Dublin City University

SchoolofElectronic Engineering

An Investigation into Intelligent Network

Congestion Control Strategies

Fiona Lodge, B.Eng.

PhD Thesis, February 2000

Under Supervision of Dr. Thomas Curran & Dr. Dmitri Botvich

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of
study leading to the award of PhD, is entirely my own work and has not been taken from

the work of others, save and to the extent that such work has been cited and acknowledged

within the text of my work.

Signed: ID No.

Date:

Acknowledgements

Acknowledgements

I have a lot of people to thank for the quality of this thesis. During its lifetime, ithas passed
through many stages of evolution, this process being driven by the comments, observations and
criticisms of Dnitri Botvich, Adrian Newcombe, Brendan Jemings, Tommy Curran and Declan
Gavin. Thanks guys!

Dmitri and Adrian also deserve further honourable mention for contributions above and beyond
the call of duty. Their detailed grilling of my ideas and strategies led to more refinements than |1

caretoremember. Il could, 1'd have their names on the cover to.

And firally, 1would like to dedicate this thesis to the memory ofmy grandparents, Johnny Kelly
and Cretta Lodge. They would have burst with pride ifthey had lived to see it, but would almost
definitely never have gotten around to reading it!

Table of Contents

Table of Contents

A 1] 4 L TSSO PTTRRPTRTR Xi
(O T Vo) (=Y A 1 a0 (oL Vo8 4 o TSSO 1
I 1= T T ST Tod (o | £ 10 Lo OSSR 2
1.2 Research ODjJectiVes & METNOGS. ..ot 4
1.3 THESIS OULIINE. ...ttt ettt bt ee et e b e b et e e b e s ene bt eReneeeebebe e s ebete e anerans 5
Chapter 2 State 0T the A Tt ettt na s e steneens 7
2.1 The INtelligent NETWOIK (TN ..o ittt ettt s e et e et s ereneaeas 8
2.1.1 Justification for IN DeVEIOPMENT ... e 8

2.1.2 Evolution ofthe Intelligent Network...,.,, .,y eceeeee 10

2.1.3 The Architecture and Operation ofINCS-1 ... 13

2.2 CONGESTION CONTIOL....ciiiiiici ettt et et et st e et b b e sae s e be st e be b e s b eneeaeneenens 21
2.2.1 Basic Requirements on Congestion Control Strategies 21

2.2.2 An Overview of Congestion Control in the PSTN/ISDN ..o 23

2.2.3 Classification ofSwitch Congestion Control Strategies 25

2.3 IN CONQGESTION CONEIOL...iiiiiiiieiieese bbbt b e b ettt nr bbb eneas 31
2.3.1 A Description ofthe Models used in INresearch e 31

2.3.2 Comparison between ThrottlesSfor the IN ... 35

2.3.3 Comparison between Active and Reactive Strategiesfor the IN........cccocooniiiiiniiiine e 36

2.8 CONCIUSTONS ottt ettt e bbb bbbt e b b b1 eH b e £ b b e b et b e b e bbbt e b b et et eb et ae bt 36
Chapter 3 Analysis TOOIS & M EThOUS ..o 39
3.1 An IN Simulation TOOl. ..o 40
3.1.1 Using OPNETTOr IN SIMUIATIONcoitiiiiiii ettt st 40

3.1.2 Operation ofthe OPNET Modelling t00]......ccuiiiiiiiici e 41

3.2 Analytical NetWOrk MOAeIING.....coiiiiiieciicisce et b et seens 44
3.2.1 ProbDability THEOIY ...t sttt st st ettt ae e b e e st e sneesae s 44

3.2.2 RANOM VaFTADIES. ... e e e 45

3.2.3 RANUOM P rOCESSES ..ttt r b bbbt nR e n e s e sn e e e n e ne e nnennens 47

3.2.4 QUEUING TREOTY .ottt et E Rt r et n bt et r e e ene e e e n s 51

3.2.5 Choosing an Appropriate Techniquefor the Analysis ofan IN Queuing Model..........cccceeee. 53

3.2.6 The Decomposition Methodfor Queuing Network ApproXimation..........cccoceiveeienieneencnie s 55

3.3 Mathematical OPtiMISAtION.....ccoi it et ettt 57
Chapter 4 Comparison betweenExisting SCP Congestion Control StrategiesS.....ccccecvvvvviirerrvrvennnn 60
4.1 The IN Simulation Model.........cccoiiiiiiii s 61
4.1.1 OVerview O0Fthe MOTEl. ..o e 61

4.1.2 The NetWOrK LAYEr M O ...ttt e sttt e 67

4.1.3 The NOUE LAYET IMOUEIS.....i i r e 67

4.1.4 Congestion Strategy Evaluation Criteria..... .o iiiiiiiiiie et 71

Table of Contents

4.2 Implementation of Congestion CoNtrol STrategies.....cccciiiviiiiiiiiieiiicise e 72
4.2.1 Implementation ofSCP Congestion Detection Methods..................... 73
4.2.2 Implementation 0F THIOTHIES. ..o e e 76
4.2.3 Implementation ofthe Window Strategy............... 78

4.3 Presentation OF RESUILS.ottt sttt ettt e s 79
4.3.1 Proving the Needfor Congestion CONtIOIS.......cooo i 80
4.3.2 Comparison ofDetection Methodsfor Reactive Communication-Oriented Control................. 80
4.3.3 Comparison DetWeen THhEOTHIES. . ..o e et 90
4.3.4 Active versus Reactive Congestion CONtIrOlS... ..o 96

4.4 SUMMATY & CONCIUSTON.....cviiicci e e 100

Chapter 5 Global IN Congestion CONTIO L. et 103

LT R 1 1o o 1V T3 4 T o PSSO 104

5.2 The New, Comprehensive IN MOGEIS. ... 107
5.2.1 THe INMOGEI DESIGN ..ttt ettt sttt st st be bbb b e e bt e st et e et e enbeeasesbeenbe e e s 108
5.2.2 The IN Simulation MOGEel........coiiiiiiiiiicee e e 110
5.2.3 The INANAIYLIC MOAEL oo 112

5.3 Estimation of the Effects of non-IN Traffic and Finite SSP Resources on IN Performance............ 116
5.3.1 Strategies USEdfOr COMPATISON.ciiii ittt ettt se et se et be e bt e sreeenesseenne s 117
5.3.2 RESUILS @0 ANAIYSIS oot e 119
5.3.3 Conclusions............. e Wit e ,.. 124

5.4 The Optimisation-based Global IN Congestion Control Strategy.....cc.covevviereiererineisiesieesee s 125
5.4.1 Defining the Mathematical Terms to be used in the Strategy Specification..........c.ccccceveenenn 125
5.4.2 Capturing the Requirements on the Global IN Congestion Control Strategy......c.cccceevvvvevenne 126
5.4.3 Introducing the Concept 0f Call WeIghtS........ccvoiiiiiiiiincceceeee e e 128
5.4.4 Specification ofthe Optimisation-based IN Congestion Control Strategy......c.cccceevrvrvrinnnne 129

5.5 Operation ofthe Global IN Congestion Control Strategy......cccoeovrrerirneiinirnieene e 132
5.5.1 SCENATIO 1: STAIONATY CASE..eciiiiiieiiieieieeiee e et sr e r e nr e r e r e r e n e nnesneene e 132
5.5.2 Scenario 2: SSP Overload due toONe Call TYPe ..t 132
5.5.3 Scenario 3: SCP Overload due toONe Call TYPe....coiiriririnirereee e 134
5.5.4 Scenario 4: General OVErlOAU. ..o iiiieiiiieeeee e e 136
5.5.5 Scenario 5: Overload due to Bursty Televoting TraffiC.......c.ccoeiiiiiniiie s 138

5.6 An Optional Extension to the Global IN Strategy - FDOC........ccccooeoiiiiiiiirereeeeree s 139

5.7 CONCIUSTONS ..ttt s e bt e bt E bbbt s s bbbt bbbt e b 141

Chapter 6 Comparison between IN Congestion Control Strategies ... 143

ST R 1) o Yo L] o o TSSO 144

6.2 The Strategies USed FOr COMPATISON....ccuieieiiiiiiieirte sttt e et st ase et ebe b sesseessa e 145

6.3 ReSUItS OF COMPATISON ettt et b e ettt ettt en 147
6.3.1 Scenario 1: Stationary BENAVIOUTcociiiiiiiie ettt siee e 148
6.3.2 SCENAKIO 2: SCP OVEII08A.co i 152
6.3.3 Scenario 3: SSP OVErl0ad......ccciiiiiiiiiiiii e 156

Table of Contents

6.3.4 Scenario 4: General OVerload. ..o 160

6.3.5 Scenario 5: Overload due to BUrsty TraffiC.........cccoviiiiiininininneses s i64

6.4 SUMMAIY & CONCIUSIONS.....iiiiiiiieieiiiei sttt bbbt e e bbb st e e s be et e et e sbe e s be s e b ensebeseenis 168
Chapter 7 Conclusions & Recommendations. - - . . o oo it it e e e e e 172
7.1 CoNCIUSIONS OF thiS WOTK.....cuioieieiii et et 173
7.2 Recommendations fOr FULTUIE W OTK ...t 175
AppendiX A ReferenCes. - - - . . o o e e e e e e e e aaaaaaa 176
Appendix B References Associatedwith thisResearch. 181

ApPendiX C GlOSSaNY . - - - o o e e e e e e e e e e e e e e 183

Table of Figu

Table of Figures

Chapter 2

Fig- 2.1: Sequencing of Capability Sets. - - e aiaaaaan
Fig- 2.2: The CS-1 IntelligentNetwork Conceptual Model - oo _......
Fig- 2.3: GFP Representationofthe Freephone Service Setup. -o
Fig- 2.4: Functional Entities inthe IN CS-1 Distributed Functional Plane. _____.
Fig- 2.5 Freephone Service DecompositioN. - . . o oot e e e e
Fig. 2.6: Physical Architecture ofthe CS-1 IntelligatNetwork- oo _.....
Fig. 2.7: Ideal Throughput Characteristics ofa Systemunder Overload. . - __._._.
Fig. 2.8: Load ProfileforaPSTN (nhon-IN) Call . . . o . . o
Fig. 2.9: Congestion Control Model ofa SwitchingSystem. _.....
Fig- 2.10: Call Gapping Mechanism. _ . . o o e et a e e e e e aeaaaa
Fig- 2.11: TheWindow Mechanism. e i et a e e e e aaa e
Fig. 2.12: The Leaky BucketMechanism.o o ooo...

Fig- 2.13: The Token Mechanism. _ . . o i e e e a e e aaa e e
Fig. 2.14: Singleprocessor SCPmodel i i i eeeaaaaaaaa
Fig. 2.15: Multiplequeuemodel ofthe IN. __..._...

Chapter 3

Fig-3.1: OPNET modellingdomains. - - - o oo oo e e e e i a e e d e aaaaa e
Fig- 3.2: RepresentationofaState.

Fig- 3.3z A sampleF SM oo e e e e e aaaaan
o TR N o111 e} 14 €337/ S
o T S oo 1 0) -
Fig- 3.6 Relationship between Random Processes. - - - oo oo i i oo i i e i e e e i ee e
Fig- 3.7: Applying the Decomposition Method toan Example Queuing Network.
Fig.3.8: (@ Linear costraints, ())Non-linearconstraints. o ..o oo anaan
Chapter 4

Fig- 4.1: The SimulationModel e e e a e
Fig. 4.2: Decomposition of Televoting ServiCe. - . . . o oo e e et
Fig- 4.3: Decomposition of Freephone Service. - -o a e
Fig- 4.4:Non-INcallhandling. - -o .o

Fig- 4.5: The Network Model . - e i e e e aaaaaaaaa
Fig- 4.6: The IN sspnodemodel e e e e e aaa e
Fig- 4.7: The IN_scpnodemodel ___._..___.

res

62

65

66

67

70

Vvii

Table of Figures

Fig. 4.8: The IN sdpnode model - it e e e e aaa e 71
Fig. 4.9: Algorithm for EstimatingOverloadLevel 73
Fig- 4.10: SCP Load for CCC algoritmwithMemory vs withoutMemory 74
Fig- 4.11: SCP Queue Length for CCC algoritmwithMemory vswithoutMemory 74
Fig- 4.12: Freephone Delays for CCC algoritmwithMemory vswithoutMemory 75
Fig- 4.13: The PT algorithm. - . L L e e e e e d e e cdaaa e 78
Fig. 4.14: SCP Queue Length for CCC/CG vsNo comtrols inSCP 80
Fig- 4.15: Service Delays for CCC/CG vsNo comrols inSCP oo oo 80
Fig- 4.16: Arrivalls to system for Stationary Case. - - - - oo ot i e e e e aiaaaaa 81
Fig- 4.17: SCP load for Stationary CaSe.. - - - o o o o f e e f d e e e e e e e e 81
Fig- 4.18: SCP queue length for Statiomary CaSe. - - - - & o oo e i e e i e e e e edaaa et 82
Fig. 4.19: Arrivals to system for linearly increasing freephoneanmivalrate. . - 83
Fig. 4.20: Mean SCP load for lirnearly increasing freephonearival rate. . - . ..o 84
Fig- 4.21: SCP Load for lirearly increasing freephonearrival rate. . . - 84
Fig. 4.22: Mean SCP queue length for linearly increasing freephoneamrival rate. _ .. 85
Fig- 4.23: Mean freephone delays for linearly increasing freephoneanmival rate. - 86
Fig- 4.24: Arrivals to system forburstyarmrival rates. - - . . oo . Lo 87
Fig- 4.25: SCP load forbursty amrival rates. - . . L i i e a e 83
Fig. 4.26: Mean SCP queue lengthforburstytvaffic. - - _..... 89
Fig- 4.27: Mean freephone delays forburstytraffic. - - oo . oL _...... 89
Fig- 4.28: Dynamic SCP load for Stationary Case. - - - - o o oo o i e e i e e e e i aaa e 0
Fig. 4.20: Mean SCP load for Stationary CasSe . - - - -« o it i e f e e e e e e e eee e a
Fig- 4.30: Mean SCP queue length for SEEiomary CaSe. - - -« @@ o v i i i e e i e e e e e e e e e o - 91
Fiig- 4.31: SSP acceptances Tor SEIONANY CaSe - - - - o - o v oo e i e e i e e e e e e 92
Fig. 4.32: Mean SCP load for lirearly incressingarmrival rates._._..... 93
Fig. 4.33: SSP acceptances for linearly increasingarmival rates. - - ... oo oo 93
Fig. 4.34: Dynamic SCP load forburstyarmivalrates. - . . . o . . oo-. A
Fig. 4.35: Mean SCP queue lengthforburstyarrivalrates. B
Fig. 4.36: Mean freephone delays forburstyaminval rates. oo . oo . o 95
Fig- 4.37: Dynamic SCP load Tor SOy CaSe: - - -« v o oot o e e e e e e i e cea e 97
Fig. 4.33: Mean SCP load for Stationary CaSe. - - -« o @ o e o e e e e e e e e e e e e e e 97
Fig- 4.39: Mean SCP load for linearly incressingarmivalrates. - 98
Fig- 4.40: Dynamic SCP load forburstyarrival rates. i 9
Fig. 4.41: Dynamic SCP load fortelewtingoverload. _...... 101
Chapter 5

Fig- 5.1z IN Implementation SCenarios. - - - o o o it i e e e i e e e e 105

viii

Table of Figures

Fig- 5.2: The INmodel design. - - - o oot e e e e d e e e e e deee e caaaaaaan 108
Fig. 5.3: The New IN SimulationModel (NetworklLayer). oo aan- 1]
Fig- 5.4: The New IN_sspNode Model . . o i e aaa s 112
Fig- 5.5: The IN Analytical Model - - . . o e i i e 113
Fig. 5.6: The Independent Congestiion Control Strategy. - - . - - o . oo oo oo i e e e et 118
Fig. 5.7: The Joint SCP/SSP Congestion Control Strategy. - - - - - o oo oo oo i i i e e o 119
Fig. 5.8: SSP load= 12, SCP load=0.52. e e i i aa e e e 1
Fig. 5.9: SSP load= 1.2, with IN calls comprising 1.06Erlangs. . -_.... 122
Fig. 5.10: Overview oftheNew Global IN Congestion Control Strategy.- 129
Fig. 5.11: Offered Traffic Causing SSP Overload. - 133
Fig. 5.12: Proportion of Traffic Acceptedunder SSP Overlload. 133
Fig. 5.13: SCP and SSP Processor Loads during SSP Overload. - - 134
Fig. 5.14: Revenue during SSP Overlload. - oL 134
Fig. 5.15: Proportion of Traffic Accepted at SSP during SCP Overload._..... 135
Fig. 5.16: SSP and SCP Processor Loads during SCP Overlload._._.... 135
Fig. 5.17: Proportion of Traffic Accepted at SSP duringGeneral Overload. 136
Fig- 5.18: SSP and SCP Processor Loads during General Overload. _....... 136
Fig- 5.19: Revenue duringGeneral Overload. . - - o.-. 137
Fig- 5.20: ServiceDelays duringGeneral Overload. - 137
Fig. 5.21: SSP and SCP Processor Loads during Overload due toBursty Traffic. __ 138
Fig. 5.22: Revenue duringOverload due toBursty Traffic. _........ 138
Chapter 6

Fig. 6.1: The dynamic CCC/CG Strategy.- - - -« c o e o e e e e e e e e i e ea e eaaa s 146
Fig. 6.2: Offered traffiC Tor S ONANY CaSe.- - - - o @ ot ot i e e i c i e cea e e e 148
Fig. 6.3: SCP load for StEtionBrY CaSe.- - - - -« o i e e e e e e e e e e 149
Fig- 6.4: SSP1 load for Stationary CaSe. - - - o o o oo i e f e e e e e e e 149
Fig- 6.5: SSP1 acceptances Tor SEatIOnarY CaSe .- - - - o o v i e e e e a e e e 151
Fig. 6.6 SSPlrevenue Tor SEEtIOMBNY CaSE. - - - o ot i e e e i e e e e e e 151
Fig- 6.7: Arrival ratesto SSP1 for SCP overload. - - - .. . oo ... 152
Fig. 6.8: Total offeredtrafficto all IN physicalelements. _.... 152
Fig-6.9: SCP loadfor SCP overload. . - . . . o e e e 153
Fig. 6.10: SSP1 loadfor SCP overload. - - . . . o i 154
Fig. 6.11: Acceptances at SSP1 for SCP overload. . . . - . ..o ..o 154
Fig. 6.12: Revenue ofSSP1 forSCP overload. - . . - 155
Fig- 6.13: Service delays atSSP1 for SCPoverload. . - . - . oo . oo 155
Fig. 6.14: Arrival ratesto SSP1 forSSPoverload. -.. 156

Fig.
Fig.
Fig.
Fig-
Fig.
Fig.
Fig.
Fig.
Fig.

Fig.
Fig.

Fig.

Fig.
Fig.
Fig.
Fig.
Fig.
Fig-
Fig.

6.15:
6.16:
6.17:
6.18:
6.19:
6.20:
6.21:
6.2:
6.23:
6.24:
6.25:
6.26:
6.27:
6.28:
6.20:
6.30:
6.31:
6.32:
6.33:

Table of Figures

Arrival rates forall IN physicalelements. 156
SSP1 load forSSPoverload. - - 157
SCP loadfor SSPoverload. - - 158
SSP1 acceptances for SSP overload. - - - . oo . oo 158
SSP1 throughput for SSP overload. - - - . . oo .o 159
SSP1 revenue for SSP overload. - - . ..o .. 159
Arrival rates to SSP1 forgeneral overload. - _.... 160
Arrival rates forall INphysical elements. . . oo . oo oL oo ooan 160
SCP load forgeneral overload. - - . . . o oo 161
SSP1 load forgereral overload. 161
SSP1 acceptances for general overload. 162
SSP1 throughput forgeneral overload. - - . - . ..o .o L 163
SSP1 revenue forgeneral overload. - . .- ... oL 163
Arrival rates forall INphysical elements. 164
SCP load forburstyoverload. - 165
SSP1 load forburstyoverload. - - . . oo aaa 165
SSP1 acceptances forburstyoverload. - ... oo 166
SSP1 revenue forburstyoverload. 167
SSP1 service delays forburstyoverload. - - ... oo oL .o ... 167

Abstract

Abstract

This thesis examines the congestion control issues that arise in Intelligent Networks, when it is
necessary to support multiple service types with different load requirements and priorities. The
area of IntelligentNetwork (IN) congestion cotrol has been under investigation for over a decade,
but in gereral, the models used in this research were over-sinplified and all service types were
assumed to have the same priority levels and load requirements at the various IN physical
elements. However, as the IN isa dynamic network that must process many different service types
that have radically different call load profiles and are based on different service lewel agreements
and charging schemes, the validity of the above assumptions is questionsble. The aim ofthiswork,
therefore, Is o remove a number of the classic assumptions made in IN congestion control
research, by:

« developing a detailedmodel ofan IN, catering for multiple traffic types,

= using thismodel to establishthe shortcomings of classic congestion control stratggies,

= devisinganew IN congestion control strategy and verifying its superiority on the model .

To achieve these aims, an IN model (both sinulation and amalytic) is developed to reflect the
physical and functional architecture of the network and model the information floas required
between network entities in order to execute sarviaes. The effectiveness of various classic active
and reactive congestion comtrol strategies are then investigated using this model and it s
established that none of these strategies are capable of protecting both the Service Cortrol Point
and Service Switching Points under all possible trafficmixes and loads. This ispartially due to the
fact that all of these strategies are based on the use of fixed parameters (and are therefore not
flexible enough to deal with IN traffic) and partially because none of these strategies take Into
account the different load requirements of the different servioce types.

A new, flexible strategy is then devised to fecilitate global IN congestion control and cater for
service types with different darecteristics. This strategy maximises IN performance by protecting
all network elements from overload while maximising network revenue and preserving fairmess
between service types during overload. A number of factors determining the relative importance or
weight of different traffic types are also identified and used by the strategy to maintain cll
importance during overload. The efficiency of this strategy is demonstrated by comparing its
operation to that of the best classic IN overload controls and also to a new strategy, which has
scalable and dynamic behaviour (and which was devised for the purpose of providing a fair
comparison to the optimisation strategy). The optimisation-based strategy and dynamic strategy
are found to be equally effective and far superior to the classic strategies. However, the
optimisation algorithm also preserves relative importance and faimess, while maximising network
revenue -but atthe cost of a not insignificant processing overhead.

Xi

Chapter 1

Introduction

Chapter 1 Introduction

This thesis examines the area of Intelligent Network (IN) congestion and proposes strategies and
algorithms to protect an IN from this phenomenon. In this depter, the terms congestion and IN are
defined and a briefdescription of the main issues involved with IN congestion control isprovided.
Then, the primary objectives of our research in this area are presented, followed by an outlire of
the structure of this thesis.

1.1 General Background

In the area of telecommuniications, the term congestion refers to the scenario where the amount of
work offered to a telecommunications network element becomes so great that the element isno
longer capable of dealing with it. For example, ifa Public Switched Telephony Network (PSTN)
switch is suddenly flooded with call requests (reguests Trom users to establish a voice connection
or execute a srvice), but is not fast enough (does not have sufficient processing power) to deal
with these requests at the rate at which they are arrivirg, then the requests build up in the input
buffer. A further contrributing factor is that the processing of a call by the switch is distributed
across the lifetine of the calll and it isvital, in order to maintain efficiency, that once processing
has begun on a all, itcompletes sucoessfully. Therefore all calls that are inftially accepted by the
switch require more processing time ata later stage. This leads to even more demand being placed
on the processors and reduces further the rate atwhich the switch can deal with newly arriving cll
requests. At this point the switch is overloaded or congested, the result of which is that users
experience unacceptably long delays in receiving dial tore, during call setup (Post Dialling Delay)
and at various other points in the cll. Further, many clls are not established successfully and the
operation of the switch may be placed in jeopardy - in the worst case, the switch can break down
completely. Itis therefore vital that a strategy for reducing the load on the switch processors (e
the amount of work they have to do), namely a congestion (or overload) control strategy, is
implemented at the switch t prevent serious overload and to ensure that the switch s vell
protected and operating atoptimum efficiency atall tines.

The area of congestion and congestion ocontrol techniques has been well researched and
documented, with many methods existirng, each with its own advantages, disadvantages and
therefore, goplicatios. These control techniques are usually examined and compared using
simulations and analytic models of simple single-processor systenms to represent network elements.
These models assume that a network comprises multiple switches, with each switch being
responsible for protecting rtselffrom overload, either by refusing all call requests outright (referred
to as blocking), by refusing a proportion of requests (referred to as throttling) or by notifying other
switches of the overload situation and telling them t route call requests over altermative paths.
This type ofmodel is therefore sufficient for representing the operation ofaPSTN or an Integrated

Chapter 1 Introduction

Services Digital Network (ISDN), where the network is comprised of a number of physical
antities, each carrying out similar functions and none more important to the operation of the whole
than any of the others.

The Intelligait Network does not have this kind of architecture. ltwas standardised by 1TU-T
[1ITU_IN] in order to specify a network architecture that alloans users to create and maintain
services quickly and essily and which provides all authorised users in the network with the ability
o access any of the offered services. This dbjective ismet by defining a number of IN elements
(called Physical Bitities (PES)) that together allow a service to be accessed and executed. Service
Switching Points (SSPs) receive service requests from users and are responsible for all swvitching
functions associated with terminating the call and also for the invocation of service logic in a
Service Control Point (SCP) - a PE of the IN at which service logic resides (and therefore
effectively the “‘core” of the IN). SCPs cotrol the execution of all services by transmitting requests
o and receiving information from the SSPs, Service Data Points (SDPs, which provides SCPs with
sarvice- and user- specific data maintained in network databases) and Intelligent Peripherals (IFs,
which provides the fuctioality for the exchange of information with the user). Therefore, iIn
order 1o execute even the sinplest service for a user, several messages must be transmitted
between an SCP and other IN PEs over a Signalling System Number 7 (S57) network during the
course ofonly one cll. This, of necessity, results in very large quantities of traffic to and from the
SCP. Therefore, the SCP is the principle bottleneck in the IN architecture, and the PE most likely
tobecome overloaded. Itisalso, however, the most important PE in the network (as itcotains all
service logic programs) and it is therefore crucial that itbe protected all times. Due to both the
distributed nature of the IN and the fact thet the SCP isthe most important element in the network,
the modelling of network behaviour cannot be accomplished accurately using the sinple single-
processor model that is generally applied to PSTN and ISDN. Therefore, to investigate IN
congestion control isses, anew, more appropriate model must be developed.

The dbjective of an efficient congestion control strategy for the IN (or indeed any congestion
control strategy) s 1o successfully complete as many service requests for as many users as
possible, while keeping response delays as low as possible. However, the added complexity of the
IN architecture means that a number of other issues must be taken iImo consideration, among

which are:

= SCPs are tremost important PEs inthe IN, as all IN service requests must receive processing at
lesst once atan SCP. Therefore, ifan SCP becomes congested, the number of services trat will
be able to execute will be severely limited and itmust therefore be protected at all asts. On the
other hand, it should process as many alls as is safely possible at all times, even during
congestion (ie. itshould not expend much of its capacity on the rejection of call reguests).

Chapter 1 Introduction

« Multiple messages may arrive atan SCP during a single execution of a service at that SCP- e
new call requests, once accepted, usually (depending on the type of service) lead 1o the later
arrival of requests associated with the same Gll. These requests may not be blocked, but must
be processed further in order to optimise SCP throughput (ie. the amount of SCP capecity
spent processing clls which terminate successfully). For example, a simple service may
involve the arival of two reguests atan SCP (e.g- for anumber translation service, SCP arinvals
would consist of the initial service request from the SSP followed by another as a reply to a
data lookup request from the SDP), while a relatively complex service would generate many
more SCP amials, require more processing and be therefore more likely to cause or exacerbate
a congestion sittation.

< In the future, it s likely that SSPs will handle non-IN traffic, as well as IN service reguests.
This will have inplications on IN performance, because indiscriminate blocking of callsby the
SSP in order 1o protect itselfmay result in severe uder-utilisation of the SCP. Also, non-IN
calls have lower processing overhead (by a factor of approximately 2.5) than IN requests, so a
policy of thottling all calls equally, without distinguishing between them, may prove
inefficient or even ineffective.

= The provision of IN services to customers tends to be based on Service Level Agreements
between the service provider and customer. As such, different services will have differait
leels of importance, agreed arrival rates and tariffs (&s well as different processing
requirements at the SCP) . This inplies that there may be aneed for a priority-based congestion
cortrol system.

1.2 Research Objectives & Methods

The principle dbjective of this work iIs to develop a new IN congestion control strategy which
performs better than the IN strategies which have been used in industry over the last decade. To
ensure the suyperiority of the new strategy, itshould be compared with the best of these existing
strategies in an IN network model which sinulates closely (with minimal assunptions) the
structure of a real Intelligeit Network, the behaviour of itsvarious functional components and the
trends and variations which tend t occur in IN taffic.

The first step in reaching this goal is therefore to develop a comprehensive model ofthe Intelligent
Network and to use it to examine the behaviour of the most commonly used SCP congestion
cottrol strategies in industry today (SSP overload is generally not considered to be a factor in IN
congestion control and therefore SSP protection tends not t be included in the implemented
stratggies). The results of this investigation then highlight the problems that exist in these
stratggies. This provides insight into the daracteristics trat would be desirable in a new IN

Chapter 1 Introduction

congestion control strategy and therefore allows the requirements on thisnew strategy to be more
eplicitly stated and refined.

The second step is to enhance the IN model in order to examine the effects on IN performance of
mixed IN and non-IN traffic at a finite-cgpecity SSP (ie. an SSP which may experience
congestion). This investigation proves that the behaviour of an SSP congestion control strategy
may significantly affect the owerall performance of the IN and, in doing 0, demonstrates the
advantages of combining SCP and SSP overload controls into a singlle global IN overload cotrol

Strategy.

The third step consists of deriving a global IN congestion comtrol strategy that protects both SCP
and SSPs, while exhibiting all desirable daracteristics identified during the first step described
above. Inclusion of this new strategy in the IN model is then followed by rigorous testing and
compar ison wi'th other strategies in order to \verify iIts superior effectiveness and efficiency.

1.3 Thesis Outline

Chapter 2 of this thesis provides all necessary information about the state of the art in the aress
relevant to thiswork. This includes a brief description of the architecture and operation of the IN,
followed by a summary of the results and conclusions of investigations into congestion control in
gereral and IN congestion cotrol in particular. Chapter 3 provides the background information
required to aid understanding of the simulation and analytic model ling techniques and congestion
control algorithms tratwill be presented in fol loving depters.

Chapter 4 investigates methods for the protection of the SCP and documents the comprehensive
multi-processor Intelligait Network model that was developed to fecilitate this investigation. The
effectiveness of classic congestion cotrol detection methods (such as Queue Length Cotrol, Call
Count Control and Load Measure Cortrol) for SCP protection is compared, as is the operation of
the Call Gapping and Percent Thinning throttle algoritinms. Then, the Window congestion cotrol
strategy Is compared with the best of the above detection methods combined with the best throtte.
Finally, a number of points are raised regarding areas in which these strategies” performance s
undesirable and how they should be enhanced to improve their effectiveness.

Chapter 5 first presents a new version of the IN model used in Chapter 4 which was enhanced
based on the dbservations made in the conclusions of that degpter. The effect of the presence of
non-IN calls at finite capacity SSPs on IN congestion control algorithms is evaluated and it s
concluded that a strategy which dynamically manages congestion cortrol jointly at the SCP and
SSPs provides better performance than a strategy in which all elements are protected

Chapter 1 Introduction

independently. Then, just such a global strategy (Which isbased on the mathematical optimisation
ofrevenue) ispresented and results of itsbehaviour under various types and levels of overload are

given.

Then, inChapter 6, to establishwhether this revenue optimisation-based strategy provides the best
passible IN performance for any load condition, its operation is compared with those classic
strategies that were found to have the best performance in Chapter 4. Also, a new version of a
classic strategy (in which a dynamic Call Count Control detection method is combined with a
hybrid Percent Thinning/Call Gapping throttle) is derived, to ensure a fair comparison with the

optimisation-based strategy.

Chapter 7 then summarises the main conclusions of the work and provides a number of
recommendations regarding issues that should be addressed and algorithms that should be used
when developing a congestion control strategy for use inan IntelligentNetwork.

Chapter 2

State of the Art

Chapter 2 State ofthe Art

In this depter, the background information about the Intelligeit Network architecture and
standards is summarised, as are the reaults of the research which has taken place in the IN
congestion control arena to date. Section 2.1 describes the Intelliget Network in terms of
Justification for s development, its standard ewolution path and the IN Capability Set 1
architecture. Section 2.2 provides an introduction to the general concepts of congestion cotrol and
Section 2.3 describes the research that has taken place in IN congestion cotrol over the lsst ten
years.

2.1 The Intelligent Network (IN)

2.1.1 Justification for IN Development

Up uttdl the mid 19807%, sarvices offered by network operators to users consisted principally of
basic call corectivity. Since then, however, service technology has grown greatly, with the
requirement for more complex services constantly on the increase. The structure of the Public
Switched Telephony Network (PSTN) as itstands is not very compatible with the need to supply
services, as to do so requires service logic to be available on all PSTN switches. The Integrated
Services Digital Network (ISDN) standard [ITU_ISDN] includes the specification of a number of
servicss (eg- Abbreviated Dialling, Call Forwarding, Call Transfer etc.), but again, for an 1SDN
switch to have the capebility to offer 1 SDN services, the code for the services must reside locally
1o the switch. Some of the difficulties associated with making services available inboth PSTN and
I1SDN include:

= The principle problem with the process of service provisioning is trat, in PSTN and ISDN,
services are localised - in other words, ifthe software for a service is loaded at a network node,
only users directly attached to that node may use that service. Therefore:
< inorder to be able to allow a customer t aail of a sarviae, the appropriate fuctioality
must be loaded at treir local node.
= Also, ifa service is 1o be altered or upgraded, the code must be changed at every node
offering the sarvice.
= This makes the provisioning and maintenance of a service both very diffiaukt and very
slow.
« [Itisalsovery wasteful of resources in that the same service software isreplicated atawide
range of locations.
e Service developers have the added problem of vendor dependence, in that software and
hardware diffars greatly between switches provided by differat switch vendors and many
differentbrands and types of switches may be available inone network. Kt is therefore diffiaukt

Chapter 2 State of the Art

o ensure that any developed software will work correctly on any given switch, and differant
code must be written for different swvitches. Most switch vendors supply some basic servioss
already installed on their smitthes, but these do not necessarily function correctly when
interacting with other switches made by another vendor .

= Service cregtion Is an expensive process, both in terms of time and money, as there s no
standardised environment available for the development of services. Some switch vendors
have developed proprietary service creation environments that increase the speed of the
development process for those vendors, but as they are not standardised, ocorrect service
operation across switches provided by differentvendors cannot be guaranteed.

= Different software versions across switches add further conplications both in the development

and execution of servioes.

As the role of services In networks increased in importance, the necessity arose for a network
architecture which addressed the above problems and allowved network operators and service
providers to design, implement and maintain services as efficiattly as possible to maximise the
possible income. Requirements on this service-friendly network included:

< A reduction in the length of the service design and development phase, by providing a
standard development environment comprising a set of reusable function blocks and tools t©
fecilitate the rapid design ofa service.

e Much shorter deployment and provisioning phases, achieved through centralising all service
execution software so that the logic for anew service would need to be installed at relatively
Tew locations in the network in order to make itavailable for all customers on the network.
This cetralisationwould also sinplify the task ofupgrading and maintaining sarvices.

= Independence from switch hardware and software vendors - switch vendors would be required,
in order to remain competitive, to provide a standard set of functions in their switches t©
ensure compatibi lity with the averall network operation and the services residing in it

= The ability for all users t avail of a service, no matter where they are located in the network.

The IntelligentNetwork was developed in orderto meets these needs - i.e. to Tecilitate the creation
and operation of services within a telecormunications network. The concepts of the IN have been
under design since 1988 and are currently widely inuse inthe USA, Australia, Japan and Europe.
Some of the most popular services used iIn today™s telecomunications market, including cll
manipulation services (such as Call Forwarding, Call Transfer, Call Waiting), Freephone,
Televoting, Credit Card Calling and Premium Rate services, are offered via IN.

Chapter 2 State of the Art

2.1.2 Evolution of the Intelligent Network

The Intemational Telecommunications Union (ITU) have adopted a "Chinese Box™ approach inthe
development of IN standards in that each version of the standards (called Capability Sets) isa
superset of its predecessor, as shown inFigure 2.1 below.

The firstversion of the IN standards, 1 TU Capability Set 1, was released in 1993. CS-1 defines the
fundamental architecture of the IN in terms of the IN Conceptual Model (INCM). This 1NCM
addresses only the basic operation of the network in terms of the actions at and the interactios
between IN Physical Bitities (PEs) required in order to execute a service. CS-1 was the first in-
depth standard detailing the concept of the IN and is responsible only for describing the basic
principles of service execution and network architecture. Therefore, CS-1 has a number of
limitations, in terms of how useful it is to service providers in the development of the types of
services that are desired today. These limitations include:

< No network management or service creation features were investigated - no specifications
were produced for the IN Service Management Function (SMF) or Service Creation
Environment Function (SCEF).

e InIN CS-1, services can only be implemented for Type A alls - ie clls which have, atall
times, only one originating and one terminating party. Therefore, CS-1 cannot fecilitate the
creation of Call Transfer, Call Forwarding, Call Waiting, Conference Calling, or any other
service that involves more than two call parties ata tine.

The gpecification of Capability Set 2 standards was very slow - the standard did not become
available until the end of 1997 - e four years after CS-1. This standards development was rot,
however, fast enough for service providers, who needed to be able to create and provide awider
range of services than could be encompassed by CS-1. Therefore, IN equipment vendors and IN
service providers have developed their own proprietary versions of IN, which are based on the CS-
1 INCM, but which provide added fuctioality to fecilitate the offering of Type B (rulti—party)

10

Chapter 2 State ofthe Art

services - an example of this is the Ericsson SCP, which isbased on the use of their proprietary
CS1+ [EricssonCSi+],

CS-2 expanded on existing CS-1 concepts and added many new concepts in areas not addressed by
CS-1 [Q1221]. Among these are:

A wider range of functionality was specified to al low the development of narrowband Type B
servioss, such as audio—conference callirg. This included both the specification ofnew Service
Independent Building Blocks (SIBs) and the extension of the Basic Call State Models
(BCSMs) and INAP (ntelligent Network Application Part - the gpplication layer of the SS7
protocol stadl).

High lewel guidelines were provided for supporting service management servioss and service
cregtion. This included the specification of Service Management Service Features and
interfaces to management, based on TMN (Telecommunication Management Networks)
principles [ITU_TMN], imterfaces (e the X interface) and protocols (e the Common
Management Information Protocol (CMIP)).

The issue of interworking between INs and other networks was addressed in CS-2. The IN t
IN interworking (e interworking across the boundaries of different IN domains) included the
specification of mechanisms for interworking between Service Control Points (SCPs), Service
Data Points (SDPs) and Service Management Points across IN domain boundaries. An
Intelligett Access Function (1AF) was specified to provide access to an SCF inan IN from a
non-IN structured network. The seaurity issues that will arise at the boundaries between
network domains have also been addressed by CS-2. These interworking fecilities will enable
IN standards to meet the open market demands for Open Network Provisioning (ONP), ie
they willl permi't service providers with service software located inone IN tomake itavailable
(&s third party service providers) to customers in other networks. These specificationwill alo,
even within a single IN domain, improve the operation of the network by providing
redundancy and backup systems - for example, multiple SCPs could supply the same service,
so that ifa problem arose at one SCP, requests could be re-routed to other SCPs supporting the
same serviass. Note, however, that CS-2 still requires a single point of control - ie atany one
time during execution of a service, an SSP should never have to interact with more than one
SCP.

Some support has been provided for multimedia-type services and for services involving either
personal or terminal mobility. This support isnow available at the lagical level (@e. SIBs have
been defined to support various features of these types of serviass), but this support isnot yet
reflected at protocol lewel.

