
D u b l i n C i t y U n i v e r s i t y

S c h o o l o f E l e c t r o n i c E n g i n e e r i n g

An Investigation into Intelligent Network

Congestion Control Strategies

Fiona Lodge, B.Eng.

PhD Thesis, February 2000

Under Supervision of Dr. Thomas Curran & Dr. Dmitri Botvich

Declaration

I hereby certify that this material, which I now submit for assessment on the programme of

study leading to the award o f PhD, is entirely my own work and has not been taken from

the work o f others, save and to the extent that such work has been cited and acknowledged

within the text o f my work.

Signed:

Date:

ID No.

ii

Acknowledgements

Acknowledgements

I have a lot of people to thank for the quality of this thesis. During its lifetime, it has passed
through many stages of evolution, this process being driven by the comments, observations and
criticisms of Dmitri Botvich, Adrian Newcombe, Brendan Jennings, Tommy Curran and Declan
Gavin. Thanks guys!

Dmitri and Adrian also deserve further honourable mention for contributions above and beyond
the call of duty. Their detailed grilling of my ideas and strategies led to more refinements than I
care to remember. If I could, I’d have their names on the cover too.

And finally, I would like to dedicate this thesis to the memory of my grandparents, Johnny Kelly
and Gretta Lodge. They would have burst with pride if they had lived to see it, but would almost
definitely never have gotten around to reading it!

Table of Contents

Table of Contents

A bstract...xi

Chapter 1 Introduction..1

1.1 General Background..2

1.2 Research Objectives & M ethods... 4

1.3 Thesis Outline...5

Chapter 2 State o f the A r t .. 7

2.1 The Intelligent Network (IN)..8

2.1.1 Justification fo r IN Development.. 8

2.1.2 Evolution o f the Intelligent Network...,.,,.,,,,..,....... 10

2.1.3 The Architecture and Operation o fIN C S -1 13

2.2 Congestion Control..21

2.2.1 Basic Requirements on Congestion Control Strategies 21

2.2.2 An Overview o f Congestion Control in the PSTN/ISDN..23

2.2.3 Classification o f Switch Congestion Control Strategies 25

2.3 IN Congestion Control... 31

2.3.1 A Description o f the Models used in IN research .. 31

2.3.2 Comparison between Throttles fo r the IN..35

2.3.3 Comparison between Active and Reactive Strategies fo r the IN... 36

2.4 Conclusions..36

Chapter 3 Analysis Tools & M e th o d s ..39

3.1 An IN Simulation Tool.. 40

3.1.1 Using OPNET fo r IN Simulation..40

3.1.2 Operation o f the OPNET modelling too l...41

3.2 Analytical Network Modelling..44

3.2.1 Probability Theory.. 44

3.2.2 Random Variables.. 45

3.2.3 Random Processes.. 47

3.2.4 Queuing Theory...51

3.2.5 Choosing an Appropriate Technique fo r the Analysis o f an IN Queuing M odel........................53

3.2.6 The Decomposition Method fo r Queuing Network Approximation..55

3.3 Mathematical Optimisation... 57

Chapter 4 Com parison betw een Existing SCP Congestion Control S tra teg ies60

4.1 The IN Simulation Model.. 61

4.1.1 Overview o f the m odel..61

4.1.2 The Network Layer M odel.. 67

4.1.3 The Node Layer M odels..67

4.1.4 Congestion Strategy Evaluation Criteria... 71

iv

Table of Contents

4.2 Implementation of Congestion Control Strategies...72

4.2.1 Implementation ofSCP Congestion Detection Methods..................... 73

4.2.2 Implementation o f Throttles... 76

4.2.3 Implementation o f the Window Strategy............... 78

4.3 Presentation of Results..79

4.3.1 Proving the Need fo r Congestion Controls..80

4.3.2 Comparison o f Detection Methods fo r Reactive Communication-Oriented Control................. 80

4.3.3 Comparison between Throttles... 90

4.3.4 Active versus Reactive Congestion Controls.. 96

4.4 Summary & Conclusion..100

Chapter 5 G lobal IN Congestion C o n tro l.. 103

5.1 Introduction... 104

5.2 The New, Comprehensive IN M odels... 107

5.2.1 The IN Model Design.. 108

5.2.2 The IN Simulation Model... 110

5.2.3 The IN Analytic M odel ..112

5.3 Estimation of the Effects of non-IN Traffic and Finite SSP Resources on IN Performance............ 116

5.3.1 Strategies used fo r Comparison.. 117

5.3.2 Results and Analysis...119

5.3.3 Conclusions............. w...... .. ,... 124

5.4 The Optimisation-based Global IN Congestion Control Strategy... 125

5.4.1 Defining the Mathematical Terms to be used in the Strategy Specification..............................125

5.4.2 Capturing the Requirements on the Global IN Congestion Control Strategy........................... 126

5.4.3 Introducing the Concept o f Call Weights...128

5.4.4 Specification o f the Optimisation-based IN Congestion Control S trategy129

5.5 Operation of the Global IN Congestion Control Strategy.. 132

5.5.1 Scenario 1: Stationary Case...132

5.5.2 Scenario 2: SSP Overload due to One Call Type... 132

5.5.3 Scenario 3: SCP Overload due to One Call Type... 134

5.5.4 Scenario 4: General Overload...136

5.5.5 Scenario 5: Overload due to Bursty Televoting Traffic... 138

5.6 An Optional Extension to the Global IN Strategy - FDOC... 139

5.7 Conclusions.. 141

Chapter 6 Com parison betw een IN Congestion Control Strategies 143

6.1 Introduction.. 144

6.2 The Strategies used for Comparison..145

6.3 Results o f Comparison .. 147

6.3.1 Scenario 1: Stationary Behaviour...148

6.3.2 Scenario 2: SCP Overload.. 152

6.3.3 Scenario 3: SSP Overload ... 156

v

Table of Contents

6.3.4 Scenario 4: General Overload...160

6.3.5 Scenario 5: Overload due to Bursty Traffic...¡64

6.4 Summary & Conclusions.. 168

Chapter 7 Conclusions & Recommendations..................................... 172
7.1 Conclusions of this Work...173

7.2 Recommendations for Future W ork..175

Appendix A References.. 176
Appendix B References Associated with this Research..............................181
Appendix C Glossary.. 183

Table of Figures

Table of Figures

Chapter 2

Fig. 2.1: Sequencing of Capability Sets.. 10
Fig. 2.2: The CS-1 Intelligent Network Conceptual Model.......................... 14
Fig. 2.3: GFP Representation of the Freephone Service Setup........................16
Fig. 2.4: Functional Entities in the IN CS-1 Distributed Functional Plane............... 17
Fig. 2.5: Freephone Service Decomposition.................................... 19
Fig. 2.6: Physical Architecture of the CS-1 Intelligent Network...................... 20
Fig. 2.7: Ideal Throughput Characteristics of a System under Overload................ 22
Fig. 2.8: Load Profile for a PSTN (non-IN) Call................................. 24
Fig. 2.9: Congestion Control Model of a Switching System.........................24
Fig. 2.10: Call Gapping Mechanism... 25
Fig. 2.11: The Window Mechanism... 26
Fig. 2.12: The Leaky Bucket Mechanism.................................. 27
Fig. 2.13: The Token Mechanism...27
Fig. 2.14: Single processor SCP model... 32
Fig. 2.15: Multiple queue model of the IN..................... 32

Chapter 3

Fig. 3.1: OPNET modelling domains... 41
Fig. 3.2: Representation of a State................. 43
Fig. 3.3: A sample F S M .. 43
Fig. 3.4: pmfofX(«y).. 45
Fig. 3.5: cdf of X{a>) .. 46
Fig. 3.6: Relationship between Random Processes................................51
Fig. 3.7: Applying the Decomposition Method to an Example Queuing Network......... 55
Fig. 3.8: (a) Linear constraints, (b) Non-linear constraints.......................... 58

Chapter 4

Fig. 4.1: The Simulation Model... 62
Fig. 4.2: Decomposition of Televoting Service....................................64
Fig. 4.3: Decomposition of Freephone Service....................................65
Fig. 4.4 : Non-IN call handling................................ 66
Fig. 4.5: The Network Model... 67
Fig. 4.6: The IN ssp node model.. 68
Fig. 4.7: The IN_scp node model............... 70

vii

Table of Figures

Fig. 4.8: The IN sdp node model.. 71
Fig. 4.9: Algorithm for Estimating Overload Level................................. 73
Fig. 4.10: SCP Load for CCC algorithm with Memory vs without Memory................74
Fig. 4.11: SCP Queue Length for CCC algorithm with Memory vs without Memory.........74
Fig. 4.12: Freephone Delays for CCC algorithm with Memory vs without Memory......... 75
Fig. 4.13: The PT algorithm.. 78
Fig. 4.14: SCP Queue Length for CCC/CG vs No controls in SCP...................... 80
Fig. 4.15: Service Delays for CCC/CG vs No controls in SCP......................... 80
Fig. 4.16: Arrivals to system for stationary case....................................81
Fig. 4.17: SCP load for stationary case.. 81
Fig. 4.18: SCP queue length for stationary case.................................... 82
Fig. 4.19: Arrivals to system for linearly increasing freephone arrival rate.................83
Fig. 4.20: Mean SCP load for linearly increasing freephone arrival rate.................. 84
Fig. 4.21: SCP Load for linearly increasing freephone arrival rate.......................84
Fig. 4.22: Mean SCP queue length for linearly increasing freephone arrival rate............ 85
Fig. 4.23: Mean freephone delays for linearly increasing freephone arrival rate.............86
Fig. 4.24: Arrivals to system for bursty arrival rates.................................87
Fig. 4.25: SCP load for bursty arrival rates....................................... 88
Fig. 4.26: Mean SCP queue length for bursty traffic................................ 89
Fig. 4.27: Mean freephone delays for bursty traffic................................. 89
Fig. 4.28: Dynamic SCP load for stationary case................................... 90
Fig. 4.29: Mean SCP load for stationary case..................................... 91
Fig. 4.30: Mean SCP queue length for stationary case............................... 91
Fig. 4.31: SSP acceptances for stationary case.................................... 92
Fig. 4.32: Mean SCP load for linearly increasing arrival rates......................... 93
Fig. 4.33: SSP acceptances for linearly increasing arrival rates.........................93
Fig. 4.34: Dynamic SCP load for bursty arrival rates................................94
Fig. 4.35: Mean SCP queue length for bursty arrival rates............................ 95
Fig. 4.36: Mean freephone delays for bursty arrival rates............................. 95
Fig. 4.37: Dynamic SCP load for stationary case.................................. 97
Fig. 4.38: Mean SCP load for stationary case.....................................97
Fig. 4.39: Mean SCP load for linearly increasing arrival rates.........................98
Fig. 4.40: Dynamic SCP load for bursty arrival rates............................... 99
Fig. 4.41: Dynamic SCP load for televoting overload.............................. 101

Chapter 5

Fig. 5.1: IN Implementation Scenarios... 105

viii

Table of Figures

Fig. 5.2: The IN model design..108
Fig. 5.3: The New IN Simulation Model (Network Layer)........................... Ill
Fig. 5.4: The New IN_ssp Node Model...112
Fig. 5.5: The IN Analytical Model.. 113
Fig. 5.6: The Independent Congestion Control Strategy............................. 118
Fig. 5.7: The Joint SCP/SSP Congestion Control Strategy........................... 119
Fig. 5.8: SSP load = 1.2, SCP load = 0.52...................................... 121
Fig. 5.9: SSP load = 1.2, with IN calls comprising 1.05 Erlangs....................... 122
Fig. 5.10: Overview of the New Global IN Congestion Control Strategy................ 129
Fig. 5.11: Offered Traffic Causing SSP Overload................................. 133
Fig. 5.12: Proportion of Traffic Accepted under SSP Overload....................... 133
Fig. 5.13: SCP and SSP Processor Loads during SSP Overload....................... 134
Fig. 5.14: Revenue during SSP Overload....................................... 134
Fig. 5.15: Proportion of Traffic Accepted at SSP during SCP Overload................. 135
Fig. 5.16: SSP and SCP Processor Loads during SCP Overload....................... 135
Fig. 5.17: Proportion of Traffic Accepted at SSP during General Overload.............. 136
Fig. 5.18: SSP and SCP Processor Loads during General Overload................... 136
Fig. 5.19: Revenue during General Overload.................................... 137
Fig. 5.20: Service Delays during General Overload............................... 137
Fig. 5.21: SSP and SCP Processor Loads during Overload due to Bursty Traffic.......... 138
Fig. 5.22: Revenue during Overload due to Bursty Traffic...........................138

Chapter 6

Fig. 6.1: The dynamic CCC/CG strategy......................................146
Fig. 6.2: Offered traffic for stationary case.................................... 148
Fig. 6.3: SCP load for stationary case.. 149
Fig. 6.4: SSP1 load for stationary case..149
Fig. 6.5 : SSP1 acceptances for stationary case..................................151
Fig. 6.6 : S SP1 revenue for stationary case..................................... 151
Fig. 6.7: Arrival rates to SSP1 for SCP overload................................ 152
Fig. 6.8: Total offered traffic to all IN physical elements.......................... 152
Fig. 6.9: SCP load for SCP overload... 153
Fig. 6.10: SSP1 load for SCP overload.. 154
Fig. 6.11: Acceptances at SSP1 for SCP overload................................ 154
Fig. 6.12: Revenue of SSP1 for SCP overload................................... 155
Fig. 6.13: Service delays at SSP1 for SCP overload............................... 155
Fig. 6.14: Arrival rates to SSP1 for SSP overload............,................... 156

ix

Table of Figures

Fig. 6.15: Arrival rates for all IN physical elements................... 156
Fig. 6.16: SSP1 load for SSP overload............................. 157
Fig. 6.17: SCP load for SSP overload.............................. 158
Fig. 6.18: SSP1 acceptances for SSP overload...................................158
Fig. 6.19: SSP1 throughput for SSP overload....................................159
Fig. 6.20: SSP1 revenue for SSP overload...................................... 159
Fig. 6.21: Arrival rates to SSP1 for general overload.................. 160
Fig. 6.22: Arrival rates for all IN physical elements............................... 160
Fig. 6.23: SCP load for general overload....................................... 161
Fig. 6.24: SSP1 load for general overload..................... 161
Fig. 6.25: SSP1 acceptances for general overload......... 162
Fig. 6.26: SSP1 throughput for general overload................................ 163
Fig. 6.27: SSP1 revenue for general overload.................................. 163
Fig. 6.28: Arrival rates for all IN physical elements.......................... 164
Fig. 6.29: SCP load for bursty overload.. 165
Fig. 6.30: SSP1 load for bursty overload.......................................165
Fig. 6.31: SSP1 acceptances for bursty overload................................. 166
Fig. 6.32: SSP1 revenue for bursty overload.................................... 167
Fig. 6.33: SSP1 service delays for bursty overload................................ 167

x

Abstract

Abstract
This thesis examines the congestion control issues that arise in Intelligent Networks, when it is
necessary to support multiple service types with different load requirements and priorities. The
area of Intelligent Network (IN) congestion control has been under investigation for over a decade,
but in general, the models used in this research were over-simplified and all service types were
assumed to have the same priority levels and load requirements at the various IN physical
elements. However, as the IN is a dynamic network that must process many different service types
that have radically different call load profiles and are based on different service level agreements
and charging schemes, the validity of the above assumptions is questionable. The aim of this work,
therefore, is to remove a number of the classic assumptions made in IN congestion control
research, by:
• developing a detailed model of an IN, catering for multiple traffic types,
• using this model to establish the shortcomings of classic congestion control strategies,
• devising a new IN congestion control strategy and verifying its superiority on the model.

To achieve these aims, an IN model (both simulation and analytic) is developed to reflect the
physical and functional architecture of the network and model the information flows required
between network entities in order to execute services. The effectiveness of various classic active
and reactive congestion control strategies are then investigated using this model and it is
established that none of these strategies are capable of protecting both the Service Control Point
and Service Switching Points under all possible traffic mixes and loads. This is partially due to the
fact that all of these strategies are based on the use of fixed parameters (and are therefore not
flexible enough to deal with IN traffic) and partially because none of these strategies take into
account the different load requirements of the different service types.

A new, flexible strategy is then devised to facilitate global IN congestion control and cater for
service types with different characteristics. This strategy maximises IN performance by protecting
all network elements from overload while maximising network revenue and preserving fairness
between service types during overload. A number of factors determining the relative importance or
weight of different traffic types are also identified and used by the strategy to maintain call
importance during overload. The efficiency of this strategy is demonstrated by comparing its
operation to that of the best classic IN overload controls and also to a new strategy, which has
scalable and dynamic behaviour (and which was devised for the purpose of providing a fair
comparison to the optimisation strategy). The optimisation-based strategy and dynamic strategy
are found to be equally effective and far superior to the classic strategies. However, the
optimisation algorithm also preserves relative importance and fairness, while maximising network
revenue - but at the cost of a not insignificant processing overhead.

xi

1

Chapter 1

Introduction

Chapter 1 Introduction

This thesis examines the area of Intelligent Network (IN) congestion and proposes strategies and
algorithms to protect an IN from this phenomenon. In this chapter, the terms congestion and IN are
defined and a brief description of the main issues involved with IN congestion control is provided.
Then, the primary objectives of our research in this area are presented, followed by an outline of
the structure of this thesis.

1.1 General Background

In the area of telecommunications, the term congestion refers to the scenario where the amount of
work offered to a telecommunications network element becomes so great that the element is no
longer capable of dealing with it. For example, if a Public Switched Telephony Network (PSTN)
switch is suddenly flooded with call requests (requests from users to establish a voice connection
or execute a service), but is not fast enough (does not have sufficient processing power) to deal
with these requests at the rate at which they are arriving, then the requests build up in the input
buffer. A further contributing factor is that the processing of a call by the switch is distributed
across the lifetime of the call and it is vital, in order to maintain efficiency, that once processing
has begun on a call, it completes successfully. Therefore all calls that are initially accepted by the
switch require more processing time at a later stage. This leads to even more demand being placed
on the processors and reduces further the rate at which the switch can deal with newly arriving call
requests. At this point the switch is overloaded or congested, the result of which is that users
experience unacceptably long delays in receiving dial tone, during call setup (Post Dialling Delay)
and at various other points in the call. Further, many calls are not established successfully and the
operation of the switch may be placed in jeopardy - in the worst case, the switch can break down
completely. It is therefore vital that a strategy for reducing the load on the switch processors (i.e.
the amount of work they have to do), namely a congestion (or overload) control strategy, is
implemented at the switch to prevent serious overload and to ensure that the switch is well
protected and operating at optimum efficiency at all times.

The area of congestion and congestion control techniques has been well researched and
documented, with many methods existing, each with its own advantages, disadvantages and
therefore, applications. These control techniques are usually examined and compared using
simulations and analytic models of simple single-processor systems to represent network elements.
These models assume that a network comprises multiple switches, with each switch being
responsible for protecting itself from overload, either by refusing all call requests outright (referred
to as blocking), by refusing a proportion of requests (referred to as throttling) or by notifying other
switches of the overload situation and telling them to route call requests over alternative paths.
This type of model is therefore sufficient for representing the operation of a PSTN or an Integrated

2

Chapter 1 Introduction

Services Digital Network (ISDN), where the network is comprised of a number of physical
entities, each carrying out similar functions and none more important to the operation of the whole
than any of the others.

The Intelligent Network does not have this kind of architecture. It was standardised by ITU-T
[ITU_IN] in order to specify a network architecture that allows users to create and maintain
services quickly and easily and which provides all authorised users in the network with the ability
to access any of the offered services. This objective is met by defining a number of IN elements
(called Physical Entities (PEs)) that together allow a service to be accessed and executed. Service
Switching Points (SSPs) receive service requests from users and are responsible for all switching
functions associated with terminating the call and also for the invocation of service logic in a
Service Control Point (SCP) - a PE of the IN at which service logic resides (and therefore
effectively the ‘core’ of the IN). SCPs control the execution of all services by transmitting requests
to and receiving information from the SSPs, Service Data Points (SDPs, which provides SCPs with
service- and user- specific data maintained in network databases) and Intelligent Peripherals (IPs,
which provides the functionality for the exchange of information with the user). Therefore, in
order to execute even the simplest service for a user, several messages must be transmitted
between an SCP and other IN PEs over a Signalling System Number 7 (SS7) network during the
course of only one call. This, of necessity, results in very large quantities of traffic to and from the
SCP. Therefore, the SCP is the principle bottleneck in the IN architecture, and the PE most likely
to become overloaded. It is also, however, the most important PE in the network (as it contains all
service logic programs) and it is therefore crucial that it be protected all times. Due to both the
distributed nature of the IN and the fact that the SCP is the most important element in the network,
the modelling of network behaviour cannot be accomplished accurately using the simple single­
processor model that is generally applied to PSTN and ISDN. Therefore, to investigate IN
congestion control issues, a new, more appropriate model must be developed.

The objective of an efficient congestion control strategy for the IN (or indeed any congestion
control strategy) is to successfully complete as many service requests for as many users as
possible, while keeping response delays as low as possible. However, the added complexity of the
IN architecture means that a number of other issues must be taken into consideration, among
which are:

• SCPs are the most important PEs in the IN, as all IN service requests must receive processing at
least once at an SCP. Therefore, if an SCP becomes congested, the number of services that will
be able to execute will be severely limited and it must therefore be protected at all costs. On the
other hand, it should process as many calls as is safely possible at all times, even during
congestion (i.e. it should not expend much of its capacity on the rejection of call requests).

3

Chapter 1 Introduction

• Multiple messages may arrive at an SCP during a single execution of a service at that SCP- i.e.
new call requests, once accepted, usually (depending on the type of service) lead to the later
arrival of requests associated with the same call. These requests may not be blocked, but must
be processed further in order to optimise SCP throughput (i.e. the amount of SCP capacity
spent processing calls which terminate successfully). For example, a simple service may
involve the arrival of two requests at an SCP (e.g. for a number translation service, SCP arrivals
would consist of the initial service request from the SSP followed by another as a reply to a
data lookup request from the SDP), while a relatively complex service would generate many
more SCP arrivals, require more processing and be therefore more likely to cause or exacerbate
a congestion situation.

• In the future, it is likely that SSPs will handle non-IN traffic, as well as IN service requests.
This will have implications on IN performance, because indiscriminate blocking of calls by the
SSP in order to protect itself may result in severe under-utilisation of the SCP. Also, non-IN
calls have lower processing overhead (by a factor of approximately 2.5) than IN requests, so a
policy of throttling all calls equally, without distinguishing between them, may prove
inefficient or even ineffective.

• The provision of IN services to customers tends to be based on Service Level Agreements
between the service provider and customer. As such, different services will have different
levels of importance, agreed arrival rates and tariffs (as well as different processing
requirements at the SCP). This implies that there may be a need for a priority-based congestion
control system.

1.2 Research Objectives & Methods

The principle objective of this work is to develop a new IN congestion control strategy which
performs better than the IN strategies which have been used in industry over the last decade. To
ensure the superiority of the new strategy, it should be compared with the best of these existing
strategies in an IN network model which simulates closely (with minimal assumptions) the
structure of a real Intelligent Network, the behaviour of its various functional components and the
trends and variations which tend to occur in IN traffic.

The first step in reaching this goal is therefore to develop a comprehensive model of the Intelligent
Network and to use it to examine the behaviour of the most commonly used SCP congestion
control strategies in industry today (SSP overload is generally not considered to be a factor in IN
congestion control and therefore SSP protection tends not to be included in the implemented
strategies). The results of this investigation then highlight the problems that exist in these
strategies. This provides insight into the characteristics that would be desirable in a new IN

4

Chapter 1 Introduction

congestion control strategy and therefore allows the requirements on this new strategy to be more
explicitly stated and refined.

The second step is to enhance the IN model in order to examine the effects on IN performance of
mixed IN and non-IN traffic at a finite-capacity SSP (i.e. an SSP which may experience
congestion). This investigation proves that the behaviour of an SSP congestion control strategy
may significantly affect the overall performance of the IN and, in doing so, demonstrates the
advantages of combining SCP and SSP overload controls into a single global IN overload control
strategy.

The third step consists of deriving a global IN congestion control strategy that protects both SCP
and SSPs, while exhibiting all desirable characteristics identified during the first step described
above. Inclusion of this new strategy in the IN model is then followed by rigorous testing and
comparison with other strategies in order to verify its superior effectiveness and efficiency.

1.3 Thesis Outline

Chapter 2 of this thesis provides all necessary information about the state of the art in the areas
relevant to this work. This includes a brief description of the architecture and operation of the IN,
followed by a summary of the results and conclusions of investigations into congestion control in
general and IN congestion control in particular. Chapter 3 provides the background information
required to aid understanding of the simulation and analytic modelling techniques and congestion
control algorithms that will be presented in following chapters.

Chapter 4 investigates methods for the protection of the SCP and documents the comprehensive
multi-processor Intelligent Network model that was developed to facilitate this investigation. The
effectiveness of classic congestion control detection methods (such as Queue Length Control, Call
Count Control and Load Measure Control) for SCP protection is compared, as is the operation of
the Call Gapping and Percent Thinning throttle algorithms. Then, the Window congestion control
strategy is compared with the best of the above detection methods combined with the best throttle.
Finally, a number of points are raised regarding areas in which these strategies’ performance is
undesirable and how they should be enhanced to improve their effectiveness.

Chapter 5 first presents a new version of the IN model used in Chapter 4 which was enhanced
based on the observations made in the conclusions of that chapter. The effect of the presence of
non-IN calls at finite capacity SSPs on IN congestion control algorithms is evaluated and it is
concluded that a strategy which dynamically manages congestion control jointly at the SCP and
SSPs provides better performance than a strategy in which all elements are protected

5

Chapter 1 Introduction

independently. Then, just such a global strategy (which is based on the mathematical optimisation
of revenue) is presented and results of its behaviour under various types and levels of overload are
given.

Then, in Chapter 6, to establish whether this revenue optimisation-based strategy provides the best
possible IN performance for any load condition, its operation is compared with those classic
strategies that were found to have the best performance in Chapter 4. Also, a new version of a
classic strategy (in which a dynamic Call Count Control detection method is combined with a
hybrid Percent Thinning/Call Gapping throttle) is derived, to ensure a fair comparison with the
optimisation-based strategy.

Chapter 7 then summarises the main conclusions of the work and provides a number of
recommendations regarding issues that should be addressed and algorithms that should be used
when developing a congestion control strategy for use in an Intelligent Network.

6

Chapter 2

State of the Art

Chapter 2 State of the Art

In this chapter, the background information about the Intelligent Network architecture and
standards is summarised, as are the results of the research which has taken place in the IN
congestion control arena to date. Section 2.1 describes the Intelligent Network in terms of
justification for its development, its standard evolution path and the IN Capability Set 1
architecture. Section 2.2 provides an introduction to the general concepts of congestion control and
Section 2.3 describes the research that has taken place in IN congestion control over the last ten
years.

2.1 The Intelligent Network (IN)

2.1.1 Justification for IN Development

Up until the mid 1980’s, services offered by network operators to users consisted principally of
basic call connectivity. Since then, however, service technology has grown greatly, with the
requirement for more complex services constantly on the increase. The structure of the Public
Switched Telephony Network (PSTN) as it stands is not very compatible with the need to supply
services, as to do so requires service logic to be available on all PSTN switches. The Integrated
Services Digital Network (ISDN) standard [ITU_ISDN] includes the specification of a number of
services (e.g. Abbreviated Dialling, Call Forwarding, Call Transfer etc.), but again, for an ISDN
switch to have the capability to offer ISDN services, the code for the services must reside locally
to the switch. Some of the difficulties associated with making services available in both PSTN and
ISDN include:

• The principle problem with the process of service provisioning is that, in PSTN and ISDN,
services are localised - in other words, if the software for a service is loaded at a network node,
only users directly attached to that node may use that service. Therefore:
• in order to be able to allow a customer to avail of a service, the appropriate functionality

must be loaded at their local node.
• Also, if a service is to be altered or upgraded, the code must be changed at every node

offering the service.
• This makes the provisioning and maintenance of a service both very difficult and very

slow.
• It is also very wasteful of resources in that the same service software is replicated at a wide

range of locations.
• Service developers have the added problem of vendor dependence, in that software and

hardware differs greatly between switches provided by different switch vendors and many
different brands and types of switches may be available in one network. It is therefore difficult

Chapter 2 State of the Art

to ensure that any developed software will work correctly on any given switch, and different
code must be written for different switches. Most switch vendors supply some basic services
already installed on their switches, but these do not necessarily function correctly when
interacting with other switches made by another vendor.

• Service creation is an expensive process, both in terms of time and money, as there is no
standardised environment available for the development of services. Some switch vendors
have developed proprietary service creation environments that increase the speed of the
development process for those vendors, but as they are not standardised, correct service
operation across switches provided by different vendors cannot be guaranteed.

• Different software versions across switches add further complications both in the development
and execution of services.

As the role of services in networks increased in importance, the necessity arose for a network
architecture which addressed the above problems and allowed network operators and service
providers to design, implement and maintain services as efficiently as possible to maximise the
possible income. Requirements on this service-friendly network included:

• A reduction in the length of the service design and development phase, by providing a
standard development environment comprising a set of reusable function blocks and tools to
facilitate the rapid design of a service.

• Much shorter deployment and provisioning phases, achieved through centralising all service
execution software so that the logic for a new service would need to be installed at relatively
few locations in the network in order to make it available for all customers on the network.
This centralisation would also simplify the task of upgrading and maintaining services.

• Independence from switch hardware and software vendors - switch vendors would be required,
in order to remain competitive, to provide a standard set of functions in their switches to
ensure compatibility with the overall network operation and the services residing in it.

• The ability for all users to avail of a service, no matter where they are located in the network.

The Intelligent Network was developed in order to meets these needs - i.e. to facilitate the creation
and operation of services within a telecommunications network. The concepts of the IN have been
under design since 1988 and are currently widely in use in the USA, Australia, Japan and Europe.
Some of the most popular services used in today's telecommunications market, including call
manipulation services (such as Call Forwarding, Call Transfer, Call Waiting), Freephone,
Televoting, Credit Card Calling and Premium Rate services, are offered via IN.

9

Chapter 2 State of the Art

2.1.2 Evolution of the Intelligent Network

The International Telecommunications Union (ITU) have adopted a 'Chinese Box' approach in the
development of IN standards in that each version of the standards (called Capability Sets) is a
superset of its predecessor, as shown in Figure 2.1 below.

The first version of the IN standards, ITU Capability Set 1, was released in 1993. CS-1 defines the
fundamental architecture of the IN in terms of the IN Conceptual Model (INCM). This 1NCM
addresses only the basic operation of the network in terms of the actions at and the interactions
between IN Physical Entities (PEs) required in order to execute a service. CS-1 was the first in-
depth standard detailing the concept of the IN and is responsible only for describing the basic
principles of service execution and network architecture. Therefore, CS-1 has a number of
limitations, in terms of how useful it is to service providers in the development of the types of
services that are desired today. These limitations include:

• No network management or service creation features were investigated - no specifications
were produced for the IN Service Management Function (SMF) or Service Creation
Environment Function (SCEF).

• In IN CS-1, services can only be implemented for Type A calls - i.e. calls which have, at all
times, only one originating and one terminating party. Therefore, CS-1 cannot facilitate the
creation of Call Transfer, Call Forwarding, Call Waiting, Conference Calling, or any other
service that involves more than two call parties at a time.

The specification of Capability Set 2 standards was very slow - the standard did not become
available until the end of 1997 - i.e. four years after CS-1. This standards development was not,
however, fast enough for service providers, who needed to be able to create and provide a wider
range of services than could be encompassed by CS-1. Therefore, IN equipment vendors and IN
service providers have developed their own proprietary versions of IN, which are based on the CS-
1 INCM, but which provide added functionality to facilitate the offering of Type B (multi-party)

10

Chapter 2 State of the Art

services - an example of this is the Ericsson SCP, which is based on the use of their proprietary
CS1+ [EricssonCSl+],

CS-2 expanded on existing CS-1 concepts and added many new concepts in areas not addressed by
CS-1 [Q1221]. Among these are:

• A wider range of functionality was specified to allow the development of narrowband Type B
services, such as audio-conference calling. This included both the specification of new Service
Independent Building Blocks (SIBs) and the extension of the Basic Call State Models
(BCSMs) and INAP (Intelligent Network Application Part - the application layer of the SS7
protocol stack).

• High level guidelines were provided for supporting service management services and service
creation. This included the specification of Service Management Service Features and
interfaces to management, based on T M N (Telecommunication Management Networks)
principles [ITU_TMN], interfaces (i.e. the X interface) and protocols (i.e. the Common
Management Information Protocol (CMIP)).

• The issue of interworking between INs and other networks was addressed in CS-2. The IN to
IN interworking (i.e. interworking across the boundaries of different IN domains) included the
specification of mechanisms for interworking between Service Control Points (SCPs), Service
Data Points (SDPs) and Service Management Points across IN domain boundaries. An
Intelligent Access Function (IAF) was specified to provide access to an SCF in an IN from a
non-IN structured network. The security issues that will arise at the boundaries between
network domains have also been addressed by CS-2. These interworking facilities will enable
IN standards to meet the open market demands for Open Network Provisioning (ONP), i.e.
they will permit service providers with service software located in one IN to make it available
(as third party service providers) to customers in other networks. These specification will also,
even within a single IN domain, improve the operation of the network by providing
redundancy and backup systems - for example, multiple SCPs could supply the same service,
so that if a problem arose at one SCP, requests could be re-routed to other SCPs supporting the
same services. Note, however, that CS-2 still requires a single point of control - i.e. at any one
time during execution of a service, an SSP should never have to interact with more than one
SCP.

• Some support has been provided for multimedia-type services and for services involving either
personal or terminal mobility. This support is now available at the logical level (i.e. SIBs have
been defined to support various features of these types of services), but this support is not yet
reflected at protocol level.

11

Chapter 2 State of the Art

In parallel with the CS-2 standardisation effort at ITU, the Telecommunications Intelligent
Networking Architecture (TINA) consortium was also founded to investigate how principles of IN
and T M N could be applied to the specification of an architecture for broadband services
[TINA97]. The TINA specifications are based on the use of CORBA (Common Object Request
Broker Architecture [CORBA99]) for service logic specification and A T M (Asynchronous
Transfer Mode [ATM99]) for broadband communication, and are currently quite influential in
contribution to the definition of standards in the Object Management Group (OMG) (e.g. for
access to CORBA-based services) and, to a lesser extent, in the ITU (e.g. the standardisation of
ITU-ODL in Study Group 10). It may therefore be predicted that TINA and T M N will all be very
influential in the specification of IN CS-3 (due out later in 2000), which is therefore highly likely
to encompass:

• Full IN/TMN integration, including full technical specification of the IN-SMF and SCEF,
• Full IN/ATM integration, including functionality (and protocol support) to offer broadband

multimedia services, such as video conferences, joint document editing services and
auctioning services,

• Full support for personal/terminal mobility services.

Also, as the telecoms and Information Technology (IT) domains continue to converge, it is likely
that various other standards bodies which have been established to advance computing
technologies, e.g. the OMG, which standardises CORBA for distributed software processing and
the IETF (Internet Engineering Task Force), which specifies Internet standards (e.g. Internet
Protocol (IP) version 6), will also be influential in the specification of CS-3, but the impact of this
work on the IN CS-3 standards is less clear. For example, it is unclear whether the SS7 (Signalling
System No. 7) will remain as the underlying protocol stack in CS-3. There is a possibility that
CO RBA’s HOP (Internet Inter-Orb Protocol) running over IP will become a candidate for this role.
Also, the functionality for offering distributed service logic (i.e. where the logic of services will no
longer reside at a single physical element (the IN SCP)) and the facility for expressing
functionality in terms of O M G ’s Interface Description Language (IDL) may prove very useful in
IN specification and may therefore be incorporated in CS-3.

However, at the moment, most real implementations of IN are still based on CS-1 and, as a result,
it is with networks of this type that congestion is currently an issue. Therefore, the model that was
developed and described in this report was developed to meet CS-1 specifications and all
congestion control research carried out was based on the physical architecture of IN CS-1. This is
not very restrictive, as all results and solutions remain valid in CS-2 and only require extending to
include issues related to IN-IN interworking (this issue is already being examined by e.g.
[Kawamura96] and [Swensen96]). The CS-1 results may also prove relevant to CS-3 networks, if

12

Chapter 2 State of the Art

the standard is based on the use of SS7 (in conjunction with a gateway between the SS7 TCAP
(Transaction Capabilities Application Part) layer and CORBA) for transport of control messages.
Of course, performance management in a distributed programming domain such as CORBA is a
completely separate issue, but it is perceived as being outside the scope of this thesis.

We, therefore, will now explain the functionality of the IN as defined by the CS-1 standards, as
being the basic network architecture on which all congestion control research has been carried out
in this thesis.

2.1.3 The Architecture and Operation of IN CS-1

The simplest way of explaining the concept of the IN is by introducing the IN Conceptual Model.
This provides a planar view of the implementation of a service within the IN. There are four planes
in the model, the highest plane representing services as discrete units, with each lower level further
examining the operation and execution of the services. At the lowest level, on the Physical Plane, a
full breakdown of the actions, interactions and information flows required to execute a service are
represented. The conceptual model is shown in Figure 2.2 below.

2.1.3.1 The Service Plane (SP)

This is the highest plane in the Conceptual Model and is described in [Q1202]. At this level,
services are described only in terms of how they behave. Services may be distinguished as
marketable products that are made up of one or more Service Features assembled together. A
Service Feature offers a limited amount of functionality to the user and may also be a service in its
own right. An example of a service feature that is also classified as a service would be the
Abbreviated Dialling Service. The Virtual Private Network (VPN) Service would be a prime
example of a service consisting of multiple service features, as a VPN may offer, among others,
the Abbreviated Dialling, Call Transfer and Call Forwarding features.

13

Chapter 2 State of the Art

Acronyms:
SF Service Feature GSL Global Service Logic
BCP Basic Call Process POI Point of Initiation
POR Point of Return SIB Service Independent Building Block
DSL Distributed Service Logic FE Functional Entity
PE Physical Entity px Protocol x

Fig. 2.2: The CS-1 Intelligent Network Conceptual Model

2.1.3.2 The Global Functional Plane (GFP)

The GFP describes the functionality of the IN on an abstract level [Q1213] in that it does not deal
with how functionality is realised or where it is located within the network. At this level, a service
or service feature is perceived as consisting of discrete blocks, called Service Independent Building

Blocks (SIBs). As this layer is independent of network structure, SIBs do not really exist as distinct

14

Chapter 2 State of the Art

entities at any location in the IN, but merely represent functionality within the network that is
needed to carry out tasks in order to provide the required service. Thirteen SIBs have been defined
in CS-1, among which are:

• Verify - this SIB is used to check the format of any input strings.
• Charge - this defines when special charging features or rates are to be applied, including, for

example, reverse charging and premium rate charging.
• Queue - this SIB allows calls to be queued at a destination. Announcements may be read to

waiting customers until it is their turn to be served.
• User Interaction - this SIB represents any interactions between the network and the user,

including the reading of announcements and the collection of digits.
• Translate - this SIB uses input data to reference information. In other words, it represents a

database lookup action.
• Screen - this compares an identifier against a list. It could be used as a security measure, to

represent the comparison of a Personal Identification Number (PIN) keyed in by the user
against a list of authorised users.

• Basic Call Process (BCP) - this is a special SIB which represents basic call functionality and
processing. It is therefore responsible for recognising when a service has been requested and
when a branch to other SIBs is required.

• When designing or representing a service using SIBs, the relevant SIBs are linked together in
chains and are invoked by the BCP via a Point o f Initiation (POI). The BCP supplies the SIBs
with the any Call Instance Data (CID - information specific to one call request, including for
example, the calling line identifier, the PIN keyed in by the user etc.) required to process the
call and execute the service. When a chain of SIBs has completed execution, control is
returned to the BCP via a Point o f Return (POR).

In order to demonstrate how SIBs may be used to represent a service, a GFP representation of a
Freephone service will be provided. The behaviour of this Freephone service may be defined as
follows: the service is activated when a user picks up their phone and dials a ten digit number,
beginning with the string "1800". This number is associated with a particular service subscriber,
and an attempt is made to establish a connection between the user and the subscriber. If the call
terminates successfully, the subscriber is billed for the call. A global functional plane
representation of the setup of this service is shown in Figure 2.3.

