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Abstract

This thesis considers vortices 1n a superconductor and 1n a simple model
and attempts to model two vortices close together In contrast to super-
1mmposed vortices which have been described explicitly, we look to describe
the separation of two vortices close together in terms of an expansion n the
parameters, which describe their relative location

A simple model 1s used to describe two static vortices close together
An expansion 1n the parameters describing the relative position of the two
vortices 1s derived 1n terms of trigonometric and exponential functions The
series solutions are derived from solving the relevant partial differential equa-
tions and are studied up to third order

A more realistic model, the Ginzburg-Landau theory of a superconductor
in a magnetic field 1s studied At the point between type-I and type-II su-
perconductivity, this model has static vortex solutions, so-called Abrikosov
vortices Starting with two vortices on top of each other, we derive an ex-
pansion, which describes these two vortices close together The expansion 1s
studied up to third order

A similar pattern is found for the angular dependence 1n both models
The first stmple model 1s shown to have some peculiar features only two
vortices can be superimposed and when pulled apart a singularity at third
order develops In contrast, this does not happen in the Ginzburg-Landau
model, which shows smooth solutions up to at least third order
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1 Introduction

Ever since 't Hooft[1] and Polyakov([2] found a monopole solution in the
SU(2) Yang-Mills-Higgs theory, solitons 1n field theories have been stud-
1ed extensively Our understanding of monopole solutions has been greatly
enhanced by an extistence proof for static solutions by Taubes [3] and the
construction of monopole solutions started by Ward [4] The processs was not
matched by quite the same progress in our understanding of the Abrikosov
solutions of the Ginzburg-Landau theory, although one might have expected
that the Abehian Higgs theory in 2 + 1 dimensions 1s actually simpler than
the SU(2) Yang-Mills-Higgs theory in 3 + 1 dimensions Again an existence
proof was given by Taubes [5] However, only superimposed vortices can
be described explicity and no explicit construction of separated vortices 1s
known We want to give the solutions for two vortices close together in terms
of an expansion 1n the parameters which describe their relative location

In Chapter 2 a simple model for one complex field 1s discussed Its La-
granglan 1s given and the Euler-Lagrange equations, which minimize the
action, are studied These second-order equations are then replaced by first
order Bogomol’'ny1 equations which saturate a topological lower bound of the
action The next Chapter discusses vortex solutions, first for two vortices
on top of each other, then for two vortices close together In Chapter 4 we
discuss a realistic model of a superconductor 1n a magnetic field This phys-
1cal situation can be described by the Ginzburg-Landau model At the point
between type-I and type-II superconductivity, the model has static vortex
solutions, so-called Abrikosov vortices Starting with 2 vortices on top of
each other, we give an expansion which describes vortices close together

The main results 1n this thesis will be published 1n, J Burzlaff and E
Kellegher, Journal of Mathematical Physics



2 A model for one complex field

In this chapter a stmple model for one complex field [6][7] 1s discussed Its
Lagrangian 1s given and the Euler-Lagrange equations, which minimize the
action, are studied These second-order equations are then replaced by first
order Bogomol'ny1 equations which saturate a topological lower bound of the
action

2.1 Lagrangian and Euler-Lagrange equation

Our first model 1s a model for a pair of real fields, ¢*(Z), a,b = 1,2, or equiva-
lently, for a complex field ¢ = ¢; +1¢2 The Lagrangian density of the model
reads,

£ = 9°0,0°0 a0y + w2(191?), 21)

where a,b = 1,2 labels the components of the Higgs field and 2,7 = 1,2 are
the space indices The square brackets mean antisymmetrization,

B.9°0y0" = (8,6%)(8,9") — (8,6)(8,0°) (22)

We are working m 2-dimensional Euclidean space, 1 ¢ , the space indices can
be raised and lowered without any change in the formulas The indices which

label the components of the Higgs field can also be raised and lowered without
any change

We now derive the Euler-Lagrange equation Since we will use similar ar-
guments throughout the thesis we go through the derivation 1n great detail
First, we obtain, using the product rule,

oL
0(0,¢%)

0
0(0,¢%)

0

= "$,0"¢, e

Y 4,041,
(23)

O}, 8° 0k 8° + 8, 8" ¢°




The two terms on the right-hand side differ in the position of the indices
only However, in Euclidean space we can raise and lower indices without
any change This reduces equation (2 3) to

oL
0(0,¢%)

_9

= 2ab¢bak]¢ca(a ¢a)

By, ¢ O ¢° (24)

If the right side of the above equation 1s expanded using equation (2 2),
we obtain

0
= 28['7 ¢b6k] ¢C(W(aj ¢b)(ak¢c) -

0
0(0,4%)

o (0:0")(2,6) (25

The summation indices in the second term can be interchanged, and we
can use the indentities

_ab¢aaz]¢b = a[z¢aa]]¢b = a[]¢baz]¢a (2 6)
This yields

oL
0(0,¢%)

_ ab(p,,aﬂ@a—(a%—a)((ajasb)(akof)) (27)

We now perform the differentiation and obtain

oL
0(0,¢%)

9 . .9
56,0y %) + 0:5) 555

= 4(0Y.0%9(5:0:)(0,4") + OV 4,0 6 (8, 6°) (335%) )

= 4 34,09, (9,4")

9,¢") )
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= 4(0Y$,0"4(0,0") + 0"¢u0M b (0k0°) )
= 8 01'¢,0"4(0,4") (28)

Here &7 1s the Kronecker delta (6! = 11f2 =7, = 01f ¢ # 7 ) and
for the last step we have used (2 6) again From (2 8),

oL _ by (5l o)
81 8(8@“) = Saj‘b 81(8 ¢aa] ¢b) (2 9)

follows, since
8,0,0°000, ¢y = 0,0,0°0" 90" s

= —0,0,0°00¢, ¢y, = —0,0,¢°01¢,0" (2 10)

whach therefore 1s zero We also obtain

oL _ 9y ou

8¢a 8¢a

(211)

We now have all the terms 1n the Euler-Lagrange equation which 1s given
by

oL _oc
(G9*)"  0¢°

31(8 =0 (212)

)



The solutions of these equations are stationary points of the action

A/ (6%, 8,¢")d? (2 13)

Substituting (2 9) and (2 11) nto (2 12), yelds

ou
Lok

4(8,¢")9,(0" $,0" ) = u (2 14)

It 1s often convenient to express the Lagrangian and the Euler-Lagrange
equation 1n terms of the complex field ¢ = ¢ +1¢9, We have ¢; = (¢p+¢*)/2,
¢ =1(¢" — 4)/2, and

0u90y9" = Oy (¢1 +192)0,(d1 — 192) — 0,(p1 + 102) 0, (b1 — 162)

