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Abstract

T h is thesis considers vortices in a superconductor and m a simple model 

and attem pts to model two vortices close together In contrast to super­

im posed vortices which have been described explicitly, we look to describe 

the separation of two vortices close together m  term s of an expansion in the 

param eters, which describe their relative location

A  simple model is used to describe two static vortices close together 

A n  expansion m the param eters describing the relative position of the two 

vortices is derived in term s of trigonom etric and exponential functions T h e  

series solutions are derived from solving the relevant partial differential equa­
tions and are studied up to third order

A  more realistic model, the G m zb u rg-Lan d au  theory of a superconductor 

m  a m agnetic field is studied A t  the point between typ e-I and typ e-II su­

perconductivity, this model has static vortex solutions, so-called Abrikosov  

vortices Startin g  w ith  two vortices on top of each other, we derive an ex­

pansion, which describes these two vortices close together T h e  expansion is 

studied up to third order

A  sim ilar pattern is found for the angular dependence in both models 

T h e  first simple model is shown to have some peculiar features only two 

vortices can be superim posed and when pulled apart a  singularity at third  

order develops In contrast, this does not happen in the G m zb u rg-Lan d au  

model, which shows sm ooth solutions up to at least third order
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1 Introduction

E v er since ’t H ooft[l] and Polyakov[2] found a monopole solution m  the 

S U ( 2) Yan g-M ills-H iggs theory, solitons m field theories have been stud­

ied extensively O ur understanding of monopole solutions has been greatly  

enhanced by an extistence proof for static solutions by Tau bes [3] and the 

construction of monopole solutions started by W ard  [4] T h e  processs was not 

m atched by quite the sam e progress m  our understanding of the Abrikosov  

solutions of the G m zb u rg-Lan d au  theory, although one m ight have expected  

th at the A b elian  Higgs theory m 2 +  1  dimensions is actu ally  sim pler than  

the S U (2) Yan g-M ills-H iggs theory in 3  +  1  dimensions A g ain  an existence 

proof was given by Taubes [5] However, only superim posed vortices can  

be described explicity and no explicit construction o f separated vortices is 

known W e w ant to give the solutions for two vortices close together m term s 

of an expansion in the param eters which describe their relative location

In C h ap ter 2 a simple model for one com plex field is discussed Its L a - 

grangian is given and the E u ler-Lagran ge equations, which minimize the 

action, are studied These second-order equations are then replaced by first 

order Bogom ol’nyi equations which saturate a topological lower bound of the 

action T h e next C h ap ter discusses vortex solutions, first for two vortices 

on top of each other, then for two vortices close together In C hap ter 4  we 

discuss a realistic model of a superconductor m a m agnetic field T h is phys­

ical situation can be described by the G m zb u rg-Lan d au  model A t  the point 

between typ e-I and typ e-II superconductivity, the m odel has static vortex  

solutions, so-called Abrikosov vortices Startin g  w ith  2  vortices on top of 

each other, we give an expansion which describes vortices close together

T h e m am  results in this thesis will be published in, J  B u rzlaff and E  

Kellegher, Jo u rn al of M ath em atical Physics
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2 A m odel for one complex field

In this chapter a  simple model for one com plex field [6 ] [7] is discussed Its 

Lagran gian  is given and the E u ler-Lagran ge equations, which minimize the 

action, are studied T hese second-order equations are then replaced by first 

order B ogom ol’nyi equations which saturate a topological lower bound of the 

action

2.1 Lagrangian and Euler-Lagrange equation
O ur first m odel is a model for a pair of real fields, 4>a{x), a,b  =  1 ,2 , or equiva­

lently, for a  com plex field 0  =  0 1 +  i(j>2 T h e Lagran gian  density of the model 

reads,

where a, b =  1 , 2  labels the com ponents of the H iggs field and i , j  =  1 , 2  are 

the space indices T h e square brackets mean antisym m etrization,

W e are working m  2-dim ensional Euclidean space, 1 e , the space indices can  

be raised and lowered w ithout any change m the form ulas T h e indices which  

label the com ponents of the Higgs field can also be raised and lowered w ithout 
any change

W e now derive the E u ler-Lagran ge equation Since we will use sim ilar ar­
gum ents throughout the thesis we go through the derivation in great detail 
First, we obtain, using the product rule,

£  =  +  u 2 (l0 |2) (2 1)

(2 2)

(2 3)
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T h e two term s on the right-hand side differ m the position of the indices 

only However, m  Euclidean space we can raise and lower indices w ithout 

any change T h is reduces equation ( 2  3) to

d(dz4>a) d(dx(j)a)

If the right side of the above equation is expanded using equation (2 2), 
we obtain

r)C f) r)

a m  =

T h e sum m ation indices m the second term  can be interchanged, and we 

can use the m dentities

-d\j<t>adt}<i>h =  d[t4>adj]<f>h =  d[j(pbdi](j)a ( 2  6 )

T h is yields

a m  =  4  (2 7)

W e now perform  the differentiation and obtain

a m  =  4  ^ a m ^ ^ ^ a m ^  )

=  4 ( a  W c i i i a s x a , * 1 ) +  a ^ w X ) )



=  4 ( +  d ^ adk^ c( M c) )

= 8  Mdj</>b) ( 2  8 )

Here 53t is the Kronecker delta (51 =  1  if  % =  j  , 51 — 0 if i ^  j  ) and 

for the last step we have used (2 6 ) again From  (2 8 ),

follows, since

=  -djdi^d^cßa&’ifo = ( 2  1 0 )

which therefore is zero W e also obtain

<9£ du  ,

dcj)a d(f)a

W e now have all the term s in the Eu ler-Lagran ge equation which is given

by



A =  f  £ ( 0 a, di(j)b)d2x  ( 2  13 )
J R 2

T h e  so lu tions of these  equa tions  are  s ta tio n a ry  p o in ts  o f th e  ac tion

Su bstitutin g (2 9) and ( 2  1 1 ) into (2 12 ) ,  yields

I
A (d4b)dJ( d ^ b&>^a) = u - ^  (2 14 )

It is often convenient to express the Lagran gian  and the E u ler-Lagran ge  

equation m  term s of the com plex field cj) = f i i+ i fo  W e have <j)\ =  [<f>+<j>*)/2, 

4>2 =  i(4>* — 4>)/2, and

= dt (<j>i +  i<h)d3(<l>i -  i<h) -  dj(cf)i +  t<h)di(<l>i -  i<fa)

= 2 i[(9 ,0 2 ) ( 5 ,0 i )  -  (d r f^ id j fc )]

= 2%d[l4>2d3]4)i (2 15 )

Now,

=  2d[l̂ d 3](f>2d^<p1d3U2

\



and the Lan gran gian  density of this model in term s of a  com plex field reads 

£  =  +  u\\<t>\2) (2 17 )

T h e E u ler-Lagran ge equation can be derived as before T h e sam e tech­

niques of renam ing, raising and lowering indices are applied to give the fol­

lowing

QC =
d(dt4>) d(dl4>)

=  - 2 ( ^ 0 *) 3 ^ 0 *  ( 2  18 )

and

=  2  ( a , r ) a , ( ( P ^ d 'U ' )  (2 1 9 )

A g ain  the other term  we get applying the product rule vanishes because 

of the sym m etry of dldJ4> and the an tisym m etry of d^%(j)&̂ (j)* T h is implies

<9^*5, ( d ^ V )  =  u ^  ( 2  2 0 )

which is the Eu ler-Lagran ge equation m term s of the com plex field <j>
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2.2 The Bogom ol’nyi equation and a lower bound on 
the action

W e w ill show now th at any solution of the equation,

dd>a
2  d e t ( ^ )  = ± u  ( 2  2 1 )