15

Chapter 2 State of the Art

POI

POR
POR

Basic
Call

Process
POI

POR

POI

POR

Address
Analyssd ». (^Verify

Proceed With New Data

Busy

^ Clear Call

Ar.tivfi Staff! ^ ^rrta\
^ Continue With Existing Data

No Answer ^ ________

g Clear Call

Fig. 2.3: GFP Representation o f the Freephone Service Setup

The operation of this model is as follows: the BCP signifies that the analysis of the digits entered
by the user and the recognition of a request for the freephone service has taken place by branching
at the Address Analysed POI to the relevant SIB chain. The first SIB, Verify, establishes that the
user has correctly entered a ten digit number. If the number has been entered incorrectly, the User
Interaction (UI) SIB is invoked to read an announcement (for example, "Please try again, ensuring
that you enter ten digits. Thank you.") to the user and control is returned to the BCP via a Clear

Call POR. The BCP is then responsible for terminating the call. If the number has been entered
correctly, the Translate SIB uses the dialled number to reference the actual Destination Number
(DN) of the subscriber. The D N is then returned to the BCP via a Proceed With New Data POR,
and call processing continues with routing to this new DN. When call setup is being attempted,
there are three options as to how the call may progress:

• If the subscriber's line is engaged, a Busy POI leads to a Queue SIB, which holds the call in a
queue until the line becomes available. Any problem will lead to an announcement being read
and the call being cleared, but if everything remains in order, control will be released via a
Continue with Existing Data POR to the BCP once the line becomes free.

• If the call request is accepted, an Active State POI leads to the Charge SIB, which specifies
that the terminating party is to be billed for the call.

• If the call is not answered, it is possible to access the User Interaction SIB via a No Answer

POI and cause an announcement to be read to the user before clearing the call.

16

Chapter 2 State of the Art

2.1.3.3 The Distributed Functional Plane (DFP)

The DFP describes how the various elements of functionality are distributed across the network
[Q1214]. The operation of the network is explained in terms of Functional Entities (FEs), each of
which carry out specific FE Actions (FEAs) and communicate with each other through
Information Flows (IFs). To retain openness, the physical location of the FEs is not addressed in
the DFP. Figure 2.4 depicts all FEs defined within CS-1.

Acronyms
CCAF: Call Control Agent Function CCF
SCEF: Service Creation Environment Function SCF
SDF: Service Data Function SMF
SRF: Service Resource Function SSF

Call Control Function
Service Control Function
Service Management Function
Service Switching Function

Fig. 2.4: Functional Entities in the IN CS-1 Distributed Functional Plane

The Service Creation Environment Function (SCEF) allows service providers to develop Service
Logic Programs (SLPs) quickly and easily. The SCEF is a subfunction of the Service Management
Function (SMF) that has overall responsibility for the deployment, provisioning and maintenance
of services and for the upkeep of data on the network. Note that no behaviour is specified for either
the SMF or SCEF in IN CS-1.

• The Service Control Function (SCF) is responsible for controlling the execution of services.
This task requires that the SCF manages the execution of SLPs and is also responsible for
handling the transmission of messages to the Service Data Function, the Service Resource
Function and the Service Switching Function and the interpretation of results from these
functions.

• The Service Data Function (SDF) interprets SCF-generated requests, accesses (reads or writes)
data in the database and sends results back to the SCF.

• The Service Resource Function (SRF) provides the functionality for interactions between the
network and users i.e. the reading of announcements, collection of digits typed in by the user
etc.

17

Chapter 2 State of the Art

• The Service Switching Function (SSF) acts as an interface between the SCF and the Call
Control Function (CCF). It interprets messages from the SCF and translates them into
instructions for the CCF and also builds information from the CCF into INAP messages for
transmission to the SCF.

• It is within the CCF that call processing is handled through the maintenance and manipulation
of a Basic Call State Model (BCSM - this models all the possible states a call can be in, along
with the requirements needed to pass from one state to another and all possible routes between
states. Two BCSMs have been specified in CS-1. The Originating B C S M (O-BCSM) models
the states of the originating call (e.g. Onhook, Call Authorisation, Number Analysis, Call
Routing etc.), while the Terminating B C S M shows all possible states in which the terminating
call may find itself. Note that it is the CS-1 BCSMs which primarily restrict the use of IN CS-1
to the provision of Type A calls.). The CCF is therefore responsible for the detection of service
requests at any stage in a call and for notifying the SCF accordingly, by passing the request to
the SSF. It also alters the state of a call according to instructions provided by the SCF via the
SSF. The CCF is also connected to the Call Control Agent Function (CCAF).

• The CCAF provides connectivity between the CCF and the customer.

Each FE within the network is capable of carrying out a number of actions (FEAs). This is done
through the execution of blocks of code within the FE. A set of Information Flows is defined
within CS-1 as a message set for passing information between FEs. The SIBs from the GFP may
be realised in the DFP as a series of FEAs and IFs. For example, the Translate SIB uses input data
as a key to obtain output information. On the DFP, this consists of a FEA within the SCF to build a
request with the input data as key, an information flow to the SDF, a FEA in the SDF to look up
the requested information and code it into a message and finally, an information flow back to the
SCF. This realisation can be extended to services. Taking again the freephone representation on
the GFP and making the assumption that the call proceeds without any hitches, a simplified DFP
realisation of how this service would cause a call to be setup is shown in Figure 2.5. Note that, in
the diagram, the SSF and CCF are modelled together - this is a common method of representing
their operation, as in reality, they are very closely linked. So, in showing the decomposition of the
service into FEAs and IFs, three functional entities are represented - the SSF/CCF, the SCF and the
SDF - r3 and r6 are different communications media between the functions.

Operation of the freephone service is user-driven - when the customer goes offhook an Originating
BCSM is created to monitor the progress of the call. After the freephone number has been dialled,
it is analysed by the CCF and the '1800' string at the start of the number is recognised as being a
request for service. The SSF builds an Analysed Information IF containing the dialled digits and
sends it to the SCF. The SCF creates an instance of the freephone SLP. This instance invokes FEA
9111, which builds a Query IF containing the freephone number as information key and sends it to

18

Chapter 2 State of the Art

the SDF. FEA 4111 in the SDF uses the key from the Query IF (i.e. the freephone number) to
reference the database to find the actual D N of the freephone subscriber. The D N is found and
encrypted in a Query Result IF as the outcome of the search. FEA 9112 in the SCF then takes this
outcome and builds it into a Select Route IF as the destination routing address. This IF is then
passed to the SSF, where it is interpreted as a command to continue call processing by selecting a
route to the newly supplied DN. The issue of charging is not shown here but would be quite simple
to implement - at the point where the call is successfully established, an IF is sent to the SCF
which (in some manner not addressed in CS-1) informs the billing system that the subscriber is to
be billed for the call.

SSF/CCF___________ r3 ___________ S C F _______________ _r6 _ ________SDF

User

O-BCSM

O-BCSM

Analysed Information

Dialled digits

Select Route

Destination Routing Address

FEA
9111

FEA
9112

Query

Information key

Query Result

FEA
4111

Outcome

Fig. 2.5: Freephone Service Decomposition

2.1.3.4 The Physical Plane (PP)

On the physical plane, details are provided in [Q1215] as to the physical aspects of the IN. The
Physical Entities (PEs) that form the intelligent network, the FEs realised within them and the
protocols by which they communicate are described at this level. The IN consists of the following
PEs:

• The Service Switching Point (SSP) - user access to service functionality is provided through
the SSP, which handles call processing, detects service requests and provides connectivity to
the SCP and other SSPs in the network. The SSP contains three discrete functions - the CCAF,
the CCF and the SSF.

• The Service Control Point (SCP) - the Service Control Function (SCF) resides here along with
the SLPs whose execution it manages.

• The Service Data Point (SDP) - this houses the SDF and is connected directly to the SCP. It
contains all network data relevant to the execution of services.

19

Chapter 2 State of the Art

• The Intelligent Peripheral (IP) - the SSP maintains a number of channels between itself and the
IP, which contains the Service Resource Function (SRF). Interactions occur between the SRF
and users when the SSP opens a channel between them. The IP receives instructions relating to
announcements and digit collection directly from the SCF and, when necessary, returns any
acquired information.

All communications between SSPs and SCPs and between SCPs and IPs occur over an SS7
network using the TCAP part of the protocol (see [Q1218]). The PEs and their interconnections,
along with the FEs realised within them, are shown in Figure 2.6 below.

S R F J . fy J

Other

SSPs

Transport

Channel

SS7

Network
Signalling

Channel

Fig. 2.6: Physical Architecture o f the CS-1 Intelligent Network

20

Chapter 2 State of the Art

2.2 Congestion Control

Congestion, or overload, of any system may be defined as that case when the arrival rate of
requests at the system exceeds the service rate of the system. Therefore, the number of calls to be
dealt with increases continuously as the input buffers build up. If the system has no method of
decreasing the number of waiting requests, all processing time is spent trying to deal with the
backlog. The result is that, as the input queue grows, each new request must wait longer and longer
to gain access to the processor, until the lengths of the delays to users become unreasonable, with
the result that users begin to abandon their call attempts and retry, thus increasing the input queue
further. This could eventually lead to the even worse scenario of a complete overload situation,
resulting in the system being unable to process the presented load and malfunctioning. These
delays, abandonments and malfunctions result in fewer calls being handled by the system. In all
cases, whether the system to be protected is a telecoms switch, a telecoms network, a LAN server
or a data network, this result is highly undesirable. Take, for example, a telecoms switch. From the
users point of view, an overload at their local switch (or a remote switch through which they are
trying to communicate) means that they are either presented with long delays in call handling or
are unable to complete a call successfully - this entails a serious drop in the quality of service to
network users. From a network operator’s perspective, not only does congestion result in losses of
revenue, but may also, in today’s open market, lead to the loss of unsatisfied customers. It is
therefore vital for both network operators and subscribers that overload does not occur, and so
congestion control is one of the top priorities in the design and operation of telephone switches.

2.2.1 Basic Requirements on Congestion Control Strategies

In order to describe and compare various congestion control strategies, it is necessary to initially
define the requirements for a successful control strategy. Each strategy will then be evaluated to
judge its efficiency at meeting each requirement - each strategy will have its strengths and
weaknesses. An analysis and comparison of the performances of each technique will then allow
the overall best method to be selected. The requirements were summarised by [Komer91] and may
be listed as follows:

1. It must be impossible for a complete breakdown to take place due to the input queue being
overwhelmed.

2. The system must retain good throughput characteristics at all times, i.e. the amount of resource
capacity spent accepting calls and completing processing of accepted calls should not decrease

21

Chapter 2 State of the Art

during an overload. The characteristics should approach the ideal shown in Figure 2.7 below as
much as possible.

Throughput

Offered Load

Fig. 2.7: Ideal Throughput Characteristics o f a System under Overload

3. Processor load (i.e. the total work that the processor must do - including accepting calls,
processing accepted calls and rejecting calls) should not exceed some threshold (usually set at
either 80% or 90% of total processor capacity), even in the event of an extreme overload, to
ensure that management and other non-switching functions (including congestion control
routines) may be implemented [Sabourin91],

4. Average response times - the length of time a user must wait for a response from the system -
must not increase noticeably due to overload. For example, in telecoms, this is both to comply
with international performance standards on post-dialling delays (see [E.721] and [E.723]) and
to minimise the number of call abandonments due to customer impatience (the impatience of
both ISDN and IN customers is well documented - see [MacDonald94], [Bolotin94] and
[Hoang90]). Call abandonment is highly undesirable, not only because resources which were
spent processing calls which are subsequently abandoned are wasted, but also because
abandoning customers have a tendency to reattempt their calls (see [Roberts79] and
[Burkard83]), thus exacerbating the overload condition.

In meeting the above requirements, a strategy will need to compromise between throughput and
response time, as they affect each other adversely. In order to keep throughput high during
overload, as many calls as possible must be accepted, thus increasing the length of the input queue
and the delay experienced by a request while those ahead of it in the queue are processed. On the
other hand, to maintain response times at a minimum, the requests must spend as little time as
possible in the input buffer, thereby reducing the number of calls in the buffer and the number

22

Chapter 2 State of the Art

handled by the processor. These parameters are also dependent on the length of the input queue. If
the input queue is short, response times will be shorter, but throughput will also be quite low. If the
input queue is longer, throughput (and load) will increase, but so will the delay experienced by the
user. The best possible compromise must be achieved between these parameters in order to
maximise the efficiency with which each of the above requirements are met.

2.2.2 An Overview of Congestion Control in the PSTN/ISDN

Overload control has been widely investigated in the area of providing protection to telephone
switches. In general, each switch in a network is responsible for protecting itself from becoming
congested. This is done by detecting any of a number of occurrences that are recognised as
constituting an overload situation and then implementing some measures to counteract the
problem. These measures may involve:

• refusing all new calls outright (callers are cut off with minimum delay and minimum load is
expending processing rejected calls),

• assigning priorities to different call types and selectively reject calls according to their
priorities when overload occurs (this may involve either processor or trunk reservation - see
[Lindberg88] and [Rajaratnam96] for examples of this),

• sending commands to surrounding nodes, instructing them to re-route call setup requests via
other paths where switches are not congested (this is referred to as flow control and may be
based on the use of pre-defined alternative routes or dynamic routing algorithms - see
[Zepf91], [Dziong89] and [Langlois91] for examples).

Therefore, in overload investigations, it is usual to assume that the system to be protected consists
of only one element - the switch.

The most popular model used for modelling systems under congestion (see [Komer91] and
[Wallstrom91]) consists of a single processor with a controllable throttle at the input and a single
feedback loop as a simplification of the delays (e.g. the time while the user is entering the desired
digits or the conversation phase of the call) between processing times for each call (shown for a
PSTN call in Figure 2.8 [Seraj85]). In all cases, irrelevant of which control strategy is in use,
[Komer91] shows that the delay must have an exponential distribution (see Chapter 3, Section
3.2.3.2), because constant delays result in violent fluctuations in the processor load during
operation. The algorithm for the detection of overload executes at the processor and when it deems
that congestion has occurred and intervention is required, a message is sent to initiate the throttle
algorithm, which then manages the input stream in order to reduce the number of calls to the
system. Note that, since the distribution of the random arrival of calls at a switch tends towards the

23

Chapter 2 State of the Art

Poisson distribution, an ideal Poisson generator is used to generate all new call requests. The
graphical model is as shown in Figure 2.9.

Processor

U tilisation

>
> >

I ■
t k

i k ' ‘

Digit Entry Ring Conversation

Time Phase

Call Authorisation Number Analysis
& Routing

Call Teardown Tim e

Fig. 2.8: Load Profile for a PSTN (non-IN) Call

Fig. 2.9: Congestion Control Model o f a Switching System

Note that this model is also suitable for monitoring distributed switching systems ([Manfield91],
[Daisenberger85]), as, in general, these systems consist of a main central processor which sets up
and controls all calls, and a number of peripherals which maintain line and trunk integrity. As it is
the central processor that must be protected, the control algorithm resides here and the throttle is
implemented separately at the peripherals. Therefore, the only difference in the model between
single-processor and distributed systems is the location of the throttle algorithm, which, in terms of
operation, has a negligible effect on system performance.

24

Chapter 2 State of the Art

2.2.3 Classification of Switch Congestion Control Strategies

There are two types of congestion control strategy used in switch congestion control (both for
Stored Program Controlled (SPC) and distributed systems). These may be classified as active and
reactive strategies. An active strategy is always in place and permanently restricts access to the
system, thereby preventing overload. Reactive strategies, on the other hand, only become active
when the onset of overload is detected and ceases when the overload condition ends. Note that, for
all strategies, when an incoming call is accepted, it is vital that it successfully completes
processing to the point where termination (and charging) occurs - both for economic reasons and
to optimise throughput. Therefore, any calls which have already received some processing must be
given priority over any new calls which have not yet undergone any processing. This criterion
ensures both that the call is either rejected immediately or serviced (i.e. not delayed and then
rejected) and that there is no waste of processor time through blocking calls that have already
received some attention.

2.2.3.1 Active Congestion Control Strategics

The principle active strategies used for managing congestion control in switches are Call Gapping,
Window, Leaky Bucket and Token Throttling. These may be described as follows:

Call Gapping - This mechanism involves the use of a timer set to expire after a gap interval g. For
each call arriving at the switch, the gap interval timer is checked. If the timer is inactive, the call is
accepted and the timer is set. Until this timer expires, all further arriving calls will be
unconditionally blocked. After the gap interval has elapsed and the timer becomes inactive, the
first call to arrive is accepted and serviced and the gap interval timer is set again. This mechanism
is illustrated in Figure 2.10 [Tsolas92], Note that, while Call Gapping (CG) is described here as a
switch congestion control strategy, it also has applications in network traffic management (e.g.
[Tumer91]).

Call requests

to switch
H h-

Key:

Accepted call: \

Blocked call: ^

Fig. 2.10: Call Gapping Mechanism

25

Chapter 2 State of the Art

Window Mechanism - Window is applicable only in distributed systems (the mechanism actually
originated in client/server computing environments [Tsolas92]) and is used primarily in peripheral
processors of distributed switches to protect the central processor. Here, each peripheral processor
keeps track of the number of requests, w, which have been sent to the central processor and for
which a response remains outstanding. Each time a new request arrives at a peripheral processor,
its current value of w is compared to W (the Window value of the peripheral processor, with
1 <W< Wmax, where Wmax the maximum allowable Window size). If w<W, then the new request
is dispatched to the central processor, w is increased and a timer is set for that request. This timer
corresponds to the acceptable delay for the request at the central processor. If, on the other hand,
w=W, the request is rejected immediately. Each time a response is received from the central
processor, w is decreased. Each time a timer expires, its associated request is rejected, and both w

and W are decreased. When a pre-defmed number Cmax of responses have been received from the
central processor, W is increased. At the central processor, the length of time a request has been
waiting for service is calculated before processing of the request begins. If the wait time exceeds
the acceptable delay, then the request is abandoned. This mechanism [Tsolas92] is shown
graphically in Figure 2.11.

Call attempts

to peripheral

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Responses from y .

central processor

Key:

Accepted call: ^

W = 5 W = 4
-H

3 4

------------------- -i
W = 5

time

Blocked call:= *

Timeout 2

=> Call 2
rejected,
W = 4

Cmax = 2

=> W = 5

Fig. 2.11: The Window Mechanism

The algorithm described in [Manfield91] is an example of the Window mechanism applied in a
distributed switch, with W=Wmax= 1. Window is also widely used for congestion control of other
distributed systems - namely, computer networks [Akyildiz90], telecoms networks (e.g. [Luan89]
and [Doshi91]) and Intelligent Networks (discussed in Section 2.3).

Leaky Bucket - This is a traffic shaping mechanism with three parameters - a Leaky Bucket
interval TLB > a limit counter, SLB, for the number of requests which may enter the Leaky Bucket
during TLB (i.e. SLB is effectively the depth of the bucket) and a counter, K LB , representing the

26

Chapter 2 State of the Art

number of requests which may leave the bucket during TLB (analogous to the size of the hole in
the bucket). The graphical representation of this mechanism [Pham91] is shown in Figure 2.12.

Decrement by
K l b ~ ^

Key:

Accepted call:

Blocked call:

hrfrfT+'T frrr--"tm rTNew requests

Fig. 2.12: The Leaky Bucket Mechanism

Token Mechanism - For the token algorithm, there are a fixed number of tokens in a token bank
(queue of tokens). Each new request to the system must take a token to be accepted to the system.
Those requests, which arrive when no token is present in the token bank, are rejected. When a
request completes processing, its token is returned to the token bank. This is shown in simplified
graphical form in Figure 2.13 and is described comprehensively in [Seraj85], as the primary
congestion control strategy used in Ericsson AXB (data) switches.

Number of

Tokens in Bank
i£

timeCompleted requests T t t tlr

New requests T 'T T ' f T T T T fV
Fig. 2.13: The Token Mechanism

Note also that a hybrid of Token and Leaky Bucket (called Token Bucket) exists, whereby a
parameter S TB controls the depth of the token bucket and K m controls the rate at which tokens
are released from the bucket.

A few comparisons may be made regarding the applicability of the active control strategies
described above. Window is the only strategy described above which is directly applicable to
distributed systems. Call Gapping, Leaky Bucket and Token are, as described, applicable to single
systems. However, they may also be adapted to act as throttles in a distributed system, i.e. they
may form part of a reactive system, where a remote detection method drives them by defining
either the gap interval for the CG throttle, the number of tokens which should be made available in
the Token throttle or the parameters of the Leaky Bucket throttle (described in Section 2.2.3.2).

27

Chapter 2 State of the Art

Regarding resource requirements of the different strategies, Call Gapping is the most efficient
strategy in terms of resource usage, as it requires only the maintenance of one timer. Leaky Bucket
is only slightly more complex, requiring the maintenance of two counters and one timer. The
Token mechanism, on the other hand, requires the maintenance of a queue of tokens (although this
could be achieved more simply, using counters) and some mechanism for associating a token with
a request. This means that Token requires more resources than Leaky Bucket. Window, however,
has the largest footprint, as it requires, not only the maintenance of three counters, but also a timer
for each request in the system.

Regarding operation of the strategies, active strategies generally tend, due to their fixed nature, to
be unnecessarily restrictive as they occasionally cause calls to be rejected unnecessarily during
small peaks in traffic load [Sabourin91]. Also, the fact that they are always in place makes them a
continual drain on processor resources, which is highly undesirable. Therefore, it is more common
to form a reactive strategy by using adapted versions of Call Gapping, Leaky Bucket and Token as
throttles, in conjunction with a detection method, as described in the following section. Window,
on the other hand, is not easily adapted to be a throttle and tends to be used as described above.

2.2.3.2 Reactive Congestion Control Strategies

As can be seen in Section 2.2.3.1, active congestion control mechanisms tend to have a single
algorithm executing in a single location. A reactive overload control method, on the other hand,
usually consists of two algorithms working together - namely, a detection routine and a throttling
mechanism. The detection routine may be either continually active or may execute at set intervals.
When executed, the detection algorithm recognises the presence of an overload situation, decides
the level of overload and the suitable action to combat it and then sends a command to the throttle,
which restricts the input to the system accordingly. Note that the separation between overload
detection and response makes the reactive class of strategies very suitable for the congestion
control of both single switches and distributed systems (distributed switches or networks of
switches).

The range of detection routines that have undergone the most investigation includes:

1. Queue Length Control (QLC) - each time a request is added to a queue, the queue length is
compared to a predefined maximum value, which, when exceeded, is classified as an overload
condition.

2. Load Measure Control (LMC)- the mean load of the central processor over the course of a
pre-defmed time interval is estimated at the end of each consecutive interval (using algorithms

28

Chapter 2 State of the Art

such as [Kallenberg89]) and compared with a maximum permissible value. When this value is
exceeded, an overload is deemed to exist.

3. Call Count Control (CCC) - the number of new arrivals to the system is counted (old calls
returning to the queue after a delay are excluded from this figure) over a pre-defined time
interval and if it is found, at the end of the interval, to be greater than a specified maximum,
alerts of an overload condition.

4. Any combination of the above - see [Wallstrom91] and [Villen85]. For example, CCC could
be used in conjunction with QLC. CCC initially detects an overload condition, and its response
is to lower the threshold of acceptable queue length. When the QLC algorithm detects that this
threshold has been exceeded, the throttle is initiated.

Most reactive congestion control strategies are based on either the direct use of the above detection
methods or on variations of these methods (e.g. [Daisenberger89]). The range of throttles defined
to be used with the above strategies include:

1. Call Gapping Throttle - the detection routine sends an overload level to the throttle, defining
a suitable gap interval, which is a length of time after a call has been accepted during which all
new arriving calls are blocked. A gap duration may also optionally be included - this is the
length of time for which the throttle should be in place. CG effectively places an upper bound
on the acceptance rate of a system. This throttle is one of the primary throttles used in
Intelligent Networks (described in Section 2.3), but also has applications in general network
traffic management, as described in [Pham91].

2. Percentage Throttle - the detection routine sends an overload level to the throttle, defining
the percentage of incoming calls to be accepted. All other calls are rejected. This is referred to
as percent thinning (PT) and is commonly used in PSTN and ISDN switches.

3. Token Throttle - this is an adaptive version of the active token mechanism, in which the
number of tokens available in the system is defined by the severity of the detected overload -
see, for example, [Berger91a].

4. Leaky Bucket Throttle - this is an adaptive version of the active Leaky Bucket mechanism, in
which the values of the limit counters are defined by the severity of the detected overload - see,
for example, [Pham91].

29

Chapter 2 State of the Art

Each of the three detection strategies described here- QLC, L M C and CCC - has its own
advantages and disadvantages when applied to a single-queue model. These are detailed in
[Komer91] and may be explained as follows.

Queue Length Control: QLC responds almost immediately to the onset of congestion, as the
input queue length is monitored continuously. However, recovery time is slow and there are heavy
fluctuations in the load. The reactive nature of QLC means that it is not possible to achieve a
satisfactory trade-off between response times and throughput - low response times can only be
achieved through maintaining the queue length threshold low, thus resulting in reduced
throughput.

Load Measure Control: Fluctuations in queue length and load for L M C are smaller than for
QLC. However, due to the fact that call acceptance only takes up 30% of total call processing time,
calls accepted during an interval may require more load during a later interval. Therefore, the
processor sees traffic levels as being greater than they actually are, resulting in overload being
detected well before its actual occurrence (i.e. when input traffic is only approximately 60% switch
capacity) - see also [Sabourin91]. L M C is also slow to recover from congestion. This is because
the measured load is defined by calls that have already been accepted. Therefore, by the time
overload is detected, many calls have already been accepted, and recovery is quite slow. Note also
that the efficiency of this method is very dependent on the length of the control interval - if the
interval is too short, overload controls will be initiated even earlier, whereas if it is too long, very
many calls will have been accepted and recovery will take even longer.

Call Count Control: CCC monitors the number of newly arriving calls and therefore gives an
accurate reflection of the input traffic. This means that it responds very quickly to the onset of
overload - in fact, due to the random nature of incoming traffic, CCC tends to respond prematurely
to overload - when incoming traffic is at 75% processor load. This means that overload is not very
serious when throttles are put in place and therefore recovery is also very fast, with minimal
fluctuations in input queue length and load. Note that, as with LMC, quality of operation is
dependent on control interval length - in a short control interval, there will be a large variation in
arrival intensity and controls could be initiated unnecessarily, while many calls will arrive during a
long interval and therefore, recovery will be slower.

The conclusion to be drawn from the above is that, for a single-queue system, CCC is the most
effective overload detection method. It responds quickly to the presence of congestion and
recovers quickly while maintaining good levels of throughput. However, it remains to be seen if
CCC remains the best technique when applied to the Intelligent Network. The IN is not structured
as a network of single-processor systems and also presents a number of new issues in the area of

30

Chapter 2 State of the Art

congestion control (detailed in Chapter 1). This means that it is impossible to draw any
conclusions, at this time, as to which detection method would be most effective at protecting the
SCP from overload.

Regarding throttling mechanisms, percent thinning is the easiest to implement and requires the
least processing power as it requires only the maintenance of two counters. Leaky Bucket has a
simple algorithm and requires two counters and one timer. CG is also simple to implement and
requires the maintenance of one (or possibly two) timers. The Token mechanism is very complex
to implement (see [Seraj85]) and requires the maintenance of a few queues of tokens. All throttles
mentioned may become more complex if it is required to allow variation in the throttling levels
applied to different call types or calls coming from different source nodes. No conclusive
comparisons are available between these throttle types in SPC/distributed switch/traffic
management studies, and therefore, their applicability in IN congestion control should be directly
established using IN models. Comparisons are available in the IN domain and will be described in
Section 2.3.

2.3 IN Congestion Control

2.3.1 A Description of the Models used in IN research

As the IN is made up of a number of different PEs that interact to execute a service, the issue of
congestion prevention and control is a much more complex one than for simple switching systems.
In the IN, as the SCP is most central to correct operation, protection of it is of paramount
importance. Therefore, to date, all documented research in the area of IN congestion control has
been focused on developing ways to maximise SCP efficiency.

Two different types of models have generally been used. The first is very similar to the single­
processor model used in the investigation of switch operation. However, in this case, the model
represents the SCP (see Figure 2.14). Input streams are usually assumed to be Poisson in nature
and the times between SCP processing of a single request (i.e. when SDP or IP access is required)
are represented as a feedback delay of arbitrary length. The throttle is placed at the input to the
system, so that only new requests may be rejected, but it is not specified whether it is integrated
into the SCP or located elsewhere in the network. Examples of research involving the use of this
type of model include [Smith95] and [Nyberg95b]. Its use is understandable in that, although the
model is an oversimplification of the real system, it is very useful for mathematical analysis of
SCP operation.

31

Chapter 2 State of the Art

Fig. 2.14: Single processor SCP model

The second type of model is more widely used as it more accurately represents the elements of an
IN, in that it contains multiple SSPs and one (or more) SCP. However, due to its added
complexity, mathematical analysis of the system is no longer a simple process. Therefore this
model is primarily used in simulations.

In general, the model appears as in Figure 2.15, with multiple SSPs connected to one SCP (e.g.
[Nyberg94], [Pham92], [Kihl95], [Rumsewicz96], [Yan94], [Kwiatkowski94a]). In some cases, a
Service Transfer Point is also included [Galletti92] to represent interactions with the SS7, which
would be the transmission medium between elements in a real network, although when the SS7 is
partially represented like this, the transmission delay is still only represented by a constant value.
Occasionally also, a combined Service Switching and Control Point (SSCP) is included, and is
represented as a delay queue in series with a job queue - see [Kihl97]. [Leever93] and
[Kwiatkowski94b] provide simple analytical method to calculate load and service delays for this
model. [Newcombe94] extends this model and solves mean delays using the decomposition
method (described in Chapter 3).

32

Chapter 2 State of the Art

Generally, different research studies using this model make a number of assumptions. These
include:

• It tends to be assumed that all calls in the network are of the same type, or if of different types,
have the same load profile. Information flows in the system tend to be simplified. For
example, in [Galletti92], all traffic is unidirectional - i.e. the SSPs send requests to the SCP
and the SCP does not respond. In most other investigations, communication between the SSP
and SCP is made up of a single query/response pair (e.g. [Pham92], [Kihl95], [Tsolas92],
[Nyberg94] and [Hebuteme90]) in which the SCP receives a query from an SSP, processes it
and returns a response to the relevant SSP. This is generally either represented either as a
simple number translation service (e.g. Freephone, which does only require one SCP
transaction) or as the first transaction in a more complex service. Justification for this
simplification tends to be that all service requests should be rejected or accepted during the
initial transaction and accepted calls should complete successfully, and therefore, as overload
only impacts on initial transactions, only these need to be modelled. Some research studies
(e.g. [Rumsewicz96], [Pham92]) do include information flows for more complex services (e.g.
services which require processing at the SCP on multiple occasions), but again, only the
impact of the initial service transactions are investigated. This is, however, not completely
accurate, as it does not take into account the effects of the load profiles of the different request
types in the system (i.e. how the necessary processing of old calls at the SCP impacts on
congestion situations).

• It also tends to be assumed that all service types in the network have the same priority level,
i.e. that during overload, all requests may be throttled equally. An exception is [Lee97], who
did examine how CG could be altered to cater for different call priorities.

• Retrials and their effects on congestion control strategies are generally not investigated in most
studies. An exception is [Manfield91], who included retrials in his study of overload control of
hierarchical switching systems.

• Many studies provide different interpretations as to the meaning of “fairness”. For example,
[Lee97] classifies fairness as “the probability of rejection ought to be the same for all the
subscribers, irrespective of which SSP they are connected to”, while [Hac98] claims that
fairness means that only sources (SSPs) which are causing overload should be targeted. Note
that theses definitions of fairness are contradictory - however, the first definition (i.e. that all
subscribers to a particular service should be treated equally) is more generally accepted and
may be referred to as “subscriber fairness”. [Rumsewicz96], [Galletti92] and [Tsolas92] say
that a fair strategy should target only the service type which is causing the overload (a form of
Focussed Destination Overload Control (FDOC)) - this may be termed “service fairness”.

33

Chapter 2 State of the Art

• In general, traffic arrival at SSPs is assumed to be Poisson in manner and SSPs are modelled
as infinite First-In-First-Out (FIFO) queues with either no delays, constant delays or
exponentially distributed services times.

Intelligent Network congestion control strategies tend to be based on the common switch-based
strategies described in Section 2.2. Active congestion control strategies are located in the SSPs and
are communication-less - i.e. they do not require notification of overload from the SCP. Reactive
strategies, on the other hand, are communication-oriented - the detection algorithms are located in
the SCP and send overload notification to the throttles in the SSPs. In both cases (active and
reactive), all rejections of service requests take place at SSPs. Justification for this is simple - SCP
processing time is at a premium during an overload situation and should be maximised in the
execution of services. Intuitively, therefore, implementing a throttle to reject requests at the SCP
is a waste of valuable processor time and should be avoided. Also, a substantial part of call
processing time at the SCP is spent unmarshalling the call (i.e. unwrapping the SS7 protocols)
before it may be interpreted and a decision made as to whether it should be accepted or rejected
[Komer94] - this overhead, in terms of wasted capacity, is unacceptable and therefore calls should
be rejected remotely. Therefore, throttles are always situated in the SSPs and restrict traffic to the
SCP according to the control data passed to them by the SCP. In general, this control data tends to
be an overload level, a call gap interval or (in cases where PT is used as the throttle) a percent
thinning coefficient.

Note that a form of the CG throttling mechanism described in Section 2.2.3.2 has been
standardised by Bellcore as part of the Advanced IN (AIN) standards [Bellcore92], This
mechanism is called Automatic Code Gapping (ACG) - automatic, because it is possible to
dynamically control the gap interval level to be applied by the throttle. This is not, however, as
adaptive as it sounds, as the standard includes a fixed table of permitted gap intervals from which
an appropriate interval must be chosen. A C G throttles may be put in place selectively at different
SSPs by either the SMS (SMS-Originated Code Control (SOCC)) or the SCP (SCP Overload
Control (SOC)). SOC includes a parameter that enables the selective restriction of calls based on
the first six digits of the originating/terminating number, while SOCC also allows the specification
of parameters that permit selective control of incoming calls (e.g. by service type). Note also,
however, that the A C G specification is specific to the AIN standards, and no such specification
exists in ITU CS-1. Therefore, there is no requirement to include this specification in our CS-1 IN
model and, as will be seen in Chapter 4, the version of CG implemented in the model conforms
with the (table-driven) throttle description provided in Section 2.2.3.2. In Chapter 6, a new, fully
adaptive CG throttle is defined - the motivation for this is provided by [Smith95], who
demonstrates both that the gap intervals provided in the AIN standard are ineffective, and that an
adaptive CG throttle has behaviour far superior to that of a fixed table-driven CG throttle.

34

Chapter 2 State of the Art

Some variations on the more usual active and reactive strategies have also been investigated in the
IN arena. For example, [Hac98] describes a hybrid Window/Adaptive CG strategy for IN
protection, [Nyberg95a] examined the use of Proportional Integral Differential (PID) controllers
for IN overload control and [Galletti92] and [Rumsewicz96] both propose extensions to usual
strategies to facilitate FDOC. Note also that the use of optimisation techniques for performance
management is not unusual. Some examples include [Pham91], who uses revenue optimisation to
dynamically define Leaky Bucket parameters, while [Milito91] uses revenue optimisation to
decide if a newly arrived call to an IN SSP should be blocked. [Angelin95] and [Arvidsson96]
investigate the use of profit optimisation to decide, based on predictions of SS7 and processing
delays, whether a new call request should be accepted at an SSP. The efficiency and performance
of these less common strategies are not compared to that of the common strategies. However, a
number of papers do exist which cover the comparison between:

• CG, Leaky Bucket and PT throttling mechanisms (no study has been published which
examines the performance of Token active strategies or throttles in the IN context),

• most common active and reactive IN congestion control strategies.

2.3.2 Comparison between Throttles for the IN

Leaky Bucket vs CG: [Pham91] suggests that the Adaptive Leaky Bucket throttle performed
better than the Adaptive CG throttle, primarily due to the fact that it is less strict and can handle
bursty arrivals because it limits the number of calls which can be accepted within a period while
CG only accepts strictly one call per period. However, this claim is not well supported in the
paper, and no other references were found to support this position. On the other hand, [Lee97]
compares a Continuous Gapping throttle (analogous to an adaptive Leaky Bucket strategy with a
leak rate of one request per interval) to the normal adaptive CG throttle and established that both
throttles perform equivalently, if suitable gap intervals are defined in each.

Percent Thinning vs CG: Considering the operation of the two throttles, [Kihl97] found that they
were generally equally efficient at protecting the SCP (providing the CG intervals were
appropriate to the network topology and call arrival rates). However, PT exhibits subscriber
fairness, as the SCP notifies all SSPs to reject a certain proportion of their arrival traffic and
therefore all SSPs are throttled equally [Rumsewicz96]. By extension of this, PT is scalable, as the
PT coefficient is not dependent on the size or number of SSPs in the network or on the arrival rates
to each SSP [Berger91b], CG, on the other hand, puts the same gaps in place on all SSPs,
irrespective of size, with the result that larger SSPs (or SSPs with greater arrival rates) are more
heavily throttled (i.e. it is not subscriber fair). CG is also not scalable. However, it is more robust
to changes in arrival rates (as it puts a firm upper limit on the number of calls which may be

35

i

Chapter 2 State of the Art

accepted [Berger91b], [Hebuteme90]) and also tends to throttle services with greater arrival rates
more heavily, resulting in a certain implicit level of service fairness.

2.3.3 Comparison between Active and Reactive Strategies for the IN

The most popular active congestion control strategy used in IN implementations is Window.
Reactive strategies tend to use QLC, CCC or L M C as the detection method in the SCP, and either
CG or PT in the SSPs. [Pham92], [Tsolas92], [Nyberg92] and [Nyberg94] carried out comparative
studies between active and reactive IN congestion control strategies. Unfortunately, it was found
that the results differed paper to paper. [Pham92] concluded that Window was generally superior
to CG, with one of the primary reasons for this being that Window is updated as to the state of the
SCP every time a response is received (i.e. it has a tighter SSP-SCP control loop than reactive
strategies). However, this conclusion may be questioned, as the monitoring interval used by the
CCC/CG strategy was 20 seconds - which is far greater than the optimal, as specified by
[Komer91]. Pham also found that Window was fairer than the reactive strategy in terms of
rejection rates at different SSPs in the network - however, it is unclear whether this is actually a
function of reactive strategies in general, or of the fact that CG was used as the throttle, where CG
has already been recognised as being quite unfair (see Section 2.3.2 above). [Tsolas92], on the
other hand, found LMC/CG to be superior to Window. He found that (with a shorter monitoring
interval than that used by [Pham92]) the reactive strategy responded more quickly to the onset of
congestion. LMC/CG was also considered to be more flexible, as it facilitated the selective
throttling of services or sources. Both [Nyberg92] and [Nyberg94] found reactive strategies
superior to the Window strategy for similar reasons to [Tsolas92], although it is interesting to note
that [Nyberg94], who used PT instead of CG as the throttle, added that the reactive strategy was
fairer than Window. However, the fact that no definitive answers are available in existing literature
means that it is still debatable which method is superior.

2.4 Conclusions

To conclude this chapter, we summarise that the most popular IN congestion control strategies in
place today are:

• Window, an active strategy located in SSPs,
• Various reactive strategies, consisting of either CCC, L M C or QLC as detection methods at

the SCP, working in conjunction with either a CG or a PT throttle in the SSPs.

To date, a number of studies have been conducted into comparing the operation of Window with
that of various reactive strategies, but no definitive conclusion has been drawn as to which is best.
Also, while CCC has been established as the best detection method in SPC systems, it remains to

36

Chapter 2 State of the Art

be seen whether it is still the best in the IN arena. Research into throttle types have found that both
CG and PT have advantages and disadvantages, so it is unclear which is superior in a practical IN
implementation. It was therefore decided to make no assumptions regarding superiority of
strategies, algorithms or methods at this point.

Chapter 4 will begin by focusing specifically on establishing the effectiveness of various detection
methods used in conjunction with the CG throttle. It will also be necessary to find out how
adaptable these detection methods are in order to meet the added requirements of the IN. Each of
the detection methods described above will therefore be implemented on a new type of model of
an IN system and executed in conjunction with the CG throttle in order to see which one best
meets the needs of the SCP. The detection algorithms will be located at the SCP, and will interact
with a CG throttle in the SSP in order to control the quantity of traffic arriving at the SCP. When
the best detection method has been established, this will be used in conjunction with both CG and
PT to establish the best common reactive strategy. When the best solution for a reactive strategy
has been established, its operation will be compared with that of the active Window mechanism.
The results of Chapter 4 will be twofold:

• the best of the most commonly used strategies will be identified (based on the principles
described in Section 2.2.1 of this chapter) for IN SCP overload control,

• the limitations of these strategies "will also be identified, which will help clarify the
requirements on an ideal IN congestion control strategy.

