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List o f symbols List o f symbols
a Fiber core radius Mo Permeability of free space

a Refractive index apodisation parameter nt Refractive index «, =core, n2 =cladding

a T
b

Coefficient of thermal expansion neff

* \

Effective refractive index of an optical
Interference filter half width at half 
maximum
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5 A small difference v Poisson’s ratio
A Fibre refractive index profile height 
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Pe Effective photoelastic constant
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5n Mean amplitude of the refractive index P,J p u ,P n  > PockePs piezo coefficients ofeJJ modulation J

» • . ’ -v , the stress optic tensor
E Electric field of the electromagnetic wave pm Pico-meters
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K(z) Mode power coupling coefficient wc Gaussian 1 / e half linewidth

L Grating length CO Angular frequency of electromagnetic
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Zc Cantilever length z Position along a fibre core axis

Wavelength z Characteristic impedance = yj/u/ s
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Abstract

The use o f apodised in-fibre Bragg gratings in the measurement o f both strain and strain 

gradient is discussed. A system of two Bragg gratings o f similar but slightly displaced 

Bragg wavelength, joined using a 3dB coupler was used with a specially designed 

spectrum analyser o f approximately nine picometers wavelength resolution. This 

consisted o f a scanning Fabry Perot interference filter and photodiode detector unit 

interfaced to a PC. The reflection spectrum of both gratings, one exposed to strain, the 

other used as a temperature-referencing channel, was constructed using a Voigt type 

deconvolution. A directed evolution software algorithm was used as a line fitting routine 

to extract both the Bragg wavelengths and linewidths o f the light back reflected from the 

gratings. A cantilever type strain rig in a temperature-controlled environment was used to 

create known strain and strain gradient fields. The variations in the Bragg wavelength 

with strain over a -400 to +600 microstrain range was measured from which the strain 

sensitivity o f 0.962 ± 0.002 pm/microstrain, at ~1300nm was determined. The 

temperature sensitivity was also evaluated. The linewidth o f the back reflected spectrum 

from the Bragg grating was measured as a function o f strain gradient (g) over the range 

- 1 .0  to + 1.5  microstrain per mm and was'fitted to a quadratic in g . This functional form 

was explained using a model based on coupled mode theory applied to apodised gratings.
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Chapter 1 Introduction to Fibre Bragg Gratings

1.1 I n tr o d u c t io n :

Optical fibres are waveguides o f optical radiation in which waves can propagate by 

total internal reflection. These waves consist o f oscillating E and H fields in the fibre 

core with spatially decaying evanescent fields in the waveguide claddings. I f  the cores 

o f such waveguides are modified by either a periodic modulation o f their diameter or 

refractive index then light propagating in the core will be diffracted by the periodic 

grating-like structure. This diffraction, which is analogous to the scattering o f X-ray 

radiation in crystal lattices, is called Bragg diffraction and the perturbation o f the fibre 

is called a Bragg grating. The presence o f a grating -  consisting o f a periodic 

refractive index in an optical fibre -  can cause the coupling o f light into counter 

propagating modes when it travels along the fibre. In this chapter the diffraction o f 

light in step index singlemode fibre gratings and the use o f the back reflected light to 

interrogate the grating spacing is discussed. Mode propagation in singlemode fibres is 

outlined and the occurrence o f counter propagation modes due to the resonant 

coupling created by the grating is discussed in terms o f a simple model o f Fresnel 

reflection from the gratings ‘rulings’ and the more rigorous model o f mode coupling.

The use o f diffracted light, or counter propogating optical modes to interrogate the 

grating, via its wavelength, is discussed with special reference to the strain field to 

which the grating is exposed.
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1.2 Mode propagation in step-index fibres:

X

In a step index cylindrical waveguide consisting o f  a core o f  radius a and a refractive 

index nx surrounded by an infinite (r » »  a) cladding o f  refractive index n2 

(«, >  n2 ) light o f vacuum wavelength X w ill propagate as a series o f  modes with core 

and cladding E-fields given respectively by

The above functions are solutions o f  the scalar w ave equation in cylindrical polar co

ordinates (r,<j>,z) .  a  is the angular frequency o f  the light w ave vibration and (3 is the 

mode propagation constant. The functional form o f the field shows a radial 

dependence J , (UR) in the core and a plane w ave like behaviour in the z  direction 

with a periodicity o f  /?. The core mode parameter U and the cladding-mode 

parameter W are related to the vacuum  wavenumber k (= 2. by

and U  and W  are related through the normalised frequency V o f  the waveguide 

given by

=  AJ,(UR) Cos(U) exp[i(a< -  ftz)\ 

EcIM s =  AK, (WR) C o s m  exp[i(iyi -  fk ) \cladding

E 1.1

E 1.2
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U and W are real quantities i.e. from Equation 1.2 ¡3 lies in the range

v2 =u2 +W2 = a2k2(n2 -n\) E 1-3

njc<j3<r\k E 1.4

The mode propagation constant /? divided by k is sometimes referred to as the mode 

effective index, which by Equation 1.4 is bounded in

n 2 Z  n eff Z nx E 1.5

The functions J t and Kl are Bessel functions of the first kind of order / and 

modified Bessel functions of the second kind respectively. For large arguments UR 

and WR respectively the Bessel J l (UR) is approximately a damped sinusoidal wave 

function while K, (WR) is an exponentially decaying function in the cladding as 

shown in Figure 1.1.

Figure 1.1

The eigenvalues U and W are solutions of the eigenvalue equation based upon two 

boundary conditions at the interface R = 1 (i.e.r = a ) . These conditions are the
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continuity of the radial E field and its derivative at the interface and arise because of 

the continuity of E± and D at an interface of two dielectrics under the conditions

that and n2 are not significantly different in magnitude -  the so-called ‘weakly 

guiding’ condition. This is discussed in detail is such texts as “Optical Waveguide 

Theory” by Snyder and Love [1] and “Theory o f Dielectric Optical Waveguides” by 

Marcuse [2].

1.3 Single m ode fibres:

When the waveguides V number is less than 2.045 (the first solution of J ] (V) = 0) 

then only one mode, the I = 0,m = 1 mode can be sustained in the waveguide.

Because the Bessel J 0 (UR) is approximately Gaussian in shape the fundamental 

I = 0,m = \ mode has a spatial intensity distribution which peaks on the core axis 

(r = R = 0) and decays radially into the core (r < a) and in the cladding r > a . The 

E-field wavefunctions for this mode are, since 1 = 0, by Equation 1.1

Ec„re = AJ0 (UR) QXp[i(0)t -  (3z)\ j
Eciaddmg = BK0 (UR) exp [i(cot -  f3z)]

, where the core mode parameter U and cladding parameter W (= y lv2 - U 2) satisfy 

the simplified eigenvalue equation

U J, (U) _ W  K x (W) i

Jp(U)  ~ K0(W)

For a particular waveguide (i.e. one for which the normalised frequency V is known, 

and is less than 2.405) trial solutions of U in (0,V) and W (= \ V 2 - U 2) may be 

inserted in Equation 1.7 to find the first root of the eigenvalue equation to specify the
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spatial distribution o f  the fundamental mode o f the waveguide through a 

determination o f  U  (and from it W ).

1.4 Bragg gratings in singlem ode fibres:

B y  an in-fibre Bragg grating is meant a periodic refractive

created by some means as shown in Figure 1.2 .

index profile in z along the axis o f  a section o f fibre core

Figure 1.2
If  the core refractive index in the grating section o f  the

fibre has a sinusoidal axial variation i.e. n(z) can be written in the form

A
E 1.8

, where (An) represents the modulation depth o f  the refractive index variation created 

in the grating and A  is the periodicity o f  the refractive index profile along the fibre 

axis (in the z  direction). n0 is the mean value o f the core refractive index about which  

the periodic variation oscillates.

W hen light o f  vacuum wavelength X , or propagation constant /? (=  neffk =  2rmeff jX )

in the form o f the fundamental mode o f  the fibre waveguide is incident on the grating 

some o f  the optical power is reflected at each ruling due to the “ impedance mismatch”  

which is refractive index dependant. The characteristic impedance o f  the waveguide  

core ( Z )  is given by the ratio o f  the E  and H fields o f  the optical mode and is 

expressed by

E 1.9
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, Z 0 is the characteristic impedance o f free space or about 3 7 6  ohms, and n is

the refractive index o f  the glass o f  the core. The amplitude reflection coefficient at an 

interface between media o f  characteristic impedances Z, and Z 2 is known to be

position along the waveguide then the wavelets reflected from successive rulings w ill 

be progressively more and more out o f phase and as a result interfere destructively. If, 

however the propagation constant /? o f the mode i.e. the spatial frequency o f  the

wavetrain in the z direction is half the spatial frequency Q"n/ ^ )  o f  the rulings the

wavelets which are back reflected w ill all be in phase and interfere constructively.

This condition is given by

the plane o f  the grating (2d  sin 0 = nA. , with 6  =  90° and n =  1). The Bragg condition

A n  analysis o f  the amplitude o f  the back reflected light based upon coherent Fresnel 

reflection from the successive layers can be shown to be given by

£  =  - ( 2 * / A )

or using p  = neffk  this reduces to

E 1.10

This is the Bragg condition for first order diffraction o f  radiation incident normal to

is modified from a vacuum wavelength A to y  for light in the waveguide core.
/  neff

6



or using Equation 1.10

p  = tanh 4 ( a  *>y E 1.11

where L is the total length o f  the grating.

The power reflection coefficient (p 2) is then

p 1 = tanh" 4(A n) h E 1.12

A s  the argument 4 (A n) increases, the power reflection coefficient p 1 approaches

1.0  (tanh (x)=0.996 at x = l )  showing that the reflectivity o f  the grating at the Bragg  

wavelength m ay be extremely high -  provided L(An) is comparable in magnitude to 

Ab . The spectral linewidth o f  the reflected light has been quoted by Inoue et al ( 19 9 5 )  

to be

or approximately

E 1.13

when (Ari)L «  AB. W ith L , typically o f  the order o f  millimeters and 1B o f  the order 

o f  microns the linewidth is small, o f  the order o f  lnm  or less.

7



Wavelength (nm)

Figure 1.2

(From Fiber Bragg Gratings, Othonos & Kalli 1999 An =  3-OxlO"4,/, =  2.0  m m )

It is evident from Equation 1 . 1 2  that the grating reflectivity at the Bragg wavelength  

XB increases with the total ruled length (L) and the amplitude o f  the refractive index 

(An) impressed in the fibre. A s  the impedance mismatch ( Z 2 - Z , )  depends directly 

on (An) and since p 2 in turn scales as ( Z 2 -  Z , ) 2 this effect is not surprising.

The creation o f  a back reflected or counter propagating fundamental mode by a 

(periodic) grating in a fibre m ay also be treated by “ coupled mode theory” , in which 

the grating is treated as a perturbation to the waveguide. Taking the z  component o f  

the perturbation Hamiltonian as

co s(2^z/A ) E U 4

the incident wavefunction o f  the singlemode fibre (without the grating) is, by 

perturbation theory [5] changed by an amount proportional to the matrix element

iH i)jk or

8



^2n z^
(H \ )p-p = j exp(-//fe).cos — —  .exp(ij3'z)dz

M  \  A  )

E 1.15

for a forward propagating mode o f  propagation constant ¡5 coupled to a backward 

propagating mode o f  probation constant -  f3 . The perturbation shown in Equation 

1 . 1 4  can be expressed in the form o f

\J  ̂i2n z N (  -  i2n z
exp

I A J + exP
I V A JJ

the matrix element ( # , )  . has terms o f  the form

sm
2tc

A
2n
A

E 1.16

and

sin
A

E 1.17

A

W hen L  is a large number, compared to A , both these expressions (Equation 1 .1 6  and 

1 . 1 7 )  are representations o f the Dirichlet form o f the Dirac delta function and so the 

perturbation to the incident waveform  is proportional to

A  A
E 1.18

This can be seen in “Quantum Mechanics' ’ by Blokinstev [6 ] for the analogous case o f  

scattering by a periodic potential. [Here 8(x)  is the Dirac delta function]. Because o f  

the delta function the perturbation to the wavefunction has finite values only at

9



~  = ß  - ß  and ^ -  = f l  - f l '  
A  A

If  the forward propagating mode and backward propagating mode are both 

fundamental modes o f  the waveguide then J3 = -J3 and the condition in Equation 

1 . 1 9  reduces to

—  =  - 2 ß  and —  = +2ß 
A  A

E 1.19

E 1.20

The latter is identical to that derived in Equation 1 .10 ,  the so-called Bragg condition 

for ft =  1 and « =  - 1  at normal incidence (6  =  9 0 °) .  Thus at a wavelength XB given 

by 2neff\  a grating o f  periodicity A  creates a strong counter propagating mode to the 

incident forward propagating mode.

B y  treating the w ave amplitude o f the incident w ave X (z ) and the amplitude o f  the 

counter propagating fundamental mode 7 (z ) a s  shown in “Optical Waveguide 

Theory”, Snyder and Love (19 8 3 )  [1 ] ,  equations 2 7 - 2 7  (a &  b) it can be shown that, 

using the boundary conditions X (0 )  =  1 at the ‘ entrance face’ and Y(L) = 0 at the 

‘ exit face’ o f  the grating

X (z )  =  cosh
r kAnz ' - r kAnz ' , (  kAnz ']

-s in h tanh
k 2  , { 2  J I  2  J

r kAnzN
- c o s h

'  kAnz ^
tanh

/ kAnz '
I 2  J I 2  J \ 2  j

Y (z) = sinh

The ratio o f  the reflected amplitude 7 (0 )  to the incidence amplitude X ( 0 )  is 

therefore

E 1.21

p  = -  tanh
f  kAnL

V ^  y

10



and the reflected power coefficient ( p2) is then

p 2 =  tanh"
^ nA. nL^

V J

E 1.22

at the Bragg wavelength.

Comparison o f  equations 1 .2 2  and 1 . 1 2  for the reflection coefficient o f  the 

fundamental mode from a Bragg grating derived in one case from the impedance 

mismatch induced in the core refractive index and from coupled mode theory show a 

common dependency on (An)L/AB , the simpler (impedance mismatch) approach 

having a factor o f  n  instead o f  the factor o f  4 from the more extensive coupled mode 

approach ..

The case o f  contra directional coupling o f  light from a medium where a diffraction 

grating is created in it by a propagating acoustic w ave, the so called ‘ acousto-optic 

effect’ is treated in various texts such as “Optical Electronics”  by Ghatak and 

Thyagarajan [10 ] and “Fundamentals o f  Photonics” by Saleh and Teisch [ 1 1 ] ,  The 

acousto-optic effect at Targe Bragg angles’ is treated in section 18 .5 .2  o f  the former 

and they too predict a reflection coefficient similar to that shown in equation 1 . 1 2  

[See equation 18 .9 6  Ghatak and Thyagarajan], In the acousto-optic effect the Bragg  

condition is a result o f  momentum conservation where the wavevector o f  the 

diffracted beam kr is related to the incident w avevector k and that o f  the sound w ave  

q by

kr = k + q

as shown in Saleh and Teich Equation 20.1-15.

11



— 2/r — — yi 2tc 2tc
Taking k  =  nx k =  n , — , kr = — !— and 9 = —  this vector form o f the Bragg  

X X  A

condition and that o f  equation 1 . 1 0  are reconciled ( kr is negative being in the 

opposite direction vectorally to k ).

Provided the grating index profile is a pure cosine (or sine) function o f  position z 

along the fibre axis then it has only the spatial frequency 2 ^ /  or Fourier component.

This gives rise to only one order o f  diffraction. This is analogous to Fraunhofer 

diffraction on a holographic (sinusoidal) grating where only a central maximum and 

two first order m axim a (n =  + 1  and n = - 1 in d  sin 0  =  nX ) are observed [7]. I f  

during manufacture the grating refractive index profile reaches saturation then one 

Fourier frequency alone cannot specify the transparency o f  the grating and multiple 

order diffraction -  analogous to the case o f  the plane diffraction grating is observed.

I f  the grating is fabricated in a multimode ( V »  2 .4 0 5) step index fibre then for each 

wavelength o f  light there will be a group o f  possible modes each identified by a 

different value o f  ¡3  the propagation constant. A s  the Bragg condition is 2(3 =  2 ^ /

there m ay be one ¡3  value which satisfies the condition so this particular wavelength  

w ill experience a high reflectivity. For another wavelength one o f  its modes m ay also 

satisfy the same condition. Thus, when polychromatic light is launched into the fibre 

the reflection from the grating w ill show a series o f  lines at various wavelengths. I f  

the refractive index profile is transversely uniform (i.e. varying in the z direction 

only/constant in the xy  plane) there is no induced intermode coupling however as the 

mode orthogonality condition is not changed by the grating.

1.5 Bragg gratings as strain sen so rs
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W e have seen that a sinusoidal refractive index profile grating in a step index fibre 

waveguide gives rise to first order Bragg diffraction o f  incident light at a “particular 

wavelength ” o f

Ab =  2neffA

In this equation A  is the periodicity o f  the index profile and neff is the effective index

o f the optical mode. A s  XB is a physically measurable quantity its’ magnitude can be 

used to infer the grating periodicity. B y  monitoring the "shift” in the Bragg  

wavelength o f  the light which is back reflected from the grating the change in A  can 

be inferred. Sim ilarly a structure to which the fibre grating is bonded, or in which it is 

embedded, may be monitored for changing strain. A s  the reflected light is not purely 

monochromatic but possesses a line structure this may be used to investigate how  the 

strain varies across the length o f  the Bragg grating; in other words the strain gradient 

along the grating is responsible for a modification o f  the line structure.

This work describes measurements o f  strain and strain gradient via the wavelength 

structure o f  the counter propagating optical mode in a Bragg grating, the center 

wavelength being dependant on the mean strain across the grating and the linewidth 

measuring the strain gradient across it. “

A s  temperature also affects both the terms neff and A  in the Bragg equation E l .  10,

the wavelength and linewidth are also temperature dependant. The measurements 

made in this work remove the temperature sensitivity using two Bragg gratings o f  

closely spaced wavelengths, one exposed to a strain field while the second 

experiences only changes in ambient temperature.
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1.6 Conclusions

W e have seen that the presence o f  a grating in a singlemode step index fibre (with 

rulings normal to the fibre axis) gives rise to a high reflection o f  an incident mode at a 

particular wavelength o f light. This resonant effect is similar to Bragg diffraction at 

normal incidence but unlike the latter is predicted to occur only in the first order (if  

the grating has a sinusoidal refractive index profile in the z  direction). This counter- 

propagating mode, o f  a particular wavelength light m ay be used to interrogate the 

grating periodicity A  and monitor as a result the strain condition o f  the fibre grating 

and that o f  the structure to which it is bonded or in which it is embedded. This is the 

principle o f  the fibre Bragg grating sensor.
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Chapter 2 Theory of Fibre Bragg gratings

2.1 Introduction
The theory o f the diffraction o f light in a step index waveguide containing a spatially 

periodic refractive index profile is discussed in terms o f the coupling o f light energy 

between forward and backward propagating modes in the waveguide. The spectral 

profile o f the counter propagating modes is developed for the simplest index profile 

where the periodic perturbation has a constant amplitude (the waveguide equivalent o f 

the plane diffraction grating) and extended to the apodised grating where a position 

varying profile is superimposed on top o f the periodic variation. The parameters that 

determine the line profile (intensity versus wavelength), the mode power coupling 

coefficient (k ) and detuning parameter (<r) are discussed and their importance in 

determining the lineshape (i.e. its central location in wavelength and linewidth) is 

highlighted.

2.2 Coupled mode theory
Light propagates in single mode (step index) fibres with an E-field which is given by,

J 0 (UR) exp[z'(<3rf -  p  z)) E21

where J 0(UR) represents the spatial amplitude in the radial direction (R = r/a), U is

an eigenvalue o f an eigenvalue equation and J 0 is the zero order Bessel function. The 

second term in equation 2 .1 represents a plane wave modulation in the z  (or axial) 

direction with angular frequency co, and spatial periodicity ¡5. For a bound mode ¡5 

is constrained by the equation

17



n2k < P < nxk E 2-2

where «, and n2 are the refractive indices o f the core and cladding respectively and

k is the vacuum wavenumber o f the light (2x/A); X is the vacuum (or air)

wavelength o f the light, p  is called the propagation constant o f the mode and because

o f the limiting condition in equation 2.2 is often written as

p  = neffk  E 2-3

Here neff is called the “ effective index” o f the mode. The mode core parameter U is

given by

TT I 2 1 2 oT E 2.4U = a-yj nx k -  p

which is a dimensionless parameter which lies between 0 and V , the normalized 

frequency or “  V number” o f the fibre

V = k a j n f - n . 2 E 2.5
2

A  mode propagating in the positive z direction will have a spatial modulation o f

exp [i(cot-pxz)\ E 2-6

while one counter-propagating in the opposite (or -  Z  direction) will be specified by

exp[i(ojt + P2z)\ E 2-7
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Figure 2.1

As well as having a modulation J 0 (UR) in the transverse direction in the core the 

modes also have an “ evanescent tail”  in the cladding given by

K0(WR) E 2.8

where K 0 is the modified Bessel function which has an approximately exponentially

decaying functional form. W is called the “ cladding mode parameter” , is defined by

W = a j j3 2 - n \ k 2

, is a real quantity (because o f condition 2.2) and is related to U and V by

E 2.9

F ? = U 2 + W 2 

I f  we now consider two modes o f the fibre waveguide,

¥\ = A\J0(U]R)exip[i(o)t -  p xz)\ 
¥2 = A2J 0(U2R)exp[i(cot -  p 2z)\

subject to the perturbation o f the form

E 2.10
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(2x\  E 2 . l l
cos —

A

E 2.12

then using perturbation theory the coupling o f energy between the initial state (if/l) 

and the final state (\j/ 2) will be proportional to the matrix element

Jexp(-/?jz) exp(2ra'z/ A) exp(-/?2z) dz 

This integral has a delta function value having a value o f 1.0 at

' E213
A

When f32 = -/?,, equation 2 .13  gives

using equation 2.3 we get

A =  2«e#A E 2.14

That is strong coupling o f light from a forward propagating mode to a counter 

propagating one will occur at a (free space) wavelength A given by 2neffK , A  is the 

periodicity o f the perturbation in the waveguide. This is readily visualised as follows.

If the perturbation is in the refractive index o f the glass o f the fibre core then wavelets 

of the incident wave are continuously back reflected due to the mismatch in the 

refractive index. According to the Fresnel equations a refractive index change from 

n(z) to n(z + dz) gives rise to a power reflection o f magnitude

n(z) -  n(z + <5z)\ E 2.15

n(z) + n(z + dz)

as shown in many texts e.g. [3],
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All the wavelets are in phase when the spatial periodicity (3 o f the incident wave 

matches that o f the periodicity A o f the refractive index profile o f the fibre core. This 

gives rise to the phase matching condition given by equation 2.2 which in turn is a 

simplification o f the Bragg condition [4] for diffraction at normal incidence,

2d sin 9 = nA
9 = grazing incidence angle 
n = 1,2,3,...

or in this case (9 = 90°)

2 A = nA.

With Kavegu.de = /V neg  >we get from equation 2.16 ,

2n„„A

E 2.16

A = •
n

or a similar expression to 2 .14  for the first order (n = ±1) diffraction. First order only 

diffraction is also a feature o f a plane diffraction grating in which a sinusoidal 

transparency is imposed on the N evenly spaced apertures [5],

2.3 Reflection coefficient of first order diffraction in a Bragg grating

The development o f the coupled mode formulation to describe in particular the 

coupling o f the energy from the propagating mode to a counter propagating one was 

developed by many authors e.g. [6], I f  n (x ,y ) and n(x,y,z)  are the refractive index 

profiles o f the uniform waveguide and the section perturbed by the presence o f the 

Bragg grating respectively then the E field o f the light in the grating section satisfies 

the scalar wave equation
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where V (2 is the transverse component o f the Laplacian operator. I f  the refractive 

index profile is given by

j v ,  + k  n ( x , y , z )  + — ^ E ( x , y , z )  = 0 E 2.17

2 k  z

A
+ <P(z)n (x ,y ,z )  = n (x, y)  + dneff j l  + v cos

and i f  the total field is written as the superposition o f two counter propagating modes 

o f propagation constants (3 and -  ¡3 i.e.

E 2.18

E(x,y ,z)  =  R(z)El(x,y)exp(-ij3z) 

+ S(z)E2 O, y)  exp(//£)
E 2.19

Figure 2.2

the wave equation gives rise to two first order equations for R(z) and S(z), the 

incident and reflected waves.

The wave equation generates two parameters k , a mode coupling coefficient defined 

by

kv
2 n

\{n2 - n 2)ElE2dA E 2.20

K - -

j 'EfdA
A.

, the integrals being over the fibre cross section Ax , and a  defined by
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& = 2m eff
E2.21

& represents the frequency deviation from the Bragg condition. We are using 

here the symbolism o f Erdogan [7] namely:

(i) Sn b is the ‘dc’ refractive index change spatially averaged over a grating 

period

(ii) v is the fringe visibility o f the index change

(iii) A is the grating period

(iv) A = 2ne/fA  is the design wavelength for Bragg diffraction

(v) <j){z) is a phase term to allow for grating chirp

The first order equations for the incident wavefield R(z) and the counter 

propagating wavefield S(z) are then

assumption that R(z) and S(z) are slowly varying functions o f z . These coupled 

mode equations which describe how the incident field R(z) decreases and the 

reflected wave S(z) increases in intensity as the wave motion penetrates more deeply 

into the grating are derived in detail in various texts [8,9,10]. The reflection spectrum 

is then S/R  . I f  we express y  = S/R  then the coupled mode equations (2.22) can be 

readily combined to yield

—  = i&R(z) + i k S ( z )  
dz

E2.22

—  = -iaS(z)  -  i k R ( z )  
dz

where terms proportional to d 2R/dz2 and d 2S /d z2 have been neglected, on the

2 3



d y

d z
+ iKy2 + 2  ioy +  iK = 0

This is the Riccati equation for y  [10]. The solution o f this equation for constant 

coupling coefficient k  is simplified by the substitution given in [ 1 1 ]

* > - ^ 1  w(z) \ l K j

which turns the first order Riccati equation for y  into the. second order equation for 

w o f

w" +  2 io w "  -  k 2w  = 0

which is the equation o f the damped harmonic oscillator with imaginary damping 

coefficient 2/cr. This has an exact solution [12] o f

w = c ] exp{(/ -  i & ) z } + c2 exp{(-^ -  /<x)z}

= exp(-/oz){C cosh^ + Dsinhyz}

where y  = ~Jk 2 -<j 2 and c ,,c2,C  and D are constants. Substituting 2.26 into 

equation 2.24 gives the reflection coefficients S/R  as

f 1 1

— {exp(- io z \C  cosh yz + D sinh yz)} 
dz

{exp(- io z \C  cosh yz + D sinh yz)}

( 1 1
'  yC sinh yz + yD cosh y z - io C  cosh yz -  i&D sinh yzN

[ iK j v C cosh yz + D sinh yz /

I f  we chose our origin at z = 0 at the distal end o f the grating

E 2.23

E 2.24

E 2.25

E 2.26

E 2.27
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Bragg grating

Z=-L Z=0

Figure 2.3

and invoke the criterion that y  = 0 @  z = 0 then the boundary condition imposes the 

following relationship between C and D o f equation 2.27.

yD -iô C  = 0 E 2.28

■ n r  i.e. D = — C
r

Then the reflection coefficient S'/i? simplifies to

l j  A rsinh^ E 2.29

i I/cosh^z + /< jsin h ^j

Haus (1984) has developed a simplified derivation o f this expression.

The intensity spectrum given by yy* (where y* is the complex conjugate o f y ) or

k 2 sinh2 yz 
y 2 cosh2 yz + o 2 sinh2 yz

y  = \Ik 2 - a 2

This can also be expressed as

2 5



E 2.30
cosh2 y z - â 2¡k

This expression predicts the intensity profile o f the back reflected light from a Bragg 

grating in which the mode coupling coefficient -  defined in 2 .2 0  -  is independent o f 

z , as in equation 2.23. This applies to the case o f a grating in which the refractive 

index perturbation is purely sinusoidal i.e. the fringe visibility v of equation 2 .18  is a 

constant and the coupling coefficient at is

At the incident edge o f the grating z = -L  the reflection spectrum is the given by

both k and a  are wavelength dependent (equations 2 .31 and 2 .2 1 ) y  can be either a 

purely real number or a purely imaginary one. When y  is imaginary ( y  = iy ' ) the 

term sinh2 yL - » i s in y l  and cosh2 yL -»  cosy l  in equation 2.30.

The spectral shape o f the counter propagating mode from the grating (given by 

equation 2.32) can be plotted by taking values for Sneff,v,L and XD. Using

5neff = 2 x l0 “4 ,v  =  1 ,L = 2.5mm and XD = 15 5 5 nm a spectrum of the following 

shape is predicted.

E 2.32

cosh2 y L - â 2 ¡k 2

The wavelength dependence o f this lineshape is determined by y  = Va: 2 - â 2 . As
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The spectrum

has it’ s peak when

i.e. when

From equation 2.21

1549.6 1549.8 1550.0 1550.2 1550.4
Wavelength (nm)

Figure 2.4

2 _  sinh2 *Jk 2 - ò 2 L 

cosh2 V/r2 - a 2'l  - &2

sinh y/K2 -  ò 1 L is a maximum 

cosh Vat2 - ò 2'L is a minimum

<7 = 0

t is zero when

A AD | A

I f  we call A0 the value o f A at which è  = 0 then



A0 —
AD (l + 5nejj  / nej j )

1 + ADij)(-L)/4mieff

E 2.34

When the refractive index profile is exactly sinusoidal there is no chirping o f the 

grating i.e.

m = o 
k-L) = o
¿0 = Aß {l + 5neff jneff |

E 2.35

, and with Sneff j  neff « 1

^max ~

At the peak ( o  = 0) the term y = k and the line intensity becomes

tanh kL E 2.36

When kL  = 1.0 tanh(*£) = 0.76 and the peak reflectivity is 0.58 or 58%. When 

kL  = 1.5 the peak reflectivity is = 90%.

The first minimum o f equation 2.33 occurs when a  = ±k  . Using equation 2.21 we get

n  -—  2^?
—vdnefr =
A A

eff E 2.37

or

— v5n,f = ±2nnen J — -  —
A eff eff\A 1 o
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Figure 2.5

If we define the full width as WF 

then

E 2.38

Using A = 2neffK this reduces to

WF s K5neff E 2.39

And the fractional linewidth WF /  A0 is

WF _ vSneff E 2.40

K  " ”eff

Taking, for example A0 = 15 0 0 nm and 5heff = lx l O’ 4 with neff = 1 .5  for silica, the 

predicted linewidth WF, for a fringe visibility o f 1.0 is 0.1 nm. If light from a

broadband source is launched into a fibre containing a Bragg grating then the incident

and reflected spectrum ( R and S ) are

2 9
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2.4 Apodised Grating Spectra
In a simple Bragg grating the refractive index modulation has a constant amplitude 

over a finite extent o f the fibre core.

