
The Solution of

Two Point

Boundary Value Problems

in a Parallel Environment

by

Padraig Keenan

A thesis submitted for the degree of Master of Science

Dublin City University 1992

I hearby declare that the contents of this thesis, except where otherwise
stated, are based entirely on my own work which was carried out in the
School of Mathematical Sciences, Dublin City University.

Signed :
Dr John Carroll Padrai ^Keenan
(Supervisor)

This work is dedicated to Marian, Cormac, Mairead and Fergus

Acknowledgements

I wish to express my gratitude for the help and co-operation I received
from the following people during the course of this work Colm
McGumness, whose expertise and advice proved invaluable, Joe Crean,
Brendan Boulter, Colin Evans and the staff/students at Dublin City
University and Regional Technical College, Athlone Special thanks to Dr
John Carroll for his assistance, patience, encouragement and friendship
during the project

ABSTRACT

This work focuses on the linear two-pomt boundary value
problem

y’ = A(x)y + f(x), a < x < b

Bay(a) + Bby(b) = y

with a view to their solution by some form of parallel
algorithm The theory and practice of current sequential
solution methods is reviewed to select a method which
exhibits concurrent processing potential The method selected
is a version of multiple shooting The language Ada is
chosen to code the algorithm because of the features available
in it, particularly the inbuilt tasking facility for concurrent
processing The efficiency of the parallel code as implemented
is demonstrated by a series of numerical experiments, the
results of which are summarised m tabular form

*

CONTENTS

Page

Chapter 1 Two Point Boundary Value Problems 1

11 The Form of the Problem 2
1 2 - Linear and Nonlinear Problems 3
13 Physical Examples 4
14 Types of Boundary Conditions 5
15 Existence and Uniqueness of Solutions 5
16 Numerical Solution Methods 8
17 Parallelism and Ada 12
18 Conclusion 14

Chapter 2 Numerical Methods for the Solution
of Two Point Boundary Value Problems 15

2 1 Finite Difference Formulae 16
2 2 An Example of the Finite Difference Method 17
23 Derivative Boundary Conditions 19
24 Increasing the Order of Accuracy 21
25 Reduction of the Differential Equation

to First Order 24
26 Finite Difference and Nonlinear Problems 26
27 The Finite Element Method 27
28 The Shooting Method 30
29 Conclusion 39

Chapter 3 Multiple Shooting for Two Point
Boundary Value Problems 40

31 Motivation for Multiple Shooting 41
32 Multiple Shooting - Algorithm 1 43
33 Multiple Shooting - Algorithm 2 46
34 Adaptive Mesh Selection 49
35 Concurrent Processing Possibilities 51
36 Concurrent Processing Costs 55
37 Nonlinear Problems 56
38 Conclusion 58

Page
Chapter 4 An Ada Implementation of a

Parallel Boundary Value Solver 59

41 An Overview of the Ada Philosophy 60
4 2 Structure of the Ada Programming Language 62
4 3 Development of the Multiple Shooting Algorithm

- Matrix Operations 67
' 4 4 The Interface to the Shooting Method Package 70
4 5 The Integrator Package 76
4 6 Conclusion 78

Chapters Numerical Experiments 80

51 Criteria for Comparison 81
5 2 General Remarks on the Numerical Experiments 83
5 3 Numerical Examples 84
5 4 Conclusion 87
5 5 Summary Tables 88

Chapter 6 Conclusions and Future Work 94

61 Aims 95
6 2 Summary 96
6 3 Conclusion 96

References 98

Chapter 1

Two-Point Boundary-Value Problems

1

i

t

In this work we consider, in the first instance, the differential
equation

y' = f(x,y), a < x < b, 1 1 1 a

g(y(a),y(b)) = 0 11 lb

and its solution by means of an algorithm which allows for the use of some
form of concurrent processing technique In the ordinary differential
equation, i e Eq 1 1 la, the quantity y is an n vector, x is the independent
variable, and f is a vector function Eq 1 1 lb represents boundary
conditions, which are given for two points, a and b, a < b, in the domain of
x, and hence the name two-point boundary-value problem (BVP) is given
to such a set of equations

We shall consider only first order differential equations of the form

y' = f (x,y)

and we use the fact that higher order equations can be reduced to first
order, by substitution, an example of which is now outlined

Suppose we are given an nth order differential equation in the form •

an+i(x)y(n) + an(x)y(n-1) + + aT(x)y + a0(x) = 0 1 1 2

an+i(x) *0 , V x

where y(n) means " the nth derivative of y ", etc

Let yi= y, y2= y', , yn.i= y(n‘2), yn= y(ivl), which yields the first order system

yi' = y2
Yi = y3

yn' = - (anyn-i+ + aiYi + ao)/an+ir

{where a,(x) has been written as at, l = 0 n+1, for simplicity}

In vector notation, this becomes.

1.1 The Form of the Problem

2

y'=f(x,y)

and is reduced to the first order form as in Eq 1 1 la This well known
technique can be applied to any higher order system to effect the same
reduction

1.2 Linear and Nonlinear Problems

At this point it is also useful to distinguish between linear and
nonlinear problems A linear problem is such that the elements of the
vector y appear only linearly in Eq 1 1 la Consider, as an example, Eq 11 2,
where the coefficients a,, i = 0 n+1, depend only on x, which can be written
as

y'=A(x)y + f(x) 121

where A(x) is a matrix depending only on the independent variable, x, and
f is a vector function of x Otherwise the problem is nonlinear As an
example of a nonlinear problem consider the 2nd order problem

1 k
y " + i y ' = — 0 < X < 1 1 2 2

X y

y’(0) = 0 , y(l) = 1

In first order form, using vector notation this differential equation may be
written as

t y2
yi

= 1 k
y 2 T y* + ~

yi_

i e in the general form

y' = f(x,y)

3

The solution of a linear problem poses less problems than its
nonlinear counterpart, and, as we shall see, some form of linearisation
technique is often used when attempting to solve a nonlinear boundary-
value problem

1.3 Physical Examples

There are a range of physical phenomena for which two-point
boundary-value problems provide the model Examples can be found in
many areas of engineering and science ranging from simple beam bending
problems m mechanics to the chemical engineering areas of absorption
phenomena, chemical reactions, radiation effects and problems connected
with heat transfer, fluid flow, dissipation of energy and control theory. The
nonlinear boundary-value problem of the previous section, i.e Eq 1 2 2, for
example, describes the equilibrium condition of suspended charged drops
[171

As a second simpler example, consider the mathematical model
which describes a load

F(x) = 1000 sin (j tx /1 0)

applied to a rod that is 10m long One end of the rod, x = 0, is clamped. At x
= 10 the rod is pinned If a = 0 01, where a is the elastic constant, then the
fourth order BVP

yiv = 10 sin (t c x / 1 0) 0 < x <10

y(0) = 0, y'(0) = 0, y(10) = 0, y"(10) = 0

models the physical problem The solution to this problem will be used as
part of the numerical experiments of Ch. 5.

Two-pomt boundary-value problems can also result from partial
differential equations if, for example, the method of lines is chosen as the
solution technique This leads to high order differential equations Such
large systems are excellent candidates for the consideration of some form of
parallelism in their solution

1.4 Types of Boundary Conditions

The boundary conditions, Eq 1 1 lb, associated with the differential
equation, Eq. 1 1 la, may occur m several different forms For example if
the function g, of Eq 11 lb, is given only at values at either x = a or x = b
then the problem becomes an mitial-value problem and Eq 1 1 lb can be
written as either y(a) = a or y(b) = p, where a, p are n vectors Initial-value
problems will not be considered in this work

If the conditions can be written m the form

Bay(a) = a, Bby(b) = p ,

where the vector (a,P)T is an n-vector, and Ba, Bb are appropriate matrices,
the conditions are said to be separated.

Again, the conditions can be mixed between both boundary points
and, if linear, may be written as

B0y(a) + Bjy(b) = y

where Bq and B| are nxn matrices and y is an nxn vector
Both of the above types of conditions result m computationally

more advantageous situations than the general nonlinear case of the form

g(y(a),y(b)) = 0

For the general case some form of linearisation process is usually done and
the solution is found iteratively In the majority of problems, boundary
conditions will be linear, either separated or mixed and examples of each of
these types of boundary conditions are contained m the numerical
experiments in Ch. 5.

1.5 Existence and Uniqueness of Solutions

We now consider the existence and uniqueness of the solution to Eq
1 1 1 . Conditions for the existence and uniqueness for the first order scalar
initial-value problem (IVP)

y' = f(x,y),

y(xo) = yo

5

V

are established m the understated theorem, accredited to the French
mathematician Emile Picard (1856-1941), the proof of which can be found
m any standard text, [12], on differential equations

Theorem 1.1.

If
(1) f(x,y) is continuous and has continuous partial derivatives

with respect to y at each point in the region R defined by

I x- xq I < a i , I y - y 0 1 < a 2,

(n) I f(x,y) I < M,
(iii) h is the smaller of the numbers a| and a2/M ,

then there exists a unique solution of the IVP on the interval

I x - x q I < h

The theorem can easily be extended to the vector case This theorem,
then, guarantees that the IVP has a unique solution on an interval

x0-h < x < xo+h

It should be noted, however, that the problem may have a unique
solution even if all the conditions (l)-(m) are not satisfied

No such equivalent theorem is available for the general two-point
boundary-value problem, although for the linear case conditions for
existence and uniqueness and even the form of the solution itself have
been established [1] We know that the linear problem

y' = A(x)y + f(x), a < x < b

Bay(a) + Bt,y(b) = y

will have a unique solution if and only if the matrix

Q = BaY(a) + BbY(b)

is nonsmgular, where Y(x) is a matrix of solutions satisfying

6

Y'(x) = A(x)Y(x)

found using a set of linearly independent initial condition vectors, 1 e the
fundamental solution matrix

As an example of the care which must be taken when examining the
existence, or otherwise, of a solution consider the differential equation-

y" + 7t2y = 0 , 0 < x < 1,

which has the general solution

y = Acosjtx + BsinTcx

If the boundary conditions are given as

y(0) = 0, y(l) = 1

on substitution into the general solution the equations to be solved to find
the particular solution are

A 1 + B 0 = 0

=> A = 0

and
A (-1) + B.O =1

=> A = -1

which is a contradiction There is, in fact, no solution to the differential
equation on this interval given these boundary conditions. Of course, this
can be verified by examining the matrix Q, as defined above and m [1],
which can be shown to be singular In fact

1 O '

where the initial conditions are taken to be

(i) y(0) = 1, y’(0) = 0, and

7

In this work, we shall assume that for any particular problem the
existence and/or uniqueness of the solution on the given interval is
known and that the boundary conditions are also sufficient for the
existence of a solution

1.6. Numerical Solution Methods

The next task is to classify the various methods used for the
numerical solution of two-point boundary-value problems Daniel [4]
views a complete method as having three aspects1

1 A Transformed Problem
2. A Discrete Model of the Transformed Problem, and
3 A Solution Technique for the Discrete Model

In the most usual case the Transformed Problem and the original
problem coincide However many BVP's arise in science as the variational
or Euler-Lagrange equations for problems in the calculus of variations.
This can lead to the problem being transformed to that of minimising an
integral In other cases BVP's can be transformed to the problem of
evaluating an integral using an appropriate Green's function See, for
example, [25] for a discussion of these transformations Such
transformations lead to discrete models and solution techniques involving
quadrature It is not proposed to perform such transformation techniques
in this work Rather, methods which attempt to solve the BVP directly will
be examined

It is generally agreed [24] that the numerical solution of two-point
BVP's can be divided into three mam competitive classes* finite difference
methods, shooting methods and finite element methods Therefore, it
seems useful to outline how the discrete model and solution technique as
described in [4] is developed for each of these classes of methods

The Finite Difference Method

In order to solve Eq 1.1 1 by the method of finite differences, the
derivative appearing in the equation, as well as in the boundary
conditions, is replaced by an appropriate difference approximation In its
simplest form, the interval [a,b] is divided into N equal submtervals, each
of width h, where

(u) y(0) = 0, y’(0) = 1

8

and

Xj = xq + jh, where h = (b-a)/N and j = 0,1, • •, N.

The solution to the differential equation at these mesh points denoted by
yo/ yi, • • • / yn is then sought.

To derive the approximations, Taylor's series for a function of a
single variable can be used as follows:

y j f i = + h y ’j + 0 (h 2)

=> y'j = + 0 (h)J n

a = x0 < x 1< . . . < x N=b

This yields the simplest finite difference approximation for the (scalar) first
derivative, the forward difference approximation. This formula can be
extended to cover the vector case quite easily, or, indeed, for higher
derivatives if required, so that the complete differential equation and
boundary conditions can be replaced by a difference equation. The discrete
model is then a difference equation which must be solved to give an
approximation to the solution y(x) at the points xT, x2, . . . , xN, represented
by ylr y2, . . . , y^. A number of techniques exist for the solution of such
equations.

A complete treatment of this method including the introduction of
higher order approximations will be given in Ch. 2. Similarly the form of
the difference equation, the solution techniques and the possibility for
parallelism in any numerical solution technique will be treated at that
point.

The Finite Element Method:

Another approach is to discretise the differential equation using a
technique which has several variants known by such names as the finite
element method, projection method, Galerkin's method, the Rayleigh-Ritz
method etc. The common approach adopted by these methods is to attempt
to approximate the solution curve of the differential equation 1.1.1a using

9

m (finite) linear combinations of known functions These known
functions, called basis or trial functions, are usually low order polynomial
or simple trigonometric functions.

In simple form we approximate the solution y(x) to Eq 111 by

m

y(x) ~ v(x) = ^ Cj 0j(x)
1=1

where the <j>, are the selected basis functions which satisfy the boundary
conditions 1 1 lb, and the q are the coefficients which must be found.

There are several approaches to finding the coefficients For
example, in the collocation method we require that the approximate
solution satisfies Eq. 1.1.1a at N internal points (grid points) By
substituting

m

X cA (x)
1=1

for y in the original differential equation, a system of equations m c, is
constructed. The solution of the BVP then reduces to the solution of this
system in q

This approach and others, using residual functions, variational
methods and splines, will be discused in Ch. 2 Also the form of the
solution technique and the opportunities for parallelism will be treated at
this point.

The Shooting M ethod.

The general principle underlying the shooting method is the
transformation of the boundary value problem to an initial-value problem
(IVP) To do this, it is necessary to supply an estimate for any "missing"
boundary conditions at, say, x = a, using a priori information about the
problem for the estimates, if possible The result is an initial-value problem
which can then be discretised and solved using any of the standard IVP
methods By comparing the known boundary conditions at x = b with the
solution of the IVP at x = b, another, hopefully better, estimate of the
missing boundary conditions at x = a can be found

In the 2nd order case, with separated boundary conditions, say, y(a) =
a and y(b) = p, the procedure can be simply illustrated as follows:

10

(i) Solve the differential equation, first with y’(a) = 04, to find a
solution at x = b, say y(1)(b) = p1
Solve again with y'(a) = a2, to find another solution at x = b,
sayy(2)(b) = p2

(11) Interpolate with these solutions pT and p2 to produce a better
estimate for y(a), say y(3)(a) = a3

(lii) Continue this process until the value yw(b) = , 1 > 2, so found
is "close" to the correct value y(b) = p

The interpolation can be done using any linear interpolation technique
For example, the Lagrangian formula would become:

(5-p! P*P2
a , a , + a ,

PfPi P1-P2

The abundance of available mitial-value codes is clearly a reason for
considering the shooting approach to the solution of a BVP In the case of
linear 2nd order boundary-value problems convergence to the true
solution can be shown to occur by performing (1) and (11) above and then
interpolating, although for nonlinear problems convergence may take
several steps Higher order interpolation may assist the convergence
process as more solutions become available

The fact that the equation must be integrated at least twice before any
interpolation can be done suggests that some form of concurrent processing
could be introduced, even in this simple case In the case of higher order
problems, as we shall see, many integrations may be required, even in the
linear case, depending on the number of "missing" boundary conditions
which must be estimated so concurrent processing capabilities could lead to
even greater efficiencies This method, then, suggests itself as a method
worth considering m any concurrent processing context

A disadvantage of the method is that for some problems the
selection of the initial conditions can be critical. An estimate of the
boundary conditions very close to the true value may be required, if the
solution is not to "explode" in the given interval Several methods have
been proposed to control this phenomenon, including the multiple
shooting technique, [13], which divides the interval [a,b] into smaller parts
and the integration of each section is done separately. This approach leads
inevitably to the idea of parallel multiple shooting, where the subintervals
are integrated simultaneously

1 1

In the shooting method, then, the discrete model and solution
technique depend on the mitial-value solution technique chosen. The
method presents inherent possibilities for parallelism which could take
advantage of the current generation of parallel computer architecture. A
complete treatment of the theory of the shooting method is found m Ch. 2.