Then, in Chapter 5, the IN model will be enhanced to include non-IN calls, multiple finite-capacity
SSPs (i.e. SSPs which may experience overload), multiple traffic types with different load profiles
and priorities and a new strategy will be developed which will allow the efficient performance
management of this new, much more complex IN system. Throughout this work, the criteria that
will be used to evaluate the validity and efficiency of the developed congestion control strategies

• SCP queue length: It is vital to ensure that the SCP is protected from overload at all times. A
good way of estimating the dynamic load presented to the SCP is to monitor variations in the
input queue length - the occurrence of any overload situation will immediately be reflected
here.

• SCP throughput: The ideal congestion control strategy will protect the SCP at all times,
while maximising its throughput. The SCP queue length statistic will provide information as
to the quality of the evaluated strategies at protecting the SCP, but in order to ensure that the
strategies are not excessively harsh, their effect on SCP throughput must also be estimated.

• SSP load and throughput: For the initial study of SCP overload control strategies (in
Chapter 4), SSP capacity is modelled as being infinite and therefore, SSP throughput is not

37

Chapter 2 State of the Art

relevant. However, the enhanced model presented in Chapter 5 will include finite-capacity
SSPs that are also prone to overload and the congestion control strategy to be developed will
need to take into account the efficiency of the SSP.

• User delays: The average length of time each user must wait for service processing to be
completed. In general, network processing time of user requests for service should not exceed
2 seconds (as after this time, users will begin to abandon calls [Kant95]), although, in cases
where IP processing is required, longer delays are acceptable, as they include times when the
network is interacting with the user (i.e. when the user is busy and therefore not impatient).
As delays will vary for each service type, depending on the processing required, it is necessary
for each service to be monitored individually.

38

Chapter 3

Analysis Tools & Methods

Chapter 3 Analysis Tools & Methods

In this chapter, the background information required to understand the ideas presented in Chapters
4, 5 and 6 is presented. Firstly, OPNET, the tool used in the development and simulation of the IN
model, is described. Then, in Section 3.2, the queuing theory used in the specification of the IN
analytic model are explained. Section 3.3 finally presents the theory behind mathematical
optimisation and linear programming.

3.1 An IN Simulation Tool

3.1.1 Using OPNET for IN Simulation

In order to ascertain the behaviour of the Intelligent Network under various congestion control
strategies, it is necessary to develop both a simulation model of the IN (made up of service traffic
sources and a high-level model of the IN which deals with the traffic in a manner similar to a real
IN) and an analytical model (a mathematical model which allows the mean state of each element
of the IN to be evaluated for various mean traffic arrival rates). For the simulation, it was decided
to use the Optimised Network Engineering Tools (OPNET) package to develop the IN model.
OPNET is a hierarchical object oriented simulation tool, designed specifically for the development
and analysis of communication networks. It provides a graphical interface to the user for the
specification of models. The models of protocols and algorithms employ a hybrid approach by
allowing the user to embed C language code within a graphically laid out finite state machine. The
specification of processes in C is facilitated by an extensive library of support functions, which
provide a wide range of simulation services. It also provides a set of analysis tools to interpret the
simulation results in graphical form.

There were a number of reasons for choosing to use OPNET for modelling the IN system. These
included the following:
• OPNET’s hierarchical nature simplifies the design of complex systems, through the separation

of concerns into network, node and process levels.
• OPNET allows the creation of multiple instances of nodes, thereby making it easy to scale the

IN (in terms of the number of SSPs). Each of the node types of the IN (the SCP, SDP, IP and
SSP) have to be developed only once, but the overall system may consist of multiple instances
of each.

• Library functions are provided for the construction of queues and various traffic arrival time
and service time distributions.

• The core parts of a system (i.e. the processes) are event-driven finite state machines, thus
allowing the modelling of real-time systems, such as the IN.

40

Chapter 3 Analysis Tools & Methods

• The programming language underlying the application is called Objective C - this is
effectively standard ANSI C, with a large number of OPNET-specific library functions.
Familiarity with C therefore reduces considerably the learning curve involved with using
OPNET.

• Unlike a number of other modelling packages available, OPNET provides comprehensive and
flexible support for acquiring statistics from a simulation and representing them in graphical
form. It also provides various mathematical filters to facilitate rigorous analysis of statistics,
which was a useful feature in the course of this work.

3.1.2 Operation o f the OPNET modelling tool

OPNET simulations are based on four separate modelling domains called the Network, Node,
Process and Link domains. The dependencies between these modelling domains are shown in
Figure 3.1 below. As illustrated, network models rely on the definition of the node models, which
in turn incorporate process models. In addition, link models are used to characterise links between
nodes in the network domain.

Fig. 3.1: OPNET modelling domains

In the Network Domain, node models are instantiated and each instance may be assigned
independent attributes including identification, position, and user-defined attributes. Nodes that
are designed to attach to physical links (i.e. which contain receivers or transmitters) may be
interconnected to form arbitrary network topologies.

The Link Domain allows incorporation of custom or user-specified link models within OPNET
simulations. These models are specified in C and are linked into the simulation. Point-to-point
links are represented by lines between source and destination nodes. The point-to-point links are
unidirectional, so a duplex link must be represented by two links, one for each direction. The

41

Chapter 3 Analysis Tools & Methods

point-to-point links have a number of built-in attributes that can be specified by the user. They
include the transit delay incurred by packets forwarded over the link, and the bit error rate - the
probability of bit errors in packets transmitted over the link.

In the Node Domain, the internal structure of the nodes is defined. This structure consists of
modules that can generate, process, store, receive and transmit packets and manage resources
according to a user-defined process. These modules can be interconnected to form arbitrarily
complex node architectures. A number of standard module types are available within OPNET and
may be used directly or amended at process level to function in a user-defined way. The standard
module types include:

• The Ideal Generator module, which provides a convenient stochastic packet source. The
frequency of packet arrivals and the length of packets can be controlled by selecting any one
of a range of probability distributions. The packets generated can also have a packet format
specified, in terms of the fields within the packets and the information they hold.

• The Queue module, which incorporates C code and simulation kernel procedures to model
processing functions of the node. The queue module may contain a number of subqueues,
each of which can hold a list of packets. The queuing discipline used, the number of
subqueues needed and the capacity of each subqueue can also be specified. It is also possible
for the user to define whether the queue is active (i.e. has an in-built server, which removes
packets from the queue and processes them) or inactive. If an active queue is specified, the
service rate of the internal server may be defined by the user.

• The Processor module, which carries out set operations on any received packets. A range of
processor types are available, although the most commonly used one is the sink, which is
responsible for destroying packets and deallocating the memory assigned to them.

• The transmitter and receiver modules are used for communicating between nodes. A
transmitter module of one node is connected to a corresponding receiver module at the
destination node via a point-to-point link between nodes in the network domain. The
maximum data rate for each of these modules can be specified.

Process models are specified using a graphical editor that captures the structure of the process in
the form of a finite state machine (FSM). The FSM models a communications process by
responding to changes in its inputs, modifying its state and producing new outputs. Process
models may make use of a library of kernel procedures that support access to packets, network
variables, statistic collection, packet communication and other simulation services.

The two fundamental components of an FSM are states and transitions. States can be used to
represent the significant modes of the process and may have certain actions associated with them.
An FSM can implement actions both on entering and on leaving a state. All states can be

42

Chapter 3 Analysis Tools & Methods

considered as consisting of three different phases of traversal as shown in Figure 3.2 below. The
first phase is the enter executives, which are always implemented on arrival to the state. The
second is a possible resting phase and the third phase is the implementation of the exit executives.

Two types of states are distinguished in OPNET process models - forced and unforced states.
Forced states bypass the rest phase and proceed immediately to the exit executives. Unforced
states, on the other hand, always cause the operation of the FSM to be suspended immediately after
the enter executives have completed. An FSM will remain in the rest phase until a new interrupt is
delivered to the process model, causing a transition to the exit executives. In fact, interrupts are
absorbed by process models only when their FSMs are in a blocked condition, and thus necessarily
occupying an unforced state. Therefore, unforced states are only used when it is required for the
process to wait for a particular event to occur, the result of which is the generation of the
appropriate interrupt for which the process is waiting. When the correct interrupt is received, the
FSM will then leave the rest phase and start processing the exit executives. Execution will then
continue until the rest phase of another unforced state is reached. The graphical description of
forced and unforced states is shown in Figure 3.3.

The transitions shown in the diagram represent the possible migrations between states. A
transition is made up of a path description with an associated expression. When the exit
executives have completed for a state, the transition expressions are evaluated (as boolean), to
determine which transition should be followed and which new state entered. Since the finite state
machine may occupy only one state at a time, only one transition statement should evaluate as true
at any one time.

Fig. 3.2: Representation o f a State

Transition

Forced state Unforced state

Fig. 3.3: A sample FSM

43

Chapter 3 Analysis Tools & Methods

Within the process domain, it is possible for a user to create a new FSM with particular operations
defined in C-code in the enter and exit executives of the states. However, it is more common, and
much simpler, for a user to begin with the process model of a predefined module and amend its
functionality as required. The generator, queue and processor modules allow existing code to be
altered or enhanced in all executives, resulting in the creation of a new process type. The receivers
and transmitters, however, do not permit user-access to the process level code. Any manipulation
of packets at transmission time must therefore be carried out in other processes that may be
connected directly to the relevant module at node level.

3.2 Analytical Network Modelling

3.2.1 Probability Theory

Probability theory concerns itself with describing random events through the identification of
patterns in collections of related random events. As a simple example, if one were to toss a coin
once, the outcome would be unknown (aside from knowing that it will be either heads or tails!).
However, if the same coin was tossed one thousand times, it would be reasonable to expect that
approximately 500 heads and 500 tails would result. This is the basic premise of probability theory
- that accurate statements may be made about large collections of random events.

In order to analyse a given problem domain using probability theory, some terms must first be
defined:
• A sample space Q is the set of mutually exclusive exhaustive outcomes (sample points) of

an experiment on a given random problem domain.
• In this context, an event is the result of a single random experiment and comprises some set

{ to } of the sample space.
• A probability measure P of an event A is a measure of the likelihood of the occurrence of

that event. It is measured in real numbers, where 0 < P[A] < 1.
To give an example of these ideas, examine the behaviour of a die. Here, the sample space for the
tossing of a die is {1,2,3,4,5,6}, i.e. the set of all possible outcomes of the toss. Let an event A be
defined, for which the result of a toss of the die is 2. The probability of event A occurring is
obviously x/ 6 , as the die is equally likely to land on each face. Let us define another event B, for
which the result of the toss of a die is less than 3. Two sample points satisfy this event, namely 1
and 2. Therefore the probability of B occurring is:

nr Di the number of sample points which satisfy the event 2 , /
n J Q ~~6~

Note that P[Q.] = 1.

44

Chapter 3 Analysis Tools & Methods

3.2.2 Random Variables

Given this information, it is now possible to define the important concept of a random variable. A
random variable (RV) is a real-valued function defined on a sample space Q , i.e. it is a variable
whose value is defined by the outcome of a random experiment. Mathematically, a real number
X (a) may be represented as the value which the random variable X takes on, when the outcome
of the experiment is co . A random variable may also be classified as a discrete or continuous RV,
according to whether its range (the set of values which can take on) is discrete or continuous.

Now the probability mass function (pmf) of a discrete random variable may be defined as:

p{x) = P[X = x]

where X is a RV and x is a real number. Note that /?(*,■) = 1.
*,■

Also, the cumulative distribution function (cdf) of a RV X (both continuous and discrete) is
defined by F(x) = P[X < x]. Note that:

lim^^ F(x) = 1 and lirn^^ F(x) = 0
P[xn X <y] = F[y]-F[x]

As an example of these concepts, a RV X(a>), which is dependent on the outcome of the toss of a
die and has a range {-1,0,1}, is introduced. Let the value of -1 be the probability that the toss of
the die results in a 1 or a 2, i.e. P[X = -1] = P[a> e {1,2}] = y . Further, let P[X = 0] = P[o) = 3] = y

and P\X = 1] = P[co e {4,5,6}] = l/ 2 . The pmf of this random variable is shown in Figure 3.4.

P(x)
------------------------------------& *-

0.5 ♦

0.4
»

0.3 '

0.2 ;

0.1

------------- 1--------------1---------- e -
-1.5 -1 -0.5 0 0.5 1 1.5

Fig. 3.4: pm f o f X(oj)

The cdf of X(co) is as shown in Figure 3.5.

45

Chapter 3 Analysis Tools & Methods

F(x)

Fig. 3.5: cdfof X{a>)

Finally, the probability density function (pdf) of a continuous R V X (defined by p(x)-0) may be
found, at each point x where f is continuous by:

f t \ dF /(*) = — ax

Note that:
/ (x) > 0 for all real x

f f(x)d x = 1
J—00

/ is integrableandP[a it X < b \ = £ / (x)dx

F(x) = f f (t)d t for each real x J-00

3.2.2.1 Moments of a Random Variable

The k^1 moment of a discrete R V is defined by:

i

while the moment of a continuous RV is defined by:

E [X k] = p xkf (x)dx
J -c O

Two moments of a RV have been given special names. When k=l, this is the mean or expected
value of a RV. When k=2, this is the variance of a RV.

The formula to calculate the expected value of a random variable X defined by a discrete sample
space is:

n
E[h(X)] =J>(*,)P(x,.)

1=1

46

Chapter 3 Analysis Tools & Methods

When X is continuous, E[h(X)] = h (x) f (x) d x . Note that, when two random variables X and Y

are independent, expectation is a linear operator i.e. that E[XY] = E[X]E[Y] and

E[X + Y] = E[X] + E[Y].

The variance o f an RV X, defined on a discrete sample space, is given by the formula:

V[X] = E [X 2] - E 2[X] and that for independent RVs, variance is a linear operator, i.e.

Knowing the expected value and variance o f a random variable, the square of the variation
coefficients (svc) o f the RV may be calculated, according to K x - V [X } ! E 2[X] .

3.2.3 Random Processes

A stochastic (random) process is a function o f two arguments - time and a probability space, and is

therefore denoted by the term X(t,a)). For a fixed value o f t, X(-,a>) is merely a function o f the

probability space Cl - i.e. is a random variable. For a fixed value o f a>, X(t , -) is a function o f time

and is referred to as a sample function o f the process. Examples o f random processes include:

• The number o f call requests that can arrive at a switch in [0,t) is a discrete-state, continuous-

parameter random process.

• The waiting time o f an inquiry for processing is a continuous-state, continuous-parameter

• If {x„ ,n = 1,2,..,7} denotes runtime o f a job, where n is the day o f the week on which the job is

running, this is a continuous-state, discrete-parameter process.

• If {X„,n = 1,2,...,365} describes the number o f jobs per day o f the year, this is a discrete-state

discrete-parameter process.

Completely specifying a random process is considerably more difficult than specifying a random

variable. Let a cdf, Fx (x, t) be defined, for each allowed t, which is given by Fx (x, t) = P[X(i) < x] .

Further, for each o f n allowable values o f t, a joint cd f may be defined for the process, where

Fx t,x2,...,x„ (*1 ,x 2,...,x„;tutz ,...,tn) = P[X(tl) = x];X (t2) = x2;...;X(t„) = x „] . Some properties o f random

processes may now be defined.

V[X] = a 2 = £ (x i - E [X]) 2p(x i)

If X is continuous, its variance is given by

process.

47

Chapter 3 Analysis Tools & Methods

rcoh(x) f (x)d x . Note that, when two random variables X and Yoo
are independent, expectation is a linear operator i.e. that E[XY] = E[X]E[Y] and

E[X + Y] = E[X] + E[Y].

The variance o f an RV X, defined on a discrete sample space, is given by the formula:

V[X] = E [X 2] - E 2[X] and that for independent RVs, variance is a linear operator, i.e.

therefore denoted by the term X (t , eo). For a fixed value o f t, X(-,a>)is merely a function o f the

probability space Q - i.e. is a random variable. For a fixed value o f co, X(t , -) is a function o f time

and is referred to as a sa m pl e f u nc t io n o f the process. Examples o f random processes include:

• The number o f call requests that can arrive at a switch in [0,t) is a discrete-state, continuous-

parameter random process.

• The waiting time o f an inquiry for processing is a continuous-state, continuous-parameter

• If { x n,n = 1,2,..,7} denotes runtime o f a job, where n is the day o f the week on which the job is

running, this is a continuous-state, discrete-parameter process.

• If {x„ ,n = 1,2,...,365} describes the number o f jobs per day o f the year, this is a discrete-state

discrete-parameter process.

Completely specifying a random process is considerably more difficult than specifying a random

variable. Let a cdf, Fx {x,t) be defined, for each allowed t, which is given by Fx (x,t) - F\X{t) < x] .

Further, for each o f n allowable values o f t, a joint cd f may be defined for the process, where

V[X] = a 2 = £ (* ,- - E[X])2p (Xl)

If X is continuous, its variance is given by

Knowing the expected value and variance o f a random variable, the square of the variation
coefficients (svc) o f the RV may be calculated, according to Kx = V[X]I E2[X].

3.2.3 Random Processes

A stochastic (random) process is a function o f two arguments - time and a probability space, and is

process.

47

Chapter 3 Analysis Tools & Methods

3.2.3.1 Properties of Random Processes

Independence: I f X (i,) is independent to X (t2) etc. (say i f X(t) is defined by the toss o f a coin or the

roll o f a die), then F(x1,x2,...,xtt;tl t2,...,t„) = F(xt; tx)F(x2; t2)...F(xn; tn).

Stationarity: In a stationary process, F(x],x2,...,x„;tl + h,t2 + h,...,tn + h) = F(xl ,x2,...,xn;tht2,...,tn) .

The distribution is independent o f time over a set interval, i.e. the probability o f changing from one

state to another remains constant with time.

Wide-Sense Stationarity: Also referred to as Covariance Stationarity. The expected value and

variance o f the random process is independent o f time, i.e.

F[X(ti)] = /j ,Vi and E\X(t)] = fi ,V i e T
Var[X(t;)] = a 2, Vi and Var[X(t)] = ex2, V i e T

Note: Stationary c W ide-Sense Stationary

3.2.3.2 Some Common Random Processes

The Markov Process: A stochastic process is classified as a Markov Process if f

P\.X(t„+\) = x„+l\X(ti) = x{;X(t2) = x2;...;X(t„) = x„] = P_X{tn+x) = xn+l\X(t„) = x„]

i.e. the future state o f a Markov Process is dependent only on the current state, and not on past

history. Markov processes have a number o f noteworthy characteristics:

• If the state space o f a Markov Process is discrete, it is referred to as a Markov Chain.

• In a Markov Chain, a state transition occurs at each discrete time unit, even i f the state does

not change as a result o f the transition.

• I f the chain is homogeneous or stationary, the future state is dependent only on the current

state, and not on the time index associated with the current state.

• In a Markov Chain, the length o f time spent in a state is defined by

P [system rem ain s in sam e state for m transitions] = (1 - p a) p H , i.e. it is geometrically

distributed.

• In a Markov Process, the length o f time spent in a state is exponentially distributed.

The Semi-Markov Process: The whole concept o f Markov Processes revolves around the fact that

a transition must be made at every unit time, even i f the state remains the same after a transition.

With Semi-Markov Processes, no such time restrictions are in place and the process may remain in

a given state for a length o f time defined by an arbitrary distribution. A t transition times, the

process behaves just like a Markov chain, and is referred to as an embedded Markov Chain.

48

Chapter 3 Analysis Tools & Methods

The Birth-Death Process: A birth-death process is a type of Markov Chain (with geometrically
distributed times between changes in state) and may be either a continuous- or discrete-parameter
process, but has the added characteristic that state transitions may only take place between
neighbouring states.

An example of a birth-death system is a queuing system where the time intervals approach zero
(i.e. a continuous-parameter system), so that only one event can happen in an interval. Therefore,
if a chain is in state Xn = i, the only possible events are:

An arrival => X n+l = i +1,
A departure => X n+] = i -1, or
Nothing => X n+l = i .

The probability of a BDP being in a particular state k at time t is denoted by Pk(t), where:

Pk{t + At) = Pk(t) - (Ak + juk)AtPk(i) + A ^ A tP ^ i t) + //aAtPk+1(t) + o(t), k > 1
P0 (i + Ai) = P0 (t) - AoAtPQ (t) + Ai AtPl (t) + o(t), k = 0

Using a State-Transition-Rate diagram, the rate of change of probability "flow" into state k equals
the flow in minus the flow out. Therefore, the above equations may be restated in the form:

Let us define pk as the probability that the system is in state Ek at some arbitrary time in the
future, where pk = lirn,̂ Pk(t) . For the general BDP,

~ + Mk)pk (0 + 4 - ^ - 1 (0 + k -1at
k =o

at

k = 0,1,2,.
1

Po m t_i

The Random Walk: This process is a form of Semi-Markov Chain in which:

x„+1= x n + u„
n

=> for a random walk, A'n+1 = ̂ Ui
i=0

where U n is drawn independently from an arbitrary distribution

Chapter 3 Analysis Tools & Methods

The Renewal Process: The Renewal Process is a specific application of the Random Walk, but is
more specific in that it counts the number of state transitions of the monitored process. Therefore,
the renewal process, evaluated at time t, will show the number of state transitions the subject
process has undergone in the interval [0,0, whether that interval is discrete or continuous.

Note that if the monitored process is a Markov Chain, with the state time geometrically distributed,
or a Markov Process, with the state time exponentially distributed, the Renewal Process will also
be Markovian, with the same state time distribution.

The Poisson Process: The Poisson Arrival Process may be defined by evaluating Pk(t) for a BDP
with zero departure rate and constant arrival rate A . The result is:

PAt) = ^ —e M, k>0,t>0.
k\

The Poisson Process is also a specific form of the Renewal Process, in that it counts the number of
state transitions in a specified time interval. Therefore, the Poisson process is a Renewal Process, a
Random Walk, a Birth-Death Process (as only one state transition (or arrival) may take place at a
time) and a continuous-parameter Markov Chain. Other important characteristics of a Poisson
process include:
• For a Poisson Process, the average number of arrivals in (0,0 is At . Also, the variance of the

number of arrivals in the same time interval is also equal to A t.

• For a Poisson Arrival Process, the interarrival times are exponentially distributed, i.e. the pdf
of the interarrival times may be characterised according to / (f) = Ae ~M,t> 0 . The mean of
the exponential interarrival time distribution is]/x, while its variance is . This distribution
also has a property called memorylessness, whereby the distribution of the time until a future
arrival is independent of the time since the last arrival, i.e. if, at some random time t, an
estimate of the amount of time till the next arrival is evaluated, the result will be independent
of the time that has elapsed since the last arrival.

• The Poisson process has stationary independent increments, i.e. events occurring in non­
overlapping intervals of time are independent of each other.

• The Poisson process is covariance stationary (WSS) with:
E [X (t) - X (s)] = A (t - s)

and
Var[X(t)-X(s)] = A (t-s)

Figure 3.6 demonstrates the relationships between the above-described random processes.

50

Chapter 3 Analysis Tools & Methods

Fig. 3.6: Relationship between Random Processes

Note that the Poisson process has all the characteristics of all the other types of random process
described above. It has also been found to be extremely suitable and accurate for modelling,
amongst other things, the traffic in switched telephony networks. Therefore, in the model to be
developed, all call arrivals to the IN SSPs will have a Poisson distribution.

3.2.4 Queuing Theory

A queuing system is any system in which arrivals place demands upon a finite-capacity resource
[Kleinrock], In particular, if the arrival times or the processing requirements of these demands are
random, then conflicts for the use of the resource will arise and queues will form. A simple
example is a queue for service at a cashier’s desk in a bank. The length of the queue depends on:

• The average rate at which demands arrive. If the average arrival rate of customers is greater
than the rate at which the cashier can serve customers, a queue will grow (and grow and grow)
unless the cashier speeds up or another cashier provides assistance.

• The variation in rate at which demands arrive. If the cashier can handle the average rate at
which customers arrive comfortably, a queue will still build up occasionally based on
variations which will occur in arrivals. If these variations from the mean arrival rate are large,
large queues will build up occasionally, whereas small variations will cause small queue build­
ups.

• The average rate at which demands are served. Different customers will have different
demands, and therefore the time to serve them will differ. If the average service time is shorter
than the average interarrival time, the queue should not grow significantly.

• The variation in rate at which the demands are served. Even if the average service rate is
greater than the average arrival rate, a queue will still build up occasionally based on
variations which will occur in service times (e.g. a customer requiring a complicated
transaction may require significantly more service time than the average). If these variations

51

Chapter 3 Analysis Tools & Methods

from the mean service time are large, large queues will build up occasionally, whereas small
variations will cause small queue build-ups to occur more often.

These dependencies apply to all queues, whether of customers in a bank or of call requests in a
telecoms switch. Some common definitions used in queuing theory will now be provided.

• The arrival process to a queue may be described in terms of the probability distribution of the
interarrival times of requests at the queue, A(t), where A(t) = P[time between arrivals < /J. The
mean arrival rate is denoted A , with the mean interarrival time yx. The square of variation
coefficient (svc) o f Aft) is given by Ka = V[A]A2.

• The server process of a queue may be described in terms of the probability distribution of the
service times of requests at the queue, B(x), where B(x) - P[service time < x\. The mean
service rate is denoted //, with the mean service time x/ft. The variability of B(x) may be

assessed by the value of its square of variation coefficient (svc), given by Ks = V[B]//2.

• The load of a queue, p , is effectively a measure of the proportion of time the processor of a
queue is busy, and is calculated as p - j/ . Note that, if p < 1 (i.e. A. < //) for a queue, the
queue will be stable (i.e. will not become overloaded).

• Little’s Law states that N - A T , where N is the mean number of requests in the system and T
is the average time spent by requests in the system.

Queues can also be characterised according to the simple, widely-used shorthand notation A/B/n,
where A describes the queue’s interarrival time distribution, B describes its service time
distribution and n is the number of servers in the queue. Values which A and B can take on include
exponential (M), deterministic (D), erlangian (E) and general (G). So, for example, an M/D/2
queue is a two-server queue with exponential interarrival times (i.e. a Poisson Arrival Process) and
deterministic (constant) service times.

3.2.4.1 The M/M/1 Queue

The M/M/1 queue is probably one of the simplest queues to analyse and is also very popular for
use in modelling telecoms systems, as its behaviour is quite close to the mean behaviour of a real
telecoms switch. As shown by its notation, the M/M/1 queue is a single-server queue with
exponential arrival rates (forming a Poisson Arrival Process) and service times. Therefore, both A

and p. are constant (independent of both time and state of the arrival and server processes). From
this may be derived a number of formula relating to the state of the queue:

co

• The average number of customers in the M/M/1 system is given by Ñ = 'S\kpk - —
k=0 l ~ P

52

Chapter 3 Analysis Tools & Methods

The variance of the number of customers in the system is <*1 ='YJ(k ~ N ?Pk =
k=0 (i -PŸ

n yThe average time spent in the system is T = — = -
X 1-/3

VIA] Vi• The svc of interarrivals to the queue is Ka - — — — = / x _ = 1. The svc of the service times,
E 2[A] (/2)2

K s, also equals 1.

Note that, according to Burke’s theorem, the interdeparture times from an M/M/1 queue are also
exponentially distributed. Therefore, these formulae are also valid when applied to a network of
M/M/1 queues, but only if the network is feedforward (i.e. there is no feedback between any
queues) and if all queues have only a single service rate. Therefore, if a queuing network exhibits
feedback or contains queues with multiple service rates, some other method must be used to
evaluate e.g. the mean queue length and mean waiting time for each queue in the network.

3.2.5 Choosing an Appropriate Technique for the Analysis o f an IN Queuing Model

A number of queuing network analysis techniques are available for analysing the behaviour of a
network (or chain) of queues. Each of these techniques places different requirements on the
structure of the queuing network and provides different results. Therefore, in order to facilitate the
correct choice of a technique suitable for analysing the behaviour of an IN under congestion, the
requirements on an IN analytic model should first be specified.

Firstly, an open model of an Intelligent Network is needed, i.e. a model in which calls arrive from
some external source outside the network and calls depart to some external sink outside the
network. The model must also support multiple service types, each of which has different routes
through the network and (potentially) different processing requirements at each node in the
network. It should also be possible to model the behaviour of various congestion control strategies
under various overload conditions with the resulting requirement that the throttling (blocking) of
calls must be facilitated. To evaluate the efficiency of each congestion control strategy, the load
and queue length at each node in the network must be able to be evaluated, as well as the average
service delays for each service type (as described in Chapter 2). The mean arrival rates and loads
can be calculated directly from the analytic model, but the queue lengths and service delay results
must be provided by the analysis technique. It is acceptable to assume that external arrivals to the
system are Poisson in nature, but it would be preferable for there to be no constraint on the nature
of the service time distribution.

53

Chapter 3 Analysis Tools & Methods

Having stated the requirements on the analytic model, it is now possible to examine the available
queuing network analysis techniques, to establish which one best meets these requirements.

A number of queuing network analysis techniques exist (e.g. Jackson and BCMP networks) which
allow the behaviour of all queues in the network to be calculated exactly, in terms of returning the
joint probabilities of queue lengths [Gelenbe], but these techniques place stringent requirements on
the network, including:
• All service times must be exponentially distributed,
• External arrivals must be Poisson,
• There may only be one class of customer, or if there is more than one, the service times of the

queues must apply to all classes equally.
• All queues must have unlimited capacity.

Use of these techniques is not appropriate as the constraints on customer classes mean that IN
traffic cannot be accurately modelled and also because the solutions provided by the analysis are
not useful - e.g. they do not facilitate the estimation of service delays.

The alternative option is to use an approximation method. Approximation methods allow various
characteristics of the queues within the network to be approximated accurately. Each of the
techniques available for analysing networks of queues make a number of assumptions and allow
particular characteristics to be estimated. Table 3.1 summarise the assumptions made by and the
results provided by two different approximation methods.

Approximation Method Assumptions Made Results Provided

The Mean Value Method For open networks:
1. Each queue FIFO
2. Exponentially distributed

service times
3. Unique service rate at each

queue

1. The mean queue length of
each queue

2. Average service delay for
each service

The Decomposition Method 1. Open network,
2. Each queue has single

server
3. Each queue FIFO

1. The mean queue length of
each queue

2. Average service delay for
each service

Table 3.1: Summary o f Two Approximation Methods

Both methods provide us with the desired results, namely the mean length of each queue and the
average delay for each service type. However, the Mean Value method constrains all service types
to having the same service rate at each queue. This is not desirable in our model, as IN calls and

54

Chapter 3 Analysis Tools & Methods

non-IN calls have very different service rates. The decomposition method, on the other hand, does
not have this constraint - in fact, all the constraints associated with the decomposition method are
acceptable within our model. Other methods exist (e.g. the aggregation method and the isolation
method) which may also be applicable, but these generally depend on the use of numerical analysis
methods. The decomposition method is both simpler (as it involves only the solution of a series of
linear equations) and suitable for describing an IN model, and was therefore chosen as the
approximation method to be used within our analytic model.

3.2.6 The Decomposition Method for Queuing Network Approximation

The decomposition method is one of the most widely used approximation methods. It provides
good solutions for all networks, whether or not they may be expressed in product form. It is based
on analysing each queue in the network (as shown in Figure 3.7) separately, in order to express, for
each queue j , the svc of interarrival times Ka} and the svc of interdeparture times C,- in terms of

Kak and Ck (V& * j) of all other queues in the network. This analysis results in a set of linear
equations, which may then be solved simultaneously to find the solution for each queue.

The method is based on the assumption that the departure process from any station j is a renewal
process (i.e. the time interval between two successive departures does not depend upon the
preceding intervals). This assumption is valid in the case where the arrivals are Poisson and the
service rates are distributed exponentially or when the station is saturated. As an intuitive
justification of this assumption, the memoryless property of the exponential distribution has
already been observed - thus independence of the interdepartures is consistent with this property.
In a saturated server, there are always more customers than there are servers. This means the mean
interval between successive departures from the station is the mean service time for the customer
when all servers are busy.

55

Chapter 3 Analysis Tools & Methods

3.2.6.1 Formulation of the Decomposition Method

The derivation of the equations for the decomposition method is provided in [Harrison] and will
not be reproduced here. However, these equations and the various steps involved in the
decomposition method may be outlined as follows:

Step 1: Evaluate Cj for each queue j in a network of K queues serving R different service types
using the following equations:

The meanings of the terms used in the equations are: p j is the load at queue j , A, is the total

arrival rate at queue j , p jr is the load at queue j due to call of service type r’ ̂ kr is the arrival rate
of calls of service type r at queue k, /u-r is the service rate at queue j for service type r, Ksjr is the
svc of the service rate at queue j for service type r (note that if queue j has an exponentially
distributed service time for service type r, K sjr = 1) and Pkj is the total probability that calls

departing station k move to station j , with p kr jY as the probability that a call of type r, on

departing queue k will arrive at queue j as a call of type r'.

The result of this step is a series of linear equations (one for each queue in the network), with Cj

expressed as a function of the svc of the service time at station j and the variations in the arrivals
from the other stations in the network (which in turn depend on the svc of the departures from each
of these stations).

Step 2: Solve the series of linear equations C j, 1 < j < K simultaneously. The result may then be

used to evaluate Ka.-, 1 < j < K , for each queue in the network.

Step 3: The mean length of the /h queue L j can then be approximated for each station by
Kingman’s formula (a generalisation of the Pollaczek-Khintchine formula):

r= 1

56

Chapter 3 Analysis Tools & Methods

Step 4: The mean delay at the f 1 queue

and the mean delay for each service type can be evaluated by summing the delays over all queues

in the route taken by the service type.

In summary, the decomposition method studies each queue in the network on a queue by queue

decomposition of the network. In this method, the distributions of the service times and interarrival

times at each station j are approximated by the total mean rate of arrivals Aj and the square of

their variation coefficients (i.e. the variation multiplied by the rate squared). In this way, the arrival

streams from other station in the network and from the exterior can be approximated. The mean

queue length is then found using Kingman’s formula and the mean delay using Little’s Law.

3.3 Mathematical Optimisation

Mathematical optimisation describes a methodology for evaluating, where it exists, the maximum

or minimum value of a mathematical function (and the values of the function parameters which

provide this optimised solution) subject to a number of (equality or inequality) constraints. The

mathematical function to be optimised is referred to as the objective function, Z. The possible

values of the objective function, subject to the constraints, form a feasible region (an area in

which all points are possible solutions to the objective function and obey all constraints).

Optimisation of the objective function returns the highest (or lowest) point in the feasible region.

Note that if an optimisation problem is not carefully defined, one of two considerable problems

may result:

• An infeasible solution: If there is no feasible region in which all constraints are satisfied, it

will not be possible to generate an optimum solution, and the algorithm will deadlock.

• An unbounded solution: If the feasible space is unbounded (i.e. is not constrained on all

sides), the optimisation may never complete, as the algorithm may find on each iteration, a

result that is greater than (or less than) the result found on the previous iteration. This will

effectively result in a livelock of the optimisation algorithm.

An optimisation problem may be linear or non-linear. Graphical examples [Greenberg] of a two-

dimensional (two parameter) linear and non-linear optimisation problem are provided in Figure

3.8.

TJ may then be found through Little’s law T, =

57

Chapter 3 Analysis Tools & Methods

Fig. 3.8: (a) Linear constraints, (b) Non-linear constraints

Note that, if the search for the optimum solution begins at C and progresses along the bound of the

feasible space (along the line segment [AC], which represents the points for which the constraint

defining the line AC is active, i.e. the left hand side of the inequality equals the right hand side),

the linear search will find A, which is the correct solution for the problem. However, for the non­

linear problem, there is a risk that A will be selected as the optimal solution, as it is a local

maximum. This would be incorrect, as the actual global optimum is point B. This demonstrates

(intuitively) that non-linear optimisation is more complicated than linear optimisation. If it is

desired to use an optimisation technique for congestion control, it must fulfil one of the basic

requirements on a congestion control algorithm, which is that the algorithm must be simple and

efficient. It is therefore preferable that a linear optimisation algorithm should be used for

congestion control. In order for an objective function and corresponding constraints to form a valid

Linear Programming Problem (LPP), there are two requirements that must be adhered to. The

first is that all parameters must be non-negative. This is not a problem for a congestion control

algorithm, as all parameters and constraints will relate to loads, probabilities and priorities, which

can only have non-negative values. The second requirement is (obviously) that, the objective

function and constraints must be kept linear. This does constrain the algorithm somewhat.

However, if the objective function and constraints are expressed intelligently, the benefits of

keeping the problem linear outweigh the overheads that would be required to express a more

comprehensive problem in non-linear terms.

The most commonly used method for solving linear programming problems is the Simplex

Method. There are two forms of this algorithm - the single-phase and two-phase simplex

algorithms. The only difference between the two forms is how the initial search point is

58

Chapter 3 Analysis Tools & Methods

established, and this is dependent on whether each constraint has an upper bound (i.e. that the

function of the parameters is less than some constant). The single-phase form requires that all

constraints are upper-bounded, while the two-phase simplex algorithm can handle constraints for

which only lower bounds are defined. For a congestion control strategy, the requirements will

always be that some value (load, number of calls, etc.) is not exceeded, and therefore all

constraints will be upper-bounded. Therefore, the single-phase form of the simplex method is

suitable for congestion control algorithm specification.

The software used to implement the simplex method was LP_SOLVE [Berkelaar95] and was

acquired as freeware from the Internet.

59

Chapter 4

Comparison between Existing SCP Congestion Control
Strategies___________________

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

In this chapter, we compare the behaviour and efficiency of the most common strategies used in IN

congestion control. As Chapter 2 describes, a number of publications, using various types of

extremely simplified IN models, present conflicting results about the benefit of these strategies

(e.g. [Pham92], [Tsolas92]), and so none of the results presented may be accepted as being

conclusive. Therefore, a comprehensive IN simulation model was developed to compare these

strategies, with the aims of:

• Establishing which of the existing strategies performs best under various load conditions, and

• Identifying any problems and difficulties associated with both developing and executing these

strategies,

in order both to clarify the requirements on a new IN congestion control strategy and to suggest

which type of algorithm may prove useful as the basis for this new strategy.

Note that the emphasis of this work is on the efficient protection of the SCP, as being the physical

entity whose behaviour is most critical to IN performance. In Section 4.1, the IN simulation model

which was developed to facilitate this investigation is described. In Section 4.2, the method by

which each of the various congestion control strategies were implemented on the model is

outlined, while Section 4.3 compares the operation and effectiveness of the strategies to establish

which is the best of the existing strategies. Finally, Section 4.4 summarises the results of

simulations and highlights the drawbacks of the existing strategies.

4.1 The IN Simulation Model

The best way to approach describing the simulation model is to initially describe how it was

designed, including any simplifications made to the standard IN concepts. Each simplification will

be justified. Also at this point, the services which were designed to execute on the model will be

described, in terms of the actions and information flows required in the real world, and therefore in

the model, to execute services of this type. These descriptions and justifications will be provided

in Section 4.1.1. Once the model design has been described, the details of how it was developed at

each level of the OPNET package will be described in Sections 4.1.2 and 4.1.3.

4.1.1 Overview o f the model

The IN model was designed to be able to handle both IN and non-IN calls (see Figure 4.1). It

consists of two SSPs that are fully connected to each other, thereby permitting the exchange of

control messages required to setup and teardown an ISDN call. Each SSP contains a Call Control

Function, which is responsible for completely executing non-IN calls and for detecting any

service-related requests in new calls. Any service requests detected in the CCF are forwarded to

61

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

the Service Switching Function, which is responsible for communication with the SCP. So far, the

operation of the SSP is as specified in the standards. However, it was decided to simplify the

model by integrating the Service Resource Function of the Intelligent Peripheral into the SSP.

This is justifiable as every IP request begins with a request from the SCP to the relevant SSP to

open a channel between the IP and the user, before instructions are sent to the IP and interaction

with the user occurs. Therefore, giving the SSP control over SRF execution simplifies the model

without affecting the sequence of events involved in service processing. A second assumption is

also made regarding the SSPs and relates to their capacity - as the aim of this work in this Chapter

is to compare commonly used SCP congestion control strategies, the SSP capacity is defined to be

very large so that the SSP will never become congested and influence the results for the strategies.

This assumption will be removed in Chapter 5, where the effects of SSP overload on IN

performance are investigated.