CJ Ju

solves the equations of motion (2 14 )  Note th at equation (2 2 1 )  is a  first or­

der equation whereas equation (2 14 )  is of second order So we would expect 

th at (2 2 1 )  is som ew hat easier to solve than (2 14 ) For different types of 

models, this reduction of order was first introduced by B ogom ol’nyi[8 ] T h a t  

is w h y we call equation (2 2 1 )  the Bogom ol’nyi equation here

To relate the two equations (2 14 ) and (2 2 1 ) ,  we differentiate (2 2 1 )  and 

obtain

(2 22)

Here el3 is the antisym m etric tensor given by ei 2 =  1  =  — e2 i, en =  e22 =  0 

M ultiplication w ith d%4>1 leads to

2(a,/)aJ( s t * ^ 1«  =  ie’W X V 2) ! ^  (2 23)

U sing ( 2  2 1 ) on the right-hand side, we obtain ( 2  14 )  for a =  2 A n alo ­
gously,

u du ,

=  - 2 %  (2 24)
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A n y  solution of ( 2  2 1 )  also attains the lower bound in the following in­

equality,

A =  f  C d 2x > ^ - \ Q \ ,  (2 25)
J R2 1 5

where

1 5  r
Q = —  /  ielJu(dl(i))(d:,4>*)d2x  ( 2  26)

07T JR.2

W h y  Q  is called the w inding number and is explained below after a po­

tential has been chosen

follows from (2 22) Equation (2 24) is equation (2 14) for a =  1

To show th at a solution of (2 2 1 )  attains the lower bound o f the action  

m (2 2 5 ), consider

M  = (2d[l(j)l dj](j)2 ±  elJu){2d[l(f)1d^(f)2 ±  t l]u) ( 2  27)

N ote th at M  is a sum  of nonnegative term s and therefore M  >  0 Using  
the binom ial form ula we can express M  as

M  = 2d[l(t)ad3]</)bd [l(f)ad:>](f>b ± 4 u e lJd [l(l>1dj](j>2 + 2u2

=  2C ±  4iiey c^(/>iC^</)2 (2 28)
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A lower bound for the action is now obtained

A  = [  C d2x
J R 2

=  \  f  M  d2x  ± 2  [  ue^d^-1 (f)id3̂ (f>2 d2x  
2 J R 2 J R 2

>  ± 2  [  uet1id^(/)id^(f)2 d2x  
J R 2

-  ± — o
1 5

w ith  Q given in ( 2  26) T h e last equality follows from  the form ula 

iev ( ^ ) ( ^ ^ )  =  2 etJ( ^ i ) ( ^ ^ )

If Q >  0 we take the upper sign in (2  2 7 ), if Q <  0 we take the 

sign T h is implies

. 167r .„ .
A > — \Q\

(2 29)

(2 30)

lower

(2 3 1 )

For Q  <  0, the lower bound is attained if and only if

2d[t(f)1dJ}(/)2 -  eZJu = 0 , ( 2  32)
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or

2(di<pl d2(f)2 — d2 <t>l d\(f)2) — u  (2 33)

Equation  (2 3 1 )  is the B ogom ol’nyi equation (2 2 1 )  w ith  the upper sign For 

Q  >  0 , the lower bound is attained in ( 2  3 1 )  if and only if

2<9[j01 <9J]0 2 +  etJu  =  0 (2 34)

which is equation ( 2  2 1 ) w ith  lower sign

W e now explain w hy Q m (2 26) is called a ’w inding num ber’ 0  is a 

com plex function on R 2 If  \<p\ approaches a constant, T], at infinity, then a 

w inding number can be defined in the following w ay if

0  <&»(#) =  ?? expla^  as r —>• oo
)

then

it>ooh S l ^ U (  1)  Q ^ e ia (2 35)

1 e 4>oo/ t] m aps the circle at infinity, S 1, to the unit circle in the com plex  

plane, U(  1 )  To each continuous 0 ^  we can therefore associate a winding  
number

1  % /’27r 

U = 7 ^ ° ^  ~  =  2 ^  Jo ^°°de<̂ de ( 2  3 6 )
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To relate (2 36) to (2 26), we restrict our attention to a potential of the 

form

U = ( 1 - | * | 2M  (2 37 )

N ow  the identity

^ 9 * [ 0 ( 9 J 0 * ) ( c i  -  c 2 |0|2)|0|)] =  ^ ( d V X d ^ X ^ C x  -  ^ c 2 |0|2)|0| (2 38)

which holds for any constant cx and c2, can be used For C\ =  | , c 2 =  §, 

we have

-  g l^ |2)M ]  =  £,3 ( 9 V ) W ) «  (2 39)

and therefore

Q = s 1 L  a’[ (2 4°)

For our choice of potential (2 3 7 ) , the condition of finite action implies 

|0oo| =  0 or =  1 , if  \cj)\ converges as r  —>• oo In the following, we will 
concentrate on solutions <fi w ith  l ^ l  =  1 , i e , 77 =  1  m this case Using  
G reen ’s Theorem , ( 2  40) can be w ritten

12



Q = — , /  <W ( 3 % )  b  ~  ) l * » l  ^  (2 4 1)
07T j 0 3 5

1 5  r27r 9  2

since 8q =  x lel3d3, we have

1  z'271'
0  =  2 ^  / o d e ^ d ^ ' J  (2 42)

T h is shows th at Q =  n  for our choice of potential and explains w hy Q 
in (2 26) is called a ’w inding num ber’ Equation  (2 38) shows th at the name 

’w inding num ber’ is justified for a class of potentials, in general the integrand  

m ( 2  26) cannot be w ritten as a divergence

W e have seen that instead o f solving the second order equation ( 2  14 ) ,  

we can solve the first order equation (2 3 1 )  T o  conclude this subsection  

we now show th at all finite-action solutions actu ally solve the B ogom ol’nyi 

equations, so th at we do not miss out on any by concentrating on the first 

order equations Equation  ( 2  20) above can be w ritten

pin i
d1p d 2{dl (!)d2(j)* -  d2(t>dl (j>*) +  d2(j)*d1{d2<pd14>* -  d l <t>&<!>*) =  (2 43)

or by com plex congugation as

£}n i
dx<t>d2{dl <t)*d2<i) -  d2<j)*d1<f>) +  d2<i>dl {d2^ d 14> -  d 1cf>*d2(t>) =  (2 44)

W e now m ultiply ( 2  43) by di<j>, m ultiply ( 2  44) by di<j)* and add the two 
resulting equations T h is  leads to,

d x ^ d ^ d x i d 2^ 1̂  -  d l <j)d2<t>*) +  -  d V * d 2 0) (2 45)

= ¥ >“ 2

13



dx(dl <pd2 0 * — d l (j>* d2 <j>)2 =  — d\u2

By rewriting the left-hand side we see th a t

holds M u ltiplyin g (2 4 3) by <920  and (2 44) by d20* we obtain m a com ­

pletely analogous manner,

d2(dl<t>d2<j)* -  d l cj)*d2(j))2 = - d2u2 (2 47)

Equation s ( 2  46) and (2 47) tell us that

(dl cj)d2(j)* -  d 1(p*d2(t))2 + u2 = K  (2 48)

where K  is a constant, since the left-hand side is independent of x 1 according  

to (2 46) and also independent of x 2 according to equation (2 47) For a  finite 

action solution we have (see equation (2 17 ))

u2 —> 0 and  (d 1(f)d2c/)* — d 1 (f>*d2cp)2 —>• 0 as r —> oo, (2 49)

so the constant K  must be zero Therefore

i (d1 cj)d2(j>* — d1cf)*d2(f)) =  ± u  (2 50)

holds Since 0  =  0 ! +  i(j)2 we have

i (d1 cf)d20* — d 1<fi*d2(j)) =  2 d e t ( ^ - ^ )  (2 5 1 )

and we see th at ( 2  50) is the B ogom ol’nyi equation ( 2  2 1 )

