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Two-Dimensional Minimum Free Energy Autoregressive Parametric

Modelling and Spectral Estimation

P Kiernan

Abstract

We present a new high resolution spectral esttmation method This method 1s a 2-D extension of
the Mimimum Free Energy (MFE) parameter estimation techmique based on extension of the
multidimensional Levinson method Our 2-D MFE techmque determines autoregressive (AR)
models for 2-D fields MFE-AR models may be used for 2-D spectral estimation The
performance of the techmique for spectral estimation of closely spaced 2-D sinusoids in white
noise 1s demonstrated by numerical example

Experimental results from tests on spectral resolution, estimator bias and vanance, and tolerance
to change in signal processing temperature are examuned The effects on spectral estimation of
signal to noise ratio, data set size, model size, autocorrelation type, and dynamic range difference
are illustrated The spectral estimates from combined and single quarter plane estimates are
contrasted The results illustrate that MFE provides accurate low model order spectral estimation

The performance of the method 1s compared to the multidimensional Levinson, conventional
transform, modified covanance (MCV), hybrid, and maximum entropy methods It 1s seen that
our MFE method provides superior spectral estimation over that which can be achieved with the
Levinson algonthm with equivalent computational burden Supenor spectral resolution 1s
achieved at lower data set size than that provided by the Founer transform method In terms of
spectral resolution, the MFE method performs just as well as the MCV method for snapshot data

It 1s seen that MFE provides spectral estimates that are as good as 1f not better than that provided
by hybrid and maximum entropy methods

The computational expense, stability, and accuracy of spectral estimation over a number of
mdependent simulation tnals are examuned for both MFE and MCV methods The bias and
vanance statistics for MFE are comparable to those for MCV However, the computational
expense is far less than that of MCV and maximum likelihood methods

Models generated by our method give nise to stable and causal systems that are recursively
computable Hence they may also be used for correlation extension and for field modelling
applications such as texture generation
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Chapter 1. Introduction

1.1 Introduction

The areas of multidimensional digital signal processing (MDSP) and multidimensional spectral
estimation are introduced We describe various multidimensional spectral estimation techmques
and reference 1s made to application areas We outline our 2-D mimmum free energy (MFE)
method and 1ts connections with both the multidimensional Levinson algorthm [52] and 1-D
MEFE [66], [67] We comment on the ongnality of our techmque and on 1ts advantages over other
methods We discuss the requirement for parametric spectral estimation techmques Comment 1s
also made on the necessity for ongomng research i the area of multidimensional spectral

estimation



1.2 Multidimensional spectral estimation

Digital signal processing (DSP) has been an active field of research for more than twenty-five
years It 1s concerned with the processmg of sampled temporal signals MDSP 1s concerned with
the processing of signals that can be represented as multidimensional arrays such as sampled
images or sampled temporal waveforms received simultaneously from a number of sensors in
some spatial dimension Such signals are multidimensional (m-D, where m > 2) in the vanable
sense There 1s a substantial difference between the theories for the processing of 1-D and 2-D
signals However apart from the 1ssue of computational complexity there 1s little difference
between the 2-D and ligher-dimensional cases [17], [54] The 2-D case 1s the most prevalent case

n applications

DSP may be divided into the two major areas of digital filtering and spectral analysis Spectral
analysis or estimation 1s the process of charactenizing the frequency content of a measured signal
Marple [52] provides an interesting historical account of the developments 1n spectral estimation
from early times The aim of multidimensional spectral estimation 1s to derive an estimate of the
power spectral density (PSD) of an observed or measured multidimensional signal Specifically.
the 2-D PSD function descnibes the distnibution of power with spatial frequency of a 2-D process
The spatial frequency (., £,) may be thought of as the fraction of the sampling frequency used in
obtaining the data samples from a continuous process The autocorrelation at some lag (¢ /) n
2-D 1s the mean product of observed field values at points of distance (k, /) from one another
Since the PSD 1s based on an infimite number of autocorrelation values and we have a fimte

observed field, we may at best only determune an estimate of the PSD

The various techmques for multidimensional spectral estimation are reviewed by Dudgeon and
Mersereau [17], and McClellan [54] The two main classes of spectral estimators are classical

methods based on the Founer transform, and modern spectral estimation methods Modem



methods include autoregressive (AR), maximum entropy (MEM) and minumum vanance (MV)
techmques These techmques generally produce higher resolution spectral estimates than classical
methods In determining épectral resolution 1t 1s important to differentiate between close spurious
peaks caused by noise, and valid peaks Spectral resolution 1s defined as the closeness of the
closest valid spectral components that the method can resolve It 1s an indication of the ability of

a spectral estimator to display spectral fine detail

It 1s possible to denive parametric models of an observed process The model parameters may be
used to estimate the spectral charactenistics of the process The process may also be classified
and synthesized using the model parameters Examples of parametric models include AR and
autoregressive moving average (ARMA) models [7], [85] These models are a direct extenston
of lmnear time senes models [38] Parametric spectral estimation mn the 2-D vanable case
essentially involves determunation of a set of parameters in multidimensional parameter space
which may be used to generate a spectral estimate on the 2-D spatial frequency plane for a 2-D

process

Cadzow and Ogino [7] have developed a 2-D ARMA model spectral estimation method However
the overall resolution capability of this procedure i1s predominantly influenced by the AR
parameter selection AR models have domnated the research effort to date and are finding much
use m ndustry [52] In 1-D it has been found that moving average (MA) models charactenze
broad spectral peaks well but produce poor spectral estimates of narrowband peaks Hence MA
parametric spectral estimators are not classed as high resolution estimators The use of 2-D MA

models for spectral estimation has not been studied 1n the hiterature

The key AR spectral methods are the modified covanance method (MCV) [38] and that due to
solution of the Yule-Walker equations by the Levinson algonithm These methods produce causal,
recursively computable systems [3] The output of such systems 1s calculated from spatial or

temporal past outputs and the spatial or temporal present nput The efficient multichannel



Levinson algonthm has been extended and modified to produce the multidimensional Levinson
algonthm [52] This algonthm determines a set of parameters m multidimensional parameter
space for a 2-D process In multichannel signal processmg there are a number of simultaneous
temporal processes each on a different channel Multichannel spectral estimation 1s concerned
with the problem of estimating the auto-spectra of the individual channels and the cross-spectra

between channels

The MEM 1s a popular high resolution techmque for 1-D spectral estimation However this
method does not extend easily from the 1-D case to 2-D The MEM maxumizes the entropy of an
observed field subject to the constrant that the inverse Fourer transform of the resultant PSD
equals the known autocorrelation values of the observed field Unhke the 1-D case, 2-D AR
spectral estimation does not yield 1dentical results to that given by MEM Thus 1s because the 2-D
process does not possess the autocorrelation sequence (ACS) matching property In other words
the inverse Founer transform of the PSD estimate 1s not necessarily equal to the known
autocorrelation function [50] Hence the relationship between these alternative representations of
a 2-D AR process 1s not one to one This may be attributed to the lack of a factorisation theorem
for 2-D polynomials This means that ‘the mverse polynomial of the 2-D maximum entropy PSD
cannot be factored, requiring non-linear means of solution to find the 2-D maximum entropy
PSD, which 1s not always guaranteed to exist given any arbitrary set of 2-D ACS values’ [52]

Hence the existence of the MEM estimate is not always certain The MEM method may also
produce poorly resolved or negative power spectra for closely spaced sinusoids in both the
temporal and spatial frequency domains Thas 1s also due to the type of estimated autocorrelation

used and 1s discussed 1n Section 2 5

A 2-D hybnd techmique uses a Founer transform for one dimension along with a higher resolution
1-D spectral estimator for the other dimension It 1s generally used when the required resolution
for a spectral estimate 1n one dimension 1s achievable using a Fourter transform estimator MEM

1s often used as the high resolution estimator An application example which uses the hybnd



method for frequency wavenumber estimation 1n array processmg 1s given by Kay n [38] and 1s

discussed 1n more detail in Section 1 3 on applications

The high resolution performance of some 1-D spectral estimators [38] has promoted an interest in
2-D versions of these estimators In general MDSP can be quite different from 1-D DSP Ths 1s
because mathematics in the multidimensional case 1s less complete than m the 1-D case and the
computational load imposed at higher dimension is far greater Our method 1s based on extension
of the multidimensional Levinson algorithm It 1s also based on a 2-D extension of the MFE

method developed by Pimbley [66], and Pimbley and Silverstein [67]

Choice of the most suitable method of spectral estimation depends on the particular application

2-D AR parametric estimation may be better suited to a particular application ‘In many areas of
application, treatment of m-d random fields 1s unnecessanly general considering that their PSD
may not be arbitrary but instead a low-order parametric rational function However if the
parametric form of such fields 1s 1gnored, then much 1s lost in estimating their power spectrum In
other words, 1If the given random field 1s better descnbed by a finite set of parameters which 1s
much smaller than the total number of observations, then parametric spectrum estimation

approach will be more accurate than any of the standard approaches ’[60]

As only an estimate of the PSD may be determuned, the bias and vanance of spectral estimates
are commonly used statistical measures of estimator performance These measures are calculated
over a number of simulation trals Analytical determination of bias and vanance of spectral
estimates 1s usually not mathematically tractable even in 1-D [52] Resolution and computational
expense may also be used as performance measures for companson of various spectral estimation
methods In comparing spectral estimators the same data set should be used for snapshot or single
data record companson Alternatively, if statistical tests are carried out to determine the bias or
vaniance over a number of simulation runs, the same set of snapshots should be used for each

estimator This ensures that one estimator does not enjoy an unfair advantage “Only very hmited

(V1]



experimental results have been reported n the hterature regarding 2-D spectral estimators, so
performance compansons are difficult to make’ [52] We address this 1ssue by comparing the
performance of MFE spectral estimation with a number of other methods These include the

modified covanance, Levinson, hybnd, maximum entropy, and conventional transform methods

1.3 Applications

Successful extensions of 1-D spectral estimators will find application in many areas of
multidimensional systems High resolution spectral estimation of 2-D homogeneous fields 1s
becoming increasingly important because of its role in various areas Such areas include analysis
of space-space, space-time, and time-time data arrays Space-space data arrays may be used in
image processing [30], whereas space-time applications include sonar, seismic [8] and biomedical
signal processmg [68], [él] Time-time arrays are typically used in the analysis of radar pulse
repetition versus arnval time [55] As stated by McClellan [54] ‘The operation of spectral
analysis anses in many fields of application Situations m which signals are mherently
multidimensional can be found m geophysics, radio astronomy, sonar, and radar, to mention a
few These multidimensional problems present a challenging set of theoretical and computational
difficulties that must be tackled’ Other areas where spectrum estimation techniques are essential
include geophysics [70], radio astronomy [57], and biomedical imaging [31] In short. any field n
which the frequency spectrum of a directly measured quantity is of interest will benefit from

continuing advances m power spectrum estimation [66]

As seen m Section 1 2, an application example of frequency wavenumber estimation for space-
tume array processing 1s given in [38] A spectral estimator with higher spectral resolution 1n one
dimension than the other may be used 1n applications where there 1s a wealth of time data and a
lack of spatial data The lack of spatial data may be due to the small number of spatial sensors
relative to the number of time samples available for each sensor A full lugh-resolution 2-D

techmique 1s needed if the temporal data 1s too small to allow adequate temporal frequency



resolution using Fourier techmques Another example of frequency wavenumber spectral analysis
where there 1s lack of symmetry in the spatio-temporal functions 1s in the biomedical signal

processmg area [68]

Besides spectral estimation, parametric representations of 2-D random fields are useful in many
applications such as texture modelling and synthesis [56] In [44] we model and synthesise the
random field element of a number of texture fields using maximum likelthood AR and ARMA
models Spectral estimates based on these parametric models are also given References to
applications of random field models in image processing and analysis are given m [37] These
include areas such as design of image enhancement or restoration algorithms, image coding and

segmentation, and texture characterisation

1.4 Active research

There are three main reasons that explain why 2-D spectral estimation contmues to be an active

area of research

Firstly, there are inherent mathematical difficulties associated with MDSP Thus 1s due m part to
differences m 1-D and 2-D linear systems theory in the mability to factor a 2-D polynonual into
polynomuals of lower degrees The mathematics for describing 2-D systems 1s less complete than
for 1-D systems and there 1s no fundamental theory of algebra for polynomuals of dimension
greater than umty Bose [2], [4] concentrates on some of the mathematical limutations
encountered in MDSP and on the progress that has been made to overcome these imitations This
goes some of the way to bridge the gap between DSP and polydisc algebra [71] Ths algebra 1s
concerned with the study of functions on m-D complex space [48], [49], [9] as opposed to

functions on 1-D complex space such as temporal processes

Secondly the computational burden imposed by advanced 2-D spectral estimation methods have

in general limuted their testing and application to small 2-D data sets Such data sets typically



consist of simple signal scenanos, such as a few sinusoids in spatially white noise The
computational burden has also limited the dimension of the parameter space that can be used
Only the 2-D peniodogram, 2-D hybnd methods and the 2-D mumimum vanance method have seen

practical apphication to extensive 2-D data sets [52]

Finally, in many of the applications cited above n Section 1 3 one of the major performance
critena 1s high resolution [47] at small data set size This 1s reiterated by Nikias and Raghuveer
[60] They state that ‘Important requirements to be satisfied by the spectrum estimation method
are high resolution/good spectrum matching, and tolerance towards mhomogenerties 1n the data
field while making use of small sized data set’ Small data sets or limuted data sequences often
occur in practice ‘For example, to study intra pulse modulation characteristics of a radar, only a
few time samples may be taken from a single very short radar pulse In sonar, many data samples
are available, but target motion necessitates that the analysis interval be short in order to assume

that the target statistics are effectively unchanging within the analysis interval * [52]

‘Digital spectral estimation continues to be an active area of research for better estimation
methods and faster computational algorithms * [52] The search continues for an efficient hugh
resolution multidimensional parametric spectral estimation techmique that 1s computationally
efficient and capable of operatmg with small data sets and at low signal to noise ratio (SNR)
Thus 1s due to the plethora of applications in which 2-D spectral estimators are used, the problems
associated with multidimensional mathematical difficulties, and the high computational burden of
existing advanced 2-D spectral estimation techmques Furthermore the efficiency and high

resolution of 1-D technmiques make extension of these techniques to 2-D an attractive option

1.5 Minimum Free Energy Autoregressive Spectral Estimation

We present a new hugh resolution 2-D spectral estimation method Our concentration 1s on causal

2-D AR models with quarter plane (QP) parameter region of support These models are a direct



extension of the linear time series seasonal analysis models of Box and Jenkins [5] A causal
system 1s one for which the output 1s denved from the present input and past outputs To obtain a
stable and causal system [38] the region of support for the AR model must be i the non-

symmetric half plane (NSHP) This region may be expressed for a p; x p, order model as
{a(m,n)} for —(p, - <m<(p, -1) if 1<n<(p,-1), 1<m<(p,-1)1f n=0 (1)

This ensures recursive computability Bose [3] defines recursive computability ‘Recursibihty
(recursive computability) 1s defined to be a property of certamn difference equations which allows
one to iterate the equation by choosing an indexing scheme so that every output sample can be
computed from outputs that have already been found, from imtial conditions and from samples of
the input sequence’ The definition of causality assumes that the output 1s calculated in a way that
1s analogous to that of a raster scr;een where lines are scanned top to bottom moving left to right

NSHP spectral estimators perform poorly for data fields compnising sinusoids 1n noise This may
be due to the hugh model orders required [52] For this reason much of the discussion on AR
spectral estimation 1s based on models with QP region of support The first QP region 1s a subset
of the NSHP region given m expression (1) above The first and fourth QP region of support for

a p; x p, order model may be expressed as

{al(m,n)} forO<sm<(p -Dif1<n<(p,-1), 1<m<(p, -)i1fn=0 2

{a4(m,n)} forOsms<(p, -Dif -(p,-D<n<-1, 1<m<(p, -)i1fn=0 (3)

The multidimensional Levinson recursion 1s an established autocorrelation based method for
deniving the parameters of a causal QP AR model [29] In this algorithm, reflection coefficient
matrices and hence the AR parameters are determined by the mimmuzation of the forward and
backward linear prediction error energy The reflection coefficients are analogous to physical
parameters i a seismuc model or acoustic tube model of speech An estimation techmque that

chooses model parameters commensurate with the global munimum of a prediction error energy



objective function falls within the general class referred to as least mean square (LMS)
algonthms If the observed field 1s contaminated by noise or the data set size 1s too small LMS
algorithms often produce unreliable estimates ‘It i1s well known, that some LMS based
algonithms work well at high signal to noise ratios (SNR’s), but invanably suffer severe

degradation at low SNR’s * [67]

We show how the AR model parameters for 2-D fields may be determined by the solution of
Yule-Walker equations by an MFE based modified multidimensional Levinson algorithm Our
extension [39], [40], [41], [42], [43] to the Levmson algonthm [52] 1s based on determination of
the reflection coefficient matrices by mumimusation of the free energy rather than by minimisation
of the prediction error energy alone The MFE method through a signal entropy or smoothness
measure compensates for noise or incomplete data and thereby provides better spectral estimation

than that provided by the LMS approach

The choice of a cost function based on free energy 1s motivated by the desire to conceptually
model a stochastic signal analysis system in a way that 1s analogous to statistical thermodynamic
models used 1n physical systems [67] Hence, the connection between thermodynamic systems
and parameter estimation comes from a common conceptual approach to solving a problem for a
complicated stochastic process The free energy 1n a physical system 1s the combination of energy
and entropy At any temperature there 1s a balance between energy and entropy Fluctuations in a
thermodynamic system are analogous to noise 1n a signal processing system Minimizing the free

energy at some entropy energy level compensates for system noise

The QP models generated by our method give nse to stable and causal systems Hence in addition
to spectral estimation they may be used for field synthesis and correlation extension [50] An
example of the use of field synthesis 1s for texture generation in computer generated imagery

(CGI) Correlation extension 1s used to provide improved spectral estimation by extending the

10



autocorrelation and subsequently applying a Founer transform The cost of the improved spectral

estimation by correlation extension 1s added computational expense

Our 2-D MFE spectral estimation method 1s an ongmal and umque extension of a 1-D method
We are encouraged by the support expressed by Pimbley [65] for our extension of the 1-D
concept to 2-D There have been no previous publications apart from the author's that extend
the MFE method of parameter estimation to 2-D and provide combmed quarter plane spectral
estimation of closely spaced sinusoids based on such an extension In {12] a 1-D MFE method 1s
used along with a 1-D periodogram as part of a hybnd separable algorithm for 2-D spectral

estimation Our method responds to the call in this paper for an efficient 2-D MFE algonithm

The 2-D MFE method provides accurate spectral estimates and 1s particularly useful for low
SNR data sets even at low data set size Hence, our research also responds to the call by Marple
[52] for more effort to be directed towards signals buried deeper in noise MFE provides accurate
spectral estimation over broad temperature ranges, rendering determmation of specific critical
temperatures unnecessary The resolution quality of MFE spectral estimates and accuracy of

peak location 1n the spatial frequency plane improve with model order

The 2-D MFE method may be preferred over the Levinson algorithm because 1t can outperform
the Levinson techmque producing supenor spectral estimates with similar computational burden
The method may also be preferred over MCYV as 1t is signuficantly faster and can produce spectral
estimates with vanance and bias comparable to that of MCV MFE performs accurate spectral
estimation at low SNR and low data set size producing estimates with superior resolution over
those produced by the conventional Fourner transform method The MFE method performs as

well as 1f not better than the hybnd dual 1-D method [47] and the maximum entropy method [51]

11



Chapter 2. 2-D MFE Theory

2.1 Introduction

In Chapter 2 we discuss simultaneous autoregressive models giving their descriptions n the
spatial and frequency domains We provide the theoretical development of 2-D MFE from Yule-
Walker equations [52] through to the cost functions required for the optimusation m our
algorithm Implementation 1ssues concerning optimisation and assoctated MFE cost functions are
studied We outhne the benefit of using combined QP spectral estimators over the use of single
QP estimators The exact, biased and unbiased forms of the autocorrelation function are
examuned and compared Finally we provide details concerning the implementation environment

for 2-D MFE and the simulations that follow in Chapters 3 and 4

12



2.2 AR Models

A discrete 2-D signal 1s any function y(m,n) that 1s an array of real or complex numbers defined
for the ordered integer pair (m,n) over -0 < mn < oo This discrete signal may represent a
sampled continuous 2-D function 1n space or time and may typically be assumed to have a region

of supportover / Sm <N, I sn <N

A smultaneous AR (SAR) model [7] may be represented by

pl p2
22 afyy(mng) = ufmn) @)