Generators
Fig. 4.1: The Simulation Model

Another simplification in the model involves the connection of each SSP directly to the SCP - the

operation of the SS7 network that, in reality, would be responsible for handling communications

between these physical elements is not addressed. This is based on the assumption that the

dimensioning of the SCP was done intelligently with respect to the capacity of the SS7 links, so

that (as the SS7 is dimensioned so that it generally runs at approximately 0.4 Erlangs under normal

traffic loads while SCPs are generally dimensioned to run at about 0.7 Erlangs) in almost all cases,

62

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

SCP overload will occur prior to SS7 link overload [Lodge98b], In this case, the only impact of the

SS7 network is the delays that call requests exhibit in transit between IN physical elements. As

modelling delays in the SS7 is a very complex task and does not add much insight into this

investigation, it was decided to omit the SS7 from the model. Therefore, the SSPs and SCP are

connected directly to each other, as shown in Figure 4.1, and transmission delays are assumed to

be negligible. The protocol underlying the connection between the SCP and the SDP is not

explicitly defined in CS-1, and therefore it is assumed, for simplicity, that there is a dedicated line

between the control point and the service database with negligible transmission delays (this would

be exactly the case if, for example, the database was an integral part of the SCP).

This model is very similar to that developed by [Leever93] in his estimation of IN service

performance and is very different to that used in most research studies to date, as it does not

simplify the operation of the IN into just a simple exchange of messages between SSP queues and

SCP queues, but also integrates interactions with the SDP and IP. Therefore, the actual

characteristics of service traffic between PEs of an IN may be represented, along with the added

advantage that no assumptions are made as to the delay involved when requests are sent to the

SDP and IP. In previous research, the delays involved in accessing data or interacting with users,

if modelled at all, was modelled as either a constant or distributed delay between SCP processing

times. The fact that we do not make this assumption means that traffic behaviour and associated

statistics gained from the model simulation should more correctly approximate the load profile of

each service type in the system.

In order to apply the strengths of the model architecture, it is necessary to reproduce, as accurately

as possible, the various information flows and processor requirements that would occur in a real

network offering real services. Information relating to real service processing requirements is not

made public by network operators or equipment vendors, and so, unfortunately, it is only possible

to attempt to estimate it intelligently. Regarding service offerings, we chose to implement two IN

services - Televoting and Freephone - as well as the non-IN (ISDN voice call) service. Note that,

as a simplification to the realisation of these services, all call requests which are not rejected in the

SSPs are assumed to complete correctly - i.e. non-IN and freephone calls will be setup and routed

correctly and the terminating party will always accept the calls, while it is assumed that all

televoting callers interacts correctly with the service and register their votes correctly.

The DFP IFs between PEs and the relevant processor actions at each PE required to complete IN

service requests of each type is described below, as is the realisation of the non-IN calls. A written

description of each operation is also provided for each call type.

63

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4.1.1.1 The Televoting Service

The televoting service involves the collection of data from users who may be located anywhere in

the network and is primarily used when general opinions of a population are desired. Usually, the

number of the televoting service is broadcast over one or more types of media (e.g. television,

radio, newspapers etc.) and many callers ring the number to volunteer an opinion on a topic.

When a user calls, they are connected to a voice messaging system, which prompts them to enter

their choice by pressing some sequence of digits. When the choice is entered, it is used to update

the information in a database, and the users choice is acknowledged. The call then terminates.

The CS-1 information flows may be represented as shown in Figure 4.2 below. In the diagram, the

arrowed lines depict information flows, with the name of the IF above the line and the information

carried in the message in italics below the line.

SSF/CCF SCF SRF SDF
User Requests

Televoting Service ^ , ,
Analysed Info

Key
CLI = Calling
Line Identifier

CLI

Fig. 4.2: Decomposition o f Televoting Service

The series of actions required to execute an instance of the televoting service may be described as

follows:

• User goes offhook and dials the televoting number,

• The digits typed in by the user are collected and examined by the CCF,

• A service request is recognised by the CCF and call processing is suspended,

• The SSF builds an Analysed_Info message containing the dialled digits and sends it to the

SCF,

• The SCF creates a new instance of the Televoting Service Logic Program (SLP),

""64

Dialled digits

Connect to Resource

CLI

Disconnect Fwd
Connection

Prompt and Collect
l ls f i r Info

Announcement No.

Collected User Info

Collected digits

Update Data

Collected digits

Play Announcement

Announcement No.

Update Confirmation

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

• The SLP Instance (SLPI) sends a message to the SSF requesting that a channel be opened

between the user and the SRF,

• The SLPI sends a message to the SRF requesting that the relevant announcement be read and

the digits keyed in by the user in response be collected,

• The SRF collects the resulting digits and passes them back to the SCF,

• The SCF sends a message to the SDF in order to update the televoting statistics,

• The SDF sends an acknowledgement,

• The SCF requests the SRF to play an acknowledgement announcement to the user,

• The SCF tells the SSF to disconnect the SRF from the user and to end the call. The SLPI then

terminates.

• The SSF terminates call processing.

4.1.1.2 The Freephone Service

When a customer subscribes to the freephone service, they are allocated a number (in Ireland the

number allocated is '1800' + 6 digits), which is their freephone reference number and not related to

their actual destination number. When a user dials this number, it is interpreted by the SCP and,

by accessing a database, the associated destination number is acquired. This number is returned to

the SSP for call routing and connection. When the conversation terminates, the subscriber is

charged for the call. The call setup procedure is shown in Figure 4.3 below - note that the

charging aspect of the call is not addressed here.

SSF/CCF SCF SDF

User Requests
Freephone Service”

Analysed Info
--►

Dialled digits

Query

Information key

Query Result

Outcome

Select Route

Destination Address

Fig. 4.3: Decomposition of Freephone Service

The information flows may be interpreted as follows:

• The user goes offhook and dials the freephone number,

• A service request is recognised by the CCF and call processing is suspended,

65

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

• The SSF builds an Analysed lnfo message containing the dialled digits and sends it to the

SCF,

• The SCF creates a new instance of the Freephone SLP,

• The SCF sends a message to the SDF requested the appropriate destination number,

• The SDF returns the number,

• The SCF tells the SSF to connect the user to this number,

• The SSF continues call processing with the correct destination number (i.e. it routes the call in

the same way as it would a non-IN call).

4.1.1.3 Realisation of non-IN calls

The implementation of non-IN calls was realised using an approximation of the ISDN control

message sent between the SSPs. As shown in Figure 4.4 below, when the CCF of an SSP receives

a non-IN request, it generates a termination request and transmits it to the other SSP in the

network. When the termination request arrives, it causes the number of active channels between

SSPs to be incremented and returns an acknowledgement message to the originator. (Note that the

model was developed so that if it was desired to limit the number of channels between switches, an

upper bound could be set on the channel number and if this was reached, the call request would be

refused using a NOACK message). On receipt of an ACK message, the originator then sets a timer

to simulate the length of the conversation - this length is derived from a uniform distribution of

between 150 and 210 seconds. When the conversation finishes (the timer expires), a message is

sent to the terminating SSP to decrement the number of active channels. In this manner, the

control messages required to carry out a call are modelled without having to maintain the actual

channels between the SSPs, while retaining the ability to monitor the number of active channels

and use this as a criterion for accepting non-IN calls.

Originating Terminating
SSPSSP

non-IN
request

SETUP.req

ch++

A C K / NOACK

ch++

Conversation
phase

c h -
END.ind

Fig. 4.4: Non-IN call handling

6 6

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4.1.2 The N etwork Layer M odel

The network layer model in OPNET is depicted in Figure 4.5. As shown, the model consisted of

two SSPs fully connected to each other to permit the accurate representation of the control

messages required to setup and teardown a non-IN call - note that each link between SSPs is

defined for one of the control message types outlined in Section 4.1.1.3. There is one SCP, which

is directly connected, via two unidirectional links, to each SSP and to the SDP.

4.1.3 The N ode Layer M odels

As shown in Figure 4.5, the network model consists of four interconnected nodes. These are

realised using three node models, namely, the IN_scp, the IN_ssp (sspl and ssp2 in the network

model are instances of this model) and the IN_sdp. The structure of each node will now be

described, in terms of the process models that form them and the information streams between

these processes.

4.1.3.1 The IN_ssp Model

The operation of the SSP (and IP) is realised by the interactions between a number of different

queuing models, as shown in Figure 4.6.

67

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

ge t_ack

Fig. 4.6 : The IN_ssp node model

Input requests are generated as packets by instances of the IN_gen process. Three instances of this

generator exist within the node, each one being responsible for the generation of one of the call

request types - namely Televoting, Freephone and non-IN calls. Each generator produces packets

according to a Poisson distribution, with a mean arrival rate that may be re-specified at the start of

each monitoring interval (this allows the arrival rates for each traffic type at each SSP to be varied

independently over the course of a simulation). The generated packets are of a specified format,

being of length 1 0 bits and containing the fields:

• Service: This field contains an integer that defines the type of service being requested.

Each generator instance sets this field accordingly (i.e. non-IN = 0, freephone = 1 and

televoting = 2).

• Msg_type: This field contains integers that may be set/updated by any PE to denote which

stage of call processing a particular request is in. For example, if the SCP wishes to access the

IP, it will set this field to "PLAY_ANNOUNCEMENT", and transmit it to the SSP.

6 8

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

• ssp id : This value is set when the packet is created in order to identify which SSP it was

created in. This will be used by the SCP for addressing purposes.

• Delay: This field contains a float value that is initially zero. As the simulation proceeds,

this value will be updated in order to dynamically track the delays experienced by this packet

during processing at each PE along its route.

• Param: This field was included to cater for services for which the same function must be

carried out more than once. For example, if a particular service requires database lookup on

two separate occasions, on the first occasion Msg type will be set to "UPDATE_DATA" with

Param = 1, while on the second occasion, Msg_type will again be set to "UPDATE_DATA",

but with Param = 2.

All new requests are routed to the ccf queue, where processing occurs in a First-In-First-Out

(FIFO) manner to establish whether the call is a service request or a non-IN request. All service

requests are forwarded to the ssf queue, while non-IN call setup requests are immediately

transmitted to the other SSP via the send term transmitter. The ccf queue is of infinite length with

its mean (exponential) service rate promoted, so that it may be defined at runtime.

When new call requests arrive at the ssf from the ccf or the srf, they are transmitted immediately to

the SCP via the ssf_ccf transmitter. When a message is received from the SCP, the ssf checks the

contents of the 'Msg_type' field to establish whether it should be sent to the ccf or the srf and

forwards it to the correct process without delay.

The srf is modelled as an Erlang-C queue, with each of 20 virtual servers having a uniformly

distributed service rate of +/-2 seconds around a mean of 5 seconds. This mimics the behaviour of

an IP with 20 recorder devices, where the service time distribution represents the time when

announcements are being read to the user and digits collected. After the service time has elapsed,

packets are returned to the ssf which sends them back to the SCP via the ssf_scf transmitter.

When a termination request arrives at the SSP, it is processed, without delay, at the nonJN_proc

queue, the number of active channels is incremented and an ACK returned to the originator. The

ack_proc processor receives the ACK message, and sets a timer for a uniformly distributed

conversation time around a mean of 180 seconds, before transmitting an END message, which

enters the non_INj>roc queue of the originator and causes the number of active channels to be

decremented before destroying the packet.

When a packet associated with the freephone service has completed processing at the SCP, it is

returned to the ssf which forwards it to the ccf. This packet is processed by the ccf, and causes a

non-IN call to be established with higher priority than new calls (because more resources have

69

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

been expended processing these calls than has been expended on new calls and therefore, to

maximise efficient processor usage, it is imperative that these calls complete successfully).

Finally, messages relating to SCP overload arrive at the ssf, which forwards them to the ccf All

throttling mechanisms for the control of IN traffic (e.g. CG, Percent Thinning (PT) or Window) are

located at the ccf.

4.1.3.2 The IN_scp Model

As shown in Figure 4.7, the functionality of the SCP is divided among a number of queues. All

incoming requests arrive at the scf_q queue module, where their further processing needs are

established. Any messages arriving from the SDP or SSPs must queue for service at the s c f q

module. They are served in a FIFO manner with an exponentially distributed service rate (not

explicitly defined within OPNET, so that it can be defined at runtime and therefore varied over a

number of simulations). After the expiry of the service time, the packets are evaluated to establish

which service they are connected with and are then forwarded to the relevant service sip.

Each sip is a simple FIFO queue with an exponentially distributed service rate and contains the

knowledge of the routing information for the service is stored. When a packet arrives at an sip, the

information contained in the 'Msg_type' and 'Param' fields of the packet provides details as to the

last location at which the packet was processed. The route logic is then used to determine the next

destination for the packet, and this information is embedded in the packet before the packet is sent

to the out_q process. In out_q, the ‘Sspid’ and ‘Msg_type’ fields of the packet are read to establish

where the packet is to be sent. The packet is then dispatched to the relevant transmitter without

delay (to_sdp, to_sspl or to_ssp2).

The scf_q module represents the central processor of the SCP. The out_q module of the model

was only developed in order to distribute the functionality of the SCP among different elements of

the model, thus ensuring that the code in the central processing module (scf_q) does not become

overly complex.

70

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4.1.3.3 The IN sdp Model

The SDP model contains simply one receiver, one active queue and one transmitter as

demonstrated in Figure 4.8. All arriving packets are from the SCP, and are inserted in the sdp

queuing module. Here, the 'Msg type' field of the packet at the head of the queue is analysed to

discover whether a read or an update operation is required. The queue serves packets in a FIFO

manner with two constant service rates defined (one for read operations, the other for update

operations) - the assumption is made that an update operation takes longer than a read operation,

so for the purposes of the simulation, the service time for an update operation is twice that for a

read operation. After the service time has elapsed, the data in the packet is amended to show that

it has received SDP processing and is returned to the SCP via the to scp transmitter. Note that the

service rates of the SDP were defined (relative to the SCP service rate) so that the SCP will

become overloaded prior to the SDP.

4.1.4 Congestion Strategy Evaluation Criteria

The criteria used to evaluate the performance of the developed congestion control strategies are (as

stated in Chapter 2, Section 2.3.5):

• User delays,

• SCP queue length,

• SCP load.

As the assumption is made during this investigation that SSP resources are infinite, SSP load is not

measured. The efficiency of the algorithms is also estimated, in terms of their resource

requirements, simply by comparing the duration of the simulations when all factors other than the

congestion control strategies used (e.g. service rates and arrival rates) are identical. The methods

used to acquire data to allow the quality of the control strategies to be calculated according to the

above criteria will now be presented.

4.1.4.1 Measurement of User Delays

User delays for each service type were measured by:

71

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

• summing the delays (both queuing delays and processing delays) for each request at each node

along its route through the network in order to find the total delay for each request (the delay

experienced by each request is stored in the 'delay' field of its packet and is updated in each

PE) and,

• calculating the average delay over a monitoring interval for requests for each service type and

writing each result to a statistic within the out_q process of the SCP node.

However, the service time at the srf represents the time in service execution when the network is

interacting with the user - i.e. the user is receiving a response from the network during this time,

even though service execution has not yet completed. Therefore, the service delay experienced by

packets there may be discounted. Note, therefore, when examining the delays for each service in

Section 4.5.1, that in services which require user interaction, the delays may appear quite high (to

the order of 1 - 3 seconds) this is due to the fact that information exchanges are required between

the SCP and IP, and the user has received a response from the network during that period.

4.1.4.2 Measurement of SCP Queue Length

A probe is placed on the in q process of the IN_scp node. This probe dynamically records the

queue length over the course of a simulation and presents both the actual and the time-averaged

value of the queue length as a result of the simulation.

4.1.4.3 Measurement of SCP Load

The SCP throughput for each control strategy was estimated by evaluating, at the end of a

monitoring interval, the number of calls processed during the interval as a percentage of the total

number of calls that could be handled by the SCP at full capacity. Note that, as the SCP does not

reject any calls, SCP load and throughput are equivalent.

4.2 Implementation of Congestion Control Strategies

Two classes of congestion control strategies were implemented in the model. The active strategy,

Window was implemented in the ccf (see Section 4.2.3). For the reactive strategies, four detection

methods and two throttles were implemented. The detection methods, which were implemented at

the SCP of the model, were:

• Call Count Control (CCC),

• Queue Length Control (QLC),

• Load Measure Control (LMC),

72

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

• Response Time Control (RTC) - this is a variation of a detection method used in mobile

networks, and was originally developed by [Gulyani93] and then enhanced during the course

of this work (see [Lodge94]).

Each of these detection methods was integrated into a different part of the SCP model. Reasons

for the locations of the algorithms and a description of how they operate will be provided in

Section 4.2.1. In all cases, fifteen different levels of overload were defined.

The two throttles that were implemented are CG and PT. Both of these were integrated into the ccf

process of the IN_ssp model. Their implementation is described in Section 4.2.2.

Note that there are no controls in the model to protect against SSP overload. It is assumed for this

work that the trunk capacity between switches is infinite, and that SSP ccf call processing capacity,

while not infinite, is veiy high. Therefore, it was deemed unnecessary to protect the SSP from

possible congestion. Also, it was decided to simplify the initial investigation of the behaviour of

the strategies by evaluating their behaviour under load from one service type only. Therefore, all

overload parameters associated with the various strategies were estimated based on the assumption

that all calls are of the Freephone service type. This assumption will be removed later.

4.2.1 Implementation o f SCP Congestion Detection Methods

4.2.1.1 Call Count Control

As described in Chapter 2, the CCC detection method must be implemented at the input queue of

the processor that requires protection. As the resource that must be maximised in the IN is the

processing capacity of the SCP, modelled as the in_q process of the IN_scp node, the algorithm

must be placed at the input of this module. For this algorithm, an interrupt is generated

automatically at the end of a pre-defined monitoring interval, resulting in a transition to a monitor

state. When this state is entered, the number of new arrivals (note that returning messages from the

SSP, IP and SDP were not included in this figure) within the previous monitoring interval is

counted and compared with a pre-defined table of arrival/overload level values to find the current

overload level. This result is used to derive the associated overload level using the algorithm

described in Figure 4.9.

i f c u r r e n t l e v e l >= p re v io u s l e v e l

th e n n e w _ le v e l = c u r r e n t _ l e v e l ;

i f c u r r e n t l e v e l < p r e v io u s _ le v e l

th e n new l e v e l = p r e v io u s _ le v e l - 1 ;

Fig. 4.9: Algorithm for Estimating Overload Level

73

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Note that this algorithm bases its calculation not just on the currently detected overload level, but

also on the overload level that was in place during the previous monitoring interval. This is

because taking the previous overload level into account reduces oscillations in the SCP load, as

shown in Figure 4.10, where a CCC algorithm which uses the memory of the previous overload

level to define the new level is compared to an algorithm where the new overload level is based

purely on the number of arrivals in the previous interval (i.e. an algorithm with no memory). These

reductions in oscillations result in lower average queue lengths (Figure 4.11) and therefore lower

overall service delays (Figure 4.12).

Variations in SCP Load

Zone #1: CCC with memory
Zone #2: CCC with no memory

time (sec) (xlOOO)

Fig. 4.10: SCP Load for CCC algorithm with Memory vs without Memory

Variations in SCP Queue Length

o CCC with memory
O CCC with no memory

time (seo) (xlOOO)

Fig. 4.11: SCP Queue Length for CCC algorithm with Memory vs without Memory

74

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Variations in Freephone Delays

o ccc with memory
O ccc with, no memory

Fig. 4.12: Freephone Delays for CCC algorithm with Memory vs without Memory

If the current overload level is evaluated as greater than 0, an overload message (containing the

current overload level) is created and sent, without delay, to both SSPs. Similarly, if the level

evaluated is 0 when the previous level was greater than 0 , an overload message is created to notify

the SSPs that the overload condition no longer exists and that the throttle may be disabled.

4.2.1.2 Queue Length Control

The QLC algorithm was also implemented in the in q process in the SCP node. For this, every

time a new packet arrives and is inserted in the queue, the number of packets in the queue is

established and compared against a list of queue lengths corresponding to the fifteen overload

levels. The resultant level is then compared with the previous overload level, and the new

overload level is determined using the algorithm described in Figure 4.9. The result is then

encoded into a message and sent to the SSP where the throttle is invoked if required.

4.2.1.3 Load Measure Control

The LMC algorithm was also implemented in the in q process in the SCP node and operates in a

similar fashion as the CCC algorithm. An interrupt is generated automatically at the end of a pre­

defined monitoring interval, resulting in a transition to a monitor state. When this state is entered,

the mean load during the previous monitoring interval is evaluated and used to derive the

associated current overload level from a pre-defined table of loads/overload levels. The resultant

level is then compared with the previous overload level, and the new overload level is determined

using the algorithm described in Figure 4.9. The new overload level is then encoded into a

message and sent to the SSP where the throttle is invoked if required.

4.2.1.4 Response Time Control

The RTC algorithm is similar to CCC but is implemented at the out q module of the SCP. The

average service execution time for requests is measured over a constant monitoring period, by

75

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

causing a transition to state monitor. Monitor contains the code required to evaluate the average

total delay of packets of each service type (in this case by using the ‘delay’ field of each packet,

but in a real system, this could be accomplished by tracking the average duration of the lifetime of

each SLPI). This delay is made up all the individual delays experienced by packets at the SCP, IP,

and SDP. Therefore, this detection method has an advantage over CCC and QLC in that if the IP or

SDP becomes overloaded, this will be noted in the out_q of the SCP, as the total delays of requests

will be affected by the delays at these PEs. On the other hand, RTC is also more complex than

CCC or QLC, as in the case when IN traffic is made up of multiple service types, the response

time for each service type varies according to the requirements which the service places on the

system, and therefore the average delay would have to be measured separately for each service

request type. However, as for this investigation, traffic in the system is made up of only freephone

calls, the implementation of this algorithm is made up of only freephone delays.

As RTC is implemented, at the end of a monitoring interval, the average response time of

freephone calls during that interval is compared to the list of times corresponding to the fifteen

overload levels and the resultant overload level for each service is determined using the algorithm

outlined in Figure 4.9. The average overload level, if different from the previous overload level,

causes notification is sent to the SSP in order to ensure that it restricts traffic according to the new

overload level.

Note that, for all the detection methods described above, a table defining the correspondence

between measured values and overload levels must be derived. These tables were derived through

trial and error, which proved to be an extremely non-trivial task. Also, as the efficiency of any

detection method based on the use of a monitoring interval is dependent on the length of that

monitoring interval (as described in Chapter 2, Section 2.2.3.2), the behaviour of CCC, LMC and

RTC was evaluated under various monitoring interval lengths over the course of a number of

simulations, with the result that the use of a monitoring interval of 1 0 seconds was established as

providing consistently the best results.

4.2.2 Implementation o f Throttles

The CG throttle was integrated into the ccf process of the IN_ssp model. The throttling algorithm

will be described in Section 4.2.2.1, including justifications for why it does not reflect exactly the

description of the throttle provided by Bellcore [Bellcore92], The PT throttle (Section 4.2.2.2) is

also located in the ccf. Both throttles have 15 throttling levels defined.

76

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4.2.2.1 The CG Throttle Mechanism

The CG throttle implemented in the model does not correspond to the throttle that was

standardised by Bellcore. The primary reason for this, as mentioned in Chapter 2, is that

investigations early in the development of the model proved that the gap durations and gap interval

levels defined by Bellcore were impractical to use. The times specified were far too long and gave

bad results. This is corroborated by [Smith95], However, some of the ideas presented by Bellcore

were very useful and were used as guidelines when implementing the throttle.

The CG throttle algorithm is included in the ccf process of the SSP model. Fifteen levels of CG

control are defined here, and their relationship to the overload levels defined by the detection

algorithm in the SCP is maintained using a table of gap interval levels corresponding to the

overload levels. Suitable gap interval times were achieved through trial and error to maximise

throughput during congestion, while ensuring recovery was as rapid as possible. Note that finding

appropriate gap interval times is a non-trivial task.

Each time the ccf of the SSP receives an overload message from the SCP signifying a change in

overload level, the gap interval level under which the throttle was operating is changed

accordingly, by resetting all gap timers, evaluating the gap interval level associated with the new

overload level and altering the gap timers to these new levels. When the next request arrives after

the controls have been reset, the gap timer is set for the length of the new gap interval and all calls

arriving while the timer is active are rejected. When the timer expires, the next arriving call is

accepted and the timer is reset. Throttling continues at this level until the next control message

arrives from the SCP, detailing a change in the overload level.

Note that as all changes in overload level are relayed to the SSP immediately after detection in the

SCP, gap interval levels were designed to remain in place until altered by the arrival of a new

overload message and therefore duration levels were not required in the model and were omitted.

Also, as all detection methods caused the same overload message to be transmitted to both SSPs,

both were throttled equally.

4.2.2.2 The Percent Thinning Throttle Mechanism

The PT throttle algorithm is also included in the ccf process of the SSP model, but it is not

necessary to maintain a table of PT coefficients corresponding to the SCP overload levels here, as

the appropriate PT coefficient is sent by the SCP to each SSP as part of the overload notification

(the SCP divides the measured value (e.g. for CCC, the number of new arrivals) by the measured

value associated with the SCP threshold in order to evaluate the PT coefficient). The PT throttle

77

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

then applies the new PT coefficient to arriving traffic according to the algorithm shown in Figure

4.13, in order to allow the acceptance of only the relevant percentage of arrivals.

Increment new_calls;
If current_accepts/new_calls <= PT_coefficient {

Accept call; increment current_accepts; }
Else reject call.

Fig. 4.13: The PT algorithm

Each time the ccf of the SSP receives an overload message from the SCP signifying a change in

overload level, the counters in the PT algorithm (i.e. c u r r e n t_ a c c e p t s and n e w _ c a lls) are

initialised and the new percent thinning coefficient is applied. Thereafter, each time a new call

arrives, n e w _ c a lls is incremented and the algorithm is used to evaluate whether the call should

be accepted or rejected. The algorithm continues using any given PT coefficient until the next

overload notification arrives from the SCP, at which point the algorithm is re-initialised with the

new coefficient.

Note that while the SCP sends the same throttling coefficient to both SSPs, the use of the PT

algorithm ensures that arrivals at each SSP will be throttled proportionally to their arrival rates,

and therefore, unlike CG (which will place the same strict upper limit on the number of calls to be

accepted at all SSPs), acceptance rates at each SSP will be proportional to the number of requests

arriving at that SSP.

4.2.3 Implementation o f the Window Strategy

According to the Window mechanism described in Chapter 2, throttling of calls should take place

both at the SCP and the SSP. However, rejection of calls at the SCP is undesirable for two reasons

- firstly, SCP throughput should be maximised during overload and therefore SCP processor

resources should not be expended rejecting calls and secondly, each SSP would have to make

assumptions about whether or not a call was rejected by the SCP (as no notification of overload is

sent to the SSPs) and making a wrong guess at any point would lead to livelock within the SSP

Window algorithm. Therefore, an adapted version of Window is applied, in which no calls are

rejected at the SCP, and the SSPs alone are responsible for ensuring that no SCP overload takes

place. Therefore the Window algorithm of each SSP, located at the ssf process of each SSP,

monitors the response time of the SCP to requests from that SSP. When response delays become

excessive, calls are throttled.

A Window size counter W is defined and initially takes on a pre-defined value Wmin. W

corresponds to the maximum number of new call queries for which an initial response is

78

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

outstanding from the SCP (note that some services may consist of multiple SSP-SCP

query/response pairs). Each time a new query is sent to the SCP, a variable OUT (signifying the

number of calls for which a response is outstanding) is incremented and a timer is set (the value of

the timer duration was established from observation of the delays which occurred during

simulation when the SCP load was at the threshold). If OUT=W, all new queries are rejected at the

SSP until a response is received from the SCP. Each time a response is received from the SCP, a

variable C is incremented (indicating a positive response), OUT is decremented and the

corresponding timer is reset. If a timer expires, this signifies that the delay experienced by the

corresponding call is greater than the maximum acceptable level, thus implying that congestion

exists (either within the SS7 or at the SCP). When this occurs, the window size W is decremented

to force a greater level of throttling of IN calls and C is reset to zero. When C has increased to the

point that it exceeds a pre-defmed value Cmax, this is interpreted as alleviation of the overload

situation, and the window size W is incremented. In this way, the SSP responds to SCP overload

without explicit communication between the physical elements.

4.3 Presentation of Results

In this section, we present the results for each of the given strategies under an applied load

consisting purely of freephone traffic - the effects of multiple traffic types on the strategies is a

separate issue, which will be examined in Section 4.4. In the first part of this section, we prove the

need for congestion controls by comparing the behaviour of the system under overload when no

controls are in place with the behaviour when CCC and CG are used. Then, in Section 4.3.2, the

various detection methods of the reactive (communication-oriented) strategies are compared to

establish which is the most efficient at protecting the SCP. Note that, to ensure fairness of

comparison, CG was used as the throttling mechanism in all cases. In Section 4.3.3, the CG and PT

throttles are compared to find out which one is most accurate at rejecting the desired proportion of

arrival calls during overload. This investigation was carried out using CCC in both cases - namely,

the detection method which provided the best performance in Section 4.3.2. At this point, it will be

possible to state which reactive strategy is the best, in terms of protecting the SCP most

effectively. Finally, the active (communication-less) Window strategy is compared with the best

reactive strategy in Section 4.3.4 to find which of the existing strategies has the best overall

performance.

4.3.1 Proving the N eed fo r Congestion Controls

Here, we detail the findings of a simulation where the input (freephone) traffic was increased

linearly over the course of a simulation, in a manner sufficient to cause overload at the SCP after

79

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

about 470 seconds. When no congestion controls are in place, the SCP quickly becomes saturated

and a serious backlog of calls builds up at the SCP, with the result that the SCP queue length

grows exorbitantly (Figure 4.14) and the user delays quickly become untenable (Figure 4.15). This

proves the need for congestion control strategies to protect the SCP.

SCP Queue Length

o Ho Controls (xlOOO)
O CCC & CG (XlOOO)

0 0.25 0.5 0.75 1
time (sec) (xlOOO)

Fig. 4.14: SCP Queue Length for CCC/CG vs No controls in SCP

Freephone Delays

o Ho Controls
O CCC & CG

Fig. 4.15: Service Delays for CCC/CG vs No controls in SCP

4.3.2 Comparison o f Detection M ethods fo r Reactive Communication-Oriented Control

Here we compare the four implemented detection methods to establish which one provides the best

consistent behaviour across all load situations. We therefore apply three different input freephone

traffic scenarios - namely constant mean, linearly increasing mean and bursty traffic. In all cases,

the same CG throttle, SCP and SSP service rates are used, to ensure that the comparison is strictly

between detection methods. Also for all cases, the SCP load threshold is defined as being 0.8

Erlangs and the monitoring interval as 10 seconds.

80

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

4.3.2.1 Stationary Behaviour

As a first step, we investigated the behaviour of the various detection methods in the stationary

case, i.e. when input traffic levels have a constant mean for the duration of a simulation and are at

a level sufficient to cause overload at the SCP - Figure 4.16 shows that the input traffic is

sufficient to offer the SCP a mean of 1.4 Erlangs of work.

Arrivals to System (SCP Erlangs)

o s s p I A r r i v a l s

O SSP2 A r r i v a l s

□ T o t a l SCP A r r i v a l s

Fig. 4.16: Arrivals to system for stationary case

SCP Load under Constant I nptii Traffic Levels

Zone #£: CCC - mean load
<> CCC - ».ean load

zone #6: LMC * dynamic load
O LMC - mean load

Zone #*>: QLC - dynamic load
O QLC - mean load

Zone RTC - mean load
O RTC - mean load

tim e (s e c) (xlOOO)

Fig. 4.17: SCP load for stationary case

81

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Figure 4.17 presents the resultant SCP load over the course of the simulation. A number of facts

are noteworthy about these results. Firstly, all detection methods (in conjunction with the same CG

controls) succeed in protecting the SCP, by keeping the load below 1.0 Erlang and secondly, all

detection methods fail to converge to a particular overload level, but instead experience

oscillations of differing size around a mean of 0.8. The oscillations may, in part, be explained by

the oscillations around the mean of the input traffic, but are also affected by the detection methods

used. Note that for QLC, which is not based on monitoring the system over an interval but instead

reacts immediately when overload is detected, the oscillations are small and the mean SCP load

converges quickly. Of the methods based on the use of monitoring periods, CCC and LMC have

smaller oscillations in the dynamic load and converge more quickly in the mean load than does

RTC — this is because both CCC and LMC overload levels have a linear relationship with the SCP

arrival rates whereas RTC, whose overload levels are based on delays, and therefore by extension

on queue lengths, has a non-linear relationship with the SCP arrival rates. However, all strategies

converge to a mean of 0.8, the pre-defined SCP load threshold.

Figure 4.18 shows the mean queue length at the SCP over the course of the simulation. As would

be expected, QLC responds immediately to any rise in queue length, and therefore no oscillations

occur in SCP mean queue length for this method. For the other methods, the delay before overload

is detected (i.e. the monitoring period) means that an excessive number of calls are accepted

originally and must be processed before the SCP load and queue length stabilise. Therefore, at the

start of the simulation, the queue length rises to over 1 0 0 , before gradually dropping to acceptable

levels (this is more a measure of how quickly these methods respond to dramatic increases in

traffic than a measure of their steady state behaviour). Note that CCC, LMC and RTC have very

similar behaviour here, with CCC being only very slightly faster at reaching a stable queue length

than the other two strategies.

______________________ MeanSGPQueue Length______________________

O CCC
O LMC
□ QLC
A RTC

Fig. 4.18: SCP queue length for stationary case

82

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

The conclusion of this is that QLC has the best performance in steady state, in that it experiences

smaller oscillations than the other methods, although to achieve this, its overhead in terms of SCP

processor utilisation is a factor of 2.1 greater than the other strategies. This is due to the fact that it

remains active at all times. The other methods, on the other hand, provide satisfactory results while

only being active at the end of each monitor interval.

4.3.2.2 Behaviour under Linear Increase in Arrival Rates

To investigate the behaviour of each of the detection methods under rapid increases in input traffic,

as well as to establish their behaviour at low and high overload levels, the mean arrival rate of

freephone traffic was increased linearly, as shown in Figure 4.19. Note that arrivals to the system

increase from zero to 4.6 SCP Erlangs over the course of a simulation and that a load of 1.0

Erlangs is provided after about 400 simulated seconds.

Arrivals to System (SCP Erlangs)

o SSPl Arrivals
<> SSP2 Arrivals
□ Total 5CF Arrivals

time (sec) (xlOOO)

Fig. 4.19: Arrivals to system for linearly increasing freephone arrival rate

The resultant variations in mean SCP load for each of the methods are shown in Figure 4.20, while

the dynamic variations in SCP load are shown in Figure 4.21.

83

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Mean SCP Load

o ccc
<> LMC
□ QLG
A RTC

Fig. 4.20: Mean SCP load for linearly increasing freephone anival rate

Dynamic SCP Load

Zone #1: CCC
Zone #2: LMC
Zone #3: QLC
Zone #4: RTC

Fig. 4.21: SCP Load for linearly increasing freephone arrival rate

The first comment to be made is that none of the strategies provide satisfactory performance over

all load levels - CCC, LMC and RTC load levels experience large oscillations around the

threshold, while QLC permits overload to take place at high applied load levels. The reason for the

oscillations experienced by all detection methods is related to the fact that these methods are based

on a table of fixed overload parameters. When a detection method is based on fixed parameters, it

tends to be prone to oscillations (this was even apparent in the stationary case of section 4.3.2.1) as

it does not respond to exactly the applied load level, but instead rounds to the overload level

corresponding to the input data (call count, service delays etc.). This means that each detection

method tends to swing from overprotecting to underprotecting the SCP on alternate monitoring

84

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

intervals. The size of the oscillations is defined by the parameter values, but even when these

values are very carefully defined and quite precise, oscillations will still occur. This means that it

always takes time for a detection method to converge to the correct overload level (or even to

reach minimal oscillations between load levels). When the traffic is consistently increasing, as in

this scenario, none of the detection methods have time to converge - they oscillate dramatically

and for each interval where the SCP is underprotected, the SCP queue length increases slightly, as

demonstrated in Figure 4.22.

___________________________ SCP Queue Length___________________________

O ccc
O LMC
□ QLC
A RTC

Fig. 4.22: Mean SCP queue length for linearly increasing freephone arrival rate

While it is accepted that all strategies are innately flawed due to their dependence on fixed

parameters, it is still possible to compare their behaviour to establish which provides the best

performance (and how). Regarding onset of congestion, examination of the dynamic load results in

Figure 4.21 shows that all methods detect overload too early. CCC and LMC show the best results,

by detecting overload when the actual submitted load is 0.78 Erlangs. For CCC, this is probably

due to minor variations in the arrival rate during that monitoring period. For LMC, note that its

response to overload does not occur as early as is described for LMC when applied to a switching

system (at 60% capacity, as described in Section 2.2.3.2) - this is because in a switching system,

processing of initial requests takes only 30% of the overall processing time required for a call,

whereas for freephone, initial processing at the SCP takes 50% of overall SCP processing

requirements and therefore, for freephone, the load estimate reached by LMC is more

representative of arriving requests and therefore more accurate. Note however, that for other call

types (e.g. televoting, which requires SCP processing four times per call), LMC would be less

accurate. QLC, due to its overly reactive nature, starts responding to overload when the submitted

load is only at 0.62 Erlangs - i.e. bursts of traffic at this level are sufficient to be construed as

overload by QLC. RTC responds when the input traffic is at about 0.7. This is because service

delays are very dependent on SCP queue lengths and therefore, occasional short increases in the

queue length result in increased average service delays which then trigger overload controls early.

85

Chapter 4 Comparison betw een Existing SCP C ongestion Control Strategies

The behaviour of each of the detection methods under overload may be summarised as follows:

• CCC is located at the input of the SCP and is based on counting the number of newly arriving

calls during an interval. It is therefore capable of responding very quickly to the onset of

overload. Also, the number of new arrivals is a very accurate representation of the applied

load, with the result that CCC experiences slightly smaller oscillations than LMC or RTC.

• LMC’s reaction to the onset of overload is delayed as its calculation of overload level is based

not only on the amount of time it has spent processing new requests but also on the load

required by old requests (returning from the SDP). It therefore takes longer for LMC to

accurately detect overload, as the foil effects of the overload are not felt until old requests

return from the SDP for further processing. This delay in overload detection means that it also

takes LMC slightly longer to recover from overload, as it must complete the successive

processing requirements of all old requests which received initial processing between the time

overload occurred and the time overload is detected (note that, as a result of this, the SCP

queue length tends to be longer for LMC than for CCC).

• RTC is based on measuring the mean service execution time for requests of each IN service

type. This means that there is a significant delay between the onset of congestion and its

detection by RTC, as an overload is allowed to propagate through the system until the queues

have grown sufficiently long at the SCP, SDP and IP to significantly affect the mean response

times for service requests. As a result of this, RTC tends to have the largest mean SCP queue

length and by extension, the longest average service delays (shown in Figure 4.23). RTC’s

response delay (as with LMC) has further implications, in that all requests that were accepted

during this delay must complete processing and recovery time is slower than for CCC.

Freephone Delays

O CCC
<> LMC
□ QLC
A RTC

Fig. 4.23: Mean freephone delays for linearly increasing freephone arrival rate

• At low overload levels, QLC succeeds in protecting the SCP from overload. However, it does

not converge, but instead allows the load to increase slightly and non-linearly as the applied

traffic increases. Note also that QLC exhibits minimal oscillations - this is because it is not

~

I

Chapter 4 Comparison betw een Existing SCP C ongestion Control Strategies

based on the use of a monitoring interval. Instead, it responds immediately to increases in

queue length and therefore has a tighter feedback loop than the other strategies. However, as

was mentioned above, this means that QLC has a tendency to be too reactive - it responds to

minor fluctuations in applied load by putting unnecessary controls in place. A further negative

implication may be associated with this tight control loop - while CCC, LMC and RTC reset

the CG throttle with new coefficients at most once per monitor period, QLC attempts to reset

the throttle every time the queue length changes which, when the SCP is nearing saturation

(i.e. arrival rate to the SCP is much greater than the service rate), is nearly every time a new

requests arrives. This effectively renders the throttle impotent and so the number of calls

arriving at the SCP rises dramatically. The eventual result is that the SCP becomes saturated.

The conclusion of this is that CCC is the best strategy for linearly increasing traffic - it does not

respond too early to the onset of congestion, and protects the SCP under all traffic loads with

smaller oscillations and shorter queue lengths than either LMC or RTC. LMC’s operation is nearly

as good, but has greater response delays (and therefore longer queue lengths) than CCC. RTC,

while capable of protecting the SCP, exhibits greater oscillations and longer queue lengths and

delays than either LMC or CCC. QLC shows extremely undesirable behaviour - it both responds

too early to overload and can only protect the SCP at low overload levels.

