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Abstract

We study iterative numerical methods, based on Schwarz-iterative techniques and
Shishkin meshes, for reaction-diffusion and convection-diffusion problems. We intro-
duce the criteria of (e, N )-uniform convergent numerical approximations. We examine
the convergence of the numerical approximations with respect to the dimension of the
discrete problem and the number of iterations. It is shown that the techniques used
to design an (e, Af)-uniform numerical method for reaction-diffusion problems are not
applicable to convection-diffusion problems. A systematic analysis of several vari-
ants of Schwarz, including overlapping and non-overlapping methods using different
boundary conditions, was undertaken for one dimensional convection-diffusion prob-
lems. The convergence behaviour and the iteration counts were examined. Unlike
the reaction-diffusion problem, it is shown that the methods using uniform meshes in
each subomain do not meet all the (s, N)—uniform convergence criteria. In the case
of the convection-diffusion problems, it is demonstrated analytically and numerically
that these iterative methods are convergent and have low computational cost for small
values of the singular perturbation parameter e. We feel it is of importance that the
methods can be extended to higher dimensions with sufficient ease. As an example of
this, we extend a non-overlapping method to a two dimensional convection-diffusion
problem. The analysis of this method illustrates an appropriate domain structure
and the need for sharp bounds on the partial derivatives. Finally, it is shown that
an overlapping Schwarz method, using uniform subdomains, can be used to produce
(e, AQ-uniform convergence for a time dependent problem with parabolic boundary

layers. Numerical results are presented for the methods studied.
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Chapter 1

Introduction

The subject of this thesis is an investigation of Schwarz domain decomposition meth-

ods applied to singularly perturbed differential equations.

It is our purpose to analyse the convergence properties of Classical Schwarz iterative

methods used in conjunction with appropriate Shishkin fitted meshes.

In this Introduction, we give a short overview of this field of study and a brief summary

of the dissertations main findings and content.

1.1 Domain decomposition methods for differen-

tial equations

With the arrival of supercomputers and parallel computing, domain decomposition

methods for partial differential equations has become an area of increasing interest



in recent years. Underlying this surge in interest is the need to develop parallel

algorithms for the large scale problems arising in physics and engineering.

The earliest know domain decomposition method is believed to have been discovered
in 1869 by Hermann Amandus Schwarz, [26]. Schwarz devised the method for elliptic
equations, to establish the existence of harmonic functions on regions with nonsmooth

boundaries.

The Schwarz algorithm partitioned the solution domain into two overlapping regions,
on which he produced a sequence of functions, defined on the union of the subdomains,

converging to the harmonic function satisfying the given boundary conditions.

Today, the Schwarz algorithm provides an effective platform for numerically solving
partial differential equations. A discussion of domain decomposition methods for
partial differential equations is given in the books [23], [33], and also in the proceed-
ings of the International Symposium on Domain Decomposition Methods for Partial

Differential Equations [10].

When devising numerical methods for singularly perturbed problems, difficulties can
arise, which often depend on the geometry of the domain. Therefore, it is of interest
to reduce the solution of the original problem to that of the set of problems in sub-
domains with simpler geometries; also the numerical method can be locally adapted

to any singularity in the solution that arises in a specific subdomain.



1.2 Singularly perturbed model problems

Singularly perturbed partial differential equations with a small parameter (denoted
here by t) multiplying the highest derivative arise in many areas of engineering, for
example, in the modeling of semi-conductor devices, heat transfer, and computational

fluid dynamics (see, for example, Morton [20]).

There is extensive information on numerical methods for singularly perturbed prob-
lems in the literature [30],[18],[6].[25] and [20]. In this section, we introduce four
characteristic model problems. Let fi = (0,1) and G = ii x (0,7). Consider the

following four problems.

1. One-dimensionai convection-diffusion

—eu" +au’ = f on
u(0)=7o, u(l) = 7i (1.1)

a>x>0 in 12 and 0<e<1

2. One-dimensional réaction-diffusion

—eu"+bu = / on
m(0) = 7o, u(l) = 7, 1.2

b>@>0 in and O<ex<l1

3. Time dependent convection-diflusion

—eu'"+ au' + dit, =/ on G

u(0,t) u 70(), u(l,t) =710, u(x,0) = <P (1.3)

d>5>0, a>a>0 onG and O<e<1



4. Time dependent reaction-diffusion

—eu"+bu+du =f on G

u{0,t) = 7o(t), u(l,t)

7i(t),  u(x,Q) = (p{x) (1.4)

d>5>0 b>/3>0 onG and O<ex<1

where the functions a, b, d, /, 70, 7i, comply with the assumption of sufficient smooth-
ness and the functions ip, 70,71 are sufficiently compatible to guarantee the solutions
of (1.1)-(1.4) are smooth. Note that (1.3) and (1.4) are the time-dependent analogies

of (1.1) and (1.2). Note also that a, j3,5 are constants.

Singularly perturbed problems are characterized by the perturbation parameter e.
For small values of e, steep gradients appear in the solution of these problems. In the
problems we are investigating these gradients appear in the boundary region, and are

called boundary layers.

Problem (1.1) is called the convection-diffusion problem and is characterized by the
existence of a first derivative term. Only one initial condition may be imposed on the

limiting (reduced) solution of (1.1),
au'o =/,

when e is set to 0. The radical difference between the solution of (1.1) and the solution
of its reduced problem will mean a boundary layer appears near x = 1. Problem (1.2)
is called the reaction-diffusion problem. It is characterized by the absence of a first
derivative term. No boundary conditions can be imposed on the reduced problem

and boundary layers will appear at x = OQand x = 1.

Problems (1.3) and (1.4) are the time dependent counterparts of (1.1) and (1.2)

respectively, in that, (1.1) and (1.2) are steady state problems associated with 0 = 0



(du/dt = 0). The boundary layers which arise on the lateral sides of the rectangle
G, are determined by the characteristics of the reduced solution (e —0). Away from
the corners of the domain a boundary layer is of either regular or parabolic type. A
layer arising in a corner region is known as a corner layer. In Problem (1.3), these
characteristics are not parallel to the boundary and a regular boundary layer appears
near the wall at x = 1. The characteristics in Problem (1.4) are parallel to the lateral

sides of the rectangle, G and layers of parabolic type arise along these sides.

1.3 Non-iterative numerical methods for singularly

perturbed problems

For a singular perturbation problem, an appropriate norm for studying the conver-

gence behaviour of numerical solutions is the maximum norm, which is defined by
HVIIn = max \ip(x)\.

The associated seminorms, defined for each integer k > 0, are

In designing a numerical method to approximate the solution of a singular perturba-
tion problem we are interested in obtaining approximations which converge to the true
solution independently of the parameter e. This is known as e-uniform convergence

and can be formally defined for (1.1) and (1.2) as follows.

Definition 1.3.1 Suppose that

ON={Xi}u, 0=X0<Xi<...<Xtf-l1<Xn=1



is a set of mesh points and Uf(xi) is an approximation to uf(xi). Let be an
interpolant ofU ~. Then the sequence of functions {U”}n=2 converges e-uniformly

to ue if there exists No such that for all N > No

sup WUN —ue\\n < CN~P, p> 0

O<e<l

and C,p and Nq are independent ofe and N.

An analogous definition can be given for (1.3) and (1.4).

Classical numerical methods can satisfy an error bound of the form

\U —uf|jn < C(e)N~p, p> 0,

where C(e) is unbounded as e —0. Such a method is convergent but not e-uniformly

convergent.

There have been two common approaches taken to obtain e-uniform convergence,
Fitted Operator Methods and Fitted Mesh Methods. The former uses special fitted
operators on a uniform mesh and, while achieving some success, a powerful negative
result by Shishkin [28] states that no fitted operator method using a uniform mesh
can be guaranteed to give e-uniform convergence when applied to a class of parabolic
problems of the form (1.4). The fitted mesh methods use standard finite difference
operators applied on a suitable fitted mesh. Shishkin has developed comprehensive
theory to support fitted mesh methods which demonstrate e-uniform convergence
for a large class of singularly perturbed problems (we refer to these meshes as the
Shishkin meshes), see Shishkin [30]. The Shishkin mesh can also be extended to
higher dimensions and is easy to implement. This mesh is piecewise uniform with
specially defined transition points separating course and fine mesh regions, in which

appropriate proportions of the mesh points are placed.



1.4 Iterative numerical methods for singularly per-

turbed problems

In this thesis, we apply some of the theory for Shishkin meshes to the Schwarz decom-
position method. The Schwarz domain decomposition iterative procedure partitions
the solution domain into overlapping or non-overlapping subdomains and, on each of
these, the problem is solved separately using an appropriate algorithm, where some
appropriate interface conditions transfer solution values between subdomains at each
iteration. The main advantages of using a domain decomposition method for a sin-

gularly perturbed problem are as follows;

1. An appropriately chosen algorithm can be implemented on each subdomain.

2. The division of the solution domain makes it possible to deal with complex

domain structures.

When an iterative numerical method is employed, both the discretization error and
the iterations should be examined as functions of the small parameter e. We now

give the definition of (e, AQ-uniform convergence.

Definition 1.4.1 Suppose that
ON = 0=x0<xi <.. <xN-\<xN=1

is a set of mesh points and U”k(xi) is an approximation to ue(xi), generated by
some iterative process. Let U~k be an interpolant of JJMk. Then the functions

{UN*}jy=2k-i converge (e, A)-uniformiy to ue if there exists NO such that for all



N > NO
sup ||UNkK - ue|lffi< CN'P+ Cgk, p>0,0<qg< 1

O<e<lI

and C,p,q and NO are independent of £ and N. Here k denotes the iteration param-

eter.

We will say that an iterative method is e-uniform if C,p and NO are independent
of e and N and q is independent of e. Certain Schwarz methods will be seen to be
e-uniform but not (e, AQ-uniform. That is, C,p,q and N are independent of e but

q—> las N —00. Some other methods may be neither e-uniform nor (e, A)-uniform.

When designing a Schwarz method we request that our method fulfils the following

criteria.

1. Simplicity of the method and possible extension to higher dimensions.

2. (e, A)-uniform convergence.

With respect to the simplicity of the method, it is preferable to use uniform meshes
where possible. Of course, it is imperative that the method produces e-uniform
approximations (Definition 1.3.1), and for a method to be (e, AQ-uniformly convergent
we stipulate in Definition 1.4.1, that an iterative method should be computationally
economic, that is the number of iterations required for convergence is independent of
N and e. These criterion will be used in accessing the effectiveness of a numerical

method in subsequent chapters.

In the context of iterative methods, Garbey [7] and Garbey and Kaper [8 examined

discrete Schwarz methods for singularly perturbed problems. In their methods, the



number of mesh points is inversely proportional to the size of the singular perturba-
tion parameter e, and so these methods are not e-uniform. Boglaev [1] examined a
non-overlapping Schwarz method for a time-dependent singularly perturbed analogue
of Problem (1.1), using a standard finite difference operator on a special piecewise-
uniform mesh. However, this method is not e-uniform, as the restriction eN < 1
is imposed on the method. Boglaev and Sirotkin [2] and Farrell et al. [4] examined
Schwarz methods for singularly perturbed semi-linear analogous of Problem (1.2), us-
ing a complicated fitted finite difference operator with special non-uniform meshes on
the subdomains. In their methods, strong restrictions are placed on the distribution

of the nodes that do not permit the use of a uniform mesh in each subdomain.

In Chapter 2, the Schwarz approach to the reaction-diffusion problem (1.2) is exam-
ined and it is shown that the numerical solution of an overlapping Schwarz method,
based on a standard finite difference operator with a uniform mesh in each sub-
domain, converges (e, iV)-uniformly to the exact solution when the position of the
subdomains is chosen using Shishkin transition points. The appropriate decompo-
sition of the solution and bounds on derivatives are given, and the continuous and
discrete Schwarz methods are examined. Numerical results are presented which agree

with the theoretical error results.

In chapter 3, the Schwarz approach to the convection-diffusion problem (1.1) is ex-
amined. Both Mathew [16] and Nataf and Rogier [21] examined the theoretical con-
vergence properties of the continuous, but not the discrete, Schwarz methods for
singularly perturbed problems. Numerical computations are presented in this thesis
which conclusively show that the overlapping Schwarz method with uniform meshes
fails to produce (e, iV)-uniform convergent approximations. In fact, the numerical
results show that, when the Shishkin transition points are used, the error contained

in the approximations is unacceptably large, for small values of e. This is surpris-



ing and, we feel, an important result which highlights a difference in Problems (1.1)
and (1.2) when using Schwarz methods, and which also reveals completely different

convergence behaviour for the continuous and discrete methods.

In chapter 4, we present some alternative Schwarz methods which are designed to ad-
dress the difficulties encountered in the Schwarz approach to the convection-diffusion
problem. These include using special meshes, non-overlapping subdomains and non-
iterative algorithms. Each method is introduced, and its advantages, drawbacks and
possible applications discussed. We present theoretical results for the convergence be-
haviour and numerical computations which agree with the theoretical error estimates.
The methods are judged using criterion of an efficient Schwarz domain decomposition
method, that is we require the numerical solutions to be (e, iV)-uniformly convergent

and it would be preferable to use uniform meshes in each subdomain.

In chapter 5 we extend one of the methods, introduced in Chapter 4, to a two
dimensional convection-diffusion problem with regular boundary layers . The two
dimensional problem contains extra complexity. The decomposition of the solution
contains more layer components than the one dimensional case. The subdomains
interface along edges, and in the analysis of this method, it becomes imperative
to use the Shishkin bounds on partial derivatives and mixed partial derivatives. An
appropriate placement of the subdomains is also determined. Numerical computations

are presented.

In chapter 6, we analyse a Schwarz overlapping method with uniform subdomains
applied to the parabolic problem (1.4). A general result for this method is presented in
Shishkin [31]. Here, we analysis the method using similar techniques to those applied
in the previous chapters and verify that (e, iV)-uniform convergence can be achieved.

This result confirms that this class of equations does not present the difficulties seen

10



in the Schwarz approach to the convection-diffusion class. The negative result of
Shishkin, that no fitted operator method on a uniform mesh can be guaranteed to
converge uniformly in £, makes this an interesting result because by using a Schwarz

approach we can retrieve uniformity of the meshes and retain the (s, JV)-uniform

convergence.

Notation: Throughout this thesis, the letter C denotes a generic constant that is
independent of the singular perturbation parameter e, the discretization parameter

N and the Schwarz iteration counter k.

11



Chapter 2

A Schwarz method for

reaction-diffusion problems

2.1 Introduction

In this chaptcr, we present an overlapping Schwarz method based on a standard
finite difference operator using uniform meshes in each subdomain. This method is
similar to the one proposed in Shishkin [30], where various theoretical results were
announced. However, no detailed proofs, no consideration of numerical results and no
iteration counts were provided in [30]. Here, we put forward a detailed proof of the
parameter-uniform convergence of the method and numerical results, validating this
theoretical result, are presented. Iteration counts are presented and their dependence

on s is discussed. The material in this chapter has appeared in [15].

On i) = (0,1), we consider the following class of singularly perturbed reaction-

12



diffusion problems

Leue(x) = —eu"{x) + b(x)ug(x) = f(x), x £ £] (2.1a)

ue{0)=A, ue{l)=8B, (2.1b)

b{x) >i3>0 for allig O, (2.1¢)

where the functions satisfy b, / 6 and the singular perturbation parameter £

satisfies 0 < e < 1

An outline of this chapter is as follows. In Section 2.2 the solution is decomposed
into smooth and singular components. Parameter explicit bounds on derivatives are
given. In Section 2.3, the continuous Schwarz method is introduced and error bounds
are given. In Section 2.4, the discrete Schwarz method is describedand bounds on
the difference between the discrete Schwarz iterates and the continuoussolution are
derived. This leads to the main theoretical result of the paper: a parameter-uniform
error estimate in the maximum norm of the discrete Schwarz iterates. In Section
2.5 results of a series of numerical experiments are presented which demonstrate the

theoretical estimates derived in the earlier sections.

2.2 The continuous problem

The reduced problem corresponding to (2.1) is the problem b{x)vQx) = f(x) whose
solution vO(x) = f(x)/b(x) cannot be made to satisfy arbitrary preassigned boundary
conditions at the boundary points {0,1} of fl Thus, in general, uf exhibits boundary
layer behaviour at these points, the width of the boundary layers being 0(v/e) (see,

for example, [3] or [18]). It is well known that Le satisfies the following

13



Comparison Principle. Let a,b GU and assume that ip(a) > 0 and ip(b) > 0. Then
LEip(x) > O for all x E (a, b) implies that ip(x) >0 for all x £ [a, ] C

The uniqueness and stability of the solution ue of (2.1) are immediate consequences
of this comparison principle.

We state without proof the following lemma which gives classical e-explicit bounds

on the derivatives of the solution of Problem 2.1. A proof of this lemma is given in
[28].

Lemma 2.2.1 Let ipe be the solution of the problem

LEBpE=/, x 6 {a b) Cfl,
where ipe(a),ipe(b) are given and \ipe(a)\, \ipE{b)\ < C. Then, for all k, 0 < k < 4,
\ipfu)\ <C( 1+ e-fc/2(e-(z-a)V A + e-(6-*)vA7A T X € [a b,

where C is a constant independent of e.

In what follows, we make extensive use of the following decomposition of the solu-
tion u£. We write uE= ve + wi + wr where the smooth component vE and singular

components Wi, wr are defined to be the solutions of the problems

Leve

I, ue(0) = /(0)/6(0), ue(l) = /(1)/6(1),

Lewi =0, wi(0) = ue(0) - v£(0), wi(l1) = 0,

LEwr -0, wr(0) =0, ur(l) = ue(l) —ij£(2).
This decomposition enables us to establish non-classical sharper e-explicit bounds on

the derivatives of the solution of Problem 2.1. These are contained in the following

14



Lemma 2.2.2 [17] The solution uf£ of Problem, 2.1 can be written in the form
UE = vE+ wi + wT,
where, for all k, 0 < k < 4,
kU< C (lI+e*1/2),
and, for all x £ Q,
tEi{}@) < Ce'k'2e-X/M, |uW(®)| <

where C is a constant independent of e.

2.3 Continuous Schwarz method

We now describe a continuous Schwarz method for Problem 2.1, which is an iterative
process generating a sequence of iterates which converge as k — 00 to the exact

solution uE First, we introduce three overlapping subdomains of fi
fic= (o, 1—a), fit = (0,2a), flr= (1 —2a, 1),

where the subdomain parameter a is an appropriate constant, specified in Section

2.4, which satisfies
0< a < 0.25.

Then for each integer k > 0, the Schwarz iterates uH1are then defined as follows. For

k =0 we put

WOX) = 0, 0<x <1 n[)0) = «0), *4M1) ue(l)m

15



and forall k > 1

W i ~'inS

i uoin &\, i=1lr,

where the uf® are the solutions of the problems
LEu =/ in Qj, A oong3idt, i=1,r
and
Leuf]=/ in dc,ufd(ir) = ulfd(a), ujfi(1- a) = uyM(1- a).

The parameter-uniform convergence of these Schwarz iterates to uf is established in

the following lemma. This is a well known result (see, for example, [4], [18], [16]).

Lemma 2.3.1 Forallk >1
1144 ~ uA\n < Cqgk ,
where C is a constant independent of k and e and

q= <1l

2.4 Discrete Schwarz method

The discrete Schwarz method is obtained from the continuous Schwarz method by
using a uniform mesh , 1 = ¢,l,r on each subdomain 0* and replacing the dif-
ferential operator Le by the standard centred finite difference operator . For any

mesh function Z, on a uniform mesh with N subintervals Lf is given by

L»Zi = -e62Zi + b{xi)Zi, S2Z{= N2{ZI+l - 2Z{+ Z").

16



Foreach j, 0 < j < 2at each point of Clj associated with any mesh function Z defined

on nf, we define the piecewise linear interpolant Zj.

Method 2.1 The sequence of discrete Schwarz iterates is defined by
Ufix) = 0,0 <x <1 UTf\0) = ug0), U\l = uKI).

For k > 1 the iterates Us are defined by

Uc" in Qc,
Uf\ = Q
ufr in £li\ f2c, i —I,r
where the are the solutions of the problems
L*uf] = f inOf, Uf]=0f* ondQ? i=1,r,

LfC/W

/ in Of, Ufla) = 0Wa), G«(l-a)=U02\-a),

and U is the linear interpolant of U.

Note that the centred finite difference operator Lf satisfies the following discrete

comparison principle in ,J =1Lcr.

Discrete Comparison Principle. Assume that \&0 > 0 and '3/at > 0. Then >

Ofor all Xi GA!?, j = I,c,r implies that» > O for all Xie CIf, j =1, ¢r.

An immediate consequence of this is the following parameter-uniform stability result

for . Let Zi be any mesh function on flf, j = I,c,r. Then for alH, 0< i < N,
\Zi\ < (1/6)i<max Zj\ + m&x{Z0,ZN}.

In order that the convergence properties of the discrete Schwarz method are

parameter-uniform, we take the subdomain parameter a to be

a = min{l/4, 2"/e/f3InN}. (2.2)

17



The discrete Schwarz iterates are now decomposed in an analogous way to uf£. Thus

we write

uf] = v+ WA+ wik]
Each term of in the sequence of discrete Schwarz approximations is decomposed
as follows,

yjig+w\k +w $ innc,

K =YW +wi +wiK =

YDA + +wM in \Qc i=I,r,
where
L» y = f inof, \f]=Vf-« on30", i=f,r,
Lfyw = [/ infl" = vf(<0, KW(1- °)=KW(@1- ff),
and for W,
Lfw/*1 =0 in Of, W\f = W\k~] ondOf, i=1I,r,
L”WA] =0 in!)" <V ) =H/NWW, W/ilil - t) = Wi?](l -») ,
and for WT
I»W¥H =0 Wrs = °ndSlt, i=1,r,
LFWW =0 infl", F|W = WA - Q) = «£>(1 - a).
The sequences are started by taking
K[OO) = o0<re<i, vf()=K(0), Vji(l) = K(I) ,
W}Qx) = 0,0 < x <1, W,[O) = Wi(0), Wi[g|(l) = 0,
Wflx) = 0,0 <x<1 Wjo]©0) =0, Wio|(l) = Wr(1).

In the following two lemmas parameter-uniform error estimates of the iterates are

established. The first lemma concerns the smooth components.
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Lemma 2.4.1 Let vE and denote the regular componentsof ue and U Rrespec-

tively and let a be chosen as in (2.2). Then, for all k > 1,
\We-Vijkh <CN~2+C2-k,

where C is a constant independent of k, N and e.

Proof. Note that (ve —V")(0) = 0 and |(we —\W¥ M)(2cr)] =\ve(2a)\ <Cq  For

a6 Of

AL, ) (M(X)\<Ce(2aYNAWU

< CiTv"2

Here we have used the following standard local truncation error estimate lor z £

Ca(xi-i,Xi) and xi+i —x,;;= xt—x»_i = CN~\ then
\02z -z"\< (C N)-2\zU,{_uxi+)
and Lemma 2.2.2. Consider the two mesh functions
€ - +jIT 1% (V,- VI)*).
Then, from the discrete minimum principle, we get, for all Xi £ Of,
\(v'-v,yXiN< A1 +"2-n-\
Likewise, for all Xi £ Of,
ik - k"i)m i< Col2; x<) + |
For all Xi £ Of, we obtain

14> .- VE)W = |(iN- £,)(»,W)Il <CeAr>,|, < CrN-2
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with
IK- W) = |K - WMwi <f +c.on-+,

and

K - Km)(i - »\= IK - Kw)(i- a\f£y +c'n
Hence
IK - VE)MI < cav-2+ ~, Xie 1)

Consider now the second iteration. Observe that (VE—V/2) (0) = 0 and |(ue

VA7) (2a)l < CAN~2+ f . Fora*e Of

Consider the two mesh functions

(y '>A+j n'1£r - vAH{Xi)-

Then, from the discrete minimum principle, we get, for all Xi e Of,

and for all X( € Of,

Hence
IK - <jN-2+y ad I(«-K2(@(i-N)I<jr-2+Y"
and thus

IK - v2)K)I<jN -2+", ne n&.
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We now use the standard interpolation error estimate for linear interpolation. That

is, if x e C2(.Tj_i, X)) and z is the linear interpolant then

\z oo fii-i) A~ C(Xi — Xi-1) 112 |joo,(ac,_x.an) >

which leads to

»t -v ;wlfl, < Jvw -®,|] + lI*.-««ll
< viw -«,|| + civ-2(2I7)2K |2

< C,2-*+y/V 2+C2N-2

This completes the proof, o

The next lemma gives error estimates for the singular components.

