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Abstract

Abstract
This thesis examines the congestion control issues that arise in Intelligent Networks, when it is 
necessary to support multiple service types with different load requirements and priorities. The 
area of Intelligent Network (IN) congestion control has been under investigation for over a decade, 
but in general, the models used in this research were over-simplified and all service types were 
assumed to have the same priority levels and load requirements at the various IN physical 
elements. However, as the IN is a dynamic network that must process many different service types 
that have radically different call load profiles and are based on different service level agreements 
and charging schemes, the validity of the above assumptions is questionable. The aim of this work, 
therefore, is to remove a number of the classic assumptions made in IN congestion control 
research, by:
• developing a detailed model of an IN, catering for multiple traffic types,
• using this model to establish the shortcomings of classic congestion control strategies,
• devising a new IN congestion control strategy and verifying its superiority on the model.

To achieve these aims, an IN model (both simulation and analytic) is developed to reflect the 
physical and functional architecture of the network and model the information flows required 
between network entities in order to execute services. The effectiveness of various classic active 
and reactive congestion control strategies are then investigated using this model and it is 
established that none of these strategies are capable of protecting both the Service Control Point 
and Service Switching Points under all possible traffic mixes and loads. This is partially due to the 
fact that all of these strategies are based on the use of fixed parameters (and are therefore not 
flexible enough to deal with IN traffic) and partially because none of these strategies take into 
account the different load requirements of the different service types.

A  new, flexible strategy is then devised to facilitate global IN congestion control and cater for 
service types with different characteristics. This strategy maximises IN performance by protecting 
all network elements from overload while maximising network revenue and preserving fairness 
between service types during overload. A  number of factors determining the relative importance or 
weight of different traffic types are also identified and used by the strategy to maintain call 
importance during overload. The efficiency of this strategy is demonstrated by comparing its 
operation to that of the best classic IN overload controls and also to a new strategy, which has 
scalable and dynamic behaviour (and which was devised for the purpose of providing a fair 
comparison to the optimisation strategy). The optimisation-based strategy and dynamic strategy 
are found to be equally effective and far superior to the classic strategies. However, the 
optimisation algorithm also preserves relative importance and fairness, while maximising network 
revenue - but at the cost of a not insignificant processing overhead.

xi
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Chapter 1 Introduction

This thesis examines the area of Intelligent Network (IN) congestion and proposes strategies and 
algorithms to protect an IN from this phenomenon. In this chapter, the terms congestion and IN are 
defined and a brief description of the main issues involved with IN congestion control is provided. 
Then, the primary objectives of our research in this area are presented, followed by an outline of 
the structure of this thesis.

1.1 General Background

In the area of telecommunications, the term congestion refers to the scenario where the amount of 
work offered to a telecommunications network element becomes so great that the element is no 
longer capable of dealing with it. For example, if a Public Switched Telephony Network (PSTN) 
switch is suddenly flooded with call requests (requests from users to establish a voice connection 
or execute a service), but is not fast enough (does not have sufficient processing power) to deal 
with these requests at the rate at which they are arriving, then the requests build up in the input 
buffer. A  further contributing factor is that the processing of a call by the switch is distributed 
across the lifetime of the call and it is vital, in order to maintain efficiency, that once processing 
has begun on a call, it completes successfully. Therefore all calls that are initially accepted by the 
switch require more processing time at a later stage. This leads to even more demand being placed 
on the processors and reduces further the rate at which the switch can deal with newly arriving call 
requests. At this point the switch is overloaded or congested, the result of which is that users 
experience unacceptably long delays in receiving dial tone, during call setup (Post Dialling Delay) 
and at various other points in the call. Further, many calls are not established successfully and the 
operation of the switch may be placed in jeopardy - in the worst case, the switch can break down 
completely. It is therefore vital that a strategy for reducing the load on the switch processors (i.e. 
the amount of work they have to do), namely a congestion (or overload) control strategy, is 
implemented at the switch to prevent serious overload and to ensure that the switch is well 
protected and operating at optimum efficiency at all times.

The area of congestion and congestion control techniques has been well researched and 
documented, with many methods existing, each with its own advantages, disadvantages and 
therefore, applications. These control techniques are usually examined and compared using 
simulations and analytic models of simple single-processor systems to represent network elements. 
These models assume that a network comprises multiple switches, with each switch being 
responsible for protecting itself from overload, either by refusing all call requests outright (referred 
to as blocking), by refusing a proportion of requests (referred to as throttling) or by notifying other 
switches of the overload situation and telling them to route call requests over alternative paths. 
This type of model is therefore sufficient for representing the operation of a PSTN or an Integrated
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Chapter 1 Introduction

Services Digital Network (ISDN), where the network is comprised of a number of physical 
entities, each carrying out similar functions and none more important to the operation of the whole 
than any of the others.

The Intelligent Network does not have this kind of architecture. It was standardised by ITU-T 
[ITU_IN] in order to specify a network architecture that allows users to create and maintain 
services quickly and easily and which provides all authorised users in the network with the ability 
to access any of the offered services. This objective is met by defining a number of IN elements 
(called Physical Entities (PEs)) that together allow a service to be accessed and executed. Service 
Switching Points (SSPs) receive service requests from users and are responsible for all switching 
functions associated with terminating the call and also for the invocation of service logic in a 
Service Control Point (SCP) - a PE of the IN at which service logic resides (and therefore 
effectively the ‘core’ of the IN). SCPs control the execution of all services by transmitting requests 
to and receiving information from the SSPs, Service Data Points (SDPs, which provides SCPs with 
service- and user- specific data maintained in network databases) and Intelligent Peripherals (IPs, 
which provides the functionality for the exchange of information with the user). Therefore, in 
order to execute even the simplest service for a user, several messages must be transmitted 
between an SCP and other IN PEs over a Signalling System Number 7 (SS7) network during the 
course of only one call. This, of necessity, results in very large quantities of traffic to and from the 
SCP. Therefore, the SCP is the principle bottleneck in the IN architecture, and the PE most likely 
to become overloaded. It is also, however, the most important PE in the network (as it contains all 
service logic programs) and it is therefore crucial that it be protected all times. Due to both the 
distributed nature of the IN and the fact that the SCP is the most important element in the network, 
the modelling of network behaviour cannot be accomplished accurately using the simple single­
processor model that is generally applied to PSTN and ISDN. Therefore, to investigate IN 
congestion control issues, a new, more appropriate model must be developed.

The objective of an efficient congestion control strategy for the IN (or indeed any congestion 
control strategy) is to successfully complete as many service requests for as many users as 
possible, while keeping response delays as low as possible. However, the added complexity of the 
IN architecture means that a number of other issues must be taken into consideration, among 
which are:

• SCPs are the most important PEs in the IN, as all IN service requests must receive processing at 
least once at an SCP. Therefore, if an SCP becomes congested, the number of services that will 
be able to execute will be severely limited and it must therefore be protected at all costs. On the 
other hand, it should process as many calls as is safely possible at all times, even during 
congestion (i.e. it should not expend much of its capacity on the rejection of call requests).

3



Chapter 1 Introduction

• Multiple messages may arrive at an SCP during a single execution of a service at that SCP- i.e. 
new call requests, once accepted, usually (depending on the type of service) lead to the later 
arrival of requests associated with the same call. These requests may not be blocked, but must 
be processed further in order to optimise SCP throughput (i.e. the amount of SCP capacity 
spent processing calls which terminate successfully). For example, a simple service may 
involve the arrival of two requests at an SCP (e.g. for a number translation service, SCP arrivals 
would consist of the initial service request from the SSP followed by another as a reply to a 
data lookup request from the SDP), while a relatively complex service would generate many 
more SCP arrivals, require more processing and be therefore more likely to cause or exacerbate 
a congestion situation.

• In the future, it is likely that SSPs will handle non-IN traffic, as well as IN service requests. 
This will have implications on IN performance, because indiscriminate blocking of calls by the 
SSP in order to protect itself may result in severe under-utilisation of the SCP. Also, non-IN 
calls have lower processing overhead (by a factor of approximately 2.5) than IN requests, so a 
policy of throttling all calls equally, without distinguishing between them, may prove 
inefficient or even ineffective.

• The provision of IN services to customers tends to be based on Service Level Agreements 
between the service provider and customer. As such, different services will have different 
levels of importance, agreed arrival rates and tariffs (as well as different processing 
requirements at the SCP). This implies that there may be a need for a priority-based congestion 
control system.

1.2 Research Objectives & Methods

The principle objective of this work is to develop a new IN congestion control strategy which 
performs better than the IN strategies which have been used in industry over the last decade. To 
ensure the superiority of the new strategy, it should be compared with the best of these existing 
strategies in an IN network model which simulates closely (with minimal assumptions) the 
structure of a real Intelligent Network, the behaviour of its various functional components and the 
trends and variations which tend to occur in IN traffic.

The first step in reaching this goal is therefore to develop a comprehensive model of the Intelligent 
Network and to use it to examine the behaviour of the most commonly used SCP congestion 
control strategies in industry today (SSP overload is generally not considered to be a factor in IN 
congestion control and therefore SSP protection tends not to be included in the implemented 
strategies). The results of this investigation then highlight the problems that exist in these 
strategies. This provides insight into the characteristics that would be desirable in a new IN
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Chapter 1 Introduction

congestion control strategy and therefore allows the requirements on this new strategy to be more 
explicitly stated and refined.

The second step is to enhance the IN model in order to examine the effects on IN performance of 
mixed IN and non-IN traffic at a finite-capacity SSP (i.e. an SSP which may experience 
congestion). This investigation proves that the behaviour of an SSP congestion control strategy 
may significantly affect the overall performance of the IN and, in doing so, demonstrates the 
advantages of combining SCP and SSP overload controls into a single global IN overload control 
strategy.

The third step consists of deriving a global IN congestion control strategy that protects both SCP 
and SSPs, while exhibiting all desirable characteristics identified during the first step described 
above. Inclusion of this new strategy in the IN model is then followed by rigorous testing and 
comparison with other strategies in order to verify its superior effectiveness and efficiency.

1.3 Thesis Outline

Chapter 2 of this thesis provides all necessary information about the state of the art in the areas 
relevant to this work. This includes a brief description of the architecture and operation of the IN, 
followed by a summary of the results and conclusions of investigations into congestion control in 
general and IN congestion control in particular. Chapter 3 provides the background information 
required to aid understanding of the simulation and analytic modelling techniques and congestion 
control algorithms that will be presented in following chapters.

Chapter 4 investigates methods for the protection of the SCP and documents the comprehensive 
multi-processor Intelligent Network model that was developed to facilitate this investigation. The 
effectiveness of classic congestion control detection methods (such as Queue Length Control, Call 
Count Control and Load Measure Control) for SCP protection is compared, as is the operation of 
the Call Gapping and Percent Thinning throttle algorithms. Then, the Window congestion control 
strategy is compared with the best of the above detection methods combined with the best throttle. 
Finally, a number of points are raised regarding areas in which these strategies’ performance is 
undesirable and how they should be enhanced to improve their effectiveness.

Chapter 5 first presents a new version of the IN model used in Chapter 4 which was enhanced 
based on the observations made in the conclusions of that chapter. The effect of the presence of 
non-IN calls at finite capacity SSPs on IN congestion control algorithms is evaluated and it is 
concluded that a strategy which dynamically manages congestion control jointly at the SCP and 
SSPs provides better performance than a strategy in which all elements are protected
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Chapter 1 Introduction

independently. Then, just such a global strategy (which is based on the mathematical optimisation 
of revenue) is presented and results of its behaviour under various types and levels of overload are 
given.

Then, in Chapter 6, to establish whether this revenue optimisation-based strategy provides the best 
possible IN performance for any load condition, its operation is compared with those classic 
strategies that were found to have the best performance in Chapter 4. Also, a new version of a 
classic strategy (in which a dynamic Call Count Control detection method is combined with a 
hybrid Percent Thinning/Call Gapping throttle) is derived, to ensure a fair comparison with the 
optimisation-based strategy.

Chapter 7 then summarises the main conclusions of the work and provides a number of 
recommendations regarding issues that should be addressed and algorithms that should be used 
when developing a congestion control strategy for use in an Intelligent Network.
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Chapter 2 State of the Art

In this chapter, the background information about the Intelligent Network architecture and 
standards is summarised, as are the results of the research which has taken place in the IN 
congestion control arena to date. Section 2.1 describes the Intelligent Network in terms of 
justification for its development, its standard evolution path and the IN Capability Set 1 
architecture. Section 2.2 provides an introduction to the general concepts of congestion control and 
Section 2.3 describes the research that has taken place in IN congestion control over the last ten 
years.

2.1 The Intelligent Network (IN)

2.1.1 Justification for IN Development

Up until the mid 1980’s, services offered by network operators to users consisted principally of 
basic call connectivity. Since then, however, service technology has grown greatly, with the 
requirement for more complex services constantly on the increase. The structure of the Public 
Switched Telephony Network (PSTN) as it stands is not very compatible with the need to supply 
services, as to do so requires service logic to be available on all PSTN switches. The Integrated 
Services Digital Network (ISDN) standard [ITU_ISDN] includes the specification of a number of 
services (e.g. Abbreviated Dialling, Call Forwarding, Call Transfer etc.), but again, for an ISDN 
switch to have the capability to offer ISDN services, the code for the services must reside locally 
to the switch. Some of the difficulties associated with making services available in both PSTN and 
ISDN include:

• The principle problem with the process of service provisioning is that, in PSTN and ISDN, 
services are localised - in other words, if the software for a service is loaded at a network node, 
only users directly attached to that node may use that service. Therefore:
• in order to be able to allow a customer to avail of a service, the appropriate functionality 

must be loaded at their local node.
• Also, if a service is to be altered or upgraded, the code must be changed at every node 

offering the service.
• This makes the provisioning and maintenance of a service both very difficult and very 

slow.
• It is also very wasteful of resources in that the same service software is replicated at a wide 

range of locations.
• Service developers have the added problem of vendor dependence, in that software and 

hardware differs greatly between switches provided by different switch vendors and many 
different brands and types of switches may be available in one network. It is therefore difficult
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to ensure that any developed software will work correctly on any given switch, and different 
code must be written for different switches. Most switch vendors supply some basic services 
already installed on their switches, but these do not necessarily function correctly when 
interacting with other switches made by another vendor.

• Service creation is an expensive process, both in terms of time and money, as there is no 
standardised environment available for the development of services. Some switch vendors 
have developed proprietary service creation environments that increase the speed of the 
development process for those vendors, but as they are not standardised, correct service 
operation across switches provided by different vendors cannot be guaranteed.

• Different software versions across switches add further complications both in the development 
and execution of services.

As the role of services in networks increased in importance, the necessity arose for a network 
architecture which addressed the above problems and allowed network operators and service 
providers to design, implement and maintain services as efficiently as possible to maximise the 
possible income. Requirements on this service-friendly network included:

• A  reduction in the length of the service design and development phase, by providing a
standard development environment comprising a set of reusable function blocks and tools to
facilitate the rapid design of a service.

• Much shorter deployment and provisioning phases, achieved through centralising all service 
execution software so that the logic for a new service would need to be installed at relatively 
few locations in the network in order to make it available for all customers on the network. 
This centralisation would also simplify the task of upgrading and maintaining services.

• Independence from switch hardware and software vendors - switch vendors would be required, 
in order to remain competitive, to provide a standard set of functions in their switches to 
ensure compatibility with the overall network operation and the services residing in it.

• The ability for all users to avail of a service, no matter where they are located in the network.

The Intelligent Network was developed in order to meets these needs - i.e. to facilitate the creation
and operation of services within a telecommunications network. The concepts of the IN have been 
under design since 1988 and are currently widely in use in the USA, Australia, Japan and Europe. 
Some of the most popular services used in today's telecommunications market, including call 
manipulation services (such as Call Forwarding, Call Transfer, Call Waiting), Freephone, 
Televoting, Credit Card Calling and Premium Rate services, are offered via IN.

9
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2.1.2 Evolution of the Intelligent Network

The International Telecommunications Union (ITU) have adopted a 'Chinese Box' approach in the 
development of IN standards in that each version of the standards (called Capability Sets) is a 
superset of its predecessor, as shown in Figure 2.1 below.

The first version of the IN standards, ITU Capability Set 1, was released in 1993. CS-1 defines the 
fundamental architecture of the IN in terms of the IN Conceptual Model (INCM). This 1NCM 
addresses only the basic operation of the network in terms of the actions at and the interactions 
between IN Physical Entities (PEs) required in order to execute a service. CS-1 was the first in- 
depth standard detailing the concept of the IN and is responsible only for describing the basic 
principles of service execution and network architecture. Therefore, CS-1 has a number of 
limitations, in terms of how useful it is to service providers in the development of the types of 
services that are desired today. These limitations include:

• No network management or service creation features were investigated - no specifications 
were produced for the IN Service Management Function (SMF) or Service Creation 
Environment Function (SCEF).

• In IN CS-1, services can only be implemented for Type A  calls - i.e. calls which have, at all 
times, only one originating and one terminating party. Therefore, CS-1 cannot facilitate the 
creation of Call Transfer, Call Forwarding, Call Waiting, Conference Calling, or any other 
service that involves more than two call parties at a time.

The specification of Capability Set 2 standards was very slow - the standard did not become 
available until the end of 1997 - i.e. four years after CS-1. This standards development was not, 
however, fast enough for service providers, who needed to be able to create and provide a wider 
range of services than could be encompassed by CS-1. Therefore, IN equipment vendors and IN 
service providers have developed their own proprietary versions of IN, which are based on the CS- 
1 INCM, but which provide added functionality to facilitate the offering of Type B (multi-party)

10
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services - an example of this is the Ericsson SCP, which is based on the use of their proprietary
CS1+ [EricssonCSl+],

CS-2 expanded on existing CS-1 concepts and added many new concepts in areas not addressed by
CS-1 [Q1221]. Among these are:

• A  wider range of functionality was specified to allow the development of narrowband Type B 
services, such as audio-conference calling. This included both the specification of new Service 
Independent Building Blocks (SIBs) and the extension of the Basic Call State Models 
(BCSMs) and INAP (Intelligent Network Application Part - the application layer of the SS7 
protocol stack).

• High level guidelines were provided for supporting service management services and service 
creation. This included the specification of Service Management Service Features and 
interfaces to management, based on T M N  (Telecommunication Management Networks) 
principles [ITU_TMN], interfaces (i.e. the X  interface) and protocols (i.e. the Common 
Management Information Protocol (CMIP)).

• The issue of interworking between INs and other networks was addressed in CS-2. The IN to 
IN interworking (i.e. interworking across the boundaries of different IN domains) included the 
specification of mechanisms for interworking between Service Control Points (SCPs), Service 
Data Points (SDPs) and Service Management Points across IN domain boundaries. An 
Intelligent Access Function (IAF) was specified to provide access to an SCF in an IN from a 
non-IN structured network. The security issues that will arise at the boundaries between 
network domains have also been addressed by CS-2. These interworking facilities will enable 
IN standards to meet the open market demands for Open Network Provisioning (ONP), i.e. 
they will permit service providers with service software located in one IN to make it available 
(as third party service providers) to customers in other networks. These specification will also, 
even within a single IN domain, improve the operation of the network by providing 
redundancy and backup systems - for example, multiple SCPs could supply the same service, 
so that if a problem arose at one SCP, requests could be re-routed to other SCPs supporting the 
same services. Note, however, that CS-2 still requires a single point of control - i.e. at any one 
time during execution of a service, an SSP should never have to interact with more than one 
SCP.

• Some support has been provided for multimedia-type services and for services involving either 
personal or terminal mobility. This support is now available at the logical level (i.e. SIBs have 
been defined to support various features of these types of services), but this support is not yet 
reflected at protocol level.

11
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In parallel with the CS-2 standardisation effort at ITU, the Telecommunications Intelligent 
Networking Architecture (TINA) consortium was also founded to investigate how principles of IN 
and T M N  could be applied to the specification of an architecture for broadband services 
[TINA97]. The TINA specifications are based on the use of CORBA (Common Object Request 
Broker Architecture [CORBA99]) for service logic specification and A T M  (Asynchronous 
Transfer Mode [ATM99]) for broadband communication, and are currently quite influential in 
contribution to the definition of standards in the Object Management Group (OMG) (e.g. for 
access to CORBA-based services) and, to a lesser extent, in the ITU (e.g. the standardisation of 
ITU-ODL in Study Group 10). It may therefore be predicted that TINA and T M N  will all be very 
influential in the specification of IN CS-3 (due out later in 2000), which is therefore highly likely 
to encompass:

• Full IN/TMN integration, including full technical specification of the IN-SMF and SCEF,
• Full IN/ATM integration, including functionality (and protocol support) to offer broadband 

multimedia services, such as video conferences, joint document editing services and 
auctioning services,

• Full support for personal/terminal mobility services.

Also, as the telecoms and Information Technology (IT) domains continue to converge, it is likely 
that various other standards bodies which have been established to advance computing 
technologies, e.g. the OMG, which standardises CORBA for distributed software processing and 
the IETF (Internet Engineering Task Force), which specifies Internet standards (e.g. Internet 
Protocol (IP) version 6), will also be influential in the specification of CS-3, but the impact of this 
work on the IN CS-3 standards is less clear. For example, it is unclear whether the SS7 (Signalling 
System No. 7) will remain as the underlying protocol stack in CS-3. There is a possibility that 
CO RBA’s HOP (Internet Inter-Orb Protocol) running over IP will become a candidate for this role. 
Also, the functionality for offering distributed service logic (i.e. where the logic of services will no 
longer reside at a single physical element (the IN SCP)) and the facility for expressing 
functionality in terms of O M G ’s Interface Description Language (IDL) may prove very useful in 
IN specification and may therefore be incorporated in CS-3.

However, at the moment, most real implementations of IN are still based on CS-1 and, as a result, 
it is with networks of this type that congestion is currently an issue. Therefore, the model that was 
developed and described in this report was developed to meet CS-1 specifications and all 
congestion control research carried out was based on the physical architecture of IN CS-1. This is 
not very restrictive, as all results and solutions remain valid in CS-2 and only require extending to 
include issues related to IN-IN interworking (this issue is already being examined by e.g. 
[Kawamura96] and [Swensen96]). The CS-1 results may also prove relevant to CS-3 networks, if

12
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the standard is based on the use of SS7 (in conjunction with a gateway between the SS7 TCAP 
(Transaction Capabilities Application Part) layer and CORBA) for transport of control messages. 
Of course, performance management in a distributed programming domain such as CORBA is a 
completely separate issue, but it is perceived as being outside the scope of this thesis.

We, therefore, will now explain the functionality of the IN as defined by the CS-1 standards, as 
being the basic network architecture on which all congestion control research has been carried out 
in this thesis.

2.1.3 The Architecture and Operation of IN CS-1

The simplest way of explaining the concept of the IN is by introducing the IN Conceptual Model. 
This provides a planar view of the implementation of a service within the IN. There are four planes 
in the model, the highest plane representing services as discrete units, with each lower level further 
examining the operation and execution of the services. At the lowest level, on the Physical Plane, a 
full breakdown of the actions, interactions and information flows required to execute a service are 
represented. The conceptual model is shown in Figure 2.2 below.

2.1.3.1 The Service Plane (SP)

This is the highest plane in the Conceptual Model and is described in [Q1202]. At this level, 
services are described only in terms of how they behave. Services may be distinguished as 
marketable products that are made up of one or more Service Features assembled together. A  
Service Feature offers a limited amount of functionality to the user and may also be a service in its 
own right. An example of a service feature that is also classified as a service would be the 
Abbreviated Dialling Service. The Virtual Private Network (VPN) Service would be a prime 
example of a service consisting of multiple service features, as a VPN may offer, among others, 
the Abbreviated Dialling, Call Transfer and Call Forwarding features.

13
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Acronyms:
SF Service Feature GSL Global Service Logic
BCP Basic Call Process POI Point of Initiation
POR Point of Return SIB Service Independent Building Block
DSL Distributed Service Logic FE Functional Entity
PE Physical Entity px Protocol x

Fig. 2.2: The CS-1 Intelligent Network Conceptual Model

2.1.3.2 The Global Functional Plane (GFP)

The GFP describes the functionality of the IN on an abstract level [Q1213] in that it does not deal 
with how functionality is realised or where it is located within the network. At this level, a service 
or service feature is perceived as consisting of discrete blocks, called Service Independent Building 

Blocks (SIBs). As this layer is independent of network structure, SIBs do not really exist as distinct
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entities at any location in the IN, but merely represent functionality within the network that is 
needed to carry out tasks in order to provide the required service. Thirteen SIBs have been defined 
in CS-1, among which are:

• Verify - this SIB is used to check the format of any input strings.
• Charge - this defines when special charging features or rates are to be applied, including, for

example, reverse charging and premium rate charging.
• Queue - this SIB allows calls to be queued at a destination. Announcements may be read to 

waiting customers until it is their turn to be served.
• User Interaction - this SIB represents any interactions between the network and the user, 

including the reading of announcements and the collection of digits.
• Translate - this SIB uses input data to reference information. In other words, it represents a 

database lookup action.
• Screen - this compares an identifier against a list. It could be used as a security measure, to

represent the comparison of a Personal Identification Number (PIN) keyed in by the user
against a list of authorised users.

• Basic Call Process (BCP) - this is a special SIB which represents basic call functionality and 
processing. It is therefore responsible for recognising when a service has been requested and 
when a branch to other SIBs is required.

• When designing or representing a service using SIBs, the relevant SIBs are linked together in 
chains and are invoked by the BCP via a Point o f  Initiation (POI). The BCP supplies the SIBs 
with the any Call Instance Data (CID - information specific to one call request, including for 
example, the calling line identifier, the PIN keyed in by the user etc.) required to process the 
call and execute the service. When a chain of SIBs has completed execution, control is 
returned to the BCP via a Point o f  Return (POR).

In order to demonstrate how SIBs may be used to represent a service, a GFP representation of a 
Freephone service will be provided. The behaviour of this Freephone service may be defined as 
follows: the service is activated when a user picks up their phone and dials a ten digit number, 
beginning with the string "1800". This number is associated with a particular service subscriber, 
and an attempt is made to establish a connection between the user and the subscriber. If the call 
terminates successfully, the subscriber is billed for the call. A  global functional plane 
representation of the setup of this service is shown in Figure 2.3.
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No Answer ^ ________
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Fig. 2.3: GFP Representation o f  the Freephone Service Setup

The operation of this model is as follows: the BCP signifies that the analysis of the digits entered 
by the user and the recognition of a request for the freephone service has taken place by branching 
at the Address Analysed POI to the relevant SIB chain. The first SIB, Verify, establishes that the 
user has correctly entered a ten digit number. If the number has been entered incorrectly, the User 
Interaction (UI) SIB is invoked to read an announcement (for example, "Please try again, ensuring 
that you enter ten digits. Thank you.") to the user and control is returned to the BCP via a Clear 

Call POR. The BCP is then responsible for terminating the call. If the number has been entered 
correctly, the Translate SIB uses the dialled number to reference the actual Destination Number 
(DN) of the subscriber. The D N  is then returned to the BCP via a Proceed With New Data POR, 
and call processing continues with routing to this new DN. When call setup is being attempted, 
there are three options as to how the call may progress:

• If the subscriber's line is engaged, a Busy POI leads to a Queue SIB, which holds the call in a 
queue until the line becomes available. Any problem will lead to an announcement being read 
and the call being cleared, but if everything remains in order, control will be released via a 
Continue with Existing Data POR to the BCP once the line becomes free.

• If the call request is accepted, an Active State POI leads to the Charge SIB, which specifies 
that the terminating party is to be billed for the call.

• If the call is not answered, it is possible to access the User Interaction SIB via a No Answer 

POI and cause an announcement to be read to the user before clearing the call.
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2.1.3.3 The Distributed Functional Plane (DFP)

The DFP describes how the various elements of functionality are distributed across the network 
[Q1214]. The operation of the network is explained in terms of Functional Entities (FEs), each of 
which carry out specific FE Actions (FEAs) and communicate with each other through 
Information Flows (IFs). To retain openness, the physical location of the FEs is not addressed in 
the DFP. Figure 2.4 depicts all FEs defined within CS-1.

Acronyms
CCAF: Call Control Agent Function CCF
SCEF: Service Creation Environment Function SCF
SDF: Service Data Function SMF
SRF: Service Resource Function SSF

Call Control Function 
Service Control Function 
Service Management Function 
Service Switching Function

Fig. 2.4: Functional Entities in the IN CS-1 Distributed Functional Plane

The Service Creation Environment Function (SCEF) allows service providers to develop Service 
Logic Programs (SLPs) quickly and easily. The SCEF is a subfunction of the Service Management 
Function (SMF) that has overall responsibility for the deployment, provisioning and maintenance 
of services and for the upkeep of data on the network. Note that no behaviour is specified for either 
the SMF or SCEF in IN CS-1.

• The Service Control Function (SCF) is responsible for controlling the execution of services. 
This task requires that the SCF manages the execution of SLPs and is also responsible for 
handling the transmission of messages to the Service Data Function, the Service Resource 
Function and the Service Switching Function and the interpretation of results from these 
functions.

• The Service Data Function (SDF) interprets SCF-generated requests, accesses (reads or writes) 
data in the database and sends results back to the SCF.

• The Service Resource Function (SRF) provides the functionality for interactions between the 
network and users i.e. the reading of announcements, collection of digits typed in by the user 
etc.
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• The Service Switching Function (SSF) acts as an interface between the SCF and the Call 
Control Function (CCF). It interprets messages from the SCF and translates them into 
instructions for the CCF and also builds information from the CCF into INAP messages for 
transmission to the SCF.

• It is within the CCF that call processing is handled through the maintenance and manipulation 
of a Basic Call State Model (BCSM - this models all the possible states a call can be in, along 
with the requirements needed to pass from one state to another and all possible routes between 
states. Two BCSMs have been specified in CS-1. The Originating B C S M  (O-BCSM) models 
the states of the originating call (e.g. Onhook, Call Authorisation, Number Analysis, Call 
Routing etc.), while the Terminating B C S M  shows all possible states in which the terminating 
call may find itself. Note that it is the CS-1 BCSMs which primarily restrict the use of IN CS-1 
to the provision of Type A  calls.). The CCF is therefore responsible for the detection of service 
requests at any stage in a call and for notifying the SCF accordingly, by passing the request to 
the SSF. It also alters the state of a call according to instructions provided by the SCF via the 
SSF. The CCF is also connected to the Call Control Agent Function (CCAF).

• The CCAF provides connectivity between the CCF and the customer.

Each FE within the network is capable of carrying out a number of actions (FEAs). This is done 
through the execution of blocks of code within the FE. A  set of Information Flows is defined 
within CS-1 as a message set for passing information between FEs. The SIBs from the GFP may 
be realised in the DFP as a series of FEAs and IFs. For example, the Translate SIB uses input data 
as a key to obtain output information. On the DFP, this consists of a FEA within the SCF to build a 
request with the input data as key, an information flow to the SDF, a FEA in the SDF to look up 
the requested information and code it into a message and finally, an information flow back to the 
SCF. This realisation can be extended to services. Taking again the freephone representation on 
the GFP and making the assumption that the call proceeds without any hitches, a simplified DFP 
realisation of how this service would cause a call to be setup is shown in Figure 2.5. Note that, in 
the diagram, the SSF and CCF are modelled together - this is a common method of representing 
their operation, as in reality, they are very closely linked. So, in showing the decomposition of the 
service into FEAs and IFs, three functional entities are represented - the SSF/CCF, the SCF and the 
SDF - r3 and r6 are different communications media between the functions.

Operation of the freephone service is user-driven - when the customer goes offhook an Originating 
BCSM is created to monitor the progress of the call. After the freephone number has been dialled, 
it is analysed by the CCF and the '1800' string at the start of the number is recognised as being a 
request for service. The SSF builds an Analysed Information IF containing the dialled digits and 
sends it to the SCF. The SCF creates an instance of the freephone SLP. This instance invokes FEA 
9111, which builds a Query IF containing the freephone number as information key and sends it to
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the SDF. FEA 4111 in the SDF uses the key from the Query IF (i.e. the freephone number) to 
reference the database to find the actual D N  of the freephone subscriber. The D N  is found and 
encrypted in a Query Result IF as the outcome of the search. FEA 9112 in the SCF then takes this 
outcome and builds it into a Select Route IF as the destination routing address. This IF is then 
passed to the SSF, where it is interpreted as a command to continue call processing by selecting a 
route to the newly supplied DN. The issue of charging is not shown here but would be quite simple 
to implement - at the point where the call is successfully established, an IF is sent to the SCF 
which (in some manner not addressed in CS-1) informs the billing system that the subscriber is to 
be billed for the call.

SSF/CCF___________  r3 ___________ S C F _______________ _r6 _ ________SDF

User

O-BCSM

O-BCSM

Analysed Information

Dialled digits

Select Route

Destination Routing Address

FEA
9111

FEA
9112

Query

Information key 

Query Result

FEA
4111

Outcome

Fig. 2.5: Freephone Service Decomposition

2.1.3.4 The Physical Plane (PP)

On the physical plane, details are provided in [Q1215] as to the physical aspects of the IN. The
Physical Entities (PEs) that form the intelligent network, the FEs realised within them and the
protocols by which they communicate are described at this level. The IN consists of the following
PEs:

• The Service Switching Point (SSP) - user access to service functionality is provided through 
the SSP, which handles call processing, detects service requests and provides connectivity to 
the SCP and other SSPs in the network. The SSP contains three discrete functions - the CCAF, 
the CCF and the SSF.

• The Service Control Point (SCP) - the Service Control Function (SCF) resides here along with 
the SLPs whose execution it manages.

• The Service Data Point (SDP) - this houses the SDF and is connected directly to the SCP. It 
contains all network data relevant to the execution of services.
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• The Intelligent Peripheral (IP) - the SSP maintains a number of channels between itself and the 
IP, which contains the Service Resource Function (SRF). Interactions occur between the SRF 
and users when the SSP opens a channel between them. The IP receives instructions relating to 
announcements and digit collection directly from the SCF and, when necessary, returns any 
acquired information.

All communications between SSPs and SCPs and between SCPs and IPs occur over an SS7 
network using the TCAP part of the protocol (see [Q1218]). The PEs and their interconnections, 
along with the FEs realised within them, are shown in Figure 2.6 below.

S R F J . fy J

Other 

SSPs

Transport

Channel

SS7

Network
Signalling

Channel

Fig. 2.6: Physical Architecture o f  the CS-1 Intelligent Network
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2.2 Congestion Control

Congestion, or overload, of any system may be defined as that case when the arrival rate of 
requests at the system exceeds the service rate of the system. Therefore, the number of calls to be 
dealt with increases continuously as the input buffers build up. If the system has no method of 
decreasing the number of waiting requests, all processing time is spent trying to deal with the 
backlog. The result is that, as the input queue grows, each new request must wait longer and longer 
to gain access to the processor, until the lengths of the delays to users become unreasonable, with 
the result that users begin to abandon their call attempts and retry, thus increasing the input queue 
further. This could eventually lead to the even worse scenario of a complete overload situation, 
resulting in the system being unable to process the presented load and malfunctioning. These 
delays, abandonments and malfunctions result in fewer calls being handled by the system. In all 
cases, whether the system to be protected is a telecoms switch, a telecoms network, a LAN server 
or a data network, this result is highly undesirable. Take, for example, a telecoms switch. From the 
users point of view, an overload at their local switch (or a remote switch through which they are 
trying to communicate) means that they are either presented with long delays in call handling or 
are unable to complete a call successfully - this entails a serious drop in the quality of service to 
network users. From a network operator’s perspective, not only does congestion result in losses of 
revenue, but may also, in today’s open market, lead to the loss of unsatisfied customers. It is 
therefore vital for both network operators and subscribers that overload does not occur, and so 
congestion control is one of the top priorities in the design and operation of telephone switches.

2.2.1 Basic Requirements on Congestion Control Strategies

In order to describe and compare various congestion control strategies, it is necessary to initially 
define the requirements for a successful control strategy. Each strategy will then be evaluated to 
judge its efficiency at meeting each requirement - each strategy will have its strengths and 
weaknesses. An analysis and comparison of the performances of each technique will then allow 
the overall best method to be selected. The requirements were summarised by [Komer91] and may 
be listed as follows:

1. It must be impossible for a complete breakdown to take place due to the input queue being 
overwhelmed.

2. The system must retain good throughput characteristics at all times, i.e. the amount of resource 
capacity spent accepting calls and completing processing of accepted calls should not decrease
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during an overload. The characteristics should approach the ideal shown in Figure 2.7 below as 
much as possible.

