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ABSTRACT

This work focuses on the linear two-pomt boundary value 
problem

y’ = A(x)y + f(x), a < x < b

Bay(a) + Bby(b) = y

with a view to their solution by some form of parallel 
algorithm The theory and practice of current sequential 
solution methods is reviewed to select a method which 
exhibits concurrent processing potential The method selected 
is a version of multiple shooting The language Ada is 
chosen to code the algorithm because of the features available 
in it, particularly the inbuilt tasking facility for concurrent 
processing The efficiency of the parallel code as implemented 
is demonstrated by a series of numerical experiments, the 
results of which are summarised m tabular form
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Chapter 1 

Two-Point Boundary-Value Problems
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In this work we consider, in the first instance, the differential 
equation

y' = f(x,y), a < x < b, 1 1 1 a

g(y(a),y(b)) = 0 11  lb

and its solution by means of an algorithm which allows for the use of some 
form of concurrent processing technique In the ordinary differential 
equation, i e Eq 1 1 la, the quantity y is an n vector, x is the independent 
variable, and f is a vector function Eq 1 1 lb  represents boundary 
conditions, which are given for two points, a and b, a < b, in the domain of 
x, and hence the name two-point boundary-value problem (BVP) is given 
to such a set of equations

We shall consider only first order differential equations of the form

y' = f (x,y)

and we use the fact that higher order equations can be reduced to first 
order, by substitution, an example of which is now outlined

Suppose we are given an nth order differential equation in the form •

an+i(x)y(n) + an(x)y(n-1) + + aT(x)y + a0(x) = 0 1 1 2

an+i(x) *0 , V x

where y(n) means " the nth derivative of y ", etc 

Let yi= y, y2= y', , yn.i= y(n‘2), yn= y(ivl), which yields the first order system

yi' = y2 
Yi = y3

yn' = - (anyn-i+ + aiYi + ao)/an+ir

{where a,(x) has been written as at, l = 0 n+1, for simplicity}

In vector notation, this becomes.

1.1 The Form of the Problem
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y'=f(x,y)

and is reduced to the first order form as in Eq 1 1 la  This well known 
technique can be applied to any higher order system to effect the same 
reduction

1.2 Linear and Nonlinear Problems

At this point it is also useful to distinguish between linear and 
nonlinear problems A linear problem is such that the elements of the 
vector y appear only linearly in Eq 1 1 la Consider, as an example, Eq 11 2, 
where the coefficients a,, i = 0 n+1, depend only on x, which can be written 
as

y'=A(x)y + f(x) 121

where A(x) is a matrix depending only on the independent variable, x, and 
f is a vector function of x Otherwise the problem is nonlinear As an 
example of a nonlinear problem consider the 2nd order problem

1 k
y "  +  i y '  =  —  0 <  X <  1 1 2  2

X y

y’(0) = 0 , y(l) = 1

In first order form, using vector notation this differential equation may be 
written as

t y2
yi

= 1 k
y 2 T y* + ~

yi_

i e in the general form 

y' = f(x,y)
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The solution of a linear problem poses less problems than its 
nonlinear counterpart, and, as we shall see, some form of linearisation 
technique is often used when attempting to solve a nonlinear boundary- 
value problem

1.3 Physical Examples

There are a range of physical phenomena for which two-point 
boundary-value problems provide the model Examples can be found in 
many areas of engineering and science ranging from simple beam bending 
problems m mechanics to the chemical engineering areas of absorption 
phenomena, chemical reactions, radiation effects and problems connected 
with heat transfer, fluid flow, dissipation of energy and control theory. The 
nonlinear boundary-value problem of the previous section, i.e Eq 1 2 2, for 
example, describes the equilibrium condition of suspended charged drops 
[171

As a second simpler example, consider the mathematical model 
which describes a load

F(x) = 1000  sin ( j tx /1 0 )

applied to a rod that is 10m long One end of the rod, x = 0, is clamped. At x 
= 10 the rod is pinned If a = 0 01, where a is the elastic constant, then the 
fourth order BVP

yiv = 10 sin ( t c x / 1 0 )  0 < x <10

y(0) = 0, y'(0) = 0, y(10) = 0, y"(10) = 0

models the physical problem The solution to this problem will be used as 
part of the numerical experiments of Ch. 5.

Two-pomt boundary-value problems can also result from partial 
differential equations if, for example, the method of lines is chosen as the 
solution technique This leads to high order differential equations Such 
large systems are excellent candidates for the consideration of some form of 
parallelism in their solution



1.4 Types of Boundary Conditions

The boundary conditions, Eq 1 1 lb, associated with the differential 
equation, Eq. 1 1 la, may occur m several different forms For example if 
the function g, of Eq 11 lb, is given only at values at either x = a or x = b 
then the problem becomes an mitial-value problem and Eq 1 1 lb  can be 
written as either y(a) = a or y(b) = p, where a, p are n vectors Initial-value 
problems will not be considered in this work

If the conditions can be written m the form

Bay(a) = a, Bby(b) = p ,

where the vector (a,P)T is an n-vector, and Ba, Bb are appropriate matrices, 
the conditions are said to be separated.

Again, the conditions can be mixed between both boundary points 
and, if linear, may be written as

B0y(a) + Bjy(b) = y

where Bq and B| are nxn matrices and y is an nxn vector
Both of the above types of conditions result m computationally 

more advantageous situations than the general nonlinear case of the form

g(y(a),y(b)) = 0

For the general case some form of linearisation process is usually done and 
the solution is found iteratively In the majority of problems, boundary 
conditions will be linear, either separated or mixed and examples of each of 
these types of boundary conditions are contained m the numerical 
experiments in Ch. 5.

1.5 Existence and Uniqueness of Solutions

We now consider the existence and uniqueness of the solution to Eq 
1 1 1 . Conditions for the existence and uniqueness for the first order scalar 
initial-value problem (IVP)

y' = f(x,y), 

y(xo) = yo

5
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are established m the understated theorem, accredited to the French 
mathematician Emile Picard (1856-1941), the proof of which can be found 
m any standard text, [12], on differential equations

Theorem 1.1.

If
(1) f(x,y) is continuous and has continuous partial derivatives 

with respect to y at each point in the region R defined by

I x- xq I <  a i ,  I y - y 0 1 <  a 2,

(n) I f(x,y) I < M,
(iii) h is the smaller of the numbers a| and a2/M , 

then there exists a unique solution of the IVP on the interval 

I x - x q I  < h

The theorem can easily be extended to the vector case This theorem, 
then, guarantees that the IVP has a unique solution on an interval

x0-h < x < xo+h

It should be noted, however, that the problem may have a unique 
solution even if all the conditions (l)-(m) are not satisfied

No such equivalent theorem is available for the general two-point 
boundary-value problem, although for the linear case conditions for 
existence and uniqueness and even the form of the solution itself have 
been established [1] We know that the linear problem

y' = A(x)y + f(x), a < x < b

Bay(a) + Bt,y(b) = y 

will have a unique solution if and only if the matrix

Q = BaY(a) + BbY(b) 

is nonsmgular, where Y(x) is a matrix of solutions satisfying
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Y'(x) = A(x)Y(x)

found using a set of linearly independent initial condition vectors, 1 e the 
fundamental solution matrix

As an example of the care which must be taken when examining the 
existence, or otherwise, of a solution consider the differential equation-

y" + 7t2y = 0 , 0 < x < 1,

which has the general solution

y = Acosjtx + BsinTcx

If the boundary conditions are given as

y(0) = 0, y(l) = 1

on substitution into the general solution the equations to be solved to find 
the particular solution are

A 1 + B 0 = 0

=> A = 0

and
A (-1) + B.O =1 

=> A = -1

which is a contradiction There is, in fact, no solution to the differential 
equation on this interval given these boundary conditions. Of course, this 
can be verified by examining the matrix Q, as defined above and m [1], 
which can be shown to be singular In fact

1 O '

where the initial conditions are taken to be 

(i) y(0) = 1, y’(0) = 0, and
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In this work, we shall assume that for any particular problem the 
existence and/or uniqueness of the solution on the given interval is 
known and that the boundary conditions are also sufficient for the 
existence of a solution

1.6. Numerical Solution Methods

The next task is to classify the various methods used for the 
numerical solution of two-point boundary-value problems Daniel [4] 
views a complete method as having three aspects1

1 A Transformed Problem
2. A Discrete Model of the Transformed Problem, and
3 A Solution Technique for the Discrete Model

In the most usual case the Transformed Problem and the original 
problem coincide However many BVP's arise in science as the variational 
or Euler-Lagrange equations for problems in the calculus of variations. 
This can lead to the problem being transformed to that of minimising an 
integral In other cases BVP's can be transformed to the problem of 
evaluating an integral using an appropriate Green's function See, for 
example, [25] for a discussion of these transformations Such 
transformations lead to discrete models and solution techniques involving 
quadrature It is not proposed to perform such transformation techniques 
in this work Rather, methods which attempt to solve the BVP directly will 
be examined

It is generally agreed [24] that the numerical solution of two-point 
BVP's can be divided into three mam competitive classes* finite difference 
methods, shooting methods and finite element methods Therefore, it 
seems useful to outline how the discrete model and solution technique as 
described in [4] is developed for each of these classes of methods

The Finite Difference Method

In order to solve Eq 1.1 1 by the method of finite differences, the 
derivative appearing in the equation, as well as in the boundary 
conditions, is replaced by an appropriate difference approximation In its 
simplest form, the interval [a,b] is divided into N equal submtervals, each 
of width h, where

(u) y(0) = 0, y’(0) = 1

8



and

Xj = xq + jh, where h = (b-a)/N and j = 0,1, • •, N.

The solution to the differential equation at these mesh points denoted by 
yo/ yi, • • • / yn is then sought.

To derive the approximations, Taylor's series for a function of a 
single variable can be used as follows:

y j f i =  +  h y ’j +  0 ( h 2 )

=> y'j = + 0 (h)J n

a = x0 < x 1< . . . < x N=b

This yields the simplest finite difference approximation for the (scalar) first 
derivative, the forward difference approximation. This formula can be 
extended to cover the vector case quite easily, or, indeed, for higher 
derivatives if required, so that the complete differential equation and 
boundary conditions can be replaced by a difference equation. The discrete 
model is then a difference equation which must be solved to give an 
approximation to the solution y(x) at the points xT, x2, . . . ,  xN, represented 
by ylr y2, . . . ,  y^. A number of techniques exist for the solution of such 
equations.

A complete treatment of this method including the introduction of 
higher order approximations will be given in Ch. 2. Similarly the form of 
the difference equation, the solution techniques and the possibility for 
parallelism in any numerical solution technique will be treated at that 
point.

The Finite Element Method:

Another approach is to discretise the differential equation using a 
technique which has several variants known by such names as the finite 
element method, projection method, Galerkin's method, the Rayleigh-Ritz 
method etc. The common approach adopted by these methods is to attempt 
to approximate the solution curve of the differential equation 1.1.1a using
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m (finite) linear combinations of known functions These known 
functions, called basis or trial functions, are usually low order polynomial 
or simple trigonometric functions.

In simple form we approximate the solution y(x) to Eq 111 by

m

y(x) ~ v(x) = ^  Cj 0j(x)
1=1

where the <j>, are the selected basis functions which satisfy the boundary 
conditions 1 1  lb, and the q are the coefficients which must be found.

There are several approaches to finding the coefficients For 
example, in the collocation method we require that the approximate 
solution satisfies Eq. 1.1.1a at N internal points (grid points) By 
substituting

m

X  cA (x)
1=1

for y in the original differential equation, a system of equations m c, is 
constructed. The solution of the BVP then reduces to the solution of this 
system in q

This approach and others, using residual functions, variational 
methods and splines, will be discused in Ch. 2 Also the form of the 
solution technique and the opportunities for parallelism will be treated at 
this point.

The Shooting M ethod.

The general principle underlying the shooting method is the 
transformation of the boundary value problem to an initial-value problem 
(IVP) To do this, it is necessary to supply an estimate for any "missing" 
boundary conditions at, say, x = a, using a priori information about the 
problem for the estimates, if possible The result is an initial-value problem 
which can then be discretised and solved using any of the standard IVP 
methods By comparing the known boundary conditions at x = b with the 
solution of the IVP at x = b, another, hopefully better, estimate of the 
missing boundary conditions at x = a can be found

In the 2nd order case, with separated boundary conditions, say, y(a) = 
a and y(b) = p, the procedure can be simply illustrated as follows:
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(i) Solve the differential equation, first with y’(a) = 04, to find a 
solution at x = b, say y(1)(b) = p1
Solve again with y'(a) = a2, to find another solution at x = b, 
sayy(2)(b) = p2

(11) Interpolate with these solutions pT and p2 to produce a better 
estimate for y(a), say y(3)(a) = a3 

(lii) Continue this process until the value yw(b) = , 1 > 2, so found
is "close" to the correct value y(b) = p

The interpolation can be done using any linear interpolation technique 
For example, the Lagrangian formula would become:

(5-p! P*P2
a ,    a ,  +  a ,

PfPi  P1-P2

The abundance of available mitial-value codes is clearly a reason for 
considering the shooting approach to the solution of a BVP In the case of 
linear 2nd order boundary-value problems convergence to the true 
solution can be shown to occur by performing (1) and (11) above and then 
interpolating, although for nonlinear problems convergence may take 
several steps Higher order interpolation may assist the convergence 
process as more solutions become available

The fact that the equation must be integrated at least twice before any 
interpolation can be done suggests that some form of concurrent processing 
could be introduced, even in this simple case In the case of higher order 
problems, as we shall see, many integrations may be required, even in the 
linear case, depending on the number of "missing" boundary conditions 
which must be estimated so concurrent processing capabilities could lead to 
even greater efficiencies This method, then, suggests itself as a method 
worth considering m any concurrent processing context

A disadvantage of the method is that for some problems the 
selection of the initial conditions can be critical. An estimate of the 
boundary conditions very close to the true value may be required, if the 
solution is not to "explode" in the given interval Several methods have 
been proposed to control this phenomenon, including the multiple 
shooting technique, [13], which divides the interval [a,b] into smaller parts 
and the integration of each section is done separately. This approach leads 
inevitably to the idea of parallel multiple shooting, where the subintervals 
are integrated simultaneously

1 1



In the shooting method, then, the discrete model and solution 
technique depend on the mitial-value solution technique chosen. The 
method presents inherent possibilities for parallelism which could take 
advantage of the current generation of parallel computer architecture. A 
complete treatment of the theory of the shooting method is found m Ch. 2.

1.7 Parallelism and Ada

Since this work is primarily concerned with implementing, in 
parallel, solutions to boundary-value problems, it seems worthwhile at this 
stage to review the current state of hardware and software m the field of 
concurrent processing The classical Von Neuman architecture of 
sequential computers allows for the execution of only one instruction at 
any one time However, attempts have been made to introduce limited 
parallelism even into this structure

The idea of virtual memory, whereby only the active part of a large 
program is stored m mam memory, while the rest of the program is kept in 
backing store was probably the first attempt to improve the efficiency of the 
basic architecture Introduced by Kilburn el al m 1962, [11] and used initially 
m the Atlas machine, it allowed for hitherto overly large programs to be 
executed The idea is also used in the time-sharing environment, allowing 
users to run large programs simultaneously A similar idea is that of cache 
memory, whereby a very high speed area of main memory is used to 
process the active part of the current program, while the rest of the current 
program is held in lower speed mam memory (Wilkes, 1965)

The first attempt at truly concurrent processing is the idea of 
pipelining This is a technique to initiate one or more accesses to memory, 
while executing instructions in the central processor. Thus a series of 
instructions are held m a pipeline, and executed rapidly as the processor 
becomes available Once the pipeline is full, the relatively slow operation 
of finding the next instruction, decoding it and possibly finding the 
associated data no longer becomes a bottle neck and the processor is used 
more efficiently Many machines now use this idea pioneered on the IBM 
Stretch, CDC 6600 and now Intel’s 8086 processors

However, any serious attempt at parallel processing must aim at an 
array, of some kind, of several processors Only then can there be major 
advances in the power of the resulting computer As yet no single 
architecture has emerged to challenge for supremacy in the field of parallel 
processing as does the Von Neuman style in the sequential case. The 
answers to many questions regarding the best arrangement of processors 
are by no means clear-cut. These include, among others, the cost, in

12



computer time, of communicating between processors, the amount of 
memory to be associated with each processor, the amount, if any, of shared 
memory, the merits of having one powerful master processor, etc These 
and other problems are addressed m Ch. 5, when the most efficient 
hardware design for the parallel algorithm of Ch. 3 is considered

As well as the hardware problems associated with concurrent 
processing, we must also consider which language is best suited to the 
coding of any suitable algorithm There are several possible choices, 
including a parallel version of Fortran or C, but one language which was 
designed with parallel processing in mind is Ada Ada is a large language 
which addresses many issues relevant to the programming of practical 
systems m the real world [26] Some of the features which contributed to its 
choice for the coding of the algorithm of Ch 3 were

(i) Readability and Maintainability

In general, parallel processing is only considered when a large scale 
or complex problem is to be solved Thus the program will be large and any 
language which is used for coding the problem must allow for ease of 
maintenance Because Ada is a highly structured language which uses 
object oriented programming techniques, it encourages the low level 
details of the implementation of an algorithm to be kept invisible to the 
user allowing the problem to be considered at its outermost level 
Developments and refinements of the algorithm can thus be implemented 
at this outer level Alternatively, more efficient processing techniques can 
be introduced at the lower level, without any need to change the overall 
structure of the algorithm

(ii) Mechanism for Encapsulation

This allows each component of the program to be separately written, 
compiled and, most importantly, tested It can then be included m a library 
and used confidently any time by the main program Selected components 
can also be included from other libraries, when available, allowing for 
improved efficiency

(m) Tasking Facility

Since it is proposed that the program be written as a collection of 
parallel activities, it is essential that the language allows for this idea In 
Ada the tasking facility was designed within the language with parallelism 
in mind, rather than as a feature which is added to certain

13
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implementations Problems associated with the co-ordination of data 
transfer and the synchronisation of concurrent processes are automatically 
handled by the language This feature is the most important reason for the 
selection of Ada as the programming language for coding the algorithm

(v) Generic Units.