4.3.2.3 Behaviour under Bursty Traffic Input

To investigate the behaviour of each of the methods under bursty traffic input, the arrival rates to

the system were defined as shown in Figure 4.24 - note that these are expressed in terms of SCP

capacity.

___________________________Arrival Rates to S ystem (SCP Erlangs)___________ _______________

0 SSPl arrivals
1 O SSP2 arrivals

□ Total arrivals
3

2 . 5

2

1.5

1

0 . 5

0
0 0 . 5 1 1 . 5 2

tim e (se c) (xlOOO)

Fig. 4.24: Arrivals to system for bursty arrival rates

The resultant dynamic SCP loads for each method are shown in Figure 4.25.

87

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

________________________ Dynamic SCP Load

Zone #1: CCC

Zone #2: LMC

Zone #3: QLC
Zone #4: RTC

0 0.5 1 1.5 2
time (sec) (xlOOO)

Fig. 4.25: SCP load for bursty arrival rates

Note that, as expected, QLC is the only method that is reactive enough to protect the SCP at all

times from burst input traffic - for this method, the SCP load rarely approaches 1.0 Erlang. For the

other strategies however, overload is not detected until the end of a monitoring interval and

therefore, the SCP load rises to greater than 1.0 Erlang for each large input traffic burst. CCC then

responds very quickly by bringing the SCP load down to a more acceptable level. LMC and RTC

on the other hand, react too slowly and the SCP load remains at unacceptably high levels for a few

monitoring intervals, before being reduced. Note also that QLC provides a greater mean SCP load

over the course of the bursty simulation, giving a mean of 0.75 Erlangs, as opposed to CCC’s

mean of 0.705 Erlangs.

These results are also reflected in the SCP queue length (Figure 4.26) and freephone delays (Figure

4.27). Note that only QLC and CCC provide freephone delays which are within acceptable bounds,

as defined by [E.723] and [MacDonald94].

Chapter 4 Comparison betw een E xisting SCP C ongestion Control Strategies

Mean SCP Queue Length

° CCC
❖ LMC
□ QLC
A RTC

80
70
GO
50
40
30
20
10

0
0

Fig. 4.26: Mean SCP queue length for bursty traffic

Mean Freephone Delays (s)

o CCC
0 LMC
□ QLC
A OTC

2.5

2
1.5

1
0.5

0
0

Fig. 4.27: Mean freephone delays for bursty traffic

4.3.2.4 Summary of Detection Method Results

The salient features of each of the detection methods is outlined in Table 4.1 below, where a V

denotes acceptable behaviour and a * denotes best behaviour for each category.

Category CCC LMC QLC RTC

Steady state behaviour V V V(*) V

Relative processor requirements 1 1 2 .1 1

Correct response to onset of congestion V V

Correct response to low overload V(*) V V V

Correct response to high overload V(*) V V

Correct response to bursty traffic V >/(*)

Table 2.1 : Summary of detection method results

time (sec) (xlOOO)

i

.. .. Jn uSy. .
r ¡1 *

..............

....... -4-» —
- Ì ...!

5
□ _ □ a n a = a = f i = a = a

0 ,5 1 1«
time

— a = a Q-
5 2

(sec) (xlOOO)

89

Chapter 4 Com parison betw een E xisting SCP Congestion Control Strategies

The obvious conclusion to be drawn from this summary is that none of the strategies provide

acceptable results over all possible input scenarios, but CCC generally provides the best results.

The only method which ever performs better is QLC, and even in those cases, CCC provides

acceptable results and outperforms the other two methods. As a result, we select CCC as being the

detection method that provides consistently the best behaviour and will therefore use it in

conjunction with both the CG and PT throttles to establish the best possible reactive strategy.

4.3.3 Comparison between Throttles

Here we compare the operation of the Call Gapping and Percent Thinning throttles to establish

which one provides consistently the best behaviour across all load situations, using the same input

freephone traffic scenarios as in Section 4.3.2 - namely constant mean, linearly increasing mean

and bursty traffic. In all cases, the same CCC detection method, SCP and SSP service rates are

used, to ensure that the comparison is strictly between throttles. Also for all cases, the SCP load

threshold is defined as being 0.8 Erlangs.

4.3.3.1 Stationary Behaviour

As a first step, we investigated the behaviour of the throttles in the stationary case, i.e. when input

traffic levels have a constant mean for the duration of a simulation and are at a level sufficient to

cause overload at the SCP - the input traffic offered is as shown in Figure 4.16. The resultant

dynamic SCP load is as shown in Figure 4.28, while the mean SCP load is shown in Figure 4.29.

Dynamic SCP Load

Zone # 1 : CG

zone #2: pt

0 0 . 5 1 1 . 5 2
time (sec) (xlOOO)

Fig. 4.28: Dynamic SCP load for stationary case

90

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

Mean SCP Load

O CG
O PT

1. U25
1

0 .9 7 5
0 .3 5

0 .9 2 5
0 .3

0 .8 7 5
0 .8 5

0 .8 2 5
0 .8

i

H
u
|V
1 \

s...........................

0.
1-*-. -- = 4

5 i.
!> 1 A i- £ j-

5 2
-A me (s e c) (x lOQO)

Fig. 4.29: Mean SCP load for stationary case

Note that the oscillations in the dynamic SCP load are much smaller for PT than for CG - this is

due to its dynamic nature - i.e. the throttle put in place reflects accurately the current overload

condition. For table-driven CG, however, the throttle reflects the table entry closest to the current

overload condition and not the overload condition itself, resulting in greater oscillations over the

course of the simulation. On the other hand, the mean SCP load shows that CG reacts more

quickly to an overload, bringing the SCP load down to the threshold much faster than PT. This is

because when a CG throttle is put in place, it places a strict upper limit on the number of calls

which may be accepted in the following monitoring interval and therefore makes the system more

robust to increases in call arrivals during that period. PT fails to do this, as it merely accepts a

fixed percentage of the arrivals in the following period. The faster reaction time of CG is also

reflected in the mean SCP queue length, as shown in Figure 4.30.

Mean SCP Queue Length

o CG
O PT

Fig. 4.30: Mean SCP queue length for stationary case

The greatest difference between the behaviour of CG and PT, however, may be observed by

viewing the ratio of call acceptances for each of the SSPs. Figure 4.31 shows the call acceptances

for SSP1 and SSP2 for the stationary case. Note that for CG, SSP1 (which receives twice as many

IN calls as SSP2) has a much lower acceptance rate than SSP2. This is because the same gap

interval is put in place in both SSPs and, as SSP1 has a greater arrival rate, more calls are rejected

91

Chapter 4 Comparison betw een Existing SCP C ongestion Control Strategies

- in fact, the overall result is that the same number of calls are accepted by both SSPs. For PT, on

the other hand, the same thinning coefficients are put in place at both SSPs, resulting in the same

acceptance rates at each, and therefore the ratio of calls which arrive at the SCP from the SSPs is

maintained (i.e. SSP1 both receives and accepts twice as many IN calls as SSP2).

The conclusion of this is that, in the stationary case, CG is more robust and faster at responding to

overload than PT, while PT retains the ratio between arrival rates from each SSP to the SCP (i.e. it

exhibits subscriber fairness).

___________________ SSP Acceptances (as Percentage of Offered)___________________

Zone #D: ce - SSPl
O - ssp2

zone #&: PT - SSPl

0 0 . 5 1 1 . 5 2
time (sec) (xlOOO)

Fig. 4.31: SSP acceptances for stationary case

43.3.2 Behaviour under Linear Increase in Arrival Rates

To investigate the behaviour of each of the throttles under rapid increases in input traffic, as well

as to establish their behaviour at low and high overload levels, the mean arrival rate of freephone

traffic was increased linearly, as shown in Figure 4.19. The resultant dynamic SCP load is similar

to that shown in the stationary case - i.e. CG exhibits much greater oscillations over the course of

the simulation than PT. Again, this is due to the fact that the throttles put in place by PT more

accurately reflect the state of the SCP than those put in place by CG. However, unlike the

stationary case, this does have an impact on the mean SCP load, as shown in Figure 4.32. Note that

CG has a tendency to overprotect the SCP. This is a direct result of its table-driven nature - the

immediate reaction of CG to overload is to overprotect the SCP and while given enough time (as

in the stationary case), this will eventually converge to the SCP threshold, if variations in arrival

rates occur over a number of monitoring intervals, CG will fail to converge and the SCP will

92

Chapter 4 Comparison between Existing SCP Congestion Control Strategies

remain overprotected. This is undesirable, as calls are being rejected unnecessarily. PT, on the

other hand, tends to underprotect initially (as described in the stationary case), but compensates

fast due to its dynamic nature and therefore maintains the SCP load either at or slightly above the

threshold.

Mean SCP Load

O CG
O PT

time (sec) (xlOOO)

Fig. 4.32: Mean SCP load for linearly increasing arrival rates

To conclude, both CG and PT protect the SCP at all times from overload, although PT’s behaviour

is more consistent, due to its dynamic nature. Also, again, only PT exhibits subscriber fairness, as

shown in Figure 4.33.

SSP Acceptances (as Percentage of Offered)

Zone #J>: CG - SSPl

O - SSP2

zone #&: PT - sspI

0 0 . 5 1 1 . 5 2
time (sec) (xlOOO)

Fig. 4.33: SSP acceptances for linearly increasing arrival rates

93

Chapter 4 Com parison between Existing SCP C ongestion Control Strategies

4.3.3.3 Behaviour under Bursty Traffic Input

To investigate the behaviour of each of the methods under bursty traffic input, the arrival rates to

the system were defined as shown in Figure 4.24. The resultant dynamic SCP load is shown in

Figure 4.34.

Dynamic SCP Load

2one #1: CG

0 0 . 5 1 1 . 5 2
time (sec) (xlOOO)

Fig. 4.34: Dynamic SCP load for bursty arrival rates

This graph shows that an instantaneous increase in arrival traffic causes SCP load to jump to over

1 Erlang and the SCP queue length to increase dramatically - this is as a result of the monitoring

delay associated with CCC. When CG is invoked, it responds rapidly by putting excessive throttles

in place (excessive because it is based on fixed parameters), thus generally giving the SCP time to

process the calls in the queue and alleviate the overload condition during the next interval. PT, on

the other hand, puts exactly the correct proportional throttles in place on detection of overload and

therefore does not give the SCP time to process the call requests which had built up in the queue

during the previous interval. It therefore fails to alleviate overload quickly, the SCP load remains

at approximately 1 Erlang for the entire duration of the burst and the mean SCP queue lengths

remain substantially higher for PT than for CG for the entire duration of the simulation - see

Figure 4. 35. So, in this case, PT actually suffers due to its accuracy.

94

Chapter 4 Comparison betw een Existing SCP C ongestion Control Strategies

SCPQueue Length

O CG
<> PT

time (sec) {xlOOO)

Fig. 4.35: Mean SCP queue length for bursty arrival rates

When a bursty period ends, both strategies overprotect the SCP until the end of the next

monitoring interval, at which point both strategies recover quickly, with PT actually converging

faster to the mean load of 0.78.

The resultant service delays for this scenario are shown in Figure 4.36. Note that the delays for CG

are near acceptable limits, as defined by [Yan94], while the delays experienced by calls under the

PT throttle are clearly unacceptable.

Mean Freephone Delays

O CG
O PT

time (sec) (xlOOO)

Fig. 4.36: Mean freephone delays for bursty arrival rates

The conclusion of this is that CG provides a better instantaneous response to dramatic increases in

input traffic, as its tendency is to overprotect the SCP while PT’s tendency towards accuracy

means that the SCP is vulnerable to rapid increases in traffic when PT is used. PT, however, is

faster to converge to an optimal level than CG. This is not necessarily useful after a rapid increase

in traffic, as PT’s slowness in responding generally causes a large build-up of the SCP queue,

which then takes further time to serve. However, PT’s speed of convergence does maximise SCP

throughput after a rapid decrease in traffic.

Chapter 4 Com parison between Existing SCP C ongestion Control Strategies

4.3.3.4 Summary of Throttle Results

The salient features of each of the throttles is outlined in Table 4.2 below, where a V denotes best

behaviour for each category.

Category Call Gapping Percent Thinning

Relative processor requirements 4.4 1

Rapid response to onset of congestion V

Rapid response to end of congestion V

Accuracy (speed of convergence) V

Subscriber fairness V

Table 2.2: Summary o f throttle results

To summarise, the principle advantage of the CG throttle is that it places a strict upper limit on

traffic acceptances rates, which in the short term means that it responds better to rapid onset of

congestion. However, the dynamic PT throttle converges faster to the threshold and therefore

provides better results in the long term. It has the added advantage of being subscriber fair, in that

it throttles all sources proportionally to their size. It may therefore be concluded that the ideal

throttle would combine CG’s speed of response with PT’s accuracy and fairness.

4.3.4 Active versus Reactive Congestion Controls

In this section, the behaviour of the active communication-less Window congestion control

algorithm is compared with that of the reactive communication-oriented CCC/CG and CCC/PT

strategies to establish which type of strategy is more efficient across all load levels. The Window

timer duration was evaluated by observing the mean freephone response delay when the SCP load

is 0.8. As usual, the input freephone traffic scenarios described in Section 4.3.2 are used. In all

cases, the same SCP and SSP service rates are used, to ensure a fair comparison between

strategies. Also for all cases, the SCP load threshold is defined as being 0.8 Erlangs.

4.3.4.1 Stationary Behaviour

The input traffic offered in the stationary case is as shown in Figure 4.16. The resultant dynamic

SCP load is as shown in Figure 4.37, while the mean SCP load is shown in Figure 4.38. Note that

Window responds faster to the onset of overload than CCC/CG. This is due to the fact that it is

always active and therefore responds immediately to the detection of overload, rather than having

to wait, like CCC, until the end of the monitoring period. Window also exhibits fewer oscillations

96

Chapter 4 Comparison betw een Existing SCP C ongestion Control Strategies

in the dynamic SCP load than CCC/PT. This behaviour is similar to that of QLC (shown in Section

4.3.2), and is again based on the fact that it is always active. However, due to the fact that Window

is based on a single fixed parameter (i.e. the query/response delay threshold used to set the

Window timers), it does not provide premium SCP performance - it does not keep SCP load at the

defined threshold. Here, for a low overload, the Window strategy overprotects the SCP, keeping

the mean load at approximately 0.775. Also, Window does not converge as quickly as the dynamic

CCC/PT, again as it is based on the use of a fixed delay parameter.

Dynamic SCP Load

Zone #1: CCC/CG
Zone #2: CCC/PT
Zone #3: WINDOW

0 . 5 1 . 5 2
time (sec) (xlOOO)

Fig. 4.37: Dynamic SCP load for stationary case

Mean SCP Load

o CCC/CG
<> CCC/PT
□ WINDOW

time (sec) (xlOOO)

Fig. 4.38: Mean SCP load for stationary case

97

Chapter 4 Comparison betw een Existing SCP C ongestion Control Strategies

4.3.4.2 Behaviour under Linear Increase in Arrival Rates

To investigate the behaviour of each of the strategies under rapid increases in input traffic, as well

as to establish their behaviour at low and high overload levels, the mean arrival rate of freephone

traffic was increased linearly, as shown in Figure 4.19. The resultant mean SCP load is shown in

Figure 4.39. Here, the disadvantages of basing a congestion control strategy on a single fixed

parameter become apparent. At low overload levels (from 0.8 to 2.0 SCP Erlangs), the SCP is

overprotected by Window, with load levels staying consistently below the SCP threshold. At high

overload levels (above 2.0 Erlangs), the SCP is underprotected, with SCP load climbing as high as

0.93 Erlangs when applied load is over 4 Erlangs.

Mean SCP Load

o CCC/CG
O CCC/PT
□ WINDOW

time (sec) (xlOOO)

Fig. 4.39: Mean SCP load for linearly increasing arrival rates

4.3.4.3 Behaviour under Bursty Traffic Input

To investigate the behaviour of each of the methods under bursty traffic input, the arrival rates to

the system were defined as shown in Figure 4.24. As expected, the results showed that Window,

due to its active nature, is considerably faster to respond to the onset of congestion than either of

the other two strategies (see Figure 4.40). Also, by strictly limiting access to the SCP, Window

prevents the SCP from approaching saturation, unlike the CCC/CG and CCC/PT, both of which

allow the SCP to become saturated for at least one monitoring interval. As such, Window provides

by far the best reaction to bursty traffic.

Chapter 4 Comparison betw een Existing SCP C ongestion Control Strategies

Dynamic SCP Load

Zone #1: CCC/CG
Zone #2: CCC/PT
Zone #3: WINDOW

t m e (sec) (xlOOO)

Fig. 4.40: Dynamic SCP load for bursty arrival rates

4.3.4.4 Summary of Results

The salient features of each of the strategies are outlined in Table 4.3 below, where a V denotes

acceptable behaviour and (*) denotes best behaviour for each category.

Category Window Call Gapping Percent Thinning

Relative processor requirements 14.4 4.4 1

Rapid response to onset of congestion V (*) V

Rapid response to end of congestion V (*) V V

Speed of convergence V V

Consistency over all load levels V V (*)

Table 2.3: Summary of Active vs Reactive Results

99

Chapter 4 Comparison betw een Existing SCP C ongestion Control Strategies

To summarise, while Window has the fastest reaction time, this is at the expense of considerable

overheads. Window also fails to be effective over all ranges of overload, considerably

overprotecting the SCP during low overload and underprotecting it during high overload. The

conclusion is that CCC with a dynamic combination of CG and PT would probably provide

consistently the best behaviour. This will be established in Chapter 6 , where just such a strategy

will be compared with Window.

4.4 Summary & Conclusion

There are a number of conclusions which may be drawn about the results as discovered in this

chapter, the first of which relates to the main body of research completed - the investigation of

existing congestion control strategies for the protection of the SCP of an Intelligent Network. The

results acquired in Section 4.3.2 show that, while none of the existing detection methods provide

satisfactory results over all load scenarios, CCC generally seems to perform better than the other

strategies.

Of the throttles investigated, PT generally seems to outperform CG, with the exception of the most

important characteristic - speed of response to overload. CG responds very quickly to overload,

but its table-driven nature means that its response, while fast, is not very accurate and that it tends

towards large oscillations and is very slow to converge to the defined threshold. PT, as a dynamic

throttle, converges quickly and has the added advantage of being subscriber fair, in that it throttles

all SSPs proportionally to their size.

Comparisons between CCC/PT, CCC/CG and Window provided inconclusive results. Window had

the fastest response times to the onset of overload, but its behaviour is not consistent over all

possible load levels. It also has considerably higher processor requirements than either of the two

reactive communication-oriented strategies.

The principle drawback of virtually all the strategies investigated in this chapter is that they are

table-driven, i.e. based on static parameters (PT being the only exception). This static nature has a

number of implications. Firstly, configuring the algorithms by defining the best possible fixed

parameters is extremely difficult. For strategies with a low number of parameters (e.g. Window), it

is impossible to define parameters that will deal with all possible load levels correctly. Strategies

with a large number of parameters (e.g. CCC, LMC, CG) tend to be able to handle larger

variations in load, but also have a tendency to be extremely inaccurate -i.e. defining a number of

parameters which will always cause the mean SCP load to converge to (or rather, to oscillate

minimally around) the defined threshold for any offered load is not possible (in the experience of

the author). A further difficulty with defining fixed parameter values is that as they are dependent

1 0 0

Chapter 4 Comparison betw een E xisting SCP C ongestion Control Strategies

on the size of the resource at which they are located. As such, the parameters would have to be

calculated independently for each SCP or SSP at which the strategies are targeted.

A second negative implication associated with static, table-driven detection strategies raises even

greater concerns and cannot be resolved through the definition of the fixed parameters. This is the

fact that any static detection algorithm implicitly makes assumptions about either the load

requirements of the traffic types being managed or about the traffic mix. This issue was avoided in

Section 4.3 by ensuring that all calls in the network were freephone calls. However, in reality,

different services have very different characteristics. As an example, televoting call requests visit

the SCP four times (rather than twice, like freephone) and, as such, require twice as much SCP

processing as freephone calls. It would also take longer for the response to the initial televoting

query to be returned to its source SSP than it does for the initial freephone response. Therefore, if

the same parameters that were defined for freephone calls were used in a network that handles both

freephone and televoting calls, none of the detection algorithms would respond correctly to the

onset of congestion caused by televoting calls. This is shown in Figure 4.41, where overload

occurs at t=2 0 0 s, and maybe described as follows:

Dynamic SCP Load

zone #1: CCC/CG
Zone #2: LMC/CG
Zone #3: QLC/CG
Zone #4: WINDOW

H0.9
8 : §
0 .68:10. 3
8:3
H0.9
8:?o.e8:10.3
8:?
H0.9 0 . 8 0.7

1.5 2
time (sec) (xlOOO)

Fig. 4.41: Dynamic SCP load for televoting overload

101

Chapter 4 Comparison betw een Existing SCP C ongestion Control Strategies

• CCC would not detect overload until too late, as the number of arriving televoting calls that

would cause overload is substantially less than for freephone. At the point where overload is

finally detected, the SCP has already reached saturation.

• LMC responds very slowly to the detection of overload, as televoting has a load profile for

which initial processing of requests at the SCP constitutes only 25% of their total load

requirements. Therefore, by the time overload is detected, a large number of calls have already

been accepted which must then complete processing at the SCP. Again, as with CCC, this

leads to SCP saturation.

• QLC overreacts at low overload levels (even more so than in Section 4.3.2), as each televoting

request must queue four times at the SCP. Then, as the level of overload grows, QLC becomes

incapable of dealing with the rapidly rising queue lengths and the SCP becomes saturated.

• Window responds too quickly, detecting overload where none exists. This is due to the fact

that the query/response delays for televoting are substantially higher than for freephone, so

Window times out on televoting calls, even when no overload exists. However, as Window has

a tendency to overprotect the SCP, its behaviour at high overload levels, while not ideal, is

better than for the communication-oriented detection algorithms.

The conclusion of this is that no static detection algorithm will be able to protect the SCP

efficiently when the input to the system is a varied mix of different call types with different load

requirements and characteristics. This implies the need for a dynamic strategy, which will be able

to calculate, based on the arriving traffic mix, the true state of overload of the SCP and react

accordingly. A dynamic strategy would also have the added advantages (as shown by PT) of being

easier to configure, as well being more accurate and converging to the threshold much faster than a

table-driven static strategy.

As a final comment, existing models (including the one presented in this chapter) make the

assumption that SSP resources are infinite, and therefore avoid all implications of possible SSP

overload. In a real IN, this assumption is unreasonable. Therefore, to provide a real and

comprehensive solution to IN congestion control, the implications of SSP overload and SSP

protection must also be investigated and, if possible, a congestion control strategy should be

developed which protects all IN resources from congestion.

102

Chapter 5

Global IN Congestion Control

Chapter 5 Global IN Congestion Control

5.1 Introduction

In the area of IN congestion control, it is recognised that, as the SCP is responsible for the

execution of all services, it is crucial that its throughput is maximised at all times. Therefore,

research to date has tended to focus on protecting the SCP from the effects of overload while

maximising its efficiency at all times (see [Pham92], [Hebuteme90] and Chapter 4). The issue of

SSP congestion was avoided in all work completed to date by raising the service rate of the SSP

central processor (the CCF) to the point where congestion does not occur in the SSP. In reality,

however, processing power at all SSPs will (obviously) be finite and therefore overload at SSPs

also has the possibility of affecting IN performance. Also, a number of different scenarios exist for

the implementation of INs. These include:

• An overlay network, where switches in the PSTN/ISDN route service requests to Service

Switching Points (SSPs),

• The Service Node, where multiple IN physical elements are represented in one powerful node,

• An integrated network, where SSP functionality exists in the network switches.

These three implementation scenarios are depicted in Figure 5.1 below. The types of traffic routed

through the IN SSPs therefore depend on the network implementation. In particular, in the

integrated network implementation, SSPs will be required to process non-IN calls as well as IN

calls. The long term view of IN evolution predicts that the integrated scenario will become more

popular (e.g. with number portability looming, it may not be too long before the majority of calls

are service related, and therefore it does not make sense for all of these calls to be routed to an

overlay network or a service node. The more logical solution is to install service switching logic in

all trunk switches). In this scenario, the issue of IN performance management widens in scope to

include SPC performance management in multiple SSPs. In other words, it will no longer be

sufficient to maximise SCP performance alone - it will be necessary to maximise the overall

performance of the integrated network.

104

Chapter 5 Global IN Congestion Control

At this point, based on the results of Chapter 4, let us also provide an enhanced definition of the

requirements on an IN overload control strategy. Obviously, the basic requirements are as

described in Chapter 2 - namely,

• Effectiveness: an overload control strategy must be able to protect IN resources under any load

conditions and,

• Efficiency: the strategy must use processing resources in an efficient manner (in terms of

keeping processing requirements as low as possible). Obviously, if it is desirable to

incorporate e.g. priorities in a congestion control scheme, the added complexity of the

105

Chapter 5 Global IN Congestion Control

algorithm will cause it to have a larger footprint. This is only justifiable if the benefits of the

complex scheme outweigh the processor usage costs.

However, there are also other highly desirable characteristics of an overload control strategy,

which include:

• Scalability: the algorithm should not be dependent on the size of its resource or the mix or

arrival rates of applied traffic, i.e. it should not be dependent on any explicit fixed parameters.

This would ensure that the algorithm is both simple to install at any resource and that it reacts

correctly and accurately to the applied traffic.

• Flexibility: a well-designed algorithm should be easily customised to include factors such as

different call priorities and load requirements or different requirements on fairness.

• Fairness: There are two main interpretations of fairness in the IN context, as described in

Chapter 2, section 2.3.1. “Service fairness” means that if overload is caused by an excess of

calls of one particular service type, only calls of that type should be rejected (i.e. Focussed

Destination Overload Control - FDOC). “Subscriber fairness” means that the probability of

rejection ought to be the same for all the subscribers of a particular service, irrespective of

which SSP they are connected. Ideally, an IN congestion control algorithm should exhibit both

types of fairness.

Many of the IN overload control algorithms which have been proposed in the past and discussed in

Chapter 4 go some way towards meeting the basic requirements on an IN overload control

strategy. However, these basic algorithms tend not to have the desirable characteristics described

above. A number of strategies have also been proposed which do address various of these

characteristics in the area of SCP protection (e.g. [Rumsewicz95], [Lee97], [Smith95] and

[Lodge98b]) and so reach greater SCP performance efficiency, where the criteria generally used to

evaluate the performance efficiency of an overload control algorithm includes (but is not restricted

to) SCP load, SCP queue length, the number of IN calls rejected, cost efficiency of the algorithm

and mean service delays.

The aim of this work is to find an overload control strategy which encapsulates both the basic

requirements and all desired characteristics, in the global performance management of an IN which

consists of one SCP and multiple SSPs and which handles a number of different traffic types (IN

and non-IN) with different call characteristics fairly. As an example of service unfairness, all

currently defined strategies are specifically designed to protect just the SCP of the IN and

therefore, in ensuring maximum possible SCP efficiency, the performance of non-IN processing in

the SSPs may be degraded. This should not be allowed to happen as, although some service

related calls may provide more revenue to network operators, the ratio of revenue to resource

requirements (let’s call it the Rev/Res ratio) for non-IN calls may be greater and therefore, to

106

Chapter 5 G lobal IN Congestion Control

maximise the performance of the overall network, non-IN calls should not have to receive a

degraded quality of service during times when service related traffic is too high.

Examining the area of global IN performance management, we see that, in the past, the problem of

switch congestion control was much simpler to address than it will be in an integrated IN

environment. Congestion controls for the protection of SSPs have either been unnecessary (e.g. in

a service node scenario) or based on standard SPC control mechanisms. However, when SSPs

must deal with multiple call types, including non-IN and IN, all of which have different priorities,

revenues and call load distribution curves (as opposed to ISDN calls which have the same load

distribution curve, as shown in [Seraj85], [Hubig94] and Chapter 2), it will be neither efficient nor

fair to throttle all calls equally upon occurrence of overload. Also, if the congestion control

strategies at the SCP and SSP work independently of each other (i.e. each element is responsible

for its own protection only), conflicts between SCP and SSP strategies could result in lower overall

network efficiency.

To estimate the impact of these types of conflicts on overall network performance and to prove

that a global IN congestion control strategy is essential, the model of the IN described in Chapter 4

was extended to include multiple finite-capacity SSPs, each of which processes both IN and non-

IN call types. This new model (in both simulation and analytic form) is described in Section 5.2

below. Two different control scenarios were then put in place on the model. For the first scenario,

independent control strategies were put in place at the SCP and SSPs. For the second scenario, a

simple strategy was devised to throttle incoming traffic at each SSP based on the load levels at

both the SCP and SSP. This experiment and its conclusions are described in Section 5.3. Section

5.4 presents a new global IN congestion control strategy based on revenue optimisation, while

Section 5.5 gives results for this strategy.

5.2 The New, Comprehensive IN Models

The models used in Chapter 4 are sufficient only for estimating the efficiency of SCP congestion

controls and for establishing the necessity for throttling IN calls at the SSP. To facilitate the

investigation of congestion control strategies for dealing with all types of calls in situations of both

SSP and/or SCP congestion, a new, more detailed design model was developed, and implemented

both as a simulation model (in OPNET) and as an analytic model (to facilitate mathematical

analysis of the behaviour of the system).

107

Chapter 5 G lobal IN C ongestion Control

5.2.1 The IN Model Design

The new model design of the SSP was developed in order to provide an accurate representation of

both switching functionality and service handling procedures. This model is shown in Figure 5.1

and closely represents the operation of the central controller of the Ericsson switch and is similar

to that described in [Seraj85], The resource to be maximised is the capacity of this central

processor as all intelligence resides here. The similarities between the operation of this model and

that of the Ericsson switch is deliberate, with the aim that all results gained from this model may

be directly applicable as a real congestion solution in a real system.

Q1 Q2 Q3

Operation of this model may be explained as follows: all new call requests arrive into Q1 in the

central processor. If the central controller has capacity available and the user has the authority to

make a call, call acceptance is returned to the user in the form of a dial tone. Once the user has

been supplied with a dial tone, any digits entered are collected and returned to Q2 in the central

controller. At this buffer, service related calls may be differentiated from ordinary calls. If the call

is a non-IN call, the request is forwarded to Q3 for routing, while IN calls are sent to the SCP. Any

database access requirements are fulfilled through the exchange of messages between the SCP and

SDP. User interaction requests are sent to the IPQ in the SSP, the service time of which represents

the time required to open a channel between the user and the IP - note that this queue is included in

the SSP side of the model, as establishing the channel will require some SSP central processor

capacity. After the channel has been opened, the request is passed to the IP, where it is delayed

(representing interaction with the user) before returning to the SCP. When service execution has

completed at the SCP, calls are forwarded to Q3 for further routing (e.g. in the case of freephone

calls) or termination (e.g. in the case of televoting calls).

Current rules for overload control state that, if a call is to be rejected, it should be as soon as

possible in call processing, for two reasons:

108

Chapter 5 Global IN Congestion Control

1. To minimise the wastage of central processor capacity,

2. To minimise delays to users.

According to these rules, it is possible to reject calls at both Q1 and Q2, but not at Q3. Note that,

as it is not possible to distinguish between call types in Ql, throttling of calls at this queue can

only be applied to all call types equally. Differentiation between call types occurs during

processing at Q2 - it is therefore possible to selectively restrict different call types at this queue.

However, all calls that are accepted at Q3 must be given the chance to complete successfully - i.e.

they cannot be rejected for any reason. Therefore, all calls placed in buffer Q3 are guaranteed the

processing time they require to complete successfully. Therefore, the only buffers at which calls

may be rejected are Ql (unconditional rejection to protect the SSP) and Q2 (conditional rejection

based on call type). In terms of devising a flexible overload control algorithm, it is far more

desirable to place an overload control strategy at Q2, as this gives scope for selective throttling of

calls based on various criteria (e.g. fairness, load requirements, priorities etc.).

All central controller buffers (Ql, Q2, Q3 and the IPQ) are served by a single processor. Current

priorities in the Ericsson switch define that Q3 is provided with the highest servicing priority to

ensure that calls which have not been rejected complete successfully. Q2 is has the next highest

priority, as all calls there have already received some processing time in Q 1 and should therefore

be given a good opportunity to complete. Ql has the lowest priority and only receives processing

if sufficient capacity is available.

In the design, processor capacity is allocated to each queue on a priority basis similar to the AXE

priorities defined above, but amended to include the IPQ. Therefore, highest priority is assigned to

the IPQ, lowest priority assigned to Ql and equivalent priorities assigned to Q2 and Q3. Q3 has a

single service rate, while Ql has two service rates - one for processing accepted traffic and the

other for rejecting calls. Q2, on the other hand, has three different service rates — the first for

accepting non-IN calls, the second for accepting IN calls and the third for the rejection of calls.

The service times of these queues are set to reflect the load distribution of a non-IN call - i.e. mean

Ql service time (representing call authorisation) is shorter than that of Q3 or the mean non-IN

acceptance time at Q2, while the mean non-IN acceptance time at Q2 (representing non-IN number

analysis) and Q3 (routing) are equivalent. The IN acceptance time at Q2 is set as a factor of 2.5

greater than the acceptance time for non-IN calls - this is an approximation of the excess

processing requirements of IN calls over non-IN calls in a real SSP. Further, rejection rates at both

Ql and Q2 are defined as being much greater than their acceptance rates. As a result of these

defined service rates, any overload will cause congestion at Q2 prior to affecting any other SSP

queue. Therefore, any SSP congestion detection algorithm should be located at Q2.

109

Chapter 5 Global IN Congestion Control

Five types of call are defined for the model - these are international, international freephone,

televoting, local and freephone. Table 5.1 shows the identifier assigned to each call type, along

with the set route that is followed by the call type through the system.

Call Type Identifier Route through IN from SSP n

International (non-IN) 1 Ql„-Q2„-Q3„

International Freephone (IN) 2 Q1„-Q2„-SCP-SDP-SCP-Q3„

Televoting (IN) 3 Q1„-Q2„-SCP-IPQ„-SCP-SDP-SCP-IPQ„-SCP-Q3„

Local (non-IN) 4 Ql„-Q2„-Q3„

Freephone (IN) 5 Q 1„-Q2„-SCP-SDP-SCP-Q3„

T able 5.1: Calls types in enhanced IN model

Retrials of 30% are also included in the model, i.e. 30% of all calls rejected will be retried in the

following interval (a simplification of the assumptions outlined in [Manfield91]). All call type

arrival rates are Poisson.

5.2.2 The IN Simulation Model

The existing simulation model in OPNET was enhanced to reflect the new SSP structure, and was

further extended to contain five such SSPs, with call types as shown in Table 5.1. The new

network layer model in OPNET is depicted in Figure 5.3. As shown, the model consisted of five

SSPs, one SCP and an SDP.

As in the IN simulation model used in Chapter 4, the SDP has a deterministic service time

distribution, while the SCP has an exponential service time distribution. The only change made to

the scp node model was the inclusion of an SLP for international freephone. All other changes to

the OPNET model used in Chapter 4 took place in the model of the IN_ssp node. These changes

will be described next.

110

Chapter 5 Global IN Congestion Control

5.2.2.1 The IN_ssp Node Model

The operation of the SSP was amended to reflect the new SSP design, as shown in Figure 5.4. The

primary changes that took place in the node model described in Chapter 4 include:

• The ccf process was replaced by three processes, representing Ql, Q2 and Q3. All the service

times of each of these new queues (i.e. acceptance and rejection rates, as described in Section

5.2.1) were set to be exponentially distributed.

• The throttles that were implemented in the old ccf are now in Ql and Q2. The Q2 throttles

were also extended so that they can be applied either to all services (including non-IN

services) or to individual service types. This is to facilitate selective throttling.

• The termination of non-IN calls is no longer included in the SSP. This is because all conflict

for processor resources in the SSP takes place during the Call Authorisation and Number

Translation states of the Originating BCSM. If a call requests is accepted in both of these

states, then it must complete successfully and therefore it is unnecessary to represent the

processing allocated to the states further on in the call state model.

• The SRF is modelled differently. In Chapter 4, this was modelled as an Erlang-C queue. For

this work, however, the behaviour of the IP that is of primary interest is the processing

requirements it places on the SSP to establish a channel between the user and itself. Therefore,

we replace the SRF with a queue (the ipq) to model the processing of these requests for a

channel at the SSP. This new ipq is defined as having an exponentially distributed service

time, representing the time it takes for the SSP to establish the requested channel. This is then

followed by a simple uniformly distributed delay around a mean of 5 seconds.

I l l

Chapter 5 G lobal IN C ongestion Control

freeph monproc

Fig. 5.4 : The New IN_ssp Node Model

5.2.3 The IN Analytic Model

The queuing model has one SCP, one SDP and multiple SSI's, as shown in Figure 5.2. The

behaviour of the system is almost identical to that described for the simulation model in section

5.2.2. The primary differences between the analytic model and the simulation model of the IN are

as follows:

• The uniformly distributed delay representing IP interaction with the user is omitted from the

analytic model as, in steady state, the time spent interacting with the user has no effect on

system performance.

• For ease of analysis, all queues in the systems - including the SDP - have exponentially

distributed service time distributions.

• Percent thinning is the only throttling mechanism available at Q1 and Q2, as CG cannot be

modelled accurately analytically. Therefore, in investigations where CG is used in the

simulation model, some small discrepancies between the simulation and analytical results are

to be expected.

112

Chapter 5 Global IN C ongestion Control

The model contains the five call types defined in Table 5.1. Any throttle at Q1 can only reject all

calls equally, and we therefore define P° as the Q1 global percent thinning throttling argument for

SSP n. We further define one Q2 percent thinning throttling argument for each call type - let us

define p ' An ,i as the percentage of offered calls of type i to be accepted at Q2 of SSP n (during the

next interval). Therefore, we have five probabilities of acceptance at Q2, namely pan,i,..,pa„,5 . For

completeness, retrials are included, where we choose that 30% of call attempts rejected in one

interval are retried in the next interval, i.e. i(t) - (0.3)(1 - P° (t - T) p an,i(t - T))J?n i (t - T) is

the retrial arrival rate of call type i at SSP n, where A°n i is the original arrival rate of call type i at

SSP n and T is the interval length. Therefore, the total (Poisson) arrival rate at Ql„ is

K (0 = Z Ki (0 = Z (0+(0) ■i i

To simplify network analysis, Q3„, the SCP, SDP and IPQ„ each have a single service time with a

mean of, respectively, /¿g3n, ¿iSCp, Msdp an^ MipQn • The throughputs of these queues are

Pqi>„ ’ P scp’ Psdp an<̂ P ipq,, • Oh the other hand, Ql„ has two service times defined, with call

rejection time much lower than processing time for accepted calls. Ql„ service rates are therefore

Mq\ ,acc and Mqi„ ,rej • Its resultant throughput is . Q2„ has three service times defined, call

113

Chapter 5 Global IN Congestion Control

rejection time, non-IN acceptance time and IN acceptance time. Q2„ service rates are

thereforeMQ2„,rej>Mqi„.acc.non and//e2„,acc,w ■ The throughput of Q2„ is p Qln. Note that at this time,

for the purposes of generalisation, we make no assumptions as to the service time distributions

used. Therefore, the only assumption made at this point is that all arrival processes to the system

are Poisson.

5.2.3.1 Estimating Arrival Rates and Loads for the IN Analytic Model

Using our knowledge of the routes taken by each call type through the queuing system, we may

specify the mean arrival rates at each queue in the model:

For Ql„ : AQK (t) = An (t) = AnJ (0
1=1

For Q2„ : Äeln (t) = (/) = < £ -Vi (<)
1=1

N

FortheSCP: ¿ « * (0 = £ es c r J ^
7 =2 ,3,5 n=1

N

F ortheS D P: ASDP(t) = eSDP, j ^ p? P n j K j t f) whereeSDPJ= lfory = 2,3,5
7=2,3,5 n=1

ForIPQ„ : ¿ipq„ (0 = e iPQ,3Pn P n ^ n ^) where e IPQ 3 = 2

For Q3„ : (t) = P" £ p ^ , (<)
1=1

where eSCPj- is the number of times a call request of type j enters the SCP during its execution,

eSDP J is the number of times a request of type j will receive processing at the SDP and eIPQJ is the

number of times a call of type j will pass through the IPQ. In a similar manner, we may define the

loads at each queue in the model:

F nrO I • n (t\ — I ^F orQ l„ .

