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Two-Dimensional Minimum Free Energy Autoregressive Parametric 

Modelling and Spectral Estimation

P Kieman

Abstract
)

We present a new high resolution spectral estimation method This method is a 2-D extension of 
the Minimum Free Energy (MFE) parameter estimation technique based on extension o f the 
multidimensional Levinson method Our 2-D MFE technique determines autoregressive (AR) 
models for 2-D fields MFE-AR models may be used for 2-D spectral estimation The 
performance of the technique for spectral estimation of closely spaced 2-D sinusoids in white 
noise is demonstrated by numerical example
Experimental results from tests on spectral resolution, estimator bias and variance, and tolerance 
to change in signal processing temperature are examined The effects on spectral estimation of 
signal to noise ratio, data set size, model size, autocorrelation type, and dynamic range difference 
are illustrated The spectral estimates from combmed and single quarter plane estimates are 
contrasted The results illustrate that MFE provides accurate low model order spectral estimation
The performance of the method is compared to the multidimensional Levinson, conventional 
transform, modified covariance (MCV), hybrid, and maximum entropy methods It is seen that 
our MFE method provides superior spectral estimation over that which can be achieved with the 
Levinson algorithm with equivalent computational burden Superior spectral resolution is 
achieved at lower data set size than that provided by the Fourier transform method In terms of 
spectral resolution, the MFE method performs just as well as the MCV method for snapshot data 
It is seen that MFE provides spectral estimates that are as good as if not better than that provided 
by hybrid and maximum entropy methods

The computational expense, stability, and accuracy of spectral estimation over a number of 
mdependent simulation trials are examined for both MFE and MCV methods The bias and 
variance statistics for MFE are comparable to those for MCV However, the computational 
expense is far less than that of MCV and maximum likelihood methods
Models generated by our method give rise to stable and causal systems that are recursively 
computable Hence they may also be used for correlation extension and for field modelling 
applications such as texture generation
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Chapter 1. Introduction

1.1 Introduction

The areas of multidimensional digital signal processing (MDSP) and multidimensional spectral 
estimation are introduced We describe various multidimensional spectral estimation techniques 
and reference is made to application areas We outline our 2-D minimum free energy (MFE) 
method and its connections with both the multidimensional Levinson algorithm [52] and 1-D 

MFE [66], [67] We comment on the originality of our technique and on its advantages over other 

methods We discuss the requirement for parametric spectral estimation techniques Comment is 

also made on the necessity for ongomg research in the area of multidimensional spectral 
estimation
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1.2 Multidimensional spectral estimation

Digital signal processing (DSP) has been an active field of research for more than twenty-five 

years It is concerned with the processmg of sampled temporal signals MDSP is concerned with 
the processing of signals that can be represented as multidimensional arrays such as sampled 
images or sampled temporal waveforms received simultaneously from a number of sensors in 

some spatial dimension Such signals are multidimensional (m-D, where m > 2) in the variable 

sense There is a substantial difference between the theories for the processmg of 1-D and 2-D 

signals However apart from the issue of computational complexity there is little difference 
between the 2-D and higher-dimensional cases [17], [54] The 2-D case is the most prevalent case 
in applications

DSP may be divided into the two major areas of digital filtering and spectral analysis Spectral 

analysis or estimation is the process of characterizing the frequency content of a measured signal 

Marple [52] provides an interesting historical account of the developments in spectral estimation 
from early times The aim of multidimensional spectral estimation is to derive an estimate of the 
power spectral density (PSD) of an observed or measured multidimensional signal Specifically, 
the 2-D PSD function describes the distribution of power with spatial frequency of a 2-D process 

The spatial frequency (fx, , fy)  may be thought of as the fraction of the sampling frequency used m 
obtaining the data samples from a continuous process The autocorrelation at some lag (k I) in 
2-D is the mean product of observed field values at points of distance (k, I) from one another 
Since the PSD is based on an infinite number of autocorrelation values and we have a finite 
observed field, we may at best only determine an estimate of the PSD

The various techniques for multidimensional spectral estimation are reviewed by Dudgeon and 

Mersereau [17], and McClellan [54] The two main classes of spectral estimators are classical 
methods based on the Fourier transform, and modem spectral estimation methods Modem
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methods include autoregressive (AR), maximum entropy (MEM) and minimum variance (MV) 

techniques These techniques generally produce higher resolution spectral estimates than classical 

methods In determining spectral resolution it is important to differentiate between close spurious 
peaks caused by noise, and valid peaks Spectral resolution is defined as the closeness of the 
closest valid spectral components that the method can resolve It is an indication of the ability of 

a spectral estimator to display spectral fine detail

It is possible to derive parametric models of an observed process The model parameters may be 

used to estimate the spectral characteristics of the process The process may also be classified 
and synthesized usmg the model parameters Examples of parametric models mclude AR and 
autoregressive moving average (ARMA) models [7], [85] These models are a direct extension 

of linear time series models [38] Parametric spectral estimation m the 2-D variable case 
essentially mvolves determination of a set of parameters in multidimensional parameter space 

which may be used to generate a spectral estimate on the 2-D spatial frequency plane for a 2-D 
process

Cadzow and Ogino [7] have developed a 2-D ARMA model spectral estimation method However 

the overall resolution capability of this procedure is predominantly influenced by the AR 

parameter selection AR models have dominated the research effort to date and are finding much 

use in industry [52] In 1-D it has been found that moving average (MA) models characterize 
broad spectral peaks well but produce poor spectral estimates of narrowband peaks Hence MA 
parametric spectral estimators are not classed as high resolution estimators The use of 2-D MA 
models for spectral estimation has not been studied m the literature

The key AR spectral methods are the modified covariance method (MCV) [38] and that due to 

solution of the Yule-Walker equations by the Levinson algorithm These methods produce causal, 
recursively computable systems [3] The output of such systems is calculated from spatial or 
temporal past outputs and the spatial or temporal present mput The efficient multichannel
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Levinson algorithm has been extended and modified to produce the multidimensional Levinson 

algorithm [52] This algorithm determines a set of parameters m multidimensional parameter 
space for a 2-D process In multichannel signal processmg there are a number of simultaneous 
temporal processes each on a different channel Multichannel spectral estimation is concerned 
with the problem of estimating the auto-spectra of the individual channels and the cross-spectra 

between channels

The MEM is a popular high resolution technique for 1-D spectral estimation However this 

method does not extend easily from the 1-D case to 2-D The MEM maximizes the entropy of an 
observed field subject to the constraint that the inverse Fourier transform of the resultant PSD 

equals the known autocorrelation values of the observed field Unlike the 1-D case, 2-D AR 

spectral estimation does not yield identical results to that given by MEM This is because the 2-D 

process does not possess the autocorrelation sequence (ACS) matching property In other words 

the inverse Fourier transform of the PSD estimate is not necessarily equal to the known 
autocorrelation function [50] Hence the relationship between these alternative representations of 

a 2-D AR process is not one to one This may be attributed to the lack of a factorisation theorem 

for 2-D polynomials This means that ‘the mverse polynomial of the 2-D maximum entropy PSD 

cannot be factored, requiring non-linear means of solution to find the 2-D maximum entropy 

PSD, which is not always guaranteed to exist given any arbitrary set of 2-D ACS values’ [52] 
Hence the existence of the MEM estimate is not always certain The MEM method may also 
produce poorly resolved or negative power spectra for closely spaced sinusoids in both the 
temporal and spatial frequency domains This is also due to the type of estimated autocorrelation 
used and is discussed in Section 2 5

A 2-D hybrid technique uses a Fourier transform for one dimension along with a higher resolution
1-D spectral estimator for the other dimension It is generally used when the required resolution 
for a spectral estimate in one dimension is achievable using a Founer transform estimator MEM 
is often used as the high resolution estimator An application example which uses the hybrid
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method for frequency wavenumber estimation in array processmg is given by Kay in [38] and is 

discussed in more detail in Section 1 3 on applications

The high resolution performance of some 1-D spectral estimators [38] has promoted an interest in 

2-D versions of these estimators In general MDSP can be quite different from 1-D DSP This is 

because mathematics in the multidimensional case is less complete than m the 1-D case and the 

computational load imposed at higher dimension is far greater Our method is based on extension 
of the multidimensional Levinson algorithm It is also based on a 2-D extension of the MFE 
method developed by Pimbley [66], and Pimbley and Silverstein [67]

Choice of the most suitable method of spectral estimation depends on the particular application 

2-D AR parametric estimation may be better suited to a particular application ‘In many areas of 
application, treatment of m-d random fields is unnecessarily general considering that their PSD 
may not be arbitrary but instead a low-order parametric rational function However if the 
parametric form of such fields is ignored, then much is lost in estimating their power spectrum In 

other words, if the given random field is better described by a finite set of parameters which is 
much smaller than the total number of observations, then parametric spectrum estimation 

approach will be more accurate than any of the standard approaches ’[60]

As only an estimate of the PSD may be determined, the bias and variance of spectral estimates 
are commonly used statistical measures of estimator performance These measures are calculated 
over a number of simulation trials Analytical determination of bias and variance of spectral 
estimates is usually not mathematically tractable even in 1-D [52] Resolution and computational 
expense may also be used as performance measures for comparison of various spectral estimation 
methods In comparing spectral estimators the same data set should be used for snapshot or single 
data record comparison Alternatively, if statistical tests are earned out to determine the bias or 

variance over a number of simulation runs, the same set of snapshots should be used for each 
estimator This ensures that one estimator does not enjoy an unfair advantage "Only very limited



experimental results have been reported in the literature regarding 2-D spectral estimators, so 

performance comparisons are difficult to make’ [52] We address this issue by comparing the 

performance of MFE spectral estimation with a number of other methods These include the 
modified covariance, Levinson, hybrid, maximum entropy, and conventional transform methods

1.3 Applications

Successful extensions of 1-D spectral estimators will find application in many areas of 
multidimensional systems High resolution spectral estimation of 2-D homogeneous fields is 

becoming increasingly important because of its role in various areas Such areas include analysis 

of space-space, space-time, and time-time data arrays Space-space data arrays may be used in 

image processmg [30], whereas space-time applications mclude sonar, seismic [8] and biomedical 
signal processmg [68], [61] Time-time arrays are typically used in the analysis of radar pulse 
repetition versus amval time [55] As stated by McClellan [54] ‘The operation of spectral 
analysis arises in many fields of application Situations m which signals are inherently 
multidimensional can be found m geophysics, radio astronomy, sonar, and radar, to mention a 

few These multidimensional problems present a challenging set of theoretical and computational 
difficulties that must be tackled’ Other areas where spectrum estimation techniques are essential 
mclude geophysics [70], radio astronomy [57], and biomedical imaging [31] In short, any field m 

which the frequency spectrum of a directly measured quantity is of mterest will benefit from 
continuing advances m power spectrum estimation [66]

As seen m Section 1 2, an application example of frequency wavenumber estimation for space- 
time array processing is given in [38] A spectral estimator with higher spectral resolution in one 
dimension than the other may be used in applications where there is a wealth of time data and a 

lack of spatial data The lack of spatial data ma> be due to the small number of spatial sensors 

relative to the number of time samples available for each sensor A full high-resolution 2-D 

technique is needed if the temporal data is too small to allow adequate temporal frequency
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resolution using Fourier techniques Another example of frequency wavenumber spectral analysis 
where there is lack of symmetry in the spatio-temporal functions is m the biomedical signal 

processmg area [68]

Besides spectral estimation, parametric representations of 2-D random fields are useful in many 
applications such as texture modelling and synthesis [56] In [44] we model and synthesise the 
random field element of a number of texture fields using maximum likelihood AR and ARMA 
models Spectral estimates based on these parametric models are also given References to 

applications of random field models in image processmg and analysis are given m [37] These 

mclude areas such as design of unage enhancement or restoration algorithms, image coding and 
segmentation, and texture characterisation

1.4 Active research

There are three mam reasons that explain why 2-D spectral estimation contmues to be an active 

area of research

Firstly, there are inherent mathematical difficulties associated with MDSP This is due m part to 
differences m 1-D and 2-D Imear systems theory in the inability to factor a 2-D polynomial into 
polynomials of lower degrees The mathematics for describing 2-D systems is less complete than 
for 1-D systems and there is no fundamental theory of algebra for polynomials of dimension 
greater than unity Bose [2], [4] concentrates on some of the mathematical limitations 
encountered in MDSP and on the progress that has been made to overcome these limitations This 
goes some of the way to bridge the gap between DSP and polydisc algebra [71] This algebra is 
concerned with the study of functions on m-D complex space [48], [49], [9] as opposed to 
functions on 1-D complex space such as temporal processes

Secondly the computational burden imposed by advanced 2-D spectral estimation methods have 
m general limited their testing and application to small 2-D data sets Such data sets typically
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consist of simple signal scenarios, such as a few sinusoids in spatially white noise The 
computational burden has also limited the dimension of the parameter space that can be used 
Only the 2-D penodogram, 2-D hybrid methods and the 2-D minimum variance method have seen 

practical application to extensive 2-D data sets [52]

Finally, m many of the applications cited above in Section 1 3 one of the major performance 
criteria is high resolution [47] at small data set size This is reiterated by Nikias and Raghuveer 
[60] They state that ‘Important requirements to be satisfied by the spectrum estimation method 

are high resolution/good spectrum matching, and tolerance towards mhomogeneities m the data 

field while making use of small sized data set’ Small data sets or limited data sequences often 
occur m practice ‘For example, to study mtra pulse modulation characteristics of a radar, only a 
few tune samples may be taken from a smgle very short radar pulse In sonar, many data samples 
are available, but target motion necessitates that the analysis interval be short m order to assume 

that the target statistics are effectively unchanging within the analysis interval ’ [52]

‘Digital spectral estimation contmues to be an active area of research for better estimation 
methods and faster computational algorithms ' [52] The search contmues for an efficient high 
resolution multidimensional parametric spectral estimation technique that is computationally 

efficient and capable of operatmg with small data sets and at low signal to noise ratio (SNR) 
This is due to the plethora of applications m which 2-D spectral estimators are used, the problems 
associated with multidimensional mathematical difficulties, and the high computational burden of 
existing advanced 2-D spectral estimation techniques Furthermore the efficiency and high 
resolution of 1-D techniques make extension of these techniques to 2-D an attractive option

1.5 Minimum Free Energy Autoregressive Spectral Estimation

We present a new high resolution 2-D spectral estimation method Our concentration is on causal 
2-D AR models with quarter plane (QP) parameter region of support These models are a direct



extension of the linear time series seasonal analysis models of Box and Jenkins [5] A causal 

system is one for which the output is derived from the present input and past outputs To obtain a 
stable and causal system [38] the region of support for the AR model must be in the non- 
symmetnc half plane (NSHP) This region may be expressed for a p i x p 2 order model as

{a{m,ri)} for -  (p } -  1) < m < {p x - 1) if 1 < n < (p 2 -1 ) , 1 < m < (p x -1 ) i f  n  = 0 (1)

This ensures recursive computability Bose [3] defines recursive computability ‘Recursibihty 
(recursive computability) is defined to be a property of certain difference equations which allows 
one to iterate the equation by choosing an indexing scheme so that every output sample can be 

computed from outputs that have already been found, from initial conditions and from samples of 
the mput sequence’ The definition of causality assumes that the output is calculated m a way that 

is analogous to that of a raster screen where lmes are scanned top to bottom moving left to right 

NSHP spectral estimators perform poorly for data fields comprising smusoids m noise This may 
be due to the high model orders required [52] For this reason much of the discussion on AR 

spectral estimation is based on models with QP region of support The first QP region is a subset 
of the NSHP region given m expression (1) above The first and fourth QP region of support for 
a p i \ p 2 order model may be expressed as

{a, (m , n )} for 0 < m  <  (/?, - 1) if 1 < n <  (p 2 -  1), 1 < m <  {p x - 1) if n  = 0 (2)

(a 4 (/»,»)} for 0 < m  < (/?, -1) if  -  (p 2 -  1) < n < -1 , 1 < m < (p , - 1) if  n  = 0 (3)

The multidimensional Levmson recursion is an established autocorrelation based method for 
deriving the parameters of a causal QP AR model [29] In this algorithm, reflection coefficient 

matrices and hence the AR parameters are determined by the minimization of the forward and 

backward lmear prediction error energy The reflection coefficients are analogous to physical 
parameters in a seismic model or acoustic tube model of speech An estimation technique that 

chooses model parameters commensurate with the global minimum of a prediction error energy
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objective function falls within the general class referred to as least mean square (LMS) 
algorithms If the observed field is contaminated by noise or the data set size is too small LMS 
algorithms often produce unreliable estimates ‘It is well known, that some LMS based 

algorithms work well at high signal to noise ratios (SNR’s), but invariably suffer severe 
degradation at low SNR’s ’ [67]

We show how the AR model parameters for 2-D fields may be determined by the solution of 
Yule-Walker equations by an MFE based modified multidimensional Levinson algorithm Our 
extension [39], [40], [41], [42], [43] to the Levmson algorithm [52] is based on determination of 

the reflection coefficient matrices by minimisation of the free energy rather than by minimisation 
of the prediction error energy alone The MFE method through a signal entropy or smoothness 

measure compensates for noise or incomplete data and thereby provides better spectral estimation 

than that provided by the LMS approach

The choice of a cost function based on free energy is motivated by the desire to conceptually 

model a stochastic signal analysis system m a way that is analogous to statistical thermodynamic 

models used m physical systems [67] Hence, the connection between thermodynamic systems 

and parameter estimation comes from a common conceptual approach to solving a problem for a 
complicated stochastic process The free energy in a physical system is the combination of energy 
and entropy At any temperature there is a balance between energy and entropy Fluctuations in a 
thermodynamic system are analogous to noise in a signal processmg system Minimizing the free 
energy at some entropy energy level compensates for system noise

The QP models generated by our method give rise to stable and causal systems Hence in addition 
to spectral estimation they may be used for field synthesis and correlation extension [50] An 

example of the use of field synthesis is for texture generation m computer generated imagery 

(CGI) Correlation extension is used to provide improved spectral estimation by extending the
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autocorrelation and subsequently applying a Fourier transform The cost of the improved spectral 
estimation by correlation extension is added computational expense

Our 2-D MFE spectral estimation method is an original and unique extension of a 1-D method 
We are encouraged by the support expressed by Pimbley [65] for our extension of the 1-D 

concept to 2-D There have been no previous publications apart from the author's that extend 
the MFE method of parameter estimation to 2-D and provide combmed quarter plane spectral 
estimation of closely spaced sinusoids based on such an extension In [12] a 1-D MFE method is 

used along with a 1-D penodogram as part of a hybrid separable algorithm for 2-D spectral 
estimation Our method responds to the call in this paper for an efficient 2-D MFE algorithm

The 2-D MFE method provides accurate spectral estimates and is particularly useful for low 
SNR data sets even at low data set size Hence, our research also responds to the call by Marple 
[52] for more effort to be directed towards signals buned deeper in noise MFE provides accurate 

spectral estimation over broad temperature ranges, rendering determination of specific critical 
temperatures unnecessary The resolution quality of MFE spectral estimates and accuracy of 

peak location m the spatial frequency plane improve with model order

The 2-D MFE method may be preferred over the Levmson algorithm because it can outperform 
the Levmson technique producing supenor spectral estimates with similar computational burden 
The method may also be preferred over MCV as it is significantly faster and can produce spectral 
estimates with variance and bias comparable to that of MCV MFE performs accurate spectral 
estimation at low SNR and low data set size producing estimates with supenor resolution over 
those produced by the conventional Founer transform method The MFE method performs as 
well as if not better than the hybnd dual 1-D method [47] and the maximum entropy method [51]

11



Chapter 2. 2-D MFE Theory

2.1 Introduction

In Chapter 2 we discuss simultaneous autoregressive models giving their descriptions in the 

spatial and frequency domains We provide the theoretical development of 2-D MFE from Yule- 
Walker equations [52] through to the cost functions required for the optimisation in our 

algorithm Implementation issues concerning optimisation and associated MFE cost functions are 
studied We outline the benefit of usmg combined QP spectral estimators over the use of single 
QP estimators The exact, biased and unbiased forms of the autocorrelation function are 

examined and compared Finally we provide details concerning the implementation environment 

for 2-D MFE and the simulations that follow in Chapters 3 and 4
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2.2 AR Models

A discrete 2-D signal is any function y(m,n) that is an array of real or complex numbers defined 

for the ordered integer pair (m,n) over -°o < m,n < <x> This discrete signal may represent a 
sampled continuous 2-D function in space or time and may typically be assumed to have a region 

of support over 1 <m <N, 1 <n < N

A simultaneous AR (SAR) model [7] may be represented by
p \  p 2

Z 1 X  a(i,j)y(m-i,n-j) = u(m,n) (4)i=0 ;=0

where {y(m,n)} is a finite set of observations on 1 <m <N, 1 <n < N  and is a homogeneous 
random field A homogeneous random field will have an autocorrelation function that is 

mdependent of where on the field it is evaluated and is dependent only on the distance between the 
pomts or the lag employed The autocorrelation is therefore not a function of position Finite 

observation sets may be considered to be locally stationary hence permitting spectral estimation 

techniques to be used [52] {u(m,n)} is uncorrelated Gaussian white noise with zero mean and 

variance ct2 A toroidal model is assumed on this N  x N  lattice [36] This means that the

2-D field may be regarded as doubly periodic and thatyfl, n) is the east neighbour of y(N, n) and 
that y(m, N) is the north neighbour of y(m, 1)

A causal system is one for which the model region of support is in the NSHP or QP Spectral 
factorization, which is a feature of 1-D systems, generalizes to 2-D when these regions of support 
are used Hence the SAR model m (4) is factorable and a special case of the conditional AR 
model [34], [32] m which {u} is correlated The autoregressive model parameters are given by {a} 

over the pi x  p 2 QP region of support where a(0,0) = 1 The first QP PSD of this model [85]

may be written m normalised spatial frequency terms { f x, /  ) where \ f x \ < I /  2, f v < 1 /  2 as
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(5)

k=0 1=0

or («)

2.3 Single and Combined QP spectral estimators

Using a single quarter plane spectral estimator may result m elliptical contours of constant PSD 
level This is due to the directional dependency of the resolution characteristics of quarter plane 
estimators [86] This may be overcome to some extent by usmg a combmed quarter plane 
estimator Quarter plane estimates are combmed m parallel resistor fashion to form a combmed 

estimate Smgle quadrant spectra may also suffer from spurious peaks at high SNR or at high 

model order [86] Hence another motivation for the use of a combmed estimator is that spunous 
peaks are less likely to occur if quarter plane estimates are combmed [38] In Chapter 3 we 
examine how the directional dependency and spunous peaks of smgle quadrant spectra may be 

overcome by the use of combmed spectra Unless otherwise stated we combme first and fourth 
quarter plane estimates for all PSD estimates

2.4 2-D MFE

The Yule-Walker equations are denved by multiplying expression (4) by y(m-k, n-l) and taking 
the expectation These equations are therefore based on the autocorrelation estimates of the 
observed field and are given by

p i  p 2

Z H a ( i , j ) r yy( k - i , l - j )  = ( a 2 for ( k j )  = (0,0), 0 fo r (£ ,/ )  e  Q P ')1=0 ;=0
where QP = QP' U (0,0) (7)
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or in matrix form [38] as R a  = p (8)

a[0] a(i, 0)
a[l] a(j, 1)

where a  = s- p r-"n II

.a [P i -1 ] . _a(i, p 2 - 1 )  _

(10)

P a 2
0 0

ii*■11 (11) with p  =

.  0 . .  0 .