1=0 J=0
where {y(m,n)} 1s a finite set of observations on / <m <N, I <n < N and 1s a homogeneous
random field A homogeneous random field will have an autocorrelation function that 1s
mdependent of where on the field 1t 1s evaluated and 1s dependent only on the distance between the
points or the lag employed The autocorrelation 1s therefore not a function of position Fimte
observation sets may be considered to be locally stationary hence permutting spectral estimation
technmiques to be used [52] {u(m,n)} 1s uncorrelated Gaussian white noise with zero mean and
vanance o> A toroidal model 1s assumed on this N x N latuce [36] This means that the
2-D field may be regarded as doubly periodic and that y(/, #) 1s the east neighbour of y(N, n) and

that y(m, N) 1s the north neighbour of y(m, 1)

A causal system 1s one for which the model region of support 1s in the NSHP or QP Spectral
factonization, which 1s a feature of 1-D systems, generalizes to 2-D when these regions of support
are used Hence the SAR model in (4) 1s factorable and a special case of the conditional AR
model [34], [32] m which {u} 1s correlated The autoregressive model parameters are given by {a}

over the p, x p, QP region of support where a(0,0) = I The first QP PSD of thus model [85]

may be written i normalised spatial frequency terms (f,, f,) where |f,| < 1/2, fv‘ <1/2as

s
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2

SUfurf)= ——— 2 )
|33 a0 05w
k=0 1=0
or S(f"’fy)zﬂ/l)(f G where g = g’ (6)

2.3 Single and Combined QP spectral estimators

Using a single quarter plane spectral estimator may result in elliptical contours of constant PSD
level This 1s due to the directional dependency of the resolution characteristics of quarter plane
estimators [86] This may be overcome to some extent by using a combined quarter plane
estimator Quarter plane estimates are combined 1n parallel resistor fashion to form a combmed
estimate Single quadrant spectra may also suffer from spurious peaks at high SNR or at ligh
model order [86] Hence another motivation for the use of a combined estimator 1s that spurious
peaks are less likely to occur if quarter plane estimates are combined [38] In Chapter 3 we
examine how the directional dependency and spurious peaks of single quadrant spectra may be
overcome by the use of combined spectra Unless otherwise stated we combine first and fourth

quarter plane estimates for all PSD estimates

2.4 2-D MFE

The Yule-Walker equations are derived by multiplying expression (4) by y(m-k, n-/) and taking
the expectation These equations are therefore based on the autocorrelation estimates of the

observed field and are given by
pl p2

2.2.a(, ), (k=1,1- )= (o for (k,1) = (0,0), O for (k,]) € QP")

1=0 ;=0

where QP =QP' U (0,0) 7N
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or in matnx form [38] as Ra=p 8)
[ 0] | [ a@, 0) |
a[l] a(, 1)
where a= ) with af1]= (10)
La[p, 1] La@, p, -1) |
i p i (52
0 0
and P= (11) with p= (12)
L 0] L 0

R 1s a block Toeplitz matrix which 1s symmetnc and positive semu-defimte The positive semi-
defimiteness of the matnix ensures its eigenvalues are nonnegative Furthermore the matrix 1s

made up of blocks R, that are also Toephtz in structure though not symmetric and have
elements 7,, that are denved from the correlation of the observed field {y(m,n)} The matrx n
expression (13) below 1s of order p; p» x p; p» R, are the observed field autocorrelation

matrices

R, [0] R,[-1] R, [-(p1-1)] ]
R [1] R, [0] R, [-(p1-2)]
R= (13)
R, [p1-1] R, [p1-2] R,,[0] ]
-r»’[l’ 0] r»,[l, -1] r}y[l’ _(pz_l)]T
ryy[l’ 1] rW[I, O] ryy[la "(pz_z)]
R, [1]= (14)
-r}y[l’ ) _1] ryy[la D -2] ryy[l, 0] )
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The multidimenstonal Levinson algorithm may be used to solve (8) for the AR parameters and the
white dniving noise vanance The reflection coefficients m Levinson type algorithms may be
interpreted as the negative normalized correlation coefficients between the forward and backward
linear prediction errors with one unit of delay Prediction 1s forward in the sense that the estimate
at some spatial pomt 1s based on a number of points that are spatially before the pownt, and
backward 1n the sense that the estimate 1s based on a number of points that are after the pomt.
The reflection coefficients at stage m of the recursion are represented by a set of reflection
matrnices A [m] If the order of the model used 1s pl x p2, then from the multidimensional,
row ordered, Levinson algonthm [52] at the last of (p/-1) recursions
A, [p1P} +A,=0 (15)
wher? as m the 1-D case the Toeplitz structure of the autocorrelation matrices ensure that the
covanance of the prediction error process 1s 1dentical for the backward and forward AR process
P/, = P, (16)

The partial correlation matrix [52] may be expressed as

A= [I Apnll] Ap[2] APl-l[pl'l]] [Ryy[p1~1] R, [p1-2] R [0] ]T

17)

and the prediction error covanance matrices may be expressed as
P/ = [1-A,[pUAT [p1]R/,,, (18)
with 1nitial condition P/ = R, [0] (19)

The reflection coefficient matrices [52] may be expressed as
A,lgl=A, [q]+ A, [p1A] [pl-¢g-1] for 1<g<pl-1 (20

Matrices 1n expressions (14) through (20) are of order p; x p» The derivation of these equations
for the 2-D case 1s based on the multichannel case [81] for a p, channel AR process of order p;
There 1s a direct correspondence between A, [m] 1n the multichannel case and the reflection

coefficients &, mn the single channel case
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Expression (15) gives optimusation of the reflection coefficients based on mummisation of
prediction error energy The AR parameters and white drniving noise vanance {a;, o1, a;, 02} of
the first and fourth QP model respectively are determuned from the reflection coefficient and the

prediction error covariance matrices For | <1 < p/-1 the row ordered vectors are given by

A =Pj_af[0] @y and aj[1]= A7 [1]a][0] 2)
where
[ 4,00 | [ p, |
a,(1,1) 0
aj[1]= (23) and A = (24)
_al(z,p2—l)_ ~ L 0 J
and
p =P/ aj[0] (25 and as[1]= A% _ [1]a5[0] (26)
where ) ) )
a,(,p2-1) o
a,(1,p2-2) 0
aj[1]= 27) and p = (28)
a2 (1’0) - L ,02 -

We extend this method by including an extra cost function based on entropy In our method
the cost function 1s given by (15) and the differential of a 2-D entropy term with respect
to the reflection matrices The motivation behind this comes from statistical thermodynamics
There 1s a direct analogy between statistical thermodynamics and stochastic signal analysis If the
temperature m a physical system 1s reduced to absolute zero the system 1s forced mnto its lowest
energy state In this case fluctuations disappear and physical systems condense into their ground
state This ground state corresponds to the case 1n signal processmg where parameter estimation
i1s carried out on the basis of mmmusation of the prediction error energy alone with zero mput

from the entropy term
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At nonzero temperature there 1s a balance between low energy and high entropy with the result
that physical systems are neither in mmimum energy nor maximum entropy states An increase m
system temperature causes an increase in entropy and a decrease n energy Temperature,
therefore, acts as a control parameter for the entropy or fluctuations wn the system [76]
Temperature driven fluctuations in thermodynamic systems correspond to noise n signal analysis

systems

‘In statistical physics, the probability density function that a system will occupy a specific state
of energy E 1s represented by a Gibbs distribution function of the form w(E) = exp[(F-E)/kT]
Here T 1s the system equilibrium temperature, & 1s Boltzmann’s constant, and F 1s the free energy
The system entropy 1s defined in terms of the ensemble average of the logarithm of the
distribution function S = -k<logw(E)> Hence the free energy 1s a linear combination of the
entropy and the average energy, ' = <E> - TS’ [76] In signal analysis systems the free energy
1s given as the difference between the prediction error energy and the entropy energy The
equihbnum parameters of a system are associated with the global mmimum of the free energy
function An example 1s given in the annealing of a crystalline solid As the temperature 1s slowly
reduced, the lattice spacing continuously changes so that the free energy 1s at a mumumum for
every temperature The parameters of the lattice correspond to model parameters i a signal

analysis context [77]

The cost function m the 1-D MFE parameter estimation algorithm 1s based on an extension of the
LMS criterion to include a noisy data cost element This extra cost element mimimuses the free
energy and suppresses estimation errors caused by noise It 1s due to the entropy term and 1s given
m [66], [67] by differentiation of the entropy energy with respect to reflection coefficients Hence
MFE 1s based on determination of model parameters associated with mummuzation of the free

energy function MFE extends LMS methods mnto the realm of noisy or mncomplete data
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We may gam further insight into the formulation of MFE by considering that estimation results
can be improved by mnserting a prion knowledge into the cost function [74] If prior knowledge
about the probability of some properties of the spectrum, expressible m terms of the model
parameters, exists, then by adding a penalty to the cost function this knowledge can be
incorporated effectively into the estimation The spectra of sinusoids m noise at high SNR exhibit
sharp peaks corresponding to the smusoidal components with smooth valleys, whereas the
spectrum of a single snapshot of random noise charactenstically exhibits roughness If a noise
spectrum probability distnibution 1s determined from a number of independent snapshot data
samples, then a smoother noise spectrum will have far higher probability than a highly distorted
noise spectrum [77] Simlar arguments may be made for spectra of smusoids that are corrupted
by noise or have small data set size Hence, the penalty measure should be a spectral smoothing
measure This measure should add to the estimation problem some knowledge of signals and
noise that 1s not present in the LMS scheme and thus compensate for the effect of added noise at
low SNR As signal entropy 1s a measure of a prion probability the penalty ﬁxncﬁon should be a

decreasing function of entropy

In the 2-D case we now extend the multidimensional Levinson algorithm to include an extra,
noisy data, cost function based on entropy This results in the mimimusation of the resultant free

energy, thereby providing better spectral estimation than that provided by munimization of
prediction error energy alone Different forms of entropy functions are given in [57] The
Shannon-Burg entropy measure 1s defined to within an arbitrary constant For 1-D methods this
form of entropy results in an all-pole spectral estimate [76] We use a 2-D Shannon-Burg entropy
type field H as m [17], [54] and [51] This may be expressed as

g | [ w100 100 ] s, 29)

~1/2%-1/2
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We require the differential of the 2-D entropy term with respect to the reflection coefficient
matnix A [m] at stage m For real fields the reflection coefficient matrix Ais real and we may

express the differential of the entropy energy term, with respectto A as

o/, = a[am( B! oA~ a[ K Jj;ln[w( fo )P ]dfxdfy]/o”A} (30)

The entropy proportionality constant is absorbed mnto the signal processmg temperature

parameter a

At stage m of the recursion the double integral in expression (30) becomes

2 12 0 LD, £, )03 1 1) O o), G31)

or

212 o, 1) 6 i oD, 1) oA i, D)

At any frequency (f,, f, ) the differential

oInD,(f..f,)! 0A,[m] (33)

1s the differential of a scalar quantity with respect to a matnix Applying matrix calculus [26] this

may be expressed as a (p2,p2) matnix, any element £(z, 7) of which may be given by

p@,))=08In D, (f,.f,)/ 8 t@,))=D,' D,(f..£,)/ 3 7(t,))  (34)

where 7(1,7) 1s an element of the reflection matnix A [m] The integration n expression (32)

becomes

2 1%L o D,th, 1) 10m) 1 Do 1) .,

172 1172 (35)
| I,J [ 2 D,(f..£,)1 0, Iml]! D(1..1,) df 4,

=172
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The first part of expression (35) becomes

[ " (o5 Srame 5 10 tm) | D.(1...1,) .4, 36)

-1/2

Thus integral may be performed by taking a contour integral about a surface 1n the 2-D complex

frequency hyperplane The two analogues of the unit disc n 2-D complex z space C? [49] are the

unit bidisc expressed as {(zx,zy) eC?lz,|<], z,|< l} (37

2 2
and the unit ball expressed as {(zx,zy) e C? |zx‘ +lz,| < 1} (38)

We use the bidisc analogue and carry out contour integration on the lower half of the associated
complex frequency planes We extend the Cauchy Goursat based argument [66], [18] that the

symmetry m the contour path reduces the contour integration to integrations at (a) and (b)

[-1/2 < Re(f,) < +1/2,Im(f,) = —] [-1/2 < Re(f,) < +1/2,Im(f,) = 0]
P [-172 < Re(f,) < +1/2,Im(f,) = o) |[-1/2 < Re(f,) < +1/2,Im(f,) = 0] (39)

The mntegration at (a) goes to zero as the numerator of the expression (36) contamns a

multiplicative exponential term This suggests that for f, = —joo and f, = —joo the integral

vamsshes, because the numerator goes to zero, while the denomunator reduces to unity

We now examine the integration at (b) The multidimensional Levinson method [52] which 1s a
mummum prediction error method yields solutions to the Yule-Walker equations These solutions

may not be stable even for a positive defimite autocorrelation matnx Hence D(f,, f,) may not
always be mmmmum phase In the case of a homogeneous random field [44] D(f,,f,) 1s

mummum phase If thus 1s not the case the nput field may be whitened sufficiently to ensure that

the autocorrelation falls off fast enough so that D(f,, f,) 1s mmumum phase This results n a

stable model However, by appropnate choice of signal processing temperature range MFE

ensures that stable AR parameters may be found whether the autocorrelation matnx 1s positive
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definite or not MFE models are stable, causal, and recursively computable [17], [38], [3] and
hence they may also be used for field synthesis applications such as texture generation [44], [46],

or data or correlation extension [50] With mummum phase D(f,, f,) all smgulanties, that 1s
solutions of the equation D(z,,z,) = 0, or zeroes of D(z,,z,), are within the umt bicircle In
the 2-D complex z space C? this may be expressed by Shanks theorem [17] as

D(z,,z,) = 0 for { lzl =2 1, ]z,| 2 1} (40)
Hence there are no zeroes outside the unit bicircle, or 1n the lower half of the 2-D complex

frequency hyperplane Mmimum phase placement of zeroes corresponds to pole placement for

reciprocal functions Therefore, the function D(z,,z,) and its reciprocal or transfer function

have no singulanties and are analytic 1n this domain [69]

We now examine extension of the residue theorem to 2-D Bose [3] shows that the test for a

bivariate polynomial B(z,,z,) # O can be smaphfied to

{(B(O,2) = 0,1z,] < 1, [B(z,2) = 0, ]z| < 1, |z = 1} (41)
and that N(z) = (1/27g)£2315r(z,,z2)/5z2 B(z,,2,)dz, = 0 42)

where N(z) 1s the number of z, zeroes n B(z,,z,) for any fixed z, and contour 2 |z,|=1
This 1s also seen 1n [71] Generally the test for a bivanate polynomial can be simplified to
testing for each vanable when the other 1s fixed The number of zeroes 1n each z plane may be
determined by fixing one vanable and performing the contour mtegration with respect to the
other This effectively means applymng Cauchy’s residue theorem twice [17] In performing
double contour mtegration one vanable 1s fixed and the contour integral 1s evaluated with respect

to the other vanable Therefore the integral residue formula [9]
(1/27z1)£f'(z)/f(z)dz=N—P (43)

for the case of no poles P or zeros N mnside an area enclosed by contour ¢ of the complex plane

applies, giving the double contour integral
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i,;czf'(zpzy)/f(zx,zy)dzxdzy =0 (44)

Hence the mtegration on the region specified by (39) (b) goes to zero

This may also be seen n that Krantz [49] gives us the Cauchy integral formula for C* D(z_,z ))

1s analytic in the domain of nterest The integrand of expression (36) has no poles in the lower
half of the 2-D complex frequency plane Therefore, there are no nonessential singulanties of the
first or second kind Hence by the C*> Cauchy mtegral theorem [1) the mtegral specified by (39)

(b) goes to zero A sumular argument may be made for the second integral i expression (35)

Continuing with expression (30), in terms of Levinson algonthm parameters at stage m of the

recursion In g, =In[P/1=In[(I- A [m]AT[m])P/ ] (45)
hence (ng,)/ oA [ml=oIn[(A- A [mAT[m)P., ]/ A [m] (46)
If B, = d(Inp,)/ FA [m] 47

then for model order p; x p» matnxB has p; x p, elements each of which 1tself 1s a p; X p»
matrix For example for a 3 x 3 order model any element of the 3 x 3 B matnx B(a, b) 1s itself

given by the 3 x 3 matrix
(1787 (LD)(-P(@,DAQ,5) + (a&)(-PLDA(Lb) - PQ.DA,5) - PG.DAG,b)))
(1727 1.2))(-P(a.2) AL b) + (a&1)(-P(L2)A(Lb) - P(2,2)A(2,5) - PGDAG.b)))
(1787 (13))(~P@3)AQ,b) + @&1)(-P(13)A(L b) ~ P2.3)AR, b) - PG3,3)AG. b))

(1727 2.0)(-P(a.)AQ.b) + (@&2(-PALDA(Lb) - PQ,DA(2.5) - PGDAG, b))
(1727 2.2))(-P(@.2)A@2.b) + (a&2)(-P(12)A(L b) - P2,2)A(2,5) - PG.2)A(G, b))

(1727 2,3)(-P@3)AQ b) + @&2)(P(1,3)A(1,b) - PR,3)AQ.b) - PG3)AG, b))

(1727 3.0)(-P(@.DAG.b) + (a&3)(-PLDA(,5) - PQ,DA(2,5) - PG,DAG, b))
(1727 3.2))(-P@.2)AG.b) + (@&3)(~P(12)A(L b) - PQ.2)AQ,b) - P(3,2)AG,5)))

i (1727 33)(-P@3)AG,b) + @&3)(P(13)A(L, b) - PQ.3)AQ,b) - PG,HAG,B))) |
(48)
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where A=A_[m] and P="P/ (49)

We minimise the cost function at recursion m and signal processing temperature o by determinng
a reflection matnx A ,[m] such that
A [mP/ +A ~-aB, =0 (50)

When o = 0 the method reverts to the multidimensional Levinson algorithm

2.5 Autocorrelation functions

The autocorrelation function used 1n the equations above may be exact or an unbiased or biased
estimate We examune the differences in these correlation functions The result of MFE spectral
estimation using different correlation measures 1s detailed in Chapters 3 and 4 and m particular m

Section 3 5

The exact autocorrelation generated by 7" sinusoids in white noise [85], [47], [86], [51] 1s given

by

T
r(k,D) = o’ (k) + 2al cos2af k + 2af,,]) (51)
1=]

This £ x ! pomnt autocorrelation corresponds to the exact correlation from a data set over
an M x N rectangular region of support where —-M <k <Mand -N<I/< N a,2 1s the power

and (f,,f,,) 1s the spatial frequency of the 1™ sinusoid of T sinusoids

The exact correlation 1s somewhat artificial as it 1s not relevant to any practical problem despite
its popular use in numencal simulation [85], [47], [51] It also i1gnores the statistical vanability
aspect of the problein The autocorrelation resulting from a single realisation of sinusoids plus
noise would display cross-terms between sinusoids and would depend on the relative phases of the
smusoids However the exact autocorrelation helps to identifv errors that occur as a result of

using some form of estimated autocorrelation as opposed to errors that occur due to the spectral
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method itself An example of errors occurring due to an estimated unbiased autocorrelation at low

data set size 1s given 1n Section 3 8 on data length

The biased and unbiased autocorrelation functions are estimated from a realisation of sinusoids

plus white noise of the form [50]
T
x(m,n) = Z\/Ea, cos(2af,m + 2af n + §) + w(m,n) (52)
1=1

where w(m,n) denotes zero mean noise of power ° The power and spatial frequency of the 1”

sinusoid of T sinusoids are given as a,2 and (f,,f,) The phase of the 1" smusoid 1s given by