Figure 2.7

The Fourier spectrum o f a sine function o f infinite extent shows only power at one 

frequency. I f  the sine function is finite in extent there are other components in the 

frequency spectrum. These are caused by the abrupt edges o f the grating and are a 

feature o f the spectrum o f plane diffraction gratings (in Fraunhofer diffraction) which 

show also secondary and higher order peaks. By smoothing the input and exit 

refractive index profiles o f the Bragg grating these side lobes (or secondary peaks) 

can be reduced or removed completely. This process is called apodisation (literally 

“ removing the feet” ).

3 0
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Figure 2.8

In the apodised grating the refractive index profile o f figure 2.2 is modified by a z 

dependant amplitude

where v(z) has a maximum at the grating center z = - 1 / 2  and decreases gradually 

towards the grating edges o f z = - L  and z = 0. Light incident on such a grating will 

encounter increasing refractive index changes until it reaches the grating centre and 

then continuously decreasing index modulation both superimposed on the sinusoidal 

periodicity

This is equivalent to the plane diffraction grating in which the transparency o f the 

individual apertures is modified continuously from one edge to the other.

E 2.41

A
E 2.42

31
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Figure 2.9

Because o f this apodisation the coupling coefficient between a mode and its counter 

propagating equivalent (of the equal and opposite ¡3) is now a function o f position 

within the grating i.e. k  =  k ( z ) . The effect o f apodisation is to redistribute energy in 

the diffraction pattern and reduce the intensity o f the secondary diffraction maxima, in 

keeping with the literal translation o f apodisation namely “ removal o f the feet” . The 

apodisation o f the Bragg grating is achieved during the writing process o f the index 

modulation profile by using the inherent intensity variation across the laser beam and 

or a varying transparency in the mask used to create the interference pattern which 

sets up the holographic grating. It was shown in [15] that side lobe suppression could 

be achieved with a quadratic apodisation and that the reflection spectrum o f a grating 

reduces to the Fourier transform o f the coupling coefficient k ( z )  for low 

reflectivities.

When a grating is written by a laser oscillating in the fundamental TEM0 0 mode the 

intensity o f the beam is Gaussian i.e. it falls exponentially with the square o f the 

distance from the spot centre. With such a laser the apodisation v(z) is o f the form

L / Vv(z) = exp[- a(z + y ^ E 2.43

3 2



taking as before the origin at the distal end o f the grating and it’ s centre to be at 

z = - 1 / 2 ,  where L is its length. In the refractive index profile n2(x,y, z) we have in

this case

n \ x , y , z )  = n 2 (x, y)  + 8neJf -j 1 + exp[- a (z  + L/L̂ / Ÿ cos
2  nz 
A

<t>(z) E 2.44

and we can replace the term exp[- a(z + L/2) 2 ] outside the cos(2^z/A) term with an 

imaginary phase term within the cos((2;zz/A)+ <p) term. I f  we write the apodisation 

phase factor as <j)A (z) then (for Gaussian apodisation)

<f>A(z) = ia(z  + H  2 ) 2 E 2.45

and

exp [i<t>A (z)] = exp [-a(z  + 1 /2 ) 2 ] E 2.46

is exactly the Gaussian apodisation v(z). Taking the coupling coefficient k  now to 

be constant

n  ■k  = —8n 
A eff

E 2.47

(v = 1 in equation 2 .31) and the detuning parameter a  now to be a complex number 

with real part

â r (-L) - Inn 1 1 2  n
eff A Aq I A

h 8n.,„ - M - L )
eff

and imaginary part

<t>m (z) aL E 2.48

■ Z = - L
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we can determine the spectral profile o f the counter-propagating mode as [equation

This function can be calculated for certain grating parameters 5neff ,neff,L  and the 

intensity profile parameter a  o f the writing laser. Writing ycL as ycL = A + iB the 

back-reflected spectrum from the apodised grating is

In evaluating equation 2.51 the expression in Appendix A  for hyperbolic sine and 

cosine functions given are used. In calculating 9 in equation 2.52 care must be taken 

to prevent the introduction o f arbitrary phase changes o f ± n  where k 2 - à 2 + àfm or 

è r changes sign at particular wavelengths. A  program to evaluate the spectrum was 

written in FORTRAN (appendix C, program 5) and we are grateful to Mosnier and 

Cafolla [17] for assistance in its successful execution.

2.32]

sinh2(^cZ,) E 2.49

cosh1 (yCL) -  (àr + ià im)2/ k 2

where yc is now a complex number given by

E 2.50

sinh2(y4 + /5) E 2.51
cosh2 (A + iB) -  [cj2¡k^J

where a  c = ò r + iàim and

E 2.52
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neff =1.45, Sneff = 2x1 O'4, AD = 1300wm, L = 2mm

the spectral shape o f the reflection spectrum as predicted by the model was calculated 

and normalised with respect to the peak height, for various values o f the Gaussian 

apodisation function a ,

Using the following parameters

(i) a  = 0 no apodisation

(ii) a  = lxlO3 m~2

(iii) 8 ii O 3

(iv) a  = lxlO6 m 2

the results are presented in figure 2.4,

X X

Figure 2.10
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A0 |l  +  5neff ¡neg  | E 2.54

l + (A0 / 4 ^ e#) { ^ ( - I )  + 4 (-Z)}

This can be compared to A0 for the unapodised grating given by equation 2.34. It can 

be seen that apodisation as reflected in a non zero imaginary component o f the grating 

phase </>(-L) gives rise to a very small shift in the central wavelength A0.

The width o f the spectral line is no longer easily defined as, for non zero values o f B 

in equation 2 .5 1, the numerator is no longer ever zero (or the denominator infinitely 

large). This is consistent with the spectrum shown in figure 2.4(b), but the first 

turning point Px and P2 can be located from the condition that sinh(/i + iB) is a 

minimum and coshM + iB) is a maximum. This occurs when A is a minimum or 

a r = <j/m from equation 2.50. As a r = 0 at A = A0 the points Px and P2 are separated 

by 2 W where

which, as expected, reduces to equation 2.38 in the limit <rim = 0  for an unapodised 

grating.

As apodisation is increased, by increasing the value o f a , the shape o f the spectrum 

approximates to a Gaussian shape where the term (A + iB) is now dominated by the 

iB term and the argument (A + iB) is small so that sinh(^ + iB) can be approximated 

by exp(^ + /5) and cosh(^4 + /5) by 1.0. Because o f the &2r and <y]m terms in y cL

W =

E 2.55
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the wavelength dependence o f the spectrum line is symmetric in (A - A 0) and is o f 

the form

exp[-c(/l -/l0)2] e 2.56

,where c is a constant. Thus the line shape is Gaussian as seen earlier in figure 2.4(d). 

Writing the line profile as

exp[_  (A -  A0 )2 I Wq j E 2.57

WG represents the half width at the 1/e height

and WG is given by

or

where

WG =
An

2 m
eff

1 + 8n„

f  N2

rc5neffA \ -
A0ccL

v 2  n8neffJ
+ A j ( - L )

E 2.58

w  =

2 m eff

ndn e ff- 1- r aL1 ¡ 2 ^

v KoL j
+

A j ( - L ) E 2.59

k qL =
r n8n,M N

As before i f  apodisation is weak (a  ->• 0) WG reduces to

3 8



which is consistent with equation 2.38 in which the fringe visibility is take as v = 1 .0  .

(for 5neff jn eff « 1), and in this limit the peak reflectivity p 1 can be shown for 

ocL2¡2 »  k qL to be

2.5 Factors which affect the values of A0 and W , the central 
wavelength and linewidth of the reflection spectrum

We have seen in equation 2.54 and 2.59 respectively how the grating properties 

neff,5neff ,AD(= 2neffA ) , and </>(-L) affect both A0 the central wavelength and W

which affect any o f these properties will result in modifications to both A0 and W as 

well. As the peak wavelength A0 is, for both the simple unapodised grating and the 

Gaussian apodised gratings directly proportional to AD(= 2neffA) any factors which 

affect the magnitude o f neff or A will lead to a shift in the central wavelength o f the 

grating. Likewise the linewidth for both unapodised and apodised gratings depend on

For very strong apodisation i.e. ° ^ / 2  »  k qL equation 2.59 shows that the linewidth

is no longer dependant on Sneff , the refractive index modulation

WG =
aLA{
4 7mat

E 2.60

E 2.61

the linewidth o f the spectral line back reflected from the Bragg grating. Parameters

3 9



XD, and through it are both neff and A . Strain, strain gradient and temperature affect 

respectively A , </>(-L) and neff and we will examine each effect in turn.

2.5.1 Temperature

As X0 is directly proportional to the product o f neff and A we can write

In X0 = In neff + In A + constant

or differentiating

Xn
' d X ^

K d T ;

1 (  dn}  1 (d A '

n eff

+ -
ÔT = fe + « r )

E 2.62

where E, is
1 ( dn

is the thermooptic coefficient and a T is
r dA '  
v dT j

is the

coefficient o f linear expansion. £ has a value o f 8.3x10 6 [21] for germania doped 

silica and a T has a value o f 5 .5xl0 ~7 [21] so that the temperature coefficient o f X for 

a Bragg grating is

1 (  dX^
X y d T j

= 8.85xl0~6 C ' 1

which gives [dX/dT) « 1 1.5pm/°C at A = 1300nm or œ 13 .3 pml°C at 1 = 1500nm.

The linewidth depends upon the product o f the terms 5neJ] and A so that

W
( d W Ì d 1

+ —
U r J { d T  ) A U rJ

= (Ç + aT)
E 2.63

as before. This leads to a linewidth temperature coefficient

to that o f the wavelength dependence figures given above.

W Kd T ,
which is equal

4 0



A  strain applied to the Bragg grating will lead to a change in the periodicity A o f the 

rulings and also to a variation in the refractive index neff o f the glass o f the fibre core.

A  strain o f s  increases A to A(1 + s) and as A0 depends upon the product o f A and

neff we get

2.5.2 Strain

1 fd A ) 1 f 3A^ 1— -- = - + ---
A A neff { ds )

E 2.64

Term one in the equation has a value o f unity while term two, which represents the 

photoelastic induced change in the refractive index o f the glass, is given by the 

effective photoelastic constant p e as

Pe=(”2/ 2 ) [ P n - v(Pu + A 2)] E 2.65

p u and p n are the PockePs piezo coefficients o f the stress-optic tensor, v is 

Poisson’ s ratio and n is the index o f refraction o f the glass o f the fibre core. Using 

values quoted in [13] p e is given as 0.22 so that

f U - P , =  ° .?8
E 2.66

We get then

dA *
—  = 1 .014 p m l  jus @ / l  = 1300wn
ds

= 1.200p m / @ A = \5S0nm 

as quoted in [24],[25] and [26].

E 2.67

As the linewidth (WG) is proportional to the product o f A and dneff we can write
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w
' dW ' 
v S s , A

"5An 

\

d5n+ • eff
Sneff ds

+ ■_ U d A  
A y d s

= ( l - p , )  = 0.78

<# E 2.68

as derived earlier. Taking a nominal linewidth o f 1 nm the sensitivity o f the linewidth 

to strain is then

8W
ds

= 0.78x10 meters per microstrain 

= 7.8x10A pm per pie

This is a factor o f over 1500 lower in sensitivity than d A /d s .

With a single measurement o f a shift in Bragg wavelength (AA) it is not possible to 

decouple the temperature and strain dependant effects as

A/l =
r dX ^  

v dT j
r dX^

(A7>  ^  (A ,)
y d s )

E2.69

with the temperature effect typically o f the order o f  10pm/°C  and the strain effect of 

the order o f 1 pm / p is . This is analogous to the measurement o f strain using a wire or 

semiconductor strain gauge where changes in ambient temperature affect the 

resistance o f  the gauge in tandem with changes in strain. In the case of 

wire/semiconductor strain gauges the effect o f  changes in ambient temperature may 

be removed by having the strain gauges in pairs and wired into a Wheatstone bridge 

circuit. One gauge monitors temperature variations only while the other (the active 

one) responds to both temperature and strain. Being wired in a potential divider

* 1 ¡J.S or 1 micron strain is 10 6
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configuration the bridge output is then dependant on the strain effect only, the 

temperature effect being equal in both gauges.

Temperature and strain can be decoupled using either two Bragg gratings, one 

sensitive to temperature alone (the reference grating), the other to temperature and 

strain (the active grating) - the method used in [27] and [28] -  or by using two 

superimposed fibre Bragg gratings o f different Bragg wavelengths (AB ,ABi ) as 

reported in [29].

2.5.3 Strain Gradient

When a Bragg grating is chirped i.e. when the ruling periodicity A o f the refractive 

index modulation varies across the length o f the grating then each section o f the 

grating contributes a local Bragg wavelength AB (z) given by

AB(z) = 2neff(z)A (z) E270

Figure 2.11

If  the grating is exposed to a non-uniform strain (or temperature gradient) different 

sections o f the grating contribute different wavelengths to the reflection spectrum and 

broaden the spectrum while decreasing the peak reflectivity. For a uniform strain 

gradient g(= defdz) the periodicity A o f the rulings becomes

A(l + gz) E
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f z
and the phase factor in the index modulation cos-j + <p(z) > becomes

I A

ICOS-j —  H <j)(z)
L A(1+ Sz ) I

E 2 . 7 2

Using the binomial expansion for gz «  1 the index modulation is then

\2  n z  2 n g z 1 \ E 2.73
cos<--------------------->

1 A A J

i.e. the strain gradient has introduced a phase factor o f

2n g z 1 E 2.74

A

Since the width o f the reflection spectrum depends on <j>(-L)/2 , as shown in equation 

2.59 the linewidth carries a term o f

_  | 27TgL E 2.75

2 A

The linewidth o f the back reflected light from the grating will therefore be an 

indication o f both the magnitude and direction o f the strain gradient g  over the length 

o f the Bragg grating. Using equation 2.75 in equation 2.59 we see that the sensitivity 

o f the linewidth to the strain gradient g  is

dW A0 d \A j( - L ) /2] 
dg 2 m eff dg

E 2.76

* 2  A0L
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W hen the grating is exposed to a strain gradient the imaginary phase factor (¡>A (z) - 

due to apodisation -  changes from

ia (z  + L /2)2 to ia [z(l + gz) + L/2]2

And the linewidth WG becomes

2 m  

= A ' Sn,r '
\ 2n’i  >

■2gABL

A 2 

ccL2
1 +  -

4m eff
+ g

E 2.77

or

WG = A -  Bxg  + B2g E 2.78

Thus there are three contributions to the linewidth:

1 . A constant term AB (5neff ) / 2neff

2. A term linear in g , due to the distribution o f A(z) along the grating, and a 

contribution due to the modification in the apodisation profile caused by the 

strain gradient

3. A term  quadratic in g , due to the modification o f the apodisation profile

2.6 Simulation techniques
The simplest method o f Bragg grating simulation is the straightforward numerical 

integration o f the coupled-mode equations. While this method is capable o f simulating 

the transfer function accurately, it is computationally slow. In the following section 

two computational methods are described which allow a Bragg grating to be
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simulated. The first, the transfer matrix method [29], is fast and accurate for both 

strong and weak gratings with or without apodisation. The second, Rouard’s Method 

[23], [31], is slow as it is still computationally heavy but it has the main advantage 

that it allows refractive index profiles o f many designs to be modeled.

2.6.1 Transfer matrix method

A solution for a grating o f length L , with a coupling coefficient k ( z )  and grating 

spacing A (z) is required. In the transfer matrix method, the coupled mode equations 

[Equations 2.22] are used to generate the output fields o f a small section (SL) o f the 

grating for which the three parameters are constant. These results are then used as the 

inputs to the adjacent sections o f the grating. A matrix which describes the whole 

system may be written as

~R(-SL/2) ~R(SL/2)
_S(-5L/2)_ L J _S(5L/2)_

For a reflection grating the input field amplitude is normalised to unity and the output 

o f the grating is zero, as there is no perturbation beyond the end o f the Bragg grating. 

By applying these boundary conditions we arrive at

1 T T J 11 12 ~R(5L/2)
_S(- SL/2) T T J  21 1 22 _ 0

It can be seen from this that the transmission and reflection amplitudes are given 

respectively by

R(SL/ 2 ) = - L
Ml

s ( - < a / 2 ) = ^
Mi
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N ow  there are new fields which can be transformed into a second transfer matrix, T2, 

and so on until the full grating has been processed. This gives us the transfer matrix as 

follows

From the coupled mode equations the transfer matrix elements may be determined 

and a solution may be produced.

2.6.2 Rouards’s method

This method consists o f breaking the Bragg grating into a set o f layers along the 

length o f the grating. Each layer is treated as an interface with a complex reflectivity, 

which include a phase change through the layer. To model the grating accurately the 

refractive index profile is broken up into sections which are smaller than the grating 

period A . A recursive technique is then applied to calculate the reflectivity for each 

set o f layers which make up a single grating period. Thus, the problem is reduced to 

calculating the amplitude o f the reflectivity for each single period. This method is 

useful for modeling gratings which have complex refractive index modulation 

profiles. The main drawback o f this system is however that computational errors can 

become significant at large numbers o f thin film layers. The basic analysis is similar 

to that used the transfer matrix method but the reflectivity is simply calculated from 

the difference in the refractive index between two adjacent layers.

R (-S L /2)] r .R iS L /2 )  

S (-S L / 2)J [ [S(SL/2)

where the matrix [T] is given by,

N
E 2.81
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2.7 Conclusions
We have seen, using the coupled mode theory approach, that fibre Bragg gratings can 

be described fully. It has been shown that for a simple, purely sinusoidal grating the 

reflection spectrum can be described as in equation 2.30, with a maximum intensity 

given by equation 2.36 and width given by equation 2.40. A detailed discussion o f 

apodisation has been given, with special attention being given to the apodisation 

generated by the use o f a laser with a Gaussian beam profile in the grating 

manufacture. This apodisation has been shown to “remove the side lobes” from the 

grating reflection spectrum. The apodisation o f the grating causes the reflection 

spectrum to be broadened as shown in figure 2.4. A full description o f the effect o f 

temperature, strain and strain gradient has been given and numerical evaluations o f 

each o f  these effects have been made. Both temperature and strain have been shown 

to cause a shift in the central wavelength o f the Bragg grating (A0) , while the strain

gradient has been shown to alter the linewidth o f the reflected spectrum. Two o f the 

most common simulation techniques have been described, although neither o f these 

was used, as a full simulation using the coupled mode equations was done. Both o f 

these techniques, transfer matrix and Rouard’s method, have differing advantages 

which make them useful in simulating many different types o f Bragg gratings.
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Chapter 3 Bragg Grating Fabrication

3.1 Introduction

To create a Bragg grating in a fibre waveguide requires a periodic index modulation 

to be impressed along the core axis o f the fibre. This can be achieved by a variety o f 

methods. In this chapter the index modulation mechanism will be discussed together 

with the various interferometric techniques which have been used to “write” fibre 

Bragg gratings.

3.2 The Mechanism of refractive index modulation.

Optical fibres are fabricated from glasses or plastics with the inner core region made 

o f a material with slightly higher refractive index nx than the surrounding cladding 

material (of index n2). By doping with low concentrations o f  ‘impurities’ the 

refractive index differential between the core material and the cladding is created in 

the fibre preform and transferred to the fibre on drawing out. Many optical fibres are 

made from fused silica (S i0 2) ,  with the core doped to increase the refractive index 

above that o f  the cladding. Various dopants can be used with germania (Ge02) being 

by far the most common. Doping levels o f a few percent by weight are typical.

When germania-silicate glasses are exposed to UV light in the 240-260 nm range, 

they are observed to develop refractive index changes. This process which is related 

to the breaking o f the Si-Ge bonds in the glass, by the high energy UV photons, 

results in the freeing o f electrons which can be trapped at germanium sites to form 

negatively charged colour centres. These colour centres cause a change in the 

absorption spectrum and this can be related to a change in the real component o f  the



refractive index o f the glass by the Kramer-Kronig relationship [1], This equation 

relates the refractive index n(A) to the absorption coefficient a (/1) through integrals, 

over all frequencies o f the real and imaginary part o f the electrical susceptibility o f  the 

medium %(A).

During fibre fabrication, by chemical vapour deposition, bonds such as Si-Ge; Si-Ge 

and Ge-Ge may be formed; normally there are “bridging oxygens”. Photon 

absorption near 245nm now causes breakage o f these bonds and should (according to 

the Kram er-Kronig relationship) cause a reduction in the refractive index o f the glass. 

However a positive change o f refractive index increase in observed. Atkins et al [9] 

have reconciled this problem by showing that the bleaching o f the 245nm band is 

accompanied by the appearance o f  a strong absorption band below 200nm.

Two other mechanisms to explain the change in refractive index with UV photon 

absorption at 245nm have been proposed. In one, the so called “Dipole M odel” the 

fabrication o f a dipole between the negatively charged colour centre and the Ge = Si+ 

bond is suggested. The E field o f the dipole is then conceived to give rise to the 

refractive index change via the electroptical effect. The third model, the so called 

“Compactation M odel” envisages the bond breakages by the UV absorption resulting 

in a compression o f the glass structure and a resulting increase in glass density and 

thereby the refractive index.
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Breakage of Ge-Si bond and movement of electrons

Figure 3.1 Inoue et al (1995)

Two types o f  glass modification by UV photon absorption have been identified. Type

I modification which it is thought to be related to colour centre sensitivity and Type II

which is attributed to actual damage to the glass. The latter is more stable at high

temperatures.

The mechanism o f Type II damage, discovered by the Optoelectrical Research Centre 

o f the University o f Southampton U.K., where the core is precisely damaged by a 

single pulse o f the order o f 40 mJ o f laser light, is not fully understood. It is possible 

that photon absorption at 248 nm causes excitation o f electrons into the conduction 

band o f  silica where, in the presence o f  UV, they seed the formation o f  a free-electron 

plasma. This then produces a sudden increase in UV absorption and permanent 

damage to the glass.
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Lemaire et al (1993) have sensitised fibres to the photo refractive effect by the so 

called “hydrogen loading” . This involves diffusing the hydrogen molecules into the 

fibres core at low temperatures and high pressure. The presence o f hydrogen 

increases the concentration o f bleachable germanium oxygen deficiency. The UV 

induced refractive index can reach lx lO '2 with germania doped singlemode fibres, 

with 6% by weight Ge- 0 2  after H2 loading at 200 atmospheres o f pressure at room 

temperature for 1 week.

3.3 Standing wave Grating (The two beam interferometer)

The first fibre grating was written by Hill et al in 1978 [4] using an Argon-Ion laser 

beam (A  = 488 nm blue, and A = 514.5 nm green) launched into a fibre core. Fresnel 

reflection (typically -4% ) from the open distal end created a standing wave pattern o f 

A/ 2 antinode to antinode spacing. The high intensity laser standing wave pattern - 

modulated spatially along the fibre axis -  created a refractive index modulation by a 

Type I mechanism. Because such gratings can be formed with only one periodicity 

(A / 2 o f the laser light used in fabrication) and are also photosensitive, they can be 

bleached using visible light.

3.4 Holographic Gratings.

In 1989 M eltz et al [5] o f United Technologies Conn. USA suggested that gratings 

could be written in fibres by exposing the fibre core from the side by two interfering 

coherent UV beams through the cladding glass. A frequency doubled Argon ion laser 

was used to
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UV loser Mirror
Optical

fiber
beam

produce a 244nm source. The beam was split in amplitude by a beam splitter - as 

shown - to create an interference pattern on the fibre using cylindrical lenses.

This combination o f two collimated beams o f  monochromatic light produces 

“Cosine2 fringes” along the fibre as in the formation o f a holographic grating. The 

spacing o f  the “rulings” (A) o f the grating formed obeys.

where Z is the wavelength o f the light used. Ruling spacing A may be selected by a 

suitable choice o f (¡), the angle between the two interfering beams.

The lateral extent o f the grating written is the fibre depends upon the coherence 

properties o f the laser used. While coherence lengths o f 25 mm are achievable with 

some excimer lasers, transverse coherence is still quite poor and gratings o f at most a 

few mm in length can be achieved by this method. [It can be seen from Equation 1.11 

that short gratings have a low reflectivity at the Bragg wavelength]. For grating 

writing which involves multiple laser shots the interferometer work surface must be

E 3.1
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stabilised against vibration and air currents over the exposure time o f up to a few 

minutes. Consistent and repeatable grating writing with this holographic technique is 

difficult to achieve.

3.5 Phase Mask Grating Writing

The manufacture o f phase masks, diffractive optic elements with a sinusoidal 

transparency over each aperture together with a k  phase changing feature impressed 

over half the field o f each aperture, has greatly simplified the manufacture o f Bragg 

gratings. These masks are made o f high quality fused silica by photolithographic 

means. The grating surface relief, over half o f each mask aperture, is designed so 

that,

as shown originally by Hill et al (1993) [6], Here X is the wavelength o f the 

monochromatic light (often a KrF excimer laser o f 248 nm wavelength) used to 

illuminate the mask and d  is the thickness o f the silica (of refractive index n ). When 

the transparency function o f the mask is given by

(the + and -  signs displaying the phase change induced over the two halves o f the

with location x within the aperture) it can be shown that the Fraunhofer diffraction

- { n - \ ) d  = n E 3.2

for - a  /2  < x < 0

and

for  0 < x < + a 12 E 3.3

masks aperture and the cosilTTx/ a ) showing the sinusoidal variation o f  transparency



pattern, obtained by taking the Fourier transform o f the aperture function in equation

3.3 has

o No zero order diffractive pattern 

o First order n = +1 and n = -1  diffraction 

o No higher order structure

-1 order

Diffracted beams 

+ 1 order

Grating 
corrugations

Incident uv 
laser beam

w
Silica glass 

phase mask

/

Zero order 
(<3% of throughput)

Figure 3.2

The zero order suppression, brought about by the interference o f  the two straight- 

through (i9 = 0) beams, one o f which is k  out o f phase with the other, is a result o f 

the phase change introduced in the mask. Suppression to transmission levels o f -2%  

o f the incident intensity in zero order have been achieved. The effect o f zero order 

suppression is to diffract substantial amounts o f optical power into each o f the two
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first order diffraction beams. Power levels o f  35% in each order have been achieved. 

The real effect o f the phase mask is therefore to create two high intensity coherent 

beams as shown above.

then

E 3.4

The interference pattern created by these two beams, at an angle o f 29 to one another 

is given by a sin 9 = A (since n = ± 1) creating a “cos2” type interference fringe 

pattern on the fibre with a periodicity A given by

2A sin 9 = A

(using equation 3.1 with tp = 29 )  Equating equations 3.3 and 3.4 gives

a = 2A  E 3.5

i.e. the periodicity o f  the grating formed is half that o f the phase mask (a) used to 

make it.

Since by equation 1.10

Anrn„„ -  2neffK  E 3.6

Aa—  = neffa E 3.7

The spacing o f the rulings o f the phase mask ( a ) is the desired Bragg wavelength o f 

the grating divided by the effective index o f the fundamental mode in the fibre. The 

latter is typically 1.4 -1 .5  for silica fibre. Therefore to make a Bragg grating with a 

central wavelength o f  say 1550 nm (where silica has its minimum attenuation)
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requires a phase mask o f about lOOOnm (~1 ¡j. m) spacing or a Bragg grating 

periodicity A o f about 500 nm.

It should be noted that the wavelength o f  the laser light used does not affect the 

periodicity impressed in the fibre core nor the Bragg wavelength o f the grating 

created.

3.6 Type I and Type II Bragg gratings

Type I gratings are generated via photochromic effects (induced colour centre 

formation) with multiple UV laser pulses at energy densities clearly below the 

damage threshold o f the fibre J / cm2). Type II gratings are generated with energy 

densities close to the damage threshold o f  the fibre causing actually damage to the 

structure o f the silica in the core o f the fibre. There are a number o f advantages o f 

type II gratings over type I gratings and these are outlined below.

o Single laser pulse writing o f type II gratings is possible

o Large index modulations are possible

o Type II gratings are stable at temperatures up to 800 °C

The ability to produce a grating with a single pulse o f a laser is o f great importance as 

it allows gratings to be made during the drawing o f the fibre.

3.7 Laser selection for writing fibre Bragg gratings

The most common laser used in the manufacture o f fibre Bragg gratings is the KrF 

excimer laser. This is chosen because it operates at 248nm which fits into the 

absorption band o f germanosilicate fibres. Excimer lasers are pulsed gas lasers. The
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laser radiation is produced when a transient high voltage is discharged in a tube 

containing the KrF gas. Excimer lasers have short pulse durations (-10-50 ns) and 

have high average powers (-150W ). The profile o f a typical excimer laser is shown 

below [8]. The beam profile has a distribution which is nearly Gaussian.

Figure 3.3 Excimer Laser profiles [8]

3.8 Conclusions

We have treated the fabrication o f Bragg grating in fibres from a historical 

perspective beginning in 1978 with the standing wave grating and culminating with 

the present day use o f phase masks. It has been seen that o f the processes which may 

be employed to modulate the refractive index o f the fibre, the generation o f  a type II 

grating is important if  a long lasting and stable grating is to be made. KrF excimer
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lasers have been seen to be most suitable for use in the ‘writing’ process due to their 

high output power and short pulse lengths.

6 2



[1] Saleh B.E.A. and Teich M.E. "Fundamentals o f Photonics" (Wiley + Sons 

N.Y. 1991) Eqn. 5.5.10 pgl79.

[2] Inoue A, Shigehana M, Ito M, Inai M, Hattori Y, Mizunami T., “Fabrication 

and application o f fiber Bragg grating -  A review”, Optoelectronics - Devices 

and Technology Vol 10, No 1 pgl 19-130 (1995)

[3] Lemaire P.J., Atkins R.M., Mirah V. and Reed W.A., “High-pressure H 2 

loading as a technique for achieving ultrahigh UV photosensitivity and 

thermal sensitivity in G e02 doped optical fibers”, Electronic Letters Vol 29, 

p g l191-1193 (1993)

[4] Hill K.O., Fuji Y., Johnson D.C. and Kawasaki B.S., “Photosensitivity in 

optical waveguides: application to reflection filter fabrication”, Applied 

Physics Letters Vol 32, pg647-649  (1978)

[5] M eltz G, Morey W, Glenn W.H., “Formation o f Bragg gratings in optical 

fibres by transverse holographic methods”, Optics Letters Vol 14, pg823 -821 

(1989)

[6] Bilodean F., Malo B., Albert J., Johnson D.C., Hill K.O., Hibino Y., Abe M., 

and Kawachi M., “Photosensitisation in optical fiber and silica on silicon/silica 

waveguides” , Optics Letters Vol 18, 953 -  955 (1993)

[7] Othonos A., Kyriacos K. “Fiber Bragg Gratings” Artech House Norwood MA 

U.S.A. (1999)

3.9 References

6 3



[8] Lambda Physik, “Excimer Laser writing o f optical fibre gratings” , Product 

application note.