Chapter 2 State ofthe Art

In parallel with the CS-2 standardisation effort at 1TU, the Telecommunications Intelligent
Networking Architecture (TINA) consortiumwas also founded to investigate how principles of IN
and TMN could be applied to the specification of an architecture for broadband services
[TINA97]. The TINA specifications are based on the use of CORBA (Common Object Request
Broker Architecture [CORBA99]) for service logic specification and ATM (Asynchronous
Transfer Mode [ATM99]) for broadband communication, and are currently quite influential in
contribution to the definition of standards in the Object Management Group (OMG) (eg- for
access to CORBA-based services) and, to a lesser extatt, in the 1TU (e.g- the standardisation of
ITU-ODL in Study Group 10). Iitmay therefore be predicted that TINA and TMN will all be very
influentiial in the specification of IN CS-3 (due out later in 2000), which is therefore highly likely
1o encompass:

< Rl IN/TMN integration, including full tecical specification of the IN-SMF and SCEF,
< FRull IN/ATM imegration, including functionality (and protocol support) to offer broadband
multimedia services, such as video conferences, joint document editing services and
auctioning services,
= Rull support for personal/terminal mobi ity services.
Also, as the telecoms and Information Technology (IT) domains continue to converge, itis likely
that various other standards bodies which have been established to advance computing
tedhrologies, e.g- the OMG, which standardises CORBA for distributed software processing and
the 1ETF (Intarmet Engineering Task Force), which gecifies Intermet standards (eg- Intermet
Protocol (IP) version 6), will also be influential in the specification of CS-3, but the impact of this
work on the IN CS-3 standards is less clear. For example, itisunclear whether the SS7 (Sigalling
System No. 7) will remain as the underlying protocol stack in CS-3. There is a possibility that
CORBA sHOP (Intermet Inter-Orb Protocol) running over 1P will become a candidate for this role.
Also, the functionality for offering distributed service logic (i.e. where the logic of serviceswill no
longer reside at a single physical element (the IN SCP)) and the fecility for expressing
fuctionality interms of O M G s Interface Description Language (IDL) may prove very useful in
IN specification and may therefore be incorporated inCS-3.

However, atthe moment, most real implementations of IN are still based on CS-1 and, as a reallt,
itiswith networks of this type that congestion is currently an isse. Therefore, the model thatwas
developed and described in this report was developed to meet CS-1 specificatios and all
congestion control research carried out was based on the physical architecture of IN CS-1. This B
not very restrictive, as all results and solutions remain valid in CS-2 and only require extending to
include isses related to IN-IN interworking (this issue s already being examined by eg
[Kawamura96] and [Sivensen96]). The CS-1 resultsmay also prove relevant to CS-3 networks, if

Chapter 2 State ofthe Art

the standard isbased on the use of SS7 (in conjunction with a gateway between the SS7 TCAP
(Transaction Capabilities Application Part) layer and CORBA) for trangport of corrtrol messages.
Of course, performance management in a distributed programming domain such as CORBA isa

completely separate isse, but itisperceived as being outside the scope of this tresis.

We, therefore, will now explain the functionality of the IN as defined by the CS-1 standards, as
being the basic network architecture on which all congestion control research has been carried out
inthis thesis.

2.1.3 The Architecture and Operation of IN CS-1

The sinplest way of explaining the concept of the IN Isby introducing the IN Conceptual Model .

This provides a planar view of the implementation of a service within the IN. There are four planes
inthemodel , the highest plane representing services as discrete units, with each lower level further
examining the operation and execution ofthe servicess. At the lonest leel, on the Physical Plare, a
full breakdown of the actians, interactions and irnformation flows required to execute a service are

represented. The conceptual model isshown inFigure 2.2 below.

2131 The Service Plane (SP)

This is the highest plane in the Conceptual Model and is described in [Q1202]. At this leel,
services are described only in terms of how they behave. Services may be distinguished as
marketable products that are made up of one or more Service Features assembled together. A
Service Feature offers a limited amount of fuctionality to the user and may alsobe a service in its
own rightt. An example of a service feature that is also classified as a service would be the
Abbreviated Dialling Service. The Virtual Private Network (VPN) Service would be a prime
example of a service consisting of multiple service features, as a VPN may offer, among others,
the Abbreviated Dialling, Call Transfer and Call Forwarding features.

Chapter 2

State of the Art
Acronyms:
SF Service Feature GSL Global Service Logic
BCP Basic Call Process POI Point of Initiation
POR Point of Return SIB Service Independent Building Block
DSL Distributed Service Logic FE Functional Entity
PE Physical Entity px Protocol x

Fig. 2.2: The CS-1 Intelligent Network Conceptual Model
2132 The Global Functional Plane (GFP)

The GFP describes the functiomality of the IN on an abstract level [Q1213] in that itdoes not deal
wi'th how functionality is realised or where itis located within the network. At this leel, a service
or service feature isperceived as consisting of discrete blods, called Service Independent Building
Blocks (SIBs). As this layer is independent of network structure, S1Bs do not real ly exist as distinct

14

Chapter 2 State ofthe Art

antities at any location in the IN, but merely represent functionality within the network that s
needed 1o carry out tasks in order to provide the required service. Thirteen SIBs have been defined

inCS-1, among which are:

= Verify -this SIB isused to check the format of any Input strings.

= Charge - this defines when special charging features or rates are to be goplied, including, for
example, reverse charging and premium rate charging.

= Queue -this SIB allons calls to be queued at a destination. Announcements may be read to
waiting customers uitil itistreir tum tobe sened.

= User Interaction - this SIB represents any interactions between the network and the user,
including the reading of announcements and the ool lection of digits.

= Translate - this SIB uses input data to reference information. In other words, itrepresets a
database lookup action.

= Screen - this compares an identifier against a It tcould be used asa seaurity measure, t©
represent the comparison of a Personal Identification Number (PIN) keyed in by the user
against a listof authorised users.

= Basic Call Process (BCP) - this isa special SIB which represents basic cll functiomality and
processing.- It is therefore responsible for recognising when a service has been requested and
when abranch to other SIBs is required.

= When designing or representing a service using SIBs, the relevant SIBs are linked together in
chains and are invoked by the BCP viaaPoint oflnitiation (POI). The BCP supplies the SIBs
with the any Call Instance Data (CID - information specific t one call request, including for
example, the calling lire idntifier, the PIN keyed in by the user etc.) required to process the
call and execute the service. When a chain of SIBs has completed execution, control is
retumed tothe BCP viaaPoint ofReturn (POR).

In order to demonstrate how SIBs may be used to represent a service, a GFP representation of a
Freephone service willl be provided. The behaviour of this Freephone service may be defined as
follons: the service is activated when a user picks up their phone and dials a ten digit number,
beginning with the strirng ""1800"'. This number is associated with a particular service subscriber,
and an attempt ismade to establish a connection between the user and the subscriber. Ifthe call
terminates successfully, the subscriber is billed for the cll. A gldbal functioal plane
represantation of the setup of this service isshown inFigure 2.3.

15

Chapter 2 State ofthe Art

Address
PO Analyssd ». ("Verify

POR
POR Proceed With New Data
. Busy
Basic
Call A Clear Call
Process
POI Ar.tivfi Staffl ~ Arrtal

POR " Continue With Existing Data

POI No Answer e

poOR 9 Clear Call

Fig. 2.3: GFP Representation of the Freephone Service Setup

The operation of this model isas folloxs: the BCP signifies that the analysis of the digits entered
by the user and the recognition of a request for the freephone service has taken place by branching
at the Address Analysed POI 1o the relevant SIB dain. The first SIB, Verify, establishes that the
user has correctly entered a ten digit number . Ifthe number has been entered incorrectly, the User
Interaction (UI) SIB is invoked to read an announcement (for example, *Please try aggin, ensuring
that you enter ten digits. Thank you."") 1o the user and control is retumed to the BCP via a Clear
Call POR. The BCP is then responsible for teminating the cll. Ifthe number has been entered
aorrectly, the Translate S1B uses the dialled number to reference the actual Destination Number
(DN) of the subscriber. The DN s then returmed t the BCP via a Proceed With New Data POR,
and aall processing continues with routing to this new DN. When cll setup is being attempted,
there are three gptions as to how the call may progress:

= Ifthe subscriber™s lire isengaged, aBusy POl leads to a Queue SIB, which holds tre call ina
queue uttil the lire becomes available. Any problem will lead to an announcement being read
and the call being cleared, but ifeverything remains in order, control will be released via a
Continue with Existing Data POR tothe BCP once the lire becomes fiee.

« Ifthe call request is acoepted, an Active State POl leads to the Charge SIB, which specifies
that the teminating party isto be billed for the cll.

< Ifthe call isnot answered, it is possible to access the User Interaction SIB via a No Answer
POl and cause an announcement to be read to the user before clearing the cll.

16

Chapter 2 State ofthe Art

2.1.3.3 The Distributed Functional Plane (DFP)

The DFP describes how the various elements of functionality are distributed across the network
[Q1214]. The operation of the network is explained in terms of Functional Entities (FEs), each of
which carry out specific FE Actions (FEAs) and communicate with each other through
Information Flows (IFS). To retain openness, the physical location of the FEs isnot addressed in
the DFP . Figure 2.4 depicts all FEs defined within CS-1.

Acronyms

CCAF: Call Control Agent Function CCF Call Control Function

SCEF: Service Creation Environment Function SCF Service Control Function

SDF: Service Data Function SMF Service Management Function
SRF: Service Resource Function SSF Service Switching Function

Fig. 2.4: Functional Entities in the IN CS-1 Distributed Functional Plane

The Service Creation Environment Function (SCEF) allows service providers to develop Service
Logic Programs (SLPs) quickly and essily. The SCEF isa subfunction of the Service Management
Function (SMF) that has overall responsibility for the deployment, provisioning and maintenance
of services and for the upkeep of data on the network. Note thatno behaviour is specified for efther
theSMF or SCEF inIN CS-1.

= The Service Control Function (SCF) is responsible for controlling the execution of services.
This task requires that the SCF manages the execution of SLPs and is also responsible for
handling the transmission of messages to the Service Data Function, the Service Resource
Function and the Service Switching Function and the interpretation of results from these
fuctions.

= The Service Data Function (SDF) inmterprets SCF-generated reguests, acocesses (reads or writes)
data in the database and sends results back to the SCF.

= The Service Resource Function (SRF) provides the functionality for interactions between the
network and users ie. the reading of announcements, collection of digits typed in by the user
elc.

17

Chapter 2 State ofthe Art

= The Service Switching Function (SSF) acts as an interface between the SCF and the Call
Control Function (CCF). It imterprets messages from the SCF and traslates them imo
instructions for the CCF and also builds information from the CCF irmo INAP messages for
transmission to the SCF.

= Itiswithinthe CCF that call processing is handled through the maintenance and manipulation
ofaBasic Call State Model (BCSM -thismodels all the possible states a call can be in, along
wi'th the requirements needed to pass from one state to another and all possible routes between
states. Two BCSMs have been specified in CS-1. The OriginatingBCSM (0-BCSM) models
the states of the originating call (eg- Onhook, Call Authorisation, Number Analysis, Call
Routing etc.), while the Terminating BC SM shows all possible states inwhich the terminating
callmay find it=lf. Note that itisthe CS-1 BCSMs which primarily restrict the use of IN CS-1
to the provision of Type A @lis)). The CCF is therefore responsible for the detection of service
requests at any stage in a call and for notifying the SCF accordingly, by passing the request to
the SSF. Italso alters the state of a call according to instructions provided by the SCF via the
SSF. The CCF isalso connected to the Call Control Agent Function (CCAF).

= The CCAF provides connectivity between the CCF and the customer.

Each FE within the network is capable of carrying out a number of actions (FEAS). This is done
through the execution of blocks of code within the FE. A set of Information Flows is defined
within CS-1 as amessage et for passing information between FEs. The SIBs from the GFP may
be realised inthe DFP as a series of FEAs and IFs. For example, the Translate SIB uses input data
as a key to abtain output information. On the DFP, this consists ofa FEA withinthe SCF tobuilda
request with the input data as key, an information flow to the SDF, a FEA inthe SDF to look up
the requested information and code itinto a message and firally, an information flow back to the
SCF. This realisation can be extended to services. Taking again the freephone representation on
the GFP and making the assumption that the call proceeds without any hitches, a sinplified DFP
realisation ofhow this service would cause a call tobe setup Isshown inFigure 2.5. Note tdt, in
the diagram, the SSF and CCF are modelled together - this is a common method of representing
their gperation, as in rality, they are very closely linked. So, in showing the decomposition of the
service IMto FEAs and IFs, three functional entities are represented - the SSF/CCF, the SCF and the
SDF -r3 and r6 are different conmunications media between the functions.

Operation of the freephone service Isuser-driven -when the customer goes offhook an Originating
BCSM iscreated to monitor the progress of the cll. After the freephone number has been dialled,
itis analysed by the CCF and the "1800" string at the start of the number is recognised as being a
reqguest for service. The SSF builds an Analysed Information IF conmtaining the dialled digits and
sends itto the SCF. The SCF creates an instance of the freegphone SLP. This instance invokes FEA
9111, which builds a Query IF containing the fregphone number as information key and sends itto

18

Chapter 2 State ofthe Art

the SDF. FEA 4111 inthe SDF uses the key from the Query IF (.e. the fregphone number) to
reference the database t find the actual DN of the freephone subscriber. The DN s found and
encrypted ina Query Result IF as the outcome of the search. FEA 9112 in the SCF then takes this
outcome and builds it into a Select Route IF as the destimation routing address. This IF is then
passed to the SSF, where it is interpreted as a command to continue call processing by selecting a
route to the newly supplied DN. The issue of charging isnot shown here but would be quite simple
1o implement - at the point where the cll is successfully established, an IF is sent t the SCF
which (in some manner not addressed in CS-1) informs the billing system that the subscriber isto

be billed for the .
SSF/CCF r3 SCF _r6_ SDF
User
0-BCSM
Analysed Information
Dialled digits
FEA
9111
Query
Information key FEA
4111
Query Result
FEA Outcome
Select Route o112
Destination Routing Address
0O-BCSM

Fig. 2.5: Freephone Service Decomposition

2.1.34 The Physical Plane (PP)

On the physical plane, details are provided in [Q1215] as to the physical aspects of the IN. The
Physical Bntities (PEs) that form the intelliget network, the FEs realised within them and the
protocols by which they communicate are described at this leel. The IN consists of the folloving
PEs:

< The Service Switching Point (SSP) - user access 1o service fuctiomality is provided through
the SSP, which handles call processing, detects service reguests and provides comectivity t©
the SCP and other SSPs in the network. The SSP cortains three discrete functions - the CCAF,
the CCF and the SSF.

= The Service Control Point (SCP) -the Service Cortrol Function (SCF) resides here along with
the SLPs whose execution itmanages.

= The Service Data Point (SDP) - this houses the SDF and is connected directly to the SCP. It
contains all network data relevant to the execution of services.

19

Chapter 2 State ofthe Art

The IntelligentPeripheral (IP) —the SSP maintains anumber of channels between rtselfand the
IP, which contains the Service Resource Function (SRF). Interactions occur between the SRF
and users when the SSP opens a channel between them. The IP receives instructios relating to
announcements and digit collection directly from the SCF and, when necessary, retums any
acquired information.

All communications between SSPs and SCPs and between SCPs and IPs occur over an SS7
network using the TCAP part of the protocol (see [Q1218])- The PEs and their interocomections,
along with the FEs realisedwithin them, are shown inFigure 2.6 below.

SS7 . .

Signalling

Network
Channel
SRF 1.fy)

Other

SSPs

Transport

Channel

Fig. 2.6: Physical Architecture ofthe CS-1 Intelligent Network

20

Chapter 2 State of the Art

2.2 Congestion Control

Congestion, or owerload, of any system may be defined as thaet case when the arrival rate of
requests at the system exceeds the service rate of the system. Therefore, the number of calls to be
dealt with increases continuously as the input buffers build wp. Ifthe system has no method of
decreasing the number of waiting reguests, all processing time Is spent trying to deal with the
backlog- The result is ttet, as the input queue grows, each new request must wait longer and longer
1o gain access 1o the processor, utdl the lengths of the delays 1o users become unreasonable, with
the result that users begin to abandon treir call attenpts and retry, thus increasing the input queue
furtrer. This could eventually lead to the even worse scenario of a complete overload situation,
resulting in the system being unable to process the presented load and malfunctioning. These
delays, abandonments and malfunctions result in fewer calls being handled by the system. In all
cases, whether the system to be protected s a telecoms switch, a telecoms network, aLAN sener
or a data network, this result ishighly undesirable. Take, for example, a telecoms switch. From the
users point of view, an overload at their local switch (or a remote switch through which they are
trying to conmunicate) means that they are erther presented with long delays in call handling or
are unable to complete a call successfully - this ettails a serious drop in the quality of service to
network users. From a network operator’s perspective, not only does congestion result in losses of
revenue, but may also, in today™ open market, lead to the loss of unsatisfied custorers. It s
therefore vital for both network operators and subscribers that overload does not ooccur, and so
congestion corol is one of the top priorities in the design and operation of telephone switdhes.

2.2.1 Basic Requirements on Congestion Control Strategies

In order to describe and compare various congestion control strategies, it Isnecessary to inrtally
define the requirements for a successful control strategy. Each strategy will then be evaluated t©
Judge its efficiency at meeting each requirement - each strategy will have its stregths and
weaknesses. An amalysis and comparison of the performances of each technique will then allow
the overall best method tobe selected. The requirements were summarised by [Komer91] and may
be listed as follons:

1 HKmust be impossible for a complete breakdown to take place due to the input queue being
overwhelmed.

2. The system must retain good throughput daracteristics at all times, ie the amount of resource
capacity spent accepting calls and completing processing of accepted calls should not decrease

21

Chapter 2 State ofthe Art

3

4.

during an overload. The daracteristics should approach the ideal shown inFigure 2.7 below as
much as possible.

Throughput

Offered Load

Fig. 2.7: 1deal Throughput Characteristics of a System under Overload

Processor load (ie the total work that the processor must do - including accepting cllis,

processing accepted calls and rejecting calls) should not exceed some threshold (usually st at
either 80% or 90% of total processor cgeecity), even iIn the event of an extreme overload, t©
ensure that management and other non-switching functions (including congestion control
routines) may be implemented [Sabourin9l],

Average response times - the length of time a user must wait for a response from the system -
must not increase noticeably due to overload. For example, intelecans, this isboth to comply
with intemational performance standards on post-dialling delays (see [E-721] and [E.723]) and
to minimise the number of cll abandonments due to customer impatience (the impatience of
both 1SDN and IN custorers is well documented - see [MacDonald94], [Bolotind4] and
[Hoang90]) . Call abandonment is highly undesirable, not only because resources which were
spertt processing calls which are subsequently abandoned are wested, but also because
abandoning customers have a tendency t reattempt their calls (see [Roberts79] and
[Burkards3]), thus exacerbating the overload condition.

In meeting the above requirements, a strategy will need to compromise between throughput and
response time, as they affect each other adversely. In order to keep throughput high during
owerload, as many alls as possible must be accepted, thus increasing the length of the input queue
and the delay experienced by a request while those ahead of it in the queue are processed. On the

other hand, to maintain response times at a minimum, the requests must spend as little time as

possible in the input buffer, thereby reducing the number of calls in the buffer and the number

22

Chapter 2 State ofthe Art

handled by the processor. These parameters are also dependent on the length of the input queue. I
the input queue IsSort, response times will be sorter, but throughput willl alsobe quite lov. Ifthe
input queue is loger, throughput (and load) will increese, but so will the delay experienced by the
uwser. The best possible compromise must be achieved between these parareters in order to
maximise the efficiency with which each of the above requirements are met.

2.2.2 An Overview of Congestion Control in the PSTN/ISDN

Overload cotrol has been widely investigated in the area of providing protection to telephone
switdhes. In gereral, each switch in a network is responsible for protecting itselfrom becoming
congested. This is done by detecting any of a number of occurrences that are recognised as
constituting an overload situation and then implementing some measures to counteract the

problem. These measures may inolve:

= refusing all new clls outright (c@llers are cut of fwith minimum delay and minimum load is
expending processing rejected cllks),

= assigning priorities to differeit call types and selectively reject calls according to their
priorities when overload occurs (thismay involve either processor or trunk reservation - see
[Lindberg88] and [Rajaratnamo6] for examples of this),

= sending commands to surrounding nodes, instructing them to re-route call setup requests via
other paths where switches are not congested (this is referred to as flow control and may be
based on the use of pre-defined altermative routes or dynamic routing algorithms - see
[Zepfo1], [Dziong89] and [Langloisol] for examples).

Therefore, inoverload investigations, itisusual to assume that the system to be protected cosists

ofonly one element -the switch.

The most popular model used for modelling systems under congestion (see [Komer91l] and
[Wallstrom1]) consists of a single processor with a controllable throttle at the input and a single
Teedback loop as a sinplification of the delays (eg- the time while the user is entering the desired
digits or the conversation phase of the call) between processing times for each call (shown for a
PSTN call in Figure 2.8 [Sergj&s])- In all cases, inrelevant of which control strategy s in use,
[Komer91] shows that the delay must have an exponential distribution (see Chapter 3, Section
3.2.3.2), because constant delays result in violent fluctuations in the processor load during
operation. The algorithm for the detection of overload executes at the processor and when itdeems
that congestiion has occurred and intervention is required, a message Is sent o inftdate the throttle
algorithm, which then manages the input stream in order t reduce the number of clis o the
system. Note thet, since the distribution of the random arrival of clls at a switch tends towards the

23

Chapter 2

State of the Art

Poisson distribution, an ideal Poisson generator is used to gererate all new cll regests. The

graphical model isas shown inFigure 2.9.

Processor
Utilisation
>
>>
tk
Im
ik
Digit Entry Ring Conversation
Time Phase
Call Authorisation Number Analysis Call Teardown
& Routing

Fig. 2.8: Load Profile for a PSTN (non-IN) Call

Fig. 2.9: Congestion Control Model of a Switching System

Time

Note that this model is also suitable for monitoring distributed switching systems ([Martfieldd1],

[Daisenberger8s]), as, in gereral, these systems consist of amain central processor which sets up

and controls all clls, and a number of peripherals which maintain lire and trunk integrity. As it
the catral processor that must be protected, the cotrol algorithm resides here and the throtte s
implemented separately at the peripherals. Therefore, the only difference in the model between
single—processor and distributed systems isthe location of the throttde algoritim, which, interms of

Operation, has anegligible effect on system performance.

24

Chapter 2 State of the Art

2.2.3 Classification of Switch Congestion Control Strategies

There are two types of congestion control strategy used in switch congestion control (both for
Stored Program Controlled (SPC) and distributed systems). These may be classified as active and
reactive strategies. An active strategy is always in place and permanently restricts access o the
system, thereby preventing overload. Reactive strategies, on the other hand, only become active
when the onset of overload is detected and ceases when the overload condition ends. Note thet, for
all strategies, when an incoming cll s accepted, it is vital that it sucoessfully completes
processing to the point where termination (and charging) occurs - both for economic reasons and
o optimise throughput. Therefore, any callswhich have already received some processing must be
given priority over any new calls which have not yet undergone any processing. This aiterion
ensures both that the call s either rejected immediately or serviced (ie. not delayed and then
rejected) and that there is no waste of processor time through blocking calls that have already
received some attertion.

2.2.3.1 Active Congestion Control Strategics

The principle active strategies used for managing congestion corttrol in switches are Call Gapping,
Window, Leaky Bucket and Token Throttling. These may be described as folloas:

Call Gapping - This mechanism involves the use of a timer setto expire after a gap intenal g. For
each all arriving at the switch, the gap intenal timer is checked. Ifthe timer s irective, the call B
accepted and the timer is st Until this timer eqgires, all further arriving calls will be
unconditionally blocked. After the gap intenval has elapsed and the timer becomes irective, the
firstcall to arrive Is accepted and serviced and the gap intenal timer is sst again. This mechanism
is illustrated in Figure 2.10 [Tsolas9Z], Note ttet, while Call Gapping (CG) isdescribed here as a
switch congestion conmtrol strategy, italso has gplications in network traffic management (e.g-
[Tumerol]).

Call requests

to switch
Key:
Accepted call: \

Blocked call: ~

Fig. 2.10: Call Gapping Mechanism

25

Chapter 2 State of the Art

Window Mechanism - Window isapplicable only in distributed systems (the mechanism actually
originated in cliemt/server computing environments [Tsolas9Z]) and isused primarily in peripheral
processors of distributed switches 1o protect the central processor. Here, each peripheral processor
keeps track of the number of reguests, w, which have been sent to the oattral processor and for
which a response remains outstanding. Each time anew request arrives at a peripheral prooessor,
its current value of w is compared W (the Window value of the peripheral processor, with
1<W< Wmax, where Wmax the maximum allowable Window siz). Ifw<W, then the new request
is dispatched 1o the certral processor, W is increased and a timer is set for that request. This timer
corresponds to the acceptable delay for the request at the central processor. I, on the other hand,
w=W, the reguest is rejected inmediately. Each time a response is received from the cantral
processor, W Isdecreased. Each time a timer expires, Its associated request is rejected, and both w
and W are decreased. When a pre-defmed number Cmax of responses have been received from the
central processor, W is increased. At the central processor, the length of time a request has been
waiting for service is calculated before processing of the request begins. Ifthe wait time exceeds
the acceptable celay, then the request Is abandoned. This mechanism [Tsolas9Z] s shown
graphically inFigure 2.11.

1 234 56 78 9 10 n12 1314 15
Call attempts
to peripheral
Responses from 'y . T R —— j lime
W=5 - _
central processor W= 4 W=5
3 4
Key:
Accepted call: 7 Timeout 2 Cmax =2
=> Ca” 2 => W= 5
rejected,
Blocked call:_ 4 W=4

Fig. 2.11: The Window Mechanism

The algorithm described in [Manfield91] is an example of the Window mechanism applied in a
distributed switch, with W=Wmax=1 Window isalso widely used for congestion control of other
distributed systems - namely, computer networks [Akyildiz0], telecoms networks (eg- [Luan89]
and [Doshi9l]) and IntelligertNetworks (discussed in Section 2.3).

Leaky Bucket - This is a traffic shaping mechanism with three parameters - a Leaky Bucket
intenal TLB>a limit counter, SLB, for the number of requests which may enter the Leaky Bucket

during TLB (e SLBis effectively the depth of the bucket) and a counter, K LB, representing the

26

Chapter 2 State ofthe Art

number of requests which may leave the bucket during TLB (analogous to the size of the hole in
the bucket) . The graphical representation of thismechanism [Pham91] isshown inFigure 2.12.

Decrement by
Klb ~ "

Key:
Accepted call:
Blocked call:

e IICETFT frer--"tmrT

Fig. 2.12: The Leaky Bucket Mechanism

Token Mechanism - For the token algoritim, there are a fixed number of tokens in a token bank
(queue of tokens). Each new request to the system must take a token 1o be accepted to the system.
Those requests, which arrive when no token is present in the token bank, are rejected. When a
request completes processing, Itstoken is returmed to the token bank. This is shown in sinplified
graphical form in Figure 2.13 and is described comprehensively in [Seraj85], as the primary
congestion control strategy used InEricsson AXB (cata) switches.

Number of

Tokens in Bank

Completed requests EiF“e

e CTTTETT OTTEV o,

Fig. 2.13: The Token Mechanism

Note also that a hybrid of Token and Leaky Bucket (called Token Bucket) exists, whereby a
parameter STB controls the depth of the token bucket and Km controls the rate at which tokens
are released from the bucket.

A fTew comparisons may be made regarding the gplicsbility of the active cotrol strategies
described above. Window is the only strategy described above which is directly goplicable to
distributed systems. Call Gapping, Leaky Bucket and Token are, as described, applicable to sirgle
systems. However, they may also be adapted to act as throttles in a distributed system, e they
may form part of a reactive system, where a remote detection method drives them by defining
either the gap intenal for the CG throttle, the number of tokens which should be made available in
the Token throttle or the parameters of the Leaky Bucket throttle (described in Section 2.2.3.2).

27

Chapter 2 State ofthe Art

Regarding resource requirements of the differat stratagies, Call Gapping is the most efficiait
strategy in terms of resource usage, as itrequires only the maintenance ofone timer. Leaky Bucket
is only sligitly more complex, requiring the maintenance of two counters and one timer. The
Token mechanism, on the other hand, requires the maintenance of a queue of tokens (although this
could be achieved more simply, using counters) and some mechanism for associating a token with
a reguest. This means that Token requires more resources than Leaky Bucket. Window, however,
has the largest footprint, as itrequires, not only the maintenance of three counters, but also a timer

for each request in the system.

Regarding operation of the strategies, active strategies generally terd, due to their fixed rature, to
be unnecessarily restrictive as they occasionally cause alls 1o be rejected unnecessarily during
small peaks in traffic load [Sabourin9l]. Also, the fact that they are always in place makes them a
continual drain on processor resources, which ishighly undesirable. Therefore, itismore common
1o form a reactive strategy by using adapted versions of Call Gapping, Leaky Bucket and Token as
throttles, In conjunction with a detection method, as described in the following section. Window,

on the other hand, Isnot essily adapted to be a throttle and tends to be used as described above.

2.2.3.2 Reactive Congestion Control Strategies

As can be seen iIn Section 2.2.3.1, active congestion cottrol mechanisms tend to have a sirgle
algorithm executing in a single location. A reactive overload control method, on the other hand,
usual ly consists of two algorithms working together - namely, a detection routine and a throttling
mechanism. The detection routine may be erther continual ly active or may execute at st intenals.
When executed, the detection algorithm recognises the presence of an overload situation, decides
the level of overload and the suitable action to combat itand then sends a command to the throtte,
which restricts the input to the system accordingly. Note that the separation between overload
detection and response makes the reactive class of strategies very suitable for the congestion
cottrol of both single switches and distributed systems (distributed switches or networks of

switches).
The range of detection routines that have undergone the most investigation includes:

1. Queue Length Control (QLC) - each time a request isadded 1 a queue, the queue length is
compared to a predefined max imum value, which, when exceeded, is classified as an overload

condrtion.

2. Load Measure Control (LMC)- the mean load of the central processor over the course of a
pre-defimed time intenal is estimated at the end of each consecutive intenal (using algorithms

28

Chapter 2 State of the Art

such as [Kallenberg89]) and compared with a max imum permissible value. When thisvalue s

exceeded, an overload isdeemed to exist.

3. Call Count Control (CCC) - the number ofnew arrivals to the system is counted (old calls
retuming to the queue after a delay are excluded from this figure) over a pre-defined time
intenal and Ifitis found, at the end of the intenal, to be greater than a specified maximum,
alerts ofan overload condition.

4. Any cormbination of the above - see [WallstromO1] and [Villen85]. For example, CCC could
be used inconjunctionwithQLC. CCC inrtdally detects an overload condition, and mtsresponse
isto lower the threshold of acceptable queue legth. When the QL C algorithm detects that this
threshold has been exceeded, the throttle is inftiated.

Most reective congestion control strategies are based on either the direct use of the above detection
methods or on variations of these methods (e.g- [Daisenberger89])- The range of throttles defined
tobe used with the above strategies include:

1 Call Gapping Throttle -the detection routine sends an overload level to the throttle, defining
a suitablegap interval, which isa length of time after a call has been accepted duringwhich all
new arriving calls are blocked. A gap duration may also gptionally be included - this is the
length of time for which the throttle should be inplace. CG effectively places an upper bound
on the acceptance rate of a system. This throttle is one of the primary throttes used iIn
Intelliget Networks (described in Section 2.3), but also has gpplications in gereral network
trafficmanagement, as described in [Pham9l].

2. Percentage Throttle - the detection routine sends an overload leel to the throtte, defining
the percentage of incoming calls to be accepted. All other calls are rejected. This is referred to
as percent thinning (PT) and iscommonly used inPSTN and 1SDN switches.

3. Token Throttle - this is an adaptive version of the active token mechanism, in which the
number of tokens available iIn the system is defined by the severity of the detected overload -

see, forexample, [Berger9la].

4. Leaky Bucket Throttle - this s an adaptive version of the active Leaky Bucket mechaniism, in
which the values of the limit counters are defined by the severity of the detected overload - s,
for example, [Phamol].

29

Chapter 2 State ofthe Art

Each of the three detection strategies described here- QLC, LMC and CCC - has s own
advantages and disadvantages when applied to a single-queue model. These are detailed in
[Komer91] and may be explained as folloas.

Queue Length Control: QLC responds almost immediately to the onset of congestion, as the
input queue length ismonitored continuously. However, recovery time isslow and there are heavy
fluctuations in the load. The reective nature of QLC means that it is not possible to achieve a
satisfactory trade-off between response times and throughput - low response times can only be
achieved through maintaining the queue length threshold low, thus resulting in reduced

throughput.

Load Measure Control: Fluctuations in queue length and load for LMC are smaller than for
QLC. However, due 1o the fact that call acceptance onlly takes up 30% of total call processing time,
clls accepted during an intenal may require more load during a later intenal. Therefore, the
processor sees traffic lewels as being greater than they actually are, resulting in overload being
detected well before mtsactual occurrence (e when input traffic isonly approximately 60% switch
capacity) — see also [Sabourindl]. LMC is also slow to recover from congestion. This is because
the measured load is defined by clls that have already been accepted. Therefore, by the time
overload is detected, many clls have already been accepted, and recovery is quite slow. Note also
that the efficiency of this method s very dependent on the length of the comrol intenal - ifthe
intenal is too dort, overload cottrols willl be initiated even earlier, whereas ifit istoo log, very
many callswill have been accepted and recovery will take even loger.

Call Count Control: CCC monitors the number of newly arriving calls and therefore gives an
accurate reflection of the input traffic. This means that itresponds very quickly to the onset of
overload - in fact, due to the random nature of incoming traffic, CCC tends to respond prematurely
to overload -when incoming traffic isat 75% processor loed. This means that overload isnot very
serious when throttdes are put in place and therefore recovery is also very fest, with minimal
fluctuations in input queue length and lced. Note thet, as with LMC, quality of operation is
dependent on control intenal length - in a short control intenal, there willl be a large variation in
arival intensity and controls could be inrtiated unecessarily, while many callswill arrive during a
long intenal and therefore, recovery will be sloner.

The conclusion t be drawn from the above is tet, for a single-queue system, CCC is the most
effective overload detection method. It responds quickly to the presence of congestion and
recovers quickly while maintaining good lewels of throughput. However, itremains to be seen if
CCC remains the best technique when applied to the IntelligantNetwork. The IN isnot structured
as a network of single-processor systems and also presents a number ofnew issues in the area of

30

Chapter 2 State of the Art

congestion cotrol (detailed in Chapter 1). This means that it is impossible to draw any
conclusions, at this time, as to which detection method would be most effective at protecting the
SCP from overload.

Regarding throttling mechanisms, percent thinning is the essiest to implement and requires the
lesst processing power as itrequires only the maintenance of two counters. Leaky Bucket has a
simple algorithm and requires two counters and one timer. CG is also simple to implement and
requires the maintenance ofone (or possibly two) timers. The Token mechanism is very complex
to implement (see [Sergj85]) and requires the maintenance of a few queues of tokens. All throttles
mentioned may become more complex if it is required to allow variation in the throttling leels
applied t different call types or calls coming from differeit source nodes. No conclusive
comparisons are aailable between these thottle types iIn SPC/distributed svitdvtraffic
management studies, and therefore, their goplicability in IN congestion cortrol should be directly
established using IN models. Comparisons are available inthe IN domain and will be described in
Section 2.3.

2.3 IN Congestion Control

2.3.1 A Description of the Models used in IN research

As the IN ismade up ofa number of different PEs that interact to execute a service, the issue of
congestion prevention and control isamuch more complex one than for simple switching systens.
In the IN, as the SCP is most central to correct operation, protection of it is of paramount
importance. Therefore, to cate, all documented research in the area of IN congestion cotrol has
been focused on developing ways tomaximise SCP efficiecy.

Two different types of models have gererally been used. The first is very similar to the single-
processor model used in the investigation of switch gperation. However, in this case, the model

represents the SCP (see Figure 2.14). Input streams are usually assumed to be Poisson in nature
and the times between SCP processing of a single request (i.e. when SDP or IP access is required)
are represented as a feedback delay of arbitrary legth. The throtte is placed at the input to the
system, so that only new requests may be rejected, but it is not specified whether it is integrated
imo the SCP or located elsewhere in the network. Examples of research involving the use of this
type ofmodel include [Smitho5] and [Nyberg9sb]. Hsuse isunderstandable in trat, although the
model is an oversinplification of the real system, it is very useful for mathematical analysis of
SCP operation.

3l

Chapter 2 State ofthe Art

Fig. 2.14: Single processor SCP model

The second type ofmodel ismore widely used as itmore accurately represents the elements of an
IN, in that it contains multiple SSPs and one (or more) SCP. However, due to its added
complexity, mathematical analysis of the system isno longer a simple process. Therefore this

model isprimarily used in sinulations.

In gereral, the model appears as in Figure 2.15, with multiple SSPs connected to one SCP (eg-
Nyoerg4], [Pham92], [Kihl95], [Rumsewicz96], [Yan94], [Kwiatkonski9da]). Insome ceses, a
Service Transfer Point is also included [Galletti9?] 1o represent interactions with the SS7, which
would be the transmission medium between elements in a real network, although when the SS7 s
partially represented like this, the transmission delay is dilll only represented by a constant value.
Occasionally also, a combined Service Switching and Cortrol Point (SSCP) is included, and s
represented as a delay queue iIn series with a job queue - see [Kihl97]. [Leever93] and
[Kwiatkowski94b] provide simple analytical method t© calaulate load and service delays for this
model. [Newcombe94] extends this model and solves mean delays using the decomposition
method (described in Chapter 3).

32

Chapter 2 State ofthe Art

Gererally, differant research studies using this model make a number of assumptions. These
include:

Ittends to be assumed that all calls in the network are of the same type, or ifof different types,
have the same load profile. Information flows in the system tend to be sinplified. For
example, in [Galletti®’], all traffic is unidirectiomal - ie the SSPs send requests to the SCP
and the SCP does not respond. Inmost other investigations, communication between the SSP
and SCP ismade up of a single query/response pair (eg- [Pham92], [Kihl95], [Tsolas?],
[Nyberg94] and [Hebuteme90]) inwhich the SCP receives a query from an SSP, processes it

and retums a response to the relevarit SSP. This is generally either represented either as a
simple number traslation service (e.g- Freephone, which does only require one SCP
transaction) or as the first transaction in a more complex service. Jstification for this
sinplification tends to be that all service requests should be rejected or accepted during the
inftial transaction and accepted calls should complete suocessfully, and therefore, as overload
only impacts on initdal transactions, only these need to be modelled. Some research studies
(€9- [Rumsewicz96], [Pham92]) do include information Flons formore complex services (eg-
services which require processing at the SCP on nultiple occasions), but again, only the
impact of the initial service transactions are investigated. This s, howvever, not completely
acaurate, as itdoes not take into account the effects of the 1oad profiles of the different request
types in the system (Ie how the necessary processing of old calls at the SCP impacts on
congestion sittatias).

It also tends to be assumed that all service types in the network have the same priority leel,
i.e. that during overload, all requests may be throttled equally. An exception is [Lee97], who
did examine how CG could be altered to cater for different call priorities.

Retrials and their effects on congestion control strategies are general ly not investigated inmost
studies. An exception is [Manfieldol], who included retrials in his study of overload cotrol of
hierarchical switching systens.

Many studies provide different interpretations as to the meaning of “faimess”’. For example,
[Lee97] classifies faimess as “the probebility of rejection ought to be the same for all the
subscribers, irespective of which SSP they are connected 1o, while [Hac98] claims that
faimess means that only sources (SSPs) which are causing overload should be targeted. Note
that theses definrtions of faimess are contradictory — however, the first definition (ie. that all
subscribers to a partiaular service should be treated equally) ismore generally accepted and
may be referred to as “‘subscriber faimess”. [Rumsewicz96], [Galletti®?] and [Tsolas9?] say
that a fair strategy should target only the service type which is causing the overload (a form of
Focussed Destination Overload Control (FDOC)) - thismay be termed “service faimess”.

3

Chapter 2 State of the Art

= In gereral, traffic arrival at SSPs is assumed to be Poisson inmanner and SSPs are modelled
as infinite First-InFirst-0ut (FIFO) queues with eilther no delays, constant delays or
exponertial ly distributed services tines.

Intelligent Network congestion control strategies tend to be based on the common switch-based
strategies described in Section 2.2. Active congestion control strategies are located in the SSPs and
are communication-less - ie they do not require notification of overload from the SCP. Reactive
strategies, on the other hand, are communication-oriented - the detection algorithms are located in
the SCP and send overload notification to the throttles in the SSPs. In both cases (ective and
reective), all rejections of service requests take place at SSPs. Justification for this is sinple - SCP
processing time is at a premium during an overload situation and should be maximised in the
execution of servicss. Intuitively, therefore, implementing a throttle to reject requests at the SCP
is a waste of valuable processor time and should be awoided. Also, a substattial part of cll
processing time at the SCP is spent unmarshalling the call (@ unwrapping the SS7 protoools)
before itmay be interpreted and a decision made as to whether itshould be accepted or rejected
[Komer94] - thisoverhead, interms ofwasted capecity, isunacceptable and therefore calls should
be rejected remotely. Therefore, throttles are always situated in the SSPs and restrict traffic to the
SCP according to the control data passed to them by the SCP. In general, this cotrol data tends to
be an overload leel, a call gap intenal or (in cases where PT is used as the throttle) a percent
thinning coefficient.