¢

The unbiased autocorrelation estimate [52] at lag (%,/) for a M x N data set over a rectangular
region of support 0<m< M -1 and 0<n< N-1 1s given over lag range |k|< M - 1and

ll<N-1 by
( 1 M=l-k N=1-

MDD ,,Z.:o g(:,x(m+k,n+l)x (m,n) fork=0,120

1 M-1-k N-1

(M=k)YN-=1) mgo ;x(m+k,n+l)x'(m,n) fork>0,/<0 (53)

P (R, 1) =1

. (~k,=1) for k<0, any/

\

and the biased autocorrelation 1s given by
M-1-

1 —1-
T Z Z (m+k,n+D)x"(mn) fork=0,/20

M-1

-~k N-1
F(k,D)=1 Zx(m+k n+Dx’(mn) fork>0,1<0 (54)
=0 n=-1

F_ (—k,=1) for k<0, any/
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The biased estimate suffers from nonequitable weighting of the correlation lag terms The long
correlation lag terms are responsible for resolving spectral fine structure, hence the biased form
can result 1n loss of resolution However the Fourier transform of the biased estimated 1s always
nonnegative, whereas this 1s not the case for the unbiased estimate For this reason the biased
form 1s more generally used even though the unbiased estimate may give supenor results In 1-D
MFE the unbiased ACS may be used as MFE provides a self-regulanzation function m addition

to compensation for noise [76]

For both exact autocorrelation and autocorrelation estimated from a realisation of sinusoids 1n

T
2.a
white noise the SNR [50] nay be expressed as SNR = 5;_2— (55)

Unless otherwise stated we have used the unbiased autocorrelation estimated from a realisation of
smusoids 1n white noise with fixed relative imitial phase Statistical studies have been carned out
on the use of the 1-D MFE ACS algonthm [78] for estimating two 1solated and two close
spectral sources These have shown that the two 1solated source peaks are unbiased while the
close peaks are slightly biased rendering them shightly maccurate ‘This shight bias 1s due to the
fixed relative mutial phases of closely separated sources, 1t 1s an effect which 1s common n all
coherent imaging situations If the relative phase had been chosen to be random and uncorrelated
for each snapshot, the bias would disappear in multi-look averaging ° [78] We see therefore that
the relative phase affects the resultant estimate for closely spaced sinusoids We may therefore

expect some biasing of spectral estimates of closely spaced sinusoids

2.6 Optimisation and cost functions

A Nedler-Mead simplex [14] or Newton gradient [15] techmque may be used to perform the
mummuisation of the left hand side of expression (50) The technique used depends upon the model
order and width of the temperature range of mterest The time required for the simplex to

converge 1s far greater than that for the Newton method However the simplex avoids problems

such as starting guess dependence and convergence at a local rather than the global minimum
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For model order p; x p; the matnx B_ 1n expression (50) has elements each of which itself 1s a

p2x p; matrix, however the matrices A _[m], P/ and A, are all of order p,x p, We average
the p, x p, submatrices of B , to ensure all matrices in expression (50) are of the same order We
then determune the resultant matnx from expression (50) and generate a cost figure by taking the
sum of the squared elements 1 this matrix This cost figure 1s mummused by the Nedler-Mead

simplex or Newton method The fundamental steps of the MFE algonthm are given m Table 2 1

Cost figures may be assigned to the entropy term matnx B, and the matnx due to the error

energy term [Am[m]P"f,_l + Am] as above We may then momitor the interaction between the

entropy term and the error energy term by plotting these figures at each iteration or as an average
over a number of iterations over the entire mmimisation Figure 2 1 (a), (b), and (c) show the cost
figures for the free energy, error energy, and entropy terms The mimmuzation 1s for the final
iteration m the MFE determunation of a 5 x 5 model for an 80 x 80 point data set The data set
consists of two smusoids at normalised frequencies (0 1, 02) and (0 3, 0 4) in white Gaussian
noise at 0 dB SNR When the cost functions due to the entropy term and error energy term are of
the same order then the free energy 1s being mumimused This provides an early indication within
the algorithm of temperature range suitability, before AR parameter and PSD generation

Expenmental results on temperature range determination through calculation of the cost function

order difference are given 1n the results Section 3 6 2 on temperature determination

2.7 Implementation environment

We have predommantly used the MATLAB fourth generation programming language [53] to
implement the algonthms This language contains many hugh level functions that are particularly
suitable for digital signal processing It therefore represents an ideal cost effective environment
for algorithm development The package 1s available for a vanety of platforms including 386/486

PCs to Cray All simulation results were printed using a Hewlett Packard LaserJet IIp printer
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Figure 2 1 Cost figures for (a) error energy, (b) entropy, and (c) free energy for the mummzation
at the final iteration for MFE determination of a 5 x 5 model at temperature 0 05 for a data set
consisting of two sinusoids at normalised frequencies (0 1, 0 2) and (0 3, 0 4) 1in white Gaussian

noise at 0 dB SNR

28



Table 2 1
The Algorithm for Computing MFE AR parameters and PSD from Exact

or Estimated Autocorrelation Data for Model Order pl x p2, Temperature

o and Data Set Size M x N

1. Begin algonthm
2. Generate autocorrelation data over & x / pownts where -M <k <M and -N </ < N
2.1 Generate the exact autocorrelation for T smusords m white noise of power o where

af 15 the power and (f,,, f,,) 1s the spatial frequency of the 1" smusoid using

T
rk,l) = a5k + }_:laf cos2af k + 2af,,1) (51)

or
2.2 Generate or acquire data and estimate autocorrelation
2.2.1 Generate data from a realisation of 7" sinusoids plus zero mean white

noise w(m,n) of power o, where the power, spatial frequency, and

phase of the i sinusoud are a?, (f,,, fn)-and 4,

T
x(m,n) = §\6a, cos2af,m + 2af,n + @) + w(mn) (52)

or

2.2.2 Acquire data from other source such as homogeneous random texture

field

2.2.3 Compute the unbiased autocorrelation estimate at lag (k1)

( 1 M-1-k N=1~1

—————— I X x(m+kn+Dx (mn) fork=201!>0
(M=kXN-1) m=0 n=0

1 M-l-k N-1

T x(m+k,n+Dx (mn) fork>0,/<0 (53)

Pk )=\ ———— X
(M =k)(N =1) m=0 n=1

P (-k~D)  for k<0, any!

L

or
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2.2.4 Compute the brased autocorrelation at lag (%,/)

r

z

1 M-1-k
MN 0

N=1-1 .
ZO x(m+kn+Dx (mn) fork=0,/20

1 M-l-k N2

Fn(k,1)=‘m ”Eo ”zz_lx(m+k,n+1)x‘(m,n) fork 20,/ <0 (54)

7 -k~  for k<0, any!

3. Place the autocorrelation data into a matrix format

R,, [1] are Toephtz though not symmetric

[0, 01 7l =1] £l —(p2-D] |
ryli, 11 r, ke, 0] rylt, —(p2-2)]

R, [1]= (14)
| rylt, p2-1) 1,1, p2-2] rylt, 0] |

R 1s block Toeplitz and symmetric

R, [0] R, [-1] R, [~(p1- D]
R, (1] R,[0] R, [-(pl-2)]

R = (13)
R, [pl-1] Ry[p1-2] R, 0] |

4 form=1to pi-1

4.1 Compute the order p2 x p2 correlation matnx

T
A, =[1A,,A, (2] Am_l[m-I]”Ryy[m]Ryy[m—l] R”[l]] (17

4.2 Select multivanate unconstrained optimisation method e g Nedler-Mead simplex

or Newton method
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4.2.1 Mimmuse a cost figure based on the sum of the squared elements 1n
the resultant matrix from the left hand side of expression (50) by
determination of the reflection matnx A [m] Hence A [m] which

1s order p, x p, 1s chosen such that
A [mP/ +A_ -aB, =0 (50)
where B, = Alnj(I- A [m]AL [m)P/_ 1/ A, [m]
and P/ =R_[0] (19)

B, has p2 x p2 elements each of which 1s a p2 x p2 submatrix

Average these submatnices to ensure all matrices 1n expression

(50) are of the same order

4.3 Compute the order p2 x p2 prediction error covariance matrices
P/ = [I-A [mAlmR.,  (8)
4.4 Compute the reflection coefficient matnces

A,lg1=A, [g1+A, [mA] [m-q] for 1<g<m-1(20)

end of form
5. Compute the AR parameters and white driving noise vanance {a;, o, yof the first QP model

5.1 Determune p; from g’ = P}{Hal'[O] (1)

[ 0,00 | p,
a,(1,])
where a(0,0) =1, and a{[1] = 23) and p" = 24)
La,6,p2- 1] o]

S.2For 1 =1to pl-{

determine the row ordered vectors a;[i] = A;’l_, [1]aj[0] (22)

end of for:
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6. Compute the AR parameters and white driving noise vanance {a, p,}of the fourth QP model

6.1 Determune p. from p = P/ _a}[0] (25)

pl-1

—az(t,p2—l)- —0—
a,(1,p2-2) 0

where  ax(0,0) =1, aj[1] = (27) and p” = (28)
L 4,600 Lo, ]

6.2 For 1=1to pl-1

determune the row ordered vectors a[1] = A;{H [1]az{0] (26)

end of for 1

7. Compute the power spectral density for each QP over a surtable region F 2 of the frequency

plane
forf,=1t0 F
forf,=I1to F
P
qul (fx’fy) = pl-1p2-1 2 )
| Z 2 a(kDexp(~s(Qx | ), = F I Dk +Qr | FXf, = F 1 2)D)
P
qu4(fx 1, y) = 0 p2-l 2
T I a,k,Dexp(-)(2x | F)f. - F 12)k+Qn | F)(f, - F12)l)
k=-(pl1-1) 1=0 ¥y
where |f,[<1/2 [ fyl < 1/ 2 for normalised frequency
end of for £,
end of for f;
8. End algonthm
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Chapter 3. Numerical Simulations and
Experimental Results

3.1 Introduction

In this Chapter we provide numerical examples i which the method outlined above has been
applied These examples show power spectral estimates determined directly using MFE based
AR model parameters Spectral estimates determined by other techmiques are used for
comparative purposes The resolution of smusoids 1n white noise 1s a widely used standard
simulation exercise for spectral estimation techmques including AR model based techmques
[50], [86], [77], [84], [83] Generally, we used an unbiased autocorrelation function estimated
from a realisation of sinusoids plus white noise Various data set sizes ranging from 160 x 160 to

5 x 5 pomts have been used over the full set of tests The size of the region of autocorrelation
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estimates used depends only on the model order For example a 5 x 5 order model wall use only 5

x 5 autocorrelation ponts, giving a 5 x 5 region of autocorrelation support

We performed a wide vanety of tests on the MFE method outlined above These may be divided
mnto two classes of simulations The first class relates to tests carried out on the technique 1tself to
evaluate 1ts performance These included resolution directional dependency, estimator bias and
vaniance over a number of independent tnals, and sensitivity of spectral estimates to signal
processing temperature The effects on spectral estimation of SNR, data length, model size, and
type of autocorrelation function used were also examined We performed spectral estimation on a
number of examples of very closely spaced smusoids as a test in spectral resolution We examine
the directional bias and standard deviation over a number of independent tmals for spectral

estimates generated by models with non-symmetric region of support Tests were also carned out

on the effect of dynamuc range difference between sinusoids

The second class of tests involving comparison of MFE spectral estimation results with those of

other techniques are detailed in Chapter 4

Spectral estimates are plotted as normalised amplitude PSD plots or as log plots on the x

frequency axis psd(fy,0) 0< f <05 and on the y frequency axis psd(0,fy) 0< f;, <05

Contour plots showing the spectral estimate on both frequency axes of the (f,, f,) frequency plane
are also used The highest contour level 1s normalised to 0 dB Where possible the contours are
labelled 1n dB below the maximum value of 0 dB The contours are equally spaced and the
contour wncrement 1s given 1n all cases The data 1s real, resulting in spectral estimates that are
symmetric with respect to the ongin Hence only one half of the frequency axes is generally

displayed
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3.2 Pair of sinusoids

We took a 80 x 80 pownt data snapshot consisting of sinusoids at arbitrary umity normalised
frequencies (0 1, 02) and (0 3, 04) The smusoids are of equal amphtude at arbitrary SNR of 6
dB m white Gaussian noise The parameters are given m Table 3 1 below An unbiased

autocorrelation estimate was used

Table 3 1 Data set parameters

Number of | White noise | Smusoid Spatial
smusoids M | power o | power a’ | frequencies
2 05 | 01,02)
1 03,04)

We determuned the spectral estimate at temperatures 0 074 and zero This has special
significance because at zero temperature our technique reverts to the multidimensional Levinson
or Burg type techmque The temperature of 0 074 was the optimal temperature for spectral
estimation based on the average autocorrelation over 10 noise seeds This temperature also falls
within a broad range of temperatures (~10%) within which accurate spectral estimation was

obtained

Figure 3 1 (a) shows the combined first and fourth quarter plane normalised amplitude PSD plot
on the x frequency axis psd(f,0) 0< f, <05 Ths spectral estimate was denived using the
MFE based AR models of order 5 x 5 at temperature 0 074 The region of autocorrelation
support 1s only 5 x 5 pomnts comnciding with the model order Figure 3 1 (b) 1s the corresponding
contour plot showing the spectral estimate on both £; and £, frequency axes The corresponding

plots for the spectral estimates at temperature zero are shown in Figure 3 1 (c) and (d)
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Sharp peaks are evident in Figure 3 1 (a) at £, = 0 / and f, = 0 3 The spatial frequency peaks at
(0 1, 02) and (0 3, 0 4) are clearly visible 1n the contour plot of Figure 3 1 (b) The sharpness of
the peaks 1s illustrated by the 10 dB contours A number of peaks m the x frequency direction
can be seen 1 Figure 3 1 (c) None are at the correct frequencies of f, =0/ and f. = 0 3 The
contour plot of Figure 3 1 (d) clearly shows that the peaks are not located at spatial frequencies
(01, 02) and (0 3, 0 4) and therefore are incorrectly resolved We conclude that both frequency
components are accurately resolved at temperature 0 074 and are not accurately resolved at

temperature zero using the Levinson method

It should also be noted that the zero temperature model has reflection coefficients of value greater

than unity This results in autoregressive parameters that are not unity bounded Hence, the zero

temperature system 1s unstable and unsuitable for field synthesis or autocorrelation extension
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(c)

6 dB contours

fu 9

Figure 3 1 MFE spectral estimates of sinusoids at normalised frequencies (0 1, 0 2) and (0 3,
0 4) in white noise at SNR of 6 dB at temperature (a), (b) 0 074 and (c), (d) zero
(a)(c)Normalised amplitude spectral estimate on the x frequency axis, (b) (d) Contour plot in dB

on x and y frequency axes



3.3 Single sinusoid at high SNR
A sinusoid at normahised frequency (0 1, 0 2) at 27 dB SNR in white noise was used This data
set 1s detailed in Table 32 A 160 x 160 pont unbiased autocorrelation was estimated from the

80 x 80 point data set

Table 3 2 Data set parameters

}

Number of | White noise | Sinusoid Spatial

sinusoids M | power o° |power a’ | frequencies

1 0 002 1 (01,02)

Figure 3 2 (a) 1s a plot of the normalised amplitude spectral estimate on the x frequency axis The
2-D contour plot of the estimate 1s given 1n Figure 3 2 (b) The spectral estimate was obtamned
using an MFE based AR model of order 5 x 5 at temperature zero No spectral peak occurs at the
correct frequency and several spurious peaks occur Figure 3 2 (c) and (d) gives the normalised
amplitude plot and corresponding contour plot for the spectral estimate derived using an MFE
AR model of order 5 x 5 at temperature 0 5 They show that the spectral component 1s
accurately resolved at (01, 02) It 1s seen that the MFE method outperforms the

multidimensional Levinson method
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Figure 3 2 MFE spectral estimates of a single sinusoid at normalised frequency (01, 02) m

white noise at SNR of 27 dB at temperature (a), (b) zero and (c), (d) 0 5

(a)(c) Normalised amplitude spectral estimate on the x frequency axis, (b)(d) Contour plot in dB
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3.4 Combined QP estimates

Single quadrant spectral estimators have directional dependent resolution capabilities [86] Thus
means that the estimator has better resolution capability in some directions 1n the frequency plane
than m others The resulting spectral estimate 1s dependent on the positions of sinusoids m the
frequency plane and therr relative positions to each other The effect on the resolution caused by
relative position dependency of sinusoids to each other may be due to mterference that may occur
between these smusoids This may occur when the signal contains two or more smusoids [86]

Thas directional dependency also applies to MFE spectral estumates

The net result 1s that a single quarter plane spectral estimator may produce spectral estimates
with elliptical contours of constant PSD level Whether thus occurs or not depends on the location
and power of smusoids 1n a particular data set This may be overcome to some extent leading to
circular contours by using a combined quarter plane estimator Figure 3 3 shows the contour
plots for MFE spectral estimates based on a biased autocorrelation of the 80 x 80 data set in
Table 3 3 below The first and fourth quarter plane model spectral estimates, as seen 1n (a) and

(b) have opposing elliptical skews The combined estimate (c) yields a circular response

Table 3 3 Data set parameters

Number of | White noise | Smusoid Spatial

sinusoids M | power o©° |power a’ | frequencies

2 2 1 (03333,02)

05 (01,0222)
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Figure 33 MFE temperature 0 05 spectral estimates of sinusoids at normalised frequencies

(0 3333, 0 2) and (0 I, 0 222) in white noise at SNR of -1 25 dB
Contour plot n dB on x and y frequency axes of (a) first quarter plane spectral estimate, (b)

fourth quarter spectral estimate, and (c) combined quarter plane spectral estimate
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The shape of the combined estimate may not always be circular As with other quarter plane
methods the shape of the combmed estimate depends on the relative strengths of the first QP and
fourth QP spectral estimates Figure 3 4 (a), (b) and (c) shows the first QP, fourth QP and
combined QP spectral estimates for a 40 x 40 data snapshot the details of which are specified in

Table 3 1 An AR modified covanance techmque (MCV) with model order 5 x 5 1s used

Depending on the relative locations of sinusoidal components the interference may lead to bias n
peak location, spurious peaks and peak splitting Hence another motivation for the use of a
combined estimator 1s that spurious peaks are less likely to occur if quarter plane estimates are
combined 1n ‘parallel resistor’ fashuon [38] Single quadrant AR spectra also suffer from spurious
peaks at high SNR or high model order [86] In 1-D spectral estimation the spurious peaks are
caused by extra poles close to the umty circle 1n the z plane {38] Figure 3 5 (a), (b), and (c)
shows the first QP, fourth QP and combined first and fourth QP spectral estimates on the x
frequency axis This spectral estimate 1s based on models of order 7 x 7 denved by MFE at
temperature 0 05 The 80 x 80 data set is given in Table 34 An unbiased autocorrelation
estimate was used The Figure 1n (a) shows peaks occurnng at the required frequencies fx = 0 1
and £ = 03 However spurious peaks occur about the required frequencies thus obscuring
accurate spectral estimation The situation for the fourth QP model spectral estimate in the x
frequency direction 1s simar, with the correct components accompanied by  spurious
components A sumlar case exists on the y frequency axis These spunious peaks are eliminated

by combining the QP estimates as shown n the Figure 3 5 (c)

Table 3 4 Data set parameters

Number of | White noise | Sinusoid Spatial

sinusoids M | power o° |power a’ | frequencies

2 2 1 01,02)

1 03,04
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(c)

-6 dB contours

Figure 3 4 MCV spectral estimates of sinusoids at normahised frequencies (0 1, 0 2) and (0 3,
0 4) in white noise at SNR of 6 dB
Contour plot in dB on x and y frequency axes of (a) first quarter plane spectral estimate, (b)

fourth quarter spectral estimate, and (c) combined quarter plane spectral estimate
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Figure 35 MFE temperature 0 05 spectral estimates of smusoids at normalised frequencies
(0 1,02)and (0 3. 04) in white noise at SNR of 0 dB
Normalised amphitude spectral estimate on the x frequency axis based on (a) first QP, (b) fourth