(12)

R  is a block Toeplitz matrix which is symmetric and positive semi-defimte The positive semi- 

defimteness of the matrix ensures its eigenvalues are nonnegative Furthermore the matrix is 

made up of blocks Ryy that are also Toeplitz m structure though not symmetric and have 

elements r  that are derived from the correlation of the observed field {y(m,n)} The matrix m 

expression (13) below is of order p t p 2 x p t p 2 are the observed field autocorrelation 

matrices

R  =

Ryy[0] Ryy[-1] 
R n [l] Ryy[0]

yyl

R „ [ - Q > l - l ) ]
R „ K / > l - 2 ) ]

(13)

R yyi>] =

r„[i, °] r j i ,  -1 ]  
r„[t, 1] r j i ,  0]

ryy[hP 2 ~ \]  r [j, p 2 - 2 ]

-  (P i ~  1)]

ryy[i, 0]

(14)
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The multidimensional Levmson algorithm may be used to solve (8) for the AR parameters and the 
white driving noise variance The reflection coefficients m Levinson type algorithms may be 
interpreted as the negative normalized correlation coefficients between the forward and backward 
linear prediction errors with one unit of delay Prediction is forward in the sense that the estimate 

at some spatial pomt is based on a number of points that are spatially before the point, and 

backward m the sense that the estimate is based on a number of points that are after the pomt 

The reflection coefficients at stage m of the recursion are represented by a set of reflection 
matrices A m[m] If the order of the model used is p i  x p2, then from the multidimensional, 

row ordered, Levinson algorithm [52] at the last of (pl-1) recursions

A„[/;1]P;1_I+ A J,1= 0  (15)

where as m the 1-D case the Toeplitz structure of the autocorrelation matrices ensure that the 

covariance of the prediction error process is identical for the backward and forward AR process

= p ; ,  <i6>
The partial correlation matnx [52] may be expressed as

A „  =[l A„_,[l] A„_,[2] A„_,[P 1-1]] [R„[/>l-l]R„[pl-2] R „ [ 0 ] f
(17)

and the prediction error covariance matrices may be expressed as

p / . =  [ i - A , ,[p i] A r„ [ P i] ]p ; , .„  (is )

with initial condition P{  = R H[0] (19)

The reflection coefficient matrices [52] may be expressed as

A ?iM  = A pi-itel + A ^ l J A ^ . J p l - t f - l ]  for \ < q < p \ - \  (20)

Matrices in expressions (14) through (20) are of order p 2 x p 2 The derivation of these equations 

for the 2-D case is based on the multichannel case [81] for a p 2 channel AR process of order 

There is a direct correspondence between A m[m] m the multichannel case and the reflection 

coefficients k m m the smgle channel case



Expression (15) gives optimisation of the reflection coefficients based on minimisation of 

prediction error energy The AR parameters and white driving noise variance {ai, p\, a2, pi) of 

the first and fourth QP model respectively are determined from the reflection coefficient and the 

prediction error covariance matrices For 1 < i < pl-1  the row ordered vectors are given by

(21) and a:[7] = A "_ ,[* K [0 ] (22)

where

^  M ) P\
a, 0 ,i) 0

(23) and p  =

i1cfi .  0 .

and

p [ =  P ;,.,a^ [0 ] (25) and a r2[i] = A J_,[/]a^[0] (26)

where
a 2( i , p 2 - \ ) 0
a 2( i ,p 2 - 2 ) 0

(27) and p [  =

. a 2(i,0) . -P2-

We extend this method by including an extra cost function based on entropy In our method 
the cost function is given by (15) and the differential of a 2-D entropy term with respect 
to the reflection matrices The motivation behind this comes from statistical thermodynamics 
There is a direct analogy between statistical thermodynamics and stochastic signal analysis If  the 
temperature m a physical system is reduced to absolute zero the system is forced mto its lowest 

energy state In this case fluctuations disappear and physical systems condense into their ground 

state This ground state corresponds to the case m signal processmg where parameter estimation 

is earned out on the basis of minimisation of the prediction error energy alone with zero input 
from the entropy term r
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At nonzero temperature there is a balance between low energy and high entropy with the result 
that physical systems are neither in minimum energy nor maximum entropy states An increase m 

system temperature causes an increase in entropy and a decrease in energy Temperature, 
therefore, acts as a control parameter for the entropy or fluctuations in the system [76] 
Temperature driven fluctuations in thermodynamic systems correspond to noise m signal analysis 

systems

‘In statistical physics, the probability density function that a system will occupy a specific state 

of energy E  is represented by a Gibbs distribution function of the form co(E) = exp[(F-E)/kT] 
Here T  is the system equilibrium temperature, k  is Boltzmann’s constant, and F  is the free energy 
The system entropy is defined in terms of the ensemble average of the logarithm of the 

distribution function S  = -k<logco(E)> Hence the free energy is a linear combination of the 

entropy and the average energy, F  = <E> - TS ’ [76] In signal analysis systems the free energy 

is given as the difference between the prediction error energy and the entropy energy The 
equilibrium parameters of a system are associated with the global minimum of the free energy 
function An example is given m the annealing of a crystalline solid As the temperature is slowly 
reduced, the lattice spacing continuously changes so that the free energy is at a minimum for 
every temperature The parameters of the lattice correspond to model parameters in a signal 

analysis context [77]

The cost function m the 1-D MFE parameter estimation algorithm is based on an extension of the 
LMS criterion to include a noisy data cost element This extra cost element minimises the free 
energy and suppresses estimation errors caused by noise It is due to the entropy term and is given 
m [66], [67] by differentiation of the entropy energy with respect to reflection coefficients Hence 

MFE is based on determination of model parameters associated with minimization of the free 

energy function MFE extends LMS methods into the realm of noisy or mcomplete data
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We may gam further insight into the formulation of MFE by considering that estimation results 

can be improved by inserting a priori knowledge into the cost function [74] If prior knowledge 
about the probability of some properties of the spectrum, expressible m terms of the model 
parameters, exists, then by adding a penalty to the cost function this knowledge can be 

incorporated effectively into the estimation The spectra of smusoids m noise at high SNR exhibit 
sharp peaks corresponding to the smusoidal components with smooth valleys, whereas the 

spectrum of a single snapshot of random noise characteristically exhibits roughness If a noise 

spectrum probability distribution is determined from a number of independent snapshot data 
samples, then a smoother noise spectrum will have far higher probability than a highly distorted 
noise spectrum [77] Similar arguments may be made for spectra of smusoids that are corrupted 

by noise or have small data set size Hence, the penalty measure should be a spectral smoothing 

measure This measure should add to the estimation problem some knowledge of signals and 

noise that is not present in the LMS scheme and thus compensate for the effect of added noise at 
low SNR As signal entropy is a measure of a prion probability the penalty function should be a 
decreasing function of entropy

In the 2-D case we now extend the multidimensional Levinson algorithm to mclude an extra, 

noisy data, cost function based on entropy This results in the minimisation of the resultant free 

energy, thereby providing better spectral estimation than that provided by minimization of 
prediction error energy alone Different forms of entropy functions are given in [57] The 
Shannon-Burg entropy measure is defined to within an arbitrary constant For 1-D methods this 
form of entropy results in an all-pole spectral estimate [76] We use a 2-D Shannon-Burg entropy 

type field H  as m [17], [54] and [51] This may be expressed as

(29)
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We require the differential of the 2-D entropy term with respect to the reflection coefficient 

matrix A m[w] at stage m For real fields the reflection coefficient matrix A  is real and we may 

express the differential of the entropy energy term, with respect to A as

rdaH /_  — /v I >nM r\( ^   ̂/ /?A — Infl n f  f  f  M2 (30)

The entropy proportionality constant is absorbed into the signal processmg temperature 

parameter a

At stage m of the recursion the double mtegral m expression (30) becomes

- m  [h D M . J , )]]/<?A„[m] dfAfy (31)

or r1/2 fi/2^ D m{ f x J y ) l d \ J m \  + d \ n D l ( f x , f y ) l d X m[ni\ d fxd fy (32)fl/2 fl/2 
—1/2 —1/2

At any frequency ( f x , f y ) the differential

^ ^ D m( f x , f y ) / ^ \ m[rn] (33)

is the differential of a scalar quantity with respect to a matrix Applying matrix calculus [26] this 

may be expressed as a (p2,p2) matrix, any element ju(i, j )  of which may be given by

= d  In D m( f x, f y ) ! d  r ( i  j )  = D~J d D m{ f xJ y ) ! d  r { i , j )  (34)

where r(i,j) is an element of the reflection matnx A m[rri\ The integration m expression (32) 

becomes
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The first part of expression (35) becomes

—1/2 *'-1/2

This integral may be performed by taking a contour integral about a surface m the 2-D complex

We use the bidisc analogue and carry out contour integration on the lower half of the associated 

complex frequency planes We extend the Cauchy Goursat based argument [66], [18] that the 

symmetry m the contour path reduces the contour integration to integrations at (a) and (b)

The integration at (a) goes to zero as the numerator of the expression (36) contains a 

multiplicative exponential term This suggests that for f x = -joo  and f  = - jqo the integral 

vanishes, because the numerator goes to zero, while the denominator reduces to unity

We now examine the integration at (b) The multidimensional Levinson method [52] which is a 
minimum prediction error method yields solutions to the Yule-Walker equations These solutions 
may not be stable even for a positive definite autocorrelation matnx Hence D ( f x , f y) may not

always be minimum phase In the case of a homogeneous random field [44] D{ f x, f y ) is 

minimum phase If this is not the case the mput field may be whitened sufficiently to ensure that 

the autocorrelation falls off fast enough so that D ( fx , f y ) is minimum phase This results in a

stable model However, by appropriate choice of signal processing temperature range MFE 

ensures that stable AR parameters may be found whether the autocorrelation matnx is positive

frequency hyperplane The two analogues of the unit disc in 2-D complex z space C2 [49] are the

unit bidisc expressed as (37)

and the unit ball expressed as {(**»*,)£ C 2 | ^ f + | ^ |  < l ) (38)
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definite or not MFE models are stable, causal, and recursively computable [17], [38], [3] and 
hence they may also be used for field synthesis applications such as texture generation [44], [46], 
or data or correlation extension [50] With minimum phase D ( f x, f y) all singularities, that is

solutions of the equation D (zx ,z  ) = 0, or zeroes of D (zx,z y ), are within the unit bicircle In

the 2-D complex z space C2 this may be expressed by Shanks theorem [17] as

D (zx,z y) * 0 for { |zx\ > 1, \zy \ > 1 } (40)

Hence there are no zeroes outside the unit bicircle, or in the lower half of the 2-D complex 

frequency hyperplane Minimum phase placement of zeroes corresponds to pole placement for 

reciprocal functions Therefore, the function D (zx,z y ) and its reciprocal or transfer function

have no singularities and are analytic in this domain [69]

We now examine extension of the residue theorem to 2-D Bose [3] shows that the test for a 

bivanate polynomial B {zx ,z 2) *  0 can be simplified to

{[5(0,z2) *  0, |z 2| < l] , [B(zu z2) *  0, |z ,| < 1, |z 2| = l]} (41)

and that N (z )  = ( l / 2  n j)$ £ B (zu z 2) / d z 2 B (zu z 2) ' d z 2 = 0 (42)

where N (z )  is the number of z2 zeroes in B (z{,z 2) for any fixed z, and contour c2 |z 21= 1 

This is also seen m [71] Generally the test for a bivanate polynomial can be simplified to 
testing for each variable when the other is fixed The number of zeroes in each z plane may be 
determined by fixing one variable and performing the contour mtegration with respect to the 
other This effectively means applying Cauchy’s residue theorem twice [17] In performing 
double contour mtegration one variable is fixed and the contour integral is evaluated with respect 

to the other variable Therefore the integral residue formula [9]

(1 / 2 m )$/ '  (z) /  f { z ) d z  = N  -  P  (43)

for the case of no poles P  or zeros N  inside an area enclosed by contour c of the complex plane 
applies, giving the double contour integral
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£  t  ’ z y  ^  ^ ^ y  =  0

Hence the integration on the region specified by (39) (b) goes to zero

(44)

This may also be seen in that Krantz [49] gives us the Cauchy integral formula for C2 D (zx , z  )

is analytic in the domain of interest The integrand of expression (36) has no poles in the lower 

half of the 2-D complex frequency plane Therefore, there are no nonessential singularities of the 

first or second kind Hence by the C2 Cauchy integral theorem [1] the integral specified by (39) 
(b) goes to zero A similar argument may be made for the second integral in expression (35)

Continuing with expression (30), in terms of Levinson algorithm parameters at stage m of the 

recursion lny0m = ln [P ^] = l n [ ( I - A m[w ]A ^[/w ])P^,] (45)

hence < ? (ln /? J /< ? A m[m] = < ? ln [ ( I -A m[m]ATm[ r n ] ) Y ^ ] / ^ A m[m] (46)

If B m = d Q n f im) / 0 A m[rn] (47)

then for model order pi x p 2 matnxB has P2 x p 2 elements each of which itself is a p 2 
matrix For example for a 3 x 3 order model any element of the 3 x 3 B  matrix B {a, b) is itself 

given by the 3 x 3 matrix

(l  / P f  (l,l))(-P(a,l)A (U ) + (a& l)(-P(l,l)A (U ) -  P(2,1)A(2,6) -  P(3,1)A(3,6)))
( l /P ^  (U)X-P(a,2)A(l,b) + (a& l)(-P(U )A (U ) -  P(2,2)A(2,6) -  P(3,2)A(3,6)))

(1 / p '  (1,3))(-P(a,3) A(l, b) + (a&l)(-P(l,3)A(l,b) -  P(2,3)A(2,b) -  P(3,3)A(3,b)))

(l / p '  (2,l))(-P(a,l)A(2,Z>) + (a&2)(-P(l,l)A(l,i) -  P(2,1)A(2,6) -  P(3,1)A(3,A)))
(l / Y fm (2,2))(-P(a,2)A(2,6) + (a&2)(-P(l,2)A(l,6) -  P(2,2)A(2,£) -  P(3,2)A(3,A)))

(l / p '  (2,3))(-P(a,3)A(2,b) + (a&2)(P(l,3)A(l,b) -  P(2,3)A(2,b) -  P(3,3)A(3,b)))

(l / Vfm (3,l))(-P(a,l)A(3,*) + (o&3)(-P(l,l)A(l,A) -  P(2,1)A(2,6) -  P(3,1)A(3,A)))
( l /P *  (3>2))(-P(a,2)A(3,i) + (a&3)(-P(l,2)A(l,6) -  P(2,2)A(2,b) -  P(3,2)A(3,bj))

(l/P^T (3,3))(-P(a,3)A(3, b) + (a&3)(P(l,3)A(l, b) -  P(2,3)A(2, b) -  P(3,3)A(3, b))) _
(48)
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where A = A m[rn] and P -  P^_, (49)

We minimise the cost function at recursion m and signal processing temperature a  by determining 

a reflection matnx A m\m\ such that

A > ] pl . + A « - « B M = 0 (50)

When a  = 0 the method reverts to the multidimensional Levinson algonthm

2.5 Autocorrelation functions

The autocorrelation function used m the equations above may be exact or an unbiased or biased 
estimate We examine the differences m these correlation functions The result of MFE spectral 
estimation using different correlation measures is detailed in Chapters 3 and 4 and m particular m 

Section 3 5

The exact autocorrelation generated by T  sinusoids in white noise [85], [47], [86], [51] is given 

by
T

r ( k , l )  = a 2S ( k , l )  + c o s i l r f ^ k  + 2 j r f J )  (51)i=i

This k  x  I pomt autocorrelation corresponds to the exact correlation from a data set over 

an M x  N  rectangular region of support where - M  < k < M  and - N  < I < N  af is the power 

and ( f a , f  ) is the spatial frequency of the ilh sinusoid of T  sinusoids

The exact correlation is somewhat artificial as it is not relevant to any practical problem despite 
its popular use m numencal simulation [85], [47], [51] It also ignores the statistical vanability 
aspect of the problem The autocorrelation resultmg from a smgle realisation of smusoids plus 
noise would display cross-terms between smusoids and would depend on the relative phases of the 

smusoids However the exact autocorrelation helps to identify errors that occur as a result of 

usmg some form of estimated autocorrelation as opposed to errors that occur due to the spectral
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method itself An example of errors occurring due to an estimated unbiased autocorrelation at low 

data set size is given m Section 3 8 on data length

The biased and unbiased autocorrelation functions are estimated from a realisation o f smusoids 
plus white noise of the form [50]

j  __
x(m,ri) = 2 V 2 a ,  c o s ^ ^ m  + + <}>,)+ w (m ,n ) (52)t=i

where w(m,n) denotes zero mean noise of power cr2 The power and spatial frequency of the ith 

sinusoid of T  smusoids are given as a,2 and ( /„ , /> ,)  The phase of the i‘h smusoid is given by

<k

The unbiased autocorrelation estimate [52] at lag (k,l) for a M  x N  data set over a rectangular 
region of support 0 < m < M  -  1 and 0 < n< N  - 1  is given over lag range |Ar| ^ M -  1 and 

|/| < N  - 1 by

1 M - l - k  N - l - l

( M - k ) ( N  -1 )  ~  £X  ^ x ( m  + k ,n  + l)x*(m ,n) £ o r k > 0 ,l> 0

1 M-\-k N- 1

r ^ i - k - l )  for k  < 0 , an y /

X  ^ x ( m  + k ,n  + l)x*(m ,n) fo r k  >0,1  < 0  (53)

and the biased autocorrelation is given by
M - l - k  N - \ - l

M N + k ,n  + l)x*(m ,n) f o r k > 0 , l > 0m=0 rr=0

\ M-i-k N-\= i ^ ^ x ( m  + k,n + l )x*(m,n) f o r k > 0 , l < 0  M N  nt=0 n=-l

ra * ( - k , - l )  for k  < 0, any I

(54)
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The biased estimate suffers from nonequitable weighting of the correlation lag terms The long 
correlation lag terms are responsible for resolving spectral fine structure, hence the biased form 
can result in loss of resolution However the Fourier transform of the biased estimated is always 

nonnegative, whereas this is not the case for the unbiased estimate For this reason the biased 
form is more generally used even though the unbiased estimate may give supenor results In 1-D 
MFE the unbiased ACS may be used as MFE provides a self-regulanzation function m addition 

to compensation for noise [76]

