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DYNAMIC ABRASION RESISTANCE OF 
ADVANCED COATING SYSTEMS

ABSTRACT

A novel test rig was designed and developed for testing the dynamic abrasion 
resistance of advanced coating systems used in engineering applications. Testing 
undertaken included abrasion, impact and combined impact-abrasion on uncoated and 
coated systems. Different coating thicknesses applied to a number of different 
substrates were tested during the experimental stage. Substrate materials consisted 
of aluminium, mild steel, and tool steels in annealed and heat treated conditions.

Thick and thin coatings of TiN, TixC, WC-Co and Ni-Cr were applied to the 
substrates which were then subjected to dynamic wear tests. Coatings were applied 
using High Velocity Oxy Fuel (HVOF) thermal spray and Physical Vapour 
Deposition (PVD) processes.

An on-line data acquisition system was adapted by writing an appropriate computer 
programme for measuring and recording the applied load during the testing process.

A comparison is made between existing wear test equipment and the one used for 
this research. Suggestions for further work are discussed.

Surfaces subjected to the dynamic wear conditions were examined using optical and 
scanning electron microscopes. Comparisons are made between the coated and 
uncoated substrates for wear resistance. Comparisons are also made between the 
experimental results and mathematical models for determining the wear coefficients 
of materials tested.

The main wear characteristics associated with surfaces in sliding and impact 
conditions and the effects of rebound on impact of materials are discussed. The 
application of advanced coating systems to reduce wear are also mentioned.

The main findings drawn from this research are based on the effects of dynamic 
abrasion tests on coated and uncoated samples and the effect of different substrates 
and coating combinations on wear resistance. The main differences between the 
sliding and impact test conditions, the coating type and the effects of coating 
thickness on wear resistance are reported.

This information may assist tool designers to specify and recommend suitable coating 
systems, thicknesses and processes to suit conditions associated with dynamic 
abrasion.



NOMENCLATURE

a '- = Crater radius (mm)

L = Normal load (N)

S, SI = Sliding distance (mm)

a, 0 =  Included angles (Degrees)

6 =  Angular displacement (Degrees)

m =  Mass (kg)

n =  Ratio of con-rod length to crank radius

W, W1 =  Width of wear scar (mm)

h =  Depth of wear scar (mm)

H = Material Hardness (N/m2)

V = Wear volume (mm3)

r =  Radius (mm)

1 =  Connecting-rod length

r2 =  Radius of curved surface (mm)

h, =  Crater depth (mm)

K -  Wear coefficient

k =  Wear constant

kj = Wear constant for coating

k, =  wear constant for substrate

k, =  wear constant for variable velocity

A =  Cross sectional area (mm2)
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V =  Linear velocity (m/s)

w =  Angular velocity (radians/sec)

t =  time (seconds)

F, R = Impulse force (N)

e " =  coefficient of restitution

P =  Applied pressure (N/m2)

W3 = Work done (N-m)

Vt = Volume of permanent indentation (mm3)

E, Elf E2 = Young Modulus of elasticity (N/m2)

E. =  Elastic energy

Er =  Rebound energy

V = Poissons ratio

X = Displacement (mm)

Of =  Flow stress (N/m2)

p =  Density (kg/m3)

Q =  Plastic zone size

u =  Velocity during restitution (m/s)

v l =  Velocity after restitution (m/s)

rf =  Radio frequency

dc =  Direct current

C -  Spring constant (N/m)
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CHAPTER 1 

INTRODUCTION AND JUSTIFICATION

1.1 SURFACE ENGINEERING

Surface engineering involves design of systems to deal with situations where 

components are subjected to complex external loading [1.1]. The role of surface 

engineering in preventing wear is well recognised and has evolved over the last few 

decades through the growing commercial maturity of a wide range of cost-effective 

surface technologies. Surface modification or surface engineering includes heat 

treatment, surface coatings, mechanical work-hardening processes, implantation 

processes and surface shape design [1.1].

Most of the functional requirements of products relate to the surface properties and 

by modifying the surface conditions, operating characteristics can be improved. In 

most surface engineering systems, both coatings and substrate will contribute to the 

overall tribological performance of the system.

1.2 WEAR OF ENGINEERING MATERIALS

Wear of engineering components such as cutting tools, machine parts and dies is a 

significant problem in industrial applications. Wear, fatigue and corrosion are the 

three most commonly encountered industrial problems leading to the replacement of 

components and assemblies in engineering [1.2,1.3]. High temperatures and humidity



can speed up the wear and destruction of materials [1.4-1.6]. Low friction will result 

in low wear generally but some parts may need to be replaced after a small amount 

of material has been removed or if surfaces are roughened while in operation.

For some applications, removal of 0.1 to 0.2 mm of material from a surface through 

wear may render it unserviceable, however, if this can be replaced by applying a 

coating, the component may become useful again. There are many types of wear that 

are of concern to the user of coatings, including sliding wear and friction, low and 

high stress abrasion, dry particle erosion, and slurry erosion [1.7]. Lubricity reduces 

the likelihood of built up edges (B.U.E.) forming on machining tools, and cratering, 

as well as tearing and galling of workpieces. Reducing the coefficient of friction has 

many advantages in machining processes but it may also require a change in the tool 

design [1.8]. Investigation of the wear resistant properties of advanced coating 

systems are carried out in this thesis. The corrosion and wear of a given metal 

depends on the environmental conditions (temperature, pressure, chemical, velocity, 

agitation etc), to which it will be subjected to in service. Many pure metals have a 

good resistance to atmospheric corrosion but they are usually too expensive and 

many are mechanically weak [1.9]. Reducing wear is important both for the life of 

the component and the efficiency of the machine or process that it is part off and 

surface coatings are becoming more extensively used for a wide range of modem 

applications.

2



1.3 ADVANCED SURFACE COATINGS

Designing the surface of components to match operating conditions is important 

especially if more expensive bulk material can be replaced by cheaper materials. 

Coatings perform functions which differ from the bulk material and are used under 

conditions which would normally lead to the failure of the bulk material. Such 

examples include cutting tools, jet engines and processes involving high temperatures 

and wear. In some applications, it may be economical to make the whole component 

from a particular material rather than apply a coating. Cutting tools of polycrystalline 

cubic boron nitride (PCBN) for machining hardened cast iron is such an example 

[1.10]. Surface coatings can offer a hard surface with a ductile core. In tribological 

applications where conventional lubricants fail under certain conditions, coatings may 

be used to replace them [1.11]. Coatings can be soft or hard, thick or thin, porous 

or dense, single or multi-layer, amorphous or crystalline. The choice of a coating 

material depends on the application and the substrate used.

Even though most materials can be coated, not every one can be protected with wear 

resistant coatings. In some coating processes, high temperatures are required. This 

limits the range of substrate materials for coating purposes to special tool steels and 

carbides for wear-resistant conditions [1.11].

In practice it is possible for a coating to wear and the substrate to be unaffected. 

Also the substrate may deform without any noticeable wear of the coating. This 

second form of wear may cause the coating to fail by spalling or breaking due to 

the collapse of the supporting substrate. A suitably designed coating system is then 

required for optimum conditions. A working coating system design involves two



critical interfaces, interface 1, between the coating and the environment or work 

material, and interface 2, between the coating and the substrate [1.12]. The 

generalised features of a working coating system are shown in Figure 1.1 [1.13]. 

The designer of components is now in a stronger position to optimise surface 

properties which can be independent of those of the bulk material.

1.4 JUSTIFICATION FOR PRESENT WORK

With the development of surface engineering design, the need to evaluate the 

properties of new raw materials and substrate-coating combinations is important. 

Numerous tests, coating processes and investigations have shown that the quality of 

the substrate reflects the quality and life of the combined system of substrate, 

interface, and coating. Tests on identical coating materials will ascribe different 

properties to the coating for different substrates and even for different coating 

thicknesses [1.14]. In many research works to date, authors have investigated the 

effects of contact abrasion, erosion and impact on uncoated components, mainly as 

separate problems [1.15]. More recently, experiments and testing on coated materials 

have occurred and some standardised, and experimental test equipment has been 

produced to meet specifications on wear resistance. Standard test methods such as 

pin-on-disc are used extensively to simulate rubbing action in which plastic yielding 

occurs at the tip of individual asperities. This testing is mainly carried out on a 

microscopic scale and contact pressures are less than 1 MN/m2 [1.16]. In thin films 

technology, scratch testing has emerged as a widely practiced technique for assessing 

adhesion of coatings to substrates [1.17].
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Unlike the pin-on-disc apparatus, the testing process for this research is done on a 

larger scale, abrading a wider surface area and, therefore, attempting to simulate 

industrial applications more closely. Thick coatings such as those produced in 

thermal spraying and weld facing seldom experience penetration during some 

standard wear tests available today. As yet, it is unclear whether behavioural models 

developed for thin, hard coatings necessarily apply to thicker coatings [1.18]. Using 

the test rig developed for this research, impact abrasion resulted in penetration of 

both thick and thin coatings. Pure impact testing on coatings have been conducted 

by some researchers, applying impact forces until the coating/substrate combination 

reaches its yield point [1.19]. The type of wear occuring under combined impact and 

sliding wear has hardly been studied according to Swick et al [1.20], and forms the 

main basis of this work. As most engineering components experience a more 

complicated situation than just pure rubbing or impact, a means of testing their 

combined effects seems a logical and necessary process at this time. Combined 

impact and abrasion occur in punching and cutting operations [1.21-1.23] as well as 

compression and metal forging operations, impact extrusion [1.24], and interrupt 

cutting operations. Other applications include the compression and extrusion of peat 

fuel, animal feeds, plastic granulating, machining operations such as milling, cutting, 

and turning, and earth moving equipment. Components subjected to impact- 

compression apply dynamic wear combinations to the forming tools producing them. 

In mining processes involving excavation, drilling, crushing and grinding of ore for 

example, wear is a combination of impact and abrasion [1.3]. Under the actions of 

continuous and intermittent cutting processes, the different wear parameters are 

shown in Figures 1.2. and 1.3 respectively.
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1.5 AUTHORS MAIN INTEREST IN RESEARCH AREA

A research project investigating the accelerated wear of tool steels used in briquette 

manufacturing for fuel purposes discovered that tool materials were been worn away 

at almost eight times their normal rate encountered over a period of twenty years. 

Initially, a number of suggestions were put forward as possible causes including:

(i) Wrong material specifications and incorrect material supplied.

(ii) Poor machining of tools leading to residual stresses on the surface which 

reduced wear resistance.

(iii) Heat treatment and annealing of the tool in service leading to a weaker and 

less wear resistant component.

(iv) Misalignment of machine parts, thus increasing wear of moving parts.

(v) Increase in grit and abrasive particles in the peat due to deep cutting of 

the bog causing an increase in abrasive wear on the tools and dies.

Each component of the die set was machined and ground four times before it was 

scrapped, resulting in a large wastage of tool steel. The effects of tool failure due 

to wear increased down-time of the production machines, increased machining costs, 

increased maintenance costs, led to loss of production, increased costs in tool steel 

requirements, and led to incorrect briquette sizes in the production process. Although 

the briquette dies, shown in Figure 1.4 were subjected to the combined effect of 

impact and abrasion, other problems such as thermal, and chemical corrosion of the 

tools were encountered. An investigation found that the tool material specification 

had not changed with time, that the loads applied to the tools were consistent with 

previous values, and that the main source of tool wear was a combination of dynamic



abrasion and plastic deformation. Investigations suggested the following possible 

solutions to the problem:

(i) New and better materials for the tools. An AISI D7 [1.25], tool steel 

which is recommended for briquette production was sought but was not 

readily available.

(ii) Heat treatment of the tools was investigated using vacuum heat treatment 

processes, however wear through abrasion and deformation continued.

(iii) Recommending changes to the shape of the tool profile to increase the load 

bearing contact area was not welcomed.

(iv) The final suggestion to solving this problem centered on surface coating 

technology. However the Company did not see this as a possible solution at 

the time due to the costs involved.

Considering the case discussed above, the author has highlighted a number of typical 

approaches to addressing the problems of counteracting wear and its effects on 

machine components. The study also highlights the complex nature of wear on 

materials and indicates that it is a combination of a number of wear patterns- which 

many standard wear tests fail to address. This investigation led to the design and 

development of a novel test rig for testing coated and uncoated materials under the 

effects of dynamic or combined impact-abrasion conditions which is more realistic 

of the real operating conditions.
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1.6 AIMS OF THE STUDY

The main aims of this study were:

(i) to design, develop, manufacture and commission equipment for testing 

coated and uncoated engineering materials under combined impact and 

abrasion.

(ii) to compare the effects of coated with uncoated samples under dynamic 

abrasion test conditions and the influence of rebound following impact.

(iii) to examine the performance of the coating-substrate combination and 

effects of different substrates on the overall wear resistance of the system.

(iv) to assess the performance of different coating thicknesses on substrate 

under dynamic abrasion wear tests.

(v) to describe the main wear parameters produced during the dynamic abrasion 

testing.

(vi) to compare the separate effects of impact and abrasion with the combined 

effects of impact abrasion on coated and uncoated materials.

10



Figure 1.4 Briquette die profile.

1.7 METHOD OF APPROACH

The method of approach is outlined in Figure 1.5. The theoretical approach consists 

of the analysis of abrasion and impact models. The experimental approach consists 

of (i) the test rig development, (ii) coating processes and wear test performed, (iii) 

examination of the samples tested and (iv) analysis of the results.

11



Figure 1.5 Method of Approach for the study.
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1.8 PRESENTATION OF THESIS

The thesis is arranged into seven chapters. Following the introductory chapter, 

chapter two is a literature review of surface engineering and advanced coatings and 

processes. Chapter three covers the main area of wear and wear testing equipment 

used in examination of bulk materials and coating systems. It also identifies an 

approach to solving methods of wear testing. Chapter four is dedicated to the test rig 

developed for the experimental work and compares the features of the test rig used 

in this investigation to that of existing wear test equipment. Chapter five describes 

the theoretical approach for the dynamic system of combined impact and abrasion. 

Mathematical formulae of abrasion and impact wear are analysed and a wear 

coefficient model is developed for the operating conditions of the test rig. In chapter 

six, the experimental approach is explained and the main results of the thesis are 

presented, analysed and discussed. Chapter seven highlights the main conclusions 

from the work and comments on future recommendations.
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CHAPTER 2 

LITERATURE SURVEY

SURFACE ENGINEERING AND SURFACE COATINGS

2.1 INTRODUCTION

A large number of research papers and publications have been produced on surface 

engineering and coating processes by researchers working in different disciplines. 

Some processes are considered traditional such as electroplating and heat treatment 

applications.

Techniques such as Physical Vapour Deposition(PVD) and laser processing etc., are 

also well established. Various surface engineering processes are shown in Figure 

2.1, and more specific processes, coating types, coating properties and applications 

for high wear resistance are shown in Figure 2.2. Coating applications are so 

advanced today that some processes are computer controlled [2.1].

2.2 COATINGS DEVELOPMENT

Coating of carbide inserts was introduced in the late 1960s and coating of High 

Speed Steels (HSS) in the late 1970s. In 1991, about 60% of all carbide tools used 

for cutting were coated, especially in the area of turning where the percentage was 

in the region of 80%. For milling, only 25% to 35% of the carbide inserts were 

coated as described by Konig et al [2.2]. The application of thin, hard, and

14
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Figure 
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Chemical Vapour Diamond film. Hardness. Cutting tools & dies.
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Titanium diboride. resistance.
Silicone carbide. Surface finish.
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Chromium oxide. Higher cutting
Silicon nitride. speeds and feeds.
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wear resistant coatings of carbides, nitrides, and oxides to carbide and steel cutting 

tools is now common practice [2.4], Thin coatings (1/xm to 8^m), properly applied 

tend to flex with the substrate and if fixed to a tough substrate, can provide shock 

resistance during machining operations. It is claimed in [2.4] that hard coatings 

applied to cutting tools increase tool life (2 to 10 times that of uncoated tools), 

increased productivity (increase of cutting speeds by 25-29%), improved workpiece 

quality (smoother surface finish and closer tolerances), and reduced machining forces 

(reduced power requirements). Coated tools combine wear resistance in their 

coatings with toughness and strength in their substrate. Hard coatings also have some 

disadvantages which include porosity, insufficient bonding to the substrate and in 

some cases, limited thickness [2.5]. Coatings provide high hardness at high cutting 

temperatures, thus reducing abrasive wear. Coatings act as barriers to decrease 

diffusion or reaction between tools and workpieces. It is well established that micron 

thick coatings of either wear resistant or low friction ceramic materials, applied by 

heating an insert in the presence of chemical vapours, producing a chemical vapour 

deposition coating, can improve performance of machining inserts [2.6]. Titanium 

carbide, (TiC) was one of the earliest coatings applied in this way and it improved 

wear resistance and reduced flank wear of tools. The PVD process which makes TiN 

coatings on tools was patented in 1969 by Alvin Snapper [2.7]. Some of the first 

coatings on tools in this form became available in 1981 in the West following earlier 

developments by the Soviet Union at the Kharkov Institute. Titanium Nitride (TiN) 

has become the most common coating for HSS cutting tools requiring sharp edges. 

It is highly inert, with no tendency to form alloys with common metals. As a result, 

TiN and Titanium Carbide (TiC) coated tools resist abrasion, adhesion, galling,
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welding, cratering and the formation of Built Up Edges (BUE) [2.4].

Multiple coating layers can be tougher than one thick layer as the grain structure 

may be more refined and they may possess better elastic behaviour over a single 

thick coating. Cemented carbide inserts are commonly coated with a combination of 

TiN, TiC and Aluminium oxide [2.8]. Most, if not all, coatings will be in a state 

of internal stress when applied. They experience shear, tensile and compressive 

stresses and in some cases, the interfacial shear stress may exceed the adhesion 

strength of the coating-substrate interface and lead to cracking and spalling of the 

coating [2.9]. Coatings tend to be less beneficial on high stress, short life parts 

where the substrate is likely to yield, chip or break [2.10]. In other applications such 

as dimpling punches, life may be extended three or four times using coatings.

2.3 COATING PROCESSES

In researching this work, many coatings and coating processes were investigated, 

however only those related to the experimental procedure are discussed in detail with 

a brief outline given on other coatings. Some emphasis has been placed on coatings 

suitable for wear resistance applications.

2.3.1 Selecting a coating

Before selecting a particular coating the following factors may be considered:

(i) What are the objectives of the coating.

(ii) Can the coating material be applied to the substrate.

18



(iii) What effects will the coating have on the substrate.

(iv) Can the coating be applied economically.

(v) How will the coating be applied.

(vi) Can the coating be renewed at a later date if necessary.

(vii) Can the substrate material withstand the processing steps 

required to deposit the coating.

(viii) Will the coating impair the properties of the bulk material.

(ix) Will the shape of the component restrict the application of a coating.

In practice, coatings may confer one or more of the following properties:

(i) Corrosion protection.

(ii) Build up of material due to restoration.

(iii) Decorative purposes.

(iv) Wear resistance.

(V ) Hardness.

(vi) Optical or thermal reflectivity.

(vii) Electrical conductivity.

(viii) Oil retention.

(ix) Solderability.

(X ) Thermal conductivity.

Some important requirements for protective coatings at high 

temperatures [2.11] include:

(i) High melting temperature.

(ii) Hardness.
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(iii) Corrosion resistance.

(iv) Low permeability and diffusion for oxygen to prevent internal substrate 

corrosion.

(v) High density, to avoid gas flux through open pores to the substrate.

(vi) Stress free or in a state of compressive stress at working temperature.

(vii) Good adhesion.

At temperatures up to 540°C, coatings based on tungsten carbide and cobalt in 

varying proportions are commonly used. Temperatures up to 670° C call for tungsten 

carbide and nickel chromium. At temperatures up to 980° C, coatings based on 

chromium carbide and nickel chromium are used.

Oxide coatings can offer advantages over carbide-based coatings because of better 

corrosion and oxidation protection. Zirconium oxide coatings, for instance, are used 

for high temperature thermal barrier applications. However, oxide coatings are more 

easily damaged by mechanical and thermal shock compared with carbide coatings. 

For multi-coating systems, by optimising the thickness of individual layers, the 

hardness of the coatings can be maximised, as reported by Chu et al [2.12].

2.3.2 Coatings for cutting tools

The main coatings applied to cutting tools include:

(i) Titanium carbide (TiC).

(ii) Titanium nitride (TiN).

(iii) Titanium carbonitride Ti(C,N).

(iv) Aluminium oxide (AljOj).
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(V ) Hafnium nitride and Hafnium carbide (HfN & HfC).

(V i) Chromium Carbide (Cr7C3).

(vii) Tantulum carbide and nitride (TaC & TaN).

(via) Zirconium carbide and nitride (ZrC & ZrN).

(ix) Silicon carbide and nitride (SiC & S3N4).

(x) Boron nitride and Cubic boron nitride (BN & CBN).

(xi) Boron-carbon alloys and diamond like carbon (BC & DLC)

(xii) Niobium nitride (Nb-N).

(xiii) Chromium nitride (CrN).

(xiv) Aluminium nitride (AIN).

2.4 SURFACE TREATMENT PROCESSES

2.4.1 Shot peening

A mechanical solution to changing the surface properties of materials consists of shot 

peening, which work-hardens the surface but not to the extent of flame or induction 

hardening. The material at the surface yields, while the core material exerts an 

opposite reaction thereby inducing a hemispherical field of compressive residual 

stress in the surface [2.13]. This process improves fatigue resistance. Micro shot 

blasting of coated surfaces also improves wear resistance. If however the material 

is then heated above a certain temperature it may anneal which may reduce its 

overall strength.
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2.4.2 Diffusion

Surface layers may be altered by diffusing elements such as nitrogen, silicone, 

sulphur and boron into the surface layer. This process can improve wear resistance 

of metal surfaces.

2.4.3 Carburization

This process is restricted to steels with low carbon content (0.2% C or less). It takes 

place at temperatures above 850°C. The rate of diffusion depends on the atmosphere, 

time and temperature and the steel composition. On quenching after carburizing, 

some distortion of the material may occur.