= 2:[(0,¢2)(0,01) — (0,¢1)(0,62)]

= 228[z¢28]]¢1 (2 ].5)

Now,

0.0°079°0" ¢, 0"y = 20,8'0,6°00 18" py
1
= -3 8,00, ¢ 9", (2 16)



and the Langrangian density of this model in terms of a complex field reads

£ = —50u90y60" 90716 + 2P (217)

The Euler-Lagrange equation can be derived as before The same tech-
niques of renaming, raising and lowering indices are applied to give the fol-
lowing

0

— 9901 49k] 1% N
0(0,0) 207¢0%¢ 5(5,9) [(0,6)(0ks")]
= 20,6090 218)
and
@(aéqu)) = 2(0,9")0,(8" $0"¢") (2 19)

Again the other term we get applying the product rule vanishes because
of the symmetry of §,8,¢ and the antisymmetry of 0¢0”)¢* This implies

ou

* Lpal sy — .22
0,60, (8667) = ugg

(2 20)

which 1s the Euler-Lagrange equation in terms of the complex field ¢



2.2 The Bogomol’nyi equation and a lower bound on
the action

We will show now that any solution of the equation,

0¢*

2 det( e

) = Hu (2 21)

solves the equations of motion (2 14) Note that equation (2 21) 1s a first or-
der equation whereas equation (2 14) 1s of second order So we would expect
that (2 21) 1s somewhat easier to solve than (2 14) For different types of
models, this reduction of order was first introduced by Bogomol’ny1[8] That
1s why we call equation (2 21) the Bogomol’'ny1 equation here

To relate the two equations (2 14) and (2 21), we differentiate (2 21) and
obtain

ou

20)(000i9n) = £V 500,6"
(2 22)
Here €,, 1s the antisymmetric tensor given by €19 =1 = —€31, €11 = €2 =0
Multiplication with 8,¢' leads to
20000 000) = OO s )

Using (2 21) on the rnight-hand side, we obtan (2 14) for = 2 Analo-
gously,

20,60, (0 410 y) = ie“(azsbz)(am‘)%
u Ou



follows from (2 22) Equation (2 24) 1s equation (2 14) for a =1

Any solution of (2 21) also attains the lower bound mn the following in-
equality,

9 167
= > —
A /sz,dx_ =1, (2 25)
where
Q=1 [ 1equ@9) @9 (2.26)
= 3 Jre 16,5 U T

Why Q 1s called the winding number and 18 explained below after a po-
tential has been chosen

\

To show that a solution of (2 21) attains the lower bound of the action
m (2 25), consider

M = (20,¢'0,)¢” £ €,u) (200 ¢, ¢, £ €) (2 27)

Note that M 1s a sum of nonnegative terms and therefore M > 0 Using
the binomial formula we can express M as

M = 20,¢°0,¢°8"$.0"\¢y + due, 881 &)y + 2u’

= 2L+ 4ue,, 0181, (2 28)



A lower bound for the action 1s now obtained

A = L d*z
R2

N Y TR / ey, by dx
2 Jr2 R?

v

+9 / ue,, 83,0y dz
R2

167
- 4+ 229
70 (229)

with Q given 1n (2 26) The last equality follows from the formula

169 (0°9) (8 ¢7) = 26, (0°¢1)(8 62) (230)

If Q > 0 we take the upper sign mn (227), if Q < 0 we take the lower
sign This implies

167
A> HIQJ (2 31)

For @ <0, the lower bound 1s attained if and only 1f

20,9'00° — e,u = 0, (2 32)

10



or

2(0,¢' 030* — 02¢'010%) = u (2 33)

Equation (2 31) 1s the Bogomol’ny1 equation (2 21) with the upper sign For
@ > 0, the lower bound 1s attamed 1n (2 31) 1f and only 1if

20,0'9,1¢” + €yu =0 (2 34)

which 1s equation (2 21) with lower sign

We now explaimn why Q 1 (2 26) 1s called a 'winding number’ ¢ 1s a
complex function on R? If |¢| approaches a constant, 7, at infinity, then a
winding number can be defined 1n the following way 1f

¢ — ¢oo(8) =nexp®? as r - 0

i

then

boo/n ST —=U(1) 0 —e” (2 35)

1€ ¢oo/n maps the circle at infimity, S, to the umt circle in the complex

plane, U(1) To each continuous ¢, we can therefore associate a winding
number

n=o-[o(2m) ~ o(0)] =

2
=57 ), booDp " df (2 36)

11



To relate (2 36) to (2 26), we restrict our attention to a potential of the
form

u=(1-[¢°)l4l, (237)

Now the 1dentity

3

€, 0'[$(D0")(c1 — cald[)IBD)] = €, (0°) (@ ¢") (51 — ng|¢|2)!¢) (238)

2
which holds for any constant ¢; and cp, can be used For ¢; = -32,02 = £
we have

WP B@E)C 2ol = @@@e (239
and therefore
Q=g [ 0lns(@67)C — 219PI9 las (240)

For our choice of potential (2 37), the condition of finite action implies
|¢poo] = 0 Or |@oo] = 1, 1f |@] converges as 7 — oo In the following, we will
concentrate on solutions ¢ with |¢o| = 1, 1€, 7 = 1 mn this case Using
Green’s Theorem, (2 40) can be written

12



27 2 2
Q= gz /O W' ey boo (P%) (; — 219ucl’) 19uc] P2 (241

since Oy = 2'€,,07, we have

Q = 5 dbgu(re) 242)

This shows that @ = n for our choice of potential and explains why Q
n (2 26) 1s called a 'winding number’ Equation (2 38) shows that the name
'winding number’ 1s justified for a class of potentials, 1n general the integrand
1n (2 26) cannot be written as a divergence

We have seen that instead of solving the second order equation (2 14),
we can solve the first order equation (2 31) To conclude this subsection
we now show that all finite-action solutions actually solve the Bogomol’ny1
equations, so that we do not miss out on any by concentrating on the first
order equations Equation (2 20) above can be written

ou

D10*0,(8' 0% 9" — 020" @*) + 0p0" 01 (090 ¢* — 0 p0%¢*) = u% (2 43)
or by complex congugation as
D1 ¢,(0' ¢* 0% — 0%¢*0' p) + 9240, (0%¢* 0" ¢ — o' ¢*0%p) = uaa;;* (2 44)

We now multiply (2 43) by 016, multiply (2 44) by 8,¢* and add the two
resulting equations This leads to,

010,001 (0° 90" ¢* — 090 ¢") + 81002001 (°¢* 0§ — B ¢*D%¢) (2 45)
= %Bluz

13



By rewniting the left-hand side we see that

0,(0'90%¢" — 0'¢"0%¢)* = —01’ (2 46)

holds Multiplying (2 43) by G2¢ and (2 44) by 0.¢* we obtain in a com-
pletely analogous manner,