For both exact autocorrelation and autocorrelation estimated from a realisation of smusoids in
T

white noise the SNR [50] may be expressed as SNR = — (55)<7

Unless otherwise stated we have used the unbiased autocorrelation estimated from a realisation of 

smusoids m white noise with fixed relative initial phase Statistical studies have been earned out 
on the use of the 1-D MFE ACS algonthm [78] for estimating two isolated and two close 

spectral sources These have shown that the two isolated source peaks are unbiased while the 
close peaks are slightly biased rendering them slightly maccurate ‘This slight bias is due to the 
fixed relative initial phases of closely separated sources, it is an effect which is common in all 
coherent imaging situations If the relative phase had been chosen to be random and uncorrelated 
for each snapshot, the bias would disappear m multi-look averaging ’ [78] We see therefore that 

the relative phase affects the resultant estimate for closely spaced smusoids We may therefore 
expect some biasmg of spectral estimates of closely spaced smusoids

2.6 Optimisation and cost functions
A Nedler-Mead simplex [14] or Newton gradient [15] technique may be used to perform the 

minimisation of the left hand side of expression (50) The technique used depends upon the model 

order and width of the temperature range of mterest The time required for the simplex to 

converge is far greater than that for the Newton method However the simplex avoids problems 
such as starting guess dependence and convergence at a local rather than the global minimum
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For model order p ix p 2 the matrix B m in expression (50) has elements each of which itself is a 

p 2 x  p 2 matrix, however the matrices A m[/w], P^L, and Am are all of order p2 x  p 2 We average 

the p 2 x  p 2 submatnces of B m to ensure all matrices m expression (50) are of the same order We 

then determine the resultant matrix from expression (50) and generate a cost figure by taking the 
sum of the squared elements m this matrix This cost figure is minimised by the Nedler-Mead 

simplex or Newton method The fundamental steps of the MFE algorithm are given m Table 2 1

Cost figures may be assigned to the entropy term matrix B mand the matrix due to the error 

energy term + Am] as above We may then monitor the interaction between the

entropy term and the error energy term by plotting these figures at each iteration or as an average 

over a number of iterations over the entire minimisation Figure 2 1 (a), (b), and (c) show the cost 
figures for the free energy, error energy, and entropy terms The minimization is for the final 

iteration m the MFE determination of a 5 x 5 model for an 80 x 80 pomt data set The data set 

consists of two smusoids at normalised frequencies (0 1, 0 2) and (0 3, 0 4) m white Gaussian 
noise at 0 dB SNR When the cost functions due to the entropy term and error energy term are of 
the same order then the free energy is bemg minimised This provides an early indication within 

the algorithm of temperature range suitability, before AR parameter and PSD generation 

Experimental results on temperature range determination through calculation of the cost function 

order difference are given m the results Section 3 6 2 on temperature determination

2.7 Implementation environment

We have predominantly used the MATLAB fourth generation programming language [53] to 
implement the algorithms This language contains many high level functions that are particularly 

suitable for digital signal processmg It therefore represents an ideal cost effective environment 

for algorithm development The package is available for a variety of platforms including 386/486 
PCs to Cray All simulation results were printed using a Hewlett Packard LaserJet IIIp printer

27



( a ) ( b )

0 500
iterations

1000

(c)

1500
iterations
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Figure 2 1 Cost figures for (a) error energy, (b) entropy, and (c) free energy for the minimization 

at the final iteration for MFE determination of a 5 x 5 model at temperature 0 05 for a data set 
consisting of two smusoids at normalised frequencies (0 1, 0 2) and (0 3, 0 4) m white Gaussian 
noise at 0 dB SNR
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Table 2 1
The Algorithm for Computing MFE AR parameters and PSD from Exact 

or Estimated Autocorrelation Data for Model Order p i x p2, Temperature
a  and D ata Set Size M  x N

1. Begin algorithm

2. Generate autocorrelation data over k x  I points where -M  < k < M  and - N  < I < N

2.1 Generate the exact autocorrelation for T  smusoids m white noise of power cr2 where 

af is the power and ( f n , /  ) is the spatial frequency of the ilh smusoid usmg

r(k,l) = er28(k,l) + l a , 2 c o s (2 ^ ^  + 2jtf I)I =*/

or

(51)

2.2 Generate or acquire data and estimate autocorrelation
2.2.1 Generate data from a realisation of T  smusoids plus zero mean white 

noise w(m,n) of power a 2, where the power, spatial frequency, and 

phase o f the i!h smusoid are ( f n , fyx) >and <f>,.

x(m,n) = Z 4 la x cos iljf^m + In f^n  + <!>,)+ w(m,n) (52)

or
2.2.2 Acquire data from other source such as homogeneous random texture 

field

2.2.3 Compute the unbiased autocorrelation estimate at lag (k,l)

1 M - \ ~ k  N - \ - l  tZ Z x(m + k,n + l)x (m,n) fo r k > 0 l> 0

r (k, I) = '

(M  -  k)(N  -  /) m=° M=0

1 M - \ - k  N - 1 ,------------------  I  Z x(m + k,n + l)x (m,ri) fo rk > 0 J < 0  (53)(.M - k ) ( N - l ) «=o n=-i

ra  ( -k - l ) for k < 0, any I

or
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2.2.4 Compute the biased autocorrelation at lag (k,l)

1 M - \ - k N - \ - l  ,  Z Z x(m + k,n + l)x (m,n) fork > 0,1 >0m=0 n=0

1 A /-!-* Af-1 ,r ( k , l ) = \ ------  Z Z x(m + k,n + l)x (m,n) fo ik 2 .0 ,l< 0  (54)
1 M N  m=0 n - - l

ra  (-&,-/) for k <, 0, any /

3. Place the autocorrelation data into a matrix format
Ryy [(] are Toeplitz though not symmetric

fyyll. 0] rw [/, -1] 
!] 0]

i.fyyll, P2~l] /?2 -  2]

-(/» 2 -l)J  
^ [1 , -  (/»2 -  2)]

r „ [ t ,  0]

(14)

R is block Toephtz andsymmetnc

R =

RyylO] R„[-l] 
R„[H  R yy[°]

J L „ [ p l- l]  R w [p l-2 ]yy I

R yy H pl-1 )]
R y y H p l-2 )]

RyytO]

(13)

4 for m = 1 to pl-1
4.1 Compute the order p2 x p2 correlation matrix

A* = [ lA m_1[l]A m_1[2] A ^ If l i- l lJ lR ^ Im JR ^ Iin - l]  R ^ l l j V )

4.2 Select multivanate unconstrained optimisation method e g Nedler-Mead simplex 
or Newton method
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4.2.1 Minimise a cost figure based on the sum of the squared elements in 
the resultant matnx from the left hand side of expression (50) by 
determination of the reflecuon matnx Am[/w] Hence Am[/«] which 
is order p2 x p2 is chosen such that

Am[«]pl l  +Am ~ a B m =0 (50)
where B m = <?ln[(I -  A ra[/n]A^[/w])P^, ] / dhm\tn\

and P /  = R n [0] (19)

B m has p2 x p2 elements each of which is a p2 x p2 submatnx 
Average these submatnces to ensure all matnces in expression 
(50) are of the same order

4.3 Compute the order p2 x p2 prediction error covanance matnces

H  = (18)

4.4 Compute the reflection coefficient matnces

A mM  = A.m_l [q] + A m[rn]ATm_x[m~q] for 1 ^ q <, m - l  (20)

end of for m
5. Compute the AR parameters and white dnving noise vanance {ai, p\ }of the first QP model

5.1 Determine pt from p (  = P^,_,a[[0] (21)

«i 0,0) V
a, (/,1) 0

wherea(0,0) =1, and a[[i] = (23) and =

_aI(i,p2-l)_ 0
5.2 For i = l  to pl-1

determine the row ordered vectors af [/] = A^,_, [/]a[[0] (22) 

end of for/
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6. Compute the AR parameters and white driving noise variance {a2 Pi}o£the fourth QP model

6.1 Determine p? from (25)

a2(i ,p 2 - l) 0
a2(i,p 2 -2 ) 0

where a2(0,0) =1, a2[/] = (27) and p[ =

.  a2(i,0) _ -P i-

(28)

6.2 For i= l  to p i -1

determine the row ordered vectors a2[i] = [/]a2[0] (26)

end of for i

7. Compute the power spectral density for each QP over a suitable region F 2 of the frequency 
plane
for f x =1 to F

iorfy = 1 to F

______________________________________________ P i ____________________________________________Sqp\ (/* > fy  ) ~ p2_j 2
| Z  I  a, (*, /) exp(-y((2;r / F )(fx - F I 2 ) k  + (2n / F )(/y -  F / 2)01

(5)

~  f  f  ^ ______________________________________________
h p ^  ^  y  ^ ~  o  p 2 - l  2| Z Z a2 (*,/)exp(-7 ((2ff / F )(/x - F /2 ) k  + (2n / F ) ( f  -  F / 2)/))|*=—(pi—1) /=o y

where / J  £ / /  2, /  < 7 /  2 for normalised frequency
end of for f y 

end of for f x

8. End algonthm
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Chapter 3. Numerical Simulations and 
Experimental Results

3.1 Introduction

In this Chapter we provide numerical examples m which the method outlined above has been 
applied These examples show power spectral estimates determined directly usmg MFE based 
AR model parameters Spectral estimates determined by other techniques are used for 
comparative purposes The resolution of sinusoids in white noise is a widely used standard 

simulation exercise for spectral estimation techniques including AR model based techniques 
[50], [86], [77], [84], [83] Generally, we used an unbiased autocorrelation function estimated 

from a realisation of sinusoids plus white noise Various data set sizes ranging from 160 x 160 to 

5 x 5  points have been used over the full set of tests The size of the region of autocorrelation
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estimates used depends only on the model order For example a 5 x 5 order model will use only 5 
x 5 autocorrelation pomts, giving a 5 x 5 region of autocorrelation support

We performed a wide variety of tests on the MFE method outlined above These may be divided 
into two classes of simulations The first class relates to tests earned out on the technique itself to 

evaluate its performance These included resolution directional dependency, estimator bias and 
variance over a number of independent trials, and sensitivity of spectral estimates to signal 
processing temperature The effects on spectral estimation of SNR, data length, model size, and 
type of autocorrelation function used were also examined We performed spectral estimation on a 

number of examples of very closely spaced sinusoids as a test in spectral resolution We examine 

the directional bias and standard deviation over a number of independent trials for spectral 

estimates generated by models with non-symmetnc region of support Tests were also carried out 
on the effect of dynamic range difference between smusoids

The second class of tests involving comparison of MFE spectral estimation results with those of 

other techniques are detailed in Chapter 4

Spectral estimates are plotted as normalised amplitude PSD plots or as log plots on the x 
frequency axis psd(fx ,0) 0 < fx <05 and on the y  frequency axis p s d (0 ,fy )  0 < f y  < 0.5

Contour plots showing the spectral estimate on both frequency axes of the (fx, f y)  frequency plane 
are also used The highest contour level is normalised to 0 dB Where possible the contours are 
labelled m dB below the maximum value of 0 dB The contours are equally spaced and the 
contour mcrement is given in all cases The data is real, resulting m spectral estimates that are 
symmetric with respect to the origin Hence only one half of the frequency axes is generally 

displayed
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3.2 Fair of sinusoids

We took a 80 x 80 point data snapshot consisting of sinusoids at arbitrary unity normalised 

frequencies (0 1 ,0  2) and (0 3 ,0  4) The smusoids are of equal amplitude at arbitrary SNR of 6 

dB m white Gaussian noise The parameters are given in Table 3 1 below An unbiased 
autocorrelation estimate was used

Table 3 1 Data set parameters

Number of White noise Sinusoid Spatial

smusoids M power a 2 power a,2 frequencies

2 05 1 (0 1, 0 2)
1 (0 3, 0 4)

We determined the spectral estimate at temperatures 0 074 and zero This has special 
significance because at zero temperature our technique reverts to the multidimensional Levinson 

or Burg type technique The temperature of 0 074 was the optimal temperature for spectral 
estimation based on the average autocorrelation over 10 noise seeds This temperature also fells 
within a broad range of temperatures (~ 102) within which accurate spectral estimation was 
obtained

Figure 3 1 (a) shows the combined first and fourth quarter plane normalised amplitude PSD plot 

on the x frequency axis psd{fx ,0) 0 < / x <05 This spectral estimate was derived usmg the 

MFE based AR models of order 5 x 5 at temperature 0 074 The region of autocorrelation 
support is only 5 x 5  points coinciding with the model order Figure 3 1 (b) is the corresponding 

contour plot showing the spectral estimate on both f x and f y frequency axes The corresponding 

plots for the spectral estimates at temperature zero are shown in Figure 3 1 (c) and (d)
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Sharp peaks are evident in Figure 3 1 (a) at f x = 01  and f x = 0 3 The spatial frequency peaks at 
(0 1, 02) and (0 3, 0 4) are clearly visible m the contour plot of Figure 3 1 (b) The sharpness of 
the peaks is illustrated by the 10 dB contours A number of peaks m the x frequency direction 

can be seen in Figure 3 1 (c) None are at the correct frequencies of f x -  0 1 and f x -  0 3 The 
contour plot o f Figure 3 1 (d) clearly shows that the peaks are not located at spatial frequencies 
(0 1 ,0  2) and (0 3 ,0  4) and therefore are incorrectly resolved We conclude that both frequency 

components are accurately resolved at temperature 0 074 and are not accurately resolved at 
temperature zero using the Levinson method

It should also be noted that the zero temperature model has reflection coefficients of value greater 
than unity This results m autoregressive parameters that are not unity bounded Hence, the zero 
temperature system is unstable and unsuitable for field synthesis or autocorrelation extension
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f x

( d )

f x

Figure 3 1 MFE spectral estimates of sinusoids at normalised frequencies (0 1, 0 2) and (0 3, 
0 4) in white noise at SNR of 6 dB at temperature (a), (b) 0 074 and (c), (d) zero 
(a)(c)Normalised amplitude spectral estimate on the x frequency axis, (b) (d) Contour plot in dB 
on x and y frequency axes
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3.3 Single sinusoid at high SNR
A sinusoid at normalised frequency (0 1, 0 2) at 27 dB SNR in white noise was used This data 
set is detailed in Table 3 2 A 160 x 160 point unbiased autocorrelation was estimated from the 

80 x 80 point data set

Table 3 2 Data set parameters
1

Number of 

sinusoids M

White noise 

power ct2

Sinusoid 
power a 2

Spatial

frequencies

1 0 002 1 (0 1, 0 2)

Figure 3 2 (a) is a plot of the normalised amplitude spectral estimate on the x frequency axis The 
2-D contour plot of the estimate is given m Figure 3 2 (b) The spectral estimate was obtained 
using an MFE based AR model of order 5 x 5 at temperature zero No spectral peak occurs at the 

correct frequency and several spurious peaks occur Figure 3 2 (c) and (d) gives the normalised 
amplitude plot and corresponding contour plot for the spectral estimate derived using an MFE 

AR model of order 5 x 5 at temperature 0 5 They show that the spectral component is 
accurately resolved at (0 1, 0 2) It is seen that the MFE method outperforms the 
multidimensional Levinson method
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Figure 3 2 MFE spectral estimates of a single sinusoid at normalised frequency (0 1, 0 2) in

white noise at SNR of 27 dB at temperature (a), (b) zero and (c), (d) 0 5
(a)(c) Normalised amplitude spectral estimate on the x frequency axis, (b)(d) Contour plot in dB
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3.4 Combined QP estimates

Smgle quadrant spectral estimators have directional dependent resolution capabilities [86] This 
means that the estimator has better resolution capability m some directions m the frequency plane 
than m others The resultmg spectral estimate is dependent on the positions of smusoids m the 
frequency plane and their relative positions to each other The effect on the resolution caused by 
relative position dependency of smusoids to each other may be due to interference that may occur 

between these smusoids This may occur when the signal contains two or more smusoids [86] 

This directional dependency also applies to MFE spectral estimates

The net result is that a smgle quarter plane spectral estimator may produce spectral estimates 

with elliptical contours of constant PSD level Whether this occurs or not depends on the location 
and power of smusoids m a particular data set This may be overcome to some extent leading to 

circular contours by usmg a combmed quarter plane estimator Figure 3 3 shows the contour 
plots for MFE spectral estimates based on a biased autocorrelation of the 80 x 80 data set m 
Table 3 3 below The first and fourth quarter plane model spectral estimates, as seen m (a) and
(b) have opposmg elliptical skews The combmed estimate (c) yields a circular response

Table 3 3 Data set parameters

Number of White noise Smusoid Spatial
smusoids M power a 2 power a,2 frequencies

2 2 1 (0 3333, 0 2)

05 (0 1,0 222)
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Figure 3 3 MFE temperature 0 05 spectral estimates of smusoids at normalised frequencies 
(0 3333, 0 2) and (0 1, 0 222) in white noise at SNR o f -1 25 dB

Contour plot in dB on x and y frequency axes of (a) first quarter plane spectral estimate, (b) 
fourth quarter spectral estimate, and (c) combined quarter plane spectral estimate
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The shape of the combined estimate may not always be circular As with other quarter plane 
methods the shape of the combined estimate depends on the relative strengths of the first QP and 
fourth QP spectral estimates Figure 3 4 (a), (b) and (c) shows the first QP, fourth QP and 

combined QP spectral estimates for a 40 x 40 data snapshot the details of which are specified m 

Table 3 1 An AR modified covariance technique (MCV) with model order 5 x 5 is used

Depending on the relative locations of sinusoidal components the interference may lead to bias in 
peak location, spurious peaks and peak splitting Hence another motivation for the use of a 

combined estimator is that spurious peaks are less likely to occur if quarter plane estimates are 
combined m ‘parallel resistor’ fashion [38] Single quadrant AR spectra also suffer from spurious 

peaks at high SNR or high model order [86] In 1-D spectral estimation the spurious peaks are 
caused by extra poles close to the unity circle m the z plane [38] Figure 3 5 (a), (b), and (c) 
shows the first QP, fourth QP and combined first and fourth QP spectral estimates on the x 
frequency axis This spectral estimate is based on models of order 7 x 7  derived by MFE at 
temperature 0 05 The 80 x 80 data set is given in Table 3 4 An unbiased autocorrelation 

estimate was used The Figure in (a) shows peaks occurring at the required frequencies fie = 0 1 
and jx  = 0 3 However spurious peaks occur about the required frequencies thus obscuring 
accurate spectral estimation The situation for the fourth QP model spectral estimate in the x 
frequency direction is similar, with the correct components accompanied by spurious 
components A similar case exists on the y frequency axis These spurious peaks are eliminated 
by combining the QP estimates as shown in the Figure 3 5 (c)

Table 3 4 Data set parameters

Number of White noise Sinusoid Spatial

smusoids M power a2 power a,2 frequencies

2 2 1 (0 1,0 2)

1 (0 3, 0 4)
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Figure 3 4 MCV spectral estimates of smusoids at normalised frequencies (0 1, 0 2) and (0 3, 

0 4) m white noise at SNR of 6 dB
Contour plot m dB on x and y frequency axes of (a) first quarter plane spectral estimate, (b) 
fourth quarter spectral estimate, and (c) combmed quarter plane spectral estimate

46



PSD 1 
0 8 
0 b 
0 4 

0 2 
0 0 0 0 5  0 1  0 15 0 2  0 2 5  0 3  0 35 0 4  0 4 5  0 5

f x
( b )

PSD1 

0 8 
0 6 
0 . 4  

8 2

9 B 8 . 8 5  8 . 1  8 . 1 5  8  2  8 2 5  8 . 3  8 3 5  8 4 8  4 5  8 . 5
f x

f x

Figure 3 5 MFE temperature 0 05 spectral estimates of smusoids at normalised frequencies 
(0 1,0 2) and (0 3. 0 4) in white noise at SNR of 0 dB
Normalised amplitude spectral estimate on the x frequency axis based on (a) first QP, (b) fourth 
QP and (c) combined first and fourth QP models

- i — i— ■— i----------------------1------------------  . — ">—
( a )

