
Developing & Integrating Tools In
Eclipse/PCTE

A Dissertation Presented in Fulfillment

of the Requirement for the M.Sc. Degree

15th May 1990

Sean P. MacRoibeaird B.Sc.

School of Computer Applications, Dublin City University

Supervisor : Prof. A. Moynihan

Page i

This dissertation is based on the author’s own work. It has not previously been submitted for

a degree at any academic institution.

Declaration

Sean P. MacRoibeaird

15th May 1990

Page ii

Acknowledgements

I would like to thank my supervisor, Prof. Tony Moynihan, and my project manager, Mr. Barry

Walsh, for their guidance and advice throughout this work. I would like to thank my parents

without whose help I would never have stayed on the straight and narrow. I would particularly

like to thank my fellow post-graduate students, Steve, Jimmy, Katharine, and the others, for

trying to take me off the straight and narrow.

Sean P. MacRoibeaird

15th May 1990

Page iii

Abstract

"Developing and Integrating Tools in Eclipse/PCTE"

by Sean MacRoibeaird

The whole area of software engineering environments is an emerging one. Such environments
have become necessary due to the rapid changes which have occurred in the software industry
in the last twenty years. The desire is to produce products of high quality and at a reasonable
cost. Unfortunately history shows that, in general, software systems rarely met the specific need
for which they were developed and were often unreliable, inefficient , poorly documented and
required considerable maintenance. One of the main areas of research into increasing both the
productivity and the quality of software has been the use of software engineering environments.
The area of software engineering environments is a changing one with evolving definitions.
What can be stated is that a key objective of software engineering environments is the support
of software process from requirements definition through to system maintenance. Such support
can only be provided through the development of integrated sets of tools each supporting
various aspects of the software development process. In order for tools to be fully integrated and
have the same ’look and feel’ it is necessary that they are developed on a common platform,
providing all the facilities needed for tool development and integration. Such a platform is the
Eclipse tool builder’s kit based on the Portable Common Tool Environment (PCTE).

The work in this thesis was based on an evaluation of this development platform for developing
and integrating software tools, particularly real-time telecommunications software tools. The work
in this thesis was carried out as part of the European Community’s RACE programme. The
project was called SPECS 1. The SPECS project is outlined in chapter one of this thesis along
with a brief history of the research into software engineering environments to date. The work
which I was responsible for involved both the integration of existing toolsets and tools,
developed by other partners in the SPECS project, as well as the development of new "native"
tools within Eclipse/PCTE. This work was necessary so that the SPECS project could produce
an integrated set of tools at the end of its research. It was my job to evaluate the potential of
Eclipse/PCTE as a basis for this integration.

1SPECS - Specifications and Programming Environment for Communications Systems

Page lv

Table of Contents

1. B ackground to th e Evaluation of Eclipse/PCTE
1.1. Introduction
1.2. Overview of SPECS

1.2.1. Methodology and Activities
1.2.2. Architecture

1.3. Background to Software Engineering Environments
1.4. Definition of an SEE
1.5. Current Status of SEE Developments

1.5.1. Language-Centred Environments
1.5.2. Structure-Oriented Environments
1.5.3. Toolkit Environments
1.5.4. Method-Based Environments

1.6. Conceptual SEE Architectures
1.6.1. Virtual Machine Architectures
1.6.2. Network Architectures
1.6.3. Data-Centric Architectures
1.6.4. Control-Centric Architectures

1.7. The Central Data Repository

2. A rchitecture of PCTE
2.1. Introduction
2.2. General Overview of PCTE
2.3. The Object Management System (OMS)

2.3.1. Introduction
2.3.2. Schemas
2.3.3. Objects, Attributes, Relationships and Links
2.3.4. Description of Example Schema Definition
2.3.5. Description of Example Tool

2.4. PCTE Execution Mechanisms (EXE)
2.5. PCTE Communications Mechanisms (COM)
2.6. PCTE Interprocess Communications Mechanisms (IPC)
2.7. PCTE Concurrency and Integrity Control Mechanisms (ACT)
2.8. PCTE Distribution Mechanisms (DIS)
2.9. The PCTE User Interface
2.10. Evolution of PCTE

3. A rchitecture of Eclipse
3.1. Introduction
3.2. Forms of Tool Integration in Eclipse
3.3. The Eclipse Database

3.3.1. Introduction
3.3.2. The Eclipse Data Model
3.3.3. Eclipse Data Definition Language (DDL)

First Tier DDL
Second Tier DDL (IDLE)

3.3.4. The Eclipse Database Interface (DBI)
3.3.5. The Eclipse Database Attributes

3.4. The Eclipse User Interface (Ul)
3.4.1. The Eclipse House Style
3.4.2. The Applications Interface (Al)
3.4.3. Format Description Language (FDL)

3.5. The Eclipse Message System

3.6. The Eclipse Help System
3.7. The Design Editor (DE)

4. Integrating Foreign Tools Into Eclipse
4.1. Introduction
4.2. The LOTOS Tool Environment (LOTTE)

4.2.1. Introduction
4.2.2. The Syntax and Static Semantics Checker (SSS)

The Purpose of the SSS
The Structure of the SSS

4.2.3. The Gate-Sortlist Report Generator (GSR)
The Purpose of the GSR
The Structure of the GSR

4.2.4. Integration Into Eclipse
The Scope of the Integration
Integrating LOTTE as a Foreign Tool
Extracting the Data Structures
Building a Two-Tier Database
Storing the Data In the Database - SSS
Retrieving the Data from the Database - GSR

4.2.5. Possible Further Integration Into Eclipse
Remove All Intermediate Files
Total Data Integration
Separate SSS and GSR from LOTTE
Integrate the User Interface

4.3. The CRL to C Tool
4.3.1. Introduction
4.3.2. Structure of the Tool
4.3.3. Scope Of Integration
4.3.4. Building a Two-Tier Database

4.4. Conclusions

5. Developing a New Tool in Eclipse
5.1. Introduction
5.2. Background
5.3. Developing the Classified Database
5.4. Storing the Data in the Classified Database

5.4.1. Introduction
5.4.2. Developing the Tool’s User Interface

5.5. Rigorising the Classified Specification
5.6. Graph Description Language (GDL)

5.6.1. Introduction
5.6.2. Type Declaration
5.6.3. Use Declarations
5.6.4. Shape Declarations
5.6.5. Compiling the GDL File

5.7. Generating the Rigorous Diagrams Using the DE
5.7.1. Introduction
5.7.2. The DE DDL Files
5.7.3. The DE FDL Files

5.8. Invoking the Data-Flow Diagram Tool
5.9. Conclusions and Future Enhancements

5.9.1. GDL
5.9.2. Design Editor
5.9.3. Future Enhancements

6. C onclusions

6.1. Introduction
6.2. The Architecture of Eclipse/PCTE
6.3. The Eclipse Two-Tier Database
6.4. The Eclipse User Interface
6.5. The Design Editor
6.6. Final Conclusions

7. A ppendices

Chapter 1

Background to the Evaluation of

Eclipse/PCTE

Page viii

The work described in this thesis was carried out as part of the SPECS2 project, which is part

of the European Community’s RACE3 programme. Dublin City University (DCU) is a partner in

the SPECS project and one of its allotted tasks was to evaluate the Eclipse tool builder’s kit. It

was for this purpose that I joined the SPECS team at DCU. What exactly Eclipse is, and what

it is used for, will be discussed at length throughout this thesis.

In chapter 2 and 3 I discuss the architecture of PCTE and ECLIPSE in detail because of the lack

of widespread knowledge about the whole area of SEEs and the tool builder’s kits upon which

they are developed. I spent a considerable amount of time, at the start of my work with the

Eclipse tool builder’s kit, trying to come to terms with the architecture of both PCTE and Eclipse.

This was a non-trivial task as the standard of documentation was very poor. A lot of

experimentation was required and it was through this experimentation and the subsequent tool

development and integration that I was able to extract the salient architectural features of

PCTE/Eclipse. In order to discuss the work performed using the Eclipse tool builder's kit it is

necessary to have some familiarity with the underlying PCTE/Eclipse architecture. It was with

this intention in mind that I wrote these chapters.

In chapter 4 I discuss the usefulness of Eclipse in integrating tools which were not developed

specifically for Eclipse. I discuss the integration which I performed on two tools with widely

differing characteristics. For each tool I discuss the features which either aided or hindered the

tool’s integration.

In chapter 5 I discuss the usefulness of Eclipse as a platform for developing integrated toolsets.

In order to do this it was necessary to develop a totally new Eclipse tool. I developed a tool to

perform the rigorisation of informal network specifications. This tool used all the major features

of Eclipse and, thus, it was possible to assess the usefulness of Eclipse as a tool building

platform.

1.1. Introduction

2SPECS - Specification and Programming Environment for Communications Systems

3RACE - Research into Advanced Communications for Europe

Page 1

In chapter 6 I outline the conclusions I came to when working with Eclipse over a long period.

I detail the areas which I feel are of a high standard as well as those areas which need

improvement. I also discuss the future enhancements which are envisaged in furture releases

of Eclipse.

1.2. Overview of SPECS

The pre-competitive RACE programme is designed to lead to integrated broadband

communications (IBC). The software for IBC is expected to be evolutionary, complex, extensive

but conforming to standards to allow the partitioning of IBC into components [Reed]. Because

telecommunications systems are becoming more complex, the trend has been to use more

formal languages at higher levels of design to enable the development of these systems. Formal

software engineering requires a change in approach and in particular an integrated environment

including methods and supporting tools covering the process from requirements and

specifications through design, implementation, test, execution, design error detection and

correction, modification and enhancement.

Within the RACE programme there are three interrelated projects ,ARISE, SPECS, and IOLE,

which will develop a Programming Infrastructure (PI) to provide a consistent set of methods and

tools to increases programming productivity and quality. The SPECS project has the objective

to provide the maximum automation of the whole software process from requirements right

through to the maintenance of the developed system. The basis for the methodology is the

application of formal methods. SPECS is a 300 person year project due to finish in December

1992.

Page 2

[1] ... System specifications, and reusable system specifications parts in a mixture

of formal and informal languages.

[2] ... Implementations of systems to be executed on IBC nodes.

[3] ... Analysis results associated with specifications and implementations. These

are analysed properties of specifications, and results from testing and certification of systems.

Diagram 1.1. shows an abstract functionality view of SPECS.

Diagram 1.1.

The outcomes of using the SPECS methodology are as follows :

SPECS A bstract Functionality View

Page 3

The SPECS methodology is supported by tools. The SPECS tools, themselves, depend on the

PI4 support environment for interfacing with the user, communication between the tools and

interaction with a data repository. The primary function of such an environment, from the point

of view of the SPECS tools, is to provide user interfacing and environment support as shown

by the three layers shown in Diagram 1.2.

Diagram 1.2.

A rchitecture Layers

In SPECS there are two support environments under evaluation, Eclipse and a Lisp-based

environment called Concerto. I was responsible for the evaluation of Eclipse to see how well it

could provide the underlying functionality required by the SPECS tools. The SPECS environment

is envisaged as providing the following facilities.

[1] ... Users interact with the system through a uniform user interface layer which

creates the appearance of a single coherent environment rather than a hetrogeneous tool box.

[2] A collection of interacting tools and tool fragments interacts with the user

interface and the data repository.

[3] ... All data relevant to one or more projects resides in a common data

respository which has the form of a fine-grain database.

4PI - Programming Infrastructure

Page 4

i

These requirements meant that I was responsible for developing new tools and integrating

foreign tools, i.e. tools developed previously on a different platform, e.g. UNIX. These tools were

of direct relevance to the SPECS project. This work provided valuable information on the

usefulness of Eclipse and formed the basis of this thesis.

1.2.1. Methodology and Activities

Within SPECS formal languages will be used as much as possible and not just during

specification. The user view should be at the highest level possible so that the objective is that

the user works, essentially, at the formal specification language level. The use of formal methods,

on a large scale, requires tools to support them. The primary objective of SPECS is to develop

a methodology based on formal methods for telecommunications software. In SPECS, a

methodology is characterised by -

[1] - the perspective (functional, object-based ...)

[2] ... the language used

[3] ... the tools used

[4] ... the organisation of activities and roles.

SPECS uses formal languages to support the following activities -

Specify - This activity turns functional requirements and constraints into functional

specifications.

Analyse - This activity involves analysis of both static and dynamic properties of

specifications.

Implement - This activity involves both design of an implementation and actual code

production.

1.2.2. Architecture

The foundation of the whole architecture is a mathematically sound model to represent user

languages. User specifications are translated into a machine representation of the mathematical

model. Target code generation, simulations, analyses and comparisons are performed on the

Page 5

Formalisation tools give support to the method of translating the input into the languages

supported by SPECS. Initially the languages supported by SPECS are CCITT SDL, LOTOS and

a subset of CHILL These are called the tower languages. These languages are translated into

a mathematical representation (MR), which is a superset of the tower languages. The MR is

implemented as a machine readable form called the Common Representation Language (CRL).

CRL also contains hooks to information which cannot be represented in MR. The CRL can be

analysed for consistency, deadlocks, etc. CRL can be translated either into an Analysis Derived

language (ADR), e.g. Petri-Nets, for which analysis tool exist, or into an Implementaion derived

Language (IDR), e.g. C, so that target code can be derived. Diagram 1.3., below, shows the

layered relationship between the SPECS languages.

mathematical model.

Diagram 1.3.

Informal Languages

S
D
L

L
O
T
0
S

C
H
I
L
L

Tower
Languages

MR / CRL

ADR IDR

The SPECS Languages

Thus the starting point in the development of IBC using the SPECS methodology is a set of

requirements. Intially these requirements will be stated in free-format language. These

requirements will form the input to tools which will rigorise them into a more usable form, e.g.

Context Diagrams, Data-Flow Diagrams, etc. These rigorous specifications will then form input

Page 6

to tools which will generate formal specification languages, i.e. the Tower Languages. Again

these Tower Languages will form input to tools which will generate the SPECS developed

Common Representation Language. CRL will form the input to tools which either generate ADRs,

for analysis purposes, or IDRs for implementation purposes. It is the intention of the SPECS

methodology to make this whole process going from requirements through to implementation,

as automatic as possible , requiring the minimum amount of user-intervention.

1.3. Background to Software Engineering Environments

The software industry has changed significantly in the past twenty years. Because the software

industry is basically a manufacturing industry [Sten], which produces anything from individual

programs to complete standalone systems, the desire is thus to produce products of high quality

and at a resonable cost. By the mid 1960's software systems began to reach a size and

complexity which made them hard to understand [Penel]. This resulted in a situation where

software systems rarely met the specific need for which they were developed. They were often

unreliable , inefficient , poorly documented and required considerable maintenance for the

duration the system’s use.

Thus the overall objective is to achieve some combination of higher quality, lower cost, and

greater predicatability, i.e. the ability to deliver a product that meets its requirements on time

and on budget [Penel], In the 1970's several areas were studied with a view to attaining the

above objectives.

[1] New Techniques ,e.g. top-down design

[2] ... New Technical Methods ,e.g. Jackson Structured Programming

[3] New Management Methods ,e.g. Usage of Software Life Cycle

At the time there was little attention paid to integrating the various tools which were developed

in these areas. Thus the tools developed were standalone and automated specific parts of the

Page 7

software development process. There was no concept of support for the whole software

development process effectively coordinating the various major aspects of the process. Indeed

, until very recently software has been developed predominantly on large centralised computer

systems using a collection of tools bearing little or no relationship to one another. Thus there

was little general support given to the software engineer during the software development

process. It was in the mid-1970’s that the concept of software engineering environments (SEE)5

appeared in an attempt to focus on the benefits that could be achieved by combining

/integrating the above techniques.