[9] Atkins R.M., Mizrahi V. and Erdogan T., “248nm induced vacuum UY 

spectral changes in optical fibre preform cores: Support for a color centre 

model o f photosensitivity”, Electron Letters Vol 29, pg385-387 (1993)

6 4



Chapter 4 Fibre Bragg grating sensing

4.1 Introduction

Fibre Bragg gratings have great potential for a wide range o f sensing applications 

where quasi-distributed measurements are required such as strain, temperature, and 

pressure. Compared with other fibre based sensors, the fibre Bragg grating has many 

advantages which make it a very attractive method o f sensing. One o f the most 

important advantages that fibre Bragg gratings have is that unlike many other fibre 

based sensors the measurements are made based on the central wavelength shift. This 

means that all results are insensitive to fluctuations in the irradiance o f the optical 

source o f  the system. The inscription o f fibre Bragg gratings into the core o f the fibre 

is non-intrusive and thus does not alter the fibre diameter making small diameter 

probes possible for applications which require them, such as strain mapping in 

composite materials. They are potentially inexpensive to mass produce which would 

allow them to compete against conventional electrical sensors. They can be 

multiplexed using similar techniques as used for other types o f fibre-optic sensors. 

Some o f these techniques include wavelength, spatial and time division multiplexing. 

They have one very important property which makes them very suitable for operation 

in industrial and harsh environments; they are unaffected by electrical noise, which 

has been for many years the one major problem with conventional electrical strain 

gauges, which tend to act like aerials. In recent years fibre Bragg gratings have been 

applied to more and more industrial test sites including strain sensing for large 

structures (i.e. bridges and high rise buildings), aerospace and marine vessel 

monitoring.
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Figure 4.1 Fibre Bragg grating sensor array on the 1-10 bridge in Las Cruces, New Mexico

4.2 Variation of Bragg wavelength and linewidth with strain
One o f the most attractive applications o f Bragg gratings is in strain measurement.

Fibre Bragg gratings are ideal for this application as the strain is converted to a shift 

in the Bragg wavelength (AB). This encoding means that the sensor gives absolute 

strain measurements, that the need for continuous measurements is forgone and 

periodic measurements only are needed.

The wavelength shift, AAB, for an applied strain o f As is given by

AAB = A B( \ - p e)As  

where p e is the photoelestic coefficient o f the fibre. This is given by

nlfr
P e = — [ P n - v { p u +Pn} ]  

p n and p n are components o f the strain optic tensor and v is Poisson’s ratio. For

typical telecommunications fibres the following table gives approximate values for 

the above variables.

E 4.1

E 4.2
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Variable Value

Pu 0.113 [1]

Pn 0.252 [1]

V 0.16 [ 1 ]

n eff 1.4675 [2]

Table 4.1

From this we can calculate p e and thus evaluate the theoretical relationship between 

the change in the Bragg wavelength (ZB) and the change in strain (A f ) . The photo 

elastic constant is found to be approximately 0.2085, from this we find that the 

relationship AAS/A s  at 1300nm is approximately 1.03 pm //jS  . This is a linear 

relationship as shown in figure 4.2.

1300.6 n

1300.4

1300.2

c 1300.0 cu >
1299.8-<u Q.

1299.6

1 299 .4

^= 1 3 0 0 .0  + 1.03x10 S

-600 -400 -200 0

Strain foiS)

—i----- 1----- 1----- 1----- 1
200 400 600

Figure 4.2
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As with almost all sensor designs, it is most common that the sensor is inherently a 

temperature sensor. This leads in most cases to designs being employed which cancel 

out the effect o f  temperature. A full understanding o f the effect o f temperature 

changes on any sensor is therefore o f the utmost importance. This is also true for fibre 

Bragg gratings. Much study has been done into the effect o f temperature changes on 

fibre Bragg gratings, for sensors which need the effect removed and on sensors which 

are directly used as temperature sensors.

A change in temperature (AT) o f  the fibre Bragg grating will cause a shift in Bragg 

wavelength (AAg) due to the thermal expansion which alters the grating spacing and 

the variation o f  the refractive index o f the silica with temperature. This wavelength 

shift for a temperature change o f AT may be written as

AAB = AB(a A + a n )A T E 4.3

where a K = (1/A)(<5A/<5T) is the thermal expansion coefficient for the fibre (this is 

approximately 0.55x1 (T6 for silica). a n is the thermo-optic coefficient, and is given 

by a n = (1/neff )(Sneff /ST) (this is approximately equal to 8.6x1 O' 6 for 

telecommunications fibre). It can be clearly seen that the index change (a n) is by far

the most dominant effect by a factor o f about 15. From equation 4.3 we can predict 

the response o f  the Bragg grating to temperature changes. Using the same values for 

the Bragg central wavelength as in the above section we find the temperature 

sensitivity o f the grating to be 1 \ .\2 p m /°  C . This is shown in figure 4.3,

4.3 Variation of Bragg wavelength and linewidth with temperature
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At very low temperatures silica glass has a negative thermal expansion coefficient [2] 

(i.e. temperatures below ~150°K); this reduces the effectiveness o f Bragg gratings in 

standard telecommunications fibres at cryogenic temperatures. The thermooptic index 

change is shown for silica glass in the graph below [3 ].

T em perature (K )

Figure 4.4

6 9



In the region that most studies have been carried out (200K -  300K) it can seen that 

the thermo-optic index change is relatively linear.

4.4 Simultaneous strain and temperature measurement
In situations where a slowly varying strain or static strain is to be measured it is

common that slowly varying large temperature excursions can be experienced. Hence 

some method o f temperature compensation must be employed. A range o f techniques 

have been proposed to achieve this, some o f them are discussed below.

4.4.1 Reference fibre Bragg grating

This is the most common method; it employs two Bragg gratings one o f which 

experiences the strain and temperature changes and the other grating experiences only 

the temperature variation. Thus the temperature effects can be removed as it is 

common to both Bragg gratings. This method is both simple and very effective.

4.4.2 Dual-wavelength superimposed fibre Bragg gratings

This method is based on the use o f two fibre Bragg gratings being written in the same 

location in the core o f the fibre. If  one assumes that the wavelength shift is linear in 

strain and temperature, the wavelength shift is given by,

AAB = K eAs + K^AT j

where K e and K r are the sensitivities o f the grating to strain and temperature

respectively. This assumes that the temperature and strain are independent. Hence for 

two superimposed gratings with differing wavelength we can write,



where 1 and 2 represent the two wavelengths. Once the sensitivities o f the gratings 

(the K  matrix) is known As and AT can be easily obtained. This concept has been 

shown for wavelengths o f 0.85 jjm and 1.3/jm [4],

4.4.3 Harmonics Method

For a strongly reflecting Bragg grating the refractive index perturbation may not be 

perfectly sinusoidal due to overexposure o f the writing laser, resulting in the 

generation o f  harmonics. The wavelength o f  the first harmonic is twice that o f  the 

central Bragg wavelength. The first order amplitude will be small, around 2% o f the 

amplitude o f the central wavelength. This method, although useful in the fact only one 

grating is employed, requires the use o f a broadband light source and detection 

scheme thus potentially making it very expensive or o f poor resolution.

4.4.4 Dual Diameter fibre Bragg grating

It has been found that the responses to strain and temperature in a Bragg grating are 

affected by the cladding diameter [5]. By fusion splicing two fibre gratings with 

different cladding diameters together, such as shown below, the strain and 

temperature information can be extracted using a matrix scheme similar to that used 

in the superimposed grating method.

fibre 1.X,
fibre 2, X2

1 1 I I  i'l I 1 1 1! 1 I l  I I  1 1 1 1 1 II  I I  1 '

Figure 4.5
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The change in the Bragg wavelengths (AAflj) o f the two gratings by strain and

temperature may be represented by

A ABi = xv As, + K TiM i i = 1,2 E 4.6

The strains experienced by the fibers will be related by

A s x _  Ax 
A s 2 A2

E 4.7

where 4  and are the cross-sectional areas o f the fibres.

It can be shown that the relationship between that wavelength shifts and the total 

strain experienced by the grating pair may be expressed as follows [5],

AA

ŷ A/l B2J

h
A  i,

K T1

1 + A i
4  2̂ y

a :.T 2

vA7y E 4.8

where /, and l2 are the lengths o f the fibre between the splice and the anchoring 

points o f the fibres from the splice. The total system strain (As) is given by

(A /jjKA/j ) E 4.9

(/1 + /2)

W hen the two fibres have a similar response to temperature the centres o f the two 

Bragg gratings will be shifted equally and thus their relative spacing will remain the 

same. Whereas a strain on the fibres will cause the centres to move differing amounts
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causing a change in their relative spacing, thus making this system temperature 

insensitive.

4.4.5 Extrinsic techniques

Extrinsic techniques utilise external packages which either try to stabilise the 

temperature by sealing the grating in an insulated package or by encasing the fibre in 

a coating which nullifies the effect o f temperature changes. The coating method uses 

the principle that materials expand at different rates, so by using a coating material 

which has a low rate o f thermal expansion the fibre can be made to be less sensitive to 

temperature changes.

4.5 Strain Gradient

In most sensing situations the strain along the fibre is uniform. Therefore the strain 

may be directly determined from the reflected Bragg wavelength. If  however, the 

grating is subjected to a strain gradient along its length not only will the reflected 

spectrum be alterered in wavelength but it will also be distorted. This is due to the 

grating spacing (A) and the refractive index being nonuniform along the length o f the 

grating. The spectral shape o f the reflected spectrum will be dependent on the strain 

distribution along the grating’s length. This strain gradient introduces a ‘chirping’ 

effect to the Bragg grating and thus allows us to calculate the strain induced along the 

length o f the grating. This is illustrated in figure 4.5 [6 ].
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Figure 4.6

It can be seen that we can treat the Bragg grating with a strain gradient applied as a 

collection o f  smaller Bragg gratings with slightly differing pitches. If  we assume that 

the gradient is linear across the length o f the grating it was shown by Huang et al [6 ], 

that the line broadening (A/l) appeared to obey

A/l «  X0gL e  4.10

This is obtained from the view that the spectrum obtained for the Bragg grating is just 

the sum o f the reflections from each sub length section with its corresponding strain.

For example if  we are to use a fibre Bragg grating with a central wavelength (XB) o f 

1300.0 nm and a total grating length o f 2.5mm it can be seen that the induced 

broadening o f  the reflected spectrum can be expected to be small, o f the order o f 

picometers, as can be seen in the graph below.
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Figure 4.7

4.6 Other external effects
4.6.1 Pressure

W hen external pressure is applied to the area o f the fibre Bragg grating the small 

fractional change in the diameter due to the applied pressure is negligible with respect 

to the change in refractive index and physical length. For a pressure change o f AP , 

the corresponding change wavelength shift AAB is given by,

A(nA) f  1 SA 1 c>«V E 4. l l
XB nA A SP + n ôP

AP

with

AT _ ( 1 - 2 v)P  E 4 .12

L E
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A n  n  n  o \/-> , \  E 4.13- ozr (l 2v)(2/712 + / ’11)« 2£

where £  is Young’s modulus o f the fibre. Given that AX/L = AA/A , the normalized 

pitch pressure is given by,

l& V  (1 -  2v) E 4.14
A S P  E

2

1 Sn n2 e  4.15
- ^  = ^ ( 1 - 2 v)(2 A 2 + ^ l l )  n SP 2 E

By substituting equations 4.14 and 4.15 into equation 4.11, we obtain an equation for 

the wavelength-pressure sensitivity. This is given by,

8Anap _ 1
dP 3

( l - 2 v )  n 2 .. _ . . .  .
E + C1 -  2v)(2Pn +Pn)

E 4.16

For a Ge-doped fibre Bragg grating at 1.55/urn, dXBp jdP  was measured as 

-3x1  O’ 3 nmMPa~' over a pressure range o f 7 0 MPa [7],

4.6.2 Dynamic Magnetic Field

Bragg gratings have been shown to be capable o f detecting dynamic magnetic fields 

utilising the Faraday effect to induce a slight change in the refractive index o f the 

fibre experienced by left and right circularly polarised light traveling in the fibre [8 ], 

In the presence o f a longitudinal magnetic field , the fibre Bragg grating refractive 

index is changed for the two circular polarisations and because o f this two Bragg 

wavelengths are obtained.
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Figure 4.8 -  Splitting of the Bragg resonance due to 
circular birefingence induced by a magnetic field.

AB+=2 n +A  E 4.17

A B_ = 2n_A

Where the subscripts + and -  represent the refractive index and Bragg wavelengths o f  

the (left and right) circularly polarised light at the fibre Bragg grating. For normal 

telecomunications fibres this effect is very weak as it is determined by the inherent 

Verdet constant o f the silica which is approximatly 8x10'* rad T~x m~x at 1300 nm.

The change is given by,

„ t - „  E4.18
In

,so that

dAB _  VdAB e  4.19

dH n

where Vd and XB are the Verdet constant and the wavelength o f interest and H  is the

applied magnetic field. This wavelength shift is very small but B-fields o f around 1 to 

106 Gauss, or 100 Telsa, have been detected [8 ], showing a high linearity, making this 

approach suitable for applications in nuclear magnetic resonance and spectroscopy.
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4.7 Conclusions
We have seen that the inherent properties o f Fibre Bragg gratings make them suitable 

for strain sensors. This implementation is not without problems as the grating itself is 

highly sensitive to temperature. A number o f methods for removing the temperature 

effect have been described. Some o f these techniques are based on intrinsic effects of 

the gratings themselves, there have also been extrinsic methods described but these 

have been found to be less useful. A description o f strain gradient effects, where the 

strain field is not uniform along the length o f the Bragg grating, has been shown. This 

is a small effect, but it could prove a useful technique for measuring strain gradient in 

very localised areas. A description o f two other external effects, pressure and large 

magnetic fields, have been discussed. It has been shown that the sensitivity to 

pressure is dominated by the change in the refractive index and the physical length o f 

the fibre. The susceptibility o f the Bragg grating to dynamic magnetic fields has been 

shown to be extremely small, and thus it’s usefulness is limited to areas with large 

magnetic fields.
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Chapter 5 Design of a strain sensor system with temperature 
compensation

5.1 Introduction

The task o f designing a system to interrogate one or more Bragg gratings, with a 

wavelength resolution o f the order o f tens o f picometers (pm)  is discussed with 

reference to the reasons why commonly available monochromators are unsuitable. As 

a fully temperature compensated system was required, a twin fibre approach, where 

one Bragg grating senses the temperature and the other both the strain and the 

temperature, was taken. The twin fibre approach led to the use o f a fibre coupler to 

allow both Bragg gratings to be illuminated and interrogated simultaneously. To 

obtain the desired wavelength resolution a multi-layer interference filter used at 

oblique angles was employed. This facilitated resolutions o f the order o f 10p m ,

which corresponds to approximately 10jus o f strain or 1 °K  in temperature. The 

interference filter was fully characterised using a Fourier transform spectrometer from 

which the effective refractive index o f the filter ( n )  was calculated. A full 

description o f the effect o f light incident on a multi-layer interference filter at oblique 

angles is given. A description o f the optical source (Edge emitting LED) and detector 

(Photodiode) used is included. The design o f the turntable necessary to automate the 

rotation o f the interference filter is shown, with attention being drawn to the 

importance o f a small step angle and repeatability o f rotational positioning. Finally a 

cantilever system is used to create a range o f strain and strain gradients on the active 

Bragg grating, the dummy being used as a temperature drift reference channel.
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Bragg gratings being sensitive to both strain and temperature require some method o f 

decoupling the two effects from each other before they may be used as strain sensors.

One technique that may be employed is the use o f two gratings, one which 

experiences both the strain and the temperature changes, and one that experiences the 

changes in temperature alone. The gratings employed here were chosen to be o f a 

similar, but not identical, Bragg wavelength (XB) . This choice allowed us to assume 

that the sensitivities o f  the Bragg grating with temperature ( K T) , and strain ( K e) 

were approximately the same.

K T = A B( a T + a n) E51

K £ = A B( \ - p e)

where a T is the thermal expansion coefficient for the fibre (this is around 0.55x1 CT6

for silica). a n is the thermo-optic coefficient, and is approximately equal to 8.6x1 O'6

for telecommunications fibre. p e is the photoelastic coefficient o f the fibre; this is

found to be approximately 0.2085 from equation 4.2. The two fibres used have Bragg 

gratings impressed at wavelengths o f  1299.77nm and 1305.37nm respectively. Taking 

these figures the sensitivities o f  the gratings, to temperature and strain, at the two 

wavelengths can be calculated as given in the table below.

5.2 Twin fibre approach

^3(1299 .77  nm) %  Difference

k t 11.89 pm/°C 11.94 pm/°C 0.42%

k £ 1.028 p m ! u s 1.033 p m ! /u s 0.48%
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This shows that for the chosen Bragg wavelengths we may consider their sensitivities 

to be equal for both temperature and strain. The system o f removing the temperature 

effect is therefore straight forward and may be done as follows. Under zero strain 

conditions both o f the central wavelengths o f  the gratings will be shifted by equal 

amounts and therefore their relative separation will remain constant. When a strain is 

applied to one o f the Bragg gratings this will cause the central wavelength o f that 

grating alone to be shift, thus changing the relative separation o f the two gratings. 

Thus, from the change in the relative wavelength separation o f the two gratings we 

may calculate the magnitude o f the strain being applied to the non-reference grating.

^ sRer -  K r &T + K e As, £ 5.2

A/L -  K T A T  + K r A s 2
^  Active 1 E l

Since As, for the reference grating is equal to zero (remember that this gratings does

no experience the strain effect) the shift in the wavelength AAB̂  is caused entirely by

the change in temperature experienced. Therefore the separation o f the central 

wavelengths may be written as,

^Active-Ref ~ ^ S Aah.c — Kj-AT + K^AEj K j AT  0

^ ^ A c t iv e - R e f  =  KeA£2

^ e _  ^ A c t iv e - R e f  ®  ^ . 3

K *

By using this technique we have a simple but effective method o f removing the 

ambient temperature effects from the system output, thus allowing us to directly 

access the strain experienced by the active Bragg grating.

Gratings with Bragg wavelengths o f approximately 1300nm were chosen because o f 

the window o f silica at 13 lOnm (attenuation o f approximately 0.34dB/km and the 

availability o f high power LED sources and o f PIN photodiodes with high
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responsivities around 1300nm. The gratings were manufactured by Innovative Fibres 

o f Ottawa, Canada from Coming SMF-28 singlemode fibre using a phase mask 

technique. The fibre (SMF-28) is a standard communications fibre with a cut off 

wavelength Xcf o f

1190nm < Xcf < 1330nm

a core diameter o f 8.3fjrn, cladding diameter o f 125/urn, numerical aperture o f 0.13 

and effective group refractive index (at 1310nm) o f 1.4675. Between 1300 and 1310 

nm the spectral attenuation o f the fibre reduces from 0.35 to 0.34 dB/km. The gratings 

were fabricated to have a Gaussian profile reflection spectrum. The unstrained 

wavelength characteristics o f a typical matched pair is shown below

Grating No. 1 Grating No. 2

Central W avelength (nm) 1299.77 1305.37

Full width at H alf Maximum (nm) 0.46 0.44

Reflectivity at peak % 97.0 96.0

The Gaussian nature o f the reflection spectrum o f one such grating is shown in the 

technical specifications provided by the manufacturers. The resolution o f the 

spectrum analyser used by the manufacturer was 0. lnm . The data is represented by 

the circles, while the Gaussian least squares fit is represented by the thin line in the 

following figure.
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Wavelength  (nm)

Figure 5.1

This typical (unstrained) grating spectrum was curve fitted to the Gaussian apodised 

grating model function given in Equation 2.49 and the best fit values o f the grating 

parameters found to be

(i) M aximum refractive index modulation 8neff = 1.001x1 O'3

(ii) Grating Length L -  2.5mm

(iii) Gaussian apodisation variable a  = 4 .1 x l0 4 ra"2

5.3 Wavelength analyser

5.3.1 Commercial systems

There are many commercial systems which have been employed to interrogate fibre 

Bragg gratings. These tend to have one o f two disadvantages, the most important 

being that they often have a resolution which is only o f the order o f 100pm, thus 

making them unsuitable for detecting small strains (note 1 pm  = 1 fj.s). Secondly most



o f the instruments, which are capable o f  reaching resolutions low enough to render 

them suitable for small strain detection, are very expensive. Listed below are some o f 

the commonly used instruments for Bragg grating interrogation.

Analyser

System

Manufacturer Spectral Range (nm) Resolution

(nm)

Cost

IR£

Digikrôm

DK242

CVI Laser 

Corp

330-1500 0.04

[focal length 

0.25m]

11,465

AQ-6310B Ando Corp 1000-1500 0.4 8,500

SI 000 Ocean Optics 850-1450 0.4 5,600

We required an instrument which had a resolution o f  the order o f a few picometers 

and was relatively inexpensive. For these reasons a multi-layer interference filter was 

chosen for this purpose. The interference filter has the advantage that it is both 

inexpensive and its resolution is only limited by the minimum step size o f the rotation 

stage employed. For general spectrum analysis interference filters have limited 

usefulness as they are only capable o f  working within small wavelength ranges, o f the 

order o f 35n m . For this application this was found to be quite sufficient as a 20nm 

shift in the Bragg wavelength would correspond to a change o f 2000°C in the 

ambient temperature or a strain change o f 20,000¡us . Both o f these are well outside 

the normal operating limitations o f the fibre used, so this does not place any limitation 

on the interference filter’s usefulness in this situation.

5.3.2 Multi-layer interference filter

To attain the spectral resolution required to interrogate the Bragg grating a multi-layer 

interference filter was chosen. A multi-layer interference filter consists o f a number o f
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layers o f dielectric materials o f differing refractive indices coated onto a glass 

substrate. The dielectric materials on the substrate have different thickness. The 

combination o f  materials o f differing refractive index (nx - > n m) and thickness give

rise to an overall refractive index for the filter ( n ) . By careful choice o f the 

combination o f materials and thickness one can produce a filter o f almost any nature. 

An interference filter o f a narrow bandwidth at one distinct wavelength was required 

for our purpose. When light is incident on an interference filter at an oblique angle the 

central wavelength o f transmission has been shown to shift to shorter wavelengths, 

the expression for this shift is given by Blifford (1966) [13],

Ag ~ A0

- /  \ 2
1 - f no 

* sin2 0
{ n

% E 5.4

where,

Ag Peak wavelength at incident angle (0)

A0 Peak wavelength at normal incidence (0 = 0)

n0 Refractive index o f the incident medium (air=l .0)

n Effective index o f filter

0  Angle o f incidence

This equation only holds for small angles, i.e. 9  < 2 0 ° . At larger angles o f incidence 

the corresponding angles o f total internal reflection within the filter give rise to phase 

changes on reflection which are dependent on the plane o f polarisation o f the light. 

This in turn affects the condition for constructive interference in the filter and gives
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rise to a splitting o f the transmission spectrum. The spectral transmittance o f a Fabry 

Perot filter is Lorenzian in nature [Lissberger (1959,1968)] [14],[15] with a functional 

form of

T ( 0 \  T°b__________  ®
b 2 + { 2 ( A - A O) + AO0 2 / ( n ) 2]2

where b is the halfwidth at half maximum o f the transmittance at normal incidence 

6  = 0 ,  and T0 is the filter’s power transmittance at normal incidence. Equation 5.5, 

the Lorenzian transmittance function, can be written as

m = E 5 - 6
b‘ +{2(X-t.„) + ce‘]

where C = A0 / ( n ) 2 and 6 is a function o f the number o f steps (N) o f the stepper

motor from its location at 6  = 0 . For the interference filter used the variables have the 

following values:

A0 = 1308.5nm 

b = 2.537/wz

C  = A0/ (n  ) 2 = 682.33nm 

C 9 2 =2.6939x10 ~6 N 2

so that the transmittance function T (6) can be calculated at each value o f  the incident 

angle 6 .  T0 is a constant which is arbitrarily set to 1.0.

The wavelength shift o f T (0 ) is shown in the following spectrum which was taken 

with a Fourier transform spectrometer for incident angles 6  in the range 0 to 20° C .
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The filter used was manufactured by the Raynard Corporation o f CA. U.S.A. with a 

normal incidence wavelength o f transmission o f  ~1308nm.

X nm

Figure 5.2

By curve fitting the above spectra to equation 5.6 a value for the effective refractive 

index ( n )  o f the filter was obtained. A value o f

n =1.74195

was measured for the filters effective index at an ambient temperature o f 21.0° C .

Because refractive index and dimensions are temperature dependant the transmission 

properties o f Fabry Perot filters are a function o f  temperature. The shift in peak 

transmission wavelength is small with a value in the range 0.02 -  0.2nm/° C  [2]. 

Because the system employed twin gratings, the separation o f the central peaks o f the 

Bragg gratings will remain constant as both grating spectra will shift equal amounts if



the filter temperature drifts, thus eliminating the effect o f the temperature drift o f the 

filter’s peak transmission.

5.3.3 Optical source considerations and selection

As the Bragg grating system is based on wavelength detection, the intensity o f  the 

spectrum is o f  little importance once that spectrum is detectable. Thus the selection o f 

a source to illuminate the gratings has very few constraints. The desired properties are 

as follows. Firstly it must be broad enough to cover the desired wavelength range. As 

most LED packages have a broad linewidth, this did not prove to be a difficulty, with 

most LED packages around the 1300nm range having full width at half maximum of 

approximately 80nm. The majority o f  LED in the 1300nm region are made o f Indium 

Gallium Arsenide Phosphide (InGaAsP). The figure below shows the spectrum o f the 

LED package used.

Optical Spectrum

W ave len gth  (nm )

Figure 5.3

The other concern was the coupling o f a good percentage o f the light from the LED 

package into the fibre core (8.3 jum) . This was easily achieved by the use o f  a source 

which is already designed to couple a single mode fibre to the LED in the package. 

The package chosen had a standard “FC” receptacle, into which the fibre, terminated 

with an FC connector, was connected. The LED chosen was manufactured by
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EPITAXX Optoelectronic devices [6]. The LED was driven by a constant current 

source with a voltage regulator. A current o f 100mA was chosen to drive the package 

at its optimum for optical output and lifetime.

5.3.4 Optical detector considerations and selection

The choice o f detector was also very important as this element o f the system needed 

to be able to detect light levels o f the order o f a few microwatts (p.W ). As 

wavelengths around the 1300nm region were being detected a Indium Gallium 

Arsenide (InGaAs) detector was chosen. It was important that the photodiode had a 

good spectral responsivity as this severely degrades the spectral performance o f the 

detector. A plot o f the surface responsivity is given below.

Surface Plot of Response at 1300 nm 
ETX 3000T5

Figure 5.4

The photodiode was operated under reverse bias, under these conditions the low dark 

current o f InGaAs becomes advantageous. Dark current is important because shot 

noise becomes the dominant source o f noise. The equation below gives the formula 

for the r.m.s. shot noise current o f a photodiode [7] per unit measurement bandwidth.

= 2 ? | / w | +  2 ^ | /d | e  5.7
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I SH ~  the shot noise current 

q = the unit o f  electronic charge 

I PH -  the photo generated current 

I D = photodiodes dark current

For example, the shot noise o f an unilluminated 2mm InGaAs photodiode with a 

reverse bias o f  5V and at room temperature arises from the dark current. Using the 

dark currents typical value o f 12nA [7], the noise current is calculated to be

y
6 2 fA /  H z /2 . InGaAs photodiodes have a wide operating region spanning 800nm to 

1700nm approximately. The spectral response o f the EPITAXX photodiode chosen is 

extremely stable over the 1300nm region we are interested in, as can be seen from the 

graph below.

w ith

Effect of Temperature on Spectral Response

Wavelength (nm)

Figure 5.5
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The interference filter was used as a monochromator element and its transmission 

properties are dependant on the incident light being in a parallel beam. In step index 

fibres the light emerges from the fibre end over a range o f angles (in a cone o f 

typically 5°). To eliminate this problem a grin (graded index lens) was employed. 

Grin lens can be used to collimate or focus light emerging from or entering a fiber 

optic system. The theory o f grin lens is that instead o f using conventional optics 

which require the formation o f a curved surface on the optical material to manipulate 

the incident rays, grin lens have a graded index profile so that the ray path is 

continuously altered through a smooth refractive-index variation. The refractive index 

profile is given by [8],

5.3.5 Grin lens

N(r)  = N c \  A  ^  1 r E 5.8

where

N 0 = base refractive index (at the optical axis)

A =  Gradient constant 

r = radial position o f the lens

This leads to a refractive index profile as shown below

92



Figure 5.6

Another important concept in grin lens is the pitch. This describes the length o f  grin 

lens needed to complete one cycle, or sine wave. Since we require a grin lens to 

collimate our cone shaped beam from the optical fibre we require a 0.75 or 0.25 pitch 

grin lens as shown in the diagram below.

Objcct 
at Infinity

0
Object 
at Infinity

0 .75  P itch

Figure 5.7

The use o f a 0.25 pitch grin lens as shown facilitated the shaping o f the beam o f the 

optical fibre to give a parallel beam o f light incident on the interference filter.

5.3.6 Fibre couplers
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To illuminate both gratings simultaneously from one single input and collect the back 

reflected light from the gratings, the two fibres containing the Bragg gratings were 

coupled together. The optical fibre configuration is shown below with the coupling 

being achieved at the coupler which is represented as a large black dot.

The principal function of a fiber optic coupler is to transfer the optical power from 

one fibre to a different one in a controlled manner. This may be achieved by many 

means but by far the most common is the method described below. This method 

entails tapering the fibres by heating and drawing them together in a spiral fashion. 

For many applications the two fibres being coupled are required to receive 50% or 

3dB o f the power each, and when coupling two identical fibres together this is the 

most common outcome. Coupling is possible because the fields o f a fibre mode 

extend into the cladding and interact with any other fibre which may be present. 

Using coupled mode theory we get the following equations for the power in each o f 

the two fibres [9],

Input x

Output K

Figure 5.8

E 5.9

where

E 5.10
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and

F  =
1 E 5 . l l

n  ( A - A )
-4 /? (z )

When both fibres are nearly identical, /?, = , then F  = 1 and a + = 1, then the

power in both fibres are around 3dB o f the original power. This then gives us the 

required optical power to both Bragg gratings. The fibres carrying the Bragg gratings 

used in this work were coupled using a Gould fibre coupler (S/N 2068409) configured 

as in Figure 5.8.

5.4 Automating wavelength analysis

As we had chosen to use a rotating multi-layer interference filter as our spectral 

analyser, a system to automate the rotation o f the filter was required. This system had 

to give small angular steps, as a spectral resolution o f the order o f a few picometers 

was required. This was achieved by employing a rotation stage driven by a stepping 

motor connected through a gearbox. A commonly available 1.8° stepper motor was 

chosen; this was also capable o f producing half steps o f 0.9°. This stepper motor was 

connected to the rotation stage through a 250:1 gearbox giving us a step size o f 

3.6x10"3 degrees. As from equation 5.4 we can see that the relationship between filter 

angle and the central wavelength o f the filter is non-linear we have a range o f 

wavelength resolutions across the useful range o f the filter, this is shown below.
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0 (d e g ree s)

Figure 5.9

In the region o f interest i.e. 1300-1305nm a single step o f the stepper motor system 

corresponds to a wavelength shift in the filter transmittance o f  2.65p m . This is an 

acceptable resolution for the strains we wish to detect. Stepping motors operate by 

energising the coils in a particular sequence which cause the shaft to rotate as each 

electromagnet in turn opposes the permanent magnet connected to the drive shaft. The 

following diagrams show the most common configuration for stepper motors and the 

sequence needed to generate a sequence o f half steps.
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T O T
02

Figure 5.10

Step N um ber <t>\ (¡)2 <j>3 (f)A
On O ff On O ff

1 On O ff O ff O ff
2 On O ff O ff On
3 O ff O ff O ff On
4 Off On O ff On
5 Off On O ff Off
6 Off On On O ff
7 Off O ff On O ff
8 On O ff On O ff

Since we do not require the stepper motor to move any substantial load the normal 

torque considerations can be ignored. Another property o f stepper motors is their 

positional accuracy, this represents the tolerance o f each angular step movement. This 

is typically within 5% of one step [10], which corresponds to a wavelength error o f 

approximately 0.15p m . This is a non-cumulative error, i.e. this remains constant 

regardless o f the number o f steps advanced. Overshoot may also occur when making a 

single step, the rotor may oscillate around its new position. This is a small effect here 

as the gearbox and rotation stage tend to add additional frictional damping, thus 

reducing the amount o f overshoot. An example o f  overshoot can be seen in the graph 

below.
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Figure 5.11

In this application by far the most critical property o f the stepper motor was 

resonance. Certain operating frequencies cause resonance and the motor can lose track 

o f the drive input causing the motor to act in an erratic manner. An audible vibration 

is the most common sign o f resonance, although at some high frequencies the motor 

may just lock in one position causing a ‘bum  out’.