Lemma 2.4.2 Letwi, wr and WjkK denote the singular components of ue and

£/M respectively and let a be chosen as in (2.2). Then, for all k > | we have

(i) [[tu,-W'  wllii<C(A-MiiJV)2, () |K-H'W [[fI<C(iV-1lii/V)2,

where C is a constant independent of k, N and e.

Proof. We give the proof of (i); the proof of (ii) is analogous. Consider first the case

when a < 1/4. For xX%€

ILA(wW ,-W fE)M I = (L™ = Le){wi(Xi))\ < 0£(Ri7)2IV-2|Wi|4

< C(20)2N~2e~1< C(N~IInN)2.

Hence, by the discrete minimum principle,

IN - <C(N-1In AO2.
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N < C(N-HnNY+CN-22ar\wm 2 < C(N~1Ini\)2
Lilkenrse
I® - W glk < CtivV'1InV)2.

Note that

[<"M 1= lwg'MI < KW I+ c(JV-linJV)Z,
< I(I-M) 1= /)(1-M <WI-AM+CilJV-'1IndV)2,

and we conclude that

KtV sCAIlnlJV )2

IN-W fi’lk < [h-<i,|[n, + C (* 1InIV)2.

Note that for any function 2 we have

2 i) =11 2O@() 20dKx A g
<[j Z@Ed,

IXi-i
and so, using Lemma 2.2.2, we have
IN-WAIGE 1*) < 1/ wft) di\ < e-xX"VE
- IXi-i
< e-"V" < CMrAT1lInN)2 forx”" > a

We conclude that



The proof is completed by an induction argument. For the case of a — 1/4, use the

argument in the previous lemma and note that o2je < C(IniV)2. o

Combining this with Lemma 2.4.1 immediately yields the main theoretical result of

the chapter, which is contained in

Theorem 2.4.1 Let uf be the solution of Problem 2.1 and let {U"} be the set of

discrete Schwarz iterates with a chosen as in (2.2). Then, for all k > 1
\WE —UM\n < C(N~XIniV)2+ C2~k ,

where C is a constant independent of k, N and e.

2.5 Numerical results

Numerical results arepresented in this section, which confirm thetheoretical esti-

mates established inthe previous section. The discrete Schwarzmethod described in
Section 2.1 is applied to two problems from Problem 2.1. For notational reasons, it is
helpful to introduce the piecewise-uniform mesh ﬁgl associated with the overlapping

subdomains by
nf=nfumM?\ncu(nflno. (2.3)
For both examples, the stopping criterion for the Schwarz iterations is taken to be

max IU"(xi) — | < 10-8.
xienf

Our first problem is the constant coefficient problem
—su”(x) + uEx) =0, 1EU, (2.4a)
U£() = ug(l) = 1 (2.4b)
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Its exact solution in closed form is easy to find, which means that the exact pointwise
errors can be calculated. The discrete Schwarz iterates are computed on a sequence
of meshes with N = 8,16, ...1024 for e = 2~2p, p = 0,1,2, ...29. Estimates of the

global error

rf-M n

are obtained by evaluating

E eglobal = max |U ~fa) - UE(x,)\ ,

where 0* = 0* UO* U Or and

Of = {xi\xi= ie/4096,0 < i < 4096} ,
O = {xi\xi = e+ ;(1 —2e)/4096,0 < i < 4096} ,
O = {xi\xi= 1—e + ¢€/4096,0 < i <4096},

where U™ is the final Schwarz iterate. We normally omit the superscript k on the

final iterate and write simply . Note that O* depends on £, but not on N.

Estimates of the parameter-uniform global pointwise error are obtained from

global Ee,global-

and estimates of the parameter-uniform order of convergence are computed for each

N from
rpN
nN _ [ ~ global \
Pglobal — 02\ j?2N [
V global'

The values of E”global, EMNobdl and p”Mdd for the discrete Schwarz method applied to
problem (2.4) are given in Table 2.1. In this and all subsequent tables, the dots in-
dicate that the intermediate computed values are essentially the same as the given

values. It is clear from Table 2.1 that this method is parameter-uniform for prob-
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Number of Intervals N in each subdomain

e 8 16 32 64 128 256 512 1024
2-0 1.90e-03 4.77e-04 1.19e-04 2.99e-05 7.47e-06 1.86e-06 4.59e-07 1.08e-07
2"2 6.07e-03 1.55e-03 3.91e-04 9.83e-05 2.46e-05 6.16e-06 1.54e-06 3.81e-07
2-4 1.42e-02 3.79e-03 9.71e-04 2.47e-04 6.21e-05 1.56e-05 3.90e-06 9.68e-07
2-6 2.34e-02 6.82e-03 1.82e-03 4.72e-04 1.20e-04 3.01e-05 7.47e-06 1,90e-06
2-8 2.61e-02 7.88e-03 2.28e-03 6.13e-04 1.58e-04 4.03e-05 1.01e-05 2.37e-06
2-i0 8.46e-02 2.60e-02 7.16e-03 1.87e-03 4.78e-04 1.21e-04 3.04e-05 7.61e-06
2_|2 8.99e-02 4.62e-02 2.00e-02 7.16e-03 1.87e-03 4.78e-04 1.21e-04 3.04e-05
2-14 8.99e-02 4.62e-02 2.00e-02 7.70e-03 2.71e-03 9.02e-04 2.79e-04 8.80e-05
2-i6 8.99e-02 4.60e-02 1.98e-02 7.71e-03 2.69e-03 8.59e-04 2.62e-04 8.68e-05
2-is 8.99e-02 4.57e-02 1.95e-02 7.70e-03 2.22e-03 8.55e-04 2.62e-04 7.29e-05
é_@ 8.99e-02 4.33e-02 1.95e-02 2.70e-03 2.24e-03 5.08e-04 1.74e-04 6.48e-05
22 8.99e-02 3.75e-02 9.78e-03 2.72e-03 1.73e-03 4.96e-04 1.71e-04 6.48e-05
224 2.49e-02 2.81e-02 9.78e-03 2.73e-03 1.38e-03 4.58e-04 1.45e-04 1.87e-05
2-26 1.87e-02 9.21e-03 5.20e-03 1.76e-03 4.92e-04 1.23e-04 3.27e-05 1.39e-05
2-28 1.87e-02 4.33e-03 1.01e-03 3.51e-04 1.19e-04 3.23e-05 8.73e-06 3.55e-06
230 1.88e-02 4.34e-03 1.02e-03 2.46e-04 6.00e-05 1.46e-05 3.50e-06 7.78e-07
2R 1.88e-02 4.35e-03 1.03e-03 2.48e-04 6.07e-05 1.49e-05 3.60e-06 8.10e-07
@-@ 1.88e-02 4.35e-03 1.02e-03 2.47e-04 6.03e-05 1.47e-05 3.53e-06 8.19e-07
2-36 1.88e-02 4.34e-03 1.02e-03 2.47e-04 6.00e-05 1.45e-05 3.44e-06 7.67e-07
2-3 1.88e-02 4.34e-03 1.02e-03 2.46e-04 5.98e-05 1.44e-05 3.39e-06 7.41e-07
-4 1.88e-02 4.34e-03 1.02e-03 2.46e-04 5.98e-05 1.44e-05 3.37e-06 7.28e-07

2-38 1.88e-02 4.34e-03 1.02e-03 2.46e-04 5.97e-05 1.44e-05 3.34e-06 7.16e-07

E gll\obal 8.99e-02 4.62e-02 2.00e-02 7.71e-03 2.71e-03 9.02e-04 2.79e-04 8.80e-05

AN . 95901  1.21e+00  1.38e+00  1.51e+00  1.59e+00  1.69e+00  1.66e+00  1.67e+00

Table 2.1: Computed global maximum pointwise errors E fglobal, Egidei and
parameter-uniform orders of convergence Pgida for Method 2.1 applied to problem

(2.4) for various values of e and N.
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lem (2.4). The computed double mesh order of convergence corresponding to an

asymptotic convergence rate is (N~IInN)2is

N , [ (N-"InN)2 \ / , o ,IN2JVW\
GH (2A0-2(In(2iV))2d ~ V. °8"Inyv'/

which correspond closely to the computed orders of convergence given in the last row

of Table 2.1.

Our second problem is the variable coefficient problem

—fue(x) + (L+ x2)uf(x) =Xs, xXE£, (2.5a)

ue(0) = ue(l) = 1L (2.5b)
In this case,the exact solution is not used to estimate the numerical errors. Instead,
the nodalerrorsand orders of convergence are estimated using thedouble mesh
principle modified in accordance with the parameter-robust definition (see Farrell
and Hegarty [5] for the nodal double mesh principle). The double mesh differences
are defined by
Ds = max 1*(a*) - U2N(xi)\,

and the parameter-uniform differences are defined by

Dn = mngf.

From these the parameter-uniform order of convergence is computed from

PN = 1°&2(8§2n )-
The numerical errors are then estimated by using the Schwarz solution on the finest
available mesh, corresponding to N = 4096, as an approximation to the exact solution
in the expression for the error. The corresponding computed maximum pointwise

error is taken to be



Number of Intervals N in each subdomain

E 8 16 32 64 128 256 512 1024
2-0 9.01e-04 2.25e-04 5.62e-05 1.41e-05 3.51e-06 8.75e-07 2.16e-07 5.14e-08
2-2 2.58e-03 6.52e-04 1.62e-04 4.06e-05 1.01e-05 2.53e-06 6.24e-07 1.48e-07
2-4 4.83e-03 1.25e-03 3.07e-04 7.73e-05 1.92e-05 4.80e-06 1.19e-06 2.82e-07
2-6 5.18e-03 1.47e-03 3.60e-04 9.10e-05 2.26e-05 5.66e-06 1.40e-06 3.33e-07
2-8 4.42e-03 1.51e-03 3.85e-04 9.71e-05 2.43e-05 6.07e-06 1.50e-06 3.57e-07
2-i0 1.41e-02 3.74e-03 9.71e-04 2.45e-04 6.14e-05 1.53e-05 3.78e-06 9.01e-07
2-iz 1.51e-02 6.87e-03 2.80e-03 9.58e-04 2.41e-04 6.04e-05 1.49e-05 3.56e-06
2~14 1.51e-02 6.82e-03 2.80e-03 1.03e-03 3.51e-04 1.14e-04 3.54e-05 1.00e-05
2—16 1.51e-02 6.80e-03 2.80e-03 1.03e-03 3.49e-04 1.14e-04 3.55e-05 1.03e-05
2-i8 1.51e-02 6.79e-03 2.80e-03 1.03e-03 3.49e-04 1.14e-04 3.54e-05 1.02e-05

2-20 151e-02  6.79e-03  2.80e-03 1.03e-03 3.49e-04 1.14e-04  3.54e-05 1.02e-05

2-58 1.51e-02 6.78e-03 2.80e-03 1.03e-03 3.49e-04 1.14e-04 3.54e-05 1.02e-05

1.51e-02 6.87e-03 2.80e-03 1.03e-03 3.51e-04 1.14e-04 3.55e-05 1.03e-05

?N
nodal

PN 7.81e-01 1.06e+00 1.29e+00 1.43e+00 1.35e+00 1.55e+00 1.64e+00 1.64e+00
Table 2.2: Computed nodal maximum pointwise errors , EN and parameter-
uniform order of convergence pN for Method 2.1 applied to problem (2.5) for various

values of e and N.

and, for each N we define the computed parameter-uniform pointwise error by
E nodai mng Jodai ¢

Values of E*nodal, Enodai and PN f°r the discrete Schwarz method applied to problem
(2.5) are given in Table 2.2. They show experimentally that the method is parameter-
uniform for problem (2.5). Iteration counts for various values of e and N for the
discrete Schwarz method applied to problem (2.5) are given in Table 2.3. We see that
these iteration counts are essentially independent of N and decrease with decreasing

values of e.
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Number of Intervals N in each subdomain

£ 8 16 32 64 128 256 512 1024

20 25 25 25 25 25 25 25 25
2~2 21 21 22 21 21 21 2 21
24 45 15 15 15 15 15 15 15
26 10 10 10 10 10 10 10 10
28 5 6 6 G 6 6 6 6
2-io 1 4 4 4 4 4 4 4
2-1» 3 3 3 3 3 3 3 3
2-h 4 3 3 3 3 3 2 2
2-58 4 3 3 3 3 3 2 2

Table 2.3: Iteration count for Method 2.1 applied to problem (2.5) for various values

of e and N.

2.6 Conclusions

In this chapter, a one-dimensional singularly perturbed reaction diffusion problem
was examined. It was shown that a suitably designed discrete Schwarz method,
Method 2.1, gives approximations which converge (e, iV)-unifbrmly to the exact solu-
tion. This parameter-uniform convergence was shown to be essentially second order.
Numerical results were presented, which show that, for a small value of the parameter
e, only a few iterations are required and that the number of iterations is independent

of the number of mesh points used.
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Chapter 3

Overlapping Schwarz methods with
uniform meshes applied to

convection-diffusion problems

3.1 Introduction

In this chapter, we investigate a Schwarz approach to the convection-diffusion class of
problems, which is analogous to the parameter-robust method for reaction-diffusion
problems discussed in chapter 2. This Schwarz method partitions the solution domain
into two overlapping subdomains, in each of which a uniform mesh is placed, and uses
simple Dirichlet conditions at the interfaces. A prelimenary version of the material

in this chapter has appeared in [14].

On 0 = (0,1), we consider the following class of singularly perturbed convection-
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diffusion problems

Leue(x) = —eu'e(x) + a(x)u'E(x) = f(x), xe d (3.1a)

us(0) = A, ue{l) =B (3.1b)

where the functions a, f 6 C2(S7) and the singular perturbation parameter e satisfies

O0<e< 1 Itisalso assumed that a satisfies the condition
a(x) >a >0 forall x € Q. (3.1¢)

For Problem 3.1, the Shishkin piecewise uniform fitted mesh method, introduced in

[27], uses the transition point
r = min{l/3, a—lniV}, (3.2)

between fine and course mesh regions. We aim to incorporate the theory of this
method into a Schwarz domain decomposition approach and we recall that, this ap-

proach was successful in the reaction-diffusion case described in Chapter 2.

In this chapter, two iterative methods are examined. The first uses subdomain in-
terfaces positions which are independent of e. We establish, by means of numerical
experiments that, using arbitrary fixed interface positions, this method does not pro-
duce e-uniform convergent approximations for Problem 3.1. The secondmethod uses
an e-dependent overlap. However, we also demonstrate numericallythat this discrete
Schwarz method, which uses uniform meshes on overlapping subdomains, positioned

using the parameter r, also fails to produce e-uniform error approximations.

We now briefly introduce the important aspects of this second method, which are
discussed in detail in the course of this Chapter. In this method the solution domain,

A is divided into two overlapping subdomains O0= (0, £+) and Oi = (£~, 1). On each
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of these subdomains a uniform mesh is introduced, which we denote by Of and Of.

The interior points £“, are chosen to be

r=1-r, £E+=1- 2r,

where r is the Shishkin transition point given in (3.2). Therefore, the mesh size in
the fine mesh subdomain Of is refined sufficiently to accurately determine the large
gradients present in the boundary layers. Dirichlet boundary conditions are applied

at the interior interface points £+ and

The success of the Schwarz iterative technique depends on how the initial error,
introduced at the interior boundary points, is propagated during the iteration process.
For this method the reduction in the initial error is shown to take place when the
problem is solved on OO0 (using maximum principle and appropriate barrier functions ).
In the continuous Schwarz method the reduction is exponential over OO0 and therefore
can be shown to be independent of the size of the overlap. Hence, the approximate

solutions converge to the true solution independently of e.

However, problems arise in the discretization of this Schwarz method. For small
values of e, the width of the interval (£-,l) reduces and there may be no interior
mesh points in Of that are also present in the overlap region Of fl Of . Therefore,
this discrete method is unable to accurately determine the exponential error reduction
achieved by the continuous method. In fact, in the discrete method, the error function
behaves linearly, since the linear interpolant of the pointwise solution is used as a
global approximation. The reduction in the error at each iteration is a function of the
width of the overlap. Therefore, the number of iterations required by the method is
inversely proportional to the size of the overlap, which is order e. We also show that,
an increase in the error occurs when solution values are passed between subdomains.

This unwanted increase corrupts the discrete approximation. This is very bad news
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for this discrete method, since in order to capture the steep gradients the overlapping
region must reduce but this contradicts the conditions necessary for convergence.
This method therefore fails for small values of the parameter e andlarge values of
N . Also, the iteration numbers increase with the number of mesh points N andwith
decreasing values of e. Consequently, this is not an appropriate method for this class

of singularly perturbed convection-diffusion problems.

We now give an outline of the material in this chapter. In Section 3.2, we specify the
decomposition ofthe solution of Problem 3.1 into its smooth and singular components.
Bounds on the derivatives of the solution are given. We then describe, in Section
3.3, the continuous Schwarz method, stating the appropriate convergence results. In
Section 3.4, we present numerical results for a classical discrete Schwarz approach,
with overlap dependent on e, to Problem 3.1. Then in Section 3.5, we describe
the discrete Schwarz method and detail the problems which arise in a theoretical
analysis of this method. Finally, in Section 3.5.1 we present numerical results which

demonstrate the failure of this approach.

3.2 The continuous problem

The convection diffusion problem is non-self adjoint and only one initial condition

may be imposed on the reduced solution of Problem 3.1,

Find vg G C,1(0) such that i>0(0) = u0
and, for all x G 0, a(x)v'0{x) = f(x)

Thus, in general, uf exhibits boundary layer behaviour at x = 1, the width of the
boundary layers being 0(e) (see, for example, [3] or [18]). It is well know that LE

satisfies the following comparison principle.
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Comparison Priniple Let a,b E f2 and assume that ip(a) > 0 and ip(b) > 0. Then

Leip{x) >0 for all x € (a, b) implies that ip{x) >0 for all x 6 [a, b] C f2.

The uniqueness and stability of the solution ofProblem 3.1 are immediate conse-
quences of the comparison principle. We state without proof the classical e-explicit
estimates on the derivatives of the solution of Problem 3.1. A proof of this lemma is

given in [18].

Lemma 3.2.1 Let uf be the solution of Problem 3.1. Then, forO0< k< 3

[N (X)| < £7(1 + £-V a(l-*)/E) for allxefi

where C is a constant independent of e.

Throughout this chapter, we make extensive use of the following decomposition of
the solution u€. We write ue = ve+ wf where the smooth component v£ and singular

component we are defined to be the solutions of the problems

Leve = /, wve(0) = u0- wEO), ue(l) = tii- tne(l)

LEweg = 0, Ww£Q0) = wi(l)e~ale

where tu£(l) is chosen so that the first and second derivatives of ve are bounded
uniformly in e. This decomposition enables us to establish non-classical e-explicit
bounds on the derivatives of the solution of Problem 3.1. These are contained in the

following lemma with is derived in [18].

Lemma 3.2.2 [18] The solution uf£ of Problem 3.1 can be written in the form

UE = VE+ Wg,
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where, for all k, 0 < k <3, and all x Q,
< C{l + e”k-2e-a"-x)/f)
and, for all x € Q,
[«i?>(s)-| < Ce~ke-QfI~X)/E

for some constant C independent ofs.

3.3 Continuous Schwarz method

We now describe the continuous iterative Schwarz method for Problem 3.1. This
process generates a sequence of iterates which converge as k — 00 to the exact
solution ue. First we introduce the two subdomains of 0 —(0,1), as shown in Fig.

3.1,
n0= (oe4), fii= (r,i)
where
0<T1 < <M<,

The iterative process is defined as follows.

n0 e -

o
~
~

Figure 3.1: The subdomains ii0 and Hi for the continuous overlapping Schwarz

method
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40l(z) = 0, 0< x <1, 4°)0) = we(0), n[0](2) = We(t).
For k > 1 the iterates are defined by

v\x), xei20\"i
@) =

URXx), x €

where

LeufdJ=/ in Q0, ufl™+)= «lfc IK+), «ofd(0) = ti»(0)

Leulk] = f in 0o, UM(C)~ 4*LE~)> «fl(l) = ue(l)m

The following lemma establishes the parameter-robust convergence of these Schwarz
iterates to the exact solution. The proof of this is given in [18]. A similar result for

a continuous Schwarz approach is discussed in [7].

Lemma 3.3.1 [18] Let ue be the solution of Problem 3.1 and let be the

sequence of Schwarz iterates. Then, for all k > 1,

[l!*1- tie|ln < Cqf,
where C is independent of k and e and

gl = e~a*+r)le < L
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3.4 Classical discrete Schwarz approach with over-
lapping subdomains with interface positions

independent of e and N

In this section, we present a discrete classical Schwarz approach applied to a convection
diffusion equation. The numerical experiments are implemented on a pure layer prob-
lem (3.4), whose solution only contains the singular component we. We choose this
problem because any observations made on the convergence behaviour are due only
to the singularly perturbed nature of the problem and not because of a complicated
VE component. We will see later in Chapter 4, that it is necessary to take contrary
precautions when examining methods that work well for a problem whose solution

contains only we terms.

We now describe a Schwarz method which uses simple Dirichlet boundary conditions

at some arbitary fixed interface points, denoted by a and b

Method 3.1 Let the solution domain Q be partitioned into the two overlapping sub-

domains
OCo = (0,a) and = (6,1), where 0<b<acx<]

and Ug = {x{}q be a uniform mesh on wrth Xi = ia/N and be a
uniform mesh on with x* = b+ i(1—b)/N. The exact solution uf is approximated

by the limit Ue of a sequence of discrete Schwarz iterates which are defined



where u\k* is the linear interpolant of UK. Then for k =1

L?2Uu™

/ inOO, t/fX0)=ti0, [/c1(0) = 0,

LfC/'1L

I InOf, Cye) = Jeli®), ujli(l) = m,

and for k > 1

/ inO7, i4i](0)= M) 14A(a) = ¢~ (a),
/ inOf, wjfde)=07(6), UP(I)=uv

Analogous definitions can be made for the iterate components and w\k\ where
Uf\ = + jyM.

The differential operator Le is replaced with the standard upwind difference operator

defined for any mesh function Zt by

L*Zi = -eb62Zi + a(xi)D~Zi, (3.32)
where
= /D-Zi+1-D~ZA D-Zi=( m (3.3b)
AN (s<+i - af )2 d \X'i-Xi-iJ

For the purpose of the results tabulated in this section we choose the constants a and

b to be

b=

a= 2, 1
3 3

The example problem is the constant coefficient problem

—afle(x) + ve(x) = 0, a€0 (3.4a)
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ue(@) = 0, wue(l) =1 (3.4b)

whose exact solution in closed form is easy to find. We define the uniform mesh

associated with the overlapping subdomains by
A =nfu(~\on - (3.5)
The stopping criterion for the Schwarz iterations is taken to be
max \Uf\xi) - \ < 1(TO. (3.6)

The values presented in Table 3.1 are the maximum nodal pointwise errors, E™nhodal

defined by
where is the final Schwarz iterate. We normally omit the superscript k on the
final iterate and write simply . For a specific value of the mesh parameter N, the

value in bold font in the appropriate column in Table 3.1 depicts the maximum nodal
error, for all values of e. The method is not e-uniform. This type of behaviour for a
classical non-iterative method on a uniform mesh method is discussed in detail in [6].
We can show that the numerical solution of Method 3.1 for Problem 3.1 converges to
the solution of the numerical approximations generated by a non-iterative numerical

method consisting of an upwinded finite difference operator on a uniform mesh.