Note that a form of the CG throttling mechanism described In Section 2.2.3.2 has been
standardised by Bellcore as part of the Advanced IN (AIN) standards [Belloore®?Z], This
mechanism is called Automatic Code Gapping (ACG) - automatic, because it is possible 1o
dynamical ly cotrol the gap intenal level t be applied by the ttrottde. This is not, however, as
adaptive as Itsounds, as the standard includes a fixed table of permitted gap intervals from which
an appropriate internval must be chosen. ACG throttles may be put in place selectively at differat
SSPs by either the SMS (SMS-Originated Code Control (SOCC)) or the SCP (SCP Overload
Control (SOC)). SOC includes a parameter that enablles the selective restriction of calls based on
the first six digits of the originating/teminating number, whille SOCC also allons the geecification
of parameters that permit selective cotrol of incoming clls (eg- by service type). Note also,
however, that the ACG specification is soecific to the AIN standards, and no such gpecification
exists in I TU CS-1. Therefore, there isno requirement to include this specification inour CS-1 IN
model and, as will be seen in Chapter 4, the version of CG implemented in the model conforms
with the (table-driven) throttde description provided in Section 2.2.3.2. In Chapter 6, a new, fully
adaptive CG thvottle is defined - the motivation for this is provided by [Snitho5], who
demonstrates both that the gap intenals provided in the AIN standard are ineffective, and that an
adaptive C G throttle has behaviour far superior to that of a fixed table-driven C G throttle.

34

Chapter 2 State ofthe Art

Some variations on the more usual active and reactive strategies have also been investigated in the
IN arema. For example, [Hac98] describes a hybrid Window/Adaptive CG strategy for IN
protection, [Nyberg95a] examined the use of Proportional Integral Differential (PID) cottrollers
for IN overload cottrol and [Galletti®?] and [Rumsewicz96] both propose extensions to usual
strategies to facilitate FDOC. Note also that the use of gptimisation techniques for performance
management isnot unusual. Some examples include [Pham9l], who uses revenue gptimisation to
dynamically define Leaky Bucket paraveters, while [Milito9l] uses revenue optimisation 1
decide ifa newly arrived call to an IN SSP should be blocked. [Angelin95] and [Arvidsson96]
inestigate the use of profit optimisation to decide, based on predictions of SS7 and processing
delays, whether anew call request should be accepted at an SSP. The efficiency and performance
of these less common strategies are not compared to that of the common strategies. However, a
number of papers do existwhich cover the comparison between:

e CG, Leaky Bucket and PT throttling mechanisms (no study has been published which
examines the performance of Token active strategies or throttles inthe IN antext),
< most common active and reactive IN congestion control strategies.

2.3.2 Comparison between Throttles for the IN

Leaky Bucket vs CG: [Pham9l] suggests that the Adaptive Leaky Bucket throttle performed
better than the Adaptive CG throtte, primarily due to the fact that it is less strict and can handle
bursty arrivals because it limits the number of calls which can be accepted within a period while
CG only accepts strictly one call per period. However, this claim is not well supported in the
peper, and no other references were found to support this position. On the other hand, [Lee97]
compares a Continuous Gapping throttle (analogous to an adaptive Leaky Bucket strategy with a
leak rate of one request per intenval) to the normal adaptive CG throttle and established that both
throttles perform equivalently, Ifsuitable gap intenals are defined in each.

Percent Thinning vs CG: Considering the operation of the two throttdes, [Kihl97] found that they
were gererally equally efficiett at protecting the SCP (providing the CG inmtenals were
appropriate to the network topology and cll arival rates). However, PT exhibits subscriber
faimess, as the SCP notifies all SSPs 1o reject a certain proportion of their arrival traffic and
therefore all SSPs are throttled equally [Rumsewicz96] . By extension of this, PT isscalable, as the
PT coefficiatt isnot dependent on the size or number of SSPs in the network or on the arrival rates
to each SSP [Berger9lb], CG, on the other hand, puts the same gaps in place on all SSPs,
imegpective of siz, with the result that larger SSPs (or SSPs with greater arrival rates) are more
heavily throttled (@e. it is not subscriber fair). CG s also not scalable. However, itismore robust
to changes in arrival rates (s it puts a firm upper limit on the number of calls which may be

35

Chapter 2 State of the Art

accepted [Berger9lb], [Hebuteme90]) and also tends to throttle services with greater arrival rates

more heavily, resulting in a certain inplicit level of service faimess.

2.3.3 Comparison between Active and Reactive Strategies for the IN

The most popular active congestion control strategy used in IN implementations is Window.

Reactive strategies tend to use QLC, CCC or LMC as the detection method in the SCP, and erther
CG orPT inthe SSPs. [Pham92], [Tsolas?], [Nyberg92] and [Nyberg4] carried out comparative
studies between active and reactive IN congestion control strategies. Unfortunately, itwas found
that the results differed paper to paper. [Pham92] concluded tret Window was gererally superior
1t CG, with one of the primary reasons for this being thatW i ndow isupdated as to the state of the
SCP every time a response is received (ie. ithas a tighter SSP-SCP control loop than reective
strategies). However, this conclusion may be questioned, as the monitoring inmtenal used by the
CCC/CG strategy was 20 seconds - which is far greater than the optimal, as specified by
[Komer9l]. Pham also found thet Window was fairer than the reactive strategy in terms of
rejection rates at different SSPs in the network - however, it is unclear whether this is actually a
function of reactive strategies in gereral, or of the fact that CG was used as the throttde, where CG

has already been recognised as being quite utfair (see Section 2.3.2 above). [Tsolas?], on the
other hand, found LMC/CG to be superior to Window. He found that (with a shorter monitoring
intenal than that used by [Pham92]) the reactive strategy responded more quickly to the onset of
ocongestion. LMC/CG was also considered t be more flexible, as it fecilitated the selective
throttling of services or sources. Both [Nyberg92] and [Nyberg94] found reactive strategies
superior to theWindow strategy for similar reasons to [Tsolas9?], although it is interesting to note
that [Nybergd4], who used PT instead of CG as the throttle, added that the reactive strategy was
fairer than Window. However, the facttratno definitive answers are available in existing literature
means that it is sl debatable which method issuperior.

2.4 Conclusions

To conclude this dapter, we summarise that the most popular IN congestion control strategies in
place today are:

< Window, an active strategy located in SSPs,
= \Various reactive strategies, consisting of either CCC, LMC or QLC as detection methods at
the SCP, working in conjunctionwith eitreraCG or aPT throttle in the SSPs.

To date, a number of studies have been conducted o comparing the operation of Window with
that of various reective strategies, but no definitive conclusion has been drawn as to which ishest.
Also, while CCC has been established as the best detection method in SPC systems, itremains to

36

Chapter 2 State ofthe Art

be seenwhether itis il the best inthe IN arena. Research into throttle types have found that both
CG and PT have advantages and disadvantages, so it is unclear which is superior in a practical IN
implementation. It was therefore decided to make no assumptions regarding Superiority of
strategies, algorithms or methods at this poirnt.

Chapter 4 will begin by focusing specifically on establishing the effectiveness of various detection
methods used in conjunction with the CG throtte. Htwill also be necessary to find out how
adaptable these detection methods are in order to meet the added requirements of the IN. Each of
the detection methods described above will therefore be implemented on a new type of model of
an IN system and executed iIn conjunction with the CG throttle in order to see which one best
meets the needs of the SCP. The detection algorithms will be located at the SCP, and will interact
witha CG throttle in the SSP in order to cotrol the quantity of traffic arriving at the SCP. When

the best detection method has been established, this willl be used in conjunction with both CG and
PT to establish the best common reective strategy. When the best solution for a resctive strategy
has been estzablished, its operation will be compared with that of the active Window mechanism.

The results of Chapter 4 will be twofold:

= the best of the most commonly used strategies will be identified (based on the principles
described in Section 2.2.1 of this depter) for IN SCP overload aotrol,

e the limitatios of these strategies 'Will also be idxitified, which will help clarify the
requirements on an ideal IN congestion cotrol strategy.

Then, inChapter 5, the IN model will be enhanced to include non-IN alls, multiple finite-caecity
SSPs (1e SSPs which may experience overload), multiple traffic types with different load profiles
and priorities and a new strategy will be developed which will allow the efficient performance
management of this new, much more complex IN system. Throughout this work, the aiteria thet
will be used to evaluate the validity and efficiency of the developed congestion control strategies

e SCP queue lagth: Itisvital o ensure trat the SCP isprotected from overload at all times. A
good way of estimating the dynamic load presented to the SCP is to monitor variations in the
input queue length - the occurrence of any overload srtuation will immediately be reflected
here.

e SCP throughput: The ideal congestion control strategy will protect the SCP at all tines,
while maximising its throughput. The SCP queue length statistic will provide information as
1o the quality of the evaluated strategies at protecting the SCP, but in order to ensure that the
strategies are not excessively harsh, their effect on SCP throughput must also be estimated.

e SSP load and throughput: For the initial study of SCP overload control strategies (in
Chapter 4), SSP capacity is modelled as being infinite and therefore, SSP throughput is not

37

Chapter 2 State of the Art

relevait. However, the enhanced model preserted in Chapter 5 will include finite-capecity
SSPs that are also prone to overload and the congestion control strategy to be developed will
need to take inMto account the efficiency of the SSP.

e User celays: The average length of time each user must wait for service processing to be
completed. In gereral, network processing time of user requests for service should not exceed
2 seconds (as after this time, users will begin t abandon calls [Kat95]), although, In cases
where IP processing is required, longer delays are acoeptable, as they include times when the
network is interacting with the user (i.e. when the user isbusy and therefore not inpatient).
As delays will vary for each service type, depending on the processing required, it isnecessary

for each service tobe monitored individually.

38

Chapter 3

Analysis Tools & Methods

Chapter 3 Analysis Tools & Methods

In this dapter, the background information required to understand the ideas presented in Chapters
4,5 and 6 ispresented. Firstly, OPNET, the tool used in the development and simulation of the IN
model , is described. Then, in Section 3.2, the queuing theory used in the specification of the IN
analytic model are eqlained. Section 3.3 firally presaits the theory behind mathematical

optimisation and linear programming .

3.1 An IN Simulation Tool

3.1.1 Using OPNETfor IN Simulation

In order to ascertain the behaviour of the Intelligatt Network under various congestion cotrol
strategies, it isnecessary to develop both a sinulation model of the IN (made up of service traffic
sources and a high-level model of the IN which deals with the traffic in a manner similar to a real
IN) and an amalytical model (@mathematical model which allows the mean state of each element
ofthe IN to be evaluated for various mean traffic arrival rates). For the sinullation, itwas decided
o use the Optimised Network Engineering Tools (OPNET) package to develop the IN model.
OPNET isa hierarchical object oriernted simulation tool, designed specifically for the development
and analysis of communication networks. It provides a graphical interface to the user for the
specification of models. The models of protocols and algorithms employ a hybrid approach by
allowing the user toembed C language code within a graphically laid out finite state machine. The
specification of processes in C is facilitated by an extensive library of support functions, which
provide a wide range of simulation services. Italso provides a st of amalysis tools o interpret the
sinulation results ingraphical form.

There were a number of reasons for choosing to use OPNET for modelling the IN system. These

included the folloving:

= OPNET “shierarchical nature sinplifies the design of complex systems, through the separation
of concems into network, node and process leels.

= OPNET alloas the creation of nultiple instances ofnodes, thereby making iteasy to scale the
IN (intemms of the number of SSPs). Each of the node types of the IN (the SCP, SDP, IP and
SSP) have to be developed only once, but the overall systemmay consist of nultiple instances
of each.

= Library functions are provided for the construction of queues and various traffic arrival time
and service time distributios.

< The core parts of a system (ie. the processes) are event—driven finite state machines, thus
allowing the model 1ing of real-time systems, such as the IN.

40

Chapter 3 Analysis Tools & Methods

e The programming language underlying the application is called Objective C - this B
effectively standard ANSI C, with a large number of OPNET-specific library fuctios.
Familiarity with C therefore reduces considerably the leaming curve involved with using
OPNET .

= Unlike anumber of ather model ling packages available, OPNET provides comprehensive and
flexible support for acquiring statistics from a simulation and represertting them in graphical
form. Italso provides various mathematical filtas to fecilitate rigorous analysis of statistics,
which was a useful feature inthe course of thiswork.

3.1.2 Operation ofthe OPNET modelling tool

OPNET simulations are based on four separate modelling domains called the Network, Node,
Process and Link domains. The dependencies between these modelling domains are shown in
Figure 3.1 below. As illustrated, network models rely on the definition of the node models, which
in tum incorporate process models. Inaddition, linkmodels are used to dharacterise links between
nodes inthe network domain.

Fig. 3.1: OPNET modelling domains

In the Network Domain, node models are instattiated and each instance may be assigned
independent attributes including idertification, position, and user—defined attributes. Nodes that
are designed to attach to physical links (e which comtain receivers or trammitters) may be
interconnected to form arbitrary network topolagies.

The Link Domain allows incorporation of custom or user-specified link models within OPNET
sinulations. These models are specified in C and are linked into the sinulation. Point=topoint
links are represerted by lines between source and destination nodes. The point-tooint links are
unidirectional, so a duplex link must be represented by two links, one for each direction. The

41

Chapter 3 Analysis Tools & Methods

point-topoint links have a number of built-in attributes that can be specified by the user. They
include the trasit delay incurred by packets forwarded over the lirk, and the bit error rate - the
probebi lity ofbiterrors inpackets transnitted over the lirk

In the Node Domain, the intermal structure of the nodes is defined. This structure consists of
modules that can gererate, process, store, receive and trananit packets and manage resources
according 1o a user-defined process. These modules can be interconnected to form arbitrarily
complex node architectures. A number of standard module types are available within OPNET and
may be used directly or amended atprocess leel to function in a user-defined way. The standard
module types include:

= The ldeal Generator module, which provides a convenient stodestic packet source. The
frequency of packet arrivals and the length of packets can be comtrolled by selecting any one
of a range of probebility distributios. The packets generated can also have a packet format
seecified, interms of the fields witthin the packets and the information they hold.

e The Queue module, which incorporates C code and simulation kermel procedures to model
processing functions of the node. The queue module may cortain a number of subqueues,
each of which can hold a list of packets. The queuing disciplire used, the number of
subqueues needed and the capacity of each subqueue can also be specified. Itis also possible
for the user to define whether the queue is active (Ie has an inHuilt sener, which removes
packets from the queue and processes them) or irective. [fan active queue s secified, the
service rate of the intermal server may be defined by the user.

= The Processor module, which carries out set operations on any received packets. A range of
processor types are available, although the most commonly used one Is the sirk, which
responsible for destroying packets and deal locating the memory assigned to them.

= The transmitter and receiver modules are used for communicating between nodes. A
trananitter module of one node Is connected to a corresponding receiver module at the
destination node via a point-topoint link between nodes in the network domain. The
max imum data rate for each of these modulles can be specified.

Process models are specified using a graphical editor that captures the structure of the process in
the form of a finite state machine (FSM). The FSM models a communications process by
responding to changes in its inputs, modifying its state and producing new outputs. Process
models may make use of a library of kermel procedures that support access to packets, network

varigbles, statistaic collection, packet communication and other simulation services.

The two fundamental components of an FSM are states and transitions. States can be used
represent the significatt modes of the process and may have certain actions associated with them.
An FSM can implement actions both on entering and on leaving a state. All states can be

42

Chapter 3 Analysis Tools & Methods

considered as consisting of three different phases of traversal as shown inFigure 3.2 below. The
first phase s the enter exeautives, which are always implemented on arrival 1o the state. The
second s apossible resting phase and the third phase isthe implementation of the exit executives.

Fig. 3.2: Representation of a State

Two types of states are distinguished in OPNET process models -forced and unforced states.
Forced states bypass the rest phase and proceed immediately to the exit executives. Unforced
states, on the other hand, always cause the operation of the FSM tobe suspended immediately after
the enter executives have corpleted. An FSM will remain inthe restphase uttil anew interryt is
delivered to the process model, causing a transition 1o the exit exeautives. In fact, intermyts are
absorbed by process models only when their FSMs are inablocked condition, and thus necessarilly
occupying an unforced state. Therefore, unforced states are only used when it is required for the
process to wait for a particular event to occur, the result of which is the gereration of the
appropriate interryot for which the process iswaiting. When the correct interryot is received, the
FSM will then leave the rest phase and start processing the exit executives. Execution will then
continue uttl the rest phase of another unforced state is reached. The graphical description of
foroed and unforced states isshown inFigure 3.3.

Transition
Forced state Unforced state

Fig. 3.3: A sample FSM

The trasitios shown iIn the diagram represent the possible migrations between states. A
trasition Is made up of a path description with an associated eression. When the exit
executives have completed for a state, the transition expressions are evaluated (as boolean), t©
determine which transition should be followed and which new state emtered. Since the finite state
machine may occupy only one state at a time, only one trasition statement should evaluate as true

atany one tine.

43

Chapter 3 Analysis Tools & Methods

Within the process domain, itispossible for a user to create anew FSM with partiacular operations
defined in C-code in the enter and exit executives of the states. However, itismore common, and
much sinpler, for a user to begin with the process model of a predefined module and amend its
fuctionality as required. The gererator, queue and processor modules al low existing code to be
altered or enhanced in all executives, resulting inthe creation ofanew process tye. The receivers
and trammitters, however, do not permit user-access to the process level code. Any manipulation
of packets at transmission time must therefore be carried out in other processes that may be
connected directly to the relevantmodule atnode leel.

3.2 Analytical Network Modelling

3.2.1 Probability Theory

Probability theory concems itself with describing random events through the identification of
pattems in collections of related random events. As a simple example, ifone were to toss a coin
once, the outcome would be unknown (aside from knowing that itwill be either heads or tailsl).
However, rfthe same coinwas tossed one thousand times, twould be reasonable 1o expect that
approximately 500 heads and 500 tailswould resukt. This isthe basic premise of probebility theory
—that accurate statements may be made about large collections of random events.

In order to analyse a given problem domain using probebility theory, some terms must firstbe
defined:
- A sample space Q isthe set of mutual ly exclusive exhaustive outcomes (Sarple points) of
an experiment on a given random problem domain.
< In this context, an event is the result of a single random experiment and comprises some st
{to } of the sample space.
- A prooebility measure P of an event A is a measure of the likelihood of the occurrence of
that evenit. Ktismeasured inreal numbers, where 0<P[A] <1
To give an example of these idess, examine the behaviour of a die. Here, the sample space for the
tossing of a die is {1,2,3,4,5,6}, i.e. the sst of all possible outcomes of the toss. Let an event A be
defined, for which the result of a toss of the die s 2. The prooebility of event A occurring is
obviously k6 ,as the die isequally likely to land on each face. Let us define another event B, for
which the result of the toss of a die is less than 3. Two sample points satisfy this event, namely 1
and 2. Therefore the probebility of B occurring s
nrD the number of sample points which satisfy theevent 2,/
nJ Q ~~6~
Note that P[Q] =1

44

Chapter 3 Analysis Tools & Methods

3.2.2 Random Variables

Given this information, itisnow possible to define the important concept of a random variable. A
random variable (RV) isa real-valued function defined on a sample space Q , ie. itisa variable
whose value is defined by the outcome of a random experiment. Mathematically, a real number
X(a) may be represented as the value which the random variable X takes on, when the outcome

of the experiment is © .A random variable may also be classified as a discrete or continuous RV,
according towhether its range (the setof values which can take on) s discrete or continuous.

Now the pradebility mass function (prf) ofa disarete random variable may be defined as:

pix) =P[X =x]

where X IsaRV andx isareal number. Note trat /3*m)=1.
n

Also, the cumulative distribution function (@) of aRV X (both continuous and diISete) is
definedby F(x) =P[X <x] -Note thet

lim~AFX)=1and Lirn™F(x) =0
P[xn X <y] =F[y]-F[x]
As an example of these concepts, aRV X(a>),which isdependent on the outcome of the toss of a
die and has a range {-1,0,1}, is introduced. Let the value of -1 be the probebility that the toss of
thedierssults ina 1 or a2, ie P[X=-1]=Pae{l.Z]=y . Further, ket P[X=0]=P[o)=3]=y

and P\X == PJcoe {4,5,6}] = 2. The pmf ofthis random variable is shown inFigure 3.4.

P(x)

&*-
0.5 .
0.4

»
03"
0.2 ;
0.1

1 1 e-

-1.5 -1 -0.5 0 0.5 1 15

Fg- 34: pmfof X(0j)

The cdfof X(co) isas shown inFigure 3.5.

45

Chapter 3 Analysis Tools & Methods

F()

Fig. 3.5: cdfof X{a>)

Firally, the probabillity densiity function (pdf) of a comtinuousR V X (definedby p(x)-0) may be

found, ateach pointx where T is continuous by:

fey= 9

Note ttet-
/ >0 for all real x
f f(x)dx =1
J—00

/ is integrableandP[a it X <b\ = £/ (x)dx
F(x) = jEDf(t)dt foreach real x

3221 Moments ofaRandom Variable

The k”"1moment ofadiscreteRV isdefined by:

whilethe moment ofacontinuousRYV isdefinedby:
E[Xk]= p xkf (x)dx

Two moments ofaRV have been given special nanes. When k=1, this is the mean or expected
value ofaRV. When k=2, this isttevariance ofaRV.

The formula to calaulate the expected value of a random variable X defined by a discrete sample
space &
n
E[h(X)] =3>(*,)P &)

1=1

46

Chapter 3 Analysis Tools & Methods

When X is continuous, E[h(X)]= h(x)f(x)dx. Note that, when two random variables X and Y

are independent, expectation is a linear operator i.e. that E[XY]=E[X]E[Y]and

E[X + Y] =E[X] + E[Y].

The variance of an RV X, defined on a discrete sample space, is given by the formula:

V[X]=a2=£ (xi-E[X])2p(xi)

If X is continuous, its variance is given by

V[X] =E[X2]-E 2[X] and that for independent RVs, variance is a linear operator, i.e.

Knowing the expected value and variance of a random variable, the square of the variation

aefficiats(sve) of the RV may be calculated, according to Kx - V[X}!E2[X].

3.2.3 Random Processes

A stochastic (random) process is a function of two arguments - time and a probability space, and is
therefore denoted by the term X(t,a)). For a fixed value oft, X(-,a>)is merely a function of the
probability space Cl- i.e. is a random variable. For a fixed value of a> X(t,-) is a function of time

and is referred to as a samplefunction of the process. Examples of random processes include:

* The number of call requests that can arrive at a switch in [0,t) is a discrete-state, continuous-
parameter random process.

e The waiting time of an inquiry for processing is a continuous-state, continuous-parameter
process.

e If {x,,,n=1.2,.7} denotes runtime of ajob, where n is the day of the week on which the job is
running, this is a continuous-state, discrete-parameter process.

« If {X,,n=1,.2,..,365} describes the number of jobs per day of the year, this is a discrete-state

discrete-parameter process.

Completely specifying a random process is considerably more difficult than specifying a random

variable. Let a cdf, Fx (x,t) be defined, for each allowed t, which is given by Fx (x,t) = P[X(i) < x].

Further, for each of N allowable values of t, a joint cdf may be defined for the process, where

FXt,X2,...%, (*1,X2,...,X,,;tutz,...,tn) = P[X(tl) = x]; X(t2) = x2;...;X(t,,) = x,,]. Some properties of random

processes may now be defined.

47

Chapter 3 Analysis Tools & Methods

©
r@h(x)f(x)dx. Note that, when two random variables X and Y

are independent, expectation is a linear operator i.e. that E[XY]=E[X]E[Y]and

E[X +Y]=E[X] +E[Y].

The variance of an RV X, defined on a discrete sample space, is given by the formula:

V[X]=a2=£(*,- - E[X])2p(XI)

If X is continuous, its variance is given by

V[X] =E[X2]- E2[X] and that for independent RVs, variance is a linear operator, i.e.

Knowing the expected value and variance of a random variable, the square of the variation

axfficiats(svc) of the RV may be calculated, according to Kx = V[X]1E 2[X].-

3.2.3 Random Processes

A stochastic (random) process is a function of two arguments - time and a probability space, and is
therefore denoted by the term X(t, eo). For a fixed value of t, X(-,a>)is merely a function of the

probability space Q- i.e. is arandom variable. For a fixed value of co, X(t,-) is a function of time

and is referred to as asamplefunction of the process. Examples of random processes include:

e« The number of call requests that can arrive at a switch in [0,t) is a discrete-state, continuous-
parameter random process.

* The waiting time of an inquiry for processing is a continuous-state, continuous-parameter
process.

e If {xn,n=12,..7} denotes runtime of ajob, where n is the day of the week on which the job is
running, this is a continuous-state, discrete-parameter process.

e If {x,,,n =12, ...,3B} describes the number of jobs per day of the year, this is a discrete-state

discrete-parameter process.

Completely specifying a random process is considerably more difficult than specifying a random

variable. Let a cdf, Fx{x,t) be defined, for each allowed t, which is given by Fx (x,t) - F\X{t) <x].

Further, for each of n allowable values of t, a joint cdf may be defined for the process, where

47

Chapter 3 Analysis Tools & Methods

3231 Prgperties ofRandom Prooesses

Independence: If X (i,) isindependent to X (t2) etc. (say if X(t) is defined by the toss of a coin or the

roll of a die), then F(x1x2,... xtt;tlt2,...,t,,) = F(xt;tX) F(x2;t2)...F(xn;tn).

Stationarity: In a stationary process, F(x],X2,....X,;tl + h,t2+ h,....tn + h) = F(x1,x2,....xn;tht2,...,tn) .

The distribution is independent of time over a set interval, i.e. the probability of changing from one

state to another remains constant with time.

Wide-Sense Stationarity: Also referred to as Covariance Stationarity. The expected value and
variance of the random process is independent of time, i.e.

F[X(ti)]=/j,Vi and E\X(t)]=fi,vieT
Var[X(t;)]=a2,Vi and Var[X(t)] =e,Vie T

Note: Stationary ¢ Wide-Sense Stationary

3232 Some Common Random Prooesses

The Markov Process: A stochastic process is classified as a Markov Process iff
P\X(t,,) = x,,H\X(ti) = x{; X(t2) =x2;...;X(t,,) =%,,] =P\X{tn) =xn+H\X(t,,) = X,,]

i.e.the future state of a Markov Process is dependent only on the current state, and not on past

history. Markov processes have a number ofnoteworthy characteristics:

» Ifthe state space of a Markov Process is discrete, it is referred to as a Markov Chain.

« In a Markov Chain, a state transition occurs at each discrete time unit, even if the state does
not change as aresult of the transition.

e If the chain is homogeneous or stationary, the future state is dependent only on the current
state, and not on the time index associated with the current state.

e In a Markov Chain, the Ilength of time spent in a state is defined by

P[systemremainsin same state for m transitions] = (1- pa)pH, i.e. it is geometrically

distributed.

« In aMarkov Process, the length of time spent in a state is exponentially distributed.

The Semi-Markov Process: The whole concept of Markov Processes revolves around the fact that
a transition must be made at every unit time, even if the state remains the same after a transition.
With Semi-Markov Processes, no such time restrictions are in place and the process may remain in
a given state for a length of time defined by an arbitrary distribution. At transition times, the

process behaves just like a Markov chain, and is referred to as an embedded Markov Chain.

48

Chapter 3 Analysis Tools & Methods

The Birth-Death Process: A birth-death process is a type of Markov Chain (with georetrically
distributed times between changes in state) and may be either a continuous- or discrete—parareter
process, but has the added daracteristic that state transitios may only take place between
neighbouring states.

An example of a birth-death system Is a queuing system where the time intenvals approach zero
(i.e. a continuous-parameter system), so that only one event can happen in an intenal. Therefore,
ifa chain isinstaieXn = i, the only possible events are:

Anarival =XmH=i+1,
A departure =>XnH =i -1, or
Nothing =XnH =i.

The probebilityofaBDP being ina particular statek attime t isdenoted by F(t) ,where:

Pk{t + At) = Pk(t) - (Ak + juk)AtPK(i) + AN AP Ait) +//aAtPk+(t) +o(t), k>1

PO(i + Ai) = PO(t) - AcAPQ() + AIAPI(t) + o(t), k=0

Using aState-Transition-Rate diagram, the rate of change of probebility "‘flov'" intostatek equals
the flow inminus the flow aut. Therefore, the above equations may be restated in theform:

it - + MK)pk(0 +4 -7-1 (0 + k-1

k=0
at

Let us defire pk as the probability that the system is in state Ek at some arbitrary time in the

future, where pk = lim,”~Pk(t). For the general BDP,

k=012,

S
3
-

The Random Walk: This process isa form of Semi-Markov Chain inwhich:

X,,+Fl=Xxn+u,,
n

=forarandomwalk, A"+l =" Ui
i=0

where U n isdrawn independently from an arbitrary distribution

Chapter 3 Analysis Tools & Methods

The Renewal Process: The Renewal Process is a specific application of the Random Walk, but i
more specific in that itcounts the number of state transittians of the monitored process. Therefore,
the renewal process, evaluated at time t, will show the number of state trasitios the subject
process has undergone inthe intenal [0,0, whether that interval is discrete or continuous.

Note that ifthe monitored process isaMarkov Chain, with the state time gearetrical ly distributed,
or aMarkov Process, with the state time exponential ly distributed, the Renewal Process will also
be Markovian, with the same state time distribution.

The Poisson Process: The Poisson Arrival Process may be defined by evaluating Pk(t) foraBDP

wi'th zero departure rate and constant arrival rate A. The result =

PAt) = "k\—e M k>0,t>0.

The Poisson Process isalso a specific form of the Renewal Process, in that itcounts the number of
state transitios Ina specified time intenal. Therefore, the Poisson process isa Renewal Process, a
Random Walk, a Birth-Death Process (as only one state trasition (or arival) may take place ata
time) and a continuous-parameter Markov Chain. Other important dharacteristics of a Poisson
process include:
= For aPoisson Process, the average number of arrivals in (0,0 is At Also, the variance of the
number of arrivals in the same time intenal isalso equal to At.
= For a Poisson Arrival Process, the interarrival times are exponentially distributed, iethe pdf
of the interamival times may be dharacterised according o 7 (f) = Ae-M,t> 0 .The mean of
the exponenttial interarrival time distribution s J& ,vwhile its variance is -This distribution
also has a property called memorylessness, whereby the distribution of the time uitil a future
arrival Is independent of the time since the last arival, ie If, at some random time t, an
estimate of the amount of time tll the next arrival is evaluated, the resultwill be independent
ofthe time that has elapsed since the lastaminal.
= The Poisson process has stationary independent increments, ie events occurring in non-
overlapping intenals of time are independent of each other.
= The Poisson process is covariance stationary (WSS) with:
E[X(1)- X(S)] =A(t-s)
Var[X(t)- X(s)] =A(t-s)

Figure 3.6 demonstrates the relatioships between the above-described random prooesses.

50

Chapter 3 Analysis Tools & Methods

Fig. 3.6: Relationship between Random Processes

Note that the Poisson process has all the daracteristics of all the ather types of random process
described above. It has also been found t be extremely suitable and accurate for modelling,
amongst other things, the traffic in switched telephony networks. Therefore, in the model t be
developed, all call arrivals to the IN SSPs willl have a Poisson distribution.

3.2.4 Queuing Theory

A queuing system is any system in which arrivals place demands upon a finite-capecity resource
[KleinrodK], In particular, ifthe arrival times or the processing requirements of these demands are
random, then cofflicts for the use of the resource will arise and queues will form. A sinple
example Isa queue for service ata cashier’sdesk inabank. The length of the queue depends on:

< The average rate at which demands arive. If the average arrival rate of customers is greater
than the rate atwhich the cashier can sernve custarers, a queue will grow (and grow and grow)
unless the cashier speeds up or another cashier provides assistance.

e The variation in rate at which demands arrive. IT the cashier can handle the average rate at
which custorers arrive comfortably, a queue will still build up occasionally based on
variations which will occur in arivals. Ifthese variations from the mean arrival rate are large,
large queues willl build up occasionally, whereas small variations will cause small queue build-
us.

e The awverage rate at which demands are sensed. Different customers will have differait
demands, and therefore the time to serve them will differ. Ifthe average service time is Sorter
than the average interarrival time, the queue should not grow significantly.

e The variation in rate at which the demands are sernved. Even if the average service rate i
greater than the average arrival rate, a queue will sl build up occasionally based on
variations which will occur iIn service times (eg- a customer requiring a complicated

transaction may require significantly more service time than the average). If these variatios

51

Chapter 3 Analysis Tools & Methods

from the mean service time are large, large queues will build up occasionally, whereas small

variations will cause small queue build-ups t occur more often.

These dependencies apply to all queues, whether of custorers in a bank or of cll reguests in a

telecons svitth. Some common definitions used in queuing theory will now be provided.

= The arival process to a queue may be described in terms of the prababi ity distribution of the
interarrival times of requests at the queue, A(t), where A(t) = P[time between arivals< /J.The
mean arival rate is denoted A ,with the mean interarrival time yx . The sguare of variation
ocoefficient (s©) ofAft) isgivenby Ka = V[A]A2.

= The sernver process of a queue may be described in terms of the prababi ity distribution of the
service times of requests at the queue, B(x), where B(X) - P[servicetime < x\.The mean

service rate is denoted /7, with the mean service time Xft. The variability of B(x) may be

assessed by the value of iits sguare of variation coefficient (s©), given by Ks = V[B]//2.

The load of a queue, p, is effectively a measure of the proportion of time the processor of a
queue Shusy, and iscalaulated as p - j/ -Note tet, ifp <1 (ie. A <//) for a queue, the
queue will be steble (.e. will not become overloaded).

Little’sLaw statesthat N - AT, where N isthemean number ofrequests in the systemand T
is the average time spent by reguests in the system.

Queues can also be characterised according to the sinple, widely-used shorthand notation A/B/n,
where A describes the queue’s interarrival time distribution, B describes its service time
distribution and n isthe number of senvers inthe queue. Values which A and B can take on include
exponerntial (M), deteministic (D), erlangian (E) and gereral (G). So, for example, an M/D/2
queue Isa two-server queue with exponerntial interarrival times (Ie. a Poisson Arrival Process) and

deterministic (constant) service times.

3.24.1 The M/M/1 Queue

The M/M/1 queue isprobably one of the sinplest queues to analyse and is also very popular for
use inmodelling telecoms systems, as itsbehaviour is quite close to the mean behaviour of a real
telecons switch. As shown by its notation, the M/M/1 queue is a single-senver queue with
exponential arival rates (forming a Poisson Arrival Process) and service tines. Therefore, both A

and p. are constant (independent of both time and state of the arrival and senver processes). From

thismay be derived a number of formula relating to the state of the queue:

< The average number ofcustomers intheM/M/1 system isgivenby N ='S\kpk - —
k=0 I~P

52

Chapter 3 Analysis Tools & Methods

The variance of the number of customers inthe systemis <1 ='YJ(k ~N?Pk =

k=0 @i-PY
. _ . n y
The average time spert inthe temis T =— =-
age Sys X " 1-/3
_ , N VIA] Vi o
e The svcof interamrivals o the queue IsKa - — —— = /X = 1. The svc of the service tines,

E2[A] (/122
K's ,alsoequals 1.

Note that, according to Burkes theorem, the interdeparture times from an M/M/1 queue are also
exponential ly distributed. Therefore, these formulae are also valid when applied to a network of
M/M/1 queues, but only If the network is feedforward (ie. there is no feedback between any
queues) and Ifall queues have only a single service rate. Therefore, ifa queuing network exhibits
Teedback or cotains queues with multiple service rates, some other method must be used to

evaluate eg. themean queue length and mean waiting time for each queue in the network.

3.2.5 Choosing an Appropriate Techniquefor the Analysis ofan IN Queuing Model

A number of queuing network analysis techniques are available for analysing the behaviour of a
network (or chain) of queues. Each of these techniques places different requirements on the
structure of the queuing network and provides different results. Therefore, in order to fecilitate the
correct choice of a technique suitable for analysing the behaviour of an IN under congestion, the
requirements on an IN amalytic model should firstbe specified.

Hirstly, an open model ofan Intelligent Network isneeded, ie. amodel inwhich clls arrive from
some extermal source outside the network and clls depart to some exterral sink outside the
network. The model must also support nultiple service types, each ofwhich has different routes
through the network and (potatially) different processing requirements at each node in the
network. ktshould also be possible to model the behaviour of various congestion cotrol strategies
under various overload conditions with the resulting requirement that the throttling (blocking) of
clls must be fecilitated. To evaluate the efficiency of each congestion cotrol strategy, the load
and queue length at each node in the network must be able to be evaluated, as vwell as the average
service delays for each service type (s described in Chapter 2). The mean arrival rates and loads
can be calaulated directly from the anallytic model, but the queue lengths and service delay results
must be provided by the analysis tednique. It isacoeptable 1o assume that exterral arrinals to the
system are Poisson innature, but ftwould be preferable for there to be no constraint on the nature
of the service time distribution.

53

Chapter 3 Analysis Tools & Methods

Having stated the requirements on the analytic model, itiisnow possible to examine the available
queuing network analysis techniques, to establishwhich one best meets these requirements.

A number of queuing network analysis techniques exist (e.g- Jackson and BCMP networks) which

allow the behaviour of all queues in the network to be calaullated exactly, in terms of retuming the

Joint probebilities of queue lengths [Gelenbe], but these techniques place stringent requirements on

the network, including:

= All service times must be exponertial ly distributed,

= Extermal arrivals must be Poisson,

= There may only be one class of custorer, or ifthere ismore than one, the service times of the
queues must apply to all classes equal ly.

= All queues must have unlimited capecity.

Use of these techniques is not appropriate as the costraints on customer classes mean that IN
traffic cannot be accurately model led and also because the solutions provided by the analysis are
not useful - e.g. they do not fecilitate the estimation of service delays.

The altermative option IS to use an approximation method. Approximation methods allow various
darecteristics of the queues within the network to be approximated accurately. Each of the
techniques available for analysing networks of queues make a number of assumptions and allow
particular daracteristics 1o be estimated. Table 3.1 summarise the assumptions made by and the
results provided by two differentapproximation methods.

Approximation Method Assumptions Made Results Provided
The Mean Value Method For open networks: 1 The mean queue length of
1 Each queue FIFO each queue
2. Bxponential ly distributd 2. Average service delay for
service times each service
3. Unique servicerate ateach
queue
The Decomposition Method 1 Open network, 1 The mean queue length of
2. Each queue has single each queue
sener 2. Average service delay for
3. Each queue FIFO each service

Table 3.1: Summary of Two Approximation Methods

Both methods provide us with the desired reaults, namely the mean length of each queue and the
average delay for each service type. However, the Mean Value method constrains all service types
1o having the same service rate at each queue. This isnot desirable in our model, as IN clls and

54

Chapter 3 Analysis Tools & Methods

non-IN alls have very different service rates. The decomposition method, on the other hand, does
not have this constraint - in fact, all the constraints associated with the decomposition method are
acceptable within our model . Other methods exist (e.g- the aggregation method and the isolation
method) which may alsobe goplicable, but these generally depend on the use ofnurerical amalysis
methods. The decomposition method isboth simpler (as it imlvolves only the solution of a series of
linear equations) and suitable for describing an IN model, and was therefore chosen as the
approximation method t be used within our analytic model .

3.2.6 The Decomposition Methodfor Queuing Network Approximation

The decomposition method is one of the most widely used approximation methods. It provides
good solutions for all networks, whether or not they may be expressed in product form. It isbased
on analysing each queue inthe network (as shown inFigure 3.7) separately, inorder to express, for
each queuej, the svc of interarmrival times Ka} and the svc of interdeparture times C,- interms of

Kak and Ck (V&*j) ofall other queues inthe network. This analysis results ina setof linear

equations, which may then be solved simultaneously to find the solution for each queue.

The method isbased on the assumption that the departure process from any stationj isa renewal
process (ie. the time interval between two successive departures does not depend upon the
preceding intenals). This assumption is valid in the case where the arrivals are Poisson and the
service rates are distributed exponentially or when the station is saturated. As an intuitive
Justification of this assumption, the memoryless property of the exponential distribution has
already been observed - thus independence of the interdepartures is consistent with this property.
In a saturated senver, there are always more customers than there are senvers. This means themean
internval between successive departures from the station is the mean service time for the customer

when all servers are busy.