To activate the motor, i.e. energise the motors coils, some electronic equipment was 

required to produce the desired sequence o f coil currents. This was achieved by using 

a ‘o ff the sh e lf  stepper motor driver board. The board chosen was also capable o f 

taking as an input a sequence o f  TTL level signals to cause the motor to step and 

change direction. A personal computer (PC) was used to signal the stepper motor 

when to turn and in which direction. A computer program was written to produce the 

necessary signals to cause the stepper motor to turn. The computer and stepper motor 

controller were interfaced using a Bitronic® interface card. This card also had a 

function to input to the computer a voltage signal in the region ±10V. This function 

was employed to capture the return signal from the photodiode amplifier circuit for 

each step o f the filter. This combination gave us a fully functioning spectral analyser.
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To expose the Bragg grating strain gauge to a range o f variable strains both m 

compression (s  < 0) and extension (s  > 0) a metal cantilever rig was constructed 

consisting o f a stainless steel 20x4mm cross-section bar in a constant temperature 

environment The bar was clamped at one end (x = L)  and could be moved vertically 

at the free end by a micrometer gauge The free end displacement was known to 0 01 

mm accuracy The cantilever was sand blasted using 30 micron gnt to create a surface 

to which the fibre carrying the active Bragg grating gauge could be bonded using 

epoxy resm

The cantilever housing carried a 250W  trace heating element m  a sub floor which was 

controlled using a Eliwell controller, the cantilever temperature being monitored by a 

Eirlec MT140 type J thermocouple with digital display and 0 1°C accuracy The 

cantilever environment could be varied from room temperature to 65° C with a 

stability o f 1° C An example o f the temperature profile o f the constant temperature 

environment is shown below

5.5 The cantilever strain rig
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Time

Figure 5.12

It can be seen from figure 5.12 that the cantilever stabilised to within ± 0.7° C o f the 

set point temperature.

For a cantilever o f length Lc, free end depression d  the strain s(x)  on a plane o f 

depth a from the neutral axis and a distance x from the free end is given by [11] 

[12],

- 3  dax
e(x)  = E 5.12

The strain gradient is constant at all points along the plane with a value o f

- 3  ad
s  = - r r -

E 5.13

100



The strain range o f  the cantilever at x  = 355mm , L = 385mm , and a = 2 0 mm was 

from approximately -  260¡us to 500¡us and the range o f  strain gradient was 

-  0 837 //f / mm to 1 884¡us I mm  With a typical Bragg grating length o f 3mm the 

system used created a strain differential from one edge o f the grating to the other o f 

about - 2  / i s  to A jus Over the range specified the radius o f curvature o f the 

cantilever varies from co for no free-end deflection to approximately 4m for a free-end 

deflection o f  12mm

The full optical system used for wavelength and hnewidth analysis is shown in figure 

5 12 and the electronic system is shown schematically in figure 5 13

ELED Active Grating

Cantilever

SM Fibre p Coupler

PD
Grin Lens

 m m —
Reference Grating

FP Filter

Figure 5 13 Schematic of optical system
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Detector Power 
Supply

Detector 
Amp lifer

Personal Computer

Stepper ^ 
M otor

Figure 5.14 Schematic of electrical system

5.6 Conclusion

We have shown that a multilayer interference filter may be successfully employed as 

a spectrum analyser when used at oblique angles. The overall optical system is simple 

in nature and only requires the careful choice o f  optical components to function 

properly. A system to create a set o f known strains in a fibre grating and then to 

interrogate the grating in wavelength using a rotating Fabry Perot interference filter 

has been discussed. The system was designed to have a strain range o f approximately 

-200  to 500 microstrain with a strain gradient o f approximately -0 .7  to 1.5 

microstrain per millimeter. A strain sensitivity o f  about 10 microstrain was the target 

o f the strain measuring system. The full system as it is used is shown in the diagram 

below.
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a Interference filter j Thermocouple readout

b Detector (Photodiode) k Thermocouple

c Grin lens 1 Heater control probe

d System Electronics m Reference grating

e Fibre and coupler n LED Output

f Stepper motor 0 Fibre alignment chuck

g Power Supply P Cable to detector amplifier

h Micrometer q Cable to PC interface

i Cantilever and active grating r Heater controller

Figure 5.15

The system achieved resolutions in wavelength o f approximately 3 p m , which is 

comparable to some o f the best commercial systems available. This system is 

inexpensive to construct, but is limited in usefulness to small spectral ranges. The 

main drawback o f this system is the large amount o f  convolution o f the reflected
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Bragg spectrum which takes place as predicted m chapter 2 This leads to the need for 

a software deconvolution system to remove the filter function from the spectrum
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Chapter 6 Deconvolution of Spectra

6.1 Introduction

The effect o f using a thin film interference filter to interrogate the back reflected light 

from the Bragg gratings is to produce a convoluted spectrum. Under normal 

circumstances the instrument used to interrogate a spectrum would be chosen to be of 

a linewidth which would be much smaller than that o f the spectral lines to be detected. 

As the linewidth o f the reflected signal from the Bragg gratings is o f the order o f 500 

picometers and that o f the interference filter is 1.5 nm (or three times larger the 

spectrum obtained) it is heavily convoluted, as shown below, and must be analysed to 

obtain the correct Bragg wavelength and linewidth.

Wavelength (X) nm

Figure 6.1

To successfully deconvolve the data a number o f factors have to be taken into 

account: [8]

o Change o f interference filter linewidth with angle

o Non-linearity, with respect to A ,  o f  the central peak o f the filter at arbitrary 

angles
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o Transmittance reduction o f the interference filter with angle 

These effects can clearly be seen in the graph below,

X. nm 

Figure 6.2

The fitting routine needed to deconvolve the spectra, would have to deal with at least 

ten variables, as the full system is described as the sum of the two Bragg grating 

reflections convolved with a rotating interference filter.

6.2 Genetic algorithm approach to find solution in large search space

With such a large number o f variables most standard fitting schemes would be very 

slow to reach a minimum [6]. The use o f genetic algorithms to find local minima in 

large search spaces has become more common in recent years. Genetic algorithms are 

heuristic search techniques that incorporate, in a computational setting, the biological 

notion o f evolution by means o f natural selection [5]. With genetic algorithms the 

problem o f multiple local minima and non well behaved landscapes can easily be 

overcome. For example consider the following function o f two variables:
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/  (x, y )  =  [16x(l -  x)>>(1 -  y ) sin(n nx) sin(« 7ty)\2 
x ,y  e  [0,1] « =  1,2... E 6.1

The optimising task in this case is to find the maximum evaluation o f / .  The figure 

below shows the surface plot o f the above function for n = 9.

Figure 6.2 - Surface and Contour plots of function 111

To find the maximum value o f /  by conventional methods for values o f n which are 

large can be seen to be difficult, for example when n = 9 there are 81 local maxima. 

If  one is to imagine the above surface plot turned upside down and using a small ball 

to find the maximum the solution will only be found if  the ball is to directly dropped

in the interval
^4 5 4 5^

— < x  < — < y <  —
9 9 9 9

centered on (x, y)  = (0.5,0.5). Any other

starting point will cause most standard methods such as iterated hill climbing [7] 

schemes to find a secondary maximum. Genetic algorithms by nature are global 

solution finders, because o f their random nature they are not restricted to any one

109



section o f the solution space. They have an equal probability o f searching each point 

on the search space. Classical genetic algorithms employ an encoding scheme to 

describe the possible solutions in the gene pool, this is very much like the genetic 

encoding found in all biological species [6]. The difficulty with this method is that it 

requires that an encoding scheme to be developed for each problem encountered, 

which can be a very time consuming task.

A top-level view o f a genetic algorithm is as follows;

o Construct a random initial population and evaluate the fitness o f each member 

o f the population.

o Construct a new population by breeding selected individuals from the old 

population, optionally one may randomly mutate the new population 

members.

o Evaluate the fitness o f each member o f the new population

o Replace the old population with the new population

o Test convergence, unless the fittest solution found matches the target within 

tolerance

Using this method for the above problem it can be seen from the diagrams below that 

the solution can be found in only 40 iterations o f  the algorithm.
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Figure 6.3

Other additional strategies and techniques may also be applied to reach convergence 

faster. These include [1];

Fitness Ranking

This reduces the effect o f “inbreeding” within a population which causes subsequent 

populations to lose diversity. This is achieved by ranking the fitness o f each member 

o f the population. If for example one o f the initial random population has a very good 

fitness, using normal methods it will breed with a considerable amount o f the 

population to produce a secondary population o f reduced diversity.

Elitism
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This consists o f  copying, at least once, the fittest solutions to the next population. 

Variable Mutation Rate

This is another useful method to decrease the chance o f  the population losing 

diversity. Once the difference in fitness between the median and fittest o f  the 

population falls below say 20% the mutation rate may be increased. This strategy 

should however be used in conjunction with elitism so as to avoid destroying the 

favorable solutions.

Reproduction plans

Two method may be applied here, one is generational replacement which consists o f 

a temporary population being produced and on completion this whole generation 

replaces the parent population. On the other hand steady-state reproduction may be 

employed, in this case as new members o f the population are created they replace the 

parents immediately. W ith this method the choice o f  how these members are to be 

inserted also has to be made. The two most common methods are, direct replacement 

o f the parent or replacement o f the most unfit member o f the population.

6.3 Directed evolution system

Directed evolution is a hybrid version o f a classical genetic algorithm, it’s main 

advantage being that the necessity to encode the gene population is removed [2], This 

method uses the normal floating point numbers needed by the problem to generate the 

solution. For the problem in equation 6.2 instead o f  encoding the (x , y ) information
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we directly use the x and y  values in the population. Thus instead o f having a 

population o f say, iV = 100, single genes we now have have a population with each 

population member having the real x , y  information. For a system o f 100 genes and 

10 variables the population will be as shown below,

x g,.v, ■ ■ x G,my,

.XG,,y,o ■ ■ XGm ,r,o

E6.2

with the index (GN VM) denoting the gene (G) number and the variable (V).

The other main difference between classical genetic algorithms and directed evolution 

is the adaptation o f the breeding process. In directed evolution the crossover takes 

place between four members o f  the population. Each member in turn is selected and is 

crossed over with another vector ( X c) which is made up o f a combination o f  any 

three other randomly chosen vectors in the population. This vector is made up as 

follows, every pair o f vectors ( X a, X b) defines a vector differential i.e. X a - X b.

W hen X a and X b are chosen randomly, their weighted difference can be used in 

place o f Gaussian noise to perturb another vector X c . This may be represented 

mathematically as follows,

K = ( X . - X „ ) ' F  + X,  e  6.3

The scaling factor F , is a user supplied constant [2].

The crossover coefficient (Cr) determines how the crossover takes place. Essentially 

the crossover coefficient is a number in the range 0-1 and a random number is chosen 

for each variable in the selected gene. If  the randomly chosen number is less than the
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crossover coefficient then crossover takes place. This scheme is represented 

mathematically below,

^  final ~  * c  ®  X  initial E 6.4

The only prerequisite is that the four genes chosen must be different. It may be also 

required that a random mutation take place in the child gene, this helps to keep the 

population diverse. The fitness o f the vector, X fmal, is calculated and compared to

that o f the initial population member, X Initial. The fitter o f the two vectors is placed in 

the secondary population, and the other is discarded.

As a test o f  this system a lineshape was generated, which was the convolution o f two 

Lorenzians and a Gaussian, as shown below,

0  -------- ■-------- 1-------- 1-------- 1-------- 1-------- 1-------- ._____ i_____ i_____ i_____ i_____ i_____ i_____ i—
1295 1296 1297 1298 1299 1300 1301 1302

W avelength (X) nm

Figure 6.4

A directed evolution algorithm was generated to fit to this lineshape. As this lineshape 

was o f a known form it was expected that the fitness o f the solution from the genetic 

algorithm should be good. The genetic algorithm was run with a number o f different 

values o f  Cr and / ,  the most efficient selection o f these values was found to be
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0  = 0 6  and /  = 0 5  Random mutation was not applied at this point The plot 

below shows the best fitness m each population against the generation number

Fitness of fit Vs Generation
Fitness of fit Vs G eneration

200 0 200 400 600 800 1000 1200 1400

Generation

200 0 200 400 600 800 1000 1200 1400 16)

Generation

Figure 6  5 -  Fitness is not normalised N = 100

The fitness was calculated as a N%2 (chi squared), the smaller the fitness the closer

the fitted curve is to the input data

(realdata -  fitted data)2 E 6  5

X  =■
N

As expected the algorithm quickly moves towards the minimum o f the solution space 

and by 400 generations has reached a j 2 o f five but requires another 1200 

generations to reach a %2 o f 3 The graph below shows the fitted curve against the

data for a j 2 o f 3 at 1600 generations
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Simulated data
Curve fitted to Simuaiated data
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1295 1296 1297 1298 1299 1300 1301 1302

Wavelength (nm)

Figure 6 .6

6.4 Using a Voigt function as the experimental lineshape
i

The Voigt function is widely used in the area o f lineshape analysis. It can be 

generated by numerically by convolving a Lorenzian spectral lineshape with a 

Gaussian instrument function [3]. This method is numerically intensive and thus very 

time consuming, this type o f computational work is normally only in the realm o f 

high performance workstations. In recent years analytical approximations have been 

developed which have been proven to be efficient enough to make it possible to 

implement Voigt function generation on a standard desktop personal computer [4],

In papers by A.B. McLean et al [4] and A.W. Robinson et al [5] these techniques have 

been demonstrated. A similar technique was needed to fit to the convoluted Bragg 

grating data, the only difference being that in the case o f the convoluted Bragg grating 

data the spectral lineshape was o f a Gaussian form and the instrument, or interference 

filter in this case, was in the form o f a Lorenzian.
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For a Gaussian source o f linewidth WG (typically 0.37139 nm) and Lorenzian filter o f 

straight through wavelength o f Amax (typically 1308.5 nm) and linewidth WL (= 2.537 

nm) the transmission function is given by 1.866 V ( x , y ) . The Voigt function is given

V ( x , y )  = ± C ‘ ( y - A ‘l  + D ‘(X - B ‘) E 6.6

i=i
and

y =

x  =

V2W G

2(1308.5) -  2XB -  2.6939x1 O'6 N 2

W rM

E 6.7

where N  is the number o f stepping motor steps, XB is the Bragg wavelength and WG 

is the Bragg linewidth. The coefficients (A l , 5 ,, C ,, D i ) are given by the table below.

i 4 c, A

1 -1.2150 1.2359 -0.3085 0.0210

2 -1.3509 0.3786 0.5906 -1.1858

3 -1.2150 -1.2359 0.3085 -0.0210

4 -1.3509 -0.3786 -0.5906 1.1858

Table 6.1 -  Parameters used to generate Voigt function [3]

This method was employed, in conjuction with the directed evolution technique 

shown above, to produce a fitting routine suited to the extraction o f the Bragg 

wavelength Xg and linewidth (WG).  An example o f the spectrum returned from the 

system is shown in figure 6.7.
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Figure 6  7

This data was passed to the fitting routine The fitting routine was set to complete 

1000 generations and returned a x 2 ° f  11 75 The curve generated by the genetic 

algorithm is shown in figure 6 8

Wavelength (nm)

Figure 6  8

From the fitting routine the following data on the Bragg grating was extracted,

118



ABi (nm) WB| (nm) Ag2 (nm) WBi (nm)

1304.19596 0.66903 1298.81241 0.52832

Table 6.2

6.5 Conclusion

It has been demonstrated that for a system such as that shown above which has a large 

number o f variables, genetic algorithms can be a suitable solution. The basic genetic 

algorithm can allow a large solution space to be searched without the problem o f 

finding a local minimum instead o f the global minimum. This approach however does 

not guarantee to find the absolute solution, and it can be shown that even with the 

same input data, differing solutions can be found due to the random factor in the 

algorithm. However the solutions found are generally in such a small area o f the 

solution space that they may be treated as the same.

The directed evolution approach allows us to disregard the problem o f gene encoding 

from the genetic algorithm, and also improves on the efficiency o f the overall system. 

It has been shown that this system has the ability to find solutions even in the ten 

variable problem in which it was tested. Like most genetic algorithms this technique 

approaches the solution quickly but as it attempts to find the solution in a smaller and 

smaller search space the convergence time increases. This may indicate that in some 

circumstances a normal fitting method may be employed after the genetic algorithm 

has found the basic area in which the solution lies.

The use o f a Voigt function to fit to the experimental data, has proven to be very 

successful. The method, after adaptation, has proven to be fast and reliable thus 

reducing the time and complexity o f numerically convolving the Lorenzian and 

Gaussian lineshapes.
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The combination o f  these three operations has produced a successful and robust fitting 

system.
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Chapter 7 Measurement of Strain and Strain Gradient using a 
pair of Bragg grating gauges

7.1 Introduction
Data on Bragg wavelength (AB) and Gaussian linewidth (WG) are presented for a 

range o f strain and strain gradients created on a cantilever strain rig. The variation o f 

AB w ith both strain and temperature is quantified. The effect o f  strain gradient on 

linewidth is presented.

7.2 Calibration of cantilever using wire strain gauges

For any useable data to be extracted from the system it was important to calibrate the 

cantilever. The following method was used. Two wire strain gauges were used, the 

active one was bonded to the cantilever in the direction o f the strain, the other, the 

dummy strain gauge, was attached perpendicular to the strain field so that it was not 

affected by it. This configuration was chosen because as in the case o f the fibre strain 

gauges it allowed for the decoupling o f the ambient temperature effects. This is 

achieved by having the active gauge sense the strain and temperature changes and the 

dummy gauge to sense only the temperature changes. A diagram o f the half bridge 

configuration used is shown in figure 7 .1.
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G„ G, active gauges

R, H, ikQ 0.1% 
wire wound resistors

If the strain is s  then

Figure 7.1

AR

where g s is the gauge factor o f the strain gauge. For a bridge o f four equal resistors 

(R ) powered by a supply o f voltage o f VB.

AVB = AR = g s£
VB 4 R 4

£  =
4AFg
8 , V b

It is important to note that the current drawn by the bridge circuit from the power 

supply must be kept to a minimum to prevent Joule heating o f the strain gauges. A 

power o f 8.25mW was dissipated in each o f the 120Q (nominal) resistors in the 

bridge.

E 7.1

E 7.2
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A standard strain gauge amplifier was employed (RS 435-692) which has a gain o f 

2000 therefore,

Vm, = 2000(AF„) = i 200° )K» g .g = 500 V , g ,

£ = E 7.3
500VBg s

The wire strain gauges used were quoted as having a nominal gauge factor o f 2.0 and 

the bridge voltage used was 1.992V. The theoretical strain o f the cantilever was 

calculated using equation 5.12. A graph o f strain versus cantilever deflection for both 

the wire strain gauge and cantilever formula is shown in figure 7.2.
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-300
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Cantilever free-end deflection (mm)

15

Figure 7.2

It can be seen that the two systems have a close correlation. If  the strain for the wire 

strain gauge was plotted against the strain from the cantilever formula a straight line
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of a slope o f one should be obtained. This graph was drawn and is shown in figure 

7.3.

-200 -100 100 200 300 400 500

uStrain (Obtained from Strain Guage)

Figure 7.3

It can be seen that the calculated cantilever strain is -2 %  smaller than the wire strain 

gauge estimate. As the wire strain gauge assumed a gauge factor o f g s = 2.0 it is

probable that this is innacurate by a few percent. For example if  g s = 2.05 a slope o f

one is obtained, which is an exact correspondence between the two strain estimates. 

We may therefore assume that the cantilever equation is sufficiently accurate for the 

strain o f the system.

7.3 Variation of Bragg wavelength with strain

Spectra o f the back reflected light from the active and dummy Bragg gratings were 

recorded as a function of filter angle 0  for a range o f cantilever bending (i.e. strains) 

and deconvolved using the line fitting techniques to the Voigt profiles to extract the
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line centers XBX and XB2. Multiple spectra at constant strain values were recorded and 

processed to yield an average value o f  Xm and XB2 with a standard deviation o f  each

mean o f ° /  r , where cr is the standard deviation o f the mean and n is the number
/ y i n

o f observations in each case.

X nm

Figure 7.4

A set o f spectra showing the shift in the active grating wavelength (at ~1302nm) and 

the constant value o f the reference or dummy grating wavelength are shown in figure 

7.4 as a function o f the displacement o f  the cantilever free end. Compression (s  < 0)
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and extension (s  > 0) are shown, the cantilever displacement between consecutive 

scans being constant. The differential wavelength shift 5X between the active and 

dummy gauges is shown in figure 7.2.

Microstrain (|is)

Figure 7.5

The vertical error bars are estimated to be

± 7.7 pm

based upon the spread in the n estimates.
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Cantilever 
free end 
displacement 
(mm)

Strain
(ß£)

ÄBl (nm) (pm) XB2 (nm) W2 (pm) S(Àm XB2 )
(pm)

-12 466.82277 1298.36144 549.461 1303.85091 436.567 5489.472

-11.5 447.37182 1298.37998 550.431 1303.85038 437.0845 5470.406

-11 427.92087 1298.39327 550.118 1303.84665 436.8355 5453.383

-10.5 408.46992 1298.41804 549.6875 1303.85065 433.8305 5432.603

-10 389.01898 1298.44485 545.3235 1303.85151 429.7355 5406.656

-9.5 369.56803 1298.47599 543.693 1303.85853 426.805 5382.54

-9 350.11708 1298.50013 546.1395 1303.86521 425.6375 5365.083

-8.5 330.66613 1298.52173 527.7095 1303.87161 439.849 5349.88

-8 311.21518 1298.54799 560.855 1303.88025 431.525 5332.255

-7.5 291.76423 1298.57147 560.4265 1303.88367 430.2245 5312.197

-7 272.31328 1298.59879 560.511 1303.88847 427.067 5289.687

-6.5 252.86233 1298.62675 564.1635 1303.89407 425.338 5267.322

-6 233.41139 1298.64648 563.4465 1303.89819 426.2185 5251.718

-5.5 213.96044 1298.66882 568.5565 1303.90203 423.404 5233.21

-5 194.50949 1298.68551 569.054 1303.90056 422.647 5215.054

-4.5 175.05854 1298.70807 571.6505 1303.90369 421.4755 5195.624

-4 155.60759 1298.73171 575.108 1303.90917 420.995 5177.46

-3.5 136.15664 1298.7489 575.4425 1303.90731 419.579 5158.414

-3 116.70569 1298.767 579.497 1303.90849 420.101 5141.499

-2.5 97.25474 1298.79056 582.629 1303.91291 419.4025 5122.344

-2 77.8038 1298.80922 586.1595 1303.91337 417.703 5104.153

-1.5 58.35285 1298.82735 587.584 1303.91445 417.9295 5087.102

-1 38.9019 1298.84584 588.601 1303.91366 415.133 5067.823

128



-0 5 r l 9 45095 1298 86587 592 2385 1303 91431 414 304 r 5048 448

0 0 1298 88424 596 538 1303 91659 414 9575 5032 351

0 5 -19 45095 1298 91038 598 5975 1303 92143 413 196 5011 047

1 -38 9019 1298 9318 598 172 1303 92076 410 2045 4988 955

1 5 -58 35285 1298 95655 597 529 1303 92145 408 6445 4964 899

2 5 -97 25474 1298 98961 609 4235 1303 92412 407 415 4934 506

3 -116 70569 1299 00875 611 769 1303 92554 407 8815 4916 79

3 5 -136 15664 1299 02894 614 325 1303 92661 406 4435 4897 672

4 -155 60759 1299 04781 619 4885 1303 92807 405 8995 4880 266

4 5 -175 05854 1299 06793 623 527 1303 92991 406 0345 4861 985

5 -194 50949 1299 08698 628 966 1303 93192 405 586 4844 934

5 5 -213 96044 1299 10622 633 58 1303 9339 405 7715 4827 682

6 -233 41139 1299 12635 636 5845 1303 93475 404 7695 4808 393

6 5 -252 86233 1299 14537 639 8J05 1303 93677 404 179 4791 402

7 -272 31328 1299 16738 642 929 1303 9374 400 4945 4770 021

7 5 -291 76423 1299 18697 646 917 1303 93882 399 0205 4751 846

8 -311 21518 1299 20709 649 5575 1303 93604 404 124 4728 952

8 5 -330 66613 1299 22054 655 201 1303 93793 398 028 4717 384

9 -350 11708 1299 23989 659 7135 1303 94016 396 85 4700 263

9 5 -369 56803 1299 25979 666 121 1303 94219 396 188 4682 402

10 -389 01898 1299 28136 668 308 1303 94341 394 596 4662 053

Table 7 1
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S/L
A least squares fit to the data yields a  slope o f  — -  = 0 96198 ± 0 00266 pm  / j u s,

5 s '
/

from which X •B
8 s

= 0 740 at XB «  1300/7/w
/

W ith an estimated resolution m wavelength o f ~7pm the corresponding resolution in 

strain is

i e with the system used, strain can be determined optically over a -400  to +600 

microstram range with a resolution o f  approximately 8 microstram This resolution 

may be compared to the figure o f Grooves-Kirby et al (1999) o f  one microstram This 

group use a set o f 8 multiplexed Bragg gratings at ~1550nm with a scanning Fabry- 

Perot filter demultiplexer

7.4 Variation of Bragg wavelength with temperature

Using a constant temperature chamber with one Bragg grating located m it, the 

reference or dummy grating located outside the chamber at ambient temperature a 

range o f reflection spectra were taken at a series o f temperatures from 20 to 55 °C 

The variation o f  Ag with temperature was found to be linear (see figure 7 8) with a
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The data from which the graph is constructed is given in table 7.4.

Temperature in constant 

temperature environment

K \  M ÀB2 (nm) SAb (nm)

25.0 1303.95533 1298.80459 5.15074

26.5 1303.97127 1298.80472 5.16655

28.1 1303.98487 1298.8162 5.16867

29.7 1303.99994 1298.81997 5.17997

31.3 1304.01718 1298.81466 5.20252

32.8 1304.02153 1298.81291 5.20862

34.4 1304.02656 1298.81232 5.21424

36.0 1304.0474 1298.8103 5.2371

37.6 1304.04539 1298.81383 5.23156
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39.2 1304.07654 1298.81473 5.26181

40.7 1304.0863 1298.80795 5.27835

42.3 1304.10331 1298.81154 5.29177

43.9 1304.12064 1298.82003 5.30061

45.5 1304.1428 1298.81174 5.33106

47.1 1304.15513 1298.82219 5.33294

48.6 1304.15915 1298.82502 5.33413

50.2 1304.18079 1298.8235 5.35729

51.8 1304.18993 1298.82072 5.36921

53.4 1304.19596 1298.81241 5.38355

55.1 1304.21199 1298.82548 5.38651

Table 7.2

With a strain sensitivity o f dA/dT  = 8.5 p m  / C a temperature variation o f 1° C creates 

a wavelength shift equivalent to that o f  a strain change o f ~9 microstrain which in turn 

is about the system resolution (see equation 7.5).

7.5 Variation of linewidth with strain gradient

A series o f spectra were taken for the grating on the cantilever with the active gauge 

exposed to a strain gradient (positive and negative o f magnitude -  3a d /L \ , as defined 

in equation 5.12) over a strain gradient range o f approximately -1 .0  to +1.2 [is  I m m . 

The Gaussian width WG o f the spectrum o f the active grating was subtracted from the 

width o f the reference grating to yield

SW  =  (WG )active “  (WG L f e r e n c e  E 7.6

132



5W
(p

m
)

A graph o f 5W  versus strain gradient was plotted; the data for this graph is shown in 

table 7.5.

Strain Gradient jiS mm'1

Figure 7.7

Cantilever free-end 

depression (mm)

W Active W Kef  (nm) 5W  (pm)

-12 0.43657 0.54946 112.894

-11.5 0.43708 0.55043 113.3465

-11 0.43684 0.55012 113.2825

-10.5 0.43383 0.54969 115.857
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-10 0.42974 0.54532 115.588

-9.5 0.4268 0.54369 116.888

-9 0.42564 0.54614 120.502

-8.5 0.43985 0.52771 87.8605

-8 0.43152 0.56085 129.33

-7.5 0.43022 0.56043 130.202

-7 0.42707 0.56051 133.444

-6.5 0.42534 0.56416 138.8255

-6 0.42622 0.56345 137.228

-5.5 0.4234 0.56856 145.1525

-5 0.42265 0.56905 146.407

-4.5 0.42148 0.57165 150.175

-4 0.421 0.57511 154.113

-3.5 0.41958 0.57544 155.8635

-3 0.4201 0.5795 159.396

-2.5 0.4194 0.58263 163.2265

-2 0.4177 0.58616 168.4565

-1.5 0.41793 0.58758 169.6545

-1 0.41513 0.5886 173.468

-0.5 0.4143 0.59224 177.9345
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0 0.41496 0.59654 181.5805

0.5 0.4132 0.5986 185.4015

1 0.4102 0.59817 187.9675

1.5 0.40864 0.59753 188.8845

2.5 0.40742 0.60942 202.0085

3 0.40788 0.61177 203.8875

3.5 0.40644 0.61433 207.8815

4 0.4059 0.61949 213.589

4.5 0.40603 0.62353 217.4925

5 0.40559 0.62897 223.38

5.5 0.40577 0.63358 227.8085

6 0.40477 0.63658 231.815

6.5 0.40418 0.63987 235.6915

7 0.40049 0.64293 242.4345

7.5 0.39902 0.64692 247.8965

8 0.40412 0.64956 245.4335

8.5 0.39803 0.6552 257.173

9 0.39685 0.65971 262.8635

9.5 0.39619 0.66612 269.933

10 0.3946 0.66831 273.712

Table 7.3
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A second order polynomial was fitted to the data to give

5 W  = -74.486g+ 12.519g2 

, where g is expressed in microstrain per millimeter and 5W  is given in picometers.

7.6 Conclusion
The variation o f the Bragg wavelength o f a Gaussian apodised Bragg grating and its 

linewidth were measured as a function o f both applied strain and strain gradient with 

ambient temperature compensation using a dummy grating.