(0" 954" — 8¢ 0% 4)? = —Byu> (2 47)

Equations (2 46) and (2 47) tell us that
(8'¢8%¢* — 8'9*0*¢)* +u* = K (2 48)
where K 1s a constant, since the left-hand side 1s ndependent of 2! according

to (2 46) and also independent of 72 according to equation (2 47) For a fimte
action solution we have (see equation (2 17))

u? = 0 and (0*¢8°¢* — 0*¢*0%¢)* = 0 as r — oo, (2 49)

so the constant K must be zero Therefore

1(8'¢d%¢* — 819" 3%¢) = +u (2 50)

holds Since ¢ = ¢; + 1¢5 we have

O¢®
or*

and we see that (2 50) 1s the Bogomol’ny1 equation (2 21)

1(8'90%¢* — 0" ¢*0%¢) = 2det(

) (251)

14



3 Vortex solutions

In this chapter we discuss vortex solutions, first for two vortices on top of
each other, then for two vortices close together

3.1 Superimposed vortices

For the potential we have chosen,

u=(1-|¢|")4l, (31)

we seek a smooth finite-action solution of the form

¢ = f(r)e™ (32)

where f(r) — 1 asr — oo For this ¢, ¢ = €™ holds, and according
to formula (2 36), ¢ clearly has winding number n If we go around the circle
at infimty 1in anti-clockwise direction once, 1€, 6 goes from 0 to 27, then ¢
winds around U(1) n tumes, for positive n in anti-clockwise direction and for
negative n 1n clockwise direction The ansatz (3 2) 1s the next best to a ra-
dially symmetric ansatz Since we want ¢ to have non zero winding number,
we cannot assume that ¢ 1s a function of r only So we build 1n the winding
number n 1 the most natural way by using e and are left with a real
function of r only In the next chapter we will discuss the Ginzburg-Landau
theory where we will use the same ansatz (3 2) for a complex field There
the ansatz (3 2) actually 1s radially symmetric in R? \ {0} according to the
defimition of radial symmetry 1n a gauge theory

We now seek to solve the Bogomol’'ny1 equation

15



ot 0?2 Ot 2 1
ail 3?2 - aiz 8?1 = 5(1 —[¢1)14] (33)

In polar coordinates, where ! = rcosf, z? = rsin@, we have

0 smb o 0 0 cosf 0
I - _ = _—  — . - 4
e N e Y
Equation (3 3) now becomes,
0 smé 0 0 cosf 0
(cos 05; - 7—8—0)(f(r) cos(nf))(sin 05; + T—a—g)(f(r) sin(nd))
0 cosf 0 0 smé 0
~(sn 95; + 7%)(f(r) cos(n@))(cos 05 — 7%)(]‘(7") sin(nh))
1 2
= (- (35
This can be simplified to,
nf(r)f (r
A 36)
The separation of variables in equation (3 6) leads to
% / 1 o= / rdr
1—f2
(37)

16



Performing the integration we obtain

oy, 7
tanh f = Z;L- +c (3 8)

where c 18 a constant of integration Now we want,

f = 0as r — 0, (39)

otherwise ¢ 1 (3 2) 1s not defined at the origin Hence, ¢ = 0 and

f= tanh(%)

(3 10)

The solution ¢ 1n (3 2) with f(r) given by (3 10) 1s defined 1n the whole
of R? and 1s clearly a C*® in R?\ {0} Since

2
le—QexpTT— as r — 0o (3 11)
n

¢ has the correct asymptotic behaviour for a solution with winding num-
ber n

We still have to ensure that ¢ 1s C*° at the origin At the origin we use
the Taylor expansion of f,
o 22k(22k - 1)B2k (ﬁ)?k—l _ T2 1 7'2

f=2 "y @ Tmoslmt (312)

where By, 1s the k' Bernoulli number We also express

el — (eza)n — (_ + Z—)n (3 13)



as a polynommal n ’;i We see that for n = 2 and only for n = 2, ¢ 15 a

polynomial in z* In this model, we have the (somewhat peculiar) situation
that within the most natural ansatz (3 2), smooth finite action solutions exist
only for n = 2 If we interpret n as the number of vortices, we only have a
solution of the form (3 2) for 2 vortices

The Langrangian (2 1), or the action density, for this solution 1s
16 12
L=—=7"+ (1= 1) (314)
.1n terms of f Because of equation (3 6) this expression can be simphfied to

L=2fr)(1 - f*(r))* (315)

If we substitute f from (3 10) £ reads

2
2 sinh? %

L= (3 16)

2
cosh® %

This action density 1s radially symmetric about the origin  We interpret our
solution as two vortices superimposed at the origin

18



3.2 Zero modes

We have found the solution for two vortices sitting on top of each other,
which we called & To extend our study to two vortices slightly apart we
consider ¢ = $+ v, where v 1s very small Thus the solution we seek 1s of
the form

¢! = f(r) cos20 + +*
¢* = f(r)sin 20 + (317)

With this ansatz we try to solve the Bogomol'ny1 equation, linearized in
v That means we are looking for 7’s that do not increase the action to first
order Such additions to the solution ¢ are called zero modes

Using this ansatz and the expressions (3 4) 1n the Bogomol’'ny: equation
(3 3) we obtain

(cos 0% — SI—:fe-%)(f(r) c0s 20 + ') (sin 0% + 00:0%)@”(7‘) sin 260 + 7?)
—(sin 082 + CO:Q%)(f(r) cos 20 + ') (cos 0% — S—H;—e%)(f(r) sin 26 + +°)
1 2
= S0~ 16P)l9) (318)

Multiplying the terms out and differentiating, while leaving out higher order
terms 1n v, y? simplifies the above equation to

19



2
sz + (f cosfcos 20 + 2f sin @ sin 20) — ol
T T

A2
1
+(f sin@sm 26 + ifcos@cos%)g’y1
2
—(f smBcos20 — %f c0s0s1n20)gfy1
2 oyt
—(f cos@stG—;fschos%)—a—
! 2
= -1l (319)

Since ¢ 1s now defined by equation (3 17) we have,

9|2 = f* + 2f (7" cos 26 + 72 s1n 26) (3 20)

if the higher order terms (y')? and (y2)? are ignored Now |¢| 1s calcu-
lated

lo| = f(1+ ;(71 cos 20 + ~° s 26))2

= f+7'cos 20 + y* s1n 20 (321)

The right hand side of equation (3 19) 1s

(1 —o|3)|8| = (1 —fH+= (1 3% (v'cos20 +v*sm26) (3 22)

20



up to linear order n 7y
Using equations (3 6) and (3 22), equation (3 19) becomes

; 2 Ov?
= 20) —
(f cos&cosZH—l—TfsmHsm )8x2

1

+(f's1n9s1n2€+gfcosﬂcos%)al

T Ox!