14



3 Vortex solutions

In this chapter we discuss vortex solutions, first for two vortices on top of 

each other, then for two vortices close together

3.1 Superim posed vortices
For the potential we have chosen,

« = ( 1 - M 2) I A  ( 3 1 )

we seek a sm ooth finite-action solution of the form

0  =  f ( r )e 'M (3  2)

where f ( r )  —>■ 1 as r  —>■ oo For this 0, 0oo =  &md holds, and according  

to form ula (2 36 ), (j> clearly has w inding num ber n If we go around the circle 

at infinity m anti-clockwise direction once, i e , 0 goes from  0  to 27r, then <f)̂  
winds around U( 1) n tim es, for positive n m  anti-clockw ise direction and for 

negative n m clockwise direction T h e ansatz (3 2) is the next best to a ra­

dially sym m etric ansatz Since we want 4> to have non zero w inding number, 

we cannot assume th at 0  is a function of r  only So we build m the winding  

number n m the m ost natural w ay by using em& and are left w ith  a real 

function of r  only In the next chapter we will discuss the G m zb u rg-Lan d au  
theory where we w ill use the same ansatz (3 2) for a com plex field There  

the ansatz (3 2) actu ally is radially sym m etric m 7l2 \  { 0 }  according to the 
definition of radial sym m etry m a gauge theory

W e now seek to solve the Bogom ol’nyi equation

15
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dfrdcj)2 d^dcf )2 1  i j.i2 m j.i ^oo\

101)101 (33)

In polar coordinates, where x l — rcosO, x 2 = rsmO,  we have

8 8  s in 9 8  8 8  co s#  8
c o s ^ - — 7 ^  = s m d l Z  + —  (3 4 )d x 1 dr r 8 9 ’ 8 x 2 dr r 89

Equation  (3 3) now becomes,

8  sin 0 8 8  cos 9 8
^C0S 8r ~  ~ 0 0 M ( r ) cos(n0))(s m 0 f o  +  — ^ ) ( / ( f )sm(n0) )

, d  cos 9 d d  sin 0  d .... ...
~ (sm d~r +  ~ T d 9 ){f{r)  cos(n 0))(c o s ^  -  — e o M r )  sin (nO))

=  j ( l  ~ f ) f  (3  5)

T h is can be simplified to,

^ M  =  ^ - / 2) /  (3  6 )

T h e separation of variables m equation (3 6 ) leads to

2n j  Y T p df =  j rdr

(3 7)
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tanh 1  /  =  - — h e (3 8 )
4 n

where c is a  constant of integration N ow  we want,

/  - »  0 as r —y 0, (3 9)

otherwise <fi m  (3 2) is not defined at the origin Hence, c =  0 and

Performing the integration we obtain

r 2

r 2
/  =  t a n h ( - )

(3  10)

T h e solution 0  in (3 2) w ith f(r) given by (3 10) is defined m the whole 

of R 2 and is clearly a C°° m R 2 \  { 0 }  Since

—r 2
/ «  1  — 2 e x p ——  as r —> oo (3 1 1 )

4> has the correct asym ptotic behaviour for a solution w ith  w inding num ­
ber n

W e still have to ensure th at 0  is C°° at the origin A t  the origin we use 

the T aylor expansion of / ,

r \ 3

(2fc)' i n  i n  3 i n  * 1

where B k is the k th Bernoulli number W e also express

1  2

eme =  (eiB)n =  (—  +  i — )n (3 13 )
r r

17



as a polynom ial m y  W e see th at for n  =  2 and only  for n  =  2, 0  is a 

polynom ial in æ1 In this model, we have the (som ewhat peculiar) situation  

th at w ithin the m ost natural ansatz (3 2), sm ooth finite action solutions exist 

only  for n =  2  If  we interpret n  as the number of vortices, we only have a 

solution of the form (3 2) for 2 vortices

T h e Lan gran gian  (2 1 ) ,  or the action density, for this solution is

, m term s of /  Because of equation (3 6 ) this expression can be simplified to

(3 14)

(3 15 )

If  we substitute /  from  (3 10) £  reads

(3 16 )

T h is action density is radially sym m etric about the origin W e interpret our 

solution as two vortices superim posed at the origin



3.2 Zero modes
W e have found the solution for two vortices sitting on top o f each other, 

which we called 0  To extend our study to two vortices slightly apart we 

consider 0  =  0  +  7 , where 7  is very sm all T hu s the solution we seek is of 

the form

0 1  =  f ( r )  cos 2 0  +  7 1

0 2 =  /(r)sm 26 »  +  7 2 (3  17 )

W ith  this ansatz we try  to solve the B ogom ol’nyi equation, linearized m  

7  T h a t means we are looking for 7 ’s th at do not increase the action to first 

order Such additions to the solution 0  are called zero m odes

U sing this ansatz and the expressions (3 4) in the B ogom ol’nyi equation  

(3 3) we obtain

, n d  sm 0  d  1 d cos 9 d  w . .  .

( V ~ d 0 ) ( / ( r )  + 7  X 8 m 9 f r  + — d o K f ( r ) 8m26 + i )

~(smeib + cos29+ 7l)(cos0^  ~ sin 29+ ^

=  ^ ( 1 - | 0 | 2)I0I (3 18 )

M ultiplyin g the term s out and differentiating, while leaving out higher order 
term s m 7 1 , j 2 simplifies the above equation to

19



of f '  2  d ^ 2
 b ( /  cos 0 cos 29 +  - /  sm 9 sin 29)

r r o x 1
. 2  d'y^

+ ( /  sin 0  sin 2 (9 +  - / c o s 0 c o s 2 0 ) —— 
r ox
2 d'y2

— i f '  sin 9 cos 2 9 ----- /  cos 9 sin 29) -¿—r
r o x 1

/ 2
—( /  c o s 0 s m 2 0 -----/  sm 0  cos 2 0 ) 7—r

r  o x 1

=  5 ( i - W ) W (3 19)

Since <fi is now defined by equation (3 17 )  we have,

\4>\2 =  / 2 +  2 / ( 7 1 c o s  29 +  72 sin 29) (3 20)

if the higher order term s (7 1 ) 2 and (7 2 ) 2 are ignored N ow  |0| is calcu­
lated

|0| =  / ( I  +  - { j 1 cos 2 9 +  7 2 sin 20)) 2

=  /  +  7 1 cos 20 +  7 2 s m 2 0  (3 2 1 )

T h e right hand side of equation (3 19 ) is,

| ( 1  -  I0|2)l^l =  | / ( 1  -  / 2) +  | ( 1  -  3 / 2) (7 1  c o s 20 +  7 2 s m 20) (3  22)

20



up to linear order m 7

U sing equations (3 6 ) and (3 2 2 ), equation (3 19 ) becom es

, 2  d'y2
(/  cos 0  cos 2 0  +  - /  sin 0 sm 2 0 ) —— 

r dx
. o d /y^

+ ( /  sin 0  sin 2 0 +  - / c o s 0 cos2 0 ) — - 
r  a x 1

/ 2
— (/ sm 0  cos 2 0 -----/  cos 0  sm 2 0 ) ——-

r d x 1

/ 2
— (/ cos0 sm 2 0 -----/ sm 0  cos 2 0 ) 7 —

r  cte

=  ^ ( 1  — 3 / 2) (7 1 cos 20 +  7 2 sm 20) (3 23)
Lj

W e w ill find a sm ooth solutions to this equation using the following two 

forms

7 1  =  h ( r ) , 7 2 =  0 (3 24)

or

7 1  =  0 , 7 2 =  h(r)  (3 25)