Throughput

Offered Load

Fig. 2.7: Ideal Throughput Characteristics o f  a System under Overload

3. Processor load (i.e. the total work that the processor must do - including accepting calls, 
processing accepted calls and rejecting calls) should not exceed some threshold (usually set at 
either 80% or 90% of total processor capacity), even in the event of an extreme overload, to 
ensure that management and other non-switching functions (including congestion control 
routines) may be implemented [Sabourin91],

4. Average response times - the length of time a user must wait for a response from the system - 
must not increase noticeably due to overload. For example, in telecoms, this is both to comply 
with international performance standards on post-dialling delays (see [E.721] and [E.723]) and 
to minimise the number of call abandonments due to customer impatience (the impatience of 
both ISDN and IN customers is well documented - see [MacDonald94], [Bolotin94] and 
[Hoang90]). Call abandonment is highly undesirable, not only because resources which were 
spent processing calls which are subsequently abandoned are wasted, but also because 
abandoning customers have a tendency to reattempt their calls (see [Roberts79] and 
[Burkard83]), thus exacerbating the overload condition.

In meeting the above requirements, a strategy will need to compromise between throughput and 
response time, as they affect each other adversely. In order to keep throughput high during 
overload, as many calls as possible must be accepted, thus increasing the length of the input queue 
and the delay experienced by a request while those ahead of it in the queue are processed. On the 
other hand, to maintain response times at a minimum, the requests must spend as little time as 
possible in the input buffer, thereby reducing the number of calls in the buffer and the number
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handled by the processor. These parameters are also dependent on the length of the input queue. If 
the input queue is short, response times will be shorter, but throughput will also be quite low. If the 
input queue is longer, throughput (and load) will increase, but so will the delay experienced by the 
user. The best possible compromise must be achieved between these parameters in order to 
maximise the efficiency with which each of the above requirements are met.

2.2.2 An Overview of Congestion Control in the PSTN/ISDN

Overload control has been widely investigated in the area of providing protection to telephone 
switches. In general, each switch in a network is responsible for protecting itself from becoming 
congested. This is done by detecting any of a number of occurrences that are recognised as 
constituting an overload situation and then implementing some measures to counteract the 
problem. These measures may involve:

• refusing all new calls outright (callers are cut off with minimum delay and minimum load is 
expending processing rejected calls),

• assigning priorities to different call types and selectively reject calls according to their 
priorities when overload occurs (this may involve either processor or trunk reservation - see 
[Lindberg88] and [Rajaratnam96] for examples of this),

• sending commands to surrounding nodes, instructing them to re-route call setup requests via 
other paths where switches are not congested (this is referred to as flow control and may be 
based on the use of pre-defined alternative routes or dynamic routing algorithms - see 
[Zepf91], [Dziong89] and [Langlois91] for examples).

Therefore, in overload investigations, it is usual to assume that the system to be protected consists 
of only one element - the switch.

The most popular model used for modelling systems under congestion (see [Komer91] and 
[Wallstrom91]) consists of a single processor with a controllable throttle at the input and a single 
feedback loop as a simplification of the delays (e.g. the time while the user is entering the desired 
digits or the conversation phase of the call) between processing times for each call (shown for a 
PSTN call in Figure 2.8 [Seraj85]). In all cases, irrelevant of which control strategy is in use, 
[Komer91] shows that the delay must have an exponential distribution (see Chapter 3, Section 
3.2.3.2), because constant delays result in violent fluctuations in the processor load during 
operation. The algorithm for the detection of overload executes at the processor and when it deems 
that congestion has occurred and intervention is required, a message is sent to initiate the throttle 
algorithm, which then manages the input stream in order to reduce the number of calls to the 
system. Note that, since the distribution of the random arrival of calls at a switch tends towards the
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Poisson distribution, an ideal Poisson generator is used to generate all new call requests. The 
graphical model is as shown in Figure 2.9.
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Fig. 2.8: Load Profile for a PSTN (non-IN) Call

Fig. 2.9: Congestion Control Model o f  a Switching System

Note that this model is also suitable for monitoring distributed switching systems ([Manfield91], 
[Daisenberger85]), as, in general, these systems consist of a main central processor which sets up 
and controls all calls, and a number of peripherals which maintain line and trunk integrity. As it is 
the central processor that must be protected, the control algorithm resides here and the throttle is 
implemented separately at the peripherals. Therefore, the only difference in the model between 
single-processor and distributed systems is the location of the throttle algorithm, which, in terms of 
operation, has a negligible effect on system performance.
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2.2.3 Classification of Switch Congestion Control Strategies

There are two types of congestion control strategy used in switch congestion control (both for 
Stored Program Controlled (SPC) and distributed systems). These may be classified as active and 
reactive strategies. An active strategy is always in place and permanently restricts access to the 
system, thereby preventing overload. Reactive strategies, on the other hand, only become active 
when the onset of overload is detected and ceases when the overload condition ends. Note that, for 
all strategies, when an incoming call is accepted, it is vital that it successfully completes 
processing to the point where termination (and charging) occurs - both for economic reasons and 
to optimise throughput. Therefore, any calls which have already received some processing must be 
given priority over any new calls which have not yet undergone any processing. This criterion 
ensures both that the call is either rejected immediately or serviced (i.e. not delayed and then 
rejected) and that there is no waste of processor time through blocking calls that have already 
received some attention.

2.2.3.1 Active Congestion Control Strategics

The principle active strategies used for managing congestion control in switches are Call Gapping, 
Window, Leaky Bucket and Token Throttling. These may be described as follows:

Call Gapping - This mechanism involves the use of a timer set to expire after a gap interval g. For 
each call arriving at the switch, the gap interval timer is checked. If the timer is inactive, the call is 
accepted and the timer is set. Until this timer expires, all further arriving calls will be 
unconditionally blocked. After the gap interval has elapsed and the timer becomes inactive, the 
first call to arrive is accepted and serviced and the gap interval timer is set again. This mechanism 
is illustrated in Figure 2.10 [Tsolas92], Note that, while Call Gapping (CG) is described here as a 
switch congestion control strategy, it also has applications in network traffic management (e.g. 
[Tumer91]).

Call requests 

to switch
H h-

Key:

Accepted call: \  

Blocked call: ^

Fig. 2.10: Call Gapping Mechanism
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Window Mechanism - Window is applicable only in distributed systems (the mechanism actually 
originated in client/server computing environments [Tsolas92]) and is used primarily in peripheral 
processors of distributed switches to protect the central processor. Here, each peripheral processor 
keeps track of the number of requests, w, which have been sent to the central processor and for 
which a response remains outstanding. Each time a new request arrives at a peripheral processor, 
its current value of w is compared to W (the Window value of the peripheral processor, with 
1 <W< Wmax, where Wmax the maximum allowable Window size). If w<W, then the new request 
is dispatched to the central processor, w is increased and a timer is set for that request. This timer 
corresponds to the acceptable delay for the request at the central processor. If, on the other hand, 
w=W, the request is rejected immediately. Each time a response is received from the central 
processor, w is decreased. Each time a timer expires, its associated request is rejected, and both w 

and W are decreased. When a pre-defmed number Cmax of responses have been received from the 
central processor, W is increased. At the central processor, the length of time a request has been 
waiting for service is calculated before processing of the request begins. If the wait time exceeds 
the acceptable delay, then the request is abandoned. This mechanism [Tsolas92] is shown 
graphically in Figure 2.11.

Call attempts 

to peripheral

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Responses from y . 

central processor

Key:

Accepted call: ^

W = 5 W = 4
-H

3 4

------------------- -i
W = 5

time

Blocked call:= *

Timeout 2

=> Call 2 
rejected, 
W = 4

Cmax = 2 

=> W =  5

Fig. 2.11: The Window Mechanism

The algorithm described in [Manfield91] is an example of the Window mechanism applied in a 
distributed switch, with W=Wmax= 1. Window is also widely used for congestion control of other 
distributed systems - namely, computer networks [Akyildiz90], telecoms networks (e.g. [Luan89] 
and [Doshi91]) and Intelligent Networks (discussed in Section 2.3).

Leaky Bucket - This is a traffic shaping mechanism with three parameters - a Leaky Bucket 
interval TLB > a limit counter, SLB, for the number of requests which may enter the Leaky Bucket 
during TLB (i.e. SLB is effectively the depth of the bucket) and a counter, K LB , representing the
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number of requests which may leave the bucket during TLB (analogous to the size of the hole in 
the bucket). The graphical representation of this mechanism [Pham91] is shown in Figure 2.12.
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Fig. 2.12: The Leaky Bucket Mechanism

Token Mechanism - For the token algorithm, there are a fixed number of tokens in a token bank 
(queue of tokens). Each new request to the system must take a token to be accepted to the system. 
Those requests, which arrive when no token is present in the token bank, are rejected. When a 
request completes processing, its token is returned to the token bank. This is shown in simplified 
graphical form in Figure 2.13 and is described comprehensively in [Seraj85], as the primary 
congestion control strategy used in Ericsson AXB (data) switches.
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Fig. 2.13: The Token Mechanism

Note also that a hybrid of Token and Leaky Bucket (called Token Bucket) exists, whereby a 
parameter S TB controls the depth of the token bucket and K m controls the rate at which tokens 
are released from the bucket.

A  few comparisons may be made regarding the applicability of the active control strategies 
described above. Window is the only strategy described above which is directly applicable to 
distributed systems. Call Gapping, Leaky Bucket and Token are, as described, applicable to single 
systems. However, they may also be adapted to act as throttles in a distributed system, i.e. they 
may form part of a reactive system, where a remote detection method drives them by defining 
either the gap interval for the CG throttle, the number of tokens which should be made available in 
the Token throttle or the parameters of the Leaky Bucket throttle (described in Section 2.2.3.2).
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Regarding resource requirements of the different strategies, Call Gapping is the most efficient 
strategy in terms of resource usage, as it requires only the maintenance of one timer. Leaky Bucket 
is only slightly more complex, requiring the maintenance of two counters and one timer. The 
Token mechanism, on the other hand, requires the maintenance of a queue of tokens (although this 
could be achieved more simply, using counters) and some mechanism for associating a token with 
a request. This means that Token requires more resources than Leaky Bucket. Window, however, 
has the largest footprint, as it requires, not only the maintenance of three counters, but also a timer 
for each request in the system.

Regarding operation of the strategies, active strategies generally tend, due to their fixed nature, to 
be unnecessarily restrictive as they occasionally cause calls to be rejected unnecessarily during 
small peaks in traffic load [Sabourin91]. Also, the fact that they are always in place makes them a 
continual drain on processor resources, which is highly undesirable. Therefore, it is more common 
to form a reactive strategy by using adapted versions of Call Gapping, Leaky Bucket and Token as 
throttles, in conjunction with a detection method, as described in the following section. Window, 
on the other hand, is not easily adapted to be a throttle and tends to be used as described above.

2.2.3.2 Reactive Congestion Control Strategies

As can be seen in Section 2.2.3.1, active congestion control mechanisms tend to have a single 
algorithm executing in a single location. A  reactive overload control method, on the other hand, 
usually consists of two algorithms working together - namely, a detection routine and a throttling 
mechanism. The detection routine may be either continually active or may execute at set intervals. 
When executed, the detection algorithm recognises the presence of an overload situation, decides 
the level of overload and the suitable action to combat it and then sends a command to the throttle, 
which restricts the input to the system accordingly. Note that the separation between overload 
detection and response makes the reactive class of strategies very suitable for the congestion 
control of both single switches and distributed systems (distributed switches or networks of 
switches).

The range of detection routines that have undergone the most investigation includes:

1. Queue Length Control (QLC) - each time a request is added to a queue, the queue length is 
compared to a predefined maximum value, which, when exceeded, is classified as an overload 
condition.

2. Load Measure Control (LMC)- the mean load of the central processor over the course of a 
pre-defmed time interval is estimated at the end of each consecutive interval (using algorithms
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such as [Kallenberg89]) and compared with a maximum permissible value. When this value is 
exceeded, an overload is deemed to exist.

3. Call Count Control (CCC) - the number of new arrivals to the system is counted (old calls 
returning to the queue after a delay are excluded from this figure) over a pre-defined time 
interval and if it is found, at the end of the interval, to be greater than a specified maximum, 
alerts of an overload condition.

4. Any combination of the above - see [Wallstrom91] and [Villen85]. For example, CCC could 
be used in conjunction with QLC. CCC initially detects an overload condition, and its response 
is to lower the threshold of acceptable queue length. When the QLC algorithm detects that this 
threshold has been exceeded, the throttle is initiated.

Most reactive congestion control strategies are based on either the direct use of the above detection
methods or on variations of these methods (e.g. [Daisenberger89]). The range of throttles defined
to be used with the above strategies include:

1. Call Gapping Throttle - the detection routine sends an overload level to the throttle, defining 
a suitable gap interval, which is a length of time after a call has been accepted during which all 
new arriving calls are blocked. A  gap duration may also optionally be included - this is the 
length of time for which the throttle should be in place. CG effectively places an upper bound 
on the acceptance rate of a system. This throttle is one of the primary throttles used in 
Intelligent Networks (described in Section 2.3), but also has applications in general network 
traffic management, as described in [Pham91].

2. Percentage Throttle - the detection routine sends an overload level to the throttle, defining 
the percentage of incoming calls to be accepted. All other calls are rejected. This is referred to 
as percent thinning (PT) and is commonly used in PSTN and ISDN switches.

3. Token Throttle - this is an adaptive version of the active token mechanism, in which the 
number of tokens available in the system is defined by the severity of the detected overload - 
see, for example, [Berger91a].

4. Leaky Bucket Throttle - this is an adaptive version of the active Leaky Bucket mechanism, in 
which the values of the limit counters are defined by the severity of the detected overload - see, 
for example, [Pham91].
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Each of the three detection strategies described here- QLC, L M C  and CCC - has its own 
advantages and disadvantages when applied to a single-queue model. These are detailed in 
[Komer91] and may be explained as follows.

Queue Length Control: QLC responds almost immediately to the onset of congestion, as the 
input queue length is monitored continuously. However, recovery time is slow and there are heavy 
fluctuations in the load. The reactive nature of QLC means that it is not possible to achieve a 
satisfactory trade-off between response times and throughput - low response times can only be 
achieved through maintaining the queue length threshold low, thus resulting in reduced 
throughput.

Load Measure Control: Fluctuations in queue length and load for L M C  are smaller than for 
QLC. However, due to the fact that call acceptance only takes up 30% of total call processing time, 
calls accepted during an interval may require more load during a later interval. Therefore, the 
processor sees traffic levels as being greater than they actually are, resulting in overload being 
detected well before its actual occurrence (i.e. when input traffic is only approximately 60% switch 
capacity) - see also [Sabourin91]. L M C  is also slow to recover from congestion. This is because 
the measured load is defined by calls that have already been accepted. Therefore, by the time 
overload is detected, many calls have already been accepted, and recovery is quite slow. Note also 
that the efficiency of this method is very dependent on the length of the control interval - if the 
interval is too short, overload controls will be initiated even earlier, whereas if it is too long, very 
many calls will have been accepted and recovery will take even longer.

Call Count Control: CCC monitors the number of newly arriving calls and therefore gives an 
accurate reflection of the input traffic. This means that it responds very quickly to the onset of 
overload - in fact, due to the random nature of incoming traffic, CCC tends to respond prematurely 
to overload - when incoming traffic is at 75% processor load. This means that overload is not very 
serious when throttles are put in place and therefore recovery is also very fast, with minimal 
fluctuations in input queue length and load. Note that, as with LMC, quality of operation is 
dependent on control interval length - in a short control interval, there will be a large variation in 
arrival intensity and controls could be initiated unnecessarily, while many calls will arrive during a 
long interval and therefore, recovery will be slower.

The conclusion to be drawn from the above is that, for a single-queue system, CCC is the most 
effective overload detection method. It responds quickly to the presence of congestion and 
recovers quickly while maintaining good levels of throughput. However, it remains to be seen if 
CCC remains the best technique when applied to the Intelligent Network. The IN is not structured 
as a network of single-processor systems and also presents a number of new issues in the area of
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congestion control (detailed in Chapter 1). This means that it is impossible to draw any 
conclusions, at this time, as to which detection method would be most effective at protecting the 
SCP from overload.

Regarding throttling mechanisms, percent thinning is the easiest to implement and requires the 
least processing power as it requires only the maintenance of two counters. Leaky Bucket has a 
simple algorithm and requires two counters and one timer. CG is also simple to implement and 
requires the maintenance of one (or possibly two) timers. The Token mechanism is very complex 
to implement (see [Seraj85]) and requires the maintenance of a few queues of tokens. All throttles 
mentioned may become more complex if it is required to allow variation in the throttling levels 
applied to different call types or calls coming from different source nodes. No conclusive 
comparisons are available between these throttle types in SPC/distributed switch/traffic 
management studies, and therefore, their applicability in IN congestion control should be directly 
established using IN models. Comparisons are available in the IN domain and will be described in 
Section 2.3.

2.3 IN Congestion Control

2.3.1 A Description of the Models used in IN research

As the IN is made up of a number of different PEs that interact to execute a service, the issue of 
congestion prevention and control is a much more complex one than for simple switching systems. 
In the IN, as the SCP is most central to correct operation, protection of it is of paramount 
importance. Therefore, to date, all documented research in the area of IN congestion control has 
been focused on developing ways to maximise SCP efficiency.

Two different types of models have generally been used. The first is very similar to the single­
processor model used in the investigation of switch operation. However, in this case, the model 
represents the SCP (see Figure 2.14). Input streams are usually assumed to be Poisson in nature 
and the times between SCP processing of a single request (i.e. when SDP or IP access is required) 
are represented as a feedback delay of arbitrary length. The throttle is placed at the input to the 
system, so that only new requests may be rejected, but it is not specified whether it is integrated 
into the SCP or located elsewhere in the network. Examples of research involving the use of this 
type of model include [Smith95] and [Nyberg95b]. Its use is understandable in that, although the 
model is an oversimplification of the real system, it is very useful for mathematical analysis of 
SCP operation.
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Fig. 2.14: Single processor SCP model

The second type of model is more widely used as it more accurately represents the elements of an 
IN, in that it contains multiple SSPs and one (or more) SCP. However, due to its added 
complexity, mathematical analysis of the system is no longer a simple process. Therefore this 
model is primarily used in simulations.

In general, the model appears as in Figure 2.15, with multiple SSPs connected to one SCP (e.g. 
[Nyberg94], [Pham92], [Kihl95], [Rumsewicz96], [Yan94], [Kwiatkowski94a]). In some cases, a 
Service Transfer Point is also included [Galletti92] to represent interactions with the SS7, which 
would be the transmission medium between elements in a real network, although when the SS7 is 
partially represented like this, the transmission delay is still only represented by a constant value. 
Occasionally also, a combined Service Switching and Control Point (SSCP) is included, and is 
represented as a delay queue in series with a job queue - see [Kihl97]. [Leever93] and 
[Kwiatkowski94b] provide simple analytical method to calculate load and service delays for this 
model. [Newcombe94] extends this model and solves mean delays using the decomposition 
method (described in Chapter 3).
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Generally, different research studies using this model make a number of assumptions. These
include:

• It tends to be assumed that all calls in the network are of the same type, or if of different types, 
have the same load profile. Information flows in the system tend to be simplified. For 
example, in [Galletti92], all traffic is unidirectional - i.e. the SSPs send requests to the SCP 
and the SCP does not respond. In most other investigations, communication between the SSP 
and SCP is made up of a single query/response pair (e.g. [Pham92], [Kihl95], [Tsolas92], 
[Nyberg94] and [Hebuteme90]) in which the SCP receives a query from an SSP, processes it 
and returns a response to the relevant SSP. This is generally either represented either as a 
simple number translation service (e.g. Freephone, which does only require one SCP 
transaction) or as the first transaction in a more complex service. Justification for this 
simplification tends to be that all service requests should be rejected or accepted during the 
initial transaction and accepted calls should complete successfully, and therefore, as overload 
only impacts on initial transactions, only these need to be modelled. Some research studies 
(e.g. [Rumsewicz96], [Pham92]) do include information flows for more complex services (e.g. 
services which require processing at the SCP on multiple occasions), but again, only the 
impact of the initial service transactions are investigated. This is, however, not completely 
accurate, as it does not take into account the effects of the load profiles of the different request 
types in the system (i.e. how the necessary processing of old calls at the SCP impacts on 
congestion situations).

• It also tends to be assumed that all service types in the network have the same priority level, 
i.e. that during overload, all requests may be throttled equally. An exception is [Lee97], who 
did examine how CG could be altered to cater for different call priorities.

• Retrials and their effects on congestion control strategies are generally not investigated in most 
studies. An exception is [Manfield91], who included retrials in his study of overload control of 
hierarchical switching systems.

• Many studies provide different interpretations as to the meaning of “fairness”. For example, 
[Lee97] classifies fairness as “the probability of rejection ought to be the same for all the 
subscribers, irrespective of which SSP they are connected to”, while [Hac98] claims that 
fairness means that only sources (SSPs) which are causing overload should be targeted. Note 
that theses definitions of fairness are contradictory - however, the first definition (i.e. that all 
subscribers to a particular service should be treated equally) is more generally accepted and 
may be referred to as “subscriber fairness”. [Rumsewicz96], [Galletti92] and [Tsolas92] say 
that a fair strategy should target only the service type which is causing the overload (a form of 
Focussed Destination Overload Control (FDOC)) - this may be termed “service fairness”.
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• In general, traffic arrival at SSPs is assumed to be Poisson in manner and SSPs are modelled 
as infinite First-In-First-Out (FIFO) queues with either no delays, constant delays or 
exponentially distributed services times.

Intelligent Network congestion control strategies tend to be based on the common switch-based 
strategies described in Section 2.2. Active congestion control strategies are located in the SSPs and 
are communication-less - i.e. they do not require notification of overload from the SCP. Reactive 
strategies, on the other hand, are communication-oriented - the detection algorithms are located in 
the SCP and send overload notification to the throttles in the SSPs. In both cases (active and 
reactive), all rejections of service requests take place at SSPs. Justification for this is simple - SCP 
processing time is at a premium during an overload situation and should be maximised in the 
execution of services. Intuitively, therefore, implementing a throttle to reject requests at the SCP 
is a waste of valuable processor time and should be avoided. Also, a substantial part of call 
processing time at the SCP is spent unmarshalling the call (i.e. unwrapping the SS7 protocols) 
before it may be interpreted and a decision made as to whether it should be accepted or rejected 
[Komer94] - this overhead, in terms of wasted capacity, is unacceptable and therefore calls should 
be rejected remotely. Therefore, throttles are always situated in the SSPs and restrict traffic to the 
SCP according to the control data passed to them by the SCP. In general, this control data tends to 
be an overload level, a call gap interval or (in cases where PT is used as the throttle) a percent 
thinning coefficient.

Note that a form of the CG throttling mechanism described in Section 2.2.3.2 has been 
standardised by Bellcore as part of the Advanced IN (AIN) standards [Bellcore92], This 
mechanism is called Automatic Code Gapping (ACG) - automatic, because it is possible to 
dynamically control the gap interval level to be applied by the throttle. This is not, however, as 
adaptive as it sounds, as the standard includes a fixed table of permitted gap intervals from which 
an appropriate interval must be chosen. A C G  throttles may be put in place selectively at different 
SSPs by either the SMS (SMS-Originated Code Control (SOCC)) or the SCP (SCP Overload 
Control (SOC)). SOC includes a parameter that enables the selective restriction of calls based on 
the first six digits of the originating/terminating number, while SOCC also allows the specification 
of parameters that permit selective control of incoming calls (e.g. by service type). Note also, 
however, that the A C G  specification is specific to the AIN standards, and no such specification 
exists in ITU CS-1. Therefore, there is no requirement to include this specification in our CS-1 IN 
model and, as will be seen in Chapter 4, the version of CG implemented in the model conforms 
with the (table-driven) throttle description provided in Section 2.2.3.2. In Chapter 6, a new, fully 
adaptive CG throttle is defined - the motivation for this is provided by [Smith95], who 
demonstrates both that the gap intervals provided in the AIN standard are ineffective, and that an 
adaptive CG throttle has behaviour far superior to that of a fixed table-driven CG throttle.
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Some variations on the more usual active and reactive strategies have also been investigated in the 
IN arena. For example, [Hac98] describes a hybrid Window/Adaptive CG strategy for IN 
protection, [Nyberg95a] examined the use of Proportional Integral Differential (PID) controllers 
for IN overload control and [Galletti92] and [Rumsewicz96] both propose extensions to usual 
strategies to facilitate FDOC. Note also that the use of optimisation techniques for performance 
management is not unusual. Some examples include [Pham91], who uses revenue optimisation to 
dynamically define Leaky Bucket parameters, while [Milito91] uses revenue optimisation to 
decide if a newly arrived call to an IN SSP should be blocked. [Angelin95] and [Arvidsson96] 
investigate the use of profit optimisation to decide, based on predictions of SS7 and processing 
delays, whether a new call request should be accepted at an SSP. The efficiency and performance 
of these less common strategies are not compared to that of the common strategies. However, a 
number of papers do exist which cover the comparison between:

• CG, Leaky Bucket and PT throttling mechanisms (no study has been published which 
examines the performance of Token active strategies or throttles in the IN context),

• most common active and reactive IN congestion control strategies.

2.3.2 Comparison between Throttles for the IN

Leaky Bucket vs CG: [Pham91] suggests that the Adaptive Leaky Bucket throttle performed 
better than the Adaptive CG throttle, primarily due to the fact that it is less strict and can handle 
bursty arrivals because it limits the number of calls which can be accepted within a period while 
CG only accepts strictly one call per period. However, this claim is not well supported in the 
paper, and no other references were found to support this position. On the other hand, [Lee97] 
compares a Continuous Gapping throttle (analogous to an adaptive Leaky Bucket strategy with a 
leak rate of one request per interval) to the normal adaptive CG throttle and established that both 
throttles perform equivalently, if suitable gap intervals are defined in each.

Percent Thinning vs CG: Considering the operation of the two throttles, [Kihl97] found that they 
were generally equally efficient at protecting the SCP (providing the CG intervals were 
appropriate to the network topology and call arrival rates). However, PT exhibits subscriber 
fairness, as the SCP notifies all SSPs to reject a certain proportion of their arrival traffic and 
therefore all SSPs are throttled equally [Rumsewicz96]. By extension of this, PT is scalable, as the 
PT coefficient is not dependent on the size or number of SSPs in the network or on the arrival rates 
to each SSP [Berger91b], CG, on the other hand, puts the same gaps in place on all SSPs, 
irrespective of size, with the result that larger SSPs (or SSPs with greater arrival rates) are more 
heavily throttled (i.e. it is not subscriber fair). CG is also not scalable. However, it is more robust 
to changes in arrival rates (as it puts a firm upper limit on the number of calls which may be
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accepted [Berger91b], [Hebuteme90]) and also tends to throttle services with greater arrival rates 
more heavily, resulting in a certain implicit level of service fairness.

2.3.3 Comparison between Active and Reactive Strategies for the IN

The most popular active congestion control strategy used in IN implementations is Window. 
Reactive strategies tend to use QLC, CCC or L M C  as the detection method in the SCP, and either 
CG or PT in the SSPs. [Pham92], [Tsolas92], [Nyberg92] and [Nyberg94] carried out comparative 
studies between active and reactive IN congestion control strategies. Unfortunately, it was found 
that the results differed paper to paper. [Pham92] concluded that Window was generally superior 
to CG, with one of the primary reasons for this being that Window is updated as to the state of the 
SCP every time a response is received (i.e. it has a tighter SSP-SCP control loop than reactive 
strategies). However, this conclusion may be questioned, as the monitoring interval used by the 
CCC/CG strategy was 20 seconds - which is far greater than the optimal, as specified by 
[Komer91]. Pham also found that Window was fairer than the reactive strategy in terms of 
rejection rates at different SSPs in the network - however, it is unclear whether this is actually a 
function of reactive strategies in general, or of the fact that CG was used as the throttle, where CG 
has already been recognised as being quite unfair (see Section 2.3.2 above). [Tsolas92], on the 
other hand, found LMC/CG to be superior to Window. He found that (with a shorter monitoring 
interval than that used by [Pham92]) the reactive strategy responded more quickly to the onset of 
congestion. LMC/CG was also considered to be more flexible, as it facilitated the selective 
throttling of services or sources. Both [Nyberg92] and [Nyberg94] found reactive strategies 
superior to the Window strategy for similar reasons to [Tsolas92], although it is interesting to note 
that [Nyberg94], who used PT instead of CG as the throttle, added that the reactive strategy was 
fairer than Window. However, the fact that no definitive answers are available in existing literature 
means that it is still debatable which method is superior.

2.4 Conclusions

To conclude this chapter, we summarise that the most popular IN congestion control strategies in 
place today are:

• Window, an active strategy located in SSPs,
• Various reactive strategies, consisting of either CCC, L M C  or QLC as detection methods at 

the SCP, working in conjunction with either a CG or a PT throttle in the SSPs.

To date, a number of studies have been conducted into comparing the operation of Window with 
that of various reactive strategies, but no definitive conclusion has been drawn as to which is best. 
Also, while CCC has been established as the best detection method in SPC systems, it remains to

36



Chapter 2 State of the Art

be seen whether it is still the best in the IN arena. Research into throttle types have found that both 
CG and PT have advantages and disadvantages, so it is unclear which is superior in a practical IN 
implementation. It was therefore decided to make no assumptions regarding superiority of 
strategies, algorithms or methods at this point.

Chapter 4 will begin by focusing specifically on establishing the effectiveness of various detection 
methods used in conjunction with the CG throttle. It will also be necessary to find out how 
adaptable these detection methods are in order to meet the added requirements of the IN. Each of 
the detection methods described above will therefore be implemented on a new type of model of 
an IN system and executed in conjunction with the CG throttle in order to see which one best 
meets the needs of the SCP. The detection algorithms will be located at the SCP, and will interact 
with a CG throttle in the SSP in order to control the quantity of traffic arriving at the SCP. When 
the best detection method has been established, this will be used in conjunction with both CG and 
PT to establish the best common reactive strategy. When the best solution for a reactive strategy 
has been established, its operation will be compared with that of the active Window mechanism. 
The results of Chapter 4 will be twofold:

• the best of the most commonly used strategies will be identified (based on the principles 
described in Section 2.2.1 of this chapter) for IN SCP overload control,

• the limitations of these strategies "will also be identified, which will help clarify the 
requirements on an ideal IN congestion control strategy.

Then, in Chapter 5, the IN model will be enhanced to include non-IN calls, multiple finite-capacity 
SSPs (i.e. SSPs which may experience overload), multiple traffic types with different load profiles 
and priorities and a new strategy will be developed which will allow the efficient performance 
management of this new, much more complex IN system. Throughout this work, the criteria that 
will be used to evaluate the validity and efficiency of the developed congestion control strategies

• SCP queue length: It is vital to ensure that the SCP is protected from overload at all times. A  
good way of estimating the dynamic load presented to the SCP is to monitor variations in the 
input queue length - the occurrence of any overload situation will immediately be reflected 
here.

• SCP throughput: The ideal congestion control strategy will protect the SCP at all times, 
while maximising its throughput. The SCP queue length statistic will provide information as 
to the quality of the evaluated strategies at protecting the SCP, but in order to ensure that the 
strategies are not excessively harsh, their effect on SCP throughput must also be estimated.

• SSP load and throughput: For the initial study of SCP overload control strategies (in 
Chapter 4), SSP capacity is modelled as being infinite and therefore, SSP throughput is not
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relevant. However, the enhanced model presented in Chapter 5 will include finite-capacity 
SSPs that are also prone to overload and the congestion control strategy to be developed will 
need to take into account the efficiency of the SSP.

• User delays: The average length of time each user must wait for service processing to be 
completed. In general, network processing time of user requests for service should not exceed 
2 seconds (as after this time, users will begin to abandon calls [Kant95]), although, in cases 
where IP processing is required, longer delays are acceptable, as they include times when the 
network is interacting with the user (i.e. when the user is busy and therefore not impatient). 
As delays will vary for each service type, depending on the processing required, it is necessary 
for each service to be monitored individually.
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In this chapter, the background information required to understand the ideas presented in Chapters 
4, 5 and 6 is presented. Firstly, OPNET, the tool used in the development and simulation of the IN 
model, is described. Then, in Section 3.2, the queuing theory used in the specification of the IN 
analytic model are explained. Section 3.3 finally presents the theory behind mathematical 
optimisation and linear programming.

3.1 An IN Simulation Tool

3.1.1 Using OPNET for IN  Simulation

In order to ascertain the behaviour of the Intelligent Network under various congestion control 
strategies, it is necessary to develop both a simulation model of the IN (made up of service traffic 
sources and a high-level model of the IN which deals with the traffic in a manner similar to a real 
IN) and an analytical model (a mathematical model which allows the mean state of each element 
of the IN to be evaluated for various mean traffic arrival rates). For the simulation, it was decided 
to use the Optimised Network Engineering Tools (OPNET) package to develop the IN model. 
OPNET is a hierarchical object oriented simulation tool, designed specifically for the development 
and analysis of communication networks. It provides a graphical interface to the user for the 
specification of models. The models of protocols and algorithms employ a hybrid approach by 
allowing the user to embed C language code within a graphically laid out finite state machine. The 
specification of processes in C is facilitated by an extensive library of support functions, which 
provide a wide range of simulation services. It also provides a set of analysis tools to interpret the 
simulation results in graphical form.

There were a number of reasons for choosing to use OPNET for modelling the IN system. These 
included the following:
• OPNET’s hierarchical nature simplifies the design of complex systems, through the separation 

of concerns into network, node and process levels.
• OPNET allows the creation of multiple instances of nodes, thereby making it easy to scale the 

IN (in terms of the number of SSPs). Each of the node types of the IN (the SCP, SDP, IP and 
SSP) have to be developed only once, but the overall system may consist of multiple instances 
of each.

• Library functions are provided for the construction of queues and various traffic arrival time 
and service time distributions.

• The core parts of a system (i.e. the processes) are event-driven finite state machines, thus 
allowing the modelling of real-time systems, such as the IN.
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• The programming language underlying the application is called Objective C - this is 
effectively standard ANSI C, with a large number of OPNET-specific library functions. 
Familiarity with C therefore reduces considerably the learning curve involved with using 
OPNET.

• Unlike a number of other modelling packages available, OPNET provides comprehensive and 
flexible support for acquiring statistics from a simulation and representing them in graphical 
form. It also provides various mathematical filters to facilitate rigorous analysis of statistics, 
which was a useful feature in the course of this work.

3.1.2 Operation o f  the OPNET modelling tool

OPNET simulations are based on four separate modelling domains called the Network, Node, 
Process and Link domains. The dependencies between these modelling domains are shown in 
Figure 3.1 below. As illustrated, network models rely on the definition of the node models, which 
in turn incorporate process models. In addition, link models are used to characterise links between 
nodes in the network domain.

Fig. 3.1: OPNET modelling domains

In the Network Domain, node models are instantiated and each instance may be assigned 
independent attributes including identification, position, and user-defined attributes. Nodes that 
are designed to attach to physical links (i.e. which contain receivers or transmitters) may be 
interconnected to form arbitrary network topologies.

The Link Domain allows incorporation of custom or user-specified link models within OPNET 
simulations. These models are specified in C and are linked into the simulation. Point-to-point 
links are represented by lines between source and destination nodes. The point-to-point links are 
unidirectional, so a duplex link must be represented by two links, one for each direction. The
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point-to-point links have a number of built-in attributes that can be specified by the user. They 
include the transit delay incurred by packets forwarded over the link, and the bit error rate - the 
probability of bit errors in packets transmitted over the link.

In the Node Domain, the internal structure of the nodes is defined. This structure consists of 
modules that can generate, process, store, receive and transmit packets and manage resources 
according to a user-defined process. These modules can be interconnected to form arbitrarily 
complex node architectures. A  number of standard module types are available within OPNET and 
may be used directly or amended at process level to function in a user-defined way. The standard 
module types include:

• The Ideal Generator module, which provides a convenient stochastic packet source. The 
frequency of packet arrivals and the length of packets can be controlled by selecting any one 
of a range of probability distributions. The packets generated can also have a packet format 
specified, in terms of the fields within the packets and the information they hold.