ForQ 2„: = (^ i _ + t o W)
^ n f* Q 2 n ,a c c ,i M Q 2 n ,re j

1=1

For the SC P: p SCP (t) =/ fjscp

For IPQ, : P w g ß) = ^ l

For the S D P : p snP (¿) =/ j jSDp

ForQ 3„: ^ (,) = i g £ >

114

Chapter 5 Global IN Congestion Control

5.2.3.2 Estimating Service Delays for the IN Analytic Model

The decomposition method (described in Chapter 3) is used to estimate service delays in the

user wants to estimate or control mean queue lengths and/or mean delays. The following equations

were generated using the decomposition method in the form described in Chapter 3, where (to

simplify the notation) all parameters on the right hand side are as defined for time interval \t-T,t\,

with the exception of P° and pani, which are as defined at time (t-T):

For Q l„: ^ agin (0 = 1 (Poisson arrival rates)

where Kax is the square of the variation coefficient (svc) of interarrivals at queue X, Ksx is the

svc of the service time at queue X and Cx is the svc of the intervals between two successive

departures from queue X. Knowing the arrivals rates and service rates for interval [t-T,t\ and the

analytic model, as it provides a good approximation of multiqueue systems in the case when the

2 +Â2 ̂ (^Q ln,acc+1) , (l-^XKfa,.^+l)

For Q2„ : Kog^ (t) = (t)

CQ2„ (0 - K a Q2„ (OO ~Pgi„) + PQ2n G ~ 2P q 1„) +K ^ n 'Y /'n ,i 0À!^(^Jg2„,aav+1) |

(ca (o - D (i 1 v h Z p '-m
A=l,4 I *=1,4

+ (csct(')-ix£ 2> îa ,) +1 k <, 2 > ;a /)
y=2,3,5 7=2,3.5

C Q3n (0 - P Q 3n + K a Q3n (0 (1 - P q3„) + P Q 3n (K s Q3„ ~ 0

N

n=1

CscAt) - Pscp+ K ascÂOQ- ~ P sœ) + PscÂ ^ sscp ~ 0
N

2
Q d p (0 = PSDP + K aSDf(t)Q - PsDp) + P sdÄ K sSd p - 1)

For IPQ, : KaIPQ (t) = l +(CSCP(t) - l) (^ ^)

115

Chapter 5 Global IN Congestion Control

acceptance probabilities as defined at time (7-7), the decomposition equations may be solved to

find the value of Kax for each queue in the system. Then, again as described in Chapter 3,

Kingman’s formula will allow the mean queue length of each queue to be calculated, according to:

2(1 -P x)

The average response time for each queue may then be evaluated using Little’s Law

(f x =Nx /Xx), and the average response time for each service type generated at each SSP can be

estimated by summing the delays at each queue along its route.

5.3 Estimation of the Effects of non-IN Traffic and Finite SSP Resources

on IN Performance

This work was carried out using the models defined in Section 5.2. Two assumptions were made:

that all service times are exponentially distributed, and that there is only one SSP (no more are

needed as this investigation seeks to prove only that a problem exists). This results in the

specialisation of the general decomposition equations of Section 5.2.3.2, as shown below. Note

that again, all parameters on the right hand side are as defined for time interval [t-T,t\, with the

exception of P° and p an i , which are as defined at time (t-T).

For Ql: KoqX{()- 1 (Poisson arrival rates)

c f c w - i - V ♦ * (£ + £ *)
For Q2: ÄG^(i)=Cßl(0

Cg2{t)=Kagim - P Qi)+PQ2 (^ p Ql) + 2 ^ A Y M - ^ + ^
i

nY/A)

)

For Q3: t)=—
4Q3

+

¿=1,4 *=1,4

(QcXO-lX-g; 2 > ^) + l
7=2,3,5

Cg3 (0 = Pqi + Ka q3 (<)(1 - Pqz)

For the SCP: KaSCP(t) = (C £s«)-ixi i
7=2,3,5

n 2 > ^)
7=2,3,5

PA(p AjAj)+CsdA W sOP + ('lPQ(t)-̂ IPQ
7=2,3,5

C sc A*) _ P sc p + Kascp(f) 0 - P scp)

For the SDP: ^ D/ 0 = 1+(QCK 0 - 1) (£ J j ’j V
7=2,3,5

QdXO = PSDP+K-aSD$)(t1 ~PsDp)

116

Chapter 5 Global IN C ongestion Control

For the IPQ: KaIP̂ i)=\+{Csam ~ l) { ^ -)

C lP (0) ~ P lP Q + K a IP(^f)Q --PlPQ)

5.3.1 Strategies used fo r Comparison

Two strategies were implemented on both the IN simulation and analytic models. As the analytic

model represents the ideal case, the simulated and analytic models should exhibit similar

behaviour, i.e. the analytic model should return the mean of the simulated model results. For the

first scenario implemented, independent control strategies were put in place at the SCP and SSPs.

For the second scenario, a simple strategy was devised to throttle incoming traffic at the SSP based

on the load levels at both the SCP and SSP, i.e. this strategy controlled the SSP and SCP traffic

jointly. An assumption made for this study is that IN calls have a higher priority than non-IN calls

and therefore, where possible, the number of IN calls accepted should be maximised.

5.3.1.1 The Independent IN Congestion Control Strategy

For the independent strategy, the SCP congestion control strategy was based on the use of an SCP

monitoring interval X with LMC at the SCP to detect SCP overload and CG throttling at SSP Q2 to

restrict the arrival rates of IN calls. Another LMC algorithm was used in the SSP to detect

overload at Q2 at the end of an SSP monitoring interval Y. When SSP overload was detected, all

incoming calls (both IN and non-IN) were then throttled equally at Q1 using a CG mechanism.

The LMC overload parameters and CG interval parameter values were derived from the

assumption that all IN call types had equal arrival rates at the SCP and that IN calls comprised

30% of total SSP traffic. LMC was selected as an appropriate detection routine for this

investigation as it may be used in both the dynamic simulation and the steady-state mathematical

model. Note, however, that while CG was used in the simulation model, PT throttles were used in

the analytic model, as they are far easier to represent mathematically than CG. Twelve overload

levels were defined for both the SCP and SSP detection algorithms. The operation of this strategy

is shown in Figure 5.6.

The steps of the SCP congestion control scheme are shown as steps (i) to (v) in the diagram. Here,

new calls entering the SSP are throttled equally by the throttle TSSPn , put in place (at Ql) by the

SSP at the end of its previous monitoring interval, Y. Then IN calls are throttled equally by the

throttle TSCP, put in place (at Q2) according to the overload level sent by the SCP at the end of the

SCP’s previous monitoring interval, X. All IN calls accepted at SSPs are then sent, via the SS7 to

the SCP. The SCP monitors its mean load over the course of an interval X, and at the end of that

interval, reports its overload level to all SSPs, each of which then puts the appropriate throttle in

117

Chapter 5 Global IN C ongestion Control

place at Q2. The SSP control strategy works independently of this. Each SSP monitors its Q2 load

over a the course of an interval Y, and at the end of that interval, puts throttles corresponding to its

perceived overload level in place at Q1.

New calls

New calls

Fig. 5.6: The Independent Congestion Control Strategy

5.3.1.2 The Joint SCP/SSP Congestion Control Strategy

The joint SCP/SSP congestion control strategy (i.e. a simple example of a global IN congestion

control strategy) that was developed for this investigation is made up of three separate, interacting

parts - the SCP and SSP overload detection algorithms and the joint throttle. As with the

independent strategy described above, LMC was used as the congestion detection method at both

the SCP and at Q2 of the SSP. Also as with the independent strategy, CG throttle mechanisms are

located at both Q1 and Q2. However, the operation of the throttles is quite different, in that the

decision-making process as to which throttles are engaged (and the magnitude of the throttling) is

more complex and is based on both SCP and SSP overload data. According to this decision­

making process, there are three principle phases of operation for the CG throttle:

1. SCP overload. During this phase, SCP overload causes only IN calls to be rejected in Q2 (i.e.

the number analysis stage).

2. First stage SSP overload. In this phase, SSP Q2 overload causes only the lower priority non-IN

calls to be rejected in Q2 (i.e. the number analysis stage). Note that SCP throttles may or may

not be in place during this phase, but non-IN and IN calls are throttled independently.

3. Second stage SSP overload. This phase is entered when selective throttling at Q2 is

insufficient to alleviate the SSP overload condition (i.e. all non-IN calls are being rejected and

SSP overload still exists). At this stage, minimal throttling is applied all calls equally at Q1

(during call authorisation) while the selective throttles remain in place at Q2. The aim of this is

T ssp n T s c p

SSP n

overload

(i) New

IN calls

118

Chapter 5 G lobal IN Congestion Control

that the SSP overload situation should be alleviated, while ensuring that the maximum possible

number of calls reaches Q2, thus minimising the number of IN calls rejected.

The operation of this joint SCP/SSP congestion control strategy is shown in Figure 5.7.

New calls
overload

(i) New
IN calls

New calls
SSP 1 T ssp2

Fig. 5.7: The Joint SCP/SSP Congestion Control Strategy

Here, we see that the behaviour for SCP congestion control is identical to that defined for the

independent strategy. However, for the joint (i.e. global) strategy, the SSP has the same monitoring

interval as the SCP, and bases its own throttles on the overload information received from the SCP.

Each SSP still puts the IN throttle in place at Q2, but it also uses this information (step (vi)) to

decide, based on its own overload level, if it is sufficient to reject non-IN calls at Q2 (i.e. first

stage SSP overload) or if some global throttling is required at Q1 (i.e. second stage SSP overload)

in order to relieve overload at the SSP itself.

5.3.2 Results and Analysis

The criteria used to form a comparison between the independent strategy and the joint strategy are

SSP load, throughput and queue length, SCP throughput, and the delays experienced by each

service type. To compare these strategies, we define the requirements that both SCP and SSP loads

should be maintained at 0.9 under a wide range of overload conditions. In all cases, all monitoring

intervals were defined (as explained in Chapter 4, Section 4.2.1) as being of 10 seconds duration.

An analysis of the operation of the two strategies will now be described under three categories, in

which the operation of the joint strategy in each throttling phase will be compared with the

operation of the independent strategy under the same load conditions. Note that minor

discrepancies between analytical and simulation results are to be expected, as the strategies use CG

in the simulation (because CG provided the best overall results, as described in Chapter 4, Section

4.3.3) and PT in the analytical model (as PT is much easier to model mathematically than CG).

119

Chapter 5 Global IN Congestion Control

5.3.2.1 SCP overload only

Here we show the results for when the offered load to the SSP is 0.85 and to the SCP is 1.2. Note

that when the SSP is not overloaded, both simulation and analytical results confirm that the

independent strategy and the joint strategy are equally effective. Also, the fact that there are very

minor differences between simulation and analytic figures, which may be accounted for by the

differences in the throttles used, verify the correctness of the two models.

Offered Load SSP 0.85 & SCP 1.2

Model Analytical Simulation

Strategy Indept Joint Indept Joint

SSP load 0.7655 0.7655 0.765 0.765

SSP throughput 0.7525 0.7525 0.753 0.755

SCP load 0.9 0.9 0.9 0.91

SSP queue length 3.26 3.26 3.27 3.27

Non-IN delay 0.237 0.237 0.24 0.24

Freephone delay 0.617 0.617 0.635 0.65

Televoting delay 1.48 1.48 1 .6 1.725

Table 5.2: SCP overload, No SSP overload

5.3.2.2 SSP overload

Results are described for two load situations for which the SSP is overloaded:

• The offered load to the SSP is 1.2, of which 0.325 consists of IN calls, offering a load of 0.52 to

the SCP, i.e. the SSP is overloaded and the SCP is not (i.e. overload is caused by non-IN calls).

The load levels here are sufficient to cause the joint strategy to enter first stage SSP overload.

• The offered load to the SSP is 1.2 Erlangs, of which 1.05 comprises IN calls (offering a load of

0.78 to the SCP). In this case, overload is caused by IN calls. Here, the joint strategy enters

second stage SSP overload, and will cause minimal throttling of all calls at Ql.

In the first case, the SCP will never become overloaded and will accept all calls offered to it. The

SSP, however, is overloaded and will either selectively throttle non-IN calls, for the joint strategy,

or impartially throttle all calls, for the independent strategy. For this scenario, the throughput of the

SSP is lower by 0.02 for the joint strategy than for the independent strategy - this is due to the

capacity which is required to progress non-IN calls to the point where they may be identified as

120

Chapter 5 G lobal IN Congestion Control

such, before being rejected. This processing overhead for the joint strategy is to be expected, due

to its added complexity, but Figure 5.8 shows the advantage of using the joint control scheme -

note that SCP load is 0.12 greater for the joint strategy than for the independent strategy. This is a

significant gain in a system where IN calls are prioritised. The analytical model validates these

results in Table 5.3.

Offered Load SSP 1.2 & SCP 0.52

Model Analytical Simulation

Strategy Indept Joint Indept Joint

SSP load 0.93 0.93 0.93 0.93

SSP throughput 0.91 0.89 0.907 0.889

SCP load 0.4 0.52 0.38 0.5

Table 5.3: SSP overload, no SCP overload

For the second case, when overload of the SSP is caused by IN calls, the advantage of using the

joint strategy to maximise the number of IN calls accepted is decreased, as the joint strategy must

reject almost as many IN calls as the independent strategy does, in order to relieve the overload

situation. The result is that the SCP load for the joint strategy is now only 0.06 Erlangs greater than

that for the independent strategy. On the other hand, the fact that the joint strategy must start to

reject all calls equally at SSP Q1 reduces significantly the processing overhead generally

associated with this strategy. In fact, Figure 5.9 shows that the disparity between throughput values

for the two strategies is almost eliminated.

121

Chapter 5 Global IN Congestion Control

Fig. 5.9: SSP load = 1.2, with IN calls comprising 1.05 Erlangs

A comparison of simulation and analytical results of this scenario is provided in Table 5.4 below.

Offered Load SSP 1.2 & SCP 0.78

Model Analytical Simulation

Strategy Indept Joint Indept Joint

SSP load 0.93 0.93 0.93 0.93

SSP throughput 0.918 0.913 0.925 0.92

SCP load 0.696 0.78 0.704 0.766

Table 5.4: SSP load = 1.2, with IN load 1.05

In other words, when the SSP alone is overloaded, there is an automatic tradeoff within the joint

strategy, such that noticeable increase in SSP processing requirements results in considerable

increase in IN call acceptances, whereas if the state of the SSP overload is such that a considerable

increase in IN call acceptances is not possible, the SSP processing requirements are reduced

automatically.

5.3.2.3 Both SSP and SCP overloaded

For this scenario, the offered load to the SSP is 1.2 Erlangs, of which 0.352 consists of IN calls

(offering a load of 1.3 to the SCP), i.e. both SCP and SSP are overloaded. The results for this case

are presented in Table 5.5.Note that the difference in SCP loads achieved by the two strategies is

smaller (0.02), but this is also reflected in the difference in SSP throughputs, which is now only

approximately 0.005.

The operation of the two strategies is quite interesting for this scenario. The joint strategy, as

usual, has an SSP processing overhead of approximately 0.02, but due to the fact that the throttling

it puts in place is based on the state of both SSP and SCP, it succeeds in keeping both the SSP and

SCP load levels close to the defined threshold. For the independent strategy, however, the SCP

122

Chapter 5 Global IN Congestion Control

causes suitable throttles to be put in place at SSP Q2, while the SSP (not knowing the state of the

SCP) puts unnecessarily stringent throttles in place at Ql, resulting in the unnecessary and

undesired rejection of IN calls (and lower SSP load and throughput characteristics). Therefore, the

independent strategy overprotects both the SCP and the SSP.

It is also interesting to note that, in the simulation model, the independent strategy exhibits

significantly greater oscillations in SSP load and throughput than the joint strategy. This is due to

the fact that, at any given time, the SSP does not know the current state of the SCP, and therefore

any significant variations in SCP load levels result in oscillations in SSP throughput over the

course of a number of proceeding monitoring intervals.

Offered Load SSP 1.2 & SCP 1.3

Model Analytical Simulation

Strategy Indept Joint Indept Joint

SSP load 0.91 0.92 0.91 0.92

SSP throughput 0.902 0.897 0.905 0.9

SCP load 0 .8 8 0.9 0.885 0.905

Table 5.S: SSP and SCP overload

In summary, at SSP load levels below 1.0, results for both the joint SSP/SCP congestion control

strategy and the independent strategy show them to be equivalent, irrespective of SCP load levels.

When only the SSP is overloaded, the comparative behaviour of the two strategies depends on the

input traffic mix. However, the joint strategy consistently accepts significantly more IN calls than

the independent strategy, at a cost of not more than 0.02 SSP Erlangs (due to the requirement to

process calls through to number analysis prior to rejection).

When both SSP and SCP are overloaded, again there is an overhead of not more than 0.02 Erlangs

at the SSP for the joint strategy, but in return, the number of IN calls processed at the SCP is

maintained at the threshold, independent of the SCP overload level, while the independent strategy

consistently maintains SCP load significantly below the threshold (i.e. it overprotects the SCP).

The joint strategy also has the added advantage that, as it is simultaneously aware of the state of

both the SCP and SSP, throttles are put in place which protect both physical elements at all times,

while for the independent strategy, the SSP algorithm is only aware of the state of the SCP defined

by the throttles which were put in place at the end of the preceding interval. The result of this is

that variations in traffic load or mix may cause oscillations in SSP load and throughput for the

independent strategy, but do not affect the efficiency of the joint strategy.

123

Chapter 5 Global IN Congestion Control

5.3.3 Conclusions

Here we investigated the operation of a joint SCP/SSP congestion control strategy with an

independent strategy. The results (published in [Lodge96]) showed that when independent

congestion control strategies are used to protect the different elements of an IN, they successfully

meet the basic requirements placed on such strategies - i.e. they protect their elements with small

processor overheads. However, they lack flexibility, in that the interworking between the different

control algorithms results in inefficient overall performance. This was proven by comparing

classic congestion control algorithms, operating independently at the SSP and SCP, with a very

simple joint algorithm that selectively throttled input traffic based on the state of both elements.

The results demonstrated that even a simple global IN congestion control strategy is, for all traffic

mixes and loads, either equivalent to or superior to a strategy in which the SCP and SSP are

protected independently.

Independent strategies may be both flexible and fair, but again, only within the element being

protected. Any global concepts of flexibility or fairness cannot, in general, be supported by these

kinds of strategies and concepts such as maximum network resource utilisation and prioritisation

are not naturally addressed by this class of strategy. For example, in this section, it was very

simple to define the joint strategy so that it encompassed a simple priority system, where all IN

calls had higher priority than all non-IN call types. The results proved that, at all load levels and

for all traffic mixes, this priority system was adhered to, at the expense of a small processing

overhead at the SSP. Adapting independent strategies to provide the same level of support for

prioritisation would be non-trivial and would remain subject to problems when required to

interwork with each other (as will always be the case in IN).

The principle conclusion to be drawn from the work described in this section is that there is a need

for a network-wide congestion control strategy in the IN which provides controls for both SCPs

and SSPs by throttling both IN and non-IN call types appropriately. Only through use of such a

strategy is it possible to maximise the performance of the entire network. A global IN congestion

control strategy would also be easily extensible to encompass all desired aspects of a congestion

control strategy, including scalability, fairness and flexibility. Note however, that the joint strategy

used in this investigation is not proposed as a solution for global IN performance management, as

it is neither scalable (CCC and CG both require parameters to be defined which are dependent on

the capacity of the resource being monitored and are therefore innately unscalable) nor elegant. It

was designed merely as a tool to verify the necessity for a global IN strategy and to motivate the

specification of a comprehensive solution.

124

Chapter 5 Global IN Congestion Control

Section 5.4 presents an elegant strategy for global IN performance management which meets all

basic and desired aspects of any congestion control strategy, and verifies the usefulness of this

solution in Section 5.5 through the use of the IN analytical model. Chapter 6 will compare this

solution with existing strategies (using the simulation model) in order to prove its superiority.

5.4 The Optimisation-based Global IN Congestion Control Strategy

The congestion control strategy presented here consists of an algorithm which, at defined intervals,

uses an optimisation program to find the best possible percent thinning throttling arguments for

each type of input call in order to maximise the revenue during the next interval. However, this

optimisation program must also satisfy a number of constraints. These include:

• load constraints on the SSP and SCP (a form of load measure control), and

• constraints ensuring that the weights or priorities of the different call types are reflected in the

defined throttles.

In this manner, revenue will be maximised over a time interval, while traffic will be throttled in

such a way that the throttling levels for each type of input call will preserve the weights defined for

the calls while ensuring that load thresholds at the SSP and SCP are not exceeded. Note that this

strategy may be generalised easily to address congestion issues for any system with multiple input

traffic types - it is only the addition of the SCP constraint that causes it to address IN congestion

specifically.

5.4.1 Defining the Mathematical Terms to be used in the Strategy Specification

Before the devised optimisation-based congestion control strategy is described, it is necessary to

make a few mathematical assumptions, in order to clearly define and scope the terms which will be

used in the formulae associated with the strategy — i.e. the formulae will be expressed in the terms

of the analytic IN model. This in no way detracts from the generality of the approach - it merely

aids understanding in the specification of the strategy.

The following assumptions were made:

• There is one SCP, one SDP and N SSPs in the system,

• All service times are exponentially distributed,

• No calls are rejected at Ql, i.e. P ° = 1.0,

125

Chapter 5 G lobal IN Congestion Control

resulting in the specialisation of the general decomposition equations defined in Section 5.2.3.2, as

shown below. Note that again, all parameters on the right hand side are as defined for time interval

[t-T,t\, with the exception of P“ and pan i , which are as defined at time (t-T).

F o r Q i& Q V K<^(0=Cgj 0 ’--K<ir,U) = l

. f* acCft.i r*rejn

F°r Q \ : *=1,4
(A k At,k)
*=1.4

(Qc-ix I %)+l
j=2J,5

C < 2 3 „ (0 = P q 3„ + K a Q 3 „ (0(1 - P q 3 ,)

< S A)
>2A5

For theSCP: KaSCf(t)=1̂

N

a
ii=t

W O - W f I X / W + i
1=22,5

< 2 X A /)
>2,3,5

N

+ CsdA î) \ 'dp+J C iPg (O f̂pQ
n=l

C scA 0 = /?vcp+ ^% cf(00 ~ Pscp)

FortheSDP. ^ ¿ 0 = 1 + (C ^ 0 - !) (£ ; £ I X A j)
«=1 j -2,3,5

CsdA 0 = A 'dp+^% oî(00 ~ Psdp)

For IPQ, : = l+ (Q c/< 0 - l) (^ i)
Q pq , (0 = /V q , + K qpQ , (0 0 “ A p q)

5.4.2 Capturing the Requirements on the Global IN Congestion Control Strategy

Before describing the optimisation-based global IN congestion control strategy, let us first

summarise the requirements which were specified on it, as described in Section 5.1. Obviously, the

basic requirements are that an overload control strategy must be able to protect IN resources under

any load conditions and must use processing resources in an efficient manner. Highly desirable

characteristics of the strategy also include:

• Scalability: an algorithm should not need to be substantially reconfigured if the size of its

resource changes, e.g. if the same algorithm should reside at all SSPs, it should not require

much “tweaking” to target it to each SSP. For example, while requiring that the values for a

few parameters should be set is acceptable, the need to run exhaustive simulations to establish,

for each SSP, the number of arriving calls which constitute overload (for CCC) or the gap

126

Chapter 5 G lobal IN C ongestion Control

intervals which should be put in place in a CG throttle for a given overload level is highly

undesirable.

• Flexibility: a well-designed algorithm should be easily customised to include factors such as

different call priorities, different requirements on fairness or other non-functional

requirements.

• Fairness: If overload is caused by an excess of calls of one particular service type, only calls of

that type should be rejected (i.e. Focussed Destination Overload Control - FDOC). Also, all

subscribers to a particular service type should have an equal chance of acceptance — i.e. all

sources should be throttled proportionally to their size and arrival rates.

To ensure that the solution proposed addresses all the above requirements, a number of factors

were specified which must be taken into account when defining the algorithm. In the area of

flexibility, these sample factors are defined by the requirements of users and operators of the

network. For the operator, it is desirable to maximise revenue while maintaining IN integrity. IN

customers expect the network operator to provide a pre-agreed Quality of Service (QoS) level,

while all users require that call setup takes place as quickly as possible. Other factors may also be

equally relevant, but due to the constantly increasing number of new types of service on offer in

telecoms networks, it would be very difficult to provide an exhaustive list of them. Therefore, in

designing our strategy, we have chosen to base our priority-driven system on the following factors:

• revenue per call,

• load requirements per call, and

• IN QoS agreements.

The aim of this chapter is to find a strategy that balances these factors and provides a good

compromise in order to satisfy all users. Note that seeking a good balance between these factors

curtails, to a certain extent, the capability to strictly enforce either service or subscriber fairness.

Instead, it is required that the designed strategy maintains fairness within the bounds of the balance

between the above factors. For example, if a service type which has high revenue per call, low load

requirements and which is based on strict QoS agreements causes an overload, calls of this type

should logically still be given priority over less important calls. However, accepting this, the

system should never reach the state where all calls of a particular type are rejected due to an

overload of calls of a higher priority - this would be highly unfair. Maintaining a balance between

call types should ensure that this situation never arises.

127

Chapter 5 Global IN Congestion Control

5.4.3 Introducing the Concept o f Call Weights

Maintaining a balance between call types is accomplished through the definition of call weights.

When using simple priority-based schemes, we lose the information as to the relative importance

of calls of different priorities. We therefore introduce call weights as a factor of the relative

importance of different call types (this is, in fact, a generalisation of priorities). For this work, we

choose to focus on the call setup revenue, call processing requirements, and QoS agreements as the

factors that contribute to a call type’s weight. In order to place numerical values on QoS

agreements, we assign numerical QoS levels which may be set by the service provider to capture

the relative strictness of the requirements of different service users - these levels may be assigned

based on practical data (such as acceptable delays) or on more abstract non-functional

requirements (e.g. the importance of a customer). This is at the discretion of the service provider.

The weight of each call type should be a function with the following properties:

• For all other factors constant, if the value of revenue is increased, the weight should increase

(but not necessarily proportionally),

• For all other factors constant, if the value of QoS is increased, the weight should increase,

• For all other factors constant, if call processing requirements are increased (captured using the

value of service time), the weight should decrease,

For this work, the relative weight for call type i was defined as a>i , where

to .= t e a
‘ S

k

i.e. we assign weights to each of the traffic types by finding the normalised product of their setup

revenue, R,, their total (i.e. at both SSP and SCP) load requirements (here expressed as the inverse

of service time, service rate //,■) and their pre-agreed QoS level q i .

For the five call types that are implemented in the model, a number of assumptions are made:

• International call types have highest revenue, with televoting second and freephone and local

with the lowest revenue,

• IN calls require approximately 2.5 times the processing capacity of non-IN calls at the SSP,

• All IN calls receive the same amount of processing capacity each time they enter the SCP,

• International freephone has the highest QoS level, with televoting second, freephone third, and

non-IN calls having the lowest priority as no QoS levels are defined for them.

Examples of possible normalised weight assignments are shown in Table 5.6, as are the ratios of

these weights.

128

Chapter 5 Global IN Congestion Control

Service Call type a, (üj
a>5

International 1 0.489 12.225

International freephone 2 0.313 7.825

Televoting 3 0 .1 2.5

Local 4 0.058 1.45

Freephone 5 0.04 1 .0

Table 5.6: Assignment of Weights

5.4.4 Specification o f the Optimisation-based IN Congestion Control Strategy

As stated in Section 5.4 and described in [Lodge97], the proposed global IN congestion control

strategy takes the form of two optimisation algorithms, one of which is located in the SCP and the

other in all SSPs. These algorithms are very similar, but are specialised to the resource in which

they reside. They interoperate in such a manner as to provide premium IN performance, while

ensuring that no network elements become overloaded. The sequence of operation and interaction

of these algorithms is shown in Figure 5.10 and will now be explained.

During an interval of length T, each SSP n has a mean arrival rate of An i for each service type i (i

=1..5). These arrivals are subject to any throttles put in place at Q2n at the end of the previous

interval (step (i) from the diagram) and all accepted IN calls are sent to the SCP via the SS7

network. We define £ scpj (0 as the mean arrival rate during the period [i-T, t] of new calls of

type j (where j e J where J = {2,3,5} for IN calls) as calculated at the SCP (step (ii)) at time t. This

may be estimated as X ^ p j if) ~ J] P l j 0 - T)JLnJ .

SSP 1

Fig. 5.10: Overview o f the New Global IN Congestion Control Strategy

129

Chapter 5 Global IN C ongestion Control

Optimisation at the SCP (step (in')). The SCP algorithm, at time t, attempts to set values on the

SSP PT throttles in order to maximise revenue for IN calls in the next interval, while meeting SCP

load constraints and honouring the weights of different traffic types. To do this successfully, the

optimisation must be based on the total arrivals of IN calls to the network during the previous T

seconds. Note, however, that the SCP has no information regarding the actual number of arrivals to

the system (i.e. to the SSPs) and must therefore estimate this value based on the information that is

available to it, namely Xn̂ PJ(t) and the values of the throttles it defined at the end of the previous

interval Pscpj (*_ T). This estimated total for each IN call type at time t may be evaluated using

the formula:

,est
total,j \ l)

P s c p j

The optimisation program to maximise the revenue over IN call types may be expressed as follows

for J IN call types, each with known associated revenue per call R ., a probability of

acceptance Pscpj (0 (the throttles to be determined for the next control interval) and the estimated

new call arrival rate A ^ialj (t) , used because, to maximise revenue, all calls should be counted

once only, as they may be charged for only once.

a Maximise ^ R j P s c p j (O ^otalj 00
Pscp,i(t) -P s c p ,j(t) j e J

The constraints on this revenue maximisation are:

(i) SCP Load constraint: £ p *cp j (t)eSCP j ¿ f talJ (t) < ThrSCP ,
j

(ii) Bounds on p \Cptj(t) : Q< p lCPJ{t)<\, Vj ,

(iii) Weight constraints: 1 < - S9 P'2 12 < j = 3 5 where co-. = *)‘hescp,]tiscp—
p \cp At) 6>j J T^kW M scP

k = 2 ,3 ,5

where /jscp is the processing rate at the SCP, ThrSCP is the overload threshold for the SCP and all

other parameters are as previously defined. In Constraint (iii), the ratio of weights is defined in

terms of call type 2. This is because this call type has the highest priority of the IN call types. The

optimisation algorithm will execute every T seconds and will, at time t, based on arrival rates in

the interval [[t-T,t\, calculate the optimal (in terms of IN revenue) probabilities of acceptance

P s c p j (0 f°r the interval \t,t+T\. These /arguments (corresponding to call types 2, 3 and 5 in our

model) are returned to the SSPs in the network (step (iv)) and are used to define the u p p e r b ounds

on the percentage of calls accepted for each IN call type. These arguments may not be used

130

Chapter 5 Global IN Congestion Control

explicitly as the PT arguments as they do not take into account the state of each SSP and therefore

may detrimentally affect the performance of these elements.

Optimisation at the SSP (step Tv'». The optimisation algorithm at the SSPs functions in a manner

similar to that described for the SCP. Here, the acceptance probabilities P s c p j (0 defined by the

SCP optimisation algorithm are used. Again, the revenue is maximised (note that, at the SSP, non-

IN calls must also be taken into account) subject to load and weight constraints. The objective

function may be stated as follows, where 1=5:

I

Maximise £ • (t)A t (t)

with the constraints:

(i) SSP„ Load constraint : An i) < ThrSSP ,
r~ T f*a ccn J P r e j „ "
1=1

(ii) Bounds on p ^ / t) for non - IN calls : 0 < p̂ n i (t) < 1, where i=l,4 ,

(iii) Bound on P n/t) for IN calls : 0 < p„ j(0 ^ P s c p j (t)> where ¿=2,3,5 ,

(iv) Weight constraints : 1 < —n— ̂ < — , i = 2,3,4,5, where a>i - SR‘Q,Mac—— ,
P n,i(0 &i Y.Rk<!kMaccn,k

4=1

where p accnj is the processing rate at SSP n for accepted call type i, ThrSSPn is the user-defined

overload threshold for SSP n, and all other parameters are as previously defined. Note that

Constraints (i) and (iv) protect the SSP from overload while preserving priorities between call

types and that Constraint (iii) ensures that SCP load requirements are not exceeded.

Note that the objective functions and all constraints at both the SCP and SSPs are linear -

therefore, these are Linear Programming Problems, as described in Chapter 3. Other constraints

could also be included, as the optimisation algorithm is very flexible, but it is recommended that

they should be included only if linear, because the inclusion of any non-linear constraints would

render the optimisation task much more complex and it would thus require much more processing

power. For this reason, a constraint on service delays, which would be non-linear, was not

included. This should, however, not be a problem, as the other constraints should ensure that the

network does not become overloaded and that therefore the service delays should be within

acceptable bounds. Additionally, load constraints at the SCP and SSP were based explicitly on

load levels for computational ease only - they could easily be amended so that the overload

thresholds are defined by the number of call arrivals (call count control) or the mean queue length

(a form of queue length control). Note also that, as with all strategies that estimate congestion

131

Chapter 5 Global IN C ongestion Control

levels over a fixed interval, there will always be a delay of a maximum of T seconds before the

algorithm responds to the onset of congestion. Further, as no requests may be rejected until they

reach Q2, it is possible that Q1 may become overloaded independently. Therefore, it is necessary

to place a simple throttle (e.g. a rate control mechanism) at Q1 to reject just enough traffic to

protect this queue.

5.5 Operation of the Global IN Congestion Control Strategy

To show the efficient operation of the control strategy, we must present the results acquired from

the analytic model in a number of different input load scenarios. In all cases, the interval T is

defined as 10 seconds, while ThrSSP =ThrSCP = 0.8 .

5.5.1 Scenario 1: Stationary Case.

As a first step, to prove the validity of the analytic work, we state that, in the stationary case, i.e.

when input traffic levels are constant for all call types and at levels sufficient to cause overload,

processor loads, revenue and service delays all converge to their optimal levels within two

iterations/intervals. Controls are put in place at the end of the first interval to deal with the

congestion situation, and are amended slightly at the end of the second interval to cater for retrials.

This verifies that the optimisation algorithm deals with changes in overload levels quickly and

efficiently.

5.5.2 Scenario 2: SSP Overload due to One Call Type

Here, SSP overload was induced by increasing the arrival rate of international freephone calls

linearly over successive intervals for 60 iterations and then decreasing it sharply, while

maintaining constant arrival rates for all other call types (shown in Figure 5.11). Note that the SCP

service rate was defined so that the SCP would not become overloaded and adversely affect the

results for this scenario.

132

Chapter 5 G lobal IN Congestion Control

International ^ ^ ^ “ International freephone
■ ■ + ■ ‘ Televoting Local
-------------Freephone

M rJJ I.U oO cU A J kU o iJ nu c V (J►O' T? rf <Ì> t£ & & 4> «P <bN & 'O' A®
Time (seconds)

Fig. 5.11: Offered Traffic Causing SSP Overload

Constraint (iv) of the SSP optimisation algorithm forces rejection of call requests of lower weight,

while also maintaining the ratios between probabilities of acceptance of these calls, as

demonstrated in Figure 5.12. Note that, Constraint (i) forces televoting and freephone calls to be

restricted prior to local calls - this is because of the greater SSP processor requirements associated

with IN calls. When Constraint (iv) becomes active between freephone and televoting, local calls

start being restricted. This continues until Constraint (iv) again becomes active for local calls, and

then a minor quantity of international freephone calls are rejected.

"International
1 Televoting
1 Freephone

"International freephone
Local

Fig. 5.12: Proportion of Traffic Accepted under SSP Overload

133

Chapter 5 Global IN Congestion Control

Constraint (i) forces processor load for the SSP stay at the threshold - see Figure 5.13. Note that at

time ¿=440, SCP load reaches its minimum value - this is due to the rejection of freephone and

televoting calls. However, at this point, Constraint (iv) becomes active and rejections of these calls

stabilises and local calls are rejected, while international freephone arrivals continue to rise, thus

prompting the rise in SCP load after this point. SCP load does not begin to drop until after the

arrival rates for international freephone fall, and its rate of decent is slowed by the gradual increase

in televoting calls accepted. Figure 5.14 shows that the revenue follows the variation of

international freephone in a non-linear manner, as would be expected.

Q2 SCP

Time

Fig. 5.13: SCP and SSP Processor Loads during SSP Overload

Revenue

Time

Fig. 5.14: Revenue during SSP Overload

5.5.3 Scenario 3: SCP Overload due to One Call Type

In this case, traffic arrival levels were kept sufficiently low to ensure that the SCP became

overloaded prior to the SSP. Televoting arrival rates increased linearly for 6 6 iterations before

134

Chapter 5 G lobal IN Congestion Control

dropping off sharply. The results are very interesting. SCP Constraint (i) ensures that the SCP load

threshold is not exceeded, while due to the fact that televoting arrivals far exceeded freephone

arrivals, Constraint (iii) forces only the rejection of televoting calls - i.e. the calls that caused the

overload. The variation in televoting acceptances follows the variations in the arrival rates for this

call - note how the acceptances decrease non-linearly for linear increases in arrival rates, and that,

at the point where televoting arrival rates begin to decrease (i.e. at ¿=660), televoting acceptances

begin to ascend at the same rate in a non-linear fashion. These results are shown in Figures 5.15.

Televoting -------------All others

Time

Fig. 5.15: Proportion of Traffic Accepted at SSP during SCP Overload

Figure 5.16 shows the processor loads of the SCP and Q2 over the same period - note that, due to

the fact that the SCP exhibits overload symptoms before the SSP does, protection of the SCP

prevents the onset of congestion at the SSP.

-Q2 -SCP

0.9 1
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0 ! 111111111 h I h 111 m n 1111 n m m m UH H n I n m m n h t H m n 11) i n n
O j-O f-iO qQ iO f ß (jö nO qO » ö -Ö -O85 »O' T?1 'S5 «P (O' & & & &

Time

Fig. 5.16: SSP and SCP Processor Loads during SCP Overload

135

Chapter 5 Global IN Congestion Control

5.5.4 Scenario 4: General Overload

In this scenario, the arrival rate for all calls increased non-linearly (in steps). The result was the

rejection of all call types with the ratio of probabilities of arrival between call types being

maintained by SCP Constraint (iii) and SSP Constraint (iv). This is shown in Figure 5.17 - note

how SSP Constraints (i) and (iv) again force the rejection of televoting prior to the rejection of

local calls and also that no local calls are rejected until SSP Constraint (iv) becomes active for

freephone and televoting.

International International freephone
“ " “ Televoting “ Local
................Freephone

Time

Fig. 5.17: Proportion o f Traffic Accepted at SSP during General Overload

Processor load at the SSP is maintained at the threshold by SSP Constraint (i) while processor load

at the SCP changes with the variation in acceptance levels for the different call types, but

consistently remains below its threshold (see Figure 5.18).

Q2 SCP

Time

Fig. 5.18: SSP and SCP Processor Loads during General Overload

136

Chapter 5 G lobal IN Congestion Control

Changes in the revenue follow variations in the non-linear arrival rates, but with smoother

variations, as shown in Figure 5.19.

Revenue
140

120

100 ----------------------
o '
i 80 ■
a>
| 6 0 -

40 ■

20

0
o ßO oö tö pö gO /iiO oö »ö rö äÖ flO

Time

Fig. 5.19: Revenue during General Overload

Figure 5.20 demonstrates the service delays experienced by each traffic type - note that the delays

are greater for large SCP load (shown in Figure 5.18) and then decrease as SCP load decreases due

to the throttling of televoting and international freephone traffic. However, at all times, the existing

constraints ensure that the delays for each service type are within acceptable limits as defined by

[MacDonald94]. This confirms that the explicit inclusion of a constraint on service delays in the

optimisation algorithm is unnecessary.

International & Local
................International freephone & Freephone
------------ T elevoting

Time

Fig. 5.20: Service Delays during General Overload

137

Chapter 5 G lobal IN Congestion Control

5.5.5 Scenario 5: Overload due to Bursty Televoting Traffic

To examine the operation of the control strategy when subjected to short bursts of high traffic

loads, an input was provided which generally did not cause any load constraints to be exceeded.

However, at irregular intervals, the arrival rate of televoting calls was increased by a factor of 4 for

60 seconds. All other traffic arrival rate remained constant for the duration of the simulation. The

load results, shown in Figure 5.21 show that, at the end of the interval following the onset of the

burst, the system responds by throttling televoting calls (due to SCP Constraint (iii)) to reduce the

loads on both SSP and SCP to approximately threshold levels. When the burst traffic ceases, the

system again responds at the end of the succeeding interval by eliminating the televoting throttle,

thus restoring the original loads. Note, in Figure 5.22, that the resultant revenue closely follows the

load curve of the SSP.