Let UE be the numerical approximation for the solution of Problem 3.1, using the
standard upwind difference operator , defined by (3.3), on a uniform mesh. For

k = 1, on the subdomain dq,
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Number of Intervals N in each subdomain

e 8 16 32 64 128 256 512 1024
270 4.78e-03 2.45¢-03 1.24e-03 6.25e-04 3.14e-04 1.57e-04 7.86e-05 3.93e-05
27! 1.66e-02 8.71e-03 4.46e-03 2.26e-03 1.14e-03 5.71e-04 2.86e-04 1.43e-04
272 4.69e-02 2.52e-02 1.31e-02 6.69e-03 3.38e-03 1.70e-03 8.51e-04 4.26e-04
23 9.53e-02 5.36e-02 2.85e-02 1.47e-02 7.50e-03 3.78e-03 1.90e-03 9.52e-04
274 1.65e-01 9.64e-02 5.40e-02 2.87e-02 1.48e-02 7.53e-03 3.80e-03 1.91e-03
275 2.03e-01 1.65e-01 9.64e-02 5.40e-02 2.87e-02 1.48e-02 7.53e-03 3.80e-03
28 1.53e-01  2.03e-01 1.65e-01 9.64e-02 5.40e-02 2.87e-02 1.48e-02 7.53e-03
277 8.57e-02 1.53e-01  2.03e-01 1.65e-01 9.64e-02 5.40e-02 2.87e-02 1.48e-02
278 4.48e-02 8.57e-02 1.53e-01  2.03e-01 1.65e-01 9.64e-02 5.40e-02 2.87e-02
279 2.29e-02 4.48e-02 8.57e-02 1.53e-01  2.03e-01 1.65e-01 9.64e-02 5.40e-02
2« 10 1.16e-02 2.29e-02 4.48e-02 8.57e-02 1.53e-01  2.03e-01 1.65e-01 9.64e-02
2«1 5.83e-03 1.16e-02 2.29e-02 4.48e-02 8.57e-02 1.53e-01  2.03e-01 1.65e-01
2~ 12 2.92e-03 5.83e-03 1.16e-02 2.29e-02 4.48e-02 8.57e-02 1.53e-01  2.03e-01
2«13 1.46e-03 2.92e-03 5.83e-03 1.16e-02 2.29e-02 4.48e-02 8.57e-02 1.53e-01
2w 14 7.32e-04 1.46e-03 2.92¢-03 5.83e-03 1.16e-02 2.29e-02 4.48¢-02 8.57e-02
2415 3.66e-04 7.32e-04 1.46e-03 2.92e-03 5.83e-03 1.16e-02 2.29e-02 4.48e-02
2« 16 1.83e-04 3.66e-04 7.32e-04 1.46e-03 2.92e-03 5.83e-03 1.16e-02 2.29e-02
2417 9.15e-05 1.83e-04 3.66e-04 7.32e-04 1.46e-03 2.92e-03 5.83e-03 1.16e-02
2-18 4.58e-05 9.15e-05 1.83e-04 3.66e-04 7.32e-04 1.46e-03 2.92e-03 5.83e-03
219 2.29e-05 4.58e-05 9.15e-05 1.83e-04 3.66e-04 7.32e-04 1.46e-03 2.92e-03

2420 1.14e-05 2.29e-05 4.58e-05 9.15e-05 1.83e-04 3.66e-04 7.32e-04 1.46e-03

Table 3.1: Maximum pointwise nodal errors E”nodal on for various values of e and

N for Method 3.1 applied to problem (3.4)

39



and by the discrete maximum principle for LF on Qq,

Kt#1l- i/) i) < in fif.

Now, on the subdomain Qf,

Kt/fl- cy(6)] (/™ - £)(&)!

N

0ia)l
[(c/I1]-t/,) ()]

0.

By the maximum principle it follows that

I(C/P1- Ue{xi)\ < \UHa)\- in HT,

and so,

in fi".

By induction it then follows that,

Ey(*0| <|T/«(a)|[(® in fi".

Number of Intervals ¢(Vin each subdomain

e 8 16 32 64 128 256 512 1024

20 16 16 16 16 16 16 16 16
2-1 15 15 15 15 15 15 15 15
2-2 13 13 12 12 12 12 12 12
2.3 10 9 8 8 8 8 8 8
24 7 § 5 5 5 4 4 4
25 4 4 3 3 3 3 2 2
26 3 2 2 2 2 2 2 2
2.7 3 2 2 2 2 2 2 2
e S T 2 2 2 2
2-2° 2 2 2 2 2 2 2 2

Table 3.2: Iteration counts for Method 3.1 applied to problem (3.4)
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Therefore, the discrete Schwarz method converges to the solution of upwinding on a
uniform mesh, if the subdomain interfaces positions are independent of e. The rate
of convergence is controlled by q = b/a. We also note that if the overlap is dependent

on e, for example b= 1—2r and a= 1—r, wherer = *InN then
= lim-[—— = 1,

lim -
e>0a e>0 1—r

and the method ceases to converge, which will have important consequences in the

next section.

3.5 Discrete Schwarz method with £ dependent

overlap

It would be hoped that the continuous Schwarz method is the limiting case for the cor-
responding discrete Schwarz method and that the convergence results for the discrete

Schwarz method could be motivated by the continuous approach.

To avoid the convergence behaviour highlighted in Table 3.1 and to obtain e-uniform
approximations, we combine the Shishkin fitted mesh and the Schwarz iterative

method.

We define the overlapping subdomains

no = (0,e+), il = (r,i),
where the constants £+ and satisfy

E+=1-r, r =1-2r, (3.8)
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and T is the Shishkin transition point defined by,
r = min{l/3, a—ln N}. (3.9)

The discrete Schwarz iteratives are defined as follows.

Method 3.2 For each k > 1,

) UIKKX) xe£10\CII
UIKI(x) =
0\KIX)  x eCli

where is the linear interpolant of Uf~. Then for k = 1

LfC/'1

/ inQg, UQJO) =u0, U~e)= 0

I inn?, t4l(r) = of](r), ~ 1) = wi,

aridfor k > 1

L ftfl

[ ini#, i/'d0) = «0 ui*](i+) =~ _1l(e+),

LfE/j*] = / inOf, [/fir) =1 AD, tiA(l)=“i-

The difference operator Lf is given by (3.3). We note here that for the continuous
Schwarz method, from Lemma 3.3.1, the choice of and stated above in (3.8)
and (3.9) yields the convergence estimate, for all k > 1,

”4*] “ «ells < C(|k> g= max{e"5?,AT-1}

Thus, it is clear that the solution of the continuous Schwarz method converges inde-

pendently of the width of the overlapping region.

In any theoretical analysis, based on comparison principle arguments, in both the

continuous and the discrete methods, we observe that it is not possible to introduce
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a decreasing function as an upper bound on the approximation error in either sub-
domain. Therefore, it is only possible to show that any error reduction must take
place when the method is applied in the subdomain QO- This immediately indicates
difficulties in the discrete method since the size of the error depends on the width of
the overlap and here, the overlap region decreases with respect to fio, as e becomes
smaller. Hence, we expect the iteration numbers to rise for small values of e. The
effect of this becomes more pronounced for very small values of e since, as the width
of the subdomain reduces, there may be no grid nodes common to f# and the
overlap region. As a consequence, the interface condition u[k\*~) = UIK"~) means
that in this case the error reduction at x = is given by a linear interpolant. There-
fore the error reduction which has been shown to be exponential in the continuous
case is now only being interpreted as a linear reduction. This would imply the method

requires a very large number of iterations.

However, as we will see in the numerical results, not only does the discrete method
require an unacceptable large number of iterations for small values of e, but also the
approximations do not converge to the correct solution. To understand why this is we
must examine the V}® and W,components of the Schwarz iterates separately. The
VI® component, although requiring large iterations, can be shown to be first order
e-uniform convergent using arguments similar to those in Lemma 2.4.1. It is with the

singular component w\k*that problems arise. This is now discussed.

In Qq, for k > 1, we may use the triangle inequality
[(WTL1- wE)(xi)\ < \WAK](xi) \ + \wE(xi) |

and together with maximum principle arguments, similar to those in Lemma 2.4.2,

obtain bounds for |Wq (x{)| and |we(£i) | separately. For simplicity we use the notation
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However, in the solution component we is not small, recall |i>E| < Ce

and so we must examine |WiHA —we\\. It is clear that,

(W f-»,) (1)1

0,

Itwfl-»«Hr) |

Kwf- »«)(C)I <e,,
Now, following arguments similar to those given in [18],
ILf(W fl- we)(*)| < Ce~2N~1t.
We choose a barrier function fa,
& — (Xi —(1 —2t))C£~2tN ~1+ Eo0'i’i.
It can be seen that,

gt (wifl-0 (0 >0 0 A(r)>,
Ht (wfl- we){i) >o0, if *4I) > o,

L?2{EG£{wlIK-vje))(xi) >0 if Lf~» > 0.
Therefore, using the discrete maximum principle > 1, and we obtain,

KWf-WeXzi)! < (xi-(1-2T))Ce~2TN-1+ Eo

< 2CN~I(InN)2+ Eo-
Consequently, for the (k + I)th iteration in f# ;

[(wl*+,|-to«)(5+)|

[(Wf> -»«)({+) ]

(L- r- (L- 2t))Ce-2tN -x

N

CN~I(\nN)2+ Eq.

In other words, an increase in the error contained in the approximating solution, with

an upper bound of CN~I(InN)2, occurs once the method is applied in iV
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Figure 3.2: Comparison of the exact solution of problem (3.4) and the numerical

solution given by Method 3.2 with N —16 and e = 210

Figure 3.3: Comparison of the exact solution of problem (3.4) and the numerical
solution at various iterations, k —1,2,3, and 140, given by Method 3.2 with N = 16

and e = 2“ 10(within the layer region)
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The above argument does not guarantee an increase, it simply suggests the possibility
of such an increase. However, it can be seen in Fig. 3.2, that the numerical solution
generated by Method 3.2 bears no relation to the exact solution near the boundary
point x = 1. The accumulation of the error during the iterative process can be seen in
Fig. 3.3, where the solutions of the initial four and final iterations in each subdomain
are compared to the exact solution. It is clear from Fig. 3.3, that when Method 3.2 is
implemented in the layer domain, = (0.994585,1) an increase in the error occurs
and since the first interior mesh point in Qg = (0, 0.997292) does not lie within the
overlap region, Fig. 3.4, the linear interpolant fails to sufficiently reduce this error

when the method is solved in f# .

Also, in the next section numerical results are presented which strongly indicate that
this increase does occur when interface values are passed to Ox and this is then passed

back to the solution in OO0 during the iterative process. Thus results in a build up

08
06
04

0.2

8

Figure 3.4. Comparison of the exact solution of problem (3.4) and the numerical so-
lution at various iterations given by Method 3.2 with N = 16 and e = 2-10 (including

last interior mesh point in flff)
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of error when the overlap region is small and is the cause for this discrete method

converging to the wrong solution.

3.5.1 Numerical results

In this section, numerical results are given which demonstrate the convergence be-
haviour of the discrete method, discussed in the previous section. These computations
are carried out on the model problem (3.4). The stopping criterion for the Schwarz
iterations is given by (3.6). We define the piecewise uniform mesh associated with

the overlapping subdomains by
U? = 0?2 U(Of \Of). (3.10)

For each e and N, the maximum nodal error, E fnodal, is computed using (3.7) and
presented in Table 3.3. From this table it is immediately obvious that although the
errors reduce for fixed e, they are unacceptably large for small e and in fact tend to
100% error. The iteration counts for this method, given in Table 3.4, also increase
in proportion to N and e_1, illustrating the poor efficiency of this method. These
numerical results indicate that the method proposed in Miller et al. [18] does not

produce satisfactory approximations for the convection-diffusion Problem 3.1.

Note that the nodal errors in Table 3.3 are being measured at different mesh points
to those in Table 3.1. In fact the global error for Method 3.1 is slightly worse than
for Method 3.2.
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Number of Intervals N in each subdomain

e 8 16 32 64 128 256 512 1024
2-0 4.78e-03 2.45e-03 1.24e-03 6.25e-04 3.14e-04 1.57e-04 7.86e-05 3.93e-05
22 4.69e-02 2.52e-02 1.31e-02 6.69e-03 3.38e-03 1.70e-03 8.51e-04 4.26e-04
24 9.97e-02 5.89e-02 3.69e-02 2.27e-02 1.35e-02 7.53e-03 3.80e-03 1.91e-03
2°6 3.23e-01 8.96e-02 4.03e-02 2.32e-02 1.36e-02 7.83e-03 4.44e-03 2.48e-03
2-8 6.84e-01 2.99e-01 7.86e-02 2.54e-02 1.40e-02 7.88e-03 4.44e-03 2.48e-03
2«10 8.90e-01 6.51e-01 2.61e-01 6.51e-02 1.86e-02 8.26e-03 4.48e-03 2.48e-03
2412 9.59%e-01 8.82e-01 6.00e-01 2.23e-01 5.38e-02 1.40e-02 5.03e-03 2.53e-03
214 9.78e-01 9.65e-01 8.58e-01 5.44e-01 1.91e-01 4.56e-02 1.10e-02 3.47e-03
2«16 9.83e-01 9.88e-01 9.60e-01 8.28e-01 4.91e-01 1.65e-01 3.98e-02 9.18e-03
2-18 9.84e-01 9.94e-01 9.89%e-01 9.51e-01 7.95e-01 4.46e-01 1.46e-01 3.56e-02
2~ 20 9.84e-01 9,96e-01 9.96e-01 9.87e-01 9.40e-01 7.63e-01 4.08e-01 1.31e-01
2422 9.84e-01 9.96e-01 9.98e-01 9.97e-01 9.84e-01 9.28e-01 7.34e-01 3.76e-01
2424 9.84e-01  9.96e-01  9.99e-01 9.99e-01 9.96e-01  9.81e-01  9.17e-01  7.07e-01
2426 9.84e-01 9.96e-01 9.99e-01 1.00e+00 9.99%e-01 9.95e-01 9.78e-01 9.06e-01

228 984e-01  9.96e-01  9.99e-01  1.00e+00  1.00e+00  9.99e-01  9.94e-01  9.75e-01
Table 3.3: Maximum nodal pointwise errors E”nodal on for Method 3.2 applied to

problem (3.4)

Number of Intervals N in each subdomain

e 8 16 32 64 128 256 512 1024
2-0 6 16 16 16 16 16 16 16
2-2 13 13 12 12 12 12 12 12
24 15 10 7 6 5 4 4 4
2-6 44 21 1 7 6 5 4 4
2-8 82 70 34 12 8 6 4 4

2-w 103 140 116 57 22 9 6 4
2-12 110 186 254 197 97 40 14 7
2-14 112 203 358 466 339 165 70 28
2-16 112 207 399 705 856 585 283 123
2-is 112 208 411 808 1381 1561 1017 489

2-20 112 209 414 838 1629 2669 2828 1774
2-22 992 209 415 846 1706 3243 5085 5097
2-24 119 209 415 848 1727 3427 6351 9574
2-26 112 209 415 849 1732 3476 6773 12266

2-28 112 209 415 849 1733 3489 6887 13194

Table 3.4: Computed iteration counts for Method 3.2 applied to problem (3.4)
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3.6 Conclusions

In this chapter, a one-dimensional convection-diffusion problem was examined. It
was shown that the solution of a discrete overlapping Schwarz method with uniform
meshes converges to the solution of upwinding on a uniform mesh, if the interface
points are independent of e, and is therefore not an e-uniform method. A second
method, which uses uniform meshes on overlapping subdomains partitioned using
the Shishkin parameter, r = min{l/3,| InN) , has an e-dependent overlap and it is

shown numerically that this method also fails to produce e-uniform approximations.
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Chapter 4

Alternative Schwarz methods for

convection-diffusion problems

4.1 Introduction

In this chapter, we focus on alternative discrete Schwarz methods for convection-
diffusion problems. It is our intention to investigate the convergence properties of
these methods and to shed further light on the complexities in the Schwarz approach

to convection-diffusion problems.

Firstly, we review the main difficulties in a Schwarz approach to convection-diffusion
type problems. These will be the governing factors when designing an alternative

method.

1. It is not possible to use uniform overlapping subdomains and obtain e-uniform

convergent approximations.
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2. When applying maximum principle arguments, as we have seen in Chapter 3,
it is necessary to consider any error reduction taking place when the problem

is solved outside the layer region.

3. The transfer of solution values between subdomains is also difficult since, it is
observed, when using the Maximum Principle arguments, that an increase in
the approximation error arises when solution values are passed from the layer

region. This additional error can then accumulate during the iteration process.

4. It is desirable for the numerical solutions to be (e, iV)-uniformly convergent and

this appears difficult to achieve.

We now introduce five methods which, in the course of this chapter, are examined both
theoretically and numerically. They are developed to try and overcome the difficulties
stated above and attempt to comply with the criteria of an optimal Schwarz domain

decomposition method.

In section 4.2, we discuss an overlapping method in which a piecewise uniform mesh
is fitted on the subdomain containing the boundary layer. We derive error bounds for
the regular and singular components of the Schwarz iterates separately, and combine
these estimates to give the convergence behaviour of the method. Theoretical analy-
sis and numerical experiments show the approximations are e-uniformly convergent.
This method would therefore be considered to be a significant improvement on those
discussed in Chapter 3. However, it is prevented from being the perfect method for
the following two reasons. Firstly, since the width of the overlap is 0(iV-1), the num-
ber of required iterations increases with the number of mesh points N and, although
not significant when e is very small, this becomes a problem when both N and e are
large. Secondly, the method does not contain uniform meshes in both subdomains.

Ultimately, we would wish to be able to extend a method, designed using a one-
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dimensional model problem, to higher dimensions and although this method worked

well we feel the analysis would not extend easily to higher dimensions.

In section 4.3, we consider a non-overlapping Schwarz method (Method 4.2) which
uses uniform meshes in both subdomains. In the design of this method, we sought
to retain the convergence properties of the previous method while simplifying the
algorithm by using uniform meshes. We use very simple Dirichlet boundary conditions
at the interface of the two non-overlapping subdomains to pass information during
the iteration process. The analysis, using the decomposition of the Schwarz iterates
and maximum principle techniques, shows that the error estimate contains an 0(e)
term. The method, therefore, fails to generate accurate approximations when e is
large, specifically, when e is greater than iV-1. Also, like the previous method, the
iterations increase with N. Overall, we feel that when the perturbation parameter e
is small this is a satisfactory method, and is easily implemented. In Chapter 5, we

extend it to a two-dimensional convection-diffusion problem.

We address the problem of large iteration numbers in section 4.4 by investigating
a non-overlapping, non-iterative method which contains a Neumann condition at
the interface. This algorithm is motivated by Method 4.2, in which, the chosen
Dirichlet boundary conditions can be considered to mimic a Neumann condition on
the interface of the subdomain outside the layer. Here, no information is passed
and so the algorithm does not iterate. The convergence of this Method is analysed
and we find it exhibits equivalent behaviour to Method 4.2. This is illustrated by
numerical results, which verify this method produces identical approximations to
Method 4.2. This is not surprising since both methods use essentially the same
interface conditions. The main advantage of this method, for small values of e, is
that no iterations are required to obtain satisfactory approximations. Therefore, we

feel this method outperforms Method 4.2.

52



A major drawback to Methods 4.2 and 4.3, for some fixed value of e, is that when the
number of mesh points is increased to order e~| or greater the method will fail. In
many practical applications, where e « N ~I, this does not arise and it is well known
that where N is large, typically N » e-1, it becomes possible to use a classical ap-
proach. However, we feel it is important to develop a single method which produces
accurate approximations for all values of e. We believe that, for a non-overlapping dis-
crete Classical Schwarz method with uniform meshes, other “Dirichlet” type interface
conditions would adapt to large values of e and achieve convergent approximations
comparable to those attained by Method 4.1, but would not improve on the iteration
behaviour of Method 4.2. We discuss, in Section 4.5, a non-overlapping method with
a Neumann interface condition which, at each iteration, uses a difference approxima-
tion of the first derivative calculated from previous iteration values. This method is
described and numerical results show that the method converges for both large and
small values of e. No theory is presented here for this method. Much work has been
carried out on special types of interface conditions such as Robin, Neumann-Neumann
and Neumann-Dirichlet type conditions (see, for example, [21], [22],[13],[12], [35], [9]
and [24]). We hope, in the future, to investigate some of these non-classical types of

interface conditions more thoroughly.

The final method in this chapter, introduced in Section 4.6, produces (e, iV)-uniformly
convergent numerical approximations. The width of the overlap region is fixed as a
proportion of the subdomain positioned outside the boundary layer and a Shishkin
mesh is fitted on the subdomain containing the layer. At first, this Schwarz method
appears to have no advantages over the fitted Shishkin mesh, and this is the case in
one-dimension. However, a problem involving a complex domain structure in higher
dimensions, in which a fitted mesh may not be viable, may require this type of Schwarz

method. Numerical results are presented which verify the convergence behaviour of
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this method.

It is our suggestion, in this chapter, that a type of trade-off must be agreed upon in
designing a Schwarz method for convection-diffusion equations. We do not believe it
is possible for a Classical Schwarz method to have uniform meshes and (e, iV)-uniform
convergence. However, depending on what is desired of the method, it is possible to

attain some of these important attributes.

4.1.1 Preliminaries

The Shishkin decomposition and bounds on derivatives, as stated in Chapter 3, are
necessary for the analysis of the Schwarz methods investigated in this chapter. In
the following methods we use the Shishkin transition point, between fine and coarse

mesh regions, to be
r = min{l/3, a—InN}.

We consider only the case, r = e/aInN < 1/3, when examining the methods the-
oretically. When implementing these methods for values of e and N, such that
e/aInN > 1/3, we use an algorithm which is appropriate for non-singularly per-
turbed problems and, for each of the methods, this algorithm is described in the

relevant numerical section.

In Methods 4.1 to 4.4, we make use of the following notation. The constants £+, £

are given by

The numerical experiments presented in this chapter are performed using the following
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model problem,

—eu" +u' —x, w(0) - it(l) = 0. 4.1

The methods were also tested on

—eu" + (1 + x3)u' =x2, u(0) =u() = 0. (4.2)

producing equivalent behaviour.
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4.2 An overlapping Schwarz method using a spe-

cial mesh In one subdomain

4.2.1 Introduction

This Schwarz domain decomposition method consists of partitioning the solution
domain into two overlapping subdomains, one positioned outside the layer region and
discretised by a uniform mesh, and the other containing the layer region, is discretised
with a special piecewise uniform mesh. The piecewise uniform mesh is designed so
that the width of the overlapping region is 0 (N~1) and therefore, for any fixed N,
it does not reduce for decreasing values of e. That is, the overlapping region is held
sufficiently large with respect to e. The method is analyzed in Lemmas 4.2.1 to 4.2.5
by considering the components of the decomposed Schwarz iterates separately and the
main convergence result for this method is then given in Theorem 4.2.1. Numerical

results are given in section 4.2.3 which verify the theoretical estimates.

The continuous analogue of this method would be very similar to that outlined in
Chapter 3 and therefore we do not repeat it here. Also the same Shishkin decompo-
sition, outlined in Chapter 3, applies to this method and will be used throughout the

analysis in this section.

4.2.2 Discrete Schwarz method

We now formally describe the method.

Method 4.1 The exact solution ukis approximated by the limit UE of a sequence of
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discrete Schwarz iterates {"]*}£L0, which are defined as follows. For each k > 1,

UIKI(x), xeCl0\Q I

Uf\x) =
U\K](x), xe Q,
where is the linear interpolant of . Let Qg = {x,}* be a uniform mesh on
fl0 with X{ = i£+/N and = {xi}"+l be a piecewise uniform mesh on Oi with

Xq= £~Xi = £+ + i(1 —£+)/N, as shown in Fig. 4-1. Then for k = 1

L«C4'1 = /| in Qq, Ug\o)=«o, t4'IK+)=

Lfypl = / ini!'" U[KC) = <Ali(C), £/i(l) = «i,

and for k > 1

L?2UK f in-Of, f4fd(0) = «0, i14% +)=C/rV),

L?2u\g 7 ini#, t/fkr) = UIK{C), CARI(I) ="i.

Analogous definitions can be made for the iterate components and where
uf]=vfl+

The differential operator Ls is replaced with the standard upwind finite difference

operator L£ defined for any mesh function Zx by
L?Z{= -s52Zi + a(Xi)D~Zi

where

pZi=fn~Zi+i ~D~Zi\ » » = f% - Zt-x

y D2 Xj X{—i
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Remark 4.2.1 Any mesh function ipi on a uniform mesh = {xj = I£E+/N,i =

1, N —1}, which satisfies the difference equation

is given explicitly by

where

A= 14-21-rp> r=min{l/3, M"niV}

and the boundary values %jq and tpiy are known. Hence, the solution evaluated at the

mesh point = (1 —r)(N —1)/N is given by
ipN-i = ipog+ iBN(l -q)>  where
1-A1
q ~ 1—X~N'

In the following lemma, we derive an estimate for the error contained in the smooth

Schwarz component .

Lemma 4.2.1 Forallk > 1

IK-W -*jmiiscw-"+ ca-»

N
° — Y
| 1 1 1 1 1
| -1 1 1

Figure 4.1: The discretised overlapping subdomains and for Method 4.1
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where

Proof. Here we use maximum principle arguments with selected barrier functions to

obtain the appropriate error estimates. The proof will be by induction.