1.7 Parallelism and Ada

Since this work is primarily concerned with implementing, in
parallel, solutions to boundary-value problems, it seems worthwhile at this
stage to review the current state of hardware and software m the field of
concurrent processing The classical Von Neuman architecture of
sequential computers allows for the execution of only one instruction at
any one time However, attempts have been made to introduce limited
parallelism even into this structure

The idea of virtual memory, whereby only the active part of a large
program is stored m mam memory, while the rest of the program is kept in
backing store was probably the first attempt to improve the efficiency of the
basic architecture Introduced by Kilburn el al m 1962, [11] and used initially
m the Atlas machine, it allowed for hitherto overly large programs to be
executed The idea is also used in the time-sharing environment, allowing
users to run large programs simultaneously A similar idea is that of cache
memory, whereby a very high speed area of main memory is used to
process the active part of the current program, while the rest of the current
program is held in lower speed mam memory (Wilkes, 1965)

The first attempt at truly concurrent processing is the idea of
pipelining This is a technique to initiate one or more accesses to memory,
while executing instructions in the central processor. Thus a series of
instructions are held m a pipeline, and executed rapidly as the processor
becomes available Once the pipeline is full, the relatively slow operation
of finding the next instruction, decoding it and possibly finding the
associated data no longer becomes a bottle neck and the processor is used
more efficiently Many machines now use this idea pioneered on the IBM
Stretch, CDC 6600 and now Intel’s 8086 processors

However, any serious attempt at parallel processing must aim at an
array, of some kind, of several processors Only then can there be major
advances in the power of the resulting computer As yet no single
architecture has emerged to challenge for supremacy in the field of parallel
processing as does the Von Neuman style in the sequential case. The
answers to many questions regarding the best arrangement of processors
are by no means clear-cut. These include, among others, the cost, in

12

computer time, of communicating between processors, the amount of
memory to be associated with each processor, the amount, if any, of shared
memory, the merits of having one powerful master processor, etc These
and other problems are addressed m Ch. 5, when the most efficient
hardware design for the parallel algorithm of Ch. 3 is considered

As well as the hardware problems associated with concurrent
processing, we must also consider which language is best suited to the
coding of any suitable algorithm There are several possible choices,
including a parallel version of Fortran or C, but one language which was
designed with parallel processing in mind is Ada Ada is a large language
which addresses many issues relevant to the programming of practical
systems m the real world [26] Some of the features which contributed to its
choice for the coding of the algorithm of Ch 3 were

(i) Readability and Maintainability

In general, parallel processing is only considered when a large scale
or complex problem is to be solved Thus the program will be large and any
language which is used for coding the problem must allow for ease of
maintenance Because Ada is a highly structured language which uses
object oriented programming techniques, it encourages the low level
details of the implementation of an algorithm to be kept invisible to the
user allowing the problem to be considered at its outermost level
Developments and refinements of the algorithm can thus be implemented
at this outer level Alternatively, more efficient processing techniques can
be introduced at the lower level, without any need to change the overall
structure of the algorithm

(ii) Mechanism for Encapsulation

This allows each component of the program to be separately written,
compiled and, most importantly, tested It can then be included m a library
and used confidently any time by the main program Selected components
can also be included from other libraries, when available, allowing for
improved efficiency

(m) Tasking Facility

Since it is proposed that the program be written as a collection of
parallel activities, it is essential that the language allows for this idea In
Ada the tasking facility was designed within the language with parallelism
in mind, rather than as a feature which is added to certain

13

s~

implementations Problems associated with the co-ordination of data
transfer and the synchronisation of concurrent processes are automatically
handled by the language This feature is the most important reason for the
selection of Ada as the programming language for coding the algorithm

(v) Generic Units.

To allow a program to be truly general purpose, Ada allows a umt to
be written with not only variables as parameters, but also with functions as
parameters This is then used as a template by a driver program which
supplies the functions and parameters proper to any particular problem.
Effectively a copy of the template is produced by the driver program which
will include the required user supplied parameters and functions.

A complete review of the relevant Ada facilities used by the
algorithm of Ch. 3 is presented with the code in Ch. 4

1.8 Conclusion

The problem to be solved, then, is a two-point boundary-value
problem whose format is to be fairly general Because of the variety of
BVP's, no single code can hope to be used for all such problems However,
a selection of problems will be considered, in particular linear problems
with general boundary conditions. The solution to this type of problem is
useful because it may be used as the core method during each iteration in
the solution of a nonlinear problem Improvement in performance will be
sought on the basis of speed with no loss of accuracy in the solution The
language Ada will be used as the vehicle for coding the algorithm, and the
spirit and philosophy of this language will be followed.

The next task is to analyse m detail the competitive numerical
techniques for the solution of two-point boundary-value problems and
select one which offers the greatest potential for parallelism This is
addressed in Ch. 2

14

Chapter 2

Numerical Methods for the Solution of Two-Point

Boundary -Value Problems

15

2.1 Finite Difference Formulae

Since the mam algorithm m this work is based m part on the finite
difference method, it seems appropriate to present first of all the details of
this method Techniques for improving its efficiency will be mentioned
and used as required in the later part of the work

For the direct numerical solution of a two-point boundary-value
problem such as Eq 1 1 1 by the method of finite differences we divide the
interval [a,b] into N intervals of length h, and introduce the mesh points

where x0 = a, xN = b and N is an appropriate integer A scheme is then
designed to determine numbers y} which will approximate the values y(Xj)
of the true solution at the points Xj

One way of doing this is to replace every derivative appearing m the
differential equation by an appropriate finite difference approximation as
mentioned in Section 1.6 In this case it is not necessary to reduce higher
order equations to first order as finite difference formulae can be developed
for derivatives of any order Examples of various approximations are given
below, with the order of the error m each case

Xj = a + jh ,) = 0,1, , N

y'(x) = 0(h)

y'(x) = y-1-2h--~1- + OOi2)

+ 0(h2)

+ o(h2)

1 6

All of these formulae, plus any approximations for higher order
derivatives, are readily available from combinations of Taylor's series
expansions for y)±1, . yJ±k, k an integer depending on the the order of the
derivative being approximated Other approximations whose error is of
higher order are also available, see for example [8] In the interest of
accuracy it is, of course, better to use approximations whose error is of as
high an order as possible and a balance is sought between simplicity and
accuracy For many approximation schemes the error is kept to 0(h2) and
techniques are available to achieve a higher order of accuracy based on the
lower order solution Two approaches to this problem, namely
Richardson's method and the deferred correction idea will be discussed
when appropriate

In the finite difference method, then, the original differential
equation is replaced by a difference equation The order of the difference
equation will depend on the order of the differential equation and the
finite difference approximation scheme used If the differential equation is
linear, the difference equation will be linear It is not required that the step
size, h, be fixed, and for some problems a fixed step size may lead to
inefficiencies However, the main algorithm discussed in Ch. 3 uses a fixed
step, which simplifies the problem of load balancing between processors in
a parallel environment

2.2 An Example of the Finite Difference Method

To illustrate the procedure for a simple problem, consider the second
order linear differential equation given below, for which existence and
uniqueness criteria are assumed,

Without reduction to first order and .using central difference
approximations throughout, the approximation, at internal mesh points,
to the differential equation becomes-

y"(x) + p(x)y' + q(x)y = r(x),

y(a) = a , y(b) = p

a < x < b

2 2 1 b

2 2 1 a

1 7

pOO(y1+r y,.i)r v j+i jj-i
2h

j = 1, » N-l 2 2 2

Re-arranging terms and writing Pj for p(Xj) etc, we get:

This yields N-l equations for the N-l internal mesh points xl7 , xN-1 For
this problem the values of y(x0) and y(xN) are already known, namely a and
P from the boundary conditions So, by solving the N-l equations we obtain
the required approximations to y(xj), n = 1, , N-l The equations to be
solved form a linear system m yl to y^-i which can be written in the form

where y is a vector, whose dimension is N-l, of the unknown values at
each of the internal mesh points, A is an (N-l)x(N-l) matrix with the
familiar tridiagonal structure given hereunder,

Ay=b 223

BiQ
A2 B2 C2

A N-2 % - 2 C N-2

a n -i B N -i

with

A j = (1 T PJ) ’ J = 2 ’ ’ N_1

Bj = (-2 + h2qj), j = 1, 2, , N-l

C j = (1 + I P j) ’ J = ^ 2> .N-2

and b is an (N-l)-vector of known values as follows'

1 8

bj = h2r 1 -(1 - j P ^ a

b = h2r , j = 2, , N-2
j j J

Of course, if higher order equations or higher order difference
formulae are used, the structure of the matrix will still be banded, but the
number of bands will reflect the order used The resulting linear system
can be shown to always have a unique solution [10]

2.3 Derivative Boundary Conditions

The form of the boundary conditions will affect the structure of the
linear system as described by Eq 2 2 3 If one or both boundary conditions
involve a derivative, then this, too, must be replaced by its finite difference
approximation Forward differencing may be used at x = a, and backward
differencing at x = b This will have the effect of reducing the order of
accuracy to O(h), so the more usual strategy is to use central difference
formulae at each boundary, thus retaining 0 (h2) accuracy

For a second order problem, this will introduce fictitious mesh
points xA and xN+1 By introducing two extra difference equations in the
linear system i e by allowing j to take values between 0 and N, the same
fictitious values will be introduced Elimination between these new
equations and the boundary-value equations gives N+l equations in N+l
unknowns which can then be solved

As an example consider the differential 2 2 la with boundary
conditions given as

y'(a) = a, y'(b) = p. 2.3.1

The same discretisation process as described in Section 2.2 may be used, but
the solution at x = a and x = b are now no longer known To overcome this
difficulty we may use, for the left hand side of the interval, the central
difference formula

1 9

2 3 2

which yields

y_i=yi -2hcc

and, for the right hand side of the interval the formula

2h 2 3 3

which yields

Yn + i = Y n -i + 2 h P

If j takes values from 0 N instead of 1 . N-l, we gam two extra equations,
and the system will now have dimension (N+l)x(N+l) The form of the
equation to be solved will be as for Eq 2 2 2 However, the fictitious solution
values y_! and y^+i will be introduced These can be eliminated using Eq
2 3 2 and Eq 2 3 3, and the system can be solved at all the mesh points, l e.

a = x0,x 1, ,xN = b

In both these second order examples the structure of the coefficient
matrix will be tridiagonal and its structure may be exploited to reduce the
amount of computational effort involved in its solution

This simple example illustrates the basic principle of the finite
difference method for the solution of two-point boundary-value problems.
However, several important points need to be considered in conjunction
with this simple scheme

Firstly, for problems with solutions which vary rapidly over parts of
the interval a large number of mesh points will be needed to accurately
trace the solution For some problems the number of mesh points required
may be prohibitively high and the finite difference method may fail in
these cases As an example of such a problem consider the well known
boundary layer type problems where the solution varies very rapidly near
one or both boundaries The amount of such variation may depend on a
parameter in the differential equation The solution may be well behaved
over other parts of the interval, so that a small number of points (i.e. a

20

large step size) will achieve the same accuracy This suggests that a step size
which can somehow be allowed to vary would be more efficient in this
case One strategy for varying the mesh size is discussed in the next section
(Section 2.4).

The mam algorithm of this work, although using a fixed step, can go
some way to alleviating the "large size” difficulty by including in the final
solution a small or large number of points depending on the behaviour of
the solution within a subinterval Thus boundary layer problems may be
successfully treated in parallel by the algorithm

Again the number of mesh points and hence the size of the system
of linear equations gets large as the value of h, the (constant) step length,
decreases. For high order accuracy with low order difference formulae, the
step length is necessarily small, so that the computational cost for the
solution of the linear system is high This problem can be partially
overcome by using some technique for accelerating convergence towards
the true solution, thus achieving greater accuracy without increasing the
size of the linear system. This problem is also addressed in Section 2.4.

2.4 Increasing the Order of Accuracy.

Probably the best known method used to increase the order of
accuracy is Richardson's deferred approach to the limit which operates as
follows Obtain an approximation for the true solution, y(xj), at the selected
mesh points xy n = 0 N, based on a step length h , denoted as y (X j , h) , with
accuracy 0(h2) Now use the same scheme to obtain another solution, with
step length ph, p<l If the (unknown) error is written as e(xp we may write’

y(x.,h) = y(x.) + h2e(x) + 0 (h3)

and

y(xfph) = y(Xj) + p2h2e(xj) + 0 (h3)

Eliminating e(Xj) and re-arranging gives

y (x) = y(x,ph)V (y (x ,h))+ o (h3)

0 - p 2)

where the subscript has been ommitted, for notational convenience

2 1

Thus an extra order of accuracy is gained at each mesh point without
the need to solve the large system with a higher order difference formula
In certain problems, where only even powers of h occur in the error term,
0 (h 4) can be obtained by one application of Richardson’s approach For a
discussion on this theory see [10] Many numerical schemes use p = 0 5, but
Keller [14] suggests that a more suitable value would be an arithmetic
reduction of the form

hk= (k+D'^hg

where hk represents the step size after the kth refinement
Another approach to the problem of achieving greater accuracy is the

method of deferred correction introduced by Fox [8] and outlined in [9] To
illustrate this technique, we again consider Eq 21 1 Assume an
approximate solution has been found using the central difference formula
above Making use of Stirling's interpolation formula for y(x), where x =
XQ+uh, and writing y0 for y(x0), we get,

2
, v U ~ - U 2 u -U ,_3 -3 .y(x) = y0 + ^ (8yI +8yi) + Y 5 y0 + - _ (8 y , + 5 y.)

" 7 z

3
1 ■

2(3')
4 2 5 c 3 .

u -u _4 u - 5u + 4u c5 .+ - r r - 8 y0 + (8 y , + 85y}) +4' 2(5') 24 1

where the operator 8 is the central difference operator, i e

5Yj = Yj+1/2 " y,-i/2

We may differentiate this formula by first finding the derivative at a
general point x, and then using x = x0 + uh The work is as follows.

d(y(x)) _ d(y(x)) du
dx du * dx

but since x = XQ+uh this leads to

22

= >

d(y(x))

dx

1 d(y(x))

h du

=> hy’ =
d(y(x))

du

Similar expressions for y" (and higher derivatives if necessary) can be
found. Differentiating Eq 24 1 and substituting in Eq 2 2 1(a) we get, after
some manipulation, the same finite difference equation as before i.e Eq
2 2 2, with added terms involving 83y, 84y, §5y etc If we call the sum of these
correction terms C(y), then using a difference table we may numerically
estimate the successive differences and hence C(yn) for each of the solution
values Adding this estimate to the approximate solution gives a better
approximation and the process may be continued until all the values for
C(yn) are less than some tolerance

A problem when finding the necessary higher differences arises near
the boundary and this can be overcome by extending the solution mesh to
include points external to the original mesh [14] This deferred correction
process has been found to be more effective than Richardson's approach
[23] and is included as standard in some of the modern codes for the
solution of two-pomt boundary-value problems

The problems encountered by a fixed step finite difference method
for rapidly varying solution within an interval has already been
mentioned. A solution to the inefficiencies is to devise some strategy to
allow a variable mesh size to be used

One such approach, proposed by Lentini and Pereyra, [23] is to
somehow monitor the local truncation error at each point in the solution
This they do by estimating numerically the first neglected term in the
Taylor’s series expansion, in the above scheme the term involving h2. Of
course, other terms could also be taken into account which would lead to a
better estimate of the error The first neglected term m the scheme
described by Eq 2.2 2 can be shown to involve the expression

Again having solved the difference equation on some initial mesh,
an estimate to accuracy 0 (h2) is formed, and, in an analogous manner to
the deferred correction technique, an estimate of the first neglected term is
found An attempt to equidistribute the error by increasing the number of
mesh points where the value of y"' is large is then made and the problem
is re-solved on this new mesh This process can be repeated until some
stopping condition has been reached, e g too many mesh points have been
selected, too many iterations have been performed or convergence to the
solution has been achieved

This is at least a two pass operation, but the extra work involved can
be used for other useful purposes in the algorithm. For example, if deferred
correction is to be used, the first stage of this calculation is already done, 1 e.
estimating yj" Another possibility is to use the information about the
local error estimate to gain some information about the global error
estimate [7]

Another approach to the problem of a rapidly varying solution is to
pay particular attention to the initial mesh of points on which the
differential equation is to be solved Quite an amount of work is being
done on mesh generation and adaptive mesh techniques for both partial
and ordinary differential equations but a complete treatment of such
techniques is beyond the scope of this work

2.5 Reduction of the Differential Equation to First Order

In the example discussed earlier, 1 e Eq 2 1 1, no attempt was made to
reduce the equation to first order If this approach were followed, as
outlined m Ch 1 , Eq 2.11 would become*

y i ’ = Yi

y2’ = -(p(x)y2 + q(x)y1) + r(x)

or, in matrix form*

V ■ 0 1 V ■ 0 '

.y2 .
—

-q(x) -p(x) y2.
+

r(x)

Using vector notation this can be written in general as:

24 \

y' = A(x)y + f(x)

There are several schemes for discretising the equation in this form. We
consider the "box" (or centred Euler or mid-point) scheme. In this method
the solution is sought at x-values mid-way between the selected mesh
points, x0, xl7 . , xN The usual forward difference approximation is
effectively a central difference approximation for this mid-point, and can be
shown to yield a truncation error 0(h2) The functions of x are evaluated at
the mid-point, usually written as x]+1/2, and the value of y]+1/2 is taken as the
average of yj and yJ+1. This gives the equation

iiljli. = A(x) + f(x ,)h J+- 2 J + -

On multiplication by h, this becomes

h h

V r yj = 2 A l (),j t l) + 2 A l (5,j) + h f 1 z >+- z 1 * 7 >*-

or

d ~ A ,)yJtl- d 4 A ,
J + — z J + — j + —J 2 J 2 J 2

The resulting system of linear equations is of block bidiagonal form
and, on inclusion of the boundary conditions, can be solved at all required
mesh points as before

