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Abstract

The use o f modem estimation theory to track the time-varying dynamics o f a 

motorcycle suspension system is investigated. It is shown using software simulations 

and a test rig comprised o f an analogue computer that a modified recursive least 

squares algorithm which incorporates a fault detection scheme is a suitable approach.

The fault detection scheme incorporated in the modified algorithm detects system 

changes by monitoring the statistical properties of the estimators prediction error 

sequence.

A  mass, spring and damper model is chosen as a simple model with which to represent 

the dynamics o f the suspension system. Initial estimates o f the suspension parameters 

are found from static tests performed on a sample "Formula 1" front suspension unit. 

These estimates are incorporated into a software simulation and this simulation is used 

as a platform to examine the performance o f existing parameter estimation techniques 

and also to develop the modified least squares algorithm.

An analogue com puter is built as a hardware representation o f the system dynamics. 

The modified algorithm is fine tuned using equivalent force and displacement data from 

this computer. The modified algorithm is used to track the parameters o f this 

computer.

The resulting parameter estimates indicate that the modified algorithm yields estimates 

which have superior variance and convergence properties than those o f estimates 

obtained using more conventional parameter estimation schemes.
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Chapter 1

Introduction

A  terrain vehicle suspension system is a mechanical, energy dissipating device that lies 

between the chassis of the vehicle and the ground. Its purpose is firstly to restrict the 

influence of road irregularities upon passenger com fort and secondly to improve the 

"handling" ability o f the vehicle.

Suspension systems vary in shape and size, these being attributes that are vehicle/purpose 

dependent. This is nowhere more apparent than in the class o f two-wheeled vehicles. For 

example a child's bicycle must rely on the wheels and forks as an intermediary between 

itself and the ground whereas a large motorcycle uses lightweight alloy wheels and 

shock-absorbers. It is this latter form of suspension that was under investigation in work 

described in this thesis.

It is well known that the suspension set-up o f a Grand Prix motorcycle is critical, 

especially during cornering manoeuvres. The nose-dive [1] experienced when entering a 

corner and the wobble effect [1] experienced when exiting, stand as visible testament to 

this.

In the case of such a high performance vehicle the solution to this so-called suspension 
problem  [1-3] is non-trivial. The difficulty arises because the optimal set-up of the 

suspension system for straight-line motion is not necessarily the optimal set-up for 

cornering manoeuvres. Until recently the tuning o f motorcycle suspensions has amounted 

to varying the set-up between different grades of soft and stiff [1] attributes that are 

heavily dependant upon rider feedback rather than scientific observation. This attitude 

may be acceptable to those who advocate a ride by the seat of your pants philosophy but 

in the competitive world of Grand Prix motorcycling, with ever increasing speeds and 

hence risk, a more scientific approach is both desirable and inevitable.

Similar conflicting requirements have been encountered in the suspension systems of 

Formula 1 (F. 1) motor racing cars. However unlike the motorcycle racing fraternity the
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F. 1 establishment has had the significantly large financial backing required to investigate 

possible solutions to w hat is one of a large number o f problems encountered in vehicle 

design.

The first in-depth investigation into these suspensions was enacted as a direct result of 

the introduction o f ground effects aerodynamics [3-6] by the Lotus team in the 1978/79 

motor-racing season. A  ground effects vehicle is shaped so as to maximise the 

downforce acting on the vehicle resulting in better cornering performance than a non- 

ground-effects competitor. It soon became apparent that the vehicle had to be 

constrained to operate at an optimal ride-height [3], [5] in order for this new technology 

to work effectively.

Because there are large variations in downforce experienced over different tracks 

(average 1.5kN at M onaco to 32kN at Ricard) suspension systems, in general, became 

very stiff, minimising chassis displacement thus maintaining the optimal ride height 

criterion. A  side-effect of this was that the vehicle was now susceptible to bumps in the 

road making it uncomfortable and difficult to handle. It didn't take long for engineers to 

realise that the best suspension system for such a vehicle would be able to change its 

dynamics to cater for the large downforces encountered and yet give comfortable ride 

and handling ability.

This idea gave birth to the concept of active suspension systems. The dynamics o f such 

systems would be controlled by an on-board micro-computer that would determine the 

optimal set-up from various measurements and induce this set-up on-line with the aid of 

various hydraulic/mechanical actuators. With this in mind the Lotus team devised a 

prototype active suspension for the Lotus Turbo Esprit, a production car [3], [7]. This 

prototype was so successful (an increase of 10% in cornering speeds in a car that had 

previously exhibited excellent cornering/handling ability) that the system was adapted for 

the Lotus F. 1 motor racing vehicle.

The subsequent success o f active suspension systems as a driver aid has led to their being 

banned from F .l motor racing. However there is no reason to suggest that the wealth of 

knowledge surrounding these systems in four wheeled vehicles [2-5], [7-17] cannot be 

applied to their single track counterparts.
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One o f the more popular arrangements o f active suspension systems implements self­

tuning control (S.T.C), a form o f adaptive control, of the suspension unit [10], [12], 

[22]. This type o f control consists o f three tasks,

(i) Measurement o f suitable suspension data.

(ii) Estimation o f the time-varying suspension parameters

(ii) Construction o f the correct actuator signals from the

measured data, estimated parameters and a given control law.

This thesis details the work carried out in the development of the second task in the 

S.T.C. algorithm i.e. the estimation and tracking o f the time varying suspension 

parameters. Existing parameter estimation schemes which are appropriate for slowly 

varying dynamics are discussed. However the objective o f the w ork in this thesis was to 

produce a scheme to track rapidly varying suspension dynamics. The parameters which 

describe these dynamics exhibit large and sudden variations. An alternative algorithm 

which eaters for these so-called "jumping parameters" was developed.

The development o f this algorithm commenced with the modelling o f the suspension unit 

in a simple parametric form. This model was then simulated in software. This simulation 

was used as a platform upon which to develop the alternative param eter tracking 

scheme. An analogue com puter was constructed as an electrical representation of the 

suspension dynamics. The validity of the tracking scheme was verified using data from 

this analogue computer.

Thesis Structure

The thesis is divided into six chapters. Chapter 1, the introduction, is given as an 

overview of the problems encountered in suspension systems.

Chapter 2 gives a detailed description o f the mechanical structure of modern motorcycle 

suspension systems. The suspension problem mentioned earlier is discussed in the light of 

this structure. A  simple model for the suspension system is introduced.

A  brief summary of system identification and param eter estimation theory is given in 

chapter 3. The tracking of system parameters is discussed and an alternative tracking 

algorithm, developed as part o f this work is presented.
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Chapter 4 introduces a simulation of the suspension system. This is used as a platform 

upon which to modify the tracking scheme developed in chapter 3.

In chapter 5 the construction of an analogue com puter as an electrical analogue for a 

motorcycle suspension system is detailed. The applicability o f the alternative algorithm 

with respect to suspension systems is verified using data from this electrical analogue. 

The performance o f this algorithm is compared with that o f more conventional parameter 

tracking schemes.

Finally chapter 6 summarises the research work, details any conclusions reached and 

gives recommendations for any further work relating to this project.
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Chapter 2

SYSTEM ANALYSIS AND MODELLING

2.1 INTRODUCTION

This chapter gives a detailed description of the mechanical design o f a motorcycle shock 

absorber/suspension unit. Carrying on in the vein of chapter 1 the suspension problem is 

reviewed in light of this design and the suspension requirements o f a high speed 

motorcycle. Finally a simple model of the suspension unit is proposed.

2.2 SYSTEM DESCRIPTION

So that an understanding of the suspension problem can be gained it is necessary to give 

a brief outline of the construction of the system. For simplicity only the "front end" 

suspension o f the bike will be considered.

There are three major properties that influence the characteristics o f a suspension system 

[1]. These are :

(i) Stiffness,

(ii) Damping,

(iii) Suspension geometry.

2.2.1 Stiffness

Stiffness is the basic suspension element and as such was the sole component of the first 

suspension systems. The stiffness contribution can be achieved in many different ways. 

Early vehicles used rocker type mechanisms (still visible on rail carriages and trucks 

today). Leaf springs and torsion bars have been used in the past. The elastic properties of 

rubber and the compressibility o f air or other gases can also be exploited to introduce 

stiffness. However all o f these methods have been superseded (at least in single track 

vehicles) by coil springs made of steel or, in more expensive/sophisticated models, 

titanium (see Fig. 2.2).
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Coil springs are cleaner than any of the pneumatic struts available and have the 

advantage of compactness that rockers do not possess. It is also possible to wind these 

springs to give variable rates of compression if desired, an advantage they have over 

other solutions. Because o f these properties coil springs are used universally in 

motorcycle suspension design.

2.2.2 Damping

The purpose of damping is to prevent uncontrollable oscillation o f the system about its 

equilibrium point. Dampers w ork by absorbing the energy o f the displaced system, 

resulting in a smoother ride. The first dampers used friction to dissipate the vehicles' 

kinetic energy. However these dampers possessed an inherent amount of stiction. As 

such the suspension motion was hindered. Since a dam per requires relative displacement 

to w ork efficiently suspensions using this kind o f dam per became insensitive to the 

smaller road irregularities. This problem was later tackled by the introduction of 

hydraulic dampers (see Fig 2.1). They damped the system oscillations but with increased 

sensitivity and less stiction.

Fig. 2.1 A simple two-way hydraulic suspension damper
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There are two forms o f hydraulic damping, viscous and hydrodynamic. Viscous damping 

is caused by the shearing o f the damping medium (in this case oil) whereas hydrodynamic 

damping is due to the mass transfer of the damping medium. Viscous damping, like 

stiffness, makes a linear contribution to the system dynamics, it being proportional to the 

velocity, on the other hand hydrodynamic damping exhibits non-linear behaviour as it is 

proportional to the square of the velocity. Although hydrodynamic damping is 

mathematically less attractive than its viscous counterpart it is more flexible. It is possible 

to obtain uni-directional-damping or varying degrees o f damping by utilising the 

hydrodynamic option.

The simplicity o f viscous damping and the flexibility o f hydrodynamic damping means 

that they are both in wide use. It is common practice for Grand Prix motorcycle 

engineers to incorporate both methods o f damping in the suspension systems o f these 

motorcycles.

2.2.3 Suspension geometry

The front end suspension of a 500 c.c. Grand Prix motorcycle consists of tw o telescopic 

shock absorbers, one on either side of the front wheel, supported by the wheel itself and 

by the chassis via a metal bracket.

Damper

Shock Absorber

Fig. 2.2. A shock absorber profile.
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Each shock absorber contains a coil. For compactness the damping rod follows the axis 

of the spring helix (see Fig. 2.2). In most cases the damping and stiffness are adjustable 

from an outside source. Fig 2.3 shows a sample telescopic shock absorber.

Fig 2.3 A telescopic shock absorber.

2.3 THE SUSPENSION PROBLEM

The suspension problem is caused partly by the conflicting requirements of any high 

speed vehicle and partly by market demands which force design engineers to keep faith in 

inherently bad design.

2.3.1 The conflicting requirements of high speed motorcycles

If race tracks consisted solely o f flat, even, straight stretches o f road the outcome o f each 

race would be determined by engine power alone. Fortunately this is not the case. 

Because of this it is not good enough for a motorcycle to possess just good straight line 

speed but it must be able to corner in a quick and safe manner.

When a motorcycle is in straight line motion the main function of the suspension system 

is to isolate the unsprung mass i.e. the chassis and rider from any road irregularities. This
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is accomplished by using a soft set-up with low stiffness. When the motorcycle 

encounters a bump in the road the suspension is compressed and the rider notices little or 

no discomfort.