It is recognised that the availability of such integrated environments is crucial for improving the

productivity of the software industry. It is also recognised that the environments should not be

tied to a particular hardware platform or operating system. The ultimate goal for a user is a

hetrogeneous environment where the presentation and usage of all tools and methods is the

same, regardless of the hardware platform or operating system.

The rest of this chapter will outline, in more detail, the exact nature of SEEs, the current status

of SEE developments and a taxonomy of conceptual SEE architectures. The second chapter will

then discuss the architectures of both PCTE and Eclipse and how they relate to the conceptual

architectures discussed in this chapter.

1.4. Definition of an SEE

The environments research area covers many topics such as structure-oriented editing, graphics

tools, incremental algorithms, distributed tools that support software development and

mechanisms for handling system evolution [Notk], Given such a broad spectrum of topics and

the fact that the concept of an SEE is a changing one, in that it is changing with the software

engineering community's understanding of the tasks involved in the development of computer

systems, it is necessary at this point to define what we mean by an SEE. What follows is a

5The terms software engineering environment (SEE) and environment will be used
interchangeably in this document.

Page 8

discussion of the definitions which are currently used by various researchers in this field.

The word environm ent is synonomous with the following terms [Tull] -

integrated project support environment (IPSE)

integrated programming support environment

programming environment

programming support environment

software environment

software engineering environment

support environment.

Over the years there have been various meanings associated with SEE’s. In [Dart] an

environment refers to the collection of hardware and software tools a system developer uses to

build a software system. The distinction is made between a Programming Environment and a

Softw are D evelopm ent Environment. A Programming Environment is one which supports

programming-in-the small activities, i.e. the coding phase. This encompasses activities such as

editing and compiling. A Software Development Environment is one that augments all the

activities comprising the software development life cycle, including programming-in-the-large

tasks, e.g. configuration management, programming-in-the-many tasks,e.g. project management,

as well as supporting large scale, long-term maintenance of software,

In [Tull] an SEE is defined as being a collection of computer-based facilities to support the

activities of programmers, software engineers, systems designers , project managers, etc. to

achieve higher productivity and higher product quality. It is more than just a collection of tools

in that it should be possible to pass information between tools , it should be possible to pass

information among project members and support should not be confined to a small range of

project activities. Indeed in [Pene2] it is stated that a key objective of SEE’s is to support

software projects in the generation, management and control of the vast amount of data and

associated information which is generated and used during the project life-cycle.

Page 9

[PCTE88] defines an SEE as an environment in which -

[1] ... the user can hold , in computer processable form, all of the managerial,

administrative, and technical information describing and defining the

current state of a system and to the extent required , its past history;

and

[2] tools can integrated that can support the processing of this

information, in order to carry out the work of all phases of the development and

maintenance of the system.

In [Sten] the fundamental role of an environment is to support the effective use of an effective

process. The environment must provide coordination between the various major aspects of the

process. The four main aspects regarded as critical are -

[1] ... Technical Development

[2] ... Project Management

[3] ... Configuration Management

[4] ... Quality Assurance

In [Luba] it is stated that an SEE should support the user in the most mundane and mechanical

aspects of development, automating those activities where possible. This is particularly pertinent

with regard to the acceptance of an SEE since the users must want to use it rather that to try

to escape its clutches. They should also provide assistance in the more challenging aspects of

design, e.g. reuse of common solutions to subproblems. What follows is a list of seven identified

forms of support which should be considered.

Clerical Support - e.g., recording designs with editing facilities for

creating, modifying and browsing graphical

design representations.

Interface Support - facilitates the communication between the user and the

environment, e.g. graphics windows , menus.

Page 10

Analysis S upport - for such things as evaluating design quality and metrics,

Testing S upport - for constructing test cases , prototypes.

O rganisational Support - for keeping track of design goals, objectives ,etc.

K now ledge-based Support - for providing expert design knowledge to less experienced

system designers.

Intelligent Support - for assisting in exploration and other creative design

activities.

Common to all definitions is a concern for supporting individuals, task groups, and project

teams. The SEE should support project management as well as software process activities;

encourage, and perhaps enforce, good practice; increase the general quality of software

systems; increase the productivity of software related personnel and provide management and

customer visibility into a project’s progress and an insight into the properties of the project’s

eventual results.

1.5. Current Status of SEE Developments

In order to better understand the context within which the evolution of SEE's is taking place it

may be helpful to briefly outline the present state of development of SEEs. A suggested

taxonomy might look as follows [Dart] -

[1] Language-Centred Environments

[2] Structure-Oriented Environments

[3] Toolkit Environments

[4] Method-Based Environments

Page 11

1.5.1. Language-Centred Environments

Language-centred environments are ones in which the operating system and tool set are

specially built to support a specific language. An example would be Rational for Ada. Language-

centred environments encourage an exploratory style of programming to aid the rapid production

of software. Programs can be developed interactively in increments, allowing the user to

experiment with software prototypes. Because high-level languages do not adequately support

the activities involved in constructing large systems, language-centred environments have added

facilities to support programming-in-the-large.

1.5.2. Structure-Oriented Environments

Structure-oriented environments incorporate techniques that allow the user to manipulate

structures directly. Examples of structure-oriented environments are Cornell and Mentor. The

initial motivation for structure-oriented environments was to give the user an interactive tool -

a syntax directed editor. Such an editor allows the user to enter programs in terms of language

constructs. It is this editor which forms the core of such environments, providing the interface

through which the user interacts and through which all structures are manipulated. The

contributions of such environments are as follows -

[1] ... Direct manipulation of program structures,

[2] ... Incremental checking of static semantics.

[3] ... Semantic information is available to the user.

[4] ... Ability to describe the syntax and static semantics of a language.

Page 12

1.5.3. Toolkit Environments

Toolkit environments consist of a collection of small tools and are intended to support the

coding phase of the software development cycle. This approach starts with an operating system

and adds coding tools such as a compiler, editor, etc., as well as tools to support large-scale

software development tasks such as version control. The original motivation was the need to be

language-independent while supporting programming-in-the-large activities. Examples are PCTE

and Arcadia.

1.5.4. Method-Based Environments

Method-based environments incorporate support for a broad range of activities in the software

development process. Each one supports a particular method for developing software. These

methods are generally either development methods for particular phases of the software

development cycle or methods for managing the development process. Different methods exhibit

different degrees of formality, i.e. a method may be informal, as in written text; semiformal, as

in textual and graphical descriptions; or formal, with an underlying theoretical model against

which a description may be verified. A number of tools for single users have become available.

Instead of encoding particular methods in these tools, their developers have engineered them

to be more general purpose. Instances of design tools can be created through a tailoring and

generation process. In general, method-based environments do provide support to most software

development phases, however they can be cumbersome to use and integration across phases

of the development process is poor.

Combining these technologies to produce an industrial scale SEE which will support all phases

of software development together with programming-in-the-large is a research goal.

In [Stre] there is a description of a fifth type of environment, namely an Environment Framework
that can create a variety of environments, each tailored to the needs of a particular software

development project. Through this framework many of capabilities provided by the four

previously described environment types are supported.

Page 13

1.6. Conceptual SEE Architectures

The previous section outlined a taxonomy of current trends in SEEs. It is also possible to

present an architectural taxonomy for SEEs [Penel]. The main architectures which have been

identified are as follows -

[1] ... Virtual Machine Architectures

[2] ... Network Architectures

[3] ... Data-Centric Architectures

[4] ... Control-Centric Architectures.

1.6.1. Virtual Machine Architectures

These organise the components of an SEE into layers of implementation support with the lower

layers supporting the implementation of the higher ones ,e.g. the "onion skin" architecture of

PCTE. Because this model is very pertinent to the architecture of Eclipse/PCTE it will be

discussed in more detail than the other three architectures. The proposed layers for such an

architecture are -

[1] ... U ser Interface Layer -
This layer provides environm ent adaptation m echanism s used to generate

project-specific environments. It also provides project u ser support capabilities, e.g. information

which defines user views of the process and data based on roles and/or expertise.

[2] ... Tool/Capability Layer -
This layer contains the components which provide an environment’s

functionality. It is typically populated with many more tools than will be needed in any particualr

environment. There will be functional too ls to automate the various methods and techniques

in support of the software development process. There will also be tool-building tools used by

environment builders to prepare environment components.

Page 14

[3] ... Environment Support Layer.
This layer is part of any project-specific environment and provides the

infrastructure upon which the environment is constructed. This layer simplifies the construction

of the components in the tool layer by providing a set of commonly needed facilities. This layer

comprises the following -

[a] ... A Virtual Operating System for providing portability

to allow the environment to run on a wide variety of

hardware.

[b] ... An O bject M anagem ent System which supports the

storage and retrieval of data, process and tool

objects.

[c] ... A U ser Interface M anagem ent System which

provides the basic mechanisms for defining user

interfaces (windows, graphics, menus, etc.) and

associating objects presented at the interface to

objects within the environment.

[d] ... An Environment M anagem ent System which

provides specialised control facilities needed to map

user requests to internal activity.

[4] ... Hardware and Native O perating System layer
This is the lowest layer and forms part of any project-specific environment.

It consists of the underlying hardware and native operating system and may

consist of a hetrogeneous collection of processors and workstations and

peripherals.

Page 15

1.6.2. Network Architectures

Network architectures organise the components of an environment as a network of processes

that typically interact by passing messages between one another.

1.6.3. Data-Centric Architectures

In data-centric architectures the environment’s data repository forms the core of the environment

and the components are organised in terms of flows of data into and out of the database. Most

environments based on database management technology display this type of architecture. Such

environments structure and organise data through the use of database schemas. Tools take the

form of data transformers. Control is effected through the explicit and implicit flow of data among

the tools with the database serving as a central data repository.

1.6.4. Control-Centric Architectures

In control-centric environments the internal supervisory subsystem forms the core of the

environment and the components are organised in terms of flow of control among them. Most

expert system-based environments display this type of architecture. Such environments use

knowledge bases to hold information about both the products being produced and the

processes used to produce them. Tools take the form of interpreters of rules specifying

characteristics and constraints upon products and processes.

1.7. The Central Data Repository

Given the complexity of the software development process, the number of individual items of

information that are involved, and the relationships between these items, any environment by

definition must have a database8 [Sten], The information which is generated during the course

of large software projects is complex and varied. The complexity is compounded by the fact that

diverse tools are required to act in a cooperative fashion on these objects and the relationships

'The terms database and central data repository will be used interchangeably in this section.

Page 16

between these objects. Thus the choice is not whether or not to have a central data repository

but what form it should take.

The data model of such a central data repository needs powerful type constructors to model

such objects as programs and program versions as well as fine-grained data such as individual

modules and statements [Huds], Unique SEE database requirements have been and are

continuing to be identified, which means that traditional database management systems (DBMS)

are unsuitable to act as the central data stores for SEE’s. Some of the differences between

traditional DBMS’s and SEE DBMS’s are -

[1] The objects being manipulated are typically not as easily represented as

simple, flat records.

[2] ... SEE databases do not have the traditional low schema to data ratio of

business applications. This means that there are fewer objects of the same

type.

[3] Identifiable transactions on SEE databases tend to be much longer than

typical transactions on a commercial database. A typical transaction might

be a program bug fix, which could involve a long, interactive period of

update, recompilation and reconfiguration.

[4] There tends to be a logical locality of reference, with each user requiring

access to only a small part of the complete database over some significant

period of time.

Thus it is essential to understand the data structure to be held in the database before the

initial installation and subsequent evolution of the database [Sten]. This data structure comprises

the types of the data items (which must have the ability to model unusual forms of data), their

attributes (which may be structured or complex), their relationships and the rules for consistency.

These rules should be explicitly specified in a conceptual schem a which is at the heart of the

SEE [Sten]. For a fully integrated environment it is essential that the conceptual schema is

Page 17

An essential part of the definition of conceptual schema is the ability to define types and treat

persistent objects as instances of these types. From this ability numerous benefits accrue for

the accessability of the stored information and for the protection against accidental and

malicious application of inappropriate operations to objects. In [Pene2] a hierarchy of object

types is proposed. The model is as follows -

sufficiently rich, encompassing all information of relevance to the tools.

level 1 - Data Model
Defines the overall data model ,e.g. the Entity-Relation Model (ERA) [Chen]

which serves as the common framework over which subsequent levels are

built.

level 2 - S pecialised Data Model
Augments level 1 with perhaps some rudimentary semantics built in, e.g. the

CAIS ERA model.

level 3 - Data Description Language (DDL)
Defines the language in which the user-supplied type definitions are

expressed.

level 4 - Schem a definition(s) In DDL
Utilises the DDL to provide the schema definitions that describe the specific

types of objects, their properties, and interrelations,

level 5 - In stan ces of types
Deals with the representation of objects as instances types defined at level

4.

The central data repository forms the basis of tool integration; the various tools and facilities

must all operate on a single common data structure as defined by the conceptual schema.

Another related topic which is extremely important for SEEs is the ability to accommodate new

facilities and services. Thus the SEE must be open. If the tool was developed outside the SEE

Page 18

it must be able to be integrated to some extent into the SEE otherwise it would be necessary

to re-implement all foreign tools of interest. The ability to incorporate foreign too ls can ease an

organisation’s transition into use of the SEE since familiar tools can remain available [Sten]. Also

important to this transition is the ability to transfer existing data into the SEE database.

Page 19

Chapter 2

Architecture of PCTE

2.1. Introduction

As indicated earlier, software development and maintenance has been and continues to be, an

expensive activity, prone to costly delays and failures, with results that rarely fulfill the true

requirements of the customer. Industry, in general , needs to reduce and control these costs

and risks.

A hardware configuration of powerful, distributed workstations with graphics capabilities has

been determined to be a productive development platform. In addition , it has been recognised

that better control and productivity gains can best be achieved by increasing the number of

CASE7 tools available, and by establishing relationships between tools [PCTE88]. It was against

this background that the PCTE project was launched in October 1983 under the auspices of the

ESPRIT research and development programme.

The PCTE program approached the problem of efficient tool integration for CASE by factoring

out those common features required by most tools for information management and interaction

with the tool users [Thom]. The original PCTE project was intended to produce a definition of

a public tool interface and to prototype implementations of different aspects of this interface.

Version 1.4. of the Functional Specifications of PCTE interfaces [PCTE86] was published In

August 1986. The actual implementation used was the Emeraude developed, industrial quality

implementation of the PCTE interfaces. There were two versions used; the 10/3 version being

replaced by the 10/4 version in May 1989.

7CASE - Computer Aided Software Engineering

Page 21

Diagram 2.1., below, presents a conceptual view of the structure of an SEE developed on PCTE.

Diagram 2.1.

Tools for
Requirements
Analysis and
Specification

Tools for
Project
Management

Tools for
Prototyping

Operating
System

Tools for
Quality
Assurance

Tools for
Programming

Tools for
Cross-
DevelopmentTools for

Verification,
Validation,
and Testing

Tools for Design

Page 22

2.2. General Overview of PCTE

It is clear that PCTE itself is not an SEE but provides a platform upon which an SEE can be

constructed by the integration of the appropriate tools supporting all aspects of the software

development process.Before defining the architecture of PCTE the following statements can be

made about the exact nature of PCTE [PCTE88] -

[1] ... PCTE is a kind of O perating System
PCTE hides the details of the underlying operating system and hardware,

and provides a set of useful, commonly needed facilities to all CASE

tools. Tools which run upon one implementation of PCTE will run upon any

other, even where such implementations run on different hardware and

operating systems.