47



Further evidence of spunous peak elimination can be seen m the x frequency plots of Figure 3 6 
These show an order 5 x 5  model MFE spectral estimate at temperature 0 074 of the 80 x 80 
pomt data set detailed m Table 3 1 In Figure 3 6 (a) the first QP spectral estimate m dB has 

spectral peaks at fa  = 0 1 and fa  = 0 3 which are accompanied and overshadowed by spunous 

peaks The situation for the fourth QP is similar However m Figure 3 6 (c) we see that the 

combmed first and fourth QP spectral estimate exhibits distinct spectral peaks at only the 

required frequencies

Hence, we see that spunous peaks that may occur for smgle quarter plane models are very 
effectively eliminated by usmg a combmed quarter plane model Third quadrant model spectra 

are identical to first, and second quadrant model spectra are identical to fourth We combine first 

and fourth quarter plane PSD estimates for all simulations and tests unless otherwise stated
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Figure 3 6 MFE temperature 0 074 spectral estimates of smusoids at normalised frequencies 
(0 1, 0 2) and (0 3, 0 4) m white noise at SNR of 6 dB
Log plots of spectral estimates on the x frequency axis based on (a) first QP, (b) fourth QP, and 
(c) combmed first and fourth QP models
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3.5 Autocorrelation type
The difference in spectral estimation based on exact, biased and unbiased autocorrelation 

estimates may be examined This may be achieved by comparing the resultmg MFE spectral 

estimates for a smgle snapshot of data consisting of a number of smusoids m white noise Figure 
3 7 (a), (b), and (c) show the exact, unbiased and biased forms of the autocorrelation function for 
the 80 x 80 data set of Table 3 5 The same white noise field was used in each case The resultmg 
spectral estimates generated by MFE models of order 6 x 6 at temperature 0 5 for exact, biased 

and unbiased autocorrelation functions are shown m Figures 3 8, 3 9, and 3 10 (a) and (b) 

respectively In all three cases the spectral elements are resolved, however the dynamic range 
difference between the two smusoids is preserved best by the exact correlation with the unbiased 
estimate bemg next best As m other AR methods the peak of the PSD is proportional to the 
square of the power of the smusoid This is unlike Founer methods where the peak is directly 

proportional to the smusoid power

Table 3 5 Data set parameters

Number of White noise Smusoid Spatial
smusoids M power ct2 power a,2 frequencies

2 (0 3333, 0 2)

2 2 1 (0 1, 0 22)

We note from Section 2 5 on autocorrelation functions that the use of the exact autocorrelation 
helps identify errors that may occur in autocorrelation estimation rather than m the spectral 
estimation method itself In Section 3 8 on data length, we will see that if the unbiased 
autocorrelation estimate is used, then for low data set size errors m the peak location may occur 

These errors do not occur if the exact autocorrelation is used This represents an error m the 

autocorrelation estimate as opposed to an error in the MFE method itself Evidence of the 

mdependence of spectral estimates to data set size usmg the exact autocorrelation function is seen 
m Section 4 3 on conventional transform companson
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( a )

Figure 3 7 Autocorrelation functions for 80 x 80 data set consisting of sinusoids at normalised 
frequencies (0 3333, 0 2) and (0 1, 0 22) in white noise at SNR of 1 77 dB 
(a) exact autocorrelation function, (b) unbiased autocorrelation function, and (c) biased 
autocorrelation function
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f x

( b )

Figure 3 8 MFE temperature 0 5 spectral estimate of smusoids at normalised frequencies 
(0 3333, 0 2) and (0 1, 0 22) in white noise at SNR of 1 77 dB based on the exact 
autocorrelation

(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot in dB
on x and y frequency axes
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f x
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Figure 3 9 MFE temperature 0 5 spectral estimate of a single sinusoid at normalised frequencies 
(0 3333, 0 2) and (0 1, 0 22) in white noise at SNR of 1 77 dB based on the biased 
autocorrelation estimate

(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot in dB
on x and y frequency axes
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Figure 3 10 MFE temperature 0 5 spectral estimate of a single smusoid at normalised 
frequencies (0 3333, 0 2) and (0 1, 0 22) m white noise at SNR of 1 77 dB based on the unbiased 
autocorrelation estimate

(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot m dB

on x and y frequency axes
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The second example is for three sinusoids of equal amplitude in white noise at an SNR of -6 dB 
The details for the data set are given m Table 3 6 below The temperature was set at 0 001 and 7 
x 7 order MFE models were used The MFE spectral estimates based on all three autocorrelation 
types result m spectral peaks at the correct spatial frequency locations Figure 3 11 (a), (b), and

(c) show the normalised amplitude spectral estimates on the x frequency axis for the unbiased, 
biased, and exact autocorrelations respectively

Table 3 6 Data set parameters

Number of White noise Sinusoid Spatial
smusoids M power a2 power a,2 frequencies

05 (0 1, 0 1)
3 6 05 (0 3, 0 1)

05 (0 2, 0 2)
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Figure 3 11 MFE temperature 0 001 spectral estimates of smusoids at normalised frequencies 
(0 1 ,0  1), (0 3, 0 1), and (0 2, 0 2) in white noise at SNR of -6 dB based on unbiased, biased and 
exact autocorrelation functions

Normalised amplitude spectral estimate on the x frequency axis based on (a) exact 
autocorrelation, (b) unbiased autocorrelation estimate, and (c) biased autocorrelation estimate

( c )

( a  )

56



3.6.1 Temperature - Simulations

We investigate the variation with temperature of the spectral estimate of a smgle snapshot of 
data This snapshot consists of two smusoids m white noise at fixed SNR of 6 dB An unbiased 
autocorrelation estimate was used The data set parameters are given m Table 3 1 above The 

model order used was 5 x 5  Figures 3 12, 3 13, 3 14 and 3 15 (a) and (b) show the normalised 
PSD and contour plots for the resultmg spectral estimates at temperatures 0 0, 0 05, 0 5, and 5 0 
respectively As discussed m Section 3 2, at zero temperature the spectral estimate is very poor 

and does not exhibit spectral peaks at the correct frequencies This is clearly illustrated m Figure 

3 12 (a) and (b)

Figure 3 13 (a) shows a spectral estimate with sharp peaks at f x = 0 1 and f x = 0 3 It is evident 
from the contour plot of Figure 3 13 (b) that the spectral estimate at temperature 0 05 is accurate 
The 10 dB contours illustrate the sharpness of the peaks The spectral estimate is elliptical at very 
low dB value showing some directional bias However this directional bias is negligible from the 
-10 dB contour upwards

At temperature 0 5 the spectral peaks are not quite as sharp as they are at temperature 0 05 This 
is illustrated by the PSD plot in Figure 3 14 (a) and the contours in Figure 3 14 (b)

In Figure 3 15 (a) the spectral estimate at temperature 5 0 displays two very broad peaks The 
broadness of the peaks is further illustrated by the 1 dB contours shown in Figure 3 15 (b) Hence 
we see that the upper temperature limit is marked by a reduction m spectral resolution, whereas 
below the lower limit spectral estimation is poor This agrees with the discussion m [12] The 
poor results obtained near or at zero temperature are accompanied by negative driving noise 

variance or non-unity bounded autoregressive model parameters Extensive experimentation has 

shown that regardless of model size or data set size employed there is a reasonably broad range of 

temperature over which MFE provides good spectral estimates Hence precise determination of a 
critical signal processing temperature value is unnecessary
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Figure 3 12 MFE temperature zero spectral estimate of smusoids at normalised frequencies 
(0 1, 0 2) and (0 3, 0 4) m white noise at SNR of 6 dB
(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot m dB
on x and y frequency axes
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Figure 3 13 MFE temperature 0 05 spectral estimate of smusoids at normalised frequencies 
(0 1, 0 2) and (0 3, 0 4) m white noise at SNR of 6 dB
(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot m dB
on x and y frequency axes
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Figure 3 14 MFE temperature 0 5 spectral estimate of smusoids at normalised frequencies (0 1, 
0 2) and (0 3, 0 4) m white noise at SNR of 6 dB
(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot in dB

on x and y frequency axes
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Figure 3 15 MFE temperature 5 0 spectral estimate of smusoids at normalised frequencies (0 1, 
0 2) and (0 3, 0 4) m white noise at SNR of 6 dB
(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot m dB
on x and y frequency axes
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3.6.2 Temperature - Determination
A method of identification of the best temperature range before or within the MFE parameter 

estimation algorithm should provide a computational advantage especially for high order models 
The alternative is to determine the temperature range empirically and to calibrate the system 
temperature with a known source that is subjected to a known level of noise a sm  1-D [77] The 
cost function in 2-D MFE is minimised at 0((pt-l)(2p24)) multiplies per iteration where the 

model order is pi x p 2 MFE can provide accurate spectral estimation over a broad temperature 
range where the optimum temperature range depends on the model order and level of noise Hence 

a pnon temperature determination would present an advantage at high model orders However, 
as stated m [78] ‘We have no fundamental theory for the temperature’ A pnon temperature 
determination remains an open and unsolved question even for 1-D MFE [66] In Section 6 3 we 

highlight directions for ongoing research that may lead to a solution of this question

To get an early indication of temperature range suitability, we may investigate the relationship 

between the reflection coefficient matrices in 2-D MFE and optimal signal processing 
temperature For optimal temperature spectral estimation the entropy term in the MFE cost 
function should ensure reflection matrices with unity bounded elements Hence the condition of 
the reflection coefficient matrices gives an indicator of the quality of the resultant spectral 

estimates

Another method of early determination of the best temperature range is to momtor the order of 
magnitude difference between cost functions associated with expression (50) as discussed in 
Section 2 6 on optimisation and cost functions We define the cost function order difference (ord) 
as the absolute difference between the log of the cost function due to the error energy and that due 

to entropy Figure 3 16 is a plot of this order difference over temperature This example is from 

MFE model order 3 x 3  spectral estimation of the homogeneous random field constituent of 

texture D93 from the Brodatz album [6] In [44] and [45] we decompose scanned fields from the
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t e m p e r a t u r e

Figure 3 16 Cost function order difference (ord) as a function of temperature for MFE model 
order 3 x 3  spectral estimate of the homogeneous random field constituent of texture field D93

Brodatz album mto constituent fields including homogeneous random fields The issue of 
wideband and mixed MFE spectra estimation is addressed m Section 6 5
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3.7 Model order

It has been proposed by Pimbley [66] and more recently by Cooper and Pimbley [12] that it 
may be possible to determine the model order by use of the Akaike information criterion 

However the Akaike information criterion is not a consistent decision rule for estimating the 

order of AR models [35] We use a simple and effective method of increasing the model order as 

long as the resolution of the resultant spectral estimate is improving The computational expense 
of the method depends on model order, hence there is a simple trade off between added 
computational expense and higher resolution

Extensive experimentation mto the effect of model order variation has shown that the width of the 

peaks corresponding to sinusoid components in a spectral estimate decreases as the model order 

increases In one test we took a 80 x 80 pomt single snapshot of data consisting o f 2 equal 
amplitude smusoids at 0 dB SNR The data set detailed in Table 3 4 was subjected to spectral 
estimation using MFE models of order 3 x 3 ,  5 x 5 ,  7 x 7  and 9 x 9  The corresponding 
temperatures used were 0 001, 0 001, 0 05 and 0 05 respectively Figure 3 17 shows the contour 

plots for the estimates In filter theory the Q-factor is used to determine the selectivity of filters by 

providing a measure of the peakiness of the spectral response of a filter We adapt this concept to 
2-D and use a 2-D Q-factor to measure the sharpness of the peaks m the frequency domain This 
Q-factor is determined as the inverted product of the bandwidths m the x and y frequency 
direction across each spectral peak at a given amplitude We use the averaged Q-factor over the 
two spatial frequency components or peaks as a comparative measure of the sharpness of the 
peaks The average Q-factors at -21 dB for the 9 x 9, 7 x 7, and 5 x 5  model spectral estimates 

and at -3 dB for the 3 x 3 model spectral estimate are in the ratio 10 5 4 4 4 4 respectively 
Figures 3 18 and 3 19 (a) and (b) show the spectral estimates on the x and y frequency axes for 
the 5 x 5 and 3 x 3  cases The broad peaks of the 3 x 3 case are in stark contrast to the sharp 
peaks of the 5 x 5 case
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We may apply a transformation [52], [38] on our 3x3 model PSD estimate and thereby produce a 
modified PSD with sharper peaks However m applying this transformation the amplitude of one 
of the spectral components is diminished significantly We conclude that better spectral 

estimation m terms of peak amplitude, and peak width as quantified by the Q-factor, is achieved 
as the model order mcreases The only known disadvantage of higher model order is added 

computational expense

There is a connection between model order and minimum signal processmg temperature for 
accurate spectral estimation Extensive experimental simulation shows that an mcrease m model 
order causes an mcrease m the minimum feasible value of signal processmg temperature This 

agrees with the discussions of Cooper and Pimbley on their hybrid method in [12]
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Figure 3 17 MFE spectral estimates of smusoids at normalised frequencies (0 1 ,0  2) and (0 3, 

0 4) m white noise at SNR of 0 dB
Contour plot in dB on x and y frequency axes based on (a) model order 9 x 9 at temperature 
0 05, (b) model order 7 x 7 at temperature 0 05, (c) model order 5 x 5 at temperature 0 001, and

(d) model order 3x 3 at temperature 0 001
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Figure 3 18 MFE model order 5 x 5  spectral estimate of smusoids at normalised frequencies 
(0 1, 0 2) and (0 3, 0 4) in white noise at SNR of 0 dB

Log plots of the spectral estimate on (a) the x frequency axis, and (b) the y frequency axis
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Figure 3 19 MFE model order 3 x 3  spectral estimate of smusoids at normalised frequencies 
(0 1, 0 2) and (0 3, 0 4) m white noise at SNR of 0 dB

Log plots o f the spectral estimate on (a) the x frequency axis, and (b) the y frequency axis
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3.8 Data length

We now examine the effect on MFE spectral estimation of variation of data length at fixed SNR 

In the first example we took 160 x 160, 80 x 80, 40 x 40 and 20 x 20 point single snapshots of 
data These snapshots consisted of two equal amplitude smusoids at spatial frequencies (0 1 ,0  2) 
and (0 3, 0 4) at 6 dB SNR as detailed in Table 3 1 The unbiased estimated autocorrelation was 

used We earned out 10 trials at each data set size The random number generator used was 
based on the lmear congruential method [53], [62], [19] The same random number generator 

seed was used to initiate the 10 trials for each data set size This meant that each simulation 
series of autocorrelations corresponding to each data set size was initiated with the same noise 
seed and hence used the same set of noise fields The data was subjected to spectral estimation 

using MFE models of order 5 x 5 All spectral estimates were generated over 160 x 160 points

The 160 x 160, 80 x 80 and 40 x 40 data sets all produced very similar spectral estimates which 

were accurate to a resolution of 1/160* of unity normalised frequency

In the 20 x 20 case five of the spectral estimates were accurate to 1/160* of unity normalised 
frequency The other five estimates show an error of 1/160* of unity normalised frequency m one 
frequency component of one spectral peak Figure 3 20 (a) and (b) shows the log plot on the x 

frequency axis and the contour plot of the spectral estimate for one of these cases We note that 

the peak that should occur at f x = 0 3 occurs at f x ~ 0 3063 This peak is only 1 5 dB above the 
value of the spectral estimate at f x = 0 3 As the spectral estimates are taken over 160 x 160 
points, this represents the smallest possible detectable error If an exact autocorrelation is used 
instead of the unbiased estimated autocorrelation then no error occurs Hence the error occurs due 
to the use of the unbiased autocorrelation estimate as opposed to an error in the spectral 

estimation technique itself
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Figure 3 20 MFE 160 x 160 point spectral estimate of smusoids at normalised frequencies (0 1, 
0 2) and (0 3, 0 4) m white noise at SNR of 6 dB and data set size of 20 x 20
(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot m dB 

on x and y frequency axes
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The detectable size of the error depends on the resolution of the spectral estimate Figure 3 21 (a) 
and (b) shows a high resolution 520 x 520 point estimate based on the same model The second 
frequency peak occurs atfx = 0 3038, givmg a more accurate reading of the error as 0 0038

Regardless of the data set size employed, the only points in the autocorrelation that are used are 
those corresponding to the region of support of the model Hence if the exact autocorrelation is 
used then autocorrelation points used in determining the model are independent of the data set 
size This means that spectral estimates corresponding to different data set sizes will be the same 
if the exact autocorrelation is used and if the data set size is larger or equal to the model order 

Evidence of the independence of spectral estimates to data set size usmg the exact 
autocorrelation function is seen in Section 4 3 on conventional transform comparison Hence the 

spectral estimates for the data set m Table 3 7 for data set size 80 x 80 , 10 x 10 and 5 x 5 are 
found to be identical For each of these cases the spectral estimate was derived usmg 5 x 5  order 
MFE models We also show m Section 4 3 that MFE provides reasonably accurate spectral 

estimates for closely spaced smusoids at low SNR together with low data set size

Table 3 7 Data set parameters

Number of White noise Sinusoid Spatial
smusoids M power ct2 power a,2 frequencies

1 (0 1, 0 1)
3 6 1 (0 3, 0 1)

1 (0 2, 0 2)
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Figure 3 21 MFE 520 x 520 pomt spectral estimate of sinusoids at normalised frequencies (0 1, 
0 2) and (0 3, 0 4) m white noise at SNR of 6 dB and data set size of 20 x 20 
(a) Normalised amplitude spectral estimate on the x frequency axis, and (b) Contour plot m dB 

on x and y frequency axes
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3.9 SNR Variation

We investigate the effect on MFE spectral estimates of variation of SNR at fixed data length 

Temperature emphasises entropy at the expense of error energy Entropy is a measure of the 
noise m the system, hence there is a direct relationship between the temperature and SNR level 
Evidence o f this is available m the experimental results Extensive experimentation also shows 

that higher order models with consequent higher temperatures are required at higher SNR Lower 

order models exhibit instability and produce poor spectral estimates For example, 3 x 3  models 

can be unstable for synthesis purposes They produce maccurate spectral estimates for a 160 x 

160 data snapshot consistmg of two smusoids at 6 dB SNR as detailed m Table 3 1 However, as 
shown in Sections 3 4 and 3 6 1, models of order 5 x 5 are stable and produce accurate spectral 
estimates for the same data set If the SNR for this data set is reduced to 0 dB then as we have 

seen m Section 3 7 on model order the 3x3 models provide spectral estimates, albeit at low 
resolution As m 1-D MFE [66] and hybrid MFE [12], the method gives good results at low SNR 

with appropriate choice of model order

The spectral estimates for the 80 x 80 pomt data set in Table 3 7 that were derived usmg MFE 7 

x 7 order models at temperature 0 001 are shown m Figure 3 22 (a) The spectral estimate for the 

data set in Table 3 6 is shown in Figure 3 22 (b) The data sets are identical with the exception 

that the set m Table 3 7 has a SNR of -3 dB, whereas that m Table 3 6 has a SNR of -6 dB 
Unbiased autocorrelation estimates are used on both The contour plots m Figure 3 22 (a) and (b) 
indicate that the higher SNR data set has tighter contours, indicative of sharper peaks, than the 
lower SNR data set Generally for the same model order and signal processmg temperature lower 
SNR data sets result m broader spectral estimates This agrees with the 1-D case where 

numerous reported simulations attest to this property [38]
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Figure 3 22 MFE temperature 0 001 spectral estimates of smusoids at normalised frequencies
(0 1, 0 1), (0 3, 0 1), and (0 2, 0 2) in white noise

Contour plot m dB on x and y frequency axes at (a) SNR of -3 dB, and (b) SNR of -6 dB
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3.10 Spectral resolution

The resolution capability of single quarter plane spectral estimators is dependent on not only the 

magnitude of the spectral components but also on their relative orientation [86] The combined 
spectral estimate overcomes to some extent this problem as it takes mto account the frequency 

plane directional selectivity of both quarter plane models Peak splitting and spurious peaks may 

occur due to interference between spectral components However as they occur along different 
axis for the different quarter plane model spectra the combmed spectrum tends to eliminate them

The resolution capability of spectral estimators also depends on the shape of the region of support 
for the model Hence it should be noted that any resolution measurement is only an indicator of 
the relative performance, and should not be considered meaningful as an absolute measure [50] 

We may also expect some bias m spectral estimates of closely spaced smusoids due to their fixed 
relative phases as commented on m the Section 2 5 on autocorrelation type

We examine the results of four tests In the first test we carry out MFE spectral estimation of a 
data set consistmg of two smusoids in white noise These two smusoids are very closely spaced m 

one frequency direction and close m the other In the second and third tests we examine the 
relative performance of the MCV and MFE methods for two very closely spaced smusoids In the 
last test we examine the notion of single peak area (SPA) [86]

In the first test two closely spaced smusoids at normalised frequencies (0 l ,0  2 )and(0  11,
0 38) at 4 6 dB SNR in white noise are used The parameters are given m Table 3 8 We have 
used a 5 x 5 order MFE model The data set size was 40 x 40 pomts
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Table 3 8 Data set parameters

Number of White noise Sinusoid Spatial

smusoids M power ct2 power a,2 frequencies

0 7 1 (0 10, 0 20)
2 1 (0 11,0 38)