Firstly in Qo> using the estimates we| < C, it follows that,

104il-«.)(0)| = o, kvOv-«,):(E+)[<cC.

By applying classical arguments it can be shown that the local truncation error sat-

isfies

W™ -« 0(<) = (4-ifK W
= “£(s5 “ +
and it follows that,
\Le(vol- Ve)|(»t) < C(a;i+1- Zi_i)Or|ve|3+ Kh)- 4.3)

Now, using the estimates on [t®|3and |ue|2, gives

IE"(Volll- t><)(zf)l < CN-",

where Xi+i —X{-\ = 2£+/N < 2/N and < Ce2-k,0< k < 3.

Note the following choice of barrier function,

<h=c(i - (-Jj~jpr)) +CN~ixh
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where A= 1+ ~(1 - ).

It can be seen that the inequalities,

Pt ivi!" - +tj(o)) = o,
(to + (KOW- »)«+)) > O,
t(VON-»))(*() = (L?4,2L?2(ViT-»))(*)
> CN~I+CN~1
> 0,

are satisfied. Therefore, by applying the discrete maximum principle for LF on Qff,

we obtain the following estimate,

|(L/W - <cYl- (\I\-T )) +ON~Ixh (4.4)
for all Xi e Qqg. Now on iii, using the boundary conditions and (4.4) we obtain
Kvfl-» . )«-)! = I(vjll-«,)(r)l

<ol gl g tgjv-i(d
KIM™Mt>()l = a
Applying arguments similar to those used on Ugq, it follows that the local truncation

error in falso satisfies
\L1 (yP-ve) (xX1)\<CN-\
since (ai+i —Xi-1) < 2AT-1 in Cli. Here, we choose the barrier function, fa, to be
) ) 1—A1
H=C(1—q) + CN”Xi, where gq= _ .
It can be seen that,
(toifl'f-w.xn) ~ >
(#NH + (vi1- 0 (i) > o
Lf&e(yWw-~W > 0

60



Therefore, the discrete maximum principle can be applied to give the estimate

+ in Of.

Now, combining (4.4) and (4.5), then gives
Vem -D,)(i,)] <C(1- 9)+ CN-"xt

in Ow. Next, we assume the induction hypothesis

[(Vj» —ue)(a:i)| < C(1 —q)k+ (2N~IXi, in Of.

Considering the (k+ I)th Schwarz iterative in ii<>we see that

(VO +11- « t)(O)| 0,

I(VAHIil-» t)(i+)i i(n“l-«JK +)i,
< C{\-q)k+ CN~\t)-
We choose the barrier function, fa, to be
<= C(1- # il - J + CN-Ixit

and, as before, Lhe appropriate inequalities,

(A + (K G#+11-1.5)(0))

I
O

(¢FF £ (VJi+HIl - «)(E+)) > 0,

4" (<kEW f+1i-v,)(*i) > o

are satisfied. Now, applying maximum principle arguments on Odq, then yields

IW[t#l) - <OW | < C(1- «*f1- (\~ AA-T)j +CN-IXf

Now, in Of,

|(v ] - ®<«)(i)] o,

I(VI[ +11-« «)(r)i = i(v,[+11l-««)(r)i

< 0(1- )1- (~riF?)) +CN-\r)

= C(l-q)k+xl+ CN-1(£~).
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llere, we choose fa to be
fa= C{1- # 1+ CN-'xi,
and the inequalities

(*£(vi‘+ll-«.)(?)) > o
(¢A+lx (v F+1-1>)(1)) > 0O,

Lf(Ax(vf+ll-«,))(',) > o X €nf,
are satisfied. So, from the discrete maximum principle,

|(v T+t - te)(xt)] < C(1- qg)t+' + CN-"xt. 4.7)
Combining the estimates (4.6) and (4.7), then gives

[(yj*+i] _ "~ (z.)! < C{1l- gkl + CN~Ixi, Vs, e AN.
Finally, under the assumptions of this method, 1 —r > 0, and it is clear that
A=1l+ — (1-r) > 1

Therefore, the term 1—q can be bounded as follows,

i-A*1
9~ 1 _ X-N >

and hence,
1- g< Al

which concludes this lemma, o

The remaining lemmas of this section are concerned with obtaining error estimates
for the discrete singular component, WE Lemma 4.2.2 explicitly derives the solution
of the singular component of the Schwarz iterates, at the first mesh point in Qf,
Xi = £+,
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Lemma 4.2.2 For k > 1, the explicit solution to the finite difference scheme

-e52W{ }xi) + aD~W\Kxi) =0, in Of,

at Xi = £+ is given by

wfta) =pwfW o + (1- p)WTF'(*)

where

1+ + 287)(itii)

with ji=1 + InN/N and the boundary values wj” (xo) and Wj"(2;w+i) alre known.

Proof. On the interval [1 —r, 1] the mesh is uniform and, V 1< i<N + 1,

. <48)
with
H= 1H aEh, h = |:|— and hence, /j.’=’1H—|n/\—>I .
Now, at 2= 1, w f *(xi) satisfies the finite difference scheme
f - Vtf'(sp)
\ _u/wW

+o0(« M ~ M ) =0, 49
where

H=iil, H h+H
N 2

From (4.8) it can be seen that the term VFj\(.T2) satisfies

vl 2\
(4'10>
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Letting,
HN+L —(j?\ (pN —fj,
=
and combining (4.9) and (4.10), then gives

-CA oiyw(xwi)- (HfW i) - wf'fr.ljfl-

(So)r  + _Ilfunj, = 0. (4.11)

Now, it remains to simplify (4.11) into terms containing wf*Xjv+i) and VI4*(x0). It

follows that,

wfW +D)@-ji)- w[kxi) (1- n)+ A (i+27))
+wow (§(i +))=0.

Using the following notation,

h = H-1~T ft- k+H =1
' N 2

N 2N
then yields,

WIK(x,) =ptffWw i) + (1- p)Wf\x0), V=
1+ (F i1+ 2#i) (%=r)

which completes this lemma, o

In Lemma 4.2.3 we derive estimates for the coefficient p, defined in Lemma 4.2.2.

Lemma 4.2.3 For h >1, the coefficient p in the equation

wf](e+) = pW[k](I)+ (i-p)w?](r)

satisfies the inequalities
o<P< (i+jT 1-
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Proof. Noting fi= 1+ ~ and using (we use an argument as in Miller

et al. [18] Pg.31) implies that

p < (IH*F(1+*)(1&))

Also, t —Mn ATand (1 —r) < 1, and so

1
14-@&InN(l &4M U SU.
1
1+ c NI+ N (4.12)
xT 2a T 4
H | 1 V e>0.
0
Note that

. 2 .
SR = 1A (IRlige = O
In Lemma 4.2.4 we obtain an upperbound for the quantity p/q for all e, where q =

- A-)/(1 - \~N) is given by (4.3).

Lemma 4.2.4 For N > 4,

-1/ i\\ -1
P <
Q
where p is as given in Lemma 4.2-2 and
1—A1 . o .
q== + 7n

Proof. The estimate for the coefficient p is given by the inequality (4.12), and in

Lemma 4.2.1 we derived the factor g.



It is clear that an initial upperbound for p/q is given by
-1

Note, in this method r = Mn N satisfies the inequality r < 1/3. Consequently, we

obtain the inequality,
Q" T=YnIVIN T D ke,
Furthermore, it is now possible to show that the term p/q is 0(N~1) since
g < . i A + vy 1
q (I-]Inw)V 4

This is true for 1+ iV/4 < N/2,. This concludes this lemma, o

In the next lemma we incorporate Lemmas 4.2.1 and 4.2.4, to give a e-uniform es-
timate for the error between the discrete Schwarz singular component, IV and its

continuous counterpart, weE.

Lemma 4.2.5 For all k > 1,

WW?1- o*)(xi)|[lfiN < CN~I(InN)2+ CN~X(l - ~ Injv) ~*.

Proof. Firstly, we consider the Schwarz component, W, on the interval [0,E+].

Recall, for 0 < x < £+, that we can write
\Mx)\ < Ce-aa~x)le < Ceg“a(l~i+>* = Ce~al® = CN~\ (4.13)
Note that,

WF(0)=w«(0), W' f(f+)= Wi*'1(f+), ¢."wf=0in njf.
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The maximum principle for Lf on QN, and (4.13), then give
WAK](e)\ < max{CN~\ |w f~1](C+)[}- (4.14)

Now, we obtain an explicit expressions for W[ ("+), using Lemmas 4.2.2, 4.2.3 and
4.2.4, and derive an error estimate for ||We —w3$\ in the interval [0, £+].

On 20, WMt > 1,

1 —N+i

where

v 1 ( a InN
eN~ “AT5

and the iterative scheme, as stated in Section 4.2.2, gives for VK™N("+),

wfcn =g wfk®) =wf~§0- k>i

Therefore we have,

WtI(C) = w(0)a, k=1,
WIJ(C) = mqOx+WF-1(f+)(1-9), *>1,
with
1- Al
1- X~N'

On i2i, from Lemma 4.2.2, it can be seen that

w fI(i+) = pwe(l) + (1 - p)W f(r )
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Hence, the iterative process gives

w@(n =

Willl(f+) = (we(0)q)(I-p)+pwEI),

Wo2J(£~) = ~e(0)g + (we(0)$(l-p)+p«/e(l))(l-9),

WIME+) = (we(0)? + (tue(Q)i(1-p) +pwe(D))(I - g))(I-p) +pwe(l),
WBI(D = we(0)g + (we(Q)g(l - p) + {wHO)q(l - p) + pwe(D))(I - g)(I - p)

+ pw£(l)) (1 - a),
= we(0)q(l-p) +w.(0)(I-pfqil ~q) + [we(0)q(l - p)

+pwe1))(1 - af{I~pf + (L-p)pwe(l)(l - q) +pwe(l),
and after k iterations,
WI(E+) = wE(0)q(l-p)(1+ (I=p)(1-q) + (1-p)2(1-q)2+ -'-
+ (L-p)fe2(l - Qk=2) + (we(Q)g(l -p) +ptoe())(l -p)fei(l - qk-x
+pioe(1) (1 + (1 -p) (1 -q) + (1 -i>)2(1 —€)2H---
+ (I-p)*-a(l-g)™*-a).

Therefore,
wf]EH) = «fe(0)g(l ~pP) +WHO)g(l ~ P)
X (@ -p)k-\1-g) k1) + we(l)p + pyaft ~ (1~ P)(A ~ g))fe-X
Now, —  ~p)< aC'p+ (I*—p)q < ~ A en foUCws that,
WEIE < M@+ KD - ((- p)i - )]
< CiV-2+ C'-

?
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since|*£(0)] < CN 2and ] ( 1) < C. Hence, in the interval [0,£+] an appropriate

estimate for the error in the Schwarz iterative is given by

w-"QGl < [HFIDI + KK

< C-+CN-~I
Q

< CN~I(lI- -Iniv)~ . (4.15)
Now consider the interval [£+, 1],

KVIf-miXni < CN~I (I —~ InNy *,

i(Wffc)-w i)(ni = 0, w > 1,
and
ILf(WTfL- wi)(xi)] < Ce~2tN~1, Vxi € Of-
We choose the barrier function, fa — (Xi —£+)Ce~2tN ~1+ CN~X(l —- InN) 1land

it can be seen that,

{ffat (W\K- ~xr)) > 0,
(A +1£(WWwh)(1) > 0,

Lev(& £ (1 - *))(*,) > O,
Therefore, applying discrete maximum principle arguments gives,

I((WTJ- tifi)(xi)] < fa < Ce~2N~Ir2+ CN~I (I - - Inn)

< CN~XInN)2+ CN~I (I —£1InJV) “, (4.16)

for some C, independent of the perturbation parameter e. And so, using the estimates

(4.15) and (4.16), we get
W(WW - wJixiiW < CN-"iin N)2+ CN~I (I - -Injv)~\
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in the domain QN and this concludes the proof, o

The following corollary to Lemmas 4.2.2 and 4.2.5 gives an error estimate for the

continuous and discrete Schwarz iterates.

Corollary 4,2.1 Forallk > 1,
It - WO <cn-wnn2 +eN-101- 1)~1+ci~k,

where C is a constant, independent of k, N ande, t = “\nN < 1/3, and A =

It can also be shown, see Chapter 3 in [6], that the piecewise linear interpolant UM1
retains the above error estimate and so we can now state the main theoretical result

of this section.

Theorem 4.2.1 For all k > 1,
- uIft < CN~"(A\nN)2-fCN~I(l - r)"l+ GX~kt

where C is a constant independent of k,N aride, r = fin TV< 1/3, and A= 1| +

Jr(l-r).

4.2.3 Numerical results

In this section we present numerical results for Method 4.1. We note that when
applied to problem (4.2), this method exhibits equivalent convergent behaviour to
that when applied to problem (4.1), and so we only include here tabulated results for

problem (4.1).
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For notational reasons, we define the piecewise uniform mesh O f associated with the

overlapping subdomains by

Of = Of U((? \Of).

The stopping criterion for the Schwarz iterations is taken to be

max \Uf\xi) - Uf~N\xi)\ < 10“9,

and we use the notation  for the interpolant of the final Schwarz iterate. Theexact
solution in its closed form is easy to find for problem (4.1), whichmeansthatthe
exact pointwise errors can be calculated. The discrete Schwarz iterates are computed

on a sequence of meshes with N = 8,16, ..2048 for e = 2-p,p — 1,2, ..30. Estimates

of the global error

are obtained by evaluating

Eeglobal = ¢oai #*(® i) “ «e(*i)| >
where O* = OqU O* and
0* = {xi\xi =i(l -r)/4096,0 < i< 4096}
0* = {xi\xi =1—+¢ +ir/4096,0 < i < 4096}.

Estimates of the orders of convergence are computed for each N and e from

F \
nN =_Incr(/ %Pbal\
P e,global io62 | "Tp2N 1

e,global

The values of E*gdldwl for problem (4.1) are given in Table 4.1, and the corresponding

rates p~gide are given in Table 4.3.

For values of e and N such that fin AT > 1/3, we choose the following Schwarz

approach. Letr = 1—1/N and £+ = 1 —r = 1/N, Using these new
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interface conditions we apply the same approach described in Subsection 4.2.2. In
this method we have moved the interface position so that the overlapping region is
now half of the interval [0, £+] and so this method iterates efficiently while it is also
seen to be convergent. In Tables 4.1 to 4.3, the figures relating to this approach are

located above the horizontal lines seen in the body of the tables.

We now consider the values of e and N such that f IniV < 1/3, located below the
horizontal lines, that is the singularly perturbed case. In Table 4.1, we observe
that Method 4.1 produces approximations which converge to the true solution with
a first rate of convergence, illustrated in Table 4.3. Therefore, allowing the change
over between methods we can say this Schwarz approach produces e-uniform error

convergence. This verifies the theoretical result stated in Theorem 4.2.1.

However, a significant drawback to this method is observed in Table 4.2. As predicted
by the analysis the iteration counts increase as the mesh dimension N is increased.
This effect is more pronounced when r is close to 1/3, when both N and e are large,
and we see the iteration counts almost doubling in size. For very small values of e, we
observe in Table 4.2, that the iterations remain small even as N is increased. This is
explained by the dominance of e over N in the reduction factor A-1 given in Theorem

4.2.1.

4.2.4 Conclusions

We conclude that the approximate solutions of Method 4.1 converge e- uniformly to
the solution of Problem 3.1, and is therefore, a suitable alternative to Method 3.2.
However, the iteration numbers, although small for small values of e, are proportional

to N when e is large. Also, Method 4.1 does not have the advantage of using uniform
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Number of Intervals N in each subdomain

e 8 16 32 64 128 256 512 1024 2048
2-0 1.22e-02 7.09e-03 3.77e-03 1.94e-03 9.81e-04  4.93e-04 2.47e-04 1.24e-04 6.20e-05
2! 2.23e-02 1.25e-02 6.54e-03 3.34e-03 1.69e-03 8.49e-04 4.26e-04  2.13e-04 1.07e-04
2-2 4.29e-02 2.39e-02 1.26e-02 6.42e-03 3.24e-03 1.63e-03 8.17e-04  4.09e-04 2.05e-04
2-3 1.98e-02 4.20e-02 2.22e-02 1.14e-02 5.75e-03 2.89e-03 1.45e-03 7.25e-04 3.63e-04
2 2.43e-02 1.27e-02 7.05e-03 4.43e-03 2.76e-03 5.47e-03 2.75e-03 1.38e-03 6.90e-04
2B 3.58e-02 1.90e-02  9.70e-03  4.83e-03 2.38e-03 1.38e-03  8.20e-04  4.79e-04  2.75e-04
26 4.56e-02 2.29e-02 1.19e-02 6.01e-03 3.00e-03 1.49e-03 7.40e-04  4.21e-04 2.42e-04
27 6.07e-02 2.54e-02 1.32e-02 6.71e-03 3.38e-03 1.69e-03 8.42e-04  4.20e-04 2.25e-04
28 7.20e-02 2.93e-02 1.39e-02 7.10e-03 3.59e-03 1.80e-03 9.01e-04 4.50e-04 2.25e-04
29 7.95e-02 3.54e-02 1.43e-02 7.31e-03 3.70e-03 1.86e-03 9.34e-04 4.67e-04 2.33e-04
2410 8.41e-02 3.94e-02 1.65e-02 7.45e-03 3.77e-03 1.90e-03 9.52e-04  4.76e-04 2.38e-04
2wl 8.69e-02 4.19e-02 1.85e-02 7.52e-03 3.80e-03 1.92e-03 9.61e-04  4.81e-04 2.47e-04
2u 12 8.85e-02 4.33e-02 1.97e-02 8.49e-03 3.83e-03 1.92e-03 1.02e-03 5.28e-04 2.70e-04
213 8.94e-02 4.41e-02 2.04e-02 9.12e-03 3.92e-03 1.98e-03 1.07e-03 5.67e-04 2.94e-04
2«14 8.99e-02 4.45e-02 2.08e-02 9.45e-03 4.24e-03 2.02e-03 1.10e-03 5.94e-04 3.14e-04
2~15 9.02e-02 4.49e-02 2.11e-02 9.62e-03 4.34e-03 2.04e-03 1.12e-03 6.11e-04 3.27e-04
2w 16 9.03e-02 4.49e-02 2.11e-02 9.64e-03 4.35e-03 2.05e-03 1.13e-03 6.20e-04 3.35e-04
2417 9.03e-02 4.49e-02 2.11e-02 9.65e-03 4.36e-03 2.05e-03 1.14e-03 6.24e-04 3.40e-04
2418 9.03e-02 4.49e-02  2.11e-02  9.65e-03  4.36e-03  2.06e-03  1.14e-03  6.27e-04  3.42e-04
2419 9.03e-02 4.49e-02 2.11e-02 9.66e-03 4.36e-03 2.06e-03 1.14e-03 6.28e-04 3.43e-04

2420 9.03e-02  4.49e-02  2.11e-02  9.66e-03 4.37e-03  2.06e-03 1.14e-03  6.29e-04  3.44e-04

2-30 9.03e-02  4.49e-02  2.11e-02  9.66e-03 4.37e-03  2.06e-03 1.14e-03  6.29e-04  3.44e-04

Table 4.1: Computed global errors E~glde for various values of s and N for Method

4.1 applied to problem (4.1)
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Number of Intervals /V in each subdomain

256 512 1024 2048

64 128

16

17

21 19

22

14

21 20 16

22

2-1

14

21 21 20

2-2
2-3

15

12
32

31

1Q
341

204 12
178

105

56

19

2-4

1280

659

53 95

20 31

14

2-5

11 14 20 31 51 91 167 314 598

2-6

20 31 50 88 161 301
31

15
11

15
11

11

87 158

50

20
15

2-8

86

50
30
20

31

20
15

49

20

12

2-10

30

12 15

10

2-11

20

15
12

2-1!

15

12

-17

-18

-19

2-20
2-21

2-22

-23

4

2-24

2-25
2-20

2-27

-28

-29

-30

Table 4.2: Iteration counts for Method 4.1 applied to problem (4.1)
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Number of Intervals N in each subdomain

£ 8 16 32 64 28 256 512 1024

2-0 0.78 091 0% 098 09 1.0 10 10
2“1 0.8 09 09 098 09 10 10 10
2-2 08 0% 097 09 09 1m0 1.0 10
2-3 -1.08 092 09 0.9 09 1.0 10 10
24 oo 08 067 06 -09 09 10 1.00
25 pg o097 1M 1@ 07 075 078 0.8
26 pw 0% 0% 10 10 101 08 0.8
2-7 12 09 097 0.9 10 10 1.0 0.9
2% 130 1.8 097 09 0% 1.0 10 10
22 117 13 097 0% 0.9 1.0 10 10
2-fo 119 126 114 0% 0.9 1.0 10 1m
2-n 1066 118 130 0.9 0.9 1.0 1.0 0%
2-12 10 113 1.2 115 09 0% 095 097
2-13 1.0 11 116 12 098 08 092 0.5
2-m 100 110 113 116 107 08 08 0®
2-15 .00 10 113 115 100 0.8 0.8 0.9
218 .00 100 113 115 10 0.8 087 0.8
2-17  1m 10 113 115 108 08 0.8 0.8
2-18 1.00 1.0 113 115 1.08 0.8 0.8 087

2-30 1.0 1.0 1.13 1.15 108 0.8 0.8 0.87

Table 4.3: Computed convergence rates pf9om for various values of £ and N for

Method 4.1 applied to problem (4.1)
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meshes in both subdomains.



4.3 A non-overlapping Schwarz method with

Dirichlet interface conditions

4.3.1 Introduction

In this Schwarz method, the solution domain is partitioned into two non-overlapping
subdomains using the Shishkin transition point, r. As in the previous method, the
subdomain containing the boundary layer reduces for decreasing values of e thus,
refining the mesh step size, while the course mesh subdomain is positioned outside
the layer. During the iteration process, the discrete solution value at the last interior
point in the coarse mesh subdomain is passed, using a Dirichlet boundary condition,
to the layer subdomain. In this way, values are passed from the smooth region into
the layer region but not back. The method is analysed, using a decomposition of the
discrete Schwarz iterates, in Lemmas 4.3.1 and 4.3.2, and these results are combined

in Theorem 4.3.1 to give a general estimate of the approximating error.

4.3.2 Discrete Schwarz method
We now formally describe the method.

Method 4.2 The exact solution uf is approximated by the limit Ue of a sequence of

discrete Schwarz iterates {Ue }kLo> which are defined as follows. For each k > 1,

. Uf\ x) xeCIO
Uf](x) =
ulkl(x) x e Ch

where uf” is the linear interpolant of u\ . Let CIff = {£i}f be a uniform mesh on il0
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with Xi = i£+/N and Of = be a uniform mesh on Oi with Xi = £++ i(1—;+)/N,

as shown in Fig 4-2. Thenfor k = 1

Lfl/w [ in Qtf, C/'u0) = «,, D{lj«+)=0,

Lft/pl I infit,  till(f+)=f/il(D,  Eill() = «i,

and fork > 1

D"D« I mas, d?’0)=«o, ~*'(f+)= t4*_ll(e+).
LAutl [ inilm EA¥I(F+) = DI*l«-), V£\I)ZUI'
ai
T W L (T T—|
[ t t 1
0 r r |

Figure 4.2: The discretised non-overlapping subdomains Of and O f for Method 4.2

In the following lemma we derive an estimate for the error contained in the smooth

Schwarz component V™

Lemma 4.3.1 Let V™ denote the discrete approximation to ve, the singular compo-

nent of the solution ue. For all k >1

A(y W- ve)(xi) 1< CN~I + CX~k+ Ce.

Proof. The discrete problem is first solved on the discretised subdomain O f using

the initial boundary condition vj1' = 0.
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For Xi 6 Mg,

KVoll-» ) (0L =0, [(Vv f-«,)({+)! £<

Classical arguments together with estimates for v and v'" leads, as before, to the

following local truncation estimate

IEf(v-f<)WI<CW
Then, as in Lemma 4.2.1, the barrier function
J=c (1 (yiriFB")) +cn~xi
is defined, and it follows by maximum principle arguments that
I(v@v - «)(*<)! < c A - ] ten-'x, x<eaZ. (4.17)

The discrete problem is then solved on the subdomain Of, which contains the layer
region. The boundary value at the interface point Xq = £+ is given by k/I(E+) =

O» the boundary <90f,

Kvill - »,1(1)1

0.
Kvf-»)«*)I = M|l[r)-M f+)
< iv,w(r) - »«(c)1+ M O - »«(ni

scM 7)) +CA«>
+ [be(CH) “ V«(DI
< C{l-q)+m +CN-I{C),

where we use the notation m = |ve(E+) — ("}, and as in (4.3), q — .