QP and (c) combined first and fourth QP models

47



Further evidence of spurious peak elimnation can be seen 1n the x frequency plots of Figure 3 6
These show an order 5 x 5 model MFE spectral estimate at temperature 0 074 of the 80 x 80
point data set detailed in Table 3 1 In Figure 3 6 (a) the first QP spectral estimate m dB has
spectral peaks at fx = 0 / and fx = 0 3 which are accompaned and overshadowed by spurious
peaks The situation for the fourth QP 1s similar However mn Figure 3 6 (c) we see that the
combined first and fourth QP spectral estimate exhibits distinct spectral peaks at only the

required frequencies

Hence, we see that spurious peaks that may occur for single quarter plane models are very
effectively eliminated by using a combined quarter plane model Third quadrant model spectra
are 1dentical to first, and second quadrant model spectra are 1dentical to fourth We combine first

and fourth quarter plane PSD estumates for all simulations and tests unless otherwise stated
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Figure 3 6 MFE temperature 0 074 spectral estimates of smusoids at normalised frequencies

(0 1, 0 2) and (0 3, 0 4) in white noise at SNR of 6 dB

Log plots of spectral estimates on the x frequency axus based on (a) first QP, (b) fourth QP, and

(c) combined first and fourth QP models
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3.5 Autocorrelation type

The difference i spectral estimation based on exact, biased and unbiased autocorrelation
estimates may be examined This may be achieved by companng the resulting MFE spectral
estimates for a single snapshot of data consisting of a number of smusoids n white noise Figure
3 7 (a), (b), and (c) show the exact, unbiased and biased forms of the autocorrelation function for
the 80 x 80 data set of Table 3 5 The same white noise field was used n each case The resulting
spectral estimates generated by MFE models of order 6 x 6 at temperature 0 5 for exact, biased
and unbiased autocorrelation functions are shown i Figures 38, 39, and 3 10 (a) and (b)
respectively In all three cases the spectral elements are resolved, however the dynamic range
difference between the two smusoids 1s preserved best by the exact correlation with the unbiased
estimate being next best As m other AR methods the peak of the PSD 1s proportional to the
square of the power of the smnusoid This 1s unhke Founer methods where the peak 1s directly

proportional to the simusoid power

Table 3 5 Data set parameters

Number of | White noise | Smusoid Spatial

2
smusoids M | power o° |power a frequencies

2 (03333,02)

2 2 1 01,022

We note from Section 2 5 on autocorrelation functions that the use of the exact autocorrelation
helps 1dentify errors that inay occur n autocorrelation estimation rather than in the spectral
estutmation method itself In Section 3 8 on data length, we will see that if the unbiased
autocorrelation estimate 1s used, then for low data set size errors 1n the peak location may occur
These errors do not occur if the exact autocorrelation 1s used This represents an error in the
autocorrelation estimate as opposed to an error m the MFE method itself Ewidence of the

independence of spectral estimates to data set size using the exact autocorrelation function is seen

in Section 4 3 on conventional transform comparison
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Figure 3 7 Autocorrelation functions for 80 x 80 data set consisting of sinusoids at normalised
frequencies (0 3333, 0 2) and (0 1, 0 22) in white noise at SNR of 1 77 dB
(a) exact autocorrelation function, (b) unbiased autocorrelation function, and (c) biased

autocorrelation function
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Figure 38 MFE temperature 05 spectral estimate of sinusoids at normahsed frequencies
(03333, 02) and (01, 022) in white noise at SNR of 177 dB based on the exact
autocorrelation

(a) Normalised amphitude spectral estimate on the x frequency axis, and (b) Contour plot in dB

on x and y frequency axes
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Figure 3 9 MFE temperature 0 5 spectral estimate of a single sinusoid at normalised frequencies
(03333, 02) and (01, 022) in white noise at SNR of 177 dB based on the biased
autocorrelation estimate

(a) Normahised amphitude spectral estimate on the x frequency axis, and (b) Contour plot in dB

on x and y frequency axes
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Figure 310 MFE temperature 05 spectral estimate of a single sinusoid at normalised

frequencies (0 3333, 0 2) and (0 1, 0 22) in white noise at SNR of 1 77 dB based on the unbiased

autocorrelation esttmate

(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot i dB

on x and y frequency axes
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The second example 1s for three sinusoids of equal amplitude in white noise at an SNR of -6 dB
The details for the data set are given in Table 3 6 below The temperature was set at 0 001 and 7
x 7 order MFE models were used The MFE spectral estimates based on all three autocorrelation
types result in spectral peaks at the correct spatial frequency locations Figure 3 11 (a), (b), and

(c) show the normahised amplitude spectral estimates on the x frequency axis for the unbiased,

biased, and exact autocorrelations respectively

Table 3 6 Data set parameters

Number of | White noise | Sinusoid Spatial

smusoids M | power o’ |power a4 | frequencies

05 (01,01)

3 6 05 03,01)
05 02,02)
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Figure 3 11 MFE temperature 0 001 spectral estimates of sinusoids at normahised frequencies
(01,01),(03,01), and (0 2, 02) in white noise at SNR of -6 dB based on unbiased, biased and
exact autocorrelation functions

Normalised amplitude spectral estimate on the x frequency axis based on (a) exact

autocorrelation, (b) unbiased autocorrelation estimate, and (c) biased autocorrelation estimate
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3.6.1 Temperature - Simulations

We nvestigate the vanation with temperature of the spectral estimate of a single snapshot of
data This snapshot consists of two sinusotds in white noise at fixed SNR of 6 dB An unbiased
autocorrelation estimate was used The data set parameters are given in Table 3 1 above The
model order used was 5 x 5 Figures 3 12, 3 13, 3 14 and 3 15 (a) and (b) show the normahsed
PSD and contour plots for the resultmg spectral estimates at temperatures 0 0, 0 05, 05, and 5 0
respectively As discussed mn Section 3 2, at zero temperature the spectral estimate 1s very poor
and does not exhibit spectral peaks at the correct frequencies Thus 1s clearly illustrated in Figure

3 12 (a) and (b)

Figure 3 13 (a) shows a spectral estumate with sharp peaks at f, = 0/ and £, = 0 3 It 1s evident
from the contour plot of Figure 3 13 (b) that the spectral estimate at temperature 0 05 1s accurate
The 10 dB contours illustrate the sharpness of the peaks The spectral estimate 1s elliptical at very
low dB value showing some directional bias However this directional bias 1s negligible from the

-10 dB contour upwards

At temperature 0 5 the spectral peaks are not quite as sharp as they are at temperature 0 05 This

1s tllustrated by the PSD plot in Figure 3 14 (a) and the contours 1n Figure 3 14 (b)

In Figure 3 15 (a) the spectral estimate at temperature 5 0 displays two very broad peaks The
broadness of the peaks 1s further illustrated by the 1 dB contours shown mn Figure 3 15 (b) Hence
we see that the upper temperature limut 1s marked by a reduction m spectral resolution, whereas
below the lower limut spectral estimation 1s poor This agrees with the discussion in [12] The
poor results obtamned near or at zero temperature are accompamed by negative driving noise
variance or non-unuty bounded autoregressive model parameters Extensive expenmentation has
shown that regardless of model size or data set size employed there 1s a reasonably broad range of
temperature over which MFE provides good spectral estimates Hence precise determination of a

critical signal processing temperature value 1s unnecessary



Figure 3 12 MFE temperature zero spectral estimate of sinusoids at normalised frequencies
(0 1, 02) and (0 3, 0 4) in white noise at SNR of 6 dB
(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot in dB

on x and y frequency axes
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Figure 3 13 MFE temperature 0 05 spectral estimate of sinusoids at normalised frequencies

(01, 02) and (0 3, 0 4) in white noise at SNR of 6 dB

(a) Normalised amphtude spectral estimate on the x frequency axis, and (b) Contour plot i dB

on x and y frequency axes
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Figure 3 14 MFE temperature 0 5 spectral estimate of sinusoids at normalised frequencies (0 1,

0 2) and (0 3, 0 4) in white noise at SNR of 6 dB

(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot in dB

on x and y frequency axes
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Figure 3 15 MFE temperature 5 0 spectral estimate of smusoids at normalised frequencies (0 1,
0 2) and (0 3, 0 4) 1n whate noise at SNR of 6 dB
(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot in dB

on x and y frequency axes
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3.6.2 Temperature - Determination

A method of 1dentification of the best temperature range before or within the MFE parameter
estimation algorithm should provide a computational advantage especially for high order models
The alternative 1s to determine the temperature range empirically and to calibrate the system
temperature with a known source that 1s subjected to a known level of noise as m 1-D [77] The
cost function m 2-D MFE 1s mmmused at O((p;-1)(2p>’)) multiphes per iteration where the
model order 1s p; x p, MFE can provide accurate spectral estimation over a broad temperature
range where the optimum temperature range depends on the model order and level of noise Hence
a prioni temperature determination would present an advantage at high model orders However,
as stated i [78] ‘We have no fundamental theory for the temperature’ A prion temperature
determination remains an open and unsolved question even for 1-D MFE [66] In Section 6 3 we

highlight directions for ongoing research that may lead to a solution of this question

To get an early indication of temperature range suitability, we may nvestigate the relationship
between the reflection coefficient matnices m 2-D MFE and optimal signal processing
temperature For optimal temperature spectral estimation the entropy term m the MFE cost
function should ensure reflection matrices with unity bounded elements Hence the condition of
the reflection coefficient matnices gives an indicator of the quality of the resultant spectral

estimates

Another method of early determination of the best temperature range 1s to montor the order of
magnitude difference between cost functions associated with expression (50) as discussed n
Section 2 6 on optimisation and cost functions We define the cost function order difference (ord)
as the absolute difference between the log of the cost function due to the error energy and that due
to entropy Figure 3 16 1s a plot of this order difference over temperature This example 1s from
MFE model order 3 x 3 spectral estimation of the homogeneous random field constituent of

texture D93 from the Brodatz album [6] In [44] and [45] we decompose scanned fields from the
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Figure 3 16 Cost function order difference (ord) as a function of temperature for MFE model

order 3 x 3 spectral estimate of the homogeneous random field constituent of texture field D93

Brodatz album mto constituent fields including homogeneous random fields The issue of

wideband and mixed MFE spectra estimation 1s addressed 1n Section 6 5
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3.7 Model order

It has been proposed by Pimbley [66] and more recently by Cooper and Pimbley [12] that 1t
may be possible to determune the model order by use of the Akaike information criterion
However the Akaike information criterion 1s not a consistent decision rule for estimating the
order of AR models [35] We use a simple and effective method of increasing the model order as
long as the resolution of the resultant spectral estimate 1s improving The computational expense
of the method depends on model order, hence there 1s a simple trade off between added

computational expense and higher resolution

Extenstve experimentation into the effect of inodel order vanation has shown that the width of the
peaks corresponding to sinusoid components 1n a spectral estimate decreases as the model order
increases In one test we took a 80 x 80 point single snapshot of data consisting of 2 equal
amplitude sinusoids at 0 dB SNR The data set detailed in Table 3 4 was subjected to spectral
estimation using MFE models of order 3 x 3, 5 x 5, 7 x 7 and 9 x 9 The corresponding
temperatures used were 0 001, 0 001, 0 05 and 0 05 respectively Figure 3 17 shows the contour
plots for the estimates In filter theory the Q-factor 1s used to determune the selectivity of filters by
providing a measure of the peakiness of the spectral response of a filter We adapt this concept to
2-D and use a 2-D Q-factor to measure the sharpness of the peaks in the frequency domain This
Q-factor 1s determined as the wnverted product of the bandwidths in the x and y frequency
direction across each spectral peak at a given amplitude We use the averaged Q-factor over the
two spatial frequency components or peaks as a comparative measure of the sharpness of the
peaks The average Q-factors at -21 dB forthe 9 x 9, 7 x 7, and 5 x 5 model spectral estimates
and at -3 dB for the 3 x 3 model si)ectral estimate are in the ratio 10 5 44 4 4 respectively
Figures 3 18 and 3 19 (a) and (b) show the spectral estimates on the x and y frequency axes for
the 5 x 5 and 3 x 3 cases The broad peaks of the 3 x 3 case are n stark contrast to the sharp

peaks of the 5 x 5 case
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We may apply a transformation [52], [38] on our 3x3 model PSD estimate and thereby produce a
modified PSD with sharper peaks However 1n applying this transformation the amplitude of one
of the spectral components i1s dimumshed sigmficantly We conclude that better spectral
estimation in terms of peak amplitude, and peak width as quantified by the Q-factor, 1s achieved
as the model order increases The only known disadvantage of higher model order 1s added

computational expense

There 1s a connection between model order and mummum signal processmg temperature for
accurate spectral estimation Extensive experimental simulation shows that an increase m model
order causes an increase n the mmmum feasible value of signal processing temperature This

agrees with the discussions of Cooper and Pimbley on their hybrid method mn [12]
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Figure 3 17 MFE spectral estimates of smusoids at normalised frequencies (0 1, 0 2) and (0 3,
0 4) in white noise at SNR of 0 dB

Contour plot in dB on x and y frequency axes based on (a) model order 9 x 9 at temperature
0 05, (b) model order 7 x 7 at temperature 0 05, (c) model order 5 x 5 at temperature 0 001, and

(d) model order 3x 3 at temperature 0 001
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Figure 3 18 MFE model order 5 x 5 spectral estimate of smusoids at normahsed frequencies

(01, 0 2) and (0 3, 0 4) in whte noise at SNR of 0 dB

Log plots of the spectral estimate on (a) the x frequency axis, and (b) the y frequency axis
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Figure 3 19 MFE model order 3 x 3 spectral estimate of sinusoids at normalised frequencies

L
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(0 1, 0 2) and (0 3, 0 4) in white noise at SNR of 0 dB
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Log plots of the spectral estimate on (a) the x frequency axis, and (b) the y frequency axis
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3.8 Data length

We now examune the effect on MFE spectral estimation of varation of data length at fixed SNR
In the first example we took 160 x 160, 80 x 80, 40 x 40 and 20 x 20 pomt single snapshots of
data These snapshots consisted of two equal amplitude sinusoids at spatial frequencies (0 1, 0 2)
and (0 3, 0 4) at 6 dB SNR as detailed in Table 3 1 The unbiased estimated autocorrelation was
used We carnied out 10 tnals at each data set size The random number generator used was
based on the linear congruential method [53], [62], [19] The same random number generator
seed was used to mitiate the 10 tnals for each data set size This meant that each simulation
series of autocorrelations corresponding to each data set size was wutiated with the same noise
seed and hence used the same set of noise fields The data was subjected to spectral estimation

using MFE models of order 5 x 5 All spectral estimates were generated over 160 x 160 points

The 160 x 160, 80 x 80 and 40 x 40 data sets all produced very similar spectral estimates which

were accurate to a resolution of 1/160™ of umity normahised frequency

In the 20 x 20 case five of the spectral estimates were accurate to 1/160” of umty normahsed
frequency The other five estimates show an error of 1/160™ of umity normalised frequency m one
frequency component of one spectral peak Figure 3 20 (a) and (b) shows the log plot on the x
frequency axis and the contour plot of the spectral estimate for one of these cases We note that
the peak that should occur at . = 0 3 occurs at f, = 0 3063 Ths peak 1s only 1 5 dB above the
value of the spectral estimate at /. = 0 3 As the spectral estimates are taken over 160 x 160
points, this represents the smallest possible detectable error If an exact autocorrelation s used
nstead of the unbiased estimated autocorrelation then no error occurs Hence the error occurs due
to the use of the unbiased autocorrelation estimate as opposed to an error n the spectral

estimatton techmque 1tself
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Figure 3 20 MFE 160 x 160 pont spectral estimate of sinusoids at normalised frequencies (0 1.
0 2) and (0 3, 0 4) in white noise at SNR of 6 dB and data set si1ze of 20 x 20

(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot in dB

on x and y frequency axes
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The detectable size of the error depends on the resolution of the spectral estimate Figure 3 21 (a)
and (b) shows a high resolution 520 x 520 pownt estimate based on the same model The second

frequency peak occurs at f; = 0 3038, giving a more accurate reading of the error as 0 0038

Regardless of the data set size employed, the only points in the autocorrelation that are used are
those corresponding to the region of support of the model Hence if the exact autocorrelation 1s
used then autocorrelation points used in determumng the model are independent of the data set
size This means that spectral estumates corresponding to dufferent data set sizes will be the same
if the exact autocorrelation 1s used and if the data set size 1s larger or equal to the model order
Ewvidence of the independence of spectral estimates to data set size using the exact
autocorrelation function 1s seen 1n Section 4 3 on conventional transform companson Hence the
spectral estimates for the data set in Table 3 7 for data set size 80 x 80, 10 x 10 and 5 x 5 are
found to be 1dentical For each of these cases the spectral estimate was denived usmg 5 x 5 order
MFE models We also show in Section 4 3 that MFE provides reasonably accurate spectral

estimates for closely spaced sinusoids at low SNR together with low data set size

Table 3 7 Data set parameters

Number of | White noise | Sinusoid Spatial

smusoids M | power o’ |power a’ | frequencies

1 (01,01)
3 6 1 03,01)
1 (02.02)
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Figure 3 21 MFE 520 x 520 point spectral estimate of sinusoids at normalised frequencies (0 1,
0 2) and (0 3, 0 4) in white noise at SNR of 6 dB and data set size of 20 x 20
(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot in dB

on x and y frequency axes
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3.9 SNR Variation

We nvestigate the effect on MFE spectral estunates of vanation of SNR at fixed data length
Temperature emphasises entropy at the expense of error energy Entropy is a measure of the
noise m the system, hence there 1s a direct relationship between the temperature and SNR level
Ewvidence of this 1s available in the experimental results Extensive experumentation also shows
that hugher order models with consequent lgher temperatures are required at lugher SNR Lower
order models exhibit instability and produce poor spectral estimates For example, 3 x 3 models
can be unstable for synthesis purposes They produce maccurate spectral estimates for a 160 x
160 data snapshot consisting of two smusoids at 6 dB SNR as detailed in Table 3 1 However, as
shown 1n Sections 3 4 and 3 6 1, models of order 5 x 5 are stable and produce accurate spectral
estimates for the same data set If the SNR for thus data set 1s reduced to 0 dB then as we have
seen m Section 3 7 on model order the 3x3 models provide spectral estimates, albeit at low
resolution As in 1-D MFE [66] and hybrid MFE [12], the method gives good results at low SNR

with appropriate choice of model order

The spectral estimates for the 80 x 80 point data set in Table 3 7 that were derived using MFE 7
x 7 order models at temperature 0 001 are shown m Figure 3 22 (a) The spectral estimate for the
data set in Table 3 6 1s shown in Figure 3 22 (b) The data sets are 1dentical with the exception
that the set m Table 3 7 has a SNR of -3 dB, whereas that in Table 3 6 has a SNR of -6 dB
Unbiased autocorrelation estimates are used on both The contour plots in Figure 3 22 (a) and (b)
indicate that the higher SNR data set has tighter contours, wndicative of sharper peaks, than the
lower SNR data set Generally for the same model order and signal processing temperature lower
SNR data sets result mn broader spectral estimates This agrees with the 1-D case where

numerous reported simulations attest to this property [38]
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Figure 3 22 MFE temperature 0 001 spectral estimates of sinusoids at normalised frequencies
(01,01),(03,01),and (02, 02) in white noise

Contour plot m dB on x and y frequency axes at (a) SNR of -3 dB, and (b) SNR of -6 dB
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3.10 Spectral resolution

The resolution capability of single quarter plane spectral estimators 1s dependent on not only the
magmitude of the spectral components but also on their relative onentation [86] The combmed
spectral estimate overcomes to some extent this problem as 1t takes into account the frequency
plane directional selectivity of both quarter plane models Peak sphitting and spurious peaks may
occur due to interference between spectra:I components However as they occur along different

axis for the different quarter plane model spectra the combmed spectrum tends to eliminate them

The resolution capability of spectral estimators also depends on the shape of the region of support
for the model Hence 1t should be noted that any resolution measurement 1s only an indicator of
the relative performance, and should not be considered meaningful as an absolute measure [50]

We may also expect some bias 1n spectral estimates of closely spaced sinusoids due to their fixed

relative phases as commented on 1n the Section 2 5 on autocorrelation type

We examune the results of four tests In the first test we carry out MFE spectral estimation of a
data set consisting of two sinusoids in white noise These two sinusoids are very closely spaced in
one frequency direction and close in the other In the second and third tests we examune the
relative performance of the MCV and MFE methods for two very closely spaced sinusoids In the

last test we examune the notion of single peak area (SPA) [86]

In the first test two closely spaced sinusoids at normalised frequencies (0 1, 0 2) and (0 11,
0 38) at 4 6 dB SNR 1n white noise are used The parameters are given m Table 3 8 We have

used a 5 x 5 order MFE model The data set size was 40 x 40 ponts
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Table 3 8 Data set parameters

Number of | White noise | Sinusoid Spatial

2
smusoids M | power o° |power a° | frequencies

07 1 (0 10, 0 20)

2 1 (011, 038)

The spectral estimate plotted m Figure 3 23 (a) and (b) was denived using the MFE based AR
model of order 5 x 5 at zero temperature The plots m Figure 3 23 (c) and (d) are for temperature
05 Figure 323 (a) shows the normalised amplitude PSD estimate on the x frequency axis A
number of spectral peaks occur However only one of them at £, = 0 091s close to the correct
frequency f; =01 or f; = 011 The contour plot in Figure 3 23 (b) shows one peak located
near (0 1, 02), and several spurious peaks There 1s no peak at (0 11,0 38) Thus at zero
temperature neither of the spectral components at spatial frequencies (01, 02) nor (011,

0 38) are accurately resolved

Figure 3 23 (c) shows the normalised PSD plot at temperature 0 5 on the x frequency axis
Spectral peaks at frequencies f, =0/ and f, =0 11 are clearly visible We can see in Figure
3 23 (d) that the x frequency components at 0 1 and 0 11, and the y frequency components at
02 and 038 making up the two spatial frequencies (0 1, 0 2) and (0 11, 0 38) are accurately
resolved Hence at the non-zero temperature both spectral components at frequencies (0 1,
02) and (0 11, 0 38) are accurately resolved We see again that MFE provides accurate spectral

estimation where the Levinson algonthm fails
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Figure 3.23. MFE spectral estimates of closely spaced sinusoids at normalised frequencies (0.1,
0.2) and (0.11, 0.38) in white noise at SNR of4.6 dB at temperature (a), (b) zero and (c), (d) 0.5.