, 2 Ovy?

—(f s @cos 260 — ;fcos9s1n20)a—z1

’ 2 8’)/1

—(f cosf@sin26 — ;fsm@cosZ@)@
1 2 (a1 2

= —2-(1~3f) (7" cos 26 + v sin 26) (3 23)

We will find a smooth solutions to this equation using the following two
forms

Y =h(r),» =0 (3 24)

or

v =0,9% = h(r) (3 25)

Choosing the ansatz (3 24) equation (3 23) reduces to

210y oy

T

= 201 372() Jh(r) (3 26)

Seperating the terms we form the integral equation

1 r 2
/ wy = / Ty L3780 )dr (327)

21



Integrating the above we obtain

1 r 3 r?
= - = tanh — d
In A(r) 4/tanh%dr 4/r an g r
2 2
:lnsmh§—3 In coshg—l-C (3 28)

C 18 a constant which we can set equal to zero 1f at this point we are interested
in finding just one zero mode Hence, we have

’I"2
h,(’r) - sinh 3

- 8 329
cosh® % (3.29)

For the ansatz (3 25), equation (3 23) also reduces to (3 26) with A mstead
of h Therefore, we obtain the second zero modes

2
,
sinh S

y(r) =1 (3 30)

cosh® 1"83
(3 31)

We have found a 2-parameter family of zero modes, which may be wnitten

1) = foc+ B 2= B ST

3 r2
osh T

(3 32)
All these zero modes are C* functions which vanish exponentially at infinity
They describe the different ways of seperating two vortices in the plane This
can be seen by looking at the zeros of |¢| which have separated and moved
away from the origin Note that by replacing £ by £ + @ we can introduce
two more parameters which describe the displacement of the center of mass

22



3.3 The quadratic terms

We consider ¢ = (;3-1— v, with v given m (3 32), as the first terms in the
expansion about (a, §) = (0,0) To find the second order terms, we define

=¢+v+9 (333)

Now we equate the second order terms in the Bogomol’'ny1 equation (3 3),
which, 1n polar coordinates, reads

1,04 0¢? 8¢1 3([)2
This leads to the equation

(3 34)

2 2 1 1

(f 003298;0 —|—2fsm20%— — f' s1n20% +2fCOS2088i7~)

= (a? —I—ﬁQ)fhg(i —3) - —fh2 3+ =) [0?(cos 260 + sin 26)?
f? f2

+2a(cos® 20 — sin? 20) + (3%(cos 26 — sin 26)?]
+(1 — 3£%)(6 cos 26 + 6%sin 260) (3 35)

with f(r) given i (3 10) and h(r) given 1n (3 29)

We now write out ¢ 1n the form
6 = a?F(r,0) + 2a8G(r,0) + 8°H(r,0) (3 36)

and equate the o, 8% and af terms 1n (3 35) Starting with the o? terms,
we obtain the following equation for F(r, )

OF? OF? ' OF! OF1
(f COS 20% + 2fSln2037-'— - f sin 29—6—0— + 2fCOS 20—5;’—)
2
= hz(% —-3f)— %(3)‘ + %)(cos% + sin 26)?

+(1 = 3f)(F'cos 20 + F?sin 20) (3 37)

To solve equation (3 36) we seek a solution of the form
F = fi(r)e®® —ify(r)e™® (3 38)

23



Substituting the ansatz (3 38) into equation (3 37) leads to the equation

%[f,fl + ffL42(ffy — f f2) sin 20 cos 20] + (3£% — 1)(f1 + 22 s1n 20 cos 26)

N

’ h? — (1 +3f%)(1+ 2s1n 26 cos 20) (3 39)

2f

Equating the # - independent terms and the sin 46 terms, we obtain two de-
coupled equations for f; and f; In terms of the variable £ = TSE they read

df 1 a df W e

I3 f(3f dg)f 2f2(1 9f%) (3 40)
dh 1 iR
s —};(3f2—1+d§)f —_ﬁ(l—‘_?’f?) (3 41)

Both equations (3 39) and (3 40) are of the form
dy

% +p(E(O) = a(6) (342)

In the case of equation 3 42), we have
pi(€) = %(3f2—1+3—é) = 2tanh¢, (3 43)

_ h_2 9 — 8cosh? ¢
0(€) = 51— 977 = Tt (3 44
For equation (3 39), we have
9 df 2(smh? ¢ — 1)

p2(€) = f(3f d§) “smhZcoshe (3 45)
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—h? cosh? € 4+ 3sinh?¢

w() = 571 +3%) = - (3 46)

Equation (3 40) has the solution

(€)= K0 [a(g)el g (347

where ¢ 1s any constant for which the integral converges To determine fi,
we calculate

¢ 2
/ pi(s)ds = Incosh”¢ (3 48)
0
i 349
°o cosh® ¢ (3 49)
[epstsyds o _ 3smh&  smhg
/ql (5)6 0 d§ 2COSh3€ COShé + Cl (3 50)

This gives a famuly of solutions to equation (3 39), namely,

1 3sinhé  sinh§

h= cosh® & (2 cosh®¢  cosh¢

+ Cy) (3 51)

The function f; m (351) 1s a C* function for 0 < £ < oo For £ — 0,
however, f; — C; holds This implies that C; = 0, otherwise F' in (3 38) 1s
not defined at the origin f; reads

3sinh & sinh £

= - 352
hi 2cosh® ¢ cosh®¢ (852)

The expansion of f; near the origin 1s of the form

[>s) o0 2
f1 = kz akgk = Z ak(%)k (3 53)
=1 k=1
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Hence, the first term 1 (3 36) 15 a C*® function of 2! and z* at the ongin
We also see that f; vanishes exponentially at infinity So 1ts contribution to
¢ does not change the winding number (2 26) which 1s a multiple of the action

A similar calculation yields

sinh? ¢

4
/c p2(8)d8 =—1In M + Cg (3 54)

2
o [Epa(s)ds _ sinh 56_02

3 55
cosh? ¢ (355)
3
ffpz(s)dsd _ 0 cosh{  3smnh”§ C 356
/q2(§)e §=e (2smh§ 2cosh & +Gs) ( )
This determines fo which 1s of the form
3 2
£, sinh & 3sinh” ¢ sinh” & (3 57)

T 2cosh®€  2cosh’ ¢ T O o 3

We again found a one parameter family of solutions In contrast to f;
however, all the solutions f, are acceptable In fact, for all C3, f5 18 of the
form

o0 o) 2
=Y bt =Y bk(%‘)k (3 58)
k=1 k=1

near the orgin, and therefore the second term 1n (3 37) 18 in C*°(R?) The
winding number and the action are also not altered because f; decays ex-
ponentially at infimty If we are only interested in two paramter families
describing different relative positions, we could set C3 = 0 and work with

sinh & 3sinh® ¢

f2= 2 cosh® ¢ T2 cosh® &

(3 59)
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To determime H 1n (3 36), we equate the 2 terms mn (3 36) This yields

OH? OH? OF!
(f cos 20—— 20 +2fs1n20—8———f sin 20 —— %0
1

+2f cos 2t9%f—) + (3f% — 1)(H" cos 26 + H? s1n 26)
r

_R? h?

