow
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D 6 Error Codes - Possible Causes and Solutions

Error codes for tool functions as follows 

“ERROR 1 You must choose an object”

This error occurs only when the user clicks in the pop up menu (fig 3 1), “Production 
Line” wmdow, without choosmg any object Insertion of an object requires first it’s 
selection from the toolbar (fig 3 2), and then it’s placmg m the mam area

“ERROR 2 You cannot start with a failure”

This error occurs only m the “Production Line” wmdow A failure follows on from an 
mspection After placmg an “Inspection” a failure must be indicated If the user msert a 
failure as a starting object, this error will occur

“ERROR 3 Failures expected for the previous INSPECTION”

This error occurs only m the “Production Line” wmdow After msertmg an “Inspection” 

object, the tool is waitmg for the failures that this mspection can detect If no failures are 
placmg, this error will be flagged

“ERROR 4 A Stage does not have failures”

This error occurs only m the “Production Line” wmdow An mspection can detect 
failures and not a stage Trying to place a failure after a stage will show error number 4, 
because is like saying that a stage can mspect items

“ERROR 5 System Without Inspections”

This error occurs only m the “Simulation results on Quality” Wmdow It is not necessary 
to use this software tool for both Quality and Reliability results Hense, the user can have 
a production lme without mspections, and this model can be used for Reliability only 
results If the user tried to obtain Quality results from a model without mspections, this 
error will occur

D-33



“ERROR 6 Select an Object First”

This error can happen in both “Specify Data” and “Specify Reliability Data” windows 
When the user is about to insert data (Reliability and/or Quality) an object (stage and/or 
mspection respectively) must be chosen from the correspondmg combo boxes If the 
“Insert Data” (Fig 4 3 and Fig 4 9) button is clicked without choosmg an object this 
error occurs

“ERROR 7 Simulation Error - Invalid distribution”

This error occurs m “Simulation Results on Reliability” wmdow Durmg the statistical 
analysis of the reliability data, the user might insert distribution or parameters for 
distributions that are not valid At this stage a simulation error occurs

“ERROR 8 Select a product first”

Error 8 can happen m the following three wmdows “Specify Data”, “Simulation Results 
on Quality” and “Sensitivity Analysis” wmdows Every time a user inserts quality data or 
wants some Quality results from the simulation model, a product must be specified

“ERROR 9 Details are Expected”

Both simulation models are usmg data from the “Details” wmdow If the user forgets to 
msert data m this wmdow (Fig 3 12), this error is displayed

“ERROR 10 You should first have simulation results”

If the user is trymg to change from Cost results to Failure results m “Simulation Results 
on Quality” without havmg any simulation results, this error occurs Further, when the 
user wants to know the Quality percentage of an mspection, from the “Report 
Rehability/Quality” wmdow without havmg data to work form, this failure will also 
occur

“ERROR 11 'Comments' FILE NOT FOUND Please verify the correct name is given” 

This error occurs when the user is trymg to open an invalid file name Either the file 
name is wrong or the file does not exist
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