(8) (c) Normalised amplitude spectral estimate on the x frequency axis, (b) (d) Contour plot.
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In the second test on resolution we take a 40 x 40 pomnt data set This data set consists of two
very closely spaced sinusoids at frequencies (0 1, 0 3) and (0 15, 0 25) in white noise as detailed
in Table 39 We performed spectral estimation using MFE at temperature 0 05 using an
unbiased autocorrelation We also performed spectral estimation using a modified covarniance
method (MCV) [38] In both methods we used 7 x 7 order models In Figure 3 24 (a) we see that
the MFE spectral estumate displays two distinct peaks at (0 1, 0 3) and (0 15, 0 25) The peak
corresponding to (0 1, 0 3) 1s approximately 2 dB down on the other peak The MCV spectral
esttimate m Figure 3 24 (b) also displays two distinct peaks at the correct frequencies with the

peak at (0 1, 0 3) also approximately 2 dB down on the other peak

MFE and conventional Fourier transform spectral estimation for the very closely spaced sinusoid
example described above based on a data set size of only 7 x 7 pomts 1s exammed m  Section
4 3 Ths Section deals with comparnson of MFE and a conventional transform method It is seen
that MFE provides reasonably accurate spectral estimation of very closely spaced smusoids at

low SNR and low data set size

Table 3 9 Data set parameters

Number of | White noise | Smusoid Spatial
sinusoids M | power o° |power a | frequencies
4 1 ©1,03)
2 1 (0 15,0 25)

In the next test we take a 40 x 40 pomnt data set corresponding to the data in Table 3 10 The
smusoids are of equal amplitude at frequencies (0 1, 0 3) and (0 14, 026) We perform MFE
based spectral estimation at temperature 0 05 based on an unbiased autocorrelation We also
performed spectral estimation using MCV In both cases order 7 x 7 models are used The
resulting MFE spectral estimate 1s shown 1n Figure 3 25 (a) Peaks are located at (0 1, 0 3) and

(0 14, 0 28), with the first peak bemng approximately 2 dB down on the other peak The MCV
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Figure 324 MFE and MCV spectral estimates of closely spaced sinusoids at normahsed
frequencies (0 1,0 3) and (0 15, 0 25) in white noise at SNR of -3 dB

Contour plot in dB on x and y frequency axes for (a) the MFE estimate at temperature 0 05, and
(b) the MCV estimate
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spectral estimate, shown in Figure 3 25 (b) also gives two peaks at (0 1, 0 3) and (0 13, 027),
with the first agan 2 dB down on the other peak Clearly reduction of the gap between
frequencies results 1n less accurate spectral estimation for both methods

Table 3 10 Data set parameters

Number of | White noise | Smusoid Spatial

smusoids M | power o® |power a’ | frequencies

1 (01,03)

2 4 1 (0 14,0 26)

When the frequency separation between two sinusoidal components 1s small then a spectral
estimate may exhbit only one peak Zou and Liu [86] introduce the notion of SPA When the
frequency separation of two smusoids of equal power 1s within the SPA then a single peak 1s
observed, hence a smaller SPA for a spectral estimator imphes better resolution For our last test
on spectral resolution we examune the MFE spectral estimation of two very closely spaced
smusoids at normalised frequencies (0 1, 0 275) and (0 125, 0 25) in white Gaussian noise at -3
dB SNR The 20 x 20 data set 1s detailed m Table 3 11 Figure 3 26 (a) shows the spectral
estimate for the two sinusoids using an MFE 7 x 7 order model derived at temperature 0 05 Only
one peak 1s visible at (0 11, 0 26) However increasmg the model order overcomes this effect The
spectral estimate for the case where the model order 1s margmnally increased to 9 x 9 1s shown in
Figure 3 26 (b) Two distinct peaks are seen to emerge If the model order 1s increased further to

12 x 12 then the peaks become more distinct again, as seen in Figure 3 26 (c)

Table 3 11 Data set parameters

Number of | White noise | Sinusoid Spatial
smnusolds M | power o |power a’ | frequencies
2 4 1 (0 1,0275)
1 (0 125,0 25)
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Figure 325 MFE and MCV spectral estimates of closely spaced sinusoids at normahsed
frequencies (0 1,0 3) and (0 14,0 26) 1n white noise at SNR of -3 dB

Contour plot 1n dB on x and y frequency axes for (a) the MFE estimate at temperature 0 05, and

(b) the MCV estimate
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Figure 3 26 MFE spectral estimates of very closely spaced smusoids at normalised frequencies
(0 1, 0275) and (0 125, 0 25) 1n white noise at SNR of -3 dB and data set size 20 x 20

Contour plot 1n dB on x and y frequency axes for (a) 7 x 7 model order estimate, (b) 9 x 9 model

order estimate, and (c) 12 x 12 model order estimate

83



3.11 Dynamic range difference

In MFE as in other 2-D and 1-D AR parametric spectral estimation schemes the peak of the
power spectral density 1s proportional to the square of the power of each sinusord This is unlike
Founer transform techmiques where the peak 1s proportional to the sinusoid power It can result
lower level sinusoids bemng masked by the higher level ones [38] We take an example of two
siusoids at normahsed frequencies (0 3333, 0 2) and (0 1, 0 22) m white noise, the parameters
for which are given i Table 3 5 The amplitude ratio of the sinusoids 1s V2 1, giving a smusoid
power ratio of 2 1 or 105 In Section 3 3 on autocorrelation type we denved 6 x 6 models at
temperature 0 5 for this example using exact, biased and unbiased autocorrelation functions The
spectral estimate 1n the exact autocorrelation case gives the square of the power ratio as 1 0 25
preserving the power ratio as 1 0 5 or 2 1 and the amplitude ratio as 1 4142 1 In the unbiased
autocorrelation case the spectral estimate gives the square of the power ratio as 1 0 185 resulting
in the power ratio 1043 and amplitude ratio 1523 1 In the biased autocorrelation case the
spectral estimate gives the square of the power ratio as 1 0 14 resulting 1n the power ratio 1 0 374
and amplitude ratto 16351 The errors n amplitude ratio are due to the process of

autocorrelation estimation

3.12 Models with non-symmetric region of support

We took a 40 x 40 pomnt data snapshot consisting of smusoids at arbitrary umty normahsed
frequencies (0 1, 02) and (0 3, 04) The sinusoids are of equal amphitude at SNR of 0 dB in
uncorrelated white Gaussian noise The parameters are given 1n Table 3 4 above Figure 3 27 (a)
shows the contour plot for the MFE spectral estimate at temperature 0 001 of the two sinusoids
mn noise A 5 x 5 order model was used The contours of constant PSD level are shghtly elliptical
in shape The ratio of x to y frequency bandwidth of the spectral peaks at the -18 dB contour 1s
given m Table 3 12 The eccentricity of the spectral peaks at the -18 dB contour 1s also given

The -18 dB contour 1s chosen arbitranly as the figures are reasonably constant over a wide
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dynamic range up to at least -6 dB These figures mndicate a resolution bias 1n the y frequency
direction Thus 1s portrayed by a slight bias in the vanance statistics in a statistical test which 1s
discussed later in Section 4 4 3 As discussed in Section 3 4, AR spectral estimators may exhibit
directional dependent resolution capabilities depending on the location of sinusoids 1n the data set
under test Hence whether directional dependency occurs or not depends on the particular data
set The accuracy of AR model based spectral estimates also depends on the size and shape of the
model used [50] We show that this slight bias may be overcome by using a model with non-
symmetric region of support Figure 3 27 (b) shows the contour plot for the MFE spectral
estimates at temperature 0 001 using a 7 x 5 order model The same unbiased autocorrelation
data was used as in the 5 x 5 case The directional bias 1s less pronounced Thus 1s reflected in the
x to y frequency bandwidth ratio and eccentricity figures in Table 3 12 Hence the spectral peaks
are less elliptical than those at model order 5 x 5 Figure 3 27 (c) shows the MFE spectral
estimates at temperature 0 001 using a 9 x 5 order model The same unbiased autocorrelation
data was used as in the 5 x 5 and 7 x 5 cases above The directional bias 1s reduced even further

Thus 1s reflected in the £ to £, maximum width ratio and eccentricity figures in Table 3 12

Table 3 12 Ratio of f; to £, bandwidth and eccentricity of spectral peaks at (0 1, 0 2) and (0 3,
0 4) at 0 dB SNR Figures are for the -18 dB contour for spectral estimates denived using MFE
models of order 5 x5,7x5and 9x 3

Spectral Peaks
(01,02 (03,04)
Model order | f/f, Width Eccentnicity | f/f, Width Eccentncity
Ratio Ratio
5x5 172 0814 142 0711
7x5 141 0 704 120 0553
9x5 112 0458 105 0300
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Figure 3 27 MFE spectral estimates of sinusoids at normalised frequencies (0 1, 0 2) and (0 3,
0 4) in white noise at SNR of 0 dB
Contour plot m dB for (a) 5 x 5 model order estimate, (b) 7 x 5 model order estimate, and (c) 9 x

5 model order estimate
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In the second test on non-symmetﬁc regions of support we took the same set of sinusoids as
above at an SNR of 6 dB In Section 3 4 we have seen that the effect on the resolution caused by
relative position dependency of sinusoids to each other may be due to interference that occurs
between these sinusords We have seen 1n the last simulation that the location of the smusoids at
(01,02)and (0 3, 04) gives nise to a small bias in the resolution Increasing the SNR increases
the smusoidal power and emphasises this effect This results in a resolution bias in the y
frequency direction for both MFE and MCV spectral estimates It may also result in peak
splitting as discussed mn Section 3 4 An example of peak splitting for a snapshot data set 1s

shown 1n the x axis log plot in Figure 3 28

Figure 3 29 (a) shows the contour plot for the MFE spectral estimates at temperature 0 05 of the
two smusoids i noise A 5 x 5 order model was used We note that the estimates are elliptical in
shape The ratio of x frequency to y frequency bandwidth and eccentricity of the spectral peaks at
the -18 dB contour is given m Table 3 13 The figures for the 5 x 5 model case indicate a
resolution bias 1n the y frequency direction Figure 3 29 (b) shows the contour plot for the MFE
spectral estimates at temperature 005 using a 15 x 5 order model The same unbiased
autocorrelation data as in the 5 x 5 case was used The directional bias 1s ehmmated This 1s

reflected in the x to y frequency bandwidth ratio and eccentricity figures m Table 3 13
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Figure 3 28 Log plot of the MFE spectral estimate on the x frequency axis of simusoids at

normahsed frequencies (0 1, 0 2) and (0 3, 0 4) in white noise at SNR of 6 dB

Table 3 13 Ratio of £ to £, bandwidth and eccentricity of spectral peaks at (0 1, 0 2) and (0 3,
0 4) at 6 dB SNR Figures are for the -18 dB contour for spectral estimates derived using MFE

models of order 5 x 5and 15x 5

Spectral Peaks
(01,02) (03,04)
Model order | f/f, Width Eccentneity | f/f, Width Eccentricity
Ratio Ratio
5x5 275 0932 264 0926
15x5 111 0434 094 0341
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Figure 3 29 MFE spectral estimates of smusoids at normahsed frequencies (0 1. 0 2) and (0 3,

0 4) in whte noise at SNR of 6 dB

Contour plot in dB for (a) 5 x 5 model order estimate, and (b) 15 x 5 model order estimate
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Chapter 4. Comparisons with Other Methods

4.1 Introduction

In this Chapter we compare the performance of MFE spectral estimation with that of other
methods These methods mclude MCV [38], the multidimensional Levinson method [52], the
hybnd approach of Kimura and Honoki [47], the maximum entropy method of Lim and Malik
[51], and a conventional transform techmique [53] In addition we briefly revise the relevant
results presented in Chapter 3 where compansons with some of the techmques above have

already been made

The first companson 1s with zero temperature MFE or the multidimensional Levinson method
We then compare the MFE spectral estimates with that produced by conventional transform

based methods for examples with very low data set size Compansons are made of the
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computational expense, model stability and accuracy of spectral estimates with that of
multidimensional Levinson, maximum lkelthood esttmation (MLE) [33], and MCV methods
Finally, using the same examples as employed by Kimura and Honoki [47], and Lim and Mahk

[51] we compare their results with MFE spectral estimates

As m Chapter 3 all spectral estimates are calculated over 160 x 160 points unless otherwise
stated Spectral estimates are plotted as normalised amplitude PSD plots or as log plots on the x

frequency axis psd(fy,0) 0< f;, <05 and on the y frequency axis psd(O,fy) Osfy <05

Contour plots are also used as in Chapter 3

4.2 Multidimensional Levinson comparison

An advantage of MFE over the zero temperature Levinson approach 1s that it provides stable
models by appropnate selection of temperature range m cases where the multidimensional

Levinson algonthm does not

Sections 32, 33 and 3 6 give examples of cases where the MFE method outperforms the
multidimensional Levinson algonthm The MFE method extends the range of the Levinson
algonthm by virtue of the entropy term In Section 3 10 MFE provides accurate spectral

estimates and outperforms the Levinson algonthm for very closely spaced siusoids

4.3 Conventional transform comparison

The comparison of results from the MFE method with those from a Fourier transform method 1s
particularly of interest at low data set size Ths 1llustrates the high resolution performance of thq
MFE method over classical transform methods We take a 5 x 5 point data set generated from 3
sinusoids 1 white noise at SNR of -3 dB with parameters as in Table 3 7 above An exact

autocorrelation 1s used

We generate a conventional estimate by performing a fast Fourier transform of the exact

autocorrelation of the 5 x 5 data set The resulting spectral estimate 1s shown n Figures 4 1 (a)
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on the x frequency axis and 4 2 (a) on the y frequency axis We also generate a spectral estimate
usmg a 5 x 5 order MFE model at temperature 0 05 The spectral estimates generated by this
model for data set size 80 x 80, 10 x 10 and 5 x 5 are found to be 1dentical The 5 x 5 case 1s
shown m Figures 4 1 (b) and 42 (b) on the x frequency and y frequency axis respectively
Evidently MFE provides higher resolution estimates than the conventional method It 1s also
advantageous that the usual sidelobe structure [38] associated with conventional methods does
not appear in the MFE estimate Reduction of the sidelobes in the conventional estimate may be
effected by windowing the data However this results i reduction in the resolution of the

estimate

The search for high resolution spectral estimators which may be used for low data set size and
low SNR continues to be a motivating force behind research into multidimensional spectral
esttmation This has been highlighted in Chapter | We now compare conventional Founer
transform and MFE spectral estimates of a 9 x 9 point data set consisting of three smusoids n -6
dB noise The data set details are given in  Table 3 6 above Figure 4 3 (a) and (b) shows the
MFE spectral estimate at temperature 0 5 and the conventional estimate Both are based on the
exact autocorrelation The MFE estimate exhibits very close 1 dB contours running from -12 dB
upwards to a peak The contours of the conventional estimate are much more widely spaced For
approximately the same frequency plane area they run from -5 dB to a flat plateau Ewvidently the
MFE estimate possesses far sharper peaks that are better resolved than those of the conventional
estimate We also see from this test that MFE 1s capable of performing accurate spectral

estimation at low SNR and low data set size

The third example n this section 1s for two very closely spaced sinusoids at low SNR with low
data set size We take a 7 x 7 pont data set for two sinusoids at frequencies (0 1, 0 3) and
(0 15, 0 25) as detailed in Table 39 The SNR 1s -3 dB We performed MFE spectral estimation

at temperature 05 wusing the exact autocorrelation We also performed spectral
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Figure 41 Conventional Fourner transform and MFE spectral estimates of sinusoids at
normalised frequencies (0 1, 0 1), (03, 0 1) and (0 2, 0 2) in white noise at SNR of -3 dB and
data set s1ze 5 x 5

Log plots of spectral estimates on the x frequency axis derived using (a) conventional Founer

method, and (b) MFE at temperature 0 05
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Figure 42 Conventional Founer transform and MFE spectral esttmates of smusoids at
normahsed frequencies (0 1, 0 1), (03, 0 1) and (0 2, 0 2) in white noise at SNR of -3 dB and
data set size 5 x 5

Log plots of spectral estimates on the y frequency axis derived using (a) conventional Fourier

method, and (b) MFE at temperature 0 05
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Figure 43 MFE and conventional Fourier transform spectral estimates of smusoids at
normalised frequencies (0 1,01), (03, 01) and (02, 0 2) in white noise at SNR of -6 dB and

data set s1ze 9 x 9

Contour plot in dB using (a) MFE at temperature 0 5, and (b) conventional Founier method
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estimation by applymg a fast Fourier transform on the same autocorrelation data In Figure 4 4
(a) and (b) we see that the MFE spectral estimate displays two distinct peaks on the x and y
frequency axes The peaks are located at (00942, 03) and (0 1558, 025) The peak
corresponding to (00942, 0 3) 1s approximately 0 5 dB down on the second peak The
conventional transform spectral estimate in Figure 4 5 (a) and (b) displays a single broadly
resolved flat spectral peak across the region of interest on the x and y frequency axes The
contour plot of Figure 4 6 (a) again shows two distinct MFE spectral peaks The poorly resolved
conventional estimate in Figure 4 6 (b) has a plateau at 1 dB that lies over a wide spectral area
MFE outperforms the conventional estimate for closely spaced sinusoids at low SNR with low

data set size

4.4 Modified covariance comparison

We first compare the computational expense and model stability of MLE [33], MCV [38] and
our MFE method, where the MLE method 1s based on the Founer transform of the observed data
set We then compare the bias and standard deviation of spectral estimates obtamned by MCV and
MFE techniques over a number of independent simulation trials We have seen in Section 3 10

that MFE performs as well as MCV 1n terms of spectral resolution for data snapshot examples