The barrier function, is introduced on Of,
=C(1- q+m+CN~IXi,
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and it can be seen that,

Lf($ix (V~A-vrixi) > 0
("(yU-OK~™) > 0

("t (vil-ve){l) > o.
The discrete maximum principle for on Ojf then gives,
\(V}] - ve){xi)|< C(1 - g+ m+ CN~\xi)) ¢ Of. (4.18)

Hence, from the estimates given by the inequalities (4.17) and (4.18), we can conclude

that
[(Vj] - ue)0c<)] < C(1- g) + m+ CN~1(xi), Vxi ¢ QN.

Noting that this is an iterative method, and that we have seen in chapter 3 an error
can be introduced during the iteration process, we have included the second iteration
in this proof. The proof is then concluded by induction.

For all Xi € O™,

Kvfl-»,) (0] = q
I(W21-0 (f+)l = 1(vf-<Kf+)l
< C(l-g)+m + CN~1C+)-
The barrier function, $j, is defined to be
/ 1\ \\
$-= (C (I-t) +m)(l- _ A— J) +CN~1xi,

and by similar arguments as before, it follows that

Kvf-»)*<)l < (C(I-8+m)(l- ( ~-y_, ))+CN-"z,. (4.19)
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The discrete problem is now solved on Of, with

Kvf-nXm < KVIW(i+)-«.(r)l + M {+)-»« (DI

< (c(l —q) +m) (I —g) +m + CN=*Xi,

Itvfl- © ()1 = o

As before, using a barrier function together with discrete maximum principle argu-

ments gives an appropriate estimate,

[(vf]- < (C{1-q) +m)(l-g)+m + V-6 Of.  (4.20)

Combining (4.19) and (4.20) then gives,

\(V® - M(xOIl < C{1- gf + m(l - g+ m+ CTV-1"-), Vg, € O".

By induction, it can be shown that for the At iteration,

[(VW-tO(**)] < C(l-g)k+m(I-g)k-1+m (I-q)k-2

+ ...4m({—g+m+ CN~I(E*) inCIN

C{I-q)k+-Q(I-(I-q)k)+CN~1xi

< C\~k+- +CN~\ since l-q<\~1
Q
Therefore, we can say that the inequality,
[((Vf]- uf)(")lI < C\~k+j + CN~IXi (4.21)

provides an estimate for the approximation error contained in the smooth Schwarz
iterate, , Where rn = |VE(E+) —UE(E")|. iNow, it remains to determine in what way
the term ~ depends on the parameters e and N.

An upper bound for in is obtained from the Mean Value Theorem,



Using the bounds on the derivatives of ve then gives

M i+)- V.01 < (C-DIAM |

(t-1)
¢ N

Noting, q= } ~ "~ N, A= | + ~ (1 —r), and the restriction ™ In
1—A

A> 1. It follows that,

qg>1—Al1l = 1- n
1+ 7n {1- 1)
a(l —r)
eN + o;(I —r)”’
Thus, an upper bound for the term is then given by
C(1- t)
m N _ feN+a(r-1)H
q " o;(I —t) | N /’
eN + g;(1 —r)
and we have
m NIsN + a(l —T)\
q \ N )
a(l —t
= Ce+ ( )
N

< Ce+ CN-1

Combining (4.21) and (4.22) concludes this lemma. o

< 1 guarantees

(4.22)

Now, in the following lemma we derive error estimates for the approximationof the

singular Schwarz component, W e, to the solution component, we.

Lemma 4.3.2 Let denote the discrete approximation to wg

ponent of the solution u€. Then, for all k > 1
[(WAK - we){xi)| < CN-1(InN)2
where C is a constant independent of k, N and e.
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Proof. From the bounds on we, stated in the decomposition of the solution, it is

clear that

[WE(X)] < CN~1 in fio-
Now, on the boundary, <000 we have the conditions M§I'(E+) = 0 and = w£(0),
and from the decomposition of the Schwarz iterates, = 0. Therefore, by

applying the discrete maximum principle we can see that,

IWjI@®) < K (0)l < CN-1 inOW.
Consequently, using the triangle inequality then gives a estimate for the error con-
tained in the Wdliterate,

Kwj*1-«,)(*,)!I< CATL, Vi|l€(¥. (4.23)

In the subdomaiu Q*, the interface condition = Hqg (£~), gives

|(wf,-«')(iHl = NY(r)-w S+
< iwftni o+ Kk (f+)l
< CN~'"+CN-\

(H|1- T) (D) 0.

As in Lemma 4.2.5, an upper bound for the local truncation, for Xi G (E+, 1), is given

1Zf(ttfl- uOfo)! < Ce-2rN -\
Now, we define an appropriate barrier function,
$= (Xi - £+)Ce~2tN~1+ CN~\
and using discrete maximum principle for Lf on Of, it follows that

I(w f]- wE)(*)| < CATI(InAT2  in Of. (4.24)
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Hence, combining (4.23) and (4.24) the estimate
\{WM-wj(xi)\<sCPrlI{InN)2

holds, for all Xj G CN.
Again, we continue with the 2"d iteration and the proof is concluded by mathematical

induction. Recall, for x G OO0,

we(@®@)] < CN~1 iniV
Furthermore, at dCIff = {0,£+} it can easily be seen from the previous iteration that

iwfVn =iwi'(e+)i = iwtf'tni <cn -\
and also
lw f](0)] < K (0)] < CN-K

Now, from the decomposition of the Schwarz iterates, Wo(®i) satisfies

L*wf]=0 Vx Gdq.

Therefore, using the discrete maximum principle for Lf on OO then gives, for all

Xi A &Q !
Kwf - t»)(*) < CN-\ (4.25)

and in using similar arguments to those used in the previous iteration yields,
|(ttfl- (@) < CATI(InN)2. (4.26)

Finally, combining (4.25) and (4.26) gives

(WF> - we)(xi)| < CATL(In AT2, Vxj G ON,
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and proceeding by mathematical induction then provides the general result for the

kth iterative,
{WAK - wB(xi)\ < CN~I(InN)2, Vxi €dN,
which concludes the proof of this lemma, o
In the following corollary to Lemmas 4.3.1 and 4.3.2 we give an approximation error
estimate for the discrete Schwarz iterates, W by considering the triangle inequality

UK - ue| < \VBK - VE\+ [W\K - we\

Corollary 4.3.1 For all k >1
I(C/[] - u e)(xi)\\ < CN-~InN)2+ CE + C\~Kk,

where C is a constant independent ofk ande, A= 1+~ (1 —r) andr = flniV <1/3.

It is known that the piecewise linear interpolant tjl retains the above error estimate
(see [6]). This corollary combined with Lemma 3 provides the main theoretical result

of this section.

Theorem 4.3.1 For all k > 1,
AW - ue)lL< CN~I(InN)2+ Ce + CX~k,

where C is a constant independent of k ande, A= 1+ ~(1 —) andr = MnN < 1/3.

4.3.3 Numerical results

Numerical results are presented in this section which confirm the theoretical estimates

derived in the previous section. The stopping criterion for the Schwarz iterations, the



meshes and f2*, and the notation for the errors, E”glooal, p”gidal are as given
in Section 4.2.3. As in the previous method, the results obtained for problem (4.2)
show the same convergent behaviour as observed for problem (4.1), and so, we only

tabulate results for the latter problem.

When e and N are such that fin TV > 1/3, we let £+ = 1/N and = 1/ (2iV)
and use Method 4.2, thus creating a non-singularly perturbed approach. The values
associated with this approach appear in the tables above the horizontal lines and, as
expected, these approximations are first order convergent and the number of required

iterations is small.

In Tables 4.4 and 4.6, we observe that the approximating error for this method is
bounded above by e, as predicted by the theoretical results. This diagonal effect is
illustrated by the emphasized error values in Table 4.4 and the bolded rate values in
Table 4.6. The iteration numbers, presented in Table 4.5, increase with N and are of

the same order as those presented by the previous method in Table 4.2

4.3.4 Conclusions

We conclude that, although Method 4.2 is not e-uniform convergent, it produces
almost first order approximations for e < iV-1, and the iteration counts are small for

small values of s.
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Number of Intervals N in each subdomain

e 8 16 32 64 128 256 512 1024 2048
2-0 163e-02 8.12e-03  4,02e-03  2.00e-03  9.96e-04  4.97e-04  2.48e-04  1.24e-04  6.20e-05
2-1  2.68e-02  1.35¢-02  6.80e-03  3.41e-03  1.71e-03  8.53e-04  4.27e-04  2.13e-04  1.07e-04
2-2  476e-02  2.49e-02  128e-02  6.48¢-03  3.26e-03  163e-03  8.18e-04  4.09e-04  2.05e-04
2-3  7.41e02 426602  2.24e-02  1.14e-02  576e-03  2.89e-03  1.45e-03  7.25e-04  3.63e-04
2—4 443e-02 4-62e-02 4.67e-02 4.64e-02  ~53e-02  547e-03  2.75e-03  1.38¢-03  6.90e-04
25 355e-02 2.82e-02 2.75e-02  2.68e-02  2.64e-02  2.62e-02  2.58e-02  2.53e-02  2.47e-02
2-6 422e-02 2.28¢-02 1.73e-02  1.56e-02 1-47e-02  1.43e-02  1.42e-02  1-41e-02  1.40e-02
2-7  4.69e-02  2.54e-02 1.31e-02 1.0Ze-02  8.63e-03  7.80e-03  7.48e-03  7.40e-03  7.38e-03
2-8  512e-02  2.65e-02  1.39e-02 7.62e-03  5.79e-03  4-66e-03  4-08e-03  3.85¢-03  3.80e-03
2-9  555e-02  2.75e-02  1.43e-02  7.31e-03  4-46e-03  3.21e-03  2.48e-03  2.11e-03  1.96e-03
2-i0 583e-02  2.83e-02  145e-02  7.46e-03  3.84e-03  2.54e-03  1.75e-03  1.31e-03  1.09e-03
2-n §.01e-02 29202  147e-02  7.52e-03  3.80e-03  222¢-03 1.41e-03  9.43e-04  6.86e-04
2-12 §11¢-02  3.00e-02  1.49e-02  7.55e-03  3.83e-03  2.06e-03  1.25e-03  7.73e-04  5.04e-04
2-13 617e-02  3.05e-02  1.50e-02  7.59e-03  3.84e-03  1.99e-03  1.17e-03  6.93e-04  4-19e-04
2-14 620e-02  3.08e-02 152002  7.63e-03  3.84e-03  1.95e-03  1.13e-03  6.53e-04  3.79¢-04
2-18 §23e-02  3.10e-02  154e-02  7.66e-03  3.85¢-03  1.94e-03  I.Ile-03  6.34e-04  3.59¢-04
2-16 §23e-02  3.10e-02  1.54e-02  7.67e-03  3.86e-03  1.94e-03  1.10e-03  6.24e-04  3.50e-04
2-1T §23e-02  3.10e-02  154e-02  7.68e-03  3.87e-03  1.94e-03  1.10e-03  6.19e-04  3.45¢-04
2.1 §23e-02  3.10e-02  1.54e-02  7.69e-03  3.87e-03  194e-03  1.10e-03  6.17e-04  3.42e-04
2-19  §23e-02  3.10e-02  154e-02  7.69e-03  3.87¢-03  1.94e-03  1.10e-03  6.16e-04  3.41e-04
2-20 6.23e-02  3.10e-02  154e-02  7.69e-03  3.87e-03  1.94e-03  110e-03  6.15¢-04  3.41e-04
2-21  §23e-02  3.10e-02  154e-02  7.69e-03  3.88e-03  1.95e-03  1.10e-03  6.15¢-04  3.40e-04

230 23e-02  3.10e-02  154e-02  7.69e-03  3.88e-03  1.95e-03  1.09e-03  6.15e-04  3.40e-04

Table 4.4: Computed global errors E~glaoal for various values of e and N for Method

4.2 applied to problem (4.1)
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Number of Intervals N in each subdomain

256 512 1024 2048

64 128

10

16

14

17

17

18
35

10
203

15 13
106

58

11
34

21

21 32 54 96 178 340 656 1274
32

15

167 313 597

91

52

15 21

12

300

100 12 15 21 31 51 88 161

2~7
2-8

12 15 21 31 50 87 158

10

12 15 20 31 50 86

10

7

2-9

49

31

20

15

12

10

-io

12 15 20 30

10

6
6

2-11

12 15 20

10

2-12

15

12

10

-13

12

10

-14

10

-15

-16

-17

-18

-19

-20

-2

-22

-23

-24

-2S

-26

-27

-28

-29

-30

Iteration counts for Method 4.2 applied to problem (4.1)

Tabic 4.5;
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Number o Intenals N in excli subdomain

e 8 16 32 &4 128 256 512 1024

2-a 1.01 1.01 101 101 1.0 1.0 1.00 1.00
2~1 0,98 0.9 1.0 1.0 1.0 1.0 1.00 1.00
2-2 0.93 0.% 0.98 0.9 1.00 1.0 1.00 100
2-3 0.80 0.3 0.97 0.9 0.9 1.00 1.0 1.0
2*'1  -0.06 -0.01 0.01 0.03 3.05 0.9 1.00 1.0
2-5 0.34 0.04 0.04 0.02 0.01 0.02 0.03 0.03
2-6 0.89 0.39 0.15 0.09 0.04 0.01 0.01 o0.01
2 -+ 0.89 0.%5 0.36 0.24 0.15 0.06 0.01 0.00
2-8 0.9 0.3 0.87 0.40 0.31 0.19 0.08 0.02
29 1.00 0.4 0.97 071 0.48 0.37 0.23 0.10
2-10 104 0.9% 0% 09% 060 054 042 0.27
2-n 1.4 0.9 0.97 0.98 0.78 0.66 0.58 0.46
2712 1@ 100 098 09 08 072 0.6 0.02
2-13 1.01 1.8 0.98 0.98 0.9 0.76 0.76 0.72
2-14 1.00 1.02 0.9 0.9 0.98 0.78 0.79 0.78
2-15 1.00 1.00 101 0.9 0.9 0.80 0.81 0.82
2-16 101 1.0 1.00 0.9 1.0 0.81 0.82 0.4
2-17 1.00 100 10 09 1.0 08 0.8 0.8

-89 1.00 100 1.0 09 09 0.8 08 0.8

Table 4.6: Computed convergence rates p”gicbai for various values of e and N for

Method 4.2 applied to problem (4.1)
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4.4 A non-overlapping, non-iterative

Schwarz method

441 Introduction

This method uses uniform meshes on two non-overlapping subdomains and incorpo-
rates the Shishkin transition point r, when fixing the position of the interface. We
define a Neumann condition on the interior boundary of the subdomain outside the
layer region. As a result, this method does not iterate since no solution values are

passed between the subdomains.

4.4.2 Discrete Schwarz method
We now formally describe the method.

Method 4.3 The exact solution uf is approximated by UEwhich is defined as follows.

T

Ui(x), x e Oi
where E/j™ is the linear interpolant of u\K\ Let 0™ = {&,;¥Vv be a uniform mesh
on O0 with % = i£+/N and Of = {x™q be a piecewise uniform mesh on Ot with

Xi=S++i(l-$+)/N.

L?UO0 f inO™, UO00) = uc D~Uo(e) = 0,

LfPi

/ inQi, = UoK*), £/o(l) = ui
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Now, we state the following maximum principles which are required in the subsequent

analysis in this section.

Comparison Principle. [6] Let a,b E A and assume that ip(a) > 0, ip'(b) > 0 and

Leij)(x) > 0 in 4, then ip(x) > 0 for all x E [a 6] C f2

DiscreteComparison  Principle. [6] Let (N be some mesh of dimension N. If
9 issome meshfunction defined on AN such that (f)(x0) > 0,D~(j)(x~) > 0 and

L~e)) > 0 in £IN, then )> 0 in GN.
To obtain estimates for the approximation error in this method we first consider
[Vo —vVE\ in the interval [0, £+]. Using the triangle inequality we can write

Mo - vE\< [Mo- vO\+ \vE- u0|

where vO0 is defined by

LEVO = -£V0"+ a(x)v'Q= /, (4.27a)
50(0) = 0, io'(e+) = 0, (4.27b)
for all x e C0 = [0,£+]. By this we mean, on the subdomain = (0,£+)> vOis the

smooth component of some function u0 defined by

Lfu0= f, uo(0) = ug0), UO{£+)=Q

In this first lemma we examine the behaviour of \ve —io| in the domain OO.

Lemma 4.4.1 Let Vg be the solution of (4-27) and ve the smooth component of ue,

given in Lemma 3.2.2, then
\WWE- vO\< Ce, forall x E [0, £+],

where C is a constant independent of e and N.
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Proof. The component Ve satisfies

-ev" + ave =/,

where ite(0),i>e(l) are specified according to the Shishkin decomposition. Let e =

ve —Vv0. Then e satisfies the equation,

Lee = —ee" -l-a(x)e’ = 0, (4.28a)

e(0) = 0, e'(e+)=v'r+). (4.28b)

We consider the following constant coefficient equation,

Lo&p= -exp" + aip' = 0, (4.29a)

i>0)= 0, ~'(f+)= K (i+)l- (4.29b)

Now, using the maximum principle, we can show that the solution of (4.29) is an

upper bound for the solution of (4.28). First observe that,

(V:-e)(0) = 0, (t/>-e")(E+) > 0.

Also,

Le(q) —e) —exp” + axj)’

— + (a—a)xp' + axp'

(a —ot)xp\

and so, it remains to show that x// > 0. To achieve this we can solve (4.29) explicitly.

The function X is given by,
= £e i/ K (i) - £<r<Rty, K-
Thus

A(ap)=e-“K+-*) K K +)I> 0,
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and from the maximum principle it follows, that

a a
< Ca_ since [PEL < Ce2~k,0< k < 3.

This concludes this lemma, o

In this next lemma we obtain an estimate for \VE —ve\ in the solution domain CIN.

Lemma 4.4.2 Let Ve be the smooth component of the Schwarz approximation then,

\(VE- «,)(*<)I< CN-1+Ce, for all Xi e £IN

where C is independent of both e and N .

Proof. At the boundary points, c¥20 = {0i£+}

(Vo —t*0)(0)

1
o

D-(Vt-vO0)(t) = ~ D~vO(t)

= J (s-CK{s)ds
< CN~X where £+ —£“=
As before,
ILAVO-ED)(*)l < C N -\

With the barrier function = CN~IXix(Vo—Tp)('Ct), and the maximum principle

it follows that

KVo-fioXa*)!» CATL

Combining this with the estimate derived in Lemma 4.4.1 then gives,
(Vo - vE{Xi\ < CN~I+ C~ Vxi € Qg. (4.30)
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On the interval [£+,1], from (4.30) and the boundary conditions we observe that

iM -p.xm
IV, -» ) (D]

iMo- «.X0i <cn-"+cCe,

0.
Also,
£<"(V, - vt)(Xi) < CN-".

Therefore, applying the barrier function 44 — C (N ~x-\-e/a) and the discrete maximum

principle gives the estimate
I(Vi- v)®i)] < CN-1+ Cé, Vxi e Of.
And so, combining (4.30) and (4.31) gives
|(Vi - tle)(asi)) < CN~1+ CE, Wxie QN,

which completes this proof, o

Now we concentrate on the WEterm and, in the following lemmas, we derive estimate
for |We —we\, the error in the approximation We to the solution component we.

Firstly, in the interval [0,£+] we can write the following triangle inequality,
WO - w£\ < \WO0- tSO| + \we - 10|,
where w0, the singular component of u0, is defined by

LEwo = —ewq " 4-a(x)w'Q—0, (4.31a)

i0(0) = 0, V (£+)=0, (4.31b)

for all x £ O = [0,£+]. In the following lemma we give an estimate for \we —to0| in

[0,£+4]. This is then used in Lemma 4.4.4 where we bound \WE—ut| on O = [0,1].
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Lemma 4.4.3 Let wO be the solution of (4-31) and we the smooth component of ug,

as given in Lemma 3.2.2, then
[war —t50| < C N -\ for all x GJ[0,£+],

where C is a constant independent ofe and N

Pi'oof. The arguments in this lemma are very similar to those applied in Lemma
4.4.1, so to avoid repetition we only include an outline of the necessary steps here.

From the decomposition we see that the solution component wE satisfies
—ew" + aw[ = /,

where tuE(0) and ty£(l) are specified according to the decomposition. Now, letting
é = WE—V}, we can see that é satisfies a differential problem akin to (4.28), with
e'(E+) = w'((+). Using an analogous maximum principle argument, it can be deduced

that |e(x)| is bounded above by where ?/"(E+) = |«™(£+)| and i’(x) is given by
a o
Plence we can now conclude that

ftoe —8] = [e(®)] < ()] < je _o(i+~irVEW'(E+)] - e~ “()<ritzi(E+))

< CN-1

since |tU'] < Ce_le-0il-*"e and e|lw'("+)| < e~@~"+'s = CN~1 . This completes

this lemma, o

Now, we derive, using Lemma 4.4.3, an estimate for the error in the singular compo-

nent, jWe —£|, of the Schwarz iterate in this method.
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Lemma 4.4.4 Let WE be the singular component of the Schwarz iterate, then
WWE - Wh)(s<)J] < CW-1(InTV)2, \/xi E CINy

where C is independent of both z and N.

Proof. Recall, in Lemma 4.4.3, we obtained an estimate for \we —W(g| on f20. Here
we first bound \Wo —'0)0| on Uq on f20 and complete the analysis by deriving and
estimate for MK —we\ in Of. Consider the term |ujO| on the subdomain Ojf = (0,£+),

it is clear that wO is given by

K(0)] = K(0) <cn-~\
K(£E+) = o
Lwa(x) = 0,

and so, applying the maximum principle yields,
"o(®)I< CN~2 in fi*

The discrete Schwarz component Wq(x), satisfies

Mb0| = K(»)l<cr!,

|B“WO«+)]

0.

r*w,(x) 0.

Therefore, by tile discrete maximum principle it follows that
\WO(X)\ < CN~2 in OA.

Hence,

\(WO- &)] < \WO()\ + [ii>0@) < CN~\  Vx* € tog. (4.32)
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Then, using the result derived in Lemma 4.4.3 and (4.32) we obtain the estimate
[((WO- we)\ < Wg{x) - ~(z)! + Wws- *o] < CN~I, VXIiE O~

Now, on the subdomain Of, it is clear, using the Dirichlet interface condition

Wx(£+) = WoOT), that
[((W I-~)(e+)] < \(WO-wB(t)\<CN -\
KWI- 0 ()1 = o0,
and as before, [Lf(W\ —wE)(Xi)\ < CN~1Ie2r.
Therefore, using arguments analogous to those given in Lemma 4.2.5 it follows that
[(Wi - we)l < CN-~InN)2, Vxi EOf.
We can conclude that
\(WE- wWE\ < CN-1(InN)2, VXi e £IN.

This completes this lemma, o
The following corollary to Lemmas 4.4.2 and 4.4.4 gives an error estimate for the

continuous and discrete Schwarz iterates.

Corollary 4.4.1 Assume r < 1/3. Then,
L(Ue- ue)xi)l< CN-1(InN)2+ Ce,

where C is a constant independent of N and e.

It is known that the piecewise linear interpolant retains the above error estimate

(see [6]) and in the following lemma we state the main theoretical result of this section.

Theorem 4.4.1 Assume r < 1/3. Then,
WUs-USWnKCN-~InNf + Ce,

where C is a constant independent of N and e.
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4.4.3 Numerical results

In the case of MniV > 1/3, we apply Method 4.3, using the interface position £+ =
1/N. Note, from the values located above the horizontal lines in Tables 4.7 and 4.8,
it is clear that this non-iterative method is first order convergent when the problem

is not singularly perturbed.

For MniV < 1/3, the numerical computations presented in this section demonstrate
that this method generates equivalent errors, given in Table 4.7, and therefore equiv-
alent computed error rates, given in Table 4.8, to those produced by Method 4.2.
These experiments verify the theoretical estimate stated in Theorem 4.4.1 and illus-
trate that this non-iterative method is as accurate as the previously described Method

4.2, without incurring the computational cost of large iterations.