2.4.4 Nitriding

This process involves heating steels of certain compositions in an atmosphere of 

cracked ammonia around 550°C and it produces a fine, well dispersed precipitate of 

hard nitrides in the surface layers. Elements with a high affinity for nitrogen such 

as molybdenum, chromium, vanadium, aluminium and titanium are usually added 

to the steel to perform the nitriding process effectively.

2.4.5 Cyaniding and Carbo-nitriding

Cyaniding is used to describe a salt bath process. Carbo-nitriding refers to a gaseous
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diffusion process. In these processes, carbon and nitrogen are diffused into the 

surface layers. The cyaniding process uses low temperatures (500 to 600°C) and 

higher temperature processes (800 to 900°C). The low temperature process gives 

thin, hard layers rich in nitrogen. No heat treatment is required following the 

process. The higher temperature process gives thicker layers high in carbon. These 

layers have to be hardened by quenching after the process. Diffusion 

borochromizing, as reported by Kolesnikov et al [2.14], produces a surface layer of 

chrome borides (in addition to iron borides), which provide high hardness and high 

crack resistance under dynamic impact loading.

2.4.6 Induction hardening

With this process, the core depth can be controlled, producing hardness values up 

to 600 to 700 VPN if the material is stress relieved and has the correct structure. 

Flame hardening on the other hand is not so precisely controlled and it is important 

to avoid long heating cycles at high temperatures as this can give rise to grain 

coarsening, embrittlement, cracking and distortion.

2.4.7 Ion Implantation Processes

This process involves the bombardment of surface layers of materials with other 

elements. It is a vacuum process and a line of sight method [2.15], although plasma 

ion implantation techniques have recently emerged as non-line-of-sight methods 

[2.16]. In conventional processes, ion penetration is about 0.2/xm [2.17,2.18].
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Components are placed into a vacuum chamber at a pressure of 2xl0'6 torr and the 

ion source is activated to bombard the workpiece surfaces with projectile ions. These 

collide with atoms in the crystal lattice of the material, are slowed down and cause 

local dislocations and radiation damage. The ions lodge below the surface and lock 

into place. This offers wear resistance at depth. Due to impact, the ions are in a 

compressive state and tend to close up any microcracks on the surface [2.19]. The 

impact improves the tensile strength of the material and increases fatigue resistance. 

The closing of surface cracks by the ions blocks out other chemically abrasive 

materials thereby reducing corrosion effects. The main advantages of the process 

include:

(i) No distortion of the material as the temperature of the process is carried 

out at around 200° C.

(ii) No oxidation occurs due to the vacuum process.

(iii) No adhesion problems because it is not a coating process.

(iv) No dimensional changes.

(v) No surface damage.

Applications of the Ion Implantation process include Tungsten carbide dies and drills, 

mould tools, extrusion and injection screws, slitting, cutting, punching and stamping 

tools, medical prostheses and ball bearings [2.15,2.20,2.21].

2.5 THERMAL AND MECHANICAL PROCESSES

Coatings may be applied mechanically by roll or extrusion bonding or by forging. 

These processes use pressure welding between the coating and substrate.
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Contaminants (oxides) are difficult to eliminate in these processes. Such 

contaminants are normally broken down and diffused into the plastically deformed 

metals. Cladding and extrusion processes are well-practised processes and coatings 

produced in this way are free from pores or other coating discontinuities.

2.5.1 Sheradising

This is a cementation process where steel components are heated in a drum in the 

presence of zinc powders at about 370°C. A thin, uniform layer is applied to the 

component without affecting the tolerances to any great degree [2.22].

2.5.2 Cladding

In this process, a base metal is sandwiched between sheets of the coating metal and 

then rolled to the required thickness. The sheets are welded together in the process. 

Along with rolling and explosive bonding methods, overlay rolling, cast rolling, 

diffusion bonding, brazing and rolling, and the explosive rolling have been developed 

[2.23]. Laser cladding technology is also used for producing surface layers suitable 

for corrosion, wear and erosion resistance [2.24].

2.5.3 Anodising

This process is normally applicable to alloys of aluminium to improve the oxide 

layer of the material. The oxide film forms a hard wear, resistant coating, which

25



may be dyed for appearance.

2.5.4 Thermal sprayed deposited coatings

Thermal sprayed processes take a suitable powder or wire, heat it to its melting 

temperature and project the molten particles on to a correctly prepared substrate to 

form a bonded coating [2.25]. They are line of sight processes. The flattened, 

solidified globules adhere by mechanical means and there is no alloying action 

between the two metals. As successive globules strike and flatten on a surface, they 

become partially welded together and a cohesive coating is built up. The porous 

nature of such coatings allows some attack to take place within the coating thickness. 

Corrosion products may then be readily entrapped, plugging the pores and stifling 

further corrosion. These coatings may be applied by welding or thermal spraying, 

and plasma spray techniques. They are mainly applied for corrosion and abrasion 

wear resistance. Oxyfuel Flame-Powder(OFP), Oxyfuel Flame-Wire(OFW), Oxyfuel 

Flame-Rod or cord(OFR), Electric Arc-wire(EA), Plasma Arc-Powder(PAP), 

Hypersonic Oxyfuel Process(HOP), and Controlled athmosphere Plasma spray(CPA) 

are examples of such processes. Some of the thermal spray processes produce 

porous, thick coatings. Plasma spraying is performed in a low pressure, inert 

athmosphere and is capable of producing dense, oxide free coatings.

Grit blasting or chemical pre-treatment of the substrate can be performed, the former 

giving a roughness for adhesion of the coating. Post treatment is confined to 

machining components to size and some receive heat treatment. Thickness of 

coatings range from 0.1 to 1.0 mm [2.26],
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2.5.5 High Velocity Oxy Fuel (HVOF) Process

This process was used for applying some of the coatings to the different substrates 

in the experimental work of this thesis and a schematic of the process is shown in 

Figure 2.3. A schematic of the diamond jet spraying gun used with the process is 

shown in Figure 2.4. A Tungsten Carbide-Cobalt coated aluminium sample, viewed 

by a scanning electron microscope and showing a cross section of the coating 

thickness and adhesion to the substrate is shown in Figure 2.5. The HVOF spray 

process uses an oxygen/propylene/air gas mixture and consists of a manually 

operated Diamond Jet Gun, a powder feed unit, a flow rate meter, air supply and 

control unit. A spray booth and extractor system are required to remove unused 

sprayed particles. The coating powder is carried by nitrogen and fed into the center 

of the flame. It is heated to its molten or semi molten state and is accelerated 

towards the surface [2.25,2.27]. Due to the high velocity and high impact, the 

coating is less porous than normal thermal spray processes, and has good bonding 

strength to the substrate.

The main advantages of this process and similar thermal processes are that they can 

be used for repair work on components without the use of a vacuum chamber. This 

permits applications of thick and thin coatings to large and small surface areas.
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Figure 2.4 Schematic of cross section of diamond jet spray gun.

Figure 2.5 Micrograph of WC-Co coating on aluminium sample.
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2.5.6 Hypersonic combustion thermal spray process

This is a recent process and consists of burning under pressure, oxygen and a fuel 

gas. The hot exhaust gases exit down a norrow bore nozzle where finely powdered 

material is axially introduced. The powder is heated and accelerated by the gas jet 

and is propelled towards the substrate at velocities of lOOOm/s. The thermal and high 

kinetic energy on impact gives high bonding to the substrates [2.28].

2.5.7 Plasma arc torch

The arc is an ionised gas plasma struck between water-cooled metal electrodes that 

are not consumed in the process. This produces a high velocity ionised plasma jet. 

Powdered material is introduced into the flame and transported to the surface [2.28]. 

This process uses very high temperatures and the heated expanded gas is used to 

melt and propel the powder particles on to a substrate to form a dense coating. This 

is a continuous coating process which maintains the properties of the powder because 

an inert gas is used for feeding the coatings. Coating powder particles are metered 

in a secondary gas stream (usually nitrogen or argon) into the high velocity, high 

temperatue plasma flame. The coating is aimed towards the substrate which lies 

between 20mm and 150mm from the torch nozzle. The process is a line of sight 

deposition process [2.25]. Porosity is in the region of 1 to 10%.
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2.5.8 Applications of Plasma Techniques

Applications for Plasma spraying techniques include wear resistance, fretting and 

sliding wear, galling, abrasion, erosion, [2.29] and corrosion. Plasma techniques 

offer the following to components [2.25].

( i ) Increased operating life.

(ii) Greater scope for design and development engineers.

(iii) Ability to salvage wom/mismachined parts.

(iv) Ability to strip and recoat.

(V ) Weight savings.

( V i ) Cost-effective solutions.

2.5.9 Reduced Pressure Plasma Jet Spraying

In conventional practice, plasma spraying is conducted in ambient athmosphere, so 

that formation of a porous coating of insufficient corrosion and heat resistance has 

often been inevitable. When executed under a reduced pressure, both the temperature 

and velocity of the plasma jet can be increased, and more tightly bonded, denser 

coatings can be formed [2.23].

If the coating time is short, heating of the substrate is minimised, which is caused 

by the impact of the metal powders cooling on the substrate. In most cases, cooling 

of the substrate is carried out to prevent dimensional or metallurgical changes 

occuring.
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2.5.10 Detonation gun

This involves controlling the detonation of mixtures of oxygen and acetylene in a 

specially designed chamber. If powder particles are suspended in the gas mixture 

prior to detonation, the high velocity, hot gas stream can be used to accelerate and 

melt the powder particles and impact them onto a substrate. The extra kinetic energy 

of the coating particles generates heat when impacting the substrate. The detonation 

wave involving a 50/50 mixture of oxygen and acetylene can travel at 2930m/s 

towards an open ended tube as reported in [2.25]. The speed of the particles depends 

on the the gas mixture, barrel length of the gun, size of particles, and the position 

of the powder prior to detonation. The cycle is repeated 4 to 8 times per second, and 

the coating is very dense, with low porosity, and fine grained with coating 

thicknesses of 0.1mm to 0.3mm.

2.5.11 Coating properties for thermal and detonation gun processes

The hardness of detonation gun coatings are generally higher than equivalent coatings 

applied by other flame spraying processes. A rough hardness value for a tungsten 

carbide cobalt detonation gun coating is over 1,150 HV (Vickers hardness pyramid 

number). Plasma spraying of similar coatings is in the region of 600 to 800 HV. 

Combustion spraying is lower still [2.25].

Porosity of detonation gun coatings is of the order of lOjim diameter, which is well 

below the porosity expected from plasma sprayed coatings and combustion processes.
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The bond strength of detonation gun coatings to their substrate are high (values of 

60 to a maximum of 170 MN/m2 have been measured). This exceeds plasma coatings 

(20 to 60 MN/m2). For the detonation gun process, the oxide quantity may be held 

to 2%. The plasma process using inert gases can range from 1 to 8%. Combustion 

processes may give a quantity of 10 % or greater.

2.5.12 Finishing coatings from plasma and detonation gun processes

Both coating types can be used as-sprayed, for many applications. Roughness values 

in the as-sprayed form are 3.0^m CLA (Center Line Average). The roughness can 

be reduced by brushing with an abrasive-loaded brush. This gives a nodular finish 

by reducing the peaks of the coating surface without affecting the thickness of the 

coating.

2.6 WELD SURFACING

Weld surfacing makes use of welding techniques to deposit high performance 

materials onto selected areas of a component’s surface. It is used for repair work and 

some of the processes include Arc weld surfacing, friction surfacing, and laser 

surfacing [2.30].

2.6.1 Arc Weld Surfacing

The electroslag strip cladding process, improvements to the plasma MIG process and
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the availability of hardfacing alloys in strip electrode form are three applications for 

coating of large surfaces [2.29].

Plasma-MIG combines two conventional welding arcs, a transferred plasma arc and 

a MIG arc. For surfacing, two modes of operation can be used. The rotating arc 

metal transfer for solid wire consumables and conventional droplet metal transfer 

using large electrode extensions for cored wired consumables [2.30]. Both techniques 

can achieve deposition rates of 12 Kg/hour.

The synergic pulsed MIG process is suitable for surfacing applications because of the 

improved arc stability and weld quality achieved at low mean currents. It is used for 

applying corrosion resistant materials such as Inconel, Monel, and Stainless Steel 

(SS). It is also used for depositing wear resistant materials using cored wire 

consumables such as martensitic SS and stellite alloys.

2.6.2 Friction Surfacing

This involves pressing a rotating consumable rod on to a moving substrate to deposit 

a layer [2.30]. It is a solid phase process and can produce thin layers with good 

adhesion, producing a deposit with the same composition as the consumable used.

2.6.3 Laser surfacing

Lasers can be used for a range of surfacing and surface treatment processes. They 

are applied for transformation hardening and surfacing of precision components 

where the heat and deposit must be controlled accurately. The heat also controls the
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depth of hardening.

2.7 GASEOUS AND VACUUM PROCESSES

2.7.1 Vapour deposition

Vapor Deposition may be defined as the condensation of elements or compounds 

from the vapour state to form solid deposits [2.31]. The physical technique includes 

vacuum metallizing (or vacuum evaporation) and sputtering. Sputtering is based on 

the bombardment of a target with excited ions. It is a versatile, low temperature 

vacuum process. Practically any element, alloy or compound which can be formed 

into a stable sputter target can be deposited. A schematic of a simple DC sputtering 

system is shown in Figure 2.6.

Sputtering is used to deposit films of high melting point as well as 

low-vapour-pressure materials, which are difficult to evaporate [2.32], The 

deposition process is a versatile and relatively inexpensive method of molecular 

forming and building of coatings by controlled deposition of matter on an atomic or 

molecular scale [2.33-2.35]. Conventional sputtering techniques have low deposition 

rates. Magnetron sputtering sources offer high target erosion rates. The combination 

of hardness and corrosion resistance of various sputtered coatings make them suitable 

for tribological applications.

Vapour deposition includes Chemical Vapour Deposition (CVD) and Physical Vapour 

Deposition (PVD). In PVD processes, the feed vapours must be generated by 

evaporation from a surface, usually solid. The vapourised material is then
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Figure 2.6 Schematic of a simple DC sputtering unit [2.54]



transported from the source of the feed to a substrate on which it condenses [2.31]. 

The vapor-deposited materials are produced and maintained at temperatures below 

their melting points, and, therefore, structural or compositional effects can be frozen 

in the deposits. Physical processes are confined to thin film coatings (1/xm to 4/xm), 

whereas chemical processes are used both for thin films and thick coatings in excess 

of 1mm [2.29],

2.7.2 Chemical Vapour Deposition (CVD)

In Chemical Vapour Deposition, the coating is formed by a chemical vapour 

reaction between gaseous reactants introduced into a vacuum chamber containing the 

heated component. Tools to be coated are precleaned, placed on coated graphite or 

high temperature alloy work trays and loaded inside the retort of a CVD reactor. The 

tools are then heated under an inert, reducing or carburizing athmosphere. The 

volatile coating material is thermally decomposed or chemically reacts with other 

gases to produce a non-volatile solid that deposits on the hot tool surface. A wide 

range of materials can be applied by this process including carbides, nitrides, oxides 

and borides. The coating thickness deposited and the deposition rates depend upon 

the reactant concentrations, pressure, temperature and time [2.4]. Reactive gases of 

either nitrogen or methane, to produce either TiN or TiC, are also introduced into 

the chamber. It is the main method for coating sintered carbide inserts. Typical 

coatings for CVD processes are listed in reference [2.17]. High hardness and 

corrosion protection can be obtained and adhesion is good due to diffusion of the 

coating into the substrate. The coating process is carried out at 5 to 500 torr pressure
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but high substrate temperatures are employed and, therefore, many substrates cannot 

be coated in this fashion. Temperatures of 900 to 1100 °C for instance, are used to 

coat carbide cutting tools with coating thicknesses to about 10/xm. It is not generally 

practical to deposit coatings on sharp edges when using the CVD process. Rounded 

edges are recommended, which may limit the precision required [2.4]. Thicker 

coatings with good adhesion is possible with CVD and irregular geometries are 

coated with ease. A schematic of a CVD reactor system is shown in Figure 2.7.

2.7.3 Physical Vapour Deposition (PVD)

PVD covers three major techniques, evaporation, sputtering and ion plating [2.17]. 

In PVD processes, material is physically removed from a source by evaporation or 

sputtering. The vaporized material then moves through a vacuum or partial vacuum 

by acquired kinetic energy [2.4]. The vapour then condenses as a film on the 

surfaces of substrates. PVD is the main way of coating HSS tools because of the low 

temperatures (150 to 500° C) employed, and the heat cycle does not change the 

performance of uncoated carbides as reported in [2.2]. The process gives finer grain 

size coatings than CVD and duplicates the surface finishes of the substrates [2.36]. 

PVD coatings deposit thinner coatings than CVD processes (1 to 4/xm) [2.37]. 

Coatings do not build up on the edges in this process and sharp comers are permitted 

as opposed to the CVD process [2.4], The PVD process is line of sight and, 

therefore, tools must be rotated for coating purposes. A schematic of a Balzer’s PVD 

system is shown in Figure 2.8.
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Figure 2.7 Schematic of a CYD reactor system [2.62].
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Figure 2.8 Schematic of a Balzer’s PVD system [2.54].
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2.7.4 Electron Beam Physical Vapour Deposition

This process is used to deposit 100 ¿tm films of alloys such as nickel or cobalt base 

alloys (NiCoCrAIY or CoCrAIY) on to surfaces to improve corrosion resistance 

[2:33]. Plasma assisted PVD is used to coat HSS hobs, shaper cutters, shavers, 

drilling, milling, tapping, reaming, turning tools and broaches as well as punches 

and dies.

2.7.5 Reaction-ion-plating (PVD PROCESS)

This process allows the deposition of ceramic films at below the tempering 

temperature of High Speed Steel (HSS) [2.7]. Therefore, cheap tool steels can be 

coated with excellent adhesion, and uniformity of coating to the substrate. 

Reactive-ion-plating methods provide means of increasing the energy of the 

deposition atoms. An activated reation evaporation (ARE) process involves 

bombarding a surface with ions of an inert gas, such as argon, prior to evaporating 

the coating material. This removes surface contaminants and heats the component, 

which assists adhesion. Biased activated reaction evaporation (BARE) combines ARE 

with a negative bias on the tools [2.38]. It is shown in [2.49] that if the proportion 

of ionised to non-ionised species striking the tools can be increased, then the 

structural and compositional characteristics of the coating can be improved.
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2.8 COMPOSITE COATINGS

A number of methods exist for depositing composite coating. One way in which they 

can be formed is when a metal is deposited electrolytically or autocatalytically from 

an aqueous solution in which particles are maintained in suspension [2.40,2.41].

2.9 ELECTRODEPOSITED PROCESSES

In electrodeposition, material is deposited on a conductive surface by the discharge 

of individual ions, which arrive at the surface through a liquid or solvent medium 

[2.31]. Electrodeposited nickel offers athmospheric protection as well as high 

temperature oxidation resistance.(e.g. tips for gas soldering irons). Hardness of the 

deposit may vary from 120 to 400 HV. Electrodeposited nickel applications include 

ball race bearings, splines, threads, gear and flywheel housings for resalvage work. 

Pump parts using thicknesses of 10/xm and marine components as an undercoat to 

hard chromium are often employed. The effects of fretting corrosion are reduced by 

nickel coatings.

2.10 SURFACE COATINGS

2.10.1 Tungsten Carbide Cobalt (WC-Co) Coatings

These coatings were applied for wear testing in the experimental section by the 

HVOF process described in section 2.5.5. WC-Co coatings have been prepared using
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numerous surfacing techniques such as plasma spraying in air or vacuum using a 

variety of carrier gases or hypersonic spraying systems. Each process produces a 

large range of coatings and coating properties. Spray setting and powder 

manufacturing processes can be divided into several classes causing wide 

microstructural differences.

WC-Co type cemented carbides generally exhibit a high hardness, a high rupture 

strength and a low ductility. At low cobalt content, WC-WC junctions exist whereas 

at higher cobalt contents, thin cobalt layers separate the WC grains. These layers are 

of thickness 2-40 nano meters. The thin cobalt layers give rise to the high rupture 

strength of WC-Co [2.42], Cobalt is the main binder material used for Tungsten 

Carbide because it fulfils many of the requirements such as high melting point, high 

temperature strength and gives a tough binding property. It also forms a liquid phase 

with WC, and dissolves it. It can also be ground to a very fine state for mixing with 

the hard WC particles [2.43]. WC-Co are applied mainly for the prevention of wear 

where fine abrasives (< lmm ) are present as either contaminants or in a slurry 

[2.44]. For intense abrasion by large abrasives (gouging), the thin and brittle WC-Co 

coatings are regarded as unsuitable, according to Schmid and Nicoll [2.45]. Wear 

decreases with the carbide size. The generation and propagation of cracks is a 

function of the crack initiation points present in the coating structure and in the 

contact zone, which are a function of the sliding speed, friction and applied load. 

Small carbides do not fracture easily and should a crack develop, it has difficulty 

developing through the ductile matrix. The Cobalt matrix has allowed a very hard 

brittle substance, WC, to be used for a large range of applications by altering the 

toughness of the product, so that one can go from a roughing cutting operation
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requiring shock loading to a finishing tool requiring high hardness.

2.10.2 PCBN: Poly crystalline cubic boron nitride

Boron nitride is a compound consisting of almost equal numbers of boron and 

nitrogen atoms, which has a hexagonal structure and can be transformed into crystals 

of Cubic Boron Nitride by high pressure and high temperature processes with the use 

of catalysts and solvents to increase the transformation rate. In the mid-1950s, the 

synthesis of Boron Nitride (BN) with a diamond like structure, cubic BN (cBN) was 

achieved. Two years later, man-made diamond was produced under high temperature 

and pressure.

Since then and following a decline in the interest of growing cBN films, new interest 

has emerged recently due to the excellent properties of these films.