The situation changes however when the rider undertakes a cornering manoeuvre. When 

cornering it is essential that both tyres remain in contact with the track. This is difficult 

since the rider will "lean into" the corner to counteract the centrifugal force acting on the 

motorcycle. In doing this the size o f the "contact patch", the area o f the tyre which is in 

contact with the road, is decreased. This scenario becomes even more complicated when 

the rider needs to decelerate at slower comers. When he applies the brakes the weight of 

the motorcycle shifts forward meaning that there is more weight on the front suspension 

than on the rear. Because of this the front tyre has better contact with the surface than 

the rear tyre. W hen the motorcycle exits a corner good contact o f  the rear wheel with the 

ground is essential if the bike is to remain stable under acceleration. In accordance with 

this a stiff suspension which limits wheel movement is required.

The conflicting needs of straight line motion and cornering manoeuvres imposed on the 

suspension set-up cause a real problem. Suggested solutions involve the inclusion of pre­

load, different damping for the up/down stroke of the suspension and variable spring 

rates at different positions o f the suspension. Unfortunately these solutions treat the 

symptoms and not the problem itself. The resulting suspension set-ups are ad-hoc and 

sub-optimal.

23.2. Bad engineering design

The modem telescopic shock absorber comprises an aluminium slider fitted over a 

chromium plated steel stanchion tube (see Fig. 2.3). The obvious aesthetic appeal of 

these "shocks" has contributed to their domination in the motorcycle suspension market. 

However their popularity is not scientifically justified. Upon elose examination the 

flawed design o f these shocks becomes apparent.

Firstly when the shock absorber is fully extended there is little overlap between the slider 

and the stanchion (see Fig 2.4).

Because of this, extra unnecessary stresses and strains are applied to the suspension 

Secondly if the front suspension is considered as a whole it's clear that either slider is
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quite free to move independently from the other. This results in a twisting o f the 

suspension column.

Extnded Shock 
Minimum Overlap

(a) (b)

Fig 2.4 (a) Extended shock absorber, (b) compressed shock absorber.

These flaws alone lead to a suspension which is flexible in almost all directions a 

situation which affccts lateral stability [1]. Furthermore because o f the rake angle [1] 

(see Fig. 2.5) the front suspension is susceptible to fore and aft forces resulting in 

stiction.

Compressed Shock 
Greater Overlap

Rake Angle

Fig. 2.5 Illustration of the rake angle.

Finally it is the nature of telescopic shock absorbers which causes the characteristic nose 

-dive under breaking mentioned in chapter 1. In this situation the rider is thrown forward 

under his own weight and has to struggle to stay upright.
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2.4 SYSTEM MODELLING

Any attempt to solve the suspension problem outlined above must have as its starting 

point a model with which to represent the system. The model must be simple and yet 

represent as much of the system dynamics as possible. The purpose of such a model is 

twofold. Firstly, the dynamic behaviour of the actual system can be simulated leading to 

a better understanding o f the issues at hand; and secondly, it can be used as a 

development platform for the testing o f any algorithms to be used on the actual system.

A  physical system is usually describable in terms o f a mathematical relationship between 

the system's input and its output. This is the case with the suspension system of any 

vehicle. The front end suspension of a motorcycle has two constituent parts, the shock 

absorbers and the tyre (see Fig. 2.5). Physically speaking these can be represented 

diagrammatically as in figure 2.61. The suspension is modelled as a two degree of 

freedom (2 d.o.f.) model [2], [9], This model is sometimes referred to in the literature as 

a "Quarter Car Model" [9] or supposedly in the case of a motorcycle a "Half Bike 

Model".

MZ

K2

M l

K1

6

A /

x2

N /
B2

r l

B1 \ /

System Mass

Shock Absorber Dynamics

Tyre Mass

Tyre Dynam Ics

Road

Fig 2.6 Two degree of freedom model for the front suspension

JTaken from  [8-9].
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The system mass represents both the vehicle and rider mass apportioned to the front of 

the bike. The force F  acting on the system mass M 2 is composed of three constituent 

forces,

(i) W eight Shift: When the motorcycle is in straight line motion its weight is apportioned 

equally between the front and rear wheels. However as the motorcycle decelerates under 

braking the weight shifts forward because of its own momentum onto the front 

suspension. This increases the displacement of the front suspension while at the same 

time decreasing rear suspension displacement. The converse occurs under acceleration. 

All of the weight shifts towards the rear o f the motorcycle resulting in full compression 

of the rear suspension. In some cases this weight shift may be so pronounced that the 

front wheel of the motorcycle lifts from the ground resulting in the so-called "wheelie".

(ii) G-forces: When any vehicle corners at high speed it experiences w hat are commonly 

referred to as g-forces. These forces are caused by the centrifugal acceleration o f the 

vehicle around the circle inscribing the corner. These forces have a component along the 

axis of the suspension and as such must be accounted for in the modelling of the 

suspension.

(iii) Braking forces: Under braking the suspension experiences forces transmitted from 

the ground in reaction to the braking o f the vehicle. These also have a component along 

the suspension axis.

Displacements x2 and x l  are suspension and tyre deflections respectively. The elements 

K2 and K1 represent the shock absorber and tyre stiffness respectively. The tyres o f any 

vehicle operate at extremely high pressures and are difficult to compress. On the other 

hand the ease o f compression o f shock absorbers is quite visible even when the rider 

mounts the motorcycle. This difference is attributable to the large difference in stiffness 

between the shock absorber spring and the tyre and air stiffness. Because of this it is 

usually accepted that the tyre stiffness is as much as 1000 times that of the shock 

absorber stiffness.

Mathematically speaking the system is described by application o f Newtonian mechanics 

to the 2 d.o.f. model in Fig. 2.3. This yields Equs 2.1 and 2.2.
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M 2 x 2 ■ F - B 2 ( x 2 - x 1 ) - K 2 ( x 2 - x 1 ) Equ. 2.1

M l x l = - B i x l - K i x i + B 2 ( X2 - X1 ) + K 2 ( X2 - x x ) E q u .2 .2

This model contains the most important suspension dynamics. However it would be 

more convenient if the model description were reduced to one equation. This can be 

achieved by omitting the tyre dynamics. This is justified since,

(i) It was mentioned earlier that it is usually accepted that the tyre stiffness is as much as 

1000 times that of shock absorber stiffness. Keeping in mind that the maximum 

displacement o f a front suspension is less than 20 centimetres the amount o f the overall 

deflection which is due to tyre deflection alone is negligible.

(ii) Modern grand prix motorcycles utilise lightweight alloy wheels. In comparison to the 

w eight of the rest o f the motorcycle plus that o f the rider this element is also negligible.

The system model is thus reduccd to the single degree o f freedom model [15] depicted in 

Fig. 2.7.

Fig 2.7 Single degree of freedom model of the shock absorber.
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This simple Mass-Spring Damper (M.S.D) [19] model is described by the following 
equation,

M x+ B x+ K x = F Equ. 2.3

Equ. 2.3 assumes that the system parameters are time-invariant and that the system is 
linear. This is known not to be the case. Without trying to re-complicate the system 
model the time-invariance of the suspension parameters should be accounted for.

This results in Equ. 2.4,

M (t)x+  B (t)x+  K (t)x = F (t) Equ. 2.4

It is this model that will be used as development tool in the following chapters.

2. 5 SUMMARY

This chapter has outlined the physical structure of suspension systems. The suspension 
problem has been discussed in detail justifying an investigation into this aspect of 
motorcycle engineering. Finally a model for the front suspension unit has been proposed. 
This model takes into account the time-varying aspects of the system.
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Chapter 3

SYSTEM IDENTIFICATION AND PARAMETER 
ESTIMATION.

"..measurements and observations are nothing more than approximations 
to the truth, the same must be said o f all calculations resting upon them, and 
the highest aim of all computations made concerning concrete phenomena 

must be to approximate as nearly as possible to the truth."

Karl Friedrich Gauss (1809)

3.1 INTRODUCTION

This chapter gives some background to system identification and parameter estimation 
theory. The concepts of parameter tracking and fault detection are introduced. Finally an 
estimation scheme is developed to the track time-varying dynamics of the front 
suspension unit of a motorcycle.

3.2 SYSTEM IDENTIFICATION

System identification is the process of constructing mathematical models of dynamical 
systems from observations and prior knowledge [23], [42]. The theory itself has its roots 
among the hard sciences. One of the first identification experiments was carried out by 
Hailey in 1704 when he realised that comet sightings in the years 1531, 1607 and 1682 
related to a single object. In an attempt to further understand the behaviour of this object 
he calculated the parameters of its orbit using Newtonian mechanics and gravitational 
theory (the prior knowledge) and predicted its return in 1758 [21-22]. Unfortunately 
Hailey met his demise in 1742 and was unable to celebrate the return of the comet which 
was to carry his name into history.
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It is clear from this, the earliest of examples, that modelling is a subset of system 
identification. In Hailey's case the model structure was provided by the cumulative work 
of Gallileo, Kepler and Newton. Hailey combined this wealth of background knowledge 
with his collection of observations (the sightings) and deduced an exact system model. 
He then used the prediction properties of this identified model to test its own validity.

The basis of a system identification experiment is the set of system inputs and outputs. 
Reasoning in this fashion leads to the obvious conclusion that identifying the system (Fig. 
3.1) amounts to collecting corresponding input/output data and determining in some 
scientific manner a mathematical relationship between the two. This mathematical 
relationship will be representative of the system dynamics.

Identified System  

Fig. 3.1 The identification format

At this point questions arise as to whether there is only one possible structure for this 
relationship which describes the identified system and whether this structure can be 
determined prior to the identification experiment. The answer to the first question is that 
there are usually a number of mathematical structures which lend themselves to a 
particular identification experiment.
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System Identification

Fig. 3.2 Two classes of identification

These structures are either open-ended leading to identification by classical or non- 
parametric means or closed resulting in the use of modem estimation techniques [23], 
[24], [26], [40-41] (see Fig. 3.2).

3.3 CLASSICAL IDENTIFICATION

Non-parametric methods of identification refer to those methods which do not employ a 
finite dimensional parameter vector in the search for the best description of the system
[24], As such identification by these means results in the assignment of impulse 
responses (using time-domain methods) or frequency responses (using frequency domain 
methods) to the system under investigation.

3.3.1 Time domain methods

It is known from systems theory [25] that the input-output dependency of a system can 
be characterised by its impulse response h(t). Classical time-domain analysis centres 
around the approximation of this response. Once this is known the system output y(t) is 
given by the following convolution integral

y (t) = J h ( t  — x ) u ( x ) d T ,  t > 0  Equ. 3.1

where u ( t)  is the system input at time x
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Measurements of the system input/output data are usually taken at discrete moments in 
time, thus it is necessary to deal with the discrete formulation of Equ. 3.1,

00

y ( k ) =  2 j h ( j ) u ( k -  j) Equ. 3.2

k in Equ. 3.2 indicates the sample instant. To identify the system impulse response one 
may consider simply "dividing across" by the system input in Equ. 3.2. However noise 
considerations dictate that an alternative method be used. The literature [23-24], [26] 
recommends that we try to "correlate out" the noise component in the data. Calculation 

of the input-output cross-correlation function, ruy (k) yields the Wiener-Hopf [27] 

equation,

00

Equ. 3.3

where ruu (k) is the auto-correlation function of the input sequence.

If the input chosen is a white noise signal then Equ. 3.3 reduces to

ruy (k) = h (k )o n2 Equ. 3.4

2o n being the variance of the input white noise signal which is unity.

Calculation of the system impulse response is then trivial.

Rather than calculating the entire system impulse response it is more common in industry 
to examine the system step response and from this determine the system dynamcis. A 
more detailed discussion of this topic is given in section 3.4.1.