4.4.4 Conclusions

We conclude that Method 4.3 is not e-uniform, but does generate first order accurate
numerical approximations when the assumption e < N~I is made. Therefore, for
small values of e, this Schwarz approach is a suitable and computationally efficient

method.
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Number of Intervals N in each subdomain

e 8 16 32 64 128 256 512 1024 2048

20 1.61e-02  8.08e-03  4.02e-03  2.00e-03  9.96e-04  4.97e-04  2.48e-04  1.24e-04  6.20e-05
2! 2.64e-02  1.35¢-02  6.79e-03  3.41e-03  1.71e-03  8.53e-04  4.27e-04  2.13e-04  1.07e-04
272 4.70e-02  2.48e-02  1.28e-02  6.48e-03  3.26e-03  1.63e-03  8.18e-04  4.09e-04  2.05e-04
23 7.41e-02  4.25e-02  2.24e-02  1.14e-02  5.76e-03  2.89e-03  1.45e-03  7.25e-04  3.63e-04
2% 4-43e-02  4-62e-02  4-67e-02  4.64e-02 4.53e-02  5.47e-03  2.75e-03  1.38¢-03  6.90e-04
25  355e-02 2.82e-02 2.75e-02  2.68e-02  2.64e-02  2.62e-02  2.58e-02  2.53¢-02  2.47e-02
26 422602 2.28e-02 1.73e-02 1.56e-02  1.47e-02  1.43e-02  1.42e-02  1.41e-02  1-40e-02
2°7  4.69e-02  2.54e-02 1.31e-02  1.02e-02  8.63e-03  7,80e-03  7.48e-03  740e-03  7.38e-03
28 5.12e-02  2.65e-02  1.39e-02  7.62e-03  5.79e-03  4.66e-03  4-08e-03  3.85e-03  3.79e-03
279 5.55e-02  2.75e-02  1.43e-02  7.31e-03  4-46e-03  3.21e-03  2.48e-03  2.11e-03  1.96e-03
2410 583e-02  2.83e-02  1.45e-02  7.46e-03  3.84e-03  2.54e-03  1.75e-03  1.31e-03  1.09e-03
2411 60le-02  2.92e-02  1.47e-02  7.52e-03  3.80e-03  2.22e-03  1.41e-03  9-43e-04  6.86e-04
2~12 6.11e-02  3.00e-02  1.49e-02  7.55e-03  3.83e-03  2.06e-03  1.25e-03  7.73e-04  5.04e-04
2413 617e-02  3.05e-02  1.50e-02  7.59e-03  3.84e-03  1.99e-03  1.17e-03  6.93e-04  4.19e-04
2~14  6.20e-02  3.08e-02  1.52e-02  7.63e-03  3.84e-03  1.95e-03  1.13e-03  6.53e-04  3.79e-04
2~15  6.23e-02  3.10e-02  1.54e-02  7.66e-03  3.85e-03  1.94e-03  l.lle-03  6.34e-04  3.59e-04
2416 §23e-02  3.10e-02  1.54e-02  7.67e-03  3.86e-03  1.94e-03  1.10e-03  6.24e-04  3.50e-04
2"17  6.23e-02  3.10e-02  1.54e-02  7.68e-03  3.87e-03  1.94e-03  1.10e-03  6.19e-04  3.45e-04
2418 623e-02  3.10e-02  1.54e-02  7.69e-03  3.87e-03  1.94e-03  1.10e-03  6.17e-04  3.42e-04
2419 6.23e-02 3.10e-02 1.54e-02  7.69e-03  3.87e-03 1.94e-03 1.10e-03 6.16e-04  3.41e-04
2"20  §.23e-02  3.10e-02  1.54e-02  7.69e-03  3.87e-03  1.94e-03  1.10e-03  6.15e-04  3.41e-04
2"2t 6.23e-02  3.10e-02  1.54e-02  7.69e-03  3.88e-03 1.95e-03  1.10e-03  6.15e-04  3.40e-04
2422 §.23e-02  3.10e-02  1.54e-02  7.69e-03  3.88¢-03  1.95e-03  1.09e-03  6.15e-04  3.40e-04

230 6.23e-02 3.10e-02 1.54e-02 7.69e-03 3.88e-03 1.95e-03 1.09e-03 6.15e-04 3.40e-04

Table 4.7: Computed global errors E~global for various values of e and N for Method

4.3 applied to problem (4.1)
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Number of intervals N in each subdomain

£ 8 6 3R 64 128 256 512 1024
20 0 10 10 10 10 100 10 10
2-1 097 0.9 10 100 10 1.0 10 1.0
2~2 0.2 0% 098 0% 10 1.0 1.0 1o
2-3 08 0 097 099 09 10 1.0 10
2-4 9.0 -0.01 0.00 0.038 306 0% 1.0 1.0
2-s 0.3 0.04 0.04 0.02 001 0.02 0.03 0.03
26 o8 0.39 0.15 0.09 0.04 0.01 0.01 0.01
2-7 08 09 0.3 0.24 0.15 0.06 0.01 0.00
2-8 0. 093 08 0.40 0.31 0.19 0.08 0.02
20 1o 0w 097 071 0.48 0.37 0.23 0.10
2210 1 0% 09% 0.9 060 0.54 0.42 0.27
2211 14 09 097 0.9 07 06 0.58 0.4G
2-12 1 100 0.9 0.9 0.8 072 069 0.62
2-13 100 10 098 098 0.9 07 076 0.72
2-14 1 1.2 0.9 0.9 0.9 078 0.7 0.78
2-is 1w 100 100 0.9 09 08 08 08
216 tol 100 1.0 09 1.0 08 0& 0.8
2-17 100 10 J0O 09 10 0.8 08 08
2-18 100 100 1.0 09 10 0.8 08 08
2-is 1@ 100 10 09 0% 08 08 085

2-30 1.0 1.00 100 09 09 08 08 0.8

Table 4.8: Computed convergence rates p”giOa f°r various values of e and N for

Method 4.3 applied to problem (4.1)
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4.5 A non-overlapping, iterative Schwarz method

with Neumann interface conditions

45.1 Introduction

In this section, we discuss a non-overlapping Schwarz method with Neumann-type
interface conditions. Research has been carried out on various interface conditions
for Schwarz methods; Nataf and Rogier [21], Rodrigue and Reiter [24], Tallec and
Tidriri [35] and Otto and Lube [22] examine general interface conditions for the

Schwarz methods at the continuous level.

Nataf and Rodgier [21], considered a continuous Schwarz algorithm and proposed that
by replacing the Dirichlet interface conditions with more general boundary conditions,
the efficiency of the algorithm is increased. However, we have seen, in Chapter 3, that
the convergence behaviour of the discrete Schwarz method is radically different, for
convection-diffusion problems, to that of a continuous method. Nevertheless, non-
overlapping methods using mixed interface conditions appear to have advantages for
singularly perturbed methods. Gastaldi et al. [9] and Lube et al. [13] present conver-
gence results for Schwarz methods with mixed interface conditions in the context of
Finite Element formulations. However, our interest lies in the pointwise norm which

is not a natural norm for finite element methods.

In the previous section, we observed that a Schwarz approach using the simplest type
of Neumann condition at the interface of the non-overlapping subdomains, produces
accurate numerical approximations for small e without any iterations. However, it
was noted that using D~Uo((+) = 0 does not agree with the solution component vE

so long as Wy(E+) N 0. Therefore, this would not be an accurate assumption to make



if convergent approximations were required for all values of e such that " InN < 1/3.

In Chapter 3, for a Schwarz method with uniform meshes, it was shown that the in-
terface positions cannot be fixed to be independent ofe and N (see, Method 3.1), and
the width of the overlap must be independent of e (see, Method 3.2). An appropriate
choice of overlap, in Method 4.1, was of order N~I. We therefore feel that, for the
convection-diffusion Problem 3.1, a non-overlapping Classical Schwarz method which
uses some interface conditions may be e-uniformly convergent, but for large values of

N, the iterations will become large.

We describe and investigate numerically a Schwarz method which uses Neumann-
Dirichlet type interface conditions, and demonstrate that although this method is
convergent for larger values of e, the computational costs, which are the iteration

numbers, are of the same order as those in Methods 4.1 and 4.2.

45.2 Discrete Schwarz method

We now formally describe the method.

Method 4.4 The exact solution ue is approximated by the limit Ue of a sequence of

discrete Schwarz iterates {Ue”}kLO, which are defined as follows. For each k > 1,

U *"\x), x G CIo

[f\x)
ulkl(x), s Gol
where U\ is the linear interpolant ofU\K Let Clg = be the uniform mesh on O0
with Xi = i£+/N andOf = be the uniform mesh on fli with Xi = i*(I —;+)/N.
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Then for k = 1,

Li'a»1

/" mQO, C™O)=u,, f/[Y({+)=0,

L?U?

[ infi"  lill(i+) = UoHO, UA(I) = «i,

and, for k > 1

L?4K f Inn", UIK(0)=u0, D+u0lf(C) =D -utl(C),

f inof, UKCH=uP(t), udkl) = u1

L?u{K

453 Numerical results

In the computations presented in the following tables, we applied the non-iterative

approach, described in Section 4.4.3, for the case MniV > 1/3.

In Table 4.9, we see the approximations given by this method converge to the true
solution of problem (4.1) for larger values of e than observed in Method 4.3. We
observe the iteration numbers close to the horizontal lines in Table 4.10 are large and,
as expected, these then decrease as one moves down the table. We note that, in Table
4.9, for e = 2-5 the method fails to be first order convergent for N = 512,1024, 2048,
as is illustrated by the emphasized error values. It is not clear why this occurred and
further theoretical investigations would be required to determine the exact behaviour
of this method, but we can remark that this did not occur when the algorithm was

applied to problem (4.2).
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Number of Intervals N in each subdomain

z 8 16 32 64 128 256 512 1024 2048
2-0 161e-02 8.08e-03 4.02e-03 2.00e-03  9.96c-04  4.97e-04  2.48e-04  1.24e-04  6.20e-05
2.1  2.64e-02 1.35e-02 6.79e-03  3.41C-03  1.71e-03  8.y3e-04  4.27e-04  2.13e-04  1.07e-04
2~ 4.70e-02  2.48e-02  128e-02 6.48¢-03  3.2Ge-03  1.63G-03  8.18e-04  4.09e-04  2.05e-04
2-3  6.5]e-02 4.250-02  2.24e-02  1.14e-02  5.76e-03 2.89e-03  1.45e-03  7.25e-04  3.63e-04
2-<  8.83e-02 4.350-02 1.96e-02 7.58e-03 2.53e-03 5.47e-03  2.75e-03  1.38e-03  <i.90e-04
25  991e-02 515602 2.55e-02 1.22e-02  5.53e-03 2.22e-03  7.98e-04  7.75¢-04  7,86e~04
2-6 104e-01 5.5le-02  2.81C-02  i,40e-02  6.84e-03  3.28¢-03  1.50e-03  G.20e-04  2.40e-04

2-1 i.07e-01 5.69e-02  2.92e-02 1,470-02 7.35e-03 3.64e-t)3 1.78e-03 8.5Ge-04 3.95e-04
2-8 1.08e-01 5.78e-02  2.97e-02 1.51e-02 7.56e-03 3.78e-03 1.88e-03 9.31e-04 4.57e-04
2-9 1.09e-01 5.82e-02  3.00e-02 1.52e-02 7.66e-03  3.84e-03 1.92e-03 9.57e-04 4.76e-04

2-10 1.09e-01 5.84e-02  3.01e-02 1,53e-02  7.71e-03  3.87e-03  1.93e-03  9.67e-04  4.83e-04
1.09e-01  5.85¢-02  3.02e-02  1.53e-02  7.73e-03  3.88e-03  1.94e-03  9.72e-04  4.86e-04
2-ia | 09e-0l 5.85e-02 3.02e-02 1.54e-02  7.74e-03  3,88«-03  1.95c-03  9.74e-G4  4.87e-04
2-ta  100e-01 5.86e-02 3.03e-02  1.54e-02  7.75c-03  3.89e-03  1.95e-03  9.75e-04  4.88e-04
2-m  100e-01 5.86e-02 3.03e-02 154e-02  7.75¢-03  3.89e-03  1.95¢-03  9.75e-04  4.88e-04
2-is  109e-01 5.86e-02 3.03e-02  1.54e-02  7.75¢-03  3.89e-03  1.95¢-03  9.75e-04  4.88C-04
2~le  1.09-01 5.86e-02 3.03e-02  1.54e-02  7.75e-03  3.89e-03  1.95¢-03  9.75e-04  4.88e-04

2-37 1.09e-01  5,86e-02  3.03e-02 1.54e-02 7.75e-03  3.89e-03 1,95e-03 9.76e-04 4.88e-04

2-30 1.09e-01 5.86¢c-02  3.03e-02 1.5e-02 7.75e-03  3.89e-03 1,95e-03 9.7Ce-04 4.88e-04
Table 4.9: Computed global errors E~glawal for various values of e and N for Method

4.4 applied to problem (4.1)
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Number of Intervals N in each subdomain

1024 2048

512

32 o4 128 256

16

2-0

35

2-3

184

96

32

21

14 20 29 48 83 153 289 553 1064
253

2-s

476

14 19 27 44 75 136

11

13 18 26 41 70 125 230

11

2-7

13 17 25 39 66 116
10 37

10

62

24

16

12

35
21

16 22
12

12

10

-io

15

14

11

-12

11

-16

-17

-18

-io

-20

-29

-30

Iteration counts for Method 4.4 applied to problem (4.1)

Table 4.10:
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45.4 Conclusions

From the numerical results, it appears that Method 4.4 is e-uniformly convergent.
However, the iteration counts increase with N, and for large N, are almost doubling.
We feel these results are an indication of the convergence and iteration profile expected
for a non-overlapping Schwarz method using uniform meshes and general interface

conditions, applied to the class of convection-diffusion problems.

Number of Intervals N in each subdomain

e 8 16 K7J 64 128 256 512 1024
20 09 1.0 10 10 1.0 1.0 1.0 10
2"1 097 09 1.0 100 1.00 1.0 1.0 1.0
222 ow 0% 09 09 10 1.0 1.0 1.0
23 o6 09 097 09 0.9 1.0 1.0 10
2~4 1@ 115 137 158 111 09 1.0 1.00
2“5 0.5 101 106 114 1.2 148 004 -0.02
26 ow 0% 100 1B 10 113 128 137
2~7 091 09% 09 100 1.0L 1.3 106 11
28 0w 0% 08 09 10 100 10 103
29 090 0% 0% 09 1.0 1.0 1.0 104
2-io oo 095 098 09 1.0 10 10 1.00

230 0o 09 0.8 0.9 09 10 10 10
Table 4.11: Computed convergence rates p”~dada for various values of e and N for

Method 4.4 applied to problem (4.1)
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46 A parameter-robust Schwarz method

4.6.1 Introduction

We now describe an overlapping Schwarz method which produces (e, N)-uniform ap-
proximations to the solution of Problem 3.1. In this technique, the width of the over-
lapping region is a fixed proportion of the width of the subdomain, OO, positioned
outside the layer. A Shishkin mesh is fitted onto the subdomain, f2i, containing the
layer and, as in previous methods, the subdomain OO is discretised using a uniform
mesh. To avoid repetition, the theoretical analysis of this method is not included
in this section, since this would require incorporating results, given in [18], for the
Shishkin mesh into a Schwarz argument similar to those discussed in Chapters 3 and

in previous sections of this chapter.

The convergence properties of this method are demonstrated using numerical compu-
tations in Section 4.6.3. Although this Schwarz method has no real advantages over
a fitted Shishkin mesh in one dimension, in higher dimensions, where the solution

domain may have a complex structure, this technique could be useful.

4.6.2 Discrete Schwarz method

We now formally describe the method.

Method 4.5 Introduce the overlapping subdomains

ii0= (0,£+), «! = (E-,1)
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where the constants £+ and £ are given by
1 %
——

£+ =1—r and £“=

The exact solution uf is approximated by the limit Ue of a sequence of discrete Schwarz

iterates which are defined as follows. For each k > 1,
Ur(x), X iln\
{H{e(*), sGfi,
where is the linear interpolant ofljf*. Let Ojf = {xi}" be the uniform mesh on

00 with Xi —i£+/N and Of —{%i}o+l be the piecewise uniform mesh on Ot defi,ned
by
for 0<i<f
2t lor 4 <i<N

as shown in Fig 4-3. Then for k > 1

L2ul" =/ inal, 8{0)=« t"N(i+) =qa

ifC/W =/ inf!", ffpi{f-) = Oi(D , =

and /or A> 1

= f

J{'tlpt - 1 inof, yi*](r) =~ (D , thf(l)=«i-

4.6.3 Numerical results

In Table 4.12, we observe this method produces (e, iV)-uniform approximations and

the computed rates, given in Table 4.14, show this method is first order convergent.
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The iterations numbers are presented in Table 4.13, and we note that, as a conse-
quence of the overlap being a fixed proportion of &0 = (0,1 —r), these iteration

numbers do not increase with N.

4.6.4 Conclusions

The numerical solution of Method 4.5 converges (e, AQ-uniformly to Problem 3.1
A computational drawback to this method is that it does not have uniform meshes
in both subdomains and, in one dimension, it has no advantage over using a fitted
Shishkin mesh. However, in higher dimensions, for a problem with complex domain

geometries, this type of Schwarz approach may be necessary.

«S'
i
1
ir M
of

Figure 4.3: The discretised overlapping subdomains O” and Of for Method 4.5



Number of Intervals N in each subdomain

E 8 16 32 64 128 256 512 1024 2048
270  292e-03 1.35e-03 6.52e-04 3.20e-04 1.58¢-04  7.88e-05 3.93e-05  1.96e-05  9.81e-06
2°1  9.16e-03  4.53e-03  2.24e-03  1.12e-03  5.57e-04  2.78e-04  1.39e-04  6.95e-05  3.48e-05
272 2.46e-02 1.26e-02 6.32e-03 3.18e-03  1.59¢-03  7.97e-04  3.99e-04  1.99e-04  9.97e-05
2°%  4.16e-02 2.72e-02  1.37e-02  6.93e-03  3.48¢-03  1.74e-03  8.73e-04  4.37e-04  2.19e-04
2°%  4.27e-02 2.70e-02  1.69e-02  1.05e-02  6.35e-03  3.57e-03  1.79e-03  8.96e-04  4.48e-04
2%  4.61e-02 2.80e-02 1.63e-02 9.75e-03  5.80e-03  3.41e-03  1.97e-03  1.12e-03  6.28e-04
26  6.30e-02 3.05e-02 1.72e-02  9.73e-03  5.58e-03  3.22¢-03  1.85¢-03  1.05e-03  5.89e-04
277 8.04e-02 3.33e-02  1.88e-02  1.03e-02 5.68e-03  3.18e-03  1.80e-03  1.01e-03  5.67e-04
2°S  9.35e-02  4.02e-02 2.03e-02 I.lle-02  6.01e-03  3.28e-03  1.81e-03  1.00e-03  5.58e-04
279 1.02e-01 4.72e-02  2.13e-02  1.18e-02  6.42e-03  3.46e-03  1.87e-03  1.02e-03  5.59e-04
2410 108e-01 5.19e-02  2.20e-02  1.23e-02 6.78¢-03  3.66e-03  1.96e-03  1.05e-03  5.68e-04
2411 |lle-01  5.48e-02  2.39e-02  1.27e-02  7.03e-03  3.84e-03  2.06e-03  1.10e-03  5.87e-04
2412 113e-01 5.65e-02 2.54e-02  1.29e-02  7.18e-03  3.95¢-03  2.15e-03  1.15e-03  6.11e-04
2"13  |14e-01 5.74e-02 2.62e-02  1.30e-02  7.26e-03  4.03e-03  2.21e-03  1.19e-03  6.36e-04
2"1%  1.14e-01 5.79e-02 2.66e-02  1.30e-02  7.31e-03  4.07e-03  2.24e-03  1.22e-03  6.57e-04
2¢15  115e-01 5.83e-02 2.69e-02  1.30e-02  7.33e-03  4.09e-03  2.26e-03  1.24e-03  6.71e-04
2416 115e-01 5.83e-02 2.69e-02  1.30e-02  7.34e-03  4.10e-03  2.27e-03  1.25e-03  6.79¢-04
217 1.15e-01 5.84e-02  2.69e-02  1.30e-02  7.34e-03  4.10e-03  2.27e-03  1.25¢-03  6.84e-04
2718 115e-01 5.84e-02 2.69e-02  1.30e-02 7.35e-03  4.10e-03  2.28e-03  1.25¢-03  6.86e-04
2419 115e-01 5.84e-02  2.69e-02  1.30e-02  7.35e-03  4.11e-03  2.28¢-03  1.26e-03  6.87e-04
2~20 1.15¢-01 5.84e-02  2.69e-02  1.30e-02 7.35e-03  4.11e-03  2.28e-03  1.26e-03  6.88e-04

2430 1.15e-01  5.84e-02  2.69e-02 1.31e-02  7.35e-03  4.11e-03  2.28e-03 1.26e-03 6.88e-04

Table 4.12: Computed global errors E~global for various values of e and N for Method

4.5 applied to problem (4.1)
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Number of Intervals N in each subdomain

8 16 32 64 128 256 512 1024 2048

20 14 14 14 14 14 14 14 14 14
21 14 14 14 14 14 14 14 14 14
22 13 12 12 12 12 12 12 12 12
* 9 9 9 9 9 8 8 8 8
2« 5§ 6 5 5 5 5 5 5 5
>s 5 4 3 3 3 3 3 3 3
26 4 3 3 2 2 2 2 2 2
227 3 3 2 2 2 2 2 2 2
28 3 2 2 2 2 2 2 2 2
29 3 2 2 2 2 2 2 2 2
2-10 3 2 2 2 2 2 2 2 2
2-u 2 2 2 2 2 2 2 2 2
230 2 2 2 2 2 2 2 2 2

Table 4.13: Iteration counts for Method 4.5 applied to problem (4.1)
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e 8
2-0 111
2-* 1.
2-2  0.97
2-3 o
2-4 o
2-5 o7
2¢c 108
2-7 1.Z7
2-s  1.»
2-0 111

2-io0 15
2-11 1.2
2-12 1.00
2-13 o.m
2-m 0.98
2-15 (.08
2-16 (.08
2-iv .08
2-Is Q.97
2-19 0.97
2-20 .97
2-3° o7

Number of Intervals /V in each subdomain

16
1.06
1.
0.9
0.9
0.C8
0.78
0.82
0.82
0.9
1.15
1.24
1.19
1.15
1.13
1.12
1.12
1.12
1.12
1.12
1.12
1.12

1.12

32
1.8
100
0.9
0.98
0.68
0.74
0.82
0.87
0.87
0.85
0.83
0.92
0.98
1.0
1@
1.06
1.6
1.6
1.6
1.6
1.6

1.06

64
1.01
1.0
1.00
0.9
0.73
0.75
0.80

0.85
0.89
0.88
0.87
0.85
0.84
0.83
0.83
0.83
0.83
0.83
0.83
0.83
0.83

0.83

128
1.0
1.00
1.00
1.0
0.83
0.77
0.79
0.4
0.87
0.89
0.89
0.87
0.86
0.8
0.8
0.84
0.4
0.84
0.84
0.4
0.84

0.84

Table 4.14: Computed convergence rates Vyiobai

Method 4.5 applied to problem (4.1)
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256 512
1.00 1.00
1.00 1.00
1.00 1.00
100 1.00
1.00 1.0
0.79 0481
0.0 0.8
0.2 0.8
0.5 0.8
0.8 0.8
0.0 0.2
0.8 091
0.88 0.0
0.87 0.89
0.8 0.88
0.8 0.87
0.8 0.8
0.85 0.8
0.855 0.8
0.85 0.8
0.855 0.8
0.85 0.8
f°r various

1024
1.00
1.00
1.00
1.00
1.00
0.84
0.83
0.4
0.8
0.87
0.89
0.91
0.91
0.91
0.89
0.88
0.88
0.87
0.87
0.87
0.87

0.87

values of e and N for



Chapter 5

A non-overlapping Schwarz
method for two-dimensional

convection-diffusion problems

5.1 Introduction

In this chapter, we discuss a discrete Schwarz method which is designed to pro-
duce accurate numerical approximations to a two-dimensional convection-diffusion
problem with regular boundary layers for small values of the singular perturbation
parameter. Our objective is to develop an appropriate domain decomposition for a
non-overlapping Schwarz approach and to extend a one dimensional Schwarz method

to two dimensions. To these aims, we choose to extend Method 4.2.

We consider the singularly perturbed linear convection-diffusion equation with vari-
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able coefficients on the unit square 0 = (0, 1) 2.