[2] ... PCTE is a kind of D atabase M anagem ent System
PCTE implementations contain an Object M anagem ent System (OMS) which

is a specialised database for holding all kinds of technical, administrative,

and managerial information describing the state of the system being

developed or maintained. The OMS will hold this information in a form which

allows it to be accessed and manipulated by cooperating CASE tools.

[3] ... PCTE is distributed
Data and tools are distributed around the network. Data moves from

workstation to workstation or is accessed from other workstations as the

need arises. All of this is transparent to the users. Tool writers need not be

aware of the characteristics of the particular network, nor do they need to

concern themselves with the manner in which the distributed facilities are

constructed. They write their tools as if all the data were held on a single

machine.

In the model architecture of PCTE there is a clear distinction between the tools and the

Page 23

underlying structure that hosts them [PCTE86], The public tool interface to the PCTE services

is defined by a set of program-callable primitives which support the execution of programs in

terms of a virtual, machine independent level of comprehensive facilities.

The contents of the PCTE Interface Definition is broken down into two logical sections,i.e

[1] ... Basic M echanism s
[2] ... User Interface

Both of these sections contain several distinct sub-sections which will be discussed in the

following sections. Because the theme of this thesis is the Development and Integration of Tools

into the Eclipse Tool Builder's Kit8 it would serve no real purpose to go into a detailed

discussion on the aspects of PCTE architecture which are not relevant to Eclipse and so only

those areas that are pertinent to the tool-builder using Eclipse will be discussed in detail.

The PCTE basic mechanisms correspond to the functionalities required to manipulate the various

entities that can exist in a development context [PCTE86]. These entities are essentially

programs that can be executed and the various objects that are manipulated by the

programs,e.g. the various representations of the programs being developed, documentation,

input and output data, etc.

There are six categories within the PCTE basic mechanisms. They are as follows -

[1] ... O bject M anagem ent System (OMS)
[2] ... Execution (EXE)
[3] ... In ter-P rocess Comm unication (IPC)
[4] ... C oncurrency and Integrity control (ACT)
[5] ... Communication (COM)
[6] ... Distribution (DIS)

8The terms Eclipse Tool Builder's Kit and Eclipse will be used interchangeably in this document.

Page 24

From the point of view of tool development and integration in Eclipse [1] and [2] above are the

most important and will be discussed in more detail than the other categories.

2.3. The Object Management System (OMS)

2.3.1. Introduction

The OMS is the data repository of PCTE. A key aspect of an SEE is the set of functions that are

provided to manipulate the various objects in the system [PCTE85]. Because the OMS is the

most important feature of PCTE with regard to Eclipse it will be discussed in more detail than

the other PCTE features. The various agents in the SEE (users and programs) operate on a

number of entities that are known to the system and can be designated in it. These entities are

globally referred to as ob jects . These objects could be files in the traditional sense, e.g. a

document, a structured object like a library of software components or something more abstract

like a project. The OMS can be seen as an evolution from the traditional File M anagem ent
System , e.g. the hierarchic structure of UNIX, to a structure that can be adapted to the needs

of different environments [PCTE86].

2.3.2. Schemas

A key concept in the OMS is that of the schema. The schema is a means of integrating tools

around commonly accessed data structures. The type definitions making up the overall OMS

schemas are organised into a collection of small sets of definitions called Schem a Definition
S e ts (SDS). Each SDS is a partial view of the whole OMS schema. Changes to the schema are

always carried out as updates to an SDS. PCTE provides a Data Definition Language (DDL)
as a schema definition formalism [PCTE86]. Examples shown in the following sections will

demonstrate the use of DDL.

Another key concept is that of the Working Schem a each of which is made of one or more

SDS. A working schema is a partial view over the overall schema. Working schemas allow the

coexistence of several, otherwise conflicting views of the database.

Page 25

The OMS provides facilities for managing a distributed object base based on an Entity-
Relationship (E-R) model [Chen]. From this model PCTE defines objects to be E-R entities

which can be distinctly identified, e.g. a file, tool, program library. PCTE objects can be

optionally characterised by -

C onten ts - a repository of unstructured data implementing the traditional UNIX
file concept.

A ttributes - a set of primitive values which can be named and typed individually.

R elationships - allowthe representation of logical associations/dependences between

objects.

Objects are classified into different object types where objects of a given type have the same

characteristics , as defined above. PCTE defines a type hierarchy in which an object can be

defined to be a subtype of another one, thus inheriting all the parent object’s characteristics.

An object type is characterised by -

2.3.3. Objects, Attributes, Relationships and Links

[1] ... a nam e
[2] ... a paren t type
[3] ... a s e t of attribute types
[4] ... a se t of link types for which it is a valid origin
[5] ... a s e t of links for which it is a valid destination

In the example SDS in Appendix A there are a number of examples of object typing. The idea

of the SDS shown is to define a schema to provide a simple C programming environment within

the OMS. Example 2.1. below shows the DDL code required to define a C source object which

has certain attributes and links, Thus c_source object is defined to be a subtype of file, i.e.

instances of this object can have contents.

Page 26

Example 2.1.

cjsource : subtype of file;

extend cjsource
with
attribute

fjim e;
fjsize;

link cc;
inc;

end c_source;

A ttributes are defined for both PCTE objects and PCTE links. A link is a uni-directional

association between an origin object and destination object. An object attribute defines an

intrinsic property of an object. Thus in the example above the C source object is defined to have

two attributes f_tlme and f_size. The types of these attributes can be seen in Appendix A. A link

attribute qualifies a link and indirectly the object which is the destination of this link. An example

from Appendix A of a link attribute is shown below in example 2.2.

Example 2.2.
cc : reference link (name) to objectJile

with
options;
optimize;
debug;

end cc;

In this example it can be seen that the reference link cc has three attributes which are relevant
to a specific compilation. The types of these attributes can be seen in Appendix A.

An attribute type is characteristics by -

[1] ... a nam e
[2] ... a value type (integer, boolean, date, string)

[3] ... an initial value
A link can be used to create a simple reference from an object to another one, or to model a

particular structure, e.g. a hierarchical directory structure. Designations of links is the basis of

designation of objects [PCTE85] since the principal means of accessing objects is to navigate

Page 27

I

the OMS object space by traversing a series of links in the form of a pathnam e. The link type

defines the characteristics of all its instances, i.e. the links.

A Link is characterised by -

[1]

[2]
[3]

[4]

[5]
[6]
[7]
[8]

a nam e
a cardinality
a category
[a] Com position Link -

one-to-one, one-to-many links

[b] R eference Links

[c] Implicit Links

The creation of an object requires the creation

of a link starting from an origin object and

leading to the new object. This link must

have the category com position.
This category of link is used to refer to any

pre-existing object. As long as the link exists

the object cannot be deleted.

This category is specified for one direction

of a relation (a pair of links such that the

origin of each is the destination of the

other)type and is created/deleted as a side

effect of the creation/deletion of a reverse

link.

As long as the link exists, the destination

object can neither be deleted nor updated.

a se t of origin object types
a s e t of destination object types
a list of key attribute types - A key is necessary for cardinality many links,

a s e t of attribute types (see Example 2.2.)

a stability property

A PCTE object is deleted when there are no more composition links leading to it.

Page 28

As stated previously, the purpose of the DDL example in Appendix A is to model an SDS of a

simple C programming environment. A diagrammatic representation of the underlying data model

would be as follows -

2.3.4. Description of Example Schema Definition

Diagram 2.2.

<name>.cc

The Data Model for the C Program m ing Environment

The schema definition shown in Appendix A can be compiled and automatically installed as a

special PCTE object within the OMS. This means the it can be included in a working schema

as follows -

+ # se tsc h c s d s env

Page 29

If this SDS is included in a working schema it makes all the link and object types defined within

it visible. It is thus possible to create instances of these link and object types. An example of

how one would create a c_source object would be as follows -

+ # crobj -t c_source new jile .c

The command crobj creates an instance of the object type following the -t. In order to create

the required object one must supply the path to the object, i.e. new_file.c. If the schema

definition is checked it can be seen that a c link is a cardinality-many (keyed) composition link

to a c_source object. The above command presumes that we have created the parent objects

of the c_source object and that we have navigated to a c_program object, c.f Diagram 2.2. Such

a navigation would look as follows -

+ # cd _/.users/eclipse.usr/.progs/test_project.c_prog

This navigation path is broken down as follows -

_ /.u se rs /ec lip se .u sr - This is the path to a particular u se r object (Diagram 2.2.) as

defined by the env system supplied schema.

.p rogs - A cardinality-one (one-to-one) link from a user object to a

program s object.

test_project.c_prog - c_prog is defined to be a cardinality-many link to a

c_program object. This link has to be keyed by a string so

as to navigate to a particular c_program object, i.e. the

test_project.c_prog link when traversed will lead to a particular

c_program object.

Page 30

Appendix B contains the source code of the small tool written to use the schema definition

shown in Appendix A. All the PCTE interfaces implemented by Emeraude are supplied in one

library called libem er.a which must be linked in with the tool-buiider’s code. As well as operating

on the link and object types defined in the schema definition shown in Appendix A, the tool also

operates on the set of system attributes which are define for all object types in the OMS and

which can be retrieved by using the getobjstat library function. Such attributes would hold

information such as the current size of a object or the date of last update.

The tool stores the time of last compilation in the f_time attribute of a c_source object. It stores

the size of the c_source object at the time of the last compilation in the f_size object. Thus, the

value for f_size is compared with the system attribute containing the current size of the c_source

object. If they are different then the source file has been modified since the last compilation. The

other check requires that each include file referenced by a source file is checked to see if it has

been modified since the last compilation. This is done by navigating all the .Inc reference links

starting from the c_source object. The f time attribute is compared with each include file’s

system attribute showing the time of its last update. If any of the include files have been more

recently updated than the source file then a recompilation is required.

2.4. PCTE Execution Mechanisms (EXE)

The PCTE execution mechanisms cover the various notions and functionalities that deal with

active entities, i.e. programs and processes [PCTE86], PCTE defines the notion of the static
context for executing programs. The basic constituent of a program is its load module. In PCTE

a load module is not confined to be binary, compiled code, but can include any internal or

external representation that can be executed by a suitable program.

2.3.5. Description of Example Tool

Page 31

Two levels of execution starting must be distinguished in PCTE, i.e. starting another process

independently of what that process has to do or starting the execution of a given program either

within the current process, or as a separate process.

The Emeraude implementation is based on UNIX and as such provides upward compatability

for UNIX tools. Thus, PCTE preserves the UNIX primitives for spawning new processes and for

starting the execution of a given program in a process. In addition PCTE defines two additional

primitives which are -

CALL - creates a new process that executes the program and blocks the calling

process until completion of the execution of the invoked program.

START - This is similar to CALL but does not wait for the called program to terminate.

The parameters are the same as in CALL An example of a START call can

be seen in the compile_program function in Appendix B. The call to startl
invokes the UNIX C compiler with the C source file object as a parameter.

2.5. PCTE Communications Mechanisms (COM)

These mechanisms deal with the primitives to operate on the contents of a given object, be it

normal, i.e. a file, or special, e.g. a pipe. The primitives here are exactly as those provided by

UNIX. Given an OMS object specified by a pathname, one can open the object contents for

reading, writing or both returning a file descriptor as in UNIX. This area of PCTE is totally

changed under ECLIPSE which allows the definition of object types which can have structured

contents, i.e. one can specify a schema for the contents of an object which results in a two-
tier entity-relational database.

Page 32

2.6. PCTE Interprocess Communications Mechanisms (IPC)

The mechanisms used in PCTE are derived from primitives used in UNIX system V. There are

three primary IPC mechanisms -

[1] ... P ipes - establish cooperation between two processes which may not

be programmed specifically as cooperating processes, by

appearing as normal files.

[2] ... S ignals- send asynchronous signals to a given process, and indicate

a response to a given signal as a procedure to be executed

when that signal is received.

[3] ... M essages - Message queues are considered as the primary means to

achieve interprocess communication. The basic concept is
that of a m essag e queue. Each queue has an identifier

which can be distributed over the LAN.

The problems which the IPC mechanisms must address are as follows [PCTE86] -

[1] ... they must allow allow close cooperation between related, cooperating

processes.

[2] ... they must be general, i.e. provide a system-wide facility even when the

system is distributed.

[3] ... they must be efficient, both for implementation and use.

Page 33

2.7. PCTE Concurrency and Integrity Control Mechanisms (ACT)

The aims of the PCTE Concurrency and Integrity controls are as follows [PCTE86] -

[1] to ensure consistency of data access operations.

[2] to support the maintenance of integrity of accessed information by the

facilities allowing the grouping of a sequence of logically related actions as

a single, atomic transaction.

[3] to work transparently for users and tools not concerned by concurrency

control.

The elementary information item seen by the concurrency control mechanisms is called a

R esource which is either an OMS object with its contents and its set of attributes or a link and

its attributes. A resource is operated on when the resource is an object whose contents are

open or when any other, self-contained, operation is in progress. An Activity is the framework

within which a set of operations takes place and an operation is always carried out on behalf

of one activity. There are three classes of activities in PCTE -

[1] ... Unprotected Activities - Do not require their data accesses to be

protected from other concurrent activities.

[2] ... P ro tected Activities - Require their data accesses to be protected

from other concurrent activities. However their

effect is not required to be atomic.

[3] ... T ransactions - A transaction starts from a consistent

database state and leads to another

consistent state.

Page 34

PCTE defines Lock mechanisms to ensure the consistency of OMS data access operations by

supporting the synchronisation of concurrent operations, It is a liaison between an activity and

resource.

2.8. PCTE Distribution Mechanisms (DIS)

The user sees a community of compatible workstations, of possibly differing types, which

comprises the PCTE environment as a single environment. Little of the function of the distribution

is visible to the user. Its task is not only to allow the user access to the resources, software and

hardware supplied by his own workstation, but also in a totally uniform way to all the resources,

software and hardware, of the entire environment constituted by the different interconnected

workstations [PCTE86].

2.9. The PCTE User Interface

What follows in this section is a brief description of the PCTE user interface. Because Eclipse

has its own, self contained user interface, it would be of little use to have a detailed discussion

of the PCTE user interface in this thesis.

In general, it can be stated that the design of a user interface is becoming more and more

important. The provision of better user interfaces is being aided by the development of hardware

which is able to drive graphic output. The emphasis these days is on systems which can be

adapted to the user’s requirements. The user can now interact with several tools concurrently,

usually through windows on the screen. Thus the user interface provides the user with a

communication port to the different applications in the user’s working configuration, interprets

user input, and channels it to the corresponding applications.

A problem which has existed has been the inconsistency in the meaning of various instructions

depending on the context/mode. This is overcome in the PCTE user interface by the adoption

Page 35

of an O bject O riented approach. The entities in the user interface are, as far as possible,

handled in the same way, i.e. there is a standard set of operations. This is achieved by the

following two steps -

[1] ... select the required object.

[2] ... perform an operation on that object ,i,e. generic commands which can be

applied to different objects.

PCTE provides the standard functionality of a window management system [PCTE85]. Windows

can be moved and can overlap or overlay on the screen. Every application can be accessed

by the user via its associated window, It is also possible to iconise windows.