C hoosing the ansatz (3 24) equation (3 2 3) reduces to

=  ^ ( 1  -  3 / 2 (r) )h(r)  (3 26)

Seperatin g the term s we form the integral equation

l W ) dh = I  4 7 M ( 1 “ 3 / 2 ( r ) ) d r  ( 3  27)
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, » I .  ^—a r  I r  tanh -
tanh

Integrating the above we obtain

1  r r 3  r f 2
In h(r) = -   ~dr — -  r  tanh —  dr

V J 4 J tanh r4  4 J 8

2 2

=  In smh ^ —  3 In cosh +  C  (3 28)
8 8

C  is a constant which we can set equal to zero if at this point we are interested  

m  finding ju st one zero m ode Hence, we have

„ , smh v- / x
h(r)  = -------^  3  29

V '  cosh3 £  V '

For the ansatz (3 25), equation (3 23) also reduces to (3 26) w ith  h  instead  

of h Therefore, we obtain the second zero m odes

s i n h ^
^ ( r ) =  1— (3  3 0 ) cosh ~

(3  3 1 )

W e have found a 2-param eter fam ily of zero m odes, which m ay be w ritten

/ s ^ x n sm h V
7 (r) = [a + ß  + i (a  -  ß ) \ — - j f r  (3 32)

cosh

A ll these zero m odes are C°° functions which vanish exponentially at infinity 

T h e y  describe the different w ays of seperatm g two vortices in the plane T h is  

can be seen by looking at the zeros of \(f>\ which have separated and moved 

aw ay from  the origin N ote th at by replacing x  by x  4 - a we can introduce 

two more param eters which describe the displacem ent o f the center of mass
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3.3 The quadratic terms
W e consider 0  =  0  +  7 , w ith 7  given m (3 3 2 ) , as the first term s m the 

expansion about (a , ¡3) =  (0 ,0) To find the second order term s, we define

0  =  0  +  7  +  <5 (3 33)

N ow  we equate the second order term s in the B ogom oFnyi equation (3 3),

which, m polar coordinates, reads

I d ^ d f  d<f>l d<t? 1 ,,,2x1,1 /0 0 ,x

T h is leads to the equation

V  cos 2 0 §  +  2 /  a n  2 0 ^  -  f  s,n 2 6 %  +  2 /  cos 2 A
r  at/ or oO or

=  ( a 2 +  ¡32) f h 2( ~  -  3) -  ^ / ^ ( 3  +  [a 2 (cos 20 +  sin 20 ) 2

+ 2 a/?(cos2 2 0  — sm 2 2 0 ) +  /?2 (cos 2 0  — sin 2 0 )2]

+ ( 1  — 3 / 2) (5 1 cos 20 +  5 2 sin 20) (3 35)

w ith  f ( r )  given m (3 10) and h(r)  given m (3 29)

W e now w rite out 5 m the form

5 =  a 2F(r,  0) +  2aPG{r,  0) +  /32H(r,  0) (3 36)

and equate the a 2, f32 and a/3 term s in (3 3 5 ) Startin g  w ith  the a 2 terms,
we obtain the following equation for F(r,  0)

o OF2 BF2 ri F11

r ( /  cos 29~ d f  + 2 f  sm 2e~fr ~  f ' sin 29l W  + 2 f  cos 29

=  h2( j  -  3 / )  -  y ( 3 /  +  y )  (cos 20 +  s m 2 0 ) 2

+  ( 1 - 3 / 2) ( F 1 co s20  +  F 2 sin 20 ) (3 37)

To solve equation (3 36) we seek a solution of the form

F  = h ( r ) e l2e -  i f 2(r)e~l2e (3 38)
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Su bstitutin g the ansatz (3 38) into equation (3 3 7 )  leads to the equation  

* [ f ' f i  + f f i  +  2 ( / / a  -  f  f 2) sm 2(9cos 29} + (3f  — l ) ( / i  +  2 / 2 sin 26» cos 26»)

=  y ( l - 3 / 2) - ^ ( l  +  3 / 2) ( l  +  2 s m 2 0 c o s 2 0 )  (3 39)

E q u atin g the 9 - independent term s and the sm 49 term s, we obtain two de-
2

coupled equations for f i  and / 2 In term s of the variable £ =  y  they read

I + 7 (3/2 ' i “ I ) / i = S (i“ 9/2) (34o)

f +  7 ( 3 / 2 " 1  + l )/2 = “S(1 + 3/2) (341)

B oth equations (3 39) and (3 40) are of the form

| f+ p(£M0 = 9(0 (3 42)

In the case of equation 3  4 2), we have

P i t t )  =  y ( 3 / 2 - l  +  | ) = 2 t a n h 5 ,  (3 43)

/v\ /I r\ i*2 \ 9 - 8 c o s h 2 £
gi(g ) =  2 / ^ ( 1  -  9 /  ) =  W t  P « )

For equation (3 39 ), we have

K(i) =  ^ _ 1 +  | ) =  ^ g i i_i) (345)
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~ h2H , o t 2 \  cosh2 £ +  3  sm h2 £
< & (« ) =  2 ^ ( 1 +  3 / )  = ------------------------   (3 46)

Equation (3 40) has the solution

y(£) = e ~ I c P ^ ds I  q(Z)efcp(s)dsd£ (3 47)

where c is any constant for which the integral converges To determ ine / i ,  

we calculate

[  pi (s)ds  =  In cosh2 £ (3 48)
Jo

e-Sfpi(*)*> =  — 1 (3 4 9 )
cosh2 £  ̂ '

/« « ■ •£  »»>

T h is gives a fam ily of solutions to equation (3 39 ), namely,

f  _  1 , 3  smh £ sin h £ | ^  ^

1  cosh2 £ 2  cosh3 £ co sh £ 1

T h e function f x in (3 5 1 )  is a C°° function for 0 <  £ <  oo For £ —>■ 0, 

however, f i  —> C\  holds T h is implies th at C\ — 0, otherwise F  m (3 38) is 

not defined at the origin f i  reads

_  3 s m h ;  _  s m h ;
/ l - 2 cosh5 {  cosh3 i  1 1

T h e expansion of f i  near the origin is of the form

DO oo 2

A  =  =  I > ( ¥ )‘  (3  53)
fe=l k=1 °
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Hence, the first term  m (3 36) is a C°° function of x 1  and x 2 at the origin 

W e also see th at / i  vanishes exponentially at infinity So its contribution to 

0  does not change the w inding number (2  26) which is a m ultiple of the action

A  sim ilar calculation yields

[  p2{s)ds =  -  In S— ^  +  C2 (3 54)
J c  cosh t

e- / c W  =  ! E * L i e-< *  ( 3  5 5 )
cosh £

+  C .)  (3 56)

T h is determ ines f 2 which is of the form

smh£ 3 sinh3 £ < ^  smh2 g 

2 2 cosh3 £ 2 cosh5 £ 3 cosh4 £

W e again found a one param eter fam ily o f solutions In contrast to f i  
however, all the solutions f 2 are acceptable In fact, for all C 3 , f 2 is of the 

form
oo oo 2

h = E h? = E Wtt)* (3 68)
fe=l fc=l °

near the origin, and therefore the second term  in (3 37 ) is m C°°(TZ2) The  

w inding num ber and the action are also not altered because f 2 decays ex­
ponentially at infinity If we are only interested in two param ter families
describing different relative positions, we could set C 3 =  0  and work w ith