• The Queue module, which incorporates C code and simulation kernel procedures to model 
processing functions of the node. The queue module may contain a number of subqueues, 
each of which can hold a list of packets. The queuing discipline used, the number of 
subqueues needed and the capacity of each subqueue can also be specified. It is also possible 
for the user to define whether the queue is active (i.e. has an in-built server, which removes 
packets from the queue and processes them) or inactive. If an active queue is specified, the 
service rate of the internal server may be defined by the user.

• The Processor module, which carries out set operations on any received packets. A  range of 
processor types are available, although the most commonly used one is the sink, which is 
responsible for destroying packets and deallocating the memory assigned to them.

• The transmitter and receiver modules are used for communicating between nodes. A 
transmitter module of one node is connected to a corresponding receiver module at the 
destination node via a point-to-point link between nodes in the network domain. The 
maximum data rate for each of these modules can be specified.

Process models are specified using a graphical editor that captures the structure of the process in 
the form of a finite state machine (FSM). The FSM models a communications process by 
responding to changes in its inputs, modifying its state and producing new outputs. Process 
models may make use of a library of kernel procedures that support access to packets, network 
variables, statistic collection, packet communication and other simulation services.

The two fundamental components of an FSM are states and transitions. States can be used to 
represent the significant modes of the process and may have certain actions associated with them. 
An FSM can implement actions both on entering and on leaving a state. All states can be
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considered as consisting of three different phases of traversal as shown in Figure 3.2 below. The 
first phase is the enter executives, which are always implemented on arrival to the state. The 
second is a possible resting phase and the third phase is the implementation of the exit executives.

Two types of states are distinguished in OPNET process models - forced and unforced states. 
Forced states bypass the rest phase and proceed immediately to the exit executives. Unforced 
states, on the other hand, always cause the operation of the FSM to be suspended immediately after 
the enter executives have completed. An FSM will remain in the rest phase until a new interrupt is 
delivered to the process model, causing a transition to the exit executives. In fact, interrupts are 
absorbed by process models only when their FSMs are in a blocked condition, and thus necessarily 
occupying an unforced state. Therefore, unforced states are only used when it is required for the 
process to wait for a particular event to occur, the result of which is the generation of the 
appropriate interrupt for which the process is waiting. When the correct interrupt is received, the 
FSM will then leave the rest phase and start processing the exit executives. Execution will then 
continue until the rest phase of another unforced state is reached. The graphical description of 
forced and unforced states is shown in Figure 3.3.

The transitions shown in the diagram represent the possible migrations between states. A  
transition is made up of a path description with an associated expression. When the exit 
executives have completed for a state, the transition expressions are evaluated (as boolean), to 
determine which transition should be followed and which new state entered. Since the finite state 
machine may occupy only one state at a time, only one transition statement should evaluate as true 
at any one time.

Fig. 3.2: Representation o f a State

Transition

Forced state Unforced state

Fig. 3.3: A sample FSM
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Within the process domain, it is possible for a user to create a new FSM with particular operations 
defined in C-code in the enter and exit executives of the states. However, it is more common, and 
much simpler, for a user to begin with the process model of a predefined module and amend its 
functionality as required. The generator, queue and processor modules allow existing code to be 
altered or enhanced in all executives, resulting in the creation of a new process type. The receivers 
and transmitters, however, do not permit user-access to the process level code. Any manipulation 
of packets at transmission time must therefore be carried out in other processes that may be 
connected directly to the relevant module at node level.

3.2 Analytical Network Modelling

3.2.1 Probability Theory

Probability theory concerns itself with describing random events through the identification of 
patterns in collections of related random events. As a simple example, if one were to toss a coin 
once, the outcome would be unknown (aside from knowing that it will be either heads or tails!). 
However, if the same coin was tossed one thousand times, it would be reasonable to expect that 
approximately 500 heads and 500 tails would result. This is the basic premise of probability theory 
- that accurate statements may be made about large collections of random events.

In order to analyse a given problem domain using probability theory, some terms must first be 
defined:
• A  sample space Q is the set of mutually exclusive exhaustive outcomes (sample points) of 

an experiment on a given random problem domain.
• In this context, an event is the result of a single random experiment and comprises some set 

{ to } of the sample space.
• A  probability measure P of an event A  is a measure of the likelihood of the occurrence of 

that event. It is measured in real numbers, where 0 < P[A] < 1.
To give an example of these ideas, examine the behaviour of a die. Here, the sample space for the 
tossing of a die is {1,2,3,4,5,6}, i.e. the set of all possible outcomes of the toss. Let an event A  be 
defined, for which the result of a toss of the die is 2. The probability of event A  occurring is 
obviously x/ 6 , as the die is equally likely to land on each face. Let us define another event B, for 
which the result of the toss of a die is less than 3. Two sample points satisfy this event, namely 1 
and 2. Therefore the probability of B occurring is:

nr Di the number of sample points which satisfy the event 2 , /  
n J  Q ~~6~

Note that P[Q.] = 1.
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3.2.2 Random Variables

Given this information, it is now possible to define the important concept of a random variable. A 
random variable (RV) is a real-valued function defined on a sample space Q , i.e. it is a variable 
whose value is defined by the outcome of a random experiment. Mathematically, a real number 
X (a) may be represented as the value which the random variable X  takes on, when the outcome 
of the experiment is co . A  random variable may also be classified as a discrete or continuous RV, 
according to whether its range (the set of values which can take on) is discrete or continuous.

Now the probability mass function (pmf) of a discrete random variable may be defined as:

p{x) = P[X = x]

where X  is a RV and x is a real number. Note that /?(*,■) = 1.
*,■

Also, the cumulative distribution function (cdf) of a RV X  (both continuous and discrete) is
defined by F(x) = P[X < x]. Note that:

lim^^ F(x) = 1 and lirn^^ F(x) = 0 
P[xn X  <y] = F[y]-F[x]

As an example of these concepts, a RV X(a>), which is dependent on the outcome of the toss of a 
die and has a range {-1,0,1}, is introduced. Let the value of -1 be the probability that the toss of 
the die results in a 1 or a 2, i.e. P[X = -1] = P[a> e {1,2}] = y  . Further, let P[X = 0] = P[o) = 3] = y  

and P\X = 1] = P[co e {4,5,6}] = l/ 2 . The pmf of this random variable is shown in Figure 3.4.

P(x)
------------------------------------& *-

0.5 ♦

0.4
»

0.3 '

0.2 ;

0.1

------------- 1--------------1---------- e -
-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 3.4: pm f o f X(oj)

The cdf of X(co) is as shown in Figure 3.5.
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F(x)

Fig. 3.5: cdfof X{a>)

Finally, the probability density function (pdf) of a continuous R V  X  (defined by p(x)-0) may be 
found, at each point x where f is continuous by:

f t  \ dF /(*) = —  ax

Note that:
/ (x) > 0 for all real x  

f f(x )d x  = 1
J—00

/ is integrableandP[a it X < b \ = £ / (x)dx

F(x) = f f ( t )d t for each real x J-00

3.2.2.1 Moments of a Random Variable

The k^1 moment of a discrete R V  is defined by:

i

while the moment of a continuous RV is defined by:

E [ X k] =  p  xkf  (x)dx
J -c O

Two moments of a RV have been given special names. When k=l, this is the mean or expected
value of a RV. When k=2, this is the variance of a RV.

The formula to calculate the expected value of a random variable X  defined by a discrete sample 
space is:

n
E[h(X)] =J>(*,)P(x,.)

1=1
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When X  is continuous, E[h(X)] = h (x ) f ( x ) d x . Note that, when two random variables X  and Y

are independent, expectation is a linear operator i.e. that E[XY] = E[X]E[Y] and 

E[X + Y] = E[X] + E[Y].

The variance o f  an RV X, defined on a discrete sample space, is given by the formula:

V[X] = E [ X 2] - E 2[X]  and that for independent RVs, variance is a linear operator, i.e.

Knowing the expected value and variance o f a random variable, the square of the variation 
coefficients (svc) o f  the RV may be calculated, according to K x  -  V [ X } !  E 2[ X ] .

3.2.3 Random Processes

A stochastic (random) process is a function o f  two arguments - time and a probability space, and is 

therefore denoted by the term X(t,a) ).  For a fixed value o f  t, X(-,a>) is merely a function o f  the 

probability space Cl - i.e. is a random variable. For a fixed value o f  a>, X( t , - )  is a function o f time 

and is referred to as a sample function o f the process. Examples o f  random processes include:

• The number o f  call requests that can arrive at a switch in [0,t) is a discrete-state, continuous- 

parameter random process.

•  The waiting time o f  an inquiry for processing is a continuous-state, continuous-parameter

•  If {x„ ,n  = 1,2,..,7} denotes runtime o f  a job, where n is the day o f  the week on which the job is 

running, this is a continuous-state, discrete-parameter process.

• If {X„,n = 1,2,...,365} describes the number o f  jobs per day o f  the year, this is a discrete-state 

discrete-parameter process.

Completely specifying a random process is considerably more difficult than specifying a random 

variable. Let a cdf, Fx  (x, t) be defined, for each allowed t, which is given by Fx  (x, t) = P[X(i) < x ] . 

Further, for each o f  n allowable values o f  t, a joint cd f may be defined for the process, where 

Fx t,x2,...,x„ (*1 ,x 2,...,x„;tutz ,...,tn) = P[X( tl) = x];X ( t2) = x2;...;X(t„) = x „ ] . Some properties o f  random

processes may now be defined.

V[X] = a 2 = £ ( x i - E [ X ] ) 2p(x i)

If X  is continuous, its variance is given by

process.
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rcoh( x ) f (x )d x . Note that, when two random variables X  and Yoo
are independent, expectation is a linear operator i.e. that E[XY] = E[X]E[Y] and 

E[X + Y] = E[X] + E[Y].

The variance o f  an RV X, defined on a discrete sample space, is given by the formula:

V[X]  = E [ X 2 ] -  E 2[X]  and that for independent RVs, variance is a linear operator, i.e.

therefore denoted by the term X ( t ,  eo). For a fixed value o f  t, X(-,a>)is merely a function o f  the 

probability space Q - i.e. is a random variable. For a fixed value o f  co, X( t , - )  is a function o f  time 

and is referred to as a sa m pl e  f u nc t io n  o f  the process. Examples o f  random processes include:

• The number o f  call requests that can arrive at a switch in [0,t) is a discrete-state, continuous- 

parameter random process.

•  The waiting time o f  an inquiry for processing is a continuous-state, continuous-parameter

•  If { x n,n = 1,2,..,7} denotes runtime o f  a job, where n is the day o f  the week on which the job is 

running, this is a continuous-state, discrete-parameter process.

•  If {x„ ,n  = 1,2,...,365} describes the number o f  jobs per day o f  the year, this is a discrete-state 

discrete-parameter process.

Completely specifying a random process is considerably more difficult than specifying a random 

variable. Let a cdf, Fx {x,t)  be defined, for each allowed t, which is given by Fx (x,t) -  F\X{t)  < x ] . 

Further, for each o f  n allowable values o f t, a joint cd f may be defined for the process, where

V[X] = a 2 = £ (* ,-  -  E[X])2p ( Xl)

If X  is continuous, its variance is given by

Knowing the expected value and variance o f  a random variable, the square of the variation 
coefficients (svc) o f  the RV may be calculated, according to Kx = V[X]I E2[X].

3.2.3 Random Processes

A stochastic (random) process is a function o f  two arguments - time and a probability space, and is

process.
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3.2.3.1 Properties of Random Processes

Independence: I f  X (i,) is independent to X ( t2) etc. (say i f  X(t) is defined by the toss o f  a coin or the 

roll o f  a die), then F(x1,x2,...,xtt;tl t2,...,t„) = F(xt; tx )F(x2; t2 )...F(xn; tn).

Stationarity: In a stationary process, F(x],x2,...,x„;tl + h,t2 + h,...,tn + h) = F(xl ,x2,...,xn;tht2,...,tn) .

The distribution is independent o f  time over a set interval, i.e. the probability o f  changing from one 

state to another remains constant with time.

Wide-Sense Stationarity: Also referred to as Covariance Stationarity. The expected value and 

variance o f  the random process is independent o f  time, i.e.

F[X(ti)] = /j ,Vi  and E\X(t)]  =  fi ,V i  e  T 
Var[X(t;)] = a 2, Vi and Var[X(t)] = ex2, V i e  T

Note: Stationary c  W ide-Sense Stationary

3.2.3.2 Some Common Random Processes

The Markov Process: A  stochastic process is classified as a Markov Process if f

P\.X(t„+\) = x„+l\X(ti) = x{;X(t2) = x2;...;X(t„) = x„] = P\_X{tn+x) = xn+l\X(t„) = x„]

i.e. the future state o f  a Markov Process is dependent only on the current state, and not on past

history. Markov processes have a number o f  noteworthy characteristics:

• If the state space o f  a Markov Process is discrete, it is referred to as a Markov Chain.

•  In a Markov Chain, a state transition occurs at each discrete time unit, even i f  the state does

not change as a result o f  the transition.

•  I f  the chain is homogeneous or stationary, the future state is dependent only on the current 

state, and not on the time index associated with the current state.

•  In a Markov Chain, the length o f time spent in a state is defined by

P [system rem ain s in  sam e state for m  transitions] =  (1 -  p a ) p H , i.e. it is geometrically 

distributed.

•  In a Markov Process, the length o f time spent in a state is exponentially distributed.

The Semi-Markov Process: The whole concept o f  Markov Processes revolves around the fact that 

a transition must be made at every unit time, even i f  the state remains the same after a transition. 

With Semi-Markov Processes, no such time restrictions are in place and the process may remain in 

a given state for a length o f  time defined by an arbitrary distribution. A t transition times, the 

process behaves just like a Markov chain, and is referred to as an embedded Markov Chain.
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The Birth-Death Process: A  birth-death process is a type of Markov Chain (with geometrically 
distributed times between changes in state) and may be either a continuous- or discrete-parameter 
process, but has the added characteristic that state transitions may only take place between 
neighbouring states.

An example of a birth-death system is a queuing system where the time intervals approach zero 
(i.e. a continuous-parameter system), so that only one event can happen in an interval. Therefore, 
if a chain is in state Xn = i, the only possible events are:

An arrival => X n+l = i +1,
A  departure => X n+] = i -1, or 
Nothing => X n+l = i .

The probability of a BDP being in a particular state k at time t is denoted by Pk(t), where:

Pk{t + At) = Pk(t) -  (Ak + juk)AtPk(i) + A ^ A tP ^ i t )  + //aAtPk+1(t) + o(t), k > 1
P0 (i + Ai) = P0 (t) -  AoAtPQ (t) + Ai AtPl (t) + o(t), k = 0

Using a State-Transition-Rate diagram, the rate of change of probability "flow" into state k equals
the flow in minus the flow out. Therefore, the above equations may be restated in the form:

Let us define pk as the probability that the system is in state Ek at some arbitrary time in the 
future, where pk = lirn,̂  Pk( t) . For the general BDP,

~  + Mk)pk (0  + 4 - ^ - 1  (0  + k  -1at
k =o

at

k = 0,1,2,.
1

Po m t_i

The Random Walk: This process is a form of Semi-Markov Chain in which:

x„+1= x n + u„
n

=> for a random walk, A'n+1 = ̂  Ui
i=0

where U n is drawn independently from an arbitrary distribution
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The Renewal Process: The Renewal Process is a specific application of the Random Walk, but is 
more specific in that it counts the number of state transitions of the monitored process. Therefore, 
the renewal process, evaluated at time t, will show the number of state transitions the subject 
process has undergone in the interval [0,0, whether that interval is discrete or continuous.

Note that if the monitored process is a Markov Chain, with the state time geometrically distributed, 
or a Markov Process, with the state time exponentially distributed, the Renewal Process will also 
be Markovian, with the same state time distribution.

The Poisson Process: The Poisson Arrival Process may be defined by evaluating Pk(t) for a BDP 
with zero departure rate and constant arrival rate A . The result is:

PAt) = ^ —e M, k>0,t>0. 
k\

The Poisson Process is also a specific form of the Renewal Process, in that it counts the number of 
state transitions in a specified time interval. Therefore, the Poisson process is a Renewal Process, a 
Random Walk, a Birth-Death Process (as only one state transition (or arrival) may take place at a 
time) and a continuous-parameter Markov Chain. Other important characteristics of a Poisson 
process include:
• For a Poisson Process, the average number of arrivals in (0,0 is At . Also, the variance of the

number of arrivals in the same time interval is also equal to A t.

• For a Poisson Arrival Process, the interarrival times are exponentially distributed, i.e. the pdf
of the interarrival times may be characterised according to / (f) = Ae ~M,t>  0 . The mean of
the exponential interarrival time distribution is ]/x, while its variance is . This distribution
also has a property called memorylessness, whereby the distribution of the time until a future 
arrival is independent of the time since the last arrival, i.e. if, at some random time t, an 
estimate of the amount of time till the next arrival is evaluated, the result will be independent 
of the time that has elapsed since the last arrival.

• The Poisson process has stationary independent increments, i.e. events occurring in non­
overlapping intervals of time are independent of each other.

• The Poisson process is covariance stationary (WSS) with:
E [ X ( t ) - X ( s ) ]  = A ( t - s )  

and
Var[X(t)-X(s)] = A (t-s )

Figure 3.6 demonstrates the relationships between the above-described random processes.
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Fig. 3.6: Relationship between Random Processes

Note that the Poisson process has all the characteristics of all the other types of random process 
described above. It has also been found to be extremely suitable and accurate for modelling, 
amongst other things, the traffic in switched telephony networks. Therefore, in the model to be 
developed, all call arrivals to the IN SSPs will have a Poisson distribution.

3.2.4 Queuing Theory

A  queuing system is any system in which arrivals place demands upon a finite-capacity resource 
[Kleinrock], In particular, if the arrival times or the processing requirements of these demands are 
random, then conflicts for the use of the resource will arise and queues will form. A  simple 
example is a queue for service at a cashier’s desk in a bank. The length of the queue depends on:

• The average rate at which demands arrive. If the average arrival rate of customers is greater 
than the rate at which the cashier can serve customers, a queue will grow (and grow and grow) 
unless the cashier speeds up or another cashier provides assistance.

• The variation in rate at which demands arrive. If the cashier can handle the average rate at 
which customers arrive comfortably, a queue will still build up occasionally based on 
variations which will occur in arrivals. If these variations from the mean arrival rate are large, 
large queues will build up occasionally, whereas small variations will cause small queue build­
ups.

• The average rate at which demands are served. Different customers will have different 
demands, and therefore the time to serve them will differ. If the average service time is shorter 
than the average interarrival time, the queue should not grow significantly.

• The variation in rate at which the demands are served. Even if the average service rate is 
greater than the average arrival rate, a queue will still build up occasionally based on 
variations which will occur in service times (e.g. a customer requiring a complicated 
transaction may require significantly more service time than the average). If these variations
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from the mean service time are large, large queues will build up occasionally, whereas small 
variations will cause small queue build-ups to occur more often.

These dependencies apply to all queues, whether of customers in a bank or of call requests in a 
telecoms switch. Some common definitions used in queuing theory will now be provided.

• The arrival process to a queue may be described in terms of the probability distribution of the 
interarrival times of requests at the queue, A(t), where A(t) = P[time between arrivals < /J. The
mean arrival rate is denoted A , with the mean interarrival time yx. The square of variation 
coefficient (svc) o f Aft) is given by Ka = V[A]A2.

• The server process of a queue may be described in terms of the probability distribution of the 
service times of requests at the queue, B(x), where B(x) -  P[service time < x\. The mean
service rate is denoted //, with the mean service time x/ft. The variability of B(x) may be

assessed by the value of its square of variation coefficient (svc), given by Ks = V[B]//2.

• The load of a queue, p , is effectively a measure of the proportion of time the processor of a
queue is busy, and is calculated as p  -  j/ . Note that, if p  < 1 (i.e. A. < //) for a queue, the
queue will be stable (i.e. will not become overloaded).

• Little’s Law states that N  -  A T , where N  is the mean number of requests in the system and T
is the average time spent by requests in the system.

Queues can also be characterised according to the simple, widely-used shorthand notation A/B/n, 
where A  describes the queue’s interarrival time distribution, B describes its service time 
distribution and n is the number of servers in the queue. Values which A  and B can take on include 
exponential (M), deterministic (D), erlangian (E) and general (G). So, for example, an M/D/2 
queue is a two-server queue with exponential interarrival times (i.e. a Poisson Arrival Process) and 
deterministic (constant) service times.

3.2.4.1 The M/M/1 Queue

The M/M/1 queue is probably one of the simplest queues to analyse and is also very popular for 
use in modelling telecoms systems, as its behaviour is quite close to the mean behaviour of a real 
telecoms switch. As shown by its notation, the M/M/1 queue is a single-server queue with 
exponential arrival rates (forming a Poisson Arrival Process) and service times. Therefore, both A 

and p. are constant (independent of both time and state of the arrival and server processes). From 
this may be derived a number of formula relating to the state of the queue:

co

• The average number of customers in the M/M/1 system is given by Ñ  = 'S\kpk -  —
k=0 l ~ P
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The variance of the number of customers in the system is <*1 ='YJ(k ~ N ?Pk =
k=0 (i -PŸ

n  yThe average time spent in the system is T = —  = -
X 1-/3

VIA] Vi• The svc of interarrivals to the queue is Ka -  — — — = / x _ = 1. The svc of the service times,
E 2[A] ( /2)2

K s, also equals 1.

Note that, according to Burke’s theorem, the interdeparture times from an M/M/1 queue are also 
exponentially distributed. Therefore, these formulae are also valid when applied to a network of 
M/M/1 queues, but only if the network is feedforward (i.e. there is no feedback between any 
queues) and if all queues have only a single service rate. Therefore, if a queuing network exhibits 
feedback or contains queues with multiple service rates, some other method must be used to 
evaluate e.g. the mean queue length and mean waiting time for each queue in the network.

3.2.5 Choosing an Appropriate Technique for the Analysis o f  an IN  Queuing Model

A  number of queuing network analysis techniques are available for analysing the behaviour of a 
network (or chain) of queues. Each of these techniques places different requirements on the 
structure of the queuing network and provides different results. Therefore, in order to facilitate the 
correct choice of a technique suitable for analysing the behaviour of an IN under congestion, the 
requirements on an IN analytic model should first be specified.

Firstly, an open model of an Intelligent Network is needed, i.e. a model in which calls arrive from 
some external source outside the network and calls depart to some external sink outside the 
network. The model must also support multiple service types, each of which has different routes 
through the network and (potentially) different processing requirements at each node in the 
network. It should also be possible to model the behaviour of various congestion control strategies 
under various overload conditions with the resulting requirement that the throttling (blocking) of 
calls must be facilitated. To evaluate the efficiency of each congestion control strategy, the load 
and queue length at each node in the network must be able to be evaluated, as well as the average 
service delays for each service type (as described in Chapter 2). The mean arrival rates and loads 
can be calculated directly from the analytic model, but the queue lengths and service delay results 
must be provided by the analysis technique. It is acceptable to assume that external arrivals to the 
system are Poisson in nature, but it would be preferable for there to be no constraint on the nature 
of the service time distribution.
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Having stated the requirements on the analytic model, it is now possible to examine the available 
queuing network analysis techniques, to establish which one best meets these requirements.

A  number of queuing network analysis techniques exist (e.g. Jackson and BCMP networks) which 
allow the behaviour of all queues in the network to be calculated exactly, in terms of returning the 
joint probabilities of queue lengths [Gelenbe], but these techniques place stringent requirements on 
the network, including:
• All service times must be exponentially distributed,
• External arrivals must be Poisson,
• There may only be one class of customer, or if there is more than one, the service times of the 

queues must apply to all classes equally.
• All queues must have unlimited capacity.

Use of these techniques is not appropriate as the constraints on customer classes mean that IN 
traffic cannot be accurately modelled and also because the solutions provided by the analysis are 
not useful - e.g. they do not facilitate the estimation of service delays.

The alternative option is to use an approximation method. Approximation methods allow various 
characteristics of the queues within the network to be approximated accurately. Each of the 
techniques available for analysing networks of queues make a number of assumptions and allow 
particular characteristics to be estimated. Table 3.1 summarise the assumptions made by and the 
results provided by two different approximation methods.

Approximation Method Assumptions Made Results Provided

The Mean Value Method For open networks:
1. Each queue FIFO
2. Exponentially distributed 

service times
3. Unique service rate at each 

queue

1. The mean queue length of 
each queue

2. Average service delay for 
each service

The Decomposition Method 1. Open network,
2. Each queue has single 

server
3. Each queue FIFO

1. The mean queue length of 
each queue

2. Average service delay for 
each service

Table 3.1: Summary o f Two Approximation Methods

Both methods provide us with the desired results, namely the mean length of each queue and the 
average delay for each service type. However, the Mean Value method constrains all service types 
to having the same service rate at each queue. This is not desirable in our model, as IN calls and
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non-IN calls have very different service rates. The decomposition method, on the other hand, does 
not have this constraint - in fact, all the constraints associated with the decomposition method are 
acceptable within our model. Other methods exist (e.g. the aggregation method and the isolation 
method) which may also be applicable, but these generally depend on the use of numerical analysis 
methods. The decomposition method is both simpler (as it involves only the solution of a series of 
linear equations) and suitable for describing an IN model, and was therefore chosen as the 
approximation method to be used within our analytic model.

3.2.6 The Decomposition Method for Queuing Network Approximation

The decomposition method is one of the most widely used approximation methods. It provides 
good solutions for all networks, whether or not they may be expressed in product form. It is based 
on analysing each queue in the network (as shown in Figure 3.7) separately, in order to express, for 
each queue j , the svc of interarrival times Ka} and the svc of interdeparture times C,- in terms of

Kak and Ck (V& * j ) of all other queues in the network. This analysis results in a set of linear 
equations, which may then be solved simultaneously to find the solution for each queue.

The method is based on the assumption that the departure process from any station j  is a renewal 
process (i.e. the time interval between two successive departures does not depend upon the 
preceding intervals). This assumption is valid in the case where the arrivals are Poisson and the 
service rates are distributed exponentially or when the station is saturated. As an intuitive 
justification of this assumption, the memoryless property of the exponential distribution has 
already been observed - thus independence of the interdepartures is consistent with this property. 
In a saturated server, there are always more customers than there are servers. This means the mean 
interval between successive departures from the station is the mean service time for the customer 
when all servers are busy.
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3.2.6.1 Formulation of the Decomposition Method

The derivation of the equations for the decomposition method is provided in [Harrison] and will 
not be reproduced here. However, these equations and the various steps involved in the 
decomposition method may be outlined as follows:

Step 1: Evaluate Cj for each queue j  in a network of K  queues serving R  different service types 
using the following equations:

The meanings of the terms used in the equations are: p j is the load at queue j ,  A, is the total

arrival rate at queue j ,  p jr is the load at queue j  due to call of service type r’ ̂ kr is the arrival rate
of calls of service type r at queue k, /u-r is the service rate at queue j  for service type r, Ksjr is the
svc of the service rate at queue j  for service type r (note that if queue j  has an exponentially 
distributed service time for service type r, K sjr = 1) and Pkj is the total probability that calls

departing station k move to station j , with p kr jY as the probability that a call of type r, on

departing queue k will arrive at queue j  as a call of type r'.

The result of this step is a series of linear equations (one for each queue in the network), with Cj 

expressed as a function of the svc of the service time at station j  and the variations in the arrivals 
from the other stations in the network (which in turn depend on the svc of the departures from each 
of these stations).

Step 2: Solve the series of linear equations C j, 1 < j  < K simultaneously. The result may then be

used to evaluate Ka.-, 1 < j  < K , for each queue in the network.

Step 3: The mean length of the /h queue L j can then be approximated for each station by 
Kingman’s formula (a generalisation of the Pollaczek-Khintchine formula):

r= 1
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Step 4: The mean delay at the f 1 queue

and the mean delay for each service type can be evaluated by summing the delays over all queues 

in the route taken by the service type.

In summary, the decomposition method studies each queue in the network on a queue by queue 

decomposition of the network. In this method, the distributions of the service times and interarrival 

times at each station j  are approximated by the total mean rate of arrivals Aj and the square of

their variation coefficients (i.e. the variation multiplied by the rate squared). In this way, the arrival 

streams from other station in the network and from the exterior can be approximated. The mean 

queue length is then found using Kingman’s formula and the mean delay using Little’s Law.

3.3 Mathematical Optimisation

Mathematical optimisation describes a methodology for evaluating, where it exists, the maximum 

or minimum value of a mathematical function (and the values of the function parameters which 

provide this optimised solution) subject to a number of (equality or inequality) constraints. The 

mathematical function to be optimised is referred to as the objective function, Z. The possible 

values of the objective function, subject to the constraints, form a feasible region (an area in 

which all points are possible solutions to the objective function and obey all constraints). 

Optimisation of the objective function returns the highest (or lowest) point in the feasible region. 

Note that if an optimisation problem is not carefully defined, one of two considerable problems 

may result:

• An infeasible solution: If there is no feasible region in which all constraints are satisfied, it 

will not be possible to generate an optimum solution, and the algorithm will deadlock.

• An unbounded solution: If the feasible space is unbounded (i.e. is not constrained on all 

sides), the optimisation may never complete, as the algorithm may find on each iteration, a 

result that is greater than (or less than) the result found on the previous iteration. This will 

effectively result in a livelock of the optimisation algorithm.

An optimisation problem may be linear or non-linear. Graphical examples [Greenberg] of a two- 

dimensional (two parameter) linear and non-linear optimisation problem are provided in Figure 

3.8.

TJ may then be found through Little’s law T, =
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Fig. 3.8: (a) Linear constraints, (b) Non-linear constraints

Note that, if the search for the optimum solution begins at C and progresses along the bound of the 

feasible space (along the line segment [AC], which represents the points for which the constraint 

defining the line AC is active, i.e. the left hand side of the inequality equals the right hand side), 

the linear search will find A, which is the correct solution for the problem. However, for the non­

linear problem, there is a risk that A will be selected as the optimal solution, as it is a local 

maximum. This would be incorrect, as the actual global optimum is point B. This demonstrates 

(intuitively) that non-linear optimisation is more complicated than linear optimisation. If it is 

desired to use an optimisation technique for congestion control, it must fulfil one of the basic 

requirements on a congestion control algorithm, which is that the algorithm must be simple and 

efficient. It is therefore preferable that a linear optimisation algorithm should be used for 

congestion control. In order for an objective function and corresponding constraints to form a valid 

Linear Programming Problem (LPP), there are two requirements that must be adhered to. The 

first is that all parameters must be non-negative. This is not a problem for a congestion control 

algorithm, as all parameters and constraints will relate to loads, probabilities and priorities, which 

can only have non-negative values. The second requirement is (obviously) that, the objective 

function and constraints must be kept linear. This does constrain the algorithm somewhat. 

However, if the objective function and constraints are expressed intelligently, the benefits of 

keeping the problem linear outweigh the overheads that would be required to express a more 

comprehensive problem in non-linear terms.

The most commonly used method for solving linear programming problems is the Simplex 

Method. There are two forms of this algorithm -  the single-phase and two-phase simplex 

algorithms. The only difference between the two forms is how the initial search point is
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established, and this is dependent on whether each constraint has an upper bound (i.e. that the 

function of the parameters is less than some constant). The single-phase form requires that all 

constraints are upper-bounded, while the two-phase simplex algorithm can handle constraints for 

which only lower bounds are defined. For a congestion control strategy, the requirements will 

always be that some value (load, number of calls, etc.) is not exceeded, and therefore all 

constraints will be upper-bounded. Therefore, the single-phase form of the simplex method is 

suitable for congestion control algorithm specification.

The software used to implement the simplex method was LP_SOLVE [Berkelaar95] and was 

acquired as freeware from the Internet.
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Chapter 4 Comparison between Existing SCP Congestion Control Strategies

In this chapter, we compare the behaviour and efficiency of the most common strategies used in IN 

congestion control. As Chapter 2 describes, a number of publications, using various types of 

extremely simplified IN models, present conflicting results about the benefit of these strategies 

(e.g. [Pham92], [Tsolas92]), and so none of the results presented may be accepted as being 

conclusive. Therefore, a comprehensive IN simulation model was developed to compare these 

strategies, with the aims of:

• Establishing which of the existing strategies performs best under various load conditions, and

• Identifying any problems and difficulties associated with both developing and executing these 

strategies,

in order both to clarify the requirements on a new IN congestion control strategy and to suggest 

which type of algorithm may prove useful as the basis for this new strategy.

Note that the emphasis of this work is on the efficient protection of the SCP, as being the physical 

entity whose behaviour is most critical to IN performance. In Section 4.1, the IN simulation model 

which was developed to facilitate this investigation is described. In Section 4.2, the method by 

which each of the various congestion control strategies were implemented on the model is 

outlined, while Section 4.3 compares the operation and effectiveness of the strategies to establish 

which is the best of the existing strategies. Finally, Section 4.4 summarises the results of 

simulations and highlights the drawbacks of the existing strategies.

4.1 The IN Simulation Model

The best way to approach describing the simulation model is to initially describe how it was 

designed, including any simplifications made to the standard IN concepts. Each simplification will 

be justified. Also at this point, the services which were designed to execute on the model will be 

described, in terms of the actions and information flows required in the real world, and therefore in 

the model, to execute services of this type. These descriptions and justifications will be provided 

in Section 4.1.1. Once the model design has been described, the details of how it was developed at 

each level of the OPNET package will be described in Sections 4.1.2 and 4.1.3.

4.1.1 Overview o f  the model

The IN model was designed to be able to handle both IN and non-IN calls (see Figure 4.1). It 

consists of two SSPs that are fully connected to each other, thereby permitting the exchange of 

control messages required to setup and teardown an ISDN call. Each SSP contains a Call Control 

Function, which is responsible for completely executing non-IN calls and for detecting any 

service-related requests in new calls. Any service requests detected in the CCF are forwarded to
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the Service Switching Function, which is responsible for communication with the SCP. So far, the 

operation of the SSP is as specified in the standards. However, it was decided to simplify the 

model by integrating the Service Resource Function of the Intelligent Peripheral into the SSP. 

This is justifiable as every IP request begins with a request from the SCP to the relevant SSP to 

open a channel between the IP and the user, before instructions are sent to the IP and interaction 

with the user occurs. Therefore, giving the SSP control over SRF execution simplifies the model 

without affecting the sequence of events involved in service processing. A second assumption is 

also made regarding the SSPs and relates to their capacity -  as the aim of this work in this Chapter 

is to compare commonly used SCP congestion control strategies, the SSP capacity is defined to be 

very large so that the SSP will never become congested and influence the results for the strategies. 

This assumption will be removed in Chapter 5, where the effects of SSP overload on IN 

performance are investigated.

Generators
Fig. 4.1: The Simulation Model

Another simplification in the model involves the connection of each SSP directly to the SCP - the 

operation of the SS7 network that, in reality, would be responsible for handling communications 

between these physical elements is not addressed. This is based on the assumption that the 

dimensioning of the SCP was done intelligently with respect to the capacity of the SS7 links, so 

that (as the SS7 is dimensioned so that it generally runs at approximately 0.4 Erlangs under normal 

traffic loads while SCPs are generally dimensioned to run at about 0.7 Erlangs) in almost all cases,
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SCP overload will occur prior to SS7 link overload [Lodge98b], In this case, the only impact of the 

SS7 network is the delays that call requests exhibit in transit between IN physical elements. As 

modelling delays in the SS7 is a very complex task and does not add much insight into this 

investigation, it was decided to omit the SS7 from the model. Therefore, the SSPs and SCP are 

connected directly to each other, as shown in Figure 4.1, and transmission delays are assumed to 

be negligible. The protocol underlying the connection between the SCP and the SDP is not 

explicitly defined in CS-1, and therefore it is assumed, for simplicity, that there is a dedicated line 

between the control point and the service database with negligible transmission delays (this would 

be exactly the case if, for example, the database was an integral part of the SCP).

This model is very similar to that developed by [Leever93] in his estimation of IN service 

performance and is very different to that used in most research studies to date, as it does not 

simplify the operation of the IN into just a simple exchange of messages between SSP queues and 

SCP queues, but also integrates interactions with the SDP and IP. Therefore, the actual 

characteristics of service traffic between PEs of an IN may be represented, along with the added 

advantage that no assumptions are made as to the delay involved when requests are sent to the 

SDP and IP. In previous research, the delays involved in accessing data or interacting with users, 

if modelled at all, was modelled as either a constant or distributed delay between SCP processing 

times. The fact that we do not make this assumption means that traffic behaviour and associated 

statistics gained from the model simulation should more correctly approximate the load profile of 

each service type in the system.