=7 —(1-3f%) - ﬁ(l + 3f%)(cos 20 — sin 26)* (3 60)
The only difference to equation (3 37) 1s the minus sign 1n the expression
the last bracket For this reason, we try an ansatz of the same form as (3 38),
namely

H = hy(r)e"® + 1hy(r)e (361)
The ansatz leads to
dh1 1 9 df h2
e+ 768 =1+ P = 51— 9p) (362)
dh2 9 df h?
BB 1= = 551 +3) (363)

These are the same equations as the ones for f; and f, except for the different
sign on the right-hand side 1n the second equation So we can choose

3sinh & sinh &
hy = -
Y7 2cosh’ £ cosh¢ (3.64)

and

ssnhé  3simh®¢ sinh? ¢
hy = — il 3
2 2 cosh® ¢ i 2 cosh® ¢ G cosh® ¢ (3 65)

For h;, we have no choice, to select hq, we could again set an arbitary con-
stant equal to zero
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Finally we equate the a8 terms n (3 35) This yields

0G? 0G? oGt
(f cos 20— %0 +2fs 1n26’—a— — f s 20— %0
+2f cos 2988% + (3% — 1)(G* cos 26 + G* s1n 26)
2
—7(1 + 3f?)(cos® 20 — sin? 260) (3 66)
This time our ansatz 1s
G = g(r)e (3 67)

For this ansatz, equation (3 66) 1s solved 1if and only 1f

dgl
i " F

g, R
(3f2_1—_) - 2f2

b7 —(1+3f%) (3 68)

holds This 1s the same equation as that for f, (equation (3 41)) So we have

smhé  3smmh’¢ sinh? ¢
= - C 369
779 cosh®¢  2cosh’® ¢ s cosh? ¢ (3 69)

If we put all our results together and set C3 = Cy = C5 = 0, we obtain
the second order terms (3 36)

§ = (&® + ) fi(r)e® +1(a —1B)* fo(r)e (3 70)

where f; and f; are given by (3 52) and (3 57) respectively
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3.4 The cubic terms

We consider ¢ = ¢ + v+ 6, with v given 1 (3 32) and § given 1n (3 70), as
the terms up to second order 1n the expansion about (c, 8) = (0,0) To find
the third order terms, we define

d=0+7+0+e, (371)

and equate the third order terms in the Bogomol'ny1 equation (3 3), which,
1n polar coordinates, reads

1 84194 04047, 1

We write out € 1n the form

e=a’I(r,0) +a*BJ(r,0) + af*K (r,0) + £°L(r,0) (373)

\

but will concentrate on the case a # 0, 8 = 0 first Since we will find that
1s not smooth, we will not carry our analysis any further

Substituting for € from equation (3 73) and looking at the o terms only,
we obtain

, oI? or: oIt oIt
2 - - _ - il
= [f cos26 50 + 2fsin 26 5y f sin26 50 + 2f cos 20 e

+ h'(2f1cos20+2f2s1n20)+h'(2flsln29+2fgcos20] =

— 3f%(I' cos 20 + I*s1n 26)
— 3fh(cos20 + s1n20)(2f1 — fo — 2f; cos 20 sin 26)
—  3(cos 20 + sin 20)h* + I' cos 20 + % s1n 260

h
+ E[fl(cos 26 + sin 260) — f5(cos 26 + sin 20))

3 3

+ 3(008 20 + s1n 26)3 — %(cos 20 + sin 20)

h
— ?(cos 20 + s 26)(f1 — 2f5 cos 26 sin 26)

%(cos 20 + sm 26)3 (3 74)
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with f(r) given 1n (3 10), h(r) gven 1n (3 29), f1(r) gven 1n (3 52) and fo(r)
given 1 (3 57)

To solve equation (3 74) we seek a solution of the form I =1 "2,

I' = g1(&) + g2(€)(cos 40 — s1n 46)
I? = g1(€) + g2(€)(— cos 46 — sin 46) (375)

n terins of the vanable £ = & Using the ansatz (3 75) we obtain

1 df oI? orr df oIt oIt
(2L cos 20— 29— - L
2( §(:os 0 7 + 2f sin 26 € §s1n20 7 + 2f cos 26 §)

—(1 = 3f2)(I* cos 20 + I’ s1n 26)

= (cos 26 + sin 20)[]‘Ei—g—1 - (1-3/%)g]

d§
1 df
+§[d—€g2(cos 20(4s1n 40 — 4 cos 46) — s1n 20(—4 s1n 40 — 4 cos 46))
d
+2fﬂ(sm 20(— cos 46 — sin 40) + cos 26(cos 460 — sin 46))]

dg
—(1 — 3/?)gq[cos 20(cos 46 — s1n 46) + sin 20(— cos 40 — sin 46)]

= (cos 26 + sin 26) [f%ggl —(1-3/%)g]

df dgo

+(cos 66 — sin 66) [—2d—§gg + fd_f -

(1-3f%)g2] (376)

To rewrite the other terms in (3 73) we use the 1dentities

w

(cos 20 + s1n 26)° = =(cos 260 + s1n 20) — %(cos 66 — sm 66),

[N}

1
(cos 20 + sin 26) cos 20 s1n 20 = Z(cos 20 + sin 20) — i(cos 66 — sin 66)(3 77)
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Equating the (cos 26+ sin 26) terms and the (cos 66 —sin 68) terms, we obtain
two decoupled equations for g; and g, They read

dg 1 _ dhfit fo 9 hf» B> 9K’
d_§+(_?+3f)gl__d_€ 7 —6hf1+§hf2—2—f3'4—f3_g (378)
dgs 1 2df, _ b 3hfy B B (3 79)

R A 2 T R R T IT

Both equations (3 78) and (3 79) are of the form

dy _
ae TP =€) (3 80)
In the case of equation (3 78), we have
ne) = —5+3f
_ _cosh¢ 381nh§ (3 81)

sinh & cosh &

dh 3 3
a©) = ~FEE -ensiifan- g - -0
_ 2 5 9 3(6s1nh§ 1581nh§)(3 82)