55

Chapter 3 Analysis Tools & Methods

3.26.1 Formulation of the Decomposition Method

The derivation of the equations for the decomposition method isprovided in [Harrison] and will
not be reproduced here. However, these eguations and the various stgps involved in the
decomposition method may be outlined as folloas:

Step 1: Bvaluate Cj for each queuej inanetwork ofK queues serving R different service types

using the fol loving equations:

The meanings of the terms used in the equations are: pj isthe load at queuej, A, is the total
arival rate atqueuej, pjr isthe load atqueuej due t call of service type r’ *kr isthe arival rate
ofclls of service type r atqueue Kk, /u-r isthe service rate atqueuej for service type r, Ksjr isthe

svc of the service rate at queuej for service type r (note that if queue] has an exponentially
distributed service time for service type r, Ksjr=1) and Pk is the total prosebility that calls

departing station k move t station j , with pkrjY as the prooebility trat a call of type r, on

departing queue k will arrive atqueuej asacall oftype r ™.

The result of this step is a series of linear equatiions (one for each queue in the network), with Cj
expressed as a function of the svc of the service time at stationj and the variations in the arivals
from the other statias inthe network (which intum depend on the svc of the departures from each
of these statias).

Step 2: Solve the series of linear equations Cj, 1<j <K sinultaneously. The resultmay then be

used o evaluate Ka.—, 1<j <K ,foreach queue inthe network.

Step 3: The mean length of the/h queue Lj can then be approximated for each station by

Kingman s formula (a gereralisation of the Pol laczek-Khintchine formula):

56

Chapter 3 Analysis Tools & Methods

Step 4: The mean delay at thef 1queue ; may then be found through Little’s law T, =

and the mean delay for each service type can be evaluated by summing the delays over all queues

in the route taken by the service type.

In summary, the decomposition method studies each queue in the network on a queue by queue
decomposition of the network. In this method, the distributions of the service times and interarrival

times at each stationj are approximated by the total mean rate of arrivals Aj and the square of

their variation coefficients (i.e. the variation multiplied by the rate squared). In this way, the arrival
streams from other station in the network and from the exterior can be approximated. The mean

gueue length is then found using Kingman’s formula and the mean delay using Little’s Law.

3.3 Mathematical Optimisation

Mathematical optimisation describes a methodology for evaluating, where it exists, the maximum
or minimum value of a mathematical function (and the values of the function parameters which
provide this optimised solution) subject to a number of (equality or inequality) constraints. The
mathematical function to be optimised is referred to as the objective function, Z. The possible
values of the objective function, subject to the constraints, form a feasible region (an area in
which all points are possible solutions to the objective function and obey all constraints).
Optimisation of the objective function returns the highest (or lowest) point in the feasible region.
Note that if an optimisation problem is not carefully defined, one of two considerable problems

may result:

» An infeasible solution: If there is no feasible region in which all constraints are satisfied, it
will not be possible to generate an optimum solution, and the algorithm will deadlock.

e An unbounded solution: If the feasible space is unbounded (i.e. is not constrained on all
sides), the optimisation may never complete, as the algorithm may find on each iteration, a
result that is greater than (or less than) the result found on the previous iteration. This will

effectively result in a livelock of the optimisation algorithm.

An optimisation problem may be linear or non-linear. Graphical examples [Greenberg] of a two-
dimensional (two parameter) linear and non-linear optimisation problem are provided in Figure
3.8.

57

Chapter 3 Analysis Tools & Methods

Fig. 3.8: (@) Linear constraints, (b) Non-linear constraints

Note that, if the search for the optimum solution begins at C and progresses along the bound of the
feasible space (along the line segment [AC], which represents the points for which the constraint
defining the line AC is active, i.e. the left hand side of the inequality equals the right hand side),
the linear search will find A, which is the correct solution for the problem. However, for the non-
linear problem, there is a risk that A will be selected as the optimal solution, as it is a local
maximum. This would be incorrect, as the actual global optimum is point B. This demonstrates
(intuitively) that non-linear optimisation is more complicated than linear optimisation. If it is
desired to use an optimisation technique for congestion control, it must fulfil one of the basic
requirements on a congestion control algorithm, which is that the algorithm must be simple and
efficient. It is therefore preferable that a linear optimisation algorithm should be used for
congestion control. In order for an objective function and corresponding constraints to form a valid
Linear Programming Problem (LPP), there are two requirements that must be adhered to. The
first is that all parameters must be non-negative. This is not a problem for a congestion control
algorithm, as all parameters and constraints will relate to loads, probabilities and priorities, which
can only have non-negative values. The second requirement is (obviously) that, the objective
function and constraints must be kept linear. This does constrain the algorithm somewnhat.
However, if the objective function and constraints are expressed intelligently, the benefits of
keeping the problem linear outweigh the overheads that would be required to express a more

comprehensive problem in non-linear terms.

The most commonly used method for solving linear programming problems is the Simplex
Method. There are two forms of this algorithm - the single-phase and two-phase simplex

algorithms. The only difference between the two forms is how the initial search point is

Chapter 3 Analysis Tools & Methods

established, and this is dependent on whether each constraint has an upper bound (i.e. that the
function of the parameters is less than some constant). The single-phase form requires that all
constraints are upper-bounded, while the two-phase simplex algorithm can handle constraints for
which only lower bounds are defined. For a congestion control strategy, the requirements will
always be that some value (load, number of calls, etc.) is not exceeded, and therefore all
constraints will be upper-bounded. Therefore, the single-phase form of the simplex method is

suitable for congestion control algorithm specification.

The software used to implement the simplex method was LP_SOLVE [Berkelaar95] and was

acquired as freeware from the Internet.

59

Chapter 4

Comparison between Existing SCP Congestion Control
Strategies

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

In this chapter, we compare the behaviour and efficiency of the most common strategies used in IN
congestion control. As Chapter 2 describes, a number of publications, using various types of
extremely simplified IN models, present conflicting results about the benefit of these strategies
(e.g. [Pham92], [Tsolas92]), and so none of the results presented may be accepted as being
conclusive. Therefore, a comprehensive IN simulation model was developed to compare these
strategies, with the aims of:

» Establishing which of the existing strategies performs best under various load conditions, and

» ldentifying any problems and difficulties associated with both developing and executing these

strategies,
in order both to clarify the requirements on a new IN congestion control strategy and to suggest

which type of algorithm may prove useful as the basis for this new strategy.

Note that the emphasis of this work is on the efficient protection of the SCP, as being the physical
entity whose behaviour is most critical to IN performance. In Section 4.1, the IN simulation model
which was developed to facilitate this investigation is described. In Section 4.2, the method by
which each of the various congestion control strategies were implemented on the model is
outlined, while Section 4.3 compares the operation and effectiveness of the strategies to establish
which is the best of the existing strategies. Finally, Section 4.4 summarises the results of

simulations and highlights the drawbacks of the existing strategies.

4.1 The IN Simulation Model

The best way to approach describing the simulation model is to initially describe how it was
designed, including any simplifications made to the standard IN concepts. Each simplification will
be justified. Also at this point, the services which were designed to execute on the model will be
described, interms of the actions and information flows required in the real world, and therefore in
the model, to execute services of this type. These descriptions and justifications will be provided
in Section 4.1.1. Once the model design has been described, the details of how it was developed at
each level ofthe OPNET package will be described in Sections 4.1.2 and 4.1.3.

4.1.1 Overview ofthe model

The IN model was designed to be able to handle both IN and non-IN calls (see Figure 4.1). It
consists of two SSPs that are fully connected to each other, thereby permitting the exchange of
control messages required to setup and teardown an ISDN call. Each SSP contains a Call Control
Function, which is responsible for completely executing non-IN calls and for detecting any

service-related requests in new calls. Any service requests detected in the CCF are forwarded to

61

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

the Service Switching Function, which is responsible for communication with the SCP. So far, the
operation of the SSP is as specified in the standards. However, it was decided to simplify the
model by integrating the Service Resource Function of the Intelligent Peripheral into the SSP.
This is justifiable as every IP request begins with a request from the SCP to the relevant SSP to
open a channel between the IP and the user, before instructions are sent to the IP and interaction
with the user occurs. Therefore, giving the SSP control over SRF execution simplifies the model
without affecting the sequence of events involved in service processing. A second assumption is
also made regarding the SSPs and relates to their capacity - as the aim of this work in this Chapter
is to compare commonly used SCP congestion control strategies, the SSP capacity is defined to be
very large so that the SSP will never become congested and influence the results for the strategies.
This assumption will be removed in Chapter 5 where the effects of SSP overload on IN

performance are investigated.

Generators

Fig. 4.1: The Simulation Model

Another simplification in the model involves the connection of each SSP directly to the SCP - the
operation of the SS7 network that, in reality, would be responsible for handling communications
between these physical elements is not addressed. This is based on the assumption that the
dimensioning of the SCP was done intelligently with respect to the capacity of the SS7 links, so
that (as the SS7 is dimensioned so that it generally runs at approximately 0.4 Erlangs under normal

traffic loads while SCPs are generally dimensioned to run at about 0.7 Erlangs) in almost all cases,

62

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

SCP overload will occur prior to SS7 link overload [Lodge98b], In this case, the only impact of the
SS7 network is the delays that call requests exhibit in transit between IN physical elements. As
modelling delays in the SS7 is a very complex task and does not add much insight into this
investigation, it was decided to omit the SS7 from the model. Therefore, the SSPs and SCP are
connected directly to each other, as shown in Figure 4.1, and transmission delays are assumed to
be negligible. The protocol underlying the connection between the SCP and the SDP is not
explicitly defined in CS-1, and therefore it is assumed, for simplicity, that there is a dedicated line
between the control point and the service database with negligible transmission delays (this would

be exactly the case if, for example, the database was an integral part of the SCP).

This model is very similar to that developed by [Leever93] in his estimation of IN service
performance and is very different to that used in most research studies to date, as it does not
simplify the operation of the IN into just a simple exchange of messages between SSP queues and
SCP queues, but also integrates interactions with the SDP and IP. Therefore, the actual
characteristics of service traffic between PEs of an IN may be represented, along with the added
advantage that no assumptions are made as to the delay involved when requests are sent to the
SDP and IP. In previous research, the delays involved in accessing data or interacting with users,
if modelled at all, was modelled as either a constant or distributed delay between SCP processing
times. The fact that we do not make this assumption means that traffic behaviour and associated
statistics gained from the model simulation should more correctly approximate the load profile of

each service type in the system.

In order to apply the strengths of the model architecture, it is necessary to reproduce, as accurately
as possible, the various information flows and processor requirements that would occur in a real
network offering real services. Information relating to real service processing requirements is not
made public by network operators or equipment vendors, and so, unfortunately, it is only possible
to attempt to estimate it intelligently. Regarding service offerings, we chose to implement two IN
services - Televoting and Freephone - as well as the non-IN (ISDN voice call) service. Note that,
as a simplification to the realisation of these services, all call requests which are not rejected in the
SSPs are assumed to complete correctly - i.e. non-IN and freephone calls will be setup and routed
correctly and the terminating party will always accept the calls, while it is assumed that all

televoting callers interacts correctly with the service and register their votes correctly.

The DFP IFs between PEs and the relevant processor actions at each PE required to complete IN
service requests of each type is described below, as is the realisation of the non-IN calls. A written

description of each operation is also provided for each call type.

63

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

41.1.1 The Televoting Service

The televoting service involves the collection of data from users who may be located anywhere in
the network and is primarily used when general opinions of a population are desired. Usually, the
number of the televoting service is broadcast over one or more types of media (e.g. television,
radio, newspapers etc.) and many callers ring the number to volunteer an opinion on a topic.
When a user calls, they are connected to a voice messaging system, which prompts them to enter
their choice by pressing some sequence of digits. When the choice is entered, it is used to update
the information in a database, and the users choice is acknowledged. The call then terminates.
The CS-1 information flows may be represented as shown in Figure 4.2 below. In the diagram, the
arrowed lines depict information flows, with the name of the IF above the line and the information

carried in the message in italics below the line.

SSF/CCF SCF SRF SDF

User Requests

Televoting Service *
9 Analysed Info

Dialled digits
Connectto Resource
CLI

Prompt and Collect
lIsfir Info
Announcement No.

Collected User Info

Collected digits

Key Update Data
CLI = calling
Line Identifier

Collected digits

Update Confirmation

Play Announcement

. Announcement No.
Disconnect Fwd

Connection

CLI

Fig. 4.2: Decomposition of Televoting Service

The series of actions required to execute an instance of the televoting service may be described as

follows:

e User goes offhook and dials the televoting number,

« The digits typed in by the user are collected and examined by the CCF,

e A service request is recognised by the CCF and call processing is suspended,

e The SSF builds an Analysed_Info message containing the dialled digits and sends it to the
SCF,

» The SCF creates anew instance of the Televoting Service Logic Program (SLP),

""'64

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

» The SLP Instance (SLPI) sends a message to the SSF requesting that a channel be opened
between the user and the SRF,

e The SLPI sends a message to the SRF requesting that the relevant announcement be read and
the digits keyed in by the user in response be collected,

e The SRF collects the resulting digits and passes them back to the SCF,

» The SCF sends a message to the SDF in order to update the televoting statistics,

» The SDF sends an acknowledgement,

» The SCF requests the SRF to play an acknowledgement announcement to the user,

» The SCF tells the SSF to disconnect the SRF from the user and to end the call. The SLPI then

terminates.

The SSF terminates call processing.

4.1.1.2 The Freephone Service

When a customer subscribes to the freephone service, they are allocated a number (in Ireland the
number allocated is '1800" + & digits), which is their freephone reference number and not related to
their actual destination number. When a user dials this number, it is interpreted by the SCP and,
by accessing a database, the associated destination number is acquired. This number is returned to
the SSP for call routing and connection. When the conversation terminates, the subscriber is
charged for the call. The call setup procedure is shown in Figure 4.3 below - note that the

charging aspect of the call is not addressed here.

SSF/CCF SCF SDF

User Requests
Freephone Service”

Analysed Info

Dialled digits

Query
Information key

Query Result

Outcome

Select Route

Destination Address

Fig. 4.3: Decomposition of Freephone Service

The information flows may be interpreted as follows:

e The user goes offhook and dials the freephone number,

» A service request is recognised by the CCF and call processing is suspended,

65

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

» The SSF builds an Analysed Info message containing the dialled digits and sends it to the
SCF,

» The SCFcreates a new instance of the Freephone SLP,

» The SCFsends a message to the SDF requested the appropriate destination number,

* The SDF returns the number,

e The SCFtells the SSF to connect the user to this number,

» The SSF continues call processing with the correct destination number (i.e. it routes the call in

the same way as it would a non-IN call).

41.1.3 Realisation of non-IN calls

The implementation of non-IN calls was realised using an approximation of the ISDN control
message sent between the SSPs. As shown in Figure 4.4 below, when the CCF of an SSP receives
a non-IN request, it generates a termination request and transmits it to the other SSP in the
network. When the termination request arrives, it causes the number of active channels between
SSPs to be incremented and returns an acknowledgement message to the originator. (Note that the
model was developed so that if it was desired to limit the number of channels between switches, an
upper bound could be set on the channel number and if this was reached, the call request would be
refused using a NOACK message). On receipt of an ACK message, the originator then sets a timer
to simulate the length of the conversation - this length is derived from a uniform distribution of
between 150 and 210 seconds. When the conversation finishes (the timer expires), a message is
sent to the terminating SSP to decrement the number of active channels. In this manner, the
control messages required to carry out a call are modelled without having to maintain the actual
channels between the SSPs, while retaining the ability to monitor the number of active channels

and use this as a criterion for accepting non-IN calls.

Originating Terminating
SSP SSP
non-IN
request
SETUP.req
ch++
ACK/ NOACK
ch++

Conversation
phase

ch-
END.ind

Fig. 4.4: Non-IN call handling

66

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4.1.2 The Network Layer Model

The network layer model in OPNET is depicted in Figure 4.5. As shown, the model consisted of
two SSPs fully connected to each other to permit the accurate representation of the control
messages required to setup and teardown a non-IN call - note that each link between SSPs is
defined for one of the control message types outlined in Section 4.1.1.3. There is one SCP, which

is directly connected, via two unidirectional links, to each SSP and to the SDP.

4.1.3 The Node Layer Models

As shown in Figure 4.5, the network model consists of four interconnected nodes. These are
realised using three node models, namely, the IN_scp, the IN_ssp (sspl and ssp2 in the network
model are instances of this model) and the IN_sdp. The structure of each node will now be
described, in terms of the process models that form them and the information streams between

these processes.

4.13.1 The IN_ssp Model

The operation of the SSP (and IP) is realised by the interactions between a number of different

gueuing models, as shown in Figure 4.6.

67

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

get_ack

Fig. 4.6: The IN_ssp node model

Input requests are generated as packets by instances of the IN_gen process. Three instances of this
generator exist within the node, each one being responsible for the generation of one of the call
request types - namely Televoting, Freephone and non-IN calls. Each generator produces packets
according to a Poisson distribution, with a mean arrival rate that may be re-specified at the start of
each monitoring interval (this allows the arrival rates for each traffic type at each SSP to be varied
independently over the course of a simulation). The generated packets are of a specified format,

being of length 10 bits and containing the fields:

» Service: This field contains an integer that defines the type of service being requested.
Each generator instance sets this field accordingly (i.e. non-IN = 0, freephone = 1 and
televoting = 2).

» Msg_type: This field contains integers that may be set/updated by any PE to denote which
stage of call processing a particular request is in. For example, if the SCP wishes to access the
IP, it will set this field to "PLAY_ANNOUNCEMENT", and transmit it to the SSP.

68

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

e sspid: This value is set when the packet is created in order to identify which SSP it was
created in. This will be used by the SCP for addressing purposes.

e Delay: This field contains a float value that is initially zero. As the simulation proceeds,
this valuewill be updated in order to dynamically track the delays experienced by this packet
during processing at each PE along its route.

e Param: This field was included to cater for services for which the same function must be
carried out more than once. For example, if a particular service requires database lookup on
two separate occasions, on the first occasion Msg type will be set to "UPDATE_DATA" with
Param = 1, while on the second occasion, Msg_type will again be set to "UPDATE_DATA",

but with Param = 2.

All new requests are routed to the ccf queue, where processing occurs in a First-In-First-Out
(FIFO) manner to establish whether the call is a service request or a non-IN request. All service
requests are forwarded to the ssf queue, while non-IN call setup requests are immediately
transmitted to the other SSP via the send term transmitter. The ccfqueue is of infinite length with

its mean (exponential) service rate promoted, so that it may be defined at runtime.

When new call requests arrive at the ssffrom the ccfor the srf, they are transmitted immediately to
the SCP via the ssf_ccftransmitter. When a message is received from the SCP, the ssfchecks the
contents of the 'Msg_type' field to establish whether it should be sent to the ccfor the srf and

forwards it to the correct process without delay.

The srfis modelled as an Erlang-C queue, with each of 20 virtual servers having a uniformly
distributed service rate of +/-2 seconds around a mean of 5 seconds. This mimics the behaviour of
an IP with 20 recorder devices, where the service time distribution represents the time when
announcements are being read to the user and digits collected. After the service time has elapsed,

packets are returned to the ssf which sends them back to the SCP via the ssf_scftransmitter.

When a termination request arrives at the SSP, it is processed, without delay, at the nonJN_proc
queue, the number of active channels is incremented and an ACK returned to the originator. The
ack_proc processor receives the ACK message, and sets a timer for a uniformly distributed
conversation time around a mean of 180 seconds, before transmitting an END message, which
enters the non_INj>roc queue of the originator and causes the number of active channels to be

decremented before destroying the packet.

When a packet associated with the freephone service has completed processing at the SCP, it is
returned to the ssf which forwards it to the ccf. This packet is processed by the ccf, and causes a

non-IN call to be established with higher priority than new calls (because more resources have

69

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

been expended processing these calls than has been expended on new calls and therefore, to

maximise efficient processor usage, it is imperative that these calls complete successfully).

Finally, messages relating to SCP overload arrive at the ssf, which forwards them to the ccf All
throttling mechanisms for the control of IN traffic (e.g. CG, Percent Thinning (PT) or Window) are

located at the ccf.

4.1.3.2 The IN_scp Model

As shown in Figure 4.7, the functionality of the SCP is divided among a number of queues. All
incoming requests arrive at the scf_g queue module, where their further processing needs are
established. Any messages arriving from the SDP or SSPs must queue for service at the scfq
module. They are served in a FIFO manner with an exponentially distributed service rate (not
explicitly defined within OPNET, so that it can be defined at runtime and therefore varied over a
number of simulations). After the expiry of the service time, the packets are evaluated to establish

which service they are connected with and are then forwarded to the relevant service sip.

Each sip is a simple FIFO queue with an exponentially distributed service rate and contains the
knowledge of the routing information for the service is stored. When a packet arrives at an sip, the
information contained in the 'Msg_type' and 'Param'’ fields of the packet provides details as to the
last location at which the packet was processed. The route logic is then used to determine the next
destination for the packet, and this information is embedded in the packet before the packet is sent
to the out_q process. In out_q, the ‘Sspid’ and ‘Msg_type’ fields of the packet are read to establish
where the packet is to be sent. The packet is then dispatched to the relevant transmitter without

delay (to_sdp, to_sspl or to_ssp2).

The scf_g module represents the central processor of the SCP. The out_gq module of the model
was only developed in order to distribute the functionality of the SCP among different elements of
the model, thus ensuring that the code in the central processing module (scf_q) does not become

overly complex.

70

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4.1.3.3 The IN sdp Model

The SDP model contains simply one receiver, one active queue and one transmitter as
demonstrated in Figure 4.8. All arriving packets are from the SCP, and are inserted in the sdp
queuing module. Here, the 'Msg type' field of the packet at the head of the queue is analysed to
discover whether a read or an update operation is required. The queue serves packets in a FIFO
manner with two constant service rates defined (one for read operations, the other for update
operations) - the assumption is made that an update operation takes longer than a read operation,
so for the purposes of the simulation, the service time for an update operation is twice that for a
read operation. After the service time has elapsed, the data in the packet is amended to show that
it has received SDP processing and is returned to the SCP via the to scp transmitter. Note that the
service rates of the SDP were defined (relative to the SCP service rate) so that the SCP will

become overloaded prior to the SDP.

4.1.4 Congestion Strategy Evaluation Criteria

The criteria used to evaluate the performance of the developed congestion control strategies are (as
stated in Chapter 2, Section 2.3.5):

e User delays,
e SCP queue length,
e SCP load.

As the assumption is made during this investigation that SSP resources are infinite, SSP load is not
measured. The efficiency of the algorithms is also estimated, in terms of their resource
requirements, simply by comparing the duration of the simulations when all factors other than the
congestion control strategies used (e.g. service rates and arrival rates) are identical. The methods
used to acquire data to allow the quality of the control strategies to be calculated according to the

above criteria will now be presented.

4141 Measurement of User Delays

User delays for each service type were measured by:

71

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

» summing the delays (both queuing delays and processing delays) for each request at each node
along its route through the network in order to find the total delay for each request (the delay
experienced by each request is stored in the 'delay’ field of its packet and is updated in each
PE) and,

« calculating the average delay over a monitoring interval for requests for each service type and

writing each result to a statistic within the out_q process of the SCP node.

However, the service time at the srfrepresents the time in service execution when the network is
interacting with the user - i.e. the user is receiving a response from the network during this time,
even though service execution has not yet completed. Therefore, the service delay experienced by
packets there may be discounted. Note, therefore, when examining the delays for each service in
Section 4.5.1, that in services which require user interaction, the delays may appear quite high (to
the order of 1 - 3 seconds) this is due to the fact that information exchanges are required between

the SCP and IP, and the user has received a response from the network during that period.

4.1.4.2 Measurement of SCP Queue Length

A probe is placed on the in g process of the IN_scp node. This probe dynamically records the
queue length over the course of a simulation and presents both the actual and the time-averaged

value of the queue length as a result of the simulation.

41.4.3 Measurement of SCP Load

The SCP throughput for each control strategy was estimated by evaluating, at the end of a
monitoring interval, the number of calls processed during the interval as a percentage of the total
number of calls that could be handled by the SCP at full capacity. Note that, as the SCP does not

reject any calls, SCP load and throughput are equivalent.

4.2 Implementation of Congestion Control Strategies

Two classes of congestion control strategies were implemented in the model. The active strategy,
Window was implemented in the ccf(see Section 4.2.3). For the reactive strategies, four detection
methods and two throttles were implemented. The detection methods, which were implemented at

the SCP of the model, were:

« Call Count Control (CCC),
e Queue Length Control (QLC),
* Load Measure Control (LMC),

72

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

* Response Time Control (RTC) - this is a variation of a detection method used in mobile
networks, and was originally developed by [Gulyani93] and then enhanced during the course
of this work (see [Lodge94]).

Each of these detection methods was integrated into a different part of the SCP model. Reasons
for the locations of the algorithms and a description of how they operate will be provided in
Section 4.2.1. In all cases, fifteen different levels of overload were defined.

The two throttles that were implemented are CG and PT. Both of these were integrated into the ccf

process of the IN_ssp model. Their implementation is described in Section 4.2.2.

Note that there are no controls in the model to protect against SSP overload. It is assumed for this
work that the trunk capacity between switches is infinite, and that SSP ccfcall processing capacity,
while not infinite, is veiy high. Therefore, it was deemed unnecessary to protect the SSP from
possible congestion. Also, it was decided to simplify the initial investigation of the behaviour of
the strategies by evaluating their behaviour under load from one service type only. Therefore, all
overload parameters associated with the various strategies were estimated based on the assumption

that all calls are of the Freephone service type. This assumption will be removed later.

4.2.1 Implementation ofSCP Congestion Detection Methods

42.1.1 Call Count Control

As described in Chapter 2, the CCC detection method must be implemented at the input queue of
the processor that requires protection. As the resource that must be maximised in the IN is the
processing capacity of the SCP, modelled as the in_q process of the IN_scp node, the algorithm
must be placed at the input of this module. For this algorithm, an interrupt is generated
automatically at the end of a pre-defined monitoring interval, resulting in a transition to a monitor
state. When this state is entered, the number of new arrivals (note that returning messages from the
SSP, IP and SDP were not included in this figure) within the previous monitoring interval is
counted and compared with a pre-defined table of arrival/overload level values to find the current
overload level. This result is used to derive the associated overload level using the algorithm

described in Figure 4.9.

if current level >= previous level
then new level = current_level;
if current level < previous_level
then new level = previous_level - 1;

Fig. 4.9: Algorithm for Estimating Overload Level

73

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Note that this algorithm bases its calculation not just on the currently detected overload level, but
also on the overload level that was in place during the previous monitoring interval. This is
because taking the previous overload level into account reduces oscillations in the SCP load, as
shown in Figure 4.10, where a CCC algorithm which uses the memory of the previous overload
level to define the new level is compared to an algorithm where the new overload level is based
purely on the number of arrivals in the previous interval (i.e. an algorithm with no memory). These

reductions in oscillations result in lower average queue lengths (Figure 4.11) and therefore lower

overall service delays (Figure 4.12).

Variations in SCP Load

Zone #1: CCC with memory
Zone #2: CCC with no memory

time (sec) (xI1000)

Fig. 4.10: SCP Load for CCC algorithm with Memory vs without Memory

Variations in SCP Queue Length

o CCC with memory
0 CCC with no memory

time (seo) (x1000)

Fig. 4.11: SCP Queue Length for CCC algorithm with Memory vs without Memory

74

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Variations in Freephone Delays

o ccc with memory

0 ccc with, no memory

Fig. 4.12: Freephone Delays for CCC algorithm with Memory vs without Memory

If the current overload level is evaluated as greater than 0, an overload message (containing the
current overload level) is created and sent, without delay, to both SSPs. Similarly, if the level
evaluated is o when the previous level was greater than o, an overload message is created to notify

the SSPs that the overload condition no longer exists and that the throttle may be disabled.

4212 Queue Length Control

The QLC algorithm was also implemented in the inqg process in the SCP node. For this, every
time a new packet arrives and is inserted in the queue, the number of packets in the queue is
established and compared against a list of queue lengths corresponding to the fifteen overload
levels. The resultant level is then compared with the previous overload level, and the new
overload level is determined using the algorithm described in Figure 4.9. The result is then

encoded into a message and sent to the SSP where the throttle is invoked if required.

42.1.3 Load Measure Control

The LMC algorithm was also implemented in the inqg process in the SCP node and operates in a
similar fashion as the CCC algorithm. An interrupt is generated automatically at the end of a pre-
defined monitoring interval, resulting in a transition to a monitor state. When this state is entered,
the mean load during the previous monitoring interval is evaluated and used to derive the
associated current overload level from a pre-defined table of loads/overload levels. The resultant
level is then compared with the previous overload level, and the new overload level is determined
using the algorithm described in Figure 4.9. The new overload level is then encoded into a

message and sent to the SSP where the throttle is invoked if required.

4214 Response Time Control

The RTC algorithm is similar to CCC but is implemented at the out q module of the SCP. The

average service execution time for requests is measured over a constant monitoring period, by

75

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

causing a transition to state monitor. Monitor contains the code required to evaluate the average
total delay of packets of each service type (in this case by using the ‘delay’ field of each packet,
but in a real system, this could be accomplished by tracking the average duration of the lifetime of
each SLPI). This delay is made up all the individual delays experienced by packets at the SCP, IP,
and SDP. Therefore, this detection method has an advantage over CCC and QLC in that if the IP or
SDP becomes overloaded, this will be noted in the out_g ofthe SCP, as the total delays of requests
will be affected by the delays at these PEs. On the other hand, RTC is also more complex than
CCC or QLC, as in the case when IN traffic is made up of multiple service types, the response
time for each service type varies according to the requirements which the service places on the
system, and therefore the average delay would have to be measured separately for each service
request type. However, as for this investigation, traffic in the system is made up of only freephone

calls, the implementation of this algorithm is made up of only freephone delays.

As RTC is implemented, at the end of a monitoring interval, the average response time of
freephone calls during that interval is compared to the list of times corresponding to the fifteen
overload levels and the resultant overload level for each service is determined using the algorithm
outlined in Figure 4.9. The average overload level, if different from the previous overload level,
causes notification is sent to the SSP in order to ensure that it restricts traffic according to the new

overload level.

Note that, for all the detection methods described above, a table defining the correspondence
between measured values and overload levels must be derived. These tables were derived through
trial and error, which proved to be an extremely non-trivial task. Also, as the efficiency of any
detection method based on the use of a monitoring interval is dependent on the length of that
monitoring interval (as described in Chapter 2, Section 2.2.3.2), the behaviour of CCC, LMC and
RTC was evaluated under various monitoring interval lengths over the course of a number of
simulations, with the result that the use of a monitoring interval of 10 seconds was established as

providing consistently the best results.

4.2.2 Implementation of Throttles

The CG throttle was integrated into the ccfprocess of the IN_ssp model. The throttling algorithm
will be described in Section 4.2.2.1, including justifications for why it does not reflect exactly the
description of the throttle provided by Bellcore [Bellcore92], The PT throttle (Section 4.2.2.2) is
also located in the ccf. Both throttles have 15 throttling levels defined.

76

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

42.2.1 The CG Throttle Mechanism

The CG throttle implemented in the model does not correspond to the throttle that was
standardised by Bellcore. The primary reason for this, as mentioned in Chapter 2, is that
investigations early in the development of the model proved that the gap durations and gap interval
levels defined by Bellcore were impractical to use. The times specified were far too long and gave
bad results. This is corroborated by [Smith95], However, some of the ideas presented by Bellcore

were very useful and were used as guidelines when implementing the throttle.

The CG throttle algorithm is included in the ccfprocess of the SSP model. Fifteen levels of CG
control are defined here, and their relationship to the overload levels defined by the detection
algorithm in the SCP is maintained using a table of gap interval levels corresponding to the
overload levels. Suitable gap interval times were achieved through trial and error to maximise
throughput during congestion, while ensuring recovery was as rapid as possible. Note that finding

appropriate gap interval times is a non-trivial task.

Each time the ccfof the SSP receives an overload message from the SCP signifying a change in
overload level, the gap interval level under which the throttle was operating is changed
accordingly, by resetting all gap timers, evaluating the gap interval level associated with the new
overload level and altering the gap timers to these new levels. When the next request arrives after
the controls have been reset, the gap timer is set for the length of the new gap interval and all calls
arriving while the timer is active are rejected. When the timer expires, the next arriving call is
accepted and the timer is reset. Throttling continues at this level until the next control message

arrives from the SCP, detailing a change in the overload level.

Note that as all changes in overload level are relayed to the SSP immediately after detection in the
SCP, gap interval levels were designed to remain in place until altered by the arrival of a new
overload message and therefore duration levels were not required in the model and were omitted.
Also, as all detection methods caused the same overload message to be transmitted to both SSPs,

both were throttled equally.

4.2.2.2 The Percent Thinning Throttle Mechanism

The PT throttle algorithm is also included in the ccf process of the SSP model, but it is not
necessary to maintain a table of PT coefficients corresponding to the SCP overload levels here, as
the appropriate PT coefficient is sent by the SCP to each SSP as part of the overload notification
(the SCP divides the measured value (e.g. for CCC, the number of new arrivals) by the measured

value associated with the SCP threshold in order to evaluate the PT coefficient). The PT throttle

7

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

then applies the new PT coefficient to arriving traffic according to the algorithm shown in Figure

4.13, in order to allow the acceptance of only the relevant percentage of arrivals.

Increment new_calls;

IT current_accepts/new_calls <= PT_coefficient {
Accept call; increment current_accepts; }

Else reject call.

Fig. 4.13: The PT algorithm

Each time the ccfof the SSP receives an overload message from the SCP signifying a change in
overload level, the counters in the PT algorithm (i.e. current_accepts and new _calls) are
initialised and the new percent thinning coefficient is applied. Thereafter, each time a new call
arrives, new _calls is incremented and the algorithm is used to evaluate whether the call should
be accepted or rejected. The algorithm continues using any given PT coefficient until the next
overload notification arrives from the SCP, at which point the algorithm is re-initialised with the

new coefficient.

Note that while the SCP sends the same throttling coefficient to both SSPs, the use of the PT
algorithm ensures that arrivals at each SSP will be throttled proportionally to their arrival rates,
and therefore, unlike CG (which will place the same strict upper limit on the number of calls to be
accepted at all SSPs), acceptance rates at each SSP will be proportional to the number of requests

arriving at that SSP.

4.2.3 Implementation ofthe Window Strategy

According to the Window mechanism described in Chapter 2, throttling of calls should take place
both at the SCP and the SSP. However, rejection of calls at the SCP is undesirable for two reasons
- firstly, SCP throughput should be maximised during overload and therefore SCP processor
resources should not be expended rejecting calls and secondly, each SSP would have to make
assumptions about whether or not a call was rejected by the SCP (as no notification of overload is
sent to the SSPs) and making a wrong guess at any point would lead to livelock within the SSP
Window algorithm. Therefore, an adapted version of Window is applied, in which no calls are
rejected at the SCP, and the SSPs alone are responsible for ensuring that no SCP overload takes
place. Therefore the Window algorithm of each SSP, located at the ssf process of each SSP,
monitors the response time of the SCP to requests from that SSP. When response delays become

excessive, calls are throttled.

A Window size counter W is defined and initially takes on a pre-defined value Wmin. W

corresponds to the maximum number of new call queries for which an initial response is

78

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

outstanding from the SCP (note that some services may consist of multiple SSP-SCP
query/response pairs). Each time a new query is sent to the SCP, a variable OUT (signifying the
number of calls for which a response is outstanding) is incremented and a timer is set (the value of
the timer duration was established from observation of the delays which occurred during
simulation when the SCP load was at the threshold). If OUT=W, all new queries are rejected at the
SSP until a response is received from the SCP. Each time a response is received from the SCP, a
variable C is incremented (indicating a positive response), OUT is decremented and the
corresponding timer is reset. If a timer expires, this signifies that the delay experienced by the
corresponding call is greater than the maximum acceptable level, thus implying that congestion
exists (either within the SS7 or at the SCP). When this occurs, the window size W is decremented
to force a greater level of throttling of IN calls and C is reset to zero. When C has increased to the
point that it exceeds a pre-defmed value Cmax, this is interpreted as alleviation of the overload
situation, and the window size W is incremented. In this way, the SSP responds to SCP overload

without explicit communication between the physical elements.

4.3 Presentation of Results

In this section, we present the results for each of the given strategies under an applied load
consisting purely of freephone traffic - the effects of multiple traffic types on the strategies is a
separate issue, which will be examined in Section 4.4. In the first part of this section, we prove the
need for congestion controls by comparing the behaviour of the system under overload when no
controls are in place with the behaviour when CCC and CG are used. Then, in Section 4.3.2, the
various detection methods of the reactive (communication-oriented) strategies are compared to
establish which is the most efficient at protecting the SCP. Note that, to ensure fairness of
comparison, CG was used as the throttling mechanism in all cases. In Section 4.3.3, the CG and PT
throttles are compared to find out which one is most accurate at rejecting the desired proportion of
arrival calls during overload. This investigation was carried out using CCC in both cases - namely,
the detection method which provided the best performance in Section 4.3.2. At this point, it will be
possible to state which reactive strategy is the best, in terms of protecting the SCP most
effectively. Finally, the active (communication-less) Window strategy is compared with the best
reactive strategy in Section 4.3.4 to find which of the existing strategies has the best overall

performance.

4.3.1 Proving the Needfor Congestion Controls

Here, we detail the findings of a simulation where the input (freephone) traffic was increased

linearly over the course of a simulation, in a manner sufficient to cause overload at the SCP after

79

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

about 470 seconds. When no congestion controls are in place, the SCP quickly becomes saturated
and a serious backlog of calls builds up at the SCP, with the result that the SCP queue length
grows exorbitantly (Figure 4.14) and the user delays quickly become untenable (Figure 4.15). This
proves the need for congestion control strategies to protect the SCP.

SCP Queue Length

0 Ho Controls (xI000)
0 CCC & GG (X1000)

0 0.25 0.5 0.75 1
time (sec) (xXI000)

Fig. 4.14: SCP Queue Length for CCC/CG vs No controls in SCP

Freephone Delays

o Ho Controls
0 CCC & GG

Fig. 4.15: Service Delays for CCC/CG vs No controls in SCP

4.3.2 Comparison ofDetection Methodsfor Reactive Communication-Oriented Control

Here we compare the four implemented detection methods to establish which one provides the best
consistent behaviour across all load situations. We therefore apply three different input freephone
traffic scenarios - namely constant mean, linearly increasing mean and bursty traffic. In all cases,
the same CG throttle, SCP and SSP service rates are used, to ensure that the comparison is strictly
between detection methods. Also for all cases, the SCP load threshold is defined as being 0.8

Erlangs and the monitoring interval as 10 seconds.

80

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4321 Stationary Behaviour

As a first step, we investigated the behaviour of the various detection methods in the stationary
case, i.e. when input traffic levels have a constant mean for the duration of a simulation and are at
a level sufficient to cause overload at the SCP - Figure 4.16 shows that the input traffic is

sufficient to offer the SCP a mean of 1.4 Erlangs of work.

Arrivals to System (SCP Erlangs)

o sspl Arrivals
O SSP2 Arrivals
O Total SCP Arrivals

Fig. 4.16: Aurrivals to system for stationary case

SCP Load under Constant Inptii Traffic Levels

Zone #£: CCC - mean load
< CCC - ».ean load
zone #6: LMC * dynamic load
O LMC - mean load
Zone #>: QLC - dynamic load
0 QLC - mean load
Zone RTC - mean load
0 RTC - mean load

time (sec) (xIOOO)

Fig. 4.17: SCP load for stationary case

81

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Figure 4.17 presents the resultant SCP load over the course of the simulation. A number of facts
are noteworthy about these results. Firstly, all detection methods (in conjunction with the same CG
controls) succeed in protecting the SCP, by keeping the load below 1.0 Erlang and secondly, all
detection methods fail to converge to a particular overload level, but instead experience
oscillations of differing size around a mean of 0.8. The oscillations may, in part, be explained by
the oscillations around the mean of the input traffic, but are also affected by the detection methods
used. Note that for QLC, which is not based on monitoring the system over an interval but instead
reacts immediately when overload is detected, the oscillations are small and the mean SCP load
converges quickly. Of the methods based on the use of monitoring periods, CCC and LMC have
smaller oscillations in the dynamic load and converge more quickly in the mean load than does
RTC —this is because both CCC and LMC overload levels have a linear relationship with the SCP
arrival rates whereas RTC, whose overload levels are based on delays, and therefore by extension
on queue lengths, has a non-linear relationship with the SCP arrival rates. However, all strategies

converge to a mean of 0.8, the pre-defined SCP load threshold.