In order to apply the strengths of the model architecture, it is necessary to reproduce, as accurately 

as possible, the various information flows and processor requirements that would occur in a real 

network offering real services. Information relating to real service processing requirements is not 

made public by network operators or equipment vendors, and so, unfortunately, it is only possible 

to attempt to estimate it intelligently. Regarding service offerings, we chose to implement two IN 

services - Televoting and Freephone -  as well as the non-IN (ISDN voice call) service. Note that, 

as a simplification to the realisation of these services, all call requests which are not rejected in the 

SSPs are assumed to complete correctly -  i.e. non-IN and freephone calls will be setup and routed 

correctly and the terminating party will always accept the calls, while it is assumed that all 

televoting callers interacts correctly with the service and register their votes correctly.

The DFP IFs between PEs and the relevant processor actions at each PE required to complete IN 

service requests of each type is described below, as is the realisation of the non-IN calls. A written 

description of each operation is also provided for each call type.

63



Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4.1.1.1 The Televoting Service

The televoting service involves the collection of data from users who may be located anywhere in 

the network and is primarily used when general opinions of a population are desired. Usually, the 

number of the televoting service is broadcast over one or more types of media (e.g. television, 

radio, newspapers etc.) and many callers ring the number to volunteer an opinion on a topic. 

When a user calls, they are connected to a voice messaging system, which prompts them to enter 

their choice by pressing some sequence of digits. When the choice is entered, it is used to update 

the information in a database, and the users choice is acknowledged. The call then terminates. 

The CS-1 information flows may be represented as shown in Figure 4.2 below. In the diagram, the 

arrowed lines depict information flows, with the name of the IF above the line and the information 

carried in the message in italics below the line.

SSF/CCF SCF SRF SDF
User Requests

Televoting Service ^  , ,
Analysed Info

Key
CLI = Calling 
Line Identifier

CLI

Fig. 4.2: Decomposition o f  Televoting Service

The series of actions required to execute an instance of the televoting service may be described as 

follows:

• User goes offhook and dials the televoting number,

• The digits typed in by the user are collected and examined by the CCF,

• A service request is recognised by the CCF and call processing is suspended,

• The SSF builds an Analysed_Info message containing the dialled digits and sends it to the 

SCF,

• The SCF creates a new instance of the Televoting Service Logic Program (SLP),
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• The SLP Instance (SLPI) sends a message to the SSF requesting that a channel be opened 

between the user and the SRF,

• The SLPI sends a message to the SRF requesting that the relevant announcement be read and 

the digits keyed in by the user in response be collected,

• The SRF collects the resulting digits and passes them back to the SCF,

• The SCF sends a message to the SDF in order to update the televoting statistics,

• The SDF sends an acknowledgement,

• The SCF requests the SRF to play an acknowledgement announcement to the user,

• The SCF tells the SSF to disconnect the SRF from the user and to end the call. The SLPI then

terminates.

• The SSF terminates call processing.

4.1.1.2 The Freephone Service

When a customer subscribes to the freephone service, they are allocated a number (in Ireland the 

number allocated is '1800' + 6  digits), which is their freephone reference number and not related to 

their actual destination number. When a user dials this number, it is interpreted by the SCP and, 

by accessing a database, the associated destination number is acquired. This number is returned to 

the SSP for call routing and connection. When the conversation terminates, the subscriber is 

charged for the call. The call setup procedure is shown in Figure 4.3 below - note that the 

charging aspect of the call is not addressed here.

SSF/CCF SCF SDF

User Requests 
Freephone Service”

Analysed Info
--------------------------------------------►

Dialled digits

Query

Information key

Query Result

Outcome

Select Route

Destination Address

Fig. 4.3: Decomposition of Freephone Service

The information flows may be interpreted as follows:

• The user goes offhook and dials the freephone number,

• A service request is recognised by the CCF and call processing is suspended,
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• The SSF builds an Analysed lnfo message containing the dialled digits and sends it to the 

SCF,

• The SCF creates a new instance of the Freephone SLP,

• The SCF sends a message to the SDF requested the appropriate destination number,

• The SDF returns the number,

• The SCF tells the SSF to connect the user to this number,

• The SSF continues call processing with the correct destination number (i.e. it routes the call in 

the same way as it would a non-IN call).

4.1.1.3 Realisation of non-IN calls

The implementation of non-IN calls was realised using an approximation of the ISDN control 

message sent between the SSPs. As shown in Figure 4.4 below, when the CCF of an SSP receives 

a non-IN request, it generates a termination request and transmits it to the other SSP in the 

network. When the termination request arrives, it causes the number of active channels between 

SSPs to be incremented and returns an acknowledgement message to the originator. (Note that the 

model was developed so that if it was desired to limit the number of channels between switches, an 

upper bound could be set on the channel number and if this was reached, the call request would be 

refused using a NOACK message). On receipt of an ACK message, the originator then sets a timer 

to simulate the length of the conversation - this length is derived from a uniform distribution of 

between 150 and 210 seconds. When the conversation finishes (the timer expires), a message is 

sent to the terminating SSP to decrement the number of active channels. In this manner, the 

control messages required to carry out a call are modelled without having to maintain the actual 

channels between the SSPs, while retaining the ability to monitor the number of active channels 

and use this as a criterion for accepting non-IN calls.

Originating Terminating
SSPSSP

non-IN
request

SETUP.req

ch++

A C K / NOACK

ch++

Conversation
phase

c h -
END.ind

Fig. 4.4: Non-IN call handling
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4.1.2 The N etwork Layer M odel

The network layer model in OPNET is depicted in Figure 4.5. As shown, the model consisted of 

two SSPs fully connected to each other to permit the accurate representation of the control 

messages required to setup and teardown a non-IN call - note that each link between SSPs is 

defined for one of the control message types outlined in Section 4.1.1.3. There is one SCP, which 

is directly connected, via two unidirectional links, to each SSP and to the SDP.

4.1.3 The N ode Layer M odels

As shown in Figure 4.5, the network model consists of four interconnected nodes. These are 

realised using three node models, namely, the IN_scp, the IN_ssp (sspl and ssp2 in the network 

model are instances of this model) and the IN_sdp. The structure of each node will now be 

described, in terms of the process models that form them and the information streams between 

these processes.

4.1.3.1 The IN_ssp Model

The operation of the SSP (and IP) is realised by the interactions between a number of different 

queuing models, as shown in Figure 4.6.
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ge t_ack

Fig. 4.6 : The IN_ssp node model

Input requests are generated as packets by instances of the IN_gen process. Three instances of this 

generator exist within the node, each one being responsible for the generation of one of the call 

request types - namely Televoting, Freephone and non-IN calls. Each generator produces packets 

according to a Poisson distribution, with a mean arrival rate that may be re-specified at the start of 

each monitoring interval (this allows the arrival rates for each traffic type at each SSP to be varied 

independently over the course of a simulation). The generated packets are of a specified format, 

being of length 1 0  bits and containing the fields:

• Service: This field contains an integer that defines the type of service being requested.

Each generator instance sets this field accordingly (i.e. non-IN = 0, freephone = 1 and 

televoting = 2 ).

• Msg_type: This field contains integers that may be set/updated by any PE to denote which 

stage of call processing a particular request is in. For example, if the SCP wishes to access the 

IP, it will set this field to "PLAY_ANNOUNCEMENT", and transmit it to the SSP.
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• ssp id : This value is set when the packet is created in order to identify which SSP it was

created in. This will be used by the SCP for addressing purposes.

• Delay: This field contains a float value that is initially zero. As the simulation proceeds,

this value will be updated in order to dynamically track the delays experienced by this packet

during processing at each PE along its route.

• Param: This field was included to cater for services for which the same function must be

carried out more than once. For example, if a particular service requires database lookup on

two separate occasions, on the first occasion Msg type will be set to "UPDATE_DATA" with 

Param = 1, while on the second occasion, Msg_type will again be set to "UPDATE_DATA", 

but with Param = 2.

All new requests are routed to the ccf queue, where processing occurs in a First-In-First-Out 

(FIFO) manner to establish whether the call is a service request or a non-IN request. All service 

requests are forwarded to the ssf queue, while non-IN call setup requests are immediately 

transmitted to the other SSP via the send term transmitter. The ccf queue is of infinite length with 

its mean (exponential) service rate promoted, so that it may be defined at runtime.

When new call requests arrive at the ssf from the ccf or the srf, they are transmitted immediately to 

the SCP via the ssf_ccf transmitter. When a message is received from the SCP, the ssf  checks the 

contents of the 'Msg_type' field to establish whether it should be sent to the ccf or the srf and 

forwards it to the correct process without delay.

The srf is modelled as an Erlang-C queue, with each of 20 virtual servers having a uniformly 

distributed service rate of +/-2 seconds around a mean of 5 seconds. This mimics the behaviour of 

an IP with 20 recorder devices, where the service time distribution represents the time when 

announcements are being read to the user and digits collected. After the service time has elapsed, 

packets are returned to the ssf which sends them back to the SCP via the ssf_scf transmitter.

When a termination request arrives at the SSP, it is processed, without delay, at the nonJN_proc 

queue, the number of active channels is incremented and an ACK returned to the originator. The 

ack_proc processor receives the ACK message, and sets a timer for a uniformly distributed 

conversation time around a mean of 180 seconds, before transmitting an END message, which 

enters the non_INj>roc queue of the originator and causes the number of active channels to be 

decremented before destroying the packet.

When a packet associated with the freephone service has completed processing at the SCP, it is 

returned to the ssf which forwards it to the ccf. This packet is processed by the ccf, and causes a 

non-IN call to be established with higher priority than new calls (because more resources have
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been expended processing these calls than has been expended on new calls and therefore, to 

maximise efficient processor usage, it is imperative that these calls complete successfully).

Finally, messages relating to SCP overload arrive at the ssf, which forwards them to the ccf All 

throttling mechanisms for the control of IN traffic (e.g. CG, Percent Thinning (PT) or Window) are 

located at the ccf.

4.1.3.2 The IN_scp Model

As shown in Figure 4.7, the functionality of the SCP is divided among a number of queues. All 

incoming requests arrive at the scf_q queue module, where their further processing needs are 

established. Any messages arriving from the SDP or SSPs must queue for service at the s c f q  

module. They are served in a FIFO manner with an exponentially distributed service rate (not 

explicitly defined within OPNET, so that it can be defined at runtime and therefore varied over a 

number of simulations). After the expiry of the service time, the packets are evaluated to establish 

which service they are connected with and are then forwarded to the relevant service sip.

Each sip is a simple FIFO queue with an exponentially distributed service rate and contains the 

knowledge of the routing information for the service is stored. When a packet arrives at an sip, the 

information contained in the 'Msg_type' and 'Param' fields of the packet provides details as to the 

last location at which the packet was processed. The route logic is then used to determine the next 

destination for the packet, and this information is embedded in the packet before the packet is sent 

to the out_q process. In out_q, the ‘Sspid’ and ‘Msg_type’ fields of the packet are read to establish 

where the packet is to be sent. The packet is then dispatched to the relevant transmitter without 

delay (to_sdp, to_sspl or to_ssp2).

The scf_q module represents the central processor of the SCP. The out_q module of the model 

was only developed in order to distribute the functionality of the SCP among different elements of 

the model, thus ensuring that the code in the central processing module (scf_q) does not become 

overly complex.
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4.1.3.3 The IN sdp Model

The SDP model contains simply one receiver, one active queue and one transmitter as 

demonstrated in Figure 4.8. All arriving packets are from the SCP, and are inserted in the sdp 

queuing module. Here, the 'Msg type' field of the packet at the head of the queue is analysed to 

discover whether a read or an update operation is required. The queue serves packets in a FIFO 

manner with two constant service rates defined (one for read operations, the other for update 

operations) - the assumption is made that an update operation takes longer than a read operation, 

so for the purposes of the simulation, the service time for an update operation is twice that for a 

read operation. After the service time has elapsed, the data in the packet is amended to show that 

it has received SDP processing and is returned to the SCP via the to scp transmitter. Note that the 

service rates of the SDP were defined (relative to the SCP service rate) so that the SCP will 

become overloaded prior to the SDP.

4.1.4 Congestion Strategy Evaluation Criteria

The criteria used to evaluate the performance of the developed congestion control strategies are (as 

stated in Chapter 2, Section 2.3.5):

• User delays,

• SCP queue length,

• SCP load.

As the assumption is made during this investigation that SSP resources are infinite, SSP load is not 

measured. The efficiency of the algorithms is also estimated, in terms of their resource 

requirements, simply by comparing the duration of the simulations when all factors other than the 

congestion control strategies used (e.g. service rates and arrival rates) are identical. The methods 

used to acquire data to allow the quality of the control strategies to be calculated according to the 

above criteria will now be presented.

4.1.4.1 Measurement of User Delays

User delays for each service type were measured by:
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• summing the delays (both queuing delays and processing delays) for each request at each node 

along its route through the network in order to find the total delay for each request (the delay 

experienced by each request is stored in the 'delay' field of its packet and is updated in each 

PE) and,

• calculating the average delay over a monitoring interval for requests for each service type and 

writing each result to a statistic within the out_q process of the SCP node.

However, the service time at the srf represents the time in service execution when the network is 

interacting with the user - i.e. the user is receiving a response from the network during this time, 

even though service execution has not yet completed. Therefore, the service delay experienced by 

packets there may be discounted. Note, therefore, when examining the delays for each service in 

Section 4.5.1, that in services which require user interaction, the delays may appear quite high (to 

the order of 1 - 3 seconds) this is due to the fact that information exchanges are required between 

the SCP and IP, and the user has received a response from the network during that period.

4.1.4.2 Measurement of SCP Queue Length

A probe is placed on the in q process of the IN_scp node. This probe dynamically records the 

queue length over the course of a simulation and presents both the actual and the time-averaged 

value of the queue length as a result of the simulation.

4.1.4.3 Measurement of SCP Load

The SCP throughput for each control strategy was estimated by evaluating, at the end of a 

monitoring interval, the number of calls processed during the interval as a percentage of the total 

number of calls that could be handled by the SCP at full capacity. Note that, as the SCP does not 

reject any calls, SCP load and throughput are equivalent.

4.2 Implementation of Congestion Control Strategies

Two classes of congestion control strategies were implemented in the model. The active strategy, 

Window was implemented in the ccf (see Section 4.2.3). For the reactive strategies, four detection 

methods and two throttles were implemented. The detection methods, which were implemented at 

the SCP of the model, were:

• Call Count Control (CCC),

• Queue Length Control (QLC),

• Load Measure Control (LMC),
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• Response Time Control (RTC) - this is a variation of a detection method used in mobile 

networks, and was originally developed by [Gulyani93] and then enhanced during the course 

of this work (see [Lodge94]).

Each of these detection methods was integrated into a different part of the SCP model. Reasons 

for the locations of the algorithms and a description of how they operate will be provided in 

Section 4.2.1. In all cases, fifteen different levels of overload were defined.

The two throttles that were implemented are CG and PT. Both of these were integrated into the ccf 

process of the IN_ssp model. Their implementation is described in Section 4.2.2.

Note that there are no controls in the model to protect against SSP overload. It is assumed for this 

work that the trunk capacity between switches is infinite, and that SSP ccf call processing capacity, 

while not infinite, is veiy high. Therefore, it was deemed unnecessary to protect the SSP from 

possible congestion. Also, it was decided to simplify the initial investigation of the behaviour of 

the strategies by evaluating their behaviour under load from one service type only. Therefore, all 

overload parameters associated with the various strategies were estimated based on the assumption 

that all calls are of the Freephone service type. This assumption will be removed later.

4.2.1 Implementation o f  SCP Congestion Detection Methods

4.2.1.1 Call Count Control

As described in Chapter 2, the CCC detection method must be implemented at the input queue of 

the processor that requires protection. As the resource that must be maximised in the IN is the 

processing capacity of the SCP, modelled as the in_q process of the IN_scp node, the algorithm 

must be placed at the input of this module. For this algorithm, an interrupt is generated 

automatically at the end of a pre-defined monitoring interval, resulting in a transition to a monitor 

state. When this state is entered, the number of new arrivals (note that returning messages from the 

SSP, IP and SDP were not included in this figure) within the previous monitoring interval is 

counted and compared with a pre-defined table of arrival/overload level values to find the current 

overload level. This result is used to derive the associated overload level using the algorithm 

described in Figure 4.9.

i f c u r r e n t  l e v e l  >= p re v io u s  l e v e l

th e n  n e w _ le v e l = c u r r e n t _ l e v e l ;

i f c u r r e n t  l e v e l  < p r e v io u s _ le v e l

th e n  new l e v e l  = p r e v io u s _ le v e l  - 1 ;

Fig. 4.9: Algorithm for Estimating Overload Level
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Note that this algorithm bases its calculation not just on the currently detected overload level, but 

also on the overload level that was in place during the previous monitoring interval. This is 

because taking the previous overload level into account reduces oscillations in the SCP load, as 

shown in Figure 4.10, where a CCC algorithm which uses the memory of the previous overload 

level to define the new level is compared to an algorithm where the new overload level is based 

purely on the number of arrivals in the previous interval (i.e. an algorithm with no memory). These 

reductions in oscillations result in lower average queue lengths (Figure 4.11) and therefore lower 

overall service delays (Figure 4.12).

Variations in SCP Load

Zone #1: CCC with memory 
Zone #2: CCC with no memory

time (sec) (xlOOO)

Fig. 4.10: SCP Load for CCC algorithm with Memory vs without Memory

Variations in SCP Queue Length

o CCC with memory 
O  CCC with no memory

time (seo) (xlOOO)

Fig. 4.11: SCP Queue Length for CCC algorithm with Memory vs without Memory
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Variations in Freephone Delays

o ccc with memory 
O  ccc with, no memory

Fig. 4.12: Freephone Delays for CCC algorithm with Memory vs without Memory

If the current overload level is evaluated as greater than 0, an overload message (containing the 

current overload level) is created and sent, without delay, to both SSPs. Similarly, if the level 

evaluated is 0  when the previous level was greater than 0 , an overload message is created to notify 

the SSPs that the overload condition no longer exists and that the throttle may be disabled.

4.2.1.2 Queue Length Control

The QLC algorithm was also implemented in the in q  process in the SCP node. For this, every 

time a new packet arrives and is inserted in the queue, the number of packets in the queue is 

established and compared against a list of queue lengths corresponding to the fifteen overload 

levels. The resultant level is then compared with the previous overload level, and the new 

overload level is determined using the algorithm described in Figure 4.9. The result is then 

encoded into a message and sent to the SSP where the throttle is invoked if required.

4.2.1.3 Load Measure Control

The LMC algorithm was also implemented in the in q  process in the SCP node and operates in a 

similar fashion as the CCC algorithm. An interrupt is generated automatically at the end of a pre­

defined monitoring interval, resulting in a transition to a monitor state. When this state is entered, 

the mean load during the previous monitoring interval is evaluated and used to derive the 

associated current overload level from a pre-defined table of loads/overload levels. The resultant 

level is then compared with the previous overload level, and the new overload level is determined 

using the algorithm described in Figure 4.9. The new overload level is then encoded into a 

message and sent to the SSP where the throttle is invoked if required.

4.2.1.4 Response Time Control

The RTC algorithm is similar to CCC but is implemented at the out q module of the SCP. The 

average service execution time for requests is measured over a constant monitoring period, by
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causing a transition to state monitor. Monitor contains the code required to evaluate the average 

total delay of packets of each service type (in this case by using the ‘delay’ field of each packet, 

but in a real system, this could be accomplished by tracking the average duration of the lifetime of 

each SLPI). This delay is made up all the individual delays experienced by packets at the SCP, IP, 

and SDP. Therefore, this detection method has an advantage over CCC and QLC in that if the IP or 

SDP becomes overloaded, this will be noted in the out_q of the SCP, as the total delays of requests 

will be affected by the delays at these PEs. On the other hand, RTC is also more complex than 

CCC or QLC, as in the case when IN traffic is made up of multiple service types, the response 

time for each service type varies according to the requirements which the service places on the 

system, and therefore the average delay would have to be measured separately for each service 

request type. However, as for this investigation, traffic in the system is made up of only freephone 

calls, the implementation of this algorithm is made up of only freephone delays.

As RTC is implemented, at the end of a monitoring interval, the average response time of 

freephone calls during that interval is compared to the list of times corresponding to the fifteen 

overload levels and the resultant overload level for each service is determined using the algorithm 

outlined in Figure 4.9. The average overload level, if different from the previous overload level, 

causes notification is sent to the SSP in order to ensure that it restricts traffic according to the new 

overload level.

Note that, for all the detection methods described above, a table defining the correspondence 

between measured values and overload levels must be derived. These tables were derived through 

trial and error, which proved to be an extremely non-trivial task. Also, as the efficiency of any 

detection method based on the use of a monitoring interval is dependent on the length of that 

monitoring interval (as described in Chapter 2, Section 2.2.3.2), the behaviour of CCC, LMC and 

RTC was evaluated under various monitoring interval lengths over the course of a number of 

simulations, with the result that the use of a monitoring interval of 1 0  seconds was established as 

providing consistently the best results.

4.2.2 Implementation o f  Throttles

The CG throttle was integrated into the ccf process of the IN_ssp model. The throttling algorithm 

will be described in Section 4.2.2.1, including justifications for why it does not reflect exactly the 

description of the throttle provided by Bellcore [Bellcore92], The PT throttle (Section 4.2.2.2) is 

also located in the ccf. Both throttles have 15 throttling levels defined.
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4.2.2.1 The CG Throttle Mechanism

The CG throttle implemented in the model does not correspond to the throttle that was 

standardised by Bellcore. The primary reason for this, as mentioned in Chapter 2, is that 

investigations early in the development of the model proved that the gap durations and gap interval 

levels defined by Bellcore were impractical to use. The times specified were far too long and gave 

bad results. This is corroborated by [Smith95], However, some of the ideas presented by Bellcore 

were very useful and were used as guidelines when implementing the throttle.

The CG throttle algorithm is included in the ccf process of the SSP model. Fifteen levels of CG 

control are defined here, and their relationship to the overload levels defined by the detection 

algorithm in the SCP is maintained using a table of gap interval levels corresponding to the 

overload levels. Suitable gap interval times were achieved through trial and error to maximise 

throughput during congestion, while ensuring recovery was as rapid as possible. Note that finding 

appropriate gap interval times is a non-trivial task.

Each time the ccf of the SSP receives an overload message from the SCP signifying a change in 

overload level, the gap interval level under which the throttle was operating is changed 

accordingly, by resetting all gap timers, evaluating the gap interval level associated with the new 

overload level and altering the gap timers to these new levels. When the next request arrives after 

the controls have been reset, the gap timer is set for the length of the new gap interval and all calls 

arriving while the timer is active are rejected. When the timer expires, the next arriving call is 

accepted and the timer is reset. Throttling continues at this level until the next control message 

arrives from the SCP, detailing a change in the overload level.

Note that as all changes in overload level are relayed to the SSP immediately after detection in the 

SCP, gap interval levels were designed to remain in place until altered by the arrival of a new 

overload message and therefore duration levels were not required in the model and were omitted. 

Also, as all detection methods caused the same overload message to be transmitted to both SSPs, 

both were throttled equally.

4.2.2.2 The Percent Thinning Throttle Mechanism

The PT throttle algorithm is also included in the ccf process of the SSP model, but it is not 

necessary to maintain a table of PT coefficients corresponding to the SCP overload levels here, as 

the appropriate PT coefficient is sent by the SCP to each SSP as part of the overload notification 

(the SCP divides the measured value (e.g. for CCC, the number of new arrivals) by the measured 

value associated with the SCP threshold in order to evaluate the PT coefficient). The PT throttle
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then applies the new PT coefficient to arriving traffic according to the algorithm shown in Figure 

4.13, in order to allow the acceptance of only the relevant percentage of arrivals.

Increment new_calls;
If current_accepts/new_calls <= PT_coefficient {

Accept call; increment current_accepts; }
Else reject call.

Fig. 4.13: The PT algorithm

Each time the ccf of the SSP receives an overload message from the SCP signifying a change in 

overload level, the counters in the PT algorithm (i.e. c u r r e n t_ a c c e p t s  and n e w _ c a lls )  are 

initialised and the new percent thinning coefficient is applied. Thereafter, each time a new call 

arrives, n e w _ c a lls  is incremented and the algorithm is used to evaluate whether the call should 

be accepted or rejected. The algorithm continues using any given PT coefficient until the next 

overload notification arrives from the SCP, at which point the algorithm is re-initialised with the 

new coefficient.

Note that while the SCP sends the same throttling coefficient to both SSPs, the use of the PT 

algorithm ensures that arrivals at each SSP will be throttled proportionally to their arrival rates, 

and therefore, unlike CG (which will place the same strict upper limit on the number of calls to be 

accepted at all SSPs), acceptance rates at each SSP will be proportional to the number of requests 

arriving at that SSP.

4.2.3 Implementation o f the Window Strategy

According to the Window mechanism described in Chapter 2, throttling of calls should take place 

both at the SCP and the SSP. However, rejection of calls at the SCP is undesirable for two reasons 

-  firstly, SCP throughput should be maximised during overload and therefore SCP processor 

resources should not be expended rejecting calls and secondly, each SSP would have to make 

assumptions about whether or not a call was rejected by the SCP (as no notification of overload is 

sent to the SSPs) and making a wrong guess at any point would lead to livelock within the SSP 

Window algorithm. Therefore, an adapted version of Window is applied, in which no calls are 

rejected at the SCP, and the SSPs alone are responsible for ensuring that no SCP overload takes 

place. Therefore the Window algorithm of each SSP, located at the ssf process of each SSP, 

monitors the response time of the SCP to requests from that SSP. When response delays become 

excessive, calls are throttled.

A Window size counter W is defined and initially takes on a pre-defined value Wmin. W 

corresponds to the maximum number of new call queries for which an initial response is
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outstanding from the SCP (note that some services may consist of multiple SSP-SCP 

query/response pairs). Each time a new query is sent to the SCP, a variable OUT (signifying the 

number of calls for which a response is outstanding) is incremented and a timer is set (the value of 

the timer duration was established from observation of the delays which occurred during 

simulation when the SCP load was at the threshold). If OUT=W, all new queries are rejected at the 

SSP until a response is received from the SCP. Each time a response is received from the SCP, a 

variable C is incremented (indicating a positive response), OUT is decremented and the 

corresponding timer is reset. If a timer expires, this signifies that the delay experienced by the 

corresponding call is greater than the maximum acceptable level, thus implying that congestion 

exists (either within the SS7 or at the SCP). When this occurs, the window size W is decremented 

to force a greater level of throttling of IN calls and C is reset to zero. When C has increased to the 

point that it exceeds a pre-defmed value Cmax, this is interpreted as alleviation of the overload 

situation, and the window size W is incremented. In this way, the SSP responds to SCP overload 

without explicit communication between the physical elements.

4.3 Presentation of Results

In this section, we present the results for each of the given strategies under an applied load 

consisting purely of freephone traffic -  the effects of multiple traffic types on the strategies is a 

separate issue, which will be examined in Section 4.4. In the first part of this section, we prove the 

need for congestion controls by comparing the behaviour of the system under overload when no 

controls are in place with the behaviour when CCC and CG are used. Then, in Section 4.3.2, the 

various detection methods of the reactive (communication-oriented) strategies are compared to 

establish which is the most efficient at protecting the SCP. Note that, to ensure fairness of 

comparison, CG was used as the throttling mechanism in all cases. In Section 4.3.3, the CG and PT 

throttles are compared to find out which one is most accurate at rejecting the desired proportion of 

arrival calls during overload. This investigation was carried out using CCC in both cases -  namely, 

the detection method which provided the best performance in Section 4.3.2. At this point, it will be 

possible to state which reactive strategy is the best, in terms of protecting the SCP most 

effectively. Finally, the active (communication-less) Window strategy is compared with the best 

reactive strategy in Section 4.3.4 to find which of the existing strategies has the best overall 

performance.

4.3.1 Proving the N eed fo r  Congestion Controls

Here, we detail the findings of a simulation where the input (freephone) traffic was increased 

linearly over the course of a simulation, in a manner sufficient to cause overload at the SCP after
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about 470 seconds. When no congestion controls are in place, the SCP quickly becomes saturated 

and a serious backlog of calls builds up at the SCP, with the result that the SCP queue length 

grows exorbitantly (Figure 4.14) and the user delays quickly become untenable (Figure 4.15). This 

proves the need for congestion control strategies to protect the SCP.

SCP Queue Length

o Ho Controls (xlOOO)
O  CCC & CG (XlOOO)

0 0.25 0.5 0.75 1
time (sec) (xlOOO)

Fig. 4.14: SCP Queue Length for CCC/CG vs No controls in SCP

Freephone Delays

o Ho Controls 
O  CCC & CG

Fig. 4.15: Service Delays for CCC/CG vs No controls in SCP

4.3.2 Comparison o f  Detection M ethods fo r  Reactive Communication-Oriented Control

Here we compare the four implemented detection methods to establish which one provides the best 

consistent behaviour across all load situations. We therefore apply three different input freephone 

traffic scenarios -  namely constant mean, linearly increasing mean and bursty traffic. In all cases, 

the same CG throttle, SCP and SSP service rates are used, to ensure that the comparison is strictly 

between detection methods. Also for all cases, the SCP load threshold is defined as being 0.8 

Erlangs and the monitoring interval as 10 seconds.
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4.3.2.1 Stationary Behaviour

As a first step, we investigated the behaviour of the various detection methods in the stationary 

case, i.e. when input traffic levels have a constant mean for the duration of a simulation and are at 

a level sufficient to cause overload at the SCP - Figure 4.16 shows that the input traffic is 

sufficient to offer the SCP a mean of 1.4 Erlangs of work.

Arrivals to System (SCP Erlangs)

o  s s p I  A r r i v a l s  

O  SSP2 A r r i v a l s  

□  T o t a l  SCP A r r i v a l s

Fig. 4.16: Arrivals to system for stationary case

SCP Load under Constant I nptii Traffic Levels

Zone #£: CCC - mean load 
<> CCC - ».ean load 

zone #6: LMC * dynamic load 
O  LMC - mean load 

Zone #*>: QLC - dynamic load 
O  QLC - mean load 

Zone RTC - mean load 
O  RTC - mean load

tim e (s e c )  (xlOOO)

Fig. 4.17: SCP load for stationary case

81



Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Figure 4.17 presents the resultant SCP load over the course of the simulation. A number of facts 

are noteworthy about these results. Firstly, all detection methods (in conjunction with the same CG 

controls) succeed in protecting the SCP, by keeping the load below 1.0 Erlang and secondly, all 

detection methods fail to converge to a particular overload level, but instead experience 

oscillations of differing size around a mean of 0.8. The oscillations may, in part, be explained by 

the oscillations around the mean of the input traffic, but are also affected by the detection methods 

used. Note that for QLC, which is not based on monitoring the system over an interval but instead 

reacts immediately when overload is detected, the oscillations are small and the mean SCP load 

converges quickly. Of the methods based on the use of monitoring periods, CCC and LMC have 

smaller oscillations in the dynamic load and converge more quickly in the mean load than does 

RTC — this is because both CCC and LMC overload levels have a linear relationship with the SCP 

arrival rates whereas RTC, whose overload levels are based on delays, and therefore by extension 

on queue lengths, has a non-linear relationship with the SCP arrival rates. However, all strategies 

converge to a mean of 0.8, the pre-defined SCP load threshold.

Figure 4.18 shows the mean queue length at the SCP over the course of the simulation. As would 

be expected, QLC responds immediately to any rise in queue length, and therefore no oscillations 

occur in SCP mean queue length for this method. For the other methods, the delay before overload 

is detected (i.e. the monitoring period) means that an excessive number of calls are accepted 

originally and must be processed before the SCP load and queue length stabilise. Therefore, at the 

start of the simulation, the queue length rises to over 1 0 0 , before gradually dropping to acceptable 

levels (this is more a measure of how quickly these methods respond to dramatic increases in 

traffic than a measure of their steady state behaviour). Note that CCC, LMC and RTC have very 

similar behaviour here, with CCC being only very slightly faster at reaching a stable queue length 

than the other two strategies.

______________________ MeanSGPQueue Length______________________

O CCC 
O LMC 
□ QLC 
A  RTC

Fig. 4.18: SCP queue length for stationary case
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The conclusion of this is that QLC has the best performance in steady state, in that it experiences 

smaller oscillations than the other methods, although to achieve this, its overhead in terms of SCP 

processor utilisation is a factor of 2.1 greater than the other strategies. This is due to the fact that it

remains active at all times. The other methods, on the other hand, provide satisfactory results while

only being active at the end of each monitor interval.

4.3.2.2 Behaviour under Linear Increase in Arrival Rates

To investigate the behaviour of each of the detection methods under rapid increases in input traffic, 

as well as to establish their behaviour at low and high overload levels, the mean arrival rate of 

freephone traffic was increased linearly, as shown in Figure 4.19. Note that arrivals to the system 

increase from zero to 4.6 SCP Erlangs over the course of a simulation and that a load of 1.0 

Erlangs is provided after about 400 simulated seconds.

Arrivals to System (SCP Erlangs)

o SSPl Arrivals 
<> SSP2 Arrivals 
□  Total 5CF Arrivals

time (sec) (xlOOO)

Fig. 4.19: Arrivals to system for linearly increasing freephone arrival rate

The resultant variations in mean SCP load for each of the methods are shown in Figure 4.20, while 

the dynamic variations in SCP load are shown in Figure 4.21.
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Mean SCP Load

o ccc
<> LMC 
□  QLG
A  RTC

Fig. 4.20: Mean SCP load for linearly increasing freephone anival rate

Dynamic SCP Load

Zone #1: CCC 
Zone #2: LMC 
Zone #3: QLC 
Zone #4: RTC

Fig. 4.21: SCP Load for linearly increasing freephone arrival rate

The first comment to be made is that none of the strategies provide satisfactory performance over 

all load levels -  CCC, LMC and RTC load levels experience large oscillations around the 

threshold, while QLC permits overload to take place at high applied load levels. The reason for the 

oscillations experienced by all detection methods is related to the fact that these methods are based 

on a table of fixed overload parameters. When a detection method is based on fixed parameters, it 

tends to be prone to oscillations (this was even apparent in the stationary case of section 4.3.2.1) as 

it does not respond to exactly the applied load level, but instead rounds to the overload level 

corresponding to the input data (call count, service delays etc.). This means that each detection 

method tends to swing from overprotecting to underprotecting the SCP on alternate monitoring
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intervals. The size of the oscillations is defined by the parameter values, but even when these 

values are very carefully defined and quite precise, oscillations will still occur. This means that it 

always takes time for a detection method to converge to the correct overload level (or even to 

reach minimal oscillations between load levels). When the traffic is consistently increasing, as in 

this scenario, none of the detection methods have time to converge -  they oscillate dramatically 

and for each interval where the SCP is underprotected, the SCP queue length increases slightly, as 

demonstrated in Figure 4.22.

___________________________ SCP Queue Length___________________________

O ccc
O  LMC 
□  QLC 
A RTC

Fig. 4.22: Mean SCP queue length for linearly increasing freephone arrival rate

While it is accepted that all strategies are innately flawed due to their dependence on fixed 

parameters, it is still possible to compare their behaviour to establish which provides the best 

performance (and how). Regarding onset of congestion, examination of the dynamic load results in 

Figure 4.21 shows that all methods detect overload too early. CCC and LMC show the best results, 

by detecting overload when the actual submitted load is 0.78 Erlangs. For CCC, this is probably 

due to minor variations in the arrival rate during that monitoring period. For LMC, note that its 

response to overload does not occur as early as is described for LMC when applied to a switching 

system (at 60% capacity, as described in Section 2.2.3.2) -  this is because in a switching system, 

processing of initial requests takes only 30% of the overall processing time required for a call, 

whereas for freephone, initial processing at the SCP takes 50% of overall SCP processing 

requirements and therefore, for freephone, the load estimate reached by LMC is more 

representative of arriving requests and therefore more accurate. Note however, that for other call 

types (e.g. televoting, which requires SCP processing four times per call), LMC would be less 

accurate. QLC, due to its overly reactive nature, starts responding to overload when the submitted 

load is only at 0.62 Erlangs -  i.e. bursts of traffic at this level are sufficient to be construed as 

overload by QLC. RTC responds when the input traffic is at about 0.7. This is because service 

delays are very dependent on SCP queue lengths and therefore, occasional short increases in the 

queue length result in increased average service delays which then trigger overload controls early.
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The behaviour of each of the detection methods under overload may be summarised as follows:

• CCC is located at the input of the SCP and is based on counting the number of newly arriving 

calls during an interval. It is therefore capable of responding very quickly to the onset of 

overload. Also, the number of new arrivals is a very accurate representation of the applied 

load, with the result that CCC experiences slightly smaller oscillations than LMC or RTC.