The dimension of each block in the coefficient matrix will depend
on the dimension of the original differential equation In this example the
dimension is 2, and so they are 2x2 blocks On solving the system, the
values for each element in the vector y is found at each mesh point, so in
this case as well as the solution for y, i e ŷ we also obtain the solution for
y’, i e y2. There is potential for using this extra information when
monitoring the truncation error where the equations are obtained by
reducing the order of the differential equation as outlined in 1.1

25

t

I

The preceding section presents the ideas of the finite difference
method for the solution of linear two-point boundary-value problems with
various refinements and problems inherent in the method As yet no
mention has been made of nonlinear problems This is because the
technique involved in the solution of nonlinear problems results m the
solution of a series of linear problems All the techniques used m the linear
case can then be used at each stage of the nonlinear problem solution.
Consider again the general boundary-value problem, Eq 111 ,1 e

y’ = f(x,y), a < x < b

y(a) = a, y(b) = p

When a nonlinear differential equation is approximated by a finite
difference formula, the resulting difference equation will be nonlinear and
may be written m the form:

g(x,y) = 0 261

This corresponds to the linear equation 2 1 2 and requires some nonlinear
technique in order to find its solution The usual approach adopted is to
use Newton's method, or some variation of Newton's method, where the
order of the method matches the order of the finite difference
approximation In outline, Newton’s method involves writing a linear
approximation to the left hand side of Eq 2 61, using a Taylor's series
expansion, and solving the resulting linear system So we can write

g(x,y) = 0

=> g(x ,y) = g (x ,y °) + X-’y Ay +
3y

where y° is a vector of values "close" to the true solution, Ay is y-y°, and the
derivative term is the well known Jacobian matrix, often written as J. The
problem, then, is to solve

g(x,y°) + J(y-y°) * 0

2.6 Finite Difference and Nonlinear Problems

2 6

=> y ~ y° ■ J"Hg(x,y®))

A recursion may be set up such that a new value of y is found according to
the above formula and this new value used in the next approximation
The recursion can be stopped when the difference between successive
approximations for y is sufficiently small

One problem with this method is to find a starting vector, y°, "close"
to the true solution There are several strategies used for this, for example,
solving a simpler (linear) problem close to the actual problem and then
using this solution to start the solution to the nonlinear problem Again
continuation techniques can be used To do this a parameter, say X, is
introduced into the differential equation with the objective of simplifying
the problem for X = 0 This simple problem can then be solved and the
value of X. increased by some step, thus forming a new problem. The
solution found may be used as the approximate solution to the new
problem and the process continued until the original differential equation
is recovered for X = 1

Because of the linearisation process usually adopted for the
numerical solution of nonlinear boundary-value problems, the search in
this work for an efficient parallel algorithm concentrates in the first
instance, on linear problems The intention would be to include this
parallel routine as the core integrator for the general class of nonlinear
problems in the future

The main computational cost in the pure finite difference method is
the linear algebra routine and the potential for parallelism in the method
depends on the ability to parallelise this routine Since the mam algorithm
in this work involves using a linear algebra routine, some current work m
this area will be reviewed m Ch 3

2.7 The Finite Element Method.

Although the finite element method is not used m the main
algorithm in this work, it does not seem appropriate to ignore
consideration of this well known approach to the solution of two-point
boundary-value problems Only an outline of the finite element method
will be presented here and the potential for parallelism in this area
deserves more attention and it will remain as an area for further study.

The idea behind the finite element or projection method is to
somehow make a (linear) combination of known functions, satisfying the
boundary conditions, which represent the true solution in the given

27

interval These known functions, called basis or trial functions, are usually
simple polynomial or trigonometric functions. If we regard the true
solution as lying in some appropriate (infinite dimensional) space, the
solution obtained can be viewed as a finite dimensional approximation to
the true solution

To illustrate the basic idea, consider again Eq 2 2 1 We attempt to
approximate the solution y(x) by a linear combination of m functions, i e

m

y(x)*v(x) = c ^ ix)
1=1

where the <|>i(x) are basis functions, each of which satisfies the given
boundary conditions, and the c, are coefficients as yet unknown

We must now decide in what sense the function v(x) is to
approximate the true solution The method of collocation requires that the
approximate solution satisfies the differential equation on a set of N grid
points, not necessarily equally spaced, say Xj, j=l, N In the linear second
order example already given, i.e.

y" + p(x)y' + q(x)y = r(x), a < x < b

y(a) = a , y(b) = p,

it means that the equation can be written as

V d2 d

1=1 dx ^ J J

J = l, / N

Assuming that the basis functions are twice differentiable, this is a linear
equation in the ct and can be written simply as

Ac = b

where A is the matrix of coefficients of the c„ and b is the known vector of
the r(xp The coefficient matrix A and the right hand side b are easily
constructed once the values of x̂ are selected and so the system can be
solved

28

In the Galerkin method the approach adopted for evaluating the ct is
as follows Define a residual function w(x) for the approximate solution
v(x) as

w(x) = v"(x) + p(x)v'(x) + q(x)v(x) - r(x), a < x < b

If v(x) were the exact solution then w(x) would be identically zero Using
the definition of orthogonal functions, 1 e two functions fj and f2 are
orthogonal m an interval [a,b] if

then the residual function would be orthogonal to every function on the
interval The solution v(x) is not the true solution but approximates it
using a linear combination of the basis functions, so the Galerkin method
aims at choosing that v(x) which makes w(x) orthogonal to all the basis
functions <()1, , 0m For the example above this condition can be written as

b

a

b

J [v " (x) +p(x)v'(x) + q(x)v(x)-r(x)]<l>k (x)dx = 0
a

k = 1, m.

Writing v(x) as the linear combination, 1 e

m

v(x) = C (^(x)
1 = 1

the integral equation can be written as

X CJ M /'to + P(x)^'(x) + q(x)<t>I(x)](|)k(x)dx = fr(x)<t>k(x)dx
" J

29

This again is a linear equation in the ct of the form

Ac = f

where the elements of A are constructed by evaluating the integral on the
left hand side, and the elements of f, by evaluating the integral on the right
hand side

The evaluation of the elements is more complicated than m the
collocation method because of the integration involved Only m the case of
simple basis functions can this integration be done explicitly so that some
form of numerical integration will usually be required [19] For nonlinear
problems the same approach can be adopted and the resulting system of
equations will be nonlinear Again some iterative scheme would be used
in the solution of these equations

The preceding section outlines briefly the finite element method for
the solution of two-point boundary-value problems. As already stated, a
full treatment of the method is not relevant to this work It should be
noted, however, that since this method involves the solution of a system
of equations in some form, the use of concurrent processing techniques
will depend on the development of parallel algorithms for the solution of
such systems

2.8 The Shooting Method

When beginning the study of two-point boundary-value problems
with a view to their solution using supercomputers, the method which
seemed to exhibit inherent concurrency was the shooting method For this
reason the method was chosen as the area for greatest investigation. This
section of the work deals with the theory and practice of what is known as
the simple shooting method, with an introduction to the idea of multiple
or parallel shooting Ch 3 will examine in detail two possible approaches to
implementing multiple shooting on some form of concurrent processing
machine

For a simple way of viewing the shooting method for solving two-
point boundary-value problems, consider the 2nd order problem

y"(x) = f(x,y,y') a < x < b

y(a) = a , y(b) = p

Suppose we supply the "missing" boundary condition at one end of the
interval, say choose

30

y'(a) = a:

and ignore for the moment the given condition at x = b This converts the
problem to a new mitial-value problem and we may solve this to find the
solution at x = b We may write this as

y(b,ttl) =

where dj is included to show that the solution is dependent on the
assumed boundary condition, 1 e y'(a) = 04

In other words, we "shoot" across the interval [a,b] to find a value for
yib,^) If we repeat this process for another assumed value of y'(a), say

y'(a) = a2

we can find

y(b,a2) = p2

We may now compare our two solutions, Pj and p2, to the given condition
at x = b, 1 e y(b) = p Using interpolation we can hopefully find a better
estimate for y'(a), say a3, which will give a solution at x = b which better
matches the given condition for y(b) (see diagram)

y-axis

3 1

By repeating this process we can, m theory, find the correct value of
y'(a) as accurately as required

As an actual example consider the analytic solution to the simple
problem

y" = 6x 0 < x < 1

y(0) = 0, y(l) = 1

As a first estimate take y'(0) = 1, which, on integrating twice and
substituting the initial conditions, yields the solution

y = x3 + x

This solution gives a value for y at x =1 of y(l) = 2
If we then take y'(0) = 0 5, the solution is

y = x3 + 0 5x

which gives, at x = 1, the result y(l) = 1 5 Applying the simple interpolation
formula from Section 1.6, a better estimate for y’(0) will be

y’(0) = 0

which is, in fact, the correct value for this problem. Thus the correct
solution is obtainable using two "shots" This is not surprising, as it can be
shown that for linear second order problems the correct value can always
be found m this way

Such an approach would seem to be appropriate to solve linear or
nonlinear problems and the availability of accurate numerical methods for
the solution of mitial-value problems provides the motivation for further
investigation of the method

If the problem is of a higher order there may be several conditions
"missing" at either end of the interval [a,b] This means that the simple
interpolation formula outlined m Section 1.6 will no longer be sufficient
and the problem will have to be solved more than twice to find a better
estimate at x = a.

In order to illustrate this idea and to put the theory on a sounder
footing, it is worth investigating in more detail the continuous or analytic
shooting technique m the first instance [14]

32

The general superposition procedure for solving a linear non-
homogeneous mitial-value differential equation is*

(a) find a particular solution to the problem,
(b) solve the corresponding homogeneous problem with linearly

independent initial conditions

The required solution will then be the sum of the particular solution
and a combination of the solutions to the homogeneous problem

If this approach is pursued in solving a nth order linear boundary-
value problem, with linear boundary conditions 1 e ,

y' = Ay + f , a < x < b

Bay(a) + Bby(b) = p

we must find a particular solution to the differential equation and then
find n solutions to the corresponding homogeneous equation with n
linearly independent initial conditions The solution to the boundary
value problem can then be found from the requirement that the solution
must satisfy the given boundary conditions Mathematically, using the
usual notation, this consists of solving the n+1 mitial-value problems

yo' = Ayo +f/ yote) = y
and yv' = Ayv yv(a) = ev v = 1, , n

where y is used to represent any vector of initial conditions, and the
vectors ev are the usual unit vectors m n-dimensional space The required
solution can then be written as

n

V=1

where cv represents the coefficients in the linear combination of solutions
In simple form this becomes

y =y0 +Yc 2 8.1

3 3

where Y is an nxn matrix of the solutions yn, as mentioned earlier, called
the fundamental solution matrix and c is a vector of coefficients. Eq 2 8 1
must satisfy the given boundary conditions

Bay(a) + Bby(b) = p

so, on substitution, this leads to the system of equations

BJyo(a) + Y(a)c] + Bb[y0(b) + Y(b)c] = p

Re-arranging and substituting the boundary conditions as appropriate we
get

Qc = [Ba + BbY(b)]c = p - Bay0 - Bby0(b)

This, of course, is a linear system of equations which can be solved to find
the coefficients C\ , . , cn, and the solution y(x) can then be constructed
using these coefficients

In order for a solution to the linear system to exist, the coefficient
matrix Q must be non-singular, and indeed this is another statement of the
existence theorem for linear two-point boundary-value problems [14], [1].

Thus, by solving n+1 mitial-value problems, the original differential
equation has now been reduced to an algebraic system, which can more
easily be solved (If Q is ill-conditioned, i e nearly singular, the solution of
the linear system by numerical methods may be difficult and examples
where this occurs will be presented later)

The above is the essence of analytic shooting and the numerical
shooting method consists of following the same procedure, except that the
solutions to the mitial-value problems are found numerically. It can be
shown that if a stable, order m mitial-value method is used to solve the
mitial-value problems, then 0 (hm) accuracy can be achieved using the
shooting method[14] [10]

To carry on the general second order problem presented earlier, i e.
Eq 2 21, the shooting method solution would be found as follows

1) Re-write the equation in first order form

y i' 0 1 V o'

y2 -q(x) -p(x) ,y2
+

r(x)

34

=> y’ = Ay + f

2) Find the solution, y0, to the problem with

y(a) = y

where 7 is any vector of initial conditions

3) Find the solution y l and y2 to the mitial-value problem

y* = Ay

with

(1) y(a) = e j , and
(li) y(a) = e2

The actual solution, y, could then be written as

y = yo + CiYi + C2y 2

Introducing the boundary conditions as given m Eq 2 2 1(b) the system of
equations to be solved will be

(Ba + Bb[y1(b),y2(b)]}[c1,c2]T = k |3]T - Bay- Bby0(b)

So, the original BVP has been reduced to a linear system of equations
by solving 3 initial value problems, possibly numerically In the context of
parallel processing there is no reason why these 3 IVPs should not be
solved simultaneously

However for nonlinear problems we cannot superpose solutions so
that this theory would not seem to be available for the nonlinear case It
can be shown, [9] however, that the shooting method will work for such
problems and in order to illustrate this, we will first consider the general
second order problem

yi' = h^YvYi)

Yl = f2(x/yi/y2) a < x < b,

gm(yi(a),yi(b),y2(a),y2(b)) = 0, m = 1,2

3 5

If we choose y^a) = X and y2(a) = \i, we again have an mitial-value
problem which can be solved numerically by forward integration from x =
a to x = b, to find y1(b;X,ji) and y2(b,X,n) as before The correct values of X and h
are those values which satisfy the boundary conditions, i e. which satisfy
the equations

These two equations will be, in the general case, nonlinear and can
be solved using Newton's method This implies that initial estimates
and n0, for X and \i, are known and better estimates and m can be found
according to the equations*

where the derivatives of gl and g2 are evaluated at Xq and ^ Since g1 and g2
are functions of y^bA.ix) and y2(b,A.,n), the calculation of the partial
derivatives in the above equations will involve the evaluation of

dYi dy2
d X ô|I dX 9(i

all evaluated at x = b If we call these quantities k,l,m and n, respectively,
we can most easily evaluate them by first differentiating the differential
equation and boundary conditions with respect to X and p. as follows

gm(^ ,y 1(bA,^),y2(b,X,n)) = 0, m = 1 ,2

d (y j ’) ^ d f t

dX dX

d f t _ d ft d y 1 dy2

dX ~ ~dX dX

36

Similarly other linear differential equations, called the variational
equations, can be developed for 1', m', and n', and they are stated
hereunder

1' =
8f,2_
dy1

3f2

'3y,

3fi af,
ni = m-=r + Ilrr—

dy2

n = m-r—
8L 9L

+ n 3 ~dy2

Initial conditions for this system of equations can easily be shown to
be k(a) = 1 ,1(a) = 0, m(a) = 0 and n(a) = 1. By forward integration to x = b, the
required values of k(b,Xo,̂ o)/ etc, can be found.

The nonlinear system can now be solved to find aXq, and a ĵlq, and the
usual iterative scheme with Xj = X0 + aX0 can be set up It can be seen that
two second order mitial-value equations must be integrated to find the co­
efficients for each step of the Newton scheme For simplicity of coding,
approximations to these coefficients may be found by solving the original
equations with small changes m X and n and approximating the derivative
by a difference formula. Some of the power of the Newton scheme will,
however, be lost if this approach is adopted On the other hand, the
advantages include relieving the user of the chore of having to supply
analytic expressions for the derivatives and having to fully understand the
entire solution process

A closer examination of the treatment of nonlinear equations
reveals that this approach reduces to superposition for the linear case The
variational equations are equivalent to the equations for the fundamental
matrix of solutions in the linear method [9]. The theory, briefly outlined
above, shows that the shooting method can be applied to both linear and
nonlinear BVPs, which justifies its numerical application for each type of
problem For further discussion of this theory the reader is referred to [9]

There are many problems which need to be understood when
considering the shooting method as a means of solving two-pomt
boundary-value problems Even with relatively simple looking linear
problems numerical simple shooting may not be a realistic option. The
mam reason for this is the fact that the initial estimate for the missing
conditions at x = a, say, may be critical. In some problems, if the estimate is
not sufficiently "close", integration from a to b may fail because, while the

3 7

boundary-value problem may be well behaved, the artificially
manufactured mitial-value problem may not be, at least in the desired
range The solution may introduce a true singularity, or explode and cause
overflow on the machine before the end of the range is reached

Many solutions to this problem have been suggested including
shooting-splitting, continuation, and multiple shooting The first of these,
proposed by Firnett and Troesch [6], involves monitoring the distance
across the range a particular mitial-value technique will solve and whether
the overflow condition is positive or negative, for different initial guesses.
When upward and downward diverging solutions are found for a
particular guess at some internal point, say x^ the initial guess is refined
using simple bisection and the process continued until the solutions differ
by less than some tolerance These values are then used to start the
integration along the next interval, [xvx2] and the process continued until x
= b is reached The technique is simple to use and has been shown to work
for a range of sensitive problems

The method of continuation is a well known technique for solving
many difficult mathematical problems Basically it removes the difficulty
and attempts to solve a simpler problem. For boundary-value problems
this may mean shortening the interval [a,b] to [a,xa] and solving the
problem on the shorter interval, 1 e matching the boundary conditions at
X} rather than b The solution obtained can then be used as a starting guess
for the solution to the problem over a longer range The amount by which
the range is increased will depend on the sensitivity of the problem This
technique is "continued" until the solution has been found over the full
range It may be used with success in cases where one of the boundaries is
at

Another approach to continuation for boundary-value problems is
to eliminate difficult terms as outlined earlier by multiplication of the
differential equation by a suitable parameter The parameter is then varied
from 0 to 1, using suitable steps, and the solution at each step is used as a
starting value for the next step The amount by which the parameter is
varied, and indeed if the step should be uniform, depends on the problem
being solved and requires many considerations outside the scope of this
work.