_  sin h £ 3  sinh3 £

2  cosh3 £ 2  cosh5 £  ̂ '
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To determ ine H  m (3 36 ), we equate the ¡32 term s m (3 36) T h is yields 

2- ( f  cos 2 9 ^  +  2 /  sin 2 0 ^  -  /  sin 2 0 ^

a r p  1

+ 2 /  cos 20— - )  +  (3 / 2 -  l ) ( t f 1  cos 29 +  H 2 sm  20) 
or

=  y ( l - 3 / 2) -  ^ ( l  +  3 / 2) ( c o s 2 0 - s m 2 0 ) 2 (3 60)

T h e only difference to equation (3 37 ) is the minus sign in the expression m  

the last bracket For this reason, we try  an ansatz of the sam e form  as (3 38), 

nam ely

H  =  hi(r)el2d +  zh,2 (r )e ~l2e (3  6 1)

T h e  ansatz leads to 

dh\
d £ + / ' “ -' •  1 d ? ' " ‘  “  2 / 2

f  +  7 (3 / 2 - l - | ^  =  ^ ( l  +  3 / 2 )  (3  63)

These are the same equations as the ones for f i  and / 2 except for the different 

sign on the right-hand side in the second equation So we can choose

=  j i s m h £  _  j u n h e
2  cosh £ cosh £

and
_  sm h £  3  sinh3 £ sm h2 £  

h2 ~  +  2 ^ S ? i  +  C 4 ^ i  ( 3  65)

For hi,  we have no choice, to select /i2, we could again set an arb itary  con­
stant equal to zero
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F in a lly  we equate the a(3 term s in (3 3 5 ) T h is yields

2- ( f  cos 2 0 ^  +  2 / s m 2 « ^  -  /  s in 2 ^  

8 C i
+ 2 /  cos 20—  h (3 / 2 — 1) (G1 cos 29 4- G2 sin 29)

~ ( 1  +  3 / 2) (cos2 20 — sin2 29) (3 6 6 )

T h is tim e our ansatz is

G  =  g{r)e~l2S (3 67)

For this ansatz, equation (3 6 6 ) is solved if and only if

| + 7 (3/2- 1 - | )5 = - ^ (1 + 3/2) (3 68)

holds T h is is the sam e equation as th at for f 2 (equation (3 4 1 ) )  So we have

„ _  sin h £ ^ sm h 3 ^ sm h2 £

2  cosh3 £ 2  cosh5 £ 5 cosh4 £

I f  we put all our results together and set C3 — C 4 =  C$ =  0, we obtain  

the second order term s (3 36)

S = (a2 + (32) f i ( r )e l2e +  , ( a  -  z(3)2 f 2( r ) e ' l2d (3 70)

where f i  and f 2 are given by (3 52) and (3 57) respectively
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W e consider 0  =  0  +  7  +  S, w ith  7  given m  (3  3 2 )  and 6 given m  (3  70), as 

the term s up to second order m the expansion about (a, ¡3) =  (0 ,0 ) To find 

the third order term s, we define

0  =  0  +  7  +  5 +  e, (3 7 1 )

and equate the third order term s in the B ogom ol’nyi equation (3 3), which, 

in polar coordinates, reads

I d f d c f ) 2 d 0 x d 0 2 1

a T ~  W a T *  =  2 ( 1 "  w  ) l0 1  ( 3  72)

W e w rite out e in the form

e =  a 3I{r, 9) +  a 2/3 J(r , 9) +  af32K{r,  0) +  f33L{r, 9) (3 7 3)

but w ill concentrate on the case a  ^  0, ¡3 =  0 first Since we will find th at I  
is not sm ooth, we will not carry our analysis any further

Su bstitutin g for e from equation (3 7 3 )  and looking at the a 3 term s only, 
we obtain

3.4 The cubic terms

8T2 8T2 8Tl 8T1
r [ /' C0S 2e~QQ +  2f  Sln ~  / '  Sm M-qq +  2/  C0S 2d~^r

+  h' (2 / i  cos 29 +  2 / 2  sm 29) +  h! ( 2 / i  sm  29 + 2 f 2 cos 29] =

— 3 / 2 ( / 1 cos 29 +  12 sm  29)
-  3//i(co s  29 +  sm  29) ( 2 / x -  / 2 -  2 / 2 cos 29 sm 29)
— 3(cos 29 +  sm 29)h3 + 1 1 cos 20 +  I 2 sm  29

+  7T [ / 1  (cos 29 + sm  29) -  f 2 (cos 29 +  sm  20)]

h 3 /i3
+  (c o s 2 0  + s in 2 0 ) 3 - — (c o s2 0  + s in 2 0 )

^ j

-  j  (cos 2 0  +  sm  2 0 ) ( f i  -  2 / 2  cos 2 0  sm 2 0 )

+  ~  (cos 2 0  +  sm 2 0 ) 3 ( 3  7 4 )
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w ith  / ( r )  given in (3 10 ), h{r) given m (3 29), f \[ r)  given in (3 52) and / 2 (r) 

given m (3 57)

To solve equation (3 74) we seek a solution of the form  I  = i '  +  i l 2 ,

I 1 =  9i ( 0  +  92 (£) (cos 40 -  sin 40)

/ 2 =  9i ( 0  +  02 ( 0 ( -  cos 40 -  sin 40) (3 75)

m term s of the variable £ =  y  U sing the ansatz (3 7 5) we obtain

5 (| cos 29 W + 2/ sm 2<>W  ~ I sm + 2/ cos
—  (1 —  3 / 2 ) ( / 1 c o s  20 4- / 2 sin 20 )

=  (cos 20 +  sin 2 0 )[ / ^  -  ( 1  -  3 f 2)gi] 

+ - [ ^ g 2 (c o s 2 0 (4 s m 4 0  — 4 cos 40) — s in 2 0 (—4 s m 4 0  — 4  cos 40)) 

+ 2 / ^ r ( s i n 2 0 ( — cos 40 — sin 40) + c o s 2 0 ( c o s 4 0  — sin 40))]
ClQ

— (1 — 3 / 2)<72 [co s20 (co s40  — sm 40) +  s in 2 0 (— cos 40 — sin40)]

=  (cos 2 0  +  sm 2 0 ) [ f ~  -  ( 1  -  3 / 2 )(/i]

+ ( c o s 60 -  s m 60) [ - 2 | *  +  / ^ |  -  ( 1  -  3 / 2 )g 2] (3 76)

To rewrite the other term s m (3 7 3) we use the identities

3 1
(cos 2 0  +  sm 2 0 ) 3 =  -  (cos 2 0  +  sm 2 0 )  (cos 60 — sm  60),

2i 2

(cos 2 0  +  sm 2 0 ) cos 2 0  sm 2 0  =  ^  (cos 2 0  +  sm  2 0 ) -  ^  (cos 60 -  sm 60)(3 7 7 )
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E q u atin g the (cos 2 0 + sin 20) term s and the (cos 60 — sm 60) term s, we obtain  

two decoupled equations for g% and g2 T h e y  read

dgi , , 1  , dh fx  + fo h f 2 h3 9h3 ,
J t  + (“ / +3f)s' =  -  d j —  6,1/1 +  2hh -  2P ~ 4P ~ I f  (3 78)

dg2 1  2 df _  h f 2 3 /i/ 2 h3 h3

~dt+ { ~ J  1 W 92 ~ ~ W 2 ~ ~ ~ W 3 ~ V  ( }

B o th  equations (3 78) and (3 79) are of the form

dy
■ P ( 0 v ( 0  = 9 ( 0  (3 80)