Fig. 5.21: SSP and SCP Processor Loads during Overload due to Bursty Traffic

Total Revenue

Time

Fig. 5.22: Revenue during Overload due to Bursty Traffic

138

Chapter 5 Global IN Congestion Control

It was also interesting to note that, if SCP Constraint (iii) and SSP Constraint (iv) were amended so

that pa i > pa j V2 > j , the revenue remained equivalent, but in cases of SCP overload, rejection of

local calls was forced (so that the advantage of rejecting only calls which caused the overload was

lost), and therefore more televoting calls were accepted, resulting in greater load levels at the SCP

(without exceeding the threshold) and greater service delays over all IN calls.

5.6 An Optional Extension to the Global IN Strategy - FDOC

It is interesting to note that the above IN congestion control strategy, by its nature, ensures that

SCP congestion due to an excess of calls to focused destinations is unlikely. This is because it

effectively allocates SCP or SSP capacity to different call types based on their weights and

revenues, and therefore the only way that focused overload of the SCP could occur would be if the

focused destination was of the call type with the highest weight and revenue in the network. As

such, the enforcement of service fairness is implicit in the congestion control algorithm. However,

the strategy still does not ensure fairness within an IN service type. It is still possible for calls to

one destination to use an excessive amount of the allocated resource within the service type (if the

arrival rates for that destination are much greater than arrival rates for other destinations). This is

not necessarily undesirable, as it does not affect the performance or revenue of the network.

However, in practical terms, the probability of successful completion of calls is greater for

destinations with lower arrival rates as the probability that the destination node is overloaded is

lower. Therefore, it may be more desirable to accept, within a service type, all calls to destinations

with low arrival rates and selectively reject calls to destinations with high arrival rates in order to

make the best use of resources allocated to a service type. This scenario is generally referred to as

Focused Destination Overload Control (FDOC). However, in the case of our algorithm, this is a

misnomer, as the IN congestion control algorithm, by its nature, prevents overload by a particular

call type, so focused destination overload is extremely unlikely. Instead, this “FDOC” extension

forces fairness within a given call type.

A simple optional extension to the IN congestion control algorithm described above facilitates

FDOC (and was published in [Lodge98a]). At the SCP, the arrival rates to specific destinations

within a service type should be monitored over the course of a control interval (in a manner similar

to that described in [Rumsewicz95]). At the end of the control interval, resources within the SCP

are allocated to service types as described above, resulting in the specification of a probability of

acceptance Pscpj f°r service type j. Therefore, the SCP resources available for calls of this type is

Pscp ■/?st I
r s c p j = SCP/ i Sa ^ ' J • Resource requirements R'scpjjr, to eac^ destination within service type j may

now be expressed based on the monitored arrival rates to each destination in the previous interval,

139

Chapter 5 G lobal IN C ongestion Control

yJaeW
i.e. R*scp,j,dn = l £ ^ Rlctj> where .¿Sav,*, is the arrival rate at the SCP of calls of type j to

destination dn during the previous interval. We may now use a simple method to allocate resources

to calls to each destination by applying the following focus elimination function to all resource

requirements Rjfcpjjn '■

RsC P,j,dn ~ f (R SCP,j,dn)
RsCP,j,dn ’ R SCPJ,dn - R Thr,j

g (R s C P ,j ,l » ■ ■ R s C P J ,n) ’ R SCPJ,dn - R Thr,j

w h e r e R fcpj,dn i s t h e r e s o u r c e a s s ig n e d t o d e s t in a t io n dn, Rm , i s s o m e t h r e s h o ld v a lu e f o r th e

S C P r e s o u r c e a s s ig n e d to s e r v ic e ty p e j a n d N i s t h e n u m b e r o f d e s t in a t io n n u m b e r s w ith in th e

s e r v ic e t y p e . T h e f o r m o f th e f u n c t io n g a n d th e v a lu e o f Rnr , s h o u ld b e c h o s e n s o that:

• T h e a lg o r i t h m i s k e p t s im p le , t o r e d u c e p r o c e s s in g o v e r h e a d s ,

• A l l a v a i la b le r e s o u r c e s a r e a s s ig n e d , i .e . ^ Rscp,j,dn = r s c p j >
dn

• D e s t in a t io n s w h ic h r e q u ir e m o r e r e s o u r c e s a r e a s s ig n e d m o r e r e s o u r c e s , i .e . i f

R SCP,j,dnx < RSCPJ,dny > ^ len R SCP,j,dnx < RSCP,j,dny ’

• D e s t in a t io n s w i t h “ s m a l l” r e s o u r c e r e q u ir e m e n ts s h o u ld b e a s s ig n e d a l l c a p a c it y r e q u ir e d w h e n

p o s s ib l e .

A s im p le e x a m p le o f a n o n - l in e a r f u n c t io n g w o u ld b e :

preq _ n
Dass -<w'/?req /?req ï - j ? + __ scp’j ’dn*_______ Jhid._______

SC P ,j,dnx ~ & \ K SC P ,j,\ > ■ ■ ’ K S C P ,j,N) ~ K T h r,j + ^ ^ req
2-1 \ SCP,j,dn ~ ThrJ) +
dn

w h e r e X + = 0 i f X < 0 and X + = X + i f X > 0 .

O n c e th e a v a i la b le r e s o u r c e s h a v e b e e n a s s ig n e d , th e a s s ig n m e n t s m a y b e tr a n s la te d in to a

p e r c e n t a g e o f a v a i la b le r e s o u r c e , a n d p a s s e d to t h e S S P s a lo n g w i t h t h e n e w v a lu e o f P sCPj fo r

th a t s e r v ic e ty p e . T h e S S P a lg o r ith m t h e n e v a lu a t e s t h e a p p r o p r ia te p \ j a n d a l lo c a t e s th is o v e r a ll

d e s t in a t io n s b a s e d o n th e r e c e iv e d p e r c e n ta g e s .

N o t e , h o w e v e r , th a t t h e in c lu s io n o f th is e x t e n s io n to th e c o n tr o l a lg o r i t h m r e q u ir e s th e m o n ito r in g

o f a l l d e s t in a t io n n u m b e r s w i t h in e a c h c a l l t y p e , a n d a s s u c h , r e n d e r s th e a lg o r ith m su b s ta n t ia lly

m o r e p r o c e s s o r - h u n g r y . A n o t h e r d r a w b a c k o f u s in g s u c h a n e x t e n s io n i s t h e fa c t th a t th e e s t im a te

th a t th e S C P m a k e s a s t o th e t o ta l a r r iv a l r a te o f e a c h s e r v ic e t y p e t o th e s y s t e m b e c o m e s l e s s

a c c u r a te , a s i t i s n o w b a s e d o n a v e r y la r g e n u m b e r o f p a r a m e te r s . T h is r e n d e r s th e e n tire

a lg o r ith m l e s s e f f i c ie n t o v e r a l l . A c o n c lu s io n o f th is i s th a t th e b a s ic a lg o r ith m i t s e l f p r o v id e s

140

Chapter 5 G lobal IN Congestion Control

perfectly adequate cover for the prevention of overload due to one call type, and therefore IN

overload due to calls to a specific destination will generally not be permitted. Therefore, the only

advantage of including the FDOC extension is that it enforces fairness within a given call type, and

therefore, it should not be used unless this level of fairness is critical to a service provider.

5.7 Conclusions

The results for this control strategy are excellent. In all scenarios, with different traffic

distributions and mixes bringing about overload, the congestion control algorithm causes the load

of all elements to converge to the specified threshold very quickly and without oscillations.

Therefore, the best possible use is made of all resources during overload. This is reflected in the

fact that service delays remain consistently within required bounds. The strategy also provides the

added bonus that revenue is optimised at all times, even during overload!

The weighting strategy used is defined to be extremely flexible so that it can encompass both

functional and non-functional requirements of the service providers and users, and the results

prove that, by including the weights as a constraint in the optimisation algorithm, the relative

importance of calls is maintained at all times, even during extreme overload conditions.

Examining the requirements on the optimisation-based global IN congestion control strategy

shows that it meets the basic requirement of protecting all network elements under all load

conditions. It also meets the desired characteristics, in that the strategy is:

Scalable - all that is required to target the algorithm to a particular network resource is that a

number of parameters, e.g. eSCP j , service rates and weights need to be defined. Also, the addition

of new resources to the network (e.g. a new SSP) will not require alterations to the existing

congestion control algorithms in other resources.

Flexible - the definition and allocation of call weights is at the discretion of the service provider,

so that their needs with regard to service differentiation may be met. New constraints may be

added to the optimisation algorithm - the only requirement is that they must be linear. Extensions

to the algorithm such as the facility for FDOC may be added easily. The strategy therefore proves

itself to be extremely flexible.

Fair - in this chapter, the optimisation-based strategy has proven itself to provide implicit service

fairness, within the bounds of the priority system defined. Further, more detailed levels of fairness

may be provided through the extension of the algorithm, e.g. to cater for fairness within a service

type. Optimisation also exhibits subscriber fairness - while not explicitly shown in the results of

141

Chapter 5 Global IN C ongestion Control

this chapter, it should be intuitively obvious as optimisation uses a PT throttle, which was proven

in Chapter 4 Section 4.3.3 to be subscriber fair.

The only requirement that has not yet been proven to be met is that of efficiency — the resource

requirements of the algorithm are as yet unclear. Obviously, they will be greater than for a simple

algorithm like CCC, but it remains to be verified that these excess resource requirements are worth

the cost, in terms of the value add provided by the strategy. In order to investigate this, the

operation of the optimisation-based global IN congestion confrol strategy will be compared with

classic CCC/CG, Window and a simpler dynamic IN congestion control strategy (devised for the

purpose of comparison) in Chapter 6 .

142

Chapter 6

Comparison between IN Congestion Control Strategies

Chapter 6 Comparison betw een IN Congestion Control Strategies

6.1 Introduction

The optimisation strategy presented in Chapter 5 has been confirmed as meeting the basic

requirements on a congestion control algorithm, namely it effectively protects all elements of the

IN from congestion under all load levels and traffic mixes. It was also demonstrated that the

algorithm is flexible, scalable and fair. We now need to show that the greater processor overheads

required to use the strategy are worthwhile, in terms of the increased performance of the IN. To do

this, we must compare the behaviour and resource requirements of the optimisation-based global

IN congestion control strategy with that of other strategies. Chapter 4 showed that CCC provides

the best performance among the existing, commonly used SCP congestion detection methods. It

was also shown that the CG throttle responds faster to the onset of overload than PT, and therefore,

while PT has a number of desirable characteristics, CG is more efficient at protecting the SCP

during overload. The results for the Window strategy presented in Chapter 4 were inconclusive - it

was seen to respond very quickly to the onset of overload, but was extremely inconsistent across

variations in load levels. Therefore, to establish the superiority of the optimisation-based strategy,

it should be compared with both classic CCC/CG and Window. However, this is not a truly fair

comparison, as any classic IN control strategy will be based on fixed parameters which can never

provide efficient congestion control for all traffic mixes, as they tend to be based on the

assumption that either:

• All calls have the same load requirement, or

• If calls have different load requirements, then the ratio of arrivals for the different call types

that comprise the total arrivals to the system is constant.

The result of this is that no fixed parameter values can be defined which apply to multiple call

types with different load requirements and varying traffic mixes (as was verified in Chapter 4,

Section 4.4). Therefore, optimisation (or in fact, any reasonable dynamic congestion control

strategy) should automatically outperform all of the classic strategies. So, in order to rigorously

evaluate the advantages and disadvantages of the optimisation strategy, it should also be compared

with another dynamic strategy. To facilitate this, a new dynamic IN congestion control algorithm

was specified. This is based on the use of a dynamic version of CCC in conjunction with a

dynamic combined PT/CG throttle - i.e. a strategy that is both scalable and dynamic. Therefore, in

this chapter, we will compare the optimisation-based global IN congestion control strategy with:

1. Classic CCC/CG: a classic IN overload control strategy, in which the SCP congestion control

algorithm uses CCC to evaluate overload levels at the SCP and CG to throttle IN traffic at SSP

Q2, and an independent SSP congestion control algorithm which consists of CCC at Q2 of the

SSP setting CG throttles at Q1 to throttle all calls equally,

144

Chapter 6 Comparison betw een IN C ongestion Control Strategies

2. A Window-based Strategy: Window, located at the output of the SSP, prevents overload of

the SCP, while SSP protection is provided by the same SSP CCC/CG algorithm used in the

classic CCC/CG strategy,

3. Dynamic CCC/CG: a scalable and dynamic adaptation of classic CCC/CG.

The criteria we use to compare these strategies are SCP load, SSP load and throughput, network

revenue and service delays. We also evaluate the cost efficiency of the algorithm in terms of both

its processor requirements and the number of counters required to monitor the statistics required

for the algorithm.

Section 6.2 describes the classic independent CCC/CG strategy, the Window strategy and the new

dynamic CCC/CG strategy. Section 6.3 compares the operation of the three strategies under the

stated criteria. Section 6.4 summarises the results and draws conclusions as to if and when the use

of each of the strategies is most appropriate.

6.2 The Strategies used for Comparison

Three different strategies were used for IN congestion control to facilitate comparison in this work

(as published in [Lodge99]). For all strategies, the SSP throttles used applied to all traffic types

equally — i.e. when the SCP becomes overloaded, it requests that all IN calls be throttled equally in

the SSPs, and when an SSP becomes overloaded, it throttles all incoming traffic (IN and non-IN)

equally in order to protect itself.

The first IN overload control strategy (classic CCC/CG) is very simple and works as described in

Chapter 4, Section 4.2. For SCP overload control, the total number of arriving calls is counted over

an interval. At the end of the interval, a CCC algorithm at the SCP compares this count against a

table to establish the level of overload. The overload level is returned to all SSPs, which look up a

table to establish which CG throttle level should be applied at Q2 to restrict all IN calls. The SSP

overload control strategy is very similar, with the CCC algorithm at Q2 sending overload levels to

Ql, where CG throttles are put in place on all calls. Note that this strategy is similar to the

independent IN congestion control strategy described in Chapter 5, Section 5.3.1. The CCC table

and CG table parameter values were derived from the assumption that all IN call types had equal

arrival rates at the SCP (but different load requirements) and that IN calls comprised 30% of total

SSP traffic.

The second strategy (Window-based) protects the SCP as described in Chapter 4, Section 4.2.3.

However, the use of Window for SSP congestion control is inappropriate, as it is only suitable for

the protection of remote network elements. Therefore, another algorithm must be used for SSP

145

Chapter 6 Comparison betw een IN C ongestion Control Strategies

overload protection. For simplicity, the SSP overload control strategy used in classic CCC/CG (i.e.

CCC at Q2 with CG at Ql) will therefore be used in conjunction with Window at the ssf process.

The third strategy (dynamic CCC/CG) operates in a similar manner to the classic CCC/CG

strategy, but has slightly more complex algorithms. The steps of the algorithm are shown in Figure

6 .1 , and are described below.

Fig. 6.1: The dynamic CCC/CG strategy

For SCP overload control, the total number of arriving calls for each IN service type is counted

over an interval T (step (ii)). At the end of the interval, the CCC algorithm at the SCP then predicts

what the total SCP load will be due to these calls (step (iii)), according to:

„ p red r ̂ 1 f S T 6 SCP, SCP, j (0
PsCP' f t - Zu a (t Ts

M scp ̂ 7=2,3,5 P s c p \ t ~ I) J

where P^cp (0 predicted SCP load calculated at time t, ASCPj (t) is arrival rate of calls of

type j to the SCP during the interval [i-T, t\, Mscp is the service rate of the SCP, p^Cp i f - T) is

the value of the throttle put in place (at the SSP) by the SCP at the end of the previous interval and

escp,j is the number of times a service request of type j will receive processing at the SCP during

the course of its execution. Then, if this predicted load is less than the SCP threshold, the

probability of acceptance at the SCP, Pscpi*) > is set to 1.0. If it is greater than the threshold,

P s c p (f) = ThrSCp /Pscp (0 where ThrSCP is the defined SCP threshold. Note that p aScpi0 is a
single probability of acceptance and applies to all IN calls equally. If the resultant value of p “SCp (0

is different to that defined at the end of the previous interval, it is sent to all SSPs, either in CG

messages, or encapsulated in service-related messages (step (iv)). When S S P n receives the

message, it converts P s c p (0 to an IN CG gap interval Gm (t) (step (v)) using the simple formula:

146

Chapter 6 Comparison betw een IN Congestion Control Strategies

Gm(0= l ~ P °SCPa{t)
¿n.miOPscpiO

where Anj N (t) is the arrival rate of IN calls at SSPn during the interval [t-T, t] and all other

parameters are as previously defined. Once the gap interval of the CG throttle is evaluated using

this formula, it put in place on all IN calls at Q2.

The SSP overload control algorithm is slightly different, in that it is based on the use of a dynamic

LMC algorithm at Q2 of each SSP. LMC is used here because the mean load at Q2 over the

duration of a monitoring interval reflects the value of the throttle put in place at Q2 by the SCP at

the start of that interval, and therefore dynamic CCC/CG, while still an independent control

strategy does at least partially take the (previous) state of the SCP into account. Note however that

dynamic CCC/CG still fails to take the current state of the SCP into account. The dynamic LMC

algorithm at Q2 (step (a)) estimates what Q2 load would be if no throttle were in place at Q1 as:

CSl f . \ P Q lr ,
(0 =

Q2a P °(t-T)

where Pq2 (t) is the actual load of Q2 of SSPn at time t and P° (t - T) is the probability of

acceptance for all calls (i.e. the throttle value) put in place at Q1 at the end of the previous interval.

The new throttle parameter P “(t) is then calculated from P°(t) = ThrQ2 /Pq2„(0 (where Thrg2n is

the load threshold of Q2 of SSPn) and sent to Ql, where the new gap interval Gn (() is calculated

1 - P a (t)

u o p : (o

where An (t) is the mean of the total arrival rate to SSPn during the interval [t-T, i] and all other

parameters are as previously defined. Once the new gap interval has been derived, it is put in place

at Ql and applied to all new call arrivals equally.

6.3 Results of Comparison

In this section, we present the results for each of the given strategies. The behaviour of the

strategies presented above is compared for five different load scenarios - namely, stationary

(section 6.3.1), SCP overload (section 6.3.2), SSP overload (section 6.3.3), general overload

(section 6.3.4) and overload due to bursty traffic (section 6.3.5). In all cases, the SCP’s and SSPs’

service rates remain the same (to ensure a fair comparison), with the IN acceptance time at each

147

Chapter 6 Comparison betw een IN C ongestion Control Strategies

SSP Q2 set as a factor of 2.5 greater than the non-IN acceptance time and reject rates at both SSP

Q1 and Q2 set considerably higher than all acceptance rates (as described in Chapter 5, section

5.2.1). Also, the load threshold defined for all physical elements during all simulations is 0.8.

6.3.1 Scenario 1: Stationary Behaviour

Here, constant (different) arrival rates are applied to each of the SSPs. The traffic mix is such that

the load of SSP1, SSP2 and SSP3 are over the defined threshold, while the SCP is overloaded (due

primarily to televoting requests). This is shown in Figure 6.2, where the load applied to each

element is expressed relative to the capacity of that element. Note that this constitutes a general

overload (i.e. multiple physical elements overloaded simultaneously).

Offered Traffic to System (Erlangs)

O SSPl
O S5P2
□ SSP3
A ssp4
V ssps
> SCP

Fig. 6.2 : Offered traffic for stationary case

The resultant SCP load for each of the four applied strategies is shown in Figure 6.3. Here it may

be seen that only Window reacts quickly enough to the instantaneous onset of overload to ensure

that the SCP load never exceeds the threshold. However, as the Window timer duration is fixed

and less than the average response delay for televoting, Window tends to overprotect the SCP,

maintaining the load at a mean of 0.73, resulting in the unnecessary rejection of many calls. All

other strategies, on the other hand, allow the SCP to overload and the SCP queue to build up

during the first monitoring interval of the simulation. Static CCC/CG never recovers from this,

primarily due to the fact that it does not account for the fact that televoting calls require more

processing at the SCP than do freephone calls - in fact, the CCC algorithm at the SCP only detects

that a small overload has taken place and the resultant minimal throttles put in place at Q2 of each

148

Chapter 6 Comparison betw een IN C ongestion Control Strategies

SSP are ineffectual. Dynamic CCC/CG and optimisation, however, do estimate the overload level

correctly at the end of the first monitoring interval, and immediately put throttles in place that,

over the course of the next few intervals, reduce the SCP queue length and load to the defined

threshold. Both strategies then maintain the load at this threshold, with optimisation experiencing

smaller oscillations than dynamic CCC/CG.

Dynamic SCP Load

o static cco/cg
O WINDOW
□ Bynmio CCC/CG
A optimisation

time (see) (xlOOQQ)

Fig. 6.3 : SCP load for stationary case

The corresponding load of SSP1 is shown in Figure 6.4.

______________________ SSP1 Load

o static CCC/CG
O WINDOW
□ Dynamic CCC/CG
A Optimisation

time (sec) (xlOOOO)

Fig. 6.4 : SSP 1 load for stationary case

Note that the Window-based strategy provides the worst performance in the SSP. The behaviour of

static CCC/CG, while not acceptable, is better than Window. This may at first seem incongruous,

as both strategies use exactly the same static CCC/CG algorithm for SSP protection. However, the

149

Chapter 6 Comparison betw een IN C ongestion Control Strategies

different locations of the SCP throttles account for the different behaviour in the SSP. Window is

located at the output of the SSP (i.e. at the ssf) and therefore all calls receive full processing at Q2

before being throttled by Window. Static CCC/CG places its SCP throttles at Q2, with the result

that some calls are rejected here (with rejection having lower processing overheads than

acceptance), thus keeping Q2 load lower than that for Window. However, in both cases, the SSP

static CCC/CG algorithm fails to detect SSP overload as it does not differentiate between IN and

non-IN calls (and their different load requirements at Q2). The result, therefore, for both strategies

is that the SSP remains in a permanent state of overload. Dynamic CCC/CG and optimisation, on

the other hand, detect overload at both SCP and SSP at the end of the first monitoring interval, and

put the correct throttles in place to protect both elements. The result of this is that SSP load (after

the initial overload due to the monitoring delay associated with both strategies) remains well below

the SSP threshold.

Through observation of the SCP and SSP loads, it may be concluded that neither Window nor

static CCC/CG perform well at protecting all IN physical elements - Window protects the SCP but

fails to protect the SSPs, while static CCC/CG allows all elements to overload. Only dynamic

CCC/CG and optimisation succeed in protecting the SCP and SSPs simultaneously from overload.

In fact, both strategies maintain the mean loads of the various elements at approximately the same

value. For effectiveness, therefore, the strategies are equivalent. Regarding speed of convergence,

dynamic CCC/CG reacts slightly faster than optimisation - this is because, as described in Chapter

4, Section 4.3.3, CG reacts faster to the onset of congestion than PT (the throttle used by

optimisation). Regarding operation of the algorithms, Figure 6.5 shows that, during the initial SSP

overload, dynamic CCC/CG rejects all calls equally at first (at Ql), until SCP throttles become

effective (at Q2) and it becomes unnecessary to reject non-IN calls, from which point only IN

requests are throttled (equally and at Q2). For optimisation, at no point are non-IN calls rejected -

the optimisation algorithms balance the states of the SCP and SSP and recognises that, by putting

throttles on IN requests at Q2 to protect the SCP, the SSP overload situation will be automatically

relieved. The result is that, at the start, televoting requests (the cause of the overload) are rejected

at Q2 and then the acceptance rates of televoting, freephone and international freephone decrease

according to their relative importance. The result is two-fold. Firstly, due to selective throttling,

optimisation accepts more calls (i.e. calls with low load requirements such as non-IN, freephone

and international freephone) and secondly, the overall revenue gained during the simulation is

considerably greater for optimisation, as may be viewed in Figure 6 . 6 (showing revenue gained per

second, in Irish pounds).

150

Chapter 6 Comparison betw een IN C ongestion Control Strategies

Dynamic CCC/CG Ar.ccptnnccs

o i n t e r n a t io n a l Freephone
0 T e le v o t in g

□ F re ep h o n e

A L o c a l

V I n t e r n a t i o n a l

1
0 . 9

0 . 8

0 . 7

o.e
0 . 5

0 . 4

0 . 3

0.2
0.1

0

Optimisation Acccptanccs

o i n t e r n a t i o n a l r r e e p h o n e

0 T e le v o t in g

□ F reep h o n e

A L o c a l

V in t e r n a t io n a l

1
0 . 9

0 . 8

0 . 7

0 . 6

0 . 5

0 . 4

0 . 3

0.2
0.1

0

H i g a ¡a

t=â i£~a

ft ft ft

0 0 . 2 5 0 . 5 0 . 7 5 1
t im e (s e c) (xlOOOO) time (sec) (xlOOOO)

Fig. 6.5 : SSP1 acceptances for stationary case

SSP1 Revenue

o Dynamic CCC/CG
O Optimisation

tim e (s e c) (xlOOOO)

Fig. 6.6 : SSP1 revenue for stationary case

To conclude, even in the stationary case, the behaviour of static CCC/CG and Window are

unacceptable, in that they are incapable of maintaining the load of all elements in the IN at the

threshold during overload. This is primarily due to the fact that both strategies are based on the use

of fixed parameters - static CCC/CG underprotects its resources when overload is caused by

requests with greater load requirements (and overprotects them when overload is caused by

requests with low load requirements), while Window overprotects its resources when subjected to

requests with high processing requirements (and therefore greater delays). Optimisation and

dynamic CCC/CG provide much better results, keeping all elements at their threshold. However,

optimisation has the advantages of providing higher call acceptance rates (during SCP overload)

and network revenues.

Due to the unacceptable behaviour of static CCC/CG even under constant arrival rates to the

system, it will no longer be considered in this chapter. Window, however, does have the advantage

of speed of reaction and is effective at protecting the SCP, so its behaviour under different load

conditions will continued to be examined and compared to the dynamic CCC/CG and optimisation

strategies.

151

Chapter 6 Comparison betw een IN C ongestion Control Strategies

6.3.2 Scenario 2: SCP Overload

In order to achieve SCP overload, we vary the offered load and traffic mix to each SSP by

increasing the arrival rates of televoting and freephone requests at all SSPs linearly as shown in

Figure 6.7 for SSP1. The resultant total arrival rate to each element in the network is shown in

Figure 6 . 8 - note that the offered traffic at each element is expressed in terms of the capacity of

that element. Note also that, while the offered traffic to a number of SSPs is, at various stages,

greater than the capacity of those SSPs, the SCP is the first element to become overloaded.

Therefore, if the congestion control strategies respond correctly and quickly to the SCP overload,

the rejection of IN calls at the SSPs should ensure that no SSP ever experiences congestion.

Offered Traffic (in Erlangs)

o SSP1

<> SSP2

□ SSF3

A s s p 4

V s s p 5

> SCP

Fig. 6.8 : Total offered traffic to all IN physical elements

152

Chapter 6 Comparison between IN C ongestion Control Strategies

SCP Load

O WINDOW
^Dynamic CCC/CG
□ Optimisation

time (sec) (xlOOOO)

Fig. 6.9: SCP load for SCP overload

Figure 6.9 depicts the resultant SCP load for the Window, dynamic CCC/CG and optimisation

strategies. Examining Window first, it may be seen that this strategy initially overprotects the SCP

- this is due to the fact that televoting delays may be greater than the Window timer duration even

when no overload exists. Therefore, Window starts to reject calls before the SCP load reaches 0.8

SCP Erlangs. However, the SCP load does eventually converge to a constant value of

approximately 0.835 and remains there until the applied load becomes less than 1 SCP Erlang.

The behaviour of dynamic CCC/CG and optimisation, on the other hand, is quite different. Both

strategies do not put controls in place until the SCP threshold is reached and therefore, there is no

unnecessary rejection of calls. After this point, the SCP load is maintained at an average of 0.815

Erlangs until the applied traffic rate reaches its peak. The reason neither strategy maintains the

load at exactly 0 . 8 is that, each time each strategy evaluates the overload situation, it does so based

on existing traffic measurements and therefore puts corresponding throttles in place to maintain the

load at exactly 0.8. Therefore, when the applied traffic increases during the next monitoring

interval, the throttles accept more calls than had been expected and the resultant load is slightly

greater than the threshold. A similar situation arises when the applied traffic levels are decreasing

- neither strategy predicts the downward trend in traffic and therefore causes too many calls to be

rejected, resulting in mean SCP loads of approximately 0.785.

The SSP Q2 loads for the same scenario are shown in Figure 6.10. Note that Window fails to

protect the SSP from overload - this is for two reasons, the first being that the CCC/CG strategy at

Q1 fails to detect overload due to IN traffic, as it does not take into account the greater load

requirements of IN calls at Q2, while the second reason is that Window does not reject any IN

153

Chapter 6 Comparison betw een IN C ongestion Control Strategies

calls until after they have completed processing at Q2, so that much SSP resource is applied to

processing calls which are then rejected by Window at the ssf The behaviour of dynamic CCC/CG

and optimisation, however, is as expected - in protecting the SCP by throttling calls at Q2, the SSP

is implicitly protected.

SSP1 Load

0 WINDOW
<> Dynamic CCC/CG
D Optimisation

1.1
1

0 . 9

0.8
0 . 7

0.6
0 . 5

0 .4
0 0 . 2 5 0 . 5 0 . 7 5 1

time (sec) (xlOOOO)

Fig. 6.10: SSP1 load for SCP overload

Note however, that the SSP load is consistently higher for optimisation than it is for dynamic

CCC/CG. The reason for this may be observed in Figure 6.11, where it is shown that dynamic

CCC/CG applies the same throttles to all IN call types, resulting in similar proportions of each IN

call type being accepted. Optimisation, on the other hand, rejects call types selectively based on

their weights, and by extension, their SCP load requirements. Therefore, televoting calls, which

have the greatest SCP load requirement, are more strictly throttled than they are by dynamic

CCC/CG. This means that more freephone and international freephone calls are accepted at Q2,

resulting both in greater Q2 loads (and throughputs) and in greater overall numbers of accepted

calls - optimisation accepts 5.35% more of the offered calls than does dynamic CCC/CG.

Fig. 6.11: Acceptances at SSP1 for SCP overload

154

Chapter 6 Comparison between IN Congestion Control Strategies

There are two main implications of the selective throttling of optimisation. Figure 6.12 shows the

revenue gained from the successfully completed calls at SSP1 — note that SSP1 revenue (and

therefore network revenue) provided by optimisation is far greater than that provided by dynamic

CCC/CG - this is because more calls (and calls of greater value) are consistently accepted by

optimisation. Figure 6.13 shows the post-dialling delays experienced by various service types in

the network. Note that, in all cases, dynamic CCC/CG delays are slightly less than optimisation

delays. This is a direct result of the fact that optimisation causes the acceptance of more calls,

resulting in slightly longer queue lengths and delays. Note however, that all delays experienced by

services subjected to optimisation control are still well within acceptable bounds, as defined by

[E.721],

SSP1 Revenue

o Dynam ic CCC/CG

O O p t.m is a .t io n

Fig. 6.12: Revenue of SSP1 for SCP overload

Service Delays

o I n t e r n a t io n a l F reephone - Dynamic CCC/CG
<> - o p t im is a t io n
□ T e le v o tin g - Dynamic CCC/CG
A - O p tim isa tio n
V L o c a l - Dynamic CCC/CG
t> - O p tim is tio n

Fig. 6.13: Service delays at SSP1 for SCP overload

155

Chapter 6 Comparison between IN Congestion Control Strategies

To summarise the results for this scenario, Window succeeds very well at protecting the SCP, but

fails to protect the SSPs, while both dynamic CCC/CG and optimisation are equally efficient at

protecting all elements at all times. However, optimisation, through selective throttling, manages

to accept both more calls overall and more calls of greater worth, resulting in greater overall IN

throughput and network revenue.

6.3.3 Scenario 3: SSP Overload

Here, an overload of SSP 1 is invoked by increasing the arrival rates of international and local calls

linearly as shown in Figure 6.14. The resultant total arrival rate to each element in the network is

shown in Figure 6.15 - note that the offered traffic at each element is expressed in terms of the

capacity of that element.

Offered Traffic (in Erlang)

o sspl
<> SSP2

□ SSP3

A s s p 4

V ssp 5

t> SCP

t im e (s e c) (xlOOOO)

Fig. 6.15: Arrival rates for all IN physical elements

156

Chapter 6 Comparison between IN Congestion Control Strategies

The resultant SSP1 Q2 load for each of the test strategies under this applied traffic is shown in

Figure 6.16. Note first that the SSP’s CCC/CG part of the Window strategy considerably

overprotects that element. This is because this strategy bases its estimation of overload on the

number of arriving calls and does not take into account the fact that the large number of non-IN

arrivals have low SSP processing requirements. Therefore the throttles put in place by the

Window-based strategy are excessively strict, with the result that the load of SSP1 Q2 is very low.

Both dynamic CCC/CG and optimisation, on the other hand, put the correct throttles in place on

detection of overload and therefore, after a period of convergence, keep the load at approximately

0.8 - again, with optimisation experiencing smaller oscillations than dynamic CCC/CG.

____________________________ 5SP1 Load____________________________

O WINDOW

O Dynamic CCC/CG
□ optimisation

Fig. 6.16: SSP1 load for SSP overload

The resultant SCP load is shown in Figure 6.17 below. The load values for each of the strategies

are low, mostly due to the low number of IN arrivals at the system and partially due to the

rejection of calls at SSP1, and all traces are quite similar to each other. However, dynamic

CCC/CG consistently provides the highest mean load values, with Window providing lower mean

values and optimisation producing the lowest. The reason for this is similar to that described for

the SCP overload scenario described in the previous section - i.e. dynamic CCC/CG applies the

same throttles to all call types at Q1 of the SSP, resulting in similar proportions of each call type

being accepted. Optimisation, on the other hand, rejects call types at Q2 selectively based on their

weights. Therefore, as shown in Figure 6.18, more freephone, local and televoting calls (i.e. those

calls with low weights) are throttled by optimisation than are by dynamic CCC/CG, while fewer

international and international freephone are rejected. The result of this selective throttling is that

optimisation, while producing the same SSP load levels as dynamic CCC/CG, gives consistently

157

Chapter 6 Comparison between IN Congestion Control Strategies

lower SCP loads (primarily due to the lower televoting acceptance rate, as televoting has the

greatest SCP load requirement).

SCP Load

O WINDOW

O Dynam ic CCC/CG

□ Op t i m i s a t i o n

tim e (s e c) (xlOOOO)

Fig. 6.17: SCP load for SSP overload

Fig. 6.18: SSP1 acceptances for SSP overload

Dynamic CCC/CG Acceptances

o i n t e r n a t i o n a l F r e e p h o n e

0 T e l e v o t i n g

□ F r e e p h o n e

A L o c a l

V I n t e r n a t i o n a l

1.1
1

0 . 9

0 . 8

0. 7

0.6
0 . 5

0 . 4

0 . 3

0 . 2

n i
0 . 2 5 0 . 5 0 . 7 5 1

tim e (s e c) (xlOOOO)

Opt In s a lo n A ccepta nces

o i n t e r n a t i o n a l F r e e p h o n e

O T e l e v o t i n g r

□ F r e e p h o n e

A L o c a l

V i n t e r n a t i o n a l

0 . 5 0 . 7 5 1
tim e (se c) (xlOOOO)

The above graphs show that optimisation and dynamic CCC/CG are equally effective at protecting

their resources, and far superior to Window. However, as may be seen in Figure 6.19, dynamic

CCC/CG actually provides much greater SSP throughput than optimisation during SSP overload.

The reason for this is that dynamic CCC/CG rejects calls at Q1 upon detection of SSP overload,

while optimisation does not reject any calls until differentiation between call types becomes

possible - i.e. at Q2. This means that, for optimisation, much SSP capacity is spent accepting calls

at Q1 that are then rejected at Q2, whereas dynamic CCC/CG, having rejected all calls at Ql, uses

all Q2 load in the acceptance of calls. The result is that dynamic CCC/CG provides much greater

158

Chapter 6 Comparison between IN Congestion Control Strategies

SSP throughput - in terms of call acceptance rates, dynamic CCC/CG accepts 4.9% more of the

offered calls during SSP overload than does optimisation (this figure may seem lower than

expected, but may be accounted for by the fact that dynamic CCC/CG does not take load

requirements into account when accepting call requests and therefore processes more (high load)

IN calls than does optimisation).

SSP10 2 Throughput

o Dynam ic CCC/CG

O o p t i m i s a t i o n

0 0 . 2 5 0 . 5 0 . 7 5 1
t im e (s e c) (xlQQOO)

Fig. 6.19: SSP1 throughput for SSP overload

The conclusion of this is that both dynamic CCC/CG and optimisation are more effective strategies

for SSP protection than Window - further, dynamic CCC/CG is more efficient for SSP protection

than optimisation, as it provides equivalent protection but accepts far more calls. The only

advantage of optimisation in this scenario is that even when its throughput is so much lower than

that provided by dynamic CCC/CG, the fact that optimisation prioritises those calls with the

greatest revenue means that this strategy still provides better revenue gain than either of the other

two strategies, as may be seen in Figure 6.20.

SSP1 Revenue

O VÏHD0W
<> Dynam ic CCC/CG

□ O p t im is a t io n

tim e (s e c) (xlOOOO)

Fig. 6.20: SSP1 revenue for SSP overload

159

Chapter 6 Comparison between IN Congestion Control Strategies

6.3.4 Scenario 4: General Overload

Here, overloads of the SCP and SSP1 are invoked by increasing the arrival rates of televoting at all

SSPs linearly and the arrival rates at SSP1 for televoting, international and local calls linearly at

different times, as shown in Figure 6.21. The resultant total arrival rate to each element in the

network is shown in Figure 6.22 - note that the offered traffic at each element is expressed in

terms of the capacity of that element and that the SCP becomes overloaded prior to SSP1.

Arrival Rates la System (Erlangs)

o S S P l

O S 5 P 2

□ SSP3

A SSP4

V s s p 5

> SCP

0 0 . 2 5 0 . 5 0 . 7 5 1
time (sec) (xlOOOO)

Fig. 6.22: Arrival rates for all IN physical elements

The resultant SCP load for each of the strategies being compared is shown in Figure 6.23, while

the load of SSP1 Q2 is shown in Figure 6.24. By viewing both graphs, it may be observed that for

the first part of the simulation, when correct response to SCP overload should be sufficient to

protect the SSPs, Window still allows SSP1 to become and remain overloaded (because so much

160

Chapter 6 Comparison between IN Congestion Control Strategies

SSP resource must be allocated to processing calls to the point where Window may throttle them -

i.e. at the output of SSP1). At the same time, Window initially overprotects the SCP, and then

gradually brings the SCP load to converge to a mean of approximately 0.8, where it remains until

the SSP part of the Window strategy begins to respond to overload due to local calls at SSP1. This

results in the rejection of an excessive numbers of calls (in particular televoting and local) at SSP1

Ql, thus bringing the mean SCP load down to about 0.76.

SCP Load_____________

O WINDOW

O Dynamic c c c /c g
□ O p tim is a tio n

0 0 . 2 5 0 . 5 0 . 7 5 1
tim e (s e c) (xlQOQO)

Fig. 6.23: SCP load for general overload

SSP1 Load

O WINDOW

O Dynamio ccc/ cg
□ O p tim is a tio n

Fig. 6.24: SSP1 load for general overload

The operation of dynamic CCC/CG and optimisation at the SCP, on the other hand, is quite

different. After an initial monitoring delay they both converge to approximately 0.81 SCP Erlangs

(not exactly 0.8, because traffic arrival rates are increasing) until traffic rates begin to decrease, at

which stage both strategies cause the SCP load to converge to a mean of approximately 0.785. This

behaviour is identical to that portrayed in section 6.3.2 for the SCP overload scenario. Note that,

unlike Window, the SCP load is not affected by the state of the SSP when dynamic CCC/CG or

161

Chapter 6 Comparison between IN Congestion Control Strategies

optimisation is used. The reason for this may be seen in Figures 6.24 and 6.25. The SSP load

curves show that, during the early stage of the simulation, the correct response by dynamic

CCC/CG and optimisation to the SCP overload situation prevents SSP overload. Optimisation

achieves this by throttling televoting calls only, while dynamic CCC/CG throttles all IN call types.