33 .2  Frequency domain methods

In some cases it may be convenient to deal with the frequency domain representation of 
the system. The identification experiment must now alter to meet this new requirement 
and it is the frequency domain representation of the impulse response, the system 
frequency response, which is now approximated.

If the system operates within a certain band of frequencies then a simple solution to the 
problem is achieved by applying various sinusoids from within this frequency range to 
the system. Given the system input U and the system output Y, the discrete system 
transfer function H (z 'l) within the area of interest can then be approximated as

i Y f z -1)H (z ) = — —  Equ.3.5
UCz-1)

where z ' l  is the backward shift operator.

This method may be susceptible to noise. However it is possible to correlate this out as 
mentioned before. Failing this, other more powerful methods such as spectral analysis are 
available [24], [26].

These non-parametric methods are tried and tested. However they are inappropriate for 
the current work. Firstly they yield open-ended solutions which may not be amenable to 
modem control/estimation techniques. Secondly they seldom incorporate any prior 
knowledge about the system which may be available. Therefore this work will 
concentrate on parametric methods of identification.

3.4 PARAMETRIC IDENTIFICATION

Parametric identification is both physically and mathematically more appealing than any 
of the classical methods mentioned above. The reasons for this lie in the closed nature of 
the resulting solutions and the ability to take advantage of a priori information.
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Fig. 3.3 Parametric identification
Parametric Identification is made up of two distinct sub-tasks:

(i) System Modelling,
(ii) Parameter Estimation.

3.4.1 System modelling:

Modelling with respect to the suspension unit has already been discussed in section 2.4. 
In a more general sense modelling refers to the representation of the system dynamics by 
either graphical or mathematical means. In some cases the structure of the model (its 
order) will be obtained through comparison with similar systems; otherwise the 
application of physical laws such as Newton's laws of motion and Kirchoffs current and 
voltage laws will determine the form of the model.

Attempts by Cohen and Coon [28] and Ziegler and Nichols [29] to tune the parameters 
of Proportional Integral Derivative (P.I.D.) [30], [53] controllers concentrated on what 
was then referred to as the system signature, now referred to as the system step 
response. It became apparent that the signature of a large number of processes possessed 
certain similarities. Each had a certain d.c. gain, rise time and settling time. As a result 
both Ziegler and Nichols and Cohen and Coon deduced standard models which 
represented the system dynamics in terms of these parameters. For example Cohen & 
Coon observed that the response, Gprc(s), of a large proportion of industrial processes 
had a sigmoidal shape which could be approximated by a 1st order system with a 
deadtime response given by
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Equ. 3.6

where
K = the process d.c. gain,

td = the process dead time,

x = the process time constant.

Once the system step response was obtained a graphical examination of it yielded 
approximate values for the constants in Equ. 3.6. Ziegler and Nichols devised similar 
models which could be parameterized using similar methods.

The graphical methods outlined above yield good results for process control and are 
simple to implement. However this simplicity means that the model may lack certain 
nuances of the system dynamics. These models are also continuous in nature and as such 
are not compatible with modem control/estimation techniques. These latter techniques 
implement algorithms which operate in discrete time so it is necessary to obtain a 
discrete formulation of the system dynamics.

The dynamics of many systems can be described by their continuous time differential 
equations. The discrete counterpart of these equations is the difference equation. This is 
obtained from the differential equation by using any of a number of discrete 
transformations [30]. These transformations will normally yield the following form of 
discrete-time difference equation [24].

y(k) + ajy(k - 1) + a2y(k -  2 )+  anay(k -  na)

b0u(k -  l)+.... + bnbu(k -  nb) + e(k) + cxe(k -  l)+ ....+ cnce(k -  nc) Equ. 3.7

or

Ay(k) = Bu(k-l) + Ce(k) A = 1 + a1z_1 + a2z 2 +....+ anaz na
B = b0 +b1z-1 + +bnbz-nb
C = 1 + CjZ’1 + c2z-2 +.......+ cncz-“c Equ. 3.8
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This is known as an Auto-Regressive, Moving Average with exogenous input or 
ARMAX model [24], The variable k refers to the current sample point. The variables

y(k-l), ^ (k -n j are lagged values of the system output. The sequence e(k-l),....,e(k-
nc) is the sequence of system error or noise samples. The noise source, e, is assumed 
white. However in some cases the system noise is coloured. This is accounted for by 
assuming the white noise e is filtered through a discrete filter whose coefficients are
given as (cl5 ,cnc). The coefficients of this filter along with the coefficients of the
system input (b0, bnb) and the coefficients of the system output (a! ana) make up
the system parameter vector 0 .

A

If an estimate of the parameter vector (0) is available the systems current output, 
y(k |0), given this estimate can be predicted using the predictor, [24]

<pOO = [ - y ( k - l ) , . . . - y ( k - n a ) ,u ( k - l ) ,  u(k -  nb ),e(k  - 1) e ( k - n c )]

Since the variables e(k-l) e(k-nc) are unmeasurable they are approximated as

where y(k) is a measurement of the system output and y(k) is the estimate of this 

measurement given by Equ. 3.9. Since this estimate of e(k) is 0 dependant e(k) should be 
written as e(k,0). Since <p is dependant on e it is also dependant on 0. Thus there is a 
non-linear relationship between cp and 0. Equ. 3.9 must be rewritten as

u(k-l), ,u(k-nb) are lagged values of the discrete system input while the variables

y(k|0) =  <PT (k )0 Equ. 3.9

where

e(k) = y ( k ) - y (k ) Equ 3.9a

y(k|0) = cpT (k, 0)0 Equ. 3.9b

Because of this non-linearity Equ 3.9b is known as a pseudolinear regression.
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If it is assumed that the statistics of the noise entering the equation are white then Equ. 
3.8 reduces to

Ay(k) = Bu(k-1) + e(k) Equ. 3.10

This is known as an Auto-Regressive with exogenous input or ARX model structure.

As with an ARMAX model a predictor can be formed once an estimate of the parameter 
vector is available. This predictor, known as a linear regression, is given as

y(k |0) = cpT (k)9 Equ. 3.11

where

0 = [a1,a 2 , .. ..a na,b o ,b 1,  b nb]T

<p(k) = [-y(k-l), -y(k-2),.... -y(k-na), u(k-l), u(k-2), u(k-nb)]

The discrete nature of this model makes it amenable to modern estimation techniques. It 
is also simple and yet can accommodate large systems by the simple addition of extra 'a' 
and/or 'b' parameters.

The modelling aspect of parametric identification has now been treated. Modelling the 
system using the ARMAX/ARX structure(s) reduces the identification problem to one of 
estimating the optimal value of 0, the parameter vector. This is the realm of parameter 
estimation.
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3.4.2. Parameter estimation:

Parameter estimation is the process of determining in some optimal fashion the value of 0 
in equations 3.10/11. Optimality is in some senses user definable and because of this 
there is a plethora of estimation algorithms, all of which claim to be optimal.

The most complete of these is the Bayes estimator [23-24], [31-32], This is an all- 
encompassing estimator which relies upon the statistical properties of the system to 
provide the best estimate of 0. Given that P denotes the probability density of a function, 
this approach considers the parameters as random variables with a-priori (before 
measurements are taken) probability densities P(0) [33] before the identification 
experiment. Measurements are made and the Maximum-A-Posterior (MAP) estimates,
A

0MAp, are calculated as those which maximise the probability P(0|y). P(0|y) is the 
probability of 0 given that the measurement y has been taken. Thus,

0 m a p  = arg(0)m axP(0|y) Equ. 3.12

where

P(6 |y )=  P (y ^^)xP^ ) Equ. 3.13
P(y)

Equation 3.13 is known as Bayes rule [23-24], [33], hence the term Bayesian estimation.
A  A

P(y) is the probability density function of the measurement y. P(y|0) and P(0) are the
A  A*

probability density functions of y given 0 and 0 respectively.

The necessary provision of a prior probability distribution is both the chief strength and 
weakness of the Bayesian estimator. Any algorithm which incorporates prior information 
is welcome but it is unrealistic to think that a prior distribution will be available in all 
situations. This problem can of course be surmounted by ignoring the prior probability 
distribution. This leads to the Maximum Likelihood (M.L.) estimator [34-38],

Once the measurement data are known the posterior probability distribution function,
A  A

P(y|0), becomes a function of the parameter vector. The value of 0 which maximises 
this function, also known as the likelihood function, is the maximum likelihood estimate 
of 0. In most cases it is numerically difficult to maximise the likelihood function. In such
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scenarios it is simpler to minimise the negative log of its inverse, the log loss function 
(LLF) [23], [26], [35-37], Conceptually speaking the loss function can be seen as an 
error in the estimate of 0. The M.L. estimate is therefore optimal in the sense that it

a

minimises this loss or error function. The M.L. estimate 0ML (for N measurements) is 

given as

0ml = afg(0) min LLF(0) Equ. 3.14

where

LLF(0|y) = -lo g P (y |0 ) = - f > g P ( y ( i ) |y ( l : i -  1,0) Equ. 3.15
¡=i

The M.A.P. and M.L. estimators are in wide use especially in the aeronautical industry 
but their reliance upon statistical inference (some would say mathematical complexity) 
ranks them in second place behind the most popular estimator which is the least squares 
estimator.

3.5 THE LEAST SQUARES ESTIMATE

The theory of least squares estimation was first devised in 1795 by the then 18 year old 
Karl Gauss. Following in Hailey's footsteps, he was investigating the motion of the 
planets and comets using telescopic measurements. Knowing that the motion of astral 
bodies can be characterised by the formulation of six parameters he set about the 
determination of these parameters. Hailey had achieved this for the motion of "his" 
comet so there was nothing new in what Gauss was attempting. The novelty lay in the 
method he used and it has since gained great acclaim among mathematicians and 
engineers alike.

Gauss devised the theory of least squares under the assumption that all observations are 
subject to error. He defined the least squares estimates as nthe most probable". He later 
expounded that the most probable estimates are those that minimise the sum of the 
squares o f the errors between the actual system output y(k) and the predicted output 

cpT(k)0 given the model, i.e. the mean squared error. Given the linear regression for the 

ARX model in Equ. 3.10 the mean squared error VN(0,(pN)
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where cpN = [y(l),u(l),y(2),u(2),.....y(N),u(N)]

is given by

VN(0,<pN) = J - 2 ; i [ y ( k ) - <pT(k )e]2 Equ. 3.16
N k=l

The unique feature of this, the least squares criterion is that it is quadratic in nature. 
Therefore it can be minimised analytically. Once minimised (derivation listed in Appendix 
A. 1) the resulting estimate of the parameter vector 0 is given as [24],

0Ls = arg minVN(0 ,(pN) = ¿ 2 > ( k )<PT( k) ¿ 2 > ( k )y (k ) Equ. 3.17
N i = i  N f c i

The situation changes however when the system noise is coloured. In this scenario the 
linear regression of Equ. 3.10 is no longer applicable. In this situation the system output 
is predicted using the pseudo linear regression of Equ. 3.8. Estimation of the parameter 
vector now using the L.S. estimator results in biased estimates. The problem may be 
overcome by estimating the parameters of the filter C in the ARMAX representation of 
Equ. 3.8. Unfortunately this requires knowledge of e(k), e(k-l) quantities which as 
mentioned before are unmeasurable. The problem is by-passed by approximating these 
variables as the estimator prediction errors (or residuals) [20], When L.S. estimation is 
applied in such circumstances it is referred to as extended least squares (or approximate 
maximum likelihood) estimation.