The spectral estimate plotted m Figure 3 23 (a) and (b) was derived usmg the MFE based AR 
model of order 5 x 5 at zero temperature The plots m Figure 3 23 (c) and (d) are for temperature 
0 5 Figure 3 23 (a) shows the normalised amplitude PSD estimate on the x frequency axis A 
number of spectral peaks occur However only one of them at f x = 0 09 is close to the correct 
frequency f x = 0 1 or f x = 011  The contour plot m Figure 3 23 (b) shows one peak located 

near (0 1, 0 2), and several spunous peaks There is no peak at (0 11,0 38) Thus at zero 
temperature neither of the spectral components at spatial frequencies (0 1, 0 2) nor (0 11, 

0 38) are accurately resolved

Figure 3 23 (c) shows the normalised PSD plot at temperature 0 5 on the x frequency axis 

Spectral peaks at frequencies f x = 01  and f x = 0 11 are clearly visible We can see m Figure 
3 23 (d) that the x frequency components at 0 1 and 0 11, and the y frequency components at 
0 2 and 0 38 making up the two spatial frequencies (0 1, 0 2) and (0 11, 0 38) are accurately 
resolved Hence at the non-zero temperature both spectral components at frequencies (0 1, 
0 2) and (0 11, 0 38) are accurately resolved We see agam that MFE provides accurate spectral 
estimation where the Levmson algonthm fails
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Figure 3.23. MFE spectral estimates of closely spaced sinusoids at normalised frequencies (0.1, 

0.2) and (0.11, 0.38) in white noise at SNR of 4.6 dB at temperature (a), (b) zero and (c), (d) 0.5. 
(a) (c) Normalised amplitude spectral estimate on the x frequency axis, (b) (d) Contour plot..
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In the second test on resolution we take a 40 x 40 point data set This data set consists of two 

very closely spaced smusoids at frequencies (0 1,0 3) and (0 15, 0 25) m white noise as detailed 
in Table 3 9 We performed spectral estimation usmg MFE at temperature 0 05 usmg an 

unbiased autocorrelation We also performed spectral estimation usmg a modified covariance 
method (MCV) [38] In both methods we used 7 x 7  order models In Figure 3 24 (a) we see that 
the MFE spectral estimate displays two distinct peaks at (0 1, 0 3) and (0 15, 0 25) The peak 
corresponding to (0 1, 0 3) is approximately 2 dB down on the other peak The MCV spectral 
estimate m Figure 3 24 (b) also displays two distinct peaks at the correct frequencies with the 

peak at (0 1 ,0  3) also approximately 2 dB down on the other peak

MFE and conventional Founer transform spectral estimation for the very closely spaced sinusoid 
example described above based on a data set size of only 7 x 7  pomts is examined m Section 

4 3 This Section deals with comparison of MFE and a conventional transform method It is seen 

that MFE provides reasonably accurate spectral estimation of very closely spaced smusoids at 

low SNR and low data set size

Table 3 9 Data set parameters

Number of White noise Smusoid Spatial

smusoids M power a 2 power a,2 frequencies

4 1 (0 1,0 3)
2 1 (0 15,0 25)

In the next test we take a 40 x 40 pomt data set corresponding to the data in Table 3 10 The 
smusoids are of equal amplitude at frequencies (0 1, 0 3) and (0 14, 0 26) We perform MFE 

based spectral estimation at temperature 0 05 based on an unbiased autocorrelation We also 

performed spectral estimation usmg MCV In both cases order 7 x 7  models are used The 

resulting MFE spectral estimate is shown in Figure 3 25 (a) Peaks are located at (0 1, 0 3) and 
(0 14, 0 28), with the first peak bemg approximately 2 dB down on the other peak The MCV
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Figure 3 24 MFE and MCV spectral estimates of closely spaced smusoids at normalised 

frequencies (0 1,0 3) and (0 15,0 25) in white noise at SNR of -3 dB

Contour plot m dB on x and y frequency axes for (a) the MFE estimate at temperature 0 05, and
(b) the MCV estimate
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spectral estimate, shown in Figure 3 25 (b) also gives two peaks at (0 1, 0 3) and (0 13, 0 27), 
with the first again 2 dB down on the other peak Clearly reduction of the gap between 
frequencies results in less accurate spectral estimation for both methods 

Table 3 10 Data set parameters

Number of White noise Smusoid Spatial

sinusoids M power ct2 power a 2 frequencies

1 (0 1, 0 3)
2 4 1 (0 14,0 26)

When the frequency separation between two sinusoidal components is small then a spectral 

estimate may exhibit only one peak Zou and Liu [86] introduce the notion of SPA When the 

frequency separation of two smusoids of equal power is within the SPA then a smgle peak is 
observed, hence a smaller SPA for a spectral estimator implies better resolution For our last test 
on spectral resolution we examine the MFE spectral estimation of two very closely spaced 

smusoids at normalised frequencies (0 1, 0 275) and (0 125, 0 25) m white Gaussian noise at -3 

dB SNR The 20 x 20 data set is detailed m Table 3 11 Figure 3 26 (a) shows the spectral 

estimate for the two smusoids usmg an MFE 7 x 7  order model derived at temperature 0 05 Only 
one peak is visible at (0 11,0 26) However mcreasmg the model order overcomes this effect The 
spectral estimate for the case where the model order is marginally mcreased to 9 x 9 is shown m 
Figure 3 26 (b) Two distinct peaks are seen to emerge If the model order is mcreased further to 
12x12  then the peaks become more distinct agam, as seen in Figure 3 26 (c)

Table 3 11 Data set parameters

Number of White noise Smusoid Spatial
smusoids M power a2 power a,2 frequencies

2 4 1 (0 1, 0 275)

I (0 125,0 25)
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Figure 3 25 MFE and MCV spectral estimates of closely spaced smusoids at normalised 
frequencies (0 1,0 3) and (0 14,0 26) m white noise at SNR o f -3 dB

Contour plot m dB on x and y frequency axes for (a) the MFE estimate at temperature 0 05, and
(b) the MCV estimate
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Figure 3 26 MFE spectral estimates of very closely spaced smusoids at normalised frequencies 
(0 1, 0 275) and (0 125, 0 25) m white noise at SNR of -3 dB and data set size 20 x 20 
Contour plot m dB on x and y frequency axes for (a) 7 x 7 model order estimate, (b) 9 x 9 model 
order estimate, and (c) 12 x 12 model order estimate
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3.11 Dynamic range difference

In MFE as in other 2-D and 1-D AR parametric spectral estimation schemes the peak of the 

power spectral density is proportional to the square of the power of each smusoid This is unlike 

Founer transform techniques where the peak is proportional to the sinusoid power It can result in 
lower level smusoids bemg masked by the higher level ones [38] We take an example of two 
smusoids at normalised frequencies (0 3333, 0 2) and (0 1, 0 22) m white noise, the parameters 

for which are given in Table 3 5 The amplitude ratio of the smusoids is V2 1, giving a smusoid 

power ratio of 2 1 or 1 0 5 In Section 3 3 on autocorrelation type we derived 6 x 6  models at 

temperature 0 5 for this example usmg exact, biased and unbiased autocorrelation functions The 
spectral estimate m the exact autocorrelation case gives the square of the power ratio as 1 0 25 
preserving the power ratio as 1 0 5 or 2 1 and the amplitude ratio as 1 4142 1 In the unbiased 
autocorrelation case the spectral estimate gives the square of the power ratio as 1 0 185 resultmg 
m the power ratio 1 0 43 and amplitude ratio 1 523 1 In the biased autocorrelation case the 

spectral estimate gives the square of the power ratio as 1 0 14 resultmg in the power ratio 1 0 374 

and amplitude ratio 1 635 1 The errors in amplitude ratio are due to the process of 
autocorrelation estimation

3.12 Models with non-symmetric region of support
We took a 40 x 40 pomt data snapshot consisting of smusoids at arbitrary unity normalised 
frequencies (0 1 ,0  2) and (0 3, 0 4) The smusoids are of equal amplitude at SNR of 0 dB in 
uncorrelated white Gaussian noise The parameters are given in Table 3 4 above Figure 3 27 (a) 
shows the contour plot for the MFE spectral estimate at temperature 0 001 of the two smusoids 

m noise A 5 x 5 order model was used The contours of constant PSD level are slightly elliptical 

m shape The ratio of x to y frequency bandwidth of the spectral peaks at the -18 dB contour is 

given m Table 3 12 The eccentricity of the spectral peaks at the -18 dB contour is also given 

The -18 dB contour is chosen arbitrarily as the figures are reasonably constant over a wide
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dynamic range up to at least -6 dB These figures indicate a resolution bias in the y frequency 

direction This is portrayed by a slight bias in the variance statistics in a statistical test which is 
discussed later in Section 4 4 3 As discussed in Section 3 4, AR spectral estimators may exhibit 

directional dependent resolution capabilities depending on the location of smusoids m the data set 
under test Hence whether directional dependency occurs or not depends on the particular data 
set The accuracy of AR model based spectral estimates also depends on the size and shape of the 
model used [50] We show that this slight bias may be overcome by usmg a model with non- 
symmetnc region of support Figure 3 27 (b) shows the contour plot for the MFE spectral 

estimates at temperature 0 001 usmg a 7 x 5 order model The same unbiased autocorrelation 
data was used as m the 5 x 5 case The directional bias is less pronounced This is reflected m the 
x to y frequency bandwidth ratio and eccentricity figures in Table 3 12 Hence the spectral peaks 
are less elliptical than those at model order 5 x 5  Figure 3 27 (c) shows the MFE spectral 
estimates at temperature 0 001 usmg a 9 x 5 order model The same unbiased autocorrelation 

data was used as m the 5 x 5 and 7 x 5  cases above The directional bias is reduced even further 

This is reflected m the^i to f y maximum width ratio and eccentricity figures m Table 3 12

Table 3 12 Ratio o ifx Xofy bandwidth and eccentricity of spectral peaks at (0 1, 0 2) and (0 3, 
0 4) at 0 dB SNR Figures are for the -18 dB contour for spectral estimates derived usmg MFE 
models of order 5 x 5, 7 x 5 and 9 x 5

Spectral Peaks

(0 1, 0 2) (0 3, 0 4)

Model order M y  Width 
Ratio

Eccentricity f j fy  Width
Ratio

Eccentricity

5 x 5 1 72 0 814 142 0711

7 x 5 1 41 0 704 1 20 0 553

9 x 5 1 12 0 458 1 05 0 300

85



0 5 

0 45  

0 4 

0 35 

0 . 3  

0 . 2 5  

0 . 2  

0 . 1 5  

0 . 1  

0 . 0 5  

f y  0 0
f x

( a )
1 ---------------------1--------------------- r

- 1 8  dB

- 1 8  dB

- 2  dB c o n t o u r s

0 . 1  0 . 2  0 3 0 . 4  0 . 5

( b )
8 . 5  

0 . 4 5  

0  4 

0 . 3 5  

0 . 3  

0 2 5  

0 . 2  

0 15 

8 1 

0 0 5  

fy 00
f x

- 1 8  dB

- 1 8  dB

- 2  dB c o n t o u r s

0 . 1  0 . 2  0  3  0 . 4  0 . 5

86



( c )

Figure 3 27 MFE spectral estimates of sinusoids at normalised frequencies (0 1 ,0  2) and (0 3, 
0 4) in white noise at SNR of 0 dB
Contour plot m dB for (a) 5 x 5 model order estimate, (b) 7 x 5 model order estimate, and (c) 9 x 

5 model order estimate
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In the second test on non-symmetnc regions of support we took the same set of smusoids as 
above at an SNR of 6 dB In Section 3 4 we have seen that the effect on the resolution caused by 
relative position dependency of smusoids to each other may be due to interference that occurs 
between these smusoids We have seen m the last simulation that the location of the smusoids at 

(0 1, 0 2) and (0 3, 0 4) gives nse to a small bias m the resolution Increasing the SNR increases 

the smusoidal power and emphasises this effect This results m a resolution bias m the y 
frequency direction for both MFE and MCV spectral estimates It may also result in peak 
splitting as discussed in Section 3 4 An example of peak splitting for a snapshot data set is 

shown m the x axis log plot m Figure 3 28

Figure 3 29 (a) shows the contour plot for the MFE spectral estimates at temperature 0 05 of the 
two smusoids m noise A 5 x 5 order model was used We note that the estimates are elliptical in 
shape The ratio of x frequency to y frequency bandwidth and eccentricity of the spectral peaks at 
the -18 dB contour is given m Table 3 13 The figures for the 5 x 5 model case indicate a 

resolution bias m the y frequency direction Figure 3 29 (b) shows the contour plot for the MFE 

spectral estimates at temperature 0 05 usmg a 15 x 5 order model The same unbiased 

autocorrelation data as in the 5 x 5 case was used The directional bias is eliminated This is 
reflected in the x to y frequency bandwidth ratio and eccentricity figures m Table 3 13



8 0 1  0 2  0 3  0 4  0 5f x

Figure 3 28 Log plot of the MFE spectral estimate on the x frequency axis of smusoids at 

normalised frequencies (0 1,0 2) and (0 3, 0 4) in white noise at SNR of 6 dB

Table 3 13 Ratio of /  to /  bandwidth and eccentricity of spectral peaks at (0 1, 0 2) and (0 3, 

0 4) at 6 dB SNR Figures are for the -18 dB contour for spectral estimates derived using MFE 

models of order 5 x 5  and 15x5

Spectral Peaks

(0 1, 0 2) (0 3 ,0  4)

Model order ///.W id th
Ratio

Eccentricity / / /W id th
Ratio

Eccentricity

5 x 5 2 75 0 932 2 64 0 926

15 x 5 1 11 0 434 0 94 0 341
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( b )

Figure 3 29 MFE spectral estimates of smusoids at normalised frequencies (0 1. 0 2) and (0 3, 

0 4) in white noise at SNR of 6 dB

Contour plot m dB for (a) 5 x 5 model order estimate, and (b) 15 x 5 model order estimate
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Chapter 4. Comparisons with Other Methods

4.1 Introduction

In this Chapter we compare the performance of MFE spectral estimation with that of other 

methods These methods mclude MCV [38], the multidimensional Levmson method [52], the 
hybrid approach of Kimura and Honoki [47], the maximum entropy method of Lim and Malik 
[51], and a conventional transform technique [53] In addition we briefly revise the relevant 
results presented m Chapter 3 where comparisons with some of the techniques above have 
already been made

The first comparison is with zero temperature MFE or the multidimensional Levmson method 

We then compare the MFE spectral estimates with that produced by conventional transform 
based methods for examples with very low data set size Comparisons are made of the
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computational expense, model stability and accuracy of spectral estimates with that of 
multidimensional Levinson, maximum likelihood estimation (MLE) [33], and MCV methods 

Finally, usmg the same examples as employed by Kimura and Honoki [47], and Lim and Malik
[51] we compare their results with MFE spectral estimates

As m Chapter 3 all spectral estimates are calculated over 160 x 160 points unless otherwise 

stated Spectral estimates are plotted as normalised amplitude PSD plots or as log plots on the x  
frequency axis psd(fx ,0) 0 < / x <05 and on the y  frequency axis p s d (0 ,fy )  0 < f y  < 0 5

Contour plots are also used as in Chapter 3

4.2 Multidimensional Levinson comparison
An advantage of MFE over the zero temperature Levinson approach is that it provides stable 
models by appropriate selection of temperature range m cases where the multidimensional 

Levinson algorithm does not

Sections 3 2, 3 3 and 3 6 give examples of cases where the MFE method outperforms the 
multidimensional Levinson algorithm The MFE method extends the range of the Levinson 

algorithm by virtue of the entropy term In Section 3 10 MFE provides accurate spectral 

estimates and outperforms the Levinson algorithm for very closely spaced smusoids

4.3 Conventional transform comparison
The comparison of results from the MFE method with those from a Fourier transform method is 
particularly of mterest at low data set size This illustrates the high resolution performance of the 
MFE method over classical transform methods We take a 5 x 5 point data set generated from 3 

smusoids in white noise at SNR of -3 dB with parameters as m Table 3 7 above An exact 
autocorrelation is used

We generate a conventional estimate by performing a fast Fourier transform of the exact 
autocorrelation of the 5 x 5 data set The resultmg spectral estimate is shown in Figures 4 1 (a)
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on the x frequency axis and 4 2 (a) on the y frequency axis We also generate a spectral estimate 

usmg a 5 x 5 order MFE model at temperature 0 05 The spectral estimates generated by this 
model for data set size 80 x 80, 10 x 10 and 5 x 5 are found to be identical The 5 x 5  case is 
shown m Figures 4 1 (b) and 4 2 (b) on the x frequency and y frequency axis respectively 
Evidently MFE provides higher resolution estimates than the conventional method It is also 

advantageous that the usual sidelobe structure [38] associated with conventional methods does 

not appear m the MFE estimate Reduction of the sidelobes m the conventional estimate may be 
effected by windowing the data However this results m reduction m the resolution of the 
estimate

The search for high resolution spectral estimators which may be used for low data set size and 

low SNR contmues to be a motivatmg force behind research into multidimensional spectral 

estimation This has been highlighted in Chapter 1 We now compare conventional Founer 
transform and MFE spectral estimates of a 9 x 9 pomt data set consisting of three smusoids m -6 
dB noise The data set details are given m Table 3 6 above Figure 4 3 (a) and (b) shows the 
MFE spectral estimate at temperature 0 5 and the conventional estimate Both are based on the 
exact autocorrelation The MFE estimate exhibits very close 1 dB contours running from -12 dB 

upwards to a peak The contours of the conventional estimate are much more widely spaced For 

approximately the same frequency plane area they run from -5 dB to a flat plateau Evidently the 
MFE estimate possesses far sharper peaks that are better resolved than those of the conventional 
estimate We also see from this test that MFE is capable of performing accurate spectral 
estimation at low SNR and low data set size

The third example m this section is for two very closely spaced smusoids at low SNR with low 

data set size We take a 7 x 7 pomt data set for two smusoids at frequencies (0 1, 0 3) and 
(0 15, 0 25) as detailed m Table 3 9 The SNR is -3 dB We performed MFE spectral estimation 

at temperature 0 5 usmg the exact autocorrelation We also performed spectral
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Figure 4 1 Conventional Founer transform and MFE spectral estimates of smusoids at 
normalised frequencies (0 1, 0 1), (0 3, 0 1) and (0 2, 0 2) m white noise at SNR of -3 dB and 

data set size 5 x 5

Log plots of spectral estimates on the x frequency axis derived usmg (a) conventional Founer 

method, and (b) MFE at temperature 0 05
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Figure 4 2 Conventional Founer transform and MFE spectral estimates of smusoids at 
normalised frequencies (0 1, 0 1), (0 3, 0 1) and (0 2, 0 2) m white noise at SNR of -3 dB and 
data set size 5 x 5

Log plots of spectral estimates on the y frequency axis denved usmg (a) conventional Founer 
method, and (b) MFE at temperature 0 05
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Figure 4 3 MFE and conventional Fourier transform spectral estimates of smusoids at 

normalised frequencies (0 1, 0 1), (0 3, 0 1) and (0 2, 0 2) m white noise at SNR of -6 dB and 

data set size 9 x 9
Contour plot in dB usmg (a) MFE at temperature 0 5, and (b) conventional Fourier method
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estimation by applymg a fast Fourier transform on the same autocorrelation data In Figure 4 4

(a) and (b) we see that the MFE spectral estimate displays two distinct peaks on the x and y 

frequency axes The peaks are located at (0 0942, 0 3) and (0 1558, 0 25) The peak 
corresponding to (0 0942, 0 3) is approximately 0 5 dB down on the second peak The 
conventional transform spectral estimate in Figure 4 5 (a) and (b) displays a smgle broadly 

resolved flat spectral peak across the region of interest on the x and y frequency axes The 
contour plot of Figure 4 6 (a) again shows two distinct MFE spectral peaks The poorly resolved 

conventional estimate in Figure 4 6 (b) has a plateau at 1 dB that lies over a wide spectral area 
MFE outperforms the conventional estimate for closely spaced sinusoids at low SNR with low 

data set size

4.4 Modified covariance comparison

We first compare the computational expense and model stability of MLE [33], MCV [38] and 

our MFE method, where the MLE method is based on the Fourier transform of the observed data 
set We then compare the bias and standard deviation of spectral estimates obtained by MCV and 
MFE techniques over a number of independent simulation trials We have seen m Section 3 10 
that MFE performs as well as MCV m terms of spectral resolution for data snapshot examples

4.4.1 MCV comparison - Computational expense
The data set size is taken as M x  N  and model order as p, x p 2, where M  »  p , and N  »  p 2 
The cost functions in MFE, MCV and MLE are minimised at 0((pr l)(2p24 )), 0(2(M-pi)(N- 
p 2)pip2), and 0(MNp!p 2) multiplies per iteration In MLE one of the elements is a trigonometric 

function It is evident therefore that MFE is computationally less expensive We have found that 