Perhaps the most successful method for the solution of problems too
difficult for simple shooting is the multiple shooting technique The
multiple or parallel shooting technique for the solution of two-pomt
boundary-value problems was developed by Keller [13] in 1968 as a method
for overcoming the problem of "exploding" solutions Briefly it involves
dividing the interval into a number of submtervals and simultaneously
solving the boundary-value problem on each subinterval. Although the

38

technique was introduced before the advent of parallel computing power,
because of the inherent parallel nature of the algorithm it is possible that
problems requiring a major investment of computing time could be solved
more efficiently by this method in parallel using an array of processors.

In this work the multiple shooting technique forms the basis of the
algorithm for the solution of two-point boundary-value problems in a
parallel environment and the background of two approaches to the
method, their advantages and disadvantages, will be examined in Ch 3 and
an appropriate algorithm for implementation is selected in Ch 4.

2.9 Conclusion

The above sections outline the standard techniques available for the
solution of two-pomt boundary-value problems The three main methods
are included and these can be classified as finite difference, finite element
and shooting methods Each of these areas is well developed in a sequential
environment, with various subclasses within each of them Their
development into a parallel environment is ongoing and as a contribution
to that process the potential for parallelism using some form of multiple
shooting will be examined in Ch 3

39

r

Chapter 3

Multiple Shooting for Two-Point Boundary-Value Problems

40

3.1 Motivation for Multiple Shooting

The multiple shooting method for the solution of two-point
boundary-value problems, as stated earlier, owes its development to Keller
in the 1960's The motivation for his work was to alleviate the difficulties
which the "ordinary" (simple) shooting method often encounters when
the solution of Eq 1 1 1 grows rapidly in the interval [a,b]. To illustrate this
difficulty, consider the linear 2nd order problem [19]

The solution is of the form

where A and B may be found from the boundary conditions and can be
shown to be

y" - lOOy = 0,

y(0) = 1, y(l) = 0

0 < x < 1 ,

and B =

The correct value for y'(0) is then

y'(0) =
1-e

-10
-20

+ -10

If this problem is solved as an mitial-value problem, taking

y’(0) = s,

the solution will depend on the choice of value for s In fact the solution of
the mitial-value problem will depend on s as follows.

This expression is very sensitive to the choice of s, for if

y-(0) = s = -10 1

is used, the solution at x = 1 turns out to be

y(l) = -110

whereas if

y'(0) = s = -9 9

is used the solution at x = 1 is

y(l) = +110

The dependence of y'(l) on the chosen value of s is even more dramatic Of
course any errors introduced by an (approximate) numerical method will
be similarly magnified and may lead to numerical instability

This simple linear example demonstrates the care which needs to be
taken when supplying "missing" conditions to convert a boundary-value
problem to an mitial-value problem Very often the solution to the
boundary-value problem can be much more "well-behaved" than its
mitial-value counterpart In the above example the solution to the mitial-
value problem grows as a factor of e10x and, in order that this fast-growing
component be suppressed, it is necessary to obtain a very accurate estimate
of the missing initial condition This behaviour is typical of differential
equations with very large positive and/or negative eigenvalues.

Another view of this sensitivity problem can be obtained by
returning to the analytic shooting procedure of section 2.3 An examination
of the coefficient matrix Q for the above problem reveals that it is ill-
conditioned In fact Q'1 has non-zero elements from order 101 down to
order 10*11 When constructing the various approximations for the
numerical shooting method, any numerical errors which may occur will be
quickly magnified This may lead to a situation where overflow can occur
before the integration has been done over the complete interval Thus
matching of the boundary conditions cannot be achieved and the shooting
method will fail for this problem

These two views of the problem of numerical instability are
equivalent because exponentially growing solutions lead to ill-
conditionmg of the Q matrix

As a means of overcoming this problem the idea of integrating over
shorter intervals and somehow combining these to cover the full interval
seemed appealing. This is the idea behind multiple shooting The
traditional multiple shooting technique as applied to the general n-
dimensional problem with linear boundary conditions, 1 e ,

y' = f(x,y), a < x < b

Bay(a) + BbyCb) = y

is considered in the following paragraphs

3.2 Multiple Shooting - Algorithm 1

Multiple shooting [18] proceeds by dividing the interval of
integration [a,b] into N, not necessarily equal, submtervals by the points xy
called break points, such that

a = x0 <x1 <x2< < xN_a < xN = b

Let

A) = X J ‘ X H ') = 1 ' ' N

be the width of the jth submterval A change of variables, using the
transformations

x - x
t = ------ — , X . < X < X

A H J
J

y / O = y U j . j + t A)

fj(t>z) = A ^ X ^ tAj ; z)

allows us to rewrite a separate differential equation in each of the
submtervals (xJ.1,xJ) as follows:

- j J = fj(t ,yj(t)), o < t < l , j = l, . , n

This is a system of differential equations with dimension N times that of
the original system, and, given adequate boundary conditions, any of the
standard solution methods may be used when attempting to find its
solution

How sufficient boundary conditions can be included will now be
examined The original boundary conditions will transfer to the first and
last differential equation in the new system These can be rewritten as1

Now if the solution to the original differential equation is assumed to be
continuous, with continuous derivatives at the break points, we can add in
extra boundary conditions which describe this continuity, l e

This yields exactly enough conditions to guarantee a solution to the new
system of differential equations

Combining these results together, the new problem can be written in
condensed form as

Bayi(°) + BbyN(l) = y

y,+i(o) - y,d) = o] = 1, ,N-1

t , y = F (t 'Y) 0 <t < 1 ,

PY(0) + QY(1) = a

In the new problem Y, F and a are the vectors

Y = y,(t), 3 = 1, , N

F = f,(t/y,)/) = 1/ / N

a = (y,0, ,0)t

P is an (nNxnN)-matrix whose structure is-

■\
44

Ba 0
0 I 0

0

0 I

and Q is an (nNxnN)-matrix whose structure is

0 0 Bb
-I 0
0 -I

0 - 1 0

If the shooting method is to be used on this new equation the
problem will involve solving a differential equation of the form

^ - = F(t,U) 3.2.1
d t

with a number of different initial condition U(0) = s The usual system of
algebraic equations will result, which can be solved using an appropriate
method.

The parallel operation is made possible by virtue of the structure of
the nj-system of differential equations (Eq 3 21) Successive blocks of the
system are uncoupled and so may be solved simultaneously It is only
when the boundary conditions are being matched that coupling occurs, i.e
during the solution of the algebraic system

It is worth observing that if the same numerical scheme and the
same step size is used, this multiple shooting algorithm produces an error
proportional to eKA2 rather than eK for the simple shooting method, where
K is the Lipschitz constant for the original differential equation In simple
terms, since the error is proportional to the length of the interval of
integration, a reduction in interval length will reduce the error also

This suggests that the parallel method is inherently more accurate
than its sequential counterpart and gives an extra reason for pursuing this
method as a possible concurrent algorithm It is not the version of the
algorithm implemented in this work, so interested readers are referred to
[13] and [18] where the theory is treated in detail

To summarise, then, because of the availability of high performance
lmtial-value numerical code for the solution of systems such as Eq 3.2.1,

45

the possibility of subdividing the problem into as many submtervals as is
- optimal for a particular machine architecture and the improved error

conditions, this algorithm would seem to be suitable for development as a
robust code for parallel or multiple shooting However, a major
disadvantage is the problem of properly selecting the break or shooting
points The algorithm requires a prion selection and there is no
mechanism for including extra shooting points automatically, if the
problem so requires A problem with special features (e g. boundary or
interior layers), may require a large number of shooting points over parts
of the interval and very few or no shooting points where the solution is
well behaved Again it may be desirable to use different mitial-value codes
over different submtervals If this information is available to the user he
may be able to fine tune the algorithm to efficiently solve the problem but
otherwise bad mesh selection can lead to at best an inefficient solution, at
worst the failure of the algorithm to solve the problem at all

Although the method outlined m this section can usefully be
applied to a wide range of problems, a method which adaptively selects
shooting points can be regarded as necessary for some problems where a
priori knowledge of the behaviour of the solution is not available Such an
algorithm will be examined in the next section

3.3 Multiple Shooting - Algorithm 2

In [15] Keller and Nelson propose a variation of the multiple
shooting method for linear boundary-value problems with separated
boundary conditions The form of the problem which they consider is

y' = A(x)y + f(x), a < x < b 3 31(a)

Bay(a) =ba , Bby(b) = bb 3 31(b)

whose dimension is assumed to be n This, of course, is a linear two-point
boundary-value problem, with separated boundary conditions

The interval is divided into a mesh having N+l equally spaced
mesh points as usual, i e

Xj = a + jh, j = 0, , N

where h = (b-a)/N
A single step finite difference approximation is then chosen on this

mesh The particular approximation is not important, but the centered
Euler or "box" method proposed by Keller, is chosen because of its

l
46

simplicity and the error is 0 (h2) The difference equation for 3 3 1(a)
becomes

Yj+i - Y) = WA^1/2(y^i + yp / 2 + £^1/2] 3 3 2

and for 3 3 1(b)

Bayo = Pa/ BbYN = Pb

The notation AJ+1/ 2 and f,+i/2 means A(a+(j+l/2)h) and f(a+()+l/2)h)
respectively and y) is the approximation to y(Xj) thus defined

Eq 3 3 2 may be transposed to give a recursive formula as follows*

(I-hA J+i/2)y]+i = (I + hA)+1/2)yj + hf]+1/2

or

yJ+i = (I-hA)+1/2)-1(I + hAJ+1/2)y) + h(I-hA)+1/2)'1f]+1/2

333

It is assumed that h is sufficiently small so that the required inverse matrix
exists

The parallel method proposed by Keller and Nelson can be
summarised briefly as follows A subset of the original mesh points, x^ j = 0

N, is defined as shooting points and these special mesh points may be
written as Xj, where j, belong to the strictly increasmg sequence

{j, 1=1/ / s),

with Ji > 0 and js = N In effect this means that some of the N original mesh
points are selected and reclassified as

XJ1' X)2' ' XJs = XN

An attempt is now made to use Eq 3 3 3 to integrate between shooting
points m the interval The right hand side of Eq 3 3 3 depends on the
(unknown) solution value, yy at each of the mesh points However,
because the problem is linear with linear boundary conditions, the matrix
A and the vector f depend only on the (known) mesh points. The
coefficient of the y vector and the independent term can therefore be

evaluated without knowledge of the solution The approach adopted is to
build up these terms from one shooting point to the next and then to solve
a (linear) system of equations to find the approximate solution at these
points

More rigorously we may define the nxn matrices <!>, as

V 1
• = n o hA +i/l/2)-1 (I + HA +lfl 12)

where x ̂= a, 1 e j0 = 0.
Similarly we define

where y„ = 0 , andj 0

yt+, = (I-hA / 2) ‘' a + hA
j, + k + l / 2 j,+k+l/2

+ h(I-hAji+k + 1/2/2) fJi+k + 1/2

It can be easily shown that

yj = + 9 ^ 1 = , s 3.3.4
1 l-l

Eq 3 3 4 comprises a system of (n)(s) linear equations in the n(s+l)
unknowns y]Q, ., y)s The boundary conditions may be included to give the
required number of equations so that the system can be solved (It may be
noted in passing that although separated boundary conditions are assumed
it is trivial to include mixed boundary conditions without affecting the
general solution technique) The stated boundary conditions thus become

Bay,0 = Pa/ = Pb

48

There remains a linear system which must be solved to find the
approximate solution at each of the shooting points The composition of
the coefficient matrix for this linear system will be-

Ba
-4»i I

-<t>2 I

-*s I
Bb

1 e block bidiagonal The method selected for the decomposition of this
matrix may be critical It can be shown that the inverse of the matrix does
exist If, however, the matrix is divided into segm ents, there may be
segm ents w hich are singular [14] This m eans that any attempt to
parallelise the process of decomposition by subdividing the large matrix
just outlined must be carefully chosen for some problems

To summarise, the algorithm described above can be broken down
into two parts First the quantities 3», and <p1 are computed according to their
respective formulae Then the approximations to the solution at the
shooting points are found by solving the linear system These phases of the
solution can be regarded as the integration phase and the solution phase
This is the algorithm selected in this work for coding as a concurrent
method of solving two-point boundary-value problems It is therefore
appropriate, at this point, to examine the algorithm in detail to justify its
selection and to highlight its advantages over others outlined earlier

In particular, no consideration has as yet been given to adaptive
mesh selection, range of problems, concurrent processing possibilities,
equal distribution of work between processors, cost of communications or
the treatment of nonlinear problems These issues must be examined as
some of them were considered as reasons for rejecting other algorithms m
favour of this one The following sections treat these problems and prepare
the ground for the introduction of the code and an evaluation of its
performance on certain selected problems

3.4 Adaptive Mesh Selection

During the integration phase the basic objective is to compute the o k
and cpk, by means of the appropriate formulae An auxiliary task that can
also be accomplished in this phase is the dynamic selection of shooting

points, if necessary The calculation of <t>k is effectively the integration of
the system of equations over each submterval. The "size" of the product
matrix <I>k may be monitored using some matrix norm. When this norm
grows large it indicates that the solution is beginning to change rapidly
Therefore w hen the norm grows beyond som e acceptable value the
calculation may be stopped, the current values of * and <p can be stored and
a new set of calculations begun using the same starting and stopping
criteria The "acceptable value", w ill depend on the dim ension of the
original system and in his work Keller adopts a heuristic approach to the
selection of a maximum value and, indeed, to the type of norm chosen.
Speed of calculation is the criteria used for the selection of the type of
norm.

This monitoring of the norm means that a new shooting point is
introduced as is required by the behaviour of the solution In fact, each
shooting interval may be allowed to become as large as a requirement of
the form

I I Oj I I < M, 1 = 1, , s

will allow Here M is some user selected parameter and II I I is some easily
computed norm Other conditions on the norm m ight produce a more
rigorous control on the error but the experience of Keller and N elson has
shown that the extra computational effort does not justify the additional
assurances of stability (See also [16])

It should be pointed out that in the extreme case, where M is set too
low , an additional shooting point will be introduced at every mesh point,
and the algorithm becomes the ordinary finite difference method with the
solution obtained at all the original mesh points. On the other hand if no
shooting points are chosen, either by the user or by the algorithm, then the
method reduces to sim ple shooting These are the two extreme cases for
this method, so that the method may be regarded as a combination of the
traditional finite difference method and the original sim ple shooting
m ethod.

The problem of adaptively selecting break points, then, is overcome
and this was a most important consideration in selecting this method as
the basis for producing a working code This allows us to address another
problem associated with any all purpose code for the solution of two-point
boundary-value problems, the range of problems reasonably soluble by the
code As outlined in Ch 1, no code can be regarded as the definitive one for
such problems The aim should be to attack as w ide a range of problems as
possible, and the possibility of adaptively selecting the shooting points
broadens the range of problems potentially soluble by the algorithm.