E  7.7
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Chapter 8 Discussion of experimental results and 
conclusions

8.1 Introduction

The experimental results reported in chapter 7 are discussed in terms o f published 

work o f other groups and compared to the models developed in chapter 2.

8.2 Variation of Bragg wavelength with strain

Listed in table 8.1 are wavelength versus strain coefficients quoted by other groups at 

a selection o f Bragg wavelengths from 780 to 1550nm in chronological order.

Experimental

Group

Operating Bragg 

wavelength (nm)

ôXB
( p m i  /us)

os
î /

A l  / S e )

Morley et al 830 0.64 0.77108

(1989)

Morley et al 1550 0.74

(1991)

Kalli et al (1991) 789 0.585 ± 3 x l0 -3 0.7414

Xu et al (1994a) 850 0.59±3.4xl0~3 0.694

1300
*

0 .96±6.5xl0~3 0.738

Xu et al (1994b) 1310 1.0287 0.785

Xu et al (1994c) 848 0.59±3.45xl0~3 0.6957

1298 0 .9 6 ± 6 .5 x l0 '3 0.7395
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2-
Arya et al (1995) 1550 1 2 0 774

Liu et al (1997) 827 0 64 0 7739

Brady et al (1997) 789 0 603 +26x10~3 0 7642

This work 1300 0.96198 ± 2.66jc10-3 0.740

Table 8 1

Grouping the data m order o f ascending wavelength the mean value o f 

are as follows,

XB (nm) {¿I /  \  
Mean Value o f /  s/v ./ X B{  / S e )

-800 0 74926

-1300 0 75063

-1550 0 774

Table 8 2

These data points shown graphically m figure 7 3

1 3 9
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E 8 1

where p e = fy /Ç ) [pu ~ V(P\i + Pn}] From figure 8 1 it can be concluded that the 

coefficient p e for silica glass decreases with increasing wavelength

The measurements made o f the Bragg wavelength o f  a fibre grating as a function o f 

strain involved bonding o f the fibre on a cantilever Measurements were made o f  the 

Bragg wavelength o f the active gauge as a function o f curvature with the fibre resting 

on the bent cantilever but not epoxied to it No wavelength shifts were detectable for 

the range o f the curvature used The radius o f curvature o f  the cantilever ranged from 

oo to a minimum o f  approximately four metres
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As derived by Snyder and Love (1983) [12] the propagation constant o f a mode in a 

fibre o f bend radius Rc varies across the fibre cross section in (r,<f>), <f> = 0 is the 

plane o f the fibre bend.

X<

■ ■ ■ H M
X

JPim m m e / R c \  \  Alilo P 'p 'J  T:~ i ■) y
c  o y

A fiber of refractive-index profile n (r) is bent into an arc of constant 
radius Rc. Polar coordinates (r, <f>) describe the fiber cross-section 
relative to 0, where the COy-axis is parallel to the plane of the bend.

Figure 8.2 Snyder & Love Pg.706

The variation in (3 from its axial (r = 0) value ¡3 is given by them to be

f3 = ( 3 \ \ -
r cos (f>

R..

Since /3 = 2 m eff /A  the variation o f ¡3 across the core cross section is, at most,

A/?
(3a_
R r

,where a is the core radius. This equation then predicts a wavelength shift 8X given

( « L  * K V

E 8.2

E 8.3

E 8.4
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For the system used XB ~1300nm, a = 5x10“6 m and a cantilever radius o f curvature of 

4.01 meters minimum the predicted maximum wavelength shift is ~1.5pm. This is a 

factor o f about five times smaller that the wavelength resolution o f the measurement 

system used and accordingly any curvature effect was not detectable.

8.3 Variation of Bragg wavelength with temperature

Table 8.3 shows values o f (dXB/d T ) and \/XB (dXB/ d l )  quoted by various authors 

and the Bragg wavelengths at which the measurements were made. It can be seen that 

\/XB (dXB/d T ) decreases with increasing wavelength up to ~1200nm and then begins 

to increase with increasing wavelength.

Experimental

Group

Operating Bragg 

wavelength (nm)

5Xb (pm/°C) 
ST

1 /  ( M b/ )  
/ xb {  /S T )

°C_1 xlO-6

Morley et al (1989) 830 6.8 8.193

Morley et al (1991) 1560 12.4 7.949

Kalli et al (1991) 789 6 .39±4.2xl0~2 8 .10±0 .05

Xu e ta l (1994a) 850

1300

6 .30±3.7xl0~2 

8.72 ±7.7x1 O'2

7.41 ± 0 .04  

6.71 ±0.06

Arya et al (1995) 1560 12.4 7.95

Liu et al (1997) 827 7.5 9.06
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Brady et al (1997) 789 6.604 ±0.031 8.37 ±0 .04

Kersey et al (1997) 1300 8.67 6.669

This work 1300 8.47 6.515

Table 8.3

The value o f \/XB (dXBldT)  is then 6.515 ±0.154x10“6 °C"! . This may be compared 

to a value o f 6 .6 7 x l0 '6 °C’ ' quoted by Kersey et al (1997).

Wavelength (nm)

Figure 8.3

It appears that the temperature sensitivity o f  the Bragg wavelength reduces with 

increasing wavelength from 800 to 1300nm and then begins to increase with 

increasing wavelength.

8.4 Variation of iinewidth with strain gradient

It was seen in figure 7.7 that the Iinewidth o f the back reflected light as a function of 

strain could be fitted to a quadratic o f the form
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Sco = A - B g  + C g2 E 8.5

where A, B and C are positive constants. This is consistent with the model 

predictions o f equation 2.78 for a Gaussian apodised grating.

These results may be compared to those o f Huang et al (1995), the only published 

work on strain gradient that the author could locate. That group used a Gaussian 

apodised grating o f 7mm length and apodisation coefficient a  = 9x10 4 m~2. Their 

spectrum analyser has a resolution o f  0.1 nm (100 pm ). Their strain gradients were 

about 30 times larger than used in this work and they found “the expected tendencies 

o f  wavelength broadening with increasing gradient in either a positive or negative 

direction”.. In other words their spectrum broadening was independent o f the polarity 

o f the strain gradient g . This is in contrast to the results found in this work. The 

difference, it is felt, lies in the range o f strain gradients measured. In the model 

predictions o f equation 2.78 the linewidth will be dependant on g 2 rather than g  

when

B2 S  »  B\ E 8.6

B.or g » ~
b 2

In our case the quadratic term will dominate for strain gradients much greater than 

about “six microstrain per millimeter This in fact smaller than the minimum strain 

gradient measured by Huang et al (1995). Obviously if  the second term in equation 

2.78 dominates the broadening will no longer reflect the polarity o f the strain gradient 

as observed by that group. Huang et al postulated that “The overall reflective 

spectrum (from tail to tail) AA can be estimated as ”
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A /l«  X BgL

This was based on eight measurements, four o f postive strain gradient and four of 

negitive strain gradient evenly spaced over the range -140  to +140 microstrain per 

millimeter. These strain gradients were approximately two orders o f magnitude 

greater than used in this work but the measured resolution was 150pm or a factor o f 

about 50 times larger than used here.

8 .5  F u r th e r  W ork

The full system could provide more precision through the following improvements

• The use o f an interference filter with a narrower linewidth would provide data 

that would be considerably less convoluted, making the necessary 

deconvolution less complicated and numerically intense.

• The rotation stage used provides step sizes o f the order o f 3 .6x l0 '3; this could 

be improved by the use o f  a larger gearbox ratio. This would increase the time 

taken to scan across the two Bragg gratings and may prove to be unsuitable as 

the factors affecting the gratings may change during a single scan, thus 

reducing the reliability o f the system.

• The software written to control the system and deconvolute the data was 

written with a DOS interface. This makes it user unfriendly in this age o f 

graphical user interfaces (GUI) such as M icrosoft W indows or Unix. A 

simpler interface may be obtained if  the code was written for a windowed 

operating system. This leads to many complications such as “interrupt use ” 

(stopping all computer operations to execute each step o f the rotation) to 

control the speed o f the rotation stage, which would make the software much
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more, complicated and time consuming to write, thus it was beyond the scope 

o f this work.

The sensitivity o f a Bragg grating to temperature as well as strain suggests that the 

linewidth o f a back reflected spectrum should vary with a temperature gradient 

along the grating. It should be possible to measure such a temperature gradient in 

an analogous fashion to the strain gradient work reported here. This is hoped to 

form the basis o f future work.

8.6 Global Conclusion

An innovative spectrum analyzer based upon a rotating Fabry Perot interference filter 

with a variable instrument function was used in analysing the spectrum o f light back 

reflected from in fibre Bragg gratings. Curve fitting using genetic algorithms was 

used to extract spectral information, line positions and linewidths. Wavelength 

resolutions o f  approximately 7pm were achieved. The spectral line center locations 

were correlated to the strain across the grating and the linewidths were identified with 

the strain gradients across the Bragg gratings. For the mean strain measurement a 

strain sensitivity o f  0.96198 ± 0.00266 pm  / /us was measured -  over a range o f 

approximately -400  to +450 microstrain. A temperature sensitivity o f 8.47 ± 0.2 

pm 1° C - over a range o f +20 to +55 0 C - was observed. These sensitivity values are 

consistent with published work. Linewidth was found to follow a second order 

polynomial in strain gradient. This was in agreement with a model developed in 

chapter 2 for a Gaussian apodised grating exposed to a strain field. The latter work 

has only been briefly mentioned in the literature and our model predictions may be 

interpreted to explain the albeit few observations o f another group.
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Appendix A

A. 1 Hyperbolic functions of complex variables

sinh(^ + iB) = s inh(^).cos(5) + i cosh(^).sin(5) 

cosh(yl + iB) = cosh(^4).cos(5) + i sinh(^4).sin(5)

A. 2 Inverse trigonometric functions

The FORTRAN function

DANTAN2(R1 ,R2)

calculates the function arctan(Rl/R2), taking into account the polarity o f the complex 

numbers R1 and R2 i.e. in what quadrant o f  the complex plane in which each resides.

A. 3 Useful complex number relations

If  z = r.exp(id) is a complex number with real part x and imaginary part y  then 

yfz is given by

■Jr. [cos(&/ 2) + i sin((9/ 2 )], where tan(£?) = y / x .

V17/ = (1 - 0 /V 2
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Appendix B System Specification Sheets

B. 1 Fibre Specifications

Fiber Bragg Grating 
DATA SHEET

G rating type FB GCP-1300/13 05-90-0.5

G rating num ber TEC-7198-1

C enter w avelen gth  (nm ) 1300.3 1305.2

B andw idth  (nm ) 0.47 0.48

R eflectiv ity  (% ) 99.0 99.0

F ib er color Blue Bare

F iber type SMF-28

Fiber p igtails (m ) 2 m from coupler, >1 m from fiber end

F Q I N N C V W E  \ m FIBERS
tlTECOS™

Telecom m unication 
S y ste m s  GmbH

Scfcetoonstraa« 47 •  D-40479 Oussokfori/Gttrmany 
Ttt: >49-21 ;-4925eo » Fax: «4*211<4B259-10 
E-mat TECOSQt-onirto.cJe • mtomot K lp J /w w w .io coxd o

V erified  by:

íern ard  M alo  
^.P. P roduction

1 5 0

http://www.iocoxdo


B.2 Photodiode

ETX 500T , ETX 1 0 0 0 T  
ETX 2 0 0 0 T 5 , ETX 3 0 0 0 T 5

Large Area InGaAs Photodiodes

Features
» High responsivity at 1300, 1S50, and 

850 nm.
• Low dart: current for high accuracy 
» High shunt resistance for low noise
• Linear over wide range of input optica,! 

power
■ 0.5, 1. 2. and 3 mm active diameters

Applications
• Optical power meters
■ Optical fiber identifiers
■ Optical attenuation test sets
• Near infrared spectroscopy
■ Infrared rangefinders

Description

The EPIIAXX series of large area Indium Gallium 
Arsenide (InGaAs) photodetectors consists of PIN 
diodes that have photosensitive areas with diameters 
of500nm, 1000|im, 2000 jxm, and 3000 jim. These 
photodiodes have high spectral responsivity in the 
near infrared range, between 800 and 1700 nano
meters. They are designed with large active areas so 
they can be used for instrumentation, sensing and 
rangefinding applications.

These detectors feature high sensitivity to low level 
signals and spectral responsivity that is linear over a 
wide dynamic range of input optical power. In an 
unbiased mode, these large area photodiodes have 
high sensitivity because InGaAs exhibits higher shunt 
resistance than other near infrared detection materi
als. When reverse biased for greater bandwidth, their 
sensitivity stems from the diodes' tow dart: current. 
Since shunt resistance decreases and dark current 
increases with junction area, the smallest area ETX 
SOOT has the highest sensitivity (lowest noise current 
density) : at room temperature, 1 OfA/HzU2 at 0V and 
60fA/Hzl/2 at -5V are typical. Highly linear spectral 
response results from the low series resistance of the 
large area photodiodes. For the ETX 3000T5, linear
ity is typically ±0.15dB to +7dBm.

EPITAXX large area detectors are recommended for 
near infrared instrumentation applications that re
quire low photodiode noise. The ETX 500T and ETX 
I000T are well suited for high speed, differential 
mode measurements. Such measurements are com
mon in precision optical power meters, optical fiber 
identifiers, and optical loss test sets. The ETX 2000T5 
and ETX 3000T5 are optimal for field instruments, as 
the diodes' large diameters simplify coupling incident 
radiation into thar photosensitive areas. These in
struments include attenuation sets and the above 
mentioned meters and identifiers. In addition, the 
high linearity of the ETX 2000T5 and ETX 3000T5 
makes these detectors appropriate for measuring 
signals that vary over a wide dynamic range. Such 
signals are frequent in local area networks and in 
high fan-out systems.

The ETX SOOT and ETX 1000T are available in a single 
grade. There are two grades of ETX 2000T5 and ETX 
3000T5: the economical J Grade and the standard ,< 
Grade, which has a higher shunt resistance. The 
package for the ETX 500Tand ETX ! OOOT is a hermeti
cally sealedTO-46 can; the£TX2000T5 andETX3000T5 
are packaged in hermetically sealed TO-5 cans. All 
EPITAXX large area photodiodes are also available 
mounted on standard or custom ceramic subcarriers.
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Large Area InGaAs Photodiodes ETX 500T, ETX 1000T, ETX 2000T5, ETX 3000T5

Specifications

MODEL ETX 500T ETX 1000T ETX 2000T5 ETX 3000T5 Units
Conditions (unless noted) 25°C, V, = SV 25°C, V, = 5V 25’ C. V8 = 0V 25°C.Vs = OV
Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Min. Typ. Max.
Active Diameter 0.5 1.0 2.0 3.0 mm
Responsivily @ 850 rim 0.10 0.20 0.10 0.20 0.10 0.20 0.10 0.20 AAV
Responsh/ity @ 1300 nm 0.80 0.90 0.80 0.90 0.80 0.90 0.80 0.90 AAV
Responsivity © I550nm 0.95 095 0.95 0.95 AAV
Dark Current1 12 100 50 400 900 2000 nA
Shunt Resistance'

J (Economy) 
K (Standard)

5.0 250 2.0 50 0.8 3.0 

10 25

0.1 0.4 

1.0 10.0

MO
M B

Lineariiy’ ±0,15 ±0.15 ±0.15 ±0.15 dB
Total Capacitance“ 35 50 100 150 400 600 800 1300 pF
Bandwidth5 140 35 S.3 2.6 MHz

N o tes: IVforErX2000T5aodETX3000T5 4| For ETX 500T and ETX 1000T. V, = 0 V
2) Va = 10 mV 5) -3dB pan t into a 500 load
3) For ETX 5007 and ETX IOOOT, to +9 dBm; 

for ETX 2000T5 and ETX 3000T5, to +7 dBm

Maximum Ratings

MODEL ETX 500T ETX 1000T ETX 2000T5 ETX 3000T5 Units
Reverse Voltage 20 20 2 2 V
Reverse Current* 10 10 10 10 mA
Forward Current8 10 10 10 10 mA
Power Dissipation 100 100 50 50 mW
Operating Temperature -40 +85 -40 +85 -40 +85 -40 +85 °C
Storage Temperature ■40 +85 -40 +85 -40 +85 -40 +85 °C

N o tes: A) Under reverse bias, current at which device may be damaged.
8j Under forward Dias, current at which device may be damaged.

F igu re  1

Effect of Temperature on Spectral Response

;j
i;i

\ \ i
.\ \ i

1000 12S0 1600 1750
W avelength (nm)

F igu re  2

R  s h u n t  v s  T e m p e ra tu re

T e m p e ra tu re  °C
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Large Area InGaAs Photodiodes ETX 500T, ETX 1000T, ETX 2000T5, ETX 3000T5

F ig u re  3

F ig u re  5

F ig u re  4

Capacitance vs Voltage

u.
£ :  eoo
0>oC 500  (9

«0o (8 a  to
O  3 00

\
\

V.

¡ETX 3000T5

----

V v

— - — j ETX 2000T5

0 0 .2  0 .4  0 .6  0 .8  1 1 .2  1.4 1.8  1 .8  2

Reverse Voltage

F ig u re  6

Surface Plot of Response at 1300 nm 
ETX 3000T5

i n S i iSI.': /  . I \  \ V- iti.Wï

F ig u re  7

Linearity on Large Area Photodiodes 
High Input Power

"~N\

2 3  4 5  6 7

Input Power (dBm)
ETX 2COOT5 ETX 500T
ETX 3000T5 ETX ÌGOOT"
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Mechanical Dimensions

E T X 50 0 T , ETX IOOOT
All dimensions in mm

ETX 2 0 0 0 T 5 , ETX 30 0 0 T S
Alf dimensions in mm

EP1TAXX, Inc. believes tfie information contained in this document to be accurate. However, no responsibility is assumed for its use nor 
for any infringement o f the rights of third parties. EPITAXX. inc. reserves the right to introduce changes without notice.

Corporate Headquarters W eit Coast Sales Office
7 Graphics Drive • West Trenton. NJ 08628 2121 Avenue of the Stars, 6th Floor • Los Angeles. CA 90067
TEL ¡609)538-1800 • FAX ¡609) 538-1684 TEL {3 i 0} 551-6507 • FAX (310) 551-6577
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B.3 ELED

ETX 1 300R F C , ETX 1 300 R S T  
E TX  1 3 0 0 F J , ETX 1 3 0 0 F C

1 3 0 0  nm High Pow er ELED M odules

Features
• High coupled power

(75 *iW typical into multimode)
• High speed response ¡3.5 ns typical)
• Narrow emission spectrum ¡60 nm typ.)
• Singlemode and multimode versions 
RFC/RST Series:
■ Receptacle mount for FC and ST 
FJ/FC Series:
■ Compact coaxial package
■ Wide choice of fiber pigtails

Applications
• Fiber optic transmitters for medium 

to low data rates and distances
■ Light sources: for test and measurement 

instrumentation

Description

EPiTAXX 1300 nm high power ELED modules are 
edge-emitting LEDs made of Indium Gallium Ar
senide Phosphide (InGaAsP). The modules are opti
cally terminated with a permanent coaxial pigtail or 
within an FC or ST receptacle that can be mated 
repeatedly with its complementary connector.

These ELED modules provide high coupled power 
into singlemode or multimode fiber. The LEDs have 
fast response and a narrow emission spectrum. Each 
module configuration provides high performance 
and reliability, as the diodes are hermetically sealed in 
TO-18 cans.

For applications demanding more power than sur
face-emitting LEDs provide, but requiring compo
nents less expensive than injection laser diodes, 
EPITAXX ELED modules offer an.economical solution. 
Common to such applications are optical links that 
span short to moderate distances and transmission 
systems operating to 200 Mbps. Examples include 
local area networks, video surveillance systems, and 
point-to-point communication links. In such applica
tions, these modules offer a cost effective, high 
performance solution.

Two grades of EPITAXX ELED modules are available: 
the economy J grade and the standard K grade, 
which has higher coupled power. Modules are avail
able in fiber optic receptacles and in pigtailed ver
sions.

Standard receptacle choices are FC connectors (RFC) 
and ST connectors (RST). DIN and other special 
connector receptacle versions are available by special 
order. When ordering a pigtailed version, the cus
tomer can select between a jacketed fiber pigtail (FJ) 
and a cabled fiber pigtail ¡FC). The customer can also 
designate the pigtail to be singlemode or multimode. 
Standard fiber sizes are 8.7/125 |im (SM) and 50/ 
125 pm (MMj. In addition, other Tiber pigtails are 
available by special order. Alt pigtailed versions are 
available with any industry standcird connector termi
nation.
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1 3 0 0  nm  H igh P o w e r ELED M o d u les ETX 1 30 0 R F C , ETX Î3 0 0 R S T , ETX 1 3 0 0 F J .  ETX 13 0 0 F C

Specifications

Model ETX 1300RFC RST ETX 1 300FJ-M ETX 1 300FJ-S
Parameter Min. Typ. Max. Min. Typ. Max. Min. Typ. Max. Units
Fiber Type (8.7/125 SM) (50/125 MM) (8.7/125 SM) Urn
Optical Power

J (Economy) 8 15 35 75 8 ¡5 (xW
K (Standard) 20 30' 20 30 |iW

Forward Voltage2 1.5 2 1.5 2 1.5 2 V
Peak Wavelength 1270 1300 1330 1270 1300 1330 1270 1300 1330 nm

Spectral FWHM 60 100 60 100 60 100 nm
Rise Time3 2.5 5 2.5 5 2.5 5 nS
Fall Time3 3.5 5 3.5 5 3.5 5 nS
Cutoff frequency! 150 150 150 MHz
Wavel. Temp. Coeff. +0.7 +0.7 +0.7 nm/°C

Maximum Ratings

Mode! ETX 1300RFC,RST ETX 1300FJ-M ETX 1300FJ-S
Parameter Units

Coupled Power5 100 250 100 nw

Reverse Voltage 1 1 1 V

Forward Current 150 150 150 nV\

Operating Temp. -20 /+65 -20 /+65 -20 /+65 °C
Storage Temp. -40 /  +85 -40 /  +85 -40/+85 °C

Notes:
All data at 25°C, unless noted.

1) For singlemode. With multimode, Min.=50 jiW. Typ. = 80 nW: 
No J-arade ETX 1300Rxx available for m ultim ode.

2) @ I, = 100 mA.
3) R. = 50 Q.
41 I, = 100 mA + 20 mA p-p, -1.5 dB point.
5) Or !f = 150 mA whichever occurs first.
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1 3 0 0  nm  H igh  P o w er ELEO M o d u les ETX 1300RFC, ETX 1300RST, ETX 1300FJ. ETX J300FC

Forward Current (mA)

J Grade 0  25°C  K Grade ® 2S*C
Forward Current (mA)

Figure 3

Optical Spectrum
Optical Power 
ETX1300FX-S

Forward Current (mA)
JG ra d e  G 25°C  KG 1260 1300 1340

Wavelength (nm)

Figure 1

Optical Power 
ETX 1300Rxx-S

Figure 2

Optical Power 
ETX1300FX-M-J ® 2 5 'C

Ambient Temperature (*C)

Figure 5 Figure 6

R ise/F a ll Time Temperature Dependence of Optical Output
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1 3 0 0  nm  H igh P o w e r  ELEO M odules___________________ETX I3 0 0 R F C  ETX 13 0 0 R S T , ETX 1 3 0 0 F J . ETX 1 3 0 0 F C

ETX 1300RST ETX Î300RFC

ETX 1300FJ-S,FJ-M ETX 1300FC-M,FC-S
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B.4 Electronics
B .4.1 Photodiode Amplifier Circuit

4.7 M û

Out
lOV/ljiA

Figure B .l: Photodiode amplifier

B.4.2 ELED Driver Circuit

v» — 
(10-Ì5V)

5V Regulator 
(LM78L05)

■ w  

t
Variable Resistor 

(IMÖ)

Figure B.2: Eled driver
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B.5 Grin Lens

SELFOC* Product Guide

SELFOC® Fiber Collimators
Applications:

Expanded Beam Connectors 
Telecom Test Equipment 
Fiberoptic Sensors 
Signal Processing 
Light Source to Fiber Coupling

A  SELFOC* Fiber Collimator is comprised o f  a 0.25 pitch SELFOC* lens and a housing to align with a fiber. Its functions 
are to produce a collimated beam from the fiber output, or to receive a collimated beam and focus the light into the fiber.
The C -type (F C Q  is the standard type assembled with one meter o f  fiber, singlemode (SM F) or multknodc(MMF).
The FC C -L B R  is a special singlemode version with lower back reflection (-40dB  or  better) at both 1300 and 1550 nm.
The M -type (FC M ) com es unassembled and without fiber from NSG. The user inserts his ow n fiber into the ferrule (sleeve), 
a piece then fits into the lens holder to form an assembled unit.

Mechanical Diagram
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SELFOC® Product Guide

Insertion Loss (dB) - 1 0  L o g (P 2 /P l)

^ —  Collim ators

LED n
Fiber W rap

► Pl_

|<- Separation (L)-> j

Fiber 
I m eter P 2

M easurem ent taken with both colCmators on a single V -g ro o ve .

Figure 3 Insertion loss measurement setup for collimatori

G l: G rad ed  Index 

SI: Step Index 

SM F: Single M o d e Fiber

N o te :

Insertion Loss data is fo r reference only, 

n ot intended as a specification 

Positioning o f collim ators Is optim ized.

Figure 4 Typical insertion loss vs. separation distance

LD

h  ..

SM F Fiber C o u p ler
Sp ike  with Cl-r  i rr 
Index Matching h i - l b w

¥ f

P o w e r  M eter

Figure 5 Back reflection measurement setup for fiber collimators
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SELFOC® Product Guide

Table 1 Comparison of the 3 Types of Collimators

FEATURE / TYPE FCC FCC-L8R FCM

Assembly Assembled Assembled Unassembled

Fiber Type MMF or SMF SMF MMF

Lens Holder O.D. 3.0 mm 3.0 mm 2.5 mm

Lens Holder Mat’! Stainless Steel Stainless Steel Stainless Steel

Fiber Sleeve Mat‘1 Stainless- Steel Stainless Steel Stainless Steel

AR Coating on Lens A-Grade (SMF) 
C-Grade (MMF) W-G rade* C-Grade

* Sec page 14 for reflection data.

Table 3 Standard Fiber Types, N X  and Beam Divergence Angle
Fiber
Code

Core /  Cladding Size (jim)
Fiber
N.A.

Beam Divergence 
Angle (20)

SMF */125 core size varies with wavelngth _ 0.3°

050 Graded Index 50/125 0.21 2.0°

062 Graded Index 62.5/125 0.29 2.5°

100GI Graded Index 100/140 0.29 3 .5 ”

100SI Step Index 100/140 0.25 3.5°

200 Step Index 200/250 0.50 6 .5 “

Table 2 Optical Specifications for FCC
Type/Fiber Insertion Loss*’ Wavelength

SM F-LBR* 2.5 dB 1300 & 1550 nm

SMF
1.0 dB 1300 or 1550 nm

1.5 dB 630  or 830 nm

A ll MMF 2.0  dB All Wavelengths

* Back reflection specs for FCC-LBR is -40 dB 
or better at both 1300 and 1550 tun wavelengths 

* * 1 0  mm distance between tw o collimators.

Table 4 Reliability Specification»

TEMPERATURE RANGE

Operation 0 °  ~ 6 0 “C

Storage -40° ~ 8 5 ° C

HUMIDITY

85%RH - 60°C  Max.
Non-Condensing

Table 5 Availability

Type Fiber Type & Size Standard Wavelength (nm)

FCC
SMF f o r  s p e c i f i e d  w a v e i e n E l h  

MMF: 50/125. 62.5/125 
100/140. 200/250

630.830. 1300, 1550

FCC-LBR SMF (9/125) 1300/1550

FCM Cladding Size: 125. 140. 250pm 630. 830. 1300. 1550

Table 6 FCM ordering code/sleeve Size

Fiber 
Cladding Size

Fiber Sleeve 
LD.

Ordering Code

125 128 jun FCM -00F-050-...

140 jim 144 pm FCM -00F-100-...

2 5 0  pm 256 urn FCM -00F-200-...

Ordering Information: X X X  
Collimator Type: 
FCC or FCM

X X  X  
• **

X X X  
Fiber Code 
0 5 0 ,0 6 2 , etc.

X X X  
Wavelength 
063, 130, etc.

X X X

(Special Features)

* Fiber Length (m): 
** Fiber Jacket:

*** Special Features:

Standard 01 (1 meter). Extra cable length can be ordered at additional cost,
F -  Fiber (0 .9  mm O.D. nylon jacket)
C =  Cable (3 mm O.D. plastic/Kevlar/nylon jacket)
(For FCM, use OOF only, no fiber/cable supplied by N SG )
L B R  -  Low  Back Reflection (for FCC)
FC -  FC connector cm  fiber end
FCPC “  FCPC (Physical Contact) connector on fiber end
(Special features are subject to factory approval and m ay require additional process time)
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Data Pock 8 Issued March 1997 232-5749

Hybrid stepper motors

Size Rearshaft No. of wire# WS stock no.

17
No
Yea
No
No

6
440-420
440430
I91-83ÍW
I3183ÛÔ

N o 8 ¿40-442
Yos 8 440-458....
No 6 ntt=WJ»-r
No 6 Wi"8SS*--

23 No 6 ttrt~-S3«...
No 6 tai ease
No 6 101-8362
No 8 1S1 83?a
No 8 t tH n t* ...

34 Yes 8 44«-4<ï4
No 8 44fr4T&-~-

These 4 phase hybrid stepper motors are capable of 
delivering much higher working torques and stepping 
rates than permanent magnet (7.5* and 15*) types. 
Whilst at the same time maintaining a high detent 
torque even when not energised, This feature is partic
ularly important for positions! integrity. Many of the 
motors are  directly compatible with the RS stepper 
motor drive boards (RS stock nos. 332-098, 342 051 
and 440-240).
Size 34 motors and a number o f  size 23 motors are 
supplied in 8-lead configuration which allows the max
imum flexibility when connecting to the drive boards. 
Rear extension shafts are  p r o v id e d  o n  three of the 
motors to enable connection of other drive require
ments and feedback devices.