It has been stated previously that the least squares estimator is the most popular. 
However the algorithm described thus far is a batch estimator meaning that it processes 
the system data off-line and en-masse yielding one estimate of the parameter vector 0 . 
Self-tuning control systems operate in real time and as such require on-line or recursive 
estimation of the system parameters. Naturally enough the most popular recursive 
estimator is a recursive form of the most popular batch estimator i.e. the recursive least 
squares (R.L.S.) estimator.

The R.L.S. algorithm is formulated as
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ê(k  +1) = 0(k) + P(k + l)<p(k + l)[y(k  +1) -  cpT(k + l)0(k)] Equ. 3.19

P(k + l) = P (k)
j <P(k + l)<pT(k + l ) P ( k )

m 14-(p' (k + l )P (k)cp(k +1 )
Equ. 3.20

The mechanics of this algorithm are easily explained (the derivation of this recursion is
A.

listed in Appendix A.2.). The current parameter estimate 0(k  + l) is given as the 

previous estimate, 0 (k), plus a correction which is proportional to the prediction error 

e(k) = y(k  +1) -  (pT(k + l)0 (k ) . This correction takes place in a fashion which not only 

minimises the least squares criterion, but under Gaussian noise conditions, the current 
parameter estimate covariance P(k+1) [23], Suitable selection of the applied input 
sequence [45] leads to a final estimate whose covariance approaches the Cramer Rao 
lower bound [23-24] which is the minimum for the estimator. It is also of interest that 
under these noise conditions the least squares estimates are equivalent to the maximum 
likelihood estimates referred to earlier.

As it stands Equ. 3.20 is prone to numerically instability. It is normal practice to 
implement this equation using one of the many factorisation algorithms. The most 
prevalent among these is Bierman's U-D factorisation [43], This is basically a square root 
factorisation without the square roots. It is assumed from now on that this factorisation 
is used in the parameter estimate covariance equation (Equ. 3.20) whenever the R.L.S. 
or one of its derivatives is referred to.

As an example consider the estimation of the following simple deterministic system. 

y(k) = -a jy (k  - 1) -  a2y(k -  2 ) + b0u(k - 1) 

aj = 0.5, a2 = 0.8, b0 = -0 .9 ,

A 1 Hz. square wave was applied to the above system. The recursive least squares 
algorithm was applied to the resulting input/output data. The data and the resulting 
estimates are depicted in Fig. 3.5 (overleaf).
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As seen in Fig. 3.5 the R.L.S. algorithm performs well in this case. The 
convergence/variance properties of the estimates are determined by the system noise. 
Since the above system is deterministic these estimates are quick to converge and have 
excellent variance properties. It is to be expected that the condition of these properties 
will deteriorate under non-ideal conditions.

Unfortunately when the system dynamics in question are time-varying (such as in the 
motorcycle case) the estimator becomes sub-optimal and cannot track these changes. 
Although the ordinary R.L.S. algorithm does possess a certain innate tracking capability 
its rate of convergence is too slow, so much so that the system dynamics may have 
altered several times before the estimator reconverges.

System Input/Output Data

(a)

(b)

Fig. 3.5 (a) Identification data, (b) Parameter estimates using R.L.S.
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The problem arises because once the estimator has converged initially, the P matrix 
becomes extremely small conveying a high confidence in the current estimates. This in 
turn means that the estimator gain is small, rendering the effect o f new measurements 
minute in comparison to the effect of old estimates. In short the estimator has a long 
memory.

It seems natural from the previous discussion that attempts to modify the R.L.S 
algorithm to increase its tracking capability centre around the parameter estimate 
covariance update equation, i.e. equation 3.20. The literature [23-24], [26] recommends 
two modifications to the ordinary R.L.S.. These are discussed below.

3.6 THE FORGETTING FACTOR ALGORITHM.

As mentioned previously low values of the P matrix lead to unwarranted confidence in 
the parameter estimates at points in time when the system is changing and these 
parameters are varying. These current parameter estimates are based on old data. It is 
possible to counteract this by decreasing the memory size of the estimator. Once this 
task is performed the estimator will put less weight on old measurements making it more 
alert to system changes. To achieve this a forgetting factor X is inserted into Equ. 3.20 as 
follows,

P(k + l) = r 1P (k)
cp( k  +  l)cpT ( k  +  l ) P ( k )  

m X +  (pT ( k  +  l ) P ( k ) c p ( k  + 1 )
Equ. 3.21

A, is usually chosen less than one. However care must be taken in its choice, as a value 
which is too small will lead to estimates which are susceptible to noise.

Consider again the system,

y (k) = -a jy (k  - 1) -  a2y(k -  2 ) + b0u(k - 1) 

but now let the system parameters vary as follows

^  = 0.5, aj = 0.8,
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b0 = -0.9, k < 200;
b0 = -0.5, 200<k<400;

bo = -0.9, 400<k<800;

A 1 Hz. square wave (see Fig 3.5a.) was applied to this system and its system parameters 
were identified using the forgetting factor algorithm as outlined above. X was set to 0.97. 
The resulting parameter estimates are depicted in Fig. 3.6.

The estimates in Fig. 3.6 illustrate that the forgetting factor algorithm works insofar as it 
is capable of tracking system parameters. However it is o f note that the overall variance 
of the parameters has increased and the tracking of the parameters is rather sluggish.

1

o

-a

Fig. 3.6 Tracking of the system parameters using the forgetting factor algorithm.

The main failing of this algorithm is that it is prone to a condition known as estimator 
windup or covariance blow-up [20] (similar to integral windup experienced in some 
controllers). Under normal operating conditions X will act to increase the size of P(k+l) 
while the data vector (p(k+l) will act to decrease it, thus keeping a fine balance between 
alertness to parameter changes and convergence of the estimates to their correct values. 
However when the input signal decreases significantly in amplitude, below a level were it 
ceases to excite the system, the data vector cp(k+l) holds no new information. At this 
point the bracketed term in Equ. 3.21 will have little or no effect on the covariance 
matrix and P(k+l) = À_lP(k). Because X<l the covariance matrix P(k+l) increases in size 
beyond control, hence the term covariance blow-up. This has the effect of rendering the 
parameters unreliable and biased.
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3.6 THE KALMAN FILTER

The forgetting factor algorithm outlined above is as already stated the m ost popular 

m ethod used  to  track time-varying parameters. H ow ever in certain circum stances this 

algorithm is non-ideal. O ne o f  its ch ie f w eaknesses is the underlying fact that the 

inclusion o f  a forgetting factor restricts the user to  the assum ption that all o f  the system  

parameters vary in exactly the sam e manner and at the sam e rate. T he estim ates which  

result w hen this algorithm is applied to  system s w h o se  parameters vary independently  

and at different rates are therefore suboptimal. In this scenario, given  prior information  

about expected  rates o f  fluctuation in the system  parameters, the ideal tracking algorithm  

w ould  incorporate this know ledge. The flexibility offered by such an algorithm w ould  

greatly enhance not only the accuracy o f  the resulting parameter estim ates but also the 

rate o f  convergence to  n ew  parameter values after the system  had altered. This flexibility 

is an inherent feature o f  the Kalman filter.

The Kalman filter w as developed by Rudy Kalman in 1960 [46], T o  gain an 

understanding o f  the Kalman filter an insight into the concept o f  state space and state 
estimators must be obtained.

3.7.1. State estimation.

A lthough the concept o f  state space is not n ew  it is only since the advent o f  m odem  

control theory in the early 1960's that this form  o f  system  description has gained  

notoriety. The theory o f  state space is based on  the fact that, g iven  a set o f  variables 

(know n as state variables) at a certain point in time, say t0, together w ith  the know ledge  

o f  the system  input at this tim e and thereafter, the behaviour o f  the system  can be 

determined at any time after t0. Any given  system  can be described by the fo llow ing  

equations [24], [53]

x ( t )  =  A ( 0 ) x ( t )  +  B ( 6 ) u ( t )  +  w ( t )  Equ. 3 .22a

y ( t )  =  C ( 0 ) x ( t )  +  v ( t )  Equ. 3 .22b

Equ. 3 .22a  is a matrix differential equation and is know n as the state equation. The 

system  state vector x(t) is com prised o f  all the system  state variables. In m ost cases these
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variables are physical quantities such as velocities and accelerations in the case o f  

mechanical system s and vo ltages and currents in the case o f  electrical system s. H ow ever  

it is possible to  describe the system  using abstract state variables which may have no 

physical significance w hatsoever.

A  is the state matrix and B  the input matrix. B oth  o f  th ese m atrices are functions o f  the 

system  parameter vector 9  and as such these matrices are tim e-varying i f  the system  

parameters are non-stationary. The variable w (t) is a w hite n oise sequence know n as 

process noise. This takes account o f  unm odelled disturbances acting on  the system .

Equ. 3 .22b  is the measurement equation. The system  output y(t) is a function o f  the state 

vector x(t). The state vector is coupled to  the system  output by the vector C (0). The 

variable v (t) is a w hite noise sequence know n as m easurement noise.

The Kalman filter w as originally presented as an alternative solution to  the so-called  

Wiener problem1 [27]. This problem dealt w ith  tw o  issues,

(i) The prediction o f  random signals,

(ii) The separation o f  random signals from  noise.

W ith reference to  the state space description given  in E qu.s 3 .22a/b  the W iener problem  

reduces to  the follow ing,

W e are given  the state vector x (t) and noise v(t), but can only measure 

the signal y(t). Given these facts w hat can w e  infer about x (t) ?

B efore Kalman it w as accepted that this problem should be tackled by filtering the 

measurement data y(t) using w hat w as referred to  as a Wiener filter1 [27], Invariably the 

nature o f  this filter w as unknown and academ ics spent their tim e form ulating m ethods to  

approxim ate the best filter for a given  scenario.

1 Wiener filtering originated as a result of the formulation of the Wiener-Hopf equation, (see section 3.3)
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Kalman had som e m isgivings about W iener filtering. Firstly the optimal filter w a s  

specified by its im pulse response. This meant that construction o f  this filter w as a 

com plicated task. Secondly numerical determination o f  this optim al im pulse response  

w as often quite involved and poorly suited to  m achine com putation. Thirdly and perhaps 

m ost importantly the W iener filter w as developed  under the assum ption that the  

underlying signal and noise processes w ere stationary. Since this w as not the case in 

many real applications the W iener filter had a limited area o f  applicability.

T he foundation o f  Kalman's m isgivings lay in the system  description used to  develop  

W iener filtering, the system  im pulse response. R ecogn ising  this Kalman developed  his 

ow n  filtering theory around the state space system  description o f  E qu.9 3.22a/b. H ow ever  

Kalman's w ork w as developed during an era w hen  digital com putation w a s becom ing  

increasingly popular. R ecognising this Kalman's theory w a s originally developed  for the  

discrete version o f  Equ.s 3.22a/b.

T he discrete versions o f  these Equ8 are,

x ( k  + 1 )  =  O x (k )  +  ru (k )  + w (k ) Equ. 3 .23a

y ( k )  =  H x (k )  +  v ( k )  Equ. 3 .24b

A s in Equs 3 .22a/b  x  and y  represent the system  state vector and the system  output 

vector respectively. H ow ever in this case x  and y  are referenced by k a m easure o f  

discrete tim e and not t a m easure o f  continuous time. O  is the state transition matrix and 

T is the input matrix. H  couples the state vector to  the system  output y(k ) and on ce  

again w (k ) and v(k ) represent w hite process and m easurem ent noise respectively.