To allow a program to be truly general purpose, Ada allows a umt to 
be written with not only variables as parameters, but also with functions as 
parameters This is then used as a template by a driver program which 
supplies the functions and parameters proper to any particular problem. 
Effectively a copy of the template is produced by the driver program which 
will include the required user supplied parameters and functions.

A complete review of the relevant Ada facilities used by the 
algorithm of Ch. 3 is presented with the code in Ch. 4

1.8 Conclusion

The problem to be solved, then, is a two-point boundary-value 
problem whose format is to be fairly general Because of the variety of 
BVP's, no single code can hope to be used for all such problems However, 
a selection of problems will be considered, in particular linear problems 
with general boundary conditions. The solution to this type of problem is 
useful because it may be used as the core method during each iteration in 
the solution of a nonlinear problem Improvement in performance will be 
sought on the basis of speed with no loss of accuracy in the solution The 
language Ada will be used as the vehicle for coding the algorithm, and the 
spirit and philosophy of this language will be followed.

The next task is to analyse m detail the competitive numerical 
techniques for the solution of two-point boundary-value problems and 
select one which offers the greatest potential for parallelism This is 
addressed in Ch. 2

14



Chapter 2

Numerical Methods for the Solution of Two-Point 

Boundary -Value Problems
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2.1 Finite Difference Formulae

Since the mam algorithm m this work is based m part on the finite 
difference method, it seems appropriate to present first of all the details of 
this method Techniques for improving its efficiency will be mentioned 
and used as required in the later part of the work

For the direct numerical solution of a two-point boundary-value 
problem such as Eq 1 1 1 by the method of finite differences we divide the 
interval [a,b] into N intervals of length h, and introduce the mesh points

where x0 = a, xN = b and N is an appropriate integer A scheme is then 
designed to determine numbers y} which will approximate the values y(Xj) 
of the true solution at the points Xj

One way of doing this is to replace every derivative appearing m the 
differential equation by an appropriate finite difference approximation as 
mentioned in Section 1.6 In this case it is not necessary to reduce higher 
order equations to first order as finite difference formulae can be developed 
for derivatives of any order Examples of various approximations are given 
below, with the order of the error m each case

Xj = a + jh , ) = 0,1, , N

y'(x) = 0(h)

y'(x) = y-1-2h--~1- + OOi2)

+ 0(h2)

+ o(h2)

1 6



All of these formulae, plus any approximations for higher order 
derivatives, are readily available from combinations of Taylor's series 
expansions for y)±1, . yJ±k, k an integer depending on the the order of the 
derivative being approximated Other approximations whose error is of 
higher order are also available, see for example [8] In the interest of 
accuracy it is, of course, better to use approximations whose error is of as 
high an order as possible and a balance is sought between simplicity and 
accuracy For many approximation schemes the error is kept to 0(h2) and 
techniques are available to achieve a higher order of accuracy based on the 
lower order solution Two approaches to this problem, namely 
Richardson's method and the deferred correction idea will be discussed 
when appropriate

In the finite difference method, then, the original differential 
equation is replaced by a difference equation The order of the difference 
equation will depend on the order of the differential equation and the 
finite difference approximation scheme used If the differential equation is 
linear, the difference equation will be linear It is not required that the step 
size, h, be fixed, and for some problems a fixed step size may lead to 
inefficiencies However, the main algorithm discussed in Ch. 3 uses a fixed 
step, which simplifies the problem of load balancing between processors in 
a parallel environment

2.2 An Example of the Finite Difference Method

To illustrate the procedure for a simple problem, consider the second 
order linear differential equation given below, for which existence and 
uniqueness criteria are assumed,

Without reduction to first order and .using central difference 
approximations throughout, the approximation, at internal mesh points, 
to the differential equation becomes-

y"(x) + p(x)y' + q(x)y = r(x), 

y(a) = a , y(b) = p

a < x < b

2 2 1 b

2 2 1 a

1 7



pOO(y1+r  y,.i)r v j+i jj-i
2h

j = 1, » N-l 2 2 2

Re-arranging terms and writing Pj for p(Xj) etc, we get:

This yields N-l equations for the N-l internal mesh points xl7 , xN-1 For 
this problem the values of y(x0) and y(xN) are already known, namely a and 
P from the boundary conditions So, by solving the N-l equations we obtain 
the required approximations to y(xj), n = 1, , N-l The equations to be
solved form a linear system m yl to y^-i which can be written in the form

where y is a vector, whose dimension is N-l, of the unknown values at 
each of the internal mesh points, A is an (N-l)x(N-l) matrix with the 
familiar tridiagonal structure given hereunder,

Ay=b 223

BiQ  
A2 B2 C2

A N-2 % - 2  C N-2

a n -i B N -i

with

A j = ( 1 T PJ) ’ J = 2 ’ ’ N_1

Bj = (-2 + h2qj), j = 1, 2, , N-l

C j = ( 1 + I P j ) ’ J = ^  2> .N-2

and b is an (N-l)-vector of known values as follows'

1 8



bj = h2r 1 -(1 - j P ^ a

b = h2r , j = 2, , N-2
j j J

Of course, if higher order equations or higher order difference 
formulae are used, the structure of the matrix will still be banded, but the 
number of bands will reflect the order used The resulting linear system 
can be shown to always have a unique solution [10]

2.3 Derivative Boundary Conditions

The form of the boundary conditions will affect the structure of the 
linear system as described by Eq 2 2 3 If one or both boundary conditions 
involve a derivative, then this, too, must be replaced by its finite difference 
approximation Forward differencing may be used at x = a, and backward 
differencing at x = b This will have the effect of reducing the order of 
accuracy to O(h), so the more usual strategy is to use central difference 
formulae at each boundary, thus retaining 0 (h2) accuracy

For a second order problem, this will introduce fictitious mesh 
points xA and xN+1 By introducing two extra difference equations in the 
linear system i e by allowing j to take values between 0 and N, the same 
fictitious values will be introduced Elimination between these new 
equations and the boundary-value equations gives N+l equations in N+l 
unknowns which can then be solved

As an example consider the differential 2 2 la  with boundary 
conditions given as

y'(a) = a, y'(b) = p. 2.3.1

The same discretisation process as described in Section 2.2 may be used, but 
the solution at x = a and x = b are now no longer known To overcome this 
difficulty we may use, for the left hand side of the interval, the central 
difference formula
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2 3 2

which yields

y_i=yi -2hcc

and, for the right hand side of the interval the formula

2h 2 3 3

which yields

Yn + i  =  Y n -i  +  2 h P

If j takes values from 0 N instead of 1 . N-l, we gam two extra equations, 
and the system will now have dimension (N+l)x(N+l) The form of the 
equation to be solved will be as for Eq 2 2 2 However, the fictitious solution 
values y_! and y^+i will be introduced These can be eliminated using Eq 
2 3 2 and Eq 2 3 3, and the system can be solved at all the mesh points, l e.

a = x0,x 1, ,xN = b

In both these second order examples the structure of the coefficient 
matrix will be tridiagonal and its structure may be exploited to reduce the 
amount of computational effort involved in its solution

This simple example illustrates the basic principle of the finite 
difference method for the solution of two-point boundary-value problems. 
However, several important points need to be considered in conjunction 
with this simple scheme

Firstly, for problems with solutions which vary rapidly over parts of 
the interval a large number of mesh points will be needed to accurately 
trace the solution For some problems the number of mesh points required 
may be prohibitively high and the finite difference method may fail in 
these cases As an example of such a problem consider the well known 
boundary layer type problems where the solution varies very rapidly near 
one or both boundaries The amount of such variation may depend on a 
parameter in the differential equation The solution may be well behaved 
over other parts of the interval, so that a small number of points (i.e. a
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large step size) will achieve the same accuracy This suggests that a step size 
which can somehow be allowed to vary would be more efficient in this 
case One strategy for varying the mesh size is discussed in the next section 
(Section 2.4).

The mam algorithm of this work, although using a fixed step, can go 
some way to alleviating the "large size” difficulty by including in the final 
solution a small or large number of points depending on the behaviour of 
the solution within a subinterval Thus boundary layer problems may be 
successfully treated in parallel by the algorithm

Again the number of mesh points and hence the size of the system 
of linear equations gets large as the value of h, the (constant) step length, 
decreases. For high order accuracy with low order difference formulae, the 
step length is necessarily small, so that the computational cost for the 
solution of the linear system is high This problem can be partially 
overcome by using some technique for accelerating convergence towards 
the true solution, thus achieving greater accuracy without increasing the 
size of the linear system. This problem is also addressed in Section 2.4.

2.4 Increasing the Order of Accuracy.

Probably the best known method used to increase the order of 
accuracy is Richardson's deferred approach to the limit which operates as 
follows Obtain an approximation for the true solution, y(xj), at the selected 
mesh points xy n = 0 N, based on a step length h ,  denoted as y ( X j , h ) ,  with 
accuracy 0(h2) Now use the same scheme to obtain another solution, with 
step length ph, p<l If the (unknown) error is written as e(xp we may write’

y(x.,h) = y(x.) + h2e(x) + 0 (h3)

and

y(xfph) = y(Xj) + p2h2e(xj) + 0 (h3)

Eliminating e(Xj) and re-arranging gives

y (x )  = y(x,ph)V (y (x ,h ))+ o (h3)

0 - p 2 )

where the subscript has been ommitted, for notational convenience
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Thus an extra order of accuracy is gained at each mesh point without 
the need to solve the large system with a higher order difference formula 
In certain problems, where only even powers of h occur in the error term, 
0 (h 4) can be obtained by one application of Richardson’s approach For a 
discussion on this theory see [10] Many numerical schemes use p = 0 5, but 
Keller [14] suggests that a more suitable value would be an arithmetic 
reduction of the form

hk= (k+D'^hg

where hk represents the step size after the kth refinement
Another approach to the problem of achieving greater accuracy is the 

method of deferred correction introduced by Fox [8] and outlined in [9] To 
illustrate this technique, we again consider Eq 21 1 Assume an 
approximate solution has been found using the central difference formula 
above Making use of Stirling's interpolation formula for y(x), where x = 
XQ+uh, and writing y0 for y(x0), we get,

2
, v U ~ -  U 2 u -U ,_3 -3 .y(x) = y0 + ^  (8yI +8yi ) + Y 5 y0 + - _  (8 y , + 5 y.) 

"  7  z

3 
1 ■

2(3')
4 2 5 c 3 .

u -u  _4 u - 5u + 4u c5 .+ - r r -  8 y0 + (8 y , + 85y}) +4' 2(5') 24  1

where the operator 8 is the central difference operator, i e 

5Yj =  Yj+1/2 " y,-i/2

We may differentiate this formula by first finding the derivative at a 
general point x, and then using x = x0 + uh The work is as follows.

d(y(x)) _ d(y(x)) du 
dx du * dx

but since x = XQ+uh this leads to
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= >

d(y(x))

dx

1 d(y(x)) 

h du

=> hy’ =
d(y(x))

du

Similar expressions for y" (and higher derivatives if necessary) can be 
found. Differentiating Eq 24 1 and substituting in Eq 2 2 1(a) we get, after 
some manipulation, the same finite difference equation as before i.e Eq 
2 2 2, with added terms involving 83y, 84y, §5y etc If we call the sum of these 
correction terms C(y), then using a difference table we may numerically 
estimate the successive differences and hence C(yn) for each of the solution 
values Adding this estimate to the approximate solution gives a better 
approximation and the process may be continued until all the values for 
C(yn) are less than some tolerance

A problem when finding the necessary higher differences arises near 
the boundary and this can be overcome by extending the solution mesh to 
include points external to the original mesh [14] This deferred correction 
process has been found to be more effective than Richardson's approach 
[23] and is included as standard in some of the modern codes for the 
solution of two-pomt boundary-value problems

The problems encountered by a fixed step finite difference method 
for rapidly varying solution within an interval has already been 
mentioned. A solution to the inefficiencies is to devise some strategy to 
allow a variable mesh size to be used

One such approach, proposed by Lentini and Pereyra, [23] is to 
somehow monitor the local truncation error at each point in the solution 
This they do by estimating numerically the first neglected term in the 
Taylor’s series expansion, in the above scheme the term involving h2. Of 
course, other terms could also be taken into account which would lead to a 
better estimate of the error The first neglected term m the scheme 
described by Eq 2.2 2 can be shown to involve the expression



Again having solved the difference equation on some initial mesh, 
an estimate to accuracy 0 (h2) is formed, and, in an analogous manner to 
the deferred correction technique, an estimate of the first neglected term is 
found An attempt to equidistribute the error by increasing the number of 
mesh points where the value of y"' is large is then made and the problem 
is re-solved on this new mesh This process can be repeated until some 
stopping condition has been reached, e g too many mesh points have been 
selected, too many iterations have been performed or convergence to the 
solution has been achieved

This is at least a two pass operation, but the extra work involved can 
be used for other useful purposes in the algorithm. For example, if deferred 
correction is to be used, the first stage of this calculation is already done, 1 e. 
estimating yj" Another possibility is to use the information about the 
local error estimate to gain some information about the global error 
estimate [7]

Another approach to the problem of a rapidly varying solution is to 
pay particular attention to the initial mesh of points on which the 
differential equation is to be solved Quite an amount of work is being 
done on mesh generation and adaptive mesh techniques for both partial 
and ordinary differential equations but a complete treatment of such 
techniques is beyond the scope of this work

2.5 Reduction of the Differential Equation to First Order

In the example discussed earlier, 1 e Eq 2 1 1, no attempt was made to 
reduce the equation to first order If this approach were followed, as 
outlined m Ch 1 , Eq 2.11 would become*

y i ’ =  Yi

y2’ = -(p(x)y2 + q(x)y1) + r(x) 

or, in matrix form*

V ■ 0 1 V ■ 0 '

.y2 .
—

-q(x) -p(x) y2.
+

r(x)

Using vector notation this can be written in general as:
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y' = A(x)y + f(x)

There are several schemes for discretising the equation in this form. We 
consider the "box" (or centred Euler or mid-point) scheme. In this method 
the solution is sought at x-values mid-way between the selected mesh 
points, x0, xl7 . , xN The usual forward difference approximation is 
effectively a central difference approximation for this mid-point, and can be 
shown to yield a truncation error 0(h2) The functions of x are evaluated at 
the mid-point, usually written as x]+1/2, and the value of y]+1/2 is taken as the 
average of yj and yJ+1. This gives the equation

iiljli. = A(x ) + f(x ,)h J+-  2 J + -

On multiplication by h, this becomes

h  h

V r yj = 2 A l (),j t l ) + 2 A l (5,j) + h f  1 z  >+- z 1 * 7  >*-

or

d ~ A  ,)yJtl- d 4 A ,
J + —  z  J + —  j +  —J 2 J 2 J 2

The resulting system of linear equations is of block bidiagonal form 
and, on inclusion of the boundary conditions, can be solved at all required 
mesh points as before

The dimension of each block in the coefficient matrix will depend 
on the dimension of the original differential equation In this example the 
dimension is 2, and so they are 2x2 blocks On solving the system, the 
values for each element in the vector y is found at each mesh point, so in 
this case as well as the solution for y, i e ŷ  we also obtain the solution for 
y’, i e y2. There is potential for using this extra information when 
monitoring the truncation error where the equations are obtained by 
reducing the order of the differential equation as outlined in 1.1
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I