Boron Nitride shows unique structural, mechanical, optical and electronic properties 

that lend it to industrial applications. Cubic boron nitride was until recently available 

as a bulky crystal type material. Today, it can be produced as a two dimensional thin 

film. Polycrystalline cubic boron nitride (PCBN) have a well-established market. The 

mechanical wear resistance of BN films are highlighted by their super-hardness, high 

Youngs Modulus of rigidity, and high degree of chemical inertness. One main 

application of cBN is for low friction films, which are required for a variety of 

precision thermodynamic engines (Stirling, adiabatic diesel engines and gas turbines). 

PCBN is produced by compacting and sintering the individual crystals together to 

form a polycrystalline mass. Random orientation of the crystals provides high 

hardness and abrasion resistance in all directions [2.46]. Different properties can be
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produced such as hardness, wear resistance and toughness. The hardness and 

abrasion resistance of cBN is second only to diamond as described in reference

[2.47]. Cubic BN is much harder than abrasive materials like A120 3, SiC and boron 

carbide [2.48]. PCBN has high impact resistance, toughness and hot hardness, and 

high thermal conductivity. PCBN tools are not recommended for austenitic or ferritic 

cast irons. Large areas of free ferrite in cast irons will cause rapid wear and short 

life of PCBN tools. They may also be subjected to chemical wear if machining 

nickel-based superalloys. They operate well if the microstructure is pearalitic and 

high cutting speeds are used (488m/min +). Machining of hard (Rc 40-70) abrasive 

cast iron such as martensitic structures, and martensitic irons such as Ni-hard or high 

chromium irons are a useful application of PCBN tools. Hard faced, wear resistant 

alloys applied by weld deposition, plasma spraying or casting which were normally 

ground are now machined by PCBN tools [2.49-2.52].

2.10.3 Titanium carbonitride

These coatings provide high wear and corrosion resistance as well as resistance to 

mechanical shock. They can be applied in thick coatings for turning or thin coatings 

for shock such as in milling applications. In multilayer CVD coatings, the 

intermediate properties of Ti(C,N) make it a suitable sandwich layer between TiC 

and TiN [2.4]. Both Titanium Carbide (TiC) and Titanium Nitride (TiN) are 

isomorphous, and a continuous series of solid solutions can be prepared from them. 

Both materials can exist in compositions considerably below their stoichiometric 

values for carbon and nitrogen content, which affects their properties [2.53]. Studies
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involving cemented TiC base materials have shown that an improvement in physical 

properties can be obtained by TiN additions. Such improvements include an increase 

in resistance to plastic deformation, and improved tool life in turning and milling. 

Some of these features were attributed to grain refining, an increase in thermal 

conductivity and improved thermal shock resistance as reported in [2.53].

2.10.4 Titanium carbide

TiC, which was introduced during the 1960s for carbide cutting tools, is today 

applied to forming tools, such as punches and dies, and where abrasive wear is 

predominant. Threading and grooving operations involving low speeds are also 

suitable applications. They provide high hardness and abrasion resistance, with low 

coefficient of friction and resistance to cold welding. Since its thermal expansion is 

close to that of tungsten carbide (WC) when compared to other hard coatings, it is 

often used as the first layer in multilayer coatings to minimise thermal stresses at the 

interface with the WC substrate. The coating also acts as a barrier to prevent the 

diffusion of carbon from a tungsten carbide substrate to the coating [2.4].

2.10.5 Hafnium nitride

It has a high hardness and chemical stability at at temperatures up to 800°C, with a 

coefficient of thermal expansion close to that of Tungsten Carbide (WC). It also 

provides good resistance to abrasive wear, cratering and flank wear [2.4]. A number 

of PVD methods are suitable for depositing Hafnium Nitride.
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2.10.6 Titanium

Titanium is a strong, corrosion resistant, and light weight material [2.22]. In pure 

form, it has an Ultimate Tensile Strength (UTS) of 400 MN/m2 but when alloyed, 

its strength can rise to 1400 MN/m2, which it can maintain at high temperatures.

2.10.7 Titanium Nitride

When coated to materials, it gives an increased life and allows tools to be used at 

higher cutting feeds and speeds than uncoated tools. Coating thicknesses are between 

1/xm and 6/xm for Physical vapour deposition (PVD). Hardness values over 2000 Hv 

are achieveable [2.54]. TiN has become the most common coating for HSS cutting 

tools requiring sharp edges. It is highly inert with no tendency to form alloys with 

common metals. As a result, the tools resist abrasion, adhesion, galling, welding, 

cratering and the formation of built up edges [2.4]. Using the Hertz theory of 

contact, for optimising hardness conditions, Hailing [2.55] showed that TiN is a 

suitable material for coating cutting tools of coating thickness 3-5¿un. Its inertness 

also make it suitable for human implants.

2.10.8 Aluminium oxide

Coatings of A120 3 are harder than TiN but softer than TiC at low temperatures. At 

temperatures attained during high speed metal cutting, they have the highest 

microhardness of all three coating compositions [2.4]. They are the most chemically
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stable of all hard coatings at any temperature, making them the most crater resistant. 

The low thermal conductivity of A120 3 at high temperatures during cutting 

applications, tends to concentrate the heat in the chips rather than the tools. Flank 

wear resistance of tools coated with A120 3 is equal to that of solid ceramic tools. 

Cemented carbide tools coated with them have increased the cutting speeds possible 

to about 457 m/min.

2.10.9 Zirconium Nitride

This material offers low friction and heat dissipation properties. It gives a very fine 

coated grain struture to carbides, therby reducing wear and increasing the cutting 

performance of carbide tools [2.29]. The fatigue life of EN8 steel was increased by 

a factor of 2 by using Zirconium Nitride coatings as described by Duckworth [2.56].

2.10.10 Diamond and Diamond Like Carbon(DLC) Coatings

The main mechanical properties of diamond are currently exploited by industry in 

three main areas, namely grinding and polishing, precision machining and drilling 

[2.57]. The addition of a thin layer of diamond can reduce the amount of wear to 

ceramic cutting tools and its hardness, low friction and chemical inertness enable it 

to be used in harsh environments [2.58].

Diamond-like carbon films were first deposited by Aisenberg and Chabot in 1971 

[2.59]. These films are used on products such as thin film magnetic recording 

devices, cutting tools and bearings. Like diamonds, they offer high hardness and
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wear resistance, and low friction coefficients. Unlike diamond, friction was found 

to increase for DLC coatings with relative humidity as reported in references 

[2.60,2.61]. Applications of DLC coatings include low friction coatings on dies, 

punches and moulds, coating on machine tools for high speed machining of copper 

and aluminium alloys, protective coatings on medical bone cutting saws and coatings 

on mechanical seals [2.62]. Carbon films with very high hardness, high resistivity, 

and dielectric optical properties are now described as DLC. Hardness values are in 

the range of 3000 to 9000 kg/mm?. DLC coatings have been produced by rf and dc 

plasma deposition, ion beam deposition, chemical vapor deposition and sputtering 

[2.63,2.64]. DLC films are amorphous. Abrasion resistance is one of the main 

mechanical properties associated with DLC coatings. Some of the DLC coatings 

show tough characteristics when deposited with titanium. Without titanium, 

mechanical properties are not as tough as reported in [2.65].

2.11 COATING IMPURITIES

Impurities in coatings may arise from a number of sources. Oxygen, nitrogen, 

hydrogen and carbon can be present in vacuum processes due to residual gases, 

vacuum leaks and outgassing. In sputter deposition, the implantation of several 

atomic per cent of the sputtering gas is common. Carrier gases and unreacted or 

partially reacted source gases are often incorporated in CVD reaction products

[2.47].

Most coatings will be in a state of thermal stress due to the difference in the thermal 

expansion coefficients of the coating and the substrate materials, and an intrinsic
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stress due to crystallographic flaws built into the coating during deposition. Thermal 

stresses form on cooling from the deposition temperature, while the intrinsic stress 

is due to the deposition process.
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CHAPTER 3 

WEAR OF MATERIALS AND WEAR TEST EQUIPMENT

3.1 INTRODUCTION

Leonardo da Vinci measured the frictional forces of bodies sliding on horizontal and 

inclined planes [3.1,3.2]. The coefficient of friction between rubbing solids was 

further developed by Guillaume Amontons and Coulomb [3.3]. Contact theory was 

initiated by Hertz and later developed by Johnson and Kalker [3.4]. Other Scientists 

such as Euler, Reynolds, Sommerfeld and Bowden along with many others have 

contributed to the historical development of current theories and knowledge of 

adhesion, friction, lubrication and wear, or more commonly known today as 

tribology [3.1,3.4-3.6].

Wear occurs to the hardest of materials including diamond. Much of the attention in 

wear studies has been focused on the surface damage in terms of material removal 

mechanisms, including transfer film, plastic deformation, brittle fracture and 

tribochemistry [3.7]. Properties which influence the wear of materials include the 

presence or absence of crystallinity, crystal orientation, anisotropy in mechanical 

properties as well as surface chemistry and changes therein. Bond dissociation in the 

surface layers influence wear. A reduction of hardness within materials can be 

achieved even with adsorbed gases, such as with hydrogen on diamond.

Wear can be defined simply as the loss of material which occurs by way of 

displacement and detachment at component surfaces [3.8], and one of the main uses 

of coatings is to reduce wear. Where metal detachment occurs, one or more of the
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following will be operational [3.8,3.9].

i) Abrasive wear. ii) Adhesive wear,

iii) Erosive wear. iv) Fretting wear,

v) Surface fatigue. vi) Delamination.

Some of these processes are shown schematically in Figures 3.1-3.5. Figure 3.1 

highlights the wear associated with different forms of motion between bodies along 

with types of erosion wear. Figure 3.2 shows the basic effects of material wear due 

to contact of components. Figure 3.3 shows the effects of adhesive wear and its 

progression due to sliding contact while Figure 3.4 compares a working system to 

a typical model of wear between two moving components. Figure 3.5 shows the 

results of different wear parameters on materials due to contact and impact operating 

conditions. Low friction and the use of suitable lubricants will result in low wear 

generally but parts may need replacement after a small amount of material has been 

removed or if surfaces are roughened while in operation. In polymer processing 

equipment, adhesion, erosion, abrasion, lubricated sliding and corrosion have been 

identified [3.10].

Resistance to impact tends to decrease with increasing hardness and can lead to 

cracking or chipping of a surface coating [3.11]. Materials and alloys that are 

resistant to repeated impacts generally are not very resistant to abrasion and vice 

versa [3.12]. Some solid lubricants can under certain conditions act as abrasives. The 

loss of material by abrasive and erosive wear of valves, dies, pump impellors and 

cutting equipment causes significant reductions in the efficiency and useful lifetime
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(a) Adhesive junctions, material transfer and grooving,
(b) Surface fatigue due to repeated plastic deformation on 

ductile solids.
(c) Surface fatigue results in cracking on brittle solids.
(d) Tribochemicai reaction and cracking of reaction films.

Figure 3.3 Mechanisms of wear during sliding contact [3.1],

Tnbosystem Worm Gear

The system consists of four main elements:

1. Solid body.
2. Counterbody.
3. Interfacial element.
4. Environment.

Figure 3.4 Schematic of the elements o f a tribo-system [3.1].
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Figure 3.5 Schematic representation of abrasion, adhesion and fatigue [3.13],
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of machinery. The surface of a specimen will only lose material when two conditions 

have been satisfied. The strain imposed must reach a critical value at which 

microfractures are initiated. These microfractures must then propogate in order that 

the fragments are released. An ideal wear resistant material will, therefore, have an 

ability to absorb strain prior to the initiation of microfractures and have a toughness 

which resists the propagation of the microfractures. In cutting tools, the cutting 

edges must show high resistance to abrasive wear and to cracks caused by 

mechanical and thermal fatigue. Wear damage in components is often caused by 

vibrations. In the case of very small amplitudes (in the /xm-range) of relative motion, 

fretting corrosion can occur. This is often accompanied with tribochemical processes 

and the production of oxidized wear particles [3.14], In rubbing conditions, wear is 

influenced by the frictional properties of the materials in contact, the presence or 

absence of lubricants, the mechanical properties of the materials, the coating 

adhesion, and the velocity of rubbing.

As seen from the preceeding facts, the nature and quantity of wear will also depend 

upon the materials in contact, the composition of their surfaces and the environment 

in which they are used, along with the type of wear forces applied.

The investigation of coating systems to provide wear and impact abrasion resistance 

at extreme temperatures was discussed in the previous chapter. This chapter 

discusses some of the main wear parameters that components and tools are subjected 

to in service. It also lists and describes equipment developed both in the form of 

standard and in-house laboratory wear test rigs. This equipment is compared with the 

Test Rig developed for the experimental work conducted in this research.
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3.2 TYPES OF WEAR

3.2.1 Friction and wear

Friction and wear lead to the deterioration of material surfaces and coatings. Friction 

has been mathematicallly defined by many pioneers and researchers and relates to 

the resistance of relative motion. For movement between two surfaces, friction is 

considered as sliding friction and rolling friction for bodies rotating relative to each 

other. Under conditions of temperatures, vacuum, humidity, normal forces, coating 

properties and surface topography and roughness, frictional conditions become 

complicated. Wear parameters such as tribochemical effects [3.15] also complicate 

frictional values.

3.2.2 Abrasive wear

This occurs when a soft surface with hard particles slides along a hard surface 

ploughing a series of groves in that surface. These particles penetrate the surface and 

displace material in the form of elongated chips [3.9,3.11,3.16-3.18]. Abrasive wear 

can be divided into two and three body type wear and their effects are shown 

schematically in Figure 3.6. Two-body abrasive wear results when a rough surface 

or fixed abrasive particle slides across another to remove material. The roughness 

of the harder material has an influence on the wear rate in these conditions. In 

three-body abrasive wear, particles are loose and mobile during their interaction with 

the wearing surface [3.19]. Three-body abrasion as shown in Figure 3.7 can be
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divided into "closed" and "open". Closed three-body abrasive wear occurs when 

loose particles are trapped between two sliding or rolling surfaces which are close 

to each other. Open three-body abrasive wear occurs when the two surfaces are far 

apart or when only one surface is involved in the wear process [3.19]. Open 

three-body abrasive wear causes gouging, involving a combination of abrasion and 

impact force [3.20-3.23]. Abrasive wear is related to hardness, with wear resistance 

increasing with hardness [3.24]. In publications [3.25,3.26] it is shown that hardness 

or its equivalent cannot uniquely characterise the magnitude of wear under the 

conditions of abrasive impact [3.27]. Rickerby and Burnett have shown in [3.28] that 

it is also necessary to consider the load bearing capacity of the coating/substrate 

system.

3.2.3 Adhesive wear

When two atomically clean metal surfaces are brought into intimate contact, bonds 

between atoms of both surfaces are established and adhesion takes place. If an 

asperity of one metal is slid across the other material, adhesion between them can 

lead to a transfer of material from one to the other producing adhesion wear 

[3.3,3.29-3.32]. Crystal structure [3.33] and crystal orientation [3.34] has an 

influence on adhesive wear with Hexagonal metals giving the best adhesion 

conditions. Adhesion becomes more pronounced at hot working temperatures 

characterized by high atomic mobility. If contact is restricted to a few high spots and 

if there are forces acting on the surfaces, micro or pressure welding may occur. 

Small surface projectories weld together, work harden and fracture therby
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Figure 3.6 Two-body and three-body wear patterns [3.

Abrasive wear

-T w o body

Three body-

r  Closed

LOpen

Gouging 

High Stress 

Low stress

Figure 3.7 Classification of abrasive wear types [3.19].
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transferring material from one surface to another. This leaves projections on one 

surface, cavaties on the other and the possibility of further damage [3.8]. 

Components requiring a close tolerance fit are particularly susceptible to this form 

of wear [3.10]. When dissimilar materials are in contact, the weaker of the two 

materials will in general transfer particles to the stronger material [3.34], Factors 

influencing the wear mechanisms during sliding contact are shown in Figure 3.8., 

and the metallurgical properties affecting sliding wear shown in Figure 3.9.

3.2.4 Gouging wear

When abrasive lumps or particles rub against a surface with sufficient force, gouging 

wear or abrasion occurs [3.35]. It may develop from the impact of such particles on 

the mating surface, so a method to resist fracture due to impact, and a need for 

hardness to resist gouging, is required.

3.2.5 Erosive wear

The mechanical removal of material as a result of the impact of abrasive particles 

carried in a contacting fluid is called erosion [3.8,3.10,3.36]. Processes resulting in 

wear loss due to single or multiple impact of particles causing erosive wear are 

described in Figure 3.10. Solid particle erosion can be divided into three regimes 

according to the ferocity of attack of the particles [3.37]. A low stress regime occurs 

when large particles strike materials at low velocities giving elastic interaction 

between the particle and material. The second regime involves elastic/plastic
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interaction and the third regime occurs when very small particles strike materials at 

high velocities producing high strain rates [3.38]. The effects of erosion have 

become a problem associated with airfoils and shrouds in various fans, in 

compressors and turbines, on helicopter blades, in centrifugal pumps, on valve 

components and in pipe joints and bends. The extent of erosion depends on the 

composition, size, and shape of the eroding particles, their velocity and angle of 

impact, and the composition and microstructure of the surface being eroded 

[3.39,3.40]. In brittle materials, such as ceramics, microcracking develops due to 

erosion. When the eroded surface is a sprayed coating, most authors report a brittle 

tendency for carbides and ceramics, but the erosion mechanism is affected by other 

factors such as porosity or cohesive strength, as reported in [3.41,3.42].

3.2.6 Fretting wear

When components are subjected to very small relative vibratory motion at high 

frequencies, fretting wear occurs. Fretting wear is dependent on the sliding 

conditions and on the nature and properties of surfaces. It occurs by continuous small 

displacements (in the region of 5 to 50//m) of contacting surfaces and is assisted by 

adhesion and abrasion. Corrosion also assists the fretting process. Oxide layers can 

lubricate if they remain intact but if displaced, they can become abrasive particles 

[3.8]. Cracking due to fretting can be offset by the use of hard coatings such as TiN 

and DLC coatings according to Fouvry et al [3.43].
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3.2.7 Fatigue

Kragelsky [3.44], was the first person to publish a paper on the fatigue theory for 

the wear of solids. Fatigue is associated with loading and unloading of a material and 

is caused by cyclic pressure or stresses. It is characterised by the detachment of 

particles to leave pits or spalled areas [3.45,3.8]. It occurs on surfaces which come 

into repeated contact at stresses higher than the fatigue limit [3.9,3.16]. It can result 

in cracks or fracture as shown in Figure 3.11. Cracking in a component will begin 

from a point where the shear stress is a maximum and gradually work itself out to 

the surface. Imperfections within the materials will assist this process. The fatique 

resistance of metals can be improved by incorporating compressive stresses in the 

surface layers. Grit blasting of samples prior to spraying, compressively stresses its 

surface and this can improve fatique life and a suitable coating can combat the 

corrosive factors in applications where corrosion-fatigue conditions apply [3.46]. 

Subsurface and surface fatigue wear are the dominant failure modes in rolling 

element bearings. For fluctuating loads, failure is likely to occur at a lower stress 

level than that estimated for static conditions. The mechanism of fatigue is generally 

considerd to consist of three phases.

i) Commencement of crack due to material weakness.

ii) If allowed to proceed, the crack spreads causing the crack propogation 

period.

iii) At a certain stage in this period the area remaining can no longer support the

applied load and fracture occurs. Contact fatigue, percussive wear, 

cavitation erosion and delamination are all related to fatigue wear.
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3.2.8 Impact, shock and cavitation

Impact refers to the collision of two masses with initial relative velocity. In some 

cases, impact occurs due to clearance between parts such as in the rattling of mating 

gear teeth. This can lead to fatigue failure on the impact surfaces. Resistance to 

impact tends to decrease with increasing hardness and can lead to cracking or 

chipping of a surface coating [3.11]. Shock is used to describe any suddenly applied 

force or disturbance. Homogeneous materials with high toughness, such as 

martensitic steels, with coatings of high concentrations of a ductile matrix and 

consisting of hard particles, may be suitable for impact conditions. In impact, energy 

can be absorbed without causing severe fatigue wear or spontaneous fracture. As the 

matrix decreases, the toughness decreases and the materials are sensitive to impact 

loads and repeated load cycles (fretting, rolling or sliding under hertzian contact 

conditions) leading to surface fatigue. With increasing content of hard phases, wear 

is enhanced due to impact [3.45]. Failure may result due to a normal, steady-state 

fatigue process occurring within the layer or due to high brittleness and insufficient 

binding to the bulk material. A summary of indentation processes consisting of 

impact and abrasion conditions are shown in Figure 3.12. Cavitation occurs when 

gases trapped in fluids generate into bubbles under mechanical agitation. These 

bubbles collapse and impact against solid surfaces with energy sufficient to cause 

material wear.
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Figure 3.11 Schematic of fatigue wear mechanism.
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Figure 3.12 Summary of indentation processes [3.3].
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3.2.9 Délaminations

Delaminations is caused by high contact stresses, plastic deformation and work 

hardening in shear and cracking when flakes of material become detached [3.8].

3.2.10 Diffusion wear

Solid-state diffusion is the mechanism by which atoms in a metallic crystal shift from 

one lattice point to another causing a transfer of the element in the direction of the 

concentration gradient. Diffusion is time and temperature dependent and is influenced 

by the bonding affinity of surfaces in contact.

3.2.11 Corrosive wear

Corrosion wear has been defined as the reaction of a metal or alloy with its 

environment [3.46,3.47]. Corrosion tends to leave a pitted surface [3.9,3.11]. The 

wear rate of a corroded surface will often be higher than that of an uncorroded 

surface, and the corrosion of a worn surface will often be higher than that of an 

unworn surface. Many common forms of corrosion for coated and uncoated tools are 

identified in [3.48]. The total rate of loss of material in corrosive wear can be high 

and it tends to be more serious at higher temperatures [3.35,3.49]. Hot corrosion 

occurs on turbine blades and nozzle guide vanes during normal operation. In 

applying corrosion resistant films, it is important to avoid pinholes which assist the 

process of corrosion [3.50].
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3.2.12 Scuffing

Scuffing is defined as the seizure and galling caused by solid phase welding between 

sliding surfaces without local surface melting [3.51].