• LMC’s reaction to the onset of overload is delayed as its calculation of overload level is based 

not only on the amount of time it has spent processing new requests but also on the load 

required by old requests (returning from the SDP). It therefore takes longer for LMC to 

accurately detect overload, as the foil effects of the overload are not felt until old requests 

return from the SDP for further processing. This delay in overload detection means that it also 

takes LMC slightly longer to recover from overload, as it must complete the successive 

processing requirements of all old requests which received initial processing between the time 

overload occurred and the time overload is detected (note that, as a result of this, the SCP 

queue length tends to be longer for LMC than for CCC).

• RTC is based on measuring the mean service execution time for requests of each IN service 

type. This means that there is a significant delay between the onset of congestion and its 

detection by RTC, as an overload is allowed to propagate through the system until the queues 

have grown sufficiently long at the SCP, SDP and IP to significantly affect the mean response 

times for service requests. As a result of this, RTC tends to have the largest mean SCP queue 

length and by extension, the longest average service delays (shown in Figure 4.23). RTC’s 

response delay (as with LMC) has further implications, in that all requests that were accepted 

during this delay must complete processing and recovery time is slower than for CCC.

Freephone Delays

O CCC 
<> LMC 
□ QLC 
A RTC

Fig. 4.23: Mean freephone delays for linearly increasing freephone arrival rate

• At low overload levels, QLC succeeds in protecting the SCP from overload. However, it does 

not converge, but instead allows the load to increase slightly and non-linearly as the applied 

traffic increases. Note also that QLC exhibits minimal oscillations -  this is because it is not

~
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based on the use of a monitoring interval. Instead, it responds immediately to increases in 

queue length and therefore has a tighter feedback loop than the other strategies. However, as 

was mentioned above, this means that QLC has a tendency to be too reactive -  it responds to 

minor fluctuations in applied load by putting unnecessary controls in place. A further negative 

implication may be associated with this tight control loop -  while CCC, LMC and RTC reset 

the CG throttle with new coefficients at most once per monitor period, QLC attempts to reset 

the throttle every time the queue length changes which, when the SCP is nearing saturation 

(i.e. arrival rate to the SCP is much greater than the service rate), is nearly every time a new 

requests arrives. This effectively renders the throttle impotent and so the number of calls 

arriving at the SCP rises dramatically. The eventual result is that the SCP becomes saturated.

The conclusion of this is that CCC is the best strategy for linearly increasing traffic -  it does not 

respond too early to the onset of congestion, and protects the SCP under all traffic loads with 

smaller oscillations and shorter queue lengths than either LMC or RTC. LMC’s operation is nearly 

as good, but has greater response delays (and therefore longer queue lengths) than CCC. RTC, 

while capable of protecting the SCP, exhibits greater oscillations and longer queue lengths and 

delays than either LMC or CCC. QLC shows extremely undesirable behaviour -  it both responds 

too early to overload and can only protect the SCP at low overload levels.

4.3.2.3 Behaviour under Bursty Traffic Input

To investigate the behaviour of each of the methods under bursty traffic input, the arrival rates to 

the system were defined as shown in Figure 4.24 -  note that these are expressed in terms of SCP 

capacity.

___________________________Arrival Rates to  S ystem  (SCP Erlangs)___________ _______________

0 SSPl arrivals 
1 O SSP2 arrivals

□ Total arrivals 
3

2 . 5  

2

1.5

1

0 . 5  

0
0 0 . 5  1 1 . 5  2

tim e (se c )  (xlOOO)

Fig. 4.24: Arrivals to system for bursty arrival rates 

The resultant dynamic SCP loads for each method are shown in Figure 4.25.
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________________________ Dynamic SCP Load

Zone #1: CCC 

Zone #2: LMC  

Zone #3: QLC 
Zone #4: RTC

0 0.5 1 1.5 2
time (sec) (xlOOO)

Fig. 4.25: SCP load for bursty arrival rates

Note that, as expected, QLC is the only method that is reactive enough to protect the SCP at all 

times from burst input traffic -  for this method, the SCP load rarely approaches 1.0 Erlang. For the 

other strategies however, overload is not detected until the end of a monitoring interval and 

therefore, the SCP load rises to greater than 1.0 Erlang for each large input traffic burst. CCC then 

responds very quickly by bringing the SCP load down to a more acceptable level. LMC and RTC 

on the other hand, react too slowly and the SCP load remains at unacceptably high levels for a few 

monitoring intervals, before being reduced. Note also that QLC provides a greater mean SCP load 

over the course of the bursty simulation, giving a mean of 0.75 Erlangs, as opposed to CCC’s 

mean of 0.705 Erlangs.

These results are also reflected in the SCP queue length (Figure 4.26) and freephone delays (Figure 

4.27). Note that only QLC and CCC provide freephone delays which are within acceptable bounds, 

as defined by [E.723] and [MacDonald94].
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Mean SCP Queue Length

° CCC 
❖ LMC 
□ QLC 
A RTC

80 
70 
GO 
50 
40 
30 
20 
10 

0
0

Fig. 4.26: Mean SCP queue length for bursty traffic

Mean Freephone Delays (s)

o CCC
0  LMC 
□  QLC 
A OTC

2.5 

2
1.5

1
0.5 

0
0

Fig. 4.27: Mean freephone delays for bursty traffic

4.3.2.4 Summary of Detection Method Results

The salient features of each of the detection methods is outlined in Table 4.1 below, where a V 

denotes acceptable behaviour and a * denotes best behaviour for each category.

Category CCC LMC QLC RTC

Steady state behaviour V V V(*) V

Relative processor requirements 1 1 2 .1 1

Correct response to onset of congestion V V

Correct response to low overload V(*) V V V

Correct response to high overload V(*) V V

Correct response to bursty traffic V >/(*)

Table 2.1 : Summary of detection method results
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The obvious conclusion to be drawn from this summary is that none of the strategies provide 

acceptable results over all possible input scenarios, but CCC generally provides the best results. 

The only method which ever performs better is QLC, and even in those cases, CCC provides 

acceptable results and outperforms the other two methods. As a result, we select CCC as being the 

detection method that provides consistently the best behaviour and will therefore use it in 

conjunction with both the CG and PT throttles to establish the best possible reactive strategy.

4.3.3 Comparison between Throttles

Here we compare the operation of the Call Gapping and Percent Thinning throttles to establish 

which one provides consistently the best behaviour across all load situations, using the same input 

freephone traffic scenarios as in Section 4.3.2 -  namely constant mean, linearly increasing mean 

and bursty traffic. In all cases, the same CCC detection method, SCP and SSP service rates are 

used, to ensure that the comparison is strictly between throttles. Also for all cases, the SCP load 

threshold is defined as being 0.8 Erlangs.

4.3.3.1 Stationary Behaviour

As a first step, we investigated the behaviour of the throttles in the stationary case, i.e. when input 

traffic levels have a constant mean for the duration of a simulation and are at a level sufficient to 

cause overload at the SCP - the input traffic offered is as shown in Figure 4.16. The resultant 

dynamic SCP load is as shown in Figure 4.28, while the mean SCP load is shown in Figure 4.29.

Dynamic SCP Load

Zone # 1 :  CG 

zone #2: pt

0 0 . 5  1 1 . 5  2
time (sec) (xlOOO)

Fig. 4.28: Dynamic SCP load for stationary case
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Mean SCP Load

O CG 
O PT
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Fig. 4.29: Mean SCP load for stationary case

Note that the oscillations in the dynamic SCP load are much smaller for PT than for CG -  this is 

due to its dynamic nature -  i.e. the throttle put in place reflects accurately the current overload 

condition. For table-driven CG, however, the throttle reflects the table entry closest to the current 

overload condition and not the overload condition itself, resulting in greater oscillations over the 

course of the simulation. On the other hand, the mean SCP load shows that CG reacts more 

quickly to an overload, bringing the SCP load down to the threshold much faster than PT. This is 

because when a CG throttle is put in place, it places a strict upper limit on the number of calls 

which may be accepted in the following monitoring interval and therefore makes the system more 

robust to increases in call arrivals during that period. PT fails to do this, as it merely accepts a 

fixed percentage of the arrivals in the following period. The faster reaction time of CG is also 

reflected in the mean SCP queue length, as shown in Figure 4.30.

Mean SCP Queue Length

o CG 
O PT

Fig. 4.30: Mean SCP queue length for stationary case

The greatest difference between the behaviour of CG and PT, however, may be observed by 

viewing the ratio of call acceptances for each of the SSPs. Figure 4.31 shows the call acceptances 

for SSP1 and SSP2 for the stationary case. Note that for CG, SSP1 (which receives twice as many 

IN calls as SSP2) has a much lower acceptance rate than SSP2. This is because the same gap 

interval is put in place in both SSPs and, as SSP1 has a greater arrival rate, more calls are rejected
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-  in fact, the overall result is that the same number of calls are accepted by both SSPs. For PT, on 

the other hand, the same thinning coefficients are put in place at both SSPs, resulting in the same 

acceptance rates at each, and therefore the ratio of calls which arrive at the SCP from the SSPs is 

maintained (i.e. SSP1 both receives and accepts twice as many IN calls as SSP2).

The conclusion of this is that, in the stationary case, CG is more robust and faster at responding to 

overload than PT, while PT retains the ratio between arrival rates from each SSP to the SCP (i.e. it 

exhibits subscriber fairness).

___________________ SSP Acceptances (as Percentage of Offered)___________________

Zone #D: ce - SSPl 
O - ssp2

zone #&: PT - SSPl

0 0 . 5  1 1 . 5  2
time (sec) (xlOOO)

Fig. 4.31: SSP acceptances for stationary case 

43.3.2 Behaviour under Linear Increase in Arrival Rates

To investigate the behaviour of each of the throttles under rapid increases in input traffic, as well 

as to establish their behaviour at low and high overload levels, the mean arrival rate of freephone 

traffic was increased linearly, as shown in Figure 4.19. The resultant dynamic SCP load is similar 

to that shown in the stationary case -  i.e. CG exhibits much greater oscillations over the course of 

the simulation than PT. Again, this is due to the fact that the throttles put in place by PT more 

accurately reflect the state of the SCP than those put in place by CG. However, unlike the 

stationary case, this does have an impact on the mean SCP load, as shown in Figure 4.32. Note that 

CG has a tendency to overprotect the SCP. This is a direct result of its table-driven nature -  the 

immediate reaction of CG to overload is to overprotect the SCP and while given enough time (as 

in the stationary case), this will eventually converge to the SCP threshold, if variations in arrival 

rates occur over a number of monitoring intervals, CG will fail to converge and the SCP will
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remain overprotected. This is undesirable, as calls are being rejected unnecessarily. PT, on the 

other hand, tends to underprotect initially (as described in the stationary case), but compensates 

fast due to its dynamic nature and therefore maintains the SCP load either at or slightly above the 

threshold.

Mean SCP Load

O CG 
O PT

time (sec) (xlOOO)

Fig. 4.32: Mean SCP load for linearly increasing arrival rates

To conclude, both CG and PT protect the SCP at all times from overload, although PT’s behaviour 

is more consistent, due to its dynamic nature. Also, again, only PT exhibits subscriber fairness, as 

shown in Figure 4.33.

SSP Acceptances (as Percentage of Offered)

Zone #J>: CG -  SSPl

O  -  SSP2

zone #&: PT - sspI

0 0 . 5  1 1 . 5  2
time (sec) (xlOOO)

Fig. 4.33: SSP acceptances for linearly increasing arrival rates
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4.3.3.3 Behaviour under Bursty Traffic Input

To investigate the behaviour of each of the methods under bursty traffic input, the arrival rates to 

the system were defined as shown in Figure 4.24. The resultant dynamic SCP load is shown in 

Figure 4.34.

Dynamic SCP Load

2one #1: CG

0 0 . 5  1 1 . 5  2
time (sec) (xlOOO)

Fig. 4.34: Dynamic SCP load for bursty arrival rates

This graph shows that an instantaneous increase in arrival traffic causes SCP load to jump to over 

1 Erlang and the SCP queue length to increase dramatically -  this is as a result of the monitoring 

delay associated with CCC. When CG is invoked, it responds rapidly by putting excessive throttles 

in place (excessive because it is based on fixed parameters), thus generally giving the SCP time to 

process the calls in the queue and alleviate the overload condition during the next interval. PT, on 

the other hand, puts exactly the correct proportional throttles in place on detection of overload and 

therefore does not give the SCP time to process the call requests which had built up in the queue 

during the previous interval. It therefore fails to alleviate overload quickly, the SCP load remains 

at approximately 1 Erlang for the entire duration of the burst and the mean SCP queue lengths 

remain substantially higher for PT than for CG for the entire duration of the simulation -  see 

Figure 4. 35. So, in this case, PT actually suffers due to its accuracy.
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SCPQueue Length

O CG 
<> PT

time (sec) {xlOOO)

Fig. 4.35: Mean SCP queue length for bursty arrival rates

When a bursty period ends, both strategies overprotect the SCP until the end of the next 

monitoring interval, at which point both strategies recover quickly, with PT actually converging 

faster to the mean load of 0.78.

The resultant service delays for this scenario are shown in Figure 4.36. Note that the delays for CG 

are near acceptable limits, as defined by [Yan94], while the delays experienced by calls under the 

PT throttle are clearly unacceptable.

Mean Freephone Delays

O CG 
O PT

time (sec) (xlOOO)

Fig. 4.36: Mean freephone delays for bursty arrival rates

The conclusion of this is that CG provides a better instantaneous response to dramatic increases in 

input traffic, as its tendency is to overprotect the SCP while PT’s tendency towards accuracy 

means that the SCP is vulnerable to rapid increases in traffic when PT is used. PT, however, is 

faster to converge to an optimal level than CG. This is not necessarily useful after a rapid increase 

in traffic, as PT’s slowness in responding generally causes a large build-up of the SCP queue, 

which then takes further time to serve. However, PT’s speed of convergence does maximise SCP 

throughput after a rapid decrease in traffic.
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4.3.3.4 Summary of Throttle Results

The salient features of each of the throttles is outlined in Table 4.2 below, where a V denotes best 

behaviour for each category.

Category Call Gapping Percent Thinning

Relative processor requirements 4.4 1

Rapid response to onset of congestion V

Rapid response to end of congestion V

Accuracy (speed of convergence) V

Subscriber fairness V

Table 2.2: Summary o f throttle results

To summarise, the principle advantage of the CG throttle is that it places a strict upper limit on 

traffic acceptances rates, which in the short term means that it responds better to rapid onset of 

congestion. However, the dynamic PT throttle converges faster to the threshold and therefore 

provides better results in the long term. It has the added advantage of being subscriber fair, in that 

it throttles all sources proportionally to their size. It may therefore be concluded that the ideal 

throttle would combine CG’s speed of response with PT’s accuracy and fairness.

4.3.4 Active versus Reactive Congestion Controls

In this section, the behaviour of the active communication-less Window congestion control 

algorithm is compared with that of the reactive communication-oriented CCC/CG and CCC/PT 

strategies to establish which type of strategy is more efficient across all load levels. The Window 

timer duration was evaluated by observing the mean freephone response delay when the SCP load 

is 0.8. As usual, the input freephone traffic scenarios described in Section 4.3.2 are used. In all 

cases, the same SCP and SSP service rates are used, to ensure a fair comparison between 

strategies. Also for all cases, the SCP load threshold is defined as being 0.8 Erlangs.

4.3.4.1 Stationary Behaviour

The input traffic offered in the stationary case is as shown in Figure 4.16. The resultant dynamic 

SCP load is as shown in Figure 4.37, while the mean SCP load is shown in Figure 4.38. Note that 

Window responds faster to the onset of overload than CCC/CG. This is due to the fact that it is 

always active and therefore responds immediately to the detection of overload, rather than having 

to wait, like CCC, until the end of the monitoring period. Window also exhibits fewer oscillations
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in the dynamic SCP load than CCC/PT. This behaviour is similar to that of QLC (shown in Section

4.3.2), and is again based on the fact that it is always active. However, due to the fact that Window 

is based on a single fixed parameter (i.e. the query/response delay threshold used to set the 

Window timers), it does not provide premium SCP performance - it does not keep SCP load at the 

defined threshold. Here, for a low overload, the Window strategy overprotects the SCP, keeping 

the mean load at approximately 0.775. Also, Window does not converge as quickly as the dynamic 

CCC/PT, again as it is based on the use of a fixed delay parameter.

Dynamic SCP Load

Zone #1: CCC/CG 
Zone #2: CCC/PT 
Zone #3: WINDOW

0 . 5 1 . 5  2
time (sec) (xlOOO)

Fig. 4.37: Dynamic SCP load for stationary case

Mean SCP Load

o CCC/CG 
<> CCC/PT 
□ WINDOW

time (sec) (xlOOO)

Fig. 4.38: Mean SCP load for stationary case
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4.3.4.2 Behaviour under Linear Increase in Arrival Rates

To investigate the behaviour of each of the strategies under rapid increases in input traffic, as well 

as to establish their behaviour at low and high overload levels, the mean arrival rate of freephone 

traffic was increased linearly, as shown in Figure 4.19. The resultant mean SCP load is shown in 

Figure 4.39. Here, the disadvantages of basing a congestion control strategy on a single fixed 

parameter become apparent. At low overload levels (from 0.8 to 2.0 SCP Erlangs), the SCP is 

overprotected by Window, with load levels staying consistently below the SCP threshold. At high 

overload levels (above 2.0 Erlangs), the SCP is underprotected, with SCP load climbing as high as

0.93 Erlangs when applied load is over 4 Erlangs.

Mean SCP Load

o CCC/CG 
O CCC/PT 
□ WINDOW

time (sec) (xlOOO)

Fig. 4.39: Mean SCP load for linearly increasing arrival rates

4.3.4.3 Behaviour under Bursty Traffic Input

To investigate the behaviour of each of the methods under bursty traffic input, the arrival rates to 

the system were defined as shown in Figure 4.24. As expected, the results showed that Window, 

due to its active nature, is considerably faster to respond to the onset of congestion than either of 

the other two strategies (see Figure 4.40). Also, by strictly limiting access to the SCP, Window 

prevents the SCP from approaching saturation, unlike the CCC/CG and CCC/PT, both of which 

allow the SCP to become saturated for at least one monitoring interval. As such, Window provides 

by far the best reaction to bursty traffic.
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Dynamic SCP Load

Zone #1: CCC/CG 
Zone #2: CCC/PT 
Zone #3: WINDOW

t m e  (sec) (xlOOO)

Fig. 4.40: Dynamic SCP load for bursty arrival rates

4.3.4.4 Summary of Results

The salient features of each of the strategies are outlined in Table 4.3 below, where a V denotes 

acceptable behaviour and (*) denotes best behaviour for each category.

Category Window Call Gapping Percent Thinning

Relative processor requirements 14.4 4.4 1

Rapid response to onset of congestion V ( * ) V

Rapid response to end of congestion V ( * ) V V

Speed of convergence V V

Consistency over all load levels V V ( * )

Table 2.3: Summary of Active vs Reactive Results
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To summarise, while Window has the fastest reaction time, this is at the expense of considerable 

overheads. Window also fails to be effective over all ranges of overload, considerably 

overprotecting the SCP during low overload and underprotecting it during high overload. The 

conclusion is that CCC with a dynamic combination of CG and PT would probably provide 

consistently the best behaviour. This will be established in Chapter 6 , where just such a strategy 

will be compared with Window.

4.4 Summary & Conclusion

There are a number of conclusions which may be drawn about the results as discovered in this 

chapter, the first of which relates to the main body of research completed - the investigation of 

existing congestion control strategies for the protection of the SCP of an Intelligent Network. The 

results acquired in Section 4.3.2 show that, while none of the existing detection methods provide 

satisfactory results over all load scenarios, CCC generally seems to perform better than the other 

strategies.

Of the throttles investigated, PT generally seems to outperform CG, with the exception of the most 

important characteristic -  speed of response to overload. CG responds very quickly to overload, 

but its table-driven nature means that its response, while fast, is not very accurate and that it tends 

towards large oscillations and is very slow to converge to the defined threshold. PT, as a dynamic 

throttle, converges quickly and has the added advantage of being subscriber fair, in that it throttles 

all SSPs proportionally to their size.

Comparisons between CCC/PT, CCC/CG and Window provided inconclusive results. Window had 

the fastest response times to the onset of overload, but its behaviour is not consistent over all 

possible load levels. It also has considerably higher processor requirements than either of the two 

reactive communication-oriented strategies.

The principle drawback of virtually all the strategies investigated in this chapter is that they are 

table-driven, i.e. based on static parameters (PT being the only exception). This static nature has a 

number of implications. Firstly, configuring the algorithms by defining the best possible fixed 

parameters is extremely difficult. For strategies with a low number of parameters (e.g. Window), it 

is impossible to define parameters that will deal with all possible load levels correctly. Strategies 

with a large number of parameters (e.g. CCC, LMC, CG) tend to be able to handle larger 

variations in load, but also have a tendency to be extremely inaccurate -i.e. defining a number of 

parameters which will always cause the mean SCP load to converge to (or rather, to oscillate 

minimally around) the defined threshold for any offered load is not possible (in the experience of 

the author). A further difficulty with defining fixed parameter values is that as they are dependent
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on the size of the resource at which they are located. As such, the parameters would have to be 

calculated independently for each SCP or SSP at which the strategies are targeted.

A second negative implication associated with static, table-driven detection strategies raises even 

greater concerns and cannot be resolved through the definition of the fixed parameters. This is the 

fact that any static detection algorithm implicitly makes assumptions about either the load 

requirements of the traffic types being managed or about the traffic mix. This issue was avoided in 

Section 4.3 by ensuring that all calls in the network were freephone calls. However, in reality, 

different services have very different characteristics. As an example, televoting call requests visit 

the SCP four times (rather than twice, like freephone) and, as such, require twice as much SCP 

processing as freephone calls. It would also take longer for the response to the initial televoting 

query to be returned to its source SSP than it does for the initial freephone response. Therefore, if 

the same parameters that were defined for freephone calls were used in a network that handles both 

freephone and televoting calls, none of the detection algorithms would respond correctly to the 

onset of congestion caused by televoting calls. This is shown in Figure 4.41, where overload 

occurs at t=2 0 0 s, and maybe described as follows:

Dynamic SCP Load

zone #1: CCC/CG 
Zone #2: LMC/CG 
Zone #3: QLC/CG 
Zone #4: WINDOW

H0.9
8 : §
0 .68:10. 3
8:3 
H0.9
8:?o.e8:10.3
8:?
H0.9 0 . 8  0.7

1.5 2
time (sec) (xlOOO)

Fig. 4.41: Dynamic SCP load for televoting overload
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• CCC would not detect overload until too late, as the number of arriving televoting calls that 

would cause overload is substantially less than for freephone. At the point where overload is 

finally detected, the SCP has already reached saturation.

• LMC responds very slowly to the detection of overload, as televoting has a load profile for 

which initial processing of requests at the SCP constitutes only 25% of their total load 

requirements. Therefore, by the time overload is detected, a large number of calls have already 

been accepted which must then complete processing at the SCP. Again, as with CCC, this 

leads to SCP saturation.

• QLC overreacts at low overload levels (even more so than in Section 4.3.2), as each televoting 

request must queue four times at the SCP. Then, as the level of overload grows, QLC becomes 

incapable of dealing with the rapidly rising queue lengths and the SCP becomes saturated.

• Window responds too quickly, detecting overload where none exists. This is due to the fact 

that the query/response delays for televoting are substantially higher than for freephone, so 

Window times out on televoting calls, even when no overload exists. However, as Window has 

a tendency to overprotect the SCP, its behaviour at high overload levels, while not ideal, is 

better than for the communication-oriented detection algorithms.

The conclusion of this is that no static detection algorithm will be able to protect the SCP 

efficiently when the input to the system is a varied mix of different call types with different load 

requirements and characteristics. This implies the need for a dynamic strategy, which will be able 

to calculate, based on the arriving traffic mix, the true state of overload of the SCP and react 

accordingly. A dynamic strategy would also have the added advantages (as shown by PT) of being 

easier to configure, as well being more accurate and converging to the threshold much faster than a 

table-driven static strategy.

As a final comment, existing models (including the one presented in this chapter) make the 

assumption that SSP resources are infinite, and therefore avoid all implications of possible SSP 

overload. In a real IN, this assumption is unreasonable. Therefore, to provide a real and 

comprehensive solution to IN congestion control, the implications of SSP overload and SSP 

protection must also be investigated and, if possible, a congestion control strategy should be 

developed which protects all IN resources from congestion.
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5.1 Introduction

In the area of IN congestion control, it is recognised that, as the SCP is responsible for the 

execution of all services, it is crucial that its throughput is maximised at all times. Therefore, 

research to date has tended to focus on protecting the SCP from the effects of overload while 

maximising its efficiency at all times (see [Pham92], [Hebuteme90] and Chapter 4). The issue of 

SSP congestion was avoided in all work completed to date by raising the service rate of the SSP 

central processor (the CCF) to the point where congestion does not occur in the SSP. In reality, 

however, processing power at all SSPs will (obviously) be finite and therefore overload at SSPs 

also has the possibility of affecting IN performance. Also, a number of different scenarios exist for 

the implementation of INs. These include:

• An overlay network, where switches in the PSTN/ISDN route service requests to Service 

Switching Points (SSPs),

• The Service Node, where multiple IN physical elements are represented in one powerful node,

• An integrated network, where SSP functionality exists in the network switches.

These three implementation scenarios are depicted in Figure 5.1 below. The types of traffic routed 

through the IN SSPs therefore depend on the network implementation. In particular, in the 

integrated network implementation, SSPs will be required to process non-IN calls as well as IN 

calls. The long term view of IN evolution predicts that the integrated scenario will become more 

popular (e.g. with number portability looming, it may not be too long before the majority of calls 

are service related, and therefore it does not make sense for all of these calls to be routed to an 

overlay network or a service node. The more logical solution is to install service switching logic in 

all trunk switches). In this scenario, the issue of IN performance management widens in scope to 

include SPC performance management in multiple SSPs. In other words, it will no longer be 

sufficient to maximise SCP performance alone -  it will be necessary to maximise the overall 

performance of the integrated network.
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At this point, based on the results of Chapter 4, let us also provide an enhanced definition of the 

requirements on an IN overload control strategy. Obviously, the basic requirements are as 

described in Chapter 2 - namely,

• Effectiveness: an overload control strategy must be able to protect IN resources under any load 

conditions and,

• Efficiency: the strategy must use processing resources in an efficient manner (in terms of 

keeping processing requirements as low as possible). Obviously, if it is desirable to 

incorporate e.g. priorities in a congestion control scheme, the added complexity of the
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algorithm will cause it to have a larger footprint. This is only justifiable if the benefits of the 

complex scheme outweigh the processor usage costs.

However, there are also other highly desirable characteristics of an overload control strategy, 

which include:

• Scalability: the algorithm should not be dependent on the size of its resource or the mix or 

arrival rates of applied traffic, i.e. it should not be dependent on any explicit fixed parameters. 

This would ensure that the algorithm is both simple to install at any resource and that it reacts 

correctly and accurately to the applied traffic.

• Flexibility: a well-designed algorithm should be easily customised to include factors such as 

different call priorities and load requirements or different requirements on fairness.

• Fairness: There are two main interpretations of fairness in the IN context, as described in 

Chapter 2, section 2.3.1. “Service fairness” means that if overload is caused by an excess of 

calls of one particular service type, only calls of that type should be rejected (i.e. Focussed 

Destination Overload Control - FDOC). “Subscriber fairness” means that the probability of 

rejection ought to be the same for all the subscribers of a particular service, irrespective of 

which SSP they are connected. Ideally, an IN congestion control algorithm should exhibit both 

types of fairness.

Many of the IN overload control algorithms which have been proposed in the past and discussed in 

Chapter 4 go some way towards meeting the basic requirements on an IN overload control 

strategy. However, these basic algorithms tend not to have the desirable characteristics described 

above. A number of strategies have also been proposed which do address various of these 

characteristics in the area of SCP protection (e.g. [Rumsewicz95], [Lee97], [Smith95] and 

[Lodge98b]) and so reach greater SCP performance efficiency, where the criteria generally used to 

evaluate the performance efficiency of an overload control algorithm includes (but is not restricted 

to) SCP load, SCP queue length, the number of IN calls rejected, cost efficiency of the algorithm 

and mean service delays.

The aim of this work is to find an overload control strategy which encapsulates both the basic 

requirements and all desired characteristics, in the global performance management of an IN which 

consists of one SCP and multiple SSPs and which handles a number of different traffic types (IN 

and non-IN) with different call characteristics fairly. As an example of service unfairness, all 

currently defined strategies are specifically designed to protect just the SCP of the IN and 

therefore, in ensuring maximum possible SCP efficiency, the performance of non-IN processing in 

the SSPs may be degraded. This should not be allowed to happen as, although some service 

related calls may provide more revenue to network operators, the ratio of revenue to resource 

requirements (let’s call it the Rev/Res ratio) for non-IN calls may be greater and therefore, to
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maximise the performance of the overall network, non-IN calls should not have to receive a 

degraded quality of service during times when service related traffic is too high.

Examining the area of global IN performance management, we see that, in the past, the problem of 

switch congestion control was much simpler to address than it will be in an integrated IN 

environment. Congestion controls for the protection of SSPs have either been unnecessary (e.g. in 

a service node scenario) or based on standard SPC control mechanisms. However, when SSPs 

must deal with multiple call types, including non-IN and IN, all of which have different priorities, 

revenues and call load distribution curves (as opposed to ISDN calls which have the same load 

distribution curve, as shown in [Seraj85], [Hubig94] and Chapter 2), it will be neither efficient nor 

fair to throttle all calls equally upon occurrence of overload. Also, if  the congestion control 

strategies at the SCP and SSP work independently of each other (i.e. each element is responsible 

for its own protection only), conflicts between SCP and SSP strategies could result in lower overall 

network efficiency.

To estimate the impact of these types of conflicts on overall network performance and to prove 

that a global IN congestion control strategy is essential, the model of the IN described in Chapter 4 

was extended to include multiple finite-capacity SSPs, each of which processes both IN and non- 

IN call types. This new model (in both simulation and analytic form) is described in Section 5.2 

below. Two different control scenarios were then put in place on the model. For the first scenario, 

independent control strategies were put in place at the SCP and SSPs. For the second scenario, a 

simple strategy was devised to throttle incoming traffic at each SSP based on the load levels at 

both the SCP and SSP. This experiment and its conclusions are described in Section 5.3. Section

5.4 presents a new global IN congestion control strategy based on revenue optimisation, while 

Section 5.5 gives results for this strategy.

5.2 The New, Comprehensive IN Models

The models used in Chapter 4 are sufficient only for estimating the efficiency of SCP congestion 

controls and for establishing the necessity for throttling IN calls at the SSP. To facilitate the 

investigation of congestion control strategies for dealing with all types of calls in situations of both 

SSP and/or SCP congestion, a new, more detailed design model was developed, and implemented 

both as a simulation model (in OPNET) and as an analytic model (to facilitate mathematical 

analysis of the behaviour of the system).
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5.2.1 The IN  Model Design

The new model design of the SSP was developed in order to provide an accurate representation of 

both switching functionality and service handling procedures. This model is shown in Figure 5.1 

and closely represents the operation of the central controller of the Ericsson switch and is similar 

to that described in [Seraj85], The resource to be maximised is the capacity of this central 

processor as all intelligence resides here. The similarities between the operation of this model and 

that of the Ericsson switch is deliberate, with the aim that all results gained from this model may 

be directly applicable as a real congestion solution in a real system.

Q1 Q2 Q3

Operation of this model may be explained as follows: all new call requests arrive into Q1 in the 

central processor. If the central controller has capacity available and the user has the authority to 

make a call, call acceptance is returned to the user in the form of a dial tone. Once the user has 

been supplied with a dial tone, any digits entered are collected and returned to Q2 in the central 

controller. At this buffer, service related calls may be differentiated from ordinary calls. If the call 

is a non-IN call, the request is forwarded to Q3 for routing, while IN calls are sent to the SCP. Any 

database access requirements are fulfilled through the exchange of messages between the SCP and 

SDP. User interaction requests are sent to the IPQ in the SSP, the service time of which represents 

the time required to open a channel between the user and the IP - note that this queue is included in 

the SSP side of the model, as establishing the channel will require some SSP central processor 

capacity. After the channel has been opened, the request is passed to the IP, where it is delayed 

(representing interaction with the user) before returning to the SCP. When service execution has 

completed at the SCP, calls are forwarded to Q3 for further routing (e.g. in the case of freephone 

calls) or termination (e.g. in the case of televoting calls).

Current rules for overload control state that, if a call is to be rejected, it should be as soon as 

possible in call processing, for two reasons:
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1. To minimise the wastage of central processor capacity,

2. To minimise delays to users.

According to these rules, it is possible to reject calls at both Q1 and Q2, but not at Q3. Note that, 

as it is not possible to distinguish between call types in Ql, throttling of calls at this queue can 

only be applied to all call types equally. Differentiation between call types occurs during 

processing at Q2 - it is therefore possible to selectively restrict different call types at this queue. 

However, all calls that are accepted at Q3 must be given the chance to complete successfully - i.e. 

they cannot be rejected for any reason. Therefore, all calls placed in buffer Q3 are guaranteed the 

processing time they require to complete successfully. Therefore, the only buffers at which calls 

may be rejected are Ql (unconditional rejection to protect the SSP) and Q2 (conditional rejection 

based on call type). In terms of devising a flexible overload control algorithm, it is far more 

desirable to place an overload control strategy at Q2, as this gives scope for selective throttling of 

calls based on various criteria (e.g. fairness, load requirements, priorities etc.).

All central controller buffers (Ql, Q2, Q3 and the IPQ) are served by a single processor. Current 

priorities in the Ericsson switch define that Q3 is provided with the highest servicing priority to

ensure that calls which have not been rejected complete successfully. Q2 is has the next highest

priority, as all calls there have already received some processing time in Q 1 and should therefore 

be given a good opportunity to complete. Ql has the lowest priority and only receives processing 

if sufficient capacity is available.

In the design, processor capacity is allocated to each queue on a priority basis similar to the AXE 

priorities defined above, but amended to include the IPQ. Therefore, highest priority is assigned to 

the IPQ, lowest priority assigned to Ql and equivalent priorities assigned to Q2 and Q3. Q3 has a 

single service rate, while Ql has two service rates - one for processing accepted traffic and the 

other for rejecting calls. Q2, on the other hand, has three different service rates — the first for 

accepting non-IN calls, the second for accepting IN calls and the third for the rejection of calls. 

The service times of these queues are set to reflect the load distribution of a non-IN call - i.e. mean 

Ql service time (representing call authorisation) is shorter than that of Q3 or the mean non-IN 

acceptance time at Q2, while the mean non-IN acceptance time at Q2 (representing non-IN number 

analysis) and Q3 (routing) are equivalent. The IN acceptance time at Q2 is set as a factor of 2.5 

greater than the acceptance time for non-IN calls -  this is an approximation of the excess 

processing requirements of IN calls over non-IN calls in a real SSP. Further, rejection rates at both 

Ql and Q2 are defined as being much greater than their acceptance rates. As a result of these 

defined service rates, any overload will cause congestion at Q2 prior to affecting any other SSP 

queue. Therefore, any SSP congestion detection algorithm should be located at Q2.
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Five types of call are defined for the model - these are international, international freephone, 

televoting, local and freephone. Table 5.1 shows the identifier assigned to each call type, along 

with the set route that is followed by the call type through the system.