Size 17

1.8* step angle

ON



Size 23
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6 Wire configuration

Exciting sequence and direction o f rotation when 
lacing mounting flange end
Step White Blue Red YeUow Brown O N

1 On On
2 On On
3 On On
4 On On

2

B. 6 
Stepper M

otor
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8 Wire configuration

Os4̂

""eftSo •’
tU® } V■» o—*_

i®U®li im >

Exriöng sequence and direct»« of rotation who» 
facing mourning flange end.
Step Red Green Black Yeiow Com CW

1 On On
2 On On
3 On On
4 On On

Technical specification

88 stock no. 440-420 440 436 440-442 440-458 440-464 440-470
Rated voltage (V) 5 12 S 12 3 2-5
Rated current Q) 0.S o ie 1 0.6 i 4.5
Resistance (0) 10 75 5 20 1.5 056
Inductance (mH) 8 36 9 32 4.5 2.8
Detent torque (roHra) S 4 30 30 40 100
Holding torque (inNm) 70 70 500 600 1200 2200
Step angle accuracy (%) S 5 5 6 S 5
Stepangie )B 18 16 16 1.8 1.8
Insulation d a« 3 B B B B B

Kl stock no. 181-8299 191 8306 191-6328 191-8334 191-8340 191 8356 191-8362 191-8378 191-8384
Rated vobage(V) 12 15 5 12 12 12 5.4 3.4 6
Rated current 0) 0.4 0.4 1 0.4 0.48 0.6 1.4 2.85 1.8
Resistance (ft) 30 45 5 40 25 20 38 1.2 3.5
Inductance (mH) 14 22 5.7 40 33 32 68 1.5 7.3
Detent torque (miizn) 3.5 3.5 14.8 14.8 29.6 296 565 77.6 77.6
Holding torque (mNra) 100 100 260 260 494 494 882 1200 1200
Step angle accuracy 
(%) 5 s 5 5 5 5 5 S 5

Step angle 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8 1.8
Inauiationcliss B B B B B B B B B

Resonance
Certain operating frequencies cause resonance and 
the motor loses track of the drive input Audible vibra
tion may accompany resonance conditions. These fre
quencies should b e  avoided if possible Driving the 
motor on the half step mode (see motor drive meth
ods) g reatly  red u ces  the effect of reso n an ce . 
Alternatively exua load inertia and external damping 
may b e  added to shift resonance regions away from 
the operating frequency.

Molor drive methods
The normal way of driving a 4-phase stepper motor is 
shown in Figure 1.

This is commonly known as the 'Unipolar U n c  drive'. 
Here the current in each winding, when energised, 
flows in one direction only 'u \  value is 21 (but not 
necessarily  an integer) and nR is the sum of the 
external resistance plus the winding resistance (R) By 
selecting a higher value for n (ie. larger external 
resistance) and using a  higher dc supply to maintain the 
rated voltage and current for each winding, unproved 
torque speed characteristics can be obtained. Thus a 
6V. 60  motor (1A per phase) can be  driven from a  6Vdc 
supply without any series resistor, in the L/R mode. 
Alternatively it can b e  driven from a 24Vdc supply 
using 160 series resistance in the L/4R m ode with 
much improved performance
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Figure 2 Effect on motor performance of higher 
supply voltages and larger series 
limiting resistance

Tabla 1 Full step mode

5SK».

Step
Ko. Q1 Q2 Q3 Q4

ON OFF OFF ON
1 ON OFF ON OFF
2 OFT ON ON OFF
3 OFF ON OFF ON
4 ON OFF OFF ON
5 ON OFT ON OFF

Connection to M  bipolar stepper motor board 
When the windings of the RS s tep p e r motors are 
assigned (01-04) as shown in Figure 3. they can be 
connected to the board according to Figure 1.

Table 2 Half step mode

ütep
N o . Ql Q2 Q3 04

ON OFF ON OFF
1 ON OFF OFF OFF
2 ON OFF OFF ON
3 OFF OFF OFF ON
4 OFF ON OFF ON
5 OFF ON OFF OFF
6 OFF ON ON OFF
7 OFF OFF ON OFF
a ON OFF ON OFF
9

Typical stepper motor control system 
The operation of a  stepper motor requires (he pres
ence of the following elements:

Eh <D
When using 8 lead motors with coils in parallel the 
motor current should b e  set no greater than:

1 per phase x VX 
When using 6 lead or 8 lead motors with coils in series 
the motor current shoukl be set no greater than:

1
I per phase x ' / T  

Motors with 4 leads have a bipolar rating and can be 
used according to manufacturer s  specification.
To step a motor in a particular direction a  specific 
switching sequence for the drive transistors Q1-Q4 
needs to be  followed If this sequence is in Table 1 
(known as the unipolar bill step mode) it results in the 
rex or advancing through one complete step at a  time.

1. A control unit. Usually a microprocessor based 
unit which gives step and direction signals to the 
drive card. RS stepper motor control board (RS 
stock no. 440-098) is ideally suited for this function.

2. Power supply. Giving the required voltage and 
current for the drive card using a linear power sup-Pty

3. Drive card. This converts the signals from the con
trol unit m to the required stepper motor sequence 
RS stock nos. 332-098, 342-OS I and 440-240 are 
designed for the fiinctien.

4. Stepper motor.

4



Stepper motor drive boards
232 6749

For control of stepp«r motors KS has three types of stepper drive board Much are «unable to dnve stepper 
motors of venous current ranges.

Drive board 88 stock nos Suitable stepper motors Suggested wiring co(ifigursttan
440*420 Suel?
440-436 Size 17
181-8298 Size 17
181-8306 Sise 17

UnjpoJar2A(RS stock no 332-088) 440*442 Sue 23
"JW# dnve Is only suitable tot 440-496 StxaS3
apptaation,* wbfu e low speeds 181 8328 Sue 23 N/A
and low torques are re^nrod 181-8334 Site 23

181-8340 Size 23
181-6366 Size 23
181-8362 Sice 23
181-8384 Size 23
440-442 Sue 23 Series or parallel
440-455 Size 23 Parallel coanecboa
181 8328 Sae23 SeresBipoUr3SA(RS stock no. 342-051) 181*6382 She 23 SertesStntthio Isr madams curt eat. 191-6379 sue 23 Sens» or parallelinecfiuintQrqwapp&catons 181-6364 Sue 23 Series or poratl&f
440-464 Sue 34 Senssorpataflei connection
440-470 Site 34 Sews or pdraBel connecocn

BpoiarfiA(RS stock no 440-240) 191-6378 
181 6364

See 23 
Stee23

Series or parallel 
ParallelSunaUeibrbi^) curenc ligb torque 440-464 Size 34 Parallel oormecnonappbcabona 440-470 Sue 34 Sales or parallel comecCan

Nu(c Cooofioiag a stepper motor in aeries mUgives good low *3ced high toque  periQmwnoe 
Cooneotag a stepper motoria panSo) w3 g tw  ■ 9 w d  Wgk «peed tower terquo performance

Drive board connections 
RS unipolar stepper motor drive board connections

Bipolar stepper motor drive board connections (83 stock nos. 342-051 and 440-240)

5
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IRSIIO sH Multi-purpose gearbox (4Nm)
Data Sheet

Ratio RS stock no. Ratio RS stock no.
5:1 710-852 100:1 718-896
25:2 718-868 125:1 718-903
213:1 718-874 250:1 718 919
50:1 ? 18-880 500:1 718-925

These gearboxes can be fitted to a range of RS motors 
with a particular adaptor kit.

Motors type

Motor
M

Stock ne.
Adapt«

Adaptor kit 

stock no.
Mounting

stylekit
Hybrid
stepper
motor

«4(1-420 A 718-931 2
440-436 A 718 93» 2
440-44* C 718>953 1
440-458 C 718-953 I

Tin can 
stepper 
motors

440-284 B 718-947 1A
440 290 a 718 947 1A
440-307 c 718-9S3 1A
332-85* 8 718 94? 1A

Synchronous
motors

440 391 6 718 947 1A
1440*08 B 718947 1A
440-414 C 718-963 1A

Adaptor a s  stock no.
A 716931
8 713 947
C 713-953

The multi-purpose design concept is based on b e in g  
able to fit a wide variety of standard motors to the gear- 
head without special adapting or tooling. This approach 
has been achieved as a  result o i  special attention to the 
mourning arrangement and carefiii consideration oi the 
manner that fitting is earned out together with the adap
tors necessary to maximise the number of motors that 
can b e  used
The use of high strength metal spur gears throughout, 
coupled with a  precision djecast housing ensures chat 
the multi-purpose gearbox provides a robust high 
torque, stale of the art, design ideally suited to a  wide 
range of applications including:
•  CCTV camera pan and tilt mechanisms
•  Medical drives for sampling tables and peristaltic 

pumps
•  Industrial water and hydraulic valve actuation
•  Small component conveyor drives
•  Special affects drives
•  Research and development motion control systems

Max continuous ou tput lor qua ♦Not
Max continuous output power 15 Wans
Max. radial load on output shall 26N
Max axial load on output sha8 20N
Max. diameter of motor input
•haft 6.35mm
Motor mounting Via adaptor
Suitable motors ac synchronous motors, 

stepper nxxor*
Max available gear ratio 800:1
Gear material Metal throughout
Housing Precision motal 

diecasting
Bearings Sintered bronzo
Dimensions See toOowing drawing

Os
Os
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F ig u re  i

G ear ratio options
A wide choice of gear ratios is available as shown 
below.
Ia many cases 250rpm ac synchronous motors, 18 and 
7 5 degree stepper motors may be used when the fol
lowing speeds and steps/revolution will be  obtained at 
the outpui of the geaihead.

Gearratio

Output speed 
using 250rpm 
synchronous 

motor

Number of steps/tev using 
7.5 degree 1.8 degree 

stepper motors
8:1 SOiprn 240 1000
26:2 20rprn 800 2500
251 I Cipro 1200 5000
50:1 5rpm 2400 10,000
100:1 2 5rpm 4800 20,000
12S:t 2rpm 6000 25,000
250:1 lrpra 12.000 50,000
500:1 O.Srpra 24,000 100.000

Using hybrid stepper motors 
The number of steps/rev quoted above assumes the 
motor is u sed in full step. In most cases, it is recom
mended to drive the hybrid motors in half step drive 
when the above resolution will be doubled for each 
gear ratio

Direction of rotation and efficiency
While the direction of rotation at the output is reversible
its relationship to that of the input (motor) together with
the efficiency, will depend on the num ber of gear
stages within the multi-purpose gearhead as shown
below:
Also, because the maximum output torque will be 
dependent, not only on the peak capability of 4Nm, bur 
also on the maximum power transmission capability 
(IS Watts), in practice, the maximum recommended 
torque will b e  dependent on the gear rat» employed 
as shown below.

Gear
ratio

No. of 
stages

Direction o l  
rotation with 

respect to input Efficiency

Max.
output
torque

3:1 3 Opposte 72% l.SNro
23.2 3 Qppo«* 72% 2.SNm
25:1 4 S«nc 65% 4.0Nm
50:1 4 S*me 65% 4.0Nm
100:1 S Oppo«i» 58% 4.0Nm
125:1 3 Opposi. 58% 40Nm
250:1 6 Same 52% 4QNra
500:1 6 Same 52% 4.0Nm

2
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Calculating output torque of geared motor 
combination:
Example 1
Motor torque: 0.25Nm at 600ipm (2000 steps/sec) 
Gear ratio: 5:1 Efficiency: 72%

5x72Gear head output torque = 0.25 x =0.9Nmal 12Qrpm

Example 2
Motor torque: O.OîNm at 250rpm 
Gearratio: 125:1 Efficiency: 58%

Theoretical output torque -  0.07 x — = 5.075Nm 

Available output torque = 4.0Nm (see table on page 2).

232-4847

Output torque using ES synchronous motors

Gear
M ia  ' ' S:i 23:2 28:1 501 100:1 125:1 250:1 500:1
Output
speed
(rpm) 30 20 10 5 2.S 2 1 0.5
Typical torque (Mm) using motors: 
RS stock no.
¿40-391 
440 408 
<40-414

Û.1
0.19
0.38 p

o
p 0.48

O.bj
1.7

097
1.78
3.4

5.7
3.1
4.0

2.1
3.8
4.0

3.9
4.0
40

4 0 
40
4.0

Figure 2

Style 1 

1 2 3

Legend (able
1 Motor
2 fixing screws
3 Opinion
4 Spigot adaptor («yia 1A only)
3 Motor adaptor (style 2 only)
6 Adaptor fixing sarcws
7 MuHi-purpose gearhead

Style 1A

Motor fitting instructions 
Motor* are either fitted directly to the rear plate of the 
multi-purpose gear head (Styles 1 and 1 A) or by means 
of a  motor mounting adaptor (Style 2) as shown in the 
above drawings.
The appropriate motor pinions, adaptors and fixing 
screw s are provided m three mounting kits which 
should be  selected according to the motor to b e  used 
detailed opposite:

On

Assembly Jdt consisting:

Screws
Pinion
bore

Suitable 
motors 
ItS stock no.

A
2 pieces M3 x 6mm 
4 pxsceo M4 x 8mm 
4 piece« M4 washers

5mm
440-420
440-436

B

2 pieces M4 x 6mra ♦ washers 
2 pieces M3 x 4mm ♦ washers 
2 pieces M3 x 4mm + washers 
2 pieces M3 x 4m m  *  wwiiera 
2 pieces M3 x 4mm ♦ washers

4 nim 
4mm 
2mm 
2mm

332-953
440-290
440-284
440-391
440-408

C
4 pieces M4 x 6mm + washers 
4 pieces M4 x 6mm +■ washers 
4 piece# M4 x 8mm ♦ washers

6mm
6.35mm

|6.35mm

440-307
440-414
332-062
440-442
440-458

3
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General fitting instructions 
The motor pinion is retained on the motor shaft using 
high.strength retainer (RS stock no. 514-543). The 
application of the adhesive to the shaft should be done 
with care since it is important to ensure that a good 
bond is achieved-
lightly rub the motor shaft with emery paper to provide 
a keyed surface and ensure that fee shaft and the pinion 
bore is clean and free of grease. Apply high strength 
adhesive to the shaft and slide the pinion into position 
rotating it on die shaft to ensure a  good spread of adhe
sive in the shaftfcmion joint. Always cany out this oper
ation with the motor shaft horizontal and observe the 
adhesive manufacturer's instructions. Ensure thar
1. N o  adhesive comes in contact with the motor bear

ings.
2. AH excessive adhesive is rem oved prior to fitting 

m o to r.

Fitting instructions using assembly kit A
Mounting style Motors

BS stock no.
2 440-420

440-438
Using the fitting components shown in the table carry 
out the following procedure:
1. Fit the motor adaptor (Item 5 on attached drawing) to 

the motor using the two M3 screw s provided, one 
screw being fitted to each corner of the motor.

2. Fit the pinion to the shaft using the high strength 
adhesive as described, postiarang the pink» so that it is 
12.5mm tffro m  the adaptor mounting face as shown 
in the attached drawing.

3 Fit the motor, adaptor assembly, directly to the back 
of the gearhead, taking care that the pinion slips 
freely bade into mesh with the first gearwheel in the 
gearhead

Note: The gearhead back plate is provided with two 
recesses in the casting to enable the beads of the motor 
retaining screws to be  accommodated 
4. Secure using the lour M4 screws as shown.

Fitting instructions using assembly kit B 
Mounting style Motors

XS stock no.
1A 332-953

440-290 
440-284 
440-391

It should be noted that two adaptors are provided with 
the kit with bore sises of either 9 or 12mm diameter to 
suit the alternative motor spigots provided fc is partic
ularly important to ensure that in the case of the motors 
which require the 9mm bore adaptor, that this »s fitted 
as the first step in the motor fitting procedure.
2. Fit the pinion to the shaft using high strength adhe

sive as described positioning the pinion so thar it is 
12.5mm 3 ?  from the motor mounting face as shown 
in the drawing.

3. Fit the motor directly to the back of the gearhead. 
taking care that the pinion slqas Ereely tnio mesh with 
the first gearwheel in the gearhead.

4. Secure using the four screws as shown in the table.

Fitting instructions using assembly kit C
Mounting style Motors

RJ stock no. •
I 440-442

440-458
Using the fitting components shown in the table carry 
out the following procedure.
1. Fa the pinion to the shaft using high strength adhe

sive as described, positioning the opinion so that tl is 
12 Bmrn '3 ?  from the motor mounting face as shown 
in the drawing.

2. Fit the motor directly to the back of the gearhead, 
taking care that the pinion slips freely into mesh with 
the first gearwheel in the gearhead.

3. Secure using the four screws as shown in the table.

Mounting style Motors
KS stock no.

1A 440-307
440-414

Using foe fitting components shown in the table carry
out the following procedure:
1. Fit the circular motor spigot adaptor (Item 4  on 

attached drawing) to the motor.
2. Fit the pinion to the shaft using high strength adhe

sive as described, positioning the pinion so that it is 
12.5mm Si*4 from the motor mounting face as shown 
in the drawing.

3. Fit the motor directly to the back of the gearhead, 
taking care that the pinion slips freely into mesh with 
the first gearwheel in the gearhead

4. Secure using the four screws as shown in the table.

RS Components, PO Boat 99, Gaby. Northants. NN17 9RS Telephone: 01536 201234
£  AoQ^w**xwirt*Cfciq>*cr <0 KS Components 1997
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RSn » ci. + Strain gauges and load cellsuata onset

Strain gauges
Two ranges of foil strain gauges to cover general 
engineering requirements for strain analysis. All 
gauges have 30mm integral leads to alleviate damage 
to the gauges due to excessive heat being applied 
during soldering and installation.
Miniature gauges can b e  used lor precise point 
measurement of instrumentation of small components. 
The polyimkle backing of the gauges can withstand 
tem peratures up to 18Q°C making them ideal for 
higher temperature applications.
The larger size of the standard gauges will not only 
make these gauges suitable for larger components, but 
is useful to assess the average strain over the area 
covered by  the gauge thus redudng tha possibility of 
incorrect readings due to stress concentrations. 
Gauges tem perature compensated for aluminium 
match materials with a  coefficient of thermal expansion 
of 23.4 x  lO'V'C and are indicated by blue colour 
coding of the backing material.
Gauges temperature compensated fa- mild steed match 
materials with a  coefficient of thermal expansion of 10.8 
x 19 V C  and are indicated by red  colour coding of the 
backing material.
All gauges are  intended for uniaxial strain 
measurements only.

General specification (all types)

Thermal output 20 to 1 6 0 ^ ___
160Cto 180-C_ 

Gauge factor change
with temperature____________
Gauge resistance _____________

_ ±2 micro strainAC* 
.  ±5 micro strainAC*

_ ± 0.013 % fC  max. 
 1200

Gauge resistance tolerance________________ ±0.S%
Fatigue life  ____ >10* reversals Q 100 micro strain*

_copper nickel alloy

Specification 
(Miniature polyimide backed  type)
Temperature range_______________ -30’C to+180'C
Gauge length__________________2 m m ______ 5mm
Gauge width______________ _ 1.8 mm______1.8mm
Gauge factor  __________________ 2.0________ 2.1
Base length (single types)______ 6.0 m m ____9.0 mm
Base width (single ty p es)_____ 2.5 mm  ____ 3 .5 mm
Base diameter (rosettes) 7.5 x 7.5 mm _ 1 2 x  12mm

Construction and  principle of operation
The strain gauge measuring grid is manufactured from 
a  copper nickel alloy which has a low and contrail ahle 
temperature coefficient. The actual form of the grid is 
accurately produced by photo-etching techniques. 
Thermoplastic film is used to encapsulate the grid, 
which helps to protect the gauge from mechanical and 
environmental damage and also a d s  as a medium to 
transmit the strain from the test object to the gauge 
material.
The principle of operation of the device is based on the 
fact that the resistance of an electrical conductor 
changes with a ratio of AR/R is a  stress is applied such 
that its length changes by  a  factor Al/L. Where AS is 
change resistance from unstressed value, and AL is 
change in length from original unstressed length.
The change in resistance is brought about mainly by 
the physical size of the conductor changing and an 
alteration of the conductivity of the material, due to 
changes in the materials structure.
Copper nickel alloy is commonly used in strain gauge 
construction because the resistance change of the foil 
is virtually proportional to the applied strain Le.
AR/R = K£.
w h e re  X is a constant known as a gauge factor,
= AR/R 

ALA.
And E *  strain =* A i / L K  »

Specification 
(Standard polyester backed  types)
Temperature rang© ________________ -30*C to f  80"C

Gauge width
Gauge factor ...........  ................. 2 1
Base length (single types) _ 
Base width (single types) _ 
Base diameter (rosettes) _

_ 13.0mm 
_ 4.0 mm

The change in resistance of the strain gauge cor 
therefore be  utilised to measure strain accurately when 
connected to an appropriate measuring and indicating 
circuit e.g. Strain gain amplifier RS stock no. 846-171 
detailed later in this data sheet.



Application#
When strain gauges are used in compressive load 
transducer applications, which normally require more 
stringent accuracy requirements, a full bridge circuit is 
used with active gauges in all four arms of the bridge. 
(Figure I).
The load transducer shown in Bgure 1 utilises four 
strain gauges attached to the cylinder. The gauges are 
connected into the bridge circuitry to such a manner as 
Jo make use of Poisons ratio Le the ratio between the 
relative expansion in the direction of force applied and 
the relative contraction perpendfcuiar to the force, to 
increase the effective gauge factor and thus the 
sensitivity.

232-5957

Figure 1 Compressive load transducer
IM4

To measure tensile toads, a  ring with gauges attached 
as shown in Figure 2 may h e  used  
Under the action of a tensile load, the curvature of the 
ring in Figure 2 is deformed such that the inner gauges 
undergo tension while the outer gauges experience 
compressive forces.

Figure 2 Tensile load transducer

Instructions for mounting of strain gauges
In order to obtain the best possible resubs born a strain 
gauge, it is important to thoroughly prepare (be gauge 
and the surface of the specimen to which the gauge is 
to be attached, prior to bonding with the adhestves re 
commended m paragraph 3 below.

1. Specimen surface preparation
An area larger than the installation should be cleared of 
all paint, rust etc.. and finally smoothed with a fine 
grade emery paper or fine sand blasting to provide a 
sound bonding surface.
The area should now b e  degreased with a solvent such 
as R8 PCB solvent cleaner, RS stock no. 496-883, and 
finally neutralised with a weak detergent s o lu tio n .  
Tissues or lint free cloth should be used for this 
operation, wetting the surface and wiping off the dean 
tissues or doth until the final tissue used is stain free. 
Care must b e  taken not to wipe grease from a 
surround-ing area onto the prepared area or to touch 
the surface with the fingers.
This final dealing  should take {¿ace immediately prior 
to installation of the gauge.
2 . Strain gauge preparation
By sticking a short length of adhesive tape along the 
upper face of the gauge it may lie picked up from a fiat 
d ean  surface. Holding both ends of the tape, orientate 
the gauge in the desired Vocation and stick the end of 
the tape furthermost from the tags to the specimen 
Bend the other end of the tape bade cn itself thereby 
exposing the back cf the gauge.
3. Adhesives and strain gauge installation 
Two basic types of adhesive are recommended

a) RS cyanoacrylate
b) RS 'quick-set' epoxy.

When using epoxy adhesive coat the back of the gauge 
with adhesive and gently push down into position, 
wiping excess adhesive to the w o  outside edges of the 
gauge, to leave a  thin film of adhesive between gauge 
and sample. Stick the whole length of tape to hold the 
gauge in posit ion. Care should be taken thal there is an 
even layer of adhesive and no air bubbles are left 
under Ote grid. Cover the gauge with cellophane or 
polyethylene etc.. and apply a light weight or damp as 
required until adhesive has set. Remove tape by slowly 
and very carefully pulling it bade over itself, staring at 
the end furthermost from the tags. Do not pull upwards. 
If cyanoacrylate adhesive is to be used stick one end of 
the tape down to the specimen completely up to the 
gauge Drop a fillit of adhesive in the 'tenge' point 
formed by the gauge and the specimen Starting at the 
fixed end, with one finger push the gauge down at the 
same time pushing the adhesive along the gauge in a 
single wiping motion until the whole gauge is stuck 
down. Apply pressure with one finger over the whole 
length of the gauge for approximately one minute. 
Leave for a further three minutes before removing 
tape.

4. Wiring
The RS strain gauges are fined with 30 mm leads to 
enable the gauge to b e  soldered. The lead out wires 
are fragile and should be handled with care

2
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RS strain gauges are encapsulated and therefore are 
protected from dust and draughts etc. If however, 
additional protection from humidity, moisture, and 
mechanical damage is required RS Silicone oibber 
compound, RS stock no, 555-588, may bo used. This 
should b e  carefully spread over the installation using a 
spatula.

Installation protection

Connecting to strain gauges
The following bridge circuits are shown with 
connection referring to the basic amplifier circuit, 
Figure 7. All resistors, precision wire wound 0.1% 5 
ppm. (For precision resistors see current RS 
Catalogue).

Note: The expressions are assuming that all gauges 
a re  su b je c ted  to the sam e strain . Some 
configurations p ro d u ce  different strain  in 
different gauges, and allowance must be  made.

O n
VO

Strain gauge amplifier (RS stock no. 848- 
171) and  prin ted  circuit board  (RS stock 
no. 435-692)
Description and operation
The strain gauge amplifier is a purpose designed 
hybrid, low noise, low drift, linear dc amplifier in a 24 
pin D fL  p a c k a g e , specifically configured for resistive 
bridge measurement and in particular the strain 
gauges detailed earlier in this data sheet.
Foil strain gauges when attached to a specimen, 
produce very small changes in resistance (typically
0.20 in 1200 p er microstrain), and are thus normaiy 
connected in a Wheatstone bridge. Overall outputs of 
less than ImV on a common mode voltage of 8 volts 
may be  encountered, requiring exceptional common 
mode rejection which cannot be  provided by 
conventional means.
The strain gauge amplifier overcomes the problem of 
common mode rejection by  removing the common 
mode voltages This is achieved by controlling the 
negative bridge supply voltage in such a manner that 
the voltage at the negative input terminal is always 
zero. Thus for a symmetrical bridge, a negative bridge 
supply is generated equal and opposite to the positive 
bridge supply, hence zero common mode voltage.
The advantages of such a system are;
•  No floating power suppiy needed.
•  Bridge suppiy easily varied with remote sense if 

necessary.
•  Wire remote sense system.
•  Freedom from common mode effects.
•  Very high stability dc amplifier enables numerous 

configurations to b e  assembled.
•  Low noise.
•  High speed (at low gains).

232-5057
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232*5957

Specification
(At 2 5  C  ambient and ±12V supply unloss otherwise 
stated.)

Supply voltage  ___________  ±2 to ±20Vdc
Input ofiset voltage___________________ 2Q0pV max.
Input ofiset vohagertamperature______ .O.S^rWC max.
Input ofi3ei vohage/suppiy_____________ 3#AWmax
In p u t offset votoag&'Eme 0-3yV/toonth m ax
Input impedance . >5MQ nojn.
Input noise voltage_______  Q.9//Vpp max.
Band width (unify gain)_______  _450kHz

Output current____________________________ 5mA
CXitput voltage span i(V«-2W
Closed loop gain (adjustable) __________ 3 to 60,000
Open loop g a in ______________________  >l20dB
Common mode rejection ratio___________ _>120dB
Bridge supply voltage/temperature 2Q^V/°C
Maximum bridge supply current____________12mA
Power dissipation __________  O SW
Warm up time s  mfrys
Operating temperature ra n g e ______ -2S“Cto + 8&*C

Figure 7 Basic circuit for printed circuit board SUI stock no. 435-6921 (gain approx 1000)

Component values (Figures 7 a n d  8)
R; 100k R.47R Q .C , IQn(typ)
RjlOOR R.10R C,. C« 10f j  (tant.)
R,100k* R.lk0 T.BD13S
R.68R* R,„68QR T*BD 136
R, ICR R, 680R T,BC 108
R,l00R(typ.) C,.C*C, 100n(typ.)D„ D.1N827

A glass fibre printed circuit boar. RS stock no. 
435-692 is available for the basic circuit as given in 
Figure 7.
The board is 46 x 98 mm in size and is complete with 
screen printed component identification and a solder 
mask
Only typical values are  given for certain components.

as adjustment of tljese values may be necessary in 
specifics applications to obtain optimum noise 
reduction (see Minimisation of Noise later in this data 
sheet).
*R, and R, values may be adjusted to alter the zero 
adjustment range when compensating for bridge 
imbalance.
Notes: 1. Gain is defined as 1 »3«

R*
2. Zero adjustment range ±6.2 x . . . VahaMR,

Total bridge supply = 2 x bridge ref input (pm a>)
C, may b e  omitted for input lead lengths of less than 10 
metres
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T, and T, provide bridge currents up to 60mA and 
ahoukl b e  kept away from amplifier.
Tj and Ta provide stability power supplies are being 
used zero and bridge supply reference may be  taken 
direct from the power rails.
The high output of some semiconductor strain gauges 
may causQ large amounts of asymmetry to the bridge. 
In correcting for the common mode change, the 
negative bridge voltage will change, causing a span 
error. This may be calibrated out or the arrangement 
above used to eliminate the cause of the err«". Some 
semiconductor strain gauge transducer* a te  
temperature compensated by the use of series arm 
compensation. Thus the common m ode voltage 
changes the with temperature, and hence the 
arrangement above should be u sed  This operates by 
referencing the positive bridge supply to the negative 
supply, thus varying the common mode bul not the 
overall bridge supply.