4.4.1 MCYV comparison - Computational expense

The data set size 1s taken as M x N and model order as p, x p,, where M >> p; and N >> p,
The cost functions m MFE, MCV and MLE are mimimused at O((p;-1)(2p;" )), O(2(M-p.)(N-
p2pip2), and O(MNp,p,) multiplies per iteration In MLE one of the elements 1s a trigonometric
function It 1s evident therefore that MFE 1s computationally less expensive We have found that
MFE performs spectral estimation 8 times faster than MLE and 12 times faster than MCV for

any data snapshot in the comparative vanance test discussed below
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Figure 4 4 MFE spectral estimate of closely spaced smusoids at normalised frequencies (0 1,
0 3)and (0 15, 0 25) in whate noise at SNR of -3 dB and data set size 7 x 7

Normalised amplitude spectral estimate on (a) the x frequency axis, and (b) the y frequency axis
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Figure 4 5 Conventional transform spectral estimate of closely spaced sinusoids at normalised
frequencies (0 1, 0 3) and (0 15, 0 25) i white noise at SNR of -3 dB

Normalised amplitude spectral estimate on (a) the x frequency axis, and (b) the y frequency axis
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Figure 4 6 MFE and Conventional transform spectral estimates of very closely spaced sinusoids

at normahlised frequencies (0 1, 03) and (0 15, 0 25) in white noise at SNR of -3 dB and data

setsize 7x 7

Contour plot using (a) MFE at temperature 0 3, and (b) the conventional transform method
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4.4.2 MCV comparison - Stability

In addition to computational expense an important 1ssue for comparnison is that of model stability
A recursively computable and stable system 1s important if field synthesis or correlation extension
is envisaged A stable system 1s marked by umty bounded AR model parameters and positive
white noise vanance MLE provides stable models whereas MCV does not necessanly provide
stable models MFE provides stable models by appropnate selection of temperature range This
1s because the magmtude of reflection coefficients 1n the reflection matrices within the algorithm

are a function of the temperature

4.4.3 MCV comparison - Statistical accuracy of spectral estimates.

We statistically compare spectral estimates produced by the MFE and MCV methods We
implemented both algonthms and made 24 simulation tnals on each We note that the bias and
vanance of the spectral estimates vary only to a very small extent with the number of tnials This
1s also seen to be the case m 1-D MFE [75], where 10 independent tnials were used All tnals
used a single snapshot of data consisting of sinusords at arbitrary umity normaitsed frequencies
(01, 02) and (0 3, 04) The sinusoids were of equal amplitude at arbitrary SNR of 0 dB n
uncorrelated white Gaussian noise The data set 1s detailed in Table 34 To ensure a fair
comparnson, the same random number generator seed was used to imtiate the 24 tnals for both
algonthms so that each simulation senes contained an identical sequence of noise spectra This
meant that the same set of 24 uncorrelated and independent noise fields were used for both
algorithms The size of the sinusoid and white noise data fields were 40 x 40 pomts The model
size used was 5 x 5, mdicating a 5 x 5 region of correlation support The unbiased
autocorrelation estimate was used for MFE The MFE signal processing temperature was set at
0001 Ths temperature was arbitranily chosen from within a wide band of temperature which
previous tests have indicated provides accurate spectral estimation Table 4 1 shows the bias and
standard deviation of spectral estimates for both frequencies for each method The PSDs were

calculated over 520 x 520 poiwnts and therefore the resolution of each estimate 1s to 0 001 92 of
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umity normahsed frequency The bias figures for MFE and MCV spectral estimates are
comnparable The vanance figures for MFE spectral estimates are on average 1 65 times those

achievable by MCV The statistics show that MFE provides accurate spectral estimation

Table 4 1 Bias and standard deviation of MFE and MCV spectral estimates for sinusoids at

normalised frequencies (0 1,0 2) and (0 3,0 4) in whute noise

MFE MCV

£ Biasx 10° | Varx 10® | Biasx 10 | Varx 10°
01 -0 079 415 -0 079 169

03 -0 563 231 -0 400 184

5 Bias x 10° | Varx 10° | Biasx 10 | Varx 10°
02 0158 244 0242 195

04 0 400 184 0321 113

The vanance figures for the MFE case are shightly better in the y frequency direction than m the x
frequency direction for each sinusoid This indicates a shght resolution directional bias for the
particular example given As discussed in Sections 3 4 and 3 12, AR spectral estimators may
exhibit directional dependent resolution capabilities, depending on the location of sinusoids in the
data set under test The accuracy of AR model based spectral estimates also depends on the size
and shape of the model used This shght directional bias may be elimnated by using a MFE

model with non-symmetric region of support as seen in Section 3 12

Spectral estimates were determimned over 160 x 160 powmts using the MFE models from the
variance test above Figure 4 7 (a) and (b) shows the overlaid PSD log plots of the spectral

estimates on the x and y frequency axes This indicates the statistical vanability of the estimator
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Figure 4 7 Overlaid MFE spectral estimates of sinusoids at normalised frequencies (0 1, 02)
and (0 3, 0 4) in white noise at SNR of 0 dB

Log plots of MFE spectral estimates on (a) the x frequency axis, and (b) the v frequency axus
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4.5 Hybrid method and maximum entropy method comparison

We compare our results with those from the hybnd dual 1-D method of Kimura and Honoki [47],
and the maximum entropy method of Lim and Malik [S1] We take two snapshot data set
examples from their papers, the parameters of which are as given 1n Tables 3 5 and 3 6 above

Both Kimura and Honoki and Lim and Malik use exact autocorrelation data

For the data set in Table 3 5, the contour plots of the spectral estimates m Figures 4 8 (a) and (b)
are from [47] and that m Figure 4 8 (c) 1s from [51] The spectral estimate derived using a 6 x 6
order MFE model at temperature 0 5 based on the exact autocorrelation 1s shown m Figure 4 9
The MFE spectral estimate provides two distinct peaks from the -18 dB level upwards The peaks
are accurately esttmated This estimate 1s superior to that produced by the hybnd method at 5 x 5
covanance support which 1s shown m Figure 4 8 (a) The hybnd method at 7 x 7 covanance
support 1s shown 1n Figure 4 8 (b) It possesses tighter contours than the MFE method However
1t 1s not possible to determine the dB level at which the peaks occur for the frequencies (0 333,
02) and (01, 022) Ths 1s because the highest contour provided for the (0 1, 0 22) peak 1s at
-24 dB and for the (0 333, 0 2) 1s at -12 dB The spectral estimate due to the maximum entropy
method 1s shown n Figure 4 8 (c) It displays tighter contours than the MFE estimate However
the contours stop at -24 dB for the (0 I, 022) peak The location of thus contour shows

mnaccurate spectral estimation for the (0 1, 0 22) frequency, whereas 1t 1s accurate for the MFE

case

For the data set in Table 3 7, the contour plots of the spectral estimates i Figures 4 10 (a) and
(b) are from [47] and that in Figure 4 10 (c) 1s from [51] The spectral estimate in Figure 4 11 1s
dertved using an order 7 x 7 MFE model at temperature 0 001 based on an exact autocorrelation
The MFE estimate 1s supenor to that of the hybnd method at 7 x 7 covanance support which 1s
shown n Figure 4 10 (a) The MFE estimate shows tighter contours and therefore sharper peaks

than the hybrnd method at 9 x 9 covanance support which 1s shown in Figure 4 10 (b) The exact
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location of the hybnd method peaks 1s not given The maximum entropy method provides the

estimate m Figure 4 11 (c) The peaks are distinct only above the -6 and -3 dB levels and are

maccurate The MFE estimate 1s superior in terms of sharpness and location of the peaks
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Figure 4 8 Spectral estimates of sinusoids at normalised frequencies (0 333, 0 2) and (0 1. 0 22)
in white noise Contour plots (a), (b) from Kunura and Honoki [47], and (c) from Lim and Malik
[51]
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Figure 4 9 Contour plot in dB on x and y frequency axes of MFE spectral estimate of simusords at

normalised frequencies (0 333, 0 2) and (0 1, 0 22) m white noise at SNR of 1 77 dB based on

the exact autocorrelation
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Figure 4 10 Spectral estimates of sinusoids at normalised frequencies (0 1, 0 1), (03, 0 1) and
(0 2, 0 2) in white noise Contour plots (a), (b) from Kimura and Honok: [47], and (c) from Lim
and Malik [51]
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Figure 4 11 Contour plot in dB on x and y frequency axes of MFE spectral estimate of sinusoids

at normalised frequencies (0 1, 0 1), (03, 0 1) and (0 2, 0 2) in white noise at SNR of -3 dB

based on the exact autocorrelation
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Chapter 5. Conclusions

5.1 Introduction

We draw conclusions regarding the performance of the 2-D MFE spectral estimation method
based on the varous tests and numencal simulations detailed m Chapter 3 We also furmish our
findings on the merit of MFE compared to other methods based on the comparative experimental

tests that are outlined in Chapter 4

5.2 Conclusions - The 2-D MFE method

We have proposed a 2-D extension of the MFE parameter estimation techmque We have
demonstrated the performance of the techmque by executing a wide variety of tests involving
MFE AR modelling and spectral estimation of various data sets consisting of smusoids in white
Gaussian noise These data sets include single and multiple sinusoids at various power levels,

SNR and respective locations in the frequency plane

Expenimental findings have been presented These findings are based on tests wn spectral

resolution, estimator bias and vanance, autocorrelation function type, and dynamic range
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difference They are also based on tests of dependency on signal processing temperature, and the
effects of SNR, data length, and model shape and size on spectral estimates The directional

resolution capability of single and combined quarter plane spectral estimators has been examined

We conclude that MFE can be used to provide accurate spectral estimation of single and multiple
smusoids n noise at various SNR, power levels and frequency separation We have seen accurate
spectral estimation for vanous data sets ranging from a single smusoid at 27 dB SNR to three

smusolds at -6 dB SNR

MFE provides stable models and accurate spectral estimation over broad temperature ranges
which are typically of order (~10%) Hence determination of specific critical temperatures 1s
unnecessary The optimal temperature range depends on the SNR and model size Ths
temperature range may be determined empincally As seen m Section 3 6 1 the spectral estimate
obtaned at a temperature above the optimal temperature range 1s excessively smoothed Ths 1s
due to over-emphasis of the entropy term in the free energy Below the optimal temperature range
poor spectral estimation occurs The upper temperature range it can be determuned by
selecting a lugh temperature and reducing the temperature until adequate spectral resolution 1s
achieved The Q-factor descrnibed in Section 3 7 on model order can be used as the measure of
resolution The lower temperature range limit can be set by determuning the temperature at which
poor spectral estimation occurs This 1s accompanied by negative driving noise variance or non-
umty bounded autoregressive model parameters Such models are unstable for synthesis
purposes The optimal temperature range may also be determuned by increasing the temperature

from zero, with the lower and upper temperature limits determined as above

The temperature range may also be determined through momtoring the cost function order
difference or the state of reflection matrices within the algonthm The MFE method produces
superior spectral estimates to those possible at zero temperature, even for very closely spaced

stnusoids
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The quality of spectral estimates 1n terms of peak amplitude and peak width improves with model
order Higher model orders are also required as the separation between siusoids on the frequency
plane becomes very small We have seen that the accuracy of peak location for very closely
spaced smusoids increases with model order The SPA cntenon for smusoids that are very
closely spaced m both frequency directions may be overcome by mcreasmg the model order The
minimum temperature corresponding to the lower end of the optimal temperature range increases
with model order Data sets with higher SNR demand higher model orders with consequent hugher

temperatures

Single QP spectral estimators may exhibit a resolution bias in one direction on the frequency
plane This bias may be resolved by using a combined QP MFE spectral estimate In some cases,
depending on the power and location of the sinusoids on the frequency plane there may still be a
resolution bias 1n some direction This may be elminated using models with non-symmetric
regions of support Spurious noise spikes may also occur for single QP MFE spectral estimates
These noise elements may be very effectively removed by use of the combined QP MFE spectral

estimate

We conclude that if the exact autocorrelation 1s used then the resulting spectral estimate 1s
independent of data set size Additionally, m Section 4 3 we have seen that MFE estimates, with
reasonable accuracy, multiple smusoids with low SNR at low data set size using the exact
autocorrelation The MFE method of spectral estimation may also use autocorrelation estumates
that are unbiased or biased As seen in Section 2 5 the biased estimate suffers from nonequitable
weighting of the correlation lag terms The long correlation lag terms are responsible for
resolving spectral fine structure, hence the biased form can result m loss of resolution The
unbiased form has equitable weighting of the lag terms are therefore provides higher resolution
At low data set size there may be an error in the spectral estimates due to the autocorrelation

estimation process This may be overcome by increasing the data set size
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The smusoids m a data set may have different dynamic ranges or power levels For the examples
tested the ratio of these power levels 1s preserved if the exact autocorrelation 1s used If an
estimated autocorrelation 1s used there may be some error due to the autocorrelation estimation
process The MFE spectral estimation techmque produces estimates with some very small

vanance mn power levels just as there 1s variance in the location of spectral peaks

In many applications one of the major performance criteria 1s high resolution [47] This is
reiterated by Nikias and Raghuveer [60] They state ‘Important requirements to be satisfied by
the spectrum estimation method are high resolution/good spectrum matching, and tolerance
towards inhomogeneities 1n the data field while making use of small sized data set’ We have seen
that the MFE technique performs well for closely spaced sinusoids at low SNR even at low data

set size This lughlights the hugh resolution capability of the method

Overall, the numenical simulations of Chapter 3 illustrate that MFE provides low model order

accurate spectral estimation over a range of input data sets and operating conditions
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5.3 Conclusions - Comparisons with other methods

We have shown for a vanety of data set examples that superior spectral estimation may be
performed at non-zero temperature than at zero temperature with equivalent computational
burden We see that the MFE method outperforms the multidimensional Levinson method At
zero temperature our algonthm reverts to the multidimensional Levinson algonthm or Burg type
techmque Furthermore MFE provides stable models where the Levinson techmque may not

Hence the MFE method extends the range of the multidimensional Levinson algorithm

We have compared MFE spectral estimates to results obtamed by a conventional Fourier
transform techmque The MFE method does not suffer from the sidelobe structure associated with
conventional transform based methods The resolution of MFE spectral estimates s far superior
to that produced by conventional techniques at low/data set size This hughlights the hgh

resolution capability of the MFE spectral estimator

The MFE method has been compared to a hybnd dual 1-D method [47] and a maximum entropy
method [51] For a case mvolving three smusoids the MFE method outperforms both of these
methods 1n terms of location and sharpness of spectral peaks For a case involving two sinusoids
the MFE method at 6 x 6 region of correlation support 1s supertor to the 5 x 5 hybnd method
The maximum entropy estimate exhibits sharper peaks However the MFE estimate 1s more

accurate 1n terms of peak location Overall we conclude from our tests that MFE method 1s as

good as 1f not better than these two techniques

In terms of spectral resolution we conclude that the MFE method usmg an unbiased
autocorrelation performs just as well as the MCV method for snapshot data consisting of closely
spaced smusoids in white noise We have also compared MFE to a modified covanance techmque
over a number of simulation tnals The bias and vanance statistics for MFE are comparable to

those for the MCV method The results show that MFE provides accurate spectral estimation
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over a senes of independent trials MFE i1s significantly faster than the MCV or MLE method
The temperature parameter in MFE allows for the generation of models with unity bounded AR
parameters and positive white noise vanance, thus ensuring model stability The MCV method

does not necessarily produce stable models
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Chapter 6. Directions for Future Research

6.1 Introduction

Extensions to the MFE method of AR parameter estimation presented above are possible These
include techmques for the improvement m computational efficiency of the method and extension
to the complex case The complex case mvolves spectral estimation of damped exponential
signals 1n noise Other important issues that could be addressed include a prion temperature

determunation and charactensation of the performance of the technique for other types of signals

6.2 Computational efficiency

The computational efficiency of modern spectral estimation techniques 1s an important issue Thus
1ssue needs to be addressed particularly 1f real time implementation 1s to be envisaged In 2-D
MFE we have implemented a non-linear unconstrained mumimisation of the multivanate matrix
function given 1n expression (50) Depending on the model order the direct search Nedler-Mead

simplex [14], [53] or the Newton gradient [15], [53] methods have been used to perform the

116



s

mummsation The computatxonal( efficiency of the method 1s directly influenced by ths
optumusation Improvement of the computational efficiency may be obtamned with faster

optumisation algonthms

Alternatively, we may seek a simplified form of the algonthm Silverstein [74] shows how the
ACS form of 1-D MFE may be simplified by lneansation, with consequent substantial
computational benefit It remains an open question whether a simplified form of 2-D MFE can be
found Such a form should preserve the essence of the full version while providing for faster

execution with little loss of performance

6.3 Complex fields

It 1s of mterest to extend our algonthm to the case of damped exponential signals m noise An
application of the use of such signals ;s m direction finding or beamforming {38] This extension
of 2-D MFE mvolves matrix differentiation with respect to a complex matnx and the
development of associated cost funcgtlons We may tilen compare the results from the apphcation
of such an extension to that from the Hua matrix enhancement and matrix pencil method [28]

We may also compare the results to that from the two-step 1-D Prony model techmque of

Sacchini, Steedly and Moses [72]

The Cramer-Rao bound (CRB) [79] s used to lower bound the vanance performance of an
unbiased estimator of a scalar parameter It would be of mterest to compare the vanance of MFE
estimates of the magmtude and the x and y pole frequencies of an undamped or damped
exponential data model with the CRB at various SNR As the estimator must be unbrased this
would require swappmg estumator bias for vanance In 1-D thus 1s achieved by appropnate choice

of model order as higher model order decreases bias at the expense of increased vanance

6.4 A priori temperature determination

We have seen in Chapter 3 that a method of 1dentification of the best temperature range before

or within the MFE parameter estimation algorithm should provide a computational advantage
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especially for high order models However there exists no fundamental theory for a pnon
temperature determunation Hence, a prion temperature determination remawms an open and

unsolved question for both 1-D and 2-D MFE

Gibbs random field (GRF) and Markov random field (MRF) models [16], [13], [46] have been
used for the characterisation of homogeneous random fields with mixed spectra The relationship
between SAR and conditional Markov models 1s discussed in [10], [11] Pickard [63], [64]
stresses the importance of temperature effects in GRF and MRF model parameter estmmation In
particular he examines the important property of phase transition and shows that 1t 1s possible to
isolate and measure the temperature at which data phase changes occur In statistical physics a
phase transition 1s where the free energy of one physical state 1s discontinuously lower than
another For example, at some temperature, in the hquid to solid phase transition, the solid phase
may have discontinuously lower free energy than the liquid state These special temperatures are
known as critical temperatures In signal processing these critical temperatures indicate a phase

change 1n the data field [63]

Silverstem and Pimbley [76] do not propose any relevance of physical phase transitions to
problems 1n signal analysis However 1t still remains an open question whether the critical

temperatures and phase changes used in image modelling by Pickard may in some way be related

to MFE AR models

There are other mtiatives that may lead to a solution of the question of a prion temperature
determmnation ‘With some adaptations, Gull [27] and Sibisi1 [73] each present more objective
approaches for choosing alpha ’ [12] Gull uses Bayesian analysis to determine a value of signal

processmg temperature 1 an umage reconstruction context

Sibis1 determines the optimal Bayesian estimate for the signal processing temperature for the
regulansation process The regularisation process constructs an estimate of an autocorrelation

matnx with equitable lag weighting and positive definiteness Thus 1s achieved by multiplying the
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identity matnx by a positive constant and adding the result to the unbiased Toeplitz form of the
autocorrelation matrix In 1-D the regulansation process corresponds to the additional cost
element in MFE ‘MFE-ACS estimation trinsically provides the desired regulanzation function
of stabilizing potentially ill-conditioned solutions as well as simultaneously compensatmg for
noise’ [77] The Shannon entropy term in maximum entropy image reconstruction can also be

closely approxmmated by the regularisation function [82]

Finally, the investigation of the relationshup between the reflection coefficient matrices n 2-D
MFE and optimal signal processmg temperature gives us an early indication of temperature range
suitability Another method of early indication 1s the mimmuisation of the order of magmtude
difference between cost functions associated with expression (50) These 1ssues are discussed n
Sections 2 6 on optimusation and cost functions, in Section 3 6 2 on temperature determunation,

and Section 6 5 below

6.5 Other signal types - Mixed and Wideband spectra

Generally we have concentrated on spectral estimation of narrowband signals with low SNR
However 1t 1s also of mterest to determune the performance of spectral estimation techniques
including the MFE techmque for wideband spectra matching ‘More effort needs to be directed

towards spectral analysis of wideband signals and signals buried deeper 1n noise’ [52]