Diagram 2.3.

The Basic S tructure of th e User Interface

Diagram 2.3, illustrates the basic structure of the user interface model. The User Agent is in

charge of translating the intention of the user to the system, e.g. display and management of

windows, control of input from various input devices. Applications represent tools to the user.

Page 36

Existing tools use an OS-Application, which emulates the host operating system in a window

acting in a standard terminal mode [PCTE85]. They are not, however, able to take advantage

of the PCTE user interface’s advanced facilities.

2.10. Evolution Of PCTE

At least two implementations of the PCTE interfaces definition are currently running. One was

developed by Olivetti within the original Esprit project. The other implementation was developed

by the Emeraude consortium and it is upon this version that Eclipse was developed. Ada

bindings for the PCTE basic mechanisms have been implemented on this version and an Ada

compiler has been validated on Emeraude running on a Sun 3 and Bull SPS7 machines [Boud].

Version 10/4 of the Emeraude implementation was delivered in May 1989.

In 1987 the Independent European Program m e Group (IEPG), a grouping of European

members of NATO, decided to finance the PCTE+ project to examine how to build on the

experience of the interface definition to define a basis for environments suitable for military as

well as civil applications. IEPG felt that PCTE 1.4. was not suitable for military use without further

development, notably in the areas of security and operating system independence [Tedd].

PCTE+ has two phases. The definition p h ase began in 1987; its major deliverable was the
EURAC, the requirements and criteria to be used for the definition of PCTE+. The definition

phase has now reached issue 3 and will form the basis of the a sse ssm e n t p h ase which will

design and develop a layered implementation of PCTE+ on top of both UNIX and VMS.

The formal standardisation of PCTE ,i.e. PCTE 1.5., is also underway, under the guidance of the

E uropean C om puter M anufacturers A ssociation (ECMA). It is hoped that this will lead to an

ISO standard tool support interface, based on PCTE, in 1990.

In mid-1988 the threat of schism hung over PCTE [Teddj. The ECMA version 1.5. was to be

updated to a new verion 1.6. while PCTE+ was based on the 1.4. version and developing

Page 37

separately. Fortunately PCTE+ has retrofitted the improvements of version 1.5. and the ECMA

have decided to base their work on PCTE+.

Page 38

Chapter 3.

Architecture of Eclipse

3.1. Introduction

Eclipse is the result of the Alvey Eclipse project initiated in the latter half of 1983. The intent of

this project was to develop an integrated project support environment (IPSE)9 of the kind

described in [Stone], to populate it with various tools in support of some software engineering

methods and in support of Ada [A ldel]. There were two versions of Eclipse used during the

course of the research for this thesis; version 2.1 was replaced by version 2.2. in October 1989.

The TBK10 contains documents, libraries and header files, compilers and generators, example

text files, initialisation scripts, and icons and cursors. The TBK provides all the facilities required

by a tool builder, e.g. schema definition and database, user interface, graphical editing, system

related facilities.

The features which characterise an IPSE, as envisaged by the Eclipse consortium, are its use

of a database to hold all the data relating to the project and the provision of a kernel of facilities

which provide all a tool’s requirements with respect to execution, inter-process communication,

input-ouput and database access. The develop of such a kernel was considered to be beyond

the scope of the original Eclipse project. For this reason PCTE was chosen as the basis of the

kernel and a layer of software was developed on top of PCTE. Thus tools are developed on a

composite Eclipse/PCTE kernel.

The tool-builder’s kit (TBK) is the key to the power of Eclipse. The idea behind Eclipse is to

provide a base upon which integrated toolsets can be built rapidly. The TBK forms this base and

it consists of libraries of functions and of meta-tools.

The Eclipse architecture can be seen in diagrammatic form in Diagram 3.1. This diagram shows

the logical structure of the Eclipse kernel, toolsets and tool-builder’s facilities.

‘The terms integrated project support environment (IPSE) and software engineering environment
(SEE) will be used interchangeably in this document,

10TBK - Tool Builder’s Kit

Page 40

Diagram 3.1.

Application Toolsets

UI DBI
Eclipse Kernel
PCTE Interface
PCTE

LSDM MASCOT Others

Cl

Discs Screen, Printer
Keyboard

Shapes Library

UI - Eclipse User Interface
DBI- Eclipse Database User Interface
Cl - Eclipse Configuration Interface

Design Edit.
Text Tool
GDL Compiler
DDL Process.
Shapes Comp.
Help Gen.

GDL Defs.
DDL Defs.
Shapes Defs.
Help Scripts

Page 41

The individual parts shown in Diagram 3.1. will be explained in detail in the following sections.

The discussion will focus on the major building blocks of the Eclipse TBK architecture, namely

the following -

[1] - The Eclipse D atabase.
[2] ... The Eclipse User Interface.
[3] ... The Design Editor

3.2. Forms of Tool Integration in Eclipse

The idea of tool integration is a central theme of this thesis and thus, before discussing the

Eclipse architecture in detail, it is important to discuss the different types of integration

recognised in Eclipse. At this stage, the details of how each level of integration would be

implemented will not be discussed. The levels of integration available within Eclipse are as

follows -

[1] ... N on-integration
This level would be limited to running the tool concurrently with Eclipse tools. The foreign

tool must have a compatible interface, i.e. any tools with user interfaces based on X windows

cannot share the workstation monitor with Eclipse tools since the Eclipse user Interface is still

based on SunView. At this level foreign tools would be invoked via a console window.

[2] ... Loose Integration
This level would be limited to invoking the foreign tool from an Eclipse tool ,i.e. "master tool",

and running the tool concurrently with the Eclipse tools. This level has a number of benefits over

non-integration. The availab ly of the foreign tool could be controlled by the master tool. The

master tool could check that all other tools had terminated before allowing the user to logoff.

The foreign tool could be described in the Eclipse Help system and its use could be logged

Page 42

using the Eclipse message system. The whole user interface would be improved since all tools

would be invoked in the same way.

[3] ... Data Integration
At this level the foreign tool would be integrated with other tools in the sense of manipulating

the same data structures. Sharing of data has to be considered from both the static and

dynamic aspects. From a static point of view, the schema of the data needs to be defined. From

a dynamic point of view, the degree to which concurrent access to the data is allowed has to

be defined. Sharing data has the benefit of reducing duplication and increasing the reliability of

information. The integration of data means that new tools can be designed to extract more

useful information from the combined database. As this is the most important form of integration

it will discussed at length throughout this thesis. A lot of the work carried out as part of this

thesis dealt with this form of integration.

[4] ... U ser Interface (UI) Integration
At this level the foreign tool would be integrated with other Eclipse tools in the sense of

having an Eclipse-style UI. A uniform UI increases ease of use, reduces learning time and results

in fewer user errors. The user impression of the toolset as an integrated set of related tools is

greatly enhanced by the provision of a uniform UI. The Eclipse UI provides a portability platform

for tools between different windowing/manufacturers standards.

[5] ... Full Integration
This level includes both data and UI integration. The tool is designed and implemented in

order to take full advantage of the Eclipse kernel facilities, to share data with other tools and to

utilise a common UI style.

Page 43

3.3. The Eclipse Database

3.3.1. Introduction

The PCTE Object store is an extension of the UNIX filestore concept. In this object store files

are treated as entities with attributes and relationships. This was seen as a major advance by

the Eclipse consortium but they regarded the fact that PCTE treated the contents of its entities

as normal file store as a major failing. The primary means of integrating tools should be through

access to common structures in Object Store, but in PCTE the majority of data is treated as

having no structure [A ldel]. In reality this is not the case. Contents often have a well defined

structure, e.g. a design diagram consisting of nodes and arcs. The Eclipse database provides

a means of expressing the structure of the content by providing two tiers of data.

The first tier is at the level of PCTE objects. First tier information, generally, names and versions

second tier data. Its purpose is to organise and control access to the second tier data. Each

module of second tier data can be seen as a database in its own right and thus is known as

a Fine S tructured D atabase (FSD) [C artlj. The Eclipse database has a unified data model in

which both tiers of data are represented. In this section the Eclipse data model will be described

and it will be shown how it refines the coarse-grain structure of PCTE’s data model.

The purpose of having the two tier database is to integrate data. This is done by providing the

following features -

[1] ... A uniform interface to physically and schematically different data stores.

[2] ... Linking the different data stores together by inter-body pointers.

3.3.2. The Eclipse Data Model

Just as with PCTE, Eclipse follows the hierarchical model presented in [Pene2] and discussed

in Chapter 1. Thus the lowest level of the hierarchy is the definition of the overall data model.

The data model used is a refinement of the ERA model presented in [Chen] and which is used

Page 44

in PCTE. This data model is the two-tier model already mentioned. The design of the Eclipse

data model and database interface was greatly influenced by [Bune] and [Ship] with their

development of a function data model [Cart2], The characteristics of such a model will be

outlined in the following discussion.

The first tier of data is implemented by the PCTE OMS, the details of which are described in the

previous section. There is, in addition, a predefined Eclipse SDS, eclipse, which provides the

definitions required by the message system, the database, Eclipse users and basic Eclipse tools.

Database transactions and recovery are not covered by the Eclipse specification and users must

protect the integrity of their data using the facilities provided by PCTE.

Certain first tier objects are known as fine structu re objects. These objects lead to second tier

data and are defined to be subtypes of fine_structure_object which is a predefined type in

the eclipse SDS and is itself a subtype of file because a fine structure object has contents. In
Eclipse the contents of objects as well as the objects themselves are described by schemas.

If a schema defines second tier data then it will be defined to be a subtype of

fine_structure_sds.
Using the functional model of data , data is modelled in terms of ty p es and functions. In Eclipse

data is organised into entities. An entity is something which has attributes. Each entity is typed

and it is the type of the entity which determines what attributes an entity has. This model thus

follows the ERA model described in [Chen],

The roles of entity types in Eclipse are twofold -

[1] ... They determine the structure of entities as lists of named attributes.

[2] ... They classify entities, of which there are two types in Eclipse -

[a] ... Subtype - Allow an entity type to be defined as

a specialisation of some other entity

type.

[b] ... C lass - Allow an entity type to be defined as

a generalisation of other entity types.

Page 45

I

Attributes in Eclipse are typed as follows -

[1] ... Printable Attributes - These are either integer, boolean,

string, date, or user-defined enumeration type.

[2] ... A ttributes of Type Entity ■ The purpose of these attributes is

to link entities together. Instances of attributes of type entity are known as links. They are

equivalent to cardinality-one links in PCTE [McLe],

In either case they are understood as functions. For example an entity value f is understood

as a function with as signature [Cart2] -

f : A -> B

where A and B are entity types.

Entity attributes are defined to be single-valued or many-valued. Many-valued attributes have

their values organised in two possible ways -

[1] ... Keyed Bag Attributes - A bag is an unordered collection of values

in which the same value may occur many times. For keyed bags each value is associated with

a key, which need not be unique. In Eclipse keyed-bags are always keyed bags of entities. They

generalise the PCTE cardinality-many link type.

[2] ... S eq u en ce Attributes - A sequence of values has order and may

have multiple occurences of the same value. These attributes may be printable, e.g. sequence

of integer, or they may be entity-valued, i.e. a sequence of links, A sequence-of-string attribute

h of entity type B is shown as having the signature -

h : B - > Seq Of String.

Given this data model it can seen that database navigation is actually functional composition.
Thus the functional expression -

husband/name : person -> String

specifies the name of the husband of the specified person.

Page 46

It can also be seen that database iteration through entities of a given type is actually iteration

through the values of a many-valued function.

3.3.3. Eclipse Data Definition Language (DDL)

Like PCTE and conforming to the [Pene2] hierarchy model, Eclipse has a DDL which is used

to define Eclipse two-tier schemas and which may be compiled and installed using DDL compiler

tools. Eclipse DDL defines both tiers of data in the Eclipse database. The first tier data is defined

by a single notation referred to as first tier DDL, while the second tier DDL is given in terms of

the IDLE11 language. Examples of Eclipse DDL will discussed throughout this thesis , with regard

to the various tools that were integrated into and developed for Eclipse.

First Tier DDL
Eclipse first tier DDL defines data in terms of sets of schema definitions referred to as Schema

Definition Sets (SDS). These are the same as the PCTE SDS’s described earlier in this

document. The first tier DDL of Eclipse is logically equivalent to the PCTE DDL since both

describe the PCTE OMS. The language syntax is different from PCTE DDL. Appendix C contains

a example of an Eclipse DDL file and gives a short explanation of how it is used.

S econd Tier DDL (IDLE)
Second tier schemata define the internal structure of a first tier entity type [McLe], i.e. its fine

structure. The IDLE schema defines a data structure as a set of attributed directed graphs. IDLE

is an extension of the Interface Definition Language [Nest] which was originally used in the

generation of user interfaces. An IDLE schema consists of definitions of the various types of

nodes and their attributes. In addition, a collection of classes of node types may be introduced

in which an attribute of a class will also be an attribute of all the node types of that class. The

example DDL source shown in Appendix C shows what an IDLE schema definition looks like.

3.3.4. The Eclipse Database Interface (DBI)

UIDLE - Interface Definiton Language for Eclipse

Page 47

I

The database software will support many separate tool fragments running as separate processes

running within a single user-id. Each tool fragment must have the database interface (DBI)

bound into it [Cartl]. Thus each tool fragment must logon to the database but once a set of
tool fragments have logged on then the combined effect on their calls is as if were interleaved

through a single instance of the interface. It is important to note that when tools access common

data in Eclipse it is up to the tools to access this data in a consistent way. Such a group of

processes is called a cooperating group each of which has an access permission to each fine

structure database (FSD).

Different cooperating groups are in competition with each other if they try to access data from

the same fine structure database. Multiple readers are permitted but only a single writer. If

competing processes need to share a fine structure object, e.g. a data dictionary which may be

updated by several users simultaneously, then it must be defined to be of type

shared_fine_structure_object. There are locking and unlocking facilities provided by the DBI.

These must be used in order to ensure that data does not get corrupted.

When using the Eclipse DBI the notion of an iterator is used to iterate through one or more

values of a many valued attribute. Iterators are tokens handed out by the database and having

an internal state maintained by the database. There are several functions defined within the DBI

which manipulate iterators, e.g. next.

The Eclipse database interface consists of twenty five functions with a maximum of three

parameters. The exact nature of these functions will be discussed with respect to the various

tools that I integrated into and developed for Eclipse.

3.3.5. The Eclipse Database Attributes

The reason that the Eclipse DBI can present a simple and uniform interface to both tiers of data

is because of the rich and extensible set of attributes supported by the interface. The set of

standard attributes associated with PCTE objects are maintained in Eclipse for the first tier

objects. A full description of these attributes is found in [PCTE86],

Eclipse also defines several virtual attributes which return schematic and system related

Page 48

information about an entity. Examples of such attributes are -

[1] Entity Type Name ($TYPE) returns the entity type name of an

entity.

[2] Textual Representation ($TEXT’x) - returns the text representaion of an

integer, boolean or date attribute x.

[3] Destination Types ($DEST’x) - If x is an attribute typed by some

attribute A then this derived attribute

returns the names of all the entity

types classified by A.

A special virtual attribute which is defined in IDLE is IA, for every entity type A. The meaning

associated with this is "all A’s which exist in this fine structure object" ,i.e. all entities of type A.

It is an attribute of the local root entity, UNIT, of a fine structure object. !A is of type Seq Of A

an is the only form of composition link supported at the second tier. Thus all entities of type A

are created in relation !A to the local root.