MFE performs spectral estimation 8 times faster than MLE and 12 times faster than MCV for 

any data snapshot in the comparative variance test discussed below
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Figure 4 4 MFE spectral estimate of closely spaced smusoids at normalised frequencies (0 1,
0 3) and (0 15, 0 25) m white noise at SNR of -3 dB and data set size 7 x 7
Normalised amplitude spectral estimate on (a) the x frequency axis, and (b) the y frequency axis
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Figure 4 5 Conventional transform spectral estimate of closely spaced smusoids at normalised 
frequencies (0 1, 0 3) and (0 15, 0 25) m white noise at SNR of -3 dB
Normalised amplitude spectral estimate on (a) the x frequency axis, and (b) the y frequency axis
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( b )

Figure 4 6 MFE and Conventional transform spectral estimates of very closely spaced smusoids 

at normalised frequencies (0 1, 0 3) and (0 15, 0 25) in white noise at SNR of -3 dB and data 

set size 7 x 7
Contour plot usmg (a) MFE at temperature 0 5, and (b) the conventional transform method
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4.4.2 MCV comparison - Stability
In addition to computational expense an important issue for comparison is that of model stability 
A recursively computable and stable system is important if field synthesis or correlation extension 

is envisaged A stable system is marked by unity bounded AR model parameters and positive 

white noise variance MLE provides stable models whereas MCV does not necessarily provide 
stable models MFE provides stable models by appropriate selection of temperature range This 
is because the magnitude of reflection coefficients m the reflection matnces within the algorithm 
are a function o f the temperature

4.4.3 MCV comparison - Statistical accuracy of spectral estimates.

We statistically compare spectral estimates produced by the MFE and MCV methods We 
implemented both algorithms and made 24 simulation trials on each We note that the bias and 
variance of the spectral estimates vary only to a very small extent with the number of trials This 

is also seen to be the case m 1-D MFE [75], where 10 independent trials were used All trials 
used a smgle snapshot of data consisting of smusoids at arbitrary unity normalised frequencies 

(0 1, 0 2) and (0 3, 0 4) The smusoids were of equal amplitude at arbitrary SNR of 0 dB in 
uncorrelated white Gaussian noise The data set is detailed in Table 3 4 To ensure a fair 
comparison, the same random number generator seed was used to initiate the 24 trials for both 

algorithms so that each simulation series contained an identical sequence of noise spectra This 
meant that the same set of 24 uncorrelated and mdependent noise fields were used for both 
algorithms The size of the smusoid and white noise data fields were 40 x 40 pomts The model 
size used was 5 x 5 ,  indicating a 5 x 5 region of correlation support The unbiased 
autocorrelation estimate was used for MFE The MFE signal processmg temperature was set at 
0 001 This temperature was arbitrarily chosen from within a wide band of temperature which 

previous tests have indicated provides accurate spectral estimation Table 4 1 shows the bias and 

standard deviation of spectral estimates for both frequencies for each method The PSDs were 

calculated over 520 x 520 pomts and therefore the resolution of each estimate is to 0 001 92 of
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unity normalised frequency The bias figures for MFE and MCV spectral estimates are 
comparable The variance figures for MFE spectral estimates are on average 1 65 tunes those 

achievable by MCV The statistics show that MFE provides accurate spectral estimation

Table 4 1 Bias and standard deviation of MFE and MCV spectral estimates for smusoids at

normalised frequencies (0 1,0 2) and (0 3,0 4) m white noise
MFE MCV

/* Bias x 10'3 Var x 10'6 Bias x 10'3 Var x 10-6

0 1 -0 079 4 15 -0 079 1 69

03 -0 563 231 -0 400 1 84

fy Bias x 10‘3 Var x IQ"6 Bias x 10‘3 Var x 10-6

0 2 -0 158 2 44 0 242 195

0 4 0 400 1 84 0 321 1 13

The variance figures for the MFE case are slightly better m the y frequency direction than m the x 

frequency direction for each smusoid This indicates a slight resolution directional bias for the 
particular example given As discussed m Sections 3 4 and 3 12, AR spectral estimators may 
exhibit directional dependent resolution capabilities, depending on the location of smusoids m the 

data set under test The accuracy of AR model based spectral estimates also depends on the size 
and shape of the model used This slight directional bias may be eliminated by usmg a MFE 
model with non-symmetnc region of support as seen m Section 3 12

Spectral estimates were determined over 160 x 160 pomts usmg the MFE models from the 
variance test above Figure 4 7 (a) and (b) shows the overlaid PSD log plots o f the spectral 

estimates on the x and y frequency axes This indicates the statistical variability of the estimator
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(a)

Figure 4 7 Overlaid MFE spectral estimates of smusoids at normalised frequencies (0 1 ,0  2) 

and (0 3, 0 4) in white noise at SNR of 0 dB
Log plots of MFE spectral estimates on (a) the x frequency axis, and (b) the v frequency axis
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4.5 Hybrid method and maximum entropy method comparison
We compare our results with those from the hybrid dual 1-D method of Kimura and Honoki [47], 
and the maximum entropy method of Lim and Malik [51] We take two snapshot data set 
examples from their papers, the parameters of which are as given m Tables 3 5 and 3 6 above 

Both Kimura and Honoki and Lim and Malik use exact autocorrelation data

For the data set m Table 3 5, the contour plots of the spectral estimates m Figures 4 8 (a) and (b) 

are from [47] and that m Figure 4 8 (c) is from [51] The spectral estimate derived usmg a 6 x 6 
order MFE model at temperature 0 5 based on the exact autocorrelation is shown m Figure 4 9 
The MFE spectral estimate provides two distinct peaks from the -18 dB level upwards The peaks 
are accurately estimated This estimate is superior to that produced by the hybrid method at 5 x 5 

covariance support which is shown m Figure 4 8 (a) The hybrid method at 7 x 7 covariance 

support is shown m Figure 4 8 (b) It possesses tighter contours than the MFE method However 
it is not possible to determine the dB level at which the peaks occur for the frequencies (0 333, 
0 2) and (0 1 ,0  22) This is because the highest contour provided for the (0 1, 0 22) peak is at 
-24 dB and for the (0 333, 0 2) is at -12 dB The spectral estimate due to the maximum entropy 

method is shown m Figure 4 8 (c) It displays tighter contours than the MFE estimate However 

the contours stop at -24 dB for the (0 1, 0 22) peak The location of this contour shows 

inaccurate spectral estimation for the (0 1, 0 22) frequency, whereas it is accurate for the MFE 
case

For the data set m Table 3 7, the contour plots of the spectral estimates m Figures 4 10 (a) and
(b) are from [47] and that m Figure 4 10 (c) is from [51] The spectral estimate m Figure 4 11 is 

derived usmg an order 7 x 7  MFE model at temperature 0 001 based on an exact autocorrelation 

The MFE estimate is superior to that of the hybrid method at 7 x 7 covariance support which is 
shown m Figure 4 10 (a) The MFE estimate shows tighter contours and therefore sharper peaks 

than the hybrid method at 9 x 9 covariance support which is shown in Figure 4 10 (b) The exact
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location of the hybrid method peaks is not given The maximum entropy method provides the 

estimate m Figure 4 11 (c) The peaks are distinct only above the -6 and -3 dB levels and are 
inaccurate The MFE estimate is superior in terms of sharpness and location of the peaks
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(a)

Figure 4 8 Spectral estimates of smusoids at normalised frequencies (0 333, 0 2) and (0 1, 0 22) 
m white noise Contour plots (a), (b) from Kimura and Honoki [47], and (c) from Lim and Malik 
[51]
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Figure 4 9 Contour plot in dB on x and y frequency axes of MFE spectral estimate o f smusoids at 

normalised frequencies (0 333, 0 2) and (0 1, 0 22) m white noise at SNR of 1 77 dB based on 
the exact autocorrelation
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Figure 4 10 Spectral estimates of smusoids at normalised frequencies (0 1, 0 1), (0 3, 0 1) and 
(0 2, 0 2) m white noise Contour plots (a), (b) from Kimura and Honoki [47], and (c) from Lim 
and Malik [51]
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f x

Figure 4 11 Contour plot in dB on x and y frequency axes of MFE spectral estimate of smusoids 

at normalised frequencies (0 1, 0 1), (0 3, 0 1) and (0 2, 0 2) in white noise at SNR of -3 dB 
based on the exact autocorrelation
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Chapter 5. Conclusions

5.1 Introduction
We draw conclusions regarding the performance of the 2-D MFE spectral estimation method 

based on the various tests and numerical simulations detailed m Chapter 3 We also furnish our 
findings on the merit of MFE compared to other methods based on the comparative experimental 

tests that are outlmed in Chapter 4

5.2 Conclusions - The 2-D MFE method
We have proposed a 2-D extension of the MFE parameter estimation technique We have 
demonstrated the performance of the technique by executmg a wide variety of tests involving 
MFE AR modelling and spectral estimation of vanous data sets consisting of smusoids in white 

Gaussian noise These data sets include smgle and multiple smusoids at vanous power levels, 

SNR and respective locations in the frequency plane

Experimental findings have been presented These findings are based on tests in spectral 

resolution, estimator bias and vanance, autocorrelation function type, and dynamic range
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difference They are also based on tests of dependency on signal processing temperature, and the 
effects of SNR, data length, and model shape and size on spectral estimates The directional 
resolution capability of single and combined quarter plane spectral estimators has been examined

We conclude that MFE can be used to provide accurate spectral estimation of smgle and multiple 

smusoids m noise at various SNR, power levels and frequency separation We have seen accurate 

spectral estimation for various data sets ranging from a smgle smusoid at 27 dB SNR to three 
smusoids at -6 dB SNR

MFE provides stable models and accurate spectral estimation over broad temperature ranges 
which are typically of order (~102) Hence determination of specific critical temperatures is 

unnecessary The optimal temperature range depends on the SNR and model size This 
temperature range may be determined empirically As seen m Section 3 6 1 the spectral estimate 
obtained at a temperature above the optimal temperature range is excessively smoothed This is 
due to over-emphasis of the entropy term m the free energy Below the optimal temperature range 

poor spectral estimation occurs th e  upper temperature range limit can be determined by 
selectmg a high temperature and reducmg the temperature until adequate spectral resolution is 

achieved The Q-factor described m Section 3 7 on model order can be used as the measure of 
resolution The lower temperature range limit can be set by determining the temperature at which 
poor spectral estimation occurs This is accompanied by negative driving noise variance or non­
unity bounded autoregressive model parameters Such models are unstable for synthesis 
purposes The optimal temperature range may also be determined by mcreasmg the temperature 

from zero, with the lower and upper temperature limits determined as above

The temperature range may also be determined through monitoring the cost function order 
difference or the state of reflection matnces within the algonthm The MFE method produces 

supenor spectral estimates to those possible at zero temperature, even for very closely spaced 
smusoids
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The quality of spectral estimates in terms of peak amplitude and peak width improves with model 
order Higher model orders are also required as the separation between smusoids on the frequency 
plane becomes very small We have seen that the accuracy of peak location for very closely 
spaced smusoids mcreases with model order The SPA criterion for smusoids that are very 

closely spaced m both frequency directions may be overcome by mcreasmg the model order The 
minimum temperature corresponding to the lower end of the optimal temperature range mcreases 
with model order Data sets with higher SNR demand higher model orders with consequent higher 

temperatures

Smgle QP spectral estimators may exhibit a resolution bias m one direction on the frequency 

plane This bias may be resolved by usmg a combmed QP MFE spectral estimate In some cases, 
depending on the power and location of the smusoids on the frequency plane there may still be a 
resolution bias m some direction This may be eliminated usmg models with non-symmetnc 

regions of support Spurious noise spikes may also occur for smgle QP MFE spectral estimates 
These noise elements may be very effectively removed by use of the combmed QP MFE spectral 

estimate

We conclude that if the exact autocorrelation is used then the resultmg spectral estimate is 
mdependent of data set size Additionally, m Section 4 3 we have seen that MFE estimates, with 

reasonable accuracy, multiple smusoids with low SNR at low data set size usmg the exact 
autocorrelation The MFE method of spectral estimation may also use autocorrelation estimates 
that are unbiased or biased As seen in Section 2 5 the biased estimate suffers from nonequitable 
weighting of the correlation lag terms The long correlation lag terms are responsible for 
resolvmg spectral fine structure, hence the biased form can result m loss of resolution The 

unbiased form has equitable weighting of the lag terms are therefore provides higher resolution 

At low data set size there may be an error in the spectral estimates due to the autocorrelation 

estimation process This may be overcome by mcreasmg the data set size
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The smusoids m a data set may have different dynamic ranges or power levels For the examples 

tested the ratio of these power levels is preserved if the exact autocorrelation is used If an 
estimated autocorrelation is used there may be some error due to the autocorrelation estimation 

process The MFE spectral estimation technique produces estimates with some very small 
variance m power levels just as there is variance in the location of spectral peaks

In many applications one of the major performance criteria is high resolution [47] This is 
reiterated by Nikias and Raghuveer [60] They state ‘Important requirements to be satisfied by 
the spectrum estimation method are high resolution/good spectrum matching, and tolerance 

towards inhomogeneities m the data field while making use of small sized data set’ We have seen 
that the MFE technique performs well for closely spaced smusoids at low SNR even at low data 
set size This highlights the high resolution capability of the method

Overall, the numerical simulations of Chapter 3 illustrate that MFE provides low model order 
accurate spectral estimation over a range of mput data sets and operatmg conditions
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5.3 Conclusions - Comparisons with other methods
We have shown for a variety of data set examples that supenor spectral estimation may be 

performed at non-zero temperature than at zero temperature with equivalent computational 
burden We see that the MFE method outperforms the multidimensional Levmson method At 
zero temperature our algonthm reverts to the multidimensional Levmson algonthm or Burg type 
technique Furthermore MFE provides stable models where the Levmson technique may not 
Hence the MFE method extends the range of the multidimensional Levmson algonthm

We have compared MFE spectral estimates to results obtained by a conventional Founer 
transform technique The MFE method does not suffer from the sidelobe structure associated with 
conventional transform based methods The resolution o f MFE spectral estimates is far supenor 

to that produced by conventional techniques at low data set size This highlights the high 

resolution capability of the MFE spectral estimator

The MFE method has been compared to a hybnd dual 1-D method [47] and a maximum entropy 
method [51] For a case involving three smusoids the MFE method outperforms both of these 
methods m terms of location and sharpness of spectral peaks For a case involving two smusoids 
the MFE method at 6 x 6 region of correlation support is supenor to the 5 x 5 hybnd method 

The maximum entropy estimate exhibits sharper peaks However the MFE estimate is more 
accurate in terms of peak location Overall we conclude from our tests that MFE method is as 
good as if not better than these two techniques

In terms of spectral resolution we conclude that the MFE method usmg an unbiased 
autocorrelation performs just as well as the MCV method for snapshot data consistmg of closely 

spaced smusoids m white noise We have also compared MFE to a modified covanance technique 

over a number of simulation tnals The bias and vanance statistics for MFE are comparable to 
those for the MCV method The results show that MFE provides accurate spectral estimation

114



over a series of independent trials MFE is significantly fester than the MCV or MLE method 
The temperature parameter in MFE allows for the generation of models with unity bounded AR 

parameters and positive white noise variance, thus ensuring model stability The MCV method 
does not necessarily produce stable models
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Chapter 6. Directions for Future Research

6.1 Introduction
Extensions to the MFE method of AR parameter estimation presented above are possible These 
include techniques for the improvement m computational efficiency of the method and extension 
to the complex case The complex case involves spectral estimation of damped exponential 

signals m noise Other important issues that could be addressed include a pnon temperature 
determination and characterisation of the performance of the technique for other types of signals

6.2 Computational efficiency
The computational efficiency of modem spectral estimation techniques is an important issue This 

issue needs to be addressed particularly if real time implementation is to be envisaged In 2-D 

MFE we have implemented a non-linear unconstrained minimisation of the multivariate matrix 

function given m expression (50) Depending on the model order the direct search Nedler-Mead 
simplex [14], [53] or the Newton gradient [15], [53] methods have been used to perform the
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* t \ ̂minimisation The computational efficiency of the method is directly mfluenced by this 

optimisation Improvement of the computational efficiency may be obtained with faster 

optimisation algorithms

Alternatively, we may seek a simplified form of the algorithm Silverstem [74] shows how the 
ACS form of 1-D MFE may be simplified by linearisation, with consequent substantial 

computational benefit It remams an open question whether a simplified form of 2-D MFE can be 
found Such a form should preserve the essence of the full version while providing for faster 

execution with little loss of performance

6.3 Complex fields
It is of mterest to extend our algorithm to the case of damped exponential signals m noise An 
application of the use of such signals is m direction finding or beamforming [38] This extension 

of 2-D MFE mvolves matnx differentiation with respect to a complex matnx and the 

development of associated cost functions We may then compare the results from the application 

of such an extension to that from the Hua matnx enhancement and matnx pencil method [28] 
We may also compare the results to that from the two-step 1-D Prony model technique of 
Sacchim, Steedly and Moses [72]

The Cramer-Rao bound (CRB) [79] is used to lower bound the vanance performance of an 

unbiased estimator of a scalar parameter It would be of mterest to compare the vanance of MFE 
estimates of the magnitude and the x and y pole frequencies of an undamped or damped 
exponential data model with the CRB at vanous SNR As the estimator must be unbiased this 
would require swappmg estimator bias for vanance In 1-D this is achieved by appropnate choice 

of model order as higher model order decreases bias at the expense of mcreased vanance

6.4 A priori temperature determination
We have seen m Chapter 3 that a method of identification of the best temperature range before 
or within the MFE parameter estimation algonthm should provide a computational advantage
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especially for high order models However there exists no fundamental theory for a pnon 
temperature determination Hence, a pnon temperature determination remains an open and 

unsolved question for both 1-D and 2-D MFE

Gibbs random field (GRF) and Markov random field (MRF) models [16], [13], [46] have been 
used for the charactensation of homogeneous random fields with mixed spectra The relationship 

between SAR and conditional Markov models is discussed in [10], [11] Pickard [63], [64] 

stresses the importance of temperature effects in GRF and MRF model parameter estimation In 

particular he examines the important property of phase transition and shows that it is possible to 
isolate and measure the temperature at which data phase changes occur In statistical physics a 
phase transition is where the free energy of one physical state is discontinuously lower than 
another For example, at some temperature, in the liquid to solid phase transition, the solid phase 

may have discontinuously lower free energy than the liquid state These special temperatures are 

known as cntical temperatures In signal processing these cntical temperatures indicate a phase 
change in the data field [63]

Silverstem and Pimbley [76] do not propose any relevance of physical phase transitions to 

problems in signal analysis However it still remains an open question whether the cntical 

temperatures and phase changes used m image modelling by Pickard may in some way be related 
to MFE AR models

There are other initiatives that may lead to a solution of the question of a pnon temperature 
determination ‘With some adaptations, Gull [27] and Sibisi [73] each present more objective 
approaches for choosmg alpha ’ [12] Gull uses Bayesian analysis to determine a value of signal 
processmg temperature in an image reconstruction context

Sibisi determines the optimal Bayesian estimate for the signal processmg temperature for the 
regulansation process The regulansation process constructs an estimate of an autocorrelation 
matnx with equitable lag weighting and positive definiteness This is achieved by multiplying the
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identity matrix by a positive constant and adding the result to the unbiased Toeplitz form of the 

autocorrelation matrix In 1-D the regulansation process corresponds to the additional cost 
element m MFE ‘MFE-ACS estimation intrinsically provides the desired regularization function 
of stabilizing potentially ill-conditioned solutions as well as simultaneously compensatmg for 
noise’ [77] The Shannon entropy term in maximum entropy image reconstruction can also be 

closely approximated by the regulansation function [82]

Finally, the investigation of the relationship between the reflection coefficient matnces m 2-D 
MFE and optimal signal processmg temperature gives us an early indication of temperature range 
suitability Another method of early indication is the minimisation of the order of magnitude 

difference between cost functions associated with expression (50) These issues are discussed in 

Sections 2 6 on optimisation and cost functions, in Section 3 6 2 on temperature determination, 

and Section 6 5 below

6.5 Other signal types - Mixed and Wideband spectra
Generally we have concentrated on spectral estimation of narrowband signals with low SNR 

However it is also of interest to determine the performance of spectral estimation techniques 
including the MFE technique for wideband spectra matching ‘More effort needs to be directed 

towards spectral analysis of wideband signals and signals buned deeper in noise’ [52]

An application in which wideband and mixed spectra have considerable use is in texture 
modelling [46] It is not possible to charactense an entire texture by use of AR models alone 
‘Since m general, a homogeneous random field is charactensed by a mixed spectral distnbution, 
parameter estimation techniques which are solely based on spectral density estimators are not 
adequate’ [20] Typically m texture spectral estimation and synthesis the texture is decomposed 
into a deterministic and an indeterministic field The deterministic field is further decomposed mto 
a harmonic field for the penodic features and evanescent field for the global directional features

[20], [24] ‘The harmonic random field is the sum of 2-D sme waves of random amplitude and
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phase, while the generalized evanescent field consists of a countable number of wave systems’
[23] AR spectral estimators may be used to model the mdetermmistic field This field is typically 
wideband It is possible to determine AR models that produce power spectral densities 

approximating that of the indeterministic field A first step in the application of the MFE method 

to this area would be to produce a simulated wideband field using a test parametric AR process 

Subsequently MFE may be used to determine the MFE AR parameters and an estimated PSD 
The estimated PSD may then be compared to the original PSD The best temperature range for 
spectral matching can be determined by calculating the mean square difference or error between 

the original and the synthesised texture PSD Another method of determination of the best 

temperature range is to momtor the order of magnitude difference between cost functions 

associated with expression (50)

Another method [22] for texture characterisation decomposes the texture mto a periodic or global 
structural components field, a singularities or local structural components field, and a stochastic 
field Figures 6 1 and 6 2 [44] show constituent fields for the Brodatz [6] D93 ‘hair’ texture and 

D100 ‘ice crystals on an automobile’ texture The periodic field is merely a set of smusoids at 

various power levels and spatial frequencies A Fourier transform method [22] is generally used 
AR spectral estimators, including MFE, may be also used to determine a parametric model for 
this field The ability of MFE parametric model determination methods to parameterize the 

periodic component of texture spectra is dependent on its ability to effectively resolve simpler 
spectra consistmg of a number of smusoids m white noise

The stochastic or homogeneous random field is generally modelled by an AR process A Levmson 
type algorithm is used m [21] In [44] we used a MLE method to derive models with various 
model regions of support including smgle QP In [45] we proposed the use of cepstral stabilized 

ARMA models and compared the results with other model types including smgle QP AR models 

In both [44] and [45] we generated spectral estimates and synthesised the homogeneous random 
constituent of texture usmg the various models A MFE AR model may be also used to model the
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homogeneous random constituent of texture The best temperature range for spectral matching of 

such wideband fields can be determined as above by calculating the mean square error between 

the original and estimated PSD

Preliminary investigation has shown that further decomposition of constituent texture fields to 
multiple fields may yield results for the parametric modelling of mixed spectra This may be 
achieved by thresholding the constituent field at vanous power levels in the spatial frequency 
domain Subsequently MFE parametnc models may be denved for each of the resultant fields
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Figure 6.1 D93 texture constituent fields.