A s stated above, in the context o f  state space the W iener problem reduces to  one o f  

inference about the state vector x(k ) (or x(t) in the continuous case) given  the  

measurement vector y(k).
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This problem can be broken down into three different areas,

(i) Smoothing-. Finding x(k ) g iven  y (k + 1 ) ,y (k ),...........y (0 )

(ii) Filtering Finding x(k ) g iven  y(k), y (k -1 ),.......... y (0 )

(iii) Prediction Finding x(k ) given  y (k - l) ,  y (k -2 ),....... y (0 )

R ealising that (i) - (iii) are inherently linked Kalman referred to  th ese problem s under the 

collective term o f  state estimation. H e formalised his estim ator under the constraints that 

the resulting state estim ates should be linear functions o f  the m easurement data and that 

these estim ates should be obtained in an optimal fashion w hich  involved the minimisation  

o f  a lo ss  function2. The loss function that he ch ose w as the square o f  the error betw een  

the actual state value and its current estim ated value.

W orking under these constraints Kalman derived the fo llow in g recursive state estimator. 

x ( k  + 1 )  =  x ( k )  +  K (k  +  l ) e ( k  + 1 )  Equ. 3 .23a

e ( k  + 1 )  =  y ( k ) - <pT(k  +  l ) x ( k )  Equ. 3 .23b

K (k  +  l )  =  P (k  +  l)<p(k +  l )  = -------  P (k )cp (k  +  1)----------  Equ. 3 .2 3 c
V '  1 +  cp (k  +  l)P (k )c p (k  + 1 )

P ( k  + 1 )  =  P ( k )  -  P ( k ) (P (k  +  l ) (PT ( k  +  1) p ( k )  3 .23 d
V '  v '  1 +  cp ( k  +  l ) P ( k ) c p ( k )

In Equ. 3 .23a  x (k  +  l )  is the new  estim ate o f  the state vector x(k ) given  the previous 

estim ate x ( k )  and the innovation or prediction error e (k + l) . The innovation is 

multiplied by a factor K (k +1) know n as the Kalman gain. This controls the effect new  

measurem ents have on the current state estim ate. P (k + 1) is the covariance o f  the current

2 This is similar to the log loss function used in maximum likelihood parameter estimation (see section
3.4.2
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estimates and is an indication of the reliability of these estimates. R is the covariance of 
the system process noise w(k).

The estimates given by Equ. 3.23a are optimal in the sense that the mean squared error 
between the estimated state and the actual state is minimised. However under the 
assumption of Gaussian noise conditions the Kalman filter also minimises the mean 
squared error between the actual system output and the predicted output given by 
(pT(k + l)x (k ) [23], This is the same criterion used in the R.L.S. algorithm for 

parameter estimation.

3.7.2 The Kalman filter as a parameter estimator.

In the development of the R.L.S. estimator in section 3.5 the underlying model was given

y(k) = cpT(k)0 + e(k) Equ. 3.24

This system can be described in state space form as

x(k + 1) = x(k) Equ. 3,24a

y (k) = cpT(k )x (k ) + e(k) Equ. 3.24b

where the state vector x(k) is given as

x(k) = (a!,a2,  a ^ b j ,  bna)T = 0 Equ. 3.25

Since O is taken as the identity matrix and there is no state noise, the system is time- 
invariant. The optimal state estimate for this system can be computed using the Kalman 
filter equations (Equs. 3.23a-d). Since the states o f this system are the systems 
parameters the Kalman filter is in fact operating as a parameter estimator. Moreover 
since process noise has been ignored in this system (and hence R=0) it can be shown that 
the Kalman filter reduces to Equs 3.19/20, the R.L.S. algorithm. Thus in the case of 
Equs. 3.24a/b under Gaussian noise conditions and assuming there is no process noise 
the Kalman filter and R.L.S. estimator are equivalent.
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At first sight this may seem like a trivial piece of information. However in the current 
context this statement is highly important. The Kalman filter was originally developed to 
estimate system states which vary with time. The above discussion leads to the obvious 
conclusion that there is no reason to suggest that time-varying parameters cannot be 
tracked using this algorithm. In order to achieve this goal it is necessary to remove the 
condition that there be no process noise, yielding

x(k + l) = x (k) + w (k) E (w (k )) = R Equ. 3.26

This means that the system states (parameters) are no longer time-invariant. Giving up 
this assumption means that only the parameter covariance update equation in the Kalman 
filter algorithm is altered giving,

P(k + 1) = P (k ) -  P(k)(p(k + 1)(pT(k + 1)P(k) + R Equ. 3.27
V w  1 + cpT(k + l)P(k)cp(k)

Equ. 3.27 is now equivalent to the state estimate covariance update equation, Equ. 
3.23d.

Norton [23] suggests that implementing the Kalman filter in this fashion as a parameter 
tracking scheme is akin to explicitly modelling the parameter variations. This yields

0(k  + l) = 0 (k ) + w (k) E (w (k )) = R Equ. 3.28

which is equivalent to Equ. 3.26.

However in this context w is not seen as process noise but an explicit model of the 
parameter variation known as a random walk model. R is chosen as a positive definite 
matrix, each element along the diagonal indicating how much the corresponding 
parameter in the parameter vector 0 varies. This alters only the covariance update 
equation of the R.L.S. estimator resulting in,

P (k + l) = P (k) I -
cp(k +  l jcp1 ( k  +  l ) P ( k )  

l  +  ( p ' ( k  +  l ) P ( k ) ( p ( k  +  l )
+ R Equ. 3.29
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Equ. 3.29 is equivalent to Equ. 3.27 thus maintaining the equivalence of the Kalman 
filter and the R.L.S. estimator.

Since w is under the control of the user this algorithm allows the user to indicate when 
certain parameters vary more rapidly than others. This is in contrast with the forgetting 
factor algorithm which as stated previously assumes that all of the parameters vary in 
the same manner.

Consider again the system tracked in section 3.6. Replace the forgetting factor 
mechanism with the Kalman filter (or random walk) and let R equal the identity matrix. 
The resulting estimates are illustrated in Fig. 3.7.

It is interesting to note that the Kalman filter responds quicker than the forgetting 
factor algorithm (see Fig. 3.6) to changes in system parameters. However it is notable 
that there is a severe degradation in the variance properties of the resulting estimates. 
This degradation occurs because implementation of the Kalman filter necessarily means 
that
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Fig. 3.7 Tracking the system parameters using the Kalman filter.

the estimator is never confident of the reliability of the current estimates. This happens 
because the minimum value obtainable by the parameter estimate covariance matrix P, 
is R.
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Although both the forgetting factor algorithm and Kalman filter track time varying 
parameters, they do so in a rather passive manner. They both assume that the system is 
changing constantly even when it is not. Clearly it would be desirable to increase the size 
of the matrix P at instances of time variation only. This assumes knowledge of these 
occurrences which is unrealistic. It does however seem plausible that these occurrences 
are detectable. Algorithms which detect the occurrence of a parameter change are known 
as fault detection algorithms.

3.8 FAULT DETECTION

The physical nature of most control systems means that they are susceptible to failure. In 
order to maintain continuity of the control protocol it is necessary to be able to detect 
these failures so that counteracting measures can be taken. This is the realm of fault 
detection.

The fault detection procedure consists of three tasks, alarm, isolation and estimation 
[47]. The alarm task is concerned with deciding whether a fault has occurred or not. 
Isolation is the determination of the source of the failure and estimation is the process of 
determining the extent of the failure. A typical example would be the on-board control 
system in an aeroplane. If a system sensor or actuator fails the control system must be 
alerted to enable it to make corrections (such as an actuator replacement) so as to avoid 
the obvious disastrous consequences which may occur.

In more recent times fault detection algorithms have found application in the field of 
parameter estimation or more specifically parameter tracking. [48-49], It is quite clear 
from the arguments outlined above that any attempt to track the parameters of the 
motorcycle suspension system would only benefit from the inclusion of a fault detection 
algorithm. It must be noted that whenever a fault is referred to in relation to parameter 
estimation it is not implied that there is something amiss with the system, rather that it is 
changing.

The literature [47-52] indicates that there are many forms of fault detection scheme. 
Perhaps the simplest of all are referred to as "failure sensitive filters". These consist of 
estimation schemes which have been altered to make them more alert. The main problem 
with the original filters is that they learn the system too well and give little weight to new 
system measurements. The forgetting factor and random walk modifications to the
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It is visible from Fig.3.8 that this simple detection algorithm which monitors the 
estimator error magnitude alone works quite well. It tracks the system parameters with 
better variance properties than those produced by the Kalman filter and reconverges to 
the correct parameter estimates faster than the forgetting factor algorithm. These 
properties are due to the active nature of this method as opposed to the passivity of the 
methods illustrated in sections 3.6 and 3.7.

P red ic tio n  E rro r

S a m p le  N o

P a ra m e te r  E s tim a tes

S a m p le  N o

Fig. 3.8 Estimation using simple fault detection.
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3.9 SUMMARY

The identification of dynamic systems has been discussed. An emphasis has been placed 
on time-varying systems and methods to cope with this time-variance within the system 
identification field have been outlined. The method of implementing fault detection 
algorithms in parallel with the estimation scheme has been presented as an alternative to 
the recommended methods and it has been shown that this type of scheme produces 
better variance/convergence properties than the afore mentioned methods. This method 
will be altered in the next chapter to cope with the specific problems encountered in the 
motorcycle suspension problem.
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Chapter 4

SYSTEM SIMULATION.

4.1 INTRODUCTION.

In this chapter a simulation of the M.S.D. model of the suspension unit (chapter 2) is 
implemented. Data taken from this model is used to develop the alternative parameter 
tracking scheme introduced in chapter 3. The performance of this algorithm is then 
compared with that of conventional tracking schemes.

The M.S.D. model presented in chapter 2 contains three parameters of interest: mass, 
stiffness and damping. It was necessary to obtain approximate values for these 
parameters to simulate the dynamics of the suspension unit.

Static load tests were performed on the shock absorber depicted in Fig. 2.3. These 
tests amounted to placing a series of weights onto the shock absorber and measuring 
the resulting displacement. Given Hooke's law [56],

F = kx Equ4.1

where F is the applied force, x the resulting displacement and k the spring stiffness, the 
shock absorber static spring stiffness was easily calculated. The system mass was 
calculated by weighing the shock absorber and a suitable damping ratio was assumed1

These tests yielded the following parameter values,

1 Damping ratio obtained after consultation with Aengus Murray and Tom' O Kane of Team Kenny 
Roberts.

4.2 SYSTEM SIMULATION.

(i) Mass
(ii) Stiffness
(iii) Damping

M = 2kg,
K = 12.25kN/m, 
B = 900Ns/m.
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Insertion of these values into Equ. 2.3 leads to a differential equation description of the 
shock absorber dynamics,

2x+900x+12250x = F Equ. 4.2

As noted in Chapter 3 modem estimation techniques require a discrete version of this 
continuous time representation. With this in mind equation 4.2 was discritised using a 
zero order hold [30]. The system sample rate was 100Hz.

This resulted in the following ARX model of the discrete shock absorber dynamics.

y(k) -  0.8816y(k - 1) + 0.0112y(k -  2) =

lx l0 -5[0.8383u(k -1 )  + 0.2197u(k -  2)] 4 3

In Equ. 4.2 u is the system input, in this case samples of the applied force, and y is the 
system output, samples of the resulting displacement.

4.3 MODEL ESTIMATION.

The main requirement of any identification scheme is the system input/output 
information. As such detailed care and attention must be given to the selection of an 
appropriate system input and the necessary "pre treatment" of the collected data.