Eclipse also supports derived attributes which support searches of IDLE structures enabling

entities to be identified from the values of their attributes by exact matches and by pattern

matching [Cart2]. Thus , given the extract of IDLE below, an example of a derived attribute

would be the selection of a particular employee from the many employees in a department.

This example defines two entity types department and person. The department entity type has

an attribute which is of type sequence of type person. The person entity type has an attribute

name which is of type string. Thus the selection of a particular employee, smith from employees

Example 3.1.

ENTITY UNIT | department \ person;

department = > employees : Seq Of person;

person = > name : String;

Page 49

by name, could be stated as the derived attribute -

smith.employees ~ name

which has the signature

smith.employees ~name : department -> person.

In order to retrieve all the smiths from employee by the derived attribute would be as follows -

¡smith.employees ~ name : departments Seq Of person

where I is the virtual attribute from UNIT meaning all.

3.4. The Eclipse User Interface (Ul)

In designing Eclipse, the integration of tools via the database was obviously essential, but as

well as this, the Eclipse consortium considered that the provision of a fully integrated end-user

interface, along with support for the construction of such an interface, was also essential. It was

decided that the Eclipse user interface required a unifying metaphor [Pottl] which could be

used consistently across all tools. An example of such a metaphor is the desk top m etaphor
used by the Apple Macintosh. Such a metaphor was required because the number of modes

of interaction possible on the bit-mapped workstations, upon which the Ul is supplied, is

enormous and decisions had to be made to limit the number used so as to avoid confusion.

The desktop metaphor was rejected because the objects that it represents are office documents

with a limited set of allowed operations such as move, delete, etc. This metaphor was too

simplistic because the objects which a software engineer is concerned with, e.g. programs,

designs, etc., require a much greater set of possible operations, e.g. compile, link, etc., than

those allowed in the desktop metaphor, On the other end of the scale the command languages

of UNIX and PCTE were too terse and inconsistent, especially for inexperienced or occasional

users. The need was thus for a compromise between the easy to understand but simplistic

desktop metaphor and the terse command language offered by systems such as UNIX [Pottl].

Page 50

The metaphor selected was the control panel m etaphor. An interface definition layer was used

to isolate the Ul from the underlying architecture. This layer allowed the Ul structure to be

described in a definition language called the Format Description Language, which could be

translated into the appropriate representation for the underlying window manager. The Ul is not

tied to any particular machine or operating system since all that is required to port it is the

redefinition of the translation.

In order to have a fully integrated Ul there must be a consistent treatment of messages to the

user. It would be confusing to the user if every tool could make arbitary decisions about where

and how messages were displayed. Inconsistency is a major irritation to users and thus Eclipse

provides a unifying mechanism for all messages passing between tools and the end-user.

Another important aspect which relates to the Ul is the provision of help. This is particularly

pertinent for complex on-line systems. As with messages, it is important that the help facilities

provided with each tool are of the same style so that the user does not have to learn a

multiplicity of different ways to obtain help. In Eclipse, there is a context sensitive help system

which relates to the tasks currently being undertaken by the end-user, thus allowing the user

to browse through the help frames.

3.4.1. The Eclipse House Style

As far as the Ul is concerned the Eclipse tool is one that conforms to the Eclipse presentation

standards and provides a standard set of facilities in a standard way, i.e. Eclipse tools have a

similar look and feel about them; they present the Eclipse h o u se style [Pott2]. This style is

provided via the building blocks which comprise the control panel metaphor. Control panels are

built using five basic types of object -

[1] ... Button - An object which, when selected, always initiates

a single action.

[2] ... Menu - A menu displays a list of objects which may be

chosen by the user to initiate some an action.

Page 51

The menu elements are not static and may depend

on the context in which the user is working.

[3] ... State Selector - A composite symbol consisting of a menu and a

value. The value displays the current state which

may be changed by the selection from the menu.

[4] ... Sign - A two part object with a fixed title and a value.

The value may be static, dynamic user-changeable.

[5] ... Light - A binary status indicator, e.g. tools arrange for

a light to ’flash’ during time consuming operations

to assure the user that the system is still alive.

An example of a typical control panel is shown in Example 3.2. This is the standard control

panel displayed when a user logs on to Eclipse.

Example 3.2.

masterutindom 2.8 .1

.gçTroot

Move
R efresh

Page 52

Software is needed to assist in the implementation of Ul standards, The use of common software

is the only way to guarantee identical interactions across all tools. The AI is the piece of

software that implements the Eclipse house style and, in particular, it implements the control

panel metaphor [Alde2]. The user is presented with a set of high-level, abstract primitives which

are used to construct the tool interface and which hide the actual device characteristics while

allowing powerful, low level graphics operations to be used when the need arises. By using the

AI a tool will automatically inherit a style of presentation which is consistent with all other Eclipse

tools - this is the Eclipse house style [Pott2].

The AI is defined as a communications channel between the user and the tool. A tool is not

concerned with the manner of presentation of data, It needs to provide values for the user to

see and it need to get values from the user. The precise nature of the interaction is not

important to the tool. The basis of the high level abstract Ul supported by the AI is a hierarchy

of objects representing the various classes of images that a tool may use to construct its Ul

[Pottl], Diagram 3.2. shows this hierarchy.

The root interface object is called the screen and represents the whole output area available

on the workstation. Within the screen a number of windows can be defined, one of which may

be visible at any one time. A window may contain one or more fram es which may be aligned

vertically or horizontally within the window. The frames are not constrained to be either as wide

or as deep as the window. If frames overlap they do so destructively. With the exception of

form atted fram es, frames may not be subdivided. Frame subdivisions are called panes and

consist of a set of fields which the tool wishes to manage as a group. Fields are generalisations

of the control panel elements, e.g. buttons, signs, etc.

3.4.2. The Applications Interlace (A I)

Page 53

Diagram 3.2.

The U ser Interface Object Type

G raphic Fram e - Supports the simple object-oriented graphical primitives for diagram drawing.
TTY Frame - Emulates a character terminal.
Form atted Fram e - Used to represent frames which have sub-divisions - This form of frame is

used to represent control panels, i.e. contains buttons, signs, etc.
M essage Frame - Used to display text messages generated by the message system.

3.4.3. Format Description Language (FDL)

The actual presentation of the Ul to the user can involve a lot of experimentation. The Eclipse

consortium chose to describe the interaction style and layout by means of a language called

form at descrip tion language (FDL). An FDL file contains a description of the control panel

interaction as well as the windows, frames and panes used by a tool ,i.e. the hierarchy of tool

user interface objects and their relative positions and extents. The layout of a control panel or

Page 54

the window organisation of a tool may be changed without the requiring changes to the tool

code. At run-time the FDL is interpreted to provide the control panels and the control panel

actions. Diagram 3.3. shows the interaction between a tool and FDL.

Diagram 3.3.

FDL and Tool Interaction

In chapter 5 the use of FDL in presenting a Ul for building a database to hold a classified

specification of a network node is discussed.

3.5. The Eclipse Message System

In Eclipse, a message is regarded as information received by the message handling subsystem

for routing to zero, one or more than one of the message display area, console, and session

event logs [Hays], The key aspects of the message handling system are as follows [Pottl] -

[1] ... Message Text and Code Separation

This means that different messages can be created for different user

populations and can be represented in different languages. These message sets are read at run

time and thus can be changed at run time without software rebuilding.

Page 55

[2] ... Structured Message Texts

All messages are typed and fall into three classes, c.f. Appendix D. A

message is structured into a type, a text, a parameter list where the parameters normally

represent the user’s context, and a link to the help system.

[3] ... Help System Integration

Each message is linked to a help system frame. To display the associated

help frame the user selects the help button which is standard on every Eclipse tool.

Messages which relate to the same tool are held in files and are called message sets. Each

message within a message set is identified by an associated message number. Eclipse provides

a C library to allow tools to display message texts in a message frame.

3.6. The Eclipse Help System

The prime objective of the Eclipse help system is to give users the information they need quickly

and to assist them to relate that information to the task at hand. Example 3.3. shows the layout

of a typical help frame.

The salient features of the help system are as follows [John] -

[1] ... Provides rapid access to information stored on the Eclipse database,

displaying the information quickly with the minimum of interaction.

[2] ... Help text is generally displayed in a single frame without the need for

scrolling.

[3] ... Help information can be viewed alongside the component upon which help

is requested.

[4] ... Any number of helptools can be invoked at any time.

These features are provided via the helptool which runs asynchronously with the invoking tool.

Page 56

Each help entry is specified by a help frameset name and a help frame name. Each help entry

is unique. Help entries are normally linked together to allow navigation around the help

information.

E xam ple 3 .3 .

helptool 2.6

E c l ip s e Help 1...E x l t . , , 1

: Retained Search Pattern
1

► Hark/Unmark I ► Select I

help
help - How to obtain more Information.

SUMMARY
To obtain more information on how to use the help
tool you need to 'navigate' to other 'frames’
of Information from the current frame of information
you are now reading.

DETAILS
To navigate to further information move the mouse ont
the 'Select' menu and click the left mouse button,
A menu of one or more lists will be displayed. The
contents of the menu will depend on what information
connected with the current frame is available. Move
the mouse over the 'Further Information' choice and
select it by clicking the left mouse button. A furthe
Information frame entry will be displayed. Select thi
frame by clicking the left mouse button over it and
the selected frame of information will now be
displayed. This is now your current frame,

The above method of selecting choices from the
'Select' menu using the left mouse button can be
repeated to navigate to any other information frame
connected with the current Information frame.

Page 57

3.7. The Design Editor (DE)

What follows is an overview description of the DE, In chapter 4 the use of the DE in the

generation of graphical designs will be discussed in detail. Graphical approaches to software

design, such as Data Flow Diagramming, Jackson Structured Design, etc., have become very

popular. The Eclipse was required to allow the incorporation of support tools for such methods

and to allow the designs produced with such tools to be stored in the Eclipse database.

Because Eclipse is an open IPSE it was impossible to predefine which methods would be

supported. The Eclipse consortium came to the conclusion that the most effective way to provide

a design support tool for graphical design methods was to produce a generic tool which could

be tailored by the system builder for whatever methods were supported in any single release

of Eclipse [Beer], This requirement went beyond the provision of a graphical editing system. It

required the provision of a tool which would allow the user to create and maintain software

designs in a diagrammatic form and to capture both the diagrammatic representation and the

underlying semantics in the Eclipse database [Robsl], A design definition language was

developed in order to support arbitrary symbolism. This language is called the Graph

Description Language (GDL). GDL provides a notation for defining the syntax and partial

semantics of software designs which are expressed as directed graphs.

The normal procedure for using the Design Editor to implement graphical design methods is as

follows [Beer] -

[1] The Eclipse tool builder defines the syntax and the semantics of the design

method to be supported using GDL.

[2] ... The GDL compiler generates tables for input to the DE.

[3] ... The symbols associated with a method are defined by the Eclipse tool

builder and the tables are generated for the DE.

[4] ... The DE uses these generated tables to provide an interface which is tailored

to whatever design method is in use.

[5] ... The generated designs are stored in the Eclipse database.

Page 58

Chapter 4.

Integrating Foreign Tools Into Eclipse

P a g e 59

4.1. Introduction

A major part of my work for this thesis involved the evaluation of the Eclipse database as a

basis for integrating tools. In the next chapter I will discuss the development of a new tool using

Eclipse/PCTE. I selected two tools which had been developed by two other partners in the

SPECS project. The first tool was developed by PTT Research - Neher Laboratories in Holland.

They developed a LOTOS tool environment for the integration of LOTOS tools. The second tool

was a C code generator, developed as part of the SPECS project by Bell In Belgium. This tool

took the Common Representation Language (CRL), developed by the SPECS project, as input

and generated C source code from it. I found that the degree of integration into Eclipse which

was possible differed greatly for these tools. In this chapter I will discuss the steps taken in the

integration of these tools, and will highlight the problems encountered.

4.2. The LOTOS Tool Environment (LOTTE)

4.2.1. Introduction

LOTOS (Language of Temporal Ordering Specification) is one of the two formal description

languages developed within the International Organisation for Standardisation (ISO) for the

formal specification of open distributed systems, and in particular for those related to the Open

Systems Interconnection (OSI) computer network architecture [Bolo], LOTTE is an environment

which aims to give a uniform access to tools with each tool being accessible with a special

command in the environment. LOTTE was chosen as a first attempt at tool integration into

Eclipse. My initial idea was to take tools from LOTTE and examine the extent to which they

could be integrated into the Eclipse environment. What follows in this section is an account of

the tools used and the knowledge gained in trying to integrate them into Eclipse.

For the purposes of integration into Eclipse two LOTTE tools where chosen. These were a

Syntax and Static Semantics checker (SSS) and a Gate-Sortlist Report Generator (GSR). In

Page 60

LOTTE all interaction between these tools occurred via intermediate files. It was hoped

to replace this file-based tool integration with an Eclipse two-tier database implementation.

4.2.2. The Syntax and Static Semantics Checker (SSS)

The Purpose of the SSS

The purpose of the SSS is to verify that a specification, written in LOTOS, complies with the

formal syntax and static semantics defined in the ISO LOTOS standard. This assurance of

correctness is usually a precondition for further analysis/simulation of the specification (as

is the case with the GSR). The checker's central purpose Is to provide clear error messages.

Another purpose of the checker is to produce a dump of its internal data structures, i.e. the

abstract syntax tree. It was through reading these dumps that other tools, e.g. the GSR, could

avoid having to scan, parse and analyse the LOTOS text all over again.

The Structure of the SSS

The tool is a multiple pass checker, invoked by the sss command in LOTTE. As with the

Gate-Sortlist Report Generator this tool was developed using GAG , a compiler generator

system based on attributed grammars. Whereas the use of GAG had a number of advantages

for the tool developers ,e.g. shorter development times, it also caused a number of problems

for integration into Eclipse and meant that the tool could not, realistically, be completely

integrated into Eclipse. The SSS consists of three programs which are called in sequence. These

exchange information using intermediate files which contain abstract syntax trees augmented

by attributes or information added to relevant syntax nodes.

Page 61

Diagram 4 .1 .

SSS Tool GSR Tool

The three programs perform the following functions -

[1] The first program reads the specification source and performs the lexical

analysis and syntax checking. It assigns some of the attributes for the second program and

writes the augmented syntax tree to an intermediate file.

[2] The second program uses the file holding the abstract syntax tree generated

by the first program as its only source input. It performs analysis of data types and writes a

syntax tree with updated and added attributes into a second intermediate file,

[3] The third program uses the intermediate file generated by the second

program as its only source input. It performs the analysis of LOTOS behaviour expressions and

writes a special syntax tree with the attributes for the report generator in a special result file.

Page 62

Eclipse, i.e. replacing the intermediate file holding the syntax tree with an Eclipse two-tier

database holding the same information. Instead of writing out to a result file the third program

would store its data in the Eclipse database. I developed a two-tier schema which would provide

the required structure for such an operation and this schema would be part of the working

schemas of both the SSS and the GSR.

4.2.3. The Gate-Sortlist Report Generator (GSR)

The Purpose of the GSR

The purpose of the GSR is to give static information that is helpful in understanding the

behaviour of a LOTOS specification. It can be used to check for possible deadlock situations

in the specified system. The interactive report generator gives the possibility of generating the

possible interactions in which a behaviour expression can participate.