In the case of equation (3 78 ), we have

P i(£ ) =  - y  +  3 /

cosh £ sinh £

sinh £ cosh £

 ̂ _  /  2 2 / 2 4 / 3 4 /

_  2 5 9 6 sin h £ 1 5 s m h £

cosh4 £ +  cosh6 £ 2 cosh8 £ +  3 cosh5 £ 2  cosh7 £

For equation (3 79 ), we have

1  „ ,  2  d/
K ( i )  -  - j  + v - j d s

_  cosh i  +  3 s m h | _  2 ( s83 )
sm h £ cosh £ sm h £ cosh £



2 P  2 4 P  4 /

5 (3 84)
cosh £ cosh £ 2  cosh £ cosh £ 2  cosh £

T h e general solution of equation (3 80) is

y {£) = e~ fc p(s)ds I  q^ ) eI c P ^ dsd^  (3 85)

where c is any constant for which the integral converges N ote th at (3 85) is 

independent of c To determ ine <7 1 , we calculate

/■£ P
Jc P l(3)d8 = M ^ £ )  + ci (3 8 6 )

and choose c such th at C\ =  0 Then

e- / c€Pi(®)* =  i E ^ L  (3 8 7)
cosh £

and

3  , smh £ 1  9

2  cosh £ 4 cosh Ç 8  cosh £

+cC r - S > +c« <3 88>
T h is gives a  fam ily of solutions to equation (3 78), namely,

3  smh £ In tanh £ sm h £ 9 smh £

2 cosh3 £ 4 cosh5 £ 8  cosh7 £
0 1  =  —

. „  . 1  7  5  . _  sm h £

~  2 cosh4 £ +  2 cosh6 ^  +  ' ^ ¡ h ^  ( 3  89)



f t  . , sm h5 £

L ^ s ) d s = l r i ^ r ( + C i

A similar calculation yields

where we can set c2 =  0 Hence

=  (3 9 1)
cosh5 £ v '

and

f  n (£)pf* P2(s)dsrlf =  _̂___________^______l  n  ( co sh £ _  3  smh £
J 2 4 sm h 2 £ 4 cosh2 £  3 2 sm h £  2  cosh £ 7

(3 92)

F in ally  we obtain the solution

sm h £ 5 s m h 3 £ . sinh2 £ 3 s m h 4 £

4 cosh5 £ 4 cosh7 £ +  3 2 cosh4 £ 2 cosh6 £

+ C 7 ! l i ^ i  ( 3  9 3 )
cosh5 £

T o  see whether gi and g2 have the required properties we study the cubic 
term s

! l =  0 i(O  + 0 2 ( 0  (cos 46» -  sin 40)

I 2 =  0 i ( 0  + 0 2 ( £ ) ( - c o s 40 -  s m 40) (3 94)

T h e function gx given by (3 89) and g2 given by (3 93) vanish exponentially  

at infinity Hence both have an acceptable asym ptotic behaviour at infinity 
T h e leading term s at the origin, however, are

0 i =  - ^ r 2 l n r +  (3 95)
O
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T h e  asym ptotic behaviour of gx and g2 at the origin are both  not acceptable 

if we require (3 94) to be a C°° function N ote th at gx is not C°° and that 

g2 is not 0 ( r 4) as it should be to make the second term  sm ooth m both  

equations (3 75)

S2 =  ¿ r 2 +  (3 96)
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4 Abrikosov vortices

In this chapter we discuss a realistic model of a superconductor m 'a  m ag­

netic field T h is physical situation can be described by the G m zb u rg-Lan d au  

m odel A t  the point between typ e-I and typ e-II superconductivity, the model 

has static vortex solutions, so-called Abrikosov vortices Startin g  w ith  2 vor­

tices on top of each other, we give an expansion which describes vortices close 

together T h is chapter gives a detailed account of the results presented m  

R e f 9

4.1 The Ginzburg-Landau m odel
T h e G m zb u rg-Lan d au  theory of a superconductor m a m agnetic field in di­
rection 2  is given by the Lagran gian  density

C =  I 2 -  l ) 2, (4 1)

where (f> is the com plex H iggs field, and

D t<j) — dt(t> -  i A t(j>, 
FtJ = d,AJ -  d]A l

in term s of the gauge potentials A u * =  1 , 2

To find the Eu ler-Lan gran ge equations we calculate

=  - j A ( D V ) -  +  j ( U  I2 - W ,

T h is implies

a' m  =  * 5 (Z)V)‘ (42)
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and therefore

W e also have,

and therefore

A D V  =  ^ ( m 2 - 1 ) ,  (4 4)

g  =  +

=  * * *  (45)

=  ~ ^ [ 0 ( D J 0)* -  0 * D J 0] (4 6)

In the special case A =  1, we can see th at all solutions of the first-order 

B ogom ol’nyi equations [8 ]

F n  =  ± | ( 1  -  0 Ï -  0 |),

=  ^ A > 0  (4 7)

satisfy the equations of motion (4 4) and (4 6 ) In fact we have,

D tD'</> =  + i{D 1D 2(j) -  D 2D l(j))

=  =F*[(9 1 — i A 1)(d2(f> — î j4.20) — (d2 — * A 2 ) ( 9 i0  — iA\4>)\
=  + i[—idl (A24>) +  id2(Ai<f)) — iA ld24) +  * A 2 9 i 0 ]

=  T 0 ( < M 2 -  d i^ i)  =  + 0 ^ 2  =  ^ ( |  0  |2 - 1 )  (4 8 )

which implies th at equation (4 4) holds 

W e also have

— ± ( 0 l 3 201 +  02^202) (4 9)
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and

=  |[ ( 0 i  +  i(f>2)[±{d24>2 ~  A 2(f>i) ±  %{d2(f> 1 +  A 2(fi2)

— (01 — Î02)[±(0202 — A 2(fil) %(d2(fix +  A 202)]]

=  ~ [ i z 0 2 ( 0 2 0 2 -  A 2(fii) ±  Ï0 i(d 2 0 i +  A 2 0 2)

± ï0 2(0202 -  -420l) ±  l(fil{d2(fii +  A20 2)]

=  —F (02 ̂ 2 02 +  0102 01 ) (4 10)

Furtherm ore,

0 , F *2 =  9 i F 12  =  T ( 0 i0 i0 1  +  0 2 0 10 2 ), (4 1 1 )

and

-  4>'d V ]

— 2 ^ 1 z<̂ 2)[:F(0102 ~  ^.10i) -F i(0 V i +  A 1 (fi2)

- ( 0 1  -  Z02 ) [ t ( 0 X02 -  ^ V l ) ]  ±  *(0 X0 1 +  A l (fi2)}}

=  ^[:F«02(0102 -  ^410l) T  î0 l(0 V l +  ^ X02)

“F^0 2 (0 1 0 2  -  ^ V l )  T  2 0 l ( 0 1 0 1  +  A X0 2 )]

=  ± ( 0 1 0 * 0 1  +  0 2 0 2 02) (4 1 2 )

which m eans th at (4 6 ) holds

It can also be shown [10] th at all finite action solutions satisfy the first 

order B ogom ol’nyi equations (4 7) Furtherm ore, it has been shown [10] that 
a 2n -param eter fam ily of solutions of (4 7) exists w ith  w inding number

n  =  ~  [  F 12 d2x  (4 13 )
27T JR.2 '
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T h is fam ily describes n  vortices sitting at n  positions m space In the fol­
lowing we concentrate on the equations m (4 7) w ith  the upper sign
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4.2 Superim posed vortices and zero modes
E ven  for n  vortices sitting on top of each other, the solution is not known 

explicitly m term s of elem entary functions It is known th at this solution is 

of the form

(jt> =  f ( r ) e m0, A % =  - ^ ^ - e ^ x 3 (4 14 )