The question must be asked what is an appropriate input signal ? The answer to this 
may seem trivial and in cases where the choice of input is limited to the system 
operating conditions this may be so. However when this is not the case much debate 
arises concerning the best choice of input. It is important that the selected input excite 
all modes of the system dynamics. An input which succeeds in doing this is said to be 
persistently exciting and is obeying the condition of "persistent excitation" [23], [26], 
[45]. This condition is closely related to the concept of informative data sets which 
recommends that the input/output data be informative enough to be able to distinguish 
between two models within the same model set [24]. Theoretically speaking the 
optimal input is a white noise sequence though in most cases the physical constraints 
imposed by the system exclude this type of signal from consideration. The most 
common signal used in industry is the Pseudo Random Binary Sequence (PRBS). This 
signal is widely used in on-line applications. Wellstead & Zarrop [20] recommend a
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square wave input of frequency approximately 0.16 times the system bandwidth as a 
suitable choice.

The criterion laid out above suggests that a 1 Hz. square wave of sufficient magnitude 
will excite the shock absorber dynamics adequately. The stroke of the shock absorber 
depicted in Fig. 2.1 is 12cm. Given that the stiffness of the spring is 12.25kN/m it 
would take a force of 1.47 kN to fully compress the shock absorber. Applying a square 
wave of this magnitude and of frequency 1 Hz to the ARX model of the shock 
absorber (Equ. 4.2) results in the data given in Fig. 4.1

Sample No.

Sample Na.

Fig 4.1 Simulated suspension data.

The simulation data depicted in Fig. 4.1 needs to be conditioned before it can be used 
to identify the ARX model of Equ. 4.3. Under normal circumstances this amounts to,

(i) Filtering: Most data is corrupted by sensor noise and outside disturbances.
Application of a low-order, low-pass Butterwoth filter will clean 
the collected data sufficiently for the next stage in the conditioning 
process.

(ii) Detrending: The structures of the models used for identification correspond to
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dynamic models (which express output variations as a function of 
input variations around an operating point). It is therefore 
necessary, for correct identification, to eliminate the DC 
components (corresponding to the operating point) from 
the input/output data.

(iii) Scaling: If there are differences in the magnitudes of the input/output
data (as is the case here) then either one or the other must be scaled 
(usually the smaller of the two) to achieve magnitude parity. If this 
task is not performed the estimator will perform sluggishly.
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Fig 4.2 Transfer Function (a) Actual System, (b) Estimated System.

Since the input/output data depicted in Fig. 4.1 came from a noise free simulation 
step(i) was ignored. The chosen excitation signal has no DC level therefore step (ii) 
was ignored. There is a large magnitude difference between the system input and
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output. To compensate for this the output data was multiplied by a factor of 5. A batch 
least squares estimator as described in chapter 3 was applied to this data. The 
estimated system bode plot and actual system bode plot are given in Fig. 4.2.

Closer comparison of the actual system parameters and the estimated system 
parameters is achieved by examining the actual and estimated transfer functions,

^  . . 0 .8383e-5z + 0 .2197e-5  „
G (z)actuai = ---- -̂--------------------------------------------------  Equ. 4.4

/a c tu a l z2 _o.8816z + 0.0112

x 0.8382e- 5z + 0.2222e- 5  „   ̂ c
C r (Z ^ ^ te d  = --------------------------------------------  EqU. 4.5

V VesUmated Z 2 _  0 .8 7 9 4 Z  +  0.0093

Any differences between the actual and estimated system which may not be apparent 
on comparison of their Bode plots becomes evident when their transfer functions are 
examined. However any differences between these are negligible. The batch least 
squares estimator performed well in this case.

4.4 SYSTEM TRACKING

In the previous section the time-invariant system model for the shock absorber was 
presented. However as stated previously (chapter 2) the composition of the 
suspension system renders it time-varying. This necessarily means that efforts should 
be made to track these system variations. The batch least squares estimator illustrated 
in use above is by its non-recursive nature incapable of giving current estimates of the 
system parameters let alone tracking them.

4.4.1 Parameter tracking using the R.L.S. algorithm

An obvious solution to the former problem is to implement a recursive estimator as 
outlined in section 3.5. Before discussing the estimation/tracking of a time-varying 
suspension it will prove helpful to illustrate the estimation of the time-invariant 
suspension unit using the R.L.S. algorithm (section 3.5). Rather than restricting this 
discussion to a single shock absorber the full suspension comprising two shock 
absorbers and approximately half of the weight of the motorcycle was considered.
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The transfer function for this system is given as

G(s) = — -  Equ. 4.6
Ms + Bs + K

In this instance M represents approximately half of the mass o f the motorcycle plus the 
weight of both shock absorbers which constitute the full front suspension. B and K are 
the overall system stiffness and damping respectively. These are calculated by simply 
summing the stiffness and damping contributions of each shock absorber.

Given additional data1 concerning the weight of the motorcycle and parameter values 
obtained during static load tests (section 4.2) the full front suspension transfer function 
is given as,

G(s) =
115s2 + 3021S +  24500 Equ. 4.7

or in discrete form,

, -0.3650x10 z + 0.3984x10 ^  „ 0
G(z) = --------5-----------------------------------------------------  Equ. 4.8

z2 -1.7503z + 0.769

Since the full front suspension system consists of two shock absorbers it requires twice 
as much force to displace the suspension fully. Therefore a square wave twice that in 
magnitude but of equal frequency to the input applied to the single shock absorber 
model in section 4.2, was applied to the full front suspension model.

With this in mind the simulated data given in Fig. 4.1 was utilised by a R.L.S. 
estimator to estimate the simulated model parameters. The estimator was initialised 
with a zero initial condition on the parameter estimate vector 0 and a diagonal P 
matrix with the value 10 along the main diagonal. The resulting parameter estimates 
are illustrated in figure 4.3 (overleaf).

The data depicted in Fig. 4.3 was conditioned as outlined in section 4.2 and a recursive 
least squares estimator was applied to the resulting pre-treated data. The estimator was

1 Additional data obtained from T. O' Kane o f Team Kenny Roberts.
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Fig. 4.3 Simulated full front suspension data.

A

initialised with a zero initial condition on the parameter estimate vector 0 and a 
diagonal P matrix with the value 10 along the main diagonal. The resulting parameter 
estimates are illustrated in Fig. 4.4 (note the b-parameters are scaled up by a factor of

Applied Force
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5. This is caused by the scaling of the system output during the pre-treatment phase of 
the identification experiment).
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Fig. 4.4 Parameter estimates using ordinary R.L.S.
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These plots indicate that the estimates converge within 30 samples, are consistent 
(meaning the estimates converge to the actual parameter values) [23], [24], [26] and 
unbiased. As stated previously the R.L.S. estimator works well when the system is 
stationary. However under non-stationary conditions it is usual to find a severe 
degradation in the performance of the estimator (see chapter 3); specifically the 
estimates become biased. To quantify the performance of the R.L.S. estimator when 
confronted by time-variance, the following time-varying full suspension unit model was 
considered

G(S  ̂ Ms2 + Bs + K

M = system mass 

B = system damping 

K = system stiffness 

C = damping ratio

0 < t < 200 M =  115kg B = 3021Ns/m K = 24500N/m C = 0.9 

201 < t < 400 K = 18000N/m £ = 1.04

401 < t < 500 B = 3453Ns/m £=1 . 2

501 < t < 600 B=2123Ns/m K = 20000N/m £ = 0.69

601 < t < 800 M = 30kg £ - 1 . 3 7

This set of figures1 represents a suspension system which undergoes some very severe 
and instantaneous changes. This scenario is a severe test for any tracking scheme. The 
parameter estimates obtained using the ordinary R.L.S. algorithm are shown in Fig. 4.5 
(overleaf).

Once again the estimator quickly converges to the correct parameter values, however 
once the system reaches its initial change at the 200^- sample the estimates become 
biased, The result is a group of estimates of no real value.

1 Obtained through consultation with Aengus Murray and Tom O’ Kane of Team Kenny Roberts.
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Fig 4.4 "Tracking" using the ordinary R.L.S. estimator.
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4.4.2 Parameter estimation using the alternative tracking scheme.

The recommended adjustments to the ordinary R.L.S. algorithm, i.e. the forgetting 
factor modification and Kalman filter ,were discussed in sections 3.6 and 3.7 
respectively. It was concluded that both of these algorithms yielded estimates with 
poorer variance properties for stationary systems and that they both tackled the time- 
variance issue in a rather passive manner assuming that the system was constantly 
changing.

Having recognised the passivity of these algorithms an alternative algorithm which 
incorporated a fault detection scheme was introduced. This algorithm monitored the 
prediction error sequence as a means to detect when the system dynamics had altered 
and was tested using a simple system simulation. The resulting estimate sequences 
possessed better variance and convergence properties than those obtained using the 
more common alternatives to the R.L.S. algorithm.

To ascertain the validity of this algorithm with respect to a motorcycle suspension 
system, the prediction error based scheme was applied to the time-varying system

/s

outlined above. The parameter estimate vector 0 was initialised to zero while P was 
set as a diagonal matrix with 10 along the main diagonal. This value of P assigns 
equal uncertainty to all of the initial parameter estimates. The magnitude of relative 
uncertainty (10 in this case) reflects that although these estimates are not accurate, 
they are not outlandish. A ceiling of 1500 units was placed on the prediction error 
sequence. Once the error went above this ceiling the estimator was reset. The 
resulting parameter estimates are depicted in Fig. 4.6 (overleaf).

Fig. 4.6 illustrates that the prediction error based fault detection/estimation scheme 
works well when applied to the time-varying suspension model. The system faults are 
recognised almost immediately and once the estimator has been reset the estimates 
reconverge within a matter of samples.

The key to this algorithm is the prediction error sequence, depicted in Fig. 4.7 which 
triggers the estimate into a reset mode. This fault detection scheme uses the 
magnitude of this sequence as a figure of merit for the current parameter estimates. 
Once the magnitude of the error surpasses the ceiling provided by the user, the 
detection scheme realises that the system is changing and that, not only are the 
previous parameter estimates incorrect, but the P matrix is conveying too much 
confidence in these old estimates. At this point the estimator is reset. This effectively
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means that the R.L.S. estimator is estimating the parameters of what it now sees as a 
"new system". Once again the parameter estimate vector is set to zero and the P

"a" Parameter Estimates

Sample No.

"b" Parameter estimates

Sam ple No.

Fig 4.6 Estimates using the prediction error tracking mechanism.
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matrix has 10 along the main diagonal reflecting low confidence in the initial 
estimates. In theory the estimates should converge to their true values as quickly as if 
the estimation process had just begun.

Prediction E n o i

Sam ple No,

Fig. 4.7 The prediction error sequence for the time-varying shock absorber.

4.4.3 Parameter estimation using an improved alternative algorithm.

The alternative tracking scheme performs well in tracking the time-varying 
suspension system. However this algorithm is not without its drawbacks.

(i) There are visible spikes in the estimate sequence and these are undesirable 
in control situations. These spikes are caused by the resetting of the estimator to 
initial conditions once a fault has been detected. Since the initial condition for each 
parameter estimate sequence is zero it seems obvious that there would be a spike. To 
remove this anomaly from the estimate sequence a simple solution is to just leave the 
estiamte values as they are and simply increase the size of P, the parameter estimate 
covariance matrix. This is akin to modelling the system parameters as random walks 
but only in the vacinity of the system changes.

(ii) The prediction error is highly susceptible to outliers and system noise. It 
would therefore seem prudent to implement a more robust triggering mechanism than
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the simple prediction error sequence. Under normal operating conditions this 
sequence is white with zero mean; however when the system dynamics change so too 
will the error statistics. In the simplest scenario the mean of the prediction error 
would be monitored for large fluctuations about zero. The occurrence of a fault 
would then be determined by the occurrence of such deviations from the steady state 
mean. However, examination of the mean error, for the time-varying system listed 
above, as plotted in Fig. 4.8 rules this out.

Mean Prediction Error Sequence

Sample Mo,

Fig. 4.8 The mean prediction error as an alternative triggering function ?