The preceding section presents the ideas of the finite difference 
method for the solution of linear two-point boundary-value problems with 
various refinements and problems inherent in the method As yet no 
mention has been made of nonlinear problems This is because the 
technique involved in the solution of nonlinear problems results m the 
solution of a series of linear problems All the techniques used m the linear 
case can then be used at each stage of the nonlinear problem solution. 
Consider again the general boundary-value problem, Eq 111 ,1 e

y’ = f(x,y), a < x < b

y(a) = a, y(b) = p

When a nonlinear differential equation is approximated by a finite 
difference formula, the resulting difference equation will be nonlinear and 
may be written m the form:

g(x,y) = 0 261

This corresponds to the linear equation 2 1 2  and requires some nonlinear 
technique in order to find its solution The usual approach adopted is to 
use Newton's method, or some variation of Newton's method, where the 
order of the method matches the order of the finite difference 
approximation In outline, Newton’s method involves writing a linear 
approximation to the left hand side of Eq 2 61, using a Taylor's series 
expansion, and solving the resulting linear system So we can write

g(x,y) = 0

=> g(x ,y)  = g (x ,y ° ) +  X-’y Ay +
3y

where y° is a vector of values "close" to the true solution, Ay is y-y°, and the 
derivative term is the well known Jacobian matrix, often written as J. The 
problem, then, is to solve

g(x,y°) + J(y-y°) * 0

2.6 Finite Difference and Nonlinear Problems
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=> y ~ y° ■ J"Hg(x,y®))

A recursion may be set up such that a new value of y is found according to 
the above formula and this new value used in the next approximation 
The recursion can be stopped when the difference between successive 
approximations for y is sufficiently small

One problem with this method is to find a starting vector, y°, "close" 
to the true solution There are several strategies used for this, for example, 
solving a simpler (linear) problem close to the actual problem and then 
using this solution to start the solution to the nonlinear problem Again 
continuation techniques can be used To do this a parameter, say X, is 
introduced into the differential equation with the objective of simplifying 
the problem for X = 0 This simple problem can then be solved and the 
value of X. increased by some step, thus forming a new problem. The 
solution found may be used as the approximate solution to the new 
problem and the process continued until the original differential equation 
is recovered for X = 1

Because of the linearisation process usually adopted for the 
numerical solution of nonlinear boundary-value problems, the search in 
this work for an efficient parallel algorithm concentrates in the first 
instance, on linear problems The intention would be to include this 
parallel routine as the core integrator for the general class of nonlinear 
problems in the future

The main computational cost in the pure finite difference method is 
the linear algebra routine and the potential for parallelism in the method 
depends on the ability to parallelise this routine Since the mam algorithm 
in this work involves using a linear algebra routine, some current work m 
this area will be reviewed m Ch 3

2.7 The Finite Element Method.

Although the finite element method is not used m the main 
algorithm in this work, it does not seem appropriate to ignore 
consideration of this well known approach to the solution of two-point 
boundary-value problems Only an outline of the finite element method 
will be presented here and the potential for parallelism in this area 
deserves more attention and it will remain as an area for further study.

The idea behind the finite element or projection method is to 
somehow make a (linear) combination of known functions, satisfying the 
boundary conditions, which represent the true solution in the given
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interval These known functions, called basis or trial functions, are usually 
simple polynomial or trigonometric functions. If we regard the true 
solution as lying in some appropriate (infinite dimensional) space, the 
solution obtained can be viewed as a finite dimensional approximation to 
the true solution

To illustrate the basic idea, consider again Eq 2 2 1 We attempt to 
approximate the solution y(x) by a linear combination of m functions, i e

m

y(x )*v(x ) = c ^ ix )
1=1

where the <|>i(x) are basis functions, each of which satisfies the given 
boundary conditions, and the c, are coefficients as yet unknown

We must now decide in what sense the function v(x) is to 
approximate the true solution The method of collocation requires that the 
approximate solution satisfies the differential equation on a set of N grid 
points, not necessarily equally spaced, say Xj, j=l, N In the linear second 
order example already given, i.e.

y" + p(x)y' + q(x)y = r(x), a < x < b

y(a) = a , y(b) = p,

it means that the equation can be written as

V  d2 d

1=1 dx ^  J J

J = l, / N

Assuming that the basis functions are twice differentiable, this is a linear 
equation in the ct and can be written simply as

Ac = b

where A is the matrix of coefficients of the c„ and b is the known vector of 
the r(xp The coefficient matrix A and the right hand side b are easily 
constructed once the values of x̂  are selected and so the system can be 
solved
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In the Galerkin method the approach adopted for evaluating the ct is 
as follows Define a residual function w(x) for the approximate solution 
v(x) as

w(x) = v"(x) + p(x)v'(x) + q(x)v(x) - r(x), a < x < b

If v(x) were the exact solution then w(x) would be identically zero Using 
the definition of orthogonal functions, 1 e two functions fj and f2 are 
orthogonal m an interval [a,b] if

then the residual function would be orthogonal to every function on the 
interval The solution v(x) is not the true solution but approximates it 
using a linear combination of the basis functions, so the Galerkin method 
aims at choosing that v(x) which makes w(x) orthogonal to all the basis
functions <()1, , 0m For the example above this condition can be written as

b

a

b

J [v " (x )  +p(x)v'(x) + q(x)v(x)-r(x)]<l>k (x)dx = 0
a

k = 1, m.

Writing v(x) as the linear combination, 1 e

m

v(x) = C (^(x)
1 = 1

the integral equation can be written as

X  CJ  M /'to + P(x)^'(x) + q(x)<t>I(x)](|)k(x)dx = fr(x)<t>k(x)dx 
"  J
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This again is a linear equation in the ct of the form 

Ac = f

where the elements of A are constructed by evaluating the integral on the 
left hand side, and the elements of f, by evaluating the integral on the right 
hand side

The evaluation of the elements is more complicated than m the 
collocation method because of the integration involved Only m the case of 
simple basis functions can this integration be done explicitly so that some 
form of numerical integration will usually be required [19] For nonlinear 
problems the same approach can be adopted and the resulting system of 
equations will be nonlinear Again some iterative scheme would be used 
in the solution of these equations

The preceding section outlines briefly the finite element method for 
the solution of two-point boundary-value problems. As already stated, a 
full treatment of the method is not relevant to this work It should be 
noted, however, that since this method involves the solution of a system 
of equations in some form, the use of concurrent processing techniques 
will depend on the development of parallel algorithms for the solution of 
such systems

2.8 The Shooting Method

When beginning the study of two-point boundary-value problems 
with a view to their solution using supercomputers, the method which 
seemed to exhibit inherent concurrency was the shooting method For this 
reason the method was chosen as the area for greatest investigation. This 
section of the work deals with the theory and practice of what is known as 
the simple shooting method, with an introduction to the idea of multiple 
or parallel shooting Ch 3 will examine in detail two possible approaches to 
implementing multiple shooting on some form of concurrent processing 
machine

For a simple way of viewing the shooting method for solving two- 
point boundary-value problems, consider the 2nd order problem

y"(x) = f(x,y,y') a < x < b

y(a) = a , y(b) = p

Suppose we supply the "missing" boundary condition at one end of the 
interval, say choose
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y'(a) = a:

and ignore for the moment the given condition at x = b This converts the 
problem to a new mitial-value problem and we may solve this to find the 
solution at x = b We may write this as

y(b,ttl) =

where dj is included to show that the solution is dependent on the 
assumed boundary condition, 1 e y'(a) = 04

In other words, we "shoot" across the interval [a,b] to find a value for 
yib,^) If we repeat this process for another assumed value of y'(a), say

y'(a) = a2

we can find

y(b,a2) = p2

We may now compare our two solutions, Pj and p2, to the given condition 
at x = b, 1 e y(b) = p Using interpolation we can hopefully find a better 
estimate for y'(a), say a3, which will give a solution at x = b which better 
matches the given condition for y(b) (see diagram)

y-axis
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By repeating this process we can, m theory, find the correct value of 
y'(a) as accurately as required

As an actual example consider the analytic solution to the simple 
problem

y" = 6x 0 < x < 1

y(0) = 0, y(l) = 1

As a first estimate take y'(0) = 1, which, on integrating twice and 
substituting the initial conditions, yields the solution

y = x3 + x

This solution gives a value for y at x =1 of y(l) = 2 
If we then take y'(0) = 0 5, the solution is

y = x3 + 0 5x

which gives, at x = 1, the result y(l) = 1 5 Applying the simple interpolation 
formula from Section 1.6, a better estimate for y’(0) will be

y’(0) = 0

which is, in fact, the correct value for this problem. Thus the correct 
solution is obtainable using two "shots" This is not surprising, as it can be 
shown that for linear second order problems the correct value can always 
be found m this way

Such an approach would seem to be appropriate to solve linear or 
nonlinear problems and the availability of accurate numerical methods for 
the solution of mitial-value problems provides the motivation for further 
investigation of the method

If the problem is of a higher order there may be several conditions 
"missing" at either end of the interval [a,b] This means that the simple 
interpolation formula outlined m Section 1.6 will no longer be sufficient 
and the problem will have to be solved more than twice to find a better 
estimate at x = a.

In order to illustrate this idea and to put the theory on a sounder 
footing, it is worth investigating in more detail the continuous or analytic 
shooting technique m the first instance [14]
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The general superposition procedure for solving a linear non- 
homogeneous mitial-value differential equation is*

(a) find a particular solution to the problem,
(b) solve the corresponding homogeneous problem with linearly 

independent initial conditions

The required solution will then be the sum of the particular solution 
and a combination of the solutions to the homogeneous problem

If this approach is pursued in solving a nth order linear boundary- 
value problem, with linear boundary conditions 1 e ,

y' = Ay + f , a < x < b

Bay(a) + Bby(b) = p

we must find a particular solution to the differential equation and then 
find n solutions to the corresponding homogeneous equation with n 
linearly independent initial conditions The solution to the boundary 
value problem can then be found from the requirement that the solution 
must satisfy the given boundary conditions Mathematically, using the 
usual notation, this consists of solving the n+1 mitial-value problems

yo' = Ayo +f/ yote) = y
and yv' = Ayv yv(a) = ev v = 1, , n

where y is used to represent any vector of initial conditions, and the 
vectors ev are the usual unit vectors m n-dimensional space The required 
solution can then be written as

n

V=1

where cv represents the coefficients in the linear combination of solutions 
In simple form this becomes

y =y0 +Yc 2 8.1
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where Y is an nxn matrix of the solutions yn, as mentioned earlier, called 
the fundamental solution matrix and c is a vector of coefficients. Eq 2 8 1 
must satisfy the given boundary conditions

Bay(a) + Bby(b) = p

so, on substitution, this leads to the system of equations

BJyo(a) + Y(a)c] + Bb[y0(b) + Y(b)c] = p

Re-arranging and substituting the boundary conditions as appropriate we 
get

Qc = [Ba + BbY(b)]c = p - Bay0 - Bby0(b)

This, of course, is a linear system of equations which can be solved to find 
the coefficients C\ , . , cn, and the solution y(x) can then be constructed
using these coefficients

In order for a solution to the linear system to exist, the coefficient 
matrix Q must be non-singular, and indeed this is another statement of the 
existence theorem for linear two-point boundary-value problems [14], [1].

Thus, by solving n+1 mitial-value problems, the original differential 
equation has now been reduced to an algebraic system, which can more 
easily be solved (If Q is ill-conditioned, i e nearly singular, the solution of 
the linear system by numerical methods may be difficult and examples 
where this occurs will be presented later)

The above is the essence of analytic shooting and the numerical 
shooting method consists of following the same procedure, except that the 
solutions to the mitial-value problems are found numerically. It can be 
shown that if a stable, order m mitial-value method is used to solve the 
mitial-value problems, then 0 (hm) accuracy can be achieved using the 
shooting method[14] [10]

To carry on the general second order problem presented earlier, i e. 
Eq 2 21, the shooting method solution would be found as follows

1) Re-write the equation in first order form

y i' 0 1 V o'

y2 -q(x) -p(x) ,y2
+

r(x)
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=> y’ = Ay + f

2) Find the solution, y0, to the problem with 

y(a) = y

where 7 is any vector of initial conditions

3) Find the solution y l and y2 to the mitial-value problem 

y* = Ay

with

(1) y(a) = e j , and 
(li) y(a) = e2

The actual solution, y, could then be written as 

y = yo + CiYi + C2y 2

Introducing the boundary conditions as given m Eq 2 2 1(b) the system of 
equations to be solved will be

(Ba + Bb[y1(b),y2(b)]}[c1,c2]T = k |3]T - Bay- Bby0(b)

So, the original BVP has been reduced to a linear system of equations 
by solving 3 initial value problems, possibly numerically In the context of 
parallel processing there is no reason why these 3 IVPs should not be 
solved simultaneously

However for nonlinear problems we cannot superpose solutions so 
that this theory would not seem to be available for the nonlinear case It 
can be shown, [9] however, that the shooting method will work for such 
problems and in order to illustrate this, we will first consider the general 
second order problem

yi' = h^YvYi)

Yl = f2(x/yi/y2) a < x < b,

gm(yi(a),yi(b),y2(a),y2(b)) = 0, m = 1,2
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If we choose y^a) = X and y2(a) = \i, we again have an mitial-value 
problem which can be solved numerically by forward integration from x = 
a to x = b, to find y1(b;X,ji) and y2(b,X,n) as before The correct values of X and h 
are those values which satisfy the boundary conditions, i e. which satisfy 
the equations

These two equations will be, in the general case, nonlinear and can 
be solved using Newton's method This implies that initial estimates 
and n0, for X and \i, are known and better estimates and m can be found 
according to the equations*

where the derivatives of gl and g2 are evaluated at Xq and ^  Since g1 and g2 
are functions of y^bA.ix) and y2(b,A.,n), the calculation of the partial 
derivatives in the above equations will involve the evaluation of

dYi dy2
d X  ô|I dX  9(i

all evaluated at x = b If we call these quantities k,l,m and n, respectively, 
we can most easily evaluate them by first differentiating the differential 
equation and boundary conditions with respect to X and p. as follows

gm(^ ,y 1(bA,^),y2(b,X,n)) = 0, m = 1 ,2

d ( y j ’) ^ d f t

dX dX

d f t _ d ft d y 1 dy2

dX ~ ~dX dX
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Similarly other linear differential equations, called the variational 
equations, can be developed for 1', m', and n', and they are stated 
hereunder

1' =
8f,2_ 
dy1

3f2

'3y,

3fi af, 
ni = m-=r  + Ilrr—

dy2

n = m-r—
8L 9L

+  n 3 ~dy2

Initial conditions for this system of equations can easily be shown to 
be k(a) = 1 ,1(a) = 0, m(a) = 0 and n(a) = 1. By forward integration to x = b, the 
required values of k(b,Xo,̂ o)/ etc, can be found.

The nonlinear system can now be solved to find aXq, and a ĵlq, and the 
usual iterative scheme with Xj = X0 + aX0 can be set up It can be seen that 
two second order mitial-value equations must be integrated to find the co­
efficients for each step of the Newton scheme For simplicity of coding, 
approximations to these coefficients may be found by solving the original 
equations with small changes m X and n and approximating the derivative 
by a difference formula. Some of the power of the Newton scheme will, 
however, be lost if this approach is adopted On the other hand, the 
advantages include relieving the user of the chore of having to supply 
analytic expressions for the derivatives and having to fully understand the 
entire solution process

A closer examination of the treatment of nonlinear equations 
reveals that this approach reduces to superposition for the linear case The 
variational equations are equivalent to the equations for the fundamental 
matrix of solutions in the linear method [9]. The theory, briefly outlined 
above, shows that the shooting method can be applied to both linear and 
nonlinear BVPs, which justifies its numerical application for each type of 
problem For further discussion of this theory the reader is referred to [9]

There are many problems which need to be understood when 
considering the shooting method as a means of solving two-pomt 
boundary-value problems Even with relatively simple looking linear 
problems numerical simple shooting may not be a realistic option. The 
mam reason for this is the fact that the initial estimate for the missing 
conditions at x = a, say, may be critical. In some problems, if the estimate is 
not sufficiently "close", integration from a to b may fail because, while the
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boundary-value problem may be well behaved, the artificially 
manufactured mitial-value problem may not be, at least in the desired 
range The solution may introduce a true singularity, or explode and cause 
overflow on the machine before the end of the range is reached

Many solutions to this problem have been suggested including 
shooting-splitting, continuation, and multiple shooting The first of these, 
proposed by Firnett and Troesch [6], involves monitoring the distance 
across the range a particular mitial-value technique will solve and whether 
the overflow condition is positive or negative, for different initial guesses. 
When upward and downward diverging solutions are found for a 
particular guess at some internal point, say x^ the initial guess is refined 
using simple bisection and the process continued until the solutions differ 
by less than some tolerance These values are then used to start the 
integration along the next interval, [xvx2] and the process continued until x 
= b is reached The technique is simple to use and has been shown to work 
for a range of sensitive problems

The method of continuation is a well known technique for solving 
many difficult mathematical problems Basically it removes the difficulty 
and attempts to solve a simpler problem. For boundary-value problems 
this may mean shortening the interval [a,b] to [a,xa] and solving the 
problem on the shorter interval, 1 e matching the boundary conditions at 
X} rather than b The solution obtained can then be used as a starting guess 
for the solution to the problem over a longer range The amount by which 
the range is increased will depend on the sensitivity of the problem This 
technique is "continued" until the solution has been found over the full 
range It may be used with success in cases where one of the boundaries is 
at

Another approach to continuation for boundary-value problems is 
to eliminate difficult terms as outlined earlier by multiplication of the 
differential equation by a suitable parameter The parameter is then varied 
from 0 to 1, using suitable steps, and the solution at each step is used as a 
starting value for the next step The amount by which the parameter is 
varied, and indeed if the step should be uniform, depends on the problem 
being solved and requires many considerations outside the scope of this 
work.