(1,1) original texture, (1,2) periodic field, (2,1) random field, and (2,2) singularities field.

Figure 6.2 D 100 texture constituent fields.

(1,1) original texture, (1,2) random field, and (1,3) periodic field.
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6.6 Higher order statistics
The autocorrelation function and power spectral density do not provide phase information Theyj
are sufficient for a complete statistical description of a Gaussian signal However, 

multidimensional signals may be non-Gaussian, may be rich in phase information, and may have 

additive coloured Gaussian noise of unknown power spectrum The absence of phase information 

and the Gaussiamty restnction has limited the utility of second order statistical techniques This 

has prompted much recent interest in higher order statistics and polyspectra [58], [59], [80] An 
interesting area of research is the extension of parametnc estimation techniques to third and 
fourth order statistics For 2-D MFE an appropnate starting point is at the solution of extended 
Yule-Walker type equations involving higher order cumulants for AR parameter estimation 

Alternatively, second order statistics may be estimated from higher order statistics [25] and used 

m autocorrelation based methods such as 2-D MFE Slices of fourth order cumulants may also be 
used in place of correlation quantities m conelation based techniques where the data set has white 
Gaussian noise or coloured Gaussian noise of unknown spectral density [58]
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Two-Dimensional Minimum Free Energy Spectral Estimation

Paul Kiernan

Abstract

We propose a 2-D extension of the Minimum Free Energy (MFE) parameter estimation method 
which may be used to determine autoregressive (AR) model parameters for 2-D spectral 
estimation. The performance of the technique for spectral estimation of 2-D smusoids m white noise 
is demonstrated by numerical example It is seen that MFE can provide superior spectral estimation 
over that which can be achieved with the multidimensional Levinson algorithm with equivalent 
computational burden The performance of the technique in terms of computational expense and 
accuracy of spectral estimation over a number of simulation trials is compared with a modified 
covariance technique
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1 Introduction

High resolution spectral estimauon of 2-D homogeneous random fields is becoming increasingly 
important because of its role in various areas Such areas mclude analysis of space-space, space-time, 
and time-time data arrays Space-space data arrays are used in image processmg [1], whereas space- 
time applications mclude sonar and seismic processmg [2] Time-time arrays are typically used m the 
analysis of radar pulse repetition versus arrival time [3] As stated by McClellan [4] “The operation of 
spectral analysis arises m many fields of apphcauon Situations in which signals are inherently 
multidimensional can be found m geophysics, radio astronomy, sonar, and radar, to mention a few 
These multidimensional problems present a challenging set of theoretical and computational 
difficulties that must be tackled” Other areas of interest mclude biomedical imaging [5], geophysics
[6], and radio astronomy [7] Any field m which the frequency spectrum of a directly measured 
quantity is of interest will benefit from continuing advances m power spectrum estimation [8]

We present a high resolution power spectrum estimation method. The Yule-Walker equation based 
Levmson recursion is an established method for deriving the parameters of a causal quarter plane 
(QP) AR model We show how model parameters for 2-D fields may be determined by the solution 
of 2-D Yule-Walker equations via a modified multidimensional Levinson algonthm The resultmg 
models may be used for high resolution power spectrum estimation. We modify the multidimensional 
Levinson algonthm [9) by determining the reflecuon coefficient matnces via muumizauon of the 
free energy [10] rather than via muumizauon of the linear prediction error energy alone Our method 
is an efficient 2-D MFE spectral estimation technique based on extension of the method developed bv 
Pimbley [8], and Pimbley and Silverstein [11] A 1-D MFE method is used in [12] along with a 1- 
D penodogram as part of a hybnd separable algonthm for 2-D spectral estimation Our method 
responds to the call in [12] for an efficient 2-D MFE algonthm
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2 Theory
A simultaneous AR (SAR) model [13], may be represented by

pi pi
X I  a(i,j)y(m-i,n-j) = u(m,n) (1)i=0 j-0

where {y(m,n)} is a finite set of observauons on 1 <m <N, 1 <n < \  and is a homogeneous random 
field A toroidal model is assumed on this iV x N lattice [14] (u(m,n)} is uncorrelated
Gaussian white noise with zero mean and vanance cr The autoregressive model parameters are given 
by {a} over the (p, +1) x (p2 +1) region of support It is assumed that a(Q,0) = 1 The power spectral 
density of this model [15] may be wntten ui normalised spatial frequency terms (a>x ,Q)y ) where

\a>x J <, 1 /  2, coy <. 1 /  2 as

or

S(a„a,)- ■  r (2)

k=0 1=0

The Yule-Walker equations [9] are based on the autocorrelation estimates of the observed field and
p i  p 2

are given by z l ^ L ct ( i j ) r yy( k - i , I - j )  = cr2S ( k , I )  (4)1=0 _/=0
The RHS of this expression is zero for all pomts in QP' This covers the quarter plane area of model 
support QP except for the pomt at the ongm

QP = QP’ U (0 0) (5)

The Yule-Walker equauons are also given in matnx form [16] as
Ra = h (6)

R  is a block Toeplitz matnx that is symmetnc and positive semi-definite The matnx is also made 
up of blocks Ryy that are Toeplitz in structure though not symmetnc and have elements r>y The

muludimensional Levinson algonthm [9] may be used to solve (6) In this algonthm the reflection 
coefficients at stage m of the recursion are represented by a set of reflection
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matrices A m[/w]. If the order of the model used is p i  x p2, then from the multidimensional 
Levinson algorithm [9] at the last (pl-1) recursion

A „ [/> 1 ]P /m  + A „  = 0  (7)

where the Toeplitz structure of the autocorrelation matrices ensure that the covariance of the 
prediction error process is identical for the backward and forward AR process

K  -  K  (8>
The partial correlation matrix is given as

A„ = [ l  A n _,[l] A P1_,[2 ] A PI_j[pl-1 ]] [R yy[/>l]R yy{/>l-l] R yy[l]]r (9)

The prediction error covariance matrices are given by the expression

K  = [ i - A „ t / > i i A r„ [ P i]]p ;,.„  no)

with initial condition P /  =  Ryy[0] (11)
The reflection coefficient matrices are given by

A „ f a ] =  +  for \ < q < p \ - \  (12)

Matrices in expressions (7) through (12) are of order p2 x p:.

Expression (7) gives optimisation of the reflection coefficients based on minimisation of prediction 
error energy. The AR parameters and white driving noise variance of the model are determined 
from the reflection coefficient and the prediction error covariance matrices.

We extend this algorithm by including an extra cost function based on entropy. The motivadon 
behind this comes from statistical thermodynamics. The ground state in physical systems 
corresponds to the case in signal processing where parametric estimation is performed on the basis of 
minimisation of the prediction error energy alone. In this case fluctuations disappear and physical
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systems reduce to their ground state In signal analysis this corresponds to zero input from the entropy 
energy term

"At nonzero temperature physical systems are neither in minimum energy states nor in maximum 
entropy states Rather, there exists a balance between low energy and high entropy Increasing the 
system temperature emphasizes the importance of entropy at the expense of energy Conversely, 
reduction of the temperature to absolute zero forces the system into its lowest energy state" [17] 
Hence, temperature acts as a control parameter for entropy or fluctuations in the system

The cost function m the 1-D MFE parametric estimation algonthm is based on extension of the least 
mean square criterion to include a noisy data cost element This extra cost element which 
minimises the free energy is due to an entropy term [8]

In the 2-D method we introduce an extra cost function due to the entropy This results in the 
minimisation of the resultant free energy, thereby providing better spectral estimation than that 
provided by minimisation of prediction error energy alone This extra cost function is given by the 
differential of a 2D Shannon-Burg type entropy term with respect to reflection matnxAm[/w] The 
Shannon-Burg entropy measure [17] is defined to within an arbitrary constant, hence for the 2-D 
entropy field H

We require the differential of the 2-D entropy term with respect to the reflection coefficient matnx 
A m[rn] at stage m For real fields the reflection coefficient matrix A is real We express the 
differential of the entropy energy term, with respect to A as

The entropy proportionality constant is absorbed into the signal processing temperature parameter a  

At stage m of the recursion the RHS of expression (14) becomes
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- f "  } ' * /  ) « / . . / ,  ) ] ] / ^ A „ [ m ] ^ , r f / ,  (15)

= J " J “ ! (<?|n ^ . (/ , . / v) / < ? A .M )+ ( I? |n / ( ; ( / x, / , ) / < ? A , [ / 7 , ] ) c c  <l6>

At any frequency {Jx , f y ) the differential

d \ n  A J J xJ y ) l d k m\m\ (17)

is the differential of a scalar with respect to a matrix Applying matrix calculus [18} this may be 
expressed as a (p2,p2) matnx with any element given by

=  d  In Am{ f xJ f ) l 3  r ( t j )  =  A'J  d  A m{ j x , f y )  I d  r ( i , j )  (18)

where t ( i j )  is an element of the reflection matnx A m[/w] Then the integration becomes

I ',  1 1 “  [  S  A .  i s  A  .[m l]  /  A .  ( / „ / ,  ) d f ,d fy

fl/2 fl 2 (19)
+  J . j "  J  *  e L . M V  A'm( J ' J r ) d f ,d fy

The second part of this expression becomes

K l n D l A ' M , . / , ) # , # ,  (20)

This contour integral is taken about a surface tn the 2-D complex frequency hyperplane The
argument [8] may be extended so that the symmetry in the contour path reduces the contour
integration to integrations at
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(a)
[-l/2£Re(/J<+l/2,Im(/x) = -oo],
[-1 / 2 < R e(/y) < +1 / 2 ,Im (/v) = - » ]  

and at
(b) (21)

[—1 /2  < R e(/X) < +1 / 2 ,Im (/x) = 0], 
[ -1 /2  < R e ( /J  < + l/2 ,Im (/>) = 0]

The integration at (a) goes to zero as the numerator of the expression (20) contains a multiplicative 
exponential term Hence for f x = -yoo and f y = -yoo the integral vanishes

The integration at (21)(b) is now examined A positive definite autocorrelation matnx may yield 
solutions to the Yule-Walker equations, though they may be unstable Hence the multidimensional 
method [9] which is a minimum prediction error method may yield unstable results Therefore
A (J X, f y ) may not be minimum phase By sufficiently whitening the mput data field we ensure that

the autocorrelation falls off fast enough so that A ( f x , f y ) tends to be minimum phase Given a

minimnm phase A ( f z , f y ) all singularities i e zeroes of A( zz , z y ) or solutions of the equation

A (zx , zy ) = 0 are located within the unit bicircle Hence there are no zeros in the lower half of the

2-D complex frequency plane or outside the unit bicircle

The test for a bivanate polynomial can be reduced to testing for each variable when the other is 
fixed By fixing one variable and performing the contour integration with respect to the other the 
number of zeroes may be determined When double contour integration is performed one variable is 
set and the contour integral is evaluated with respect to the other variable Hence the integration on 
the region specified by (21) (b) goes to zero A similar argument mav be made for the first integral m 
expression (19)

Continuing with expression (14), m terms of Levinson algonthm parameters at stage m of the 
recursion

M .  =ln[P,/] = l n [ ( I - A , H A L W ) P . /.,] (22)

7



hence < ? fln /?„ )/< ?A .[m J= < ?1 n [(I-A m[m }\rm{m })f i,V g A m{m] (23)

We minimise this cost function at recursion m and signaJ processing temperature a  by finding 

A m[/n] such that

A . W L  +A.-a[<?ln(I-A,[m]A:[m])Pi:i /<?A„[m]] = 0 (24)

•\
3 Results

The resolution of sinusoids in white noise is a widely used standard simulation exercise for spectral 
estimation techniques [15] We used an unbiased autocorrelation function estimated from a 
realisation of sinusoids plus white noise

Usmg a single quarter plane spectral estimator results in elliptical contours of constant power spectral 
density (PSD) level This may be overcome by usmg a combmed quarter plane estimator Another 
motivation for usmg a combmed estimator is that spurious peaks are less likely to occur if quarter 
plane estimates are combmed in ‘parallel resistor’ fashion [16] We combine first and fourth quarter 
plane estimates for all PSD estimates We note that spurious peaks which may occur for high order 
single quarter plane models are very effectively eliminated bv usmg a combined quarter plane model

We take a 160x160 point data snapshot consisting of smusoids at arbitrary unity normalised 
frequencies (0 1,0 2) and (0 3 0 4) of equal amplitude at aibitraiy SNR of 6 dB in uncorrelated white 
Gaussian noise We compare the spectral estimate at temperature 0 074 with that at zero 
temperature This has special significance because at zero temperature our technique reverts to the 
multidimensional Levinson or Burg type technique The temperature of 0 074 was the optimal 
temperature for spectral estimation based on the average autocorrelation over 10 noise seeds This 
temperature also falls within a broad range of temperatures within which accurate spectral estimation 
was obtained Figure 1 (a) shows the combined first and fourth quarter plane normalised amplitude 
PSD plot in the x frequency direcuon psd(jx ,0) 0 < f x <05 derived using the MFE based AR
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models of order 5x5 at temperature 0 074 Figure 1 (b) is a contour plot as used showing the spectral 
estimate in both frequency directions Corresponding plots for the spectral estimate of the two 
sinusoids at temperature zero are shown in figures 1 (c) and (d)

In figure I (a) we see sharp peaks at fx = 0 1 and fx = 0 3 The contour plot of figure 1 (b) clearly 
shows the spatial frequency peaks at (0 1,0 2) and (0 3 0 4) The sharpness of the peaks is illustrated 
by the 6 dB contours In figure 1 (c) we can see an number of peaks in the x frequency direction, 
however none are at the frequencies 0 1 and 0 3 Figure 1 (d) shows that the peaks are certainly not 
located at spatial frequencies (0 1,0 2) and (0 3,0 4) and therefore are incorrectly resolved We 
conclude that both frequency components are accurately resolved at temperature 0 074 whereas this is 
not the case at temperature zero using the multidimensional Levinson method

Extensive experimentation into the effect of model order variation has shown that the width of the 
peaks corresponding to sinusoid components in a spectral estimate decreases as the model order 
increases In one test we took a 160x160 point smgle snapshot of data consisting of 2 equal amplitude 
smusoids at spatial frequencies (0 1,0 2) and (0 3,0 4) at 0 dB SNR. The data was subjected to spectral 
estimauon usmg MFE models of order 3x3, 5x5, 7x7 and 9x9 We use a 2-D Q-factor to measure the 
sharpness of the peaks in the frequency domain The Q-factor is determined as the inverted product of 
the bandwidths in the x and y frequency direction across each spectral peak at a given amplitude We 
use the averaged Q-factor over the two spaual frequency components or peaks as a comparative 
measure of the sharpness of the peaks The average Q-factors at -21 dB for the 9x9, 7x7, and 5x5 
model spectral estimates and at -3 dB for the 3x3 model are in the ratio 10 5 4 4 4 4 respectively 
We see that the Q-factor increases with model order indicating sharper peaks for higher model order 
We may apply a transformation [9],[16] on our 3x3 PSD estimate and thereby produce a modified 
PSD with sharper peaks Hence the Q-factor is not a measure of spectral resolution, however in 
applying this transformation the amplitude of one of the spectral components is attenuated 
significantly We conclude that better spectral estimation in terms of both peak width as quantified by 
the Q-factor and peak amplitude is achieved as the model order mcreases The only disadvantage of 
higher model order is added computational expense
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We examined the bias and vanance of spectral estimates produced by MFE and a modified covanance 
(MCV) method [16] We implemented both algonthms and made 25 simulation tnals on each All 
tnals used a single snapshot of data consisting of sinusoids at arbitrarv unity normalised frequencies 
(0 1, 0 2) and (0 3 0 4) of equal amplitude at arbitrary SNR of 6 dB in uncorrelated white Gaussian 
noise To ensure a fair companson, the same random number generator seed was used to initiate the 
25 tnals for both algonthms so that each simulation senes contained an identical sequence of noise 
spectra This meant that the same set of 25 uncorrelated and independent noise fields were used for 
both algonthms The size of the sinusoid and white noise data fields were 40 x 40 pomts The MFE 
signal processmg temperature was set at 0 05 This temperature was arbitrarily chosen from within a 
wide band of temperature which previous tests have indicated provides accurate spectral estimation 
Table 1 shows the bias and standard deviation of spectral estimates for both frequencies for each 
method. The PSD were calculated over 520x520 pomts and therefore the resolution of estimates is to 
0 001 92 of unity normalised frequency The bias and vanance statistics are comparable in the y 
frequency direction MCV provides better statistics in the x frequency direction The accuracy of AR 
model based spectral estimates depends on the size and shape of the model used [19] The x 
frequency statistics in this case may be unproved by the use on a non symmetncal region of support 
for the AR model In general the statistics show that MFE provides accurate spectral estimation

Let us compare the computational expense of parameter estimation bv a maximum likelihood 
method MLE [20], MCV and our MFE method The data set size is taken as M2 and model order as 
p2, where M »  p The cost function m MFE MCV and MLE are iteratively minimised at 0((p- 
l)(2p4)), 0(2(M-p);p':) and 0(M 2p2) multiplies respectively In MLE one of the elements is a 
tngonometnc function MFE is computationally the least expensive It performed spectral estimation 
12 times faster than MCV for any data snapshot in the comparative vanance test above
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4 Conclusions

A 2-D MFE parameter estimation technique has been proposed We ha\e demonstrated the 
performance of the technique by performing MFE AR modelling and spectral estimation of closeh 
spaced sinusoids in white noise We have seen that the better spectral estimation may be achieved at 
higher model order We have shown that it is possible to obtain superior spectral estimation, 
with equivalent computational burden, using MFE at a temperature greater than zero than at zero 
temperature using the multidimensional Levinson algorithm

We have compared MFE to a modified covariance technique over a number of simulation trials The 
results show that MFE provides accurate spectral estimation over a series of independent trials We 
have found that the bias and standard deviation of spectral estimates are comparable in the y 
frequency direction and better with MCV in the x frequency We have found that MFE is 
significantly faster than the modified covariance technique
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Fig 1 MFE model based spectral estimates of smusoids at normalised frequencies (0 1 0 2) and 
(0 3, 0 4) m white noise at temperature (a), (b) 0 074 and (c), (d) zero
(a) (c) Normalised amplitude spectral estimate on the x frequency axis, (b) (d) Contour plot in dB on 
x and y frequency axes
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Table 1