U sing this ansatz we have,

D x<j> =  eme( ° y f '  -  i n ^ f  + i 3̂ n a f )  (4 15 )

=  - i D 2(t) =  +  m ^ f  -  i ^ n a f )  (4 16)

Here we have used

dt =  j d r  -  e ^ d g  (4 17 )

Hence,

r f  -  n( 1 -  a ) f  =  0 (4 18 )

Furtherm ore,

So

follows

, a(r).  „ , a(r ) . ,
Fl2 = n l d ^ x x - ^ - )  + d2(x2— )\

a(r) A x 1)2 (x2)2 a 2  a

=  " 7  =  5 ( 1 - I 0 l 2) =  5 ( i - / 2) (4 19 )

2  na  „9
 + f 2 -  1  =  0 (4 20)
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It can be shown [11] th at (4 18 ) and (4 2 1 )  have solutions w ith  the correct 

asym totic behaviour

/ (0 )  =  a(0) =  0, hm  f ( r )  =  hm a(r) =  1  (4 2 1)

In the following, we restrict our attention to n — 2 and use the solution (4 14 )  

as the zero order term  m an expansion in the separation param eters T h e  

first order term s are given by the two zero modes describing the separation  

of the vortices These were found by W einberg [12] U sing the above result 

and W einberg’s zero modes we can w rite up to linear term s,

(f) = f e 2l° + 2(a + i/3)kf  +
9 n 9k

A x +  iA 2 = i - e i e - 2 i ( a  + ifi)(k' + — )e~'0 +  (4 2 2 )
r r

where

- i ^ ( r k "  + k') + ( f 2 + ^ ) k  =  0 (4 23)

In fact w ith  this ansatz we find

^ ( 1 _  I 0  I2) =  ~  f  ~  oi4kf2 cos 29

~/3Akf2 sin 29 ] (4 24)

Also,

T h e a  and ¡3 independent term s cancel out as we have already seen above 
T h e linear term s cancel out because of equation (4 2 3) So the first Bogo- 

m ol’nyi equation is satisfied up to linear term s by (4 22)
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W e also have

Di<j) = — f ' e 2ie -  2 i ^ f e 216 +  a 2 — {kf) '  +  f32i— {kf) '  +

2 CL O r \/ ^  \ 2
- *  -  “ 2 ( r  +

,/fc' 2 *  !

r

+ / 3 2 ( ^ -  +  ^ x 1 +  ][/e 2i61 +  a 2 k f  +  (32ikf  ]

2i0 o, X2  i „ 2i0=  y /  e2iy -  2 z - | / e

+ o ;2  —  ( k f  + f k )  + f32 i^ -{k f  + f k )  + 

- i \ - ^ x * e ™  -  a 2 / ( -  +  H | ) z V *  -  /?2 / ( -  +  ^ ) x 1 eM
L iy (j*Z rp rpZ

, (426)

and

-iD2(f) = - i[[— f ' e 2ld + 2 i ^ f e 2%e +  a 2 — {kf) '  +  ¡32%— {kf) '  +
rjr* rp£ T* V

r2 a , 2k,  ,
-z —  a; -  a 2 (----- 1- -^ -jxy* rpii

,k 2 k ,
—(32{— +  ~^)x  +  ][/e  1 +  ca2kf +  (32ikf  +  ]]

=  —i [ ^ - f ' e 2%e +  2 i ^ f e 2l° 

+ a 2 ^ - { k f  +  f k )  + ¡32i— { k f  + f k )  +

-  a 2 f { -  +  ^ ^ e 2*® -  (32f { -  +  ^ ) x 2 e210^ yZ * 1 7”

+ a ^ + P , ^ + ,] (4  2 7 )

T h e a  and (3 independent term s cancel out, as we have seen above The  
linear term s cancel out because of equation (4 23)
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4.3 The quadratic terms
U sing the above results we can w rite up to quadratic term s,

(/) — f e 2%e+ 2(a + i/3)kf + a 2ip + a(3X +/32x +  , (4 28)

Ax +  iA 2 = i — el6 -  2 i (a  + i(3)(k' + —  )e~'e 
r r

+ a 2(Bi  +  iB 2) +  a (3(C\  +  iC2) +  (32(E i +  iE 2) +  (4 29)

O ur task is to determ ine ip, A, x , B %, Ct, E t, which are functions o f r  and 9
E q u atin g the a 2-term s in the Bogom oPnyi equations (4 7), we obtain

9n 9 k
(di + id2)tp + — ipeie -  i f ( B i  +  iB 2)e2lB = 4k f ( k ‘ + — )e~l\  (4 30)

d iB 2 -  d2Bi  +  \ ( W e ~ 2ie +  f r e 2ie) = - 2 k 2f 2 (4 3 1 )

A  Fourier expansion w ith  the m inim al number of nonzero term s leads to the
QTICili'7

'iP = g(r )f (r)e™ + g(r)e-™,

Bi  +  iB 2 = b(r)eld +  ib(r) f  (r)e~3ie, (4 32)

and to equations for g(r),g(r) , b(r) and b(r) T h e  equations for g(r)  and b(r) 
read

=  _ b’ ~h =  _ lh> (4  3 3 )
r

T h e functions g(r)  and b(r) must satisfy the equations

g" +  - s '  -  f g  =  2 * 2 / 2 , (4 34)

1 , ,  , 1  +  / 2 1  +  4a +  4 a 2 2 k
b" +  f  ~  { 2 ~  + -------- ? --------- )6  =  -4 fc / ( fc ' +  — ) (4 3 5 )

E q u atin g  the a/?-term s m the Bogom ol’nyi equation (4 7), we obtain



A  Fourier expansion w ith  the minim al number of nonzero term s leads to the 

ansatz

A =  2 ig(r)e~2t6,

Cx +  iC2 =  - 2 b(r)f(r)e~™,  (4 38)

and to equations for g(r )} and b(r) T h e equation for g{r) reads

1  +  2  CL /
9 = --------------- b , 4 39

r

and b(r) must satisfy the equation

b" + -b'  -  +  1  +  4 a  +  4Q 2 )6  =  —Akf(k '  +  — ) (4 40)
r 1 r z r

dxC2 -  d2C x +  +  fX*e2lQ) =  0 (4 37)

E q u atin g the /32-term s m the Bogom ol’nyi equations (4 7), we obtain

9n 9k
(dx +  id2)X +  - x e l6 ~  i f  (Ei + %E2)e™ =  - 4 k f ( k '  + - ) e ~ i6, (4 4 1)

r r

a , £ 2 -  d2E,  +  i ( / x e - 2‘# +  / x -e 2*s) =  - 2 k 2 f  (4 42)

A  Fourier expansion w ith the m inim al number of nonzero term s leads to the
ansatz

X =  9 ( r ) f ( r )e2ld -  g(r)e~2l\

E x + iE 2 = b(r)eld -  ib(r )f (r)e~3ie, (4 43)

and to the equations for g(r),g(r) ,b(r)  and b(r) given m (4  3 3 ) - (4  3 5 ) 
Collecting all results, we can w rite the solution, up to quadratic terms, 

in the form

<f> =  f e 2ie +  2  (a  +  i(3)kf 

+ (a2 + (32) g f e 2te +  (a  +  %P)2 ( —  2 a 6 -  b')e~2ld +
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Ai  +  %A2 =  %— eie — 2 i (a  + i(3)(k' H )e 10
r r

—i(a2 +  (32)g'el8 +  i (a  +  i/3)2bfe~3%d +  (4 44)

It rem ains to be shown th at the quadratic term s in (4 44) are C°° func­

tions on R 2 which do not change the action (and the w inding number) To  

this end we use the asym ptotic expansions of / ,  a and k at zero [13],

f ( r )  =  / i r 2 +  ^ / i r 4 +  , a (r)  =  ^ r 2 - ^ - / 1V  +  , k(r)  =  r~2 + k i r 2+ ,