The Structure of the GSR

The GSR consists of two programs invoked by the gsr command. The non-interactive part

uses the augmented syntax tree produced by the third program of the SSS. It is this program

that forms the second part of the integration into Eclipse. Instead of constructing its internal

structures from an intermediate file it would, instead, build its internal structures from the Eclipse

database created by the last pass of the SSS.

4.2.4. Integration Into Eclipse

The Scope of the Integration

An initial form of integration, which I implemented, was the integration of LOTTE as an Eclipse

foreign tool. This meant that LOTTE could be invoked from within Eclipse object space ,e.g. from

an Eclipse menu. Such an implementation had the effect of making LOTTE look as if it is an

I decided that it would be the last tree which would form the basis of the integration into

Page 63

Eclipse tool,due to being invoked from within LOTTE, though it was unable to interface to any

other Eclipse tool via Eclipse facilities.

As stated before , the fact that GAG was used presented some major problems for the degree

of integration which was feasible. The first problem I encountered was the fact that GAG

produced PASCAL code for which Eclipse does not provide an interface. This problem was

overcome through the use of external calls to C functions. When integrating into Eclipse, at the

data level, one must know the structure of the permanent data used by the tools that are being

integrated. For the purposes of the SSS and GSR this was not a factor because such data

structures were an internal concern of GAG alone. Thus the whole area of tree input and output

was a black box to LOTTE. I was thus faced with the prospect of examining large quantities

of GAG-generated PASCAL code in the hope of extracting the required data structures. I was

by no means certain that I would be successful in this pursuit due to the very large data

structures declared within the GAG-generated code.

This made the tools less than ideal for the purposes of integration into Eclipse.

I decided to limit the integration to the interaction between the last pass of the SSS and the

non-interactive GSR program and see if this could form the basis for further integration at

some later date.

Integrating LOTTE as a Foreign Tool

Eclipse provides a generic tool called texttool which enables TTY tools to run in a windowed

environment. Texttool creates an Eclipse window containing one TTY frame in which the TTY

tool ,i.e. LOTTE, is invoked. All the options and parameters of the tty tool can be supplied at

invocation time. For LOTTE certain pathnames in the invocation scripts had to be changed since

they presumed invocation from an owning directory and not from within Eclipse volumes space.

Otherwise, I found that the Invocation of LOTTE as a foreign tool was a simple matter.

Page 64

This was one of the major problems areas in integrating LOTTE. The data structures used in

each program were very large and inter-twined and the fact that they were generated by GAG

meant that they had very confusing names. An example of a small section of the data structures

used by SSS and GSR is shown in Appendix E. As can be seen from this small section, which

declares the structure of a node in the syntax tree, the code is far from readable.

The job of extracting the data structures used by the SSS and GSR involved tracing through

every possible path of the tree output noting the data structures stored in the intermediate file.

Even though the internal structures were very large, with each node in the parse tree having

possibly many different types of attributes, it was possible to narrow the output structure to a

very manageable size since, through the tracing operation, I found that only a subset of the data

structures declared in the program were actually written to the intermediate file.

Building a Two-Tier Database

Once I had extracted the structure of the data, the next step was to map this structure onto an

Eclipse two-tier schema. I decided to define first tier objects to hold the syntax trees, while

individual node types held in the syntax trees would be defined as second tier entities.

The schema that was developed mirrors the structure of the intermediate file quite closely. This

schema structure was chosen as a way of limiting the effort required to attain an initial level of

integration. In the intermediate file, nodes are stored in a byte stream with a rule value

differentiating the nodes. In the schema that I developed, nodes are stored in sequences ,

which are a built-in form of data representation in Eclipse. The syntax tree structure could have

been mapped onto an Eclipse schema , exactly , without requiring any extra Eclipse

functionality. Such a schema would facilitate the total integration of the GSRs data. This would

mean that the GSR would access data from the tree-structured schema in an equivalent way

to accessing the internal syntax tree read from the intermediate file. Whereas the creation of

such a schema was possible it would have been infeasible to replace the many hundred data

structure accesses, which occur throughout the program, with Eclipse DBI calls.

Extracting th e Data S tructures

Page 65

Storing the data in the database required the modification of the last pass of the SSS as well

as the development of C functions to actually store the data. I developed/modified the code so

as to have a clear distinction between the GAG generated code and the Eclipse interface

code. The basic SSS algorithm used for writing the data was maintained. Initially, the first tier

object was created. It is within this object that the various nodes were stored. The function which

performs a pre-order walk through the tree was modified to the extent that writing out a node

actually involved calling a C function which created the correct second tier entity, in the Eclipse

database, based on the rule value associated with the node.

For the following nodes there were no further attributes to be stored -

[1] ... Empty Node

[2] ... List End Node

[3] ... List Node

Terminal nodes had two attributes associated with them -

[1] Selector Value

[2] Encoded symbol table values.

For attributed grammar nodes the exact form of the attributes stored was determined on a per

node basis, based on the value of a node type selector attribute. The individual functions within

the last pass of the SSS, which originally wrote the individual attributes to file were modified to

copy them into a structure. This structure was then passed to the C code which stored the

values in the correct entity attributes.

The exact form of the nodes can be seen in the schema as shown in the Appendix F. The

coding required to store the data was straightforward. The only real problem encountered was

when the Eclipse libraries were linked in with the LOTTE code. One of the Eclipse User Interface

Storing th e Data in th e D atab ase - SSS

Page 66

library functions appeared to be called for some reason even though no such call existed. It was

found that the library in question contained a main 0 and the linker was picking this up instead

of the PASCAL program’s mainline. This sort of problem can be very exasperating, especially

for an inexperienced user of Eclipse. In order to find out what the problem was, it was necessary

to have the original database library source code consulted.

Retrieving the Data from the Database - GSR

This constituted the mirror image operation of the write operation. As in the write operation ,

the basic GSR algorithm for constructing the syntax tree structure was maintained. Basically ,

when reading a node , a call was made to a C function which retrieved the next node entity

in the sequence from the database. The rule value was returned to the GSR and based on this

value the GSR knew the node type. Subsequent reading of node attributes , for attributed

grammar nodes,involved the reading of the values from the database and the storing of the

values in a structure. I modified the GSR so that the functions which would normally have read

the values directly from the file read them, instead, from the correct fields in the structure.

Appendix G contains details of the integration of the LOTTE tools along with some example C

code.

4.2.5. Possible Further Integration Into Eclipse

In the following sections, I outline the sequence of possible steps that could be taken to more

fully integrate the tools into Eclipse.

Remove All Intermediate Files

As discussed above , the main output file from the SSS, i.e. the file containing the abstract

syntax tree, was integrated into Eclipse, As well as this file, there were other files passed to the

GSR from the SSS, The files passed to the GSR are as follows -

Page 67

'

[1] INFILE - Source Text

[2] STABFILE - Symbol Table

[3] VSFILE - Visit Sequence Table

[4] ... MSGFILE - Error Messages

To allow further integration, these files could be examined and their structures extracted. As in

the case of the syntax tree, schemas could be developed for these files, allowing the last pass

of the SSS to store their data in an Eclipse database. As a next stage of integration, the GSR

could read in these structures from the database.

Total Data Integration

Because the tools were GAG generated and the underlying permanent data structures were

unknown, I decided to see if a limited degree of data integration could be achieved. This limited

degree of integration was achieved . A next stage in the integration of the tools would be to

integrate their run-time data into the database. This would mean that, instead of reading from

the database and building the internal syntax trees, the tools would retrieve their run-time data

from a database whose schema has the same structure as the syntax tree used within the GSR.

This would be implemented by altering the way the SSS writes out the permanent data. The

schema shown in the Appendix F would allow the SSS to store its data in an Eclipse database

with the equivalent structure of its internal syntax tree.

The next step , which would involve a large amount of work, would be to modify the GSR so

that everywhere it currently accesses its internal syntax tree i t , instead , retrieves the equivalent

node/data from the database. This means that the GSR would no longer need to read in the

data and build its internal structures. Where it currently has a pointer to a node structure it

would , instead , have an Eclipse database entity token for the the equivalent node in the

database. Where it currently accesses a pointer from one node to another node in the internal

structure it would , instead , traverse the equivalent second tier link.

Page 68

Because the GSR does not have clearly defined functions for tree manipulation the operation

above would be a huge task. In the GSR, there is lots of tree navigation, update and retrieval

embedded into the code. For such an operation to be feasible it would be necessary to have

the tree handling operations separated into clearly-defined functions which could be replaced

with equivalent functions operating on an Eclipse database.

Extract SSS and GSR from LOTTE

So far, the integration that has been discussed has been slightly unusual in that the tools being

integrated are still part of the LOTTE environment. It is, thus conceivable to invoke LOTTE as

a foreign tool, which contains within it tools which actually use the Eclipse database. A next

step could then be to make the individual tools Eclipse tools ,i.e. remove the tools from LOTTE

and invoke them as Eclipse tools. As LOTTE stands , invocation of the tools is tied up in shell

scripts which are called from C programs. To separate them out would require the replacement

of these scripts with built-in-functions which could be invoked from a tool menu defined in FDL.

It should be possible to add the tools to an Eclipse tool menu and invoke them from FDL.

Integrate the User Interface

A last stage of integration could be to integrate the whole of the LOTTE user interface into

Eclipse. At the moment the various functions provided by LOTTE are presented in a scrolling

menu. The user enters a command string at the prompt in order to perform the required

function.lntegrating the user interface would involve the development of an FDL file which would

present in Eclipse house style the options currently available in the LOTTE main menu.

Invocation of the various options provided by LOTTE could then be done from the FDL file

based on a mouse selection from the menu.

The last two options are feasible, but were not as important as data integration, from the point

of view of the SPECS project.

Page 69

I

4.3. The CRL to C Tool

4.3.1. Introduction

Bell In Belgium, developed a tool to translate the Common Representation Language (CRL),

which was developed as part of the SPECS project, into the C programming language. CRL

plays a central role in the SPECS architecture. It is the target for translations for tower

languages12. It should also be the source from which an implementation of a specification

should be achieved. It is this latter reason which prompted Bell to develop a tool which would

perform the automatic translation from CRL into an implementation language, which for the

SPECS project is C. From the point of view of this thesis, the CRL-C tool provided a contrast

with LOTTE for data integration of a foreign tool into the Eclipse database.

4.3.2. Structure of the Tool

The CRL-C tool had certain similarities in structure to the SSS and GSR in LOTTE in that it was

composed of a number of phases. Diagram 4.2., below, shows the structure of the tool.

Diagram 4.2.

Parsing Transforming Unparsing

12Tower Languages - In SPECS the languages which constitute tower languages are SDL and
LOTOS.

Page 70

The first pass was responsible for parsing the input CRL file. This was facilitated by the use of

the YACC and LEX UNIX tools. LEX was used to scan through the CRL source file and return

tokens based on the CRL keywords found in the file. YACC is a parser generator in which the

grammar of CRL was defined. A parse tree is built using a set of programmer-supplied

tree-building functions. Which functions are called and what values are passed to them can be

defined as part of the grammar productions defined in the YACC file. An example CRL file can

be seen in Appendix G.

Unlike the tools in LOTTE, there were no intermediate files used in the CRL-C tool since all the

passes were linked together at compile-time. The parse tree, built in memory by the first part

of the tool, was used by the second two parts.

4.3.3. Scope Of Integration

Because there were no intermediate files used in the tool, the form of integration possible for

this tool automatically differed from that in the LOTTE tool. The tool itself was much smaller than

either the SSS or the GSR and was much easier to understand. The code was organised in a

way which leant itself to integration. All tree navigation, update and access were separated into

a set of functions. Because of this, it was possible to fully integrate the tool’s run-time data into

the Eclipse database.

This operation required the development of an Eclipse schema definition for storing the data.

The schema, that I developed, was logically equivalent to that used by the original tool. The

parse tree would not be built using the standard internal tree data structure , but would instead

build the tree by storing the node values in, and creating the required links between, Eclipse

second tier entities, as defined in the schema definition. The original data structures can be seen

in Appendix H.

Page 71

4.3.4. Building a Two-Tier Database

The extraction of the data structures used by the tool was a very trivial operation as the data

structures used were quite simple. They were also held separately in an include file rather than

being embedded in the code as was the case with the LOTTE tools. In order to facilitate full

data integration of the tool, I replaced the original data structures with an Eclipse schema

definition which had a logically equivalent structure. The schema definition can be seen in

Appendix J. This schema defines a fine-structure-object, bell_tree, within which the parse tree

schema is defined.

The actual building of the database required a modification to the YACC file used to parse the

input CRL file. The actual grammar productions defined within the YACC file remained the same

since the input CRL remained the same. What did change were the functions which were called

to build the parse tree. This greatly helped the integration since it meant that I could concentrate

on rewriting the tree handling functions without the need to have a deep understanding of the

syntax and semantics of CRL.

Example 4.1. shows a small extract of the modified YACC file.

Example 4.1.

crl : ’(’ sigdeclaxioml inf ’)'
{ $$=Tree_CreateNode(AS_CRLDATA) ;

Tree_AddFirst($$, $2) ;
yy_root=$$;

}

sigdeclaxioml: axiomlactdecl
{ $$=Tree_CreateNode(AS_SIGDECL) ;

Tree_AddNext($$, $1) ; }
| sigdecl axiomlactdecl

{ $$=$1 ;
Tree_AddNext($$, $ 2); }

J

It can be seen from this extract how the YACC source would call user-developed functions upon

the recognition of a LEX token, e.g. crl. When this LEX token was recognised the

Page 72

Tree_CreateNode function was called with an explicit value parameter. The Tree_Addfirst

function would then be called to create the first link, as per the schema definition, between the

crl node and the node generated when the sigdeclaxioml token was recognised. This function

takes two parameters; the first one is the Eclipse entity token returned from Tree_CreateNode

while the second is the entity token returned by the parsing of sigdeclaxioml. Both the LEX and

YACC were processed to produce the required scanner and parser. The C source files,

generated, would then be compiled and linked in with the rest of the CRL-C source code.

In Example 4.2., below, is a listing of the Tree CreateNode function.

Example 4.2.

#define CHECK_RESULT(call) \
if ((call) != EI_OK) { DBIJogoff 0; return(FATAL_ERROR); }

^ *

* Procedure name : Tree_CreateNode *
* ~ ~ *

* Purpose : This routine creates a nood in the Eclipse *
* tree and stores the node’s name. *
* *

* Input : name - the node’s name *
* *

* Output : root - the node’s token *
* *

* Written By : Sean Mac Roibeaird, DCU *
* *

* Date Written : August 3rd 19 8 9 *
* *

* J

DBI_ENTITY Tree_CreateNode(name)
int name ;
{
/*pNode roo t;

root = (pNode)malloc(sizeof(Node)) ;
root-> name = name ;
root->next = Tree_NULL;
root->first = Tree_NULL ;
root->back = Tree_NULL ;
root->value = AN_NULL;
root->anot = AN_NULL ;
return(root) ;

*/

Page 73

DBIENTITY root;
DBIATTRIBUTEVALUE avalué;
char space[MAX_ATTRIBUTE_LENGTH];

y *

* Create the node entity *
******************** * ***************** ******************************** ifk j

CHECK_RESULT (create_entity (
“node",
"Inode",
&root));

y *

* Store the name value *
**^

avalué. attr_type = DBI_INTEGER_SCALAR;
avalué. attr_value.v_entity = &name;
CHECK_RESULT (attribute_becomes (

root,
"name",
avalué));

return (root);
}

In the example above, both the original code and the Eclipse DBI code are shown. In the

original code a memory block is reserved for each node to be created. The name string is then

stored in the name field of the node structure. All the other elements of the node structure are

initialised to null.