3.2.13 Hardness

Hardness is often used as an initial guide to the suitability of coating materials for 

applications requiring a high degree of wear resistance. The effect of hardness of a 

wearing material however is complicated as different wear mechanisms can prevail 

in service. For instance, softer materials will deform plastically at lower loads, 

which favours the formation of a large area of contact. Since thin wear resistant 

coatings are in the order of 5^m thick, microhardness measurement results in 

substrate deformation in the process leading to a composite hardness number 

[3.52,3.53]. Stoichiometry of a coating is important for consistent hardness 

throughout a system. Although hardness is important in the calculation of the wear 

of materials, it has been shown that the wear resistance is not only influenced by 

hardness but also by fracture toughness. Hard materials may also undergo plastic 

deformation and result in wear similar to softer materials. Hardness may not control 

the occurrance of adhesive wear but is known to effect the wear particle size. 

Surface roughness also influences the tribological performance of a mechanical 

system. If the harder member is rough, for instance, in a contact situation, the 

counterface may wear by abrasion due to micro cutting or ploughing. It has also 

been shown for thin, hard coatings that the rougher the surface finish, the lower the
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coating adhesion, as measured by scratch testing methods. When a hard coating is 

applied to a rough surface, it is more easily removed than when applied to a smooth 

surface. Although low surface roughness of tools improve the surface finish of the 

workpiece they leads to a cost increase.

3.2.14 Built Up Edge (BUE)

At low speeds, work material welds on to cutting tools and will be pulled or pushed 

aside at the exit or re-entry of the cutting edge. As a result, a breakage of the tool 

may occur [3.54]. Coatings avoid contact between the workpiece and the substrate, 

thus giving protection against abrasion, adhesion and the damage caused by built up 

edges.

3.2.15 Stress of Thin films

All films will be in a state of internal stress. They experience shear, tensile and 

compressive stresses and in extreme cases, the interfacial shear stresses may exceed 

the adhesion strength of the coating-substrate interface. This will lead to cracking 

and delamination of the coating. Compressive stresses are known to increase coating 

hardness [3.55], If coatings are deposited in a stressed state on a thin substrate, the 

substrate will bend to a certain degree. A tensile stress will bend, giving the coated 

surface a concave shape and compressive stresses will bend it to produce a convex 

shape [3.56].
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3.3 EFFECTS OF COATING AND GRAIN SIZE ON WEAR RESISTANCE

Crater resistance is approximately proportional to coating thickness but resistance to 

flank wear generally levels of when thicknesses reach about 8/*m [3.57]. The 

strength of cutting edges usually reduce as the coating thickness increases. If the 

thickness exceeds 12/xm, brittle properties can dominate. Thicknesses between 2 to 

12/xm can produce a combination of properties [3.58]. Multiple layers can be tougher 

than one thick layer, as the grain structure may be more refined and they may 

possess better elastic behaviour over the single thick coating [3.57,3.58]. For 

interrupt cutting operations, the resistance to wear and the impact strength of the 

cutter tool are critical. Cutting edges must show high resistance to abrasive wear and 

to cracks caused by mechanical and thermal fatigue [3.51]. In some cases, coatings 

can lead to crack initiation, which can result in failure faster than an uncoated 

sample as for example in bandsaw blades [3.59]. It was shown in this paper that 

Hard Chromium plating to bandsaw blades resulted in a reduction in the fatigue limit 

of the blades by over 50 %. Titanium nitride coatings on the other hand increased the 

fatigue limit by 44% over uncoated blades. Cudden and Allen [3.60] have reported 

that the wear resistance of cemented carbide varies widely depending on the binder 

content and grain size. Large grains expose large binder areas and thus lead to faster 

wear rates of that binder. Tungsten carbide grains, which are poorly supported by 

the removal of binder through abrasion and corrosion, are susceptible to shear forces 

and are easily tom away from the surface. Any relative motion of grains can 

manifest in triangular cracking and, thus, loss of grains. Larger tungsten carbide 

grains have lower fracture toughness and may crack more easily. Thicknesses of
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various coating applied by surface treatment processes are shown in Figure 3.13.

3.4 WEAR TEST EQUIPMENT

Most wear tests are designed to remove material in a controlled manner. However, 

different wear patterns emerge for different tests and wear tests remove material in 

many different ways. Advanced coating processes are increasingly being applied to 

solve wear problems on tools. Methods of wear testing for cutting tools seem to be 

well developed, especially for thin coatings. Methods for other tools and components 

are widespread and less well developed [3.61]. In selecting a suitable wear test, the 

following points may be considered:

i) Is the test selected measuring the desired properties of the material.

ii) Is the material in bulk form or a thick or thin coating?.

iii) What forces and stress limits are suitable for the test?.

iv) Will abrasives be present?. Abrasive size, form and the velocity of the

abrasive should also be considered.

v) Is the contact between the components rolling, sliding, impact or erosion only 

or a combination of these?. The surface finish of the test samples should be 

similar to that of the actual components.

vi) Are temperature and humidity factors important?.

vii) Is the test environment similar to the actual working environment.

viii) What is the duration of the test.

be) Is the materials used in the test typical of the actual materials used in the

machine parts etc.
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If wear tests have been carried out with a high degree of simulation, of the service 

situation, then the results can be used with considerable confidence in selecting the 

best wear resistant coating system.

3.4.1 Material tests

Some of the techniques for testing materials in a non destructive way include:

i) Acoustic techniques. ii) Dimensional changes,

iii) Magnetic particle. iv) Die penetrant,

v) Visual.

Tests are used for quality control functions such as thickness, porosity, adhesion, 

strength, hardnesss, ductility, chemical composition, stress and wear resistance. 

Some of the available techniques for mechanical and tribological characterisations 

of coatings are given in Table 3.1 as reported in [3.62].

Coatine Property Characterisation method.

Hardness. Microindentation & 
Nanoindentation.

Fracture toughness. Palmqvist indentation.

Adhesion to the 
substrate. Pull test, Indentation test, Scratch test.

Residual stress. X-ray, SinV method.

Thickness. Ball grinding, cross section 
measurements.

Wear resistance. Pin-on-disk. erosion tests.

Table 3.1 Mechanical and tribological tests for coatings.
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3.4.2 Test methods

Many tests for coated and uncoated cutting tools are conducted on machine tools, 

including lathes, mills, drills, punches and saws [3.63-3.74]. These test processes 

perform almost identical conditions to those experienced in manufacturing. It is also 

important to note that unlike common wear test equipment available, the machining 

tests subject the cutting tools to many wear parameters including impact and shock, 

abrasion, adhesion and hot corrosion. The limitations of these tests depend on the 

machine power available and quality of the machine tool. There are a considerable 

amount of other components subjected to coating processes which are not used as 

cutting tools and whose wear properties must be examined by laboratory wear tests. 

Many pieces of test equipment are currently available on a commercial scale 

including nano and micro hardness testers, fatigue testers, acoustic, and scratch-type 

test equipment etc. Most, if not all, simulation test processes will require some 

compromise.

3.4.3 Abrasive and Adhesive test equipment

Scratch hardness is the oldest form of hardness measurement and depends on the 

ability of one solid to scratch another. Mohs [3.93] categorised materials using this 

process giving diamond a maximum scratch hardness of ten. Most scratch type tests 

developed from this simple technique.

Abrasive tests are described by Kato et al [3.5] and others [3.12,3.45,3.75]. A 

review of test methods for abrasive wear is discussed by Spero et-al [3.76]. Other
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methods involving adhesion, indentation and scratch tests for coatings are modelled 

and analysed by Rickerby and Matthews [3.52].

Adhesion is characterised by both scratch and indentation tests as reported in the 

literature [3.78-3.80]. In indentation adhesion tests, a mechanically stable crack is 

introduced into the interface of the coating and subsrate. The resistance of 

propogation of the crack along the interface is used as a measure of adhesion. In the 

scratch adhesion test method, a stylus is drawn over the surface under a continually 

increasing normal load until the coating fails. The wear areas can be examined by 

optical microscopy and scanning electron microscopy.

Depending on the shape of the product, different wear tests will be required. For 

instance, a simple polishing test, performed by Krokoszinski [3.81] and also 

described in [3.82] was carried out on coated test resistors. Measurements of the 

thickness after definite periods of time were used as indications of wear resistance 

of CVD and PVD applied coatings.

3.4.4 Pin-on-Disc

Most pin-on-disc machines are used for measuring sliding wear and friction 

properties. Under sliding wear, a coated or uncoated pin presses against a rotating 

plate. Almond et al [3.83] used a pin-on-disc apparatus for testing ceramics and 

cemented carbides on alumina discs using the pin as the test material. Using a 

diamond tip for the abrading tool, Kato et al [3.5] used a pin-on-disc test to operate 

within the chamber of a Scanning Electron Microscope to examine the abrasion 

effects. Scratch testing in conjunction with SEM provides a useful method of
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analysing single point wear mechanisms of coated systems through an assessment of 

the deformation and fracture produced [3.84,3.85]. In a pin-on-disc apparatus 

described by Bouslykhane et al [3.86], hard TixN were tested in atmospheric 

conditions with a rotation speed of 5 rev/min under loadings of 0.5, 2 and 4 N. In 

this experiment a ruby ball of 5 mm in diameter was used in an unlubricated 

condition. The wear rate was defined as the wear linear density (WLD) measured by 

a profilometer. The duration of this test was 1000 revolutions. In a two-body 

abrasion test, a coated pin is pressed on to a rotating abrasive paper making a spiral 

path to avoid overlapping [3.86,3.87]. This test process is very common for thin 

coatings. Makela and Valli [3.88] used a pin-on-disc apparatus to evaluate the wear 

resistance of TiC coatings on tool steel using a pin tip of radius 50 mm, sliding 

speed of 0.2m/s and sliding distance of 250m. A normal pin force of 5 N was used 

on a combination of various coated surfaces. The test results showed that the wear 

rate of TiC was greater than TiN. The friction of a TiC coated pin was low against 

a TiN coated disc (0.2), however the same did not apply for the reverse, i.e. TiN 

coated pin and TiC coated discs. Figure 3.14 is a schematic of a simple pin on disc 

wear test process. Watanabe et al [3.89] describe a similar type of test rig used for 

friction testing. In this apparatus, a vertical force is applied to a round nose or ball 

indenter while the specimen is moved horizontally back and forth by a hydraulic 

ram. Figure 3.15., shows a typical surface crack caused by a pin-on-flat scratch 

tester. Research conducted by Glaeser and Ruff [3.90] reported that pin-on-disc were 

the most widely used wear test processes followed by pin on flat. Other applications 

of pin-on-disc include material wear and friction properties at elevated temperatures 

and in controlled athmospheres as reported in [3.91].
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3.4.5 Pin-on-drum abrasive wear test

In this test, one end of a cylindrical pin specimen is moved over an abrasive paper 

with sufficient load to abrade material from the specimen and crush the fixed 

abrasive grains [3.12]. This test simulates the wear that occurs during crushing and 

grinding of ore in which the abrasive (the ore) is crushed [3.75]. The pin also rotates 

while traversing as indicated in Figure 3.16. This ensures that the pin always 

contacts fresh abrasive. This test is considered a high stress abrasion type test, as the 

load is sufficient to fracture the abrasive particles.

3.4.6 Repeated impact wear test

Some research was undetaken in the past for ascertaining the effects of pure impact 

on alloy steels and cast irons. Equipment described by Blickensderfer and Tylczak 

[3.92] involved balls made from alloys being dropped 3.4 m on to a column of balls, 

with each successive ball receiving an impact on each side. The first ball receives 

maximum impact while the last one receives the least. This test, as shown in Figure 

3.17 highlights the effects of spalling due to impact and shock only. This impact 

tester does not take account of the orientation of the samples used which can be up 

to 50mm in diameter. The effects of rebound was not addressed either in the test 

work.

The method of Dynamic Hardness Measurement as described by Tabor [3.93], 

makes use of an indenter striking a surface. The hardness is expressed in terms of 

the energy of impact and the size of the remaining indentation.
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Figure 3.15 Surface cracking due to diamond sliding on
surface coating [3.90].
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Figure 3.16 Schematic of pin-on-drum apparatus [3.12].



Figure 3.17 Schematic of impact tester [3.92].
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The wear resistance of a material’s surface layer can be increased by the impact 

effect itself, as this may cause distortions of the crystalline lattices and the formation 

of elastic deformation fields, which can lead to an increase of the strength properties 

of a material, as described by Clark and Wood [3.94], An impact test machine for 

determining the dynamic cushioning properties of plastic foams is reported by 

Shestopal and Chilcott [3.95] and shown in Figure 3.18. Again, this process is pure 

impact and has%iany limitations, as described in the reference paper. Brenner et al 

[3.96] used a test rig to combine impact and its effect on adhesion at elevated 

temperatures for iron spheres impacting on an iron plate. The shock of the impact 

of the colliding bodies was transmitted to a piezoelectric transducer, which produced 

a pulse on the screen of an oscilliscope proportional to the applied force as shown 

in Figure 3.19.

3.4.7 Impact-abrasion test

A test rig described by Fiset et al [3.97] uses abrasive belts as the impact-abrasive 

surface. This test performs combined impact-abrasion tests only and unlike the rig 

developed for this research, cannot perform pure impact. The specimens are used as 

a hammer to impact the abrasive paper as shown in Figure 3.20. and the test is used 

to simulate ore grinding.
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ligure 3.18 Dynamic testing of plastic foams [3.95].
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3.4.8 Adhesion tests using Acoustic emission monitoring

Acoustic emmision monitoring is used with scratch testing to determine a critical 

normal load for the onset of coating failure and decohesion. Experiments conducted 

by Diniz et al [3.98] used acoustic emmission to monitor the change of workpiece 

surface roughness caused by an increase in tool wear during turning. Adhesion tests 

conducted by Kubo and Hashimoto [3.99] used a modified scratch test with a steady 

increasing load. This test is designed to evaluate thin film properties such as 

adhesion [3.100,3.101], and the critical load at which the film becomes detached is 

detected by acoustic emission. A diamond indenter tip of 0.2mm radius was used in 

this test process, along with a camera and SEM to observe how the films were 

scratched as shown in Figure 3.21. The relative mechanical strength of thin coatings 

and of the coating-substrate interfaces may be evaluated by scratch testing by 

measuring the cohesive load to initiate cracking within the coating [3.102]. Figure 

3.22. is a schematic of a scratch coating adhesion test using acoustic emission.

3.5 SLIDING WEAR AND FRICTION

3.5.1 Rubbing tests

An ASTM standard test method for wear testing with a crossed cylinder apparatus 

[3.103], was adopted for testing similar and dissimilar metals, alloys and coated 

systems in unlubricated conditions. A rotating cylinder as shown in Figure 3.23. and 

turning at 100 r.p.m. is forced at right angles against a stationary cylinder and the
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Figure 3.20 Schematic of combined impact-abrasion tester using 
sanding belts [3.97].

Figure 3.21 Block diagram of modified scratch tester [3.99].
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volume of material loss is determined by formulae. Friction and wear tests conducted 

by Shimura and Mizutani [3.104] describe a plate-on-plate wear test apparatus used 

to measure friction and adhesion of ceramic coated materials.

3.5.2 Block-on-ring test

In this test, a rotating metal ring is loaded against a fixed block, making a line 

contact when the test begins, as shown in Figure 3.24. This test is very versatile, 

allowiing variations in materials, speeds, loads, lubricants, coatings and different 

operating athmospheres [3.105]. An ASTM G77-83 is available for this test [3.106], 

Wear is again calculated by using volume loss of the block and weight loss of the 

ring from the standard.

3.6 LOW ABRASION LOW STRESS TESTS

3.6.1 Taber test

The Taber Abraser is used to measure low stress abrasive wear resistance of 

materials and coatings. Low stress abrasive wear occurs when hard particles are 

forced against and move along a solid surface where particle loading is insufficient 

to cause fracture of the hard particles. The Taber apparatus is shown in Figure 3.25. 

and involves the abrasive wear of a flat plate specimen by the action of a pair of 

rubber bonded abrasive wheels loaded normal to the specimen. The specimen which 

is coated or uncoated, is rotated, causing the abrasive wheels to drag and abrade the
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Figure 3.24 Schematic of a block-on-ring tester [3.106]
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Figure 3.25 Schematic of a taber abraser apparatus [3.91].
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surface. Wear is determined by weight loss. A standard test method is available for 

the Taber Tester (ASTM 1044). The test also allows loose abrasive particles to be 

incorporated in the wear track, giving rise to three body abrasion.

3.6.2 Dry sand rubber wheel test

This test, ASTM 65-81 is used to rank the abrasion or scratch resistance of materials 

to silica sand. It is a low stress abrasion test and is ideal for dry wear test 

conditions. Figure 3.26. shows a schematic of the tester. In operation, sand particles 

are trapped between the specimen and a rubber wheel and dragged along as the 

wheel rotates. The specimen is held against the wheel with a constant force. Cerri 

et al [3.107] describe wear tests on WC coatings characterised with a dry sand 

rubber wheel abrasion tester. In the reference they examine the abrasion resistance 

of carbide powders with several materials and coatings used for similar applications 

in an abrasive environment. Swanson [3.108] used a dry sand rubber wheel test to 

compare laboratory and field tests under sandy soil working conditions, and 

concluded that there was a close correlation between the two and that the test 

adequately simulates the abrasive wear of materials used in sandy soil conditions 

with low moisture content.

3.6.3 Alumina Slurry Test

An alumina Slurry test, standard ASTM 611 is used to simulate high abrasive 

conditions in a liquid medium [3.91]. The test rig which is shown in Figure 3.27,
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Sand hopper

Figure 3.26 Schematic of a dry sand rubber 
wheel apparatus [3.106,3.108].

Mixing vanes

Aluminium Oxide slurry 

Steel wheel

Figure 3.27 Schematic of an alumina slurry abrasion 
test apparatus [3.109].
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uses a steel wheel which rotates against a flat coated specimen in a slurry containing 

sharp alumina particles. Many applications of coatings are used in components 

handling slurry such as pumps, valves, and piping etc., causing erosion of parts and 

a wide range of such testers are available as reported by Kelley et al [3.91],

3.7 COMMON WEAR TEST PROBLEMS

Every wear test, whether for bulk material or coatings can be complicated by 

equipment problems, test procedures, sample preparation, inconsistency in abrasive 

materials and the wrong interpretation of the test results.

Many of the abrasive wear tests already described depend on their accuracy and 

repeatibility on the consistency of the abrasive paper used. Slight difference in the 

particle size, shape, and surface texture can cause test results to vary. The slurry 

erosion tests depend on the consistency of the mix and distribution of the erodent 

particles. In many real situations, the slurry is moving continually and wear particles 

in the mix attacking machine parts are sharp and, therefore, more abrasive. The 

initial problem of the briquette die depended on the combination of many wear 

factors as discussed in section 1.5 and some parts of the die experienced higher wear 

than others. Thick coatings, such as those produced by thermal spray and weld 

facing, seldom experience penetration during the above mentioned tests. Thin 

coatings on the other hand require greater care during a test process in order to 

avoid penetration.
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3.8 MAIN FEATURES OF NOVEL TEST RIG

The novel wear test rig developed for this research work and discussed in detail in 

Chapter four has many unique features over the test equipment described above. 

Such features include the combined and individual actions of impact and abrasion, 

a variable linear velocity of the abrasive stylus, and a facility to assess the 

performance of materials and coatings under the effects of rebound. Most impact 

situations involve a secondary impact effect caused by the rebound of particles 

following the first impact. This effect can result in high wear and shock on 

components and may need to be addressed by coating designers. Chapter six, 

discusses the main effects of rebound on samples tested. Normal loads applied to the 

samples can be changed instantly along with the impact velocity. The test rig may 

operate under dry or lubricated conditions and three body abrasion wear tests can be 

performed. The reciprocating action of the stylus with a variable velocity addresses 

many practical problems such as a piston and cylinder. Most existing wear test rigs 

only apply abrasive or scratch tests in a single direction and others avoid contacting 

the previously abraded area.

The test rig developed can be used for thick and thin coatings as well as bulk 

material and penetration of thick coatings have been successfully achieved. Most 

scratch testers are applied over a small surface area, whereas this test rig is used for 

examining materials over a larger area, giving an improved representation of the 

performance of a coating for larger products. The on-line data acquisition feature, 

although not unique, allow immediate measurements of the applied load at any time 

during the test process. The clamping mechanism on the test rig allows the same
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sample to undergo a number of similar tests which help improve the reliability of the 

wear test and results.

Wear testing of coated and uncoated components requires an ability to apply wear 

conditions which can address an individual wear problem or a combination of such 

problems. Test rigs which are designed only to address individual wear problems 

may be limited in simulating the complex wear problems experienced by components 

in service today.

3.9 MEASURING WEAR OF SPECIMENS

3.9.1 Weight loss

One of the simplest ways of measuring wear is based on weight loss during and after 

a test. This is simple and direct provided the materials considered are similar and 

care is taken in the measurements. The mass loss of specimens can be measured at 

intervals during the testing period by removing the specimens, cleaning, drying and 

weighing. The mass loss can be converted to volume loss and the wear rate 

calculated with respect to time. Some of the tests conducted during the experimental 

stage of this thesis were performed in this way. For coating applications, if the 

coating is penetrated, the weight loss is a combination of both substrate and 

coating(s). In some cases, wear may occur but no mass loss may be experienced as 

in the case of plastic flow or deformation. Measurement of the wear area by volume 

loss will indicate the material loss in this case.
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3.9.2 Volume loss

This can be calculated from formulae based on the wear scar shape. If the scar shape 

is regular and symmetrical, accuracy with this approach is possible. The volume of 

material removed can be measured at intervals using equipment for measuring the 

depth and width of the wear scar or impact zone. The dimensions of the abrading 

tool can also be checked to assist in the volumetric loss in mm3. Volume loss can be 

converted to weight loss, if the material density is known. However, many coatings 

and substrate combinations have different densities and compositions and in a multi­

layer system, densities will differ throughout. Therefore, weight loss using volume 

and density alone becomes a complicated task. If one consideres the total system of 

coating and substrate, then volume loss of the combined system can be used. A 

computer programme shown in Appendix B. is used to calculate the volume loss of 

material on a specimen based on a number of measured and known dimensions of 

the abrasive stylus and wear scar ppoituced.

m - -  - -  • .. . -  #  .