Perhaps the most successful method for the solution of problems too 
difficult for simple shooting is the multiple shooting technique The 
multiple or parallel shooting technique for the solution of two-pomt 
boundary-value problems was developed by Keller [13] in 1968 as a method 
for overcoming the problem of "exploding" solutions Briefly it involves 
dividing the interval into a number of submtervals and simultaneously 
solving the boundary-value problem on each subinterval. Although the
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technique was introduced before the advent of parallel computing power, 
because of the inherent parallel nature of the algorithm it is possible that 
problems requiring a major investment of computing time could be solved 
more efficiently by this method in parallel using an array of processors.

In this work the multiple shooting technique forms the basis of the 
algorithm for the solution of two-point boundary-value problems in a 
parallel environment and the background of two approaches to the 
method, their advantages and disadvantages, will be examined in Ch 3 and 
an appropriate algorithm for implementation is selected in Ch 4.

2.9 Conclusion

The above sections outline the standard techniques available for the 
solution of two-pomt boundary-value problems The three main methods 
are included and these can be classified as finite difference, finite element 
and shooting methods Each of these areas is well developed in a sequential 
environment, with various subclasses within each of them Their 
development into a parallel environment is ongoing and as a contribution 
to that process the potential for parallelism using some form of multiple 
shooting will be examined in Ch 3
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Chapter 3

Multiple Shooting for Two-Point Boundary-Value Problems
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3.1 Motivation for Multiple Shooting

The multiple shooting method for the solution of two-point 
boundary-value problems, as stated earlier, owes its development to Keller 
in the 1960's The motivation for his work was to alleviate the difficulties 
which the "ordinary" (simple) shooting method often encounters when 
the solution of Eq 1 1 1 grows rapidly in the interval [a,b]. To illustrate this 
difficulty, consider the linear 2nd order problem [19]

The solution is of the form

where A and B may be found from the boundary conditions and can be 
shown to be

y" - lOOy = 0, 

y(0) = 1, y(l) = 0

0 < x < 1 ,

and B =

The correct value for y'(0) is then

y'(0) =
1-e

-10
-20

+ -10

If this problem is solved as an mitial-value problem, taking 

y’(0) = s,

the solution will depend on the choice of value for s In fact the solution of 
the mitial-value problem will depend on s as follows.



This expression is very sensitive to the choice of s, for if 

y-(0) = s = -10 1 

is used, the solution at x = 1 turns out to be 

y(l) = -110

whereas if

y'(0) = s = -9 9 

is used the solution at x = 1 is 

y(l) = +110

The dependence of y'(l) on the chosen value of s is even more dramatic Of 
course any errors introduced by an (approximate) numerical method will 
be similarly magnified and may lead to numerical instability

This simple linear example demonstrates the care which needs to be 
taken when supplying "missing" conditions to convert a boundary-value 
problem to an mitial-value problem Very often the solution to the 
boundary-value problem can be much more "well-behaved" than its 
mitial-value counterpart In the above example the solution to the mitial- 
value problem grows as a factor of e10x and, in order that this fast-growing 
component be suppressed, it is necessary to obtain a very accurate estimate 
of the missing initial condition This behaviour is typical of differential 
equations with very large positive and/or negative eigenvalues.

Another view of this sensitivity problem can be obtained by 
returning to the analytic shooting procedure of section 2.3 An examination 
of the coefficient matrix Q for the above problem reveals that it is ill- 
conditioned In fact Q'1 has non-zero elements from order 101 down to 
order 10*11 When constructing the various approximations for the 
numerical shooting method, any numerical errors which may occur will be 
quickly magnified This may lead to a situation where overflow can occur 
before the integration has been done over the complete interval Thus 
matching of the boundary conditions cannot be achieved and the shooting 
method will fail for this problem



These two views of the problem of numerical instability are 
equivalent because exponentially growing solutions lead to ill- 
conditionmg of the Q matrix

As a means of overcoming this problem the idea of integrating over 
shorter intervals and somehow combining these to cover the full interval 
seemed appealing. This is the idea behind multiple shooting The 
traditional multiple shooting technique as applied to the general n- 
dimensional problem with linear boundary conditions, 1 e ,

y' = f(x,y), a < x < b

Bay(a) + BbyCb) = y

is considered in the following paragraphs

3.2 Multiple Shooting - Algorithm 1

Multiple shooting [18] proceeds by dividing the interval of 
integration [a,b] into N, not necessarily equal, submtervals by the points xy 
called break points, such that

a = x0 <x1 <x2< < xN_a < xN = b

Let

A ) =  X J ‘  X H  '  )  =  1 '  ' N

be the width of the jth submterval A change of variables, using the 
transformations

x - x
t = ------ — , X . < X  < X

A H  J
J

y / O  = y U j . j + t A )  

fj(t>z) = A ^ X ^  tAj ; z)

allows us to rewrite a separate differential equation in each of the 
submtervals (xJ.1,xJ) as follows:



- j J  = fj(t ,yj(t)),  o < t < l , j = l, . , n

This is a system of differential equations with dimension N times that of 
the original system, and, given adequate boundary conditions, any of the 
standard solution methods may be used when attempting to find its 
solution

How sufficient boundary conditions can be included will now be 
examined The original boundary conditions will transfer to the first and 
last differential equation in the new system These can be rewritten as1

Now if the solution to the original differential equation is assumed to be 
continuous, with continuous derivatives at the break points, we can add in 
extra boundary conditions which describe this continuity, l e

This yields exactly enough conditions to guarantee a solution to the new 
system of differential equations

Combining these results together, the new problem can be written in 
condensed form as

Bayi(°) + BbyN(l) = y

y,+i(o) - y,d) = o ] = 1, ,N-1

t , y  = F ( t 'Y) 0 <t < 1 ,

PY(0) + QY(1) = a

In the new problem Y, F and a are the vectors 

Y = y,(t), 3 = 1, , N

F = f,(t/y,)/ ) = 1/ / N

a = (y,0, ,0)t

P is an (nNxnN)-matrix whose structure is-

■\
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Ba 0
0 I 0

0

0 I

and Q is an (nNxnN)-matrix whose structure is

0 0 Bb
-I 0
0 -I

0 - 1 0

If the shooting method is to be used on this new equation the 
problem will involve solving a differential equation of the form

^ - = F(t,U) 3.2.1
d t

with a number of different initial condition U(0) = s The usual system of 
algebraic equations will result, which can be solved using an appropriate 
method.

The parallel operation is made possible by virtue of the structure of 
the nj-system of differential equations (Eq 3 21) Successive blocks of the 
system are uncoupled and so may be solved simultaneously It is only 
when the boundary conditions are being matched that coupling occurs, i.e 
during the solution of the algebraic system

It is worth observing that if the same numerical scheme and the 
same step size is used, this multiple shooting algorithm produces an error
proportional to eKA2 rather than eK for the simple shooting method, where 
K is the Lipschitz constant for the original differential equation In simple 
terms, since the error is proportional to the length of the interval of 
integration, a reduction in interval length will reduce the error also

This suggests that the parallel method is inherently more accurate 
than its sequential counterpart and gives an extra reason for pursuing this 
method as a possible concurrent algorithm It is not the version of the 
algorithm implemented in this work, so interested readers are referred to 
[13] and [18] where the theory is treated in detail

To summarise, then, because of the availability of high performance 
lmtial-value numerical code for the solution of systems such as Eq 3.2.1,
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the possibility of subdividing the problem into as many submtervals as is 
- optimal for a particular machine architecture and the improved error 

conditions, this algorithm would seem to be suitable for development as a 
robust code for parallel or multiple shooting However, a major 
disadvantage is the problem of properly selecting the break or shooting 
points The algorithm requires a prion selection and there is no 
mechanism for including extra shooting points automatically, if the 
problem so requires A problem with special features (e g. boundary or 
interior layers), may require a large number of shooting points over parts 
of the interval and very few or no shooting points where the solution is 
well behaved Again it may be desirable to use different mitial-value codes 
over different submtervals If this information is available to the user he 
may be able to fine tune the algorithm to efficiently solve the problem but 
otherwise bad mesh selection can lead to at best an inefficient solution, at 
worst the failure of the algorithm to solve the problem at all

Although the method outlined m this section can usefully be 
applied to a wide range of problems, a method which adaptively selects 
shooting points can be regarded as necessary for some problems where a
priori knowledge of the behaviour of the solution is not available Such an
algorithm will be examined in the next section

3.3 Multiple Shooting - Algorithm 2

In [15] Keller and Nelson propose a variation of the multiple 
shooting method for linear boundary-value problems with separated 
boundary conditions The form of the problem which they consider is

y' = A(x)y + f(x), a < x < b  3 31(a)

Bay(a) =ba , Bby(b) = bb 3 31(b)

whose dimension is assumed to be n This, of course, is a linear two-point 
boundary-value problem, with separated boundary conditions

The interval is divided into a mesh having N+l equally spaced 
mesh points as usual, i e

Xj = a + jh, j = 0, , N

where h = (b-a)/N
A single step finite difference approximation is then chosen on this 

mesh The particular approximation is not important, but the centered 
Euler or "box" method proposed by Keller, is chosen because of its

l
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simplicity and the error is 0 (h2) The difference equation for 3 3 1(a) 
becomes

Yj+i - Y) = WA^1/2(y^i + yp /  2 + £^1/2] 3 3 2

and for 3 3 1(b)

Bayo =  Pa/ BbYN =  Pb

The notation AJ+1/ 2 and f,+i/2 means A(a+(j+l/2)h) and f(a+()+l/2)h) 
respectively and y) is the approximation to y(Xj) thus defined

Eq 3 3 2 may be transposed to give a recursive formula as follows*

(I-hA J+i/2)y]+i = (I + hA)+1/2)yj + hf]+1/2

or

yJ+i = (I-hA)+1/2)-1(I + hAJ+1/2)y) + h(I-hA )+1/2)'1f]+1/2

333

It is assumed that h is sufficiently small so that the required inverse matrix 
exists

The parallel method proposed by Keller and Nelson can be 
summarised briefly as follows A subset of the original mesh points, x^ j = 0 

N, is defined as shooting points and these special mesh points may be 
written as Xj, where j, belong to the strictly increasmg sequence

{j, 1=1/ / s),

with Ji > 0 and js = N In effect this means that some of the N original mesh 
points are selected and reclassified as

XJ1' X)2' '  XJs =  XN

An attempt is now made to use Eq 3 3 3 to integrate between shooting 
points m the interval The right hand side of Eq 3 3 3 depends on the 
(unknown) solution value, yy at each of the mesh points However, 
because the problem is linear with linear boundary conditions, the matrix 
A and the vector f depend only on the (known) mesh points. The 
coefficient of the y vector and the independent term can therefore be



evaluated without knowledge of the solution The approach adopted is to 
build up these terms from one shooting point to the next and then to solve 
a (linear) system of equations to find the approximate solution at these 
points

More rigorously we may define the nxn matrices <!>, as

V 1
• = n  o hA +i/l/2)-1 (I + HA +lfl 12)

where x  ̂= a, 1 e j0 = 0.
Similarly we define

where y„ = 0 , andj 0

yt+, = (I-hA / 2 ) ‘' a  + hA
j, + k + l / 2  j,+k+l/2

+ h(I-hAji+k + 1/2/2) fJi+k + 1/2

It can be easily shown that

yj = + 9 ^  1 = , s 3.3.4
1 l-l

Eq 3 3 4 comprises a system of (n)(s) linear equations in the n(s+l) 
unknowns y]Q, ., y)s The boundary conditions may be included to give the
required number of equations so that the system can be solved (It may be 
noted in passing that although separated boundary conditions are assumed 
it is trivial to include mixed boundary conditions without affecting the 
general solution technique) The stated boundary conditions thus become

Bay,0 = Pa/ = Pb
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There remains a linear system  which must be solved to find the 
approximate solution at each of the shooting points The composition of 
the coefficient matrix for this linear system will be-

Ba
-4»i I

-<t>2 I

-*s I
Bb

1 e block bidiagonal The method selected for the decomposition of this 
matrix may be critical It can be shown that the inverse of the matrix does 
exist If, however, the matrix is divided into segm ents, there may be 
segm ents w hich are singular [14] This m eans that any attempt to 
parallelise the process of decomposition by subdividing the large matrix 
just outlined must be carefully chosen for some problems

To summarise, the algorithm described above can be broken down  
into two parts First the quantities 3», and <p1 are computed according to their 
respective formulae Then the approximations to the solution at the 
shooting points are found by solving the linear system These phases of the 
solution can be regarded as the integration  phase and the solution phase 
This is the algorithm selected in this work for coding as a concurrent 
method of solving two-point boundary-value problems It is therefore 
appropriate, at this point, to examine the algorithm in detail to justify its 
selection and to highlight its advantages over others outlined earlier

In particular, no consideration has as yet been given to adaptive 
mesh selection, range of problems, concurrent processing possibilities, 
equal distribution of work between processors, cost of communications or 
the treatment of nonlinear problems These issues must be examined as 
some of them were considered as reasons for rejecting other algorithms m 
favour of this one The following sections treat these problems and prepare 
the ground for the introduction of the code and an evaluation of its 
performance on certain selected problems

3.4 Adaptive Mesh Selection

During the integration phase the basic objective is to compute the o k 
and cpk, by means of the appropriate formulae An auxiliary task that can 
also be accomplished in this phase is the dynamic selection of shooting



points, if necessary The calculation of <t>k is effectively the integration of 
the system of equations over each submterval. The "size" of the product 
matrix <I>k may be monitored using some matrix norm. When this norm 
grows large it indicates that the solution is beginning to change rapidly 
Therefore w hen the norm grows beyond som e acceptable value the 
calculation may be stopped, the current values of *  and <p can be stored and 
a new  set of calculations begun using the same starting and stopping 
criteria The "acceptable value", w ill depend on the dim ension of the 
original system and in his work Keller adopts a heuristic approach to the 
selection of a maximum value and, indeed, to the type of norm chosen. 
Speed of calculation is the criteria used for the selection of the type of 
norm.

This monitoring of the norm means that a new  shooting point is 
introduced as is required by the behaviour of the solution In fact, each 
shooting interval may be allowed to become as large as a requirement of 
the form

I I Oj I I < M, 1 = 1, , s

will allow Here M is some user selected parameter and II I I is some easily 
computed norm Other conditions on the norm m ight produce a more 
rigorous control on the error but the experience of Keller and N elson has 
shown that the extra computational effort does not justify the additional 
assurances of stability (See also [16])

It should be pointed out that in the extreme case, where M is set too 
low , an additional shooting point will be introduced at every mesh point, 
and the algorithm becomes the ordinary finite difference method with the 
solution obtained at all the original mesh points. On the other hand if no 
shooting points are chosen, either by the user or by the algorithm, then the 
method reduces to sim ple shooting These are the two extreme cases for 
this method, so that the method may be regarded as a combination of the 
traditional finite difference method and the original sim ple shooting  
m ethod.