50

Further discussion of the variety of problems presented to the code will be
left until Ch 5, where an analysis of its performance will be presented
Problems which require several automatically selected shooting points, as
well as those requiring none, will be examined at that stage

3.5 Concurrent Processing Possibilities

To analyse the possibilities for concurrent processing, consider firstly
the integration phase The computation involved in each subinterval is
totally independent of each other subinterval This is because the problem
being considered is linear, so that the <i> matrices and the cp vectors involve
only the independent variable This may be considered as an ideal structure
for any kind of parallel architecture N o interaction between tasks is needed
so the integration phase may be divided into as many tasks as there are
processors to do these tasks However as we shall see, because of the knock-
on effect at the solution phase this may not be the most efficient choice
overall

The solution phase involves the solution of a linear system of
equations The structure of the coefficient matrix is predictable, being block
bidiagonal H owever the parallehsation of this phase is dependent on
parallel techniques for solving such linear system s Unfortunately no
single efficient parallel algorithm has emerged in the literature which can
be regarded as the "best" method

As stated earlier, any attempt to "segment" the coefficient matrix
may cause local instability Therefore it is appropriate to consider first
methods which treat the matrix as a whole Keller suggests two possible
strategies for the mapping of the problem onto the processors He suggests
some form of alternate row and column elimination method In the first,
which he calls a domain decomposition, a given processor is assigned the
task of all computations within a particular subinterval This would allow
at m ost two processors to be involved in elimination at any one time
because of the structure of the matrix The method w ould be essentially
serial m nature

In simple terms his second method may be thought of as requiring
that processor-1 w ould be involved in the elim ination calculations
associated with the first column in each o matrix, processor-2 with the
second column m each, etc This method he calls a column decomposition.
It may be noted that this method could be em ployed m the integration
phase also W hile more efficient than the domain decom position, the
communications cost are higher and the organisation of the code is more
difficult Because of the difficulty of parallelising the solution phase while
treating the large block diagonal matrix it seem ed more appropriate to

examine the possibility of treating each block as a separate entity and
achieve some form of concurrent processing m this way

Paprzycki and Glad well [21] have proposed a particular segmentation
process which takes account of the instability problems inherent in some
decom position methods Their general approach is to divide the system
into smaller segm ents of similar structure w hich can be factorised
independently The stability is maintained by careful selection of the
segm ents and a particular com bination of elim ination and row
interchanges N o proof is offered for this approach, but for all the examples
with structurally singular segments considered by them, the decomposition
was successful

They assume that the starting number of blocks is large and the
number of processors is small, and so use only one processor to solve the
reduced system H ow ever where the number of processors is large,
recursive "tearing", as they call their approach, may be considered The
decomposition of the matrix and the back substitution phases are separated
as, for nonlinear problems, the solution may have to be found sequentially
for several right hand sides

The best theoretical speed-up over the sequential version of the
algorithm is a factor of 4 on small systems using up to 40 processors For
larger systems this reduces to a factor of 3 Because of these poor results
they conclude that their "tearing" algorithm will not be competitive for the
type of large problems which require the power of expensive parallel
architecture

Another possible approach to the problem of parallelising of the
solution phase is the technique known as cyclic reduction [20] To illustrate
the technique, consider the general tridiagonal system of M equations in M
unknowns, xy x2, , xM

a l l x l + a 12x 2 = Cj

a21x l + a22x 2 + a23x3 = c2
a32x2 + a33x3 + a34x4 = c3

a mm-lx m-l + ammx m ~ Cm

Elim inate xj from the second equation using the first equation and
eliminate x3 from the second equation using the third equation, to get a
new equation in x2 and x4 Similarly use equations 3, 4 and 5 to produce a
new equation in x2, x4 and x6 Continuing m this w ay, a new set of
equations involving only the even subscripts can be developed. These new

5 2

equations can be reduced again and the process continued until no further
reduction is possible (If, for example, M = 2P - 1, this w ill be a single
equation) The final small equation may then be solved, and the other
values found by back substitution

For the special form of block diagonal matrix which appears in the
solution phase of Keller's algorithm, cyclic reduction can be done using
blocks rather than individual coefficients This approach may be sucessfully
adopted to produce a parallel code for the pure finite difference method for
two-point boundary-value problems However, because of the instability
problems already mentioned, the cyclic reduction process must be stopped
if the norm of a particular block grows above some acceptable limit. Since
this is exactly the criteria which may lead to the inclusion of a block m the
original system, the process of cyclic reduction does not seem to represent a
general solution method for the parallelisation of the solution phase of
this algorithm

As can be seen from the last few paragraphs, the problem of
producing a concurrent code for the solution phase of the algorithm is not
trivial H owever, when considering the extension of the algorithm to
cover problems with non-separated boundary conditions, the form of the
coefficient matrix seemed to offer an simple and efficient approach to the
decomposition, with obvious concurrent possibilities In the case o f non­
separated boundary conditions the coefficient matrix for the solution phase
of the algorithm will be of the form

-<D i

-<D I

-o I
Ba Bb

or m more detail for a 4th order problem

5 3

x x x x l 0 0 0
x x x x O l O O 0
x x x x O O l 0
x x x x O O O l

0 0

x x x x l O O O
x x x x O l O O 0 0

0 x x x x O O l O
x x x x O O O l

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

x x x x
X X X X

0 0
x x x x

0 x x x x

x x x x
x x x x x x x x

x x x x

where "x" means some unknown, and usually nonzero, element
An examination of the matrix reveals that if the <& blocks m the

matrix were upper triangular, the only decomposition required w ould be
the elimination of the Ba block m the bottom left hand corner and the
decomposition of the final right hand corner block. The cost involved in
achieving this structure and the final decom position would be 0 (n 3G),
where G is the number of 4> blocks in the system If, how ever, the
decomposition were done sequentially the cost w oud be 0 (n 3G3). Thus, a
considerable saving can be made by including this technique in the
solution phase

In the spirit of attempting to perform as much calculation as possible
in the (parallel) integration phase, the o blocks in the matrix may be made
upper triangular during this phase This will reduce the cost marginally,
although the overall order remains 0 (n 3G) The upper triangular blocks
can then be stored and are available for use m the (sequential) solution
phase In large systems this reduction m work during the solution phase
may be significant and the inclusion of this simple decomposition method
can be justified.

The major difficulty with any method of decom position for these
problems is the fact that there may be singular segments m the coefficient
matrix However, because of the simplicity of the method and the fact that
a w ide range of problems require no special decomposition technique, this
enhancement has been included in the parallel implementation of Ch 4. If
a local singularity occurs during computation, the algorithm can detect this

54

and the problem may be solved using a normal decomposition This will
add to the cost of computation for some problems but, on balance, the
inclusion of the technique can be justified

The method of decomposition has implications for load balancing
between processors, which, because a fixed step was used while integrating,
was easy to achieve during this phase If a large number of shooting points
is selected in one subinterval, a large number of matrices must be stored
with consequently a large number of reductions to be done by that
processor

For a fairly general range of problems, this method significantly
reduces the am ount of work done in solving the linear system of
equations Numerical examples covering the potential problems outlined
m the previous paragraph will be presented in Ch. 5 and any improvement
in performance analysed at this point

3.6 Concurrent Processing Costs

Traditionally concurrent processing introduces overheads not
associated with sequential processing For example, m many applications,
information must be interchanged between tasks while the tasks are active
This involves communications difficulties/costs as well as synchronisation
problems As will be seen when presenting the numerical results in Ch 5,
the integration phase is the mam computational cost in this algorithm.
The tasks in this phase are com pletely independent so that problems
associated with communication and information interchange is not a
consideration during this phase

Another problem which must be confronted when using several
processors simultaneously is the effective work load distribution between
processors In other words each processor should carry out approximately
the same number of calculations Because a fixed step is used for the
discretisation of the differential equation, the number of calculations in
each subinterval is predictable For this reason it is important that break
points are selected at roughly equal intervals by the user for integration by
each processor

The introduction of the "triangularisation" process described above
during the integration phase will affect the equidistnbution of the work
load for some problems If a large number of shooting points is selected m
one interval, a large number of operations will be required to prepare the
data for storage for the later solution phase This will mean that a processor
dealing with less shooting points will be idle during part of this time
H owever, if a sequential or slightly parallel method was used for the
solution phase, this would require that almost all processors w ould be idle

5 5

during this time Even with a highly parallel linear algebra routine the
problem of subdivid ing the problem and com m unicating betw een
processors w ould introduce other overheads On balance, the simplicity of
the m ethod and the speed up possibilities warrant its addition to the
overall algorithm

The number of processors (subintervals) used, the restriction
imposed on the size of M o l l or the step size chosen does not cause any
problem to the effective parallehsation of the integration phase The tasks
are com pletely independent and any type of parallel architecture can
efficiently subdivide and process this stage of the solution By choosing to
use as few break points as the problem w ilhallow , the size of the linear
system can be kept small and the solution phase can be made more
efficient It should be noted, then, that for well behaved problems or small
problems, it may be inefficient to use a large number of processors.

This introduces the question as to w hen expensive parallel
machines should be used m general For a discussion on this see [15] which
concludes that "the basic justification for the use of computers with novel
architecture must be regarded as the solution to problems not otherwise
(reasonably) soluble, not merely faster solution of problems presently
soluble " The problems presented to this algorithm were not m this
category but the results achieved will show that there is potential for
presenting much larger problems with the prospect of similar success.

3.7 Nonlinear Problems

By their very nature, nonlinear problems are more difficult to solve
than their linear counterparts In general som e form of linearisation
procedure is carried out when solving nonlinear problems and the
solution found using some form of iterative method For example, if the
finite difference m ethod is applied directly to a nonlinear two-point
boundary-value problem of dim ension n, the result is a set of nN
nonlinear algebraic equations, where N is the number of mesh points. This
system m ay be solved using som e standard technique, for exam ple
New ton’s method, as was outlined earlier

In general, multiple shooting may be applied directly to the solution
of nonlinear two point boundary value problems, w hile maintaining the
parallel possibilities inherent in the method Indeed, multiple shooting has
traditionally been called "parallel shooting" for this very reason. Since this
variant of the method exploits the linear nature of the problem, the
parallelism w ould be lost if the algorithm of section 3.3 w ere applied
directly to a nonlinear BVP This occurs because the solution y(x]+1) at every
point x)+1 depends on the solution y(xj). This means that the matrix type

56

products required at each mesh point cannot be explicitly found so that, if
this technique is applied, each mesh point effectively becomes a break point
and the method reduces to pure finite differences

A method of allowing the algorithm of section 3.3 to be directly to
so lve nonlinear problem s is now outlined Consider applying the
follow ing linearisation technique to the general second order differential
equation

y” = f(x,y,y')

On applying the usual reduction, the equation becomes

yi' = y2 = fi(x/yi/Y2>

y i = f(x,y,y') = f ^ y i ^)

If the right hand sides are approximated by Taylor's series expansions we
get

' C / 0 0 \ . / U\ ’ ~ 1 / ~ ~ i
y , = f ^ . y ^ j) + (y - y ,) ^ + ^ > 3 7 7 - +

; 1 2

n o ft d f ft 3 f
y 2 ' = f2 (* .y i.y 2) + (y-y^ T - ^ + (y -y ,) ^ -2- +

d y 1 2 d y

where f ^ y ^) is written as fv 1 = 1, 2, m the derivative terms, and the
superscript is used to denote approximate values for y l and y2 In matrix
form this becomes

V vl

. V .
f . 2.

3 f

d y j 3 y

3 f_ 3 f

3 y j

y
i

1 1 -
a y ,

9 f .

3 y

3 f

d y . ^ y

or, more simply,

57

y’ « Jy + {f - Jy0}

where J is the Jacobian matrix This is a linear differential equation which
can be solved using an initial estimate for y°, and then continually re­
solved using the solution thus found It can be show n [5] that, under
certain fairly general conditions, the sequence of solutions to this equation
converges to the true solution Thus the linear equation technique
outlined earlier can be used as a core integrator for the more general
nonlinear problems Similarly nonlinear boundary conditions can be
linearised, if necessary

Because the solution is only available at the shooting points, some
sort of interpolation procedure is required to estimate the solution at the
other mesh points This may be to use the break point as a starting point for
an initial value problem and integrate the ODE across the shooting
interval H owever, because break points are introduced whenever the
solution varies rapidly, a low order interpolation formula can be justified
when approximating the solution at the other mesh points. N o attempt is
made m this work to extend this algorithm to cover nonlinear problems. It
remains an area for further research

3.8 Conclusion

Having introduced the theory of multiple shooting and outlined its
capabilities, the next part of the work is to attempt to implement the
selected algorithm using a code which takes advantage of the parallelism
inherent m the method Ch 4 introduces the computer language Ada, with
special em phasis on the features used by this algorithm, as w ell as
providing a detailed analysis of the procedures adopted to make the code as
efficient as possible Selected problems and the performance of the code on
these problems will be discussed in Ch 5

58

An Ada Implementation of a Parallel Boundary-Value Solver

Chapter 4

4.1 An overview of the Ada Philosophy

The history of the development of the Ada programming language
and the Ada programming environment is w ell documented in various
publications [26] [3] Briefly, the language was developed over the period
1974 to 1980 by the United States Department of Defence in response to the
proliferation of languages being used at that time It was designed by a team
lead by Jean Ichbiah from France working with H oneyw ell/H oneyw ell
Bull, with significant input from computer scientists from several other
countries

The philosophy behind its developm ent was to create a language
which maps more easily onto the problem spaces in which computer
problems lie Theoretically any programming language can solve any
computational problem but, because of the complexity of the problems on
the one hand and the modern computer architecture on the other, the
language should be a help rather than hinder the developm ent of a
solution

When searching for an im proved com puter language, several
existing languages were examined to assess their suitability for the kind of
problems now being confronted. Again the results are well documented
and, for instance, FORTRAN was considered too imperative with not
enough emphasis on data structures, while COBOL was seen to rely too
heavily on data structures The goals in the design of Ada can be
summarised as

1 Modifiability

Modifiability, without increasing the complexity of the program, is
difficult to achieve and measure Essentially it implies that some parts of
the system can be changed or replaced, w ithout altering the overall
structure The approach adopted by the Ada design team was to rely on
object oriented ideas. This means collecting objects and the operations
associated with them into m odules which can be hidden from the user
The user is offered an interface to these m odules but may be unable to
change the internal structure and operations of the m odule. This
"information hiding" approach is not a new approach and it involves
considering each object at the level most relevant at any particular time.

Each module (and interface) can be separately compiled and tested. If
the efficiency of the operations are som ehow improved or updated the
interface can be left unchanged and the "user" may still reuse the module
without change to his own program

60

As a sim ple example, consider square matrices and the w ell known
operations associated with them Ada allows these "objects” (matrices) to be
defined and the operations (addition, inverse, e tc) to be coded m a module
(package) The operations available to users of the module can be listed in
the interface (package specification) and the method used to implement
each operation is invisible to the user If a more efficient inverting routine,
say, is introduced at a later stage or other operations are to be made
available, the use of the interface need not change We have, then, the idea
of a software component, analogous to a hardware component, which may
be removed, improved and then replaced, without affecting the rest of the
machine (program)

2 Reliability

Reliability means the prevention of failure m design and operation.
To aid this process Ada allows separate compilation and testing of the
various m odules. Thus their reliability can be assured before they are
included in the overall solution

Ada also allow s for error recovery during the operation of the
program by the inclusion of user defined exceptions To continue the
example of the matrix package, all the operations m the package can be
thoroughly tested before inclusion m any program. Even so, depending on
the matrix, during inversion, division by zero may occur This need not
cause failure of the component because an exception may be included
which can take som e preventative action e g pivoting, or sim ply return
control to the user with a suitable error message

3 Understandability

Because much of the human resource invested m software projects
involves maintenance of existing software rather than the creation of new
software, the goal of understandability is of major importance The amount
of external documentation and internal comments should be kept to a
minimum For this reason Ada uses nam ing conventions, syntax and
control structures which ensure ease of reading rather than ease of writing,
because, although only written once, a program may be read many times.

4 Concurrency

W ith the developm ent of m odern supercom puters any new
language should include in its design the capabilities of concurrent
processing. Ada does this by its "task" structure w hich allow s for

61

}
subprograms which automatically run in parallel, if this hardware facility
is available The inherent problem of synchronisation and message passing
between tasks is tackled by the language so that the programmer may
design his algorithm independently of the target machine It should be
noted, at this stage, that this was the single m ost important consideration
in the selection of Ada as the programming language in this work

The above is a brief overview of the philosophy behind the Ada
programming language It is now worth considering the structure of the
language and how the above philosophy is encapsulated in the design of
the language. It is, of course, not possible, or necessary, to introduce the full
Ada language in this work, but, as required the various elements w ill be
introduced and explained

4.2 Structure of the Ada Programming Language

We may begin the exam ination of Ada by considering type
definitions and object declarations The types available are scalar (integer,
real, enumeration), composite (array, record), access, private, subtype and
derived data types While not giving a complete explanation of all possible
types it is, perhaps, worth examining some of them

Scalar types are the standard types with no structure, i.e number
types The enumeration type allow the user to define his own special types
for a particular application The Boolean type which contains two element
"true" and "false" is an enumeration type

The composite type array is a collection of the same type of elements,
while a record type is a collection of the same or different elements Access
types are used for objects w hose structure may not be static (known at
compilation time). For example, the total number of shooting points in the
m ultiple shooting algorithm of the previous chapter is not known until
run time Therefore an access type must be used to store details of these
points as they become available Access types are similar to pointers m
Pascal The above types are used as required in the following code

In Ada a class of objects must be defined as a particular type before
variables of these types can be declared Ada does not allow objects having
different types to be directly combined, 1 e it is a strongly typed language
This is to allow possible errors to be identified at compile time rather than
run time, as far as possible It also enforces the object oriented approach to
design, because each type can be regarded as a class of objects As an
example of a type used in the Ada implementation of the algorithm of Ch
3, w e may think of a square matrix as a "type" of data structure At this
stage there are no operations considered for this type.