Call Type Identifier Route through IN  from SSP n

International (non-IN) 1 Ql„-Q2„-Q3„

International Freephone (IN) 2 Q1„-Q2„-SCP-SDP-SCP-Q3„

Televoting (IN) 3 Q1„-Q2„-SCP-IPQ„-SCP-SDP-SCP-IPQ„-SCP-Q3„

Local (non-IN) 4 Ql„-Q2„-Q3„

Freephone (IN) 5 Q 1„-Q2„-SCP-SDP-SCP-Q3„

T able 5.1: Calls types in enhanced IN model

Retrials of 30% are also included in the model, i.e. 30% of all calls rejected will be retried in the 

following interval (a simplification of the assumptions outlined in [Manfield91]). All call type 

arrival rates are Poisson.

5.2.2 The IN  Simulation Model

The existing simulation model in OPNET was enhanced to reflect the new SSP structure, and was 

further extended to contain five such SSPs, with call types as shown in Table 5.1. The new 

network layer model in OPNET is depicted in Figure 5.3. As shown, the model consisted of five 

SSPs, one SCP and an SDP.

As in the IN simulation model used in Chapter 4, the SDP has a deterministic service time 

distribution, while the SCP has an exponential service time distribution. The only change made to 

the scp node model was the inclusion of an SLP for international freephone. All other changes to 

the OPNET model used in Chapter 4 took place in the model of the IN_ssp node. These changes 

will be described next.
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5.2.2.1 The IN_ssp Node Model

The operation of the SSP was amended to reflect the new SSP design, as shown in Figure 5.4. The

primary changes that took place in the node model described in Chapter 4 include:

• The ccf process was replaced by three processes, representing Ql, Q2 and Q3. All the service 

times of each of these new queues (i.e. acceptance and rejection rates, as described in Section

5.2.1) were set to be exponentially distributed.

• The throttles that were implemented in the old ccf are now in Ql and Q2. The Q2 throttles 

were also extended so that they can be applied either to all services (including non-IN 

services) or to individual service types. This is to facilitate selective throttling.

• The termination of non-IN calls is no longer included in the SSP. This is because all conflict 

for processor resources in the SSP takes place during the Call Authorisation and Number 

Translation states of the Originating BCSM. If a call requests is accepted in both of these 

states, then it must complete successfully and therefore it is unnecessary to represent the 

processing allocated to the states further on in the call state model.

• The SRF is modelled differently. In Chapter 4, this was modelled as an Erlang-C queue. For 

this work, however, the behaviour of the IP that is of primary interest is the processing 

requirements it places on the SSP to establish a channel between the user and itself. Therefore, 

we replace the SRF with a queue (the ipq) to model the processing of these requests for a 

channel at the SSP. This new ipq is defined as having an exponentially distributed service 

time, representing the time it takes for the SSP to establish the requested channel. This is then 

followed by a simple uniformly distributed delay around a mean of 5 seconds.
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freeph monproc

Fig. 5.4 : The New IN_ssp Node Model

5.2.3 The IN  Analytic Model

The queuing model has one SCP, one SDP and multiple SSI's, as shown in Figure 5.2. The 

behaviour of the system is almost identical to that described for the simulation model in section 

5.2.2. The primary differences between the analytic model and the simulation model of the IN are 

as follows:

• The uniformly distributed delay representing IP interaction with the user is omitted from the 

analytic model as, in steady state, the time spent interacting with the user has no effect on 

system performance.

• For ease of analysis, all queues in the systems -  including the SDP - have exponentially 

distributed service time distributions.

• Percent thinning is the only throttling mechanism available at Q1 and Q2, as CG cannot be 

modelled accurately analytically. Therefore, in investigations where CG is used in the 

simulation model, some small discrepancies between the simulation and analytical results are 

to be expected.
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The model contains the five call types defined in Table 5.1. Any throttle at Q1 can only reject all 

calls equally, and we therefore define P° as the Q1 global percent thinning throttling argument for 

SSP n. We further define one Q2 percent thinning throttling argument for each call type - let us 

define p ' An ,i as the percentage of offered calls of type i to be accepted at Q2 of SSP n (during the 

next interval). Therefore, we have five probabilities of acceptance at Q2, namely pan,i,..,pa„,5 . For 

completeness, retrials are included, where we choose that 30% of call attempts rejected in one 

interval are retried in the next interval, i.e. i(t) -  (0.3)(1 -  P° (t - T ) p an,i(t -  T))J?n i (t -  T) is 

the retrial arrival rate of call type i at SSP n, where A°n i is the original arrival rate of call type i at 

SSP n and T is the interval length. Therefore, the total (Poisson) arrival rate at Ql„ is

K (0 = Z Ki (0 = Z (0+(0)  ■i i

To simplify network analysis, Q3„, the SCP, SDP and IPQ„ each have a single service time with a

mean of, respectively, /¿g3n, ¿iSCp, Msdp an^ MipQn • The throughputs of these queues are

Pqi>„ ’ P scp’ Psdp an<̂  P ipq,, • Oh the other hand, Ql„ has two service times defined, with call

rejection time much lower than processing time for accepted calls. Ql„ service rates are therefore 

Mq\ ,acc and Mqi„ ,rej • Its resultant throughput is . Q2„ has three service times defined, call
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rejection time, non-IN acceptance time and IN acceptance time. Q2„ service rates are 

thereforeMQ2„,rej>Mqi„.acc.non and//e2„,acc,w ■ The throughput of Q2„ is p Qln. Note that at this time,

for the purposes of generalisation, we make no assumptions as to the service time distributions 

used. Therefore, the only assumption made at this point is that all arrival processes to the system 

are Poisson.

5.2.3.1 Estimating Arrival Rates and Loads for the IN Analytic Model

Using our knowledge of the routes taken by each call type through the queuing system, we may 

specify the mean arrival rates at each queue in the model:

For Ql„ : AQK (t) = An (t) = AnJ (0
1=1

For Q2„ : Äeln (t) = (/) = <  £  -Vi (<)
1=1

N

FortheSCP: ¿ « * ( 0  = £  es c r J ^
7 =2 ,3,5 n=1

N

F ortheS D P: ASDP(t) = eSDP, j ^ p? P n j K j t f )  whereeSDPJ= lfory = 2,3,5
7=2,3,5 n=1

ForIPQ„ : ¿ipq„  ( 0  =  e iPQ,3Pn P n ^ n ^ )  where e IPQ 3 =  2

For Q3„ : (t) = P" £  p ^ ,  (<)
1=1

where eSCPj- is the number of times a call request of type j  enters the SCP during its execution,

eSDP J is the number of times a request of type j  will receive processing at the SDP and eIPQJ is the

number of times a call of type j  will pass through the IPQ. In a similar manner, we may define the 

loads at each queue in the model:

F nrO I • n (t\ — I ^F orQ l„ .

ForQ 2„: = ( ^ i _ + t o W )
^  n  f* Q 2 n ,a c c ,i  M Q 2 n ,re j

1=1

For the SC P: p SCP (t) =/ fjscp

For IPQ, : P w g ß ) = ^ l

For the S D P : p snP (¿) =/ j jSDp

ForQ 3„: ^  (,)  =  i g £ >
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5.2.3.2 Estimating Service Delays for the IN Analytic Model

The decomposition method (described in Chapter 3) is used to estimate service delays in the

user wants to estimate or control mean queue lengths and/or mean delays. The following equations 

were generated using the decomposition method in the form described in Chapter 3, where (to 

simplify the notation) all parameters on the right hand side are as defined for time interval \t-T,t\, 

with the exception of P° and pani, which are as defined at time (t-T):

For Q l„: ^ agin (0 = 1 (Poisson arrival rates)

where Kax is the square of the variation coefficient (svc) of interarrivals at queue X, Ksx  is the 

svc of the service time at queue X and Cx is the svc of the intervals between two successive 

departures from queue X. Knowing the arrivals rates and service rates for interval [t-T,t\ and the

analytic model, as it provides a good approximation of multiqueue systems in the case when the

2 +Â2 ̂ (^Q ln,acc+1) , (l-^XKfa,.^+l)

For Q2„ : Kog^ (t) = (t)

CQ2„  (0 -  K a Q2„ (OO ~Pgi„  ) + PQ2n G ~ 2P q 1„ ) +K ^ n  'Y /'n ,i 0À!^(^Jg2„,aav+1) |

(ca (o -  D ( i 1 v h Z p '-m
A=l,4 I *=1,4

+ (csct(')-ix£ 2> îa ,) +1 k <, 2 > ;a /)
y=2,3,5 7=2,3.5
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acceptance probabilities as defined at time (7-7), the decomposition equations may be solved to 

find the value of Kax for each queue in the system. Then, again as described in Chapter 3, 

Kingman’s formula will allow the mean queue length of each queue to be calculated, according to:

2(1 -P x )

The average response time for each queue may then be evaluated using Little’s Law 

( f x =Nx /Xx ), and the average response time for each service type generated at each SSP can be 

estimated by summing the delays at each queue along its route.

5.3 Estimation of the Effects of non-IN Traffic and Finite SSP Resources 

on IN Performance

This work was carried out using the models defined in Section 5.2. Two assumptions were made: 

that all service times are exponentially distributed, and that there is only one SSP (no more are 

needed as this investigation seeks to prove only that a problem exists). This results in the 

specialisation of the general decomposition equations of Section 5.2.3.2, as shown below. Note 

that again, all parameters on the right hand side are as defined for time interval [t-T,t\, with the 

exception of P° and p an i , which are as defined at time (t-T).

For Ql: KoqX{()- 1 (Poisson arrival rates)
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For the IPQ: KaIP̂ i)=\+{Csam ~ l ) { ^ - )

C lP ( 0 )  ~ P lP Q + K a IP(^f)Q --PlPQ )

5.3.1 Strategies used fo r  Comparison

Two strategies were implemented on both the IN simulation and analytic models. As the analytic 

model represents the ideal case, the simulated and analytic models should exhibit similar 

behaviour, i.e. the analytic model should return the mean of the simulated model results. For the 

first scenario implemented, independent control strategies were put in place at the SCP and SSPs. 

For the second scenario, a simple strategy was devised to throttle incoming traffic at the SSP based 

on the load levels at both the SCP and SSP, i.e. this strategy controlled the SSP and SCP traffic 

jointly. An assumption made for this study is that IN calls have a higher priority than non-IN calls 

and therefore, where possible, the number of IN calls accepted should be maximised.

5.3.1.1 The Independent IN Congestion Control Strategy

For the independent strategy, the SCP congestion control strategy was based on the use of an SCP 

monitoring interval X  with LMC at the SCP to detect SCP overload and CG throttling at SSP Q2 to 

restrict the arrival rates of IN calls. Another LMC algorithm was used in the SSP to detect 

overload at Q2 at the end of an SSP monitoring interval Y. When SSP overload was detected, all 

incoming calls (both IN and non-IN) were then throttled equally at Q1 using a CG mechanism. 

The LMC overload parameters and CG interval parameter values were derived from the 

assumption that all IN call types had equal arrival rates at the SCP and that IN calls comprised 

30% of total SSP traffic. LMC was selected as an appropriate detection routine for this 

investigation as it may be used in both the dynamic simulation and the steady-state mathematical 

model. Note, however, that while CG was used in the simulation model, PT throttles were used in 

the analytic model, as they are far easier to represent mathematically than CG. Twelve overload 

levels were defined for both the SCP and SSP detection algorithms. The operation of this strategy 

is shown in Figure 5.6.

The steps of the SCP congestion control scheme are shown as steps (i) to (v) in the diagram. Here, 

new calls entering the SSP are throttled equally by the throttle TSSPn , put in place (at Ql) by the 

SSP at the end of its previous monitoring interval, Y. Then IN calls are throttled equally by the 

throttle TSCP, put in place (at Q2) according to the overload level sent by the SCP at the end of the 

SCP’s previous monitoring interval, X. All IN calls accepted at SSPs are then sent, via the SS7 to 

the SCP. The SCP monitors its mean load over the course of an interval X, and at the end of that 

interval, reports its overload level to all SSPs, each of which then puts the appropriate throttle in
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place at Q2. The SSP control strategy works independently of this. Each SSP monitors its Q2 load 

over a the course of an interval Y, and at the end of that interval, puts throttles corresponding to its 

perceived overload level in place at Q1.

New calls

New calls

Fig. 5.6: The Independent Congestion Control Strategy 

5.3.1.2 The Joint SCP/SSP Congestion Control Strategy

The joint SCP/SSP congestion control strategy (i.e. a simple example of a global IN congestion 

control strategy) that was developed for this investigation is made up of three separate, interacting 

parts - the SCP and SSP overload detection algorithms and the joint throttle. As with the 

independent strategy described above, LMC was used as the congestion detection method at both 

the SCP and at Q2 of the SSP. Also as with the independent strategy, CG throttle mechanisms are 

located at both Q1 and Q2. However, the operation of the throttles is quite different, in that the 

decision-making process as to which throttles are engaged (and the magnitude of the throttling) is 

more complex and is based on both SCP and SSP overload data. According to this decision­

making process, there are three principle phases of operation for the CG throttle:

1. SCP overload. During this phase, SCP overload causes only IN calls to be rejected in Q2 (i.e. 

the number analysis stage).

2. First stage SSP overload. In this phase, SSP Q2 overload causes only the lower priority non-IN 

calls to be rejected in Q2 (i.e. the number analysis stage). Note that SCP throttles may or may 

not be in place during this phase, but non-IN and IN calls are throttled independently.

3. Second stage SSP overload. This phase is entered when selective throttling at Q2 is 

insufficient to alleviate the SSP overload condition (i.e. all non-IN calls are being rejected and 

SSP overload still exists). At this stage, minimal throttling is applied all calls equally at Q1 

(during call authorisation) while the selective throttles remain in place at Q2. The aim of this is

T ssp n  T s c p  

SSP n

overload

(i) New 

IN calls
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that the SSP overload situation should be alleviated, while ensuring that the maximum possible 

number of calls reaches Q2, thus minimising the number of IN calls rejected.

The operation of this joint SCP/SSP congestion control strategy is shown in Figure 5.7.

New calls
overload

(i) New 
IN calls

New calls
SSP 1 T ssp2

Fig. 5.7: The Joint SCP/SSP Congestion Control Strategy

Here, we see that the behaviour for SCP congestion control is identical to that defined for the 

independent strategy. However, for the joint (i.e. global) strategy, the SSP has the same monitoring 

interval as the SCP, and bases its own throttles on the overload information received from the SCP. 

Each SSP still puts the IN throttle in place at Q2, but it also uses this information (step (vi)) to 

decide, based on its own overload level, if it is sufficient to reject non-IN calls at Q2 (i.e. first 

stage SSP overload) or if some global throttling is required at Q1 (i.e. second stage SSP overload) 

in order to relieve overload at the SSP itself.

5.3.2 Results and Analysis

The criteria used to form a comparison between the independent strategy and the joint strategy are 

SSP load, throughput and queue length, SCP throughput, and the delays experienced by each 

service type. To compare these strategies, we define the requirements that both SCP and SSP loads 

should be maintained at 0.9 under a wide range of overload conditions. In all cases, all monitoring 

intervals were defined (as explained in Chapter 4, Section 4.2.1) as being of 10 seconds duration. 

An analysis of the operation of the two strategies will now be described under three categories, in 

which the operation of the joint strategy in each throttling phase will be compared with the 

operation of the independent strategy under the same load conditions. Note that minor 

discrepancies between analytical and simulation results are to be expected, as the strategies use CG 

in the simulation (because CG provided the best overall results, as described in Chapter 4, Section

4.3.3) and PT in the analytical model (as PT is much easier to model mathematically than CG).
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5.3.2.1 SCP overload only

Here we show the results for when the offered load to the SSP is 0.85 and to the SCP is 1.2. Note 

that when the SSP is not overloaded, both simulation and analytical results confirm that the 

independent strategy and the joint strategy are equally effective. Also, the fact that there are very 

minor differences between simulation and analytic figures, which may be accounted for by the 

differences in the throttles used, verify the correctness of the two models.

Offered Load SSP 0.85 & SCP 1.2

Model Analytical Simulation

Strategy Indept Joint Indept Joint

SSP load 0.7655 0.7655 0.765 0.765

SSP throughput 0.7525 0.7525 0.753 0.755

SCP load 0.9 0.9 0.9 0.91

SSP queue length 3.26 3.26 3.27 3.27

Non-IN delay 0.237 0.237 0.24 0.24

Freephone delay 0.617 0.617 0.635 0.65

Televoting delay 1.48 1.48 1 .6 1.725

Table 5.2: SCP overload, No SSP overload

5.3.2.2 SSP overload

Results are described for two load situations for which the SSP is overloaded:

• The offered load to the SSP is 1.2, of which 0.325 consists of IN calls, offering a load of 0.52 to 

the SCP, i.e. the SSP is overloaded and the SCP is not (i.e. overload is caused by non-IN calls). 

The load levels here are sufficient to cause the joint strategy to enter first stage SSP overload.

• The offered load to the SSP is 1.2 Erlangs, of which 1.05 comprises IN calls (offering a load of

0.78 to the SCP). In this case, overload is caused by IN calls. Here, the joint strategy enters 

second stage SSP overload, and will cause minimal throttling of all calls at Ql.

In the first case, the SCP will never become overloaded and will accept all calls offered to it. The 

SSP, however, is overloaded and will either selectively throttle non-IN calls, for the joint strategy, 

or impartially throttle all calls, for the independent strategy. For this scenario, the throughput of the 

SSP is lower by 0.02 for the joint strategy than for the independent strategy - this is due to the 

capacity which is required to progress non-IN calls to the point where they may be identified as
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such, before being rejected. This processing overhead for the joint strategy is to be expected, due 

to its added complexity, but Figure 5.8 shows the advantage of using the joint control scheme - 

note that SCP load is 0.12 greater for the joint strategy than for the independent strategy. This is a 

significant gain in a system where IN calls are prioritised. The analytical model validates these 

results in Table 5.3.

Offered Load SSP 1.2 & SCP 0.52

Model Analytical Simulation

Strategy Indept Joint Indept Joint

SSP load 0.93 0.93 0.93 0.93

SSP throughput 0.91 0.89 0.907 0.889

SCP load 0.4 0.52 0.38 0.5

Table 5.3: SSP overload, no SCP overload

For the second case, when overload of the SSP is caused by IN calls, the advantage of using the 

joint strategy to maximise the number of IN calls accepted is decreased, as the joint strategy must 

reject almost as many IN calls as the independent strategy does, in order to relieve the overload 

situation. The result is that the SCP load for the joint strategy is now only 0.06 Erlangs greater than 

that for the independent strategy. On the other hand, the fact that the joint strategy must start to 

reject all calls equally at SSP Q1 reduces significantly the processing overhead generally 

associated with this strategy. In fact, Figure 5.9 shows that the disparity between throughput values 

for the two strategies is almost eliminated.
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Fig. 5.9: SSP load = 1.2, with IN calls comprising 1.05 Erlangs

A comparison of simulation and analytical results of this scenario is provided in Table 5.4 below.

Offered Load SSP 1.2 & SCP 0.78

Model Analytical Simulation

Strategy Indept Joint Indept Joint

SSP load 0.93 0.93 0.93 0.93

SSP throughput 0.918 0.913 0.925 0.92

SCP load 0.696 0.78 0.704 0.766

Table 5.4: SSP load = 1.2, with IN load 1.05

In other words, when the SSP alone is overloaded, there is an automatic tradeoff within the joint 

strategy, such that noticeable increase in SSP processing requirements results in considerable 

increase in IN call acceptances, whereas if the state of the SSP overload is such that a considerable 

increase in IN call acceptances is not possible, the SSP processing requirements are reduced 

automatically.

5.3.2.3 Both SSP and SCP overloaded

For this scenario, the offered load to the SSP is 1.2 Erlangs, of which 0.352 consists of IN calls 

(offering a load of 1.3 to the SCP), i.e. both SCP and SSP are overloaded. The results for this case 

are presented in Table 5.5.Note that the difference in SCP loads achieved by the two strategies is 

smaller (0.02), but this is also reflected in the difference in SSP throughputs, which is now only 

approximately 0.005.

The operation of the two strategies is quite interesting for this scenario. The joint strategy, as 

usual, has an SSP processing overhead of approximately 0.02, but due to the fact that the throttling 

it puts in place is based on the state of both SSP and SCP, it succeeds in keeping both the SSP and 

SCP load levels close to the defined threshold. For the independent strategy, however, the SCP
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causes suitable throttles to be put in place at SSP Q2, while the SSP (not knowing the state of the 

SCP) puts unnecessarily stringent throttles in place at Ql, resulting in the unnecessary and 

undesired rejection of IN calls (and lower SSP load and throughput characteristics). Therefore, the 

independent strategy overprotects both the SCP and the SSP.

It is also interesting to note that, in the simulation model, the independent strategy exhibits 

significantly greater oscillations in SSP load and throughput than the joint strategy. This is due to 

the fact that, at any given time, the SSP does not know the current state of the SCP, and therefore 

any significant variations in SCP load levels result in oscillations in SSP throughput over the 

course of a number of proceeding monitoring intervals.

Offered Load SSP 1.2 & SCP 1.3

Model Analytical Simulation

Strategy Indept Joint Indept Joint

SSP load 0.91 0.92 0.91 0.92

SSP throughput 0.902 0.897 0.905 0.9

SCP load 0 .8 8 0.9 0.885 0.905

Table 5.S: SSP and SCP overload

In summary, at SSP load levels below 1.0, results for both the joint SSP/SCP congestion control 

strategy and the independent strategy show them to be equivalent, irrespective of SCP load levels. 

When only the SSP is overloaded, the comparative behaviour of the two strategies depends on the 

input traffic mix. However, the joint strategy consistently accepts significantly more IN calls than 

the independent strategy, at a cost of not more than 0.02 SSP Erlangs (due to the requirement to 

process calls through to number analysis prior to rejection).

When both SSP and SCP are overloaded, again there is an overhead of not more than 0.02 Erlangs 

at the SSP for the joint strategy, but in return, the number of IN calls processed at the SCP is 

maintained at the threshold, independent of the SCP overload level, while the independent strategy 

consistently maintains SCP load significantly below the threshold (i.e. it overprotects the SCP). 

The joint strategy also has the added advantage that, as it is simultaneously aware of the state of 

both the SCP and SSP, throttles are put in place which protect both physical elements at all times, 

while for the independent strategy, the SSP algorithm is only aware of the state of the SCP defined 

by the throttles which were put in place at the end of the preceding interval. The result of this is 

that variations in traffic load or mix may cause oscillations in SSP load and throughput for the 

independent strategy, but do not affect the efficiency of the joint strategy.
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5.3.3 Conclusions

Here we investigated the operation of a joint SCP/SSP congestion control strategy with an 

independent strategy. The results (published in [Lodge96]) showed that when independent 

congestion control strategies are used to protect the different elements of an IN, they successfully 

meet the basic requirements placed on such strategies -  i.e. they protect their elements with small 

processor overheads. However, they lack flexibility, in that the interworking between the different 

control algorithms results in inefficient overall performance. This was proven by comparing 

classic congestion control algorithms, operating independently at the SSP and SCP, with a very 

simple joint algorithm that selectively throttled input traffic based on the state of both elements. 

The results demonstrated that even a simple global IN congestion control strategy is, for all traffic 

mixes and loads, either equivalent to or superior to a strategy in which the SCP and SSP are 

protected independently.

Independent strategies may be both flexible and fair, but again, only within the element being 

protected. Any global concepts of flexibility or fairness cannot, in general, be supported by these 

kinds of strategies and concepts such as maximum network resource utilisation and prioritisation 

are not naturally addressed by this class of strategy. For example, in this section, it was very 

simple to define the joint strategy so that it encompassed a simple priority system, where all IN 

calls had higher priority than all non-IN call types. The results proved that, at all load levels and 

for all traffic mixes, this priority system was adhered to, at the expense of a small processing 

overhead at the SSP. Adapting independent strategies to provide the same level of support for 

prioritisation would be non-trivial and would remain subject to problems when required to 

interwork with each other (as will always be the case in IN).

The principle conclusion to be drawn from the work described in this section is that there is a need 

for a network-wide congestion control strategy in the IN which provides controls for both SCPs 

and SSPs by throttling both IN and non-IN call types appropriately. Only through use of such a 

strategy is it possible to maximise the performance of the entire network. A global IN congestion 

control strategy would also be easily extensible to encompass all desired aspects of a congestion 

control strategy, including scalability, fairness and flexibility. Note however, that the joint strategy 

used in this investigation is not proposed as a solution for global IN performance management, as 

it is neither scalable (CCC and CG both require parameters to be defined which are dependent on 

the capacity of the resource being monitored and are therefore innately unscalable) nor elegant. It 

was designed merely as a tool to verify the necessity for a global IN strategy and to motivate the 

specification of a comprehensive solution.
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Section 5.4 presents an elegant strategy for global IN performance management which meets all 

basic and desired aspects of any congestion control strategy, and verifies the usefulness of this 

solution in Section 5.5 through the use of the IN analytical model. Chapter 6  will compare this 

solution with existing strategies (using the simulation model) in order to prove its superiority.

5.4 The Optimisation-based Global IN Congestion Control Strategy

The congestion control strategy presented here consists of an algorithm which, at defined intervals, 

uses an optimisation program to find the best possible percent thinning throttling arguments for 

each type of input call in order to maximise the revenue during the next interval. However, this 

optimisation program must also satisfy a number of constraints. These include:

• load constraints on the SSP and SCP (a form of load measure control), and

• constraints ensuring that the weights or priorities of the different call types are reflected in the 

defined throttles.

In this manner, revenue will be maximised over a time interval, while traffic will be throttled in 

such a way that the throttling levels for each type of input call will preserve the weights defined for 

the calls while ensuring that load thresholds at the SSP and SCP are not exceeded. Note that this 

strategy may be generalised easily to address congestion issues for any system with multiple input 

traffic types - it is only the addition of the SCP constraint that causes it to address IN congestion 

specifically.

5.4.1 Defining the Mathematical Terms to be used in the Strategy Specification

Before the devised optimisation-based congestion control strategy is described, it is necessary to 

make a few mathematical assumptions, in order to clearly define and scope the terms which will be 

used in the formulae associated with the strategy — i.e. the formulae will be expressed in the terms 

of the analytic IN model. This in no way detracts from the generality of the approach -  it merely 

aids understanding in the specification of the strategy.

The following assumptions were made:

• There is one SCP, one SDP and N  SSPs in the system,

• All service times are exponentially distributed,

• No calls are rejected at Ql, i.e. P °  = 1.0,
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resulting in the specialisation of the general decomposition equations defined in Section 5.2.3.2, as 

shown below. Note that again, all parameters on the right hand side are as defined for time interval 

[t-T,t\, with the exception of P“ and pan i , which are as defined at time (t-T).
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5.4.2 Capturing the Requirements on the Global IN  Congestion Control Strategy

Before describing the optimisation-based global IN congestion control strategy, let us first 

summarise the requirements which were specified on it, as described in Section 5.1. Obviously, the 

basic requirements are that an overload control strategy must be able to protect IN resources under 

any load conditions and must use processing resources in an efficient manner. Highly desirable 

characteristics of the strategy also include:

• Scalability: an algorithm should not need to be substantially reconfigured if the size of its 

resource changes, e.g. if the same algorithm should reside at all SSPs, it should not require 

much “tweaking” to target it to each SSP. For example, while requiring that the values for a 

few parameters should be set is acceptable, the need to run exhaustive simulations to establish, 

for each SSP, the number of arriving calls which constitute overload (for CCC) or the gap
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intervals which should be put in place in a CG throttle for a given overload level is highly 

undesirable.

• Flexibility: a well-designed algorithm should be easily customised to include factors such as 

different call priorities, different requirements on fairness or other non-functional 

requirements.

• Fairness: If overload is caused by an excess of calls of one particular service type, only calls of 

that type should be rejected (i.e. Focussed Destination Overload Control - FDOC). Also, all 

subscribers to a particular service type should have an equal chance of acceptance — i.e. all 

sources should be throttled proportionally to their size and arrival rates.

To ensure that the solution proposed addresses all the above requirements, a number of factors 

were specified which must be taken into account when defining the algorithm. In the area of 

flexibility, these sample factors are defined by the requirements of users and operators of the 

network. For the operator, it is desirable to maximise revenue while maintaining IN integrity. IN 

customers expect the network operator to provide a pre-agreed Quality of Service (QoS) level, 

while all users require that call setup takes place as quickly as possible. Other factors may also be 

equally relevant, but due to the constantly increasing number of new types of service on offer in 

telecoms networks, it would be very difficult to provide an exhaustive list of them. Therefore, in 

designing our strategy, we have chosen to base our priority-driven system on the following factors:

• revenue per call,

• load requirements per call, and

• IN QoS agreements.

The aim of this chapter is to find a strategy that balances these factors and provides a good 

compromise in order to satisfy all users. Note that seeking a good balance between these factors 

curtails, to a certain extent, the capability to strictly enforce either service or subscriber fairness. 

Instead, it is required that the designed strategy maintains fairness within the bounds of the balance 

between the above factors. For example, if a service type which has high revenue per call, low load 

requirements and which is based on strict QoS agreements causes an overload, calls of this type 

should logically still be given priority over less important calls. However, accepting this, the 

system should never reach the state where all calls of a particular type are rejected due to an 

overload of calls of a higher priority -  this would be highly unfair. Maintaining a balance between 

call types should ensure that this situation never arises.
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5.4.3 Introducing the Concept o f  Call Weights

Maintaining a balance between call types is accomplished through the definition of call weights. 

When using simple priority-based schemes, we lose the information as to the relative importance 

of calls of different priorities. We therefore introduce call weights as a factor of the relative 

importance of different call types (this is, in fact, a generalisation of priorities). For this work, we 

choose to focus on the call setup revenue, call processing requirements, and QoS agreements as the 

factors that contribute to a call type’s weight. In order to place numerical values on QoS 

agreements, we assign numerical QoS levels which may be set by the service provider to capture 

the relative strictness of the requirements of different service users - these levels may be assigned 

based on practical data (such as acceptable delays) or on more abstract non-functional 

requirements (e.g. the importance of a customer). This is at the discretion of the service provider.

The weight of each call type should be a function with the following properties:

• For all other factors constant, if the value of revenue is increased, the weight should increase 

(but not necessarily proportionally),

• For all other factors constant, if the value of QoS is increased, the weight should increase,

• For all other factors constant, if call processing requirements are increased (captured using the 

value of service time), the weight should decrease,

For this work, the relative weight for call type i was defined as a>i , where

to .=  t e a  
‘ S

k

i.e. we assign weights to each of the traffic types by finding the normalised product of their setup 

revenue, R,, their total (i.e. at both SSP and SCP) load requirements (here expressed as the inverse 

of service time, service rate //,■) and their pre-agreed QoS level q i .

For the five call types that are implemented in the model, a number of assumptions are made:

• International call types have highest revenue, with televoting second and freephone and local 

with the lowest revenue,

• IN calls require approximately 2.5 times the processing capacity of non-IN calls at the SSP,

• All IN calls receive the same amount of processing capacity each time they enter the SCP,

• International freephone has the highest QoS level, with televoting second, freephone third, and 

non-IN calls having the lowest priority as no QoS levels are defined for them.

Examples of possible normalised weight assignments are shown in Table 5.6, as are the ratios of

these weights.
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Service Call type a, (üj
a>5

International 1 0.489 12.225

International freephone 2 0.313 7.825

Televoting 3 0 .1 2.5

Local 4 0.058 1.45

Freephone 5 0.04 1 .0

Table 5.6: Assignment of Weights

5.4.4 Specification o f  the Optimisation-based IN  Congestion Control Strategy

As stated in Section 5.4 and described in [Lodge97], the proposed global IN congestion control 

strategy takes the form of two optimisation algorithms, one of which is located in the SCP and the 

other in all SSPs. These algorithms are very similar, but are specialised to the resource in which 

they reside. They interoperate in such a manner as to provide premium IN performance, while 

ensuring that no network elements become overloaded. The sequence of operation and interaction 

of these algorithms is shown in Figure 5.10 and will now be explained.

During an interval of length T, each SSP n has a mean arrival rate of An i for each service type i (i 

=1..5). These arrivals are subject to any throttles put in place at Q2n at the end of the previous 

interval (step (i) from the diagram) and all accepted IN calls are sent to the SCP via the SS7 

network. We define £ scpj (0 as the mean arrival rate during the period [i-T, t] of new calls of 

type j  (where j  e J  where J  = {2,3,5} for IN calls) as calculated at the SCP (step (ii)) at time t. This 

may be estimated as X ^ p j  if) ~ J ]  P l j  0  -  T)JLnJ .

SSP 1

Fig. 5.10: Overview o f the New Global IN Congestion Control Strategy
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Optimisation at the SCP (step (in')). The SCP algorithm, at time t, attempts to set values on the 

SSP PT throttles in order to maximise revenue for IN calls in the next interval, while meeting SCP 

load constraints and honouring the weights of different traffic types. To do this successfully, the 

optimisation must be based on the total arrivals of IN calls to the network during the previous T 

seconds. Note, however, that the SCP has no information regarding the actual number of arrivals to 

the system (i.e. to the SSPs) and must therefore estimate this value based on the information that is 

available to it, namely Xn̂ PJ(t) and the values of the throttles it defined at the end of the previous

interval Pscpj (*_ T ). This estimated total for each IN call type at time t may be evaluated using 

the formula:

,est 
total,j \ l )

P s c p j

The optimisation program to maximise the revenue over IN call types may be expressed as follows 

for J  IN call types, each with known associated revenue per call R ., a probability of

acceptance Pscpj ( 0  (the throttles to be determined for the next control interval) and the estimated

new call arrival rate A ^ialj  ( t ) , used because, to maximise revenue, all calls should be counted

once only, as they may be charged for only once.

a Maximise ^ R j P s c p j  (O ^otalj 00
Pscp,i(t) -P s c p ,j(t) j e J

The constraints on this revenue maximisation are:

(i) SCP Load constraint: £  p *cp j  (t)eSCP j ¿ f talJ (t) < ThrSCP ,
j

(ii) Bounds on p \Cptj(t) : Q< p lCPJ{t)<\, Vj ,

(iii) Weight constraints: 1 <  - S9 P'2 12  <  j  = 3  5 where co-. =  *)‘hescp,]tiscp—
p \cp At) 6>j J T^kW M scP

k = 2 ,3 ,5

where /jscp is the processing rate at the SCP, ThrSCP is the overload threshold for the SCP and all

other parameters are as previously defined. In Constraint (iii), the ratio of weights is defined in 

terms of call type 2. This is because this call type has the highest priority of the IN call types. The 

optimisation algorithm will execute every T seconds and will, at time t, based on arrival rates in 

the interval [[t-T,t\, calculate the optimal (in terms of IN revenue) probabilities of acceptance

P s c p j  (0 f°r the interval \t,t+T\. These /arguments (corresponding to call types 2, 3 and 5 in our

model) are returned to the SSPs in the network (step (iv)) and are used to define the u p p e r  b ounds  

on the percentage of calls accepted for each IN call type. These arguments may not be used

130



Chapter 5 Global IN  Congestion Control

explicitly as the PT arguments as they do not take into account the state of each SSP and therefore 

may detrimentally affect the performance of these elements.

Optimisation at the SSP (step Tv'». The optimisation algorithm at the SSPs functions in a manner

similar to that described for the SCP. Here, the acceptance probabilities P s c p j  (0  defined by the

SCP optimisation algorithm are used. Again, the revenue is maximised (note that, at the SSP, non- 

IN calls must also be taken into account) subject to load and weight constraints. The objective 

function may be stated as follows, where 1=5:

I

Maximise £  • (t)A t (t)

with the constraints:

(i) SSP„ Load constraint : An i ) < ThrSSP ,
r~ T  f*a ccn J  P r e j „  "
1=1

(ii) Bounds on p ^ / t )  for non - IN calls : 0 < p̂ n i (t) < 1, where i=l,4 ,

(iii) Bound on P n/t)  for IN calls : 0 < p„ j(0  ^ P s c p j (t)> where ¿=2,3,5 ,

(iv) Weight constraints : 1 < —n—  ̂ < —  , i = 2,3,4,5, where a>i -  SR‘Q,Mac—— ,
P n,i(  0  &i Y.Rk<!kMaccn,k

4=1

where p accnj  is the processing rate at SSP n for accepted call type i, ThrSSPn is the user-defined

overload threshold for SSP n, and all other parameters are as previously defined. Note that 

Constraints (i) and (iv) protect the SSP from overload while preserving priorities between call 

types and that Constraint (iii) ensures that SCP load requirements are not exceeded.