—Aue+amvVwe =/ on 0 = (0,1) x (0,1) (5.1a)
u =g on 80, (5.1b)

a = (oi,a2), ai>ai >0, a2>a2>0 on Q (5.1¢)

where al;a2,/ 6 C3(0) and 0 < e < 1. We will assume that / and gare sufficiently
compatibleat the four corners. For small values of e, regular boundary layers appear
along the boundaries at x = 1and y = 1. It is well known that if one uses a monotone
finite difference operator on an appropriately fitted mesh [6], the piecewise bilinear
interpolant of the discrete solution satisfies \\U® —uf|| < CN~IInN, where C is a
constant independent of e. Motivated by this result for a fitted mesh method, we

choose the domain interface positions using the Shishkin transition points T\, t2 given

N = min{l/3, a InN} r2=min{l/3, EZImV}, (5.2)

and the analysis, presented in this chapter, substantiates that an appropriate domain
decomposition for this problem consists of the four domains i2a, db, dc and

illustrated in Fig. 5.1. In order to avoid repetition, we consider only the discrete
two-dimensional analogue of Method 4.2 and study the case "-lniV < 1/3 and
ANniV < 1/3. The layout of this chapter is as follows. In Section 5.2, we specify
the decomposition of the solution of (5.1) into its smooth and singular components,
and bounds on the derivatives of these components are stated. Then, in Section 5.3,
we describe the discrete Schwarz method and theoretically analyse the convergence
behaviour of this method. Finally, in Section 5.4, we present numerical results which

agree with the theoretical error estimates derived in Section 5.3,
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5.2 The continuous problem

In Shishkin [30], the solution uf of Problem 5.1 is decomposed into its smooth and

singular components v£ and weE respectively,
Ue = Ve+ WE.

The smooth component, v£ is defined by

—AWE + a WUE =/, (x,y)ECI, (5.33)
vE = gon dQin, (5.3b)
vE =  hon dClout, (5.3¢)

where h is chosen so that the first and second derivatives of v£ are bounded indepen-

dently of e at all points in Q. The singular component w£ satisfies the homogeneous

Figure 5.1: The non-overlapping domain structure for Method 5.1
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differential equation

-eAwr -faeVwE = 0, (x,y) GO, (5.4a)
wF = 0 on dClin, (5.4b)
wf = g- ve on dQout. (5.4c)

The inflow and outflow boundaries, and dilout respectively, are shown in Fig.

5.2. Bounds on the derivatives of the components v€ and w£are given in the following

Figure 5.2: The inflow <Of2m and outflow dVLOU boundaries for Problem 5.1

lemma.

Lemma 5.2.1 [30](pg.205). The solution of ue of (5.1) has the decomposition
UE= v+ wE
where, for all k, 0 < k < 3, and all (x,y) Gii, the smooth component vE satisfies
kU <c(i+c2%*)
and the singular component wE can be further decomposed into the sum
We=W + +wli2
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where, for all 0 < k\, k2 < 3,

k = ki + k2,

for some constant C independent ofe.

Remark. Note the extra positive power of e in the derivatives orthogonal to the

layer direction. For example,

d 2w\ d2Wy
dy2 < Ce-1, dx2

5.3 Discrete Schwarz method

We extend Method 4.2 to the two dimensional Problem 5.1. The solution domain

fi = (0,1)2 is partitioned into four non-overlapping subdomains fia, fi*, fic and fid

defined by

fia (0,1-n) x(O,1-7r2, fi*x=(@-n,lI) x (0,1 -r2),

fic (0,1—)x (1-72,1), nd= {1-TUIl)x {I-T2,1),

where the transition parameters T\,72 are given by (5.2) and the interior interfaces
Ti are denoted by Tj = dfif \ dfiN, i = a,b,c,d and let T = interior

boundary. We use the notation:
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Method 5.1 Foreachk > 1, Ukx,y) = ulkx,y), (x,y) GOj, i= a,b,c,d where

U\kMis the bilinear interpolant ofU\R Let Qf = {(x]j, yk)}ftk=i e a uniform mesh on

fli. On 0\ lf~ =g, Vk>1. Thenfork=1
LfC/tt =f in£1*, UX(xuyj)=$ onra,
LfU® = finSI?, ull](xi,&)= *, Uil]E+%) = ~ 1](Cr,%"),
L ft/w =/ inof, c/W(eEk,yl)= ) A 1]("ed) = M]("Ne?2),
LfC/W = f intt™, uf\i;t,yj)= Uid~ ,yj), U%(xi, &) = UIT(xi,&).

Then for k > 1,

Efi/W =/ mil", "W(?r,%) =C /rilKi,»), C/W®i.&+) = i,i‘"1(ii.?2).
(iYW _ ulhj(xi, &) =

£'CIW  =/mSif, U~ (xit(+) = E/W fe.ff),

i K[/f = /mil?, t4*1ii,w )=n“1fr fc),itfl(*i,iz) = Eflto.S").

where (o some arbitrary function with sufficient smoothness and g = ~ ora Tj,

i = a,b,c,d. For example, = 0 ani™then use linear interpolant along T to

specifyon the interior boundary.

The finite difference operator is defined by
Lf= —£{$1+ + aiDx + a2Dy,
where for any mesh function Z,
%0 = Ol DUZHYA)
with
D+Z{Xi, Xj) = Z(Xi+1™ ™ 2 Z(Xi,Xi\  D~Z(xi}yj) = Z(Xi’Vj)» —)l(i~/\
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It satisfies the following discrete comparison principle on each O f, i = a, b,c, d.

Discrete Comparison Principle. Assume that the mesh function Z satisfies Z > 0

on dQ,?. Then LfZ > 0 on O0.f implies that Z > 0 at each point on Of.

The Schwarz iterates

write,

Each term of

as follows,

UBRJ = Vf1+
where
and

For k > 1, the components

are now decomposed in an analogous way to ue. Thus we

W=\H +wIq +wiH+ WK

in the sequence of discrete Schwarz approximations is decomposed

+WHK+wB = viK+ w¥yt

L?2VI» = [/,
Kjl = VvE
L?W$ = o0,
= W

+ WR + in 0{ i=aDbcd,
VW(f+,ii)=0,
on dii, Vj'l is lineal along 1',

wE'(ff.{?) =

on 50, is linear along T.

W™\ w £\ W\R are defined by an analogous decom-

position and the equations satisfied by U in Method 5.1.

In the following lemma we derive an estimate of the error contained in the regular

component of the discrete Schwarz iterate V}k®
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Lemma 5.3.1 Assume r*< 1/3. For k > 1,

((V?> - v,)(Xi,y,)\ < C(N~I+ Af* + A-*+ ¢e)

where,
, , o0i(l-ri) X ,a2(l-r2
A= 1+ sN ' 2 _ eN
Proof. The discrete problem is first solved on the subdomain using some arbi-

trarily assigned boundary conditions on the interior boundary Fa. On the boundary

an"
KKle- ®)(*iw)l = 0 onan?\r.
ia$-M)«i>w)I<Ci (K1 < c 2 onr.

since |ue| < C.

An estimate of the truncation error is given by the following classical argument,

(E«-E«>«

= -ed A -i-h +ai(x’y)( "~ - D-h

\L2(Vjj - ve){xi,yj)| < C{xi+1 - Si-ijlelwela + |[v«|2)

+ Clyi+1- yj-i)(e|*[3+ k |2).

Noting that xi+i —o» i < 2/V-1 and —yj_X < 2iV~1, and the appropriate bounds

on the second and third derivatives of VEyields,

[EW -»«)(*(.»)I<cw -1

We introduce the following barrier function, which is an upper bound on the

solution of Lf'P = 0 on fif with boundary conditions = 0 on dii%\ Tt and



*l<conrb

a*+Sn , "
) A

. _ - : A j* +i
C(Xi + 1+ Ci(l- (1_7~iv)) + 3

211 /“
- ( MII
where Ai == | + ai*yTMand A2 = 1+ — jp~- ~ can easily be verified that the

inequalities

I+

(Vij - vE)(xi,yj) > 0 ondii*,

Ls (KW - ve)(xi,yj)) > 0 onil*,

I+

are satisfied. The discrete maximum principle for L* on il* then gives

I(K[a- wey®i, Vj)1< CN~1(xi +y3)+ Ci(l - ( 1_"-n ))

Now. the discrete problem is solved in il* where the interface values arc passed from
the discrete solution on il* using the interface condition (™ ,yj) = vj,a(£Ef, Vvj)-

On the boundary dii*,
(K]~ ve)(xi,yj)\ = 0 ondn™rb,
(K] -~)(~A~2+4) < Ct
I(K[e - Ve)(El+,V3) 1= WS (er.Vi) - Ve(EH»Vi) I

< M2II(Er>y3) - ~(er,y,)1+ Mei:wvi)- ~(er. %)l

< CIV-(f+ + %)+ c,(1-(j~hr))

m 1
+C2(1_(1-Ar" ) +

R / [l —X~*A
= CICl + 1+ Ci(l _9)+C2~1 - (i vV
+ mi,
where we use the notation

/2 ) _\
mi = max |ue(”,Vj)- ve(£,y0)|, qi= ( INT )e
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Here, an appropriate barrier function is,
) . ) . / f\ —A- M\ .
= C(Xi + yj)N~14-Ci(l - qi) + C2yl - ( n)) + mi-

As before, the discrete maximum principle then gives the error estimate

| (V. $ < CiXi+yIN-"+CA/l-«i)

for all (Xi,yj) £ U*.In an analogous result for Q*, we see that

: 11 \~N+i\\
KKfil -»«)(*<,to)] < cfe+ ilfjjv-1+c,(i-(C i_ “,))
+£2(1 —02) + m2
where,
[l —A/+I\
m2 = nl?a2, “ Ve(Xiz&~)l.  92= (-,.— hw )e

The discrete problem is then solved in the corner region Q* with interface conditions,

VE<W 2) = and (tf, jly) = pi)- On the boundary ,

(K “ % )("™)1 = - ve{OUEDI
< IKIJ(M M 2) - &S+ |ve(*th22) - «e(®ixST)I
< CN-Ixi+yj)+Cl(l-q)

+C2(1- (h ~) ) +mi+m2
— C(xi +yj)N 1+ Ci(l —<fi) + C2(I —q2)

+ni\ +m2
and similarly,
I ( * £ i £ c("«+ +C,(I -i.)+C2( - 1R
+ mi + m2
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The barrier function <&jj,
$i,j = C(xi + Vj)N 1+ Ci(l —(i) + 62(1 —g2) + mi + m2

is chosen and applying the discrete maximum principle to € =+ (VAN —VE)(xt,yd)

gives,
K- NGBV I <coxi +vin-1 +Q(l - ai) + c2(1 - @ + MKk 2

Thus combining the estimates derived in each subdomain Of, i = a,b,c,d then

yields
(KD - ve)(xi, %)| < C(Xi + yj)N~I+ Ci(l - qgi)+ C2(I - g2 + mj + m2>

\/(xi,yj) G U'v. By repeating the above analysis for the second iterative and then by

induction we obtain the following estimate for the kih iterate,

\(VA-ve)(xilyj\ < C(xi+yj)N-1+Ci(l-gDk+ C2(1-q2k

+rn.(|' +... tm\ +|TKI' q2)k~x+...+m
< C((xi + V))N~x+ (1- gi)k+ (1- g2Qk+ 1 _
m 2
+1- (1- 092

Using the assumptions of the method, 0 < 1—<1< A1 < land 0< 1—2< X21< 1

Now, from the Mean Value Theorem it is easy to see that for fixed yv
o dv
NEIH)) = VeitinV) + (tf - ~r)~N(C. V)
where ff < C< £? and \WE\ < Ce2~l, 0 < I < 3. Hence it follows that,

™SI = \ve (M, V) - Vi) 1

<(«i-?.-% ((.»)]

< Civ"1
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also, jiti2l < CN 1. Hence, using similar arguments to those in Lemma 4.3.1 yields,
-\ < Ce, , ”» ) < Ce,
[-(1-11) 1—a —D)
and so,
I((VF -»)(*<,yj)] < C(N-"+ Arl + A2* + E).

This completes the proof.o

In the remaining lemmas of this section we concentrate on obtaining error bounds
for the components of discrete Schwarz approximation, and which
are estimates of the solution layer components w\, w2 and wX2 respectively. Lemma
5.3.2 considers the error in Note, we use the notation , (Xny3) €

i —a,bc, d.

Lemma 5.3.2 Assume Ti < 1/3. Fork > 1,
|(Wif 1-to J)(iSi,yi)] < CN-I(\nN)2+ C{\2)-k + Ce
where
* -l 4N (1.
Proof. First consider (x,y) G fia, which is outside the boundary layers, then from

Lemma 5.2.1, we see that |u>i(a;y)| < Ce~aN~x"E< Ce~aN~""E= CN~I. Now on

r Q Wjl is defined to be

= m(o,g)-m(05 ai.
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and on dCI*\Fa, WX i”jj) = Wi(xi,ijj). Now, wj'] satisfies the homogeneous equa-

tion,
£«"(<])= 0 on i)
Therefore, the discrete maximum principle for L* on CI* yields the following estimate,

< Ki(<%9)I

< ON'L

And so, for all (Xi,'i/j) € CI*,

For (x,y) E fib, which is inside the boundary layer v term contains large gradients

fore « 1. On the boundary dCI*,

I<J(~i,«2)l = +“l(1°g) &\ Xi-tf)

on an" \rv

Now, the local truncation argument combined with estimates of the partial derivatives

of we yield,

d3wi d3usi
dX:i E{yj+l I/j-l) q 3

N

ILE(VviIW - w,)| c |- E(xi+l

d2wx d2y
dx2 dy'2
< Cle(2t\N~x)£~3+ e(l - 2N -x~2+ a\2r\N~le~2

+ ai(x,y)(xi - Xi-i) + a2(xy)(yj - %_i)
+ 02(1 —T2)N *£ 4
< Ce-\N-1+Ce~IN-~1

< CE~2t\N~x, since r\ > £.



Note that here we have used the sharp bounds on the derivatives given in Lemma

5.2.1. Consider the barrier function

*<j=fa- ()Ce~\N-1l+gfl-i\v~- _y j) +cnN=-"
then by the discrete maximum principle for L* on 0 *,
»1 —XON+j
@ [b- WI)(xi,yj)\ < CiV-AIniv)2+ C[ 1 -
1- *2N

yj) GO0*. The discrete problem is now solved on the subdomain O*. As in O*,

the term w\ satisfies the inequality, |u;if < CN”1, V(x,y) G Oc. On the boundary

80%*,

< CN-~\
i(wW -o0(M,e2)i = Ki(ei,e?2)
+ ml(g ,l)-<1(tf,g)x fe- g)l
1%
< CN-1

0. Applying similar methods as in 0* it

and on 80* \ rc, |[(W]™ —Wi)(xi,yj)\
follows that,
KWTF] - wrix*yrl < CN-1, V{xi,yj) G 0*.

Finally, the discrete problem is solved on the corner region O* to complete the first

iteration. On the boundary 80*,

< CN-1,

-wi{xhc2)\
< KwSfo.cr) - ™Mi("Eni + \{wi{xi,&) - ~i(","2)l
< CAMI(InN)2+ C(1 - q2) + s2,
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where s2 = ), @ = 1_~Nand \2= 1+ a2’N— - Here the

barrier function is chosen to be,
=fa-"Ce”nN-1+C(1- g2)+ CN~\\nN)2+ s2
and the discrete maximum principle for L* on CI* then gives the estimate
KAM - wi)fa,Vj)\ < C(1- 52)+ CN~~nN)2+ s2.

To fully understand the effect of the iteration process on the error estimates in the
first iteration we continue with the second iteration and the proof is then completed

by induction. An outline of the second iteration is now given. As before in £1*,

\<cn-\
Now on the boundary dCI*,
I(wfi(fi.®)I = <cn-\
which implies that
and
KwtS-uofe.ii)! = I(<]-»i)fa,& +)I

< CN~1{\nN)2+ C(l-q2) + s2.
As before, we apply the truncation error argument,
\L?(W$ - <Ce-\rr\

where $ is defined to be the barrier function,

= fa - e#)C'E-217V-1+ (C(1- q2) + CiV-*IniV)2+ s2)

1. AN

[ -\ 2N
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and the discrete maximum principle for L* on U* then gives the estimate,
I(wfj - wMxi.Vj)| < - ti)Ce-2nN-" + (c(1- g2
+ CN~"(\nN)2+s2) x ~1- ~ ji in ftr.
Now on the boundary dii*,
[(<i)(e,+») = I(<i)(r,» )l <on-1

and as hefore,

KWg-wOfe "MSCAI-L in flIf,

On the boundary Oil*,

(<3-™ )Ki,Mi)l < CN-',
£ @ i(*b{j)+ \"»\(x,i}) - H'lfa,2.0)[
< CIV-,(InN)2+ C{N~'(\n N)2+ (1 —q2) + &)

X (1 -<?2) + S2

CN-"{\nN)2+ CN~I(\nN)2{l - q2)
+ <71 —g2)2+ S2(1 —92) + s2-
Here, the barrier function (3 is chosen to be
$itf = Ce-2DN-\xi - + CN~\\nN)2+ CN~I{\nN)2{l - ¢2)
+ C(1 —q2)2 + «2(1 —92) + s2
and the discrete maximum principle then gives the estimate,
KWg-MtHsi,A)!l < 2CN~I(\nN)2+ CN-1(\nN)2(1-q2)
+ C(1 —qg2)2+ "2(1 —42) + s2.
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The following error estimate for the Ath iterative is obtained by induction.

[(wf> -W iXn,y)\ < 2CN~I(\nN)2

+ CW-1(n N)2(I - ft)1-1 + C(1- 22)°
Py (1 72)]

As before, 1 —g2 < X21, and now it remains to bound
S2= |™fa, &) - Wi(Xi,&) |, £+ < Xi < 1,
in the layer region. By the Mean Value Theorem,
wi{xu &) = wx{Xi, £2) 4 0O & ~£)y Ce (£],&)
where from Lemma 5.2.1, | | — C(e~kl + el~k)e~Q*~x"£ and so, s2 satisfies

= |(wi(xi,") - wiOci,")! < |[*-("Mi,C)(™ -i2) M
< CN-~le~a"l~x)/e

< CN-~\

where £ £ (£2",£2 )m Note again have we used the sharp bounds (Lemma 5.2.1). This

completes the proof, o

Now, in an analogous result we state the error estimate for the Schwarz component

wfl

Lemma 5.3.3 Assume Ti < 1/3. Fork > 1,
{WIK] - w2){xhyj)\ < CN-'ilnN)2+ C(AO0"* + Ce

where



Proof. The proof is analogous to Lemma 5.3.2.

Now, we obtain a bound for the error in the Schwarz estimate of the corner layer

component W o

Lemma 5.3.4 Assume Ti < 1/3. Fork > 1,

Proof. Firstly in Q¥, the component wl2is “small” away from the corner region,

wii(a5,y)] < Cmin{e_a”1l:s"s, e~a2"~y e}

< CN~\ (x,y) £ Q\Cld

From the discrete comparison principle wesee that w\“A(xi,yj) is bounded above by

lty12] in Q*, thus

Vi)l <CN-\" V(n,Vi)e

In the subdomain Q*,

rW.(?+ — IwW ic-
< CN-~I
< CAT-1

where, [to12(I,£")] < Cmin{l,e aT2/e} = CN |. By discrete maximum principle of

L” on Si" WAxuVi) < CN-', in Q* and by the same argument WyJr(xi,yj) <

130



CN 1lin CI*. On the boundary dil*,
KW 'Si-«'»)«?.»)! < |w'S,({r.»j)l + l«u>(if,Kf)l

< CN-~=\

< CATL

The truncation error estimate for \L*(W"j, —W12)| gives,

d
gt xiof Y L g < iy OyF
Al -x i) a0 - v
y2

< C[e2TIN -1£-3+ e2T2N -le-3
+ a\{x,y)nN~le~2+ a2(x, y)r2N ~£~2]

< Ce~ZT\N~x+ Ce~2r2N~|.
Now we consider the barrier function <&,
= Ce-AN-'fa - £+)+ Ce-*T2N-1(yj - &) +CN*
The discrete maximum principle for L* on 0% then gives,
KA-touXit.wlJIsCAronAO02 v(*vieftl,l
and by induction it can be shown that,
(W$ - »u)fe ft)l < CATL(InN)\ V(*i.%) € ft",

which concludes this lemma.o

In the following theorem we combine the results from Lemmas 5.3.1 to 5.3.4, together
with a result known (see, for example, Stynes and O’Riordan [34]) for the bilinear

interpolant.
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Theorem 5.3.1 Assume t~< 1/3. For k > |,
IEW - u)(X,y)\ < C(N~'(In N f + AP* + AJ* +«)

where \i = 1+ ¢= 1.2-

This theorem reveals a natural extension of Method 4.2 to two dimensions.

5.4 Numerical experiments

Numerical computations arc carried out on the following model problem for a se-

quences of meshes fif, i = a,b,c,d corresponding to N = 4,8,16,32,64,128.
eA -f (2 F£x2y)ux+ (1 4xy)uy=x2+y3+cos (x 4-2y) (5.5a)
with boundary conditions:

SAX(I—x) x < 1/2
A (5.5b)

1, x> 1/2

u{x, 0) 0 u(x, 1)

{, 8(y- 2y2) x<1/4

u(0,y) 0 u(ly) (5.5¢)

1, x > 1/4

In the numerical experiments the initial arbitrary mesh function '3/ is chosen to be

the linear interpolant from the boundary values where "(£7,62") = 0.

In Figure 5.3,the numerical solution £26, with N =16 intervals ineach subdomain
and e=0.001, is shown. In Table 5.1, the required iteration counts are given for a

tolerance level of

Cmax  \UIKKxi,yj) - (ik=THxhyj)\ < 10"8.



The computed orders of convergence presented in Table 5.3 are computed using the
double mesh principle (see [6]),
Pe = 1082 (70 7) where De =, max [U*(xiyj) - U™(»<%m)],
\ / Xiypn e
and the differences D*, are shown in Table 5.2. The numerical errors are then
estimated by using the solution of a Shishkin fitted mesh on the finest available
mesh, corresponding to N — 256, as an approximation to the exact solution. The

corresponding computed maximum pointwise error is taken to be

Eenodal = max MP?(xityj) ~ U™M3(xUVj)\.

Values of E*nodal are given in Table 5.4.
We note that, since the boundary functions in problem (5.5) are non-trivial,and
Method 5.1 uses the interface conditions (E+,y)) = EINEi~, Vj),Uekxi, =

UIKxi,£2)1 ior small values of N, the error in the numerical solutions is large.How-

ever, the computed orders of convergence, in Table 5.3, show that Method 5.1 is first

Figure 5.3: Numerical solution generated by Method 5.1 applied to problem (5.5)
with N = 16 and e = 0.001
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order convergent, fore < N 1, where the error is bounded above by Ce forr < 1/5.

Also, in Table 5.1, the iterations become small for small values of e.

Note. The linear system, resulting from the difference scheme, was solved using the

Gauss-Seidel iterative solver, with a tolerance of 10-13.