Minimisation of noise
1. Inherent white/Hickar ncdse in amplifier.
To keep this to a minimum use hicpi quality (roetal film) 
resistors and protect the amplifier from excessively 
high temperatures. The inherent noise level may be  
fruiter reduced from its already low yalue by fitting C, 
and C, to reduce the operating bandwidth.
2. Supply frequency (or harmonics) inference.
If at 100Hz then the cause is almost likely to b e  from 
power supply rails, so use stabilised lines. If at 5QHz 
then it is generally caused by the location of the supply 
transformer, and/or the wiring. Relocate the supply 
transformer, screen and input leads to the amplifier, 
and if possible reduce the operating bandwidth by 
fitting C, and Cj.
3. Power supply transient interference.
It is good practice to decouple the supply lines to the 
amplifier, by fitting Cj and C«, as dose to it as possible. 
II a particular nuisance then fit a maina suppressor.
4. Electromagnetic interference
This may be picked up by input leads, otfput leads, 
supply leads car direct into the circuit. Minimisation 
involves a combination of screening, decoupling and 
reducing operating bandwidth. Screening. The shield 
should be connected to only one earth potential at the 
receiving monitoring equipment end Try not to earth 
any of the dc power lines (e.g. OV)- if the shield at the 
sensor end is earthed then earth the shield at the 
receiving end and if possible connect this earth  
potential to the strain gauge amplifier circuit shield. 
Decouple the power supply leads by filling C , a n d  C „  
decouple the input leads with R* and C,(note a  similar 
action on the itput is not possible). Remove any pickup 
from the output leads by fining R* andC*. Fit C* if input 
leads are more than 10m long and fit C* if remote 
sense is longer than 10m. Reduce the operating 
bandwidth by fitting C, and C,.
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Appendix C C Code listings

C. 1 Program 1: Control rotation stage and sam pie data from 
photodiode amplifier

I I  Scan - Bragg grating Interigation

I I  Header - Program to scan wavelength 1330 - 1270 
/ /

// Version - 3.0

// Author - mck@physics.dcu.ie

// Date - 23/06/98

#include <stdio.h> 
tinclude <stdlib.h> 
tinclude <conio.h>
#include <math.h>
#include <graphics.h>

I* Addresses */

tdefine BASE 640
tdefine start BASE + 16
#define eoe BASE + 20
tdefine LS data BASE + 19
#define MS data BASE + 18
tdefine const 1.253314137

int tot_loop=1000;
int i,j,ja,k,msamp,loop,no_scan;
int data[97],temp,midpoint;
float chitemp;
float tempt,tempb,value;
float c h i [4167];
float far scant[8283];
float far scandata[8333];
float far lamda[8333],angle;
char buffer[80];
double a,w;
float lhalf,lcl,lc2;
int lcli,lc2i,lm;
float hwl,hw2;

// File Handles 
FILE *data_out;
FILE *data_outl;
FILE *data_outf;
FILE *mid;
FILE *chia;

void m a i n ()
{
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/* request auto detection */
int gdriver = DETECT, gmode, errorcode;

/* initialize graphics mode */ 
initgraph(sgdriver, Sgmode, ;

/* read result of initialization */ 
errorcode = graphresult();

if (errorcode != grOk) /* an error occurred */
{
printf("Graphics error: %s\n", grapherrormsg(errorcode)) 
printf("Press any key to halt:"); 
getch();
exit(l); /* return with error code */
}

// setup screen 
// Viewportl
setviewport(20,20,120,210,1);
lineto(100,0);
lineto(100,190);
lineto(0,190);
lineto(0,0);

// Viewport2
setviewport(130,20,620,210,1);
lineto(4 90, 0);
lineto(490,190);
lineto(0,190);
lineto(0,0) ;

// Viewport3
setviewport(20,220,295,460,1);
lineto(275,0);
lineto(275,240);
lineto(0,240);
lineto(0,0);

// Viewport4
setviewport(305,220,620,460,1);
lineto(315,0);
lineto(315,240);
lineto(0,240);
lineto (0,0) ;

//Initalise acd/io board

outportb(647,128);

// Find out how many scans to do 
setviewport(21,21,119,209,1); 
clearviewport(); 
moveto(2,4) ; 
outtextC'# Scans?");
//scanf("%d",&no_scan) ; 
no scan=l;



for(loop=0 ;loop<no_scan;loop++) 
{

buffer[0 ]=NULL;

for(i=0;i<8333;i++)
{

for(temp=0;temp<3000;temp++); 
outportb(644, 1) ;

for(msamp=0;msamp<47;msamp++)
{

outportb(start,7);
while((inportb(eoc) && 1) .!= 1);
for(temp=0;temp<2000;temp++);
temp=(inportb(LS_data)/16);
data[msamp]= (inportb(MS_data)*16)+temp;

}

// calculate average 

tempt=0.0;

for (msamp=0;itisamp<47;msamp++)
{

tempt=tempt+(float)data[msamp];
}

value=tempt/47;

scandata[i]=value; 
outportb(644,3);

}

// Reverse spin direction

fo r (i=0;i<8333;i++)
{

outportb(644,0); 
fo r (j=0;j<30000;j ++); 
outportb(64 4,2); 
f o r (j=0;j<30000;j++);

}

// rearrage data 
// Find Basepoint 
tempt=0.0; 
fo r (i=0;i<8333;i++)
{

tempt=tempt+scandata[i];
}
tempt=tempt/8333;
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for(i=0;i<8333;i++)
{

scandata[i]=scandata[i]-0.3*tempt;
}

// Find Midpoint
f o r (i=2 083;i<6251;i++)
{

k=0 ; 
j=0; 
j a=0 ;
chitemp=0;
while(j>—1 && ja<8333)
{

chitemp=chitemp+((scandata[i+k]-scandata[i- 
k] )*(scandata[i+k]-scandata[i-k])); 

k++; 
j=i-k; 
ja=i+k;

}

if(j<ja) chi[i-2083]=chitemp/k; 
i f (ja<j) chi[i-2083]=chitemp/k;

}

c h i a = f o p e n ( " c : \ \ s c a n \ \ d a t a \ \ c h i . d a t " , "w");
chitemp=999999;
fo r (i=l;i<4167;i++)
{

fprintf(chia,"%d %f \n",i,chi[i]); 
if(chitemp>chi[i])
{

midpoint=i+2083; 
chitemp=chi[i];

}
}
fclose(chia);

mid=fopen("c:\\scan\\data\\mids.dat","a"); 
fprintf(mid,"%d \n",midpoint); 
fclose(mid);

// Plot scandata 
msamp=21;
setviewport(131, 21, 619, 209, 1) ;
clearviewport() ;
for(i=0;i<8333;i=i+17)
{

putpixel(500-msamp,(180-(scandata[i]/24)),14); 
msamp++;

}

//convert index to angles 
for(i=0;i<8333;i++)
{

angle=(float) (i-midpoint)*6.2834e-5; 
angle=sin(angle);
lamda[i]=1307.4 557 6*sqrt(1.0-(0.5214 6587*angle*angle));
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}

setviewport(21,21,119,209,1); 
clearviewport(); 
moveto(2,4); 
outtext("Fitting ");

// Averageing routine 
printf("1"); 

for(i=25;i<8308;i++)
{

tempt=0.0;
for(j =—2 5;j < 2 5;j++)
{

tempt=tempt+scandata[i+j]/10.0;
}
tempt=tempt/5; 
scant[i—25]=tempt;

}

for(i=25;i<8308;i++)
{

scandata[i]=scant[i — 2 5];
}

printf("2");

data_outf=fopen("c:\\scan\\data\\fullstel.dat","a"); 
for(i=0;i<8333;i++)
{

fprintf(data_outf,"%f %f \n",lamda[i],scandata[i]);
}
fclose(data_outf);

//Remove instrument function
tempt=0;
tempb=65000;
for(i=8 332;i>=midpoint;i--)
{

a=((1.45118e-28)*exp(0.0579*lamda[i]))/(114516) ; 
scandata[i]=scandata[i]/a; 
if(scandata[i]>tempt)
{

tempt=scandata[i]; 
temp=i;

}
if(scandata[i]<tempb)
{

tempb=scandata[i];
}

}
lhalf=(tempt-tempb)/2.0+scandata[8300];

// Find Centers 
i=midpoint; 
lcl=0; 
lc2=0;
while(scandata[i]<0.6*tempt)
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{
i++;

}
while(scandata[i]>0.55*tempt)
{

if(scandata[i]>lcl)
{

lcl=scandata[i]; 
lcli=i;

}
i++;

}

i=8332;
while(scandata[i]<0.5*tempt)
{

i— ;
}
while(scandata[i]>0.50*tempt)
{

if(scandata[i]>lc2)
{

lc2=scandata[i]; 
lc2i=i;

}
i — ;

}

tempb=65000;
for(i=lcli;i<lc2i;i++)
{

if(scandata[i]<tempb)
{

tempb=scandata[i]; 
lm=i ;

}
}

//Calculate HalfWidths 

i=lcli;
lhalf=scandata[lcli]/2.0; 
while(scandata[i]>lhalf)
{

i —  ;
}

h w l = ((lamda[i]-lamda[lcli])*2 . 0)-2 . 75; 

i=lc2i;
lhalf=scandata[lc2i]/2.0; 
while(scandata[i]>lhalf)
{

i++;
}

h w 2 = ((lamda[lc2i]-lamda[i])*2.0)-2.75; 

// Find Turning points
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data_outf=fopen("c:\\scan\\data\\fullstep.dat","w"); 
for(i=0;i<8333;i++)
{

fprintf(data_outf,"%f %f \n",lamda[i],scandata[i]);
}
foiose(data_outf);

data_outl=fopen("c:\\scan\\data\\datasm.dat”," a "); 
fprintf(data_outl,"%f %f %f 

%f\n",lamda[lcli],hwl,lamda[lc2i],hw2); 
foiose(data outl);

}
}

C.2 Program 2: Convert multi-scan datafile into single scan data files

tinclude <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <math.h>
#include <string.h>

int i , j ;
float value,lamda;
char filename[80],dummy[20];

FILE *input; 
FILE *output;

void main(void)
{

input=fopen("fullstel.dat","r");
//output=fopen("3d.dat","w"); 
f or(i=0;i<30;i++)
{

filename[0]=NULL;
dummy[0]=NULL;
itoa(i,dummy,10);
strcpy(filename,dummy);
strcat(filename,".dat");
output=fopen(filename,"w");

for(j=0;j<8333;j ++)
{

fscanf(input,"%f %f\n",Slamda,Svalue); 
/*if(fmod(j ,25)==0)
{ */
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fprintf(output,"%f %f\n",lamda,value); 
/* } */

}

foiose(output);
}

/*fclose(output);*/ 
foiose(input);

}

C.3 Program 3: Genetic Algorithm for deconvolution of spectra

/ • k ' k ' k ' k ^ c ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k - k ' J c ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k - k ' k - k ' k - k ' k ' k ' k - k ' k ' k - k - k ' k - k ' k - k ' k ' k - k - k ' k - k - k - k ' k - k ' k  J

/* Title : Program to find centers and FWHM for scanned */
/* data.

*/
/* Author : Michael Kennedy Version : 1.1

* /
/* Date : 12/12/1998

* /
I  'k'k'k'k'k'k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k-k-k'k-k-k'k-k'k'k'k-ic'k-k'k'k-k-k-k'k-k-k'k'k-k'k-k-k-k-k'k-k'k-k'k-k-k j

#include <stdio.h> 
tinclude <dos.h> 
tinclude <stdlib.h>
#include <math.h> 
ttinclude <conio.h>
#include <string.h>

/* Addresses */

#define BASE 640
#define start BASE + 16
fdefine eoc BASE + 20
#define LS_data BASE + 19
fdefine MS_data BASE + 18
j-k-k-k'k-k'k'k'k-k-k'h-k-k-k'k'k'k-k-k-kir'k '̂k'k'k-k-k-k-k'k'k-k'k'k-k-k'k'k'k-k-k'k-k'k-k'k'k'k'k-k'k-k'k-k-k'k j

/* Function : Declare global variables 
*/

j  ' k - k - k - k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k - k - k - k - k - k ' k - k - k ' k - k - k - k - k - k ' k ' k - k ' k ' k - k - k - k ' k ' k - k - k ' k ' k ' k - k - k ' k ' k - k ' k ' k ' k ' k ' k ' k - k ' k ' k  j

int i,oloop;
double lamdal,lamda2,dlamdal,dlamda2;
double ampl,amp2;
double cost[100];
double cutdata[2] [3500] ;
double population[6][21];

void preprocess(void);
double sosplv(double fx,double br,double sos, double lorl,double
lor2,double gauss, double amp,double pos,int n ) ;
double callsolsos(int posit,int yes no);
void gen_pop(void);
double D Evolution(void);
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void preprocess(void)

j  •k-k'k-k-k'k'k-k'k'k'k'k'k'k'k'k-k-k'k'k'k'k-k-k'k'k'k-k-k-k-k'k-k-k'k-k-k'k'k-k'k-k'k-k-k'k'k'k'k-k'k-k-k'k-k-k'k J

/ * Function : Declare variables for estimation routine */
j  ' k - k - k ' k ' k ' k - k - k - k - k ' k ' k - k - k ' k ' k ' k ' k - k - k ' k - k ' k - k ' k ' k - k - k ' k - k ' k ' k ' k - k - k ' k - k ' k - k - k ' k ' k - k ' k ' k - k ' k ' k - k ' k ' k ' k ' k - k - k - k ' k  j

int i,midpoint; 
int k,j ,j a ;
float scandata[8000],temp,chi[3500]; 
double chitemp,angle,diffdata[3500] ; 
double center[20],lamdamax; 
float smooth; 
char buffer[80];

FILE *input;
FILE *output;
FILE *chif;

j  ' k ' k ' k ' k ' k - k ' k ' k ' k ' k - k ' k ' k - k ' k - k - k ' k ' k ' k ' k - k - k - k ' k ' k ' k ' k ' k ' k ' k - k - k ' k ' k ' k ' k - k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k - k - k ' k ' k  j

/* Function : Open input/output files 
* /

buffer[0]=NULL; 
itoa(oloop,buffer,10); 
strcat(buffer,".dat");

input=fopen(buffer,"r"); 
output=fopen("out.dat","w");

/*********************************************************/ 
/* Function : Read data from file into array scandata */
j  'k'k'k'k'k'k-k'k'k'k'k'k'k-k-k'k'k'k'k'k-k'k'k'k'fe'k-k-k-k'k-k'k̂ e-k'k'k'k̂ e'k-k-k'k-k-k'k'k'k-k'k'k'k-k-k'k'k'k-Jf j

for(i=0;i<8000;i++)
{

fscanf(input,"%f %f",stemp,Sscandata[i]);
}
fclose(input);

for(i=0;i<8000;i++)
{

fprintf(output,"%d %f\n",i,scandata[i]);
}
fclose(output);

j  •k-k-k-k-k'k'k'k'k'k-k'k-k-k-k'k'k-k-k-k-k-k-k-k-k-k'k'k'k'k-k'k-k'k'k'k-k-k'k-k-k'k'k-k'k'k'k'k'k'k-k-k'k'k'k'k'k j

/* Function : Find middle of data structure, full array */
/* is a mirror image of itself */
/* Place chiA2 in an array so it may be

* /
/* written to a file later

* /
I ’k'k'k-jr'k-k-k'k'k-k'k-k-k'k-k'k'k-k-k'k-Je-Jc-k-k-k-k-k-k-k'k-k-k-k-k-k-k-k-k-k-k-k-kif-kif-k-k-k-k-k-k'k'k'k-k-k-k J

for(i=2000;i<6000;i++)
{

k = 0  ;
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j= 0 ; 
j a=0 ;
chitemp=0 ;
while(j>-l && ja<8 0 0 0 )
{

chitemp=chitemp+
((scandata[i+k]-scandata[i-k]) * (scandata[i+k]-

scandata[i-k]));
k++ ;
j=i-k;
ja=i+k;

}

chi[i-2 0 0 0 ]=chitemp/(float)k;

}

chitemp=999999; 
fo r (i=0 ;i<3500;i++)
{

if(chitemp>chi[i])
{

midpoint=i+2000; 
chitemp=chi[i];

}
}

j  •k - k ' k - k ' k - k - k ’k ' k ' k ' k ' k ' k ' k ’k - k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k - k ' k - k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k  j

/ * Function : Write chi/s2 data to file "chi.dat" */
j  • k - k ' k - k ' k - k - k - k ' k - k ' k ' k - k - k - k ' k ' k - k ’k - k ' k - k ' k - k - k ' k - k - k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k - k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k  j

c h i f = f o p e n ( " c h i . d a t " , "w") ;  
f o r ( i = 0 ; i < 3 5 0 0 ; i + + )
{

fprintf(chif,"%d %f\n",i,chi[i]);
}
fclose(chif);

j  ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k - k - k ' k ' k - k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k - k - k ' k - k - k ' k - k ' k - k - k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k - k  j

/* Function : Move centralized data to smaller array */
/* for processing later

*/
j  ■ k - k ' k ' k ' k - k ' k - k ' k ' k ' k ' k - k - k - k - k ' k - k ' k ' k ' k ' k ' k ' k ' k - k - k - l e - k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k - k - k - k - k - k - k - k ' k - k - k ' k ' k - k - k - k - k  j

fo r (i=midpoint;i<midpoint+3500;i++)
{

cutdata[1][i-midpoint]=scandata[i];
}

^ ' k ' k - k ' k - k ' k ' k ' k - k ' k ' k ' k - k - k - k ' k ' k ' k - k ' k ' k - k ' k - k ' k ' k ' k - k - k - k ' k - k ' k - k - k ' k ' k ' k - k - k ' k ' k - k - k - k ' k ' k ' k - k ' k ' k ' k ' k ' k - k ' k ' k  j

/ * Function : Convert step numbers to wavelength */
/* Note : Array[0] is normal incedence of filter */
j  • k - k ' k - k ' k - k - k ' k - k - k ' k ' k - k - k ' k ' k - k - k - k - k - k - k - k - k - k - k ' k ' k - k - k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k - k ' k - k ' k ' k - k - k ' k ' k ' k ' k ' k - k  j

for(i=0;i<3500;i++)
{

angle=(double)(i)*6.2834e-5; 
angle=sin(angle);
cutdata[0] [i]=1307.4 557 6*sqrt(1.0-(0.5214 6587*angle*angle));
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}

j  ' k - k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' J r ' k ' k ' k ' k ' k ' l t ' k ' k ' k ' k - k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k ' k - k - k ' k ' k - k ' k - k - k ' k - k ' k ' k ' k ' k - k - k ' k ' k ' k  j

/* Function : Remove filter transmittance function from */
/* data

* /
/* Note : Function was generated from data on filter */
j  ■ k - k ' k ' k - k ' k ' k ' k ' k - k ' k ' k ' k - k ' k - k ' k - k - k - k - k - k - k ’k ' k ' k - k - k - k - k - k ' k ' k ' k - k ' k ' k - k - k ' k - k ' k - k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k - k - k ' k  j  

/*
for(i=0;i<3500;i++)
{

chitemp=((1.45118e-28)*exp(0.057 9*cutdata[0][i]))/(114516); 
cutdata[1][i]=cutdata[1][i]/chitemp;

}
*/
/*********************************************************/
/* Function : We attempt to find the transmission peaks */
/*

*/
/* This involves différenciation of the data and */
/* detection of the zero crossing points. Care has to be */
/* taken to account for the possiblity of noisy crossing */
/* points.

* /

/*********************************************************/
/* Function : Differenciate Data

*/
j  ' k - k ' k ' k ' k ' k ' k - k ' k - k - k ' k - k - k - k - k ' k - k - k - k ' k - k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k - k - k ' k - k ' k - k ' k ' k - k ' k ' k - k - k - k - k - k - k - k - k - k ' k - k - k - k ' k  j

for(i=0;i<3999;i++)
{

diffdata[i]=
(cutdata[1 ][i ]— 

cutdata[1] [i+1]) / (cutdata[0] [i]-cutdata[0] [i+1]);
}

j  ' k ' k ' k ' k ' k - k ' k ' k ' k - k - k - k - k ' k ' k ' k ' k ' k - k ' k - k - k ' k - k ' k - k - k - k ' k ' k ' k ' k ' k - k - k ' k - k - k ' k ' k ' k ' k ' k - k - k - k ' k ' k ' k - k - k - k - k ' k ' k - k ' k  J

/ * Function : Smooth diff. data using nearest neighbour */
/* averaging

*/
j  ' k ' k ' k ' k ' k ' t r ' k ' k ' k ' k ' k ' k ' k - k - k - k ' k ' k - k ' k - k ' k ' k ' k - k ' k ' k - k ' k - k ' k - k ' k - k ' k ' f e - k - k ' k - k ' k ' k ' k - k ' k ' k - k - k - k ' k - k ' k ' k ' k ' k - k ' k  j

for(i=5;i<3995;i++)
{

smooth=0.0; 
for(j=-4;j <5;j++)
{

smooth+=diffdata[i+j];
}
diffdata[i]=smooth/9.0;

}

/ ' k ' k ' k - k ' k - k - k - k - k ' k - k - k ' k i c ' k - k - k - k - k - k - k - k ' k - k ' k ' k - J c - k - k ' k ' k - k - k - k ' k - k - k - k ' k - k - k ' k - k ' k - k ' k ' k - k - J c ' k ' k - k - k - k - k - k - k  j

/ * Function : Output diff. data to file "diff.dat" */

output=fopen("diff.dat", "w") ; 
for(i=0;i<3500;i++)
{
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fprintf(output,"%lf %lf\n",cutdata[0][i],diffdata[i]);

fclose(output);

/* Function : Find zero crossing points and store in */
/* array

*/
^ ' k ' k ' k ' k ' k ' k ' f c - k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' t c ' k ' k ' k ' k - k - k ' j c - k - k - J e ' j c ' k - k - k ' k ' k ' k - k - k - k ' k ' k ^ c - k - k ' k - k ' k ' k ' k ' k - J e ' k - J e - j r - k ' k ' f c  j

j=0;
for(i=0;i<3990;i++)
{

if(cutdata[0][i]<1305.0 && cutdata[0][i]>1295.0)
{

i f (((diffdata[i]<0.0) && (diffdata[i+1]>0.0))
II ((diffdata[i]>0.0) && (diffdata[i+1]<0.0)))

{
center[j] = (cutdata [0] [i]+cutdata [0] [i+1])/2.0;

j++ ;
}

}
}

j  • k - k ' k - k ' k ' k ' k ' k ' k ' k - k ' k ' k - k ' k ' k - k ' k ' k ' k ' k - k - k ' k ' k ' k - k - k - k - k - k ' k ' k ' k - k - k - i c - k ' k - k ' k ' k ' k ' k ' k - k - k ' k - k ' k - k - k - k - k ' k - k - k  J

/ * Function : From crossing points found above find */
/* central lamdas.

* /
/* Note : Remember three crossing points will be found */
/* 2 lamdas and the turning between them. */
j  • k ' k - k - J e - k ' k ' k - k - k - k - k - k ' k - k - k - k ' k ' k ' k ' k - k - k - k ' k ' k - j t - k - k - k - J f ' k ' k - k ' k ' k - k ' k ' k - k - k ' k ' k - k - k ' k - k - k ' k ' k ' k - k ' k - k - k ' k - k ' k  J

j=0; 
temp=0;
while(temp<0.1)
{

temp=center[j]-center[j+1]; 
if(temp<0.1)
{

center[j+1]= (center[j]+center[j+1])/2;
}
j++;

}
lamdal=center[j-1]; 
temp=0;

}

while(temp<0 .1)
{

temp=center[j]-center[j+1 ];
j++;

}
temp=0 ;

while(temp<0 .1 )
{

temp=center[j ]-center[j+1]; 
if(temp<0.1)
{

center[j+1]= (center[j]+center[j+1])/2;
}
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j++;

lamda2=center[j — 1 ];

/* * /
/* Find Ampltides */

for(i=0 ;i<3 5 0 0 ;i++)
{
if(pow((cutdata[0][i]-lamdal),2)<0.01) ampl=cutdata[1][i]; 
if(pow((cutdata[0][i]-lamda2),2)<0.01) amp2=cutdata[1][i];

}

/★it*******************************************************/
/* Function : Find Combined FWHM 

* /
/* Using simular system to .centers

*/
/* Note : This is done using the normal data not the */
/* diff. data

*/
j  ' k - k ' k ' k - k ' k - k ' k ' k ' k ' k ' k ' k ' k i c ' k - k ' k ' k - k - k - k ' k - k ' k - k ' k - k - k ' k - k ' k ' k ' k ' k ' k ' k ' k - k - k - k ' k ' k - k ' k ' k ' k - k ' k ' k - k - k - k - k ' k ' k ' k  J

for(i=0 ;i<2 0 ;i++)
{

center[i]= 0 .0 ;
}

i=0 ;

while(cutdata[0 ] [i]>lamdal)
{

lamdamax=cutdata[1 ][i ]/2 .0 ; 
i++ ;

}
j = 0;

while(i>0 )
{

i f (((cutdata[1][i]clamdamax) && (cutdata[1][i+1]>lamdamax)) 
II ((cutdata[1][i]>lamdamax) &&

(cutdata[1 ] [i+1 ]clamdamax)))
{

center [ j ] = (cutdata[0 ] [i]+cutdata[0 ] [i+1 ])/2 .0 ; 
j + +;

}
i — ;
}

i=3 5 0 0 ;
while(cutdata[0 ] [i]<lamda2 )
{

lamdamax=cutdata[1 ] [i]/2 .0 ; 
i— ;

}

while(ic3500)
{

i f (((cutdata[1 ] [i]<lamdamax) && (cutdata[1 ] [i+1 ]>lamdamax))
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Il ((cutdata[1 ] [i]>lamdamax) && 
(cutdata[1 ] [i+1 ]clamdamax)))

{
center[j] = (cutdata[0] [i]+cutdata[0] [i+1])/2.0 ; 
j++;

}
i++;
}

dlamdal=center[0 ]-lamdal; 
dlamda2 =lamda2 -center[1 ];

/*****************************************■****************/
/* Function : Write scan data to file "cutdata.dat" */
/*********************************************************/

output=fopen("cutdata.dat","w"); 
for(i=0;i<3500;i++)
{

fprintf(output,"%lf %lf\n",cutdata[0 ] [i],cutdata[1 ] [i]) ;
}
fclose(output) ;

double callsolsos(int posit,int yes_no)
{

double fx, br,sos,gauss,amp,pos; 
double lorl,lor2; 
double cutdata_new[3500] ; 
double chi_sq,cutdata_min;
FILE *test_outa;

br=(population[0][posit]/population[l][posit]); 
sos=population[2][posit]-population[3][posit]; 
amp=population[0][posit]; 
pos=population[2][posit] ; 
lorl=population[4][posit]; 
lor2=population[5][posit];

cutdata_min=le64; 
for(i=3 4 99;i>=0;i— )
{

fx=cutdata[0][i];
//gauss=((fx*-0.04242)+58.42694); 
gauss=3.0;
cutdata_new[i]=sosplv(fx, br, sos,lorl,lor2,gauss,amp,pos,i); 
if(cutdata_new[i]<cutdata_min) cutdata_min=cutdata_new[i];

}

if(yes_no==l)
{

test_outa=fopen("vdata.dat", "w"); 
for(i=0;i<3500;i++)
{

//cutdata_new[i]=cutdata_new[i]-cutdata_min; 
fprintf(test_outa,"%lf 

%lf\n",cutdata[0][i],cutdata_ngw[i]);
}
fclose(test outa);

}
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j  -k'k-k-k-k'k'k-k'k'k'k'k-k-k'k'k'k-k'k'k'k-jc'k-k-k-k-k'k-k'k-k-k'k'k'k-k-k'k'k'k'k'k'k'k'k-k'k'k'k'k-k'k-k-k'k'k-k j

/ * Procedure : Calculate chi squared 
*/

J  - k ' k ' k ' k - k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k - k - k ' k ' k ' k - k - k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k - k - k ' k - k - k - k ' k ' k ' k ' k ' k - k ' k - k ' k  J

chi_sq=0.0;
for(i=0;i<3500;i++)

{
chi_sq+=pow((cutdata[1][i]-cutdata_new[i]),2)/cutdata[1][i]

}
chi_sq=chi_sq; 
return(chi_sq) ;

double sosplv(double fx,double br,double sos, double lorl,double 
lor2 , double gauss, double amp,double pos,int n)
{

int j ;
static double sqrt2= 2 .0 5 1 ; 
static double con=2 .6 9 3 9 e-6 ;
static double A [4]={-1.2150,-1.3509,-1.2150,-1.3509}; 
static double B [4]={1.2359,0.3786,-1.2359,-0.3786}; 
static double C [4]={-0.3085,0.5906,-0.3085,0.5906}; 
static double D [4]={0.0210,-1.1858,-0.0210,1.1858}; 
double al[4],be[4]; 
double y,V,X,Y,constant;

y=0 ;
V=0 ;
X = ((2 6 1 7 )-(2 *pos)-(con*n*n))/(lorl*sqrt2 );
Y=sqrt2 /lorl; 

constant=amp;

for(j = 0 ;j<=3 ;j++)
{

a l [j]= C [j]*(Y—A [j ])+ D [j] * (X-B[j]);
b e [j ] = (Y-A[j])*(Y-A[j] )+(X-B[j ])*(X-B[j ]);
V+=al[j ]/be[j ];

}

y+=constant*V;
X = ( (2 6 1 7 )-(2 *pos-sos)- (con*n*n))/(lor2 *sqrt2 ) ;
Y=sqrt2 /lor2 ;

constant=amp/br;
V=0 .0 ;

f or(j = 0 ;j <=3 ;j++)
{

al[j]=C[j]*(Y-A[j])+D[j]*(X-B[j]);
b e [j]=(Y—A [j ])*(Y—A [j ])+(X-B[j ])*(X-B[j]);
V+=al[j]/be[j] ;

}

y+=constant*V; 
return(y) ;

)

void gen_pop(void)



int i;
/*FILE *pop_in;

pop_in=fopen("popdata.dat", "r") ;
for(i=0;i<20;i++)
{

fscanf(pop_in,"%lf %lf %lf %lf %lf 
%lf\n",¿¡population [0][i],spopulation[1][i],Spopulation[2][i],Spopulat 
io n [3] [i],Spopulation[4] [i],¿population[5] [i]);

}
fclose(pop_in);
*/
for(i=0;i<20;i++)
{

population[0] [i]=ampl+(float) (rand()% 100 0)- 
500;//((float)(rand()%50000)/10.0)+16000;//ampl+(((float)(rand()%100) 
/100.0)—0.5)*ampl/2;

population[1][i]=amp2+(float)(rand()%1000)- 
500;//((float)(rand()%50000)/10.0)+16000;//amp2+(((float)(rand()%100) 
/100.0)-0.5)*amp2/2;

population[2][i]=lamdal+(((float)(rand()%1000)/1000.0)-0.05); 
population[3][i]=lamda2+(((float)(rand()%1000)/1000.0)—0.05); 
population[4][i]=0.3+(float)(rand()%2000)/10000; 
population[5][i]=0.3+(float) (rand()%2000)/10000;

}

double D_Evolution(void)
{

int i,k,vec_l,vec_2,vec_3; 
double sec_pop[6][20]; 
double cost_vec_pri,cost_vec_tri; 
double min cost;

/'k-k-k-k'k'k'k'k'k'k'k'k-k'k'k'k-k'k'k'k'k'k-k'k'k'k'k-k'k-k-k'k-k'k'k'k'k'k'k-k'k'k-k'k'k-k'k'k'k-k'k-k-k'k'k-k-k j

/* Function : Differential Evolution algorithm */
/* Loop through all 100 members of the population */
I'k'k-k'k'k'k-k-k-k'k-k-k-k-k'k-k'k-k'k-k-k-k'k'k'k-k'k-k-k-k-k-k-k-k'k-k-k-k'k-k-k-k'k-k'k'k-k'k'k-k-jr-Jt-k-k-k-k'k j

for(i=0;i<20;i++)
{

min_cost=le63;

!  •k-k'k-k'k-k'k'k'k-k-k-k-k'k-k-k'k-k-k-k-k-k-k'k'k-k-k-k-k-k-k'k'k-k'k-k'k'k-k-k-k-k-k-k-k-k-k-k-k-k'k'k'k'k-k-k-k J

/* Choose three random Vectors from the primary pop. */
/* All three must be different but may include the */
/* selected vector for comparison later if I choose */
/*********************************************************/

do(vec_l=rand()%20); while(vsc l==i);
do(vec_2=rand()%20); while(vec_2==vec_l || vec_2==i); 
d o (vec_3=rand()%20); while(vec 3==vec 1 || vec 3==vec 2 || 

vec 3==i);
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'̂k-k'k'k'k'k-k-k-k'k-k-k'k-k'k-k'k-k-k-k-k'k-k-k'k-k'k'k*'k-k'k'k-k'k-k'k-k'k-k'k'k'k'k'k-k-k-k'k'k'k-k-k-k:'k'k-k/

/ * Function : Generate trail vector, 0.5 is the F value */
/'k-k'k-k-k'k-k'k-k-k'k'k'k-k'k-k'k'k-k'k'k'k'k'k'k-k-k-k-k-k-k'k-k'k'k-k'k-k'k-k-k'k'k-k'k-Je'k'k'k-k-k'k-k'k-k-k-k j

for(k=0;k<6;k++)
{

population[k][2 0 ]=population[k][vec_l]+0 .9 * (population[k][vec_ 2  
]-population[k][vec_3 ]);

}

/*********************************************************/
/* Function : Check which vector is better 