The problem of adaptively selecting break points, then, is overcome 
and this was a most important consideration in selecting this method as 
the basis for producing a working code This allows us to address another 
problem associated with any all purpose code for the solution of two-point 
boundary-value problems, the range of problems reasonably soluble by the 
code As outlined in Ch 1, no code can be regarded as the definitive one for 
such problems The aim should be to attack as w ide a range of problems as 
possible, and the possibility of adaptively selecting the shooting points 
broadens the range of problems potentially soluble by the algorithm.
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Further discussion of the variety of problems presented to the code will be 
left until Ch 5, where an analysis of its performance will be presented 
Problems which require several automatically selected shooting points, as 
well as those requiring none, will be examined at that stage

3.5 Concurrent Processing Possibilities

To analyse the possibilities for concurrent processing, consider firstly 
the integration phase The computation involved in each subinterval is 
totally independent of each other subinterval This is because the problem  
being considered is linear, so that the <i> matrices and the cp vectors involve 
only the independent variable This may be considered as an ideal structure 
for any kind of parallel architecture N o interaction between tasks is needed 
so the integration phase may be divided into as many tasks as there are 
processors to do these tasks However as we shall see, because of the knock- 
on effect at the solution phase this may not be the most efficient choice 
overall

The solution phase involves the solution of a linear system  of 
equations The structure of the coefficient matrix is predictable, being block 
bidiagonal H owever the parallehsation of this phase is dependent on 
parallel techniques for solving such linear system s Unfortunately no 
single efficient parallel algorithm has emerged in the literature which can 
be regarded as the "best" method

As stated earlier, any attempt to "segment" the coefficient matrix 
may cause local instability Therefore it is appropriate to consider first 
methods which treat the matrix as a whole Keller suggests two possible 
strategies for the mapping of the problem onto the processors He suggests 
some form of alternate row and column elimination method In the first, 
which he calls a domain decomposition, a given processor is assigned the 
task of all computations within a particular subinterval This would allow  
at m ost two processors to be involved in elimination at any one time 
because of the structure of the matrix The method w ould be essentially 
serial m nature

In simple terms his second method may be thought of as requiring 
that processor-1 w ould  be involved  in the elim ination calculations 
associated with the first column in each o  matrix, processor-2 with the 
second column m each, etc This method he calls a column decomposition. 
It may be noted that this method could be em ployed m the integration 
phase also W hile more efficient than the domain decom position, the 
communications cost are higher and the organisation of the code is more 
difficult Because of the difficulty of parallelising the solution phase while 
treating the large block diagonal matrix it seem ed more appropriate to



examine the possibility of treating each block as a separate entity and 
achieve some form of concurrent processing m this way

Paprzycki and Glad well [21] have proposed a particular segmentation 
process which takes account of the instability problems inherent in some 
decom position methods Their general approach is to divide the system  
into smaller segm ents of similar structure w hich can be factorised  
independently The stability is maintained by careful selection of the 
segm ents and a particular com bination of elim ination  and row  
interchanges N o proof is offered for this approach, but for all the examples 
with structurally singular segments considered by them, the decomposition 
was successful

They assume that the starting number of blocks is large and the 
number of processors is small, and so use only one processor to solve the 
reduced system  H ow ever where the number of processors is large, 
recursive "tearing", as they call their approach, may be considered The 
decomposition of the matrix and the back substitution phases are separated 
as, for nonlinear problems, the solution may have to be found sequentially 
for several right hand sides

The best theoretical speed-up over the sequential version of the 
algorithm is a factor of 4 on small systems using up to 40 processors For 
larger systems this reduces to a factor of 3 Because of these poor results 
they conclude that their "tearing" algorithm will not be competitive for the 
type of large problems which require the power of expensive parallel 
architecture

Another possible approach to the problem of parallelising of the 
solution phase is the technique known as cyclic reduction [20] To illustrate 
the technique, consider the general tridiagonal system of M equations in M 
unknowns, xy  x2, , xM

a l l x l  +  a 12x 2 =  Cj

a21x l +  a22x 2 +  a23x3 =  c2
a32x2 + a33x3 + a34x4 = c3

a mm-lx m-l +  ammx m ~  Cm

Elim inate xj from the second equation using the first equation and 
eliminate x3 from the second equation using the third equation, to get a 
new equation in x2 and x4 Similarly use equations 3, 4 and 5 to produce a 
new  equation in x2, x4 and x6 Continuing m this w ay, a new  set of 
equations involving only the even subscripts can be developed. These new
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equations can be reduced again and the process continued until no further
reduction is possible (If, for example, M = 2P - 1, this w ill be a single 
equation) The final small equation may then be solved, and the other 
values found by back substitution

For the special form of block diagonal matrix which appears in the 
solution phase of Keller's algorithm, cyclic reduction can be done using 
blocks rather than individual coefficients This approach may be sucessfully 
adopted to produce a parallel code for the pure finite difference method for 
two-point boundary-value problems However, because of the instability 
problems already mentioned, the cyclic reduction process must be stopped 
if the norm of a particular block grows above some acceptable limit. Since 
this is exactly the criteria which may lead to the inclusion of a block m the 
original system, the process of cyclic reduction does not seem to represent a 
general solution method for the parallelisation of the solution phase of 
this algorithm

As can be seen from the last few paragraphs, the problem of 
producing a concurrent code for the solution phase of the algorithm is not 
trivial H owever, when considering the extension of the algorithm to 
cover problems with non-separated boundary conditions, the form of the 
coefficient matrix seemed to offer an simple and efficient approach to the 
decomposition, with obvious concurrent possibilities In the case o f non­
separated boundary conditions the coefficient matrix for the solution phase 
of the algorithm will be of the form

-<D i

-<D I

-o I 
Ba Bb

or m more detail for a 4th order problem
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x x x x l 0 0 0  
x x x x O l O O  0 
x x x x O O l 0 
x x x x O O O l

0 0

x x x x l O O O
x x x x O l O O 0 0

0 x x x x O O l O  
x x x x O O O l

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x x x x
X  X  X  X

0 0
x x x x  

0 x x x x

x x x x
x x x x x x x x

x x x x

where "x" means some unknown, and usually nonzero, element
An examination of the matrix reveals that if the <& blocks m the 

matrix were upper triangular, the only decomposition required w ould be 
the elimination of the Ba block m the bottom left hand corner and the 
decomposition of the final right hand corner block. The cost involved in 
achieving this structure and the final decom position would be 0 (n 3G), 
where G is the number of 4> blocks in the system  If, how ever, the 
decomposition were done sequentially the cost w oud be 0 (n 3G3). Thus, a 
considerable saving can be made by including this technique in the 
solution phase

In the spirit of attempting to perform as much calculation as possible 
in the (parallel) integration phase, the o  blocks in the matrix may be made 
upper triangular during this phase This will reduce the cost marginally, 
although the overall order remains 0 (n 3G) The upper triangular blocks 
can then be stored and are available for use m the (sequential) solution  
phase In large systems this reduction m work during the solution phase 
may be significant and the inclusion of this simple decomposition method 
can be justified.

The major difficulty with any method of decom position for these 
problems is the fact that there may be singular segments m the coefficient 
matrix However, because of the simplicity of the method and the fact that 
a w ide range of problems require no special decomposition technique, this 
enhancement has been included in the parallel implementation of Ch 4. If 
a local singularity occurs during computation, the algorithm can detect this
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and the problem may be solved using a normal decomposition This will 
add to the cost of computation for some problems but, on balance, the 
inclusion of the technique can be justified

The method of decomposition has implications for load balancing 
between processors, which, because a fixed step was used while integrating, 
was easy to achieve during this phase If a large number of shooting points 
is selected in one subinterval, a large number of matrices must be stored 
with consequently a large number of reductions to be done by that 
processor

For a fairly general range of problems, this method significantly 
reduces the am ount of work done in solving the linear system  of 
equations Numerical examples covering the potential problems outlined  
m the previous paragraph will be presented in Ch. 5 and any improvement 
in performance analysed at this point

3.6 Concurrent Processing Costs

Traditionally concurrent processing introduces overheads not 
associated with sequential processing For example, m many applications, 
information must be interchanged between tasks while the tasks are active 
This involves communications difficulties/costs as well as synchronisation 
problems As will be seen when presenting the numerical results in Ch 5, 
the integration phase is the mam computational cost in this algorithm. 
The tasks in this phase are com pletely independent so that problems 
associated with communication and information interchange is not a 
consideration during this phase

Another problem which must be confronted when using several 
processors simultaneously is the effective work load distribution between  
processors In other words each processor should carry out approximately 
the same number of calculations Because a fixed step is used for the 
discretisation of the differential equation, the number of calculations in 
each subinterval is predictable For this reason it is important that break 
points are selected at roughly equal intervals by the user for integration by 
each processor

The introduction of the "triangularisation" process described above 
during the integration phase will affect the equidistnbution of the work 
load for some problems If a large number of shooting points is selected m  
one interval, a large number of operations will be required to prepare the 
data for storage for the later solution phase This will mean that a processor 
dealing with less shooting points will be idle during part of this time 
H owever, if a sequential or slightly parallel method was used for the 
solution phase, this would require that almost all processors w ould be idle
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during this time Even with a highly parallel linear algebra routine the 
problem  of subdivid ing the problem  and com m unicating betw een  
processors w ould introduce other overheads On balance, the simplicity of 
the m ethod and the speed up possibilities warrant its addition to the 
overall algorithm

The number of processors (subintervals) used, the restriction 
imposed on the size of M o l l  or the step size chosen does not cause any 
problem to the effective parallehsation of the integration phase The tasks 
are com pletely independent and any type of parallel architecture can 
efficiently subdivide and process this stage of the solution By choosing to 
use as few  break points as the problem w ilhallow , the size of the linear 
system  can be kept small and the solution phase can be made more 
efficient It should be noted, then, that for well behaved problems or small 
problems, it may be inefficient to use a large number of processors.

This introduces the question as to w hen expensive parallel 
machines should be used m general For a discussion on this see [15] which 
concludes that "the basic justification for the use of computers with novel 
architecture must be regarded as the solution to problems not otherwise 
(reasonably) soluble, not merely faster solution of problems presently  
soluble " The problems presented to this algorithm were not m  this 
category but the results achieved will show  that there is potential for 
presenting much larger problems with the prospect of similar success.

3.7 Nonlinear Problems

By their very nature, nonlinear problems are more difficult to solve 
than their linear counterparts In general som e form of linearisation  
procedure is carried out when solving nonlinear problems and the 
solution found using some form of iterative method For example, if the 
finite difference m ethod is applied directly to a nonlinear two-point 
boundary-value problem of dim ension n, the result is a set of nN  
nonlinear algebraic equations, where N  is the number of mesh points. This 
system  m ay be solved using som e standard technique, for exam ple 
New ton’s method, as was outlined earlier

In general, multiple shooting may be applied directly to the solution 
of nonlinear two point boundary value problems, w hile maintaining the 
parallel possibilities inherent in the method Indeed, multiple shooting has 
traditionally been called "parallel shooting" for this very reason. Since this 
variant of the method exploits the linear nature of the problem, the 
parallelism w ould be lost if the algorithm of section 3.3 w ere applied  
directly to a nonlinear BVP This occurs because the solution y(x]+1) at every 
point x)+1 depends on the solution y(xj). This means that the matrix type
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products required at each mesh point cannot be explicitly found so that, if 
this technique is applied, each mesh point effectively becomes a break point 
and the method reduces to pure finite differences

A method of allowing the algorithm of section 3.3 to be directly to 
so lve nonlinear problem s is now  outlined Consider applying the 
follow ing linearisation technique to the general second order differential 
equation

y” = f(x,y,y')

On applying the usual reduction, the equation becomes

yi' = y2 = fi(x/yi/Y2>

y i  = f(x,y,y') = f ^ y i ^ )

If the right hand sides are approximated by Taylor's series expansions we 
get

' C /  0 0 \ . /  U\  ’  ~ 1 /  ~ ~ i
y ,  = f ^ . y ^ j )  +  ( y - y , ) ^  + ^ > 3 7 7 -  +

;  1 2

n o  ft d f ft 3 f
y 2 ' = f2 (* .y i.y 2) + (y-y^ T - ^  + ( y -y ,) ^ -2-  +

d y  1 2 d y

where f ^ y ^ )  is written as fv 1 = 1, 2, m the derivative terms, and the 
superscript is used to denote approximate values for y l and y2 In matrix 
form this becomes
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or, more simply,
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y’ « Jy + {f - Jy0}

where J is the Jacobian matrix This is a linear differential equation which 
can be solved using an initial estimate for y°, and then continually re­
solved using the solution thus found It can be show n [5] that, under 
certain fairly general conditions, the sequence of solutions to this equation 
converges to the true solution Thus the linear equation technique 
outlined earlier can be used as a core integrator for the more general 
nonlinear problems Similarly nonlinear boundary conditions can be 
linearised, if necessary

Because the solution is only available at the shooting points, some 
sort of interpolation procedure is required to estimate the solution at the 
other mesh points This may be to use the break point as a starting point for 
an initial value problem and integrate the ODE across the shooting  
interval H owever, because break points are introduced whenever the 
solution varies rapidly, a low  order interpolation formula can be justified 
when approximating the solution at the other mesh points. N o attempt is 
made m this work to extend this algorithm to cover nonlinear problems. It 
remains an area for further research

3.8 Conclusion

Having introduced the theory of multiple shooting and outlined its 
capabilities, the next part of the work is to attempt to implement the 
selected algorithm using a code which takes advantage of the parallelism  
inherent m the method Ch 4 introduces the computer language Ada, with  
special em phasis on the features used by this algorithm, as w ell as 
providing a detailed analysis of the procedures adopted to make the code as 
efficient as possible Selected problems and the performance of the code on 
these problems will be discussed in Ch 5
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4.1 An overview of the Ada Philosophy

The history of the development of the Ada programming language 
and the Ada programming environment is w ell documented in various 
publications [26] [3] Briefly, the language was developed over the period 
1974 to 1980 by the United States Department of Defence in response to the 
proliferation of languages being used at that time It was designed by a team 
lead by Jean Ichbiah from France working with H oneyw ell/H oneyw ell 
Bull, with significant input from computer scientists from several other 
countries

The philosophy behind its developm ent was to create a language 
which maps more easily onto the problem spaces in which computer 
problems lie Theoretically any programming language can solve any 
computational problem but, because of the complexity of the problems on 
the one hand and the modern computer architecture on the other, the 
language should be a help rather than hinder the developm ent of a 
solution

When searching for an im proved com puter language, several 
existing languages were examined to assess their suitability for the kind of 
problems now  being confronted. Again the results are well documented  
and, for instance, FORTRAN was considered too imperative with not 
enough emphasis on data structures, while COBOL was seen to rely too 
heavily on data structures The goals in the design of Ada can be 
summarised as

1 Modifiability

Modifiability, without increasing the complexity of the program, is 
difficult to achieve and measure Essentially it implies that some parts of 
the system  can be changed or replaced, w ithout altering the overall 
structure The approach adopted by the Ada design team was to rely on 
object oriented ideas. This means collecting objects and the operations 
associated with them into m odules which can be hidden from the user 
The user is offered an interface to these m odules but may be unable to 
change the internal structure and operations of the m odule. This 
"information hiding" approach is not a new  approach and it involves 
considering each object at the level most relevant at any particular time.

Each module (and interface) can be separately compiled and tested. If 
the efficiency of the operations are som ehow improved or updated the 
interface can be left unchanged and the "user" may still reuse the module 
without change to his own program

60



As a sim ple example, consider square matrices and the w ell known 
operations associated with them Ada allows these "objects” (matrices) to be 
defined and the operations (addition, inverse, e tc ) to be coded m a module 
(package) The operations available to users of the module can be listed in 
the interface (package specification) and the method used to implement 
each operation is invisible to the user If a more efficient inverting routine, 
say, is introduced at a later stage or other operations are to be made 
available, the use of the interface need not change We have, then, the idea 
of a software component, analogous to a hardware component, which may 
be removed, improved and then replaced, without affecting the rest of the 
machine (program)

2 Reliability

Reliability means the prevention of failure m design and operation. 
To aid this process Ada allows separate compilation and testing of the 
various m odules. Thus their reliability can be assured before they are 
included in the overall solution

Ada also allow s for error recovery during the operation of the 
program by the inclusion of user defined exceptions To continue the 
example of the matrix package, all the operations m the package can be 
thoroughly tested before inclusion m any program. Even so, depending on 
the matrix, during inversion, division by zero may occur This need not 
cause failure of the component because an exception may be included  
which can take som e preventative action e g pivoting, or sim ply return 
control to the user with a suitable error message

3 Understandability

Because much of the human resource invested m software projects 
involves maintenance of existing software rather than the creation of new  
software, the goal of understandability is of major importance The amount 
of external documentation and internal comments should be kept to a 
minimum For this reason Ada uses nam ing conventions, syntax and 
control structures which ensure ease of reading rather than ease of writing, 
because, although only written once, a program may be read many times.