Such is the magnitude of the disturbance caused by system faults that the mean error 
never actually reconverges to its steady state value i.e. zero. In fact it would have 
difficulty reaching a level above the ceiling which determines when a fault has 
occurred. The fault detection scheme would interpret this as evidence that the system 
is constantly changing. This means that the parameter estimate covariance is 
constantly being reset to its initial value. The resulting algorithm would at best yield 
estimates equivalent to those produced by the Kalman filter.

However this problem is not unsurmountable. Under normal circumstances the mean 
prediction error is calculated as a running average by the fault detection scheme. The 
fault detection scheme relies upon the fact that when the system changes the mean
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between detectable faults to 0.04s. However this can be counteracted by increasing 
the system sample rate. In summary this algorithm works as follows

(i) Initialise the parameter estimate vector and the covariance 
matrix P.

(ii) Set the mean prediction error ceiling.

(iii) Start estimation.

(iv) If a fault is detected reset P and set the mean error to zero 
After four samples, calculate the mean as normal.

The algorithm outlined above was applied to the system data used in previous 
attempts to track the suspension dynamics. 9 and P were initialised as in section
4.4.2. The ceiling for the triggering function was chosen as 300 units. (In practical 
situations initialisation of the triggering ceiling is aided by an examination of the 
innovation sequence for a particular identification experiment using R.L.S. A rule of 
thumb is to assume a triggering ceiling equal in magnitude to the maximum value of 
the innovation. A optimum ceiling is then found through suitable "tweaking"). Once 
the magnitude of this function rose above this value the mean function was forced to 
zero (thus removing control from the fault detection algorithm) and P was increased 
(note the estimator was not reset). After a period of 4 samples the mean function was 
calculated as normal (control given back to the fault detection algorithm). Fig. 4.9 
depicts this "mean" triggering function (as discussed above) which was used to 
trigger the ordinary R.L.S. estimator into a tracking mode. Of note is the crispness of 
this function compared to the noisy prediction error sequence depicted in Fig. 4.7 
which was used as a triggering function in earlier attempts to track the system 
dynamics. Because of this "crispiness" the rate of false alarms is negligible further 
increasing the overall robustness of the algorithm.

The parameter estimates for this simulation are illustrated in Fig. 4.10. Of note in 
these plots are the excellent variance properties of these estimates. The low variance 
properties are attributable to the fact that the estimator treats the system as time- 
varying only when it is actually time-varying. Also of note is the lack of spikes in the 
estimate sequences which is due wholly to leaving the estimates as they are instead of 
resetting the estimator as before.
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Trigerring Function

Sample No.

Fig. 4.9 The mean between faults as a triggering function ! 

4.5 SUMMARY.

Both the time-invariant and time-varying suspension units were simulated. The time- 
invariant system model was identified/estimated successfully using both batch and 
recursive forms of the least squares algorithm. The tracking capability o f the R.L.S. 
estimator proved insufficient when confronted with the time-varying system. The 
fault detection scheme proposed in chapter 3 was preferred to the forgetting factor 
modification and the Kalman filter as it possesses better variance and convergence 
properties when implemented on a time-varying example. This algorithm was 
modified to make it more robust with respect to bad data and outliers. The resulting 
estimate sequences possessed better variance and convergence properties.
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Fig. 4.10 Parameter estimates using the mean between faults triggering function.
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Chapter 5

SYSTEM IMPLEMENTATION.

5.1 INTRODUCTION.

The simulation and estimation/tracking of the time-varying suspension was 
undertaken in chapter 4. Resource constraints prevent the application of the resulting 
estimation techniques to an actual suspension system. However this chapter details 
the construction of an electrical analogue of the suspension system. The modified 
tracking algorithm presented in chapter 4 is applied to data taken from this analogue. 
The performance of this algorithm is evaluated in relation to the performance of the 
more popular tracking schemes.

5.2 AN ELECTRICAL ANALOGUE.

It is a common occurrence in the control industry to have limited access if any to the 
system under consideration. In cases where there is relevant information available 
concerning the system, such as its order and its physical components, it is possible to 
construct an analogous system. This occurrence is most common when confronted 
with mechanical systems. There is a wealth of background knowledge relating 
mechanical systems to analogous hydraulic and electrical systems. For brevity's sake 
this work will concern itself specifically with an electrical analogue of the suspension 
unit under investigation.

The principles of analogy lie in the fact that different physical systems can be 
described by similar if not the same mathematical model. If two systems can be 
described by the same differential equation they are said to be analogies of each other 
[54], As an example the following mechanical and electrical differential equations 
were considered.



Equ. 5.1 is Newtons second law of motion. This relates the acceleration, a, of a mass, 
M, to the force f  applied to this mass. Equ. 5.2 relates the capacitance, C of a 
capacitor to the voltage across its terminals, e, and the current i. These equations are 
quite similar. As such the capacitor described by Equ. 5.2 is an anlogue of the mass 
described by Equ. 5.1. The force acting on the mass M is analogous to the current i 
flowing through the capacitor C and hence this analogy is referred to as a force- 
current analogy [54], This analogy was used to design an electrical analogue of the 
M.S.D. model (section 2.4) of the suspension.

Mechanical systems are usually represented diagramatically as free body diagrams. 
The M.S.D. representation of the suspension unit is an example o f this. However as 
with electrical systems it is possible to illustrate this system using a network of the 
relevant physical devices. Fig. 5.1 depicts the mechanical network for the simple 
M.S.D. model.

Fig. 5.1 Mechanical network for the M.S.D. model.

An analogous electrical system can be implemented using the force current analogy 
outlined above .This analogous electrical system consists of the electrical circuit of 
Fig. 5.2. Application of Kirchoffs current and voltage laws yield equations which 
describe not only the action of the electrical circuit but also that of the mechanical 
network of Fig. 5.1.

Unfortunately it proved impossible to implement the circuit depicted in Fig. 5.2 as the 
equivalent capacitance necessary to represent the system mass is of an impractical 
value. This is not to say that the system does not have an electrical analogue. 
Moreover the system can be represented using an analogue computer.
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C=M R = l/B L = l/K

Fig 5.2 An electrical analogue of the M.S.D model.

The basis of an analogue computer is the system differential equation. Once this is 
known a series of integrators connected together can be implemented to reconstruct 
not only the system input/output data but also the intermediate states of velocity and 
acceleration. From chapter 2 the suspension unit is describable using the following 
differential equation,

M x + B x + K x  = F Equ. 5.2

This equation can be rewritten as

The design procedure for the analogue computer proceeded as follows. Firstly it was 
assumed that the highest derivative in the systems differential equation, i.e. the 
acceleration, was available. This was then integrated to yield all of the system states. 
These were then added together in the correct proportion together with the system 
input as in Equ. 5.3 . This yielded the system acceleration which is what we started 
with. A block diagram illustrating the behaviour of this computer is shown in Fig 5.3.

x = —  [F -  B x -  Kx] 
M

Equ. 5.3
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X X X

Fig. 5.3 The analogue computer representation of the shock absorber.

The analogue computer depicted in Fig. 5.3 was constructed as an electrical analogy 
for the motorcycle shock absorber system. The circuit layout is listed in Appendix. 
Bl. The construction of the computer was quite simple. The integrators were 
constructed from operational amplifiers and capacitors whereas the adder and the 
gains were constructed again using operational amplifiers and resistors.

5.3 IMPLEMENTATION OF THE ELECTRICAL ANALOGUE.

The circuit depicted in Appendix B l runs at 200 times the pace of the actual system 
so all the data must be frequency scaled if parity is to be gained with the simulations 
described in earlier chapters. The circuit input lies within the 0-10V range and as such 
both it and the circuit output must be scaled in magnitude to obtain data which is 
consistent with the suspension system.

Data was collected from the circuit via a Data Translation analog to digital interface 
card [55], This card has four A/D channels with a throughput of 100 kHz at 12 bits 
per channel. The analog to digital converter implements a "simultaneous sample and 
hold" for each A/D channel ensuring that there are no lags between sampled input 
and output. Data from the card was accessed by the Hypersignal [56] software 
package. Since the electrical analog is operating 200 times faster than the simulated 
system it is sampled at 20 kHz. This is equivalent to the sampling rate of 100 Hz. 
used by the simulation. Figure 5.4 illustrates the simulation output and the analogue
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output (scaled) when a 1 Hz square wave is applied to the simulated model (ie. 200 
Hz. to the analogue).

O.X2

o. x

O.Ufcd

o  ir»<s

O.O Ĵ

Fig. 5.4 A comparison of the simulated system output and the electrical 
analogue output.

5.4 IDENTIFICATION/ESTIMATION OF THE ELECTRICAL ANALOGUE

At this stage the system electrical analogue was fully operational. Figure 5.5a 
illustrates some input/output data collected from the circuit as detailed in section 5.3. 
(Note in this section a 100Hz. wave is applied to the analogue computer). The 
applied input is a pulse waveform of magnitude 0-10V. This data is scaled to yield 
data which is consistent with data from the system simulation of section 4.2.

The first 1000 samples of this data were used to estimate the parameters of the 
suspension equivalent. The algorithm used was a batch least squares estimator. The 
resulting estimated transfer function is

0 ,1817xl0-5 z + 0 ,0766xl0-5
G(z ) estimated = ------- ~-----7 7 7 ^ ----------------   Ecla  5 4

z  -  1.5628z  +  0 .0766

At this point it was necessary to verify that this transfer function represented the 
dynamics of the analogue computer (and hence the suspension equivalent). The

A

covariance of the parameter estimate vector 0 suggested that these estimates were 
accurate (each parameter estimate had a variance less than 0.1). As a further test the 

prediction properties of G(z) estimated were examined. G(z)estjmate(i was simulated in 

software. The second 1000 samples of the input data taken from the analog computer 
(plotted in Fig 5.5) were used by this simulation in an attempt to reproduce the
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second 1000 samples of output. The output resulting from the simulation of 

G(z)estimated *s plotted with the actual analogu computer output in Fig. 5.6.

A pplied  Input

0 200 400 600 800 1000 1200 1400 1600 1BG0 2000

Sample No.

(a)
1500

1000
VI

1  500QJ2
0

-500

Sample No 

Applied Input-i-------  1-----—----r

0 200 400 600 800 1000 1200 1400 1600 1800 2000

Sample No.

Sample No

(b)
Fig. 5.5 (a) Circuit data, (b) scaled circuit/suspension data.
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The plots in Fig. 5.6 indicate that there is good agreement between the output from the 
analogue computer and the simulation which was carried out using its estimated transfer 
function. This is a good indication that is reliable.

Applied Input
15001----------- 1----------- 1------------1----------- 1------------1-------- — i---------- 1------- — t---------- 1------ -----

10 00 - -

in

|  500 
z

0 ---------------   1    1 '---------------J L

.500--------- 1--------- 1--------- 1--------- 1--------- 1--------- 1--------- 1--------- 1--------- 1---------
0 100 200 300 400 500 600 700 800 900 1000

Sample No.

Resulting/Predicted Output

Fig. 5.6 Prediction properties of the estimated analogous transfer function.

5.5 TRACKING THE ELECTRICAL ANALOGUE

The stationary electrical system has now been identified. Following the route of the work 
detailed in chapter 4 it was necessary to track the changing parameters of the non- 
stationary circuit. The "non-stationarity" of the circuit is achieved by "tweaking" the 
various pots in the circuit illustration of Appendix Bl. Application of a 100Hz. (1 Hz. on 
actual suspension system) square wave to the non-stationary circuit results in the data 
depicted in Fig. 5.7. It is visible from the data that both the system parameters and the 
input level change at various points.