*/
j •k'k-k'k'k'k'k'k-k'k'k'k'k'k-k'k'k’k'k'k-k'k-k-k'k-Jc'k'k'k-k-k-k-k'k'k'k-k'k'k'k-k-k-k'k'k-k'k'k'k'k'k'k-k'k'k'k'k j

cost_vec_pri=callsolsos(i, 0) ; 
cost_vec_tri=callsolsos(20, 0) ;

if(min_cost>cost_vec_pri) min_cost=cost_vec_pri;

i f ((cost_vec_pri>cost_vec_tri) && (population[4][20] < 1) && 
(population[ 4 ] [20] > 0.3) && (population[5][20] < 1) &&
(population[5] [20] > 0.3) && (population[0] [20]/population[1] [20] < 3 
&& population[0][20]/population[1][20] > 0.33))

{
//printf("%d %lf %lf Swaping\n",i,cost_vec_pri,cost_vec_tri); 
for(k=0;k<6;k++)
{

sec_pop[k][i]=population[k][20];
}

}
else
{

//printf("%d %lf %lf Not 
Swaping\n",i,cost_vec_pri,cost_vec_tri); 

for(k=0;k<6;k++)
{

sec_pop[k][i]=population[k][i];
}

}
}
I •k-k'k-k'k-k'k'k'k'k'k'k-k'k-k-k-k'k-k-k'k-k-k-k'k-k-k-k'k-k'k'k'k-k-k-kic-k-k'k'k-k-k'k'k'k-k'k-k'k-k'k'k'k-k-k'k/

/ * Function : Swap secondary and primary 
* /

f o r (i=0;i<2 0;i++)
{

for(k=0;k<6;k++)
{

population[k][i]=sec pop[k][i];

return(min cost);

void main(void)
{

double lam_min,dummy; 
int j,i,i min;
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FILE *pop_out;
FILE *result;

for(oloop=0;oloop<l;oloop++)
{

preprocess();

/* Generate first population */ 
gen_pop();

/* Start Genetic algor. */

for(i=0;i<200;i++)
{

dummy=D_Evolution () ;
// p r i n t f ; 
printf("%d %lf %lf %lf %lf 

%lf\n",i,dummy,population[0][20],population[1][20],population[4][20], 
population[5] [20]);

}
printf("\n");

/* Find Minimum chi squared */ 
lam_min=le64; 
for(i=0;i<20;i++)
{

dummy=callsolsos(i,0); 
if(lam_min>dummy)
{

lam_min=dummy;
i_min=i;

}
}
dummy=callsolsos(i_min, 1) ;

pop_out=fopen("popdata.dat","w");
/ / d\ommy=dummy / 3 5 0 0 ;
//fprintf(pop_out,"Population data min %d at chi_sqr 

%lf\n",i_min,dummy); 
for(j=0;j<20;j++)
{
for(i=0;i<6;i++)
{

fprintf(pop out,"%lf ", population[i] [j]);
}

fprintf(pop_out,"\n");
}
fclose(pop_out);
printf("Loop %d chi sqrd=%lf @ %d\n",oloop,dummy,i_min); 
result=fopen("result.dat","a"); 
fprintf(result,"%lf ", dummy); 
for(i=0;i<6;i++)
{

fprintf(result,"%lf ",population[i][i_min]);
)

fprintf(result,"\n"); 
fclose(result);
}
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getch();
}

C.4 Program 4: Routines to test viability of deconvolution system

Voigt function test code

#include <stdio.h>
#include <stdlib.h> 
iinclude <conio.h> 
tinclude <math.h>

float pri_pop[1 6 ][2 1 ],sec_pop[1 6 ] [2 0 ]; 
float input_dat[1 0 1 ][1 0 0 ];

FILE *input;

void read_data(void)
{

int i,j; 
float tl,t2 ;

input=fopen("mkvo.dat”, " r " ) ; 
for(i=0 ;i<1 0 1 ;i++)
{

for(j=0 ;j < 1 0 0 ;j++)
{
fscanf(input,"%f %f %f\n",&tl,&t2 ,&input_dat[i] [j] ) ;

void gen_pop(void)
{

int i,j;

for(i=0;i<20;i++)
{

for(j=0;j <16;j=j+4)
{
pri_pop[j] [i]=((float)(rand()%30000)/10000.0)-1.5; 
}
for(j=l;j <16;j=j+4)
{
pri_pop[j] [i]=((float)(rand()%30000)/10000.0)-1.5; 
}
pri_pop[2][i]=pri_pop[0][i]; 
pri_pop[3][i]=pri_pop[1][i]; 
prijpop[6][i]=-l*pri_pop[4][i]; 
pri_pop[7][i]=-l*pri_pop[5][i]; 
pri_pop[10][i]=pri_pop[8][i]; 
pri_pop[11][i]=pri_pop[9][i]; 
pri_pop[14][i]=-l*pri_pop[12][i]; 
pri_pop[15] [i]=-l*pri_pop[13] [i] ;

}
pri_pop[0] [0]=-1.215 0; 

pri_pop[l][0]=-1.3509;
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pri_pop[2][0]=-1.2150; 
pri_pop[3][0]=-1.3509; 
pri_pop[4][0]=1.2359; 
pri_pop[5][0]=0.378 6; 
pri_pop[6][0]=—1.2359; 
pri_pop[7][0]=-0.378 6; 
pri_pop[8][0]=-0.3085; 
pri_pop[9][0]=0.5906; 
pri_pop[10] [0]=— 0.3085; 
pri_pop[11][0]=0.5906; 
pri_pop[12][0]=0.0210; 
pri_pop[13][0]=—1.1858; 
pri_pop[14] [0]=-0.0 210; 
pri_pop[15][0]=1.1858;

float sosplv(float x,float y,int posit)
{

int i;
float v,top,bottom;

v=0 .0 ;

for(i=0 ;i<4 ;i++)
{

top=(pri_pop[8+i][posit]*(y- 
pri_pop[0+i][posit]))+(pri_pop[12+i][posit]* (x-pri_pop[4+i][posit]));

bottom=pow((y-pri_pop[0+i][posit]),2) +pow((x- 
pri_pop [4 + i] [posit]) , 2) ; 

v+=top/bottom;
}
return(v);

float callsolsos(int posit,int yes_no)
{
int i ,j ;
float cutdata_new[101] [100]; 
float x,y; 
float chi_sq;
FILE *output;

for(i=0;i<101;i++)
{

fo r (j=0;j<100;j++)
{

x=-4.0+(0.08*(float)i); 
y=0.104+(0.004*(float)j) ;

cutdata_new[i][j]=sosplv(x,y,posit);
}

}
chi_sq=0.0;
fo r (i=0;i<101;i++)
{

for(j=0;j<100;j++)
{
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chi_sq+=pow((input_dat[i][j]— 
cutdata_new[i][j]),2)/input_dat[i][j];

}
}
if(yes_no==l)
{

output=fopen("fitted.dat","w"); 
for(j=0 ;j < 1 6 ;j++)
{

fprintf(output,"%f ",pri_pop[j][posit]);

}
printf("\n"); 
for(i=0 ;i<1 0 1 ;i++)
{

f o r (j=0 ;j<1 0 0 ;j ++)
{

x=-4 .0+(0 .0 8 * (float)i);
y=0 .1 0 4 +(0 .0 0 4 *(float)j);
fprintf(output,”%f %f %f\n",x,y,cutdata_new[i][j ]);

}

return(chi_sq);
}

double D_Evolution(void)
{

int i,k,vec_l,vec_2,vec_3; 
float cost_vec_pri,cost_vec_tri; 
float min cost;

*/
* /

for(i=0;i<20;i++)
{

min_cost=le63;

j  •k'k'k'k'k'k-k-k-k-k-k'k-k'k'k'k-k'k-k'k'k'k'k'k'k'k'k'k'k-k-k'k-k-k-k-k-k'k'k'k-k-k'k'k'k-k'k'k'k-k-k-k-k'k-k'k'k j

/* Choose three random Vectors from the primary pop.
/* All three must be different but may include the 
/* selected vector for comparison later if I choose
j  -k-k-k'k'k-k'k'k'k-k-k-k-k-k'k'k-k-k-k-k'k'k-k-k-ie-k-ie'k-k'k'k-k-k-k-k-k-k-k-k-k-k'k'k-k-k'k-k-k-k-k'k-k'k-k'k-k'k j

do(vec_l=rand()%20); while(vec_l==i); 
do(vec_2=rand()%20); while(vec_2==vec_l || vec_2==i); 
do(vec_3=rand()%20); while(vec_3==vec_l || vec_3==vec_2 || 

vec_3==i);

^ ' k ' k - k ' k ' k ' k ' k ' k - k - k ' k - k ' k ' k - k ' k - k - k - k ' k - k - k - k ' k i e - k - k ' k - k - k - k - k ' k - k ' k - k ' k ' k i f ' k - k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k r - k ' k ' k - k - k - k  j

/* Function : Generate trail vector, 0.5 is the F value */

V
*/
* /

j / ' k ' k ' k ' k - k ' k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k - k - k ' k ' k - k ' k ' k - k - k - k - k ' k - k - k - k ' k ' k - i r - k ' k ' k - k ' k - j c ' k - k ' k ' k ' k ' k - k - k ' k ' k ' k ' k ' k  j

/* Function : Differential Evolution algorithm 
/* Loop through all 100 members of the population
j  • k - k ' k - k ' k ' k ' k ' k ' k - k - k - k - k - k ' k - k ' k ' k ' k ' k - k - k - k ' k ' k - k - k - k - k - k - k - k ' k ' k ' k - k - k ' k ' k - k ' k - k ' k ' k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k  J
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for(k=0 ;k<1 6 ;k++)
{

pri_pop[k][2 0 ]=pri_pop[k][vec_l]+0 .5 * (pri_pop[k][vec_2 ]~ 
pri_pop[k][vec_3 ]);

}

j  ■k'k-k-k-k'k-k'k'k'k'k-k-k'k-k-k-k-k-k'k'k'k'k-k'k-k'te-k'k'k-k-k-k'k'k'k'k'k'k-k-k-k-k-k'k-k'k-k'k'k'k'k-k'k-k-k-k j
/* Function : Check which vector is better 

*/

cost_vec_pri=callsolsos(i,0 ); 
cost_vec_tri=callsolsos(2 0 ,0 );

if(min_cost>cost_vec_pri) min_cost=cost_vec_pri; 
if(min_cost>cost_vec_tri) min_cost=cost_vec_tri;

if(cost_vec_pri>cost_vec_tri)
{

for(k=0 ;k<1 6 ;k++)
{

sec_pop[k][i]=pri_pop[k][2 0 ];
}

}
else
{

for(k=0 ;k<1 6 ;k++)
{

sec_pop[k][i]=pri p o p [k][i];

}
!  ' k - k - k - k ' k ' k - k ' k ' k ' k ' k ' k - k - k ' k ' k - k ' k - k ' k - k - k - k ' k ' k - k ' k - k - k - k - J e - k ' k - k ' k - t r ' k - k - k - k - k - k - k - J f - k ' k - k - k - k - k ' k ' k - k - k ' k - k - k  j

/ * Function : Swap secondary and primary 
* /

/'k'fr'k'k'k'k'k'k'k'k'k'k'k'k'k-k'k-k'k-k'k-k'k-k'k'k'k'k'k'k-k'k-k-k'k-k'k'k-k-Jc'k'k'k'k'k'k-k-k-k'k-k'k-k-k'k-k'k J

for(i=0;i<20;i++)
{

for(k=0;k<16;k++)
{

pri_pop[k][i]=sec_pop[k][i];
}

}

return(min_cost);
}

void m a i n ()
{
int i,i_min,j; 
float dummy,lam_min;
FILE *chi;

gen_pop(); 
read_data() ;
chi=fopen("chis.dat",”w") ; 

for(i=0;i<10000;i++)
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dummy=D_Evolution() ; 
fprintf(chi,"%d %f ",i,dummy);

lam_min=le64; 
for(j=0;j <2 0;j++)
{

dummy=callsolsos(j , 0) ; 
if(lam_min>dummy)
{

1am_min=dummy; 
i_min=j;

}
}
for(j =0;j <16;j++)
{

fprintf(chi,"%f ",pri_pop[j][i_min]);

}
fprintf(chi,"\n");

/* Find Minimum chi squared */ 
lam_min=le64; 
for(i=0;i<20;i++)
{

dummy=callsolsos(i, 0) ; 
if(lam_min>dummy)
{

1am_mi n=dummy; 
i_min=i;

}
}
dummy=callsolsos(i_min,1);

Genetic algoritm test code

// Genetic Algorithm 
// Directed Evolution

// Version 0.1
// Date - 31/09/98
// Author - mck@physics.dcu.ie

#include <stdio.h>
#include <stdlib.h> 
finclude <conio.h>
#include <math.h>

#define no_pop 25
#define no_var 10
tdefine no_step 100
#define const 1.253314137 
#define tot_loop 1500

// Globol Variables
int i,j,k,count;
int a,b,c,tempint;
int loop, cr_count;
double start_value[no_var];
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double trail_value[no_var]; 
double bestfit[no_var]; 
double cost_a[no_pop]; 
double population[no_pop][no_var]; 
double seed[no_pop][no_var]; 
double far start_shape[no_step][2]; 
double far trail_shape[no_step]; 
double cr=0.6,f=0.5,temp_lamda; 
double tempt,score,costmin,costold; 
double ran_temp,best; 
double lamda_min,lamda_max, delta;

FILE *data_out;
FILE *cost_out;
FILE *loopl;

double lineshape(double); 
double cost(void); 
void check(void); 
void input(void);

// Lineshape generator
double lineshape(double linepoint)
{

double y; 
double t [12];

t [0]=((linepoint-trail_value[3])*(linepoint-trail_value[3])); 
t [1]=(trail_value[2]*trail_value[2]); 
if(t [1]==0) printf("tl"); 
t [2] =-2* (t [0]/t [1]) ; 
t [3] =exp(t [2]) ;
t [4]=((linepoint~trail_value[6])*(linepoint-trail_value[6])); 
t [5]=(trail_value[5]*trail_value[5]); 
if(t [5]==0) printf("t5"); 
t[6]=-2*(t[4]/t[5]); 
t [7]=exp(t [6] ) ;
t [8]=((linepoint-trail_value[9])*(linepoint-trail_value[9])); 
t [9]=(trail_value[8]*trail_value[8]); 
if(t[9]==0) printf("t9"); 
t[10]— 2*(t[8]/t[9]); 
t [11]=exp(t[10]) ;

y=trail_value[0]+(((trail_value[1]/(trail_value[2]*const))*t[3]
) +

( (trail_value[4]/(trail_value[5]*const))*t[7] ) +
((trail_value[7]/(trail_value[8]*const))*t[11]));

return y;
}

// Costing function 
double cost(void)
{

int loop;
double temp_cost,tot_cost; 

tot_cost=0.0;
for(loop=0;loop<no_step;loop++)
{
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temp_cost=((start_shape[loop][1]-trail_shape[loop])* 
(start_shape[loop][1]-trail_shape[loop])); 

tot_cost=tot_cost+temp_cost;

tot_cost=tot_cost; 
return(tot_cost);

}

void check(void)
{

ran_temp=(double) (rand()%10 0 0);
if(trail_value[1]<1 || trail_value[1]>3000) trail_value[1]=
4 000.0*(ran_temp/1000)+0.00001;

ran_temp=(double)(rand()%1000);
if(trail_value[2]<0.1 || trail_value[2]>3) trail_value[2]= 
3*(ran_temp/1000)+0.00001;

ran_temp=(double) (rand()% 10 0 0);
if(trail_value[3]<(lamda_min) || trail_value[3]>(lamda_max)) 

trail_value[3]=
1270+60*(ran_temp/1000);

ran_temp=(double)(rand()%1000);
if(trail_value[4]<1 )| trail_value[4]>3000) trail_value[4]= 
4000.0*(ran_temp/1000)+0.00001 ;

ran_temp=(double) (rand()% 10 0 0);
if(trail_value[5]<0.1 || trail_value[5]>3) trail_value[5]= 
3*(ran_temp/1000)+0.00001;

ran_temp=(double)(rand()%1000);
if(trail_value[6]<(lamda_min) || trail_value[6]>(lamda_max)) 

trail_value[6]=
1270+60*(ran_temp/1000);

ran_temp=(double) (rand()% 1000);
if(trail_value[7]<1 || trail_value[7]>3000) trail_value[7]= 
4000.0*(ran_temp/1000)+0.00001;

ran_temp=(double) (rand()% 10 0 0);
if(trail_value[8]<0.1 || trail_value[8]>3) trail_value[8]= 
3*(ran_temp/1000)+0.00001;

ran_temp=(double) (rand()% 10 0 0);
if(trail_value[9]<(lamda_min) || trail_value[9]>(lamda_max)) 

trail_value[9]=
1270+60*(ran_temp/1000);

}

void input(void)
{

double input[2000][2]; 
double temp;

int i,j;

FILE *data in;

}
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data_in=fopen("100a.dat", "r") ; 

i=0 ;
while(!feof(data_in))
{

fscanf(data_in,"%lf %lf",&input[i] [0],&input[i] [1]) ; 
i++ ;

}
lamda_max=input[0][0];
lamda_min=input[i—2] [0];
delta=(lamda_max-lamda_min)/no_step;

j=0;
for(i=0;i<no_step;i++)
{

temp=lamda_max-(i*delta); 
while(input[j][0]>temp) j++; 
start_shape[i][0]=input[j][0]; 
start_shape[i][1]=input[j][1];

}

}

void main()
{

clrscr(); 
input ();
data_out=fopen("temp.dat","w");

/*
// Get start values
printf("Input start value for baseline,area,width,lamda ? \n"); 
scanf("%lf %lf %lf %lf %lf %lf %lf %lf %lf 

%lf", &start_value[0],
&start_value[1],&start_value[2],&start_value[3],&start_value[4]

t

&start_value[5],&start_value[6],&start_value[7],&start_value[8]
!

&start_value[9]);

//generate start shape 
for(i=0;i<no_var;i++)
{

trail_value[i]=start_value[i];
}

*/
for(i=0;i<no_step;i++)
{

/* start_shape[i][0]=((((start_value[3]+start_value[6]+
start_value[9])/3)-3.5)+((double)i*7e-2)); 
temp_lamda=start_shape[i][0]; 
start_shape[i][1]=lineshape(temp_lamda)+(20—

(double) (rand()% 4 0));
*/ fprintf(data_out,"%lf %lf

\n",start_shape[i][0],start_shape[i][1]);

}

fclose(data out);
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// Generate random vectors in search space

for(i=0;i<no_pop;i++)
{

ran_temp=(double 
population[i][0]̂  
ran_temp=(double 
population[i][1]- 
ran_temp=(double 
population[i][2] 
ran_temp=(double 
population[i] [3]; 
ran_temp=(double 
population[i] [4]; 
ran_temp=(double 
population[i][5]: 
ran_temp=(double 
population[i][ 6]: 
ran_temp=(double 
population[i][7] 
ran_temp=(double 
population[i][8]: 
ran_temp=(double 
population[i][9]

(rand()%1000);
300+300*(ran_temp/1000); 
(rand()%1000);
1000+2000.0*(ran_temp/1000); 
(rand()%1000);
1+2*(ran_temp/1000);
(rand()%1000);
1270+60*(ran_temp/1000); 
(rand()% 1000);
1000+2000.0*(ran_temp/1000); 
(rand()%1000);
1+2*(ran_temp/1000);
(rand()%1000);
1270+60*(ran_temp/1000); 
(rand()%1000);
1000+2000.0*(ran_temp/1000); 
(rand()%1000);
1+2*(ran_temp/1000);
(rand()%1000);
1270+60*(ran_temp/1000);

//Calculate Cost array 
for(i=0;i<no_pop;i++)
{

for(k=0;k<no_step;k++)
{

temp_lamda=start_shape[k][0]; 
for(j =0;j<no_var;j ++)
{

trail_value[j]^population[i][j];
}
trail_shape[k]=lineshape(temp_lamda);

}
cost_a[i]=cost();

}
cost_out=fopen("cost.dat","w");
count=0;
costmin=lel2;
while(count<tot_loop)
{

for(i=0;i<no_pop;i++)
{
//Pick three vectors from the search Space 
a — (rand()%no_pop); 
b=(rand()%no_pop); 
c=(rand()%no_pop);

j=(rand()%no_var);

// f=(rand()% 10);
/ /  f - f / 1 0 ;

for(k=0;k<no var;k++)
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tempt=((double)(rand()%100)/100); 
if(tempt < cr || k==10)
{

trail_value[j]=population[c][j]+(f*(population[a][ 
population[b] [j] ) ) ;

}
else
{

trail_value[j]=population[i][j];
}
j=(j + l) ; 
if(j==10) j =0;

}
//Calculate cost of trail vector 
check();

for(k=0;k<no_step;k++)
{

temp_lamda=start_shape[k][0]; 
trail_shape[k]=lineshape(temp_lamda);

}
score=cost () ;

if(score<=cost_a [i])
{

for(k=0;k<no_var;k++)
{

secd[i][k]=trail_value[k]; 
cost_a[i]=score;

}
}
else
{

for(k=0;k<no_var;k++)
{

secd[i][k]=population[i][k];
}

}

}

for(i=0;i<no_pop;i++)
{

for(k=0;k<no_var;k++)
{

population[i][k]=secd[i][k];
}

}

{

//if(count==100) f=0.7 
//if(count==500) f=0.8 
//if(count==750) f=0.9

count++;

//find costmin



costold=costmin;

for(i=0;i<no_pop;i++)
{

if(costmin>cost_a[i])
{

costmin=cost_a[i]; 
tempint=i;
for(k=0;k<no_var;k++)
{

bestfit[k]=population[i][k];
}

}
}
best=costmin/90;
printf("%d %lf %d %lf \n",cr_count,f,count,best); 
if(best<250)
{

if(costold-costmin<10)
{

cr count++;

else

cr count=0;

if(cr_count>10)
{

ran_temp=rand()%10 0 ; 
f=ran_temp/100; 
cr_count=0;

}
}

fprintf(cost_out,"%d %lf \n",count,best);
}

fclose(cost_out); 
data_out=fopen("tempi.dat", "w"); 
for(i=0;i<no_var;i++)
{

trail_value[i]=bestfit[i];
}

for(i=0;i<no_step;i++)
{

start_shape[i][0]=((((bestfit[3]+bestfit[6]+ 
bestfit[9])/3)-3.5)+((double)i*7e-2)); 
temp_lamda=start_shape[i][0]; 
start_shape[i][1]=lineshape(temp_lamda); 
fprintf(data_out,"%lf %lf 

\n",start_shape[i][0],start_shape[i][1]);
}

fclose(data_out); 
for(k=0;kcno_var;k++)
{

printf("%lf ",bestfit[k]);
}
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Deconvoltion test code (deconvolute perfect data)

tinclude <stdio.h> 
tinclude <stdlib.h> 
♦include <conio.h> 
tinclude <math.h>

int i,j;
float far data[8333]; 
double function[1300];

double far datac[7033]; 
double intsum,tempff; 
float tempf; 
float far datad[8333];

FILE *org;
FILE *conv;
FILE *deconv;
FILE *input;
FILE *filter;

void main()
{

clrscr();

j  ■k'k-k-k'k'k'k'k'k-k'k'k'k'k-k'k-k'k-k'k'k'k'k'k'k'k'k'k'k'k'k'k-k-k'k j
/* GENERATE INPUT FUNCTION */
/* 8333 Steps total */
/************•*•**********************/
/*
for(i=0;i<8333;i++)
{

i f ( ( i > 3 0 0 0  && i < 3 1 0 0 ) M  ( i >3300  && i < 3 4 0 0 ) )  
{

data[i]=1;
}
else
{

data[ i ] =0;
}

}

/***********************************/ 
/* Integrate accross input */
/* 7933 Steps total */
I'k-k'k'k'k'k-k'k'k'k'k'k-k'k'k-k-k-k-k-k'k-k'k-k-je-k-k-k-k-k'k-k-k-k'k j  
/*
for(i=0;i<8033;i++)
{
/***********************************/ 
/* GENERATE Filter FUNCTION */
/* 300 Steps total */
'̂k'k'k'k-k'k'k'k'k'k'k'k'k-k'k'k-k-k'k'k-k'k-k-k'k-k-k-k-k'k'ff-k-k-k-k J 

/*
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for(j=0;j<150;j ++)
{

function[j]=j;
}
for(j=299;j >14 9;j —  )
{

function[j] = {299—j ) ;
}

intsum=0.0;
for(j=0;j<300;j++)
{

intsum+=((float)data[i+j]*(float)function[j]);
}
datac[i]=intsum;

}

* /
// Read in data file

input=fopen("fdata.rei", "r") ;

for (i=0;i<650;i++)
{

fscanf(input,"%f %f ",&tempf,&tempf);
}

for(i=0;i<7033;i++)
{

fscanf(input,"If %lf ",&tempf,Stempff); 
if(tempff<215)
{

datac[i]=tempff;
}
else
{

datac[i]=tempff;
}
printf("%lf \n",datac[i]);

}
fclose(input);

// Read in Filter Function

filter=fopen("lorentz.dat", "r") ; 
for(i=0;i<1300;i++)
{

fscanf(filter,"%f %lf", &tempf,&function[i]);

function[i]=function[i]/100; 
printf("%lf \n",function[i]);

}
fclose(filter);

j  ■ k - k ' k ' k ' k ' k ' k - k ' k - k - k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k - k - k ' k ' k ' k ' k ' k ' k - k - k ' i e  j

/* Deconvolute Data to Input */
/* 7933 Steps total */
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//Make assumption about start of data

for(i=0;i<8333;i++)
{

datad[i]=0.042;
}

//Start deconvolution

for(i=0;i<7033;i++)
{

I •k'k-k'k-k'k-k-k-k'k'k'k'k'k-k-k-k'k-k-k-k-k'k-k-k-k-k'k-k-k'k-k'k'k-k j
/* GENERATE Filter FUNCTION */
/* 300 Steps total */
J •k-k-k-k-k'k-k-k-k-k'k'k'k'k'k-k-k'k'k'k'k'k-k-k-k-k-fc'k-k-k'k'k'k'k'k /

//Integrate to second last step

intsum=0.0;
for(j=0;j<1299;j++)
{

intsum+=datad[i+j]*(float)function[j];
}

intsum=intsum;
datad[i+1298]=(datac[i]-intsum);
//printf("%d %f \n",i,datad[i+400]);

)

//Output Data

org=fopen("org.dat","w"); 
conv=fopen("conv.dat","w"); 
deconv=fopen("deconv.dat","w");

for(i=0;i<7033;i++)
{

fprintf(conv,"%d %f \n",i+650,datac[i]);
}

for(i=650;i<7 683;i++)
{

fprintf(deconv,"%d %f \n",i,datad[i]); 
fprintf(org,"%d %f \n",i,data[i]);

}

fclose(org); 
fclose(conv); 
fclose(deconv);

//getch();

}
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C.5 Program 5: Simulation of Bragg grating with apodisation

Author: Dr. Vincent Ruddy

VRAP0D3.FOR 
Lineshape with apodisation

IMPLICIT DOUBLE PRECISION (A-H,K,0-Z)
COMPLEX PQ,RS,SMI,TERM1,TERM2,TERMT,TERMB,GAMMA,CT,CSIG,A,B 
COMPLEX AA,BB,F,TI,TR,SHAA,SNBB,TETA 
DIMENSION ALF(10000),ANSP(3000),X(3000)
SM1=(0.0,1.0)
PIE=3.14159

Define the Bragg wavelength and grating length in metres 
XLAMB=1300.OE-9 
XL=2.5E-3

Define the index modulation value (maximum value at grating 
tre)

DELN=2.000E-4 
Define the Gaussian apodisation function ALF(I)

DO 2 1=1,1 
ALF(I)=1.OE+5

Set up the imaginary part of the phase to account for apodisation 
sigi is the imaginary part of the detuning parameter sigma to 
take into account Gaussian apodisation 
of the form

exp(-ALF(Z+L/2)**2)
The function y which is

Kappa*TANH(A+iB)

C GAMMA-i(SIGMA)*TANH(A+iB)

C and its complex conjucate are multiplied together

SIGI=ALF(I)*XL/2.0 
YMAX=0.0 
DO 1 N=1,300
XLAM=12 97,8+(4.0)*N/300.0 
XLAM=XLAM*(IE-9)
XKAP=PIE*DELN/XLAM 

C Set up SIGR the real part of the detuning parameter sigma 
Sl=(2.0*PIE/XLAM)*DELN
S2=(2.0*PIE*1.45)*((1.0/XLAMB)-(1.0/XLAM)) 
SIGR=S1+S2

C Define the COMPLEX number SIGMA (SIGR,SIGI) 
CSIG=SIGR+SM1*SIGI 
TOP=-2*SIGR*SIGI
BOT=(XKAP**2)- (SIGR**2)+(SIGI**2)
IF (BOT.EQ.O.O) THEN
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T E T A = P I E / 2 . O

ELSE
TETA=DATAN2(TOP, BOT)

ENDIF
TP=TETA/2.0
G=DSQRT(BOT**2+TOP**2)
F=DSQRT(G)
A=XL*F*DCOS(TP)
B=XL*F*DSIN(TP)
AA=2.0*A 
BB=2.0*B
IF(AIMAG(AA).EQ.0.0) THEN 

CHAA=DCOSH(AA)
SHAA=DSINH(AA)

ELSE
AAP=AIMAG(AA)
CHAA=DCOS(AAP)
SHAA=SM1*DSIN(AAP)

ENDIF
IF(AIMAG(BB).EQ.0.0) THEN 

CSBB=DCOS(BB)
SNBB=DSIN(BB)

ELSE
BBP=AIMAG(BB)
CSBB=DCOSH(BBP)
SNBB=-SM1*DSINH(BBP)

ENDIF
GAMMA=(A/XL)+SM1*(B/XL)
TR=(SHAA)/(CHAA+CSBB)
TI=SNBB/(CHAA+CSBB)
CT=TR+SM1*TI 
PQ=XKAP*CT 
TERMT=CONJG(PQ)
RS=GAMMA-SM1*(CSIG)* (CT) 
TERMB=CONJG(RS)
TERM1=PQ*TERMT 
TERM2=RS*TERMB 
ANSP(N)=TERM1/TERM2 
YMAX=AMAX1(ANSP(N),YMAX)
X (N)=XLAM 
X(N)=XLAM*(1.0E9)
WRITE(*,3) X(N),ANSP(N)

1 CONTINUE
IF (YMAX.LT.0.9 5) THEN 
GO TO 2 

ELSE
CONTINUE

ENDIF
DO 30 K=1,300 
IF (ANSP(K).EQ.YMAX) THEN 
XLAMO=X(K)

ELSE
CONTINUE 

ENDIF 
30 CONTINUE
C Normalise the spectrum to 1.0 on the peak 

DO 5 M=1,300 
YY=ANSP(M)/YMAX 
W=ABS(X(M)-XLAMO)
HLM=0.3568

2 0 5



IF(YY GT 0 3560 AND YY LT 0 3575) THEN 
W=W*(1 0E9)
WRITE (*,3) DELN,ALF(I),YMAX,W 

ELSE
CONTINUE
ENDIF

CONTINUE
CONTINUE

3
4
25

FORMAT(5X,E15 9,5X,E15 9,2X,E15 9,2X,E10 4,2X,E15 9) 
FORMAT(5X,2 (3X,E10 4))
FORMAT(5X,19,5X,E10 4,5X,E10 4,5X,E10 4,5X,E10 4)
END

An example o f the output from this program is shown m figure C-l
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Figure C 1