— + J— —
cosh*& ~ cosh®é  2cosh®¢ cosh®¢  2cosh’ ¢

For equation (3 79), we have

L g, 24
p2(§) = 7 +3f 7
_ _coshf  3smh¢ 2 (3 83)

smhé ' coshé  smmh &cosh¢
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h3 3
Q2(§ ) = hfx _ 3h)s "

2f2 "2 4f3  4f

_ 2 5 5 smh & 3

- C - 3 84
cosh?¢  cosh®¢ * 2 cosh® ¢ % cosh® £ 2 cosh? ¢ )(384)

The general solution of equation (3 80) 1s
(€)= e [ge)el e (385)

where ¢ 1s any constant for which the integral converges Note that (3 85) 18
independent of ¢ To deterimine g, we calculate

/;pl(S)dS _ ln(COSh3 f)

86
sinh & ta (386)

and choose ¢ such that ¢; = 0 Then

— [pi(syas  Smh&
e~ Jopi(s)ds s (387)

and

fgpl(s)de :_§1 sinh & B 1 _ 9
/ql(g)eo ¢ 2 n(coshf) 4cosh®’€  8cosh*¢

smh{  5sinhé
C —
+ 3(cosh§ 2 cosh? §) +Co (388)

This gives a family of solutions to equation (3 78), nainely,

g 3sinh & Intanh € sinh &
1= -

9 sinh &

2cosh® ¢ 4cosh®¢  8cosh’¢

1 7 5 sinh &

+C. - + Co—57
3(COSh2 ¢ 2cosh*¢ " 2cosh® §) T cosh® ¢ (389)
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A similar calculation yields

sinh® &

— + 390
cosh® & “ (3.90)

£
/ pa(s)ds = In

where we can set ¢c; = 0 Hence

3
o~ S pasyas _ S0 L (391)
cosh® &
and
h§
[Epa(s)ds e _ 1 B 9 cosh{ 3sm L C
/Q2(§)e a 4smmh*¢  4cosh’¢ * 3(2smh§ 2cosh§) !
(3 92)
Finally we obtain the solution
sinh € 5sinh® ¢ sinh? & 3simnh* &
92 = 57 7 +es( 7 )
4cosh’>¢  4cosh’ & 2cosh® ¢ 2cosh” ¢
sinh® &
— 393
"cosh® ¢ (3 93)

To see whether g; and g, have the required properties we study the cubic
terms

I' = g1(&) + g2(&)(cos 40 — sin 46)
I* = g1(&) + g2(&)(— cos 40 — s 46) (3 94)

The function g; given by (3 89) and g, given by (3 93) vanish exponentially
at infimty Hence both have an acceptable asymptotic behaviour at infinity
The leading terins at the origin, however, are

3
g1 = —§r2 Inr + (3 95)
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L 5
= 3 96
92 = 357 + (3 96)
The asymptotic behaviour of g, and g5 at the origin are both not acceptable
if we require (3 94) to be a C* function Note that g; 15 not C® and that

g2 1s not O(r*) as 1t should be to make the second term smooth n both
equations (3 75)
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4 Abrikosov vortices

In this chapter we discuss a realistic model of a superconductor m a mag-
netic field This physical situation can be described by the Ginzburg-Landau
model At the point between type-I and type-1I superconductivity, the model
has static vortex solutions, so-called Abrikosov vortices Starting with 2 vor-
tices on top of each other, we give an expansion which describes vortices close

together This chapter gives a detailed account of the results presented in
Ref 9

4.1 The Ginzburg-Landau model

The Ginzburg-Landau theory of a superconductor in a magnetic field in di-
rection z 1s given by the Lagrangian density

1
4
where ¢ 1s the complex Higgs field, and

D¢ = 0,6—14,9,
F, = 0,4, - 0A4,

L= FF 4 S (DD +5061 2 -1 (4

1in terms of the gauge potentials A4,, 1 = 1,2

To find the Euler-Langrange equations we calculate

8£ ? T 1\ * A *
25 = 3D+ (e -1e,
oL 1, .
815% = azi(D ¢) (42)
This imples
oL oL 1 Lok A
@W—%:g(DzD ¢) _Z¢ (le]*-1) (43)
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and therefore

A
D.D'¢ =é(l ¢ [* 1), (44)
We also have,
oL 7 1
= —_ _Z 7 L\ * PR Y]
n = D gD,
ac
— = gl 4
82881AJ o, F (4 5)
and therefore
1
8. = ~L[$(D'¢) — ¢ D' (46)

In the special case A = 1, we can see that all solutions of the first-order
Bogomol’ny1 equations [8]

1
Fp = (- 1 — 9),
D1¢ = :F’L.DQQS (4 7)
satisfy the equations of motion (4 4) and (4 6) In fact we have,

D,D'¢ = Fu(D'Dyp — D*Dy¢)
= F[(8" — 1A4Y) (020 — 1420) — (0% — 142) (01 — 1419)]
= 3[:1[—281 (A2¢) -+ 262 (A1¢) — ’LA182¢ + ’LA261¢]

= Fo(Oudr ~ ) = FoFa = 2 ¢ P 1) (48)
which 1mplies that equation (4 4) holds

We also have

OF" = 9, F* = iaz[%(aﬁ +¢3 — 1)]
= (010261 + B202h) (49)
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and

“[9(D'9)" ¢ D'g]

= '%[((1)1 +12) [£(P o — A%¢1) £1(0P 1 + A’¢o)
(1 — 1) [H(0% ¢y — A21) F1(8°¢1 + A%¢)]]

= S [162(0%62 — A%1) £ 161(D%r + A1)
£192(0%0s — A1) £161(5°61 + A°2)

= F (20202 + ¢102¢1)

Furthermore,

O,F? = 0,F" = (10161 + ¢:01¢2),
and
~[6(D%)" — ¢" D]
= 5(01+102)[F(0" 62 ~ A1) F1(0'01 + A'¢)
~(¢1 —162)[F (0" p2 — Ald1)] £1(0" 91 + A'r)]]

= S [F162(0' 62 — A1) F 161(9' 61 + Al )
F12(0' 92 — A'¢1) F 191(0" 61 + Ald)]

= +(10'¢1 + $20°¢2)
which means that (4 6) holds

(4 10)

(411)

(412)

It can also be shown [10] that all finite action solutions satisfy the first
order Bogomol’'ny1 equations (4 7) Furthermore, 1t has been shown [10] that
a 2n-parameter family of solutions of (4 7) exists with winding number

1
n=— F12 dz.i?
2m JR2
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This family describes n vortices sitting at n positions m space In the fol-
lowing we concentrate on the equations in (4 7) with the upper sign
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4.2 Superimposed vortices and zero modes

Even for n vortices sitting on top of each other, the solution 1s not known
explicitly 1n terms of elementary functions It 1s known that this solution 1s

of the form
na(r)