3.9.3 Wear scar depth

Depth of wear scar is considered a reliable method for material loss and results 

obtained for this thesis used a surface profilometer to measure and record these 

values on a range of samples. A more exact method using a profilometer and 

computer control equipment was developed by George and Radcliffe [3.110]. This 

process produces an isometric plot of the wear sgp and the wear scar volumes are 

calculated by computer automatically. Most cutting tools are assessed under wear



scars in the form of crater or flank wear.

3.9.4 Prediction of wear life

The method most commonly used is to calculate a wear coefficient k, where:

k = ________. Vo- iu m e __________ _ (OaL) (3.1)
Load * Sliding distance N-m

This coefficient is based on the assumption that the volume wear varies directly with 

the contact load and the sliding distance or the wear depth varies directly with the 

contact pressure and the sliding distance. It was recommended by Holmberg and 

Matthews [3.111] that the volumetric wear divided by the total sliding distance and 

the normal force should be used as a standard for calculating wear rates on 

materials. This wear factor definition is used by many researchers today [3.14,3.35] 

and in some of the results achieved in this thesis. In other results obtained, the mass 

loss in grams (g) was used. The relative wear resistance of each material can also 

be calculated using the reciprocal of the steady-state wear rate for a reference 

standard, i.e. relative wear resistance equals the steady state wear rate of a particular 

material divided by the steady state wear rate of a test grade. Therefore, the relative 

wear resistance of different grades can be compared [3.60].

Another approach to measuring wear life uses the following equation:

(Sr)(Pr)
L= ---------  *Lr. (3.2)

(S) (P)

where L and Lr are the predicted and test lifes, S and Sr the service and test speeds,

94



and P and Pr the service and test loads (limited within certain speeds and loads). 

These relationships only apply to homogeneous materials and where a component has 

a hardened surface, the wear rate may be different once the hardened layer has been 

penetrated.
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CHAPTER 4 

TEST RIG DEVELOPMENT AND OPERATING PROCEDURES

4.1 MAIN DESIGN OBJECTIVES

Following an investigation into existing wear test equipment for applying dynamic 

wear conditions to materials and components such as those described in section 1.5, 

most facilities did not address such complex testing. Since it is common for coated 

and uncoated components to be subjected to a wide range of loading and wear 

conditions in applications today, the need for a dynamic type tester is appropriate at 

this time. As a result, the following objectives were decided upon for the design of 

the test rig.

i) To provide a variable linear velocity of the abrasive stylus.

ii) To produce a reciprocating action of the stylus on a surface.

iii) To perform pure impact loading.

iv) To perform combined impact abrasion.

v) To allow dry and lubricated operating conditions.

vi) To perform two or three body abrasion wear.

vii) To allow some flexibility in the sample size for testing.

viii) To measure the impact load instantly and allow it to be changed for different 

tests.

be) To allow for dynamic rebound of materials under impact,

x) To allow impact conditions to be applied at different linear velocities of the

reciprocating stylus.
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4.1.1 Test Rig Facilities

The novel Test Rig (Photograph 4.1 and 4.2) was designed, manufactured and 

developed for the experimental work in this thesis to combine the effects of Impact 

and Abrasive wear, producing dynamic wear testing. A front elevation of the test rig 

is shown in Figure 4.1, highlighting the main components. Detailed drawings of the 

test rig are supplied in appendix A. As already discussed, engineering components 

are subjected to a range of loads and wear combinations in service and the ability to 

combine some of these wear patterns in a test rig is now desirable and necessary. It 

is also required in order to simulate, in a laboratory situation, wear problems 

experienced by components in service. The Impact action combines many wear 

parameters such as shock loading, fatigue, gouging, fracture and spalling while the 

sliding action combines abrasion, adhesion, and fretting wear [4.1]. Unlike most test 

equipment described in the literature, this rig uses a reciprocating stylus whose 

velocity is changing continually over the test surface.

4.2 TEST RIG OPERATION

With reference to Photographs 4.1 and 4.2 and Figure 4.1, samples are prepared and 

held in position by two clamps and a locating fixture, fixed to the wear test table. 

The abrading stylus is located over the sample, in a linear drive unit, driven by the 

motor. The load cell is placed over the stylus housing in a fixture and the normal 

applied load is then placed over this. The normal load is held on a bearing system 

in two guides, fixed to the linear drive unit. At the motor shaft, the linear
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Photograph 4.1 End view of wear tester

Photograph 4.2 Front view of wear tester.
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displacement of the stylus can be set by adjusting the linear drive unit relative to the 

to the shaft center. In operation, the stylus impacts the test sample and then rubs or 

abrades along the sample as shown in Figure 4.2. The test rig performs the following 

main functions.

i) • Direct impact.

ii) Direct abrasion (sliding contact).

iii) Combined impact-abrasion or dynamic abrasion conditions.

iv) Impact loading at specified abrasion velocities.

Photographs 4.3 and 4.4 show a typical cratering effect and abrasive track 

respectively due to the wear actions of the test rig.

In direct or pure impact only, the sliding velocity is reduced to zero, and the stylus 

impacts the sample in the same place each time. The number of cycles per minute 

is 106 but this can be changed with motor speed.

Under sliding conditions, the impact operation is removed and pure rubbing occurs, 

producing a wear scar only. Sliding action in this test rig is reciprocating, causing 

abrasion in both directions. This form of wear is considered more severe than one 

directional processes [4.2].

Tests can be applied to both coated and uncoated substrates under identical 

conditions. Other applications of the Test rig include a facility to change the sliding 

velocity and apply impact loads at any location along the abrasive wear scar. The 

test procedure is relatively fast and the applied forces of impact can be changed to 

suit test conditions. Other testing may include lubricated conditions to measure the 

effects of coolant or a lubricant on the wear conditions.
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Figure 4.2 Stylus motion under impact and abrasion conditions.
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Photograph 4.3 Crater in coated sample. 1 mm

-

v

Photograph 4.4 Abrasion scar on coating. 1mm
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4.3 TEST RIG COMPONENTS

4.3.1 Drive system

A ' three phase, 750 watt electric motor was selected to drive both the linear and 

impact mechanisms together in order to syncronise both actions. A high power, high 

torque, low speed motor was selected in order to facilitate high test forces and 

prevent any chatter occuring during testing. Toothed belts were selected to drive the 

intermediate shaft and cam’s producing the impact conditions. The drive mechanism 

from the motor to the cam shafts, to initiate the impact effect are shown in 

photograph 4.5. A counter was installed to record the number of cycles during each 

test process. Figure 4.3 shows the complete drive system for the test rig.

4.3.2 Intermediate shaft

This shaft is used to direct the drive system to the cam shafts and also allow 

adjustment of the cams so that impact can occur anywhere along the wear scar. This 

feature is very useful as it allows the impact force to occur while the stylus is 

traversing the sample with linear velocity.

4.3.3 Cam shafts

Two cam shaft’s are used for balancing the impact mechanism. They were machined, 

heat treated in a vacuum furnace, and ground. The cam faces were machined by an
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Electrical Discharge Machining process. Figure 4.4 shows the general shape of the 

cam profiles produced.

4.3.4 Impact table

This table is used for locating and clamping the test samples and is positioned on the 

test rig base plate by four vertical pillars and linear guide bearings. The pillars are 

fixed to the base plate of the test rig. These pillars allow the table to move vertically 

only for impact, driven by the cams through the use of knife edges fixed to the table. 

Bevel washers (TF 20*10.2*1.1) were selected to act as a spring force to drive the 

table vertically upwards, producing impact while the cams are used to drive it 

downwards, opposing the spring action. Photographs 4.5 and 4.6 shows the impact 

table for holding the specimens, and the stylus holder respectively. If abrasion 

(sliding) testing is required, the table can be clamped to the base plate. This makes 

the cam operation redundant. The material used for the table, and supports is an 

AISI-D2 tool steel which was also heat treated. The bevel washers were calibrated 

using an Instron compression test and a calibration chart for the Bevel washers is 

shown in Figure 4.5.

4.3.5 Linear guide unit

The linear guide unit producing sliding contact is driven from the motor by a simple 

link mechanism and is shown in photograph 4.2. This mechanism can be adjusted 

to change the length of the wear scar produced by the stylus, and thus, the sliding
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Photograph 4.5 Drive for cams producing impact effect.
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or linear velocity. The linear guide unit is used for locating the stylus in relation to 

the test piece. It is attached to and supported by four pillars, which allow vertical 

adjustment of the linear unit. These pillars are fixed to the base plate of the test rig.

4.3.6 Stylus and stylus holder

The stylus used for the main testing in the thesis consisted of a 2mm radius, round 

nose tool. It is located in a tool holder using a lock screw to ensure it cannot move 

independently during the impact tests. There is no restriction on the shape of the 

stylus tip, and any material, coated or uncoated could be used for the stylus. The 

stylus used for testing purposes is shown in Figure 4.6. It is produced form a 

Tungsten Carbide of ISO Grade, P50, recommended for high metal removal rate and 

unfavourable conditions such as shock loading [4.3],The stylus holder is produced 

from an AISI-D3 tool steel, and heat treated to 58 HRc and shown in Photograph 

4.6. Figures 4.7 to 4.9 show typical displacement, velocity, and acceleration 

characteristics of the stylus under abrasion conditions.

4.3.7 Load Cell

The load cell used is a 7.5 kN, Piezo Electric type 9001A quartz load washer [4.4], 

designed for measuring a sudden change in force or impact force. It is located in a 

housing as shown in Figure 4.10 and is connected to an amplifier and data 

acquisition card, fixed in a computer. If a force is applied to opposite faces of a 

quartz crystal, charges of opposite polarity are generated on the faces and the size
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of the charge is proportional to the applied force. This is called the piezoelectric 

effect. To facilitate connection to a measurement circuit, the charges are collected 

on metallic electrodes which are deposited on the two faces of the crystal. These 

electrical charges are converted to voltages. A programme code was produced to 

read in and record the signals from the load cell, and display the normal force during 

testing on a computer screen. The computer hardware configuration for the force 

measurements are shown in Figure 4.11.

4.3.8 Data acquisition card

The card used for data acquisition purposes was a Keitley Metrabyte DAS8 card 

[4.5]. This was placed into the computer and computer software (see appendix B) 

was generated to link it with the load cell. The software produces a real time 

graphical presentation of the force response under both impact and abrasion 

conditions on a computer screen. It also allows this data to be stored on disc for 

future graphical representation and analysis.

4.3.9 Bearings

All rotating shafts and linear guided components are supported in bearings, details 

of which are given in appendix A.
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Figure 4.11 Computer hardware configuration for data 
acquisition.
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4.4 SAMPLE SIZES

The sample sizes can vary but must be longer than the stroke of the stylus when 

reciprocating on the surface under test. Two clamps are used to hold the samples in 

position against a base plate and a fixed locating face as shown in Photograph 4.5. 

It was decided to clamp the samples from above rather than the side in order to 

avoid shifting during the impact process. Typical sample dimensions are 80mm +/- 

20mm in length, 35mm + /- 5mm in width, and 10mm + /- 3mm in thickness. 

Circular samples can also be accomodated and small samples such as cutting inserts 

can be fixed to a suitable base plate before testing. Some of the initial testing 

conducted with the test rig can be found in the literature [4.6].

4.5 OTHER EQUIPMENT USED IN  THE RESEARCH

4.5.1 Hardness tester

Hardness is not a fundamental property of a material as it depends on yield strength, 

elastic modulus and ultimate strength. It can be described as the resistance to 

indentation or abrasion by a body or indenter. These tests are localised compression 

tests and consist of forcing a spherical or conical indenter into a material with the 

size of the indented area or depth taken as a measure of hardness. The most common 

forms are Brinell, Vickers and Rockwell tests. In coating technology the depth of 

penetration must be minimised to get a more accurate picture of the coating 

hardness, independent of the substrate. Microhardness instruments are frequently



When the ratio D/t (D= indentation depth and t=  coating thickness) of the 

indentation depth to the film thickness exceeds a critical value, the measured 

hardness, H is influenced by the substrate material and is no longer a characteristic 

óf the coating. The critical D/t ratio varies between approximately 0.07 and 0.2. The 

most unfavourable conditions for hardness testing is that of a hard coating on a soft 

substrate, which is typical of WC-Co on an aluminium substrate.

Nanoindenters, unlike conventional hardness testers produces continuous curves of 

load versus indentation. When the depth is plotted for increasing and decreasing 

load, a hysteresis curve is produced, the area of which represents the plastic work 

performed [4.7].

4.5.2 Surface roughness testing

Surface roughness measurements were carried out with the use of a Mitutoyo Surftest 

402, Series 178 instrument (see Photograph 4.7). Measurements of average surface 

roughness R, values were also recorded from this instrument.

4.5.3 Surface profile testing

A profilometer instrument was used for showing and recording the surface profile 

of specimens under wear testing. The instrument is the same as that described in 

section 4.5.2 with the added feature of a chart recorder. This provides profile and 

roughness curves of the surface.

used for such hardness testing.
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4.5.4 Optical Microscope

The Vickers micro hardness tester described in section 4.5.1 incorporates a 

microscope suitable for measuring the width of wear scars, the size of hardness 

indentations and general observation of the surface area on a microscopic scale.

4.5.5 Scanning Electron Microscope(SEM)

Scanning Electron Microscopy is a popular method for the direct observation of 

surfaces because they offer better resolution and depth of field than optical 

microscopes. SEM processes are commonly used to measure wear. The SEM has a 

magnification in the order of 100,000X, resolution of 200 to 250A, and a depth of 

field at least 300 times more than that of the light microscope, all of which result in 

the characteristic photographs of three dimensional quality.

The process principally involves the generation of a primary beam of electrons from 

an emission source which are then accelerated by a voltage of between 1-30 KeV and 

directed down the centre of an electron optical column consisting of two or three 

magnetic lenses [4.8]. These lenses allow a fine electron beam to be focused onto 

the specimen surface. Scanning coils are made to pass through the corresponding 

deflection coils of a Cathode Ray Tube (CRT), so as to produce a similar but larger 

raster on the viewing screen in a synchronous fashion. Various phenomena occur at 

the surface of the sample including secondary electron emission which is used to 

form the image. There is a one to one correspondence between the number of 

secondary electrons collected from any particular point on the specimen surface and
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the brightness of the analogous point on the CRT screen. As a result, an image of 

the surface is built up. Some of the electrons are inelastically scattered by the K,L 

or N electrons shells in the atom losing their energy in the form of x-rays and it is 

these which are detected in energy dispersive x-ray analysis (EDX). The theory and 

analysis of the SEM instruments and their method of operation are detailed in the 

following reference [4.9].

Samples analysed with the SEM were cut to a suitable size using a diamond studded 

wheel and lubricant operated at low cutting speeds and forces to prevent any 

distortion of the sample examined. The samples were then polished, mounted, and 

enclosed in the vacuum chamber of the instrument.

The Scanning Electron Microscope used in this work (S-2400 HITACHI Scanning 

Electron Microscope) and shown in Photograph 4.8, consists of the vacuum chamber 

and components within, screen, surface profile recorder and computer and software 

(Oxford Link ISIS Labbook supplied by Oxford Instruments Ltd, U.K.) used for data 

acquisition and analysis of the recorded information. All tests made use of the 

Secondary Electron Excitation mode. This instrument allowed detailed analysis of 

the wear area and showed the distribution of elements in the coatings and substrate 

materials using the speed map features of the software. It was also used to supply 

a spectrum of the elements in the coated systems inspected using the X-Ray Analyser 

features.
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Photograph 4.7 Surface profile measurement equipment.

Photograph 4.8 SEM unit used for inspection of samples.
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4.5.6 HVOF Thermal Spraying process.

The Thermal spraying process used in applying coatings for this thesis and discussed 

in Chapter 2. was used for applying thick coatings of Tungsten Carbide Cobalt (WC- 

Co) and Nickel Chrome (Ni-Cr) coatings. Incorporated in the spraying area is a 

surface preparation unit for grit blasting the specimens prior to coating. A 

thermocouple was used to measure the substrate temperature during the coating 

process as excess heat can lead to coating failure due to thermal stresses. The coating 

process was manually performed and details on the surface roughness, hardness and 

thickness before and after the coating process were recorded. Measuring substrate 

thickness before the coatings were applied allowed accurate measurement of the 

coating thickness before testing. These coating thickness values were confirmed by 

using the Scanning Electron Microscope described in section 4.5.5.

4.5.7 Sample Surface preparation.

Surface preparation for the Thermal Spray Process consisted of the following 

procedure.

i) Preliminary clean (grit blast).

ii) Pre-machine.

iii) Degrease.

iv) Grit blast.

v) Spray within two hours.

The substrates used for the thin coating applications were prepared by commercial
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suppliers but a typical coating process for these films include,

i) Wet cleaning

ii) Heating

iii) Etching

iv) Coating

v) Cooling
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CHAPTER 5 

MATHEMATICAL ANALYSIS

5.1 WEAR MEASUREMENT EQUATIONS

5.1.1 Abrasion test conditions

Under pure abrasion tests, the stylus continually traversed the surfaces for a specified 

number of cycles and the wear rate measured at regular intervals. Metal removal was 

measured by weight loss and volume loss. The depth of the wear scar was also 

recorded for these tests.

The approximate volume of the wear scar, a cross section of which is shown in 

Figure 5.1a, formed by abrasion contact may be given by equation (5.1) which was 

developed from an equation in reference [5.1].

V o l u m e  = 0.5S[r2p - W ( r - h ) ]  (5.1)

where

r =  stylus radius.

W =  width of the wear scar at the surface, 

h =  depth of the wear scar.

S =  sliding distance.

0 =  included angle.

A computer programme was written (see appendix B) for calculating the volume
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For continuous use, the stylus tip would be expected to wear and the shape to change 

to that shown in Figure 5.1b. This wear of the tool was experienced in the test 

process and had to be taken into account when measuring the wear volume. From 

Figure 5.1b., the equation for calculating the cross sectional area of the wear scar, 

which is a development of equation (5.1) is equal to:

CSA = — r2[p-sin(p)-a+sin(a)] ^
2

where 0 and a are the included angles as shown. The volume is found from the 

product of this and the sliding distance (S).

The actual volume is calculated from the width of the wear scar at the surface (W), 

the width of the tip of the stylus (W l), and the radius (r) of the stylus, and 

substituting these values into the above equation for sin(0) and sin(a).

A programme for calculating the wear scar volume based on this tool shape was 

written in Basic and is given in Appendix B. The width of the tip of the stylus was 

measured between tests to note any change in its shape.

wear under abrasion conditions using the above formula.
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Figure 5.1a Abrasion wear scar cross section.

Figure 5.1b Abrasion scar for worn stylus.
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5.1 .2  Impact conditions

Under impact conditions, for a perfectly hemispherical tip continually impacting a 

samples, the volume of the resulting crater is given by equation (5.3) from reference 

[5.1].

, ri h l

Crater Volume = nhcr  —  (5.3)

where

r =  radius of the impact stylus.

h* =  depth of the crater as shown in Figure 5.2a.

In the event of the tip of the stylus becoming flattened during the test process, the 

crater shape would be modified and the following formula used to calculate the 

volume produced as shown in Figure 5.2b:

* h . u2 W , 2  ~ ,2 a *
Volume = — (V + 3 (— ) + 3 (y )  ) (5 .4 )

This represents the volume of a fnistrum of a sphere where: 

^  =  crater depth.

W1 =  width at tip of stylus.

2a =  crater diameter at the surface.

The surface area of the crater produced is approximately:

Surface area = 2nrhc
(5.5)
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5.1.3 Combined impact abrasion

Samples were subjected to combined impact-abrasion tests for a specified number of 

cycles and the wear rate measured at regular intervals. The crater and abrasive wear 

scars were measured seperately and recorded and the weight loss also noted. The 

wear volume produced due to combined impact abrasion for a hemispherical tip as 

shown in Figure 5.2a, approximates to:

Volume = izh2e[ r -^ ]  + -W(r-h)] (5.6)

where S! = S-2a and

2a =  crater diameter at the surface.

For a modified stylus tip, the combined wear volume would be the sum of the 

volumes for equations (5.2) and (5.4).

Impact can occur while the stylus is stationary at the start of the wear scar or can be 

applied as the stylus traverses the sample at different velocities and positions. 

Experimental work considered impact at the start and at the center of the wear scar 

to measure the effects of linear velocity of the stylus on the material loss and wear 

scar produced. A computer programme (see appendix B) was written for calculating 

the wear volume under combined impact and abrasion.

5.2 MATHEMATICAL MODEL FOR CONTACT WEAR

One of the most widely used equations for measuring the wear volume for contacting 

surfaces is the Archard or constant wear volume equation which has been adapted
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Figure 5.2a Combined impact abrasion wear scar.

Figure 5.2b Crater size for worn stylus.
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by many authors [5.2 - 5.8]. The standard equation appears as follows.

where

V = volume of material worn off (mm3)

S=  sliding distance (m).

L= Normal Load (N)

H = Hardness (N/m2)

K= wear coefficient.

This equation shows that the wear increases with both the applied load and the 

sliding distance.

K can be replaced by the wear constant, k as

Inhomogeneous materials such as those with a modified surface or a coating should 

not be expected to yield constant k values. The k-value will then become a weighed 

mean of the individual wear constants of the coating and the substrate (k, & k, 

respectively) as described by Kassman et al [5.4].

In the wear test used for this experimental work, the sliding velocity is not constant 

and a new wear constant kt is used to take account of velocity changes. This

(5.8)

therefore:

-  = k x L  
S

(5.9)
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interpretation of the wear equation has been suggested by authors in the past 

[5.8,5.9] but to date has not been applied to a reciprocating stylus whose linear 

velocity is changing. It is well accepted that the cutting velocity of machine tools for 

instance has a bearing on the life of the tool.