4 Concurrency

W ith the developm ent of m odern supercom puters any new  
language should include in its design the capabilities of concurrent 
processing. Ada does this by its "task" structure w hich allow s for
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subprograms which automatically run in parallel, if this hardware facility 
is available The inherent problem of synchronisation and message passing 
between tasks is tackled by the language so that the programmer may 
design his algorithm independently of the target machine It should be 
noted, at this stage, that this was the single m ost important consideration 
in the selection of Ada as the programming language in this work

The above is a brief overview of the philosophy behind the Ada 
programming language It is now worth considering the structure of the 
language and how  the above philosophy is encapsulated in the design of 
the language. It is, of course, not possible, or necessary, to introduce the full 
Ada language in this work, but, as required the various elements w ill be 
introduced and explained

4.2 Structure of the Ada Programming Language

We may begin the exam ination of Ada by considering type  
definitions and object declarations The types available are scalar (integer, 
real, enumeration), composite (array, record), access, private, subtype and 
derived data types While not giving a complete explanation of all possible 
types it is, perhaps, worth examining some of them

Scalar types are the standard types with no structure, i.e number 
types The enumeration type allow the user to define his own special types 
for a particular application The Boolean type which contains two element 
"true" and "false" is an enumeration type

The composite type array is a collection of the same type of elements, 
while a record type is a collection of the same or different elements Access 
types are used for objects w hose structure may not be static (known at 
compilation time). For example, the total number of shooting points in the 
m ultiple shooting algorithm of the previous chapter is not known until 
run time Therefore an access type must be used to store details of these 
points as they become available Access types are similar to pointers m  
Pascal The above types are used as required in the following code

In Ada a class of objects must be defined as a particular type before 
variables of these types can be declared Ada does not allow objects having 
different types to be directly combined, 1 e it is a strongly typed language 
This is to allow possible errors to be identified at compile time rather than 
run time, as far as possible It also enforces the object oriented approach to 
design, because each type can be regarded as a class of objects As an 
example of a type used in the Ada implementation of the algorithm of Ch  
3, w e may think of a square matrix as a "type" of data structure At this 
stage there are no operations considered for this type.
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Nam es, expressions and operations used by Ada follow the usual 
rules for modern high level languages Names can be made up of a group 
of characters, with various restrictions involving blanks, special characters, 
etc It is recom mended that m eaningful names should be used when  
id entify ing  objects, to conform  w ith  the readability and ease of 
maintenance criteria

There is one point worthy of note, however, and that is the ability to 
overload names and operators As an example, consider the operation of 
adding (1) integers, (u) complex numbers, (111) matrices In each case, the 
mathematical symbol is the same and Ada allows the symbol "+" to be 
overloaded to represent any mathematical operation of "addition" The 
relevant "addition" operation for each type must, of course, be defined, and 
the arguments on each side of the operator control which addition is 
selected at run time Care should be taken when using this facility as 
overuse may cause confusion

The next structure to consider is the program unit The first types to 
consider are the subprograms, 1 e procedures and functions. These 
subprograms contain two parts, the specification (user interface), and body 
(a sequence of statements) As already stated the statements m the body of 
the subprogram may be invisible to its user The modularity inherent in 
the subprogram approach to designing is therefore enhanced by the idea of 
information hiding The user of the subprogram need not consider the low  
level implementation of the statements, and, indeed, may not be aware of 
them So the subprogram can be considered as an object by its user

The general format and structure of the subprogram body mirrors 
that of other high level languages Note that a mam program must be a 
procedure

Further up the scale in the structure of Ada is the package This is a 
collection of objects, 1 e, types, functions, procedures, etc which are 
somehow logically related. Again it consists of a specification and body. In 
the following code, an example of a package is the package which defines a 
square matrix and all the matrix functions and procedures which apply in 
this algorithm. (The overloading of the algebraic operators, (+, -, *), is 
contained m this package.) Again the im plem entation details of this 
package are unknown to the mam program (user) This means that, for 
example, more efficient matrix routines can be introduced and tested at any 
time without interfering with the mam program At this level a package 
may be, thought of as an object

An important class of program unit which must also be considered 
is the task It is Ada's means of concurrent processing. The Ada tasking 
m odel is based on the concept of com municating processes. We can, 
therefore, v iew  tw o tasks as independent processes w hich operate

63



concurrently, and may communicate with each other by passing messages. 
Synchronisation problems can be controlled withm  the language, either 
automatically or via wait statements

Because of its unique approach to concurrent processing it is perhaps 
important to give a simple example of the Ada task This example is based 
on the code which will be outlined later m this chapter Suppose w e wish 
to integrate, using some numerical technique, over both halves of the 
interval [a,b], m parallel, using two Ada tasks

We first define two tasks, called FIRSTHALF and SECOND_HALF 
which will have contained in them the same routine for integrating over 
any interval from some start point to some finish point The operation of 
each task is identical, except for the start and finish point We therefore 
define tw o parameters, which can be given values when the task is 
activated In practice, when any task is activated it immediately begins 
operation, suspending operation when an "entry" (parameter) is required 

If another task is called before the first task is completed it begins 
operation and the user has then no control over the order in which the 
tasks are serviced by the machine or which one will finish first When the 
"entry" statement is encountered in either task the task waits until an 
appropriate parameter is sent to it before continuing Thus if tasks need to 
communicate before finishing, an entry statement will cause suspension of 
the task until the required information is available, perhaps from another 
task This is Ada's mechanism for synchronisation withm tasks 

The tasks to perform the integration will then be

* *  * * * * *  *

task type FIRST_HALF is
entry LOCAL_LEFT(Ll FLOAT), 
entry LOCAL_RIGHT(Rl FLOAT), 

end FIRST_HALF;

task type SECOND_HALF is
entry LOCAL_LEFT(L2 FLOAT), 
entry LOCAL_RIGHT(R2 FLOAT), 

end SECOND_HALF,

* * * * * * * *

Two task bodies can now be written which will carry out the process of 
integration from LI to R1 and L2 to R2 respectively. Within the body of the 
task will be an "accept" statement which mirrors the above, 1 e.
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********

— types, procedures, functions etc needed by the task

begin
accept LOCAL_LEFT(Ll FLOAT) do

— Use the parameter as required by the task 
end LOCAL_LEFT,
accept LOCAL_RIGHT(Rl FLOAT) do

-  Use the parameter as required by the task 
end LOCAL_RIGHT,
— Statements to be executed by the task 

end FIRST_HALF,

* * * * * * * *

SECOND_HALF will have a similar structure In general there may, 
of course, be several times when the tasks must wait to receive or to give 
information (rendezvous), but our sim ple example requires only one, at 
the beginning, to g ive the start and finish points for the range of 
integration

The tasks are activated from a mam program very much like a 
procedure In our example, if w e wish to integrate from 0 0 to 0 5 and 0 5 to 
1 0 the call would be done as m the following program extract *

* * * * * * * *

begin
FIRSTJHALF LOCAL_LEFT(C) 0),
FIRST_HALF LOCAL_RIGHT(0 5),
SECOND HALF LOCAL_LEFT(() 5),
SECOND_HALF LOCAL_RIGHT(l 0),

end,

* * * * * * * *

On a parallel machine, the sequence of events for the first line of the 
program segment would be

task body FIRST_HALF is
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1 Activate FIRST_HALF
2 Suspend operation of the task because an "entry" statement

is required
3 Put the value 0 0 into LI
4. Begin processing the statements in FIRST_HALF

The next statem ent m the main program segm ent w ould then be 
processed

Similarly for the remaining 3 lines At this stage the tasks would be 
operating independently, w ith no user control W hen the tasks are 
finished the information may be passed to a central memory area for co­
ordination Note that the order of the arrival of the data m the central area 
is unpredictable and the algorithm must take account of this In the code 
outlined later, a separate list is used for data from each task, and only when 
all tasks are finished is the information used. A lso, w hen a task is 
terminated the entities within it are no longer accessible to the program

In structure, then, a task is similar to a procedure but it has the 
powerful message passing capability outlined above built into its design. It 
is, of course, an object and as such may be included as a building block in 
other structures In the subsequent code, a one dim ensional array of 
identical tasks is created as a means of assigning tasks to available 
processors The number of tasks in the array is obviously dependent on the 
number of processors available The task structure is the means by which 
Ada allows concurrent operations, which attempts to take advantage of the 
new generation of supercomputers

In many operations it is critical that a system be able to recover from 
error without user intervention Ada's exception handling is an attempt to 
design such a feature It allows a block structured approach to error 
handling If an exception occurs, i e division by zero, normal processing is 
suspended and control is passed to the exception handler Control will 
continue to pass through different block levels until a handler is 
encountered or the operating system is reached As mentioned earlier, this 
design is an attempt to increase the reliability of a software system , 
particularly one which requires minimum human intervention, e g. an 
embedded system

Finally it is worth considering generic program units. This is A da’s 
attempt to make its software components "re-usable" What the designer 
does is to write a template for a particular sequence of actions. These 
actions m ay be performed on different items, but essentially the same 
operations are required As a sim ple example consider the operation of 
printing numbers on screen The procedure PUT is used, but the type of the 
argument (integer, float, user defined subtype, etc) will vary. It is necessary

6 6



to use the language defined template for the procedure PUT to create an 
instance of the required PUT procedure

As a more important example of a generic package consider the 
operation of solving a linear two-point boundary-value problem using the 
multiple shooting algorithm The algorithm w ill be the same from one 
problem to the next, but the matrices and functions w ill be problem  
dependent The strategy employed is to write a generic program unit which 
can be instantiated, w ith the relevant functions, and used to solve a 
particular problem The functions are used as parameters to create an 
instance of the package when required

The generic program unit can, of course, be compiled just like any 
other program unit Its form is similar to an ordinary program unit, 
preceded by the word "generic", after which is listed the parameters

4.3 Development of the Multiple Shooting Algorithm 
- Matrix Operations

The first step m the developm ent of the the algorithm was the 
creation of a package to encapsulate all the types and operations peculiar to 
th is  a lg o r ith m  The nam e ch o sen  for the p ack age w as  
GENERIC_REAL_TYPES, that is to say a base level package of useful 
operations on real types needed by the mam integrator package

To allow these operations to be carried out on as w ide a variety of 
types as possible, the package is made generic with respect to a floating 
point type, called FLOAT_TYPE Two array types, REAL_VECTOR and 
REAL_MATRIX are then defined in terms of the floating type and the 
required operations (procedures and functions) then follow Whenever the 
package is needed the user supplies the required floating type to be used in 
the calculations and the package creates the relevant array types and 
operations while creating a new version of this package

The operations required are best sum m arised by using the 
specification of the package
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* * * * * * * *

with ARRAY_EXCEPTIONS, use ARRAY_EXCEPTIONS/ 

generic

type FLOAT_TYPE is digits <>, 

package GENERIC_REAL_TYPES is 

Types

type REAL_VECTOR is array(INTEGER range <>) of FLOATTYPE; 
type REAL_MATRIX is array(INTEGER range <>) of FLOAT_TYPE;

Scalar Subprograms

procedure SWAP(X,Y m out FLOAT TYPE),

Vector Arithmetic Operations

function "+"(V,W REAL_VECTOR) return REALJVECTOR, 

Vector Scaling Operations

function "*"(X . FLOAT_TYPE,
V REAL_VECTOR) return REAL_VECTOR,

Matrix Arithmetic Operations

function "+"(A/B REAL_MATRIX) return REAL_MATRIX, 
function "*"(A,B REAL_MATRIX) return REAL_MATRIX, 
function "*"(A • REAL_MATRIX/

V : REAL_VECTOR) return REALVECTOR,

Other Matrix Operations

function INVERT(A REAL_MATRIX) return REAL_MATRIX; 
function NORM(A . REAL_MATRIX) return FLOAT TYPE, 
function UNIT_MATRIX(N INTEGER) return REAL_TYPE; 
procedure FORM_ITERATION_MATRICES
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(A : in REAL_MATRIX,
H . m FLOAT_TYPE;
I_M INUS • out REAL_MATRIX,
I PLUS out REAL_MATRIX );

end GENERIC_REAL_TYPES,

The "with" and "use" clauses at the beginning make a package of 
exception handlers, called ARRAY_EXCEPTIONS, available for recovering 
from non fatal errors during operation of this package The specification of 
this package is

package ARRAY_EXCEPTIONS is

ARRAY_INDEX_ERROR exception,
NEARLY_SINGULAR exception,

end ARRAY_EXCEPTIONS,

The specification of the package GENERIC_REAL_TYPES, then, tells 
the user what objects are available (floating point, vector and matrix types) 
as w ell as the operations defined for these types These operations are 
im plem ented in the body of the package GENERIC_REAL_TYPES The 
details of how this is done is not relevant at this level of analysis

The "+" and functions are overloaded to include addition and 
m ultip lications in vo lv in g  m atrices and vectors A gain, the final 
FORM_ITERATION_MATRICES procedure is specific to this algorithm

This com pletes the specification of the first package which the 
shooting algorithm requires In keeping with Ada's idea of "software 
components", the required matrix operations are engineered into a block 
and this block w ill be one of the components in the overall software 
system Only matrix operations specifically required by this algorithm are 
included in the package In an ideal world of well stocked libraries of such 
operations, the m ost efficient of the available com ponents could be 
"bought" and fashioned into this package In fact, each of these components
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has been coded specifically for this algorithm but replacements may be 
"bought" and included, without alteration to the main program

In order that this generic package can be used, an instance of the 
package must be created, which includes the floating point type required by 
the user. As an exam ple sup p ose the im plem entation  defined  
LONG_FLOAT type is to be used, then a package called, say, 
LONG_FLOAT_REAL_TYPES m ust be instantiated This is done as 
follows

with GENERIC_REAL_TYPES
package LONG_FLOAT_REAL_TYPES is new

GENERIC_REAL_TYPES(FLOAT_TYPE => LONG_FLOAT);

This is the package that is used throughout the numerical experiments of 
Ch. 5

4.4 The Interface to the Shooting Method Package

Continuing the idea of modularisation and information hiding, it is 
not necessary that the user should be aware of the coding involved in 
carrying out the multiple shooting algorithm described m Ch 3 Instead he 
is offered an interface to a package containing all the operations required to 
successfully solve his particular linear boundary-value problem  

Recall the form of the problem

y* = A(x)y + f(x), a < x < b

Ba(x)y(a) + BtM yib) = y

The matrix A, in linear problems, may depend on the independent 
variable, x. In other words this matrix will contain functions of x as 
elements, and these functions will need to be evaluated at each step of the 
algorithm Similarly the vector function f may have to be evaluated for 
each problem and at each step of the algorithm These functions are 
problem dependent, so a package is written using general functions and the 
actual functions are used to create a specific instance of the package when  
required. All this is to say that the package is made "generic" with respect to
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the problem dependent functions, and the boundary condition matrices Ba 
and Bb

The special functions and procedures used by the algorithm must 
also be made available to this  package This is done by including them m 
the generic part of the package specification Certain packages are required 
by this package, in particular the im plem entation supplied package 
TEXT_IO, u sed  for in p u t /o u tp u t ,  the p r e v io u s ly  d e fin ed  
ARRAY_EXCEPTIONS package and a package used for calculating CPU 
time, called ADA_TIMER This is a machine specific routine which calls an 
existing timing routine written in FORTRAN, using the pragma facility 
available in Ada. The specification then becomes •

********

with ARRAY_EXCEPTIONS, use ARRAY_EXCEPTIONS; 
with TEXT_IO, use TEXT.IO,
with ADA_TIMER, use ADA_TIMER,

generic

type FLOAT_TYPE is digits <>,
type VECTOR_TYPE is array(INTEGER range <>) of FLOAT_TYPE; 
type MATRIX_TYPE is array(INTEGER range <>,

INTEGER range <>) of FLOATTYPE; 
with function "+" (V,W VECTOR_TYPE)

return VECTOR_TYPE is <>, 
with function (X • FLOAT TYPE,

V • VECTOR_TYPE) 
return VECTOR_TYPE is <>;

with function (A : MATRIX_TYPE,
V VECTOR_TYPE) return VECTOR_TYPE is <>; 

with function (A : MATRIX_TYPE,
B • MATRIX_TYPE) return MATRIX_TYPE is <>; 

with function INVERTÍA MATRIX_TYPE)
return MATRIX_TYPE is <>; 

with function UNIT_MATRIX(N INTEGER)
return MATRIX_TYPE is <>, 

with function NORM(A MATRIX_TYPE)
return FLOAT_TYPE is <>, 

with procedure SWAP(X,Y in out FLOAT_TYPE) is <>;



with procedure FORM_ITERATION_MATRICES(
A in MATRIX_TYPE,
X m FLOAT_TYPE,
B out MATRIX_TYPE,
C out MATRIX_TYPE) is <>, 

with procedure PUT(N . in INTEGER;
M in INTEGER = 0,
P . in INTEGER -  10) is <>; 

with procedure PUT(X . in FLOAT_TYPE,
N  m INTEGER = 0,
M in INTEGER = FLOAT_TYPE'digits;
P in INTEGER = 2) is <>, 

with procedure GET(Q . out CHARACTER) is <>,

BA_MATRIX • MATRIX_TYPE,
BB_MATRIX . MATRIX_TYPE,
with function FORM_A(T FLOAT_TYPE) return MATRIX_TYPE; 
with function FORM_F(T FLOAT_TYPE) return VECTOR_TYPE;

package GENERIC_INTEGRATOR is

procedure SOLVE_BVP(NO_OFJEQUATIONS in INTEGER;
LEFT_X_VALUE m FLOAT_TYPE;
RIGHT_X_VALUE m FLOAT_TYPE
NO_OF_DECIMALS • in INTEGER;
GAMMA in VECTOR_TYPE,
MAX_NORM . in FLOAT_TYPE;
NO_OF_PROCESSORS in INTEGER 
SPECIAL m out BOOLEAN .= TRUE);

end GENERIC_INTEGRATOR,

The parameters required by the algorithm are as follows.