¢ = f(,,.)emﬁ, Az — __——TQ SU.’L'J (4 14)
Using this ansatz we have,
Dip = e (Z2f — 2 f +172naf) (4 15)
r T T
. . oy To . T T
= —1Dy¢p = —1e (7f + mr—zf - zr—Znaf) (4 16)
Here we have used . .
31 = 787- - szr—gag (4 17)
Hence,
rf —n(l—a)f =0 (4 18)
Furthermore,
a(r a(r
F12 = n[31 (.’171%) + 62(1'2%)]
a(r) (z1)? ()%, .d 2a
= op’ @ @
nr2+(r+r)(r2 r3)
/ 1
= = 20190 =50~ 1) (419)
So ,
2
—T;Ci + 1= (4 20)
follows
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It can be shown [11] that (4 18) and (4 21) have solutions with the correct
asymtotic behaviour

f(0)=4a(0) =0, hm f(r)= lm a(r) =1 (4 21)

In the following, we restrict our attention to n = 2 and use the solution (4 14)
as the zero order term 1n an expansion 1n the separation parameters The
first order terms are given by the two zero modes describing the separation
of the vortices These were found by Wemnberg [12] Using the above result
and Weinberg’s zero modes we can write up to linear terms,

¢=fe' +2(a+1B)kf +
A 14, = zi—aew — 2(a+18)(k' + ?)e"o + (4 22)

where . 4
—Z;(Tkﬂ +kl)+(f2+7,—2)k=0 (423)

In fact with this ansatz we find

%(1_ Lo ?) = -;—[1 — [ — adk f? cos 26

—B4kf?sin20 | (4 24)
Also,
. 2a ko 2k, Ko 2k
F12 == al[ﬁx — 012(—; + 'ﬁ)l‘ - ,62(? + T—Q)CE + ]
2 k2%, ko2,
—62[—72-.’E - OzZ(? + ‘73).'17 + ,32(7 + T—z).'L' + ]
da . 2a. ko 2k, ko 2k
=T—2+(T—2)r—a2(7+r—2)frcos29—ﬁ2(7+T—2)rsm29+ (4 25)

The o and  independent terms cancel out as we have already seen above
The linear terms cancel out because of equation (4 23) So the first Bogo-
mol’ny1 equation 1s satisfied up to hinear terms by (4 22)
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We also have

Dig= 2 e — nZfe + a2 = (kf) + P2 (k) +
—z[—i—gcﬂ — a2(l—:; + %5—)172

+ﬁ2(k7 + i—lj)xl +  [fe™® 4+ a2kf + B2ukf ]

= ﬂf’ehﬂ . 22:1"_;]06210
T T
I ’ ’ Iy ' '
+a27(kf + fk) +522—(kf —|—fk‘ )+

)

2 Kook L2k
—z[—%fx?em—an(?Jr 7"2) 2220 ﬂ2f( ):vl 20
—awﬁ - ﬂzwﬁ + ] (426)
T T
and

—1Dy¢p = —7,[[ 21?0 4 fem + o222 (kf) + ﬂ?z%(kf)/ +
2a Ko 2%,
—z[ﬁxl — a2(? + ;2—)55

!

_52(’% 2’“)35+ lfe*® + a2kf + p2kf + ]

— [ f 210_1_2Z fe210

+az%(kf’ + fK) +ﬁ21—(kf +fk)

!

—Z[ f 1 210 azf(l%-i-il;) 1 216 ,62f( i];)x2e2w
to 4akf 1+54akf Ly (a2

The « and B independent terms cancel out, as we have seen above The
linear terms cancel out because of equation (4 23)
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4.3 The quadratic terms

Using the above results we can write up to quadratic terms,

b= fe +2(a+1B8)kf + Y+ afr+ Bx+ (4 28)

2 2
A + 14, = z—;e’e — 2(a+18) (K" + —7:]?)6"0

+a?(By +1By) + aB(Cy +10,) + B2 (Ey +1E,) + (4 29)

Our task 1s to determine 9, A, x, B,, C,, F,, which are functions of 7 and 6
Equating the a2-terms 1n the Bogomol’'ny: equations (4 7), we obtain

(01 +120)¢ + 2?(1’9/}619 —1f(By +1By)e?? = 4k f (K + -27‘—]{:)6_20, (4 30)

0By — 0By + S (Fe™ + fyre) = <K (431)

A Fourier expansion with the minimal number of nonzero terms leads to the
ansatz

= g(r)f(r)e™ + g(r)e™™”,
By +1By = b(r)e? +1b(r) f(r)e ¥, (4 32)

and to equations for g(r), §(r), b(r) and b(r) The equations for §(r) and b(r)
read

b—b, b=—ih (4 33)
The functions g(r) and b(r) must satisfy the equations
1
9"+ -9 = [l =2k, (434)

s 1, 1+ f% 1+4a+ 4a® 2k
b+;b—( 2f s (; a)b:—4kf(k’+7) (4 35)

Equating the o/3-terms in the Bogomol’ny1 equation (4 7), we obtain

2
(01 +102) A + —Tg)\ew —1f(C1 +1C)e*® = 8k f(k' + —2;)6—29, (4 36)
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0,Cs — 8,Cy + %( fre ™0 4 fare®?) =0 (4 37)

A Fourier expansion with the mimimal number of nonzero terms leads to the
ansatz
A = 215(r)e 20

Cy +1Cy = —2b(r) f(r)e™?, (4 38)
and to equations for §(r), and b(r) The equation for §(r) reads

14 2a ,

jg= b 4 39
g=— , (4 39)
and b(r) must satisfy the equation
2 1+4a+ 4a? 2
b”+%b’— (“;f Ty jf;“ “yb = —4kf(k'+7k) (4 40)

Equating the §*-terms 1n the Bogomol’'ny1 equations (4 7), we obtain

2 2
(01 +109)x + ?axew —1f(By +1By)e™® = —4kf (K + 7]{:)6_10, (4 41)

1
31E2 — 82E1 -+ i(fxe—QzH + fX*BQZg) = —2k2f2 (4 42)

A Fourier expansion with the minimal number of nonzero terms leads to the
ansatz

X = g(r)f(r)e*’ - g(r)e=*”,
Ey + 1By = b(r)e¥ — ab(r) f(r)e™?, (4 43)
and to the equations for g(r),§(r), b(r) and b(r) given mn (4 33) - (4 35)

Collecting all results, we can write the solution, up to quadratic terms,
1n the form

¢ = fe® +2(a + 18)kf
1+ 2a

+(a® + B gfe® + (a +16)%( b—b)e 0 +
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2 2k
A +14; = 17(1619 — 2u(a +10) (k' + T)e"’e

—1(a® + B g'e’ +1(a +1B)%bfe™> + (4 44)