Figure 4.18 shows the mean queue length at the SCP over the course of the simulation. As would
be expected, QLC responds immediately to any rise in queue length, and therefore no oscillations
occur in SCP mean queue length for this method. For the other methods, the delay before overload
is detected (i.e. the monitoring period) means that an excessive number of calls are accepted
originally and must be processed before the SCP load and queue length stabilise. Therefore, at the
start of the simulation, the queue length rises to over 100, before gradually dropping to acceptable
levels (this is more a measure of how quickly these methods respond to dramatic increases in
traffic than a measure of their steady state behaviour). Note that CCC, LMC and RTC have very
similar behaviour here, with CCC being only very slightly faster at reaching a stable queue length

than the other two strategies.

MeanSGPQueue Length

0 ccc
O LvC
O Qc
A RTC

Fig. 4.18: SCP queue length for stationary case

82

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

The conclusion of this is that QLC has the best performance in steady state, in that it experiences
smaller oscillations than the other methods, although to achieve this, its overhead in terms of SCP
processor utilisation is a factor of 2.1 greater than the other strategies. This is due to the factthat it
remains active at all times. The other methods, on the other hand, providesatisfactory results while

only being active at the end of each monitor interval.

43.2.2 Behaviour under Linear Increase in Arrival Rates

To investigate the behaviour of each of the detection methods under rapid increases in input traffic,
as well as to establish their behaviour at low and high overload levels, the mean arrival rate of
freephone traffic was increased linearly, as shown in Figure 4.19. Note that arrivals to the system
increase from zero to 4.6 SCP Erlangs over the course of a simulation and that a load of 1.0

Erlangs is provided after about 400 simulated seconds.

Arrivals to System (SCP Erlangs)

o SSPI Arrivals
< SSP2 Arrivals
0O Total 5CF Arrivals

time (sec) (x1000)

Fig. 4.19: Arrivals to system for linearly increasing freephone arrival rate

The resultant variations in mean SCP load for each of the methods are shown in Figure 4.20, while

the dynamic variations in SCP load are shown in Figure 4.21.

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Mean SCP Load

0 ccc
< LMC
O QLG
A RIC

Fig. 4.20: Mean SCP load for linearly increasing freephone anival rate

Dynamic SCP Load

Zone #1: CCC
Zone #2: LMC
Zone #3: QLC
Zone #4: RTC

Fig. 4.21: SCP Load for linearly increasing freephone arrival rate

The first comment to be made is that none of the strategies provide satisfactory performance over
all load levels - CCC, LMC and RTC load levels experience large oscillations around the
threshold, while QLC permits overload to take place at high applied load levels. The reason for the
oscillations experienced by all detection methods is related to the fact that these methods are based
on a table of fixed overload parameters. When a detection method is based on fixed parameters, it
tends to be prone to oscillations (this was even apparent in the stationary case of section 4.3.2.1) as
it does not respond to exactly the applied load level, but instead rounds to the overload level
corresponding to the input data (call count, service delays etc.). This means that each detection

method tends to swing from overprotecting to underprotecting the SCP on alternate monitoring

84

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

intervals. The size of the oscillations is defined by the parameter values, but even when these
values are very carefully defined and quite precise, oscillations will still occur. This means that it
always takes time for a detection method to converge to the correct overload level (or even to
reach minimal oscillations between load levels). When the traffic is consistently increasing, as in
this scenario, none of the detection methods have time to converge - they oscillate dramatically
and for each interval where the SCP is underprotected, the SCP queue length increases slightly, as

demonstrated in Figure 4.22.

SCP Queue Length

0 ccc
0 LMC
o QLC
A RTC

Fig. 4.22: Mean SCP queue length for linearly increasing freephone arrival rate

While it is accepted that all strategies are innately flawed due to their dependence on fixed
parameters, it is still possible to compare their behaviour to establish which provides the best
performance (and how). Regarding onset of congestion, examination of the dynamic load results in
Figure 4.21 shows that all methods detect overload too early. CCC and LMC show the best results,
by detecting overload when the actual submitted load is 0.78 Erlangs. For CCC, this is probably
due to minor variations in the arrival rate during that monitoring period. For LMC, note that its
response to overload does not occur as early as is described for LMC when applied to a switching
system (at 60% capacity, as described in Section 2.2.3.2) - this is because in a switching system,
processing of initial requests takes only 30% of the overall processing time required for a call,
whereas for freephone, initial processing at the SCP takes 50% of overall SCP processing
requirements and therefore, for freephone, the load estimate reached by LMC is more
representative of arriving requests and therefore more accurate. Note however, that for other call
types (e.g. televoting, which requires SCP processing four times per call), LMC would be less
accurate. QLC, due to its overly reactive nature, starts responding to overload when the submitted
load is only at 0.62 Erlangs - i.e. bursts of traffic at this level are sufficient to be construed as
overload by QLC. RTC responds when the input traffic is at about 0.7. This is because service
delays are very dependent on SCP queue lengths and therefore, occasional short increases in the

gueue length result in increased average service delays which then trigger overload controls early.

85

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

The behaviour of each of the detection methods under overload may be summarised as follows:

CCC is located at the input of the SCP and is based on counting the number of newly arriving
calls during an interval. It is therefore capable of responding very quickly to the onset of
overload. Also, the number of new arrivals is a very accurate representation of the applied
load, with the result that CCC experiences slightly smaller oscillations than LMC or RTC.
LMC s reaction to the onset of overload is delayed as its calculation of overload level is based
not only on the amount of time it has spent processing new requests but also on the load
required by old requests (returning from the SDP). It therefore takes longer for LMC to
accurately detect overload, as the foil effects of the overload are not felt until old requests
return from the SDP for further processing. This delay in overload detection means that it also
takes LMC slightly longer to recover from overload, as it must complete the successive
processing requirements of all old requests which received initial processing between the time
overload occurred and the time overload is detected (note that, as a result of this, the SCP
queue length tends to be longer for LMC than for CCC).

RTC is based on measuring the mean service execution time for requests of each IN service
type. This means that there is a significant delay between the onset of congestion and its
detection by RTC, as an overload is allowed to propagate through the system until the queues
have grown sufficiently long at the SCP, SDP and IP to significantly affect the mean response
times for service requests. As a result of this, RTC tends to have the largest mean SCP queue
length and by extension, the longest average service delays (shown in Figure 4.23). RTC’s
response delay (as with LMC) has further implications, in that all requests that were accepted

during this delay must complete processing and recovery time is slower than for CCC.

Freephone Delays

0 ccc
< LMC
O QLC
A RTC

Fig. 4.23: Mean freephone delays for linearly increasing freephone arrival rate

At low overload levels, QLC succeeds in protecting the SCP from overload. However, it does
not converge, but instead allows the load to increase slightly and non-linearly as the applied

traffic increases. Note also that QLC exhibits minimal oscillations - this is because it is not

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

based on the use of a monitoring interval. Instead, it responds immediately to increases in
gueue length and therefore has a tighter feedback loop than the other strategies. However, as
was mentioned above, this means that QLC has a tendency to be too reactive - it responds to
minor fluctuations in applied load by putting unnecessary controls in place. A further negative
implication may be associated with this tight control loop - while CCC, LMC and RTC reset
the CG throttle with new coefficients at most once per monitor period, QLC attempts to reset
the throttle every time the queue length changes which, when the SCP is nearing saturation
(i.e. arrival rate to the SCP is much greater than the service rate), is nearly every time a new
requests arrives. This effectively renders the throttle impotent and so the number of calls

arriving at the SCP rises dramatically. The eventual result is that the SCP becomes saturated.

The conclusion of this is that CCC is the best strategy for linearly increasing traffic - it does not
respond too early to the onset of congestion, and protects the SCP under all traffic loads with
smaller oscillations and shorter queue lengths than either LMC or RTC. LMC’s operation is nearly
as good, but has greater response delays (and therefore longer queue lengths) than CCC. RTC,
while capable of protecting the SCP, exhibits greater oscillations and longer queue lengths and
delays than either LMC or CCC. QLC shows extremely undesirable behaviour - it both responds

too early to overload and can only protect the SCP at low overload levels.

4323 Behaviour under Bursty Traffic Input

To investigate the behaviour of each of the methods under bursty traffic input, the arrival rates to
the system were defined as shown in Figure 4.24 - note that these are expressed in terms of SCP

capacity.

Arrival Rates to System (SCP Erlangs)

0 SSPI arrivals
1 O ssP2 arrivals
O Total arrivals

3

2.5

2

1.5

0 0.5 1 1.5 2
time (sec) (xIOOO)

Fig. 4.24: Arrivals to system for bursty arrival rates

The resultant dynamic SCP loads for each method are shown in Figure 4.25.

87

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Dynamic SCP Load

Zone #1: ccc
Zone #2: Lmc
Zone #3: QLC
Zone #4: RTC

0 0.5 1 1.5 2
time (sec) (x1000)

Fig. 4.25: SCP load for bursty arrival rates

Note that, as expected, QLC is the only method that is reactive enough to protect the SCP at all
times from burst input traffic - for this method, the SCP load rarely approaches 1.0 Erlang. For the
other strategies however, overload is not detected until the end of a monitoring interval and
therefore, the SCP load rises to greater than 1.0 Erlang for each large input traffic burst. CCC then
responds very quickly by bringing the SCP load down to a more acceptable level. LMC and RTC
on the other hand, react too slowly and the SCP load remains at unacceptably high levels for a few
monitoring intervals, before being reduced. Note also that QLC provides a greater mean SCP load
over the course of the bursty simulation, giving a mean of 0.75 Erlangs, as opposed to CCC’s

mean of 0.705 Erlangs.

These results are also reflected in the SCP queue length (Figure 4.26) and freephone delays (Figure
4.27). Note that only QLC and CCC provide freephone delays which are within acceptable bounds,
as defined by [E.723] and [MacDonald94].

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Mean SCP Queue Length

@ r

0 O O a n a=za=fi=z=a =a—3=a Q-

1«5 2
time (sec) (xIOOO)
Fig. 4.26: Mean SCP queue length for bursty traffic

Mean Freephone Delays (s)

o cce
0 LMC
O QLC
A oTc

2.5

1.5

0.5

time (sec) (xI000)
Fig. 4.27: Mean freephone delays for bursty traffic

4324 Summary of Detection Method Results

The salient features of each of the detection methods is outlined in Table 4.1 below, where a V

denotes acceptable behaviour and a * denotes best behaviour for each category.

Category CcCC LMC QLC RTC
Steady state behaviour vV vV V(%) Vv
Relative processor requirements 1 1 2.1 1
Correct response to onset of congestion \V] \V/
Correct response to low overload V(*) \V] \V] vV
Correct response to high overload V(*) vV \V
Correct response to bursty traffic \V] >/(%)

Table 2.1: Summary of detection method results

89

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

The obvious conclusion to be drawn from this summary is that none of the strategies provide
acceptable results over all possible input scenarios, but CCC generally provides the best results.
The only method which ever performs better is QLC, and even in those cases, CCC provides
acceptable results and outperforms the other two methods. As a result, we select CCC as being the
detection method that provides consistently the best behaviour and will therefore use it in

conjunction with both the CG and PT throttles to establish the best possible reactive strategy.

4.3.3 Comparison between Throttles

Here we compare the operation of the Call Gapping and Percent Thinning throttles to establish
which one provides consistently the best behaviour across all load situations, using the same input
freephone traffic scenarios as in Section 4.3.2 - namely constant mean, linearly increasing mean
and bursty traffic. In all cases, the same CCC detection method, SCP and SSP service rates are
used, to ensure that the comparison is strictly between throttles. Also for all cases, the SCP load

threshold is defined as being 0.8 Erlangs.

4331 Stationary Behaviour

As a first step, we investigated the behaviour of the throttles in the stationary case, i.e. when input
traffic levels have a constant mean for the duration of a simulation and are at a level sufficient to
cause overload at the SCP - the input traffic offered is as shown in Figure 4.16. The resultant
dynamic SCP load is as shown in Figure 4.28, while the mean SCP load is shown in Figure 4.29.

Dynamic SCP Load

Zone #1: CG
zone #2: pt

0 0.5 1 1.5 2
time (sec) (x1000)

Fig. 4.28: Dynamic SCP load for stationary case

90

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Mean SCP Load

0 GG
orr

1. U25

0.975

0.35

0.925
0.3

0.875 \

0.85

0.825 S e STTRTON

=T

51 A £

0.5 i.5 2
-Ame (sec) (xIOQO)

Fig. 4.29: Mean SCP load for stationary case

Note that the oscillations in the dynamic SCP load are much smaller for PT than for CG - this is
due to its dynamic nature - i.e. the throttle put in place reflects accurately the current overload
condition. For table-driven CG, however, the throttle reflects the table entry closest to the current
overload condition and not the overload condition itself, resulting in greater oscillations over the
course of the simulation. On the other hand, the mean SCP load shows that CG reacts more
quickly to an overload, bringing the SCP load down to the threshold much faster than PT. This is
because when a CG throttle is put in place, it places a strict upper limit on the number of calls
which may be accepted in the following monitoring interval and therefore makes the system more
robust to increases in call arrivals during that period. PT fails to do this, as it merely accepts a
fixed percentage of the arrivals in the following period. The faster reaction time of CG is also

reflected in the mean SCP queue length, as shown in Figure 4.30.

Mean SCP Queue Length

o CG
OrPT

Fig. 4.30: Mean SCP queue length for stationary case

The greatest difference between the behaviour of CG and PT, however, may be observed by
viewing the ratio of call acceptances for each of the SSPs. Figure 4.31 shows the call acceptances
for SSP1 and SSP2 for the stationary case. Note that for CG, SSP1 (which receives twice as many
IN calls as SSP2) has a much lower acceptance rate than SSP2. This is because the same gap
interval is put in place in both SSPs and, as SSP1 has a greater arrival rate, more calls are rejected

a

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

- in fact, the overall result is that the same number of calls are accepted by both SSPs. For PT, on
the other hand, the same thinning coefficients are put in place at both SSPs, resulting in the same
acceptance rates at each, and therefore the ratio of calls which arrive at the SCP from the SSPs is

maintained (i.e. SSP1 both receives and accepts twice as many IN calls as SSP2).

The conclusion of this is that, in the stationary case, CG is more robust and faster at responding to
overload than PT, while PT retains the ratio between arrival rates from each SSP to the SCP (i.e. it

exhibits subscriber fairness).

SSP Acceptances (as Percentage of Offered)

Zore #D: ce - SSPI
(0] - ssp2
zone #& PT - SSPI

0 0.5 1 1.5 2
time (sec) (x1000)

Fig. 4.31: SSP acceptances for stationary case
43.3.2 Behaviour under Linear Increase in Arrival Rates

To investigate the behaviour of each of the throttles under rapid increases in input traffic, as well
as to establish their behaviour at low and high overload levels, the mean arrival rate of freephone
traffic was increased linearly, as shown in Figure 4.19. The resultant dynamic SCP load is similar
to that shown in the stationary case - i.e. CG exhibits much greater oscillations over the course of
the simulation than PT. Again, this is due to the fact that the throttles put in place by PT more
accurately reflect the state of the SCP than those put in place by CG. However, unlike the
stationary case, this does have an impact on the mean SCP load, as shown in Figure 4.32. Note that
CG has a tendency to overprotect the SCP. This is a direct result of its table-driven nature - the
immediate reaction of CG to overload is to overprotect the SCP and while given enough time (as
in the stationary case), this will eventually converge to the SCP threshold, if variations in arrival

rates occur over a number of monitoring intervals, CG will fail to converge and the SCP will

92

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

remain overprotected. This is undesirable, as calls are being rejected unnecessarily. PT, on the
other hand, tends to underprotect initially (as described in the stationary case), but compensates

fast due to its dynamic nature and therefore maintains the SCP load either at or slightly above the

threshold.

Mean SCP Load

0 CG
OPT

time (sec) (x1000)

Fig. 4.32: Mean SCP load for linearly increasing arrival rates

To conclude, both CG and PT protect the SCP at all times from overload, although PT’s behaviour

is more consistent, due to its dynamic nature. Also, again, only PT exhibits subscriber fairness, as

shown in Figure 4.33.

SSP Acceptances (as Percentage of Offered)

Zone #J>: CG - sSSPl
0 - SSP2
zone #&: PT - sspl

0 0.5 1 1.5 2
time (sec) (xI1000)

Fig. 4.33: SSP acceptances for linearly increasing arrival rates

a3

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4333 Behaviour under Bursty Traffic Input

To investigate the behaviour of each of the methods under bursty traffic input, the arrival rates to
the system were defined as shown in Figure 4.24. The resultant dynamic SCP load is shown in
Figure 4.34.

Dynamic SCP Load

2one #1: CG

0 0.5 1 1.5 2
time (sec) (x1000)

Fig. 4.34: Dynamic SCP load for bursty arrival rates

This graph shows that an instantaneous increase in arrival traffic causes SCP load to jump to over
1 Erlang and the SCP queue length to increase dramatically - this is as a result of the monitoring
delay associated with CCC. When CG is invoked, it responds rapidly by putting excessive throttles
in place (excessive because it is based on fixed parameters), thus generally giving the SCP time to
process the calls in the queue and alleviate the overload condition during the next interval. PT, on
the other hand, puts exactly the correct proportional throttles in place on detection of overload and
therefore does not give the SCP time to process the call requests which had built up in the queue
during the previous interval. It therefore fails to alleviate overload quickly, the SCP load remains
at approximately 1 Erlang for the entire duration of the burst and the mean SCP queue lengths
remain substantially higher for PT than for CG for the entire duration of the simulation - see

Figure 4. 35. So, in this case, PT actually suffers due to its accuracy.

94

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

SCPQueue Length

0 CG
< PT

time (sec) {xI1000)

Fig. 4.35: Mean SCP queue length for bursty arrival rates

When a bursty period ends, both strategies overprotect the SCP until the end of the next
monitoring interval, at which point both strategies recover quickly, with PT actually converging

faster to the mean load of 0.78.

The resultant service delays for this scenario are shown in Figure 4.36. Note that the delays for CG
are near acceptable limits, as defined by [Yan94], while the delays experienced by calls under the

PT throttle are clearly unacceptable.

Mean Freephone Delays

0 CG
O PT

time (sec) (xI1000)

Fig. 4.36: Mean freephone delays for bursty arrival rates

The conclusion of this is that CG provides a better instantaneous response to dramatic increases in
input traffic, as its tendency is to overprotect the SCP while PT’s tendency towards accuracy
means that the SCP is vulnerable to rapid increases in traffic when PT is used. PT, however, is
faster to converge to an optimal level than CG. This is not necessarily useful after a rapid increase
in traffic, as PT’s slowness in responding generally causes a large build-up of the SCP queue,
which then takes further time to serve. However, PT’s speed of convergence does maximise SCP
throughput after a rapid decrease in traffic.

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4334 Summary of Throttle Results

The salient features of each of the throttles is outlined in Table 4.2 below, where a V denotes best

behaviour for each category.

Category Call Gapping Percent Thinning
Relative processor requirements 4.4 1
Rapid response to onset of congestion V
Rapid response to end of congestion V
Accuracy (speed of convergence) \
Subscriber fairness \/

Table2.2: Summary ofthrottle results

To summarise, the principle advantage of the CG throttle is that it places a strict upper limit on
traffic acceptances rates, which in the short term means that it responds better to rapid onset of
congestion. However, the dynamic PT throttle converges faster to the threshold and therefore
provides better results in the long term. It has the added advantage of being subscriber fair, in that
it throttles all sources proportionally to their size. It may therefore be concluded that the ideal

throttle would combine CG’s speed ofresponse with PT’s accuracy and fairness.

4.3.4 Active versus Reactive Congestion Controls

In this section, the behaviour of the active communication-less Window congestion control
algorithm is compared with that of the reactive communication-oriented CCC/CG and CCC/PT
strategies to establish which type of strategy is more efficient across all load levels. The Window
timer duration was evaluated by observing the mean freephone response delay when the SCP load
is 0.8. As usual, the input freephone traffic scenarios described in Section 4.3.2 are used. In all
cases, the same SCP and SSP service rates are used, to ensure a fair comparison between

strategies. Also for all cases, the SCP load threshold is defined as being 0.8 Erlangs.

434.1 Stationary Behaviour

The input traffic offered in the stationary case is as shown in Figure 4.16. The resultant dynamic
SCP load is as shown in Figure 4.37, while the mean SCP load is shown in Figure 4.38. Note that
Window responds faster to the onset of overload than CCC/CG. This is due to the fact that it is
always active and therefore responds immediately to the detection of overload, rather than having

to wait, like CCC, until the end of the monitoring period. Window also exhibits fewer oscillations

96

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

in the dynamic SCP load than CCC/PT. This behaviour is similar to that of QLC (shown in Section
4.3.2), and is again based on the fact that it is always active. However, due to the fact that Window
is based on a single fixed parameter (i.e. the query/response delay threshold used to set the
Window timers), it does not provide premium SCP performance -it does not keep SCP load at the
defined threshold. Here, for a low overload, the Window strategy overprotects the SCP, keeping
the mean load at approximately 0.775. Also, Window does not converge as quickly as the dynamic

CCCI/PT, again as it is based on the use of a fixed delay parameter.

Dynamic SCP Load

Zone #1: CCC/CG
Zone #2: CCC/PT
Zone #3: WINDOW

0.5 1.5 2
time (sec) (x1000)

Fig. 4.37: Dynamic SCP load for stationary case

Mean SCP Load

o CCC/CG
< CCC/PT
0O WINDOW

time (sec) (xI1000)

Fig. 4.38: Mean SCP load for stationary case

97

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4342 Behaviour under Linear Increase in Arrival Rates

To investigate the behaviour of each of the strategies under rapid increases in input traffic, as well
as to establish their behaviour at low and high overload levels, the mean arrival rate of freephone
traffic was increased linearly, as shown in Figure 4.19. The resultant mean SCP load is shown in
Figure 4.39. Here, the disadvantages of basing a congestion control strategy on a single fixed
parameter become apparent. At low overload levels (from 0.8 to 2.0 SCP Erlangs), the SCP is
overprotected by Window, with load levels staying consistently below the SCP threshold. At high
overload levels (above 2.0 Erlangs), the SCP is underprotected, with SCP load climbing as high as

0.93 Erlangs when applied load is over 4 Erlangs.

Mean SCP Load

o CCC/CG
O ccc/PT
O VWNDDWV

time (sec) (x1000)

Fig. 4.39: Mean SCP load for linearly increasing arrival rates

4343 Behaviour under Bursty Traffic Input

To investigate the behaviour of each of the methods under bursty traffic input, the arrival rates to
the system were defined as shown in Figure 4.24. As expected, the results showed that Window,
due to its active nature, is considerably faster to respond to the onset of congestion than either of
the other two strategies (see Figure 4.40). Also, by strictly limiting access to the SCP, Window
prevents the SCP from approaching saturation, unlike the CCC/CG and CCC/PT, both of which
allow the SCP to become saturated for at least one monitoring interval. As such, Window provides

by far the best reaction to bursty traffic.

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Dynamic SCP Load

Zone #1: CCC/CG
Zone #2: CCC/PT
Zone #3: WINDOW

tme (sec) (x1000)

Fig. 4.40: Dynamic SCP load for bursty arrival rates
4344 Summary of Results

The salient features of each of the strategies are outlined in Table 4.3 below, where a V denotes

acceptable behaviour and (*) denotes best behaviour for each category.

Category Window Call Gapping Percent Thinning

Relative processor requirements 144 4.4 1

. . V(¥
Rapid response to onset of congestion () \

. . "
Rapid response to end of congestion V () V V
Speed of convergence \ \
Consistency over all load levels \ V(*)

Table 2.3: Summary of Active vs Reactive Results

99

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

To summarise, while Window has the fastest reaction time, this is at the expense of considerable
overheads. Window also fails to be effective over all ranges of overload, considerably
overprotecting the SCP during low overload and underprotecting it during high overload. The
conclusion is that CCC with a dynamic combination of CG and PT would probably provide
consistently the best behaviour. This will be established in Chapter s, where just such a strategy

will be compared with Window.

4.4 Summary & Conclusion

There are a number of conclusions which may be drawn about the results as discovered in this
chapter, the first of which relates to the main body of research completed - the investigation of
existing congestion control strategies for the protection of the SCP of an Intelligent Network. The
results acquired in Section 4.3.2 show that, while none of the existing detection methods provide
satisfactory results over all load scenarios, CCC generally seems to perform better than the other

strategies.

Ofthe throttles investigated, PT generally seems to outperform CG, with the exception of the most
important characteristic - speed of response to overload. CG responds very quickly to overload,
but its table-driven nature means that its response, while fast, is not very accurate and that it tends
towards large oscillations and is very slow to converge to the defined threshold. PT, as a dynamic
throttle, converges quickly and has the added advantage of being subscriber fair, in that it throttles

all SSPs proportionally to their size.

Comparisons between CCC/PT, CCC/CG and Window provided inconclusive results. Window had
the fastest response times to the onset of overload, but its behaviour is not consistent over all
possible load levels. It also has considerably higher processor requirements than either of the two

reactive communication-oriented strategies.

The principle drawback of virtually all the strategies investigated in this chapter is that they are
table-driven, i.e. based on static parameters (PT being the only exception). This static nature has a
number of implications. Firstly, configuring the algorithms by defining the best possible fixed
parameters is extremely difficult. For strategies with a low number of parameters (e.g. Window), it
is impossible to define parameters that will deal with all possible load levels correctly. Strategies
with a large number of parameters (e.g. CCC, LMC, CG) tend to be able to handle larger
variations in load, but also have a tendency to be extremely inaccurate -i.e. defining a number of
parameters which will always cause the mean SCP load to converge to (or rather, to oscillate
minimally around) the defined threshold for any offered load is not possible (in the experience of

the author). A further difficulty with defining fixed parameter values is that as they are dependent

100

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

on the size of the resource at which they are located. As such, the parameters would have to be
calculated independently for each SCP or SSP at which the strategies are targeted.

A second negative implication associated with static, table-driven detection strategies raises even
greater concerns and cannot be resolved through the definition of the fixed parameters. This is the
fact that any static detection algorithm implicitly makes assumptions about either the load
requirements of the traffic types being managed or about the traffic mix. This issue was avoided in
Section 4.3 by ensuring that all calls in the network were freephone calls. However, in reality,
different services have very different characteristics. As an example, televoting call requests visit
the SCP four times (rather than twice, like freephone) and, as such, require twice as much SCP
processing as freephone calls. It would also take longer for the response to the initial televoting
query to be returned to its source SSP than it does for the initial freephone response. Therefore, if
the same parameters that were defined for freephone calls were used in a network that handles both
freephone and televoting calls, none of the detection algorithms would respond correctly to the
onset of congestion caused by televoting calls. This is shown in Figure 4.41, where overload

occurs at t=200s, and maybe described as follows:

Dynamic SCP Load

zone #1: CCC/CG
Zone #2: LMC/CG
Zone #3: QLC/CG
Zone #4: WINDOW

Wi ©

OEPT P OEP0° OT 0OEO2 =292 O
' wr—dly o

0

1.5 2
time (sec) (x1000)

Fig. 4.41: Dynamic SCP load for televoting overload

101

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

» CCC would not detect overload until too late, as the number of arriving televoting calls that
would cause overload is substantially less than for freephone. At the point where overload is
finally detected, the SCP has already reached saturation.

* LMC responds very slowly to the detection of overload, as televoting has a load profile for
which initial processing of requests at the SCP constitutes only 25% of their total load
requirements. Therefore, by the time overload is detected, a large number of calls have already
been accepted which must then complete processing at the SCP. Again, as with CCC, this
leads to SCP saturation.

* QLC overreacts at low overload levels (even more so than in Section 4.3.2), as each televoting
request must queue four times at the SCP. Then, as the level of overload grows, QLC becomes
incapable of dealing with the rapidly rising queue lengths and the SCP becomes saturated.

* Window responds too quickly, detecting overload where none exists. This is due to the fact
that the query/response delays for televoting are substantially higher than for freephone, so
Window times out on televoting calls, even when no overload exists. However, as Window has
a tendency to overprotect the SCP, its behaviour at high overload levels, while not ideal, is

better than for the communication-oriented detection algorithms.

The conclusion of this is that no static detection algorithm will be able to protect the SCP
efficiently when the input to the system is a varied mix of different call types with different load
requirements and characteristics. This implies the need for a dynamic strategy, which will be able
to calculate, based on the arriving traffic mix, the true state of overload of the SCP and react
accordingly. A dynamic strategy would also have the added advantages (as shown by PT) of being
easier to configure, as well being more accurate and converging to the threshold much faster than a

table-driven static strategy.

As a final comment, existing models (including the one presented in this chapter) make the
assumption that SSP resources are infinite, and therefore avoid all implications of possible SSP
overload. In a real IN, this assumption is unreasonable. Therefore, to provide a real and
comprehensive solution to IN congestion control, the implications of SSP overload and SSP
protection must also be investigated and, if possible, a congestion control strategy should be

developed which protects all IN resources from congestion.

102

Chapter 5

Global IN Congestion Control

Chapter 5 Global IN Congestion Control

5.1 Introduction

In the area of IN congestion control, it is recognised that, as the SCP is responsible for the
execution of all services, it is crucial that its throughput is maximised at all times. Therefore,
research to date has tended to focus on protecting the SCP from the effects of overload while
maximising its efficiency at all times (see [Pham92], [Hebuteme90] and Chapter 4). The issue of
SSP congestion was avoided in all work completed to date by raising the service rate of the SSP
central processor (the CCF) to the point where congestion does not occur in the SSP. In reality,
however, processing power at all SSPs will (obviously) be finite and therefore overload at SSPs
also has the possibility of affecting IN performance. Also, a number of different scenarios exist for

the implementation of INs. These include:

* An overlay network, where switches in the PSTN/ISDN route service requests to Service
Switching Points (SSPs),
» The Service Node, where multiple IN physical elements are represented in one powerful node,

* An integrated network, where SSP functionality exists in the network switches.

These three implementation scenarios are depicted in Figure 5.1 below. The types of traffic routed
through the IN SSPs therefore depend on the network implementation. In particular, in the
integrated network implementation, SSPs will be required to process non-IN calls as well as IN
calls. The long term view of IN evolution predicts that the integrated scenario will become more
popular (e.g. with number portability looming, it may not be too long before the majority of calls
are service related, and therefore it does not make sense for all of these calls to be routed to an
overlay network or a service node. The more logical solution is to install service switching logic in
all trunk switches). In this scenario, the issue of IN performance management widens in scope to
include SPC performance management in multiple SSPs. In other words, it will no longer be
sufficient to maximise SCP performance alone - it will be necessary to maximise the overall

performance of the integrated network.

104

Chapter 5 Global IN Congestion Control

At this point, based on the results of Chapter 4, let us also provide an enhanced definition of the

requirements on an IN overload control strategy. Obviously, the basic requirements are as

described in Chapter 2 - namely,

o Effectiveness: an overload control strategy must be able to protect IN resources under any load
conditions and,

» Efficiency: the strategy must use processing resources in an efficient manner (in terms of
keeping processing requirements as low as possible). Obviously, if it is desirable to

incorporate e.g. priorities in a congestion control scheme, the added complexity of the

105

Chapter 5 Global IN Congestion Control

algorithm will cause it to have a larger footprint. This is only justifiable if the benefits of the

complex scheme outweigh the processor usage costs.

However, there are also other highly desirable characteristics of an overload control strategy,

which include:

» Scalability: the algorithm should not be dependent on the size of its resource or the mix or
arrival rates of applied traffic, i.e. it should not be dependent on any explicit fixed parameters.
This would ensure that the algorithm is both simple to install at any resource and that it reacts
correctly and accurately to the applied traffic.

* Flexibility: a well-designed algorithm should be easily customised to include factors such as
different call priorities and load requirements or different requirements on fairness.

e Fairness: There are two main interpretations of fairness in the IN context, as described in
Chapter 2, section 2.3.1. “Service fairness” means that if overload is caused by an excess of
calls of one particular service type, only calls of that type should be rejected (i.e. Focussed
Destination Overload Control - FDOC). “Subscriber fairness” means that the probability of
rejection ought to be the same for all the subscribers of a particular service, irrespective of
which SSP they are connected. Ideally, an IN congestion control algorithm should exhibit both

types of fairness.

Many ofthe IN overload control algorithms which have been proposed in the past and discussed in
Chapter 4 go some way towards meeting the basic requirements on an IN overload control
strategy. However, these basic algorithms tend not to have the desirable characteristics described
above. A number of strategies have also been proposed which do address various of these
characteristics in the area of SCP protection (e.g. [Rumsewicz95], [Lee97], [Smith95] and
[Lodge98b]) and so reach greater SCP performance efficiency, where the criteria generally used to
evaluate the performance efficiency of an overload control algorithm includes (but is not restricted
to) SCP load, SCP queue length, the number of IN calls rejected, cost efficiency of the algorithm

and mean service delays.

The aim of this work is to find an overload control strategy which encapsulates both the basic
requirements and all desired characteristics, in the global performance management of an IN which
consists of one SCP and multiple SSPs and which handles a number of different traffic types (IN
and non-IN) with different call characteristics fairly. As an example of service unfairness, all
currently defined strategies are specifically designed to protect just the SCP of the IN and
therefore, in ensuring maximum possible SCP efficiency, the performance of non-IN processing in
the SSPs may be degraded. This should not be allowed to happen as, although some service
related calls may provide more revenue to network operators, the ratio of revenue to resource

requirements (let’s call it the Rev/Res ratio) for non-IN calls may be greater and therefore, to

106

Chapter 5 Global IN Congestion Control

maximise the performance of the overall network, non-IN calls should not have to receive a

degraded quality of service during times when service related traffic is too high.

Examining the area of global IN performance management, we see that, in the past, the problem of
switch congestion control was much simpler to address than it will be in an integrated IN
environment. Congestion controls for the protection of SSPs have either been unnecessary (e.g. in
a service node scenario) or based on standard SPC control mechanisms. However, when SSPs
must deal with multiple call types, including non-IN and IN, all of which have different priorities,
revenues and call load distribution curves (as opposed to ISDN calls which have the same load
distribution curve, as shown in [Seraj85], [Hubig94] and Chapter 2), it will be neither efficient nor
fair to throttle all calls equally upon occurrence of overload. Also, if the congestion control
strategies at the SCP and SSP work independently of each other (i.e. each element is responsible
for its own protection only), conflicts between SCP and SSP strategies could result in lower overall

network efficiency.

To estimate the impact of these types of conflicts on overall network performance and to prove
that a global IN congestion control strategy is essential, the model of the IN described in Chapter 4
was extended to include multiple finite-capacity SSPs, each of which processes both IN and non-
IN call types. This new model (in both simulation and analytic form) is described in Section 5.2
below. Two different control scenarios were then put in place on the model. For the first scenario,
independent control strategies were put in place at the SCP and SSPs. For the second scenario, a
simple strategy was devised to throttle incoming traffic at each SSP based on the load levels at
both the SCP and SSP. This experiment and its conclusions are described in Section 5.3. Section
5.4 presents a new global IN congestion control strategy based on revenue optimisation, while

Section 5.5 gives results for this strategy.

5.2 The New, Comprehensive IN Models

The models used in Chapter 4 are sufficient only for estimating the efficiency of SCP congestion
controls and for establishing the necessity for throttling IN calls at the SSP. To facilitate the
investigation of congestion control strategies for dealing with all types of calls in situations of both
SSP and/or SCP congestion, a new, more detailed design model was developed, and implemented
both as a simulation model (in OPNET) and as an analytic model (to facilitate mathematical

analysis of the behaviour of the system).

107

Chapter 5 Global IN Congestion Control

5.2.1 TheIN Model Design

The new model design of the SSP was developed in order to provide an accurate representation of
both switching functionality and service handling procedures. This model is shown in Figure 5.1
and closely represents the operation of the central controller of the Ericsson switch and is similar
to that described in [Seraj85], The resource to be maximised is the capacity of this central
processor as all intelligence resides here. The similarities between the operation of this model and
that of the Ericsson switch is deliberate, with the aim that all results gained from this model may

be directly applicable as a real congestion solution in a real system.

Q1 Q2 Q3

Operation of this model may be explained as follows: all new call requests arrive into Q1 in the
central processor. If the central controller has capacity available and the user has the authority to
make a call, call acceptance is returned to the user in the form of a dial tone. Once the user has
been supplied with a dial tone, any digits entered are collected and returned to Q2 in the central
controller. At this buffer, service related calls may be differentiated from ordinary calls. If the call
is anon-IN call, the request is forwarded to Q3 for routing, while IN calls are sent to the SCP. Any
database access requirements are fulfilled through the exchange of messages between the SCP and
SDP. User interaction requests are sent to the IPQ in the SSP, the service time of which represents
the time required to open a channel between the user and the IP - note that this queue is included in
the SSP side of the model, as establishing the channel will require some SSP central processor
capacity. After the channel has been opened, the request is passed to the IP, where it is delayed
(representing interaction with the user) before returning to the SCP. When service execution has
completed at the SCP, calls are forwarded to Q3 for further routing (e.g. in the case of freephone

calls) or termination (e.g. in the case of televoting calls).

Current rules for overload control state that, if a call is to be rejected, it should be as soon as

possible in call processing, for two reasons:

108

Chapter 5 Global IN Congestion Control

1 To minimise the wastage of central processor capacity,

2. To minimise delays to users.

According to these rules, it is possible to reject calls at both Q1 and Q2, but not at Q3. Note that,
as it is not possible to distinguish between call types in QI, throttling of calls at this queue can
only be applied to all call types equally. Differentiation between call types occurs during
processing at Q2 - it is therefore possible to selectively restrict different call types at this queue.
However, all calls that are accepted at Q3 must be given the chance to complete successfully - i.e.
they cannot be rejected for any reason. Therefore, all calls placed in buffer Q3 are guaranteed the
processing time they require to complete successfully. Therefore, the only buffers at which calls
may be rejected are QI (unconditional rejection to protect the SSP) and Q2 (conditional rejection
based on call type). In terms of devising a flexible overload control algorithm, it is far more
desirable to place an overload control strategy at Q2, as this gives scope for selective throttling of

calls based on various criteria (e.g. fairness, load requirements, priorities etc.).

All central controller buffers (QI, Q2, Q3 and the IPQ) are served by a single processor. Current
priorities in the Ericsson switch define that Q3 is provided with the highest servicingpriority to
ensure that calls which have not been rejected complete successfully. Q2 is has the nexthighest
priority, as all calls there have already received some processing time in Q1 and should therefore
be given a good opportunity to complete. QI has the lowest priority and only receives processing

if sufficient capacity is available.

In the design, processor capacity is allocated to each queue on a priority basis similar to the AXE
priorities defined above, but amended to include the IPQ. Therefore, highest priority is assigned to
the IPQ, lowest priority assigned to QI and equivalent priorities assigned to Q2 and Q3. Q3 has a
single service rate, while QI has two service rates - one for processing accepted traffic and the
other for rejecting calls. Q2, on the other hand, has three different service rates —the first for
accepting non-IN calls, the second for accepting IN calls and the third for the rejection of calls.
The service times of these queues are set to reflect the load distribution of a non-IN call - i.e. mean
QI service time (representing call authorisation) is shorter than that of Q3 or the mean non-IN
acceptance time at Q2, while the mean non-IN acceptance time at Q2 (representing non-IN number
analysis) and Q3 (routing) are equivalent. The IN acceptance time at Q2 is set as a factor of 2.5
greater than the acceptance time for non-IN calls - this is an approximation of the excess
processing requirements of IN calls over non-IN calls in a real SSP. Further, rejection rates at both
Ql and Q2 are defined as being much greater than their acceptance rates. As a result of these
defined service rates, any overload will cause congestion at Q2 prior to affecting any other SSP

gueue. Therefore, any SSP congestion detection algorithm should be located at Q2.

109

Chapter 5 Global IN Congestion Control

Five types of call are defined for the model - these are international, international freephone,
televoting, local and freephone. Table 5.1 shows the identifier assigned to each call type, along

with the set route that is followed by the call type through the system.

Call Type Identifier Route through INfrom SSP n

International (non-IN) 1 Ql1,,-Q2,,-Q3,,

N

International Freephone (IN) Q1,,-Q2,,-SCP-SDP-SCP-Q3,,

Televoting (IN) 3 Q1,,-Q2,,-SCP-1PQ,,-SCP-SDP-SCP-IPQ,,-SCP-Q3,,
Local (non-IN) 4 Ql,,-Q2,-Q3,,
Freephone (IN) 5 Q1,-Q2,-SCP-SDP-SCP-Q3,,

Table 5.1: Calls types in enhanced IN model

Retrials of 30%o are also included in the model, i.e. 30% of all calls rejected will be retried in the
following interval (a simplification of the assumptions outlined in [Manfield91]). All call type

arrival rates are Poisson.