1 The number of equations or the dimension of the differential 
equations,

2 The value of a and b (the value of x at each boundary);
3 The number of decimal places of accuracy required m the 

solution, which controls the initial step size chosen,
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4 The value of y , the value of the right hand side of the 
boundary conditions (a constant vector);

5 The maximum size of the vector norm to be used,
6 The number of processors to be used in the solution
7 A signal to indicate whether the special method is used when  

decomposing the coefficient matrix The default value, TRUE, 
means that by default the special triangularisation technique 
is used

Before considering the implem entation details of the procedure 
SOLVE_BVP, it is appropriate at this stage to first of all consider the other 
packages that the algorithm needs and the form of the driver program for a 
simple second order problem

The package needs certain input, output and mathematical facilities 
which, in Ada are generally supplied as generic packages/procedures Since 
the floating point type LONG_FLOAT has been chosen as the base type for 
all numerical experiments appropriate packages are now defined

* * * * * * * *
with MATH_LIB;

package LONG_FLOAT_MATH_LIB is
new  MATH_LIB(LONG_FLOAT),

********

with TEXTJO,
package LONG_FLOAT_IO is

new TEXTJO FLOAT_IO(LONG_FLOAT);

* * * * * * * *

with TEXTJO,
package INTEGERIO is

new  TEXTJO INTEGERJO(INTEGER),

* * * * * * * *

At this stage all the required packages are available and the driver 
program for a specific problem can be outlined. Consider the second order 
problem:



y" = (1 - 5 >y + t . i < t < 3  

y ( l )  =  2, y(3)  =  -1

In matrix form, the differential equation becomes.

. .  I 0 1

II t
y2* ^ 0 [;:M1

or, m general

y' = Ay + f 

and the boundary conditions become

1 0 

0 0

y^D

y2d )
+

0 0 

1 0

yj(3)

y2(3)

i e Bay(a) + Bby(b) = y

So the driver program, m its simplest form it could look like.

********
with TEXT_IO; use TEXTJO,
with LONG_FLOAT_REAL_TYPES, use LONG_FLOAT_REAL_TYPES;

w ith LONG_FLOAT_MATH_LIB,
with INTEGER_IO,
with LONG_FLOAT_IO,
with ADA_TIMER,
with GENERIC_INTEGRATOR,

use LONG_FLOAT_MATH_LIB; 
use INTEGERJO; 
use LONG_FLOAT_IO; 
use ADA_TIMER,

procedure SOLVER_l is

B1 . REAL_MATRIX 
B 2 : REAL MATRIX

((1 0, 0 0), (0 0, 0 0)), 
((0 0, 0 0), (1 0, 0 0));
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function A(T LONG_FLOAT) return REAL_MATRIX, 
function F(T LONG_FLOAT) return REALJVECTOR;

package LONG_FLOAT_INTEGRATOR is 
new  GENERIC_INTEGRATOR(

FLOATTYPE => LONG_FLOAT, 
VECTOR.TYPE => REAL_VECTOR, 
MATRIX_TYPE => REAL_MATRIX, 
BA_MATRIX => Bl,
BB_MATRIX => B2,
FORM_A => A,
FORM_F => F ),

use LONG_FLOAT_INTEGRATOR,

function A(T LONG_FLOAT) return REAL_MATRIX is 
M MATRIX(1 2,1 2) = (others => (others => 0 0));

begin
M(l,2) = 1 0,
M(2,l) = 1 0 - 1 / 5 0 ,  

end A;
function F(T LONG_FLOAT) return REALVECTOR is 

V VECTOR(l 2) = (others => 0 0), 
begin

V(2) .= T, 
end F,

begin
SOLVE_BVP(NO_OF_EQUATIONS => 2, 

LEFT_X_V ALUE => 1.0,
RIGHT X VALUE =>3 0,
NO_OF_DECIMALS
GAMMA
MAX NORM

=> 6,
=> (2 0,-1 0 ), 
=>3 0,

NO OF PROCESSORS =>4
SPECIAL => TRUE )

end SOLVER_l,

The call to SOLVE_BVP passes the actual values of the 
parameters used for this problem This call uses a tolerance of 10'6, with a



m axim um  norm of 3 0 when forming the matrix and assum es 4 
processors are available

The above section of code is a simple driver program which uses the 
mam package GENERIC_INTEGRATOR to so lve the boundary-value 
problem as given In the following section an outline of the steps involved  
in solving the problem as well as of the integration program is presented

4.5 The Integrator Package

The package GENERIC_INTEGRATOR is the mam component of 
the total software package required for the solution of a boundary-value 
problem  using the algorithm due to Keller and N elson  which was 
presented in Ch 3 This section is not intended as a complete explanation of 
all the programming decisions taken during the construction of the 
package. However the various building blocks required together with the 
interfaces between them are presented The low  level implem entation  
details are not relevant at this level

The first requirement of the package is to declare the variables 
required throughout the package (global variables) Recall that there are 
two phases in the solution, the integration and the solution phase Both of 
these phases must be carried out a sufficient number of times to achieve 
the required accuracy The global variables are used to store information 
which must be carried between phases and between runs Without listing 
all of them, they include a variable to store the total number of shooting 
points, the largest residual (difference between solution values at the same 
point) in the solution Again a Boolean variable is declared which is set to 
"TRUE" w hen convergence is achieved and another to d istinguish  
between the first run of the algorithm, when shooting points may be added 
by the algorithm, and subsequent runs which are needed for convergence.

The mam procedure which must be defined is the procedure 
SOLVE_BVP, which was referred to in the previous section Within the 
procedure SOLVE_BVP the main entities declared are

1 A task which is used as the integrator over a subinterval. Ada 
allows for the creation of an array of such tasks, where each element of the 
array integrates over a different subinterval The dimension of the array 
depends on the number of processors to be used, which has been passed as 
a parameter from the driver program

2. A series of access types which are used to store the values of the 
^independent variable, the elements of the o  matrix and (p vector at each of
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the "break" or shooting points Recall that any number of these may be 
selected within each subinterval by the algorithm so that the number of 
values stored may be different for each of the submtervals. As already 
outlined, this has implications for load balancing between processors when 
developing a strategy for later integration runs The policy adopted is to 
keep the submtervals of equal length thus guaranteeing an equal number 
of calls to the integration step The fact that the algorithm may begin the 
decom position process at this stage means that for equations with large 
dim ensions and boundary layers this "storage" tim e factor could be 
unpredictable However, the extra time required for storage is insignificant 
when compared with the time required for the actual process of carrying 
out one step of the integration

3 A procedure to write to and read from the access types, which use 
record types to link the values together As an example the procedure for 
writing to the list is

There will be a different list for each subinterval and the value of LIST_NO 
will depend on the subinterval number

4 A procedure which divides the original interval [a,b] into equally 
spaced submtervals whose size depends on the number of processors to be 
used, and passes the appropriate start and finish x-values to the elements of 
the array of tasks.

5. A procedure which carries out the integration from left to right 
over any subinterval This has defined w ithin it a procedure called  
ONE_STEP which, during the first run, is called until the right hand 
boundary is reached or until the norm of the matrix 0  exceeds the limit set 
by the user In subsequent runs the same break points are always used  
elim inating the need for checking the norm after each step of the 
integration. The reason for this is to allow the solution to be always found 
at the same points so that Richardson's extrapolation procedure can be 
used to accelerate convergence at these points

6 A declaration block which sets up the entities required during the 
solution phase These include a (large) matrix w hose size depends on the 
dim ension of the original differential equation and the total number of

procedure STORE (WHERE
F
LIST NO

in NAME_OF_LIST; 
m FLOAT_TYPE; 
m INTEGER)
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shooting points used for the problem and several solution vectors which 
hold the current, previous and "improved" solution values for the vector 
y over all the shooting points The procedures for solving, extrapolating 
and checking convergence are also defined withm this block

These procedures are called as many times as is required to secure 
convergence The step size is continually halved and „ Richardson's 
technique, as outlined in Ch 2, is applied until the difference between any 
two solution values at the same point (the largest residual) is less than the 
user defined number of digits

4.6 Conclusion

This brief outline is meant to give an overall picture of how the Ada 
implementation of the algorithm of Ch 3 is constructed. A full discussion 
of the avenues explored during the writing of the program is not possible. 
However, an idea of the type of philosophy adopted in the early stages of its 
development, and followed throughout, is now  given As w ell as using  
efficient programming practice, the design decisions were made having 
regard to the following criteria, not necessarily m the order of importance :

1 The implementation should be highly parallel

As previously outlined, the integration phase can be carried out 
completely concurrently while it also begins the solution phase in parallel 
The remainder of the solution phase is carried out sequentially Reference 
to the tables of results will demonstrate the success which was achieved in 
this aim.

's

2 The solution should be machine independent

The choice of Ada as the programming language ensures that this is 
so, and standard Ada features are used throughout The timing package is 
machine dependent, but is included only as an aid to testing the efficiency 
of the implem entation The synchronisation and assignm ent problems 
associated with parallel implementations are also handled at the language 
level There is m inim um  com munication betw een tasks during their 
operation so that the particular structure of the processor array is not of 
critical importance There should be, how ever, a certain quantity of 

, internal memory assigned to each processor
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3 The spirit and philosophy of the Ada programming language should
be followed

Ada features em ployed  include an object oriented approach, 
modularity, information hiding, readability, data abstraction, tasking, access 
types, arrays of various objects, record types, operator overloading, generic 
packages, subprograms and exception handling

4. The class of problem solved should be as large as possible

As outlined in Ch. 1 boundary-value problems come in a variety of 
forms and complexity N o algorithm can hope to solve all BVP’s efficiently 
so one must aim for a subset of the wider class Ch 5 contains a selection of 
the problems submitted to this code In general the code is designed for 
linear boundary-value problems with linear boundary conditions, either 
separated or non separated

5 The user interface should be as friendly as possible

As can be seen the driver program requires the m inim um  of 
programming skills The problem is converted to standard mathematical 
form, coded and the generic package GENERIC_INTEGRATOR then sets 
up all the types, arrays e tc , needed by the algorithm, without reference to 
the user
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Chapter 5

Numerical Experiments

c
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5.1 Criteria for Comparison

W hen attem pting to set up numerical experim ents to test the 
performance of any code, the criteria which are being tested should be 
clearly stated The approach adopted is to select a variety of problems to test, 
so that the range of problems that the code is capable of solving can be 
identified As already stated this work concentrates on linear two-point 
boundary-value problem s, w ith linear boundary conditions, either 
separated or non separated Within this range an attempt is made to 
examine problems with "smooth" solutions or rapidly changing solutions, 
1 e. problems which require the automatic selection of extra shooting points 
and problems which do not The examples used are taken from standard 
text books, except where otherwise stated, and are designed to illustrate 
various features of the performance of the code

Given that the code is capable of solving a reasonable selection of 
problems, the next task is to examine on what basis improvements are 
identified. Since the reason for developing parallel algorithms is to solve 
problems not otherwise reasonably soluble, a reduction m CPU time, 
without loss of accuracy, must be regarded as the most important aim in 
the fo llow ing tests As the number of processors is increased, the 
expectation is that the total CPU time will be reduced The approach chosen 
for the analysis of the results m this chapter, then, is as follows

1 Submit a problem to existing sequential solvers
2 Submit the problem to this solver run in sequential mode, l e 

using only 1 processor
3. Submit the problem to this solver using 4, 8 and 16 processors.

Improvements in terms of the CPU time taken w ould certainly be 
expected between the sequential and parallel versions of this algorithm. 
However, because of the difference in language used (FORTRAN as against 
Ada), comparisons between existing solvers and this algorithm were less 
predictable The existing codes used in the experiments were all taken from 
the FORTRAN NAG library, and they may be regarded as the most efficient 
of these routines Thus the first part of the experiment, although useful, 
cannot be regarded as an absolute judgement of the potential of the code. 
Again, by careful choice of parameters, relying on prior knowledge of the 
problem, dramatic improvements can be found m the solution time for the 
same problem.

The Ada code, at this first level of refinement, makes no claim to be 
really efficient in sequential mode The aim at all times was to examine its
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contribution to the parallel solver environm ent D espite the above 
lim itations, a set of tables detailing comparative times, using existing  
FORTRAN code with default parameters, is given as a part of each of the 
tables in this chapter

Of m uch m ore significance is the p ossib ility  o f im proved  
performance which may accrue by running the parallel version of the Ada 
code rather than its sequential version The problems submitted to the code 
m this chapter can be regarded as "small", so that w e seek to analyse the 
areas of the solution where improvement in speed is observed We may 
then have some idea of the type of improvement which may be expected 
for larger problems

We shall be seeking a speed up which will reflect the number of 
processors used The ideal speed up for p processors would result in the 
solution time being 1 /p  times the solution time for the sequential version 
of the code.

As an extra examination, each problem is solved initially using  
Keller's algorithim with the solution phase being done using a sequential 
linear solver which treats the co-efficient matrix as a full matrix The 
problem is then re-solved using the technique outlined in Ch. 3, where 
sections of the co-efficient matrix are decomposed m the integration phase 
and the resulting co-efficient matrix requires elimination of the bottom  
block, plus back substitution Significant improvements were predicted 
where this method could be applied and the results verify this prediction 

As a final consideration m the production of the results tables, w e  
examine the type of machine on which the experiments were done N o  
parallel machine or parallel Ada compiler was available, so the target 
machine is a sequential machine, in fact a VAX 6230 running DEC Ada 
compiler version v5 1 was used This machine is a time-sharing machine 
with 3 processors This raises the question of whether, if 2 or more 
processors are available at the same time, the machine may, in fact, run 2 
or more Ada tasks concurrently

An experiment to test the validity of the conclusions drawn when  
analysing the results was set up to verify that the machine is, in fact, a 
purely sequential machine. This involved running a job which required 4 
million assignments using 1, 2, 4 and 8 Ada tasks If 1 task is taken as the 
reference time (100%), the time for 2 tasks to perform the same job is 
represented by 100 26%, 4 tasks by 96 64% and 8 tasks by 96 90% This shows 
that no significant improvement is obtained on this sequential machine by 
using Ada's tasking facility It is worth noting that if an Ada procedure is 
used instead of a task the time is represented by 91 2%, indicated the 
overheads associated with the setting up of Ada tasks On the other hand, if 
a procedure called by a mam procedure is used, the time becomes 116 28%,
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indicating the even greater overheads inherent in this type of program  
structure The above conclusions were also verified by direct contact with 
the suppliers of the machine and compiler

5.2 General Remarks on the Numerical Experiments

In the following problems, a constant set of parameters are used 
throughout. The user supplied parameters, with the values used, where 
appropriate, are •

1 The order of the differential equation
2 The boundaries of the interval
3 The number of decimal places of accuracy required (m all 

examples 6 decimal places of accuracy)
4 The vector of boundary values
5. The maximum norm (after some experimentation the values 

3 0 for second order, 15 0 for fourth order were used)
6 The number of processors to be used (1 ,4 , 8,16).

The first table for each problem represents the results obtained using 
no special decomposition technique, while the second table represents the 
results using the partial decomposition technique during the integration 
phase outlined in Ch. 3 Finally, the appropriate times are presented for the 
solution of the problem using a finite difference code (D02RAF), and a 
shooting code (D02SAF), from the FORTRAN NAG library of routines. 
Once again note that default parameters are used in these routines This 
may lead to failure of the shooting code for some problems. The choice of 
more appropriate parameters would allow these problems to be solved by 
the routine D02SAF.

The various columns m the tables represent

1 The number of processors used (P)
2 The number of shooting points selected by the algorithm.
3 The largest difference between solution values over the final

two runs of the algorithm
(For convenience, this value is labelled "Approx. Error").