It remains to be shown that the quadratic terms in (4 44) are C*° func-
tions on R? which do not change the action (and the winding number) To
this end we use the asymptotic expansions of f,a and k at zero [13],

1 1 1
f(r)= f1r2+§f17"4—|— , a(r) = §r2—ﬁf127'6+ , k(r) =r 4kt
(4 45)
where f; = 236 and k; = — 025 from the numerical analysis We find that
the solutions of (4 34) and (4 35) have the following expansions at the origin,

1
g(r) =g-1logr+ g + EffTZ +

b(r) = b_l’l’_l + b17‘ + (—;—bl — 2f1k1)7"3 + (4 46)

The higher order terms 1n g(r) are even powers of 7, whereas the higher order
term 1n b(r) are odd powers of r Hence, the quadratic terms in (4 44) are
C* near the origin 1if and only 1f g_; = b_; = 0 So far the constants g; and
b, are arbitrary

For large r the functions f,a, and k£ have the following asymptotic be-
havior [13]

1+
a(fr)=1+a(r)e "+ (4 47)
k(r) =ky(r)e ™+

with coefficient functions which are polynomially bounded This leads to the
existence of exponentially decaying solutions which asymptotically are of the
form
gr)y=gi(r)e "+ , b(r) =bi(r)e "+ (4 48)
Here §; and b, are polynomially bounded
By numerical integration, the coefficients ¢g; and b, which lead to an
exponential fall-off at infinity, are found to be g; = — 144 and b, = — 026
The existence of such functions can be explained analytically as follows
Equation (4 34) shows that for positive g;, g cannot have a maximum for
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any 7 So the function diverges exponentially For very small ¢;, the term
on the right-hand side of (4 34) will force the function to cross the r-axis,
and then, as before, diverge exponentially For very large negative g;, the
third term 1n (4 34) will force g to go through a maximum for large r After
that, the function cannot have a minimum and must go to minus infimity
Because of the continuous dependence on the 1nitial data, we have an open
set of data for which g crosses the r-axis, and an open set of data for which
g goes through a maximum below the 7-axis Therefore, we have at least one
value of g; for which the function does neither This function must converge
and does so to zero, exponentially

A similar argument explains the existence of an acceptable solution b(r)
to Eq (435) The right-hand side of that equation 1s positive So again
b cannot have a maximum above the r-axis Also, for very small negative
by, the right-hand side will force b to go through a minimum and then cross
the r-axis For very large negative by, the third term 1n (4 35) prevents b
from going through a mimimum In between these two possibilities we find
the desired solution which goes through a minimum but does not cross the
r-axis Such a solution must decay exponentially
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4.4 The cubic terms

The cubic terms can be calculated 1n the same manner If we consider the
third order terms

o= +ax+

Al + ZAQ = -+ Ong + 5 (4 49)

we obtain

1
2(e?0,B* + ¢70,B) — ;(e“"a,,B* )
14 2a
T

+f(€¥x* + e 20y) = —dkf(gf + b—1b)cos20 (4 50)

and

2
e’ (0, + %ag)x —1fe®B + Taewx

=2(k + Qr—k)(gfe”’ + (lt—zab —b)e ™)
+2kf(g e — bfe %) (4 51)

This time the Fourier expansion with the minimal number of terms is of
the form

X = b (r) + ho(r)e™*?
B =1C (r)e ™ 4 1Cy(r)e™>? (4 52)

Equation (4 50) and (4 51) are now satisfied if the following equations hold
! 2 ’ 2k: !
hy + fCy + T(lhl = 20f(K + =) + 2kfg (4 53)
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4+ 2a
T

1
Cl— ~Ci+ fln = ~2kf(gf +

2k 1+ 2a

hy + fCy + h2=2uﬁ+-;x b—b) — 2kbf? (4 54)

T
1+ 2a

b—b (4 55)
T

, 5
Cy——Cat fhy=0  (456)

Equations (4 56) and (4 53) can be solved for hy and C; respectively, and we
are left with two second order equations for h; and C5 respectively

The o283, a3? and 82 terms can be calculated 1n the same way Putting
all the results together, we find, at third order,

¢ = +(a—l—zﬂ)(a2+ﬁ2)fh+(a+2ﬁ)3(_cr+ﬂ0)e—4w+ ,
Ay +1Ay =
+Z(a+25)(a2+52)[~h'—§h+2g(k’+?)+2kgl]e—u9+Z(a+zﬂ)3fce—5za+

(457)
The new radial functions, h(r) and c(r), satisfy the equations,

4 142
B = (P4 )b = 4K+ 27 KRR +3fg+ b~ 1), (458)
2 2 2k, 1+ 2
w+1d—(1zf +9+42Z+4“)c:2kf%—ﬂy+7;x t‘“qu (4 59)
r T

Near the origin, Eq (4 58) has a series solution 1 powers of 72 of the
form

h(r) = ff + hr? + hor* + (4 60)

The constant term 1s given 1n terms of the coefficient f; of the leading term 1n

the expansion (4 45) of f(r) The form of this term leads to the cancellation

of the r~!-terms 1n the radial function multiplying e=* 1n (4 57), and thus

ensures that this term 15 C* on R? The series 1n odd powers of r for ¢(r)
which solves Eq (4 59) near the origin, 1s

c(r) = e1r® + cor® + (4 61)

The form of the series solutions at the origin guarantees that the cubic terms
m (4 23) are C* functions on R* For large r, Eqgs (4 58) and (4 59) have
exponentially decaying solutions Hence the action and the winding number
are unchanged by the inclusion of the third order terms
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5 Conclusions

Our expansions show a simple #-dependence 1n terms of trigonometric func-
tions In both models, the expansion of ¢ exhibits the following pattern

210

(3
6010
6—220 6219
6—419 6010
6—610 6—210 6210
6—819 6-410 6019

Here the first line gives the 6 dependence of the zero order term, the second
line gives the first order term, and so on We get a similar triangular pattern
for the 0 dependence of A; + 1A, at any order For the radwal functions
we find differences between the two models In the model for one complex
field, the radial functions can be given explcitly in terms of exponential
functions However, for the angular dependence (3 78), a singularity occurs
at the ongin (We have found no solution to (3 77) which 1s not of the form
(3 78), we have found no proof that there 1s none )

For the Ginzburg-Landau theory on the other hand, the expansion 1s
smooth, at least up to the order to which we carried out our calculations In
this model the radial functions are not given 1n terms of well-known functions
Having used the technique to calculate the terms up to third order, 1t 1s quite
clear how to proceed to any order, and also how to proceed 1n the case of
more than two vortices We expect these expansions to converge for small
separation parameters in the physical Ginzburg-Landau model However, we
do not have an estimate of the radius of convergence
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