An application in which wideband and muxed spectra have considerable use 1s in texture
modelling [46] It 1s not possible to characterise an entire texture by use of AR models alone
‘Since m general, a homogeneous random field 1s charactenised by a muxed spectral distribution,
parameter estimation techmques which are solely based on spectral density estimators are not
adequate’ [20] Typically in texture spectral estimation and synthesis the texture 1s decomposed
into a determimstic and an indetermustic field The determunstic field 1s further decomposed nto
a harmonc field for the pertodic features and evanescent field for the global directional features

[20], [24] ‘The harmonic random field 1s the sum of 2-D sine waves of random amplitude and
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phase, while the generalized evanescent field consists of a countable number of wave systems’
[23] AR spectral estimators may be used to model the indetermmustic field This field 1s typically
wideband It 1s possible to determmne AR models that produce power spectral densities
approximating that of the mdetermumstic field A first step 1n the apphication of the MFE method
to this area would be to produce a simulated wideband field using a test parametric AR process
Subsequently MFE may be used to determine the MFE AR parameters and an estimated PSD
The estimated PSD may then be compared to the original PSD The best temperature range for
spectral matching can be determuned by calculating the mean square difference or error between
the oniginal and the synthesised texture PSD Another method of determmnation of the best
temperature range 1s to momtor the order of magmtude difference between cost functions

associated with expression (50)

Another method [22] for texture charactenisation decomposes the texture nto a periodic or global
structural components field, a singularities or local structural components field, and a stochastic
field Figures 6 1 and 6 2 [44] show constituent fields for the Brodatz [6] D93 ‘hair’ texture and
D100 ‘“ice crystals on an automobile’ texture The periodic field 1s merely a set of smusoids at
various power levels and spatial frequencies A Founer transform method [22] 1s generally used
AR spectral estimators, including MFE, may be also used to determune a parametric model for
this field The ability of MFE parametric model determmnation methods to parameterize the
penodic component of texture spectra 1s dependent on 1its ability to effectively resolve simpler

spectra consisting of a number of siusoids m white noise

The stochastic or homogeneous random field 1s generally modelled by an AR process A Levinson
type algonthm 1s used m [21] In [44] we used a MLE method to derive models with various
model regions of support including single QP In [45] we proposed the use of cepstral stabilized
ARMA models and compared the results with other model types including smgle QP AR models
In both [44] and [45] we generated spectral estimates and synthesised the homogeneous random

constituent of texture using the various models A MFE AR model may be also used to model the
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homogeneous random constituent of texture The best temperature range for spectral matching of
such wideband fields can be determuned as above by calculating the mean square error between

the onginal and estimated PSD

Prelimmary mvestigation has shown that further decomposition of constituent texture fields to
multiple fields may yield results for the parametric modelling of mixed spectra This may be
achieved by thresholding the constituent field at various power levels in the spatial frequency

domam Subsequently MFE parametric models may be denived for each of the resultant fields
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Figure 6.1 D93 texture constituent fields.
(1,1) original texture, (1,2) periodic field, (2,1) random field, and (2,2) sinqularities field.

Figure 6.2 D 100 texture constituent fields.
(1,1) original texture, (1,2) random field, and (1,3) periodic field.
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6.6 Higher order statistics

The autocorrelation functloln and power spectral density do not provide phase information They
are sufficient for a complete statistical description of a Gaussian signal However,
multidimensional signals may be non-Gaussian, may be nch n phase information, and may have
additive coloured Gaussian noise of unknown power spectrum The absence of phase information
and the Gaussianity restriction has hmuted the utility of second order statistical techniques Thus
has prompted much recent interest in higher order statistics and polyspectra [58], [59], [80] An
nteresting area of research 1s the extension of parametric estimation techmques to third and
fourth order statistics For 2-D MFE an appropnate starting pomnt 1s at the solution of extended
Yule-Walker type equations mvolving higher order cumulants for AR parameter estimation
Alternatively, second order statistics may be estimated from higher order statistics [25] and used
m autocorrelation based methods such as 2-D MFE Slices of fourth order cumulants may also be
used 1 place of correlation quantities i correlation based techmques where the data set has white

Gaussian noise or coloured Gaussian noise of unknown spectral density [58]
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Two-Dimensional Minimum Free Energy Spectral Estimation

Paul Kiernan

Abstract

We propose a 2-D extension of the Mimimum Free Energy (MFE) parameter estimation method
which may be used to determine autoregressive (AR) model parameters for 2-D spectral
eshmation. The performance of the techmque for spectral eshmation of 2-D sinusoids 1n white noise
1s demonstrated by numerical example It i1s seen that MFE can provide supernior spectral estimation
over that which can be achuieved with the multidimensional Levinson algonthm with equivalent
computational burden The performance of the techmque in terms of computational expense and
accuracy of spectral estimation over a number of simulation tnals 1s compared with a modified

covanance techmque



1 Introduction

High resolution spectral estmation of 2-D homogeneous random fields i1s becoming increasingly
important because of 1ts role 1n varous areas Such areas include analysis of space-space, space-time,
and time-time data arrays Space-space data arrays are used in mmage processing [1], whereas space-
ume applications include sonar and seismic processing {2] Time-ume arrays are typically used m the
analys:s of radar pulse repetiton versus arnval ime [3] As stated by McClellan [4] “The operation of
spectral analysis arises m many fields of application Situations in which signals are inherently
multidimensional can be found m geophysics, radio astronomy, sonar, and radar, to mention a few
These multidimensional problems present a challenging set of theoretical and computational
difficulties that must be tackled” Other areas of interest mclude biomedical imaging [5], geophysics
[6]), and radio astronomy [7] Any field m which the frequency spectrum of a directly measured

quantity 1s of interest will benefit from continuing advances in power spectrum estimation {8]

We present a hugh resolution power spectrum estimation method. The Yule-Walker equation based
Levinson recursion i1s an established method for denving the parameters of a causal quarter plane
(QP) AR model We show how model parameters for 2-D fields may be determined by the solution
of 2-D Yule-Walker equations via a modified multudimensional Levinson algonthm The resuiting
models may be used for high resolution power spectrum estimation. We modify the multidimensional
Levinson algonthm [9] by determiming the reflection coefficient matnces via mummization of the
free energy [10] rather than via mummization of the linear prediction error energy alone Our method
1s an efficient 2-D MFE spectral esumation technique based on extension of the method developed by
Pimbley [8], and Pimbley and Silverstein [11] A 1-D MFE method 1s used in [12] along wath a 1-
D peniodogram as part of a hybnd separable algonthm for 2-D spectral estimation Qur method

responds to the call 1n [12] for an efficient 2-D MFE algonthm



2 Theory

A simultaneous AR (SAR) model [13], may be represented by
pt p2
Zz a(,j)y(m-i,n-;) = u(m,n) (1)
=0 ;=0
where {y(m,n)} 1s a finute set of observations on / <m <N, / <n <N and 1s a homogeneous random
field A toroidal model 1s assumed on thuis V x N latce [14]) {fumn)} 1s uncorrelated
Gaussian white noise with zero mean and vanance o© The autoregressive model parameters are given

by {a} over the (p; +1) x (p, +1) region of support It 1s assumed that a(0,0) = I The power spectral

density of this model [15] may be wntten 1n normalised spatial frequency terms (a),,a)y) where
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The Yule-Walker equations [9] are based on the autocorrelation estimates of the observed field and
pt p2
are given by 22l ), (k-11~ j) = 68 (k,D) )
1=0 =0

The RHS of this expression 1s zero for all pomts in QP' Thus covers the quarter plane area of model
support QP except for the point at the ongin

QP =QF' U (00) &)

The Yule-Walker equations are also given in matnx form {16] as

Ra=h )

R 1s a block Toeplitz matrix that 1s symmetric and positive semi-definite The matnix 1s also made

up of blocks Ryy that are Toeplitz 1n structure though not symmetric and have elements r,, The

multidimensional Levinson algonthm (9] may be used to solve (6) In thus algonthm the reflectuon

coefficients at stage m of the recursion are represented by a set of reflection



matrices A m/w]. If the order of the model used ispi x p2, then from the multidimensional

Levinson algorithm [9] at the last (pl-1) recursion
AL[P1]PIm +A, =0 (7)

where the Toeplitz structure of the autocorrelation matrices ensure that the covariance of the
prediction error process is identical for the backward and forward AR process

K - K (8>
The partial correlation matrix is given as

A, =[1 An_[I] ARL[2]  ARL[pl-1]] [Ryy[>IJRyy{/>I]  Ryy[l]]r ()
The prediction error covariance matrices are given by the expression
k = [I-A 1AL [PI]]p;,.. no)

with initial condition P/ = Ryy[0] (12)

The reflection coefficient matrices are given by
A, fa]= + for \<qg<pl-\ (12)
Matrices in expressions (7) through (12) are of order p2xp:.

Expression (7) gives optimisation of the reflection coefficients based on minimisation of prediction
error energy. The AR parameters and white driving noise variance of the model are determined
from the reflection coefficient and the prediction error covariance matrices.,

We extend this algorithm by including an extra cost function based on entropy. The motivadon
behind this comes from statistical thermodynamics. The ground state in  physical systems
corresponds to the case in signal processing where parametric estimation is performed on the basis of
minimisation of the prediction error energy alone. In this case fluctuations disappear and physical



systems reduce to their ground state In signal analysis this corresponds to zero mnput from the entropy

energy term

At nonzero temperature physical systems are neither in munimum energ) states nor in maximum
entropy states Rather, there exists a balance between low energy and high entropy Increasing the
system temperature emphasizes the importance of entropy at the expense of energy Conversely,
reduction of the temperature to absolute zero forces the system into its lowest energy state" [17]

Hence, temperature acts as a control parameter for entropy or fluctuations in the system

The cost function in the 1-D MFE parametric esimation algonthm 1s based on extension of the least
mean square criterion to nclude a noisy data cost element This extra cost element which

mummuses the free energy 1s due to an entropy term [8]

In the i-D method we introduce an extra cost function due to the entropy Thus results in the
mummusation of the resultant free energy, thereby providing better spectral esttmation than that
provided by mummusation of prediction error energy alone This extra cost function 1s given by the
differential of a 2D Shannon-Burg type entropy term with respect to reflecuon matnxA _[m] The
Shannon-Burg entropy measure [17) 1s defined to withun an arbitrary constant, hence for the 2-D

entropy field H

w2 wlpiac. e 4, )

-1/2%-12

We requure the dufferential of the 2-D entropy term wath respect to the reflection coefficient matrix

A [m] at stage m For real fields the reflection coefficient matnx Ais real We express the

differential of the entropy energy term, with respect to A as

i o omipyion-d I [ woacs s e, | Al as

The entropy proportionality constant s absorbed 1nto the signal processing temperature parameter o

At stage m of the recursion the RHS of expression (14) becomes



SR R o et pas sl s mard,  as
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At any frequency (f,, f,) the differential

dln 4,(f..1,)/ A, [m] an

is the differential of a scalar with respect to a matnx Applying matnx calculus (18} thus may be

expressed as a (p2,p2) matnix with any element u(7, j) given by
p,))=0In 4,(f,.1,)10 t(,)) =4, 4,(f..f,)/ 3 t(,)) (9

where 7(1,)) 1s an element of the reflection matrix A [m] Then the integration becomes

21210 s )00 mll) A s,) df
vz fu2 (19)
* J.-I/z-[uz[ J A;(fx’fy)/aAm[’"]]/ 4, 1,) A,

The second part of this expression becomes

12 {172
f_ f (02l Xl aulme’ ™7 1 0A Im) | 4,(1..1,) df.4f, (20)

-1/2

Thus contour tntegral 1s taken about a surface 1 the 2-D complex frequency hyperplane The
argument [8] may be extended so that the symmetry 1in the contour path reduces the contour

integration to integrations at



(a)

[-1/2 <Re(f.) <+1/2,Im(f.) = ~],
[-1/2 < Re(f,) < +1/2,Im(f ) = ~»]

and at

®) 2

[-1/2 < Re(f,) < +1/2,Im(f,) = 0],
[-1/2 <Re(f,) < +1/2,Im(f,) = 0]

The 1ntegration at (a) goes to zero as the numerator of the expression (20) contains a multiplicative

exponential term Hence for f, = — o0 and f, = — joo the integral vanishes

The 1ntegration at (21)(b) 1s now examned. A positive defimite autocorrelation matrix may yield
solutions to the Yule-Walker equations, though they may be unstable Hence the multidimensional
method [9] which 1s a mummum prediction error method may yield unstable results Therefore

AlS.. T, y) may not be munimum phase By sufficiently whitemng the input data field we ensure that
the autocorrelauon falls off fast enough so that A(f,,f,) tends to be mmmum phase Given a
muumum phase A(f,,f,) all singulanties 1¢ zeroes of A(z,,2,) or solutions of the equation
A(z,,z,) = 0 are located within the umt bicircle Hence there are no zeros in  the lower half of the

2-D complex frequency plane or outside the umt bicircle

The test for a bivanate polynomual can be reduced to testing for each vanable when the other 1s
fixed By fixing one vanable and performung the contour integration with respect to the other the
number of zeroes may be determined When double contour integration 1s performed one vanable 1s
set and the contour 1ntegral 1s evaluated with respect to the other vanable Hence the integration on
the regron specified by (21) (b) goes to zero A similar argument may be made for the first integral in

expression (19)

Continuing with expression (14), in terms of Levinson algonthm parameters at stage m of the

recursion

In g, =1n[P)]=In[(I- A [m]A][m])PL, 22)



hence 2(n B, )/ A [ml=2In[(A- A [mAl[m)P. )/ AA [m) (23)

We mummuse this cost function at recursion 2 and signal processing temperature o by finding

A [m] such that

A [mP/ +A_ —a[din(1- A [mAL(m)PL, /5A [m)]=0 24)
3 Results

The resolution of sinusoids 1n whute noise 1s a widely used standard stmuiation exercise for spectral
estimation techniques [15] We used an unbiased autocorrelation function estimated from a

realisation of sinusoids plus white noise

Using a single quarter plane spectral estimator results n elliptical contours of constant power spectral
density (PSD) level This may be overcome by using a combmed quarter plane estimator Another
motivation for using a combined estumator 1s that spurious peaks are less likely to occur if quarter
plane estimates are combined 1n ‘parallel resistor’ fashion {16] We combine first and fourth quarter
plane estimates for all PSD esumates We note that spurious peaks whuch may occur for hugh order

single quarter plane models are very effectively elumnated by using a combined quarter plane model

We take a 160x160 point data snapshot consisting of sinusoids at arbitrary umuty normalised
frequencies (0 1,0 2) and (0 3 0 4) of equal amplitude at arbitrary SNR of 6 dB 1n uncorrelated white
Gaussian noise  We compare the spectral esimate at temperature 0 074 with that at zero
temperature This has special significance because at zero temperature our technique reverts to the
multidimensional Levinson or Burg type techmque The temperature of 0 074 was the optimal
temperature for spectral estimation based on the average autocorrelation over 10 noise seeds Ths
temperature also falls within a broad range of temperatures withun which accurate spectral esttmation
was obtained Figure 1 (a) shows the combined first and fourth quarter plane normalised amplitude

PSD plot in the x frequency direcion psd(f,.0)0< f, <05 denved using the MFE based AR



models of order 5x5 at temperature 0 074 Figure 1 (b) 1s a contour plot as used showing the spectral
estmate 1n both frequency directions Corresponding plots for the spectral estimate of the two

sinusoids at temperature zero are shown 1n figures 1 (c) and (d)

In figure 1 (a) we see sharp peaks at f, = 0 1 and f, = 03 The contour plot of figure 1 (b) clearly
shows the spaual frequency peaks at (0 1,0 2) and (0 3 0 4) The sharpness of the peaks 1s illustrated
by the 6 dB contours In figure ! (c) we can see an number of peaks in the x frequency direction,
however none are at the frequencies 0 1 and 0 3 Figure 1 (d) shows that the peaks are certainly not
located at spatial frequencies (0 1,02) and (03,0 4) and therefore are incorrectly resolved We
conclude that both frequency components are accurately resolved at temperature 0 074 whereas thus 1s

not the case at temperature zero using the multidimensional Levinson method

Extensive experimentation 1nto the effect of model order vanation has shown that the width of the
peaks corresponding to sinusoid components in a spectral estimate decreases as the model order
increases In one test we took a 160x160 point smgle snapshot of data consisting of 2 equal amphtude
sinusoids at spatial frequencies (0 1,0 2) and (0 3,0 4) at 0 dB SNR. The data was subjected to spectral
esumation usmg MFE models of order 3x3, 5x5, 7x7 and 9x9 We use a 2-D Q-factor to measure the
sharpness of the peaks 1n the frequency domain The Q-factor 1s determuined as the inverted product of
the bandwidths in the x and y frequency direction across each spectral peak at a given amphtude We
use the averaged Q-factor over the two spaual frequency components or peaks as a comparative
measure of the sharpness of the peaks The average Q-factors at -21 dB for the 9x9, 7x7, and 5x5
model spectral esimates and at -3 dB for the 3x3 model are 1n the ratio 10 5 44 4 4 respectively

We see that the Q-factor increases with model order indicating sharper peaks for higher model order

We may apply a transformation [9],[16] on our 3x3 PSD estmate and thereby produce a modified
PSD with sharper peaks Hence the Q-factor i1s not a measure of spectral resolution, however 1n
applying this transformation the amphitude of one of the spectral components is attenuated
signuficantly We conclude that better spectral esumation 1n terms of both peak width as quantified by
the Q-factor and peak amplitude 1s achieved as the model order mcreases The only disadvantage of

higher model order 1s added computational expense



We examuned the bias and vanance of spectral esumates produced by MFE and a modified covanance
(MCV) method [16] We implemented both algonthms and made 25 simulation tnals on each All
tnals used a single snapshot of data consisung of sinusoids at arbitrary unaty normalised frequencies
(01,02)and (03 04) of equal amplitude at arbitrary SNR of 6 dB 1n uncorrelated white Gaussian
noise To ensure a fair companson, the same random number generator seed was used to 1mtiate the
25 tnals for both algonthms so that each simulation senes contained an 1dentical sequence of noise
spectra This meant that the same set of 25 uncorrelated and independent noise fields were used for
both algonthms The size of the sinusoid and white noise data fields were 40 x 40 points The MFE
signal processing temperature was set at 0 05 Thus temperature was arbitranly chosen from within a
wide band of temperature which previous tests have indicated provides accurate spectral estimation
Table 1 shows the bias and standard deviation of spectral estimates for both frequencies for each
method. The PSD were calculated over 520x520 pomts and therefore the resolution of estimates 1s to
0001 92 of umty normahised frequency The bias and vanance statistics are comparable 1n the y
frequency direcion MCV provides better statistics 1n the x frequency direction The accuracy of AR
model based spectral esimates depends on the size and shape of the model used {19] The x
frequency statistics 1n this case may be unproved by the use on a non symmetrnical region of support

for the AR model In general the statistics show that MFE provides accurate spectral esttmation

Let us compare the computational expense of parameter estimation by a maximum likelithood
method MLE [20], MCV and our MFE method The data set size 1s taken as M and model order as
p°, where M >> p The cost function in MFE MCV and MLE are iteratively minimsed at O((p-
1(2p"), 02M-p)’p) and OM?p’) multiplies respectinelv In MLE one of the elements 1s a
trigonometric function MFE is computationally the least expensive It performed spectral esumation

12 times faster than MCV for any data snapshot in the comparative vanance test above