In order to create a node entity in the Eclipse database it is necessary to call the

DBI_create_entity [Cartl] function. It is recommended practice, when using Eclipse library

functions, to envelope them in higher level functions which contain all the necessary error

checking and message display code. In the above code the create_entity and

attribute_becomes functions contain the DBI_create_entity and DBI_attribute_becomes Eclipse

DBI functions. This greatly reduces the amount of code required when using the Eclipse DBI

functions since all error-checking and message display can be performed in one place rather

than everywhere a DBI function is called.

Page 74

node - This is the type of the entity to be created, c.f. Appendix I.

¡node - All entities are created relative to UNIT, the local root of the parse tree fine

structure database. Inode is a virtual attribute of UNIT which is of type

sequence of node.

&root - The entity token of the created node entity.

In order to store the node’s name in the database one must call the attribute_becomes function,

which updates a given attribute of an entity. The attribute_becomes function takes three

parameters as follows -

root - The entity token of the created node.

"name" - The name of the attribute to be updated,

avalue - This structure holds the type and the value which will be used

to update the attribute.

In the original code, all the pointer elements were initialised to null. In the Eclipse code there

is no need for an equivalent initialisation, This is due to the fact that any attempt to traverse a

non-existent link in Eclipse will return an exception condition which can be trapped. Such

navigations are implemented by using the DBIvalueofattribute function. This function, when

passed an entity-type attribute will return the entity token of the attribute, if it exists. An example

would be the navigation from a node entity to its brother node entity.

Example 4.3.

DBI_value_of_attribute (root,
"brother",
&buffer,
& avalue);

brother = *avalue.attr_value.v_entity;

An explanation of the parameters expected by this function are explained in Appendix G.

The create_entity function takes three parameters as follows -

Page 75

It can be seen from the above examples that full data integration of the CRL-C tool involved

similar code re-writes for all the tree building, navigation, access and update functions. The

algorithms used in these functions were, to a great extent, maintained in the Eclipse version.

4.4. Conclusions

By performing the integration of the LOTTE and CRL-C tools I noted some key factors which I

feel must be considered when integrating foreign tools into the Eclipse database. In this section

I will outline these factors.

[1] ... Integration of LOTTE as a foreign tool was simple, but was of little use.

If a tool is considered unsuitable for integration into the Eclipse database, then an initial level

of integration can be achieved by invoking the tool from an Eclipse menu, as one would invoke

native Eclipse tools. The parameters required by the tool could be entered in FDL fields instead

of being typed at the UNIX shell prompt. This would increase the compatibility of the look and

feel of the tools to be used. For LOTTE , I found that this was a relatively simple exercise , but

once invoked the tool is incapable of availing of the extra functionality provided by Eclipse.

[2] The ease with which the data structures used by foreign tools can be

mapped onto Eclipse schema definitions.

In the two cases dealt with in this chapter, there were great differences in the visibility of their

data structures and, hence, there was a large difference in the degree of integration which was

feasible. The LOTTE tools had very large and difficult to understand data structures, of which

only a subset was used. The CRL-C tool, on the other hand, used a simple data structure which

could be easily mapped onto an Eclipse schema definition.

[3] The quality of the source code in foreign tools.

By quality of code I mean the degree to which the accesses to data structures were separated

from the rest of the code in the tools. In LOTTE, the code was generated by GAG and accesses

Page 76

to the elements in the syntax tree data structure were embedded in the source code. It was

infeasible to replace all these data structure accesses with Eclipse DBI function calls. The CRL-

C tool, on the other hand, was well designed with a clear separation between the code which

accessed the data structure elements and the code which performed the CRL to C translation.

It was thus possible to replace this part of the tool, en-masse, without having a major impact

on the rest of the code in the tool. A crucial factor was the fact that it was possible to modify

the YACC source file and then rebuild the system. The job of integration would have been much

more difficult, and somewhat similar to LOTTE if one had to try to integrate the YACC generated

source code.

[4] ... Size of the Foreign Tool

There was a vast difference in the sizes of the two tools. Each of the LOTTE tools were an order

of magnitude bigger than the CRL-C tool. When this factor is combined with the fact that the

CRL-C tool had a clear separation of the code which manipulated its data structures it can be

seen that it was a far easier task to integrate the CRL-C tool , and to a far higher degree, than

the LOTTE tools. Thus, the larger the tool ,and the more embedded the data structure accesses,

the more code which has to be developed/modified in order to integrate the tool into the Eclipse

database.

Page 77

Chapter 5

Developing a New Tool in Eclipse

Page 78

5.1. Introduction

As well as integrating foreign tools into Eclipse, I considered it important to evaluate Eclipse

capabilities when developing a completely new tool, particularly a tool which required graphical

output to the screen. The Eclipse TBK contains a graphical design editor tool which provides

design support for graphical design methods. The whole focus of Eclipse is the support for the

development of integrated toolsets which implement design methodologies. The need for a

graphical design editor is obvious when one is implementing graphical methodologies such as

MASCOT or HOOD.

5.2. Background

Within the SPECS project, a vital part of the architecture is the area of informal specification

rigorisation and formalisation. In the SPECS architecture, an informal specification of an IBC

network is regarded as the starting point in the development of the network. Informal

specifications are expressed in natural language and free diagrams. SPECS has developed a

conceptual model for mapping from informal specifications to formal specifications. In order to

build formal specifications from informal ones, two intermediate modelling levels have been

identified, namely classified specifications and rigorous specifications.

The purpose of classification is to get a complete understanding of the system as described in

the informal specification, by classifying the elements of interest. The objectives of classification

To identify ambiguities and missing information.

To be a first step towards formal specification.

To provide a basis for automated tool support.

To ease the process of modifying the specification.

as follows -

[1] To

[2] ... To

[3] To

[4] To

Page 79

The conceptual model developed in SPECS presents a consistent set of IBC concepts, e.g.

action, function, interaction-point. The classified specification is a document which presents the

information contained in the informal specification in terms of these conceptual model concepts.

The rigorisation process concentrates on the system to be specified. Its objective is to analyse

the system described in the classified specification. The rigorisation analysis is based on the

widely known non-application oriented techniques such as entity-relationship, data-flow, state

transition techniques. Diagram 5.1., below models the transformation from informal to formal

specifications.

Diagram 5.1.

Informal Spec.

Guidelines

Guidelines

Guidelines

Formal Spec,

From Informal To Formal Specification

Page 80

[1] - It should be able to store the classified specification concepts in the Eclipse

two tier database.

[2] ... It should allow the user to develop rigorous specifications, i.e. nested levels

of Data-Flow Diagrams. The user would be prompted at each stage with the various relevant

elements of the classified specification.

One of the partner members in the SPECS project produced a document [Lari] which was

supposed to be the classified specification for an example network node called Al’s node. I had

hoped that this document would be in a form which would allow me to develop a parser, using

YACC and LEX, to build a classified database consisting of the conceptual model concepts.

Unfortunately the classified specification was not in a form which permitted parsing as it

contained many inconsistencies and ambiguities. The only alternative was to build the database

by hand. Before this could be done, I had to go through the classified specification and extract

the conceptual model concepts along with their attributes and relationships. It was this operation

which formed the basis of the schema design for the classified database.

The rigorous specification to be developed would consist of a high level context diagram and

nested levels of data-flow diagrams. Each system object in the context diagram could be

exploded into nested levels of data-flow diagrams.

5.3. Developing the Classified Database

As was already stated, the design of the classified database schema was facilitated by the

extraction of the conceptual model concepts from the classified specification. I modelled each

specification as a first-tier object. Within the specification object, each concept was modelled as

a second-tier database entity. The concepts which were extracted from the classified

specification and the relationships that existed between them are shown in diagram 5.2., below.

The objectives of the tool were as follows -

Page 81

Diagram 5.2.

Eclipse Classified Database Model

The actual schema that was developed can be seen in Appendix K. From this schema it can

be seen that every entity (concept) has a name attribute, which is used to distinguish entities

of the same type. Every entity also has a link to a sequence of miscellaneous entities. The

miscellaneous entities hold supplementary data as well as data which cannot be formalised.

Every entity, with the exception of external entities, has additional attributes.

A system entity has a link to a sequence of external entities, a link to a sequence of interaction

point entities, and a link to a sequence of function entities.

A function entity has a link to a sequence of other function entities, links to sequences of input

and output message entities, a link to a sequence of event entities, and a string attribute which

Page 82

An Interaction point entity has two integer attributes max and initial.

A message entity has a link to a sequence of field entities. It has origin and destination links

which can be of type external entity, system entity or interaction point entity.

An event entity has a link to a sequence of other event entities, a rule attribute which is an

enumerated type signifying if the event is part of a choice, iteration or sequence, a string

attribute, choice, which defines a condition for choosing the event, an integer attribute, type,

which shows the message type, e.g. reception of a message, a string attribute, details, which

is a text description of the event.

A field entity has a boolean attribute, optional, which indicates whether or not the field is

optional, an enumerated type attribute, data-type, which indicates the data type of the field, i.e.

string, integer or boolean, and a string attribute, value, which holds the the text value of the

field.

A miscellaneous entity contains an enumerated type attribute, type, which indicates the type

of the miscellaneous entity, and a string type attribute, descr, which contains the text description

of the miscellaneous entity.

5.4. Storing the Data in the Classified Database

5.4.1. Introduction

Having designed and created the classified database schema, the next step was to store the

classified specification concepts in the database. This required the development of an FDL

program to implement the required user interface. In chapter 2 the structure of the Eclipse User

Interface (Ul) is discussed. In this chapter, the discussion will centre on the development of a

Ul, following the Eclipse house-style guidelines, which allowed the user to input classified

specification concepts along with their associated attributes. As well as discussing FDL there will

also be a discussion of the functions written which interface to the database and the Ul. These

holds a text description of the function, called descr.

P a g e 83

functions retrieve data from the screen and store it in the database and vice versa.

5.4.2. Developing the Tool’s User Interface

FDL is designed to provide the tool writer with a means of describing the structure and content

of a tool’s Ul in a device independent fashion and in a form which does not require building the

Ul into the application code [Gree]. The use of FDL ensures that it is possible to modify the Ul

in the light of experience without the need to rebuild the tool. The fact that FDL is device

independent ensures that the Ul is portable and that the tool is not tied to any specific

workstation. Diagram 2.5. (page 51) shows the hierarchy of Ul objects supported by the Eclipse

Appilcations Interface (Al). FDL describes this hierarchical structure together with the contents

of these objects. Each object definition specifies the lower level objects it contains in terms of -

[1] ... The class of the object

[2] The presentation style of the object

[3] The position and extent of the object relative to its parent object (container).

In Example 5.1. there is an example of a declaration of a screen, a window and several frames.

Example 5.1.

------------------------- SCREEN

.SCREEN [0]
DEAD_FONT)$EI_DEAD_FONT
LIVE_FONT)$EI_LIVE_FONT
VALUE_FONT)$EI VALUE_FONT
SIZING_FONT)$EI_SIZING_FONT

W1: .WINDOW [1] (51,124) (0,0)143,48
GRAPHIC)#/design_editor.icon

.end [0]

------------------------- WINDOW W1

.WINDOW [1]
Tmenu: .TOOLMENU [10] (0, 0) | Tool Facilities |
F1: .FRAME [11] (0, 0)->,25
F2: .MSG_FRAME [12] (25, 0)->,1
F3: .GRAPHIC [13] (26, 0)->, + +
.end [1]

Page 84

In this example the SCREEN object contains a window W1. This window is declared to have an

origin at 0,0 of the containing screen. It is 143 columns wide and 48 rows down. Its icon, which

is held in a file called design_editor.icon, will appear at character position 51,124. Within the W1

object the standard tool facilities menu is declared. Three frames are also declared. F1 is a

formatted frame, i.e. one which can be sub-divided into panes and fields. It is positioned at row

25, column 0 of window W1 and extends to the right boundary and 25 rows down in W1. F2

is a message frame, i.e. all messages will be routed by the Al to this frame. It is positioned at

row 25 of window W1 and extends to the right boundary and one row down in W1. F3 is a

graphics frame which cannot be controlled by FDL. It is this frame which is controlled by the

design editor (DE). F3 is positioned at row 26 , column 0 in W1. It extends to the right and lower

boundary of W1 and one row down.

In order to build the classified database it was necessary to present a Ul to the user which

would allow him/her to enter the classified specification concepts. In Appendix L there is an

extract of the FDL file used to create a pane for entering data for a particular sub-system within

the classified specification.

A lot of the power in FDL is provided by built-in functions (BIFs). BIFS are functions that are

linked in with the Al and can be called from the FDL. Thus when building the classified

database, BIFs were developed for creating the various database entities and storing and

retrieving their data. In Appendix L there are several calls to BIFs. Appendix M shows some of

the C code I developed for these BIF calls.

When the user enters the name of the sub-system in the System Name sign, c.f. Example 5.2.,

the syntax of the data entered is checked. The data entered is compared with the SYNTAX

attribute of the system sign. In the extract, below, this states that the data entered in the field

must begin with an alphabetic character and then contain only alphanumeric characters.

Example 5.2.

.SIGN [631]
SYNTAX) ~ [a-zA-Z][A-Za-z_0-9]*$
UPDATE) (‘WP3_create entity &[/W1 IF1 /Sys_Pane] ’.¡system ~ name’ ’system’ ’¡system’ ’2")
ERROR) ’Must start with an Alphabetic character and then contain only AlphaNumerics’)

.END [631]

Page 85

The * repeats the previous character only, i.e. the alphanumeric characters. If there is an error

in the syntax, the error message associated with the ERROR attribute is displayed in the

message frame. If a valid name is entered the WP3_create_entity function is called. This

function’s code is shown in Appendix M. When a BIF is invoked from FDL its parameters are

passed in argc/argv format in exactly the same way as the UNIX main process. This means that

they can be tested independently of the Al and can have any number of parameters. The Al

always passes the FDL name of the BIF as its first parameter.

The get_field function called from WP3_create_entity retrieves the value of a Ul field. The

parameters passed are the token of the containing pane, i.e. the sub-system pane, the name

of the field in the pane, i.e. name (c.f. Appendix L), a buffer to hold a string value to be

returned, an integer to hold the choice id value for state selector fields, and a boolean switch

which indicates whether the field is a string field, e.g. a sign, or a state selector field.

The get_field function shows some of the possible calls to the Al C library. The Al_get function

retrieves the value(s) of specified attributes of a given item. Al_get takes different, null

terminated, parameter lists based on an attribute which always comes after the container token

parameter. For example, the AI_CHILD_BY_ID attribute causes the token of the required child

item to be returned, while the AI_VALUE attribute causes the value of a field to be returned.

The value for the name field in the sub-system pane is used by WP3_create_entity to form a

derived attribute (c.f. chapter 2, The Eclipse Database Attributes) which is passed to the DBI

function DBI_value_of_attribute. This function returns EI OK if the sub-system’s database entity

already exists. If this is the case, a switch value, passed to the WP3_create_entity as part of the

argv parameter list from FDL, is used to determine which function is called to display the values

of the relevant entity’s attributes.