Number of Intenals N

in each subdomain

e 4 8 16 3R 64 128
2-F 11 18 26 45 8 163
2-s 9 1 17 27 45 @&
2s 7 9 12 18 28 46
2.7 6 8 10 13 18 28
2-8 6 7 8 10 13 18
20 5 6 7 8 10 13
2-i0 5 5 § 7 8 10
2-1 4 5 5 6 7 8
2-12 4 4 5 5 6 7
2-13 4 4 4 5 5 6
211 4 4 4 4 5 5
2-15 4 5 4 4 4 5
2-156 3 4 6 4 4 4
2-17 3 3 4 s 1 22
2-18 3 3 3 4 6 1
2-18 3 3 3 3 4 5

Table 5.1: Computed iterations for Method 5.1 applied to problem (5.5)

5.5 Conclusions

In this chapter, a two dimensional convection-diffusion Problem 5.1 with regular
boundary layers was examined. It was shown that a one dimensional non-overlapping
Schwarz method with uniform meshes, Method 4.2, can be extended to a correspond-

ing two dimensional method, Method 5.1. Theoretical analysis showed that the con-
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Number of Intenals N
in each subdomain

E 4 8 16 32 64
2A {401 7.16E02 5.78E02 4.04E-02 2.38E-02
25 15301 131E-01 1.056-01 7.27E-02 4.2012-®2
2.6 1.60E-01 1.526-01 1.206-01 9.45E-02 6.35E-02
-1 17901 1.68E-01 1.396-01 O.68E-02 6.26E-02
2.8 101F-01 1.8E-01 1.466-01 9.70E-02 5.86E-02
2.9 1097E-01 1.8%E-01 1.52F-01 9.81E-02 5.64E-02
2-10 2 01E-01 1.94E-01 1.56E-01 9.97E-02 5.59E-02
211 2.03E-01 1.9E-01 1.58-01 1.01E-01 5.61E-02
212 2 046-01 1.98F-01 1.60ID-01 1.02E-01 5.64E-02
2-13 2 4E-01 1.98E-01 1.60E-01 1.0%6-01 5.67E-02
2.05E-01 1.99E-01 1.61E-01 1.08E-01 5.69E-02
2-fc 20501 1.99E-01 1.61E01 1.035-01 5.69E-02
2-i0 2 0501 1.99E-01 1.61E-01 1.03E-01 5.70E-02
2-17 2 05E-01 1.9%-01 1.61E-01 1.03E-01 5.70E-02
2-18 2 05E-01 1.9%-01 1.61E-01 1.03E-01 5.70E-02
2-10 2.05E-01 1.996-01 1.61E-01 1.0%-01 5.70E-02

Table 5.2: Computed differences D* for Method 5.1 applied to problem (5.5)

Number of Intenvals N
in each subdomain

£ 4 8 1
24 14 03 05 0.7
2-s 023 03 05 0.7
26 008 024 045 057
2-7 009 028 05 0.63
2e 00 03 05 0.73
2@ 006 0.3 063 0.8
2-i0 005 031 0.65 0.&4
2-1» 0.06 031 0.65 0.8
2-is 04 031 0.6 0.8

2-19 004 03 065 0.8
Table 5.3: Computed orders of convergence p* for Method 5.1 applied to problem

(5.5)
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vergence properties of Method 4.2 are retained by Method 5.L Numerical experiments
were presented, which showed that, for small values of e, only a few iterations are
required. Therefore, for small values ofe, Method 5.1 is a applicable Schwarz method

for Problem 5.1.

Number of Intervals N
in each subdomain

e 4 8 16 32 64
2.4 253E-01  1.38E-01  8.2812-02 4.99E-02  3.55E-02
2“5 2.77E-01 2.38E-01 166E-01 9.76E-02  5.99E-02
2-0  338E-01 3.31E-01 2.53E-01  1.60E-01  1.02E-01
2-7 3.73E-01 3.87E-01 3.00E-01 1.88E-01  1.12E-01
2-8  392E-01 4.18E-01 3.24E-01 2.01E-01  1.13E-01
2~a  4.03E-01 4.35E-01  3.37E-01  2.08E-01  1.15E-01
2-i0 408E-01 4.43E-01 3.44E-01 2.11E-01  1.16E-01
2-11  411E-01  4.48E-01  3.48E-01 2.13E-01  1.16E-01
2-12 412E-01 4.50E-01 3.49E-01  2.14E-01  1.17E-01
2-13 4 13E-01 4.51E-01  3.50E-01  2.14E-01  1.17E-01
2-14  413E-01 4.52E-01 3.51E-01 2.14E-01  1.17E-01

2-15 4.14E-01 4.52E-01 3.51E-01  2.14E-01 1.17E-01

2-19 4.14E-01 4.52E-01  3.51E-01 2.15E-01 1.17E-01

Table 5.4: Computed nodal maximum pointwise error E* for Method 5.1 applied to

problem (5.5)
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Chapter 6

An overlapping Schwarz approach

for parabolic boundary layers

6.1 Introduction.

In this chapter, we describe and analyse a discrete overlapping Schwarz approach to

problems with parabolic boundary layers. Consider the following elliptic problem.

—eAu+ aiux = f on fl=(0,1)x (0,1) (6.1a)
u =g on <R (6.1b)
ai > cfi >0 on f2 (6.1c)

The characteristics of the reduced problem become parallel to the x-coordinate axis
and parabolic boundary layers appear along the bottom and top boundaries aty =0
and y = 1 respectively, as shown in Fig. 6.1. Therefore, when designing a Schwarz

approach to Problem 6.1 we require a technique for parabolic boundary layers.
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In this chapter, we construct and analyse an appropriate Schwarz approach for a
singularly perturbed parabolic problem, whose solution has parabolic boundary lay-
ers. At the end of the chapter, we examine numerically the natural extension of this
method to an elliptic singularly perturbed problem whose solution contains parabolic

boundary layers.

We consider the following class of time-dependent problems.

Leuelx,t) = -e S 4 pictuetat + doot @A) <y,
for (x,t) GG, (6.2a)
utE= @on T, (6.2b)
d(x,t) > 5> 0, b(x,t) >i3> 0in G, (6.2¢)

where G= (0,1) x (0, T] and F=T; UrbUTr,where T;, Tr and Fbare the left, right
and bottom boundaries respectively. Assume that b, d,/, ()are sufficiently smooth and
compatible at the corners. A negative result in Shishkin [28] (see also Miller et al.
[18]) stated that, for the class of problems containing Problem 6.2, when a parabolic
boundar layer is present, a fitted finite difference operator on a uniform mesh will
not generate e-uniform numerical approximations. In Miller et al. [19], a fitted mesh
method, using a piecewise uniform mesh condensing in the boundary layers, is shown
to be e-uniform for this problem. The Schwarz decomposition method discussed
here is proposed in Shishkin [31] and Shishkin and Vabishchevich [32]. However, no
detailed proofs, no consideration of numerical results and no iteration counts were

provided in [32], [31].

In Section 6.2, we present the decomposition of the solution of (6.2) and give the
bounds on the derivatives of the solution components. Then, in Section 6.3, the dis-

crete Schwarz method, Method 6.1, is introduced and in Lemmas 6.3.1 and 6.3.2 we
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derive parameter-robust estimates for the error contained in the Schwarz approxima-
tions to the regular and singular solution components. These results are combined
in Theorem 6.3.1 to give the main theoretical result of this chapter. That is, the
numerical solutions of Method 6.1 converge (e, //)-uniformly to the exact solution of
(6.2). Finally, in Section 6.4, we numerically examine an elliptic problem with degen-
erate boundary layers. It is known that, for this class of differential equations, the
underlying nature of the complex boundary layer structure is related to the parabolic
boundary layers appearing in Problem 6.2. We numerically show that the natural
extension of Method 6.1, Method 6.2, is parameter-uniform for this type of elliptic

problem.

Figure 6.1: Regular and parabolic boundary layers of Problem 6.1.
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6.2 The continuous problem

The solution uEof (6.2) is decomposed into a sum of its regular component ve(x,t)

and its singular components wi(x, t) and wr(x,t),
uE=ve+W + wr.

The appropriate bounds on the derivatives of these components is given in the fol-

lowing lemma.

Lemma 6.2.1 [19] The solution uf of Problem 6.2 has the decomposition
Uc= Ve+ W[ +wr

where, for all non-negative integers i,j such that 0 < i+ 2j < 4,

dt+jvE
dxidP
and for all (x,t) e G,
dl+hvi(x,t) o In
dxidp < Ce-il2e~xl
and
di+'wr{x, t)
dx'dP

6.3 Discrete Schwarz method

The method we apply to Problem 6.2 is a time-dependent analogue of Method 2.1.
The solution domain G is partitioned into three overlapping subregions Gi, Gr and

Ge, defined by

Gi= (0,2a) x (0,T7], Gr= (1- 2a)x (0,T], Gc=(a 1- a)x (0,T],
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and the transition parameter
c=min{l/4,2\/s\nN},
as shown in Fig. 6.2. The finite difference operator is

Lf=-eS2+ bl + dDt,

where for any mesh function

w ith

D+\$r. = . . o= H A A
& gitl- Xi 7 x 3 Xi- i

and an analogous definition for Dt .

Figure 6.2: The structure of the subdomains for Method 6.1 applied to Problem 6.2.

Method 6.1 The sequence of discrete Schwarz iterates is defined by
Uf]in Gc,
Ul =
UflinGi\ Ge, i=1I,r,

141



where the u\k® are the solutions of the following problems. On the boundary 8GN,

U = uE For k =1,

L?2U}] =1 in G?, Uil(2a,tj) = ue(2a,0),

LfC/W =/ in G?, UMl —2a,tj) = ue(l — 2cr,0),
L?UP =f in G?, UMa,tj) =0\na,tj),ur( - a,*) = 0fI(l - a.tj),
and for k > 1,

L«uf] =1 in Gf, Uk2a,tj) = U?2-1(& ti),
L"UP = | inGf, C/W(-22,i)= Elt-]'(l -2,7,4),

L2CW =/ in G", (IW(T,i3)=eW (a,i3), =i« (1-F.1,),

and U is the bilinear interpolant ofU and G f are uniform rectangular meshes on Gi.

The discrete Schwarz iterates are decomposed in an analogous way to UE. Thus we

write

Y\ /M +wm in Ge >
uh = +w\j+wll =
y\K] + w ff + in Gi\Gc i=I,r,

The finite difference operator L™ satisfies the following discrete comparison principle

in Gf,i=1r,c

Discrete Comparison Principle Assume that the mesh function  satisfies > 0

ondGf. Then > 0 on Gf implies that > 0 at each point in G f.

Note. The piecewise bilinear interpolant, Z of the mesh function Z defined on the
mesh GNto the domain G retains the e-uniform error estimates established at every

point in GN. This can be established using arguments given in for example, [18].

142



In the following lemma we obtain a bound for the error in the regular Schwarz com-

ponent , which approximates the solution component Ve.

Lemma 6.3.1 Forallk >1
H(Kw - »<)(*<.«1ll < c¢(n? + Iv,-1) + c gk

where q < 1/2.

Proof. On the boundary dGi, we note the arbitrary initial condition along (2a, tj),
is chosen to be V~(2a, tj) = ve(2a,0) and,
[(vil]- ve)(0,")1 = o, [(v;[iL- tfc)fo,0)] = O,
(Vi - v e)(2a,tj)\ < \E(2a,0)\ + \WH2a,tj)\
< C,

since |ue(xi, tj)\ < C. The classical truncation error estimate and appropriate bounds

on the partial derivatives, given in Lemma 6.2.1, then gives

IL*(VfL- ve)(xi,yj)| = |(Lf- Le)ve{xi,yj)|
A d(Xi,tj) 1l . N.d2ve..
s 12(xi® na ?"+ " 2
< C(xi- xitM)2+ C(t) - tj-1)

< C(N;2+N-D.
The following barrier function, $(xi,yj) is selected,
*(*bw) ="+, (K2¢
where the constant C\ is chosen so that

L*($2(V}Y]VE)(Xitj) > 0 on Gi,

($ £+ (VFfl- v«)) > 0 on dGt.
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The discrete maximum principle for L* on Gf* then gives,

Crm
[(viw - #.)) (%, «iN < = A7 +cn;24+nr% ina,,
and in a analogous result,
(VW - «))(*<**)! < +can;2+n:% inS,,

Now, the discrete problem is solved in Gc, and the interface conditions satisfy,

1071

(V] - v &) (a,tin
< A+ C,V-2+N:%

< o(il2) + CAN;2+ N:)ti,

I(KiJ—te))(i —c 1, [(ydd - u«))(I -M j) I

< C(1 ~g))+cd K 2+

< C(1/2) + Ci(N;2+ Nr% .
And as before, the truncation error is given by
¢« (vfl- «0(*i.ft)l < C(N;2+ n; 1).

We choose the barrier function to be 4)itf = (7(1/2) + C\(N~24- and so, it

follows by the discrete maximum principle that
KV - «))(*(.*i)l < C(1/2) + CAN;2+N?I)t, in Gc.
Then combining estimates from Gi, GTand G, gives
i(V-W - » ))(*(«l < 0(1/2) + CAN;2+ N;Dtj in <5
and, by mathematical induction we obtain the estimate,
(V' - hyI< C{\/2)k+CAN;2+ n;").

This completes the proof, o
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In the following lemma we derive an error estimate for Wj ,which isan approximation

of the solution component W.

Lemma 6.3.2 Forallk > 1

I(w - w.Xx?tj)lI < Ci ((JV;1InM )2+ JV,-1)

Proof. First, we recall from the bounds on derivatives, given in Lemma 6.2.1, that

W\ < Ce~x" . The interface conditions on the subdomain Gi satisfy,

KW'S"mOMI ». Wif - 0)1=0

KW/j31- m,)2tr,ii)l bi (2ct,0)-Wi(2(T,ij)l

N

\wi(2a,0)\ + \wi(2a,tj)\

< 2Ce~2a* = e~4RN*= CN-~4.

The truncation error is given by,

\Ls (WIF - WD{Xi,yj)l = \L? - Le)wi(Xi, Vj\

[ 7, 2nrwiy , d(Xirfpu + M AT
< M 22D
< e2(iV-1InAr3)2C'e-2e - EMi + CiVt 1
= C(iV-1Inivx)2+ CiVt 1,
and we choose the barrier function = C((AM1InAM2+ N™Dtj + CN~2.

Then by the discrete maximum principle for L* on G\ gives,
[(WIf - wiKxi'tj)] < C(N~1InN)2+ CNt-1 in G,,

and in an analogous result \(W” —Wi)(xi,tj)\ < C(N~xinN)2+CNfl in Gr.In G,
the solution component wi is “small”, since \wt\ < e _cr/v* = CN~2, and we will use

\(WA} —wi)(xi,tj)] < [W/? + \wi\, and obtain bounds for |W ~| and \wi\ separately.
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Now, at the interface points,

< | - w){a, )\ + \w,(<r,tj\

< CA(N;\t,;N,)2+ N :% +CN:2.

I<'(1 = wM(l-o0,t,)\
< \(wi'j -TO)( - + 104 - atj)\
< {CAN;"InNx)2+ N;")tj+ CN;2.
lwg(*i,0)] = |to,(n.0) < CN;2, x,>2a

Also, wjic satisfies the homogeneous difference equation,

thus the discrete maximum principle gives
lw E£W j)I < CMN-"InNx)2+ n;% +cn;2
and therefore the following estimate holds in Gec,
(Wj™ - w,)(X,, ] N < CAK'"InNx)2+CN;1+ CN;2+ cn; 2

Then combining the estimates from the subdomains Gi, Gi and Gi it follows in GN

that,

- Wi)(Xitjp)\ <can;"InNJ2+cn;' + 2CN ;2.

We continue with the second iteration and the proofis then completed by induction.

An outline of the second iteration is now given. In Gi, the boundary conditions are

given by
W - w)(0,0) = 0, [(w!f - «)(*,.0)1 = 0,
\(wIf - W)Qa,ti)\ = \(w!'l-w,) (2, tj)\
< CAN:"inNx)2+CN;'(tj) + 2CN:2.
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We choose the barrier function to Dbe,
<ty = can; lini\y 2+ CNrHti) + 2cn; 2)",
and using the discrete maximum principle then yields,
|(wg]- T)fa, <i)l < CAN;1InN,)2+ CNf'fe) + (2CN;2 "~ in G,
And, applying analogous arguments for HV" gives,
Kwgl- «/)(** *j)l < CAN;1lInNx)2+ CW f'fa) + (2CiV-2) i i » in G,.
In (7C the interface conditions now satisfy,
(Wg - wyEit)) I = (M2 - ™i)(>fy)l
< Gi(iv*1lIn Nx)2+ CJIV -'fe) + (2GIVF2)(i).
Using the triangle inequality,
I(wEW i)l < CitJV-1In/VI2+ Givr'fe) + (2CiV-2)(i) + CIV¥2,
and also, on the interface (1 —a,tj),
[(wfj(l - cr,ij))] < CAN;lin«y 2+ CN,-\tj) + (2CiV-2)(i) + CN~2
Hence, using the discrete maximum principle we obtain,
m A (xitt,))] < CAN;1LiInNx)2+ CN;I(tj)) + 2CN;2)(\) + CN-2,
and again, using the triangle inequality then gives,
\(W® - wOixi.tj))] < CAN;1InJVJ2+ CN.-*tj) + (2CN;2)(\) + 2CN-2
This argument is concluded by mathematical induction

KW -M-u,)"))! < can;linnx)2+cn;% )

+ 2CN~2[(I/2)k+ (1/2)fc1+ ... + 1]

(1/2)k~1In
1/2

= Ci(AT"lInAy2+ CNA”itj) + 2CN~2[1- (1/2)*"]]

rl
= CI{N-1\nNx)2+ CNtI{tj) + {2CN~2) _1
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for all (x.,y) G GN. o

Remark. The analysis ofthe Schwarz component Wrktis analogous to that in Lemma

6.3.2.

In the following theorem we combine the estimates given in Lemma 6.3.1 and Lemma
6.3.2, to provide an (s, N)-uniform error estimate forthe bilinear interpolant, k"

for the solution of Method 6.1.

Theorem 6.3.1 Forallk>1
1(&J*1- Oils < C ((W-1inAy2+ M 1+ %

where q < 1/2.

6.4 Numerical experiments

Numerical computationsare carried out on the followingtwodimensionalelliptic
problem with degenerate parabolic layers, for a sequencesof meshes O f, i—a,b,c,d

corresponding to N =4,8,16,32,64,128.
EAU+y(l-y)iux= (I-x)y°“(l-y)p, (X,y) & (0,1)2 (6.3a)
u(x,0 = x, u(x 1) =x2 (6.3h)
u(lly) = 1, ux(0y) =8 (6.3¢)

The characteristics ofthe corresponding reduced problem are parallel to the ~-coordinate
axis and so, for small values of the parameter e, layers appear in the solution close to

the boundaries at y = 0 and y = 1. A solution of a differential equation of the type
“ENYY “t —f,
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can be considered to contain similar layer behaviour to the solution of Problem 6.2
near the sides y = 0 and y = 1, since fore « 1, euxxis “small away” from the side
X = 0 in the layer region, and the resulting solution is comparable to the solution of

the equation,

euyy + aux =1, (y,x) G (0,1) x (a, 1)

This, in turn, can be thought of as a parabolic differential equation, where —X is
behaving like a time variable. However, in problem (6.3) the coefficient of the Xx-
derivative is equal to zero on the boundaries y = 0 and y = 1 and along these
boundaries the parabolic equations are degenerate. Theoretical results for both non-
degenerate and degenerate parabolic boundary layers are presented in Shishkin [29]
and the convergence of a Shishkin fitted mesh method was examined computation-
ally in Hegarty et al [11]. Here, we present computations which demonstrate that
the natural extension of Method 6.1 can be applied to problem (6.3) to produce
parameter-uniform numerical approximations. We note, that in problem (6.3) a weak
layer, associated with the Neumann boundary condition at x = 1, is present in the
solution near the boundary at x = 1. For this weak layer a uniform mesh is sufficient.

The transition parameters [29] for this problem are

ai = min{l/4, me” In (N2},
a2 = min{l/4, In (N2).
We choose the subdomains
Ob= (0,1) x (0,2"), = (0l) x (aul-a 2 dAt=(0,1) x (1- 2a21),

as shown Fig. 6.3. We define the method which will be applied to problem (6.3).
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Method 6.2 The sequence of discrete Schwarz iterates is defined by

| Ulk]inTic,
Ufl= I
| JJ\inQ \dc, i=Dbt,

where the U'f* are the solutions of the following problems. On the boundary dQ.N

UKl = uf£. For k = 1,

L?2UP = [ inflf, UlL(xi,2al)=*,
L?2Ufl] = f in Of, uil(xi,l-2cr2) =V,

L«UW = f mtt?, Ull\xi,al) = 0ll](xi,al), UW(xi,l1-a 2) = GiX(xi, | -a 2),
and for k > 1.

= | in Of, tI*U»i,2ffi) = 0J*_11(®( 2ffi)1
LfC/j*1 = f inn", uf\xi, 1- 2as5s= 1- 2ct2),

A"EW =/ qnil™, [i'W O = O fW i), =

and U is the bilinear interpolant of U and CI* are uniform rectangular meshes on Ot.

Figure 6.3: The structure of the subdomains for Method 6.2 applied to problem (6.3)
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is some arbitrary function with sufficient smoothness, for example, Ub (xi, 2<ti) = *

where * is the linear interpolant of the boundary values ue(Q,2a\), Me(l,2cri).

Figures 6.4, 6.5 and 6.6 show the numerical solution for Method 6.2, for different
values of a and 3 for e = 2-20, with N = 8 intervals in each subdomain. We see
in these figures, that the method adapts to the different solution behaviour in the

layer regions, for different values of a and (3 The orders of convergence presented

Figure 6.4: Numerical solution generated by Method 6.2 applied to problem (6.3)

with a=@3=10and e- 2-20

in Table 6.3 are computed using the double mesh principle (see [6]),
Pf=1log2( where Df = max \U*(xuVj)- U™{xu %),

and the differences D* are shown in Table 6.2. In Table 6.1, the required iteration

counts are given for a tolerance level of
max |[Uf{xi,yj) - Ulk-1(xhy4)\ < 10~7.

They show experimentally that the numerical solutions generated by Method 6.2

converge (e, N)-uniformly to the solution of problem (6.3).
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Figure 6.5: Numerical solution generated by Method 6.2 applied to problem (6.3)
with  ,a =0 =10 and e = 2-20

Figure 6.6: Numerical solution generated by Method 6.2 applied to problem (6.3)
with fi®, a = 0.1, 3= 10 and e = 2-20
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Remarks. The linear system, resulting from the difference scheme, was solved using
a Gauss-Seidel iterative solver, with a tolerance of 10-7. We choose the stopping
criterion for the Schwarz iterates to be 10-6 because for values of e close to 1, round-
off error occurs and the number of iterations required to meet a lower tolerance level

increases.

Number of Intervals N
in each subdomain
6 4 8 16 32 64 128
2-0 17 18 18 18 17 17
2-2 16 17 17 17 17 16
2-4 13 13 14 14 14 13

2 g 7 7 71 71 8
2-s 5 4 4 4 4 4
2-io 5 3 3 3 3 3
2712 g 3 3 2 2 3

2.2 g 4 3 2 2 3

Table 6.1: Iterations counts for Method 6.2 applied to problem (6.3)

6.5 Conclusions

In this chapter, an analogous Schwarz approach to Method 2.1 was shown to be
(e iV)-uniformly convergent to Problem 6.1. This parameter-uniform convergence
was shown theoretically to be essentially second order in space and first order in
time. Numerical results where presented for Method 6.2, a natural extension of
Method 6.1 to elliptic singularly perturbed problem whose solution contains parabolic
boundary layers, which experimentally show that, for this class of problems this

Schwarz approach is parameter-uniform.
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Number of Intenals N
i each subdomain

£ 4 8 16 2 64

20 G.8OE-01 3.50E-01 1.785-01 9.00E-02 4.53E-02
2"2  6.956-01 3.55E-01 1.7E-0l 9.03E-02 4.53E-02
24 74% 01 3.71E01 1.84E-0L 9.16E-02 4.57E-02
2-« 8.84E-01 4.45E-01 2.2%-01 1.12601 5.61E-02
2~s 9.37E-01 4.69E-01 2.34E-01 1.17E-01 5.86E-02
2.0 93gE0l 4.6%E-01 2.35-01 1.17E-01 5.86E-02
212 93gE 01 4.70E-01 2.356-01 1.17E-01 5.87E-02
214 93801 4.69E-01 2.356-01 1.17E-01 5.87E-02
2.5 9380l 4.69E01 2.36E-01 1.19%-01 5.89E-02
2"18 9.38F-01 4.69E-01 2.37E01 1.20601 6.03E-02
2-W 93301 4.6%-01 2.37E-01 1.21E01 6.09E-02
2-22 93801 4.69%E-01 2.37E01 1.21E-01 6.11E-02
2-24 9301 4.60E-01 2.38E-01 1.21E01 6.12E-02
2-26  9a3gr 01 4.60E01 2.38E-01 1.21E01 6.13E-02
228 93Ol 4.60E-0L 2.38E-01 1.21E01 6.13E-02

Table 6.2: Computed differences D* for Method 6.2 applied to problem (6.3)
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Number of Intervals N
in each subdomain
e 8 16 32 64
20 0w 09 0w 0.9
2-3 097 0% 09 0%
10 100 101 100
26 0w 0w 100 100

2.8 100 100 100 100
2“0 100 100 100 100
2~ 100 100 100 100
2H 10 100 100 100

2"S 10 o9 o0m 10
2-8 1m ogws o 100
2-22 1.0 098 09 09
2-22 1.0 0.8 0.97 0.98
224 100 0.98 0.97 0.8
226 100 0.98 0.97 0.8
2-2s 100 0.98 0.97 0.9

Table 6.3: Computed orders of convergence p* for Method 6.2 applied to problem
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