Considering a small volume change corresponding with a change in sliding distance:

let 5K = volume change

let 5S = sliding distance change

Therefore:

b V  .  ,
(5.10)

also

bS -  v*bt

i
thus giving:

■^7 = (5.11)

from which

dV = dt (5.12)

This gives the wear volume V as:

t
V = kx*L*Jv2 dt (5.13)

o

With reference to Figure 5 .3 , the velocity o f the abrading stylus is;
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(5.14)

where

oj = angular velocity of the motor in radians/sec. 

n = the ratio 1/r. 

r =  crank radius.

I = con rod length.

If the velocity is squared, the wear volume equation becomes;

w

and the time, t is proportional to the number of cycles.

Integrating for 9 from 0 to 2 t  for one full cycle the wear volume becomes:

This value can be multiplied by the number of cycles to calculate the total wear 

volume at any test interval.

The equation can also be written as:

circumference of the circle produced by this point in one revolution, and is 

proportional to the sliding distance of the stylus on the surface of a test sample.

O

(5.15)

also

(5.16)

V = k.*L*w*r2*2it (5.17)

V = k. *L*v*2nr (5.18)

where v is the velocity (m/s) of a point at the end of the motor arm, and 2*r is the



1

I

Figure 5.3 Drive imyhflnism for the test rig.
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If the normal load L is 100 N, the crank radius r, 0.01 m, and the motor speed 106 

revolutions per minute (r.p.m.) then the wear volume. V, for one cycle is:

V = 0.698kx (5.19)

and the value of k, can be found by measuring the wear volume in the 

experimental tests. The units of k, in this case are:

mm3
N -m -m /s

From inspection of uncoated aluminium samples subjected to abrasion under a 

variable linear velocity, it was observed that the depth of the wear scar changed with 

displacement or velocity of the abrasion stylus. This is discussed in Chapter six.

5.3 IMPACT ANALYSIS

A collision between two bodies which occurs in a very small time interval, and 

during which the two bodies exert on each other relatively large forces is called an 

impact [5.10].

5.4 DYNAMIC INDENTATION

When two elastic bodies such as a sphere and a flat specimen are pressed against 

each other and the load exceeds a critical value, the elastic limit, a plastic zone 

develops and an indentation in the surface may result. At first the region of contact 

will deform elastically, and if the impact is low enough the surface will recover
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elastically and seperate without residual deformation. The collision in this case is 

purely elastic.

Tabor [5.11] and later Brenner et al [5.12] showed that a lubricant film or thin oxide 

films do not affect the deformation produced by impact of a sphere on a surface. 

However such coatings are likely to reduce any adherence or sticking between two 

impacting surfaces.

5.5 DYNAMIC HARDNESS

The dynamic hardness of a material is defined by Tabor [5.13] as the resistance to 

local indentation when the indentation is produced by a rapidly moving indenter. The 

volume of the indentation formed is directly proportional to the kinetic energy of the 

indenter. This implies that a material offers an average pressure of resistance to an 

indenter equal numerically to the ratio;

For a hemisphericl indenter, applying a constant dynamic impact pressure P, if at 

any instance the projected area of the indentation is A, the force exerted on the 

material is PA. At the next cycle, the indenter will penetrate a further distance dx, 

the work done will be PAdx and the total work in forming the indentation is

Energy of indenter
(5.20)Volume of indentation

(5.21)

where Vt is the volume o f indentation. This can be equated to the energy of impact
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as given in reference [5.13], so that

Energy o f impact (5.22)

There may be a change in the volume of the indentation due to elastic recovery if 

there is some rebound involved. If the impact results in the mean pressure exceeding 

about 1.1Y, where Y is the yield stress or elastic limit of the material, slight plastic 

deformation will occur. As the impact energies increase, deformation becomes 

plastic resulting in the total kinetic energy of the indenter being absorbed in 

deformation. Finally, a release of elastic stresses in the indenter and in the 

indentation takes place as a result of which some rebound occurs.

Following impact, the volume of the remaining permanent indentation is Vr , the 

work done as plastic energy in producing this indentation is given by

where W3 is the difference between the energy of impact, W, and the energy of 

rebound W2. The volume Vr of the permanent indentation left in the surface, as 

derived by Tabor and applied by others [5.14] approximates to;

(5.23)
W3 =  PVr

K
(5.24)

where

a =  radius of indentation crater

r2 =  radius of curvature of the indentation given by:
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r.2 (5.25)

5.5.1 Contact area on impact

When two surfaces are brought together, they meet at the tips of the higher asperities 

and the total area of contact is determined by the deformation of the material in these 

regions under the applied load. In many experimental works a spherical shape is 

normally used as the abrading tool so that the total area of contact is confined to a 

single circular area. As the loads increase, this area increases in size [5.5].

The radius, r2, of the circular area of contact formed when a sphere of radius r is 

pressed against a flat surface under a force L is given in [5.15] by,

ĥ. =  depth of crater.

(5.26)

when the deformation is elastic and

E! =  Youngs modulus for the abrading tool.

Ej =  Youngs modulus for the contacting surface.
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When the deformation is plastic the radius becomes.

L (5.27)
\  n *Pm

where

pra = Mean pressure of the deformable member over the area of contact.

5.5.2 Time of impact for plastic conditions

Considering an indenter of spherical shape and radius r, impacting a sample and 

penetrating a distance x, it produces a crater of radius a, as shown in Figure 5.4. 

The value 2rx approximates to a2 [5.13]. The decelerating force on the sample is 

equal to Pira2 or Px2rx, where P is the average yield pressure. The equation of 

motion for the system is given in [5.13] as;

(5.28)

and the solution is given by;

x = j4sin,
\ m
2P%rt (5.29)

The sphere is brought to rest when dx/dt =  0, and therefore,

7ï m
2 \  2Pnr (5.30)

136



force

— —  

I
 !  ■ 1

Crater ini sample
under impact.

Figure 5.4 Method of applying impact craters.

Stylus

Sample

Table

Spring

137



t =  rime of impact 

m =  mass of the indenter.

Tabor [5.13], in deriving this approximate equation assumes that the indenter is 

completely undeformable and all elastic strains are neglected.

For a plastically deforming sphere striking a rigid plate, Richmond [5.15] has shown 

that the time of impact is given by;

p = density of the sphere material 

a{ = flow stress 

r = radius of the sphere.

Both equations show that the duration of the impact does not depend on the 

impingement velocity v.

5.5.3 Plastic zones formed in impact

The plastic zones beneath the abraded area are formed below the impact or indenting 

tool [5.16,5.17]. A plastic zone of uniform depth is formed whose size, Q is 

proportional to the diameter of the crater, 2a, formed on the eroded surface by the 

impact tool. That is;

where c is a constant.

For a spherical particle of radius, r, and density, p, impacting a test piece of average

t = 0.65r -H-
\  <v

(5.31)

Q = 2a*c (5.32)



hardness, H, the energy balance equation is given in [5.15] as;

HV = — r3 pv2 
3

(5.33)

V = crater volume.

HV is the energy in forming the crater and the Right Hand Side of the equation is 

the kinetic energy of the incident particle and v is the impact velocity.

5.6 IMPULSE AND MOMENTUM

In applications where an impulsive force is applied over a very short time, lasting 

from t=to to t= tt to a mass m, from Newtons 2nd law,

where f(t) is the force function.

If the mass centres are located on the common normal to the surfaces in contact, 

the impact is considered a central impact. If the velocities of the particles are 

directed along the line of impact, the impact is said to be a direct impact. 

Otherwise the impact is said to be oblique impact [5.18].

The main stages of combined impact-abrasion are shown in Figure 5.5.

5.6.1 Direct central impact

(5.34)

For two bodies, a and b of mass m, and mb moving in the same straight line and 

heading towards each other with velocities v, and vb, the collision on impact may
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cause the two bodies to deform. At the end of the deformation period, they will 

have the same velocity, u. A period of restitution will then take place, following 

which the bodies will regain their original shape or stay deformed. If there is no 

impulsive, external force, the total momentum of the two particles is conserved 

as follows,

where vl, and v lb are the final velocities of particles a and b respectively after 

the period of restitution.

In the analysis here, particle a (the stylus) is stationary before impact and 

therefore has an initial normal velocity, v equal to zero, therby reducing the 

momentum equation to.

Since the only impulsive force acting on a is the force F exerted by b then,

u = velocity during deformation.

The force exerted by particle b (the table and sample mass) on a, during the 

period of restitution, denoted by R is given as

(5.35)

m b*Vb = m b*v l b + ma*v l a (5.36)

(5.37)

mau -  J R d t  = mav l a (5.38)
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where

¡R d t s. IF d t  (5-39)

The ratio of these impulses correspond to the period of restitution and the period 

of deformation is the cefficient of restitution, e.

e =
[Rdt

= (5 -40)

where e is between 0 (for pure plastic) and 1 (for pure elastic conditions). The 

coefficient of restitution depends on the materials involved, the impact velocities 

and the particle shape as described in reference [5.18].

The relative velocity of the particles before impact is equal to vb and the relative 

velocity after impact is vlb-vl,, then

u - v l  (5.41)
e =  -

-u

Considering the effects of particle a on particle b, and combining equations, the 

coefficient of restitution becomes,

e = vi»-v/q (5.42)

This property can be used to determine the value o f the coefficient of restitution 

experimentally of the two materials colliding under impact. The final velocity of 

particle b after impact and the period of restitution is,

vI (5.43)
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w  = (5.44)

m a + m b

Since under the experimental work carried out in this research, there is a 

combination of elastic and plastic conditions, the total energy of the particles is 

not conserved, and the kinetic energy before and after impact is expected to differ 

due to heat produced and elastic waves generated within the colliding panicles. 

Some rebound of the stylus and its attached load occured in the experimental 

work, following which, a secondary impact took place, completed by contact 

abrasion until the next impact cycle. This rebound depends on the stored elastic 

energy in the colliding bodies which is equivalent to the kinetic energy of 

rebound. Hertz [5.19] expressed this elastic energy E*as,

E .  1 ^ 4  (5.45)
5 £ ( i - u 2)

where;

E =  Young’s Modulus. 

v =  Poissons ratio.

P =  Pressure under which the metal flowed plastically during impact.

a =  Radius of impact crater.

and the kinetic energy of rebound E ,, is given by,

m + v l 2 (5.46)
E . = — —

and the velocity of panicle a after restitution is,

This energy is applied to the samples in producing a secondary impact effect.
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5.6.2 Oblique centrai impact

When the velocities of the two colliding bodies are not directed along the line of 

impact, impact is said to be oblique. This is common to combined impact 

abrasion. The direction of the velocities of the bodies before and after impact are 

as shown in Figure 5.5. If the bodies are assumed frictionless, the only impulse 

exerted on the particles during impact are due to internal forces directed along the 

line of impact (normal axis). The components along the tangential axis of the 

momentum of each particle is conserved.

In the normal direction:

m bvb = m b*v l b+ma*v l a (5,47)

and also:

”V W ‘ '  ^  (5.48)

since v, =  0.

Considering the tangential component, the velocity of the stylus before impact is 

equal to the velocity just after impact;

va before = va after (5.49)

From the above equations, if the masses, m, and mb are known, along with the 

initial velocities, v, and vb, and the coefficient of restitution, e, then the velocities 

just after impact can be determined.

Due to the normal and tangential components of the velocity of the particle a, its 

actual velocity and direction is the resultant of these two components as shown 

in Figure 5.5. Figure 5.6 shows a schematic of the effects of the dynamic
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rebound caused by the combination of impact conditions and linear velocity on the 

stylus.

Combined Impact Abrasion wear scar.

Double crater effect due to impact and rebound

S

Figure 5.6 Cratering due to dynamic rebound on samples.
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CHAPTER 6 

WEAR TESTING OF SAMPLES AND 

DISCUSSION OF RESULTS

6.1 INTRODUCTION

Various coating were applied to substrates and thickness values were measured 

and recorded prior to wear testing. Surface roughness values and hardness values 

of the substrate and coatings were also recorded using a surface profileometer and 

hardness tester respectively. The profileometer was also used for measuring the 

depth and examining the profile of the wear scars and craters following each test. 

Microhardness measurements for the experimental work were taken on a Vickers 

hardness tester using a diamond pyramid indenter and Macro hardness values 

measured with an Omag hardness tester. Material loss and volume loss values 

were recorded at regular intervals and the values plotted against the number of 

wear cycles. Uncoated samples were also tested and compared to the coated 

specimens. Most coatings were tested to destruction which resulted in either 

coating failure, removal or penetration.
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6.2 OPERATING PROCEDURE

6.2.1 Applied loads

Normal loads of 100 Newtons were applied to the samples during testing. Other 

loads applied during the testing are as stated.

6.2.2 Sliding distance and velocity range

The sliding distance of the stylus was set at 20 mm for most experimental work 

which gave a reciprocating velocity range shown in Table 6.1 for the stylus. The 

displacement and acceleration values corresponding with the velocity range are 

also given.

6.2.3 Impact velocity

A Uniphase helium gas laser was used for measuring the velocity just before 

impact occured in each test. The impact distance (1.5 mm) and spring force were 

identical for each test. Recorded impact velocities were 0.22 m/s. From the 

calibration chart for the bevel washers in Figure 4.5, the calculated spring 

constant C (N/m) for the impact system is 161.40 kN/m. The mass of the impact 

table is 5.2 kg. This applied an upward force on the stylus and its mass of 240 

N. Following impact, the stylus mass is pushed upwards freely a distance, 

depending on the coefficient of restitution. Typical rebound heights were in the
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order of 1 to 1.5 mm, measured by an electronic displacement gauge. The falling 

mass, then strikes the sample at a velocity of 0.14 to 0.2 m/s. The stylus then 

abrades the sample until the cams seperate them and the cycle repeats itself. 

Operating speeds are 106 cycles per minute.

Crank Radius r = . 01
Con rod l e n g t h  1 = .3

n = 1 / r  = 30
Speed o f  r o t a t i o n 106
w ( r a d / s e c )  = 1 1 .1 0

ANGLE DISPLACEMENT VELOCITY ACCELERATION
(DEG) (m) (m/s) (m/sA2)

0 0 0 1 .273
20 .0006 .0392 1 .18 9
40 .0024 .0732 .9510
60 .0051 .0977 .5955
80 . 0084 .1099 .1754
100 . 0119 .1087 - .253
120 . 0151 .0945 - .6 3 7
140 . 0177 .0695 - .937
160 . 0194 .0368 -1 .1 3
180 . 02 0 - 1 . 1 9
200 . 0194 - .037 - 1 .1 3
220 .0177 - . 0 7 0 - . 9 3 7
240 . 0151 - . 0 9 5 - . 6 3 7
260 . 0119 - .109 - .2 5 3
280 .0084 - . 110 .1754
300 .0051 - .098 .5955
320 .0024 - .073 .9510
340 . 0006 - . 039 1 .1 8 9
360 0 0 1.273

Table 6.1 Reciprocating velocity range for stylus.
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6.3 HARDNESS VALUES

The hardness measurements for the coated specimens were conducted with a Leitz 

Miniload Vickers micro hardness tester [6.1]. The Vickers hardness number Hv, 

from this reference is given by:

f =  applied load in grams 

d =  mean value of a diagonal in pm

6.4 M ATERIALS TESTED

6.4.1 Substrates

Substrate materials of Aluminium, Mild Steel and Tool Steels (AISID2, AISID3, 

VANADIS 4, and VANADIS 10,) were used. All substrates were cut to size, and 

prepared for coating purposes. The composition of the substrate materials and 

hardness values (HRc) for the uncoated samples are given in Table 6.2.
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Contents % Hardness

Material C Si Mn Cr Co W V (Rc 150 kgf)

AISI D2 1.55 0.3 0.3 12 0.8 0.8 63

AISI D3 2.05 0.3 0.8 12 1.3 60

Vanadis 4 1.5 1.0 0.4 8.0 1.5 4.0 62

Vanadis 10 2.9 1.0 0.5 8.0 1.5 9.8 63

Mild Steel 0.2 0.15 0.30 62 HRb

Aluminium 5.0 0.55 60 HRf

Table 6.2 Substrate materials.

6.4.2 Coatings

Coatings applied and tested in the experimental work include:

1. Titanium Nitride TiN. (Thin coatings 2 to 4 /*m).

2. Titanium Carbide Ti*C. (Thin coatings 2 to 4 /¿m).

3. Tungsten Carbide-Cobalt. (Thick coatings).

4. Nickel Chrome. (Thick coatings).

The Tungsten Carbide-Cobalt, and Nickel Chrome coatings were applied by the 

High Velocity Oxy Fuel Process described in section 2.5.5, and the Titanium 

Nitride and Titanium Carbide (Ti*C where x =  0.05) coatings were applied by 

a PVD process (Teers Coatings, U.K.). For the High Velocity Oxy Fuel process, 

Diamalloy 2003 [6.2], Tungsten Carbide-Cobalt Metal/carbide powder and 

Diamalloy 2001 [6.3], Nickel Chrome Thermal spray metal powder were used. 

Details of these materials are supplied in Tables 6.3 and 6.4 respectively.

150



DIAMALLOY 2003. Contents. Relative Density. Melting Pt

Tungsten Carbide 88.5% 4.5-6.3. 1200-1260°C

Cobalt 11.5%

Powder size less than 40/*m with coarse appearance.

Table 6.3. WC-Co Metal/carbide powder.

DIAMALLOY 2001 Contents Relative Density Melting Pt.

Nickel 72% 4.4 980-1150°C

Chromium 17%

Silicon 4%

Boron 3.5%

Iron 1%

Cobalt 1%

Table 6.4. Ni-Cr Thermal spray metal powder.

6.5 CONTACT ABRASION TESTS

6.5.1 U N  and TIC coated tool steels

Abrasion wear tests were performed on four tool steel materials of AISI D2 and 

D3 and Vanadis 4 and Vanadis 10. Coatings of Titanium Nitride (TiN) and 

Titanium Carbide (TiC) were applied to each material using a PVD process. Wear
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tests on the coated and uncoated samples were conducted on each sample using 

a round nose tool stylus of radius 2 mm, made from Tungsten Carbide. A normal 

load of 5.5 kg was applied to the samples until such time that the coating was 

penetrated. The sliding contact distance was set at 20 mm. Wear tests on each 

material showed that the TiC coated samples demonstrated greater wear 

resistance, with the TiC coated Vanadis 4 providing the best wear resistance. 

Factors assisting the low wear of these samples was the combined 

coating/substrate hardness and the quality of the coating. TiN coated D2 and D3 

samples showed very little improvement in wear resistance over the uncoated 

samples.

Figures 6.1 to 6.4 show the results of wear scar depth versus number of wear 

cycles for D2, D3, Vanadis 4 and Vanadis 10 respectively. From these figures it 

is evident that the Titanium Crabide coatings offered the greatest wear resistance 

with the best performance on Vanadis 4. In comparison, the uncoated and 

Titanium Nitride coated samples offered much lower and similar wear resistance. 

For the uncoated samples, the D3 material showed the least wear resistance. On 

the TiC coated samples, the D3 substrate material proved the least wear resistant, 

and the Vanadis 4 providing the best wear resistance. For the TiN coated 

samples, the most wear resistant material was also Vanadis 4, followed by 

Vanadis 10. Similar wear resistance was noted for the TiN coated D2 and D3 

samples.
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6.5.2 Hardness and wear resistance

The hardness values of the combined coating/substrate samples are shown in 

Figure 6.5. The lower hardness value of the combined TiC/D3 sample 

corresponds with a lower wear resistance for this sample in the wear tests 

conducted. Figure 6.5 also shows lower hardness values for the uncoated samples 

over the coated ones, which contributed to their lower wear resistance. Although 

the TiC coated D2, Vanadis 4 and Vanadis 10 show similar hardness values, the 

wear resistance varied considerably for each sample. It is noticeable that the 

hardness values for the TiN coated samples are considerably lower than the TiC 

coated samples. This is a contributory factor to their higher wear rates which 

brought them more closely to the wear rates of the uncoated samples. Inspection 

on the surface of the coated samples before testing showed some pitting in the 

case of the TiN coatings. The same effect was not noticeable on the TiC coatings. 

The presence of these pits contributed to the low wear performance of the TiN 

coated samples. As a result, the uncoated samples were just as wear resistant as 

the TiN coated samples tested. In contrast, the TiC coatings improved the wear 

resistance significantly of all substrate materials.

6.5.3 Tungsten Carbide Cobalt coated samples

Initial tests were carried out on WC-Co samples using an applied load of 100 N 

and sliding distance of 20 mm. Weight loss in grams were measured on the worn 

samples. Table 6.5 gives the details of the coated and uncoated samples of
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aluminium (Al) and mild steel (MS). Figures 6.6 to 6.9 show the weight loss for 

abrasion and impact abrasion of the aluminium and mild steel samples. Apart 

from the uncoated samples, the wear rate for each sample is similar. Due to 

combined impact and abrasion, the coatings on the softer substrates experienced 

considerable wear. This was due to cracking, cratering, gouging, abrasion and 

plastic deformation. This effect is shown in Photograph 6.1. Results show that 

thin coatings performed best on soft aluminium substrates subjected to impact 

abrasion conditions whereas the thicker coating performed better on the harder, 

mild steel sample for the same test. Figures 6.10 and 6.11 show the depth 

of the wear scar and craters for abrasion and impact abrasion respectively,

showing a large crater depth for the .42 mm thick coating on aluminium, caused 

by coating detachment and substrate penetration under impact conditions.

Sample.

Surface 
roughness. 
Ra values 
substrate 
( /*m)

Coating 
thickness 
( mm )

Ra values 
coating.
( m )

Micro hardness. 
Hv 300.

substrate, coating.