Then later, as the local call arrival rate increases to the point where SCP congestion controls are

insufficient to protect the SSP, optimisation balances the current states of both the SCP and SSP to

devise the required rejection rates to protect both elements and therefore begins to reject local and

freephone calls. Dynamic CCC/CG reacts differently - it balances the effects of the SCP throttles

(which have been in place at Q2 during the previous monitoring interval) on Q2 load with the

predicted effect of the total number of arriving calls and gradually increases the throttles on all call

types at SSP1 Q1 accordingly (i.e. dynamic CCC/CG balances the current SSP state with the

previous SCP state). Therefore, using different methods, both dynamic CCC/CG and optimisation

put the correct controls in place to protect the SSP, without affecting the SCP load.

Dynamic CCCJCG Acceptances Optimisation Acceptances

o I n t e r n a t i o n a l F r e e p h o n e

O T e l e v o t i n g

□ F r e e p h o n e

A L o c a l

V I n t e r n a t i o n a l

o i n t e r n a t i o n a l F r e e p h o n e

O T e l e v o t i n g

□ F r e e p h o n e

A L o c a l

V in t e r n a t io n a l

0 . 2 5 0 . 5 0 . 7 5 1
t i n e (s e c) (xlOOOO)

0 . 5 0 . 7 5 1
tim e (se c) (xlOOOO)

Fig. 6.25: SSP1 acceptances for general overload

Note that, as would be expected from sections 6.3.2 and 6.3.3 and as is shown in Figure 6.26, the

SSP throughput is about 0.07 Erlangs greater for optimisation when the SCP is more overloaded

than the SSP (and optimisation accepts 5.5% more calls than does dynamic CCC/CG), but in the

inverse scenario, the fact that optimisation must expend extra resources accepting all calls in Q1

before being able to throttle them in Q2 means that the throughput of dynamic CCC/CG is 0.2

Erlangs greater than that for optimisation (and dynamic CCC/CG accepts 8.3% more calls).

162

Chapter 6 Comparison between IN Congestion Control Strategies

SSP1 Throughput

o Dynamic CCC/CG

<0 O p tim is a t io n

0 0 . 2 5 0 . 5 0 . 7 5 1
tim e (s e c) (x 10 GOO)

Fig. 6.26: SSP1 throughput for general overload

As a final comment on the general overload scenario, the revenue gained by SSP1 over the course

of the simulation is shown for all three strategies in Figure 6.27. Note that Window is artificially

high during the period of SCP overload - this is due to the fact that the SSP is underprotected at

this time and is therefore accepting an unsafe number of calls. Other than this, as would be

expected, optimisation provides the greatest revenue gains.

SSP1 Revenue

O WINDOW
O Dynamic CCC/CG
□ O p tim is a tio n

Fig. 6.27: SSP1 revenue for general overload

To summarise the results for general overload, both optimisation and dynamic CCC/CG protect all

elements at all times, whereas Window fails to protect the SSP during SCP overload and

overprotects it during SSP overload. Also, optimisation provides the best efficiency levels when

the SCP is more overloaded than the SSP, while dynamic CCC/CG provides premium performance

when the SSP overload exceeds that of the SCP.

163

Chapter 6 Comparison between IN Congestion Control Strategies

6.3.5 Scenario 5: Overload due to Bursty Traffic

For this scenario, a 1000 second burst of televoting calls is applied to all SSPs every 2000 seconds.

This causes simultaneous overload of the SCP and all SSPs, as shown in Figure 6.28, where the

offered traffic to each physical element is expressed in terms of the capacity of that element.

________________________ Arrival Rates to System (Erlangs)_____________________

o S S P l

<> SSP2
□ 5SP3

A SSP4

V SSP5

t> SCP

Fig. 6.28: Arrival rates for all IN physical elements

The resultant SCP load for each congestion control strategy is shown in Figure 6.29. Note that

Window provides the best result here - it responds immediately both to the onset and termination

of each traffic burst. For the other two strategies, the monitoring delay before congestion is

detected results in the SCP load climbing to 1.0 Erlang and the SCP queue length growing to

approximately 3000. When detection occurs, both dynamic CCC/CG and optimisation put the

correct SCP throttles in place at Q2 of each SSP to alleviate the overload situation, but the load of

the SCP does not descend to 0.8 for a few monitoring intervals, as the excess of calls which were

queued at the SCP during the original monitoring delay must first be processed. In a similar

manner, there is a delay of a maximum of one monitoring interval before the cessation of overload

is detected by either dynamic CCC/CG or optimisation, during which an excess of calls are

rejected. However, in this instance both strategies recover very quickly (as there is no SCP queue

build-up) and put the correct controls in place immediately on detection of the change in the

overload situation.

164

Chapter 6 Comparison between IN Congestion Control Strategies

SCP Load

O WINDOW
O Dynamic ccc/ cg
□ O p tim isa tion

Fig. 6.29: SCP load for bursty overload

SSP1 Load

O WINDOW
O Dynamic CCC/CG
P o p tim isa tio n

Fig. 6.30: SSP1 load for bursty overload

The behaviour of each strategy at the SSPs is very different, as may be seen in Figure 6.30. The

Window-based strategy, as per usual, fails to protect SSP Q2 from overload for two reasons -

firstly, as it fails to place emphasis on televoting load requirements, it does not calculate the SSP

overload level correctly and puts insufficient throttles in place at Q1 and secondly, because it does

not reject any traffic at Q2. Therefore, the load of Q2 for this strategy remains above 1.0 Erlang

and its length rises to approximately 2000. On cessation of the traffic burst, Window again detects

Chapter 6 Comparison between IN Congestion Control Strategies

the alleviation of the overload situation immediately, but experiences a small delay in reducing the

SSP load, as it must complete processing of all calls that built up in the buffer of Q2 during the

overload.

The other strategies, after the usual monitoring delay, detect overload and respond accordingly.

However, unlike previous scenarios, the responses of dynamic CCC/CG and optimisation are not

similar when both SCP and SSPs overload simultaneously. Optimisation, as a global strategy,

takes the state of both the SCP and SSP into account before putting throttles in place at SSP Q2. It

realises, therefore, that putting throttles in place to alleviate the SCP overload will also be

sufficient to alleviate the SSP overload and therefore the SSP load level converges very quickly

and only televoting calls are rejected in Q2 (as shown in Figure 6.31). Dynamic CCC/CG, on the

other hand, seeks to protect each element independently. Therefore, the SCP detection algorithm

puts controls in place at SSP Q2 to protect the SCP, while the SSP detection algorithm (without

referring to the SCP throttles being put in place simultaneously) puts a throttle at Ql. The resulting

conflict between controls means that an excess of calls are rejected during the following interval

and oscillations occur in the load for the duration of the burst, while both SCP and SSP controls

attempt to regulate the input traffic. On cessation of the traffic burst, both dynamic CCC/CG and

optimisation reject calls unnecessarily for the remaining duration of that monitoring interval, after

which time, both respond correctly by removing all controls.

Fig. 6.31: SSP1 acceptances for bursty overload

Regarding call acceptances, optimisation accepts 5.1% more of the offered calls than does

dynamic CCC/CG and 5.0% more calls than Window. There are two reasons for this -

optimisation does not reject any non-IN calls and also, by rejecting only televoting, allows more

low load-requiring IN calls to be processed at the SCP. Partially due to the greater number of

acceptances, but also due to the fact that the types of calls accepted by optimisation are worth more

financially, this strategy provides greater revenue gains than both other strategies.

166

Chapter 6 Comparison between IN Congestion Control Strategies

SSP1 Revenue

O W INDOW

O D ynam ic CCC/CG

□ o p t i m i s a t i o n

Fig. 6.32: SSP1 revenue for bursty overload

A final comparison that may be made between the strategies for this scenario is between service

delays, as shown in Figure 6.33. Note that all IN service delays are excessive, as are non-IN delays

for Window. For both dynamic CCC/CG and optimisation, these delays are as a result of delays at

the SCP when the queue length there is large. Window, on the other hand, causes all services (IN

and non-IN) to experience great delays at Q2. The only acceptable delay results are those

experienced by non-IN calls subject to dynamic CCC/CG and optimisation.

Service Delays

o T e l e v o t i n g - w indow

O - D ynam ic CCC/CG

□ - O p t i m i s a t i o n

A L o c a l - WINDOW

V - D ynam ic CCC/CG

t> - O p t i m i s a t i o n

Fig. 6.33: SSP1 service delays for bursty overload

To summarise the results of this scenario, none of the strategies provide acceptable results in all

areas. Window seems to provide the best overall results in that it reacts immediately to the onset of

a burst and therefore protects the SCP. However, it fails to protect the SSP from overload. Both

167

Chapter 6 Comparison between IN Congestion Control Strategies

dynamic CCC/CG and optimisation fail to protect the SCP from the onset of a burst, but protect

the SSP adequately (optimisation providing better results). Therefore all strategies allow overload

to occur at some point in the network, resulting in unacceptable post-dialling delays.

The only possible conclusion, therefore, is that any strategy containing a reactive component (i.e. a

method or algorithm which reacts to an overload which is detected based on monitoring the

variation of some value over an interval) cannot protect against an instantaneous dramatic increase

in input traffic and that the only way to ensure against an overload of this type is to provide some

sort of active strategy to act as an instantaneous cut-off point at the input to each physical element

in the network. With just such a strategy in place to protect against the unlikely event of

instantaneous overload, other reactive strategies and algorithms may then be used to intelligently

protect the switch for all other input traffic scenarios.

6.4 Summary & Conclusions

The salient features of each of the strategies are outlined in Table 6.1 below, where a V denotes

acceptable behaviour and (*) denotes best behaviour for each category.

Category Classic

CCC/CG

Window Dynamic

CCC/CG

Optimisation

Relative processing requirements 3 9 1 60

Effectiveness of SCP protection for

all traffic mixes and loads

V <{*) A*)

Effectiveness of SSP protection for

all traffic mixes and loads

V A*)

Throughput V
(*) for SSP

overload

V
(*) for SCP

overload

Revenue gain V A*)
Response to instantaneous overload (*)

Speed of convergence V(*) V V(*)

Scalability V V

Flexibility A*)
Fairness Subscriber Subscriber

Service
Table 6.1: Summary of Features for IN Congestion Control Strategies

168

Chapter 6 Comparison between IN Congestion Control Strategies

To summarise these results, classic CCC/CG was found to have the worst overall response because

it is based on the use of fixed call count and CG parameters and there are a number of issues

associated with this use of fixed parameters. Firstly, call count and CG parameters are dependent

on the size of resource at which they are located and must therefore be evaluated each time the

algorithm is put in place at a different size resource - this is a non-trivial task. Secondly, it is

impossible to define optimal call count parameters which work well over all possible input traffic

mixes, as defining the parameters of necessity pre-supposes either that all calls require the same

amount of processing or that the traffic mix does not vary, which is never the case. In other words,

the problems with classic CCC/CG are basically an issue of scalability - the algorithm does not

scale, either in terms of resource size or traffic mix.

A similar issue of scalability applies to the Window-based strategy. The Window timer duration

and SSP CCC/CG algorithm are both based on the use of fixed parameters and cannot therefore

react correctly for all traffic mix variations. This is proved in the section 6.3, where Window tends

to overprotect the SCP when the bulk of applied traffic has high SCP processing requirements (and

therefore greater average response delays than the Window timer duration) and underprotect it

when the overload is caused by calls with low processing requirements and mean delays shorter

than the Window timer duration. The effects of the SSP CCC/CG part of the strategy are even

more noticeable - this algorithm either completely fails to protect the SSP or overprotects it

considerably. In fact, the only advantage of using a Window-based strategy is that, due to its active

nature, it provides the remote physical element that it is protecting with resistance to instantaneous

dramatic increases in load levels. However, as this strategy is quite processor-hungry (requiring

approximately three times more processing resource than static CCC/CG, as described in Chapter

4, section 4.3.4.4), a simple cut-off mechanism on the input buffer of each physical element would

provide the same benefit with fewer processor requirements and could also be used in conjunction

with reactive strategies, which provide consistently better results for all other traffic variations.

The dynamic CCC/CG algorithm is scalable. The only parameters that need to be set to target it to

a particular resource are the capacity of that resource and the relative load requirements of each

service type using it. In terms of monitoring overheads, it requires that the arrival rates for all calls

types at the SCP must be monitored separately. Given this information, it can predict the overall

impact of new arrivals on the resource load and calculate the appropriate throttles accordingly. As

such, dynamic CCC/CG has very good performance during all overload levels and all traffic

mixes. In fact, it provides equally good protection for all physical elements as the more complex

optimisation strategy and is far superior to the classic CCC/CG and Window strategies. In fact,

dynamic CCC/CG is more efficient than all other strategies in two ways. Firstly, the algorithms

themselves actually have lower processing overheads than classic CCC/CG (by a factor of three)

169

Chapter 6 Comparison between IN Congestion Control Strategies

and optimisation (by a factor of sixty (for the LP_SOLVE software)) and secondly, as dynamic

CCC/CG rejects calls efficiently at Q1 during SSP overload (as opposed to optimisation, which

does not reject any calls until Q2), it provides greater SSP (and therefore IN) throughput for this

scenario. Note also that dynamic CCC/CG exhibits subscriber fairness in that the gap values

associated with the CG throttles in the SSPs are evaluated from the percent thinning coefficients

sent to them by the SCP - this combines the subscriber fairness of PT with the efficiency of CG

(as described in Chapter 4). The only desirable characteristic not demonstrated by dynamic

CCC/CG is flexibility - the algorithm does not easily lend itself to being extended to include

selective throttling of service types based on e.g. priorities or focussed overload.

The optimisation-based algorithm also provides excellent results. It has all the advantages of

dynamic CCC/CG in terms of scalability (for both resource targeting and handling of variations in

traffic mix) and subscriber fairness. In terms of monitoring overheads, it requires that the arrival

rates for all calls types at both the SCP and SSPs must be monitored separately. However, it does

have a number of other advantages not associated with dynamic CCC/CG. The strategy is innately

flexible, and can be extended to encompass other requirements by either re-specification of call

weights or by the inclusion of other constraints in the maximisation algorithm. Service fairness, as

well as subscriber fairness, is always preserved (within the bounds of the priority system).

Priorities allocated to service types are always honoured, even during congestion. The

interoperable nature of the SCP and SSP algorithms in the strategy also ensures premium IN

performance during SCP overload, and revenue in the IN is maximised at all times, without

compromising fairness or user delays. All these advantages, however, do not come without a price.

The first negative aspect of the optimisation strategy is that its processing overheads are so much

greater than for dynamic CCC/CG. However, two points may be raised with regard to this:

• if the optimisation overheads are related to the processing requirements of service requests on

the SCP, using the optimisation strategy equates to the loss of only one freephone call per

monitoring interval and the resultant gains in IN throughputs and revenue achieved by using

the optimisation strategy are sufficiently high during SCP overload to render this overhead

negligible,

• the LP SOLVE optimisation software used in the simulations is a two-phase simplex

algorithm designed to optimise much more complex LPPs than the single-phase optimisation

strategy investigated here. Therefore, if the optimisation-based congestion control software

were to be streamlined (as would be required if it were to be used in a real system), processing

overheads would be likely to be considerably lower.

The second negative aspect of the optimisation strategy is more considerable and relates to the

operation of optimisation during SSP overload. During this scenario, the processing overheads

Chapter 6 Comparison between IN Congestion Control Strategies

associated with accepting all calls at Q1 (so that they may be differentiated at Q2) are

considerable, and so this aspect of the optimisation strategy is not satisfactory. The solution would

seem to be to merge the SSP optimisation algorithm with aspects of the SSP dynamic CCC/CG

algorithm to produce a hybrid that takes the current state of both Q2 and the SCP into account

when devising the global throttles to be put in place on all traffic at Ql. In this manner, the

operation of optimisation would then be either equal or superior to all other strategies at all times.

To conclude, the effectiveness of both the optimisation and dynamic CCC/CG strategies are

equivalent and far superior to either Window or classic CCC/CG. Both strategies also exhibit

scalability and subscriber fairness (unlike Window or classic CCC/CG) and dynamic CCC/CG is

even more efficient than classic CCC/CG, in terms of requiring lower processing overheads to

execute. Optimisation, on the other hand, provides more flexibility, service fairness and better

revenue than both classic and dynamic CCC/CG, but at the expense of significantly greater

processing overheads.

171

Chapter 7

Conclusions & Recommendations

Chapter 7 Conclusions & Recommendations

7.1 Conclusions of this Work

The primary conclusion of this work relates to the types of congestion control strategies that

should be used for IN protection. Static strategies based on the use of tables of fixed parameters

(e.g. CCC, LMC, CG and Window) should not be used, as they are incapable of protecting the IN

under varying loads and traffic mixes and therefore fail to meet even the basic requirements on a

congestion control strategy — this was proved in Chapters 4 and 6 of this thesis. Instead, the

application of scalable dynamic strategies is recommended, as they have a number of advantages,

including:

• Their scalability makes them extremely easy and fast to target to a particular resource,

• They respond correctly to any variations in traffic load,

• They can handle any variations in traffic mix - i.e. they can take into account the fact that

different request types have different processing requirements at different resources in the

network and respond accordingly.

In other words, the use of dynamic detection methods in conjunction with dynamic throttles means

that, not only is the system scalable, but also the overload controls put in place are, at any time, for

any traffic mix, exactly appropriate for the level of overload. Two such strategies are presented in

this work - the revenue optimisation strategy described in Chapter 5 and the dynamic CCC/CG

strategy introduced in Chapter 6. Both of these strategies provided far superior results, in terms of

both effectiveness and efficiency, than any of the strategies most commonly used in industry

today.

The optimisation strategy, as well as being dynamic, has the added advantage of being a global IN

strategy, in that it takes the state of both the SCP and SSP into account when determining the

overload level in the network, and puts the appropriate controls in place to protect both PEs. This

means that when the SCP and SSPs of an IN are suffering from congestion, while other strategies

attempt to protect each PE independently and as a result reject too many calls overall, optimisation

ensures optimum IN performance at all times. Optimisation is also very flexible and can

selectively throttle different call types based on, for example, their relative importance (as defined

by the IN service provider), their revenue, their applied load and their different load requirements

at both the SCP and SSPs. However, this extra level of intelligence does not come without a price

- optimisation has considerably more processing overheads than does dynamic CCC/CG, both in

terms of the footprint of the algorithm and the fact that all calls must be processed in the SSP to the

point where differentiation between call types, and therefore selective throttling, is possible.

173

Chapter 7 Conclusions & Recommendations

We therefore recommend that in Intelligent Networks where SCP overload is more usual than SSP

overload or where priorities, service fairness or revenue are an issue, optimisation should be used

as the benefits of its use here far outweigh its greater processing overheads, while in networks

where all calls are to be treated equally, dynamic CCC/CG should be the preferred strategy.

A number of other conclusions may also be presented, based on observations made during the

course of this research. The first of these is that it is absolutely critical that when a model is

developed to investigate congestion control, it should reflect the real network architecture,

functionality and its applied traffic as much as possible, in order to ensure that the research carried

out on it is valid and the results dependable. Chapter 2 described a significant amount of research

into the applicability of parameter-based congestion control algorithms in the IN arena. The

results of this research were generally positive, in that most of the strategies were perceived to

succeed at protecting the IN from overload. However, there was a fundamental flaw in much of

this research — most of the models used were very much over-simplified and in general, the

behaviour of the strategies was only investigated under an applied load of one traffic type (or when

more than one type was used, it was generally assumed that all types of requests had the same load

requirements at the SCP). As a result, the fact that parameter-based strategies are incapable of

dealing with different traffic types with different load requirements was not recognised. The model

presented in Chapter 4 reflected the architecture of the IN in enough detail (as well as the

information flows between PEs for a number of different services) that the limitations of these

strategies became immediately apparent. Therefore, it is highly recommended that, to ensure the

validity of a body of research, a sufficiently detailed model of the target network be developed -

this has a greater cost, in terms of development time, but ensures that the results acquired will be

valid.

Another conclusion of this work relates to the two most commonly used throttles in IN congestion

control - namely, percent thinning and call gapping. It was verified in [Berger91] and Chapter 4

(section 4.3.3) that while PT has the advantage of exhibiting both subscriber fairness and

scalability, CG exhibits robustness and a faster response to the onset of congestion. A logical

conclusion of this is that a combination of the two would combine the advantages of each to

produce a flexible and scalable throttle with both subscriber fairness and robustness. In this way,

the output of any SCP detection algorithm should be a PT coefficient (to ensure scalability and

subscriber fairness) and this should be translated in each SSP into a gap interval, which will ensure

robustness. This throttle would also remove the principle disadvantage associated with CG, i.e. its

parameter-driven nature - instead of using fixed parameters, an appropriate gap interval is

calculated based on a PT coefficient. The use of the PT/CG throttle algorithm described in Chapter

6, section 6.2 as part of the dynamic CCC/CG strategy is therefore recommended.

174

Chapter 7 Conclusions & Recommendations

The final conclusion presented here relates to the behaviour of all strategies under bursty overload

- only Window and QLC (i.e. strategies with no monitoring intervals and a tight control loop) are

capable of responding quickly enough to the onset of bursty traffic. However, neither strategy

behaves consistently enough under other traffic loads to deserve recommendation (they tend to

react to overload even when no overload exists) — to make intelligent decisions about how to

manage an overload, a monitoring period is required to allow the congestion control strategy to

base its controls on the mean state of the system. It is therefore recommended that performance

management of any system should be carried out at two levels. At the lower level, all physical

entities (or nodes) in a network should have a simple active strategy of some sort at their input that

ensures against instantaneous overload, so that each PE is responsible for crisis management.

However, this mechanism should only reject enough requests to ensure the survival of its PE. This

is so that a global congestion control strategy (the higher level of the performance management

strategy) can make decisions, based on observation of the mean state of the network, about how to

throttle traffic intelligently in different PEs in order to acquire the best possible overall network

performance.

7.2 Recommendations for Future Work

The current behaviour of the optimisation strategy is not ideal - too much SSP processing resource

needs to be applied to progress requests to the point where selective throttling is possible. As

suggested in the conclusions of Chapter 6 (section 6.4), it might be useful to investigate how to

merge the SSP optimisation algorithm with the SSP part of the dynamic CCC/CG strategy so as to

acquire a global IN congestion control strategy which combines selective throttling of all calls at

SSP Q2 with some global throttling of calls at SSP Ql. In this way, some of the advantages of

selective throttling may be retained, while maximising the throughput of the network at all times.

Further work also needs to be carried out based on the enhancement of the IN architecture in CS-2

[Q.1221]. Specifically, there is much potential for using SCP/SCP interworking as a flow control

mechanism in overload situations, but it would need to be managed intelligently. It might therefore

be interesting to investigate whether it is possible to extend the optimisation algorithm to

encompass the management of multiple SCPs in a single IN domain, so that all PEs - SCPs and

SSPs alike - co-operate to provide optimum Intelligent Network performance.

Appendix A

References

Appendix A References

[Akyildiz90] I.F. Akyildiz, R. Shonkwiler, “Simulated Annealing for Throughput Optimisation in
Communication Networks with Window Flow Control”, IEEE Conference on Communications, 1990.

[Angelin95] L. Angelin, A. Arvidsson, “A Congestion Control Mechanism for Signaling Networks
based on Network Delays”, Proceedings of the 12th Nordic Teletraffic Seminar, Helsinki, 1995.

[Arvidsson96] A. Arvidsson, S. Pettersson, L. Angelin, “Congestion Control in Intelligent Networks for
Real Time Performance and Profit Optimisation”, Proceedings of ITC Specialist Seminar, Lund 1996.

[ATM99] http ://www. atmforum. com.

[Bellcore92] Bellcore, "Advanced Intelligent Network (AIN) 0.1 Switching Systems Generic
Requirements", Technical Reference TR-NWT-001284, Issue 1, August 1992.

[Berger91a] A. Berger, “Determination o f Load-Service Curves for Distributed Switching Systems:
Probabilistic Analysis of Overload-Control Schemes”, ITC-13, Copenhagen, 1991.

[Berger91b] A. Berger, “Comparison of Call Gapping and Percent Blocking for Overload Control in
Distributed Switching Systems and Telecommunications Networks”, IEEE Trans. Commun., 39, pp 407-
414,1991.

[Berkelaar95] The Linear Programming Toolkit, LP SOLVE version 2.0, developed by Michel
Berkelaar, Eindhoven University of Technology and Jeroen Dirks, Delft University of Technology,
21.2.95.

[Bolotin94] V.A. Bolotin, “Telephone Circuit Holding Time Distributions”, ITC-14, Juan-les-Pins,
1994.

[Burkard83] L. Burkard et al, “Customer Behaviour and Unexpected Dial Tone Delay”, Proceedings of
ITC-10, Montreal, 1983.

[CORBA99] “CORBA/IIOP 2.3 Specification”, available from http://www.omg.org/libraiy/c2indx.html

[Daisenberger85] G. Daisenberger, J. Oehlerich, G. Wegmann, “STATOR - STATistical Overload
Regulation - and TAIL - Time Account Input Limitation - Two concepts for overload regulation in SPC
switching systems”, ITC-11, Kyoto, 1985.

[Daisenberger89] G. Daisenberger, J. Oehlerich, G. Wegmann, “Two concepts for overload regulation in
SPC switching systems: STATOR and TAIL”, Telecommunication Journal, Volume 56, pp 306-313,
1989.

[Doshi91] B. Doshi, H. Heffes, “Overload Performance of an Adaptive, Buffer-Window Allocation
Scheme for a Class of High Speed Networks”, ITC-13, Copenhagen, 1991.

[Dziong89] Z. Dziong, M. Pioro, U. Komer, T. Wickberg, “On Adaptive Call Routing Strategies in
Circuit Switched Networks - Maximum Revenue Approach”, ITC-12, Turin, 1989.

[EricssonCS 1+] http://www.ericsson.com/NI/product/platforms/scpt.html.

[E.721] ITU-T Recommendation E.721, “ Network Grade o f Service Parameters and Target
Values for Circuit-Switched Services in the Evolving ISDN.”

[E.723] ITU-T Recommendation E.723, “Grade of Service Parameters for Signalling System
Number 7 Networks.”

[Galletti92] M. Galletti, F. Grossini, "Performance Simulation of Congestion Control Mechanisms for
Intelligent Networks", Proceedings of 1992 International Zurich Seminar on Digital Communications,
Intelligent Networks and their Applications, Zurich, 1992.

177

http://www.omg.org/libraiy/c2indx.html
http://www.ericsson.com/NI/product/platforms/scpt.html

Appendix A References

[Gelenbe] E. Gelenbe, G. Pujolle, Introduction to Queueing Networks, John Wiley & Sons, New
York, Chichester, Brisbane, Toronto, Singapore, 1987.

[Greenberg] M.R. Greenberg, Applied Linear Programming fo r the Socioeconomic and Environmental
Sciences, Academic Press, New York, San Francisco, London, 1987.

[Gulyani93] M. Gulyani, "Simulation and Performance Analysis of an Telecommunication System
Based on Advanced Intelligent Network Architecture", Masters Thesis, Dublin City University, Ireland,
1993.

[Hac98] A. Hac, L. Gao, “Congestion Control in Intelligent Network”, IEEE Intemation Performance,
Computing and Communications Conference (IPCCC’98), Phoenix, 1998.

[Harrison] P.G. Harrison, N.M. Patel, Performance Modelling o f Communication Networks and
Computer Architectures, International Computer Science Series, Addison-Wesley Publishing Company,
1993.

[Hebuteme90] G. Hebuteme, L. Romoeuf, R. Kung. “Load Regulation Schemes for the Intelligent
Network”, XIII International Switching Symposium, Stockholm, May 1990.

[Hubig94] W. Hubig, D. Weber, “Overload Control in ISDN PABXs”, ITC-14, Juan-les-Pins, 1994.

[Hoang90] B. Hoang, “Service Completion Time for Advanced Intelligent Network Services”, IEEE
Conference on Communications, 1990.

[ITUIN] Intelligent Network Standards, Q.12XX series recommendations, International
Telecommunications Union - Telecommunications Standardisation, 1993-1994.

[ITU_ISDN] Integrated Services Digital Network Standards, I-series recommendations, International
Telecommunications Union-Telecommunications Standardisation, 1988-present.

[ITU TMN] “Overview o f TMN Recommendations”, Document M.3000, ITU-T, October 1994.

[Kallenberg89] P.J.M. Kallenberg, “Load Estimation for Overload Control”, ITC-12, Turin, 1989.

[Kant95] K. Kant, "Performance of Internal Overload Controls in Large Switches", IEEE, pp 228-
237,1995.

[Kawamura96] H. Kawamura, E. Sano, “A Congestion Control System for an Advanced Intelligent
Network”, Proceedings of IEEE Network Operations and Management Symposium (NOMS), 1996.

[Kihl95] Maria Kihl, "Overload Control in Intelligent Networks", Lund University, Sweden, 1995.

[Kihl97] M. Kihl, M. Rumsewicz, “Analysis of overload control strategies in combined SSP-SCPs
in the Intelligent Network”, ITC-15, 1997.

[Kleinrock] L. Kleinrock, Queueing Systems Volume I: Theory, John Wiley & Sons, New York,
Chichester, Brisbane, Toronto, 1975.

[Komer91] Ulf Komer, "Overload Control of SPC Systems", Proceedings of ITC-13, pp 105-114,
Copenhagen, 1991.

[Komer94] Ulf Komer, C. Nyberg, B. Wallstrom, “The Impact of New Services and New Control
Architectures on Overload Control”, ITC-14, Juan-les-Pins, 1994.

[Kwiatkowski94a] M. Kwiatkowski, “Queue Length Congestion Control at an SCP”, ATNAC, Melbourne,
1994.

178

Appendix A References

[Kwiatkowski94b] M. Kwiatkowski, B. Northcote, “Calculating Mean Delays in Intelligent Networks Under
Overload”, ATNAC, Melbourne, 1994.

[Langlois91] F. Langlois, J. Regnier, “Dynamic Congestion Control in Circuit-Switched
Telecommunications Networks”, ITC-13, Copenhagen, 1991.

[Lee97] Y. Lee, J.S. Song, “Overload Control of SCP in Advanced Intelligent Network with
Fairness and Priority”, Proceedings of the 6th International Conference on Computer Communications &
Networks, Las Vegas, 1997.

[Leever93] PJ.E. Leever, G.S. Vermeer, R.A.J. Reijmerink, LJ.N. Franken and B.R. Haverkort,
"Performance Evaluation of Intelligent Network Services", Tenth UK Teletraffic Symposium,
Performance Engineering in Telecommunications Networks, April 1993.

[Lindberg88] P. Lindberg, K. Nivert, B. Sagerholm, “Trunk Reservation and Grade of Service Issues in
Circuit Switched Integrated Networks”, ITC-12, Turin, 1988.

[Luan89] D.T.D. Luan, D.M. Lucantoni, “Throughput Analysis o f an Adaptive Window-Based Flow
Control Subject to Bandwidth Management”, ITC-12, Turin, 1989.

[MacDonald94] D.M. MacDonald, S. Archambauld, ‘Using Customer Expectation in Planning the
Intelligent Network”, ITC-14, Juan-les-Pins, 1994.

[Manfield91] D. Manfield, B. Denis, K. Basu, G. Rouleau, "Overload Control in a Hierarchical
Switching System", Proceedings of ITC-13, pp 894-900, Copenhagen, 1991.

[Milito91] R.A. Milito, Y. Levy, Y. Arian, “Dynamic algorithms for distributed queues with
abandonment”, ITC-13, Copenhagen, 1991.

[Newcombe94] A. Newcombe, D.D. Botvich, F. Lodge, T. Curran, "A decision support system for
assurance of quality of service in intelligent network service provisioning", Proceedings of IS&N '94,
Aachen, September 1994.

[Nyberg92] C. Nyberg, “On Overload Control in Telecommunication Systems”, Technical Report-111,
Department of Communication Systems, University of Lund, Sweden, 1992.

[Nyberg94] H. Nyberg, B. Olin, “On Load Control of an SCP in the Intelligent Network”, ATNAC,
Melbourne, 1994.

[Nyberg95a] C. Nyberg, M. Kihl, "Overload Control in Intelligent Networks: an Approach using
Modified PID Controllers", University of Lund, Sweden, 1995.

[Nyberg95b] C. Nyberg, M. Kihl, U. Ahlfors, U. Komer, “The Impact of Retrials on Overload Control”,
Internal document, Lund, 1995.

[Pham91] X.H. Pham, “Control loop for traffic management of networks under focussed overloads”,
ITC-13, Copenhagen, 1991.

[Pham92] X.H. Pham, R. Betts, "Congestion Control for Intelligent Networks", Proceedings of 1992
International Zurich Seminar on Digital Communications, Intelligent Networks and their Applications,
Zurich, 1992.

[Q1202] "Intelligent Network Service Plane Architecture", Document Q.1202, ITU-T, April 1993.

[Q1213] "Global Functional Plane for Intelligent Network CS-1", Document Q.1213, ITU-T,
January 1994.

179

Appendix A References

[Q1214] "Distributed Functional Plane for Intelligent Network CS-1", Document Q.1214, ITU-T,
February 1994.

[Q1215] "Physical Plane for Intelligent Network CS-1", Document Q.1215, ITU-T, November
1993.

[Q1218] "Interface Recommendations for Intelligent Network CS-1", Document Q.1218, ITU-T,
January 1994.

[Q1221] "Introduction to Intelligent Network Capability Set 2", Document Q.1221, ITU-T,
September 1997.

[Roberts79] J. Roberts, “Recent Observations of Subscriber Behaviour”, Proceedings of ITC-9, Spain,
1979.

[Rajaratnam96] M. Rajaratnam, F. Takawira, “Modelling multiple Traffic Streams Subject to Trunk
Reservation in Circuit-Switched Networks”, GLOBECOM ’96,

[Rumsewicz95] M. Rumsewicz, “On the real-time determination and control of mass call-ins in Intelligent
Networks”, Software Engineering Research Centre Technical Report SERC-0003, the Royal Melbourne
Institute of Technology, October 1995.

[Rumsewicz96] M. Rumsewicz, “A simple and effective algorithm for the protection of services during
SCP overload”, Proceedings of the 4th International Conference on Telecommunications Systems, 1996.

[Sabourin91] T. Sabourin, G. Fiche, M. Ligeour, "Overload Control in a Distributed System",
Proceedings of ITC-13, pp 421-427, Copenhagen, 1991.

[Seraj85] Jila Seraj, "An analysis of processor load control in SPC systems", Proceedings of ITC-11,
pp 767-773, Kyoto, 1985.

[Smith95] D.E. Smith, "Ensuring Robust Call Throughput and Fairness for SCP Overload Controls",
IEEE/ACM Transactions on Networking, Vol. 3, No. 5, pp 538-548, October 1995.

[Swenson96] E. Swenson, “ITU-T Intelligent Network Capability Set 2 Recommendations”, ITC Mini-
Seminar on Engineering and Congestion Control in Intelligent Networks, Australia, 1996.

[TINA97] “Service Architecture Version 5.0”, TINA Consortium, June 1997, available from
http://www.tinac.com.

[Tsolas92] N. Tsolas, G. Abdo, R. Bottheim, “Performance and Overload Considerations when
Introducing IN into an Existing Network”, International Zurich Seminar on Digital Communications,
Zurich 1992.

[Tumer91] P.M.D. Turner, P.B. Key, “A New Call Gapping Algorithm for Network Traffic
Management”, ITC-13, Copenhagen, 1991.

[Villen85] M. Villen-Altamirano, G. Morales-Andres, L. Bermejo-Saez, "An Overload Control
Strategy for Distributed Control Systems", Proceedings of ITC-11, pp 835-841, Kyoto, 1985.

[Wallstrom91] B. Wallstrom, C. Nyberg, "Transient Model of Overload Control and Priority Service in
SPC Systems", Proceedings of ITC-13, pp 429-434, Copenhagen, 1991.

[Yan94] J. Yan, D.M. MacDonald, “Teletraffic Performance in Intelligent Network Services”, ITC-
14, Juan-les-Pins, 1994.

[Zepf91] J. Zepf, G. Willmann, “Transient Analysis of Congestion and Flow Control Mechanisms in
Common Channel Signalling Networks”, ITC-13, Copenhagen, 1991.

180

http://www.tinac.com

Appendix B

References Associated with this Research

Appendix B References Associated with this Research

[Lodge94] F. Lodge, T. Curran, M. Gulyani, A. Newcombe, "Intelligent Network Congestion Control
Strategies and their Impact on User-Level Quality of Service", Proceedings of Australian
Telecommunication Networks & Applications Conference, pp 627-632, Melbourne, December 1994.

[Lodge96] F. Lodge, T. Curran, "A Congestion Control Strategy for Combined IN and non-IN
Traffic Load at the Service Switching Point of an Intelligent Network ", Proceedings of Networks ’96,
Sydney, December 1996.

[Lodge97] Fiona Lodge, Dmitri Botvich, Thomas Curran, “A fair algorithm for throttling combined
IN and non-IN traffic at the SSP of the Intelligent Network”, Proceedings of IEE Teletraffic Symposium,
Manchester, March 1997.

[Lodge98a] Fiona Lodge, Dmitri Botvich, Thomas Curran, “A Fair Intelligent Network Congestion
Control Strategy Based on Revenue Optimisation”, Proceedings of IS&N’98, Antwerp, May 1998.

[Lodge98b] F. Lodge, B. Jennings, T. Curran, “A Strategy For The Resolution of Intelligent Network
(IN) and Signalling System No. 7 (SS7) Congestion Control Conflicts” Proceedings of ICC '98, Atlanta,
June 1998.

[Lodge99] Fiona Lodge, Dmitri. Botvich, Thomas Curran, “Using Revenue Optimisation for the
Maximisation of Intelligent Network Performance”, Proceedings of ITC-16, Edinburgh, June 1999.

[Newcombe94] A. Newcombe, D.D. Botvich, F. Lodge, T. Curran, "A decision support system for
assurance of quality of service in intelligent network service provisioning", Proceedings of IS&N '94,
Aachen, September 1994.

182

Glossary

Appendix C

Appendix C Glossary

ACG Automatic Code Gapping

AIN Advanced Intelligent Network

ATM Asynchronous Transfer Mode

BCP Basic Call Process

CCAF Call Control Agent Function

CCC Call Count Control

CCF Call Control Function

cdf Cumulative Distribution Function

CID Call Instance Data

CMIP Common Management Information Protocol

CORBA Common Object Request Broker Architecture

CS-x IN Capability Set Number x

BCSM Basic Call State Model

CG Call Gapping

DFP Distributed Functional Plane

DN Destination Number

FDOC Focussed Destination Overload Control

FE Functional Entity

FEA Functional Entity Action

FIFO First In First Out

FSM Finite State Machine

GFP Global Functional Plane

IAF Intelligent Access Function

IDL Interface Description Language

IETF Internet Engineering Task Force

IF Information Flow

nop Internet Inter-Orb Protocol

IN Intelligent Network

INAP Intelligent Network Application Part

INCM Intelligent Network Conceptual Model

IP Intelligent Peripheral

IP Internet Protocol

ISDN Integrated Services Digital Network

IT Information Technology

ITU International Telecommunications Union

LMC Load Measure Control

184

Appendix C Glossary

LPP Linear Programming Problem

O-BCSM Originating Basic Call State Model

OMG Object Management Group

ONP Open Network Provisioning

OPNET OPtimised Network Engineering Tools

pdf Probability Density Function

PE Physical Entity

PID Proportional Integral Differential

PIN Personal Identification Number

pmf Probability Mass Function

POI Point of Initiation

POR Point of Return

PP Physical Plane

PSTN Public Switched Telephone Network

PT Percent Thinning

QLC Queue Length Control

Rev/Res Revenue to Resource ratio

RTC Response Time Control

RV Random Variable

SCEF Service Creation Environment Function

SCF Service Control Function

SCP Service Control Point

SDF Service Data Function

SDP Service Data Point

SIB Service Independent Building Block

SLP Service Logic Program

SLPI Service Logic Program Instance

SMF Service Management Function

SOC SCP Overload Control

SOCC SMS-Originated Code Control

SP Service Plane

SPC Stored Program Controlled

SRF Service Resource Function

SS7 Signalling System No. 7

SSCP Service Switching and Control Point

SSF Service Switching Function

185

Appendix C Glossary

SSP Service Switching Point

svc Square of the Variation Coefficients

T-BCSM Terminating Basic Call State Model

TCAP Transaction Capabilities Application Part

TINA Telecommunications Intelligent Networking Architecture

TMN Telecommunication Management Networks

UI User Interaction

YPN Virtual Private Network

186