Note that the objective functions and all constraints at both the SCP and SSPs are linear - 

therefore, these are Linear Programming Problems, as described in Chapter 3. Other constraints 

could also be included, as the optimisation algorithm is very flexible, but it is recommended that 

they should be included only if linear, because the inclusion of any non-linear constraints would 

render the optimisation task much more complex and it would thus require much more processing 

power. For this reason, a constraint on service delays, which would be non-linear, was not 

included. This should, however, not be a problem, as the other constraints should ensure that the 

network does not become overloaded and that therefore the service delays should be within 

acceptable bounds. Additionally, load constraints at the SCP and SSP were based explicitly on 

load levels for computational ease only - they could easily be amended so that the overload 

thresholds are defined by the number of call arrivals (call count control) or the mean queue length 

(a form of queue length control). Note also that, as with all strategies that estimate congestion
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levels over a fixed interval, there will always be a delay of a maximum of T  seconds before the 

algorithm responds to the onset of congestion. Further, as no requests may be rejected until they 

reach Q2, it is possible that Q1 may become overloaded independently. Therefore, it is necessary 

to place a simple throttle (e.g. a rate control mechanism) at Q1 to reject just enough traffic to 

protect this queue.

5.5 Operation of the Global IN Congestion Control Strategy

To show the efficient operation of the control strategy, we must present the results acquired from 

the analytic model in a number of different input load scenarios. In all cases, the interval T is 

defined as 10 seconds, while ThrSSP =ThrSCP = 0.8 .

5.5.1 Scenario 1: Stationary Case.

As a first step, to prove the validity of the analytic work, we state that, in the stationary case, i.e. 

when input traffic levels are constant for all call types and at levels sufficient to cause overload, 

processor loads, revenue and service delays all converge to their optimal levels within two 

iterations/intervals. Controls are put in place at the end of the first interval to deal with the 

congestion situation, and are amended slightly at the end of the second interval to cater for retrials. 

This verifies that the optimisation algorithm deals with changes in overload levels quickly and 

efficiently.

5.5.2 Scenario 2: SSP Overload due to One Call Type

Here, SSP overload was induced by increasing the arrival rate of international freephone calls 

linearly over successive intervals for 60 iterations and then decreasing it sharply, while 

maintaining constant arrival rates for all other call types (shown in Figure 5.11). Note that the SCP 

service rate was defined so that the SCP would not become overloaded and adversely affect the 

results for this scenario.
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International ^ ^ ^ “ International freephone
■ ■ +  ■ ‘ Televoting  Local
-------------Freephone

M  rJJ I.U  oO  cU  A J  kU  o iJ  nu  c V  (J►O' T? rf <Ì> t£ & & 4> «P <bN & 'O' A®
Time (seconds)

Fig. 5.11: Offered Traffic Causing SSP Overload

Constraint (iv) of the SSP optimisation algorithm forces rejection of call requests of lower weight, 

while also maintaining the ratios between probabilities of acceptance of these calls, as 

demonstrated in Figure 5.12. Note that, Constraint (i) forces televoting and freephone calls to be 

restricted prior to local calls -  this is because of the greater SSP processor requirements associated 

with IN calls. When Constraint (iv) becomes active between freephone and televoting, local calls 

start being restricted. This continues until Constraint (iv) again becomes active for local calls, and 

then a minor quantity of international freephone calls are rejected.

"International 
1 Televoting 
1 Freephone

"International freephone 
Local

Fig. 5.12: Proportion of Traffic Accepted under SSP Overload
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Constraint (i) forces processor load for the SSP stay at the threshold - see Figure 5.13. Note that at 

time ¿=440, SCP load reaches its minimum value - this is due to the rejection of freephone and 

televoting calls. However, at this point, Constraint (iv) becomes active and rejections of these calls 

stabilises and local calls are rejected, while international freephone arrivals continue to rise, thus 

prompting the rise in SCP load after this point. SCP load does not begin to drop until after the 

arrival rates for international freephone fall, and its rate of decent is slowed by the gradual increase 

in televoting calls accepted. Figure 5.14 shows that the revenue follows the variation of 

international freephone in a non-linear manner, as would be expected.

Q2  SCP

Time

Fig. 5.13: SCP and SSP Processor Loads during SSP Overload

Revenue

Time

Fig. 5.14: Revenue during SSP Overload

5.5.3 Scenario 3: SCP Overload due to One Call Type

In this case, traffic arrival levels were kept sufficiently low to ensure that the SCP became 

overloaded prior to the SSP. Televoting arrival rates increased linearly for 6 6  iterations before

134



Chapter 5 G lobal IN  Congestion Control

dropping off sharply. The results are very interesting. SCP Constraint (i) ensures that the SCP load 

threshold is not exceeded, while due to the fact that televoting arrivals far exceeded freephone 

arrivals, Constraint (iii) forces only the rejection of televoting calls - i.e. the calls that caused the 

overload. The variation in televoting acceptances follows the variations in the arrival rates for this 

call - note how the acceptances decrease non-linearly for linear increases in arrival rates, and that, 

at the point where televoting arrival rates begin to decrease (i.e. at ¿=660), televoting acceptances 

begin to ascend at the same rate in a non-linear fashion. These results are shown in Figures 5.15.

Televoting -------------All others

Time

Fig. 5.15: Proportion of Traffic Accepted at SSP during SCP Overload

Figure 5.16 shows the processor loads of the SCP and Q2 over the same period - note that, due to 

the fact that the SCP exhibits overload symptoms before the SSP does, protection of the SCP 

prevents the onset of congestion at the SSP.

-Q2 -SCP

0.9 1 
0.8 
0.7 
0.6 
0.5 
0.4 
0.3 
0.2 
0.1 

0 ! 111111111 h I h 111 m n 1111 n m  m m UH H n I n m  m  n h t H m n 11) i n n
O  j-O  f-iO qQ  iO  f ß  (jö  nO  qO » ö  -Ö  -O85 »O' T?1 'S5 «P (O' & & & &

Time

Fig. 5.16: SSP and SCP Processor Loads during SCP Overload
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5.5.4 Scenario 4: General Overload

In this scenario, the arrival rate for all calls increased non-linearly (in steps). The result was the 

rejection of all call types with the ratio of probabilities of arrival between call types being 

maintained by SCP Constraint (iii) and SSP Constraint (iv). This is shown in Figure 5.17 - note 

how SSP Constraints (i) and (iv) again force the rejection of televoting prior to the rejection of 

local calls and also that no local calls are rejected until SSP Constraint (iv) becomes active for 

freephone and televoting.

International  International freephone
“  "  “  Televoting “ Local
................Freephone

Time

Fig. 5.17: Proportion o f Traffic Accepted at SSP during General Overload

Processor load at the SSP is maintained at the threshold by SSP Constraint (i) while processor load 

at the SCP changes with the variation in acceptance levels for the different call types, but 

consistently remains below its threshold (see Figure 5.18).

Q2  SCP

Time

Fig. 5.18: SSP and SCP Processor Loads during General Overload
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Changes in the revenue follow variations in the non-linear arrival rates, but with smoother 

variations, as shown in Figure 5.19.

Revenue
140

120

100 ----------------------
o '
i  80 ■
a>
|  6 0 -

40 ■

20

0
o ßO oö tö  pö gO /iiO oö »ö rö  äÖ flO

Time

Fig. 5.19: Revenue during General Overload

Figure 5.20 demonstrates the service delays experienced by each traffic type - note that the delays 

are greater for large SCP load (shown in Figure 5.18) and then decrease as SCP load decreases due 

to the throttling of televoting and international freephone traffic. However, at all times, the existing 

constraints ensure that the delays for each service type are within acceptable limits as defined by 

[MacDonald94]. This confirms that the explicit inclusion of a constraint on service delays in the 

optimisation algorithm is unnecessary.

International & Local
................International freephone & Freephone
------------ T elevoting

Time

Fig. 5.20: Service Delays during General Overload
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5.5.5 Scenario 5: Overload due to Bursty Televoting Traffic

To examine the operation of the control strategy when subjected to short bursts of high traffic 

loads, an input was provided which generally did not cause any load constraints to be exceeded. 

However, at irregular intervals, the arrival rate of televoting calls was increased by a factor of 4 for 

60 seconds. All other traffic arrival rate remained constant for the duration of the simulation. The 

load results, shown in Figure 5.21 show that, at the end of the interval following the onset of the 

burst, the system responds by throttling televoting calls (due to SCP Constraint (iii)) to reduce the 

loads on both SSP and SCP to approximately threshold levels. When the burst traffic ceases, the 

system again responds at the end of the succeeding interval by eliminating the televoting throttle, 

thus restoring the original loads. Note, in Figure 5.22, that the resultant revenue closely follows the 

load curve of the SSP.

Fig. 5.21: SSP and SCP Processor Loads during Overload due to Bursty Traffic

Total Revenue

Time

Fig. 5.22: Revenue during Overload due to Bursty Traffic
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It was also interesting to note that, if SCP Constraint (iii) and SSP Constraint (iv) were amended so 

that pa i  > pa j  V2 > j ,  the revenue remained equivalent, but in cases of SCP overload, rejection of

local calls was forced (so that the advantage of rejecting only calls which caused the overload was 

lost), and therefore more televoting calls were accepted, resulting in greater load levels at the SCP

(without exceeding the threshold) and greater service delays over all IN calls.

5.6 An Optional Extension to the Global IN Strategy -  FDOC

It is interesting to note that the above IN congestion control strategy, by its nature, ensures that 

SCP congestion due to an excess of calls to focused destinations is unlikely. This is because it 

effectively allocates SCP or SSP capacity to different call types based on their weights and 

revenues, and therefore the only way that focused overload of the SCP could occur would be if the 

focused destination was of the call type with the highest weight and revenue in the network. As 

such, the enforcement of service fairness is implicit in the congestion control algorithm. However, 

the strategy still does not ensure fairness within an IN service type. It is still possible for calls to 

one destination to use an excessive amount of the allocated resource within the service type (if the 

arrival rates for that destination are much greater than arrival rates for other destinations). This is 

not necessarily undesirable, as it does not affect the performance or revenue of the network. 

However, in practical terms, the probability of successful completion of calls is greater for 

destinations with lower arrival rates as the probability that the destination node is overloaded is 

lower. Therefore, it may be more desirable to accept, within a service type, all calls to destinations 

with low arrival rates and selectively reject calls to destinations with high arrival rates in order to 

make the best use of resources allocated to a service type. This scenario is generally referred to as 

Focused Destination Overload Control (FDOC). However, in the case of our algorithm, this is a 

misnomer, as the IN congestion control algorithm, by its nature, prevents overload by a particular 

call type, so focused destination overload is extremely unlikely. Instead, this “FDOC” extension 

forces fairness within a given call type.

A simple optional extension to the IN congestion control algorithm described above facilitates 

FDOC (and was published in [Lodge98a]). At the SCP, the arrival rates to specific destinations 

within a service type should be monitored over the course of a control interval (in a manner similar 

to that described in [Rumsewicz95]). At the end of the control interval, resources within the SCP 

are allocated to service types as described above, resulting in the specification of a probability of 

acceptance Pscpj f°r service type j. Therefore, the SCP resources available for calls of this type is

Pscp ■/?st I
r s c p j  =  SCP/ i Sa ^ ' J • Resource requirements R'scpjjr, to eac^  destination within service type j  may 

now be expressed based on the monitored arrival rates to each destination in the previous interval,
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yJaeW
i.e. R*scp,j,dn = l £ ^ Rlctj> where .¿Sav,*, is the arrival rate at the SCP of calls of type j  to

destination dn during the previous interval. We may now use a simple method to allocate resources 

to calls to each destination by applying the following focus elimination function to all resource 

requirements Rjfcpjjn '■

RsC P,j,dn ~  f ( R SCP,j,dn )
RsCP,j,dn ’ R SCPJ,dn -  R Thr,j

g (R s C P ,j ,l  » ■ ■ R s C P J ,n )  ’ R SCPJ,dn -  R Thr,j

w h e r e  R fcpj,dn  i s  t h e  r e s o u r c e  a s s ig n e d  t o  d e s t in a t io n  dn, Rm , i s  s o m e  t h r e s h o ld  v a lu e  f o r  th e

S C P  r e s o u r c e  a s s ig n e d  to  s e r v ic e  ty p e  j  a n d  N  i s  t h e  n u m b e r  o f  d e s t in a t io n  n u m b e r s  w ith in  th e  

s e r v ic e  t y p e .  T h e  f o r m  o f  th e  f u n c t io n  g  a n d  th e  v a lu e  o f  Rnr , s h o u ld  b e  c h o s e n  s o  that:

•  T h e  a lg o r i t h m  i s  k e p t  s im p le ,  t o  r e d u c e  p r o c e s s in g  o v e r h e a d s ,

•  A l l  a v a i la b le  r e s o u r c e s  a r e  a s s ig n e d ,  i .e .  ^  Rscp,j,dn = r s c p j  >
dn

•  D e s t in a t io n s  w h ic h  r e q u ir e  m o r e  r e s o u r c e s  a r e  a s s ig n e d  m o r e  r e s o u r c e s ,  i .e .  i f

R SCP,j,dnx < RSCPJ,dny > ^ len  R SCP,j,dnx < RSCP,j,dny ’

•  D e s t in a t io n s  w i t h  “ s m a l l”  r e s o u r c e  r e q u ir e m e n ts  s h o u ld  b e  a s s ig n e d  a l l  c a p a c it y  r e q u ir e d  w h e n  

p o s s ib l e .

A  s im p le  e x a m p le  o f  a  n o n - l in e a r  f u n c t io n  g  w o u ld  b e :

preq _ n
Dass -<w'/?req /?req ï - j ? + __ scp’j ’dn*_______ Jhid._______

SC P ,j,dnx ~ & \ K SC P ,j,\ > ■ ■ ’ K S C P ,j,N  )  ~  K T h r,j +  ^ ^  req
2-1 \ SCP,j,dn ~  ThrJ ) +
dn

w h e r e  X + = 0  i f  X  < 0  and X + = X + i f  X  > 0 .

O n c e  th e  a v a i la b le  r e s o u r c e s  h a v e  b e e n  a s s ig n e d ,  th e  a s s ig n m e n t s  m a y  b e  tr a n s la te d  in to  a  

p e r c e n t a g e  o f  a v a i la b le  r e s o u r c e ,  a n d  p a s s e d  to  t h e  S S P s  a lo n g  w i t h  t h e  n e w  v a lu e  o f  P sCPj  fo r

th a t s e r v ic e  ty p e .  T h e  S S P  a lg o r ith m  t h e n  e v a lu a t e s  t h e  a p p r o p r ia te  p \  j  a n d  a l lo c a t e s  th is  o v e r  a ll 

d e s t in a t io n s  b a s e d  o n  th e  r e c e iv e d  p e r c e n ta g e s .

N o t e ,  h o w e v e r ,  th a t  t h e  in c lu s io n  o f  th is  e x t e n s io n  to  th e  c o n tr o l  a lg o r i t h m  r e q u ir e s  th e  m o n ito r in g  

o f  a l l  d e s t in a t io n  n u m b e r s  w i t h in  e a c h  c a l l  t y p e ,  a n d  a s  s u c h , r e n d e r s  th e  a lg o r ith m  su b s ta n t ia lly  

m o r e  p r o c e s s o r - h u n g r y .  A n o t h e r  d r a w b a c k  o f  u s in g  s u c h  a n  e x t e n s io n  i s  t h e  fa c t  th a t  th e  e s t im a te  

th a t th e  S C P  m a k e s  a s  t o  th e  t o ta l  a r r iv a l r a te  o f  e a c h  s e r v ic e  t y p e  t o  th e  s y s t e m  b e c o m e s  l e s s  

a c c u r a te ,  a s  i t  i s  n o w  b a s e d  o n  a  v e r y  la r g e  n u m b e r  o f  p a r a m e te r s .  T h is  r e n d e r s  th e  e n tire  

a lg o r ith m  l e s s  e f f i c ie n t  o v e r a l l .  A  c o n c lu s io n  o f  th is  i s  th a t  th e  b a s ic  a lg o r ith m  i t s e l f  p r o v id e s
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perfectly adequate cover for the prevention of overload due to one call type, and therefore IN 

overload due to calls to a specific destination will generally not be permitted. Therefore, the only 

advantage of including the FDOC extension is that it enforces fairness within a given call type, and 

therefore, it should not be used unless this level of fairness is critical to a service provider.

5.7 Conclusions

The results for this control strategy are excellent. In all scenarios, with different traffic 

distributions and mixes bringing about overload, the congestion control algorithm causes the load 

of all elements to converge to the specified threshold very quickly and without oscillations. 

Therefore, the best possible use is made of all resources during overload. This is reflected in the 

fact that service delays remain consistently within required bounds. The strategy also provides the 

added bonus that revenue is optimised at all times, even during overload!

The weighting strategy used is defined to be extremely flexible so that it can encompass both 

functional and non-functional requirements of the service providers and users, and the results 

prove that, by including the weights as a constraint in the optimisation algorithm, the relative 

importance of calls is maintained at all times, even during extreme overload conditions.

Examining the requirements on the optimisation-based global IN congestion control strategy 

shows that it meets the basic requirement of protecting all network elements under all load 

conditions. It also meets the desired characteristics, in that the strategy is:

Scalable - all that is required to target the algorithm to a particular network resource is that a 

number of parameters, e.g. eSCP j , service rates and weights need to be defined. Also, the addition

of new resources to the network (e.g. a new SSP) will not require alterations to the existing 

congestion control algorithms in other resources.

Flexible -  the definition and allocation of call weights is at the discretion of the service provider, 

so that their needs with regard to service differentiation may be met. New constraints may be 

added to the optimisation algorithm -  the only requirement is that they must be linear. Extensions 

to the algorithm such as the facility for FDOC may be added easily. The strategy therefore proves 

itself to be extremely flexible.

Fair -  in this chapter, the optimisation-based strategy has proven itself to provide implicit service 

fairness, within the bounds of the priority system defined. Further, more detailed levels of fairness 

may be provided through the extension of the algorithm, e.g. to cater for fairness within a service 

type. Optimisation also exhibits subscriber fairness -  while not explicitly shown in the results of
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this chapter, it should be intuitively obvious as optimisation uses a PT throttle, which was proven 

in Chapter 4 Section 4.3.3 to be subscriber fair.

The only requirement that has not yet been proven to be met is that of efficiency — the resource 

requirements of the algorithm are as yet unclear. Obviously, they will be greater than for a simple 

algorithm like CCC, but it remains to be verified that these excess resource requirements are worth 

the cost, in terms of the value add provided by the strategy. In order to investigate this, the 

operation of the optimisation-based global IN congestion confrol strategy will be compared with 

classic CCC/CG, Window and a simpler dynamic IN congestion control strategy (devised for the 

purpose of comparison) in Chapter 6 .
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Chapter 6 Comparison betw een IN  Congestion Control Strategies

6.1 Introduction

The optimisation strategy presented in Chapter 5 has been confirmed as meeting the basic 

requirements on a congestion control algorithm, namely it effectively protects all elements of the 

IN from congestion under all load levels and traffic mixes. It was also demonstrated that the 

algorithm is flexible, scalable and fair. We now need to show that the greater processor overheads 

required to use the strategy are worthwhile, in terms of the increased performance of the IN. To do 

this, we must compare the behaviour and resource requirements of the optimisation-based global 

IN congestion control strategy with that of other strategies. Chapter 4 showed that CCC provides 

the best performance among the existing, commonly used SCP congestion detection methods. It 

was also shown that the CG throttle responds faster to the onset of overload than PT, and therefore, 

while PT has a number of desirable characteristics, CG is more efficient at protecting the SCP 

during overload. The results for the Window strategy presented in Chapter 4 were inconclusive -  it 

was seen to respond very quickly to the onset of overload, but was extremely inconsistent across 

variations in load levels. Therefore, to establish the superiority of the optimisation-based strategy, 

it should be compared with both classic CCC/CG and Window. However, this is not a truly fair 

comparison, as any classic IN control strategy will be based on fixed parameters which can never 

provide efficient congestion control for all traffic mixes, as they tend to be based on the 

assumption that either:

• All calls have the same load requirement, or

• If calls have different load requirements, then the ratio of arrivals for the different call types 

that comprise the total arrivals to the system is constant.

The result of this is that no fixed parameter values can be defined which apply to multiple call 

types with different load requirements and varying traffic mixes (as was verified in Chapter 4, 

Section 4.4). Therefore, optimisation (or in fact, any reasonable dynamic congestion control 

strategy) should automatically outperform all of the classic strategies. So, in order to rigorously 

evaluate the advantages and disadvantages of the optimisation strategy, it should also be compared 

with another dynamic strategy. To facilitate this, a new dynamic IN congestion control algorithm 

was specified. This is based on the use of a dynamic version of CCC in conjunction with a 

dynamic combined PT/CG throttle -  i.e. a strategy that is both scalable and dynamic. Therefore, in 

this chapter, we will compare the optimisation-based global IN congestion control strategy with:

1. Classic CCC/CG: a classic IN overload control strategy, in which the SCP congestion control 

algorithm uses CCC to evaluate overload levels at the SCP and CG to throttle IN traffic at SSP 

Q2, and an independent SSP congestion control algorithm which consists of CCC at Q2 of the 

SSP setting CG throttles at Q1 to throttle all calls equally,
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2. A Window-based Strategy: Window, located at the output of the SSP, prevents overload of 

the SCP, while SSP protection is provided by the same SSP CCC/CG algorithm used in the 

classic CCC/CG strategy,

3. Dynamic CCC/CG: a scalable and dynamic adaptation of classic CCC/CG.

The criteria we use to compare these strategies are SCP load, SSP load and throughput, network 

revenue and service delays. We also evaluate the cost efficiency of the algorithm in terms of both 

its processor requirements and the number of counters required to monitor the statistics required 

for the algorithm.

Section 6.2 describes the classic independent CCC/CG strategy, the Window strategy and the new 

dynamic CCC/CG strategy. Section 6.3 compares the operation of the three strategies under the 

stated criteria. Section 6.4 summarises the results and draws conclusions as to if and when the use 

of each of the strategies is most appropriate.

6.2 The Strategies used for Comparison

Three different strategies were used for IN congestion control to facilitate comparison in this work 

(as published in [Lodge99]). For all strategies, the SSP throttles used applied to all traffic types 

equally — i.e. when the SCP becomes overloaded, it requests that all IN calls be throttled equally in 

the SSPs, and when an SSP becomes overloaded, it throttles all incoming traffic (IN and non-IN) 

equally in order to protect itself.

The first IN overload control strategy (classic CCC/CG) is very simple and works as described in 

Chapter 4, Section 4.2. For SCP overload control, the total number of arriving calls is counted over 

an interval. At the end of the interval, a CCC algorithm at the SCP compares this count against a 

table to establish the level of overload. The overload level is returned to all SSPs, which look up a 

table to establish which CG throttle level should be applied at Q2 to restrict all IN calls. The SSP 

overload control strategy is very similar, with the CCC algorithm at Q2 sending overload levels to 

Ql, where CG throttles are put in place on all calls. Note that this strategy is similar to the 

independent IN congestion control strategy described in Chapter 5, Section 5.3.1. The CCC table 

and CG table parameter values were derived from the assumption that all IN call types had equal 

arrival rates at the SCP (but different load requirements) and that IN calls comprised 30% of total 

SSP traffic.

The second strategy (Window-based) protects the SCP as described in Chapter 4, Section 4.2.3. 

However, the use of Window for SSP congestion control is inappropriate, as it is only suitable for 

the protection of remote network elements. Therefore, another algorithm must be used for SSP
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overload protection. For simplicity, the SSP overload control strategy used in classic CCC/CG (i.e. 

CCC at Q2 with CG at Ql) will therefore be used in conjunction with Window at the ssf process.

The third strategy (dynamic CCC/CG) operates in a similar manner to the classic CCC/CG 

strategy, but has slightly more complex algorithms. The steps of the algorithm are shown in Figure 

6 .1 , and are described below.

Fig. 6.1: The dynamic CCC/CG strategy

For SCP overload control, the total number of arriving calls for each IN service type is counted 

over an interval T (step (ii)). At the end of the interval, the CCC algorithm at the SCP then predicts 

what the total SCP load will be due to these calls (step (iii)), according to:

„ p red r  ̂  1 f  S T  6  SCP, SCP, j  (0
PsCP' f t -  Zu a (t Ts

M scp  ̂  7=2,3,5 P s c p  \ t ~  I )  J

where P^cp (0 predicted SCP load calculated at time t, ASCPj  (t) is arrival rate of calls of

type j  to the SCP during the interval [i-T, t\, Mscp is the service rate of the SCP, p^Cp i f -  T) is 

the value of the throttle put in place (at the SSP) by the SCP at the end of the previous interval and

escp,j is the number of times a service request of type j  will receive processing at the SCP during

the course of its execution. Then, if this predicted load is less than the SCP threshold, the 

probability of acceptance at the SCP, Pscpi*) > is set to 1.0. If it is greater than the threshold,

P s c p (f) = ThrSCp /Pscp (0 where ThrSCP is the defined SCP threshold. Note that p aScpi0 is a 
single probability of acceptance and applies to all IN calls equally. If the resultant value of p “SCp (0 

is different to that defined at the end of the previous interval, it is sent to all SSPs, either in CG 

messages, or encapsulated in service-related messages (step (iv)). When S S P n receives the

message, it converts P s c p ( 0 to an IN CG gap interval Gm (t) (step (v)) using the simple formula:
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Gm( 0= l ~ P °SCPa{t)
¿n.miOPscpiO

where Anj N (t) is the arrival rate of IN calls at SSPn during the interval [t-T, t] and all other

parameters are as previously defined. Once the gap interval of the CG throttle is evaluated using 

this formula, it put in place on all IN calls at Q2.

The SSP overload control algorithm is slightly different, in that it is based on the use of a dynamic 

LMC algorithm at Q2 of each SSP. LMC is used here because the mean load at Q2 over the 

duration of a monitoring interval reflects the value of the throttle put in place at Q2 by the SCP at 

the start of that interval, and therefore dynamic CCC/CG, while still an independent control 

strategy does at least partially take the (previous) state of the SCP into account. Note however that 

dynamic CCC/CG still fails to take the current state of the SCP into account. The dynamic LMC 

algorithm at Q2 (step (a)) estimates what Q2 load would be if  no throttle were in place at Q1 as:

CSl f . \  P Q lr ,
( 0  =

Q2a P °(t-T )

where Pq2 (t) is the actual load of Q2 of SSPn at time t and P° (t -  T) is the probability of 

acceptance for all calls (i.e. the throttle value) put in place at Q1 at the end of the previous interval. 

The new throttle parameter P “(t) is then calculated from P°(t) = ThrQ2 /Pq2„(0 (where Thrg2n is 

the load threshold of Q2 of SSPn) and sent to Ql, where the new gap interval Gn (() is calculated

1 -  P a (t)

u o p : ( o

where An (t) is the mean of the total arrival rate to SSPn during the interval [t-T, i] and all other 

parameters are as previously defined. Once the new gap interval has been derived, it is put in place 

at Ql and applied to all new call arrivals equally.

6.3 Results of Comparison

In this section, we present the results for each of the given strategies. The behaviour of the 

strategies presented above is compared for five different load scenarios -  namely, stationary 

(section 6.3.1), SCP overload (section 6.3.2), SSP overload (section 6.3.3), general overload 

(section 6.3.4) and overload due to bursty traffic (section 6.3.5). In all cases, the SCP’s and SSPs’ 

service rates remain the same (to ensure a fair comparison), with the IN acceptance time at each
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SSP Q2 set as a factor of 2.5 greater than the non-IN acceptance time and reject rates at both SSP 

Q1 and Q2 set considerably higher than all acceptance rates (as described in Chapter 5, section

5.2.1). Also, the load threshold defined for all physical elements during all simulations is 0.8.

6.3.1 Scenario 1: Stationary Behaviour

Here, constant (different) arrival rates are applied to each of the SSPs. The traffic mix is such that 

the load of SSP1, SSP2 and SSP3 are over the defined threshold, while the SCP is overloaded (due 

primarily to televoting requests). This is shown in Figure 6.2, where the load applied to each 

element is expressed relative to the capacity of that element. Note that this constitutes a general 

overload (i.e. multiple physical elements overloaded simultaneously).

Offered Traffic to System (Erlangs)

O SSPl 
O  S5P2 
□ SSP3 
A ssp4 
V ssps
>  SCP

Fig. 6.2 : Offered traffic for stationary case

The resultant SCP load for each of the four applied strategies is shown in Figure 6.3. Here it may 

be seen that only Window reacts quickly enough to the instantaneous onset of overload to ensure 

that the SCP load never exceeds the threshold. However, as the Window timer duration is fixed 

and less than the average response delay for televoting, Window tends to overprotect the SCP, 

maintaining the load at a mean of 0.73, resulting in the unnecessary rejection of many calls. All 

other strategies, on the other hand, allow the SCP to overload and the SCP queue to build up 

during the first monitoring interval of the simulation. Static CCC/CG never recovers from this, 

primarily due to the fact that it does not account for the fact that televoting calls require more 

processing at the SCP than do freephone calls -  in fact, the CCC algorithm at the SCP only detects 

that a small overload has taken place and the resultant minimal throttles put in place at Q2 of each
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SSP are ineffectual. Dynamic CCC/CG and optimisation, however, do estimate the overload level 

correctly at the end of the first monitoring interval, and immediately put throttles in place that, 

over the course of the next few intervals, reduce the SCP queue length and load to the defined 

threshold. Both strategies then maintain the load at this threshold, with optimisation experiencing 

smaller oscillations than dynamic CCC/CG.

Dynamic SCP Load

o static cco/cg 
O  WINDOW 
□ Bynmio CCC/CG 
A  optimisation

time (see) (xlOOQQ)

Fig. 6.3 : SCP load for stationary case 

The corresponding load of SSP1 is shown in Figure 6.4.

______________________ SSP1 Load

o static CCC/CG 
O  WINDOW 
□ Dynamic CCC/CG 
A  Optimisation

time (sec) (xlOOOO)

Fig. 6.4 : SSP 1 load for stationary case

Note that the Window-based strategy provides the worst performance in the SSP. The behaviour of 

static CCC/CG, while not acceptable, is better than Window. This may at first seem incongruous, 

as both strategies use exactly the same static CCC/CG algorithm for SSP protection. However, the
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different locations of the SCP throttles account for the different behaviour in the SSP. Window is 

located at the output of the SSP (i.e. at the ssf) and therefore all calls receive full processing at Q2 

before being throttled by Window. Static CCC/CG places its SCP throttles at Q2, with the result 

that some calls are rejected here (with rejection having lower processing overheads than 

acceptance), thus keeping Q2 load lower than that for Window. However, in both cases, the SSP 

static CCC/CG algorithm fails to detect SSP overload as it does not differentiate between IN and 

non-IN calls (and their different load requirements at Q2). The result, therefore, for both strategies 

is that the SSP remains in a permanent state of overload. Dynamic CCC/CG and optimisation, on 

the other hand, detect overload at both SCP and SSP at the end of the first monitoring interval, and 

put the correct throttles in place to protect both elements. The result of this is that SSP load (after 

the initial overload due to the monitoring delay associated with both strategies) remains well below 

the SSP threshold.

Through observation of the SCP and SSP loads, it may be concluded that neither Window nor 

static CCC/CG perform well at protecting all IN physical elements -  Window protects the SCP but 

fails to protect the SSPs, while static CCC/CG allows all elements to overload. Only dynamic 

CCC/CG and optimisation succeed in protecting the SCP and SSPs simultaneously from overload. 

In fact, both strategies maintain the mean loads of the various elements at approximately the same 

value. For effectiveness, therefore, the strategies are equivalent. Regarding speed of convergence, 

dynamic CCC/CG reacts slightly faster than optimisation -  this is because, as described in Chapter 

4, Section 4.3.3, CG reacts faster to the onset of congestion than PT (the throttle used by 

optimisation). Regarding operation of the algorithms, Figure 6.5 shows that, during the initial SSP 

overload, dynamic CCC/CG rejects all calls equally at first (at Ql), until SCP throttles become 

effective (at Q2) and it becomes unnecessary to reject non-IN calls, from which point only IN 

requests are throttled (equally and at Q2). For optimisation, at no point are non-IN calls rejected -  

the optimisation algorithms balance the states of the SCP and SSP and recognises that, by putting 

throttles on IN requests at Q2 to protect the SCP, the SSP overload situation will be automatically 

relieved. The result is that, at the start, televoting requests (the cause of the overload) are rejected 

at Q2 and then the acceptance rates of televoting, freephone and international freephone decrease 

according to their relative importance. The result is two-fold. Firstly, due to selective throttling, 

optimisation accepts more calls (i.e. calls with low load requirements such as non-IN, freephone 

and international freephone) and secondly, the overall revenue gained during the simulation is 

considerably greater for optimisation, as may be viewed in Figure 6 . 6  (showing revenue gained per 

second, in Irish pounds).
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Fig. 6.5 : SSP1 acceptances for stationary case

SSP1 Revenue

o Dynamic CCC/CG 
O  Optimisation

tim e ( s e c )  (xlOOOO)

Fig. 6.6 : SSP1 revenue for stationary case

To conclude, even in the stationary case, the behaviour of static CCC/CG and Window are 

unacceptable, in that they are incapable of maintaining the load of all elements in the IN at the 

threshold during overload. This is primarily due to the fact that both strategies are based on the use 

of fixed parameters -  static CCC/CG underprotects its resources when overload is caused by 

requests with greater load requirements (and overprotects them when overload is caused by 

requests with low load requirements), while Window overprotects its resources when subjected to 

requests with high processing requirements (and therefore greater delays). Optimisation and 

dynamic CCC/CG provide much better results, keeping all elements at their threshold. However, 

optimisation has the advantages of providing higher call acceptance rates (during SCP overload) 

and network revenues.

Due to the unacceptable behaviour of static CCC/CG even under constant arrival rates to the 

system, it will no longer be considered in this chapter. Window, however, does have the advantage 

of speed of reaction and is effective at protecting the SCP, so its behaviour under different load 

conditions will continued to be examined and compared to the dynamic CCC/CG and optimisation 

strategies.
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6.3.2 Scenario 2: SCP Overload

In order to achieve SCP overload, we vary the offered load and traffic mix to each SSP by 

increasing the arrival rates of televoting and freephone requests at all SSPs linearly as shown in 

Figure 6.7 for SSP1. The resultant total arrival rate to each element in the network is shown in 

Figure 6 . 8  -  note that the offered traffic at each element is expressed in terms of the capacity of 

that element. Note also that, while the offered traffic to a number of SSPs is, at various stages, 

greater than the capacity of those SSPs, the SCP is the first element to become overloaded. 

Therefore, if the congestion control strategies respond correctly and quickly to the SCP overload, 

the rejection of IN calls at the SSPs should ensure that no SSP ever experiences congestion.

Offered Traffic (in Erlangs)

o  SSP1  

<> SSP2  

□  SSF3  

A s s p 4 

V s s p 5

>  SCP

Fig. 6.8 : Total offered traffic to all IN physical elements
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SCP Load

O WINDOW
^Dynamic CCC/CG 
□ Optimisation

time (sec) (xlOOOO)

Fig. 6.9: SCP load for SCP overload

Figure 6.9 depicts the resultant SCP load for the Window, dynamic CCC/CG and optimisation 

strategies. Examining Window first, it may be seen that this strategy initially overprotects the SCP

-  this is due to the fact that televoting delays may be greater than the Window timer duration even 

when no overload exists. Therefore, Window starts to reject calls before the SCP load reaches 0.8 

SCP Erlangs. However, the SCP load does eventually converge to a constant value of 

approximately 0.835 and remains there until the applied load becomes less than 1 SCP Erlang.

The behaviour of dynamic CCC/CG and optimisation, on the other hand, is quite different. Both 

strategies do not put controls in place until the SCP threshold is reached and therefore, there is no 

unnecessary rejection of calls. After this point, the SCP load is maintained at an average of 0.815 

Erlangs until the applied traffic rate reaches its peak. The reason neither strategy maintains the 

load at exactly 0 . 8  is that, each time each strategy evaluates the overload situation, it does so based 

on existing traffic measurements and therefore puts corresponding throttles in place to maintain the 

load at exactly 0.8. Therefore, when the applied traffic increases during the next monitoring 

interval, the throttles accept more calls than had been expected and the resultant load is slightly 

greater than the threshold. A similar situation arises when the applied traffic levels are decreasing

-  neither strategy predicts the downward trend in traffic and therefore causes too many calls to be 

rejected, resulting in mean SCP loads of approximately 0.785.