5.2.2 The IN Simulation Model

The existing simulation model in OPNET was enhanced to reflect the new SSP structure, and was
further extended to contain five such SSPs, with call types as shown in Table 5.1. The new
network layer model in OPNET is depicted in Figure 5.3. As shown, the model consisted of five

SSPs, one SCP and an SDP.

As in the IN simulation model used in Chapter 4, the SDP has a deterministic service time
distribution, while the SCP has an exponential service time distribution. The only change made to
the scp node model was the inclusion of an SLP for international freephone. All other changes to
the OPNET model used in Chapter 4 took place in the model of the IN_ssp node. These changes

will be described next.

110

Chapter 5 Global IN Congestion Control

5221 The IN_ssp Node Model

The operation of the SSP was amended to reflect the new SSP design, as shown in Figure 5.4. The

primary changes that took place in the node model described in Chapter 4 include:

» The ccfprocess was replaced by three processes, representing QI, Q2 and Q3. All the service
times of each of these new queues (i.e. acceptance and rejection rates, as described in Section
5.2.1) were set to be exponentially distributed.

» The throttles that were implemented in the old ccf are now in QI and Q2. The Q2 throttles
were also extended so that they can be applied either to all services (including non-IN
services) or to individual service types. This is to facilitate selective throttling.

» The termination of non-IN calls is no longer included in the SSP. This is because all conflict
for processor resources in the SSP takes place during the Call Authorisation and Number
Translation states of the Originating BCSM. If a call requests is accepted in both of these
states, then it must complete successfully and therefore it is unnecessary to represent the
processing allocated to the states further on in the call state model.

» The SRF is modelled differently. In Chapter 4, this was modelled as an Erlang-C queue. For
this work, however, the behaviour of the IP that is of primary interest is the processing
requirements it places on the SSP to establish a channel between the user and itself. Therefore,
we replace the SRF with a queue (the ipg) to model the processing of these requests for a
channel at the SSP. This new ipq is defined as having an exponentially distributed service
time, representing the time it takes for the SSP to establish the requested channel. This is then

followed by a simple uniformly distributed delay around a mean of 5 seconds.

Chapter 5 Global IN Congestion Control

freeph monproc

Fig. 5.4: The New IN_ssp Node Model

5.2.3 The IN Analytic Model

The queuing model has one SCP, one SDP and multiple SSI's, as shown in Figure 5.2. The
behaviour of the system is almost identical to that described for the simulation model in section
5.2.2. The primary differences between the analytic model and the simulation model of the IN are

as follows:

e The uniformly distributed delay representing IP interaction with the user is omitted from the
analytic model as, in steady state, the time spent interacting with the user has no effect on
system performance.

» For ease of analysis, all queues in the systems - including the SDP - have exponentially
distributed service time distributions.

» Percent thinning is the only throttling mechanism available at Q1 and Q2, as CG cannot be
modelled accurately analytically. Therefore, in investigations where CG is used in the
simulation model, some small discrepancies between the simulation and analytical results are

to be expected.

112

Chapter 5 Global IN Congestion Control

The model contains the five call types defined in Table 5.1. Any throttle at Q1 can only reject all
calls equally, and we therefore define P° as the Q1 global percent thinning throttling argument for
SSP n. We further define one Q2 percent thinning throttling argument for each call type - let us
define 'an,i as the percentage of offered calls of type i to be accepted at Q2 of SSP n (during the
next interval). Therefore, we have five probabilities of acceptance at Q2, namely pani,..,pas. For
completeness, retrials are included, where we choose that 30% of call attempts rejected in one
interval are retried in the next interval, i.e. i(t)- (0.3)1- P°({t-T)pani(t- T)Ini(t- T) is
the retrial arrival rate of call type i at SSP n, where Ani is the original arrival rate of call type i at

SSP n and T is the interval length. Therefore, the total (Poisson) arrival rate at Ql,, is

KO=ZKi(0=Z (0+(0) m

To simplify network analysis, Q3,,, the SCP, SDP and IPQ,, each have a single service time with a
mean of, respectively, /¢g3n,¢iSP, Msdpan®Mpne The throughputs of these queues are

Pqiz, Pscp’Psdp ax*Pipqg, * Oh the other hand, Ql,, has two service times defined, with call

rejection time much lower than processing time for accepted calls. Ql,, service rates are therefore

M\ ;ac and Mui,,ig © Its resultant throughput is . Q2,, has three service times defined, call

113

Chapter 5 Global IN Congestion Control

rejection time, non-IN acceptance time and IN acceptance time. Q2, service rates are
thereforeM, ,rej>Myi,,accnm and//e2,,.accw mThe throughput of Q2,, is p QIn. Note that at this time,
for the purposes of generalisation, we make no assumptions as to the service time distributions

used. Therefore, the only assumption made at this point is that all arrival processes to the system
are Poisson.

5231 Estimating Arrival Rates and Loads for the IN Analytic Model

Using our knowledge of the routes taken by each call type through the queuing system, we may

specify the mean arrival rates at each queue in the model:

For Ql,, : AK () =AM = A0

1=1

ForQ2,, : Aeln (t) = (=< £ ViR

1=1

FortheSCP: («*(0 = £ escrJ?

7=2,3,5 n=1
N
FortheSDP: ASDP(t) = eSDP, j A p?PnjKjtf) whereeSDPJ=Ifory =235
7=2,3,5 n=1
ForlPQ,, - $ipg,, (o = eiPQ3PnP n~n~) whereelPQ3 =2
For Q3,, : O=P"£ p "™, ~®

1=1

where eSCH- is the number of times a call request of typej enters the SCP during its execution,
e is the number of times a request of typej will receive processing at the SDP and elPQJ is the

number of times a call of typej will pass through the IPQ. In a similar manner, we may define the
loads at each queue in the model:

EorQll,, n (t\— | A

ForQ2,,: = (™ i_ +tow)
N f*Q2n ,acc,i MQ2n rej

1=1

For the SCP: p SCP(t),= fiscp

For IPQ, : PwgR)=~ |

For the SDP: psnP(.)F i

ForQ3,,: N (,)=Iig£E>

114

Chapter 5 Global IN Congestion Control

5232 Estimating Service Delays for the IN Analytic Model

The decomposition method (described in Chapter 3) is used to estimate service delays in the
analytic model, as it provides a good approximation of multiqueue systems in the case when the
user wants to estimate or control mean queue lengths and/or mean delays. The following equations
were generated using the decomposition method in the form described in Chapter 3, where (to

simplify the notation) all parameters on the right hand side are as defined for time interval \t-T,t\,

with the exception of P° and pai, which are as defined at time (t-T):

For Ql,,: ~agin(0=1 (Poisson arrival rates)
2+A27(7Q Inah) |, (I-"XKfa,. M)

For Q2,: Kog"(t)= ()
An(n
c@2 (0- kaq2 (00-pgi,) tPQ2nc~2Pql,) +KAn Y /n 0 ("2, 2v+)

(ca (o-D (i ivhZ p'm
A=l 4 | *=14

+(csct()-ixE 2> 1a,)Hk 2> ;al)
y=2.35

7=2,3.5

CQ3n(o - PQ3n+ KaQ3n((1 - Pg3,,) + PQ3n(KsQ3,, ~0

N

n=1

CscAt) - Pscp+ KascAOQ-~ PS(E)+P5cA"sscp~ 0

N

2
Qdp (0 =PSDP+ K aSDf(t)Q - PsDp) + PsdA K sSdp - 1)

For IPQ, : KalPQ(t)=I+(CCP(t) - 1) (")

where Kax is the square of the variation coefficient (svc) of interarrivals at queue X, Ksx is the
svc of the service time at queue X and Cx is the svc of the intervals between two successive

departures from queue X. Knowing the arrivals rates and service rates for interval [t-T,t\ and the

115

Chapter 5 Global IN Congestion Control

acceptance probabilities as defined at time (7-7), the decomposition equations may be solved to

find the value of Kax for each queue in the system. Then, again as described in Chapter 3,

Kingman’s formula will allow the mean queue length of each queue to be calculated, according to:

2(1-Px)
The average response time for each queue may then be evaluated using Little’s Law

(fx =Nx /Xx), and the average response time for each service type generated at each SSP can be

estimated by summing the delays at each queue along its route.

5.3 Estimation of the Effects of non-IN Traffic and Finite SSP Resources

on IN Performance

This work was carried out using the models defined in Section 5.2. Two assumptions were made:
that all service times are exponentially distributed, and that there is only one SSP (no more are
needed as this investigation seeks to prove only that a problem exists). This results in the
specialisation of the general decomposition equations of Section 5.2.3.2, as shown below. Note
that again, all parameters on the right hand side are as defined for time interval [t-T,t\, with the

exception of P° and pai, which are as defined at time (t-T).

For Ql: Kog{()-1 (Poisson arrival rates)
cfcw-i-V ¢ *(£E+£*)
For Q2: AG”(i)=CRI(0
Cg2{t)=Kagim -P Q)+PQ ("pQl) + 2 ’_A YM -~+ 1)

nY/A)

For Q3: t)=— i e

v (Qexo-1x-g; 2> 7))+ 1 N 254
72,35 7235
Cg3(0 =Pqi +Kag3(Q(1- Pg)

For the SCP: KaSCR(t) = (CEs«)-ixi i PA p PAj)+CsdAW sOP+ (IPQR)-IPQ
72,35 7=235

CSCA*)_Pscp+ K%Cp(f)O - Pscp)

FortheSDP: ~ D0 =1+(QKO0-1)(£ JjjV
=35

QdXO = PSDP+K-aSD$)(t1~PsDp)

116

Chapter 5 Global IN Congestion Control

For the IPQ: KaIP"i):\+{c5am - |){/\ _)

CIP(0) ~PIPQ+KalP(*)Q--PIPQ)

5.3.1 Strategies usedfor Comparison

Two strategies were implemented on both the IN simulation and analytic models. As the analytic
model represents the ideal case, the simulated and analytic models should exhibit similar
behaviour, i.e. the analytic model should return the mean of the simulated model results. For the
first scenario implemented, independent control strategies were put in place at the SCP and SSPs.
For the second scenario, a simple strategy was devised to throttle incoming traffic at the SSP based
on the load levels at both the SCP and SSP, i.e. this strategy controlled the SSP and SCP traffic
jointly. An assumption made for this study is that IN calls have a higher priority than non-IN calls

and therefore, where possible, the number of IN calls accepted should be maximised.

5311 The Independent IN Congestion Control Strategy

For the independent strategy, the SCP congestion control strategy was based on the use of an SCP
monitoring interval X with LMC at the SCP to detect SCP overload and CG throttling at SSP Q2 to
restrict the arrival rates of IN calls. Another LMC algorithm was used in the SSP to detect
overload at Q2 at the end of an SSP monitoring interval Y. When SSP overload was detected, all
incoming calls (both IN and non-IN) were then throttled equally at Q1 using a CG mechanism.
The LMC overload parameters and CG interval parameter values were derived from the
assumption that all IN call types had equal arrival rates at the SCP and that IN calls comprised
30% of total SSP traffic. LMC was selected as an appropriate detection routine for this
investigation as it may be used in both the dynamic simulation and the steady-state mathematical
model. Note, however, that while CG was used in the simulation model, PT throttles were used in
the analytic model, as they are far easier to represent mathematically than CG. Twelve overload
levels were defined for both the SCP and SSP detection algorithms. The operation of this strategy
is shown in Figure 5.6.

The steps of the SCP congestion control scheme are shown as steps (i) to (v) in the diagram. Here,
new calls entering the SSP are throttled equally by the throttle TS$h, put in place (at QI) by the
SSP at the end of its previous monitoring interval, Y. Then IN calls are throttled equally by the
throttle TSCP, put in place (at Q2) according to the overload level sent by the SCP at the end of the
SCP’s previous monitoring interval, X. All IN calls accepted at SSPs are then sent, via the SS7 to

the SCP. The SCP monitors its mean load over the course of an interval X, and at the end of that

interval, reports its overload level to all SSPs, each of which then puts the appropriate throttle in

117

Chapter 5 Global IN Congestion Control

place at Q2. The SSP control strategy works independently of this. Each SSP monitors its Q2 load
over athe course of an interval Y, and at the end of that interval, puts throttles corresponding to its

perceived overload level in place at Q1.

New calls

overload

New calls (i) New

IN calls

Tsspn Tscp

SSPn
Fig. 5.6: The Independent Congestion Control Strategy

5312 The Joint SCP/SSP Congestion Control Strategy

The joint SCP/SSP congestion control strategy (i.e. a simple example of a global IN congestion
control strategy) that was developed for this investigation is made up of three separate, interacting
parts - the SCP and SSP overload detection algorithms and the joint throttle. As with the
independent strategy described above, LMC was used as the congestion detection method at both
the SCP and at Q2 ofthe SSP. Also as with the independent strategy, CG throttle mechanisms are
located at both Q1 and Q2. However, the operation of the throttles is quite different, in that the
decision-making process as to which throttles are engaged (and the magnitude of the throttling) is
more complex and is based on both SCP and SSP overload data. According to this decision-

making process, there are three principle phases of operation for the CG throttle:

1 SCP overload. During this phase, SCP overload causes only IN calls to be rejected in Q2 (i.e.
the number analysis stage).

2. Firststage SSP overload. In this phase, SSP Q2 overload causes only the lower priority non-IN
calls to be rejected in Q2 (i.e. the number analysis stage). Note that SCP throttles may or may
not be in place during this phase, but non-IN and IN calls are throttled independently.

3. Second stage SSP overload. This phase is entered when selective throttling at Q2 is
insufficient to alleviate the SSP overload condition (i.e. all non-IN calls are being rejected and
SSP overload still exists). At this stage, minimal throttling is applied all calls equally at Q1

(during call authorisation) while the selective throttles remain in place at Q2. The aim of this is

118

Chapter 5 Global IN Congestion Control

that the SSP overload situation should be alleviated, while ensuring that the maximum possible

number of calls reaches Q2, thus minimising the number of IN calls rejected.

The operation of this joint SCP/SSP congestion control strategy is shown in Figure 5.7.

SSP 1 T ssp2
New calls

overload
New calls (i) New

IN calls

Fig. 5.7: The Joint SCP/SSP Congestion Control Strategy

Here, we see that the behaviour for SCP congestion control is identical to that defined for the
independent strategy. However, for the joint (i.e. global) strategy, the SSP has the same monitoring
interval as the SCP, and bases its own throttles on the overload information received from the SCP.
Each SSP still puts the IN throttle in place at Q2, but it also uses this information (step (vi)) to
decide, based on its own overload level, if it is sufficient to reject non-IN calls at Q2 (i.e. first
stage SSP overload) or if some global throttling is required at Q1 (i.e. second stage SSP overload)

in order to relieve overload at the SSP itself.

5.3.2 Results and Analysis

The criteria used to form a comparison between the independent strategy and the joint strategy are
SSP load, throughput and queue length, SCP throughput, and the delays experienced by each
service type. To compare these strategies, we define the requirements that both SCP and SSP loads
should be maintained at 0.9 under a wide range of overload conditions. In all cases, all monitoring
intervals were defined (as explained in Chapter 4, Section 4.2.1) as being of 10 seconds duration.
An analysis of the operation of the two strategies will now be described under three categories, in
which the operation of the joint strategy in each throttling phase will be compared with the
operation of the independent strategy under the same load conditions. Note that minor
discrepancies between analytical and simulation results are to be expected, as the strategies use CG
in the simulation (because CG provided the best overall results, as described in Chapter 4, Section
4.3.3) and PT in the analytical model (as PT is much easier to model mathematically than CG).

119

Chapter 5 Global IN Congestion Control

5321 SCP overload only

Here we show the results for when the offered load to the SSP is 0.85 and to the SCP is 1.2. Note
that when the SSP is not overloaded, both simulation and analytical results confirm that the
independent strategy and the joint strategy are equally effective. Also, the fact that there are very
minor differences between simulation and analytic figures, which may be accounted for by the

differences in the throttles used, verify the correctness of the two models.

Offered Load SSP 0.85 & SCP 1.2

Model Analytical Simulation

Strategy Indept Joint Indept Joint
SSP load 0.7655 0.7655 0.765 0.765
SSP throughput 0.7525 0.7525 0.753 0.755
SCP load 0.9 0.9 0.9 0.91
SSP queue length 3.26 3.26 3.27 3.27
Non-IN delay 0.237 0.237 0.24 0.24
Freephone delay 0.617 0.617 0.635 0.65
Televoting delay 1.48 1.48 1.6 1.725

Table 5.2: SCP overload, No SSP overload
5.3.2.2 SSP overload

Results are described for two load situations for which the SSP is overloaded:

» The offered load to the SSP is 1.2, of which 0.325 consists of IN calls, offering a load of 0.52 to
the SCP, i.e. the SSP is overloaded and the SCP is not (i.e. overload is caused by non-IN calls).

The load levels here are sufficient to cause the joint strategy to enter first stage SSP overload.

» The offered load to the SSP is 1.2 Erlangs, of which 1.05 comprises IN calls (offering a load of
0.78 to the SCP). In this case, overload is caused by IN calls. Here, the joint strategy enters

second stage SSP overload, and will cause minimal throttling of all calls at QI.

In the first case, the SCP will never become overloaded and will accept all calls offered to it. The
SSP, however, is overloaded and will either selectively throttle non-IN calls, for the joint strategy,
or impartially throttle all calls, for the independent strategy. For this scenario, the throughput of the
SSP is lower by 0.02 for the joint strategy than for the independent strategy - this is due to the
capacity which is required to progress non-IN calls to the point where they may be identified as

120

Chapter 5 Global IN Congestion Control

such, before being rejected. This processing overhead for the joint strategy is to be expected, due
to its added complexity, but Figure 5.8 shows the advantage of using the joint control scheme -
note that SCP load is 0.12 greater for the joint strategy than for the independent strategy. This is a
significant gain in a system where IN calls are prioritised. The analytical model validates these
results in Table 5.3.

Offered Load SSP 1.2 & SCP 0.52
Model Analytical Simulation
Strategy Indept Joint Indept Joint
SSP load 0.93 0.93 0.93 0.93
SSP throughput 0.91 0.89 0.907 0.889
SCP load 0.4 0.52 0.38 05

Table 5.3: SSP overload, no SCP overload

For the second case, when overload of the SSP is caused by IN calls, the advantage of using the
joint strategy to maximise the number of IN calls accepted is decreased, as the joint strategy must
reject almost as many IN calls as the independent strategy does, in order to relieve the overload
situation. The result is that the SCP load for the joint strategy is now only 0.06 Erlangs greater than
that for the independent strategy. On the other hand, the fact that the joint strategy must start to
reject all calls equally at SSP Q1 reduces significantly the processing overhead generally
associated with this strategy. In fact, Figure 5.9 shows that the disparity between throughput values

for the two strategies is almost eliminated.

121

Chapter 5 Global IN Congestion Control

Fig. 5.9: SSP load = 1.2, with IN calls comprising 1.05 Erlangs

A comparison of simulation and analytical results of this scenario is provided in Table 5.4 below.

Offered Load SSP 1.2 & SCP 0.78
Model Analytical Simulation
Strategy Indept Joint Indept Joint
SSP load 0.93 0.93 0.93 0.93
SSP throughput 0.918 0.913 0.925 0.92
SCP load 0.696 0.78 0.704 0.766

Table 5.4: SSP load = 1.2, with IN load 1.05

In other words, when the SSP alone is overloaded, there is an automatic tradeoff within the joint
strategy, such that noticeable increase in SSP processing requirements results in considerable
increase in IN call acceptances, whereas if the state of the SSP overload is such that a considerable
increase in IN call acceptances is not possible, the SSP processing requirements are reduced

automatically.

5.3.23 Both SSP and SCP overloaded

For this scenario, the offered load to the SSP is 1.2 Erlangs, of which 0.352 consists of IN calls
(offering a load of 1.3 to the SCP), i.e. both SCP and SSP are overloaded. The results for this case
are presented in Table 5.5.Note that the difference in SCP loads achieved by the two strategies is
smaller (0.02), but this is also reflected in the difference in SSP throughputs, which is now only

approximately 0.005.

The operation of the two strategies is quite interesting for this scenario. The joint strategy, as
usual, has an SSP processing overhead of approximately 0.02, but due to the fact that the throttling
it puts in place is based on the state ofboth SSP and SCP, it succeeds in keeping both the SSP and
SCP load levels close to the defined threshold. For the independent strategy, however, the SCP

122

Chapter 5 Global IN Congestion Control

causes suitable throttles to be put in place at SSP Q2, while the SSP (not knowing the state of the
SCP) puts unnecessarily stringent throttles in place at QI, resulting in the unnecessary and
undesired rejection of IN calls (and lower SSP load and throughput characteristics). Therefore, the

independent strategy overprotects both the SCP and the SSP.

It is also interesting to note that, in the simulation model, the independent strategy exhibits
significantly greater oscillations in SSP load and throughput than the joint strategy. This is due to
the fact that, at any given time, the SSP does not know the current state of the SCP, and therefore
any significant variations in SCP load levels result in oscillations in SSP throughput over the

course ofa number of proceeding monitoring intervals.

Offered Load SSP 12 & SCP 13
Model Analytical Simulation
Strategy Indept Joint Indept Joint
SSP load 0.91 0.92 0.91 0.92
SSP throughput 0.902 0.897 0.905 0.9
SCP load 0.88 09 0.885 0.905

Table 5.S: SSP and SCP overload

In summary, at SSP load levels below 1.0, results for both the joint SSP/SCP congestion control
strategy and the independent strategy show them to be equivalent, irrespective of SCP load levels.
When only the SSP is overloaded, the comparative behaviour of the two strategies depends on the
input traffic mix. However, the joint strategy consistently accepts significantly more IN calls than
the independent strategy, at a cost of not more than 0.02 SSP Erlangs (due to the requirement to

process calls through to number analysis prior to rejection).

When both SSP and SCP are overloaded, again there is an overhead ofnot more than 0.02 Erlangs
at the SSP for the joint strategy, but in return, the number of IN calls processed at the SCP is
maintained at the threshold, independent of the SCP overload level, while the independent strategy
consistently maintains SCP load significantly below the threshold (i.e. it overprotects the SCP).
The joint strategy also has the added advantage that, as it is simultaneously aware of the state of
both the SCP and SSP, throttles are put in place which protect both physical elements at all times,
while for the independent strategy, the SSP algorithm is only aware of the state of the SCP defined
by the throttles which were put in place at the end of the preceding interval. The result of this is
that variations in traffic load or mix may cause oscillations in SSP load and throughput for the

independent strategy, but do not affect the efficiency of the joint strategy.

123

Chapter 5 Global IN Congestion Control

5.3.3 Conclusions

Here we investigated the operation of a joint SCP/SSP congestion control strategy with an
independent strategy. The results (published in [Lodge96]) showed that when independent
congestion control strategies are used to protect the different elements of an IN, they successfully
meet the basic requirements placed on such strategies - i.e. they protect their elements with small
processor overheads. However, they lack flexibility, in that the interworking between the different
control algorithms results in inefficient overall performance. This was proven by comparing
classic congestion control algorithms, operating independently at the SSP and SCP, with a very
simple joint algorithm that selectively throttled input traffic based on the state of both elements.
The results demonstrated that even a simple global IN congestion control strategy is, for all traffic
mixes and loads, either equivalent to or superior to a strategy in which the SCP and SSP are

protected independently.

Independent strategies may be both flexible and fair, but again, only within the element being
protected. Any global concepts of flexibility or fairness cannot, in general, be supported by these
kinds of strategies and concepts such as maximum network resource utilisation and prioritisation
are not naturally addressed by this class of strategy. For example, in this section, it was very
simple to define the joint strategy so that it encompassed a simple priority system, where all IN
calls had higher priority than all non-IN call types. The results proved that, at all load levels and
for all traffic mixes, this priority system was adhered to, at the expense of a small processing
overhead at the SSP. Adapting independent strategies to provide the same level of support for
prioritisation would be non-trivial and would remain subject to problems when required to

interwork with each other (as will always be the case in IN).

The principle conclusion to be drawn from the work described in this section is that there is a need
for a network-wide congestion control strategy in the IN which provides controls for both SCPs
and SSPs by throttling both IN and non-IN call types appropriately. Only through use of such a
strategy is it possible to maximise the performance of the entire network. A global IN congestion
control strategy would also be easily extensible to encompass all desired aspects of a congestion
control strategy, including scalability, fairness and flexibility. Note however, that the joint strategy
used in this investigation is not proposed as a solution for global IN performance management, as
it is neither scalable (CCC and CG both require parameters to be defined which are dependent on
the capacity of the resource being monitored and are therefore innately unscalable) nor elegant. It
was designed merely as a tool to verify the necessity for a global IN strategy and to motivate the

specification of a comprehensive solution.

124

Chapter 5 Global IN Congestion Control

Section 5.4 presents an elegant strategy for global IN performance management which meets all
basic and desired aspects of any congestion control strategy, and verifies the usefulness of this
solution in Section 5.5 through the use of the IN analytical model. Chapter ¢ will compare this

solution with existing strategies (using the simulation model) in order to prove its superiority.

5.4 The Optimisation-based Global IN Congestion Control Strategy

The congestion control strategy presented here consists of an algorithm which, at defined intervals,
uses an optimisation program to find the best possible percent thinning throttling arguments for
each type of input call in order to maximise the revenue during the next interval. However, this
optimisation program must also satisfy a number of constraints. These include:

* load constraints on the SSP and SCP (a form of load measure control), and

* constraints ensuring that the weights or priorities of the different call types are reflected in the

defined throttles.

In this manner, revenue will be maximised over a time interval, while traffic will be throttled in
such a way that the throttling levels for each type of input call will preserve the weights defined for
the calls while ensuring that load thresholds at the SSP and SCP are not exceeded. Note that this
strategy may be generalised easily to address congestion issues for any system with multiple input
traffic types - it is only the addition of the SCP constraint that causes it to address IN congestion

specifically.

5.4.1 Defining the Mathematical Terms to be used in the Strategy Specification

Before the devised optimisation-based congestion control strategy is described, it is necessary to
make a few mathematical assumptions, in order to clearly define and scope the terms which will be
used in the formulae associated with the strategy —i.e. the formulae will be expressed in the terms
of the analytic IN model. This in no way detracts from the generality of the approach - it merely

aids understanding in the specification of the strategy.

The following assumptions were made:
e There is one SCP, one SDP and N SSPs in the system,
 All service times are exponentially distributed,

* No calls are rejected at QlI, i.e. P° =1.0,

125

Chapter 5 Global IN Congestion Control

resulting in the specialisation of the general decomposition equations defined in Section 5.2.3.2, as

shown below. Note that again, all parameters on the right hand side are as defined for time interval

[t-T,t\, with the exception of P* and pai, which are as defined at time (t-T).

ForQi&QV K<A(0=Cgj 0 "—Ksir,U) =l

fradti - rign
(AKAtK)
ForQ\ : =14 =14
(Qc-ixl %)H<s A)
j=23,5 >2A5
€<23, (0O = Pgq3, + K aQ3, (0(1 - P q3,)

N

aWwo-Wf IX/W+i<2XA/)
For theSCP: KaSCi(t)=1* M 1=25 >235

N
+GsdA1)\'dp+J C iPg (OpQ
=

CscA0 =/?vcp+ "% cf(00 ~Pscp)

FortheSDP. ~ ¢ 0 =1+(CA0-1)(£:£ IX A j)

«lj-2,35
CsdAO0 = A'dp+"% 01(00 ~ Psdp)
For IPQ, : =1+(Qc/<0-1)(Mi)

Qpa,(0=/Va, +KqpQ,(00%Apq)

5.4.2 Capturing the Requirements on the Global IN Congestion Control Strategy

Before describing the optimisation-based global IN congestion control strategy, let us first
summarise the requirements which were specified on it, as described in Section 5.1. Obviously, the
basic requirements are that an overload control strategy must be able to protect IN resources under
any load conditions and must use processing resources in an efficient manner. Highly desirable

characteristics of the strategy also include:

» Scalability: an algorithm should not need to be substantially reconfigured if the size of its
resource changes, e.g. if the same algorithm should reside at all SSPs, it should not require
much “tweaking” to target it to each SSP. For example, while requiring that the values for a
few parameters should be set is acceptable, the need to run exhaustive simulations to establish,
for each SSP, the number of arriving calls which constitute overload (for CCC) or the gap

126

Chapter 5 Global IN Congestion Control

intervals which should be put in place in a CG throttle for a given overload level is highly

undesirable.

» Flexibility: a well-designed algorithm should be easily customised to include factors such as
different call priorities, different requirements on fairness or other non-functional

requirements.

» Fairness: If overload is caused by an excess of calls of one particular service type, only calls of
that type should be rejected (i.e. Focussed Destination Overload Control - FDOC). Also, all
subscribers to a particular service type should have an equal chance of acceptance —i.e. all

sources should be throttled proportionally to their size and arrival rates.

To ensure that the solution proposed addresses all the above requirements, a number of factors
were specified which must be taken into account when defining the algorithm. In the area of
flexibility, these sample factors are defined by the requirements of users and operators of the
network. For the operator, it is desirable to maximise revenue while maintaining IN integrity. IN
customers expect the network operator to provide a pre-agreed Quality of Service (QoS) level,
while all users require that call setup takes place as quickly as possible. Other factors may also be
equally relevant, but due to the constantly increasing number of new types of service on offer in
telecoms networks, it would be very difficult to provide an exhaustive list of them. Therefore, in
designing our strategy, we have chosen to base our priority-driven system on the following factors:
* revenue per call,

* load requirements per call, and

* IN QoS agreements.

The aim of this chapter is to find a strategy that balances these factors and provides a good
compromise in order to satisfy all users. Note that seeking a good balance between these factors
curtails, to a certain extent, the capability to strictly enforce either service or subscriber fairness.
Instead, it is required that the designed strategy maintains fairness within the bounds of the balance
between the above factors. For example, if a service type which has high revenue per call, low load
requirements and which is based on strict QoS agreements causes an overload, calls of this type
should logically still be given priority over less important calls. However, accepting this, the
system should never reach the state where all calls of a particular type are rejected due to an
overload of calls of a higher priority - this would be highly unfair. Maintaining a balance between

call types should ensure that this situation never arises.

127

Chapter 5 Global IN Congestion Control

5.4.3 Introducing the Concept of Call Weights

Maintaining a balance between call types is accomplished through the definition of call weights.
When using simple priority-based schemes, we lose the information as to the relative importance
of calls of different priorities. We therefore introduce call weights as a factor of the relative
importance of different call types (this is, in fact, a generalisation of priorities). For this work, we
choose to focus on the call setup revenue, call processing requirements, and QoS agreements as the
factors that contribute to a call type’s weight. In order to place numerical values on QoS
agreements, we assign numerical QoS levels which may be set by the service provider to capture
the relative strictness of the requirements of different service users - these levels may be assigned
based on practical data (such as acceptable delays) or on more abstract non-functional

requirements (e.g. the importance of a customer). This is at the discretion ofthe service provider.

The weight of each call type should be a function with the following properties:

» For all other factors constant, if the value of revenue is increased, the weight should increase
(but not necessarily proportionally),

» For all other factors constant, if the value of QoS is increased, the weight should increase,

» For all other factors constant, if call processing requirements are increased (captured using the

value of service time), the weight should decrease,
For this work, the relative weight for call type i was defined as &t , where
to.= tea
k
i.e. we assign weights to each of the traffic types by finding the normalised product of their setup

revenue, R,, their total (i.e. at both SSP and SCP) load requirements (here expressed as the inverse

of service time, service rate //m) and their pre-agreed QoS level qi .

For the five call types that are implemented in the model, a number of assumptions are made:

International call types have highest revenue, with televoting second and freephone and local

with the lowest revenue,
» IN calls require approximately 2.5 times the processing capacity ofnon-IN calls at the SSP,
» AII'IN calls receive the same amount of processing capacity each time they enter the SCP,
 International freephone has the highest QoS level, with televoting second, freephone third, and

non-IN calls having the lowest priority as no QoS levels are defined for them.

Examples of possible normalised weight assignments are shown in Table 5.6, as are the ratios of

these weights.

128

Chapter 5 Global IN Congestion Control

Service Call type a, g
International 1 0.489 12.225
International freephone 2 0.313 7.825
Televoting 3 0.1 25
Local 4 0.058 145
Freephone 5 0.04 1.0

Table5.6: Assignment of Weights

5.4.4 Specification ofthe Optimisation-based IN Congestion Control Strategy

As stated in Section 5.4 and described in [Lodge97], the proposed global IN congestion control
strategy takes the form of two optimisation algorithms, one of which is located in the SCP and the
other in all SSPs. These algorithms are very similar, but are specialised to the resource in which
they reside. They interoperate in such a manner as to provide premium IN performance, while
ensuring that no network elements become overloaded. The sequence of operation and interaction

of these algorithms is shown in Figure 5.10 and will now be explained.

During an interval of length T, each SSP n has a mean arrival rate of Ani for each service type i (i
=1..5). These arrivals are subject to any throttles put in place at Q2n at the end of the previous
interval (step (i) from the diagram) and all accepted IN calls are sent to the SCP via the SS7

network. We define £scpj (0 as the mean arrival rate during the period [i-T, t] of new calls of

typej (where j eJ where J ={235} for IN calls) as calculated at the SCP (step (ii)) at time t This

may be estimated as X*pjif)~J]PI1j0 - T)JnJ .

SSP 1

Fig. 5.10: Overview ofthe New Global IN Congestion Control Strategy

129

Chapter 5 Global IN Congestion Control

Optimisation at the SCP (step (in")). The SCP algorithm, at time t, attempts to set values on the
SSP PT throttles in order to maximise revenue for IN calls in the next interval, while meeting SCP
load constraints and honouring the weights of different traffic types. To do this successfully, the
optimisation must be based on the total arrivals of IN calls to the network during the previous T
seconds. Note, however, that the SCP has no information regarding the actual number of arrivals to

the system (i.e. to the SSPs) and must therefore estimate this value based on the information that is
available to it, namely XA PJ(t) and the values of the throttles it defined at the end of the previous
interval Pscpj(*_T). This estimated total for each IN call type at time t may be evaluated using
the formula:

i o
total j\I)
Pscpj

The optimisation program to maximise the revenue over IN call types may be expressed as follows

for 3 IN call types, each with known associated revenue per call R., a probability of
acceptance Pscpj (o (the throttles to be determined for the next control interval) and the estimated

new call arrival rate A~ialj (t), used because, to maximise revenue, all calls should be counted

once only, as they may be charged for only once.

aMaximise ~ RjpPscpj (O”otalj00
Pscp,i(t)-Pscp,j(t) jed

The constraints on this revenue maximisation are:

(i) SCP Load constraint: £ p*pj (1)eSCPj ¢ ftald (t) <ThrSCP,

j
(if) Bounds on p\(otj() : Q<plICPYD)<\, Vj ,

(iif) Weight constraints:1< - ®pP'212 < j =35 Wwherew. = *)hesypJtisp—
p\cp At) 65 J k:zTa"SkWMscP

where /jscp is the processing rate at the SCP, Thrscp is the overload threshold for the SCP and all

other parameters are as previously defined. In Constraint (iii), the ratio of weights is defined in
terms of call type 2. This is because this call type has the highest priority of the IN call types. The
optimisation algorithm will execute every T seconds and will, at time t, based on arrival rates in

the interval [t-T,t\, calculate the optimal (in terms of IN revenue) probabilities of acceptance
Pscpj (0 fer the interval \t,t+T\. These /arguments (corresponding to call types 2, 3 and 5 in our

model) are returned to the SSPs in the network (step (iv)) and are used to define the upper bounds

on the percentage of calls accepted for each IN call type. These arguments may not be used

130

Chapter 5 Global IN Congestion Control

explicitly as the PT arguments as they do not take into account the state of each SSP and therefore

may detrimentally affect the performance of these elements.

Optimisation at the SSP (step Tv». The optimisation algorithm at the SSPs functions in a manner
similar to that described for the SCP. Here, the acceptance probabilities Pscpj (0 defined by the

SCP optimisation algorithm are used. Again, the revenue is maximised (note that, at the SSP, non-
IN calls must also be taken into account) subject to load and weight constraints. The objective
function may be stated as follows, where 1=5:

Maximise £ o(t)A t(t)
with the constraints:
(i) SSP,, Load constraint : Ani) <ThrSSP

~T f*accnld Prej, "

(i) Bounds onp”/t) fornon -IN calls : 0< phi(t) <1 wherei=l,4 ,
(iif) Bound on P n/t) for IN calls : 0<p,j(0 ApPscpjt)> where;=235 ,
(iv) Weight constraints :1< —— "< — | 1=2,3,4,5,where & - RQMc—— ,

Pn,i(o &i Y.Rk<IkMaccn k

where pacenj is the processing rate at SSP n for accepted call type i, Thrssm is the user-defined

overload threshold for SSP n, and all other parameters are as previously defined. Note that
Constraints (i) and (iv) protect the SSP from overload while preserving priorities between call

types and that Constraint (iii) ensures that SCP load requirements are not exceeded.

Note that the objective functions and all constraints at both the SCP and SSPs are linear -
therefore, these are Linear Programming Problems, as described in Chapter 3. Other constraints
could also be included, as the optimisation algorithm is very flexible, but it is recommended that
they should be included only if linear, because the inclusion of any non-linear constraints would
render the optimisation task much more complex and it would thus require much more processing
power. For this reason, a constraint on service delays, which would be non-linear, was not
included. This should, however, not be a problem, as the other constraints should ensure that the
network does not become overloaded and that therefore the service delays should be within
acceptable bounds. Additionally, load constraints at the SCP and SSP were based explicitly on
load levels for computational ease only - they could easily be amended so that the overload
thresholds are defined by the number of call arrivals (call count control) or the mean queue length

(a form of queue length control). Note also that, as with all strategies that estimate congestion

131

Chapter 5 Global IN Congestion Control

levels over a fixed interval, there will always be a delay of a maximum of T seconds before the
algorithm responds to the onset of congestion. Further, as no requests may be rejected until they
reach Q2, it is possible that Q1 may become overloaded independently. Therefore, it is necessary
to place a simple throttle (e.g. a rate control mechanism) at Q1 to reject just enough traffic to

protect this queue.

5.5 Operation of the Global IN Congestion Control Strategy

To show the efficient operation of the control strategy, we must present the results acquired from
the analytic model in a number of different input load scenarios. In all cases, the interval T is

defined as 10 seconds, while ThrSSP =ThrSCP=0.8 .

5.5.1 Scenario 1: Stationary Case.

As a first step, to prove the validity of the analytic work, we state that, in the stationary case, i.e.
when input traffic levels are constant for all call types and at levels sufficient to cause overload,
processor loads, revenue and service delays all converge to their optimal levels within two
iterations/intervals. Controls are put in place at the end of the first interval to deal with the
congestion situation, and are amended slightly at the end of the second interval to cater for retrials.
This verifies that the optimisation algorithm deals with changes in overload levels quickly and

efficiently.

5.5.2 Scenario 2: SSP Overload due to One Call Type

Here, SSP overload was induced by increasing the arrival rate of international freephone calls
linearly over successive intervals for 60 iterations and then decreasing it sharply, while
maintaining constant arrival rates for all other call types (shown in Figure 5.11). Note that the SCP
service rate was defined so that the SCP would not become overloaded and adversely affect the

results for this scenario.

132

Chapter 5 Global IN Congestion Control

International A~ At nternational freephone
mm+ m'Televoting Local
------------- Freephone

B T PBELETLEPNE'TOMW

Time (seconds)

Fig. 5.11: Offered Traffic Causing SSP Overload

Constraint (iv) ofthe SSP optimisation algorithm forces rejection of call requests of lower weight,
while also maintaining the ratios between probabilities of acceptance of these calls, as
demonstrated in Figure 5.12. Note that, Constraint (i) forces televoting and freephone calls to be
restricted prior to local calls - this is because of the greater SSP processor requirements associated
with IN calls. When Constraint (iv) becomes active between freephone and televoting, local calls
start being restricted. This continues until Constraint (iv) again becomes active for local calls, and

then a minor quantity of international freephone calls are rejected.

"International "International freephone
1Televoting Local
1Freephone

Fig. 5.12: Proportion of Traffic Accepted under SSP Overload

133

Chapter 5 Global IN Congestion Control

Constraint (i) forces processor load for the SSP stay at the threshold - see Figure 5.13. Note that at
time (=440, SCP load reaches its minimum value - this is due to the rejection of freephone and
televoting calls. However, at this point, Constraint (iv) becomes active and rejections of these calls
stabilises and local calls are rejected, while international freephone arrivals continue to rise, thus
prompting the rise in SCP load after this point. SCP load does not begin to drop until after the
arrival rates for international freephone fall, and its rate of decent is slowed by the gradual increase
in televoting calls accepted. Figure 5.14 shows that the revenue follows the variation of

international freephone in a non-linear manner, as would be expected.