Al-1 5.5 0.517 4.5 70 1089

Al-2 5.5 0.42 4.5 80 945

Al-3 5.5 0.232 4.5 70 1157

Al-4 5.5 0.043 4.5 90 974

M .S.-l 6.2 0.384 4.5 220 1370

M.S.-2 6.2 0.460 4.5 220 1272

M.S.-3 6.2 0.171 4.5 220 1400

M.S.-4 6.2 0.048 4.5 220 1183

Table 6.5. Surface roughness, hardness and coating thickness of test samples.
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Photograph 6.1 Cratering and coating failure of WC-Co on
aluminium substrate subjected to impact abrasion.
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6.6 WEAR VOLUME FOR WC-Co AND Ni-Cr COATED SAMPLES

Coatings of WC-Co and Ni-Cr were applied to substrates of aluminium and mild 

steel. These samples were subjected to contact abrasion, pure impact, and 

combined impact abrasion at different linear velocities as discussed in section 

5.6.2. Samples, coatings, thickness of coatings and hardness values are given in 

Table 6.6. Using equations (5.1) to (5.4) and (5.6), wear volume, crater volume 

and wear volume for combined impact abrasion values were calculated from the 

wear scars and craters produced. Experimental work considered impact at the start 

and at the center of the wear scar to measure the effects of linear velocity of the 

stylus on the material loss and wear scar produced. At the start of the wear scar, 

the linear velocity is equal to zero and at the center of the wear scar, the linear 

velocity is a maximum.

The impact distance set by the cam driven impact mechanism was 1.5 mm for all 

samples and a normal load of 100 N applied. Figures 6.12 to 6.14 show the 

effects of abrasion and impact abrasion at different linear velocities on aluminium 

substrates coated with WC-Co and Ni-Cr. Figures 6.15 to 6.17 show similar 

effects on mild steel samples. Figures 6.18 and 6.19 show results for the crater 

volume produced by pure impact and Figure 6.20 compares the effects of wear 

on the combined impact abrasion at different linear velocities and the wear 

volume due to impact and abrasion as seperate wear tests on a WC-Co coated 

aluminium sample.

The influence of rebound following impact, combined with the linear velocity of 

the reciprocating stylus has a major effect on the wear rates of the samples tested.
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It was observed during the testing that when the linear velocity of the 

reciprocating stylus was equal to zero, one crater was produced in the test 

samples. However when impact loading was applied at maximum linear velocity, 

two main craters were produced in the samples along the wear scar, the second 

of which was due to the rebound effect. The dynamic effects resulted in gouging 

on impact, producing craters whose length were greater than their width, unlike 

pure impact which generated symmetrical crater shapes on samples. It was found 

that the indentation crater left in the metal surface has a larger radius of curvature 

than that of the indenting sphere. This effect is referred to as shallowing and is 

due to the release of elastic stresses in the metal specimens. Applying impact 

loads on samples led to rapid failure of poorly adhered coatings. These same 

coatings performed satisfactorily under abrasion conditions. This highlights the 

importance of impact loading as a test for coated samples. The loads applied 

under the test conditions were relatively high and as a result led to rapid failure 

and breakage of the coatings and in some cases, damage to the substrates. The 

WC-Co alloy coatings proved very successful under the test conditions compared 

to Ni-Cr coatings applied to aluminium and mild steel samples, which failed more 

rapidly under similar circumstances. Under combined impact abrasion conditions, 

the detached particle sizes were large compared to pure abrasion.

From the results obtained it is shown that the characteristics of the substrate 

material has an influence on the wear resistance of the coatings examined under 

impact conditions. The coatings employed improved the wear resistance of the 

samples under the test conditions.
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Surface 
roughness. 
Ra values 

Sample. substrate 
( Mtn )

Coating 
thickness 
( mm )

Surface
roughness. Hardness.
Ra values 
coating.
( /im ) substrate, coating.

(HB-60kgf) (¿tHv 300)

Al-l(WC-Co) 5.5 0.210 4.5 55 1089

Al-2(WC-Co) 5.5 0.076 4.5 54 945

Al-3(Ni-Cr) 5.5 0.088 4.5 56 860

Al-4(Ni-Cr) 5.5 0.131 6.5 34 900

Al-5(Ni-Cr) 5.5 0.2 6.4 33 846

Al-6(WC-Co) 5.5 0.245 4.5 56 1050

Al-7(WC-Co) 5.4 0.246 4.3 35 1023

Al-8(Ni-Cr) 5.5 0.242 6.5 50 850

Al-uncoated 5.5 - 54 -

(HB- lOOkgf)

MS-2(Ni-Cr) 6.0 0.131 4.5 99 850

MS-4(Ni-Cr) 6.2 0.190 4.5 106 890

MS-5(WC-Co) 6.0 0.151 4.5 107 1250

MS-7(WC-Co) 6.2 0.373 5.3 104 1010

MS-8(Ni-Cr) 6.2 0.250 5.3 107 870

MS-ll(WC-Co) 6.2 0.265 4.5 107 1380

MS-uncoated 6.2 - - 98 -

Table 6.6 Test samples for wear volume measurements
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Wear (mm3) vs number of cycles.
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Pure impact conditions
Wear (mm3) vs number of cycles.
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From the results of wear for the different forms of testing applied, it is shown 

that the impact abrasion with impact occuring at maximum linear velocity (impact 

in center of wear track) produces maximum wear. Due to the dynamic abrasion 

effect, some of the aluminium samples experienced severe gouging, especially 

when the coating was penetrated. Photograph 6.1 shows the effects of impact, on 

the soft substrate, where the coating was pushed down into the material, and 

cracked due to its brittle nature.

6.7 WEAR COEFFICIENTS

6.7.1 Standard wear coefficient

Under contact abrasion, the wear coefficient, k, for samples were calculated 

using equation (5.9), based on the applied normal load (N), the sliding distance 

(m), and the wear volume (mm3). Average wear coefficients for samples are 

given in Table 6.7. These values were determined by measuring the width and 

depth of the wear scars at the center of the wear tracks. Using equations (5.1), 

and (5.9), the wear coefficients were found.

These coefficients correspond with the wear volume loss for different 

substrate/coating combinations tested. TiC coated and uncoated Vanadis 4 

samples offered the highest wear resistance and lowest wear coefficient. 

Materials showing least wear resistance and high wear coefficients are 

uncoated mild steel and aluminium. The wear coefficients represent the combined 

coated system.



Aluminium samples Wear coefficients

Uncoated aluminium 2.63 x IO'2
Al-1 (WC-Co) 0.84 x 10"*
Al-2 (WC-Co) 2.19 x 10"*
Al-3 (Ni-Cr) 3.33 x IO4
Al-4 (Ni-Cr) 3.47 x 10"*
Al-5 (Ni-Cr) 5.83 x 104
Al-6" (WC-Co) 1.23 x 10-*
Al-7 (WC-Co) 1.58 x 10"*
Al-8 (Ni-Cr) 3.70 x 10"*

Mild steel samples

Uncoated mild steel 2.28 x 10'3
M.S.-2 (Ni-Cr) 5.15 x 10"*
M .S.-4 (Ni-Cr) 3.06 x 10"*
M .S.-5 (WC-Co) 0.93 x 10"*
M .S.-7 (WC-Co) 1.97 x 10"*
M .S.-8 (Ni-Cr) 3.0 x 10"*
M .S.-11 (WC-Co) 0.87 x 10"*

Tool steel samples

AISI D2 Uncoated 9.86 x 10 s
AISI D2 (TiN) 3.42 x 10s
AISI D2 (TiC) 1.23 x 10 s

AISI D3 Uncoated 1.66 x 10"*
AISI D3 (TiN) 3.09 x 10'5
AISI D3 (TiC) 2.16 x IO5

Vanadis 4 Uncoated 1.95 x IO'5
Vanadis 4 (TiN) 1.31 x 10*
Vanadis 4 (TiC) 6.57 x 10*

Vanadis 10 Uncoated 8.5 x 10*
Vanadis 10 (TiN) 3.69 x 10s
Vanadis 10 (TiC) 8.6 x 10*

Table 6.7 Standard wear coefficients for contact abrasion
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6.7.2 Modified wear coefficients

Due to the velocity of the reciprocating stylus continually changing over the 

abraded surface, the modified wear coefficient, kl5 given in equations (5.18) and 

(5.19), were considered. For example, Figure 6.21 shows the wear scar depth 

profile produced by an abrasion test on aluminium, and shows that the depth is 

not constant along the wear scar length.

The modified wear coefficient values are given in Table 6.8. The volume of the 

wear scars are average values, based on a number of cross sectional areas taken 

across the wear scar.

Due to the operating conditions of the test rig, and the limited number of 

researchers applying the wear coefficient, k, to wear testing, there is very limited 

information available on the wear coefficients of the materials tested.

Most testing still applies crater wear, weight loss, depth of wear scar, flank wear 

and erosion wear as the means of measuring wear resistance. Based on the 

materials in contact during rubbing wear, and the operating loads and conditions 

of the test rig, the order of the wear coefficients achieved are typical and 

comparable to the type of tests mentioned above.
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Aluminium samples Modified Wear coefficients
(k.)

Uncoated aluminium 3.70 x 10'2
AM (WC-Co) 2.4 x KT4
Al-2 (WC-Co) 0.65 x 10 3
Al-3 (Ni-Cr) 0.9 x 10'3
Al-4 (Ni-Cr) 0.99 x IO 3
Al-5 (Ni-Cr) 1.66 x 10'3
Al-6 (WC-Co) 3.82 x 10"*
Al-7 (WC-Co) 0.55 x IO'3
Al-8 (Ni-Cr) 0.97 x 10'3

Mild steel samples

Uncoated mild steel 3.2 x IO'3
M.S.-2 (Ni-Cr) 1.88 x IO'3
M.S.-4 (Ni-Cr) 0.89 x IO'3
M.S.-5 (WC-Co) 1.88 x 10"*
M.S.-7 (WC-Co) 3.8 x 10"*
M.S.-8 (Ni-Cr) 0.65 x 10'3
M.S.-11 (WC-Co) 1.96 x 10"*

Tool steel samples

AISI D2 Uncoated 1.17 x 10-*
AISI D2 (TiN) 0.53 x 10"*
AISI D2 (TiC) 1.91 x 10‘5

AISI D3 Uncoated 2.62 x 10"*
AISI D3 (TiN) 4.72 x lO'5
AISI D3 (TiC) 3.16 x lO'3

Vanadis 4 Uncoated 3.01 x lO5
Vanadis 4 (TiN) 2.92 x lO'3
Vanadis 4 (TiC) 1.01 x 10 s

Vanadis 10 Uncoated 1.15 x lO 5
Vanadis 10 (TiN) 0.58 x 10"*
Vanadis 10 (TiC) 1.33 x 10 s

Table 6.8 Modified wear coefficients for contact abrasion
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figure 6.21 Wear scar depth profile for uncoated
a l u m i n i u m  sample produced by abrasion test*
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6.7.3 Wear volume for modified wear coefficients

Using the integral of equation (5.15), and the modified wear coefficients from 

Table 6.8, graphs of wear volume were produced. Figure 6.22 and 6.23 show the 

wear volumes against linear velocity for one cycle of abrasion. Figure 6.22 shows 

a sample of a WC-Co coated mild steel (MS-11) and Figure 6.23, shows a 

WC-Co coated aluminium specimen (Al-6). The volume loss for each specimen 

at 4500 cycles is also given in the figures which show close approximation to the 

wear values measured.

6.7.4 Surface roughness profiles

Figures 6.24 to 6.27 show surface roughness profiles following abrasion tests 

on coated samples of mild steel and tool steel.

The WC-Co and Ni-Cr coated mild steel samples were both subjected to 4500 

abrasion cycles with a load of 10 kg.

The TiN and TiC coated tool steel samples were subjected to 5700 and 15000 

cycles of abrasion under a load of 10 kg respectively.

The TiC coated sample shows a large improvement in wear resistance over the 

TiN sample. Similarly, the WC-Co sample shows improvement over the Ni-Cr 

coated mild steel sample. The appearance of the surface profiles shows the 

enhanced surface finish of the thin coatings over the thick coatings applied.

The physical shape of the wear scar profile is semi-circular.
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Degrees rads volume (mm^3)
0 0 0
20 . 3 4 9 0 6 5 9 . 0 0 0 0 1 1 1
40 . 6 9 8 1 3 1 7 . 0 0 0 0 2 0 7
60 1 .  0 4 7 1 9 8 . 0 0 0 0 2 7 8
80 1 . 3 9 6 2 6 3 . 0 0 0 0 3 2 7
100 1 • 7 4 5 3 2 9 . 0 0 0 0 3 6 6
120 2 . 0 9 4 3 9 5 . 0 0 0 0 4 1 2
140 2 . 4 4 3 4 6 1 . 0 0 0 0 4 7 9
160 2 . 7 9 2 5 2 7 . 0 0 0 0 5 7 3
180 3 . 1 4 1 5 9 3 . 0 0 0 0 6 8 4
2 0 0 3 . 4 9 0 6 5 9 . 0 0 0 0 7 9 4
2 20 3 . 8 3 9 7 2 4 . 0 0 0 0 8 8 8
2 40 4 . 1 8 8 7 9 0 . 0 0 0 0 9 5 5
2 60 4 . 5 3 7 8 5 6 . 0 0 0 1 0 0 1
2 8 0 4 . 8 8 6 9 2 2 . 0 0 0 1 0 4 0
3 00 5 . 2 3 5 9 8 8 . 0 0 0 1 0 8 9
3 20 5 . 5 8 5 0 5 4 . 0 0 0 1 1 6 0
3 4 0 5 . 9 3 4 1 1 9 . 0 0 0 1 2 5 6
360 6 . 2 8 3 1 8 5 . 0 0 0 1 3 6 7

V o l u m e  f o r  4 5 0 0  c y c l e s  = . 6 1 5 2

VOLUME CHANGE WITH VELOCITY

Dagrees

Figure 6.22 Wear volume for one cycle of abrasion on a 
WC-Co coated mild steel sample 
Volume change vs velocity.
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Degrees rads volume (mmA3)
0 0 0
20 . 3 4 9 0 6 5 9 . 0 0 0 0 2 1 7
40 . 6 9 8 1 3 1 7 . 0 0 0 0 4 0 3
60 1 .  0 4 7 1 9 8 . 0 0 0 0 5 4 2
80 1 . 3 9 6 2 6 3 . 0 0 0 0 6 3 7
100 1 . 7 4 5 3 2 9 . 0 0 0 0 7 1 3
120 2 . 0 9 4 3 9 5 . 0 0 0 0 8 0 2
140 2 . 4 4 3 4 6 1 . 0 0 0 0 9 3 4
160 2 . 7 9 2 5 2 7 . 0 0 0 1 1 1 6
1 80 3 . 1 4 1 5 9 3 . 0 0 0 1 3 3 2
2 00 3 . 4 9 0 6 5 9 . 0 0 0 1 5 4 8
2 2 0 3 . 8 3 9 7 2 4 . 0 0 0 1 7 3 0
2 40 4 . 1 8 8 7 9 0 . 0 0 0 1 8 6 2
2 6 0 4 . 5 3 7 8 5 6 . 0 0 0 1 9 5 1
2 80 4 . 8 8 6 9 2 2 . 0 0 0 2 0 2 7
3 00 5 . 2 3 5 9 8 8 . 0 0 0 2 1 2 2
3 20 5 . 5 8 5 0 5 4 . 0 0 0 2 2 6 1
3 40 5 . 9 3 4 1 1 9 . 0 0 0 2 4 4 8
3 6 0 6 . 2 8 3 1 8 5 . 0 0 0 2 6 6 4

Volume fo r  4500 c y c le s  = 1 .2

V O L U M E  C H A N G E  WITH VELOC ITY

D«grw*

Figure 6.23 Wear volume for one cycle of abrasion on a 
WC-Co coated aluminium sample 
Volume change vs velocity.
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Figure 6.24 Surface profile of WC-Co coated mild steel 
= 17.6 pin, depth = 25 /¿m.

Figure 6.25 Surface profile of Ni-Cr coated mild steel 
R^„ =  22 pm, depth = 31 jim.

| -r'__:i:__  ; _  I _^  ---—
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r - : X tl t

----- j---

------i ----------- . . . - —

Figure 6.26 Surface profile of TIN coated tool steel 
Rmu =  ^ /im, depth =  15 pm.

Figure 6.27 Surface profile of TiC coated tool steel 
= 3.6 j*m, depth =  15 pm.
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6.8 SURFACE ANALYSIS OF COATINGS

6.8.1 Abrasion surface

Photographs 6.2 and 6.3 show a plan and cross section respectively of a 

WC-Co coated tool steel (AISI D3) sample. The abrasion and scuffing of the 

coating are shown along with the wear depth caused by the abrasive tool after 

3000 cycles under a 10 kg load. The thermal sprayed coating showed good 

adhesion to the substrate. Photograph 6.4 shows tool steel samples coated with 

TiC and TiN before testing and their appearance following abrasive wear 

tests is shown in Photograph 6.5. The TiN coated sample was subjected to 5700 

cycles under a load of 10 kg, while the TiC coated specimen received 12000 

cycles. The TiC coated sample showed superior wear resistance over the TiN 

coated specimen. Both coatings were of similar thickness (2-4pm) and applied to 

the same material (AISI D3).

Photograph 6.6 shows the abrasion wear of uncoated aluminium and mild steel 

samples. The aluminium sample was subjected to 500 cycles while the mild steel 

sample received 4500 cycles. Considerable wear occured on the aluminium 

sample compared to coated aluminium samples under abrasion conditions. 

Photograph 6.7 shows the effects of abrasion wear on mild steel samples 

coated with Ni-Cr and WC-Co thermal sprayed coatings respectively. Both 

samples received 4500 cycles at 10 kg. The enhanced wear resistance of the 

WC-Co sample is clearly shown by the photograph.
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Photograph 6.4 TiN and TiC coated tool steel samples 
before abrasion tests.

30 mm
i <

Photograph 6.5 Abrasion wear scars on TiN and TiC samples 
TiN sample =  5700 cycles at 10 kg 
TiC sample = 12000 cycles at 10 kg.
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30 mm

Photograph 6.6 Wear scars on uncoated aluminium and mild steel 
samples.

30 mm

Photograph 6.7 Abrasion scars on Ni-Cr and WC-Co coated 
mild steel samples.
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6.9 SEM ANALYSIS

Photograph 6.8 and 6.9 show a WC-Co coated aluminium sample before and 

after abrasion tests under a Scanning Electron Microscope. The coating is in 

the order of 0.5 mm thick and shows good adherence to the substrate. The 

final coating thickness following the test is 0.1 mm.

Using the Secondary Electron mode and the data capture facility of the SEM 

software, a speedmap of the coating and substrate was produced and 

is shown in Figure 6.28. This shows the general location and distribution of 

the coating particles (W and Co) relative to the substrate (Al). Figure 6.29 

shows an X-Ray spectrum of the same sample.

6.9.1 Defects in coatings

Using the SEM facility, some defects were observed in coatings before wear 

testing. Photograph 6.10 shows a longitudinal crack, parallel to the surface 

in a WC-Co coating under a magnification of 300. Photograph 6.11 shows 

cracking in a coating parallel and normal to the substrate. Such defects, caused 

by internal stresses and lack of bonding would lead to easy removal of portions 

of the coating.
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Photograph 6.8 WC-Co coated aluminium before abrasion wear 
testing.

Photograph 6.9 WC-Co coated aluminium after abrasion test.



Figure 6.28 Speedmap of WC-Co coated aluminium sample.
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figure 6.29 X-ray spectrum of WC-Co coated aluminium sample.
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Photograph 6.10 Internal cracking in WC-Co coating parallel 
to the surface.

Photograph 6.11 Internal cracking in WC-Co coating parallel 
and normal to the surface.
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6.10 IMPACT ABRASION

Photograph 6.12 shows wear scars for abrasion and combined impact 

abrasion. The samples consist of Ni-Cr and WC-Co coated aluminium 

respectively. The Ni-Cr coated sample which showed most wear under both 

test conditions shows considerable cratering and damage in the impact region 

caused by impact loading and gouging. Some plastic flow is also evident on the 

surface of the sample. The WC-Co coated sample shows greater wear resistance 

to both impact and abrasion with a much smaller and more uniform impact crater 

on the surface. The shape of this crater is shown in Photograph 6.13. 

Photograph 6.14 shows a crater produced on a WC-Co coated mild steel 

sample subjected to 4500 cycles under a load of 10 kg while Photograph 6.15 

highlights plastic flow and abrasion scars in a mild steel sample produced by 

contact abrasion. Ni-Cr coated tool steel samples are shown in Photograph 

6.16. These coatings were subjected to 1500 impact abrasion cycles 

under a 10 kg load, which led to spalling, fracture and detachment of large 

parts of the coating. Identical samples, subjected to pure abrasion did not 

reveal the same defects. This highlights one advantage of subjecting coatings 

to impact loading for testing adhesion and fracture resistance of the combined 

coated system. Photograph 6.17 shows a similar defect on a WC-Co coated 

aluminium sample where cracking and detachment of large pieces of coating 

were removed adjacent to a crater. In this case the impact loads resulted in 

fracture of the coating at the edge of the crater. By inspection of the wear 

tests, impact loading results in large pieces of coating to become detached



*
s

Ni-Cr sample WC-Co sample

30 mm

Photograph 6.12 Impact abrasion wear scars on Ni-Cr and WC-Co 
coated aluminium samples.
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2 mm

Photograph 6.13 Impact crater in WC-Co coated aluminium sample 
showing substrate and wall of crater.
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2mm
*--------------------------------------------------- —j

Photograph 6.14 Crater on WC-Co coated mild steel.

1mm
  —<

Photograph 6.15 Abrasion scar and plastic flow on mild steel sample.
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Photograph 6.16 Ni-Cr coating detachment from tool steel 
substrates subjected to impact abrasion.

2mm 
 #

Photograph 6.17 Large detachment of coating adjacent to crater 
produced by impact loading of WC-Co 
aluminium coated sample.
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while pure abrasion removed small particle sizes. The effects of combined impact 

abrasion of a hard coating on a soft substrate are shown in Photographs 6.18 and 

6.19. In these cases the coating has become immersed in the substrate due to the 

impact loads sinking the coating into the substrate, followed by the abrasive effect 

causing plastic flow of the substrate material over the coating. Severe cracking of 

the coated parts are noticeable. Under the test conditions, the substrate was unable 

to support the coating which led to penetration of the coating into the aluminium 

substrate.