The SSP Q2 loads for the same scenario are shown in Figure 6.10. Note that Window fails to 

protect the SSP from overload -  this is for two reasons, the first being that the CCC/CG strategy at 

Q1 fails to detect overload due to IN traffic, as it does not take into account the greater load 

requirements of IN calls at Q2, while the second reason is that Window does not reject any IN
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calls until after they have completed processing at Q2, so that much SSP resource is applied to 

processing calls which are then rejected by Window at the ssf The behaviour of dynamic CCC/CG 

and optimisation, however, is as expected -  in protecting the SCP by throttling calls at Q2, the SSP 

is implicitly protected.

SSP1 Load

0 WINDOW
<> Dynamic CCC/CG
D Optimisation 
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Fig. 6.10: SSP1 load for SCP overload

Note however, that the SSP load is consistently higher for optimisation than it is for dynamic 

CCC/CG. The reason for this may be observed in Figure 6.11, where it is shown that dynamic 

CCC/CG applies the same throttles to all IN call types, resulting in similar proportions of each IN 

call type being accepted. Optimisation, on the other hand, rejects call types selectively based on 

their weights, and by extension, their SCP load requirements. Therefore, televoting calls, which 

have the greatest SCP load requirement, are more strictly throttled than they are by dynamic 

CCC/CG. This means that more freephone and international freephone calls are accepted at Q2, 

resulting both in greater Q2 loads (and throughputs) and in greater overall numbers of accepted 

calls -  optimisation accepts 5.35% more of the offered calls than does dynamic CCC/CG.

Fig. 6.11: Acceptances at SSP1 for SCP overload
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There are two main implications of the selective throttling of optimisation. Figure 6.12 shows the 

revenue gained from the successfully completed calls at SSP1 — note that SSP1 revenue (and 

therefore network revenue) provided by optimisation is far greater than that provided by dynamic 

CCC/CG -  this is because more calls (and calls of greater value) are consistently accepted by 

optimisation. Figure 6.13 shows the post-dialling delays experienced by various service types in 

the network. Note that, in all cases, dynamic CCC/CG delays are slightly less than optimisation 

delays. This is a direct result of the fact that optimisation causes the acceptance of more calls, 

resulting in slightly longer queue lengths and delays. Note however, that all delays experienced by 

services subjected to optimisation control are still well within acceptable bounds, as defined by 

[E.721],

SSP1 Revenue

o Dynam ic CCC/CG 

O  O p t.m is a .t io n

Fig. 6.12: Revenue of SSP1 for SCP overload

Service Delays

o I n t e r n a t io n a l  F reephone -  Dynamic CCC/CG 
<> -  o p t im is a t io n
□  T e le v o tin g  -  Dynamic CCC/CG 
A -  O p tim isa tio n
V L o c a l -  Dynamic CCC/CG 
t> -  O p tim is tio n

Fig. 6.13: Service delays at SSP1 for SCP overload
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To summarise the results for this scenario, Window succeeds very well at protecting the SCP, but 

fails to protect the SSPs, while both dynamic CCC/CG and optimisation are equally efficient at 

protecting all elements at all times. However, optimisation, through selective throttling, manages 

to accept both more calls overall and more calls of greater worth, resulting in greater overall IN 

throughput and network revenue.

6.3.3 Scenario 3: SSP  Overload

Here, an overload of SSP 1 is invoked by increasing the arrival rates of international and local calls 

linearly as shown in Figure 6.14. The resultant total arrival rate to each element in the network is 

shown in Figure 6.15 -  note that the offered traffic at each element is expressed in terms of the 

capacity of that element.

Offered Traffic (in Erlang)

o sspl 
<> SSP2 

□  SSP3 

A s s p 4  

V ssp 5 

t>  SCP

t im e  ( s e c )  (xlOOOO)

Fig. 6.15: Arrival rates for all IN physical elements
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The resultant SSP1 Q2 load for each of the test strategies under this applied traffic is shown in 

Figure 6.16. Note first that the SSP’s CCC/CG part of the Window strategy considerably 

overprotects that element. This is because this strategy bases its estimation of overload on the 

number of arriving calls and does not take into account the fact that the large number of non-IN 

arrivals have low SSP processing requirements. Therefore the throttles put in place by the 

Window-based strategy are excessively strict, with the result that the load of SSP1 Q2 is very low. 

Both dynamic CCC/CG and optimisation, on the other hand, put the correct throttles in place on 

detection of overload and therefore, after a period of convergence, keep the load at approximately

0.8 -  again, with optimisation experiencing smaller oscillations than dynamic CCC/CG.

____________________________ 5SP1 Load____________________________

O WINDOW 

O Dynamic CCC/CG 
□ optimisation

Fig. 6.16: SSP1 load for SSP overload

The resultant SCP load is shown in Figure 6.17 below. The load values for each of the strategies 

are low, mostly due to the low number of IN arrivals at the system and partially due to the 

rejection of calls at SSP1, and all traces are quite similar to each other. However, dynamic 

CCC/CG consistently provides the highest mean load values, with Window providing lower mean 

values and optimisation producing the lowest. The reason for this is similar to that described for 

the SCP overload scenario described in the previous section -  i.e. dynamic CCC/CG applies the 

same throttles to all call types at Q1 of the SSP, resulting in similar proportions of each call type 

being accepted. Optimisation, on the other hand, rejects call types at Q2 selectively based on their 

weights. Therefore, as shown in Figure 6.18, more freephone, local and televoting calls (i.e. those 

calls with low weights) are throttled by optimisation than are by dynamic CCC/CG, while fewer 

international and international freephone are rejected. The result of this selective throttling is that 

optimisation, while producing the same SSP load levels as dynamic CCC/CG, gives consistently
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lower SCP loads (primarily due to the lower televoting acceptance rate, as televoting has the 

greatest SCP load requirement).

SCP Load

O WINDOW

O  Dynam ic CCC/CG 

□  Op t i m i s  a t i o n

tim e  ( s e c )  (xlOOOO)

Fig. 6.17: SCP load for SSP overload

Fig. 6.18: SSP1 acceptances for SSP overload
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The above graphs show that optimisation and dynamic CCC/CG are equally effective at protecting 

their resources, and far superior to Window. However, as may be seen in Figure 6.19, dynamic 

CCC/CG actually provides much greater SSP throughput than optimisation during SSP overload. 

The reason for this is that dynamic CCC/CG rejects calls at Q1 upon detection of SSP overload, 

while optimisation does not reject any calls until differentiation between call types becomes 

possible -  i.e. at Q2. This means that, for optimisation, much SSP capacity is spent accepting calls 

at Q1 that are then rejected at Q2, whereas dynamic CCC/CG, having rejected all calls at Ql, uses 

all Q2 load in the acceptance of calls. The result is that dynamic CCC/CG provides much greater
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SSP throughput -  in terms of call acceptance rates, dynamic CCC/CG accepts 4.9% more of the 

offered calls during SSP overload than does optimisation (this figure may seem lower than 

expected, but may be accounted for by the fact that dynamic CCC/CG does not take load 

requirements into account when accepting call requests and therefore processes more (high load) 

IN calls than does optimisation).

SSP10 2  Throughput

o Dynam ic CCC/CG 

O o p t i m i s a t i o n

0 0 . 2 5  0 . 5  0 . 7 5  1
t im e  ( s e c )  (xlQQOO)

Fig. 6.19: SSP1 throughput for SSP overload

The conclusion of this is that both dynamic CCC/CG and optimisation are more effective strategies 

for SSP protection than Window -  further, dynamic CCC/CG is more efficient for SSP protection 

than optimisation, as it provides equivalent protection but accepts far more calls. The only 

advantage of optimisation in this scenario is that even when its throughput is so much lower than 

that provided by dynamic CCC/CG, the fact that optimisation prioritises those calls with the 

greatest revenue means that this strategy still provides better revenue gain than either of the other 

two strategies, as may be seen in Figure 6.20.

SSP1 Revenue

O VÏHD0W
<> Dynam ic CCC/CG

□  O p t im is a t io n

tim e  ( s e c )  (xlOOOO)

Fig. 6.20: SSP1 revenue for SSP overload
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6.3.4 Scenario 4: General Overload

Here, overloads of the SCP and SSP1 are invoked by increasing the arrival rates of televoting at all 

SSPs linearly and the arrival rates at SSP1 for televoting, international and local calls linearly at 

different times, as shown in Figure 6.21. The resultant total arrival rate to each element in the 

network is shown in Figure 6.22 -  note that the offered traffic at each element is expressed in 

terms of the capacity of that element and that the SCP becomes overloaded prior to SSP1.

Arrival Rates la System (Erlangs)

o  S S P l  

O  S 5 P 2  

□  SSP3 

A  SSP4 

V  s s p 5

>  SCP

0 0 . 2 5  0 . 5  0 . 7 5  1
time (sec) (xlOOOO)

Fig. 6.22: Arrival rates for all IN physical elements

The resultant SCP load for each of the strategies being compared is shown in Figure 6.23, while 

the load of SSP1 Q2 is shown in Figure 6.24. By viewing both graphs, it may be observed that for 

the first part of the simulation, when correct response to SCP overload should be sufficient to 

protect the SSPs, Window still allows SSP1 to become and remain overloaded (because so much
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SSP resource must be allocated to processing calls to the point where Window may throttle them -

i.e. at the output of SSP1). At the same time, Window initially overprotects the SCP, and then 

gradually brings the SCP load to converge to a mean of approximately 0.8, where it remains until 

the SSP part of the Window strategy begins to respond to overload due to local calls at SSP1. This 

results in the rejection of an excessive numbers of calls (in particular televoting and local) at SSP1 

Ql, thus bringing the mean SCP load down to about 0.76.

SCP Load_____________

O WINDOW

O  Dynamic c c c /c g
□  O p tim is a tio n

0 0 . 2 5  0 . 5  0 . 7 5  1
tim e  ( s e c )  (xlQOQO)

Fig. 6.23: SCP load for general overload

SSP1 Load

O WINDOW

O  Dynamio ccc/ cg 
□  O p tim is a tio n

Fig. 6.24: SSP1 load for general overload

The operation of dynamic CCC/CG and optimisation at the SCP, on the other hand, is quite 

different. After an initial monitoring delay they both converge to approximately 0.81 SCP Erlangs 

(not exactly 0.8, because traffic arrival rates are increasing) until traffic rates begin to decrease, at 

which stage both strategies cause the SCP load to converge to a mean of approximately 0.785. This 

behaviour is identical to that portrayed in section 6.3.2 for the SCP overload scenario. Note that, 

unlike Window, the SCP load is not affected by the state of the SSP when dynamic CCC/CG or
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optimisation is used. The reason for this may be seen in Figures 6.24 and 6.25. The SSP load 

curves show that, during the early stage of the simulation, the correct response by dynamic 

CCC/CG and optimisation to the SCP overload situation prevents SSP overload. Optimisation 

achieves this by throttling televoting calls only, while dynamic CCC/CG throttles all IN call types. 

Then later, as the local call arrival rate increases to the point where SCP congestion controls are 

insufficient to protect the SSP, optimisation balances the current states of both the SCP and SSP to 

devise the required rejection rates to protect both elements and therefore begins to reject local and 

freephone calls. Dynamic CCC/CG reacts differently -  it balances the effects of the SCP throttles 

(which have been in place at Q2 during the previous monitoring interval) on Q2 load with the 

predicted effect of the total number of arriving calls and gradually increases the throttles on all call 

types at SSP1 Q1 accordingly (i.e. dynamic CCC/CG balances the current SSP state with the 

previous SCP state). Therefore, using different methods, both dynamic CCC/CG and optimisation 

put the correct controls in place to protect the SSP, without affecting the SCP load.

Dynamic CCCJCG Acceptances Optimisation Acceptances

o  I n t e r n a t i o n a l  F r e e p h o n e  

O  T e l e v o t i n g  

□  F r e e p h o n e  

A  L o c a l

V  I n t e r n a t i o n a l

o  i n t e r n a t i o n a l  F r e e p h o n e  

O  T e l e v o t i n g  

□  F r e e p h o n e  

A  L o c a l

V  in t e r n a t io n a l

0 . 2 5 0 . 5  0 . 7 5  1
t i n e  ( s e c )  (xlOOOO)

0 . 5  0 . 7 5  1
tim e (se c )  (xlOOOO)

Fig. 6.25: SSP1 acceptances for general overload

Note that, as would be expected from sections 6.3.2 and 6.3.3 and as is shown in Figure 6.26, the 

SSP throughput is about 0.07 Erlangs greater for optimisation when the SCP is more overloaded 

than the SSP (and optimisation accepts 5.5% more calls than does dynamic CCC/CG), but in the 

inverse scenario, the fact that optimisation must expend extra resources accepting all calls in Q1 

before being able to throttle them in Q2 means that the throughput of dynamic CCC/CG is 0.2 

Erlangs greater than that for optimisation (and dynamic CCC/CG accepts 8.3% more calls).
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SSP1 Throughput

o Dynamic CCC/CG 

<0 O p tim is a t io n

0 0 . 2 5  0 . 5  0 . 7 5  1
tim e  ( s e c )  (x 10 GOO)

Fig. 6.26: SSP1 throughput for general overload

As a final comment on the general overload scenario, the revenue gained by SSP1 over the course 

of the simulation is shown for all three strategies in Figure 6.27. Note that Window is artificially 

high during the period of SCP overload -  this is due to the fact that the SSP is underprotected at 

this time and is therefore accepting an unsafe number of calls. Other than this, as would be 

expected, optimisation provides the greatest revenue gains.

SSP1 Revenue

O WINDOW 
O  Dynamic CCC/CG 
□  O p tim is a tio n

Fig. 6.27: SSP1 revenue for general overload

To summarise the results for general overload, both optimisation and dynamic CCC/CG protect all 

elements at all times, whereas Window fails to protect the SSP during SCP overload and 

overprotects it during SSP overload. Also, optimisation provides the best efficiency levels when 

the SCP is more overloaded than the SSP, while dynamic CCC/CG provides premium performance 

when the SSP overload exceeds that of the SCP.
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6.3.5 Scenario 5: Overload due to Bursty Traffic

For this scenario, a 1000 second burst of televoting calls is applied to all SSPs every 2000 seconds. 

This causes simultaneous overload of the SCP and all SSPs, as shown in Figure 6.28, where the 

offered traffic to each physical element is expressed in terms of the capacity of that element.

________________________ Arrival Rates to System (Erlangs)_____________________

o  S S P l 

<> SSP2 
□  5SP3 

A SSP4 

V SSP5 

t>  SCP

Fig. 6.28: Arrival rates for all IN physical elements

The resultant SCP load for each congestion control strategy is shown in Figure 6.29. Note that 

Window provides the best result here -  it responds immediately both to the onset and termination 

of each traffic burst. For the other two strategies, the monitoring delay before congestion is 

detected results in the SCP load climbing to 1.0 Erlang and the SCP queue length growing to 

approximately 3000. When detection occurs, both dynamic CCC/CG and optimisation put the 

correct SCP throttles in place at Q2 of each SSP to alleviate the overload situation, but the load of 

the SCP does not descend to 0.8 for a few monitoring intervals, as the excess of calls which were 

queued at the SCP during the original monitoring delay must first be processed. In a similar 

manner, there is a delay of a maximum of one monitoring interval before the cessation of overload 

is detected by either dynamic CCC/CG or optimisation, during which an excess of calls are 

rejected. However, in this instance both strategies recover very quickly (as there is no SCP queue 

build-up) and put the correct controls in place immediately on detection of the change in the 

overload situation.
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SCP Load

O WINDOW
O  Dynamic ccc/ cg 
□ O p tim isa tion

Fig. 6.29: SCP load for bursty overload

SSP1 Load

O WINDOW
O Dynamic CCC/CG 
P  o p tim isa tio n

Fig. 6.30: SSP1 load for bursty overload

The behaviour of each strategy at the SSPs is very different, as may be seen in Figure 6.30. The 

Window-based strategy, as per usual, fails to protect SSP Q2 from overload for two reasons -  

firstly, as it fails to place emphasis on televoting load requirements, it does not calculate the SSP 

overload level correctly and puts insufficient throttles in place at Q1 and secondly, because it does 

not reject any traffic at Q2. Therefore, the load of Q2 for this strategy remains above 1.0 Erlang 

and its length rises to approximately 2000. On cessation of the traffic burst, Window again detects
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the alleviation of the overload situation immediately, but experiences a small delay in reducing the 

SSP load, as it must complete processing of all calls that built up in the buffer of Q2 during the 

overload.

The other strategies, after the usual monitoring delay, detect overload and respond accordingly. 

However, unlike previous scenarios, the responses of dynamic CCC/CG and optimisation are not 

similar when both SCP and SSPs overload simultaneously. Optimisation, as a global strategy, 

takes the state of both the SCP and SSP into account before putting throttles in place at SSP Q2. It 

realises, therefore, that putting throttles in place to alleviate the SCP overload will also be 

sufficient to alleviate the SSP overload and therefore the SSP load level converges very quickly 

and only televoting calls are rejected in Q2 (as shown in Figure 6.31). Dynamic CCC/CG, on the 

other hand, seeks to protect each element independently. Therefore, the SCP detection algorithm 

puts controls in place at SSP Q2 to protect the SCP, while the SSP detection algorithm (without 

referring to the SCP throttles being put in place simultaneously) puts a throttle at Ql. The resulting 

conflict between controls means that an excess of calls are rejected during the following interval 

and oscillations occur in the load for the duration of the burst, while both SCP and SSP controls 

attempt to regulate the input traffic. On cessation of the traffic burst, both dynamic CCC/CG and 

optimisation reject calls unnecessarily for the remaining duration of that monitoring interval, after 

which time, both respond correctly by removing all controls.

Fig. 6.31: SSP1 acceptances for bursty overload

Regarding call acceptances, optimisation accepts 5.1% more of the offered calls than does 

dynamic CCC/CG and 5.0% more calls than Window. There are two reasons for this -  

optimisation does not reject any non-IN calls and also, by rejecting only televoting, allows more 

low load-requiring IN calls to be processed at the SCP. Partially due to the greater number of 

acceptances, but also due to the fact that the types of calls accepted by optimisation are worth more 

financially, this strategy provides greater revenue gains than both other strategies.
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SSP1 Revenue

O W INDOW

O  D ynam ic CCC/CG 

□  o p t i m i s a t i o n

Fig. 6.32: SSP1 revenue for bursty overload

A final comparison that may be made between the strategies for this scenario is between service 

delays, as shown in Figure 6.33. Note that all IN service delays are excessive, as are non-IN delays 

for Window. For both dynamic CCC/CG and optimisation, these delays are as a result of delays at 

the SCP when the queue length there is large. Window, on the other hand, causes all services (IN 

and non-IN) to experience great delays at Q2. The only acceptable delay results are those 

experienced by non-IN calls subject to dynamic CCC/CG and optimisation.

Service Delays

o  T e l e v o t i n g  -  w indow  

O  -  D ynam ic CCC/CG

□  -  O p t i m i s a t i o n

A L o c a l  -  WINDOW 

V -  D ynam ic  CCC/CG

t>  -  O p t i m i s a t i o n

Fig. 6.33: SSP1 service delays for bursty overload

To summarise the results of this scenario, none of the strategies provide acceptable results in all 

areas. Window seems to provide the best overall results in that it reacts immediately to the onset of 

a burst and therefore protects the SCP. However, it fails to protect the SSP from overload. Both
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dynamic CCC/CG and optimisation fail to protect the SCP from the onset of a burst, but protect 

the SSP adequately (optimisation providing better results). Therefore all strategies allow overload 

to occur at some point in the network, resulting in unacceptable post-dialling delays.

The only possible conclusion, therefore, is that any strategy containing a reactive component (i.e. a 

method or algorithm which reacts to an overload which is detected based on monitoring the 

variation of some value over an interval) cannot protect against an instantaneous dramatic increase 

in input traffic and that the only way to ensure against an overload of this type is to provide some 

sort of active strategy to act as an instantaneous cut-off point at the input to each physical element 

in the network. With just such a strategy in place to protect against the unlikely event of 

instantaneous overload, other reactive strategies and algorithms may then be used to intelligently 

protect the switch for all other input traffic scenarios.

6.4 Summary & Conclusions

The salient features of each of the strategies are outlined in Table 6.1 below, where a V denotes 

acceptable behaviour and (*) denotes best behaviour for each category.

Category Classic

CCC/CG

Window Dynamic

CCC/CG

Optimisation

Relative processing requirements 3 9 1 60

Effectiveness of SCP protection for 

all traffic mixes and loads

V <{*) A*)

Effectiveness of SSP protection for 

all traffic mixes and loads

V A*)

Throughput V
(*) for SSP 

overload

V
(*) for SCP 

overload

Revenue gain V A*)
Response to instantaneous overload (*)

Speed of convergence V(*) V V(*)

Scalability V V

Flexibility A*)
Fairness Subscriber Subscriber

Service
Table 6.1: Summary of Features for IN Congestion Control Strategies
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To summarise these results, classic CCC/CG was found to have the worst overall response because 

it is based on the use of fixed call count and CG parameters and there are a number of issues 

associated with this use of fixed parameters. Firstly, call count and CG parameters are dependent 

on the size of resource at which they are located and must therefore be evaluated each time the 

algorithm is put in place at a different size resource -  this is a non-trivial task. Secondly, it is 

impossible to define optimal call count parameters which work well over all possible input traffic 

mixes, as defining the parameters of necessity pre-supposes either that all calls require the same 

amount of processing or that the traffic mix does not vary, which is never the case. In other words, 

the problems with classic CCC/CG are basically an issue of scalability -  the algorithm does not 

scale, either in terms of resource size or traffic mix.

A similar issue of scalability applies to the Window-based strategy. The Window timer duration 

and SSP CCC/CG algorithm are both based on the use of fixed parameters and cannot therefore 

react correctly for all traffic mix variations. This is proved in the section 6.3, where Window tends 

to overprotect the SCP when the bulk of applied traffic has high SCP processing requirements (and 

therefore greater average response delays than the Window timer duration) and underprotect it 

when the overload is caused by calls with low processing requirements and mean delays shorter 

than the Window timer duration. The effects of the SSP CCC/CG part of the strategy are even 

more noticeable -  this algorithm either completely fails to protect the SSP or overprotects it 

considerably. In fact, the only advantage of using a Window-based strategy is that, due to its active 

nature, it provides the remote physical element that it is protecting with resistance to instantaneous 

dramatic increases in load levels. However, as this strategy is quite processor-hungry (requiring 

approximately three times more processing resource than static CCC/CG, as described in Chapter 

4, section 4.3.4.4), a simple cut-off mechanism on the input buffer of each physical element would 

provide the same benefit with fewer processor requirements and could also be used in conjunction 

with reactive strategies, which provide consistently better results for all other traffic variations.

The dynamic CCC/CG algorithm is scalable. The only parameters that need to be set to target it to 

a particular resource are the capacity of that resource and the relative load requirements of each 

service type using it. In terms of monitoring overheads, it requires that the arrival rates for all calls 

types at the SCP must be monitored separately. Given this information, it can predict the overall 

impact of new arrivals on the resource load and calculate the appropriate throttles accordingly. As 

such, dynamic CCC/CG has very good performance during all overload levels and all traffic 

mixes. In fact, it provides equally good protection for all physical elements as the more complex 

optimisation strategy and is far superior to the classic CCC/CG and Window strategies. In fact, 

dynamic CCC/CG is more efficient than all other strategies in two ways. Firstly, the algorithms 

themselves actually have lower processing overheads than classic CCC/CG (by a factor of three)
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and optimisation (by a factor of sixty (for the LP_SOLVE software)) and secondly, as dynamic 

CCC/CG rejects calls efficiently at Q1 during SSP overload (as opposed to optimisation, which 

does not reject any calls until Q2), it provides greater SSP (and therefore IN) throughput for this 

scenario. Note also that dynamic CCC/CG exhibits subscriber fairness in that the gap values 

associated with the CG throttles in the SSPs are evaluated from the percent thinning coefficients 

sent to them by the SCP -  this combines the subscriber fairness of PT with the efficiency of CG 

(as described in Chapter 4). The only desirable characteristic not demonstrated by dynamic 

CCC/CG is flexibility -  the algorithm does not easily lend itself to being extended to include 

selective throttling of service types based on e.g. priorities or focussed overload.

The optimisation-based algorithm also provides excellent results. It has all the advantages of 

dynamic CCC/CG in terms of scalability (for both resource targeting and handling of variations in 

traffic mix) and subscriber fairness. In terms of monitoring overheads, it requires that the arrival 

rates for all calls types at both the SCP and SSPs must be monitored separately. However, it does 

have a number of other advantages not associated with dynamic CCC/CG. The strategy is innately 

flexible, and can be extended to encompass other requirements by either re-specification of call 

weights or by the inclusion of other constraints in the maximisation algorithm. Service fairness, as 

well as subscriber fairness, is always preserved (within the bounds of the priority system). 

Priorities allocated to service types are always honoured, even during congestion. The 

interoperable nature of the SCP and SSP algorithms in the strategy also ensures premium IN 

performance during SCP overload, and revenue in the IN is maximised at all times, without 

compromising fairness or user delays. All these advantages, however, do not come without a price. 

The first negative aspect of the optimisation strategy is that its processing overheads are so much 

greater than for dynamic CCC/CG. However, two points may be raised with regard to this:

• if the optimisation overheads are related to the processing requirements of service requests on 

the SCP, using the optimisation strategy equates to the loss of only one freephone call per 

monitoring interval and the resultant gains in IN throughputs and revenue achieved by using 

the optimisation strategy are sufficiently high during SCP overload to render this overhead 

negligible,

• the LP SOLVE optimisation software used in the simulations is a two-phase simplex 

algorithm designed to optimise much more complex LPPs than the single-phase optimisation 

strategy investigated here. Therefore, if the optimisation-based congestion control software 

were to be streamlined (as would be required if it were to be used in a real system), processing 

overheads would be likely to be considerably lower.

The second negative aspect of the optimisation strategy is more considerable and relates to the 

operation of optimisation during SSP overload. During this scenario, the processing overheads
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associated with accepting all calls at Q1 (so that they may be differentiated at Q2) are 

considerable, and so this aspect of the optimisation strategy is not satisfactory. The solution would 

seem to be to merge the SSP optimisation algorithm with aspects of the SSP dynamic CCC/CG 

algorithm to produce a hybrid that takes the current state of both Q2 and the SCP into account 

when devising the global throttles to be put in place on all traffic at Ql. In this manner, the 

operation of optimisation would then be either equal or superior to all other strategies at all times.

To conclude, the effectiveness of both the optimisation and dynamic CCC/CG strategies are 

equivalent and far superior to either Window or classic CCC/CG. Both strategies also exhibit 

scalability and subscriber fairness (unlike Window or classic CCC/CG) and dynamic CCC/CG is 

even more efficient than classic CCC/CG, in terms of requiring lower processing overheads to 

execute. Optimisation, on the other hand, provides more flexibility, service fairness and better 

revenue than both classic and dynamic CCC/CG, but at the expense of significantly greater 

processing overheads.
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7.1 Conclusions of this Work

The primary conclusion of this work relates to the types of congestion control strategies that 

should be used for IN protection. Static strategies based on the use of tables of fixed parameters 

(e.g. CCC, LMC, CG and Window) should not be used, as they are incapable of protecting the IN 

under varying loads and traffic mixes and therefore fail to meet even the basic requirements on a 

congestion control strategy — this was proved in Chapters 4 and 6 of this thesis. Instead, the 

application of scalable dynamic strategies is recommended, as they have a number of advantages, 

including:

• Their scalability makes them extremely easy and fast to target to a particular resource,

• They respond correctly to any variations in traffic load,

• They can handle any variations in traffic mix -  i.e. they can take into account the fact that 

different request types have different processing requirements at different resources in the 

network and respond accordingly.

In other words, the use of dynamic detection methods in conjunction with dynamic throttles means 

that, not only is the system scalable, but also the overload controls put in place are, at any time, for 

any traffic mix, exactly appropriate for the level of overload. Two such strategies are presented in 

this work -  the revenue optimisation strategy described in Chapter 5 and the dynamic CCC/CG 

strategy introduced in Chapter 6. Both of these strategies provided far superior results, in terms of 

both effectiveness and efficiency, than any of the strategies most commonly used in industry 

today.

The optimisation strategy, as well as being dynamic, has the added advantage of being a global IN 

strategy, in that it takes the state of both the SCP and SSP into account when determining the 

overload level in the network, and puts the appropriate controls in place to protect both PEs. This 

means that when the SCP and SSPs of an IN are suffering from congestion, while other strategies 

attempt to protect each PE independently and as a result reject too many calls overall, optimisation 

ensures optimum IN performance at all times. Optimisation is also very flexible and can 

selectively throttle different call types based on, for example, their relative importance (as defined 

by the IN service provider), their revenue, their applied load and their different load requirements 

at both the SCP and SSPs. However, this extra level of intelligence does not come without a price 

-  optimisation has considerably more processing overheads than does dynamic CCC/CG, both in 

terms of the footprint of the algorithm and the fact that all calls must be processed in the SSP to the 

point where differentiation between call types, and therefore selective throttling, is possible.
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We therefore recommend that in Intelligent Networks where SCP overload is more usual than SSP 

overload or where priorities, service fairness or revenue are an issue, optimisation should be used 

as the benefits of its use here far outweigh its greater processing overheads, while in networks 

where all calls are to be treated equally, dynamic CCC/CG should be the preferred strategy.

A number of other conclusions may also be presented, based on observations made during the 

course of this research. The first of these is that it is absolutely critical that when a model is 

developed to investigate congestion control, it should reflect the real network architecture, 

functionality and its applied traffic as much as possible, in order to ensure that the research carried 

out on it is valid and the results dependable. Chapter 2 described a significant amount of research 

into the applicability of parameter-based congestion control algorithms in the IN arena. The 

results of this research were generally positive, in that most of the strategies were perceived to 

succeed at protecting the IN from overload. However, there was a fundamental flaw in much of 

this research — most of the models used were very much over-simplified and in general, the 

behaviour of the strategies was only investigated under an applied load of one traffic type (or when 

more than one type was used, it was generally assumed that all types of requests had the same load 

requirements at the SCP). As a result, the fact that parameter-based strategies are incapable of 

dealing with different traffic types with different load requirements was not recognised. The model 

presented in Chapter 4 reflected the architecture of the IN in enough detail (as well as the 

information flows between PEs for a number of different services) that the limitations of these 

strategies became immediately apparent. Therefore, it is highly recommended that, to ensure the 

validity of a body of research, a sufficiently detailed model of the target network be developed -  

this has a greater cost, in terms of development time, but ensures that the results acquired will be 

valid.

Another conclusion of this work relates to the two most commonly used throttles in IN congestion 

control -  namely, percent thinning and call gapping. It was verified in [Berger91] and Chapter 4 

(section 4.3.3) that while PT has the advantage of exhibiting both subscriber fairness and 

scalability, CG exhibits robustness and a faster response to the onset of congestion. A logical 

conclusion of this is that a combination of the two would combine the advantages of each to 

produce a flexible and scalable throttle with both subscriber fairness and robustness. In this way, 

the output of any SCP detection algorithm should be a PT coefficient (to ensure scalability and 

subscriber fairness) and this should be translated in each SSP into a gap interval, which will ensure 

robustness. This throttle would also remove the principle disadvantage associated with CG, i.e. its 

parameter-driven nature -  instead of using fixed parameters, an appropriate gap interval is 

calculated based on a PT coefficient. The use of the PT/CG throttle algorithm described in Chapter 

6, section 6.2 as part of the dynamic CCC/CG strategy is therefore recommended.
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The final conclusion presented here relates to the behaviour of all strategies under bursty overload 

-  only Window and QLC (i.e. strategies with no monitoring intervals and a tight control loop) are 

capable of responding quickly enough to the onset of bursty traffic. However, neither strategy 

behaves consistently enough under other traffic loads to deserve recommendation (they tend to 

react to overload even when no overload exists) — to make intelligent decisions about how to 

manage an overload, a monitoring period is required to allow the congestion control strategy to 

base its controls on the mean state of the system. It is therefore recommended that performance 

management of any system should be carried out at two levels. At the lower level, all physical 

entities (or nodes) in a network should have a simple active strategy of some sort at their input that 

ensures against instantaneous overload, so that each PE is responsible for crisis management. 

However, this mechanism should only reject enough requests to ensure the survival of its PE. This 

is so that a global congestion control strategy (the higher level of the performance management 

strategy) can make decisions, based on observation of the mean state of the network, about how to 

throttle traffic intelligently in different PEs in order to acquire the best possible overall network 

performance.

7.2 Recommendations for Future Work

The current behaviour of the optimisation strategy is not ideal -  too much SSP processing resource 

needs to be applied to progress requests to the point where selective throttling is possible. As 

suggested in the conclusions of Chapter 6 (section 6.4), it might be useful to investigate how to 

merge the SSP optimisation algorithm with the SSP part of the dynamic CCC/CG strategy so as to 

acquire a global IN congestion control strategy which combines selective throttling of all calls at 

SSP Q2 with some global throttling of calls at SSP Ql. In this way, some of the advantages of 

selective throttling may be retained, while maximising the throughput of the network at all times.

Further work also needs to be carried out based on the enhancement of the IN architecture in CS-2 

[Q.1221]. Specifically, there is much potential for using SCP/SCP interworking as a flow control 

mechanism in overload situations, but it would need to be managed intelligently. It might therefore 

be interesting to investigate whether it is possible to extend the optimisation algorithm to 

encompass the management of multiple SCPs in a single IN domain, so that all PEs -  SCPs and 

SSPs alike -  co-operate to provide optimum Intelligent Network performance.
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ACG Automatic Code Gapping

AIN Advanced Intelligent Network

ATM Asynchronous Transfer Mode

BCP Basic Call Process

CCAF Call Control Agent Function

CCC Call Count Control

CCF Call Control Function

cdf Cumulative Distribution Function

CID Call Instance Data

CMIP Common Management Information Protocol

CORBA Common Object Request Broker Architecture

CS-x IN Capability Set Number x

BCSM Basic Call State Model

CG Call Gapping

DFP Distributed Functional Plane

DN Destination Number

FDOC Focussed Destination Overload Control

FE Functional Entity

FEA Functional Entity Action

FIFO First In First Out

FSM Finite State Machine

GFP Global Functional Plane

IAF Intelligent Access Function

IDL Interface Description Language

IETF Internet Engineering Task Force

IF Information Flow

nop Internet Inter-Orb Protocol

IN Intelligent Network

INAP Intelligent Network Application Part

INCM Intelligent Network Conceptual Model

IP Intelligent Peripheral

IP Internet Protocol

ISDN Integrated Services Digital Network

IT Information Technology

ITU International Telecommunications Union

LMC Load Measure Control
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LPP Linear Programming Problem

O-BCSM Originating Basic Call State Model

OMG Object Management Group

ONP Open Network Provisioning

OPNET OPtimised Network Engineering Tools

pdf Probability Density Function

PE Physical Entity

PID Proportional Integral Differential

PIN Personal Identification Number

pmf Probability Mass Function

POI Point of Initiation

POR Point of Return

PP Physical Plane

PSTN Public Switched Telephone Network

PT Percent Thinning

QLC Queue Length Control

Rev/Res Revenue to Resource ratio

RTC Response Time Control

RV Random Variable

SCEF Service Creation Environment Function

SCF Service Control Function

SCP Service Control Point

SDF Service Data Function

SDP Service Data Point

SIB Service Independent Building Block

SLP Service Logic Program

SLPI Service Logic Program Instance

SMF Service Management Function

SOC SCP Overload Control

SOCC SMS-Originated Code Control

SP Service Plane

SPC Stored Program Controlled

SRF Service Resource Function

SS7 Signalling System No. 7

SSCP Service Switching and Control Point

SSF Service Switching Function
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SSP Service Switching Point

svc Square of the Variation Coefficients

T-BCSM Terminating Basic Call State Model

TCAP Transaction Capabilities Application Part

TINA Telecommunications Intelligent Networking Architecture

TMN Telecommunication Management Networks

UI User Interaction

YPN Virtual Private Network
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