The data plotted in Fig. 5.7 was fed into the tracking mechanism adopted for the 
simulation of chapter 4. For comparison purposes a batch least squares estimator was 
also implemented to give an indication of parameter values between system faults(see 
chapter 4). A ceiling of 500 units was placed on the triggering function as the point
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beyond which a fault is assumed to have occurred. It must be noted that the fault 
detection algorithm was switched off for the first 50 samples so as to help convergence 
to steady state values. The tracked parameters are plotted against these batch estimates 
in Fig. 5.8. Note the estimates are adjusted to reflect the dynamics o f the actual 
suspension system and that the b parameters are offset to make them distinguishable.

Sample No.

Sample No

Fig. 5.7 Input/Output data from the time-varying electrical analogy.

5.6 ALGORITHM PERFORMANCE

To categorise the performance of the alternative tracking algorithm outlined in chapter 4 
and implemented in section 5.6 the resulting parameter estimates must be compared with 
those obtained using the more traditional schemes, namely the forgetting factor and 
random walk algorithms. Fig. 5.9 illustrates the estimates obtained using the same data 
as that in the preceding section (only the b parameters shown). This time however the 
conventional algorithms have been used. It is seen from Fig. 5.9a that although the 
forgetting factor algorithm does track the system well (k = 0.97) the variance of the 
resulting estimates is extremely poor in comparison to those obtained using the
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alternative algorithm depicted in Fig. 5.8 (page 68). The estimates provided by the 
random walk algorithm (R = identity matrix) are extremely poor.

The alternative algorithm outperforms both of the traditional parameter tracking 
mechanisms. This is in part due to the triggering function, depicted in Fig. 5.10a (page 
70) and the passivity of the conventional algorithms. The prediction quality of the 
resulting estimates is depicted in Fig. 5.10b. Again the error between the system output 
and the predicted output is negligible.

It is of note that the presence of "spiking" has not been totally eradicated as in the 
simulations presented in chapter 4. However their presence in the parameter estimate 
sequence has been curtailed.

5.7 SUMMARY

An electrical analogue of the suspension unit was constructed. The parameters of this 
system were identified using a batch least squares estimator. The parameters of this 
analogue were varied and attempts to track theses parameter variations indicated that the 
algorithm proposed in earlier chapters which incorporates a fault detection mechanism 
out-performs the more traditional forgetting factor and random walk approaches.
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Fig. 5.8 Parameter estimates for the time-varying analogous system.
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"a" Parameters

Sample No.

(a)
"a" Parameters
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(b)
Fig. 5.9. Parameter estimates obtained using (a) forgetting factor, (b) Kalman 
filter.
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Fig 5.10 (a) The triggering sequence (b) Actual and predicted analogous system 
output.
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Chapter 6

CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary and Conclusions.

This thesis has outlined the development of a parameter tracking algorithm applicable 
to motorcycle suspension systems. The development of this algorithm is based on the 
following phases:

• System Description

• Estimation Techniques

• System Simulation

• System Implementation

The research initially focused on the target application, motorcycle suspension 
systems. The problems encountered in tuning these systems were outlined and 
solutions to these problems were proposed. It was concluded that any attempt to solve 
the so-called "suspension problem" must have as its starting point an accurate model of 
the system dynamics. Since the suspension dynamics are non-stationary a time-varying 
parametric model of the suspension system, specifically the M.S.D. model, was 
presented.

The parameter estimation process was then approached. The most popular parameter 
tracking algorithms were discussed. It was concluded that these parameter estimation 
schemes were too passive in their approach and that the resulting parameter estimates 
suffered an unwarranted degradation because of this. An alternative tracking scheme 
which incorporated a fault detection algorithm was proposed. It was shown that this 
estimator yielded estimates with better variance properties than those resulting from 
the application of the traditional parameter tracking schemes.
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To test the performance of this alternative algorithm with respect to suspension 
systems, the suspension system was simulated using the M.S.D. model developed 
earlier. Data produced by this simulation was used to verify the tracking capability of 
the alternative algorithm. This algorithm was altered to remove "spikes" from the 
parameter estimate sequences and to robustify it against outliers and bad data. This 
was achieved by triggering the fault detection scheme with a modified mean prediction 
error function.

Funding constraints meant that the alternative parameter tracking algorithm could not 
be implemented on an actual motorcycle suspension system. An analogue computer 
was constructed as an electrical analogy for the suspension system. Data was taken 
from this computer and its parameters were tracked using this data with the alternative 
tracking scheme. A comparison of the resulting parameter estimates with estimates 
produced by the more conventional estimation schemes indicated that the alternative 
tracking algorithm yielded higher quality estimates.

6.2 Recommendations

6.2.1 Modifications to the current work

6.2.1.1 Modelling

One of the most striking things about the system identification literature is its 
concentration on single-input single-output systems (s.i.s.o.). Only a small proportion 
of the recognised texts deal with multi-input multi-output systems. The reason is not 
mere faintheartedness but the substantial new problems that arise when these systems 
are considered. Because of this, most multi-input multi-output (m.i.m.o.) systems, if 
possible, are reduced to s.i.s.o. systems. In this fashion the modelling of the suspension 
system has been reduced to a single degree of freedom model thus neglecting the tyre 
dynamics. These dynamics are not entirely negligible and as such should not be ignored 
if work in this area is to progress.

It is also known that the suspension system may comprise some non-linear 
components. The issue of system non-linearities has not been dealt with in this thesis. 
As such it is recommended that the tracking algorithm be extended to cater for non­
linear dynamics.
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6.2.1.2 Fault detection

It was stated earlier in chapter 3 that fault detection comprises three separate tasks, 
alarm, isolation and estimation. This work has concerned itself solely with the alarm 
task in the fault detection protocol. Because of this when a fault occurs (a fault in this 
context being a change in the system parameters) the alternative algorithm knows only 
that it has occurred. It doesn't concern itself with the location of the fault (which 
parameters have changed) or the extent of the fault (by how much the parameters have 
altered). The inclusion of these secondary tasks in the fault detection scheme would 
improve the variance and convergence properties of the existing algorithm. However it 
remains to be seen if the resulting computational burden warrants their inclusion.

6.2.2 Further Research

6.2.2.1 Test rigs and on-site testing.

The work in this thesis has been developed, tested and implemented with the use of 
digital simulations and an electrical analogue of the actual suspension system. If work 
in this area is to progress a more knowledgeable understanding of the requirements of 
the target platform must be attained. With this in mind it is recommended, that in such 
a scenario, a test rig comprising the complete front suspension, wheel inclusive, be 
constructed. A recommended design is provided in Appendix C.l. This proposed test- 
rig would require the following instrumentation/components,

(i) Load C ell: To measure the force imparted to the suspension. This

(ii) Displacement sensor: To measure the resulting displacement of the shock
absorber after a force has been applied.

should preferably be mounted in the shock absorber.

(iii) Actuator : This would comprise a ballscrew driven by a D.C. servo. 
Forces would be imparted to the front wheel via a 
mounting block.

(iv) Surrogate. The purpose of the surrogate is to simulate the 
remainder of the bike.
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Testing on this proposed test-rig should then be followed up with on-site testing.
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Appendix A.l.

Derivation o f  the Least Squares Estimate [23-24], [26]

Given the system,

y(t) = cpT(t)0 + e(t) ' Equ. A. 1.1

the least squares criterion minimises the mean squared error between the system output 
and the model output. The mean squared criterion is given as,

V N ( 9 ,Z N ) =  l | ; i [ y ( t ) - < ( > T ( t ) e ] 2 Equ. A.1.2
N t=l2

Collect all measurements to give,

V (9) = ^ [Y  -  <t>0]T [ Y -  <J>0]

= — [0T<()T<|)0 -  0 T<J)T Y -  YT<J)0 + YT Y] Equ. A. 1.3

Hence,

V(0 ) = i[© -(< |.T<l>)-I <l>TY]T (<t>T<t))[0-(<t.T<t.)-1<t.TY]

+ - [  YTY -  YT<t>(4.T<t.)_1 <t»TY] Equ. A. 1.4
2



The second term is independent o f 0. Since is assumed positive definite, the first 

term is always greater than or equal to zero. Thus V(0) can be minimised by setting the 
first term to zero.

This yields the least squares estimate as

9 = ( * T+ r ' * TY

or

0}f = arg minVN (0 ,Z JN) =n a _
N -1

1 N

— 2 > ( t ) y ( t )  
N t=l

The minimum value of the cost function is thus given by

n^n V(0) = V(0) = Y T Y -  Y 7 ^ ^ 7 ^)“1 t|)TY]

Equ. A. 1.5

Equ. A. 1.6

Equ. A. 1.7



Appendix A.2.

Derivation o f  the Least Squares Recursion [23-24], [26].

The batch least squares estimate is given as,

§ (0  = (<l>I'M < K < ) r V ( 0 i '( 0  Equ. A.2.1

This is based on t measurments. Now assume one more measurement is made. This 
yields,

Q(t + J) = (<j>T (t +  ;)<K / +  1)Y] V  (t + l )Y(t  + 1) Equ. A.2.2

Now

«J)7,(t + 7)<J)(i + 1) = [<t>r (Oq>(* + )̂][<t>(0<pr (t + ^)] Equ. A.2.3

Thus given <}>(/ + J) it is easy to update the old matrix of correlations <{>r (f)<|>(0 to 

obtain the new matrix (J/  (t + I)§(t  + J). However it is necessary to update the inverse 

of (|)r  (0<t>(0 without requiring a matrix inversion at each time step. It is also necessary 

to update the term § T (t + l )Y(t  + J). We have,

* T (t +  l ) Y ( t  + 1 )  =  [<t>T(t) cp(t +  l ) ] [Y ( t )  y(t +  1)]T

=  <|>r (t)Y(t)  +  (p(f +  l )y( t  + 1) Equ. A.2.4

Now introduce the following shorthand notation,

= M M O r ' Equ. A.2.5

Equ. A.2.6



Thus we have

§(t)  = P(/)B(f)  Equ. A.2.8

Also

p - J(t + l )  = p - J(t) + q>(t + l)(?T(t + l ) Equ. A.2.9

B(t + ]) = B(t) + <p(t + l )y( t  +1)  Equ. A.2.10

The B update equation is a direct update involving no matrix inversions. To 
accomplish this for the P update equation requires the matrix inversion lemma[24]. 
This states that,

(A + B C D y1 =A~J - A ^ B i C - 1 + DA'1 B)~JDA~] Equ. A.2.11

Assigning A=P~] (t),  C=l, B=cp(f +7) and D=cp T ( t + 1) gives

P(t + 7) = P(t)[Im -<p(t + l ) ( l  + v T(t + J ) P ( t M t  + / ) ) - ' cpT(t + l)P(t)]

Equ. A.2.12

Thus we have a recursion for the P matrix which doesn't involve a matrix inversion. 
Now given that

s(r + 7) = y( t  + 7) -  (pr  ( t + 7)0(0  Equ. A.2.13

we can substitute this into equation A.2.10.

B(t  + 7) = B(t) + <p(i + 7)cpT (t + 7)0(0 + (p(f + l )e(t  + 7) Equ. A.2.14

Q(t + l)  = P(t  + l)B(t  + l ) Equ. A.2.7



This gives

0(/ + /)  = 0 (0  + P(t  + 7)<p(f + 7)e(/ + 7) Equ. A.2.15

Summarising, the recursive least squares estimator is composed o f the following 
equations,

I_ -
<p{t + \)<pT«  + \)P( l )

\ +(pT (t + \)P(t)<p(t+X)

0(f + 7) = 0 ( 0  + P(t + 7)(p(/ + l)[y(t  + 7) -  <pr 0(O].



Circuit Diagram for the Analogue Computer
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