(4 45)

where / 1  =  2 36  and k\ =  — 0 25 from  the num erical analysis W e find that 

the solutions of (4 34 ) and (4 3 5 ) have the following expansions at the origin,

g(r) = g- 1 lo g r  +  gx +  ^ f \ r 2 +  

b(r) — b- ir~ l + bxr +  ( ^ bx -  2 f xk i ) r 3 +  (4 46)
O

T h e higher order term s m g(r)  are even powers of r, whereas the higher order 

term  m b(r) are odd powers of r  Hence, the quadratic term s m (4 44) are 

C°° near the origin if and only if c/_i =  6_ i =  0 So far the constants gx and 

61 are arbitrary

For large r the functions / ,  a, and k have the following asym ptotic be­

havior [13]

f ( r )  =  1  + fi{r)e~r +

a(r) =  1  +  ai(r)e~T +  , (4 47)

k(r) — ki(r)e~r +  ,

w ith  coefficient functions which are polynom ially bounded T h is leads to the 

existence of exponentially decaying solutions which asym p totically are of the 
form

g(r) = 9 i{r)e~r +  , b(r) = bi(r)e~r +  (4 48)

Here gx and ¿ 1  are polynom ially bounded

B y  num erical integration, the coefficients gx and b\ which lead to an 

exponential fall-off at infinity, are found to be gx =  -  1 4 4  and bi =  -  026  

T h e existence of such functions can be explained an alytically  as follows 

E quation  (4 34) shows th at for positive <7 1 , g cannot have a m axim um  for
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any r  So the function diverges exponentially For very sm all gx, the term  

on the right-hand side of (4 34) will force the function to cross the r-axis, 

and then, as before, diverge exponentially For very large negative gx, the 

third term  m  (4 34) w ill force g to go through a m axim um  for large r  A fter  

th at, the function cannot have a m inim um  and m ust go to minus infinity 

Because of the continuous dependence on the initial d ata, we have an open 

set of d ata  for which g crosses the r-axis, and an open set of d ata  for which  

g goes through a m axim um  below the r-ax is Therefore, we have at least one 

value of gi for which the function does neither T h is  function m ust converge 

and does so to zero, exponentially

A  sim ilar argum ent explains the existence o f an acceptable solution b(r) 

to E q  (4 3 5 ) T h e  right-hand side of th at equation is positive So again  

b cannot have a m axim um  above the r-ax is Also, for very sm all negative  

bi, the right-hand side will force b to go through a m inim um  and then cross 

the r-a x is  For very large negative bx, the third term  in (4 3 5 ) prevents b 
from  going through a m inim um  In between these two possibilities we find 

the desired solution which goes through a m inim um  but does not cross the 

r-ax is Such a solution must decay exponentially
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4.4 The cubic terms
T h e  cubic term s can be calculated m  the sam e m anner If we consider the 

third order term s

(f) = + a 3x  +  )

A x + i A 2 =  +  o?B  +  , (4 49)

we obtain

%(el6drB* + e~iedrB ) -  - { e l9deB* +  e~l6ddB )
r

+ / ( e 22V  +  e~2iex ) = ~ 4 k f ( g f  +  1  + 2ab -  b') cos 29 (4 50)

and

ea (dr +  - d e)X -  i f e ^ B  +  - e " *
r r

= 2 (k‘ + — ){gfe ie +  ( i ± ^ 6  -  b’)e~M ) 
r r

+ 2 k f ( g e a  -  b fe~M ) (4 5 1 )

T h is tim e the Fourier expansion w ith  the m inim al num ber of term s is of 

the form

X =  hi(r)  + h2{r)e~il6 
B  =  * C i ( r ) e - lfl +  iC2(r )e -bie (4 52)

Equ ation  (4 50) and (4 5 1 )  are now satisfied if the following equations hold

h[ + f C \  +  y h ,  = 2g f (k '  + y )  + 2 k fg  (4 53)
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Ih  +  f c 2 +  4- ^ Lh2 =  2 (k1 +  -  b') -  2 kb f2 (4 54)
r r r

C l -  i C ,  +  f h i  =  - 2 k f ( g f  +  -  i' (4 5 5)
r  r

Cf2 -  - C 2 +  f h 2 =  0  (4 56)
r

Equation s (4 56) and (4 5 3 )  can be solved for h2 and C\ respectively, and we 

are left w ith two second order equations for h\ and C2 respectively
T h e a 2(3, af32 and /33 term s can be calculated in the sam e w ay P u ttin g  

all the results together, we find, at third order,

4> — +  (a  +  i(3)(a2 +  (32) fh  +  (a  +  t/3)3( - c '  +  ^ +  2a c)e~il9 +  ,

Ai +  %A2 — 
o ou

+ i(a  + zP){a2 + p 2) [ - t i - * h  + 2g{k' + ^ )  + 2kg']e-te + i(a  + iP)3f c e - 5ze +

(4 57)

T h e new radial functions, h(r) and c(r), satisfy the equations,

h" + - h '  -  ( / 2 +  \ ) h  = 4k'g' +  2 f k ( 2 f k 2 +  3 f g  + l- ^ b  -  6') , (4 58)

c''+ l c' - ( l ± t + 9 + 12a + 4f ) c = 2 k f l , - 2 ( k ’+ - ) ( ^ ^ l l- l,')  (4 59)
T 2 T T V

N ear the origin, E q  (4 58) has a series solution m  powers of r 2 of the 
form

h (r) =  f 2 + h ir2 + h2r4 +  (4 60)

T h e  constant term  is given m  term s of the coefficient / i  of the leading term  m  

the expansion (4 45) of f ( r )  T h e form of this term  leads to the cancellation  

o f the r _ 1 -term s in the radial function m ultiplying e~%e in (4 5 7 ) , and thus 

ensures th at this term  is C°° on R 2 T h e  series m odd powers of r for c(r) 
which solves E q  (4 59) near the origin, is

c(r) =  C ir3 +  c2r 5 +  (4 6 1)

T h e form of the series solutions at the origin guarantees th at the cubic term s 

m (4 2 3) are C°° functions on R 2 For large r, E q s (4 58) and (4 59) have 

exponentially decaying solutions Hence the action and the w inding number 

are unchanged by the inclusion of the third order term s
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5 Conclusions

O ur expansions show a simple 0-dependence m term s o f trigonom etric func­

tions In both models, the expansion of 4> exhibits the following pattern

e- W

e
3-6*0 g—2 Î0

e2%e
,Oi0 -

g2i0

,0 Î0

g2l0

,O%0

Here the first line gives the 9 dependence of the zero order term , the second 

line gives the first order term , and so on W e get a sim ilar trian gular pattern  

for the 0 dependence of Ay +  %A2 at any order For the radial functions 

we find differences between the two models In the model for one com plex  

field, the radial functions can be given explicitly m  term s of exponential 

functions However, for the angular dependence (3 78), a  singularity occurs 

at the origin (W e have found no solution to (3 77) which is not of the form  

(3 78), we have found no proof th at there is none )

For the G m zb u rg-Lan d au  theory on the other hand, the expansion is 

sm ooth, at least up to the order to which we carried out our calculations In 

this m odel the radial functions are not given m term s of well-known functions 

H aving used the technique to calculate the term s up to third order, it is quite 

clear how to proceed to any order, and also how to proceed in the case of 

more than two vortices W e expect these expansions to converge for sm all 

separation param eters in the physical G m zb u rg-Lan d au  model However, we 

do not have an estim ate of the radius of convergence
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