62

Nam es, expressions and operations used by Ada follow the usual
rules for modern high level languages Names can be made up of a group
of characters, with various restrictions involving blanks, special characters,
etc It is recom mended that m eaningful names should be used when
id entify ing objects, to conform w ith the readability and ease of
maintenance criteria

There is one point worthy of note, however, and that is the ability to
overload names and operators As an example, consider the operation of
adding (1) integers, (u) complex numbers, (111) matrices In each case, the
mathematical symbol is the same and Ada allows the symbol "+" to be
overloaded to represent any mathematical operation of "addition" The
relevant "addition" operation for each type must, of course, be defined, and
the arguments on each side of the operator control which addition is
selected at run time Care should be taken when using this facility as
overuse may cause confusion

The next structure to consider is the program unit The first types to
consider are the subprograms, 1 e procedures and functions. These
subprograms contain two parts, the specification (user interface), and body
(a sequence of statements) As already stated the statements m the body of
the subprogram may be invisible to its user The modularity inherent in
the subprogram approach to designing is therefore enhanced by the idea of
information hiding The user of the subprogram need not consider the low
level implementation of the statements, and, indeed, may not be aware of
them So the subprogram can be considered as an object by its user

The general format and structure of the subprogram body mirrors
that of other high level languages Note that a mam program must be a
procedure

Further up the scale in the structure of Ada is the package This is a
collection of objects, 1 e, types, functions, procedures, etc which are
somehow logically related. Again it consists of a specification and body. In
the following code, an example of a package is the package which defines a
square matrix and all the matrix functions and procedures which apply in
this algorithm. (The overloading of the algebraic operators, (+, -, *), is
contained m this package.) Again the im plem entation details of this
package are unknown to the mam program (user) This means that, for
example, more efficient matrix routines can be introduced and tested at any
time without interfering with the mam program At this level a package
may be, thought of as an object

An important class of program unit which must also be considered
is the task It is Ada's means of concurrent processing. The Ada tasking
m odel is based on the concept of com municating processes. We can,
therefore, v iew tw o tasks as independent processes w hich operate

63

concurrently, and may communicate with each other by passing messages.
Synchronisation problems can be controlled withm the language, either
automatically or via wait statements

Because of its unique approach to concurrent processing it is perhaps
important to give a simple example of the Ada task This example is based
on the code which will be outlined later m this chapter Suppose w e wish
to integrate, using some numerical technique, over both halves of the
interval [a,b], m parallel, using two Ada tasks

We first define two tasks, called FIRSTHALF and SECOND_HALF
which will have contained in them the same routine for integrating over
any interval from some start point to some finish point The operation of
each task is identical, except for the start and finish point We therefore
define tw o parameters, which can be given values when the task is
activated In practice, when any task is activated it immediately begins
operation, suspending operation when an "entry" (parameter) is required

If another task is called before the first task is completed it begins
operation and the user has then no control over the order in which the
tasks are serviced by the machine or which one will finish first When the
"entry" statement is encountered in either task the task waits until an
appropriate parameter is sent to it before continuing Thus if tasks need to
communicate before finishing, an entry statement will cause suspension of
the task until the required information is available, perhaps from another
task This is Ada's mechanism for synchronisation withm tasks

The tasks to perform the integration will then be

* * * * * * * *

task type FIRST_HALF is
entry LOCAL_LEFT(Ll FLOAT),
entry LOCAL_RIGHT(Rl FLOAT),

end FIRST_HALF;

task type SECOND_HALF is
entry LOCAL_LEFT(L2 FLOAT),
entry LOCAL_RIGHT(R2 FLOAT),

end SECOND_HALF,

* * * * * * * *

Two task bodies can now be written which will carry out the process of
integration from LI to R1 and L2 to R2 respectively. Within the body of the
task will be an "accept" statement which mirrors the above, 1 e.

64

— types, procedures, functions etc needed by the task

begin
accept LOCAL_LEFT(Ll FLOAT) do

— Use the parameter as required by the task
end LOCAL_LEFT,
accept LOCAL_RIGHT(Rl FLOAT) do

- Use the parameter as required by the task
end LOCAL_RIGHT,
— Statements to be executed by the task

end FIRST_HALF,

* * * * * * * *

SECOND_HALF will have a similar structure In general there may,
of course, be several times when the tasks must wait to receive or to give
information (rendezvous), but our sim ple example requires only one, at
the beginning, to g ive the start and finish points for the range of
integration

The tasks are activated from a mam program very much like a
procedure In our example, if w e wish to integrate from 0 0 to 0 5 and 0 5 to
1 0 the call would be done as m the following program extract *

* * * * * * * *

begin
FIRSTJHALF LOCAL_LEFT(C) 0),
FIRST_HALF LOCAL_RIGHT(0 5),
SECOND HALF LOCAL_LEFT(() 5),
SECOND_HALF LOCAL_RIGHT(l 0),

end,

* * * * * * * *

On a parallel machine, the sequence of events for the first line of the
program segment would be

task body FIRST_HALF is

6 5

1 Activate FIRST_HALF
2 Suspend operation of the task because an "entry" statement

is required
3 Put the value 0 0 into LI
4. Begin processing the statements in FIRST_HALF

The next statem ent m the main program segm ent w ould then be
processed

Similarly for the remaining 3 lines At this stage the tasks would be
operating independently, w ith no user control W hen the tasks are
finished the information may be passed to a central memory area for co­
ordination Note that the order of the arrival of the data m the central area
is unpredictable and the algorithm must take account of this In the code
outlined later, a separate list is used for data from each task, and only when
all tasks are finished is the information used. A lso, w hen a task is
terminated the entities within it are no longer accessible to the program

In structure, then, a task is similar to a procedure but it has the
powerful message passing capability outlined above built into its design. It
is, of course, an object and as such may be included as a building block in
other structures In the subsequent code, a one dim ensional array of
identical tasks is created as a means of assigning tasks to available
processors The number of tasks in the array is obviously dependent on the
number of processors available The task structure is the means by which
Ada allows concurrent operations, which attempts to take advantage of the
new generation of supercomputers

In many operations it is critical that a system be able to recover from
error without user intervention Ada's exception handling is an attempt to
design such a feature It allows a block structured approach to error
handling If an exception occurs, i e division by zero, normal processing is
suspended and control is passed to the exception handler Control will
continue to pass through different block levels until a handler is
encountered or the operating system is reached As mentioned earlier, this
design is an attempt to increase the reliability of a software system ,
particularly one which requires minimum human intervention, e g. an
embedded system

Finally it is worth considering generic program units. This is A da’s
attempt to make its software components "re-usable" What the designer
does is to write a template for a particular sequence of actions. These
actions m ay be performed on different items, but essentially the same
operations are required As a sim ple example consider the operation of
printing numbers on screen The procedure PUT is used, but the type of the
argument (integer, float, user defined subtype, etc) will vary. It is necessary

6 6

to use the language defined template for the procedure PUT to create an
instance of the required PUT procedure

As a more important example of a generic package consider the
operation of solving a linear two-point boundary-value problem using the
multiple shooting algorithm The algorithm w ill be the same from one
problem to the next, but the matrices and functions w ill be problem
dependent The strategy employed is to write a generic program unit which
can be instantiated, w ith the relevant functions, and used to solve a
particular problem The functions are used as parameters to create an
instance of the package when required

The generic program unit can, of course, be compiled just like any
other program unit Its form is similar to an ordinary program unit,
preceded by the word "generic", after which is listed the parameters

4.3 Development of the Multiple Shooting Algorithm
- Matrix Operations

The first step m the developm ent of the the algorithm was the
creation of a package to encapsulate all the types and operations peculiar to
th is a lg o r ith m The nam e ch o sen for the p ack age w as
GENERIC_REAL_TYPES, that is to say a base level package of useful
operations on real types needed by the mam integrator package

To allow these operations to be carried out on as w ide a variety of
types as possible, the package is made generic with respect to a floating
point type, called FLOAT_TYPE Two array types, REAL_VECTOR and
REAL_MATRIX are then defined in terms of the floating type and the
required operations (procedures and functions) then follow Whenever the
package is needed the user supplies the required floating type to be used in
the calculations and the package creates the relevant array types and
operations while creating a new version of this package

The operations required are best sum m arised by using the
specification of the package

67

* * * * * * * *

with ARRAY_EXCEPTIONS, use ARRAY_EXCEPTIONS/

generic

type FLOAT_TYPE is digits <>,

package GENERIC_REAL_TYPES is

Types

type REAL_VECTOR is array(INTEGER range <>) of FLOATTYPE;
type REAL_MATRIX is array(INTEGER range <>) of FLOAT_TYPE;

Scalar Subprograms

procedure SWAP(X,Y m out FLOAT TYPE),

Vector Arithmetic Operations

function "+"(V,W REAL_VECTOR) return REALJVECTOR,

Vector Scaling Operations

function "*"(X . FLOAT_TYPE,
V REAL_VECTOR) return REAL_VECTOR,

Matrix Arithmetic Operations

function "+"(A/B REAL_MATRIX) return REAL_MATRIX,
function "*"(A,B REAL_MATRIX) return REAL_MATRIX,
function "*"(A • REAL_MATRIX/

V : REAL_VECTOR) return REALVECTOR,

Other Matrix Operations

function INVERT(A REAL_MATRIX) return REAL_MATRIX;
function NORM(A . REAL_MATRIX) return FLOAT TYPE,
function UNIT_MATRIX(N INTEGER) return REAL_TYPE;
procedure FORM_ITERATION_MATRICES

6 8

(A : in REAL_MATRIX,
H . m FLOAT_TYPE;
I_M INUS • out REAL_MATRIX,
I PLUS out REAL_MATRIX);

end GENERIC_REAL_TYPES,

The "with" and "use" clauses at the beginning make a package of
exception handlers, called ARRAY_EXCEPTIONS, available for recovering
from non fatal errors during operation of this package The specification of
this package is

package ARRAY_EXCEPTIONS is

ARRAY_INDEX_ERROR exception,
NEARLY_SINGULAR exception,

end ARRAY_EXCEPTIONS,

The specification of the package GENERIC_REAL_TYPES, then, tells
the user what objects are available (floating point, vector and matrix types)
as w ell as the operations defined for these types These operations are
im plem ented in the body of the package GENERIC_REAL_TYPES The
details of how this is done is not relevant at this level of analysis

The "+" and functions are overloaded to include addition and
m ultip lications in vo lv in g m atrices and vectors A gain, the final
FORM_ITERATION_MATRICES procedure is specific to this algorithm

This com pletes the specification of the first package which the
shooting algorithm requires In keeping with Ada's idea of "software
components", the required matrix operations are engineered into a block
and this block w ill be one of the components in the overall software
system Only matrix operations specifically required by this algorithm are
included in the package In an ideal world of well stocked libraries of such
operations, the m ost efficient of the available com ponents could be
"bought" and fashioned into this package In fact, each of these components

69

/

has been coded specifically for this algorithm but replacements may be
"bought" and included, without alteration to the main program

In order that this generic package can be used, an instance of the
package must be created, which includes the floating point type required by
the user. As an exam ple sup p ose the im plem entation defined
LONG_FLOAT type is to be used, then a package called, say,
LONG_FLOAT_REAL_TYPES m ust be instantiated This is done as
follows

with GENERIC_REAL_TYPES
package LONG_FLOAT_REAL_TYPES is new

GENERIC_REAL_TYPES(FLOAT_TYPE => LONG_FLOAT);

This is the package that is used throughout the numerical experiments of
Ch. 5

4.4 The Interface to the Shooting Method Package

Continuing the idea of modularisation and information hiding, it is
not necessary that the user should be aware of the coding involved in
carrying out the multiple shooting algorithm described m Ch 3 Instead he
is offered an interface to a package containing all the operations required to
successfully solve his particular linear boundary-value problem

Recall the form of the problem

y* = A(x)y + f(x), a < x < b

Ba(x)y(a) + BtM yib) = y

The matrix A, in linear problems, may depend on the independent
variable, x. In other words this matrix will contain functions of x as
elements, and these functions will need to be evaluated at each step of the
algorithm Similarly the vector function f may have to be evaluated for
each problem and at each step of the algorithm These functions are
problem dependent, so a package is written using general functions and the
actual functions are used to create a specific instance of the package when
required. All this is to say that the package is made "generic" with respect to

70

the problem dependent functions, and the boundary condition matrices Ba
and Bb

The special functions and procedures used by the algorithm must
also be made available to this package This is done by including them m
the generic part of the package specification Certain packages are required
by this package, in particular the im plem entation supplied package
TEXT_IO, u sed for in p u t /o u tp u t , the p r e v io u s ly d e fin ed
ARRAY_EXCEPTIONS package and a package used for calculating CPU
time, called ADA_TIMER This is a machine specific routine which calls an
existing timing routine written in FORTRAN, using the pragma facility
available in Ada. The specification then becomes •

with ARRAY_EXCEPTIONS, use ARRAY_EXCEPTIONS;
with TEXT_IO, use TEXT.IO,
with ADA_TIMER, use ADA_TIMER,

generic

type FLOAT_TYPE is digits <>,
type VECTOR_TYPE is array(INTEGER range <>) of FLOAT_TYPE;
type MATRIX_TYPE is array(INTEGER range <>,

INTEGER range <>) of FLOATTYPE;
with function "+" (V,W VECTOR_TYPE)

return VECTOR_TYPE is <>,
with function (X • FLOAT TYPE,

V • VECTOR_TYPE)
return VECTOR_TYPE is <>;

with function (A : MATRIX_TYPE,
V VECTOR_TYPE) return VECTOR_TYPE is <>;

with function (A : MATRIX_TYPE,
B • MATRIX_TYPE) return MATRIX_TYPE is <>;

with function INVERTÍA MATRIX_TYPE)
return MATRIX_TYPE is <>;

with function UNIT_MATRIX(N INTEGER)
return MATRIX_TYPE is <>,

with function NORM(A MATRIX_TYPE)
return FLOAT_TYPE is <>,

with procedure SWAP(X,Y in out FLOAT_TYPE) is <>;

with procedure FORM_ITERATION_MATRICES(
A in MATRIX_TYPE,
X m FLOAT_TYPE,
B out MATRIX_TYPE,
C out MATRIX_TYPE) is <>,

with procedure PUT(N . in INTEGER;
M in INTEGER = 0,
P . in INTEGER - 10) is <>;

with procedure PUT(X . in FLOAT_TYPE,
N m INTEGER = 0,
M in INTEGER = FLOAT_TYPE'digits;
P in INTEGER = 2) is <>,

with procedure GET(Q . out CHARACTER) is <>,

BA_MATRIX • MATRIX_TYPE,
BB_MATRIX . MATRIX_TYPE,
with function FORM_A(T FLOAT_TYPE) return MATRIX_TYPE;
with function FORM_F(T FLOAT_TYPE) return VECTOR_TYPE;

package GENERIC_INTEGRATOR is

procedure SOLVE_BVP(NO_OFJEQUATIONS in INTEGER;
LEFT_X_VALUE m FLOAT_TYPE;
RIGHT_X_VALUE m FLOAT_TYPE
NO_OF_DECIMALS • in INTEGER;
GAMMA in VECTOR_TYPE,
MAX_NORM . in FLOAT_TYPE;
NO_OF_PROCESSORS in INTEGER
SPECIAL m out BOOLEAN .= TRUE);

end GENERIC_INTEGRATOR,

The parameters required by the algorithm are as follows.

1 The number of equations or the dimension of the differential
equations,

2 The value of a and b (the value of x at each boundary);
3 The number of decimal places of accuracy required m the

solution, which controls the initial step size chosen,

72

4 The value of y , the value of the right hand side of the
boundary conditions (a constant vector);

5 The maximum size of the vector norm to be used,
6 The number of processors to be used in the solution
7 A signal to indicate whether the special method is used when

decomposing the coefficient matrix The default value, TRUE,
means that by default the special triangularisation technique
is used

Before considering the implem entation details of the procedure
SOLVE_BVP, it is appropriate at this stage to first of all consider the other
packages that the algorithm needs and the form of the driver program for a
simple second order problem

The package needs certain input, output and mathematical facilities
which, in Ada are generally supplied as generic packages/procedures Since
the floating point type LONG_FLOAT has been chosen as the base type for
all numerical experiments appropriate packages are now defined

* * * * * * * *
with MATH_LIB;

package LONG_FLOAT_MATH_LIB is
new MATH_LIB(LONG_FLOAT),

with TEXTJO,
package LONG_FLOAT_IO is

new TEXTJO FLOAT_IO(LONG_FLOAT);

* * * * * * * *

with TEXTJO,
package INTEGERIO is

new TEXTJO INTEGERJO(INTEGER),

* * * * * * * *

At this stage all the required packages are available and the driver
program for a specific problem can be outlined. Consider the second order
problem:

y" = (1 - 5 >y + t . i < t < 3

y (l) = 2, y(3) = -1

In matrix form, the differential equation becomes.