Q2 SCP

Time

Fig. 5.13: SCP and SSP Processor Loads during SSP Overload

Revenue

Time

Fig. 5.14: Revenue during SSP Overload

5.5.3 Scenario 3: SCP Overload due to One Call Type

In this case, traffic arrival levels were kept sufficiently low to ensure that the SCP became

overloaded prior to the SSP. Televoting arrival rates increased linearly for s6 iterations before

134

Chapter 5 Global IN Congestion Control

dropping off sharply. The results are very interesting. SCP Constraint (i) ensures that the SCP load
threshold is not exceeded, while due to the fact that televoting arrivals far exceeded freephone
arrivals, Constraint (iii) forces only the rejection of televoting calls - i.e. the calls that caused the
overload. The variation in televoting acceptances follows the variations in the arrival rates for this
call - note how the acceptances decrease non-linearly for linear increases in arrival rates, and that,
at the point where televoting arrival rates begin to decrease (i.e. at (=660), televoting acceptances

begin to ascend at the same rate in a non-linear fashion. These results are shown in Figures 5.15.

Televoting - All others

Time
Fig. 5.15: Proportion of Traffic Accepted at SSP during SCP Overload

Figure 5.16 shows the processor loads of the SCP and Q2 over the same period - note that, due to
the fact that the SCP exhibits overload symptoms before the SSP does, protection of the SCP

prevents the onset of congestion at the SSP.

-2 -SCP

091
0.8
0.7
0.6
0.5
0.4
0.3
0.2

0.1
() nmmth ihimnMnm MMUHHNINM m nhtmniDinn

CEL NS ECLELE &

Time

Fig. 5.16: SSP and SCP Processor Loads during SCP Overload

135

Chapter 5 Global IN Congestion Control

5.5.4 Scenario 4: General Overload

In this scenario, the arrival rate for all calls increased non-linearly (in steps). The result was the
rejection of all call types with the ratio of probabilities of arrival between call types being
maintained by SCP Constraint (iii) and SSP Constraint (iv). This is shown in Figure 5.17 - note
how SSP Constraints (i) and (iv) again force the rejection of televoting prior to the rejection of
local calls and also that no local calls are rejected until SSP Constraint (iv) becomes active for

freephone and televoting.

International International freephone
“ Televoting “ Local
................ Freephone
Time
Fig. 5.17: Proportion of Traffic Accepted at SSP during General Overload

Processor load at the SSP is maintained at the threshold by SSP Constraint (i) while processor load
at the SCP changes with the variation in acceptance levels for the different call types, but

consistently remains below its threshold (see Figure 5.18).

Q2 scP

Time
Fig. 5.18: SSP and SCP Processor Loads during General Overload

136

Chapter 5 Global IN Congestion Control

Changes in the revenue follow variations in the non-linear arrival rates, but with smoother

variations, as shown in Figure 5.19.

Revenue
140

120
100 L T

40 m
20

0
0o RO 06 to pd gO A0 06 »0 ro &0 flO

Time
Fig. 5.19: Revenue during General Overload

Figure 5.20 demonstrates the service delays experienced by each traffic type - note that the delays
are greater for large SCP load (shown in Figure 5.18) and then decrease as SCP load decreases due
to the throttling of televoting and international freephone traffic. However, at all times, the existing
constraints ensure that the delays for each service type are within acceptable limits as defined by
[MacDonald94]. This confirms that the explicit inclusion of a constraint on service delays in the

optimisation algorithm is unnecessary.

International & Local
................ International freephone & Freephone
———————————— Televoting

Time

Fig. 5.20: Service Delays during General Overload

137

Chapter 5 Global IN Congestion Control

5.5.5 Scenario 5: Overload due to Bursty Televoting Traffic

To examine the operation of the control strategy when subjected to short bursts of high traffic
loads, an input was provided which generally did not cause any load constraints to be exceeded.
However, at irregular intervals, the arrival rate of televoting calls was increased by a factor of 4 for
60 seconds. All other traffic arrival rate remained constant for the duration of the simulation. The
load results, shown in Figure 5.21 show that, at the end of the interval following the onset of the
burst, the system responds by throttling televoting calls (due to SCP Constraint (iii)) to reduce the
loads on both SSP and SCP to approximately threshold levels. When the burst traffic ceases, the
system again responds at the end of the succeeding interval by eliminating the televoting throttle,
thus restoring the original loads. Note, in Figure 5.22, that the resultant revenue closely follows the

load curve of the SSP.

Fig. 5.21: SSP and SCP Processor Loads during Overload due to Bursty Traffic

Total Revenue

Time

Fig. 5.22: Revenue during Overload due to Bursty Traffic

138

Chapter 5 Global IN Congestion Control

It was also interesting to note that, if SCP Constraint (iii) and SSP Constraint (iv) were amended so

that pai >pa Vz2>] . the revenue remained equivalent, but in cases of SCP overload, rejection of

local calls was forced (so that the advantage of rejecting only calls which caused the overload was
lost), and therefore more televoting calls were accepted, resulting in greater load levels at the SCP

(without exceeding the threshold) and greater service delays over all IN calls.

5.6 An Optional Extension to the Global IN Strategy - FDOC

It is interesting to note that the above IN congestion control strategy, by its nature, ensures that
SCP congestion due to an excess of calls to focused destinations is unlikely. This is because it
effectively allocates SCP or SSP capacity to different call types based on their weights and
revenues, and therefore the only way that focused overload of the SCP could occur would be if the
focused destination was of the call type with the highest weight and revenue in the network. As
such, the enforcement of service fairness is implicit in the congestion control algorithm. However,
the strategy still does not ensure fairness within an IN service type. It is still possible for calls to
one destination to use an excessive amount of the allocated resource within the service type (if the
arrival rates for that destination are much greater than arrival rates for other destinations). This is
not necessarily undesirable, as it does not affect the performance or revenue of the network.
However, in practical terms, the probability of successful completion of calls is greater for
destinations with lower arrival rates as the probability that the destination node is overloaded is
lower. Therefore, it may be more desirable to accept, within a service type, all calls to destinations
with low arrival rates and selectively reject calls to destinations with high arrival rates in order to
make the best use of resources allocated to a service type. This scenario is generally referred to as
Focused Destination Overload Control (FDOC). However, in the case of our algorithm, this is a
misnomer, as the IN congestion control algorithm, by its nature, prevents overload by a particular
call type, so focused destination overload is extremely unlikely. Instead, this “FDOC” extension

forces fairness within a given call type.

A simple optional extension to the IN congestion control algorithm described above facilitates
FDOC (and was published in [Lodge98a]). At the SCP, the arrival rates to specific destinations
within a service type should be monitored over the course of a control interval (in a manner similar
to that described in [Rumsewicz95]). At the end of the control interval, resources within the SCP

are allocated to service types as described above, resulting in the specification of a probability of

acceptance Pscpj f°r service typej. Therefore, the SCP resources available for calls of this type is
Pscp wst | . . L L . .
rscpj = wHisa ' - Resource requirements R'scpjjr, to eacr destination within service typej may

now be expressed based on the monitored arrival rates to each destination in the previous interval,

139

Chapter 5 Global IN Congestion Control

i
ie. Rspjh= | £ ” Rictj> where .;Sav,*, is the arrival rate at the SCP of calls of typej to

destination dn during the previous interval. We may now use a simple method to allocate resources

to calls to each destination by applying the following focus elimination function to all resource

requirements Rjfcpjjn m

RsCP,j,dn *RSCPJ,dn - R Thr,j
RsCP,j,dn ~ f (RSCP,j,dn)
g(RsCP,j,I| »m RsCPJ,n) " RSCPJ,dn - RThr,j

where Rfcpj,dn is the resource assigned to destination dn, Rm | is some threshold value for the

SCP resource assigned to service typej and N is the number of destination numbers within the

service type. The form ofthe function g and the value of RNr, should be chosen so that:

. The algorithm is kept simple, to reduce processing overheads,

« Allavailable resources are assigned, i.e. ~ Rscp,j,dn =rscpj >
dn

. Destinations which require more resources are assigned more resources, i.e. if
RSCP,j,dnx < RSCPJ,dny>~len RSCP,j,dnx < RSCP,j,dny *

. Destinations with “small” resource requirements should be assigned all capacity required when
possible.

A simple example of anon-linear function g would be:

: preg n .
Dess -<w'/? 9 T-i? + F -)
SCPj,dnx ~8yv\élsrgi>,j,\ S’ K/s'gg,j,N)|~ IJ'Thr,j + —599#3* Jhid
2-1\ SCPjdn~ Thrl)+
dn

where X+=0 if X <0 and X+=X+ if X >0.

Once the available resources have been assigned, the assignments may be translated into a

percentage of available resource, and passed to the SSPs along with the new value of PsCP for

that service type. The SSP algorithm then evaluates the appropriate p\j and allocates this over all

destinations based on the received percentages.

Note, however, thatthe inclusion of this extension to the control algorithm requires the monitoring
of all destination numbers within each call type, and as such, renders the algorithm substantially
more processor-hungry. Another drawback of using such an extension is the fact that the estimate
that the SCP makes as to the total arrival rate of each service type to the system becomes less
accurate, as it is now based on a very large number of parameters. This renders the entire

algorithm less efficient overall. A conclusion of this is that the basic algorithm itself provides

140

Chapter 5 Global IN Congestion Control

perfectly adequate cover for the prevention of overload due to one call type, and therefore IN
overload due to calls to a specific destination will generally not be permitted. Therefore, the only
advantage of including the FDOC extension is that it enforces fairness within a given call type, and

therefore, it should not be used unless this level of fairness is critical to a service provider.

5.7 Conclusions

The results for this control strategy are excellent. In all scenarios, with different traffic
distributions and mixes bringing about overload, the congestion control algorithm causes the load
of all elements to converge to the specified threshold very quickly and without oscillations.
Therefore, the best possible use is made of all resources during overload. This is reflected in the
fact that service delays remain consistently within required bounds. The strategy also provides the

added bonus that revenue is optimised at all times, even during overload!

The weighting strategy used is defined to be extremely flexible so that it can encompass both
functional and non-functional requirements of the service providers and users, and the results
prove that, by including the weights as a constraint in the optimisation algorithm, the relative

importance of calls is maintained at all times, even during extreme overload conditions.

Examining the requirements on the optimisation-based global IN congestion control strategy
shows that it meets the basic requirement of protecting all network elements under all load

conditions. It also meets the desired characteristics, in that the strategy is:

Scalable - all that is required to target the algorithm to a particular network resource is that a

number of parameters, e.g. eSPj , service rates and weights need to be defined. Also, the addition

of new resources to the network (e.g. a new SSP) will not require alterations to the existing

congestion control algorithms in other resources.

Flexible - the definition and allocation of call weights is at the discretion of the service provider,
so that their needs with regard to service differentiation may be met. New constraints may be
added to the optimisation algorithm - the only requirement is that they must be linear. Extensions
to the algorithm such as the facility for FDOC may be added easily. The strategy therefore proves

itselfto be extremely flexible.

Fair - in this chapter, the optimisation-based strategy has proven itself to provide implicit service
fairness, within the bounds of the priority system defined. Further, more detailed levels of fairness
may be provided through the extension of the algorithm, e.g. to cater for fairness within a service

type. Optimisation also exhibits subscriber fairness - while not explicitly shown in the results of

141

Chapter 5 Global IN Congestion Control

this chapter, it should be intuitively obvious as optimisation uses a PT throttle, which was proven

in Chapter 4 Section 4.3.3 to be subscriber fair.

The only requirement that has not yet been proven to be met is that of efficiency —the resource
requirements of the algorithm are as yet unclear. Obviously, they will be greater than for a simple
algorithm like CCC, but it remains to be verified that these excess resource requirements are worth
the cost, in terms of the value add provided by the strategy. In order to investigate this, the
operation of the optimisation-based global IN congestion confrol strategy will be compared with
classic CCC/CG, Window and a simpler dynamic IN congestion control strategy (devised for the

purpose of comparison) in Chapter 6 .

142

Chapter 6

Comparison between IN Congestion Control Strategies

Chapter 6 Comparison between IN Congestion Control Strategies

6.1 Introduction

The optimisation strategy presented in Chapter 5 has been confirmed as meeting the basic
requirements on a congestion control algorithm, namely it effectively protects all elements of the
IN from congestion under all load levels and traffic mixes. It was also demonstrated that the
algorithm is flexible, scalable and fair. We now need to show that the greater processor overheads
required to use the strategy are worthwhile, in terms ofthe increased performance ofthe IN. To do
this, we must compare the behaviour and resource requirements of the optimisation-based global
IN congestion control strategy with that of other strategies. Chapter 4 showed that CCC provides
the best performance among the existing, commonly used SCP congestion detection methods. It
was also shown that the CG throttle responds faster to the onset of overload than PT, and therefore,
while PT has a number of desirable characteristics, CG is more efficient at protecting the SCP
during overload. The results for the Window strategy presented in Chapter 4 were inconclusive - it
was seen to respond very quickly to the onset of overload, but was extremely inconsistent across
variations in load levels. Therefore, to establish the superiority of the optimisation-based strategy,
it should be compared with both classic CCC/CG and Window. However, this is not a truly fair
comparison, as any classic IN control strategy will be based on fixed parameters which can never
provide efficient congestion control for all traffic mixes, as they tend to be based on the

assumption that either:

» All calls have the same load requirement, or
o If calls have different load requirements, then the ratio of arrivals for the different call types

that comprise the total arrivals to the system is constant.

The result of this is that no fixed parameter values can be defined which apply to multiple call
types with different load requirements and varying traffic mixes (as was verified in Chapter 4,
Section 4.4). Therefore, optimisation (or in fact, any reasonable dynamic congestion control
strategy) should automatically outperform all of the classic strategies. So, in order to rigorously
evaluate the advantages and disadvantages of the optimisation strategy, it should also be compared
with another dynamic strategy. To facilitate this, a new dynamic IN congestion control algorithm
was specified. This is based on the use of a dynamic version of CCC in conjunction with a
dynamic combined PT/CG throttle - i.e. a strategy that is both scalable and dynamic. Therefore, in

this chapter, we will compare the optimisation-based global IN congestion control strategy with:

1 Classic CCC/CG: a classic IN overload control strategy, in which the SCP congestion control
algorithm uses CCC to evaluate overload levels at the SCP and CG to throttle IN traffic at SSP
Q2, and an independent SSP congestion control algorithm which consists of CCC at Q2 of the
SSP setting CG throttles at Q1 to throttle all calls equally,

144

Chapter 6 Comparison between IN Congestion Control Strategies

2. A Window-based Strategy: Window, located at the output of the SSP, prevents overload of
the SCP, while SSP protection is provided by the same SSP CCC/CG algorithm used in the
classic CCC/CG strategy,

3. Dynamic CCC/CG: a scalable and dynamic adaptation of classic CCC/CG.

The criteria we use to compare these strategies are SCP load, SSP load and throughput, network
revenue and service delays. We also evaluate the cost efficiency of the algorithm in terms of both
its processor requirements and the number of counters required to monitor the statistics required

for the algorithm.

Section 6.2 describes the classic independent CCC/CG strategy, the Window strategy and the new
dynamic CCC/CG strategy. Section 6.3 compares the operation of the three strategies under the
stated criteria. Section 6.4 summarises the results and draws conclusions as to if and when the use

of each ofthe strategies is most appropriate.

6.2 The Strategies used for Comparison

Three different strategies were used for IN congestion control to facilitate comparison in this work
(as published in [Lodge99]). For all strategies, the SSP throttles used applied to all traffic types
equally —i.e. when the SCP becomes overloaded, it requests that all IN calls be throttled equally in
the SSPs, and when an SSP becomes overloaded, it throttles all incoming traffic (IN and non-IN)

equally in order to protect itself.

The first IN overload control strategy (classic CCC/CG) is very simple and works as described in
Chapter 4, Section 4.2. For SCP overload control, the total number of arriving calls is counted over
an interval. At the end of the interval, a CCC algorithm at the SCP compares this count against a
table to establish the level of overload. The overload level is returned to all SSPs, which look up a
table to establish which CG throttle level should be applied at Q2 to restrict all IN calls. The SSP
overload control strategy is very similar, with the CCC algorithm at Q2 sending overload levels to
Ql, where CG throttles are put in place on all calls. Note that this strategy is similar to the
independent IN congestion control strategy described in Chapter 5, Section 5.3.1. The CCC table
and CG table parameter values were derived from the assumption that all IN call types had equal
arrival rates at the SCP (but different load requirements) and that IN calls comprised 30% of total
SSP traffic.

The second strategy (Window-based) protects the SCP as described in Chapter 4, Section 4.2.3.
However, the use of Window for SSP congestion control is inappropriate, as it is only suitable for

the protection of remote network elements. Therefore, another algorithm must be used for SSP

145

Chapter 6 Comparison between IN Congestion Control Strategies

overload protection. For simplicity, the SSP overload control strategy used in classic CCC/CG (i.e.

CCC at Q2 with CG at QI) will therefore be used in conjunction with Window at the ssfprocess.

The third strategy (dynamic CCC/CG) operates in a similar manner to the classic CCC/CG
strategy, but has slightly more complex algorithms. The steps of the algorithm are shown in Figure

6.1, and are described below.

Fig. 6.1: The dynamic CCC/CG strategy

For SCP overload control, the total number of arriving calls for each IN service type is counted
over an interval T (step (ii)). At the end of the interval, the CCC algorithm at the SCP then predicts
what the total SCP load will be due to these calls (step (iii)), according to:

predra 1 ¢ st esce, scpj (0
S

PsCP'ft- Zu a (t T
Mscp NE2,35 Pscp Nt~ 1) J

where P”cp (0 predicted SCP load calculated at time t, ASCHj (t) is arrival rate of calls of

typej to the SCP during the interval [i-T, t\, Mscp is the service rate of the SCP, p~Gif-T) is
the value ofthe throttle put in place (at the SSP) by the SCP at the end of theprevious interval and
escp,j is the number of times a service request of typej will receive processing at the SCP during
the course of its execution. Then, if this predicted load is less than the SCP threshold, the

probability of acceptance at the SCP, Pscpi*) >is set to 1.0. If it is greater than the threshold,
Pscp(f) =Thrsop /Pscp (0 where ThrSCP is the defined SCP threshold. Note that p&pi0 is a

single probability of acceptance and applies to all IN calls equally. If the resultant value of pSp (0

is different to that defined at the end of the previous interval, it is sent to all SSPs, either in CG

messages, or encapsulated in service-related messages (step (iv)). When sspn receives the

message, it converts Pscp(0 to an IN CG gap interval Gm (t) (step (v)) using the simple formula:

146

Chapter 6 Comparison between IN Congestion Control Strategies

Gm(0= |~P3I{t)
¢N.miOPscpiO

where AnjN(t) is the arrival rate of IN calls at SSPn during the interval [t-T, t] and all other

parameters are as previously defined. Once the gap interval of the CG throttle is evaluated using

this formula, it put in place on all IN calls at Q2.

The SSP overload control algorithm is slightly different, in that it is based on the use of a dynamic
LMC algorithm at Q2 of each SSP. LMC is used here because the mean load at Q2 over the
duration of a monitoring interval reflects the value of the throttle put in place at Q2 by the SCP at
the start of that interval, and therefore dynamic CCC/CG, while still an independent control
strategy does at least partially take the (previous) state of the SCP into account. Note however that
dynamic CCC/CG still fails to take the current state of the SCP into account. The dynamic LMC
algorithm at Q2 (step (a)) estimates what Q2 load would be if no throttle were in place at Q1 as:

csl f.\ _ PQIr,
(0

@ P°(t-T)

where Pq2 (t) is the actual load of Q2 of SSPn at time t and P° (t- T) is the probability of
acceptance for all calls (i.e. the throttle value) put in place at Q1 at the end of the previous interval.
The new throttle parameter P ““(t) is then calculated from P°(t) =Thr@ /Pg2,,(0 (where Thrgh is

the load threshold of Q2 of SSPn) and sent to QI, where the new gap interval Gn(() is calculated

1- Pa(t)
uop:(o
where An(t) is the mean of the total arrival rate to SSPn during the interval [t-T, i] and all other

parameters are as previously defined. Once the new gap interval has been derived, it is put in place

at QI and applied to all new call arrivals equally.

6.3 Results of Comparison

In this section, we present the results for each of the given strategies. The behaviour of the
strategies presented above is compared for five different load scenarios - namely, stationary
(section 6.3.1), SCP overload (section 6.3.2), SSP overload (section 6.3.3), general overload
(section 6.3.4) and overload due to bursty traffic (section 6.3.5). In all cases, the SCP’s and SSPs’

service rates remain the same (to ensure a fair comparison), with the IN acceptance time at each

147

Chapter 6 Comparison between IN Congestion Control Strategies

SSP Q2 set as a factor of 2.5 greater than the non-IN acceptance time and reject rates at both SSP
Q1 and Q2 set considerably higher than all acceptance rates (as described in Chapter 5, section

5.2.1). Also, the load threshold defined for all physical elements during all simulations is 0.8.

6.3.1 Scenario 1: Stationary Behaviour

Here, constant (different) arrival rates are applied to each of the SSPs. The traffic mix is such that
the load of SSP1, SSP2 and SSP3 are over the defined threshold, while the SCP is overloaded (due
primarily to televoting requests). This is shown in Figure 6.2, where the load applied to each
element is expressed relative to the capacity of that element. Note that this constitutes a general

overload (i.e. multiple physical elements overloaded simultaneously).

Offered Traffic t0 System (Erlangs)

SSPI
S5pP2
SSP3
ssp4
ssps
SCP

v<>»0O0O0 o

Fig. 6.2: Offered traffic for stationary case

The resultant SCP load for each of the four applied strategies is shown in Figure 6.3. Here it may
be seen that only Window reacts quickly enough to the instantaneous onset of overload to ensure
that the SCP load never exceeds the threshold. However, as the Window timer duration is fixed
and less than the average response delay for televoting, Window tends to overprotect the SCP,
maintaining the load at a mean of 0.73, resulting in the unnecessary rejection of many calls. All
other strategies, on the other hand, allow the SCP to overload and the SCP queue to build up
during the first monitoring interval of the simulation. Static CCC/CG never recovers from this,
primarily due to the fact that it does not account for the fact that televoting calls require more
processing at the SCP than do freephone calls - in fact, the CCC algorithm at the SCP only detects

that a small overload has taken place and the resultant minimal throttles put in place at Q2 of each

148

Chapter 6 Comparison between IN Congestion Control Strategies

SSP are ineffectual. Dynamic CCC/CG and optimisation, however, do estimate the overload level
correctly at the end of the first monitoring interval, and immediately put throttles in place that,
over the course of the next few intervals, reduce the SCP queue length and load to the defined

threshold. Both strategies then maintain the load at this threshold, with optimisation experiencing

smaller oscillations than dynamic CCC/CG.

Dynamic SCP Load

o0 static cco/cg
O WINDOW

O Bynmio CCC/CG
A optimisation

time (see) (XIO0QQ)
Fig. 6.3: SCP load for stationary case

The corresponding load of SSP1 is shown in Figure 6.4.

SSP1 Load

o static CCC/CG
O WINDOW

O Dynamic CCC/CG
A Optimisation

time (sec) (x10000)

Fig. 6.4: SSP1 load for stationary case

Note that the Window-based strategy provides the worst performance in the SSP. The behaviour of
static CCC/CG, while not acceptable, is better than Window. This may at first seem incongruous,
as both strategies use exactly the same static CCC/CG algorithm for SSP protection. However, the

149

Chapter 6 Comparison between IN Congestion Control Strategies

different locations of the SCP throttles account for the different behaviour in the SSP. Window is
located at the output of the SSP (i.e. at the ssf) and therefore all calls receive full processing at Q2
before being throttled by Window. Static CCC/CG places its SCP throttles at Q2, with the result
that some calls are rejected here (with rejection having lower processing overheads than
acceptance), thus keeping Q2 load lower than that for Window. However, in both cases, the SSP
static CCC/CG algorithm fails to detect SSP overload as it does not differentiate between IN and
non-IN calls (and their different load requirements at Q2). The result, therefore, for both strategies
is that the SSP remains in a permanent state of overload. Dynamic CCC/CG and optimisation, on
the other hand, detect overload at both SCP and SSP at the end of the first monitoring interval, and
put the correct throttles in place to protect both elements. The result of this is that SSP load (after
the initial overload due to the monitoring delay associated with both strategies) remains well below

the SSP threshold.

Through observation of the SCP and SSP loads, it may be concluded that neither Window nor
static CCC/CG perform well at protecting all IN physical elements - Window protects the SCP but
fails to protect the SSPs, while static CCC/CG allows all elements to overload. Only dynamic
CCC/CG and optimisation succeed in protecting the SCP and SSPs simultaneously from overload.
In fact, both strategies maintain the mean loads of the various elements at approximately the same
value. For effectiveness, therefore, the strategies are equivalent. Regarding speed of convergence,
dynamic CCC/CG reacts slightly faster than optimisation - this is because, as described in Chapter
4, Section 4.3.3, CG reacts faster to the onset of congestion than PT (the throttle used by
optimisation). Regarding operation of the algorithms, Figure 6.5 shows that, during the initial SSP
overload, dynamic CCC/CG rejects all calls equally at first (at QI), until SCP throttles become
effective (at Q2) and it becomes unnecessary to reject non-IN calls, from which point only IN
requests are throttled (equally and at Q2). For optimisation, at no point are non-IN calls rejected -
the optimisation algorithms balance the states of the SCP and SSP and recognises that, by putting
throttles on IN requests at Q2 to protect the SCP, the SSP overload situation will be automatically
relieved. The result is that, at the start, televoting requests (the cause of the overload) are rejected
at Q2 and then the acceptance rates of televoting, freephone and international freephone decrease
according to their relative importance. The result is two-fold. Firstly, due to selective throttling,
optimisation accepts more calls (i.e. calls with low load requirements such as non-IN, freephone
and international freephone) and secondly, the overall revenue gained during the simulation is
considerably greater for optimisation, as may be viewed in Figure 6.6 (showing revenue gained per

second, in Irish pounds).

150

Chapter 6 Comparison between IN Congestion Control Strategies

Dynamic CCC/CG Ar.ccptnnccs Optimisation Acccptanccs
o international Freephone ointernational rreephone
0 Televoting 0 Televoting
O Freephone O Freephone
A Local A Local
V International V international
1 t=a"if~a 1
0.9 0.9
0.8 0.8
> H igaptff o7
o.e 0.6
0.5 0.5
0.4 0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 0
0 0.25 0.5 0.75 1
time (sec) (xI0000) time (sec) (xXIOO00)

Fig. 6.5: SSP1 acceptances for stationary case

SSP1 Revenue

o Dynamic CCC/CG
O Optimisation

time (sec) (xIOO0O0)

Fig. 6.6: SSP1 revenue for stationary case

To conclude, even in the stationary case, the behaviour of static CCC/CG and Window are
unacceptable, in that they are incapable of maintaining the load of all elements in the IN at the
threshold during overload. This is primarily due to the fact that both strategies are based on the use
of fixed parameters - static CCC/CG underprotects its resources when overload is caused by
requests with greater load requirements (and overprotects them when overload is caused by
requests with low load requirements), while Window overprotects its resources when subjected to
requests with high processing requirements (and therefore greater delays). Optimisation and
dynamic CCC/CG provide much better results, keeping all elements at their threshold. However,
optimisation has the advantages of providing higher call acceptance rates (during SCP overload)

and network revenues.

Due to the unacceptable behaviour of static CCC/CG even under constant arrival rates to the
system, it will no longer be considered in this chapter. Window, however, does have the advantage
of speed of reaction and is effective at protecting the SCP, so its behaviour under different load
conditions will continued to be examined and compared to the dynamic CCC/CG and optimisation

strategies.

151

Chapter 6 Comparison between IN Congestion Control Strategies

6.3.2 Scenario 2: SCP Overload

In order to achieve SCP overload, we vary the offered load and traffic mix to each SSP by
increasing the arrival rates of televoting and freephone requests at all SSPs linearly as shown in
Figure 6.7 for SSP1. The resultant total arrival rate to each element in the network is shown in
Figure 6.8 - note that the offered traffic at each element is expressed in terms of the capacity of
that element. Note also that, while the offered traffic to a number of SSPs is, at various stages,
greater than the capacity of those SSPs, the SCP is the first element to become overloaded.
Therefore, if the congestion control strategies respond correctly and quickly to the SCP overload,

the rejection of IN calls at the SSPs should ensure that no SSP ever experiences congestion.

Offered Traffic (in Erlangs)

o SSP1
<> SSP2
0O SSF3
A sspa
V ssps

> SCP

Fig. 6.8: Total offered traffic to all IN physical elements

152

Chapter 6 Comparison between IN Congestion Control Strategies

SCP Load

O WINDOW
~Dynamic CCC/CG
O Optimisation

time (sec) (x10000)

Fig. 6.9: SCP load for SCP overload

Figure 6.9 depicts the resultant SCP load for the Window, dynamic CCC/CG and optimisation
strategies. Examining Window first, it may be seen that this strategy initially overprotects the SCP
- this is due to the fact that televoting delays may be greater than the Window timer duration even
when no overload exists. Therefore, Window starts to reject calls before the SCP load reaches 0.8
SCP Erlangs. However, the SCP load does eventually converge to a constant value of

approximately 0.835 and remains there until the applied load becomes less than 1 SCP Erlang.

The behaviour of dynamic CCC/CG and optimisation, on the other hand, is quite different. Both
strategies do not put controls in place until the SCP threshold is reached and therefore, there is no
unnecessary rejection of calls. After this point, the SCP load is maintained at an average of 0.815
Erlangs until the applied traffic rate reaches its peak. The reason neither strategy maintains the
load at exactly o.g is that, each time each strategy evaluates the overload situation, it does so based
on existing traffic measurements and therefore puts corresponding throttles in place to maintain the
load at exactly 0.8. Therefore, when the applied traffic increases during the next monitoring
interval, the throttles accept more calls than had been expected and the resultant load is slightly
greater than the threshold. A similar situation arises when the applied traffic levels are decreasing
- neither strategy predicts the downward trend in traffic and therefore causes too many calls to be

rejected, resulting in mean SCP loads of approximately 0.785.

The SSP Q2 loads for the same scenario are shown in Figure 6.10. Note that Window fails to
protect the SSP from overload - this is for two reasons, the first being that the CCC/CG strategy at
Q1 fails to detect overload due to IN traffic, as it does not take into account the greater load

requirements of IN calls at Q2, while the second reason is that Window does not reject any IN

153

Chapter 6 Comparison between IN Congestion Control Strategies

calls until after they have completed processing at Q2, so that much SSP resource is applied to
processing calls which are then rejected by Window at the ssf The behaviour of dynamic CCC/CG
and optimisation, however, is as expected - in protecting the SCP by throttling calls at Q2, the SSP

is implicitly protected.

SSP1 Load

O WINDOW
< Dynamic CCC/CG
D Optimisation
1.1
1
0.9
0.8
0.7
0.6
0.5

0.4
0 0.25 0.5 0.75 1

time (sec) (xI10000)

Fig. 6.10: SSP1 load for SCP overload

Note however, that the SSP load is consistently higher for optimisation than it is for dynamic
CCC/CG. The reason for this may be observed in Figure 6.11, where it is shown that dynamic
CCC/CG applies the same throttles to all IN call types, resulting in similar proportions of each IN
call type being accepted. Optimisation, on the other hand, rejects call types selectively based on
their weights, and by extension, their SCP load requirements. Therefore, televoting calls, which
have the greatest SCP load requirement, are more strictly throttled than they are by dynamic
CCC/CG. This means that more freephone and international freephone calls are accepted at Q2,
resulting both in greater Q2 loads (and throughputs) and in greater overall numbers of accepted

calls - optimisation accepts 5.35% more of the offered calls than does dynamic CCC/CG.

Fig. 6.11: Acceptances at SSP1 for SCP overload

154

Chapter 6 Comparison between IN Congestion Control Strategies

There are two main implications of the selective throttling of optimisation. Figure 6.12 shows the
revenue gained from the successfully completed calls at SSP1 —note that SSP1 revenue (and
therefore network revenue) provided by optimisation is far greater than that provided by dynamic
CCC/CG - this is because more calls (and calls of greater value) are consistently accepted by
optimisation. Figure 6.13 shows the post-dialling delays experienced by various service types in
the network. Note that, in all cases, dynamic CCC/CG delays are slightly less than optimisation
delays. This is a direct result of the fact that optimisation causes the acceptance of more calls,
resulting in slightly longer queue lengths and delays. Note however, that all delays experienced by

services subjected to optimisation control are still well within acceptable bounds, as defined by

[E.721],

SSP1 Revenue

o Dynamic CCC/CG
O Opt.misa.tion

Fig. 6.12: Revenue of SSP1 for SCP overload

Service Delays

o International Freephone - Dynamic CCC/CG
< - optimisation
O Televoting - Dynamic CCC/CG

A - Optimisation
V Local - Dynamic CCC/CG
t> - Optimistion

Fig. 6.13: Service delays at SSP1 for SCP overload

155

Chapter 6 Comparison between IN Congestion Control Strategies

To summarise the results for this scenario, Window succeeds very well at protecting the SCP, but
fails to protect the SSPs, while both dynamic CCC/CG and optimisation are equally efficient at
protecting all elements at all times. However, optimisation, through selective throttling, manages

to accept both more calls overall and more calls of greater worth, resulting in greater overall IN

throughput and network revenue.

6.3.3 Scenario 3: SSP Overload

Here, an overload of SSP1is invoked by increasing the arrival rates of international and local calls
linearly as shown in Figure 6.14. The resultant total arrival rate to each element in the network is

shown in Figure 6.15 - note that the offered traffic at each element is expressed in terms of the

capacity ofthat element.

Offered Traffic (in Erlang)

o sspl
<> SSP2
O SSP3
A ssp4
V ssps
t> SCP

time (sec) (xlIOO0O)

Fig. 6.15: Avrival rates for all IN physical elements

156

Chapter 6 Comparison between IN Congestion Control Strategies

The resultant SSP1 Q2 load for each of the test strategies under this applied traffic is shown in
Figure 6.16. Note first that the SSP’s CCC/CG part of the Window strategy considerably
overprotects that element. This is because this strategy bases its estimation of overload on the
number of arriving calls and does not take into account the fact that the large number of non-IN
arrivals have low SSP processing requirements. Therefore the throttles put in place by the
Window-based strategy are excessively strict, with the result that the load of SSP1 Q2 is very low.
Both dynamic CCC/CG and optimisation, on the other hand, put the correct throttles in place on
detection of overload and therefore, after a period of convergence, keep the load at approximately

0.8 - again, with optimisation experiencing smaller oscillations than dynamic CCC/CG.

5SP1 Load

O WINDOW
O Dynamic CCCICG
0O optimisation

Fig. 6.16: SSP1 load for SSP overload

The resultant SCP load is shown in Figure 6.17 below. The load values for each of the strategies
are low, mostly due to the low number of IN arrivals at the system and partially due to the
rejection of calls at SSP1, and all traces are quite similar to each other. However, dynamic
CCC/CG consistently provides the highest mean load values, with Window providing lower mean
values and optimisation producing the lowest. The reason for this is similar to that described for
the SCP overload scenario described in the previous section - i.e. dynamic CCC/CG applies the
same throttles to all call types at Q1 of the SSP, resulting in similar proportions of each call type
being accepted. Optimisation, on the other hand, rejects call types at Q2 selectively based on their
weights. Therefore, as shown in Figure 6.18, more freephone, local and televoting calls (i.e. those
calls with low weights) are throttled by optimisation than are by dynamic CCC/CG, while fewer
international and international freephone are rejected. The result of this selective throttling is that

optimisation, while producing the same SSP load levels as dynamic CCC/CG, gives consistently

157

Chapter 6

Comparison between IN Congestion Control Strategies

lower SCP loads (primarily due to the lower televoting acceptance rate, as televoting has the

greatest SCP load requirement).

o

O WINDOW
O Dynamic CCC/CG
O Optimisation

Fig. 6.17:

Dynamic CCC/CG Acceptances

international Freephone

0 Televoting

O Freephone

A
\%

1.1

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
ni

Local

International

0.25 0.5 0.75

1

time (sec) (xIOOOO)

SCP Load

time (sec) (xIOO0O0)

SCP load for SSP overload

Optinsalon Acceptances

o international Freephone
O Televotingr

O Freephone

A Local

V international

0.5 0.75 1
time (sec) (xIOO00)

Fig. 6.18: SSP1 acceptances for SSP overload

The above graphs show that optimisation and dynamic CCC/CG are equally effective at protecting

their resources, and far superior to Window. However, as may be seen in Figure 6.19, dynamic

CCC/CG actually provides much greater SSP throughput than optimisation during SSP overload.
The reason for this is that dynamic CCC/CG rejects calls at Q1 upon detection of SSP overload,
while optimisation does not reject any calls until differentiation between call types becomes
possible - i.e. at Q2. This means that, for optimisation, much SSP capacity is spent accepting calls
at Q1 that are then rejected at Q2, whereas dynamic CCC/CG, having rejected all calls at QI, uses
all Q2 load in the acceptance of calls. The result is that dynamic CCC/CG provides much greater

158

Chapter 6 Comparison between IN Congestion Control Strategies

SSP throughput - in terms of call acceptance rates, dynamic CCC/CG accepts 4.9% more of the
offered calls during SSP overload than does optimisation (this figure may seem lower than
expected, but may be accounted for by the fact that dynamic CCC/CG does not take load
requirements into account when accepting call requests and therefore processes more (high load)

IN calls than does optimisation).

SSP102 Throughput

o Dynamic CCC/CG
O optimisation

0 0.25 0.5 0.75 1
time (sec) (xIQQOO)

Fig. 6.19: SSP1 throughput for SSP overload

The conclusion ofthis is that both dynamic CCC/CG and optimisation are more effective strategies
for SSP protection than Window - further, dynamic CCC/CG is more efficient for SSP protection
than optimisation, as it provides equivalent protection but accepts far more calls. The only
advantage of optimisation in this scenario is that even when its throughput is so much lower than
that provided by dynamic CCC/CG, the fact that optimisation prioritises those calls with the
greatest revenue means that this strategy still provides better revenue gain than either of the other
two strategies, as may be seen in Figure 6.20.
SSP1 Revenue
O VIHDOW

<> Dynamic CCC/CG
O Optimisation

time (sec) (xIOO0O0)

Fig. 6.20: SSP1 revenue for SSP overload

159

Chapter 6 Comparison between IN Congestion Control Strategies

6.3.4 Scenario 4: General Overload

Here, overloads ofthe SCP and SSP1 are invoked by increasing the arrival rates of televoting at all
SSPs linearly and the arrival rates at SSP1 for televoting, international and local calls linearly at
different times, as shown in Figure 6.21. The resultant total arrival rate to each element in the
network is shown in Figure 6.22 - note that the offered traffic at each element is expressed in

terms of the capacity of that element and that the SCP becomes overloaded prior to SSP1.

Arrival Rates la System (Erlangs)

o SSPI
O ssp2
O SsSP3
A ssp4
V sspb
> SCP

0 0.25 0.5 0.75 1
time (sec) (xIOOOO)

Fig. 6.22: Arrival rates for all IN physical elements

The resultant SCP load for each of the strategies being compared is shown in Figure 6.23, while
the load of SSP1 Q2 is shown in Figure 6.24. By viewing both graphs, it may be observed that for
the first part of the simulation, when correct response to SCP overload should be sufficient to

protect the SSPs, Window still allows SSP1 to become and remain overloaded (because so much

160

Chapter 6 Comparison between IN Congestion Control Strategies

SSP resource must be allocated to processing calls to the point where Window may throttle them -
i.e. at the output of SSP1). At the same time, Window initially overprotects the SCP, and then
gradually brings the SCP load to converge to a mean of approximately 0.8, where it remains until
the SSP part of the Window strategy begins to respond to overload due to local calls at SSP1. This
results in the rejection of an excessive numbers of calls (in particular televoting and local) at SSP1
Ql, thus bringing the mean SCP load down to about 0.76.