4 The CPU time, m seconds, for the integration phase of the 
algorithm (I)

5 The CPU time, m seconds, for the solution phase of the 
algorithm (S)

6 The total time taken for the solution, run sequentially (I + S)

83



7 The actual time taken (A), if a parallel machine were available 
(A = I /P  + S)

8 The speed up observed ( S U = Time using one processor 
divided by A).

9. The efficiency using P processors (S U ./P )
10. The percentage of the actual time used in the solution phase
11. The solution time, in seconds, using NAG routine D02RAF
12. The solution time, m seconds, using NAG routine D02SAF

The tables are designed to illustrate the effectiveness of the 
algorithm m a variety of ways Firstly, the speed up and efficiency are a 
measure of how  close a particular version of the algorithm is to the 
theoretical ideal An efficiency value of 1 indicates "perfect" speed up The 
calculation of the actual time can be justified by remembering that the 
integration phase is purely parallel and the algorithm pays particular 
attention to load balancing The only extra work which may occur in a 
interval depends on the number of shooting points in that interval The 
positions of any such break points are listed underneath the tables where 
appropriate

The significance of the solution time as a percentage of the actual 
time comes from the fact that the solution phase is a purely sequential 
operation and will therefore involve all processors, except one, being idle. 
This time should be kept as small as possible In the examples presented, 
dramatic reductions m this time are achieved by the use of the integration 
phase to begin the solution phase

5.3 Numerical Examples

Example 1

The first problem to be examined is a simple second order problem  
with separated boundary conditions, previously mentioned to illustrate the 
driver program of Ch. 4 It is

y" = (l-t/5 )y  + t, 1 < t < 3,

y(l) = 2, y(3) = -1

The problem w ould not be expected to create difficulties for any of the 
codes to which it is submitted This, in fact, is the case, although a small 
number of shooting points is selected by the Ada code, reflecting area of the
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solution where changes are taking place Because the problem is "small" 
major improvements m efficiency would not be expected by the use of a 
large number of processors The results are summarised m Table la  and lb

Example 2

The next problem presented to each code is a second order problem  
involving non separated boundary conditions

y" + y' + y = x3 - 5, 0 < x < 3,

y(0)+y(3) = 2, y'(0) + y’(3) = 9

The reason for the inclusion of this small problem is to illustrate the ability 
of the Ada code to solve boundary-value problems with different kinds of 
boundary conditions Again major efficiencies w ith a large number of 
processors would not be expected The results are summarised in Table 2 a 
and 2b

Example 3

y" = 0 09y -1  8, 0 < x < 10,

y(0) = 100, y(10) = 20

This example is a second order problem, the interval of integration 
being from x = 0 to x = 10 Because of the relatively large range of 
integration, most of the work is being done in the integration phase and 
therefore in parallel Because of this, the efficiency of the Ada code would  
be expected to show a major improvement, and this indeed is reflected in 
the results as presented in Table 3a and 3b Efficiencies m excess of 0 74 can 
be achieved using 16 processors or less

Example 4

yiv = 10 sin (jcx/ 10), 0 < x < 10,

y(0) = 0, y'(0) = 0, y(10) = 0, y"(10) = 0
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This example involves the fourth order problem already mentioned, 
and a high proportion of the work will occur in the integration phase To 
use a large number of processors should be more efficient for this example 
rather than the earlier smaller problems This example is used to test the 
ability and efficiency of the Ada code on higher order problems The 
results, which again reflect excellent efficiency values, are summarised m 
Tables 4a and 4b

Example 5

yi' = t y *

Yi ~ ty i +  ^ o s 2 (tcx) + 2  A  7t2 cos ( 2 tcx) ,  0 < x < 1,

X = 20 0, yj(0) = 0 y^ l) = 0

This is an example of a "difficult" problem, taken from [1], reflected 
by the fact that a large number of shooting points is selected by the 
algorithm This, in fact, reduces the algorithm to pure finite difference 
(The shooting points selected are equispaced over the interval and so are 
not listed) However, efficiency values above 0 50 using 16 processors or 
less can be achieved Larger values of X reduce the efficiency of the code and 
introduce singular blocks in the solution matrix, but this may be alleviated 
som ewhat by adopting a different approach to the selection of an initial 
step length Tables 5a and 5b summarise the results achieved with X = 20 0.

Example 6

ey" + xy’ = ere2 cos nx - nx sm nx, -1 < x < 1,

£ - 0 1 ,  y(-l) = -2, y(l) = 0

This problem, again taken from [1], is an example of a problem with 
a boundary layer at the left hand side of the interval, reflected by the code's 
selection of shooting points This points are listed for the one processor 
case For smaller values of e similar automatic selection occurs Results for
e = 0 1 are outlined in Tables 6a and 6b For smaller values of e, som e
tuning would be desirable, especially in relation to the choice of initial step 
size
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5.4 Conclusions

The preceding section outlines the results achieved on a selection of 
two-point boundary-value problems using a variation of the algorithm due 
to [15] as outlined in Ch 3, and coded in Ch. 4 As already stated, no single 
code can claim efficiency for all types of problems, so it is useful to outline 
the type of problem which best suits the code

Since the main parallel section of the code is during the integration 
phase, problems which require a large amount of work in this phase 
achieve greatest efficiency If the problem requires a small amount of work 
in the solution phase, this will increase efficiency even more Thus, a large 
problem, with a large interval of integration, will allow all processors to be 
busy during the purely parallel integration phase If the solution is 
reasonably smooth, i e a small number of shooting points is selected by the 
algorithm, this will minimise the size of the solution matrix The amount 
of work in the (sequential) solution phase will be similarly minimised.

The inclusion of the "special" reduction process for blocks of the 
solution  matrix increases the efficiency dram atically and warrants 
inclusion, even though it m ay cause the algorithm to fail for certain 
problems.

Ch. 6 contains a brief summary of the work done during the research 
of this thesis and an indication of the direction which future work with  
this algorithm might take

87



y ( l)  = 2, y(3) = -1

y" = (1 - x/5)y + x, 1 < x < 3,

Table la
No of 
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 3 1 95e-9 0 83 0 07 0 90 0 90 ----- ----- 1 8 0 38 0 23
4 1 1 95e-9 0 88 0 09 0 97 0 31 2 90 0 73 29 0 0 38 0 23
8 0 1 95e-9 1 03 0 30 1 33 0 43 2 09 0 26 69 8 0 38 0 23
16 0 1 95e-9 1 23 1 62 2 85 1 70 ----- ----- 95 3 0 38 0 23

* x =  1.46785, 1.96875, 2.5. ** x = 1 46875.

Table lb  (S p ecia l D ecom position)
No of 
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 3 1 95e-9 0 83 0 02 0 85 0 85 ----- ----- 2 4 0 38 0 23
4 1 1 93e-9 0 87 0 03 0 90 0 25 3 40 0 85 12  0 0 38 0 23
8 0 1 93e-9 1 02 0,02 1 04 0 15 5 76 0 72 13 3 0 38 0 23
16 0 1 98e-9 1 26 0 05 1 30 0 13 6 63 0 41 38 5 0 38 0 23
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y(0) + y(3) = 2 ,  y ’( 0 )  + y'(3) = 9 .

y" + y' + y = x3 - 5, 0 < x < 3

T ab le  2a
No. of 
Processors

No. of
Shooting
Points

Approx.
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up Efficiency

Solution 
Time 

< ;.

D02RAF
CPU
Time

D02SAF
CPU
Time

1 0 4.75e-8 1.23 0.02 1.25 1.25 ----- ----- 1 .6 1.40 0.38
4 0 5.97e-8 1.29 0.06 1.35 0.38 3.28 0.82 15.8 1.40 0.38
8 0 5.97e-8 1.42 0.28 1.70 0.46 2.72 0.34 60.9 1.40 0.38
16 0 6 .Ole-8 1.63 1.62 3.25 1.72 ----- ----- 94.2 1.40 0.38

T able 2b (Special Decom position)
No. of 
Processors

No. of
Shooting
Points

Approx.
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up Efficiency

Solution
Time

D02RAF
CPU
Time

D02SAF
CPU
Time

1 0 4.75e-8 1.19 0.01 1 .20 1 .20 ----- ------ 0.8 1.40 0.38
4 0 5.97e-8 1.25 0.01 1.26 0.32 3.75 0.86 3.13 1.40 0.38
8 0 5.97e-8 1.39 0.02 1.41 0.19 6.32 0.79 10.53 1.40 0.38
16 0 6 .0 1 e-8 1.58 0.05 1.63 0.15 8.00 0.50 33.33 1.40 0.38

8 9



y (0 )  = 0 , y(10) = 0

y" = 0.09y - 1.8, 0 < x < 10,

Table 3a
No of 
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual 
T ime
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 1 1 * 5 17e-10 4 00 0 79 4 79 4 79 ----- ----- 16 5 0 38 0 16
4 g * * 5 17e-10 4 05 0 79 4 84 1 80 2 66 0 66 43 9 0 38 0 16
8 g * * * 5 17e-10 4 14 1 68 5 82 2 20 2 18 0 27 76 4 0 38 0 16
16 0 5 17e-10 4 32 1 63 5 95 1 90 2 52 0 16 85 6 0 38 0 16

* x = 0.875,1 75,2.625,3 5 ,4  375,5 25,6 125,7 0 ,7  875,8 75,9 625
** x = 0 875,1.75, 3 325,4 25,5 875,6 75,8 375,9.25
*** x = 0 875,2  125, 3 375, 4 625, 5 875,7 125, 8 375,9 625

Table 3b (S pecia l Decom position)
No of 
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 1 1 5 17e-10 4 02 0 03 4 05 4 05 ----- ----- 0 7 0 38 0 16
4 8 5 17e-10 4 05 0 04 4 09 1 05 3 85 0 96 3 8 0 38 0 16
8 8 5 17e-10 4 14 0 06 4 20 0 58 7 01 0 88 10 3 0 38 0 16
16 0 5 17e-10 4 33 0 07 4 40 0 34 11 91 0 74 20 6 0 38 0 16

9 0



y ( 0 )  =  0 ,  y '( 0 )  =  0 , y ( 1 0 )  =  0 , y " ( 1 0 )  =  1 0 .

y iv = 10 sin (rcx/10), 0 < x < 10,

T ab le  4a
No. of 
Processors

No. of
Shooting
Points

Approx.
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Timeif »

D02RAF
CPU
Time

D02SAF
CPU
Time

1 5* 2 . 1 2 e-8 11.80 0.99 12.79 12.79 ------ ----- 7.7 1 . 1 0 1.57
4 4 * * 2 .2 1 e-8 11.84 1.96 13.80 4.92 2.60 0.65 39.8 1 . 1 0 1.57
8 0 2 .2 1 e-8 12.03 1.95 13.98 3.45 3.70 0.46 56.5 1 . 1 0 1.57
16 0 2 .2 1 e-8 12.45 12.63 25.08 13.41 ----- ----- 94.2 1 . 1 0 1.57

* x = 1.96875,3.9375,5.90625,7.825,9.84375. 
** x = 1.96875,4.46875, 6.96875, 9.46875.

Table 4b (Specia l Decom position)
No. of 
Processors

No. of
Shooting
Points

Approx.
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 5 2 .2 1 e-8 11.78 0.06 11.84 11.84 ----- ----- 0.5 1 . 1 0 1.57
4 4 2 .2 1 e-8 11.78 0.07 11.90 3.00 3.94 0.99 2.3 1 . 1 0 1.57
8 0 2 .2 1 e-8 12.00 0.08 12.08 1.58 7.49 0.94 5.1 1 . 1 0 1.57
16 0 2 .2 1 e-8 12.42 0.20 12.62 0.98 12.13 0.76 20.4 1 . 1 0 1.57
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y i '  = ^ y 2 »

y 2' = A,y i  + Xcos2 (rcx) + 2/A. k2 cos ( 2 t c x ) ,  0 <’ x < 1 

X = 20, y i (0) = 0, y i ( l )  = 0.

T ab le  Sa
No of 
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 31 3 17e-8 4 07 23 64 27 71 27 71 ----- ----- 82 9 0 62 -----
4 28 3 17e-8 4 29 22 97 27 26 24 04 1 15 0 29 95 6 0 62 -----
8 24 3 17e-8 4 52 23 24 27 76 23 81 1 16 0 15 97 6 0 62 -----
16 16 3 17e-8 5 31 23 32 28 63 23 65 1 17 0 07 98 6 0 62 -----

T able 5b (Specia l D ecom position)
No of 
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 31 3 47e-8 4 16 0 23 4 39 4 39 ----- ----- 5 5 0 62 ------
4 28 3 47e-8 4 34 0 26 4 60 1 35 2 97 0 74 19 3 0 62 ------
8 24 3 47e-8 4 55 0 25 4 80 0 82 5 36 0 67 30 5 0 62 ------
16 16 3 47e-8 4 90 0 21 5 11 0 52 8 50 0 53 41 2 0 62 -----
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ey" + xy' = ere2 cos (rex) - 7ix sin (rex), 0 < x < 1,

e = 0.1, y (- l)  = -2, y(l)  = 0.

Table 6a
No of 
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 7* 1 0 1 e-8 3 87 0 49 4 36 4 36 ----- ----- 1 1  2 0 61 ___
4 6 1 0 1 e-8 3 89 0 0 77 4 66 1 74 2 51 0 63 44 3 0 61 ___
8 5 1 0 1 e-8 4 07 1 56 5 63 2 07 2 1 1 0 26 75 4 0 61 -----
16 3 1 15e-8 441 4 31 8 72 4 59 ----- ----- 93 9 0 61 -----

x = -0 .90625, -0 .8125, -0.71875, -0 625, -0 .5 , -0 34375, -0 09375  

Table 6b (Special Decom position)
No of 
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 7 1 0 1 e-8 3 96 0 03 3 99 3 99 ----- ----- 0 8 0 61 -----
4 6 1 0 1 e-8 4 12 0 06 4 18 1 09 3 7 0 92 5 5 0 61 -----
8 5 1 0 1 e-8 4 29 0 07 4 36 0 61 6 6 0 82 11 5 0 61 -----
16 3 1 15e-8 4 40 0 09 4 49 0 37 10 9 0 68 24 3 0 61 ------
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Chapter 6 

Conclusions and Further Work

s

/
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6.1 Aims

The original aim of the work contained in this thesis was to examine 
how  the solution methods for the general class of two-point boundary- 
value problems could take advantage of the current generation of parallel 
processing machines. To do this, the first task was to exam ine the 
traditional m ethods being used for the solution of such problems A 
variety of methods are available, some for a narrow range of problems, but 
only three m ethods could offer the ability to solve a w ide range of 
problems, namely finite element, finite difference and shooting methods.

The first two methods mentioned involve the solution of linear or 
nonlinear systems of equations and the availability of concurrent packages 
for the solution of such systems will govern the efficiency or otherwise of 
these m ethods As m entioned earlier, work is ongoing in this field. 
H ow ever because of the nature of the shooting algorithm , more 
particularly the multiple shooting method, this seemed an obvious path to 
choose when considering parallel processing capabilities

The "original" m ultiple shooting method was designed to solve  
problems which simple shooting failed to solve because of the nature of 
the differential equation Recall the instability involved in the sim ple  
shooting method when initial guesses were not close to the true missing  
boundary conditions Even multiple shooting could fail for some problems 
if the selected break point were too far apart Effectively simple shooting is 
used within a subinterval and the same instability problems may arise 
Therefore any m ultiple shooting code which can truly be called general 
purpose should have the capability of automatically selecting break points 
to control these instabilities With this in mind the second algorithm  
outlined m Ch. 3 was selected as the most general purpose algorithm for 
coding in a parallel environment

The next problem involved the selection of a suitable language for 
the coding of the algorithm The language Ada seemed to offer the various 
features which were required for this task In particular, the inbuilt parallel 
processing capabilities were a definite attraction The fact that Ada contains 
many of the best features of a modern programming language as outlined  
in Ch. 4 confirmed its suitability as a vehicle for the programming work

The aim of the work, then, can be summarised as the production of a 
working package for the solution of two-pomt boundary-value problems, 
using a m ultiple shooting algorithm, with a high degree of concurrency 
using the Ada programming language, philosophy and environment
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6.2 Summary

The survey of solution m ethods for tw o-point boundary-value 
problem s undertaken in Ch. 1 and Ch. 2 served as a platform for 
identifying the difficulties and pitfalls involved m these solution methods 
In conjunction w ith  this, it was necessary to investigate parallel 
architectures and parallel programming languages Having selected Ada as 
the language, the type of computer model became less critical because Ada 
attempts to be machine independent For this reason only a brief summary 
of parallel architectures is included

An algorithm was then sought which w ould minim ise overheads 
associated with different arrays of processors This lead to the selection of 
the algorithm due to Keller and Nelson as communication costs during the 
integration phase are trivial and the solution phase time can be reduced to 
allow  a sequential solver to achieve efficiencies Of course, the added  
advantages of this algorithm as outlined earlier played a significant role in 
its adoption for coding

Some preliminary work in the Ada language involved working as 
part of a group writing matrix routines and som e work using Newton's 
method for the solution of nonlinear algebraic equations. These small 
projects served to provide a sound base for the coding of the larger packages 
as outlined in Ch 4

The major achievem ent in the work was the construction, 
im plem entation and testing of the parallel Ada code. Of particular 
importance was the inclusion of the special decom position technique m 
the integration phase As the tables of results indicate, this allowed for 
increased efficiencies over a purely sequential method in the solution  
phase. The failure of this technique for som e problems indicates that 
further development is required to make the code more general purpose. 
In particular, closer monitoring of the norm may be required during the 
integration phase Despite this restriction, a representative subset of linear 
problems was successfully solved using the revised algorithm

6.3 Conclusion

In conclusion, it seems appropriate to indicate the direction which  
future research in this area might usefully be directed As indicated earlier, 
closer examination of the behaviour of the norm of the matrix blocks in 
the integration phase m ight increase the range of problem s soluble  
efficiently by the algorithm Problems whose boundaries include ±«> would  
seem  possible candidates for efficient solution because of the size of the
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interval of integration. Multi-point boundary-value problems might also 
be approached in a similar manner

Perhaps the single most important area where more research needs 
to be done is the parallel solution of nonlinear problems Generally a 
sequence of linear problems must be solved when attempting to solve 
nonlinear problem s There is no reason w hy this code, w ith some 
adaptation, could not be used as the core integrator, thus extending its 
capability into the field of nonlinear two-point boundary-value problems. 
Although no code can be efficient on every problem, work in the indicated 
areas could provide further additions to the range of problems which could 
be efficiently solved in a parallel environment
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