. . I 0 1

II t
y2* ^ 0 [;:M1

or, m general

y' = Ay + f

and the boundary conditions become

1 0

0 0

y^D

y2d)
+

0 0

1 0

yj(3)

y2(3)

i e Bay(a) + Bby(b) = y

So the driver program, m its simplest form it could look like.

with TEXT_IO; use TEXTJO,
with LONG_FLOAT_REAL_TYPES, use LONG_FLOAT_REAL_TYPES;

w ith LONG_FLOAT_MATH_LIB,
with INTEGER_IO,
with LONG_FLOAT_IO,
with ADA_TIMER,
with GENERIC_INTEGRATOR,

use LONG_FLOAT_MATH_LIB;
use INTEGERJO;
use LONG_FLOAT_IO;
use ADA_TIMER,

procedure SOLVER_l is

B1 . REAL_MATRIX
B 2 : REAL MATRIX

((1 0, 0 0), (0 0, 0 0)),
((0 0, 0 0), (1 0, 0 0));

7 4

function A(T LONG_FLOAT) return REAL_MATRIX,
function F(T LONG_FLOAT) return REALJVECTOR;

package LONG_FLOAT_INTEGRATOR is
new GENERIC_INTEGRATOR(

FLOATTYPE => LONG_FLOAT,
VECTOR.TYPE => REAL_VECTOR,
MATRIX_TYPE => REAL_MATRIX,
BA_MATRIX => Bl,
BB_MATRIX => B2,
FORM_A => A,
FORM_F => F),

use LONG_FLOAT_INTEGRATOR,

function A(T LONG_FLOAT) return REAL_MATRIX is
M MATRIX(1 2,1 2) = (others => (others => 0 0));

begin
M(l,2) = 1 0,
M(2,l) = 1 0 - 1 / 5 0 ,

end A;
function F(T LONG_FLOAT) return REALVECTOR is

V VECTOR(l 2) = (others => 0 0),
begin

V(2) .= T,
end F,

begin
SOLVE_BVP(NO_OF_EQUATIONS => 2,

LEFT_X_V ALUE => 1.0,
RIGHT X VALUE =>3 0,
NO_OF_DECIMALS
GAMMA
MAX NORM

=> 6,
=> (2 0,-1 0),
=>3 0,

NO OF PROCESSORS =>4
SPECIAL => TRUE)

end SOLVER_l,

The call to SOLVE_BVP passes the actual values of the
parameters used for this problem This call uses a tolerance of 10'6, with a

m axim um norm of 3 0 when forming the matrix and assum es 4
processors are available

The above section of code is a simple driver program which uses the
mam package GENERIC_INTEGRATOR to so lve the boundary-value
problem as given In the following section an outline of the steps involved
in solving the problem as well as of the integration program is presented

4.5 The Integrator Package

The package GENERIC_INTEGRATOR is the mam component of
the total software package required for the solution of a boundary-value
problem using the algorithm due to Keller and N elson which was
presented in Ch 3 This section is not intended as a complete explanation of
all the programming decisions taken during the construction of the
package. However the various building blocks required together with the
interfaces between them are presented The low level implem entation
details are not relevant at this level

The first requirement of the package is to declare the variables
required throughout the package (global variables) Recall that there are
two phases in the solution, the integration and the solution phase Both of
these phases must be carried out a sufficient number of times to achieve
the required accuracy The global variables are used to store information
which must be carried between phases and between runs Without listing
all of them, they include a variable to store the total number of shooting
points, the largest residual (difference between solution values at the same
point) in the solution Again a Boolean variable is declared which is set to
"TRUE" w hen convergence is achieved and another to d istinguish
between the first run of the algorithm, when shooting points may be added
by the algorithm, and subsequent runs which are needed for convergence.

The mam procedure which must be defined is the procedure
SOLVE_BVP, which was referred to in the previous section Within the
procedure SOLVE_BVP the main entities declared are

1 A task which is used as the integrator over a subinterval. Ada
allows for the creation of an array of such tasks, where each element of the
array integrates over a different subinterval The dimension of the array
depends on the number of processors to be used, which has been passed as
a parameter from the driver program

2. A series of access types which are used to store the values of the
^independent variable, the elements of the o matrix and (p vector at each of

7 6

the "break" or shooting points Recall that any number of these may be
selected within each subinterval by the algorithm so that the number of
values stored may be different for each of the submtervals. As already
outlined, this has implications for load balancing between processors when
developing a strategy for later integration runs The policy adopted is to
keep the submtervals of equal length thus guaranteeing an equal number
of calls to the integration step The fact that the algorithm may begin the
decom position process at this stage means that for equations with large
dim ensions and boundary layers this "storage" tim e factor could be
unpredictable However, the extra time required for storage is insignificant
when compared with the time required for the actual process of carrying
out one step of the integration

3 A procedure to write to and read from the access types, which use
record types to link the values together As an example the procedure for
writing to the list is

There will be a different list for each subinterval and the value of LIST_NO
will depend on the subinterval number

4 A procedure which divides the original interval [a,b] into equally
spaced submtervals whose size depends on the number of processors to be
used, and passes the appropriate start and finish x-values to the elements of
the array of tasks.

5. A procedure which carries out the integration from left to right
over any subinterval This has defined w ithin it a procedure called
ONE_STEP which, during the first run, is called until the right hand
boundary is reached or until the norm of the matrix 0 exceeds the limit set
by the user In subsequent runs the same break points are always used
elim inating the need for checking the norm after each step of the
integration. The reason for this is to allow the solution to be always found
at the same points so that Richardson's extrapolation procedure can be
used to accelerate convergence at these points

6 A declaration block which sets up the entities required during the
solution phase These include a (large) matrix w hose size depends on the
dim ension of the original differential equation and the total number of

procedure STORE (WHERE
F
LIST NO

in NAME_OF_LIST;
m FLOAT_TYPE;
m INTEGER)

77

shooting points used for the problem and several solution vectors which
hold the current, previous and "improved" solution values for the vector
y over all the shooting points The procedures for solving, extrapolating
and checking convergence are also defined withm this block

These procedures are called as many times as is required to secure
convergence The step size is continually halved and „ Richardson's
technique, as outlined in Ch 2, is applied until the difference between any
two solution values at the same point (the largest residual) is less than the
user defined number of digits

4.6 Conclusion

This brief outline is meant to give an overall picture of how the Ada
implementation of the algorithm of Ch 3 is constructed. A full discussion
of the avenues explored during the writing of the program is not possible.
However, an idea of the type of philosophy adopted in the early stages of its
development, and followed throughout, is now given As w ell as using
efficient programming practice, the design decisions were made having
regard to the following criteria, not necessarily m the order of importance :

1 The implementation should be highly parallel

As previously outlined, the integration phase can be carried out
completely concurrently while it also begins the solution phase in parallel
The remainder of the solution phase is carried out sequentially Reference
to the tables of results will demonstrate the success which was achieved in
this aim.

's

2 The solution should be machine independent

The choice of Ada as the programming language ensures that this is
so, and standard Ada features are used throughout The timing package is
machine dependent, but is included only as an aid to testing the efficiency
of the implem entation The synchronisation and assignm ent problems
associated with parallel implementations are also handled at the language
level There is m inim um com munication betw een tasks during their
operation so that the particular structure of the processor array is not of
critical importance There should be, how ever, a certain quantity of

, internal memory assigned to each processor

78

3 The spirit and philosophy of the Ada programming language should
be followed

Ada features em ployed include an object oriented approach,
modularity, information hiding, readability, data abstraction, tasking, access
types, arrays of various objects, record types, operator overloading, generic
packages, subprograms and exception handling

4. The class of problem solved should be as large as possible

As outlined in Ch. 1 boundary-value problems come in a variety of
forms and complexity N o algorithm can hope to solve all BVP’s efficiently
so one must aim for a subset of the wider class Ch 5 contains a selection of
the problems submitted to this code In general the code is designed for
linear boundary-value problems with linear boundary conditions, either
separated or non separated

5 The user interface should be as friendly as possible

As can be seen the driver program requires the m inim um of
programming skills The problem is converted to standard mathematical
form, coded and the generic package GENERIC_INTEGRATOR then sets
up all the types, arrays e tc , needed by the algorithm, without reference to
the user

79

Chapter 5

Numerical Experiments

c

80

5.1 Criteria for Comparison

W hen attem pting to set up numerical experim ents to test the
performance of any code, the criteria which are being tested should be
clearly stated The approach adopted is to select a variety of problems to test,
so that the range of problems that the code is capable of solving can be
identified As already stated this work concentrates on linear two-point
boundary-value problem s, w ith linear boundary conditions, either
separated or non separated Within this range an attempt is made to
examine problems with "smooth" solutions or rapidly changing solutions,
1 e. problems which require the automatic selection of extra shooting points
and problems which do not The examples used are taken from standard
text books, except where otherwise stated, and are designed to illustrate
various features of the performance of the code

Given that the code is capable of solving a reasonable selection of
problems, the next task is to examine on what basis improvements are
identified. Since the reason for developing parallel algorithms is to solve
problems not otherwise reasonably soluble, a reduction m CPU time,
without loss of accuracy, must be regarded as the most important aim in
the fo llow ing tests As the number of processors is increased, the
expectation is that the total CPU time will be reduced The approach chosen
for the analysis of the results m this chapter, then, is as follows

1 Submit a problem to existing sequential solvers
2 Submit the problem to this solver run in sequential mode, l e

using only 1 processor
3. Submit the problem to this solver using 4, 8 and 16 processors.

Improvements in terms of the CPU time taken w ould certainly be
expected between the sequential and parallel versions of this algorithm.
However, because of the difference in language used (FORTRAN as against
Ada), comparisons between existing solvers and this algorithm were less
predictable The existing codes used in the experiments were all taken from
the FORTRAN NAG library, and they may be regarded as the most efficient
of these routines Thus the first part of the experiment, although useful,
cannot be regarded as an absolute judgement of the potential of the code.
Again, by careful choice of parameters, relying on prior knowledge of the
problem, dramatic improvements can be found m the solution time for the
same problem.

The Ada code, at this first level of refinement, makes no claim to be
really efficient in sequential mode The aim at all times was to examine its

8 1

contribution to the parallel solver environm ent D espite the above
lim itations, a set of tables detailing comparative times, using existing
FORTRAN code with default parameters, is given as a part of each of the
tables in this chapter

Of m uch m ore significance is the p ossib ility o f im proved
performance which may accrue by running the parallel version of the Ada
code rather than its sequential version The problems submitted to the code
m this chapter can be regarded as "small", so that w e seek to analyse the
areas of the solution where improvement in speed is observed We may
then have some idea of the type of improvement which may be expected
for larger problems

We shall be seeking a speed up which will reflect the number of
processors used The ideal speed up for p processors would result in the
solution time being 1 /p times the solution time for the sequential version
of the code.

As an extra examination, each problem is solved initially using
Keller's algorithim with the solution phase being done using a sequential
linear solver which treats the co-efficient matrix as a full matrix The
problem is then re-solved using the technique outlined in Ch. 3, where
sections of the co-efficient matrix are decomposed m the integration phase
and the resulting co-efficient matrix requires elimination of the bottom
block, plus back substitution Significant improvements were predicted
where this method could be applied and the results verify this prediction

As a final consideration m the production of the results tables, w e
examine the type of machine on which the experiments were done N o
parallel machine or parallel Ada compiler was available, so the target
machine is a sequential machine, in fact a VAX 6230 running DEC Ada
compiler version v5 1 was used This machine is a time-sharing machine
with 3 processors This raises the question of whether, if 2 or more
processors are available at the same time, the machine may, in fact, run 2
or more Ada tasks concurrently

An experiment to test the validity of the conclusions drawn when
analysing the results was set up to verify that the machine is, in fact, a
purely sequential machine. This involved running a job which required 4
million assignments using 1, 2, 4 and 8 Ada tasks If 1 task is taken as the
reference time (100%), the time for 2 tasks to perform the same job is
represented by 100 26%, 4 tasks by 96 64% and 8 tasks by 96 90% This shows
that no significant improvement is obtained on this sequential machine by
using Ada's tasking facility It is worth noting that if an Ada procedure is
used instead of a task the time is represented by 91 2%, indicated the
overheads associated with the setting up of Ada tasks On the other hand, if
a procedure called by a mam procedure is used, the time becomes 116 28%,

8 2

indicating the even greater overheads inherent in this type of program
structure The above conclusions were also verified by direct contact with
the suppliers of the machine and compiler

5.2 General Remarks on the Numerical Experiments

In the following problems, a constant set of parameters are used
throughout. The user supplied parameters, with the values used, where
appropriate, are •

1 The order of the differential equation
2 The boundaries of the interval
3 The number of decimal places of accuracy required (m all

examples 6 decimal places of accuracy)
4 The vector of boundary values
5. The maximum norm (after some experimentation the values

3 0 for second order, 15 0 for fourth order were used)
6 The number of processors to be used (1 ,4 , 8,16).

The first table for each problem represents the results obtained using
no special decomposition technique, while the second table represents the
results using the partial decomposition technique during the integration
phase outlined in Ch. 3 Finally, the appropriate times are presented for the
solution of the problem using a finite difference code (D02RAF), and a
shooting code (D02SAF), from the FORTRAN NAG library of routines.
Once again note that default parameters are used in these routines This
may lead to failure of the shooting code for some problems. The choice of
more appropriate parameters would allow these problems to be solved by
the routine D02SAF.

The various columns m the tables represent

1 The number of processors used (P)
2 The number of shooting points selected by the algorithm.
3 The largest difference between solution values over the final

two runs of the algorithm
(For convenience, this value is labelled "Approx. Error").

4 The CPU time, m seconds, for the integration phase of the
algorithm (I)

5 The CPU time, m seconds, for the solution phase of the
algorithm (S)

6 The total time taken for the solution, run sequentially (I + S)

83

7 The actual time taken (A), if a parallel machine were available
(A = I /P + S)

8 The speed up observed (S U = Time using one processor
divided by A).

9. The efficiency using P processors (S U ./P)
10. The percentage of the actual time used in the solution phase
11. The solution time, in seconds, using NAG routine D02RAF
12. The solution time, m seconds, using NAG routine D02SAF

The tables are designed to illustrate the effectiveness of the
algorithm m a variety of ways Firstly, the speed up and efficiency are a
measure of how close a particular version of the algorithm is to the
theoretical ideal An efficiency value of 1 indicates "perfect" speed up The
calculation of the actual time can be justified by remembering that the
integration phase is purely parallel and the algorithm pays particular
attention to load balancing The only extra work which may occur in a
interval depends on the number of shooting points in that interval The
positions of any such break points are listed underneath the tables where
appropriate

The significance of the solution time as a percentage of the actual
time comes from the fact that the solution phase is a purely sequential
operation and will therefore involve all processors, except one, being idle.
This time should be kept as small as possible In the examples presented,
dramatic reductions m this time are achieved by the use of the integration
phase to begin the solution phase

5.3 Numerical Examples

Example 1

The first problem to be examined is a simple second order problem
with separated boundary conditions, previously mentioned to illustrate the
driver program of Ch. 4 It is

y" = (l-t/5)y + t, 1 < t < 3,

y(l) = 2, y(3) = -1

The problem w ould not be expected to create difficulties for any of the
codes to which it is submitted This, in fact, is the case, although a small
number of shooting points is selected by the Ada code, reflecting area of the

8 4

solution where changes are taking place Because the problem is "small"
major improvements m efficiency would not be expected by the use of a
large number of processors The results are summarised m Table la and lb

Example 2

The next problem presented to each code is a second order problem
involving non separated boundary conditions

y" + y' + y = x3 - 5, 0 < x < 3,

y(0)+y(3) = 2, y'(0) + y’(3) = 9

The reason for the inclusion of this small problem is to illustrate the ability
of the Ada code to solve boundary-value problems with different kinds of
boundary conditions Again major efficiencies w ith a large number of
processors would not be expected The results are summarised in Table 2 a
and 2b

Example 3

y" = 0 09y -1 8, 0 < x < 10,

y(0) = 100, y(10) = 20

This example is a second order problem, the interval of integration
being from x = 0 to x = 10 Because of the relatively large range of
integration, most of the work is being done in the integration phase and
therefore in parallel Because of this, the efficiency of the Ada code would
be expected to show a major improvement, and this indeed is reflected in
the results as presented in Table 3a and 3b Efficiencies m excess of 0 74 can
be achieved using 16 processors or less

Example 4

yiv = 10 sin (jcx/ 10), 0 < x < 10,

y(0) = 0, y'(0) = 0, y(10) = 0, y"(10) = 0

85

This example involves the fourth order problem already mentioned,
and a high proportion of the work will occur in the integration phase To
use a large number of processors should be more efficient for this example
rather than the earlier smaller problems This example is used to test the
ability and efficiency of the Ada code on higher order problems The
results, which again reflect excellent efficiency values, are summarised m
Tables 4a and 4b

Example 5

yi' = t y *

Yi ~ ty i + ^ o s 2 (tcx) + 2 A 7t2 cos (2 tcx) , 0 < x < 1,

X = 20 0, yj(0) = 0 y^ l) = 0

This is an example of a "difficult" problem, taken from [1], reflected
by the fact that a large number of shooting points is selected by the
algorithm This, in fact, reduces the algorithm to pure finite difference
(The shooting points selected are equispaced over the interval and so are
not listed) However, efficiency values above 0 50 using 16 processors or
less can be achieved Larger values of X reduce the efficiency of the code and
introduce singular blocks in the solution matrix, but this may be alleviated
som ewhat by adopting a different approach to the selection of an initial
step length Tables 5a and 5b summarise the results achieved with X = 20 0.

Example 6

ey" + xy’ = ere2 cos nx - nx sm nx, -1 < x < 1,

£ - 0 1 , y(-l) = -2, y(l) = 0

This problem, again taken from [1], is an example of a problem with
a boundary layer at the left hand side of the interval, reflected by the code's
selection of shooting points This points are listed for the one processor
case For smaller values of e similar automatic selection occurs Results for
e = 0 1 are outlined in Tables 6a and 6b For smaller values of e, som e
tuning would be desirable, especially in relation to the choice of initial step
size

8 6

5.4 Conclusions

The preceding section outlines the results achieved on a selection of
two-point boundary-value problems using a variation of the algorithm due
to [15] as outlined in Ch 3, and coded in Ch. 4 As already stated, no single
code can claim efficiency for all types of problems, so it is useful to outline
the type of problem which best suits the code

Since the main parallel section of the code is during the integration
phase, problems which require a large amount of work in this phase
achieve greatest efficiency If the problem requires a small amount of work
in the solution phase, this will increase efficiency even more Thus, a large
problem, with a large interval of integration, will allow all processors to be
busy during the purely parallel integration phase If the solution is
reasonably smooth, i e a small number of shooting points is selected by the
algorithm, this will minimise the size of the solution matrix The amount
of work in the (sequential) solution phase will be similarly minimised.

The inclusion of the "special" reduction process for blocks of the
solution matrix increases the efficiency dram atically and warrants
inclusion, even though it m ay cause the algorithm to fail for certain
problems.