SCP Load

O WINDOW
O Dynamic ccc/cg
O Optimisation

0 0.25 0.5 0.75 1
time (sec) (xIQOQO)

Fig. 6.23: SCP load for general overload

SSP1 Load

O WINDOW
O Dynamio ccc/ cg
O Optimisation

Fig. 6.24: SSP1 load for general overload

The operation of dynamic CCC/CG and optimisation at the SCP, on the other hand, is quite
different. After an initial monitoring delay they both converge to approximately 0.81 SCP Erlangs
(not exactly 0.8, because traffic arrival rates are increasing) until traffic rates begin to decrease, at
which stage both strategies cause the SCP load to converge to a mean of approximately 0.785. This
behaviour is identical to that portrayed in section 6.3.2 for the SCP overload scenario. Note that,

unlike Window, the SCP load is not affected by the state of the SSP when dynamic CCC/CG or

161

Chapter 6 Comparison between IN Congestion Control Strategies

optimisation is used. The reason for this may be seen in Figures 6.24 and 6.25. The SSP load
curves show that, during the early stage of the simulation, the correct response by dynamic
CCC/CG and optimisation to the SCP overload situation prevents SSP overload. Optimisation
achieves this by throttling televoting calls only, while dynamic CCC/CG throttles all IN call types.
Then later, as the local call arrival rate increases to the point where SCP congestion controls are
insufficient to protect the SSP, optimisation balances the current states of both the SCP and SSP to
devise the required rejection rates to protect both elements and therefore begins to reject local and
freephone calls. Dynamic CCC/CG reacts differently - it balances the effects of the SCP throttles
(which have been in place at Q2 during the previous monitoring interval) on Q2 load with the
predicted effect of the total number of arriving calls and gradually increases the throttles on all call
types at SSP1 Q1 accordingly (i.e. dynamic CCC/CG balances the current SSP state with the
previous SCP state). Therefore, using different methods, both dynamic CCC/CG and optimisation
put the correct controls in place to protect the SSP, without affecting the SCP load.

Dynamic CCCJCG Acceptances Optimisation Acceptances

o International Freephone international Freephone

O Televoting Televoting

O Freephone Freephone

o
[¢]
[m]

A Local A Local
\%

V International international

0.25 0.5 0.75 1 0.5 0.75 1
tine (sec) (xIOOOO0) time (sec) (xIOOOO)

Fig. 6.25: SSP1 acceptances for general overload

Note that, as would be expected from sections 6.3.2 and 6.3.3 and as is shown in Figure 6.26, the
SSP throughput is about 0.07 Erlangs greater for optimisation when the SCP is more overloaded
than the SSP (and optimisation accepts 5.5% more calls than does dynamic CCC/CG), but in the
inverse scenario, the fact that optimisation must expend extra resources accepting all calls in Q1
before being able to throttle them in Q2 means that the throughput of dynamic CCC/CG is 0.2
Erlangs greater than that for optimisation (and dynamic CCC/CG accepts 8.3% more calls).

162

Chapter 6 Comparison between IN Congestion Control Strategies

SSP1 Throughput

o Dynamic CCC/ICG
<0 Optimisation

0 0.25 0.5 0.75 1
time (sec) (x10GOO)

Fig. 6.26: SSP1 throughput for general overload

As a final comment on the general overload scenario, the revenue gained by SSP1 over the course
of the simulation is shown for all three strategies in Figure 6.27. Note that Window is artificially
high during the period of SCP overload - this is due to the fact that the SSP is underprotected at
this time and is therefore accepting an unsafe number of calls. Other than this, as would be

expected, optimisation provides the greatest revenue gains.

SSP1 Revenue

O WINDOW
O Dynamic CCC/CG
O Optimisation

Fig. 6.27: SSP1 revenue for general overload

To summarise the results for general overload, both optimisation and dynamic CCC/CG protect all
elements at all times, whereas Window fails to protect the SSP during SCP overload and
overprotects it during SSP overload. Also, optimisation provides the best efficiency levels when
the SCP is more overloaded than the SSP, while dynamic CCC/CG provides premium performance
when the SSP overload exceeds that of the SCP.

163

Chapter 6 Comparison between IN Congestion Control Strategies

6.3.5 Scenario 5: Overload due to Bursty Traffic

For this scenario, a 1000 second burst of televoting calls is applied to all SSPs every 2000 seconds.
This causes simultaneous overload of the SCP and all SSPs, as shown in Figure 6.28, where the

offered traffic to each physical element is expressed in terms of the capacity of that element.

Arrival Rates to System (Erlangs)

o SSPI
<SP
O 5SP3
A ssp4
V ssps
t> SCP

Fig. 6.28: Arrival rates for all IN physical elements

The resultant SCP load for each congestion control strategy is shown in Figure 6.29. Note that
Window provides the best result here - it responds immediately both to the onset and termination
of each traffic burst. For the other two strategies, the monitoring delay before congestion is
detected results in the SCP load climbing to 1.0 Erlang and the SCP queue length growing to
approximately 3000. When detection occurs, both dynamic CCC/CG and optimisation put the
correct SCP throttles in place at Q2 of each SSP to alleviate the overload situation, but the load of
the SCP does not descend to 0.8 for a few monitoring intervals, as the excess of calls which were
gueued at the SCP during the original monitoring delay must first be processed. In a similar
manner, there is a delay of a maximum of one monitoring interval before the cessation of overload
is detected by either dynamic CCC/CG or optimisation, during which an excess of calls are
rejected. However, in this instance both strategies recover very quickly (as there is no SCP queue
build-up) and put the correct controls in place immediately on detection of the change in the

overload situation.

164

Chapter 6 Comparison between IN Congestion Control Strategies

SCP Load

O WINDOW
O Dynamic cccl cg
O Optimisation

Fig. 6.29: SCP load for bursty overload

SSP1 Load

O WINDOW
O Dynamic CCC/CG
P optimisation

Fig. 6.30: SSP1 load for bursty overload

The behaviour of each strategy at the SSPs is very different, as may be seen in Figure 6.30. The
Window-based strategy, as per usual, fails to protect SSP Q2 from overload for two reasons -
firstly, as it fails to place emphasis on televoting load requirements, it does not calculate the SSP
overload level correctly and puts insufficient throttles in place at Q1 and secondly, because it does
not reject any traffic at Q2. Therefore, the load of Q2 for this strategy remains above 1.0 Erlang

and its length rises to approximately 2000. On cessation of the traffic burst, Window again detects

Chapter 6 Comparison between IN Congestion Control Strategies

the alleviation of the overload situation immediately, but experiences a small delay in reducing the
SSP load, as it must complete processing of all calls that built up in the buffer of Q2 during the

overload.

The other strategies, after the usual monitoring delay, detect overload and respond accordingly.
However, unlike previous scenarios, the responses of dynamic CCC/CG and optimisation are not
similar when both SCP and SSPs overload simultaneously. Optimisation, as a global strategy,
takes the state of both the SCP and SSP into account before putting throttles in place at SSP Q2. It
realises, therefore, that putting throttles in place to alleviate the SCP overload will also be
sufficient to alleviate the SSP overload and therefore the SSP load level converges very quickly
and only televoting calls are rejected in Q2 (as shown in Figure 6.31). Dynamic CCC/CG, on the
other hand, seeks to protect each element independently. Therefore, the SCP detection algorithm
puts controls in place at SSP Q2 to protect the SCP, while the SSP detection algorithm (without
referring to the SCP throttles being put in place simultaneously) puts a throttle at Q1. The resulting
conflict between controls means that an excess of calls are rejected during the following interval
and oscillations occur in the load for the duration of the burst, while both SCP and SSP controls
attempt to regulate the input traffic. On cessation of the traffic burst, both dynamic CCC/CG and
optimisation reject calls unnecessarily for the remaining duration of that monitoring interval, after

which time, both respond correctly by removing all controls.

Fig. 6.31: SSP1 acceptances for bursty overload

Regarding call acceptances, optimisation accepts 5.1% more of the offered calls than does
dynamic CCC/CG and 5.0% more calls than Window. There are two reasons for this -
optimisation does not reject any non-IN calls and also, by rejecting only televoting, allows more
low load-requiring IN calls to be processed at the SCP. Partially due to the greater number of
acceptances, but also due to the fact that the types of calls accepted by optimisation are worth more

financially, this strategy provides greater revenue gains than both other strategies.

166

Chapter 6 Comparison between IN Congestion Control Strategies

SSP1 Revenue

O WINDOW
O Dynamic CCC/CG

O optimisation

Fig. 6.32: SSP1 revenue for bursty overload

A final comparison that may be made between the strategies for this scenario is between service
delays, as shown in Figure 6.33. Note that all IN service delays are excessive, as are non-IN delays
for Window. For both dynamic CCC/CG and optimisation, these delays are as a result of delays at
the SCP when the queue length there is large. Window, on the other hand, causes all services (IN
and non-IN) to experience great delays at Q2. The only acceptable delay results are those

experienced by non-IN calls subject to dynamic CCC/CG and optimisation.

Service Delays

o Televoting - window

0] - Dynamic CCC/CG
u] - Optimisation
A Local - wINDOW

Vv - Dynamic CCC/CG

t> - Optimisation

Fig. 6.33: SSP1 service delays for bursty overload

To summarise the results of this scenario, none of the strategies provide acceptable results in all
areas. Window seems to provide the best overall results in that it reacts immediately to the onset of
a burst and therefore protects the SCP. However, it fails to protect the SSP from overload. Both

167

Chapter 6 Comparison between IN Congestion Control Strategies

dynamic CCC/CG and optimisation fail to protect the SCP from the onset of a burst, but protect
the SSP adequately (optimisation providing better results). Therefore all strategies allow overload

to occur at some point in the network, resulting in unacceptable post-dialling delays.

The only possible conclusion, therefore, is that any strategy containing a reactive component (i.e. a
method or algorithm which reacts to an overload which is detected based on monitoring the
variation of some value over an interval) cannot protect against an instantaneous dramatic increase
in input traffic and that the only way to ensure against an overload of this type is to provide some
sort of active strategy to act as an instantaneous cut-off point at the input to each physical element
in the network. With just such a strategy in place to protect against the unlikely event of
instantaneous overload, other reactive strategies and algorithms may then be used to intelligently

protect the switch for all other input traffic scenarios.

6.4 Summary & Conclusions

The salient features of each of the strategies are outlined in Table 6.1 below, where a V denotes

acceptable behaviour and (*) denotes best behaviour for each category.

Category Classic Window Dynamic Optimisation
CCCICG CCCICG
Relative processing requirements 3 9 1 60
Effectiveness of SCP protection for V <{* A*)
all traffic mixes and loads
Effectiveness of SSP protection for V A*)
all traffic mixes and loads
Throughput V V
(*) for SSP (*) for SCP
overload overload
Revenue gain Vv A¥)
Response to instantaneous overload (*)
Speed of convergence V(*) v M)
Scalability V \%
Flexibility A*)
Fairness Subscriber Subscriber
Service

Table 6.1: Summary of Features for IN Congestion Control Strategies

168

Chapter 6 Comparison between IN Congestion Control Strategies

To summarise these results, classic CCC/CG was found to have the worst overall response because
it is based on the use of fixed call count and CG parameters and there are a number of issues
associated with this use of fixed parameters. Firstly, call count and CG parameters are dependent
on the size of resource at which they are located and must therefore be evaluated each time the
algorithm is put in place at a different size resource - this is a non-trivial task. Secondly, it is
impossible to define optimal call count parameters which work well over all possible input traffic
mixes, as defining the parameters of necessity pre-supposes either that all calls require the same
amount of processing or that the traffic mix does not vary, which is never the case. In other words,
the problems with classic CCC/CG are basically an issue of scalability - the algorithm does not

scale, either in terms ofresource size or traffic mix.

A similar issue of scalability applies to the Window-based strategy. The Window timer duration
and SSP CCC/CG algorithm are both based on the use of fixed parameters and cannot therefore
react correctly for all traffic mix variations. This is proved in the section 6.3, where Window tends
to overprotect the SCP when the bulk of applied traffic has high SCP processing requirements (and
therefore greater average response delays than the Window timer duration) and underprotect it
when the overload is caused by calls with low processing requirements and mean delays shorter
than the Window timer duration. The effects of the SSP CCC/CG part of the strategy are even
more noticeable - this algorithm either completely fails to protect the SSP or overprotects it
considerably. In fact, the only advantage of using a Window-based strategy is that, due to its active
nature, it provides the remote physical element that it is protecting with resistance to instantaneous
dramatic increases in load levels. However, as this strategy is quite processor-hungry (requiring
approximately three times more processing resource than static CCC/CG, as described in Chapter
4, section 4.3.4.4), a simple cut-off mechanism on the input buffer of each physical element would
provide the same benefit with fewer processor requirements and could also be used in conjunction

with reactive strategies, which provide consistently better results for all other traffic variations.

The dynamic CCC/CG algorithm is scalable. The only parameters that need to be set to target it to
a particular resource are the capacity of that resource and the relative load requirements of each
service type using it. In terms of monitoring overheads, it requires that the arrival rates for all calls
types at the SCP must be monitored separately. Given this information, it can predict the overall
impact of new arrivals on the resource load and calculate the appropriate throttles accordingly. As
such, dynamic CCC/CG has very good performance during all overload levels and all traffic
mixes. In fact, it provides equally good protection for all physical elements as the more complex
optimisation strategy and is far superior to the classic CCC/CG and Window strategies. In fact,
dynamic CCC/CG is more efficient than all other strategies in two ways. Firstly, the algorithms

themselves actually have lower processing overheads than classic CCC/CG (by a factor of three)

169

Chapter 6 Comparison between IN Congestion Control Strategies

and optimisation (by a factor of sixty (for the LP_SOLVE software)) and secondly, as dynamic
CCCI/CG rejects calls efficiently at Q1 during SSP overload (as opposed to optimisation, which
does not reject any calls until Q2), it provides greater SSP (and therefore IN) throughput for this
scenario. Note also that dynamic CCC/CG exhibits subscriber fairness in that the gap values
associated with the CG throttles in the SSPs are evaluated from the percent thinning coefficients
sent to them by the SCP - this combines the subscriber fairness of PT with the efficiency of CG
(as described in Chapter 4). The only desirable characteristic not demonstrated by dynamic
CCC/CG is flexibility - the algorithm does not easily lend itself to being extended to include

selective throttling of service types based on e.g. priorities or focussed overload.

The optimisation-based algorithm also provides excellent results. It has all the advantages of
dynamic CCC/CG in terms of scalability (for both resource targeting and handling of variations in
traffic mix) and subscriber fairness. In terms of monitoring overheads, it requires that the arrival
rates for all calls types at both the SCP and SSPs must be monitored separately. However, it does
have a number of other advantages not associated with dynamic CCC/CG. The strategy is innately
flexible, and can be extended to encompass other requirements by either re-specification of call
weights or by the inclusion of other constraints in the maximisation algorithm. Service fairness, as
well as subscriber fairness, is always preserved (within the bounds of the priority system).
Priorities allocated to service types are always honoured, even during congestion. The
interoperable nature of the SCP and SSP algorithms in the strategy also ensures premium IN
performance during SCP overload, and revenue in the IN is maximised at all times, without
compromising fairness or user delays. All these advantages, however, do not come without a price.
The first negative aspect of the optimisation strategy is that its processing overheads are so much

greater than for dynamic CCC/CG. However, two points may be raised with regard to this:

« ifthe optimisation overheads are related to the processing requirements of service requests on
the SCP, using the optimisation strategy equates to the loss of only one freephone call per
monitoring interval and the resultant gains in IN throughputs and revenue achieved by using
the optimisation strategy are sufficiently high during SCP overload to render this overhead
negligible,

e the LP SOLVE optimisation software used in the simulations is a two-phase simplex
algorithm designed to optimise much more complex LPPs than the single-phase optimisation
strategy investigated here. Therefore, if the optimisation-based congestion control software
were to be streamlined (as would be required if it were to be used in a real system), processing

overheads would be likely to be considerably lower.

The second negative aspect of the optimisation strategy is more considerable and relates to the

operation of optimisation during SSP overload. During this scenario, the processing overheads

Chapter 6 Comparison between IN Congestion Control Strategies

associated with accepting all calls at Q1 (so that they may be differentiated at Q2) are
considerable, and so this aspect of the optimisation strategy is not satisfactory. The solution would
seem to be to merge the SSP optimisation algorithm with aspects of the SSP dynamic CCC/CG
algorithm to produce a hybrid that takes the current state of both Q2 and the SCP into account
when devising the global throttles to be put in place on all traffic at QI. In this manner, the

operation of optimisation would then be either equal or superior to all other strategies at all times.

To conclude, the effectiveness of both the optimisation and dynamic CCC/CG strategies are
equivalent and far superior to either Window or classic CCC/CG. Both strategies also exhibit
scalability and subscriber fairness (unlike Window or classic CCC/CG) and dynamic CCC/CG is
even more efficient than classic CCC/CG, in terms of requiring lower processing overheads to
execute. Optimisation, on the other hand, provides more flexibility, service fairness and better
revenue than both classic and dynamic CCC/CG, but at the expense of significantly greater

processing overheads.

171

Chapter 7

Conclusions & Recommendations

Chapter 7 Conclusions & Recommendations

7.1 Conclusions of this Work

The primary conclusion of this work relates to the types of congestion control strategies that
should be used for IN protection. Static strategies based on the use of tables of fixed parameters
(e.g. CCC, LMC, CG and Window) should not be used, as they are incapable of protecting the IN
under varying loads and traffic mixes and therefore fail to meet even the basic requirements on a
congestion control strategy —this was proved in Chapters 4 and 6 of this thesis. Instead, the
application of scalable dynamic strategies is recommended, as they have a number of advantages,

including:

» Their scalability makes them extremely easy and fast to target to a particular resource,

. They respond correctly to any variations in traffic load,

» They can handle any variations in traffic mix - i.e. they can take into account the fact that
different request types have different processing requirements at different resources in the

network and respond accordingly.

In other words, the use of dynamic detection methods in conjunction with dynamic throttles means
that, not only is the system scalable, but also the overload controls put in place are, at any time, for
any traffic mix, exactly appropriate for the level of overload. Two such strategies are presented in
this work - the revenue optimisation strategy described in Chapter 5 and the dynamic CCC/CG
strategy introduced in Chapter 6. Both of these strategies provided far superior results, in terms of
both effectiveness and efficiency, than any of the strategies most commonly used in industry

today.

The optimisation strategy, as well as being dynamic, has the added advantage of being a global IN
strategy, in that it takes the state of both the SCP and SSP into account when determining the
overload level in the network, and puts the appropriate controls in place to protect both PEs. This
means that when the SCP and SSPs of an IN are suffering from congestion, while other strategies
attempt to protect each PE independently and as a result reject too many calls overall, optimisation
ensures optimum IN performance at all times. Optimisation is also very flexible and can
selectively throttle different call types based on, for example, their relative importance (as defined
by the IN service provider), their revenue, their applied load and their different load requirements
at both the SCP and SSPs. However, this extra level of intelligence does not come without a price
- optimisation has considerably more processing overheads than does dynamic CCC/CG, both in
terms of the footprint of the algorithm and the fact that all calls must be processed in the SSP to the

point where differentiation between call types, and therefore selective throttling, is possible.

173

Chapter 7 Conclusions & Recommendations

We therefore recommend that in Intelligent Networks where SCP overload is more usual than SSP
overload or where priorities, service fairness or revenue are an issue, optimisation should be used
as the benefits of its use here far outweigh its greater processing overheads, while in networks

where all calls are to be treated equally, dynamic CCC/CG should be the preferred strategy.

A number of other conclusions may also be presented, based on observations made during the
course of this research. The first of these is that it is absolutely critical that when a model is
developed to investigate congestion control, it should reflect the real network architecture,
functionality and its applied traffic as much as possible, in order to ensure that the research carried
out on it is valid and the results dependable. Chapter 2 described a significant amount of research
into the applicability of parameter-based congestion control algorithms in the IN arena. The
results of this research were generally positive, in that most of the strategies were perceived to
succeed at protecting the IN from overload. However, there was a fundamental flaw in much of
this research —most of the models used were very much over-simplified and in general, the
behaviour ofthe strategies was only investigated under an applied load of one traffic type (or when
more than one type was used, it was generally assumed that all types of requests had the same load
requirements at the SCP). As a result, the fact that parameter-based strategies are incapable of
dealing with different traffic types with different load requirements was not recognised. The model
presented in Chapter 4 reflected the architecture of the IN in enough detail (as well as the
information flows between PEs for a number of different services) that the limitations of these
strategies became immediately apparent. Therefore, it is highly recommended that, to ensure the
validity of a body of research, a sufficiently detailed model of the target network be developed -
this has a greater cost, in terms of development time, but ensures that the results acquired will be

valid.

Another conclusion of this work relates to the two most commonly used throttles in IN congestion
control - namely, percent thinning and call gapping. It was verified in [Berger91] and Chapter 4
(section 4.3.3) that while PT has the advantage of exhibiting both subscriber fairness and
scalability, CG exhibits robustness and a faster response to the onset of congestion. A logical
conclusion of this is that a combination of the two would combine the advantages of each to
produce a flexible and scalable throttle with both subscriber fairness and robustness. In this way,
the output of any SCP detection algorithm should be a PT coefficient (to ensure scalability and
subscriber fairness) and this should be translated in each SSP into a gap interval, which will ensure
robustness. This throttle would also remove the principle disadvantage associated with CG, i.e. its
parameter-driven nature - instead of using fixed parameters, an appropriate gap interval is
calculated based on a PT coefficient. The use of the PT/CG throttle algorithm described in Chapter
6, section 6.2 as part of the dynamic CCC/CG strategy is therefore recommended.

174

Chapter 7 Conclusions & Recommendations

The final conclusion presented here relates to the behaviour of all strategies under bursty overload
- only Window and QLC (i.e. strategies with no monitoring intervals and a tight control loop) are
capable of responding quickly enough to the onset of bursty traffic. However, neither strategy
behaves consistently enough under other traffic loads to deserve recommendation (they tend to
react to overload even when no overload exists) —to make intelligent decisions about how to
manage an overload, a monitoring period is required to allow the congestion control strategy to
base its controls on the mean state of the system. It is therefore recommended that performance
management of any system should be carried out at two levels. At the lower level, all physical
entities (or nodes) in a network should have a simple active strategy of some sort at their input that
ensures against instantaneous overload, so that each PE is responsible for crisis management.
However, this mechanism should only reject enough requests to ensure the survival of its PE. This
is so that a global congestion control strategy (the higher level of the performance management
strategy) can make decisions, based on observation of the mean state of the network, about how to
throttle traffic intelligently in different PEs in order to acquire the best possible overall network

performance.

7.2 Recommendations for Future Work

The current behaviour of the optimisation strategy is not ideal - too much SSP processing resource
needs to be applied to progress requests to the point where selective throttling is possible. As
suggested in the conclusions of Chapter 6 (section 6.4), it might be useful to investigate how to
merge the SSP optimisation algorithm with the SSP part of the dynamic CCC/CG strategy so as to
acquire a global IN congestion control strategy which combines selective throttling of all calls at
SSP Q2 with some global throttling of calls at SSP QI. In this way, some of the advantages of
selective throttling may be retained, while maximising the throughput of the network at all times.

Further work also needs to be carried out based on the enhancement of the IN architecture in CS-2
[Q.1221]. Specifically, there is much potential for using SCP/SCP interworking as a flow control
mechanism in overload situations, but it would need to be managed intelligently. It might therefore
be interesting to investigate whether it is possible to extend the optimisation algorithm to
encompass the management of multiple SCPs in a single IN domain, so that all PEs - SCPs and

SSPs alike - co-operate to provide optimum Intelligent Network performance.

Appendix A

References

Appendix A References

[Akyildiz90] LLF. Akyildiz, R. Shonkwiler, “Simulated Annealing for Throughput Optimisation in
Communication Networks with Window Flow Control”, IEEE Conference on Communications, 1990.

[Angelin95] L. Angelin, A. Arvidsson, “A Congestion Control Mechanism for Signaling Networks
based on Network Delays”, Proceedings of the 12thNordic Teletraffic Seminar, Helsinki, 1995.

[Arvidsson96] A. Arvidsson, S. Pettersson, L. Angelin, “Congestion Control in Intelligent Networks for
Real Time Performance and Profit Optimisation”, Proceedings of ITC Specialist Seminar, Lund 1996.

[ATM99] http ://www. atmforum.com.

[Bellcore92] Bellcore, "Advanced Intelligent Network (AIN) 0.1 Switching Systems Generic
Requirements", Technical Reference TR-NWT-001284, Issue 1, August 1992,

[Berger91a] A. Berger, “Determination of Load-Service Curves for Distributed Switching Systems:
Probabilistic Analysis of Overload-Control Schemes”, ITC-13, Copenhagen, 1991.

[Berger91b] A. Berger, “Comparison of Call Gapping and Percent Blocking for Overload Control in
Distributed Switching Systems and Telecommunications Networks”, IEEE Trans. Commun., 39, pp 407-
414,1991.

[Berkelaar95] The Linear Programming Toolkit, LP SOLVE version 2.0, developed by Michel
Berkelaar, Eindhoven University of Technology and Jeroen Dirks, Delft University of Technology,
21.2.95.

[Bolotin94] V.A. Bolotin, “Telephone Circuit Holding Time Distributions”, ITC-14, Juan-les-Pins,
1994.

[Burkard83] L. Burkard et al, “Customer Behaviour and Unexpected Dial Tone Delay”, Proceedings of
ITC-10, Montreal, 1983.

[CORBA99] “CORBAV/IIOP 2.3 Specification”, available from http://www.omg.org/libraiy/c2indx.html

[Daisenberger85] G. Daisenberger, J. Oehlerich, G. Wegmann, “STATOR - STATistical Overload
Regulation - and TAIL - Time Account Input Limitation - Two concepts for overload regulation in SPC
switching systems”, ITC-11, Kyoto, 1985.

[Daisenberger89] G. Daisenberger, J. Oehlerich, G. Wegmann, “Two concepts for overload regulation in
SPC switching systems: STATOR and TAIL”, Telecommunication Journal, Volume 56, pp 306-313,
1989.

[Doshi9l] B. Doshi, H. Heffes, “Overload Performance of an Adaptive, Buffer-Window Allocation
Scheme for a Class of High Speed Networks”, ITC-13, Copenhagen, 1991.

[Dziong89] Z. Dziong, M. Pioro, U. Komer, T. Wickberg, “On Adaptive Call Routing Strategies in
Circuit Switched Networks - Maximum Revenue Approach”, ITC-12, Turin, 1989.

[EricssonCS 1+] http://www.ericsson.com/NI/product/platforms/scpt.html.

[E.721] ITU-T Recommendation E.721, “ Network Grade of Service Parameters and Target
Values for Circuit-Switched Services in the Evolving ISDN.”

[E.723] ITU-T Recommendation E.723, “Grade of Service Parameters for Signalling System
Number 7 Networks.”

[Gallettio2] M. Galletti, F. Grossini, ""Performance Simulation of Congestion Control Mechanisms for
Intelligent Networks™, Proceedings of 1992 International Zurich Seminar on Digital Communications,
Intelligent Networks and their Applications, Zurich, 1992.

177

http://www.omg.org/libraiy/c2indx.html
http://www.ericsson.com/NI/product/platforms/scpt.html

Appendix A References

[Gelenbe] E. Gelenbe, G. Pujolle, Introduction to Queueing Networks, John Wiley& Sons, New
York, Chichester, Brisbane, Toronto, Singapore, 1987.

[Greenberg] M.R. Greenberg, Applied Linear Programmingfor the Socioeconomic and Environmental
Sciences, Academic Press, New York, San Francisco, London, 1987.

[Gulyani93] M. Gulyani, "Simulation and Performance Analysis of an Telecommunication System
Based on Advanced Intelligent Network Architecture™, Masters Thesis, Dublin City University, Ireland,
1993.

[Hac98] A. Hac, L. Gao, “Congestion Control in Intelligent Network™, IEEE Intemation Performance,
Computing and Communications Conference (IPCCC’98), Phoenix, 1998.

[Harrison] P.G. Harrison, N.M. Patel, Performance Modelling of Communication Networks and
Computer Architectures, International Computer Science Series, Addison-Wesley Publishing Company,
1993.

[Hebuteme90] G. Hebuteme, L. Romoeuf, R. Kung. “Load Regulation Schemes for the Intelligent
Network”, X111 International Switching Symposium, Stockholm, May 1990.

[Hubig94] W. Hubig, D. Weber, “Overload Control in ISDN PABXs”, ITC-14, Juan-les-Pins, 1994.

[Hoang90] B. Hoang, “Service Completion Time for Advanced Intelligent Network Services”, IEEE
Conference on Communications, 1990.

[ITUIN] Intelligent Network Standards, Q.12XX series recommendations, International
Telecommunications Union - Telecommunications Standardisation, 1993-1994.

[ITU_ISDN] Integrated Services Digital Network Standards, I-series recommendations, International
Telecommunications Union-Telecommunications Standardisation, 1988-present.

[ITU TMN] “Overview of TMN Recommendations”, Document M.3000, ITU-T, October 1994.
[Kallenberg89] P.J.M. Kallenberg, “Load Estimation for Overload Control”, ITC-12, Turin, 1989.

[Kant95] K. Kant, ""Performance of Internal Overload Controls in Large Switches", IEEE, pp 228-
237,1995.

[Kawamura96] H. Kawamura, E. Sano, “A Congestion Control System for an Advanced Intelligent
Network”, Proceedings of IEEE Network Operations and Management Symposium (NOMS), 1996.

[Kihl95] Maria Kihl, ""Overload Control in Intelligent Networks", Lund University, Sweden, 1995.

[Kihl97] M. Kihl, M. Rumsewicz, “Analysis of overload control strategies in combined SSP-SCPs
in the Intelligent Network”, ITC-15, 1997.

[Kleinrock] L. Kleinrock, Queueing Systems Volume I: Theory, John Wiley & Sons, New York,
Chichester, Brisbane, Toronto, 1975.

[Komer91] UIf Komer, "Overload Control of SPC Systems", Proceedings of ITC-13, pp 105-114,
Copenhagen, 1991.

[Komer94] UIf Komer, C. Nyberg, B. Wallstrom, “The Impact of New Services and New Control
Architectures on Overload Control”, ITC-14, Juan-les-Pins, 1994.

[Kwiatkowski94a] M. Kwiatkowski, “Queue Length Congestion Control at an SCP”, ATNAC, Melbourne,
1994.

178

Appendix A References

[Kwiatkowski94b] M. Kwiatkowski, B. Northcote, “Calculating Mean Delays in Intelligent Networks Under
Overload”, ATNAC, Melbourne, 1994.

[Langlois91] F. Langlois, J Regnier, “Dynamic Congestion Control in Circuit-Switched
Telecommunications Networks”, ITC-13, Copenhagen, 1991.

[Leed7] Y. Lee, J.S. Song, “Overload Control of SCP in Advanced Intelligent Network with
Fairness and Priority”, Proceedings of the 6th International Conference on Computer Communications &
Networks, Las Vegas, 1997.

[Leever93] PJ.E. Leever, G.S. Vermeer, R.AJ. Reijmerink, LJ.N. Franken and B.R. Haverkort,
"Performance Evaluation of Intelligent Network Services”, Tenth UK Teletraffic Symposium,
Performance Engineering in Telecommunications Networks, April 1993.

[Lindberg88] P. Lindberg, K. Nivert, B. Sagerholm, “Trunk Reservation and Grade of Service Issues in
Circuit Switched Integrated Networks”, ITC-12, Turin, 1988.

[Luan89] D.T.D. Luan, D.M. Lucantoni, “Throughput Analysis of an Adaptive Window-Based Flow
Control Subject to Bandwidth Management”, ITC-12, Turin, 1989.

[MacDonald94] D.M. MacDonald, S. Archambauld, ‘Using Customer Expectation in Planning the
Intelligent Network”, ITC-14, Juan-les-Pins, 1994,

[Manfield91] D. Manfield, B. Denis, K. Basu, G. Rouleau, "Overload Control in a Hierarchical
Switching System™, Proceedings of ITC-13, pp 894-900, Copenhagen, 1991.

[Milito91] R.A. Milito, Y. Levy, Y. Arian, “Dynamic algorithms for distributed queues with
abandonment”, ITC-13, Copenhagen, 1991.

[Newcombe94] A. Newcombe, D.D. Botvich, F. Lodge, T. Curran, "A decision support system for
assurance of quality of service in intelligent network service provisioning", Proceedings of IS&N ‘94,
Aachen, September 1994.

[Nyberg92] C. Nyberg, “On Overload Control in Telecommunication Systems”, Technical Report-111,
Department of Communication Systems, University of Lund, Sweden, 1992.

[Nyberg94] H. Nyberg, B. Olin, “On Load Control of an SCP in the Intelligent Network”, ATNAC,
Melbourne, 1994.

[Nyberg95a] C. Nyberg, M. Kihl, "Overload Control in Intelligent Networks: an Approach using
Modified PID Controllers', University of Lund, Sweden, 1995.

[Nyberg95b] C. Nyberg, M. Kihl, U. Ahlfors, U. Komer, “The Impact of Retrials on Overload Control”,
Internal document, Lund, 1995.

[Pham91] X.H. Pham, “Control loop for traffic management of networks under focussed overloads”,
ITC-13, Copenhagen, 1991.

[Pham92] X.H. Pham, R. Betts, ""Congestion Control for Intelligent Networks", Proceedings of 1992
International Zurich Seminar on Digital Communications, Intelligent Networks and their Applications,
Zurich, 1992.

[Q1202] "Intelligent Network Service Plane Architecture', Document Q.1202, ITU-T, April 1993.

[Q1213] "Global Functional Plane for Intelligent Network CS-1", Document Q.1213, ITU-T,
January 1994.

179

Appendix A References

[Q1214] "Distributed Functional Plane for Intelligent Network CS-1", Document Q.1214, ITU-T,
February 1994,

[Q1215] "Physical Plane for Intelligent Network CS-1", Document Q.1215, ITU-T, November
1993.

[Q1218] "Interface Recommendations for Intelligent Network CS-1"", Document Q.1218, ITU-T,

January 1994,

[Q1221] "Introduction to Intelligent Network Capability Set 2", Document Q.1221, ITU-T,
September 1997.

[Roberts79] J. Roberts, “Recent Observations of Subscriber Behaviour”, Proceedings of ITC-9, Spain,
1979.

[Rajaratnam96] M. Rajaratnam, F. Takawira, “Modelling multiple Traffic Streams Subject to Trunk
Reservation in Circuit-Switched Networks”, GLOBECOM 96,

[Rumsewicz95] M. Rumsewicz, “On the real-time determination and control of mass call-ins in Intelligent
Networks”, Software Engineering Research Centre Technical Report SERC-0003, the Royal Melbourne
Institute of Technology, October 1995.

[Rumsewicz96] M. Rumsewicz, “A simple and effective algorithm for the protection of services during
SCP overload”, Proceedings of the 4thInternational Conference on Telecommunications Systems, 1996.

[Sabourin91] T. Sabourin, G. Fiche, M. Ligeour, "Overload Control in a Distributed System",
Proceedings of ITC-13, pp 421-427, Copenhagen, 1991.

[Seraj85] Jila Seraj, ""An analysis of processor load control in SPC systems', Proceedings of ITC-11,
pp 767-773, Kyoto, 1985.

[Smith95] D.E. Smith, "Ensuring Robust Call Throughput and Fairness for SCP Overload Controls",
IEEE/ACM Transactions on Networking, Vol. 3, No. 5, pp 538-548, October 1995.

[Swenson96] E. Swenson, “ITU-T Intelligent Network Capability Set 2 Recommendations”, ITC Mini-
Seminar on Engineering and Congestion Control in Intelligent Networks, Australia, 1996.

[TINA97] “Service Architecture Version 5.0”, TINA Consortium, June 1997, available from
http://www.tinac.com.

[Tsolas92] N. Tsolas, G. Abdo, R. Bottheim, “Performance and Overload Considerations when
Introducing IN into an Existing Network”, International Zurich Seminar on Digital Communications,
Zurich 1992.

[Tumer91] P.M.D. Turner, P.B. Key, “A New Call Gapping Algorithm for Network Traffic
Management”, ITC-13, Copenhagen, 1991.

[Villen85] M. Villen-Altamirano, G. Morales-Andres, L. Bermejo-Saez, "An Overload Control
Strategy for Distributed Control Systems', Proceedings of ITC-11, pp 835-841, Kyoto, 1985.

[Wallstrom91] B. Wallstrom, C. Nyberg, "Transient Model of Overload Control and Priority Service in
SPC Systems", Proceedings of ITC-13, pp 429-434, Copenhagen, 1991.

[Yan94] J. Yan, D.M. MacDonald, “Teletraffic Performance in Intelligent Network Services”, ITC-
14, Juan-les-Pins, 1994.

[Zepfal] J. Zepf, G. Willmann, “Transient Analysis of Congestion and Flow Control Mechanisms in
Common Channel Signalling Networks”, ITC-13, Copenhagen, 1991.

180

http://www.tinac.com

Appendix B

References Associated with this Research

Appendix B References Associated with this Research

[Lodge94] F. Lodge, T. Curran, M. Gulyani, A. Newcombe, "Intelligent Network Congestion Control
Strategies and their Impact on User-Level Quality of Service”, Proceedings of Australian
Telecommunication Networks & Applications Conference, pp 627-632, Melbourne, December 1994,

[Lodge96] F. Lodge, T. Curran, "A Congestion Control Strategy for Combined IN and non-IN
Traffic Load at the Service Switching Point of an Intelligent Network ", Proceedings of Networks 96,
Sydney, December 1996.

[Lodged7] Fiona Lodge, Dmitri Botvich, Thomas Curran, “A fair algorithm for throttling combined
IN and non-IN traffic at the SSP of the Intelligent Network”, Proceedings of IEE Teletraffic Symposium,
Manchester, March 1997.

[Lodge98a] Fiona Lodge, Dmitri Botvich, Thomas Curran, “A Fair Intelligent Network Congestion
Control Strategy Based on Revenue Optimisation”, Proceedings of IS&N’98, Antwerp, May 1998.

[Lodge98b] F. Lodge, B. Jennings, T. Curran, “A Strategy For The Resolution of Intelligent Network
(IN) and Signalling System No. 7 (SS7) Congestion Control Conflicts” Proceedings of ICC '98, Atlanta,

June 1998.

[Lodge99] Fiona Lodge, Dmitri. Botvich, Thomas Curran, “Using Revenue Optimisation for the
Maximisation of Intelligent Network Performance”, Proceedings of ITC-16, Edinburgh, June 1999.

[Newcombe94] A. Newcombe, D.D. Botvich, F. Lodge, T. Curran, "A decision support system for

assurance of quality of service in intelligent network service provisioning", Proceedings of IS&N '94,
Aachen, September 1994.

182

Appendix C

Glossary

Appendix C

ACG
AIN
ATM
BCP
CCAF
CCcC
CCF
cdf
CID
CMIP
CORBA
CS-x
BCSM
CG
DFP
DN
FDOC
FE

Automatic Code Gapping
Advanced Intelligent Network
Asynchronous Transfer Mode
Basic Call Process

Call Control Agent Function

Call Count Control

Call Control Function
Cumulative Distribution Function

Call Instance Data

Common Management Information Protocol

Common Object Request Broker Architecture

IN Capability Set Number x

Basic Call State Model

Call Gapping

Distributed Functional Plane
Destination Number

Focussed Destination Overload Control
Functional Entity

Functional Entity Action

First In First Out

Finite State Machine

Global Functional Plane

Intelligent Access Function

Interface Description Language
Internet Engineering Task Force
Information Flow

Internet Inter-Orb Protocol

Intelligent Network

Intelligent Network Application Part
Intelligent Network Conceptual Model
Intelligent Peripheral

Internet Protocol

Integrated Services Digital Network
Information Technology

International Telecommunications Union

Load Measure Control

Glossary

184

Appendix C

LPP
O-BCSM
OMG
ONP
OPNET
pdf
PE
PID
PIN
pmf
POI
POR
PP
PSTN
PT
QLC
Rev/Res
RTC
RV
SCEF
SCF
SCP
SDF
SDP
SIB
SLP
SLPI
SMF
SOC
SOCC
SP
SPC
SRF
SS7
SSCP
SSF

Linear Programming Problem
Originating Basic Call State Model
Object Management Group

Open Network Provisioning
OPtimised Network Engineering Tools
Probability Density Function
Physical Entity

Proportional Integral Differential
Personal Identification Number
Probability Mass Function

Point of Initiation

Point of Return

Physical Plane

Public Switched Telephone Network
Percent Thinning

Queue Length Control

Revenue to Resource ratio

Response Time Control

Random Variable

Service Creation Environment Function
Service Control Function

Service Control Point

Service Data Function

Service Data Point

Service Independent Building Block
Service Logic Program

Service Logic Program Instance
Service Management Function

SCP Overload Control
SMS-Originated Code Control
Service Plane

Stored Program Controlled

Service Resource Function
Signalling System No. 7

Service Switching and Control Point

Service Switching Function

Glossary

185

Appendix C

SSP

SVC
T-BCSM
TCAP
TINA
TMN

Ul

YPN

Service Switching Point

Square of the Variation Coefficients

Terminating Basic Call State Model

Transaction Capabilities Application Part
Telecommunications Intelligent Networking Architecture
Telecommunication Management Networks

User Interaction

Virtual Private Network

Glossary

186