10



4 Conclusions

A 2-D MFE parameter esumation technuque has been proposed We have demonstrated the
performance of the techmque by performing MFE AR modelling and spectral esumaton of closely
spaced sinusotds in white noise We have seen that the better spectral esumation may be achueved at
higher model order We have shown that it is possible to obtain supenor spectral estimation,
with equivalent computational burden, using MFE at a temperature greater than zero than at zero

temperature using the muludimensional Levinson algonthm

We have compared MFE to a modified covanance techmque over a number of simulation trials The
results show that MFE prowvides accurate spectral esumation over a senes of independent tnals We
have found that the bias and standard deviation of spectral estimates are comparable 1n the y
frequency direcion and better with MCV 1n the x frequency We have found that MFE 1s

significantly faster than the modified covanance techmque

11
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Fig 1 MFE model based spectral esumates of sinusoids at normalised frequencies (01 02) and
(0 3, 0 4) 1n whate noise at temperature (a), (b) 0 074 and (c), (d) zero

(a) (c) Normalised amplitude spectral esumate on the x frequency axis, (b) (d) Contour plot in dB on

x and y frequency axes
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Table 1

MFE MCV

£, Biasx 10° | Std x 107 Biasx 10° | Stdx 10°
01 23 7 40 0077 0385
03 25 996 00 0 544
f, Blasx 10° | Stdx10° | Biasx10” | Stdx10?
02 0 458 0939 0308 0 769
04 0092 111 0231 0 666
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Hich ResoLuTioN Two-DiMENSIONAL MiNiMuM FREE ENERGY
AR SpecTrRAL ESTIMATION
by

Paul Kiernan

Abstract - We extend the Minimum Free Energy (MFE) parameter estimation
method to 2-D fields This 2-D MFE method may be used to determine
autoregressive (AR) model parameters for spectral estimation of 2-D
fields It may also be used to provide AR models for texture synthesis

The performance of the technique for closely spaced sinusoids 1n white
nolse 1S demonstrated by numerical example Better results can be

achieved than with the multidimensional Levinson algorithm
I Introduction

We are concerned with models with quarter plane (QP) parameter region of
support which are a direct 2-D extension of the linear time series
seasonal analysis models of Box and Jenkins [1] The Levinson recursion
1s an established autocorrelation based method for deriving the
parameters of a causal AR model [2] We show how model parameters for
2-D fields may be determined by the solution of 2-D Yule-Walker
equations via an MFE based modified multidimensional Levinson algorithm

Our modification of the multidimensional Levinson algorithm [3] 1s based
on determination of the reflection coefficient matrices by minimisation
of the free energy rather than by minimisation of the forward and
backward linear prediction error energy alone The proposed method is an
2-D extension of the method developed by Pimbley [4], and Pimbley and
Silverstein [5]) A second optimization loop may be 1ntroduced to
determine the optimal signal processing temperature to achieve good
parameter estimates To the authors knowledge, there have been no
previous publications which extend the MFE method of parameter
estimation to 2-D providing 2-D spectral estimation of closely spaced

si1nusolds



II Theory

The reflection coefficients 1n Levinson type algorithms are the negative
normalized correlation coefficients between the forward and backward
linear prediction errors (e’ eb). with one unit of delay [3] In the
Burg harmonic algorithm the error energy 1 e the sum of the forward and
backward prediction error energy 1s minimized The reflection

coefficients k at stage m (1 = m = p} of a recursive algorithm, for
m

model order p, and data sequence length N are given as
k =-28 /(' 4 PP )= -a/Pf = lm] (1)
m m m-1 m-1 m~-1 m
alql =a [q] +almla [m-q] 1 =gq = m1 (2)
m m-1 m m~1

where a [q] are the AR parameters and P’ and Pb are the forward and
m

backward linear prediction error varliances

N N
£ _ £ 2 _ b b 2
=Y le ni|® = P = ) & [n-1]| (3)
n=m+1 n=m+1
N
a =) & .Inle [n1] (4)
n=m+1
Hence A+ PP k=0 (5)
m m-1 m

In the MFE method [4] [5] the free energy F

F=u- aH, (6}

1s minimlzed wWith respect to the reflection coefficients u 1s the

prediction error energy, H 1s the entropy and « 1s the signal processing

temperature If the power spectral density (psd) 1s given by
S(f) =B / |DE)|? (7)

p
where D(f) =1 + Z a(k) exp(-,2nfkT) (8)

k=1



1/2

then H= J In {B / |D(f)|2] af (9)

-1/2

The energy due to the entropy 1s differentiated with respect to the real

and 1maglnary parts of a reflection coefficient at stage m

In the 2~D case the reflection coefficients at stage m of the recursion

are represented by a set of reflection matrices A [m/ If the order of
m

the model used 1s (pl+1, p2+1), then from the multidimensional Levinson

algorithm [3] at the last (m = pl) recursion,

A [p1+1] P' + A =0 (10)
pl+l pl pi+l

where

A = [1 A [1] A [2] A [pll] [Ryy[p1+1] Ryy[p1] Ryym]T (11)

pl+l pl pl pl

T
P’ = [I - A [pl+1] A [p1+1]] P (12)
pl+1 pl+1 plel pl

T
Aphq[q] = Apl[q] + Aplﬂ[p1+1]Apl[p1—q] for 1 = gq = pl (13)

Ryy[] are the observed field autocorrelation matrices The derivation of
these equations for the multidimensional case 1s based on the
multichannel case and there 1s a direct correspondence between Am[m] 1n
multichannel and km for the single channel case Optimization of the
reflection coefficients based on minimisation of prediction error energy

1s based on (10)

We now require the differential of the 2-D entropy term with respect to
the reflection coefficient matrix at stage m, (BaH/GA) We are concerned
with simultaneous AR models wnich may be represented by

pl p2

Z Z at1 Jy(m-1,n-3) = ulm,n) (14)

i=0 =0



We assume that a(0,0)=1, {(y(mn)} 1s a finite set of observations on I =
m=<N, 1 s ns N and u1s a homogeneous random field A toroidal model
1s assumed on this N x N lattice [6] {u(m,n)} 1s 1ndependent
(uncorrelated) Gaussian white noise with zero mean and variance o° The
factorable SAR model 1n (14) 1s a special case of the conditional AR
model {u) 1s correlated for the conditional case The power spectral

density of this model [7] may be written 1n normalised spatial frequency

terms (wl,mz), where lwll < 172 and [wzl = 172 as
2
o
S(wl'u%) = pra— (15)
-J(wktw 1) 2
| Z Z a e JHekre, |
k=0 1=0 '
or S(f1’[2) =B/ lD(fx’fz)'z where B = o° (18)

The Yule-Walker equations are based on the autocorrelation estimates of

the observed field and are given by

pl p2
Z Za(l,_})ryy(k-l,l-_]) = (¢ for (k,1) = (0,0), O for (k,1) e QP')
i=0 ;=0
where QP = QP’ U (0,0) (17)
or 1n matrix form [8] as Ra = h (18)

R 1s a block Toeplitz matrix which 1s symmetric and positive
seml-definite Furthermore the matrix 1s made up of blocks Ryy which are
also Toeplitz 1n structure though not symmetric Hence (18) may be
solved by the multidimensional Levinson algorithm which 1s derived from
the multichannel Levinson algorithm [9] The solution yields the AR
parameters and white driving nolse variance of the model This method 1is
the minimisation of prediction error energy method We extend this
method by 1ncluding an extra cost function based on entropy The
motivation for 1nclusion of the extra cost function comes from

statistical thermodynamics



There 1s a direct analogy between statisticai thermodynamics and
stochastic signal analysis The ground state 1n physical systems
corresponds to the case 1n signal processing where parameter estimation
1s carried out on the basis of minimisation of the prediction error
energy alone In this case fluctuations disappear and physical systems
condense 1nto their ground state In signal analysis this corresponds to

zero input from the entropy term

"At nonzero temperature, physical systems are neither 1n minimum energy
states nor 1n maximum entropy states Rather, there exists a balance
between low energy and high entropy Increasing the system temperature
emphasizes the 1importance of entropy at the expense of energy
Conversely, reduction of the temperature to absolute zero forces the
system into 1ts lowest energy state" [10] Temperature, therefore, acts
as a control parameter for the entropy or fluctuations i1n the system
The cost function in the 1-D MFE parameter estimation algorithm 1s based
on an extension of the least mean square (LMS)} criterion to 1include a
nolsy data cost element This extra cost element 1s due to the entropy
energy term The 2-D system 1s directly analogous i1n that there 1s an

extra term due to the entropy

The result of adding this extra cost function 1s to minimize the
resultant free energy, thereby providing better spectral estimation than
that provided by minimization of prediction error energy alone The
Shannon-Burg entropy measure 1s defined to within an arbitrary constant

Therefore for the entropy field H

172 1/2
2
H J J In (B / |DCf £ )|7) df df (19)
-1/2 -172

For purely real fields the reflection coefficient matrix A 1s real We



express the differential of the entropy energy term, with respect to A
as

172 172

JaH/3A = « 61n(B)/6A - 8[ J [ In {|D(f1,[2)|2]dfldf2 ]/QA (20)
-1/2 -1/2
The entropy proportionality constant 1s absorbed 1nto the temperature

parameter «

At stage m of the recursion the RHS becomes

172 1/2
- J Ja [m [D(f ,£)D (f f )1] / OA [m] df df (21)
m 1 2 m 1 2 m 1 2
-1/2 -1/2
172 1/2

=—J Ja In D(f ,f)/3A [m] + & In D (f .f)/aA[m] df df (22)
m 1 2 m m 1 2 m 1 2
-1/2 -1/2
At any frequency (f},fz) the differential
8ln D (f .f )/6A [m] (23)
1s the differential of a scalar with respect to a matrix and may be

expressed as a (pl,pl) matrix with any element u(1, ) given by

1

u(1,)) =aln Dm(fl,fz)/arld =D aDm(fI,fz)/a'rl,) (24)
where T , 1s an element of the reflection matrix A [m/] The integration
» m
becomes
172 1/2
J J [BD (f ,f_)/0A [m]] / D(f f ) df_ df (25)
m 1 2 m m 1 2 1 2
-1/2 -1/2
172 1/2
. J J [BD “(f £ )/3A [m]] /D (f f) df_df (26)
m 1 2 m m 1 2 1 2
-1/2 -1/2



The second part of this expression becomes

172 1/2
pl p2

J J [a(z Zakllmjef”l“”z‘)) / aAm[ij /D (£.£,) daf df, (27)
k=0 1=0

-1/2 -1/2

The contour integral 1s taken about a surface 1n the 2-D complex
frequency hyperplane We extend the argument (4] that the symmetry 1in

the contour path reduces the contour integration to integrations at

(a) -1/2 = Re(fl) < +1/2, Im(fl) = -w |,
-1/2 = Re(fz) s +1/2, Im(fz) = ~o ]
and at
(b) -1/2 = Re(fl) = +1/2, Im(f]) =0 |,
-1/2 = Re(fz) = +1/2, Im(fz) =0 ] (28)

The 1integration at (a) goes to zero as the numerator of the expression
(27) contains a multiplicative exponential term which suggests that for
f1 = -jo and f2 = -Jjwo, as 1n the 1-D case for f = - jwo, the 1ntegral

vanishes 1 e the numerator goes to zero, while the denominator reduces

to unity

We now examine the 1ntegration at (b) A positive definite
autocorrelation matrix may yleld solutions to the Yule Walker equations,
though they may not be stable Therefore the multidimensional method [3]
which 1s a minimum prediction error method may yield unstable results

Hence D(fl'fz) may not be minimum phase However by sufficiently
whitening the 1input field we may ensure that the autocorrelation falls
off fast enough so that D(fr!é) tends to be minimum phase This results
1n a stable model which may also be used for field synthesis purposes
such as texture generation Given that D(flfé) 1S minimum phase then
all singularities i1 e solutions of the equation D(Z1’Zz) = (0, or zeroes

of D(zl,zz) are within the un.t bicircle Hence there are no zeros



outside the unmit bicircle or i1n the lower half of the 2-D complex

frequency plane

The test for a bivariate polynomial can be simplified to testing for
each variable when the other 1s fixed, and the number of zeroes may be
determined by fixing one variable and performing the contour i1ntegration
with respect to the other In performing double contour 1integration one
vartable 1s fixed and the contour integral 1s evaluated with respect to
the other variable Therefore Cauchy’'s integral formula applies to a

double contour 1ntegral
§ § f(z,z )/f(z ,z ) dz dz_ =0 (29)
1 Jea 172 1772 12

Hence the 1ntegration on the region specified by (28) (b) goes to zero

In terms of the parameters within the Levinson algorithm

InB = In [pfm] = In [(1 - Alm] A[m]) me_l] (30)

hence 48(!n Bm) / 8Am[m} = dln [(I - Am[m] Am[m]) Prm_l]/ aAm[m] (31)

If Bm = d(In Bm) / 6Am[m] (32)

Then the cost function used at recursion m 1s given by finding a

reflection matrix A [m] such that
m

Aln] P° +4 -aB =0 (33)
m m-1 m

m

When o = O the method reverts to the multidimensional Levinson
algorithm A Nedler-Mead simplex [11] or ‘ewton gradient [12] technique
may be used to perform the minimisation depending on the model order and

temperature range of interest



III Results

In this section we provide numerical examples 1n which the method
outlined above has been applied These examples show power spectral
esti1mates determined directly using MFE based AR model parameters The
resolution of sinusoids 1n white noise 1s a widely used standard
simulation exercise for spectral estimation techniques 1ncluding AR
model based techniques [7],[10] [13-17] We have used an autocorrelation
estimated from a realisation of sinusoids i1n white noise This 160 x 160
point autocorrelation corresponds to a data set consisting of data

samples over an 80 x 80 rectangular region of support

In the first example two closely spaced sinusoids at normalised
frequencies ([{t;) of (01, 02) and (0 11, 0 38) at 7 6 dB signal to
noise ratio (SNR) 1n white noise are used We have established by
experimentation that the best model order for this example 1s 5x§ It
may be possible to determine the model order by use of the Akaike
1information criterion This has been proposed by Pimbley [4] and more
recently by Cooper and Pimbley {18} However the Akaike 1nformation
criterion 1s not a consistent decision rule for estimating the order of
AR models [19]) We use a simple and effective method of 1ncreasing the
model order as long as the resolution of the resultant spectral estimate
1s 1mproving The computational expense of the method depends on model
order, hence there 1s a simple trade off between added computational

expense and higher resolution

All psd are 80x80 point and are generated with (15) and the parameters
from MFE AR models All frequencies are normalised for one cycle equal
to unity The plots 1n figures 1 (a) and (b) were derived using the MFE
based AR model of order 5x5 at zero temperature The plots 1n figures 1

(c) and (d) are for temperature 0 5



Figure 1 (a) shows 1ne normalised amplitude psd estimate 1n the x
frequency direction psd ((x 0) 0 = (x <= 0 5 A number of spectral peaks
occur however only one of them at {x = 0 09 1s close to the correct
frequency fx =01 or {x = 0 11 The contour plot [18] in figure 1 (b)
shows the psd estimate 1n the x frequency direction psd (fx 0) 0 = f =

X
0 5 and 1n y frequency direction psd (0,f ) 0 = f = 0 5 One peak 1s
¥ y
located near (0O 1 0 2), there 1s no peak at (0 11,0 38) and several
spurious peaks occur Thus at zero temperature neither of the spectral

components at spatial frequencies (0 1 0 2) or (0 11, O 38) are

accurately resolved

Figure 1 {c) shows the normalised psd plot at temperature O 5 1n the x
frequency direction psd (fx,O) 0 = fx = 0 5 Spectral peaks at
frequencies fx = 0 1 and fx= 0 11 are clearly visible We can see 1n
figure 1 {d) that the x frequency components at O 1 and O 11, and the y
frequency components at 0 2 and O 38 making up the two spatial
frequencies (0 1, 0 2) and (0 11, 0 38]) are accurately resolved Hence
at the non zero temperature both spectral components at frequencies
(001 02) and (0 11, 0 38) are accurately resolved However at =zero

temperature as shown 1n figures 1 (a) and (b) neither of the spectral

components are accurately resolved

In the second example sinusoilds at normalised frequencies (fx,fy) of
(001 02) and (0 3, 0 4) at 6 dB SNR 1n white noise are used Figures 2
(a) and (b) show the normalised amplitude x frequency and 2-D contour
psd plots derived using the MFE based AR model of order 5x5 at
temperature zero Figures 2 (c) and (d) are for temperature O 05 Figure
2 (c) shows that the estimated psd has spectral peaks at fx = 0 1 and fx
= 0 3 The contour plot 1n figure 2 (d) shows that the two spectral
components are accurately resolved at frequencies (01 0 2) and (0 3

0 4) Furthermore the sharpness of the peaks 1s 1llustrated by the 5 dB

contours 1n the contour plot The spectral estimate at zero temperature

10



has two broad peaks Figure 2 (a) shows the two poorly resolved peaks
The 1 dB contours of figure 2 (b} also 1llustrate these poorly resolved
spectral peaks The peaks are not located at or near the spatial
frequencies (01 0 2) and (0 3 0 4) We conclude that MFE provides
accurate spectral estimation at temperature 0 05 whereas at zero
temperature, using multidimensional Levinson method, the correct

frequency components are not resolved

In the third example a sinusold at normalised frequency (fx,fy) of (0 1

0 2) at 30 dB SNR 1n white noise 1s used Figures 3 (a) and (b) show the
normalised amplitude x frequency and 2-D contour psd plots derived using
the MFE based AR model of order 5x5 at temperature zero Figures 3 {(c)
and (d) are for temperature 0 5 They show that the spectral component
1s accurately resolved at (01 0 2) Figures 3 (a) and (b) show that at
zero temperature no spectral peak occurs at the correct frequency and

several spurious peaks occur
IV Conclusions

We have proposed a 2-D MFE parameter estimation technique We have
demonstrated the performance of the technique by providing spectral
estimation of closely spaced sinusoids 1n white nolse We have shown by
example that 1t 1s possible to obtain better spectral estimation at
certain temperatures than at zero temperature, where at zero temperature
our algorithm reverts to the multidimensional Levinson algorithm or Burg

type technique

A method of 1dentification of the best temperature range prior to or
within the MFF parameter estimation algorithm should provide a
computational advantage especlally for high order models The cost
function 1n MFE 1s minimized at O((p-l)(qu)) where the model order 1is

p‘ Hence prior temperature determination would be significant at high

mode!l orders In order to address this i1ssue we are 1nvestigating the



relationship between the reflection cc-officient matrices 1n 2-D MFE and
optimal signal processing temperature For optimal temperature spectral
estimation the entropy term 1n the MFE cost function should ensure

retlection matrices with elements of values less than unity

Gu'l {20} and Sibisi {21] present approaches for choosing signal
processing temperature Sibisi determines the optimal Bayesian estimate
for the signal processing temperature for the quadratic regularisation
problem (18] The regularisation process corresponds to the additional
cost element 1n MFE Gull also uses Bayesian analysis It may be

possible to adapt these methods to 2-D MFE

It 1s also of 1nterest to carry out experimental comparisons of
performances of the technique above and approximate maximum likelihood

techniques
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Fig 1 Spectral estimates of sinusoids at normalised frequencies (0 1,
0 2) and (0 11 0 38) at 7 6 dB SNR 1n white noise derived using MFE
based AR models of order 5x5

(a) Normalised amplitude spectral estimate on the x frequency axis at
zero temperature (b} Contour plot i1n dB for spectral estimate at zero
temperature (c) Normalised amplitude spectral estimate on the x
frequency axis at temperature 0 S (b) Contour plot 1n dB for spectral

estimate at temperature 0 5
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Fig 2 Spectral estimates of sinusoids at normalised frequencies (0 1

0 2) and (0 3 0 4) at 6 dB SNR 1n white nolse derived using MFE based
AR models of order 5x5

(a) Normalised amplitude spectral estimate on the x frequency axis at
zero temperature (b) Contour plot 1n dB for spectral estimate at zero
temperature (c) Normalised amplitude spectral estimate on the x
frequency axis at temperature 0 05 (d) Contour plot 1n dB for spectral

estimate at temperature 0 05
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Fig 3 Spectral estimates of sinusold at normalised frequency (0 1 0 2)
at 30 dB SNR 1n white nolse derived using MFE based AR models of order
5x5

(a) Normalised amplitude spectral estimate on the x frequency axis at
zero temperature [(b) Contour plot 1n dB for spectral estimate at zero
temperature (c) Normalised amplitude spectral estimate on the x
frequency axis at temperature 0 5 (d)} Contour plot 1n dB for spectral

estimate at temperature 0 5
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