The brittle nature of the WC-Co coating caused it to crack due to the applied 

loads and collapse of the substrate support. A TiN coated D3 tool steel sample 

subjected to impact abrasion is shown in Photographs 6.20 and 6.21. A top view 

and cross section of the impact region is shown. The sample was subjected to 

4500 cycles at 10 kg. The substrate in this case is able to support the coating and 

minimal yielding of the substrate is evident. The coating has only detached in 

parts corresponding to where it received direct impact. This caused the coating 

to crack and spall, leaving the substrate exposed in places. Coating detachment 

only occured in specific areas.
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Photograph 6.18 Hard WC-Co coating immersed in soft aluminium 
substrate under impact loading.

Photograph 6.19 WC-Co coating covered by aluminium substrate 
due to plastic flow and abrasion wear.
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Photograph 6.20 Impact of TIN coated tool steel showing coating 
detachment and adhesion regions.

1mm
t—-------------- -

Photograph 6.21 Cross section of TIN coated tool steel showing 
coating detachment.

1mm
---------- i
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CHAPTER 7 CONCLUSIONS

7.1 INTRODUCTION

From the results obtained it is shown that the characteristics of the substrate material 

has a major effect on the wear resistance of the coatings examined under impact 

conditions. The coatings employed improved the wear resistance of the samples under 

contact abrasion conditions. Coatings that performed satisfactorily under contact 

abrasion showed high wear rates under impact abrasion conditions. Hard WC-Co 

coatings applied to soft substrates such as aluminium will result in rapid destruction and 

high wear rates of the material under the influence of impact forces.

The main aims and objectives of this study were:

(i) to develop a novel test rig for testing coated and uncoated engineering 

materials under the conditions of dynamic abrasion wear testing, and incorporate 

a method of measuring the applied forces during these test methods.

(ii) to compare the effects of coated with uncoated samples under dynamic abrasion 

test conditions.

(iii) to examine the performance of the coating-substrate combination and the effects 

of different substrates on the overall wear resistance of the system.

(iv) to assess the performance of different coating thicknesses on substrates under 

dynamic abrasion wear tests.
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(v) to investigate how surface coatings perform under impact conditions compared 

with pure contact abrasion and pure impact.

(vi) to compare the performance of coated and uncoated specimens under dynamic 

test conditions for unlubricated conditions.

(vii)' ’ to describe the main wear parameters produced during the dynamic abrasion

testing.

(viii) to compare the separate effects of impact and abrasion with the combined effects 

of impact abrasion on coated and uncoated materials.

These objectives were carried out during the experimental and analysis stages of the 

thesis and the following conclusions can be drawn from the work.

7.2 GENERAL CONCLUSIONS

(i) Applying impact loads on samples led to rapid failure of poorly adhered 

coatings. These same coatings performed satisfactorily under abrasion 

conditions. This highlights the importance of impact loading as a test for coated 

systems.

(ii) The results of the study show that the impact abrasion test apparatus can be used 

to test the wear resistance of coated and uncoated specimens.

(iii) The impact effects were useful for identifying poor coating adhesion and caused 

rapid failure of such samples.

(iv) The combined effects of impact-abrasion make the test rig more applicable to 

industrial applications and unique as a wear test, compared to other available 

equipment.
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(v) It was found that the indentation crater left in the surface has a larger radius of 

curvature than that of the indenting sphere. This effect is referred to as 

shallowing and is due to the release of elastic stresses in the metal specimens.

(vi) On impact, some adherence of the coating to the stylus occured immediately 

which results in a transfer of material between the colliding bodies. Shearing 

due to sliding or abrasion action disrupts the surface films on materials.

(vii) For the WC-Co coated samples, the tests confirmed literature findings that these 

coatings are prone to scuffing even at light loads [7.1].

(viii) Substrate properties have an influence on the wear of the combined coated/ 

substrate system.

Under pure impact conditions, a symmetrical crater as expected is produced. Under 

combined impact and abrasion the stylus is striking the samples at force and abrading 

the surface. This resulted in a number of effects and gouging or ploughing of the 

samples became predominant. This effect was more noticeable on substrates of soft 

materials. The gouging resulted in the stylus shearing the coating from the surface. As 

observed, the impact of the stylus forced the stylus below the coating/substrate interface 

and produced severe abrasion of the coating. It was noticeable on substrates of 

aluminium that a step effect was produced, from the crater due to impact and gouging 

of the stylus on the specimens. It was stated by Swick et al [7.2], that combined impact 

abrasion resulted in less wear of a specimen than if the two effects were performed 

seperately. Measurements taken in this research work on samples indicated that due to 

gouging and ploughing, of the sample, following impact resulted in greater wear loss 

than if both impact and abrasion were conducted seperately.
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7.3 THESIS CONTRIBUTION

(i) Development of a new wear test rig for applying dynamic abrasion loading to

coated and uncoated engineering materials was developed and tested.

(ii) Experimental testing of the effects of dynamic rebound on impact loading was

conducted to measure its contribution to dynamic abrasion of materials.

(iii) Applying impact and abrasion tests under a variable linear velocity in a

reciprocating motion was carried out.

(iv) Comparisons of wear testing for coated and uncoated materials under abrasion 

and impact abrasion were investigated.

The thesis has highlighted the effects of impact abrasion as opposed to pure contact 

abrasion and shown in some instances that impact conditions can isolate poorly adhered 

coatings that seemed to function satifactorily under abrasion contact.

The advanced operation of combined impact-abrasion on samples allows the wear tester 

to be used for combined wear testing. Wear tests for impact-abrasion conditions that 

required the use of two or more different rigs in the past can now be performed with 

one piece of equipment, given improved accuracy to the results. Such tests arise in 

intermitten cutting or milling as described by Knotek et al [7.3].

7.4 RECOMMENDATIONS FOR FURTHER WORK

Further research for lubricated conditions under abrasion and dynamic conditions could 

be undertaken to assess the difference in wear rates for coated and uncoated samples.

The main work and contributions of the thesis to wear testing are as follows:
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Having experimentally conducted tests on pure impact and abrasion, modelling the 

dynamic conditions using a Finite Element Method would be a good comparison, 

especially for coated samples to analyse the stresses and loading of the materials in such 

conditions.
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APPENDIX A

TEST RIG DETAIL DRAWINGS
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Figure A-6. Uprights for sample table
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Figure A-11. Connecting rod
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Figure A -16. Intermediate drive shaft 
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BEARINGS FOR TEST RIG

1. Cara shaft bearings:
SKF Deep groove ball bearings.
Bearing wheel reference: 6202, 22R
I.D. 15 ram. O.D. 35 mm. Width = 11 mm.
4 off.

2. Bearings for linear unit:
SKF Needle roller bearings.
Bearing wheel reference: RK 15*18*17F. 
I.D. 15 mm. O.D. 18 mm. Width = 17 mm. 
2  off.

3. Bearings for guiding table:
I.D. 10 mm. O.D. 18 mm. Width = 25 mm. 
Plain bearings or linear guide bearings.
4 off.

TOOTHED BELTS AND SPROCKETS

1. From motor to intermediate drive shaft: 
Pulley on motor: 20L050
Pulley on intermediate shaft: 20L050
Timing belt: 225L050

2. From intermediate to first cam shaft:
Pulley on intermediate shaft: 19L050
Pulley on first cam shaft: 19L050
Timing belt: 187L050

3. From first cam shaft to second cam shaft: 
Pulley on first cam shaft: 15L050
Pulley on second cam shaft: 15L050
Timing belt: 124L050
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Messunterlagscheibe 
Rondelle de charge 
Load washer ryP. 9001 A SN 416644
Kalibrierter Bereicti 
Gamme étalonné« 
Calibrated range

[N]
0 ..7  500 0 750 0...75

Setriebatemperaturbereicft
Gamme de temp, d utilisation fC ] -196. 200
Operating temperature range

Empfindlichkeit
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Sensitivity

[pC/N] - 4 ,0 2 -3 ,8 9
Kalibriert bei 
Etalonne a 20 ’C
Calibrated at by Mg Date 2 0 .7 .9 2

Lmearital _ _ _  
Lineante < ì % F S O
Linearity

0 ,5 0 .3
1N(N ew ton l=1Kgm a-'=0.1018...kp=0.224«...lb l 
1hp =  1kg1= 9.00665 N 
llbMpound lorce) =  4.446 N

0 750 1 500 2 250 3000 3 750 4 500 5 250 6000 6 750 7 500
0 75 150 22S 300 375 450 52S 600 675 750

0 7.5 15 22.5 30 37.5 45 52.5 60 67.5

Calibration sheet for piezo electric load cell.
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APPENDIX B

BASIC PROGRAMMES FOR DATA ACQUISITION 

AND MEASURING WEAR LOSSES
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QBASIC PROGRAMME FOR READING DATA FROM LOAD CELL.
D. KENNEDY.
FILE NAME = DK988.EXE.

DECLARE SUB DAS8  (MODE%, BYVAL dummy%, FLAG%)
10 CLS 
20 PRINT 
30 PRINT
40 PRINT " Written by David Kennedy"
50 PRINT
60 PRINT " School of Mechanical & Manufacturing Engineering"
70 PRINT " Dublin City University"
80 PRINT " Ph.D Student 1994"
90 PRINT
100 PRINT " This programme performs the following tasks"
110 PRINT
120 PRINT " (1)... Reads data from data acquisition card"
130 PRINT
140 PRINT " (2)... Sends data to a text file for graphical presentation etc"
150 PRINT
160 PRINT " (3)... Displays on screen real-time-data of test procedures"
170 PRINT
180 PRINT " (4)... Measures the normal force acting on a test piece"
190 PRINT
200 PRINT " PRESS ANY KEY TO CONTINUE"
210 A8 $ = INKEY$: IF A 8 $ =  "" THEN GOTO 210 
220 DIM DI%(8 )
230 DIM NY(8 )
240 DIM NY1(8)
250 CLS : PRINT SPC(79);
260 NCHAN % =  8  

270 U% = 0
280 OPEN "DAS8 .adr" FOR INPUT AS ft 1 
290 INPUT #1, basadr%
300 CLOSE #1 
310 DIM S%(6 )
320 S%(0) =  basadr%
330 FLAG% = 0 
340 MD% = 0
350 CALL DAS8 (MD%, VARPTR(S%(0)), FLAG%)
360 LOCATE 12, 1: PRINT SPC(79);
420 PRINT " START PROGRAMME"
430 PRINT
440 PRINT " SEND DATA TO FILE AND DISPLAY FORCE ON SCREEN" 
450 PRINT
460 PRINT " PLEASE ENTER THE FILENAME : "
470 INPUT FILES
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480 OPEN FILES FOR OUTPUT AS #5 
490 DIM D%(7)
500 DIM DIO%(7)
510 COLOR I, 2, 4: CLS
520 VL = 1

530 DIM CH%(16)
540 DIM YL%(16)
550 FOR 1% = 0 TO 16: YL%(I%) = -32768: NEXT 1%
560 LOCATE 25, 1: PRINT : LOCATE 1, 1
570 PRINT "which channel do you want plotted < e .g . 0-3-7 >?:", x$
580 x$ = INKEYS: IF x$ = THEN GOTO 580 
590 x$ = + x$
600 L% =  LEN(x$)
610 FOR 1% = 1 TO L%
620 IF MID$(x$, 1%, 1) =  " " THEN MID$(x$, 1%, 1) =
630 NEXT 1%
640 FOR 1% = 0 TO NCHAN% - 1: CH%(I%) =  0: NEXT 1%
650 CR% = ASC(LEFT$(x$, 1))
660 IF ((CR% > = 48 AND CR% < = 55) AND (VAL(x$) < =  NCHAN% -1  AND 
VAL(x$) >  = 0)) THEN CH%(VAL(x$)) =  1: L% =  LEN(x$): x$ =  RIGHT$(x$, 
L% - (1 + INT(VAL(x$) / 10)))
670 IF 1% < NCHAN% - 1 THEN N% = ASC(MID$(x$, I + 1, 1))
680 L% = LEN(xS)
690 IF L% > = 1 THEN x$ = RIGHT$(x$, L% - 1): GOTO 650
700 IF U% > =  48 AND U% < = 5 5  AND N% > =  48 AND N% < = 5 5  THEN
CH%(10 * (U% - 48) + N% - 48) = 1: I = I + 1
710 SCREEN 2: CLS
720 LOCATE 25, 1: PRINT "PRESS -I- TO SPEED UP, - TO SLOW 
DOWN, < ESC > TO EXIT"
730 x% = 32: U% =  1: C% =  1: LOCATE 23, 50: PRINT "GRID IN 1 SECOND 
INTERVALS";
740 DATA 250,200,150,100,50,0,-50,-100,-150,-200,-250 
750 FOR 1% =  1 TO 11: READ A3S: LOCATE 1% * 2 - 1, 1: PRINT A3$; : NEXT 
1 %
760 IF x% >  =  640 THEN LINE (x%, 0)-(x%, 168), 0: x% =  30: LINE (x% - 1, 
0 )-(x% - 1 , 168), 0

770 LINE (x% + 1, 0)-(x% + 1, 168), 0
780 LINE (x%, 0)-(x%, 168), 0
790 MD% = 1: D%(0) =  0: D%(1) =  NCHAN% - 1
800 CALL DAS8 (MD %, VARPTR(D%(0)), FLAG%)
810 MD% = 4
820 FOR Z% = 0 TO NCHAN% - 1
830 CALL DAS8 (MD%, VARPTR(D%(0)), FLAG%)
840 IF FLAG < > 0 THEN PRINT #5, ’ERROR’
850 IF D%(0) > -1 THEN PRINT ft5, D%(0) / 1000
860 IF VL = 0 THEN DIO%(Z%) =  (D%(0) * 5 / 2047) ELSE DIO%(Z%) =  
D%(0 )
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870 NEXT Z%
880 FOR Z% =  0 TO NCHAN% - 1 
890 IF CH%(Z%) =  0 THEN GOTO 990 
900 IF \% <  30 THEN x% = 30 
910 Y% = DIO%(Z%)
920 IF YL%(Z%) =  -32768 THEN GOTO 980
930 LINE (x% - 1, 84 + YL%(Z%) * 80 / 2047)-(x%, 84 + Y% * 80 / 2047)
940 XVALUE% = (x% - 1)
950 YVALUE% = (YL%(Z%) * 80 / 2047)
960 XVALUE1 % =  (x%)
970 YVALUE1 % = (84 - Y% * 80 / 2047)
980 YL%(Z%) =  Y%
990 NEXT Z%
1000 GOSUB 1190: IF Q + C% > T THEN GOTO 1030 
1010 FOR 1% = 1 TO 11: PSET (x%, 1% * 16 - 12): NEXT 1%
1020 Q = T
1030 x % = x% + 1
1040 U% = 200
1050 FOR 1% =  1 TO U%
1060 A$ =  INKEYS: IF AS = "" GOTO 1170 
1070 1% =  U%
1080 IF ASC(AS) =  27 THEN LOCATE 1 ,1 : SCREEN 2: CLS : GOTO 1260 
1090 IF AS =  "+" THEN U% = (U% / 2): IF U% = 1 THEN GOSUB 1220 
1100 IF AS = AND U% < =  16000 THEN U% =  (U% * 2): IF U% > 16000 
THEN GOSUB 1220
1110 IF AS =  AND U% > 16000 THEN GOSUB 1220
1120 IF U% < =  200 THEN C% = 1: LOCATE 23, 1: PRINT SPC(79); : LOCATE
23, 50: PRINT "GRID IN 1 SECOND INTERVALS";
1130 IF U% > 2000 THEN C% =  60: LOCATE 23, 1: PRINT SPC(79); : LOCATE 
23, 50: PRINT "GRID IN 1 MINUTE INTERVALS"; : GOTO 1150 
1140 IF U% > 200 THEN C% =  10: LOCATE 23, 1: PRINT SPC(79); : LOCATE 
23, 50: PRINT "GRID IN 10 SECOND INTERVALS";
1150 IF AS =  "" THEN 1160 ELSE GOTO 1170 
1160 IF INKEYS =  "" GOTO 1160 
1170 NEXT 1%
1180 GOTO 760 
1190 TS =  TIMES
1200 T =  3600 * VAL(LEFT$(T$, 2)) + 60 * VAL(MID$(T$, 4, 2)) + 
VAL(RIGHT$(T$, 2))
1210 RETURN
1220 IF U% = 1 THEN LOCATE 23, 1: PRINT "MAX SPEED";
1230 IF U% >  10000 THEN LOCATE 23, 1: PRINT "MIN SPEED";
1240 LOCATE 23, 1: PRINT " ";
1250 RETURN 
1270 END
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BASIC PROGRAM FOR CALCULATING THE VOLUMETRIC WEAR LOSS 
UNDER ABRASION WEAR.

10 REM PROGRAM FOR CALCULATING VOLUMETRIC WEAR LOSS
11 REM BY DAVID KENNEDY.
15 REM FOR A WORN AND IDEAL TOOL SHAPE.
16 REM CALCULATE WEAR FACTOR K 
20 REM BY DAVID KENNEDY.
30 PRINT " WHAT MATERIAL IS UNDER TEST"
40 INPUT A$
50 LET P=3.14159
60 PRINT " HOW MANY CYCLES OF ABRASION"
70 INPUT CA
80 PRINT " WHAT IS THE NORMAL FORCE IN NEWTONS"
90 INPUT N
100 PRINT " WHAT IS THE SLIDING DISTANCE FOR ABRASIVE CONTACT 
PER REVOLUTION IN METERS"
110 INPUT S 
120 PRINT
130 PRINT " WHAT IS THE RADIUS OF THE STYLUS IN MILLIMETERS" 
140 INPUT R
150 PRINT " WHAT IS THE WIDTH OF THE WEAR SCAR AT THE SURFACE 
IN MILLIMETERS"
160 INPUT W
170 PRINT " WHAT IS THE WIDTH OF THE TIP OF THE STYLUS"
180 INPUT W1
185 PRINT
186 REM CALCULATE ADJACENT FOR WEAR SCAR SURFACE 
190 LET X=SQR(RA2-(W/2)A2)
200 PRINT
205 REM CALCULATE ADJACENT FOR IIP  OF WEAR TOOL 
210 LET M =SQR(RA2-(W1/2)A2)
220 PRINT
230 REM CALCULATE CROSS SECTION OF WEAR SCAR FOR WORN OR 
UNWORN TOOL
240 LET A = 0.5*RA2*(2*ATN(W/(2*X))-SIN((2*ATN(W/(2*X))))- 

2*ATN(W1/(2*M))+ SIN((2*ATN(W1/(2*M)))))
250 PRINT "---------------------------------------"
260 PRINT" MATERIAL TESTED IS",A$
270 PRINT" NUMBER OF WEAR CYCLES = ’\C A
280 PRINT" CROSS SECTIONAL AREA OF WEAR SCAR = ",A;"inmA2"
290 PRINT" VOLUME OF MATERIAL REMOVED =", A*S*l000/2; W 3 "  
295 LET VOL =  A*S*1000/2
300 PRINT" WEAR FACTOR K =", VOL/*(N*S*CA); "mmA3/NM"
310 PRINT" VOLUME LOSS PER CYCLE=", VOL/CA;"mmA3"
320 PRINT"-----------------------------------------"
330 PRINT "VOLUME WEAR LOSS FOR AN IDEAL TOOL (NO WEAR)"
340 REM CALCULATE CROSS SECTION OF WEAR SCAR FOR AN IDEAL 
TOOL
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350 LET A l=  0.5*R"2*(2*ATN(W/(2*X))-SIN(2*ATN(W/(2*X))))
360 PRINT" MATERIAL TESTED IS ",A$
370 PRINT" NUMBER OF WEAR CYCLES =  ",CA 
380 PRINT" CROSS SECTIONAL AREA OF WEAR SCAR =",Al;"mm"2" 
390 PRINT" VOLUME OF MATERIAL REMOVED =" Al*S*1000/2; "mm*3" 
395 LET VOL1 =  Al*S*1000/2
400 PRINT" WEAR FACTOR K =", VOLl/(N*S*CA); "mmA3/NM"
410 PRINT" VOLUME LOSS PER CYCLE=", VOLl/CA;"mm"3 
420 END
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BASIC PROGRAMME FOR CALCULATING THE CRATER VOLUME 
PRODUCED IN SAMPLE.

10 REM PROGRAMME FOR CALCULATING THE CRATER VOLUME.
20 REM BY DAVID KENNEDY 
25 LET P = 3.14159
30 PRINT " WHAT IS THE DEPTH OF THE CRATER"
40 INPUT HC
50 PRINT " WHAT IS THE NUMBER OF IMPACTS"
60 INPUT I
70 PRINT "WHAT IS THE CRATER DIAMETER AT THE SURFACE IN 
MILLIMETERS"
80 INPUT W
90 PRINT " WHAT IS THE RADIUS OF THE STYLUS"
100 INPUT R
110 PRINT " WHAT IS THE WIDTH OF THE IIP  OF THE STYLUS"
120 INPUT W1
125 REM IF WIDTH AT TIP OF TOOL, W1 =  0, THEN VOL = VOLUME OF 
HEMISPHERICAL CRATER.
130 LET VOL =  (P*HC/6)*(HCA2+3*(W l/2)*2+3*(W /2)A2)
140 PRINT "CRATER VOLUME VOL; "MMA3"
150 PRINT " AVERAGE CRATER VOLUME PER EV1PACT='\ VOL/I 
160 PRINT
170 REM CURVATURE OF CRATER
171 LET R2= ((WT2/4 +HCA2)/(2*HC)
172 PRINT "RADIUS OF CRATER=", R2 ______
175 REM TABOR VOLUME CALCULATION FOR HEMISPHERICAL TIPPED 
TOOL
176 LET VR= (P*(T/2)A4)/(4*R2)
177 PRINT " CRATER VOLUME FROM TABOR EQUATION =  ", VR
180 REM MEASURE THE COMBINED VOLUME WEAR FOR IMPACT AND 
ABRASION
190 REM VOLUME LOSS FOR COMBINED IMPACT ABRASION.
200 PRINT
210 PRINT " WHAT IS THE WEAR SCAR VOLUME"
220 INPUT WSV
230 PRINT " WHAT IS THE CRATER VOLUMES"
240 INPUT CV
250 PRINT "TOTAL VOLUME =", WSV +  CV 
260 END
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