Ch. 6 contains a brief summary of the work done during the research
of this thesis and an indication of the direction which future work with
this algorithm might take

87

y (l) = 2, y(3) = -1

y" = (1 - x/5)y + x, 1 < x < 3,

Table la
No of
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 3 1 95e-9 0 83 0 07 0 90 0 90 ----- ----- 1 8 0 38 0 23
4 1 1 95e-9 0 88 0 09 0 97 0 31 2 90 0 73 29 0 0 38 0 23
8 0 1 95e-9 1 03 0 30 1 33 0 43 2 09 0 26 69 8 0 38 0 23
16 0 1 95e-9 1 23 1 62 2 85 1 70 ----- ----- 95 3 0 38 0 23

* x = 1.46785, 1.96875, 2.5. ** x = 1 46875.

Table lb (S p ecia l D ecom position)
No of
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 3 1 95e-9 0 83 0 02 0 85 0 85 ----- ----- 2 4 0 38 0 23
4 1 1 93e-9 0 87 0 03 0 90 0 25 3 40 0 85 12 0 0 38 0 23
8 0 1 93e-9 1 02 0,02 1 04 0 15 5 76 0 72 13 3 0 38 0 23
16 0 1 98e-9 1 26 0 05 1 30 0 13 6 63 0 41 38 5 0 38 0 23

8 8

y(0) + y(3) = 2 , y ’(0) + y'(3) = 9 .

y" + y' + y = x3 - 5, 0 < x < 3

T ab le 2a
No. of
Processors

No. of
Shooting
Points

Approx.
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up Efficiency

Solution
Time

< ;.

D02RAF
CPU
Time

D02SAF
CPU
Time

1 0 4.75e-8 1.23 0.02 1.25 1.25 ----- ----- 1 .6 1.40 0.38
4 0 5.97e-8 1.29 0.06 1.35 0.38 3.28 0.82 15.8 1.40 0.38
8 0 5.97e-8 1.42 0.28 1.70 0.46 2.72 0.34 60.9 1.40 0.38
16 0 6 .Ole-8 1.63 1.62 3.25 1.72 ----- ----- 94.2 1.40 0.38

T able 2b (Special Decom position)
No. of
Processors

No. of
Shooting
Points

Approx.
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up Efficiency

Solution
Time

D02RAF
CPU
Time

D02SAF
CPU
Time

1 0 4.75e-8 1.19 0.01 1 .20 1 .20 ----- ------ 0.8 1.40 0.38
4 0 5.97e-8 1.25 0.01 1.26 0.32 3.75 0.86 3.13 1.40 0.38
8 0 5.97e-8 1.39 0.02 1.41 0.19 6.32 0.79 10.53 1.40 0.38
16 0 6 .0 1 e-8 1.58 0.05 1.63 0.15 8.00 0.50 33.33 1.40 0.38

8 9

y (0) = 0 , y(10) = 0

y" = 0.09y - 1.8, 0 < x < 10,

Table 3a
No of
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
T ime
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 1 1 * 5 17e-10 4 00 0 79 4 79 4 79 ----- ----- 16 5 0 38 0 16
4 g * * 5 17e-10 4 05 0 79 4 84 1 80 2 66 0 66 43 9 0 38 0 16
8 g * * * 5 17e-10 4 14 1 68 5 82 2 20 2 18 0 27 76 4 0 38 0 16
16 0 5 17e-10 4 32 1 63 5 95 1 90 2 52 0 16 85 6 0 38 0 16

* x = 0.875,1 75,2.625,3 5 ,4 375,5 25,6 125,7 0 ,7 875,8 75,9 625
** x = 0 875,1.75, 3 325,4 25,5 875,6 75,8 375,9.25
*** x = 0 875,2 125, 3 375, 4 625, 5 875,7 125, 8 375,9 625

Table 3b (S pecia l Decom position)
No of
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 1 1 5 17e-10 4 02 0 03 4 05 4 05 ----- ----- 0 7 0 38 0 16
4 8 5 17e-10 4 05 0 04 4 09 1 05 3 85 0 96 3 8 0 38 0 16
8 8 5 17e-10 4 14 0 06 4 20 0 58 7 01 0 88 10 3 0 38 0 16
16 0 5 17e-10 4 33 0 07 4 40 0 34 11 91 0 74 20 6 0 38 0 16

9 0

y (0) = 0 , y '(0) = 0 , y (1 0) = 0 , y " (1 0) = 1 0 .

y iv = 10 sin (rcx/10), 0 < x < 10,

T ab le 4a
No. of
Processors

No. of
Shooting
Points

Approx.
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Timeif »

D02RAF
CPU
Time

D02SAF
CPU
Time

1 5* 2 . 1 2 e-8 11.80 0.99 12.79 12.79 ------ ----- 7.7 1 . 1 0 1.57
4 4 * * 2 .2 1 e-8 11.84 1.96 13.80 4.92 2.60 0.65 39.8 1 . 1 0 1.57
8 0 2 .2 1 e-8 12.03 1.95 13.98 3.45 3.70 0.46 56.5 1 . 1 0 1.57
16 0 2 .2 1 e-8 12.45 12.63 25.08 13.41 ----- ----- 94.2 1 . 1 0 1.57

* x = 1.96875,3.9375,5.90625,7.825,9.84375.
** x = 1.96875,4.46875, 6.96875, 9.46875.

Table 4b (Specia l Decom position)
No. of
Processors

No. of
Shooting
Points

Approx.
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 5 2 .2 1 e-8 11.78 0.06 11.84 11.84 ----- ----- 0.5 1 . 1 0 1.57
4 4 2 .2 1 e-8 11.78 0.07 11.90 3.00 3.94 0.99 2.3 1 . 1 0 1.57
8 0 2 .2 1 e-8 12.00 0.08 12.08 1.58 7.49 0.94 5.1 1 . 1 0 1.57
16 0 2 .2 1 e-8 12.42 0.20 12.62 0.98 12.13 0.76 20.4 1 . 1 0 1.57

9 1

y i ' = ^ y 2 »

y 2' = A,y i + Xcos2 (rcx) + 2/A. k2 cos (2 t c x) , 0 <’ x < 1

X = 20, y i (0) = 0, y i (l) = 0.

T ab le Sa
No of
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 31 3 17e-8 4 07 23 64 27 71 27 71 ----- ----- 82 9 0 62 -----
4 28 3 17e-8 4 29 22 97 27 26 24 04 1 15 0 29 95 6 0 62 -----
8 24 3 17e-8 4 52 23 24 27 76 23 81 1 16 0 15 97 6 0 62 -----
16 16 3 17e-8 5 31 23 32 28 63 23 65 1 17 0 07 98 6 0 62 -----

T able 5b (Specia l D ecom position)
No of
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 31 3 47e-8 4 16 0 23 4 39 4 39 ----- ----- 5 5 0 62 ------
4 28 3 47e-8 4 34 0 26 4 60 1 35 2 97 0 74 19 3 0 62 ------
8 24 3 47e-8 4 55 0 25 4 80 0 82 5 36 0 67 30 5 0 62 ------
16 16 3 47e-8 4 90 0 21 5 11 0 52 8 50 0 53 41 2 0 62 -----

92

ey" + xy' = ere2 cos (rex) - 7ix sin (rex), 0 < x < 1,

e = 0.1, y (- l) = -2, y(l) = 0.

Table 6a
No of
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 7* 1 0 1 e-8 3 87 0 49 4 36 4 36 ----- ----- 1 1 2 0 61 ___
4 6 1 0 1 e-8 3 89 0 0 77 4 66 1 74 2 51 0 63 44 3 0 61 ___
8 5 1 0 1 e-8 4 07 1 56 5 63 2 07 2 1 1 0 26 75 4 0 61 -----
16 3 1 15e-8 441 4 31 8 72 4 59 ----- ----- 93 9 0 61 -----

x = -0 .90625, -0 .8125, -0.71875, -0 625, -0 .5 , -0 34375, -0 09375

Table 6b (Special Decom position)
No of
Processors

No of
Shooting
Points

Approx
Error

Integration
Time
(secs)

Solution
Time
(secs)

Total
Time
(secs)

Actual
Time
(secs)

Speed
Up

Efficiency Solution
Time

(%)

D02RAF
CPU
Time

D02SAF
CPU
Time

1 7 1 0 1 e-8 3 96 0 03 3 99 3 99 ----- ----- 0 8 0 61 -----
4 6 1 0 1 e-8 4 12 0 06 4 18 1 09 3 7 0 92 5 5 0 61 -----
8 5 1 0 1 e-8 4 29 0 07 4 36 0 61 6 6 0 82 11 5 0 61 -----
16 3 1 15e-8 4 40 0 09 4 49 0 37 10 9 0 68 24 3 0 61 ------

93

Chapter 6

Conclusions and Further Work

s

/

9 4

6.1 Aims

The original aim of the work contained in this thesis was to examine
how the solution methods for the general class of two-point boundary-
value problems could take advantage of the current generation of parallel
processing machines. To do this, the first task was to exam ine the
traditional m ethods being used for the solution of such problems A
variety of methods are available, some for a narrow range of problems, but
only three m ethods could offer the ability to solve a w ide range of
problems, namely finite element, finite difference and shooting methods.

The first two methods mentioned involve the solution of linear or
nonlinear systems of equations and the availability of concurrent packages
for the solution of such systems will govern the efficiency or otherwise of
these m ethods As m entioned earlier, work is ongoing in this field.
H ow ever because of the nature of the shooting algorithm , more
particularly the multiple shooting method, this seemed an obvious path to
choose when considering parallel processing capabilities

The "original" m ultiple shooting method was designed to solve
problems which simple shooting failed to solve because of the nature of
the differential equation Recall the instability involved in the sim ple
shooting method when initial guesses were not close to the true missing
boundary conditions Even multiple shooting could fail for some problems
if the selected break point were too far apart Effectively simple shooting is
used within a subinterval and the same instability problems may arise
Therefore any m ultiple shooting code which can truly be called general
purpose should have the capability of automatically selecting break points
to control these instabilities With this in mind the second algorithm
outlined m Ch. 3 was selected as the most general purpose algorithm for
coding in a parallel environment

The next problem involved the selection of a suitable language for
the coding of the algorithm The language Ada seemed to offer the various
features which were required for this task In particular, the inbuilt parallel
processing capabilities were a definite attraction The fact that Ada contains
many of the best features of a modern programming language as outlined
in Ch. 4 confirmed its suitability as a vehicle for the programming work

The aim of the work, then, can be summarised as the production of a
working package for the solution of two-pomt boundary-value problems,
using a m ultiple shooting algorithm, with a high degree of concurrency
using the Ada programming language, philosophy and environment

9 5

6.2 Summary

The survey of solution m ethods for tw o-point boundary-value
problem s undertaken in Ch. 1 and Ch. 2 served as a platform for
identifying the difficulties and pitfalls involved m these solution methods
In conjunction w ith this, it was necessary to investigate parallel
architectures and parallel programming languages Having selected Ada as
the language, the type of computer model became less critical because Ada
attempts to be machine independent For this reason only a brief summary
of parallel architectures is included

An algorithm was then sought which w ould minim ise overheads
associated with different arrays of processors This lead to the selection of
the algorithm due to Keller and Nelson as communication costs during the
integration phase are trivial and the solution phase time can be reduced to
allow a sequential solver to achieve efficiencies Of course, the added
advantages of this algorithm as outlined earlier played a significant role in
its adoption for coding

Some preliminary work in the Ada language involved working as
part of a group writing matrix routines and som e work using Newton's
method for the solution of nonlinear algebraic equations. These small
projects served to provide a sound base for the coding of the larger packages
as outlined in Ch 4

The major achievem ent in the work was the construction,
im plem entation and testing of the parallel Ada code. Of particular
importance was the inclusion of the special decom position technique m
the integration phase As the tables of results indicate, this allowed for
increased efficiencies over a purely sequential method in the solution
phase. The failure of this technique for som e problems indicates that
further development is required to make the code more general purpose.
In particular, closer monitoring of the norm may be required during the
integration phase Despite this restriction, a representative subset of linear
problems was successfully solved using the revised algorithm

6.3 Conclusion

In conclusion, it seems appropriate to indicate the direction which
future research in this area might usefully be directed As indicated earlier,
closer examination of the behaviour of the norm of the matrix blocks in
the integration phase m ight increase the range of problem s soluble
efficiently by the algorithm Problems whose boundaries include ±«> would
seem possible candidates for efficient solution because of the size of the

9 6

interval of integration. Multi-point boundary-value problems might also
be approached in a similar manner

Perhaps the single most important area where more research needs
to be done is the parallel solution of nonlinear problems Generally a
sequence of linear problems must be solved when attempting to solve
nonlinear problem s There is no reason w hy this code, w ith some
adaptation, could not be used as the core integrator, thus extending its
capability into the field of nonlinear two-point boundary-value problems.
Although no code can be efficient on every problem, work in the indicated
areas could provide further additions to the range of problems which could
be efficiently solved in a parallel environment

97

R eferen ces

[1] Ascher, U M , Matheij, R M M , Russell, R D , "Numerical
solutions of boundary value problems for ordinary
differential equations", Prentice Hall, 1988.

[2] Bailey, Paul B , Shampine, Lawrence F , and Waltman Paul E.,
"Nonlinear two-pom t boundary-value problems", Academic
Press, 1968.

[3] Booch, Grady, "Software engineering with Ada", Second
Edition, Benjamin/Cummings Publishing Company Inc , 1987

[4] Daniel, James W , "A road map of methods for approximating
tw o-point boundary-value problems in ordinary differential
equations", Ed Childs, B.,Scott, M., Daniel, J.W., Denman, E ,
Nelson, P , from "Lecture notes in computer science" Ed. Goos,
G and Hartmanis, J , N o 76, Sprmger-Verlag, 1979

[5] Doolan, E P , Miller, J J H and Schilders, W H. A , "Uniform
numerical methods for problems with initial and boundary
layers", Boole Press, 1980

[6] Firnett, P J , Troesch, B. A , "Shooting-splitting method for
sensitive two-point boundary-value problems", from
"Lecture Notes in Computer Science", Ed Dold, A., Eckmann,
B., No. 362, Sprmger-Verlag, 1972

[7] Fox, L., "Some improvements in the use of relaxation methods
for the solution of ordinary and partial differential
equations", Proc. Roy Soc , No. 190, 1947

[8] Fox, L , "The numerical solution of two-pomt boundary-value
problems in ordinary differential equation", Oxford
University Press, 1957.

98

[9] Fox, L., "Numerical methods for boundary-value problems",
from "Computational techniques for ordinary differential
equations", Ed. Gladwell, I and Sayers, D. K , Academic Press,
1 9 8 0 .

[10] Henrici, Peter, "Discreet variable methods in ordinary
differential equations", W iley 1962

[11] Hwang, Kai and Briggs, Faye A , "Computer Architecture and
Parallel Processing", McGraw Hill Book Co , 1985

[12] Ince, E L., "Ordinary differential equations", Dover
Publications, Inc , 1926

[13] Keller, H. B , "Numerical methods for two-pomt boundary-
value problems", Blaisdell, 1968

[14] Keller, H B , "Numerical solutions of two-point boundary-
value problems", Society for Industrial and Applied
Mathematics, No 24, 1976

[15] Keller, H. B. and Nelson, Paul, "A hypercube implementation
of parallel shooting", Caltec 1986.

[16] Krogh, F. T., "Workshop’ selection of shooting points", Ed.
Childs, B.,Scott, M , Daniel, J W , Denman, E., Nelson, P., from
"Lecture Notes in Computer Science" Ed Goos, G and
Hartmams, J , No 76, Springer-Verlag, 1979

[17] Kubicek, Milan and Hlavacek, Vladimir, "Numerical solution
of nonlinear boundary-value problems with applications",
Prentice Hall International Series in the Physical and
Chemical Sciences, 1983

[18] Miranker, W. L., "A survey of parallelism in numerical
analysis", SIAM Rev. Vol 13, Oct 1979.

99

[19] Ortega, James M and Poole, William G Jr, "An introduction to
numerical methods for differential equations", Pitman
Publishing Inc , 1981

[20] Ortega, James M , "Introduction to parallel and vector
solutions of linear systems", Frontiers o f Computer Science,
Series Ed Rosenberg, Arnold L , 1988.

[21] Paprzycki, Marcin and Gladwell, Ian, "Solving almost block
diagonal systems on parallel computers", SMU Math Rept,
89-18, 1989

[22] Pereyra, V , "The difference correction method for non-linear
two-point boundary-problems of class M", Rev Union Mat,
Argentina, No 22, 1965

[23] Pereyra, V , "PASVA3 an adaptive finite difference Fortran
program for first order nonlinear, ordinary boundary
problems", Ed Childs, B ,Scott, M., Daniel, J W., Denman, E.,
Nelson, P , from "Lecture Notes in Computer Science" Ed. Goos,
G and Hartmams, J , No. 76, Springer-Verlag, 1979.

[24] W alsh, J , "Boundary-value problems in ordinary differential
equations", from "The state of the art in numerical analysis",
Academ ic Press, 1977.

[25] W ylie, C. Ray and Barrett, Louis C , "Advanced engineering
mathematics", 5th edition, McGraw Hill International Book
C o , 1982

[26] Young, S J , "An introduction to Ada", Elis Horwood
P u b lish e r s ,1983

10 0