MFE MCV

fx Bias x 10'3 Std x 10'3 Bias x 10'3 Std x 10'3

0 1 -2 3 7 40 0 077 0 385

03 -2 5 9 96 00 0 544

fy Bias x 103 Std x 10'3 Bias x 10'3 Std x 10°
0 2 0 458 0 939 0 308 0 769
0 4 0 092 1 11 0 231 0 666
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High Resolution Two-Dimensional Minimum Free Energy AR Spectral Estimation,
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High R e s o l u t i o n  T wo - Di me n s i o n a l  Minimum F r e e  E n e r g y  

AR S p e c t r a l  E s t i m a t i o n  

by

Paul Kiernan

Abstract - We extend the Minimum Free Energy (MFE) parameter estimation 

method to 2-D fields This 2-D MFE method may be used to determine 

autoregressive (AR) model parameters for spectral estimation of 2-D 

fields It may also be used to provide AR models for texture synthesis 

The performance of the technique for closely spaced sinusoids in white 

noise is demonstrated by numerical example Better results can be 

achieved than with the multidimensional Levinson algorithm

I  I n t r o d u c t i o n

We are concerned with models with quarter plane (QP) parameter region of 

support which are a direct 2-D extension of the linear time series 

seasonal analysis models of Box and Jenkins [1] The Levinson recursion 

is an established autocorrelation based method for deriving the 

parameters of a causal AR model [2] We show how model parameters for 

2-D fields may be determined by the solution of 2-D Yule-Walker 

equations via an MFE based modified multidimensional Levinson algorithm 

Our modification of the multidimensional Levinson algorithm [3] is based 

on determination of the reflection coefficient matrices by minimisation 

of the free energy rather than by minimisation of the forward and 

backward linear prediction error energy alone The proposed method is an 

2-D extension of the method developed by Pimbley [4], and Pimbley and 

Silverstein [5] A second optimization loop may be introduced to 

determine the optimal signal processing temperature to achieve good 

parameter estimates To the authors knowledge, there have been no 

previous publications which extend the MFE method of parameter 

estimation to 2-D providing 2-D spectral estimation of closely spaced 

sinusoids
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The reflection coefficients in Levinson type algorithms are the negative 

normalized correlation coefficients between the forward and backward 

l i n e a r  prediction errors (ef e b ) , with one unit of delay [3] In the 

Burg harmonic algorithm the error energy 1 e the sum of the forward and 

backward prediction error energy is minimized The reflection 

coefficients k at stage m ( 1  £  m s  p )  of a recursive algorithm, form
model order p, and data sequence length N are given as

11 T h e o r y

= -2A / ( P C + Pb )  = -A / P C = a [ m ]  (1)m '  m -1 m-1 nr m-1 m

a [ q ]  = a [ q ]  + a [ m ] a  [ m - q ]  1 < q  £  m- 1 (2)m m-1 m m-1

where a [ q ]  are the AR parameters and Pf and P b are the forward andm

backward linear prediction error variances

N N
Pf = I  |ef I n ]  |2 = Pb = I  |eb [ n - 1 ]  |2 (3)m-1 Li 1 m-1 * m-1 I* 1 m-1 1

n=m+l n=m+l
N

A = y e  [ n ]  eb [ n - 1 ]  (4)m u  m-1 m-1
n=m+l

Hence A + Pf  k  = 0 (5)m m -1 m

In the MFE method [4] [5] the free energy F

F = u - aH, (6)

is minimized with respect to the reflection coefficients u is the

prediction error energy, H is the entropy and a is the signal processing

temperature If the power spectral density (psd) is given by

S ( f )  = 13 /  |D ( f )  |2 (7)
P

where D ( f ) = 1 + ^ a ( k )  e x p ( - j 2 n f k T ) (8)
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then H =
1/2

I n d f (9)

- 1/2

The energy due to the entropy is differentiated with respect to the real 

and imaginary parts of a reflection coefficient at stage m

In the 2-D case the reflection coefficients at stage m of the recursion 

are represented by a set of reflection matrices A [ m ]  If the order ofm
the model used is ( p l + 1 ,  p 2 + l ) ,  then from the multidimensional Levinson 

algorithm [3] at the last ( m = p i )  recursion,

A [ p l + 1 ]  Pf + A = 0  (10)pl+1 p i  pl+1
where

TA = |l A  [ 1 ]  A [ 2 ]  A [ p i ]  1 |Ryy[ p l  + 1 ] Ryy/'pl 7 Ryy [ 1 ]
pi+i [ p i  pi pi J |_

?f = [i - A [ p l  + 1 ]  A [ p l  + l l ]  Pfpi+i [ p1+1 p1+1 J

( i n

( 1 2 )
pi

A [ q ]  = A [ q ]  + A [ p l  + 1 ] A  T[ p l - q ]  for 1 £ q  s. p i  (13)pl+1 p i  pl+1 pi

Ryy[7 are the observed field autocorrelation matrices The derivation of 

these equations for the multidimensional case is based on the 

multichannel case and there is a direct correspondence between A [ m] inm
multichannel and k for the single channel case Opt imizat zon of the m
reflection coefficients based on minimisation of prediction error energy 

is based on (10)

We now require the differential of the 2-D entropy term with respect to 

the reflection coefficient matrix at stage m, { d a H / d A ) We are concerned 

with simultaneous AR models w m c h  may be represented by

pi p2

£ £ a ( i j ) y ( m - i , n - j )  = u ( m , n )  (14)
i=o j =o

3



We assume that a ( 0 , 0 ) = l ,  { y ( m , n ) l  is a finite set of observations on 1 s

m s N,  1 z  n  £  N and u is a homogeneous random field A toroidal model

is assumed on this N x  N lattice [6] ( u ( m , n ) )  is independent
2(uncorrelated) Gaussian white noise with zero mean and variance o- The 

factorable SAR model in (14) is a special case of the conditional AR 

model ( u )  is correlated for the conditional case The power spectral 

density of this model [7] may be written in normalised spatial frequency 

terms ( w  , u  ) , where Iw I s 1 / 2  and \ u I ^ 1 / 2  as1 2  1 l 1 1 2 1
2cr

S ( u  , u  ) =   (15)1 2  p!  p 2
- j ( u> k+U I )  .2E r  - J (  (J k + U  1 )  .

I  \ i e 1 2 I
k = 0  1 =0

or -  & /  \ D ( f l ' f 2 ) \ 2 where 13 = <r2 (16)

The Yule-Walker equations are based on the autocorrelation estimates of 

the observed field and are given by

p i  p 2

V V a ( i , j ) r  ( k - i , l - j )  = (a-2 for ( k , l )  = ( 0 , 0 ) ,  0 for ( k , l )  € Q P ’ )L, Li yy
1 =0  j = 0

where QP = QP’ 1) ( 0 , 0 )  (17)

or in matrix form [8] as Ra = h (18)

R is a block Toeplitz matrix which is symmetric and positive 

semi-defmite Furthermore the matrix is made up of blocks Ryy which are 

also Toeplitz in structure though not symmetric Hence (18) may be 

solved by the multidimensional Levinson algorithm which is derived from 

the multichannel Levinson algorithm [9] The solution yields the AR 

parameters and white driving noise variance of the model This method is 

the minimisation of prediction error energy method We extend this 

method by including an extra cost function based on entropy The 

motivation for inclusion of the extra cost function comes from 

statistical thermodynamics



There is a direct analogy between statistical thermodynamics and 

stochastic signal analysis The ground state in physical systems 

corresponds to the case in signal processing where parameter estimation 

is carried out on the basis of minimisation of the prediction error 

energy alone In this case fluctuations disappear and physical systems 

condense into their ground state In signal analysis this corresponds to 

zero input from the entropy term

"At nonzero temperature, physical systems are neither in minimum energy 

states nor in maximum entropy states Rather, there exists a balance 

between low energy and high entropy Increasing the system temperature 

emphasizes the importance of entropy at the expense of energy 

Conversely, reduction of the temperature to absolute zero forces the 

system into its lowest energy state" [10] Temperature, therefore, acts 

as a control parameter for the entropy or fluctuations in the system 

The cost function in the 1-D MFE parameter estimation algorithm is based 

on an extension of the least mean square (LMS) criterion to include a 

noisy data cost element This extra cost element is due to the entropy 

energy term The 2-D system is directly analogous in that there is an 

extra term due to the entropy

The result of adding this extra cost function is to minimize the 

resultant free energy, thereby providing better spectral estimation than 

that provided by minimization of prediction error energy alone The 

Shannon-Burg entropy measure is defined to within an arbitrary constant 

Therefore for the entropy field H 

1/2 1/2

H In C/3 /  I DC f ,f ) df df ' 1 1 2 1 1 2 ( 1 9 )

- 1 / 2  - 1 / 2

For purely real fields the reflection coefficient matrix A is real We
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express the differential of the entropy energy term, with respect to A

d a H / d A = a 8 l n ( f i ) / d k  -  8

1/2 1/2

' I n
- - \D(f l ’f 2) | 2) d ridf2 / 3A (20)

- 1/2  - 1/2

The entropy proportionality constant is absorbed into the temperature 

parameter a

At stage m of the recursion the RHS becomes 
1/2 1/2

8 in [ D ( f  , f  ) D  * ( f  , f  ) ]  /  SA [ m l  d f  d f[ m 1 2 m 1 2 ' m 1 (21)

- 1/2  - 1/2 

1/2 1/2

a I n  D ( f  J  ) / d h  [ m l  * 3  I n  D ( f  , f  ) / d k  [ m]  d f  d f  (22)m 1 2 m m 1 2 '  m 1 2

- 1/2  - 1/2

At any frequency ( f  , f  ) the differential

81n D ( f  , f  ) / d k  [ mlm 1 2 m (23)

is the differential of a scalar with respect to a matrix and may be 

expressed as a ( p i , p i )  matrix with any element given by

= d i n  D ( f  , f  ) / d r  = D 8D ( f  , f  ) / d rm I 2  ' 1 , J  m m 1 2 ' l , j (24)

where r is an element of the reflection matrix A [ m l  The integrationi , J m
becomes

1/2  1/2

d D ( f  J  ) / d k  [ m]m 1 2 m /  D ( f  t f  )  d f  d f' m 1 2 1 2
- 1 / 2  - 1 /2  

1 / 2  1 /2

d D  ( f  f  ) / d k  l m]m 1 2 m / D ( f  , f  )  d f  d f' m 1 2 1 2
- 1 / 2  - 1 /2

(25)

(26)



The second part of this expression becomes

1/ 2 1/2

- 1/2 - 1/2

p i  p2

a ( Y  V a [ m l e j ( c S + r z l ) )  /  SA ( m l  /  D ( f  , f )  d f  df (27Lt L* kl ' m ' m 1 2 I 2
k=0 1=0

The contour integral is taken about a surface in the 2-D complex 

frequency hyperplane We extend the argument [4] that the symmetry in 

the contour path reduces the contour integration to integrations at

(a)

and at 

(b)

- 1 / 2  s  R e ( f  ) s + 1 / 2 ,  I m ( f  )  =l l

- 1 / 2  £ R e ( f  )  s  + 1 / 2 ,  l m ( f j  = -» 2 2

- 1 / 2  = R e ( f  ) s + 1 / 2 ,  l m ( f  ) = 0l l
- 1 / 2  s R e ( f  ) s + 1 / 2 ,  l m ( f  ) = 0  2 2 (28)

The integration at (a) goes to zero as the numerator of the expression 

(27) contains a multiplicative exponential term which suggests that for 

f  = -joo and f = -joo, as in the 1-D case for f  = - _/a>, the integral 

vanishes l e the numerator goes to zero, while the denominator reduces 

to unity

We now examine the integration at (b) A positive definite 

autocorrelation matrix may yield solutions to the Yule Walker equations, 

though they may not be stable Therefore the multidimensional method [3] 

which is a minimum prediction error method may yield unstable results 

Hence D ( f ^ , f ^ )  may not be minimum phase However by sufficiently 

whitening the input field we may ensure that the autocorrelation falls 

off fast enough so that D ( f  , f  l tends to be minimum phase This results 

in a stable model which may also be used for field synthesis purposes 

such as texture generation Gi”en that D( f^ f  ) is minimum phase then 

all singularities l e solutions of the equation D ( z ^ , z ^ )  = 0 ,  or zeroes

of D ( z  , z  ) are within the un.t bicircle Hence there are no zeros l 2



o u t s H e  the unit bicircle or in the lower half of the 2-D complex 

frequency plane

The test for a bivanate polynomial can be simplified to testing for 

each variable when the other is fixed, and the number of zeroes may be 

determined by fixing one variable and performing the contour integration 

with respect to the other In performing double contour integration one 

variable is fixed and the contour integral is evaluated with respect to 

the other variable Therefore Cauchy’s integral formula applies to a 

double contour integral

<£ (£ f  ( z  , z ) / i ( z  , z ) dz dz = 0
J J  1 2 '  1 2 1 2

(29)
cl c2

Hence the integration on the region specified by (28) (b) goes to zero

In terms of the parameters within the Levinson algorithm

I n 8 = I n f
= inp m (I - A [ ml  A l m ] )  Pm m m-1 (30)

(I - A l m] A l m ] )  Pm mhence d (  I n  (3 )  / 3A [m]  = d i nm ' m

B = d (  i n  (3 )  /  3A [ m]If m m

/  3A l m ]  (31)

(32)

Then the cost function used at recursion m is given by finding a 

reflection matrix A [ m] such that

A U 1  Pf + A - a B  = 0
m  it>— 1 fn m

(33)

When a  = 0 the method reverts to the multidimensional Levinson

algorithm A Nedler-Mead simplex [11] or “iewton gradient [12] technique 

may be used to perform the minimisation depending on the model order and 

temperature range of interest

8



Ill Results

In this section we provide numerical examples in which the method 

outlined above has been applied These examples show power spectral 

estimates determined directly using MFE based AR model parameters The 

resolution of sinusoids in white noise is a widely used standard 

simulation exercise for spectral estimation techniques including AR 

model based techniques [71,(101 [13-17] We have used an autocorre1 atlon 

estimated from a realisation of sinusoids in white noise This 160 x 160 

point autocorrelation corresponds to a data set consisting of data 

samples over an 80 x 80 rectangular region of support

In the first example two closely spaced sinusoids at normalised

frequencies ( f  , f  ) of (0 1, 0 2) and (0 11, 0 38) at 7 6 dB signal to x y
noise ratio (SNR) in white noise are used We have established by 

experimentation that the best model order for this example is 5x5 It 

may be possible to determine the model order by use of the Akaike 

information criterion This has been proposed by Pimbley [41 and more 

recently by Cooper and Pimbley (181 However the Akaike information 

criterion is not a consistent decision rule for estimating the order of 

AR models [19] We use a simple and effective method of increasing the 

model order as long as the resolution of the resultant spectral estimate 

is improving The computational expense of the method depends on model 

order, hence there is a simple trade off between added computational 

expense and higher resolution

All psd are 80x80 point and are generated with (15) and the parameters 

from MFE AR models All frequencies are normalised for one cycle equal 

to unity The plots in figures 1 (a) and (b) were derived using the MFE 

based AR model of order 5xb at zero temperature The plots in figures 1 

(c) and (d) are for temperature 0 5



Figure 1 (a) shows lie normalised amplitude psd estimate in the x

frequency direction p s d  ( (  0 )  0 s f < 0 5  A number of spectral peaksX X

occur however only one of them at f  = 0 09 is close to the correct
X

frequency f  = 0 1 or f = 0 11 The contour plot [16] in figure 1 (b)
X X

shows the psd estimate in the x frequency direction psd ( f  0 ) 0 £ f <
X X

0  5 and in y frequency direction p s d  ( 0 , f  )  0 s f  < 0  5 One peak isy y
located near (0 1 0 2), there is no peak at (0 11,0 38) and several

spurious peaks occur Thus at zero temperature neither of the spectral 

components at spatial frequencies (0 1 0 2) or (0 11, 0 38) are

accurately resolved

Figure 1 (c) shows the normalised psd plot at temperature 0 5 in the x 

frequency direction p s d  ( f  , 0 )  0  s  f  < 0 5  Spectral peaks at
X X

frequencies f  = 0 1  and f  = 0 11 are clearly visible We can see in
X X

figure 1 (d) that the x frequency components at 0 1 and 0 11, and the y 

frequency components at 0 2 and 0 38 making up the two spatial

frequencies (0 1, 0 2) and (0 11, 0 38) are accurately resolved Hence

at the non zero temperature both spectral components at frequencies 

(0 1 0 2) and (0 11, 0 38) are accurately resolved However at zero

temperature as shown in figures 1 (a) and (b) neither of the spectral

components are accurately resolved

In the second example sinusoids at normalised frequencies ( f  , f  ) ofx y
(0 1 0 2) and (0 3, 0 4) at 6 dB SNR in white noise are used Figures 2

(a) and (b) show the normalised amplitude x frequency and 2-D contour 

psd plots derived using the MFE based AR model of order 5x5 at

temperature zero Figures 2 (c) and (d) are for temperature 0 05 Figure

? (c) shows that the estimated psd has spectral peaks at f = 0 1  and f
X. X

= 0 3 The contour plot in figure 2 (d) shows that the two spectral

components are accurately resolved at frequencies (0 1 0 2) and (0 3 

0 4) Furthermore the sharpness of the peaks is illustrated by the 5 dB 

contours in the contour plot The spectral estimate at zero temperature

10



has two broad peaks Figure 2 (a) shows the two poorly resolved peaks

The 1 dB contours of figure 2 (b) also illustrate these poorly resolved

spectral peaks The peaks are not located at or near the spatial

frequencies (0 1 0 2) and (0 3 0 4) We conclude that MFE provides

accurate spectral estimation at temperature 0 05 whereas at zero 

temperature, using multidimensional Levinson method, the correct 

frequency components are not resolved

In the third example a sinusoid at normalised frequency ( t  , f  ) of (0 1x y
0 2) at 30 dB SNR in white noise is used Figures 3 (a) and (b) show the 

normalised amplitude x frequency and 2-D contour psd plots derived using 

the MFE based AR model of order 5x5 at temperature zero Figures 3 (c) 

and (d) are for temperature 0 5 They show that the spectral component 

is accurately resolved at (0 1 0 2) Figures 3 (a) and (b) show that at

zero temperature no spectral peak occurs at the correct frequency and 

several spurious peaks occur

IV Conclusions

We have proposed a 2-D MFE parameter estimation technique We have 

demonstrated the performance of the technique by providing spectral 

estimation of closely spaced sinusoids in white noise We have shown by 

example that it is possible to obtain better spectral estimation at 

certain temperatures than at zero temperature, where at zero temperature 

our algorithm reverts to the multidimensional Levinson algorithm or Burg 

type technique

A method of identification of the best temperature range prior to or 

within the MFF parameter estimation algorithm should provide a 

computational advantage especially for high order models The cost 

function in MFE is minimized at 0((p-l)(2p )) where the model order is 

p‘ Hence prior temperature determination would be significant at high 

model orders In ordc r to address this issue we are investigating the



relationship between the reflection coefficient matrices in 2-D MFE and 

optimal signal processing temperature For optimal temperature spectral 

estimation the entropy term in the MFE cost function should ensure 

reflection matrices with elements of values less than unity

Gu 11 120! and Sibisi (21] present approaches for choosing signal

processing temperature Sibisi determines the optimal Bayesian estimate 

for the signal processing temperature for the quadratic regularisat ion 

problem [18] The regularisation process corresponds to the additional 

cost element in MFE Gull also uses Bayesian analysis It may be 

possible to adapt these methods to 2-D MFE

It is also of interest to carry out experimental comparisons of 

performances of the technique above and approximate maximum likelihood 

techniques
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Fig 1 Spectral estimates of sinusoids at normalised frequencies (0 1, 

0 2) and (0 11 0 38) at / 6 dB SNR in white noise derived using MFE 

based AR models of order 5>5

(a) Normalised amplitude spectral estimate on the x frequency axis at 

zero temperature (b) Contour plot in dB for spectral estimate at zero 

temperature (c) Normalised amplitude spectral estimate on the x 

frequency axis at temperature 0 5 (b) Contour plot in dB for spectral

estimate at temperature 0 5
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Fig 2 Spectral estimates of sinusoids at normalised frequencies (0 1 

0 2) and (0 3 0 4) at 6 dB SNR in white noise derived using MFE based

AR models of order 5x5

(a) Normalised amplitude spectral estimate on the x frequency axis at 

zero temperature (b) Contour plot in dB for spectral estimate at zero 

temperature (c) Normalised amplitude spectral estimate on the x 

frequency axis at temperature 0 05 (d) Contour plot in dB for spectral

estimate at temperature 0 05
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Fig J Spectral estimates of sinusoid at normalised frequency (0 1 0 2)

at 30 dB SNR in white noise derived using MFE based AR models of order 

5x5

(a) Normalised amplitude spectral estimate on the x frequency axis at 

zero temperature (b) Contour plot in dB for spectral estimate at z e r o  

temperature (c) Normalised amplitude spectral estimate on the x 

frequency axis at temperature 0 5 (d) Contour plot in dB for spectral

estimate at temperature 0 5
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