If the return value is not EI_OK, the create_wp3_entity function is called. This function creates

a second tier entity. Two of its parameters are used in the DBI_create_entity function. These

are the entity type, i.e. system, and the the attribute, i.e. Isystem. The token of the newly

created node is then passed, along with the value of the entity's name, to the

DBI_attribute_becomes function. This function store the entity's name in its name attribute (c.f.

Page 86

Appendix K).

5.5. Rigorising the Classified Specification

The tool that was developed had two distinct parts. The first part, the building of the classified

database, has already been discussed. The second part allowed the user to rigorise the data

in the classified database. Rigorisation, in this context, meant the generation of two types of

diagrams, context diagrams and nested levels of data-flow diagrams. For the example network

node, that was stored in the classified database, the context diagram to be generated can be

seen in Example 5.1.

Diagram 5.1.

Page 87

Each rectangle in the diagram constitutes an external entity in the classified database. Each

rounded box constitutes a sub-system in the classified. The links between the external entities

and the sub-systems are messages from the classified database. In the tool the user could

explode a sub-system and generate a data-flow diagram as in Diagram 5.2., below.

Diagram 5.2.

n

n

Page 88

The rounded boxes in the data flow diagram are functions from the classified database. The

parallel lines are data stores and the data-flows are messages from the database. Before

discussing how the diagrams were generated it is necessary to discuss the graph description

language used by Eclipse to generate diagrams.

5.6. Graph Description Language (GDL)

5.6.1. Introduction

GDL was developed to provide a description language which would allow tool builders to specify

the symbols and to describe the constraints of a particular design method [Robs2]. Diagrams

can be expressed as graphs, i.e. a structure composed of nodes and arcs. Depending on the

design which is used, the nodes and arcs in the graph have different symbols and semantics.

All methods allow implicit partitioning of the design graph by using different diagrams to show

the design in greater or lesser levels of detail.

In GDL NODES and LINKs are the fundamental types used and every object which is

represented graphically should be sub-types of NODE or LINK, These are the base types with

a type hierarchy derived from these. A type with no sub-types is known as a concrete type.

Only concrete types are visible on the design graph.

GDL also allows the creation of dependent nodes and links. This occurs where a node or link

may own a set of dependent nodes and links and each dependent node or link may have a

reference back to its owner.

5.6.2. Type Declarations

Type declarations are used to associate a name with the fundamental objects in the design

method. When a type is defined to be of base type NODE, a parameter list may be associated

with that type. This list allows statements to be made about links to that node type. The

parameter list may have an input part , where the node is the destination of a link, and an

Page 89

output part, where the node is the source of a link. Bi-directional links are supported by allowing

the same link to appear in both the input and output parts. When a type is defined to be of

base type LINK, the parameter list may have two parts which indicate which node types the link

is permitted to connect to. The !n_part specifies the type of the source of the link and the

out_part specifies the type of the destination of a link. In Appendices N and O one can see the

GDL files that were developed for the context diagrams and data-flow diagrams. The type

declarations in these files show the various NODE and LINK types used in these diagrams.

Example 5.3., below, shows an extract of the type declarations in the context diagram GDL file.

Example 5.3.

Type PROC_ENV Is NODE
(inJinks: In Bag Of message;
out Jinks : Out Bag Of message)

Type external jentity Is PROC_ENV

Type message Is LINK
(source end : In PROC_ENV;
dest end : Out PROC_ENV)

This type declaration declares a NODE type PROC_ENV. Its parameter list declares a BAG of

input links, injinks, and a BAG of output links, outjinks. A BAG is a form of composite type

which allows duplicate links to exist. The external_entity type is a sub-type of PROC_ENV and

thus inherits PROC_ENV’s attribute list. As external_entity does not have any sub-types it will be

displayable on the screen. The message type is declared to be of type LINK and thus links

NODE types together. Its parameter list states that its origin, source_end, is of type PROC_ENV

as is its destination, dest_end. This means that any NODE types which are sub-types of

PROC_ENV can be origins and destinations of message LINK types.

Page 90

5.6.3. Use Declarations

Use declarations are the means by which the user defines how a particular type is to be

represented on a diagram. The representation of a particular type is defined as a symbol plus

a set of named labels. Example 5.4., below, shows an extract from the use definitions in the

context diagram GDL file.

Example 5.4.

For external jentity Use
{
SYMBOL(EXTS)
+ + EXT_NAME(STRING) : "attribute = ext_name"
}

The use declaration is used to specify which defined shape should be used to represent a

GDL type, and what other labels the type may have. In the above expression, two labels are

declared. A picture label is represented by a shape. The special picture label SYMBOL is

mandatory for concrete types. In the above expression the concrete NODE type, external_entity,

has a SYMBOL picture label which is represented by the defined shape EXT_S, c.f. Shape

Declarations, Example 5.8. A text label has a value which is visibly represented as a text string.

Text labels can be of type STRING, INTEGER, DATE and ENUMERATION. In the above

expression a text label, EXT_NAME, is declared which is of type STRING. There is an additional

attribute string associated with the external_entity NODE type. This is used as a link with the

Eclipse DDL file which will be used to generate a schema to allow the shapes created in the

' diagram to be stored in the Eclipse database. The ext_name attribute will, thus, be declared as

a string type attribute of the second tier entity used to hold an external_entity in the database.

5.6.4. Shape Declarations

Shape declarations are the means by which the user specifies how a particular symbol should

be drawn. Two distinct types of shapes exist within GDL - one type for link symbols and one

type for all other shapes. Node symbols use a SHAPE type while link symbols use a

LINKSTYLE for link symbols. In Example 5.5., below is an extract from the context diagram GDL

file.

Page 91

Example 5.5.

Shape EXTJS Is
{
Box 0,0 : 90,90

}
Linkstyle MESS_L Is Start Arrow
Linkstyle MESS_L Is End Arrow
Linkstyle MESS_L Is Start Arrow End Arrow

In the above the node symbol EXT_S is defined to be composed of the box primitive. There are

several pre-defined primitives in GDL such as point, line, box, rounded box, diamond, triangle

and ellipse. The position of a shape is relative to the shape’s top left hand corner which is at

position (0,0). A linkstyle is basically a line with optional arrows at either end. In the above

example, MESS_L is defined to be a link symbol with three alternative settings, i.e. Start Arrow,

End Arrow or bi-directional.

5.6.5. Compiling the GDL File

Method descriptions written in GDL are compiled into tables which are used to drive the DE. The

compiled GDL definitions are accessed by the DE from a method directory object. This object

is of type design_method_directory and is accessed by the DE via the path -

Jeclipse.tools/ <diagram_type >. designjnethod

where <diagram_type> is the parameter specified on the command line invocation. The GDL

table are accessed from the method directory via an unkeyed link of type .gdltable. The

installation of a method needs to include the setting up of appropriate method directories, i.e.

one for the context diagram and one for the data-flow diagram. For the data-flow diagram the

following method directory was created -

Jeclipse.tools/dfd_diagram.design_method

Page 92

5.7. Generating the Rigorous Diagrams Using the DE

5.7.1. Introduction

The GDL file only forms one of the three essential parts which are necessary to have a complete

DE application. It is necessary to have an SDS to facilitate the storage of the generated shapes

in the Eclipse database. The DE also expects its own FDL file which has certain standard menus

and state selectors which must be modified for the particular diagrams to be displayed,

5.7.2. The DE DDL Files

The DDL files developed for the context diagram and the data-flow diagram can be seen in

Appendices P and Q respectively. The context diagram DDL defines a fine_structure_object_type

of drawing, which has all the attributes required by the DE. It also has method-specific data

through the modelling of nodes, links and labels. The attributes required by the DE are imported

from the mmi SDS. The diagram_object IDLE definition contains the generic attributes required

by the DE. Nodes and links are defined as abstract types which have method specific subtypes.

In the DDL two class types can be seen, i.e. NODE and LINK. The concrete object types must

have names which are identical to those specified in the GDL description of the method. In the

context diagram DDL file both external_entity and system are declared to be sub-types of

NODE, while message is declared to be sub-type of LINK. This is logically equivalent to the

declarations in the GDL file. Each of these object types have attributes associated with them.

Example 5.6., below, shows extracts from the context diagram's GDL and DDL files showing

equivalent DDL and GDL attribute declarations.

Example 5.6.

FDL — > externaljentity =>
ext name : String;

GDL -—> EXT_NAME(STRING) : "attribute = ext_name"

Page 93

These object type attributes all have identical names to the equivalent attributes in the QDL file.

For example the attribute string attribute = ext_name ties the GDL label ext_name to a physical

value in the database. Since the label is a STRING text label, the attribute must be declared

to be of type string. If the label has not been added or has been deleted then the attribute is

set to the null string.

5.73 . The DE FDL Files

Example 5.7, below shows the layout of a standard DE user interface. The layout of this Ui and

the hierarchy of object types are fixed and most of these cannot be altered.

Example 5.7.

dB5tgn_Bdttar (deuaìoprcent)

Hea EXAMPLE TOOL r a g
I Design Naie 1

Evasole 1 ! \
111 Curr Obj II C urr Sy* I
H 1 None— J 11 NOP9 I

S« H c t t on
SHnale

P aste I te n

H H
E Add H iin j [Pian Ops I V1m~0ps

Page 94

The default FDL file associated with an instance of the DE defines several panes which must

exist. The Common Pane (P1) is permanently visible in the control panel. It contains the Exit

and Help buttons, a light to indicate read-only invocation of the DE and an output sign to

contain the name of the design. The descriptions of these buttons and signs cannot be

changed. The Normal Pane (P2) occupies the lower part of the control panel frame, and is

visible after initialisation. This pane contains the main fields used to drive the DE. Some of the

more important ones are as follows -

[1] ... Current and New Object

The current object sign displays the type of the currently selected object,

while the new object displays the type of a new object being added to the diagram. Both of

these signs are maintained by the DE itself, Both signs occupy the same position in the pane

and their visibility is controlled by the DE.

[2] ... New Symbol and Current Symbol State Selectors

The new symbol state selector appears during an add operation. The

possible choices indicate the allowed alternative symbols for the object being added. In

Appendix R this state selector is set up with the alternative symbols to be used for a message

symbol in the context diagram. It is the DEs responsibility to make unavailable those choices

which are not applicable to the particular object type being added. The DE needs to understand

which symbol each of the choices represents in order to provide the correct set of alternatives.

This is achieved by utilising the FDL DATA attribute of each alternative. The format of this

attribute is as follows -

<shape_name >.<alternative >

An example of such an attribute, from Appendix R is -

(1)Start Arrow
DATA)MESS_L. 1

The <shape_name>, i.e. MESS_L, is as defined in the context diagram GDL, c.f. Appendix N.

The alternatives are numbered consecutively starting from 1 in the order they appear in the GDL

Page 95

file. The text Start Arrow is the option value which will indicate to the user what the symbol is.

The current symbol state selector appears when a single object is selected. The possible

choices should be the same as in the new symbol state selector.

[3] ... Add Subordinate Menu

This menu contains the choices which allow the adding of subordinate

objects to the currently selected object. In a similar fashion, the new symbol state selector must

contain all possible choices for subordinates. The DE ensures that only the relevant choices are

made available at any particular time. This is done by putting the encoded string in the DATA

attribute associated with each choice, c.f. Appendix R. Such an encoded string would look as

follows for the context diagram.

(1)External Entity Name
DATA)+ T/EXT_NAME:External Entity Name

The +T/ form of encoding is used for a text label subordinate of the GDL name EXT_NAME, c.f.

Appendix N. The External Entity Name string following the : is the usertype part of the

encoding which is set as the value of the current object. Both the usertype and the choice string

displayed in the menu need not be the same as the type name specified in the GDL and are

expressed in end-user terms. The add subordinate menu should always contain choices for box,

line and text annotations.

[4] ... Add Primary Menu

The add primary menu is similar to the add subordinate menu except that

it is used to add primary object to the design, i.e objects which are not subordinate to another

object, e.g. for the context diagram these would be system and external entity. Primary objects

are limited to nodes and annotations, hence the appearance of the message link object in the

add subordinate menu, c.f. Appendix R.

Page 96

This menu has choices which are the allowable operations on the current

selected object. This menu must contain all the possible choices and the DE subsets the

choices using the encoding in the DATA attributes of the choices, For the context diagram a

method-specific operation was implemented. This Open operation allowed method-specific code

to be written which allowed a system object in the context diagram to be exploded into a level

0 data-flow diagramming tool. In the GDL description of a system an open attribute was

associated with a system. This allowed the open operation to be available when a system was

selected.

In Appendix R. the following choice can be seen in the current object operations menu -

(6)Open
UPDATE)(‘DE_open‘)
DATA)OPEN

On selection of the choice the procedure DE_open was called. How the exploding was

performed is discussed in the section dealing with the invocation of the data-fiow-diagramming

5.7.4. Prompting the User from the Database

At all stages of the development of the rigorous specification the user is prompted with relevant

information from the classified database. In this section I will discuss the various types of data

which are retrieved from the database to aid the generation of the diagrams. The generation of

the rigorous specification actually required the development of two tools, one for each type of

diagram.

The context diagram to be generated for the example network node can be seen in Diagram

5.1. The classified specification concepts relevant to the context diagram are as follows -

[1] ... Systems

[2] ... External Entities

[3] ... Messages

[5] ... Current O bject O perations M enu

Page 97

When the user wishes to enter a System he/she can select the system sign and view the list

of available systems in the classified database. The list is generated using the LIST attribute

in the FDL file. When the user chooses to view the list of available systems the

WP3_retrleve_system_fields function is called, c.f. Appendix S. This function navigates the

sequence of systems and sends the name of each one to STDOUT where it is trapped by the

Al and entered into a drop-down menu. For systems the FDL entry in the FDL file is as follows -

.SIGN [824]
L) WP3jetrieve_system_fields &[/W1 IF1 /Sys_Disp_Pane]
U) subjsysl [subjsys])

.end [824]

One of the major restricting factors encountered when using the DE is the fact that the tool

developer is limited to using the frames defined in the DE’s FDL file. The most one can do is

juggle around with the frame sizes. This is particularly troublesome when one wishes to prompt

the user for a lot of data. For the data-flow diagram the classified specification concepts which

were required for prompting purposes were as follows -

[1] ... Systems

[2] ... External Entities

[3] ... Messages

[4] ... Interaction Points

[5] ... Functions

When the user wished to get details of a particular message to be entered into the diagram

he/she selected the function sign in the sub-system pane. The user then selected a particular

function from the drop-down menu consisting of all the messages of this system, c.f Appendix

S - WP3_retrieve_messages. This caused the message pane to be overlayed on the bottom

half of the control panel, The field values of the selected message entity are displayed on the

message pane, c.f. Appendix S - WP3_retrieve_message_fields. The same procedure was

Page 98

followed for interaction points and messages with the pane holding the relevant fields overlayed

on the bottom half of the control panel.

5.8. Invoking the Data-Flow Diagram Tool

Each system entity within the context diagram was envisaged as containing a level 0 data-flow

diagram. Each function within the level 0 data-flow diagram was envisaged as containing a level

1 data-flow diagram and so on. From this idea of containers came the idea of exploding an

object on the screen in order to see the lower level diagram it contains. In the DE FDL FILES

section there is an example of the Open option in the objects operations menu. This is a valid

operation on a system object in the context diagram since, in the context diagram's GDL file

there is an open attribute associated with the system object. When the Open option is chosen

the DE_open function is called. This is a standard BIF which results in the DE’s Method Handler

being called. The method handler is called when method specific actions are required. The

reason for entry is passed as a parameter together with the information required to perform

the necessary action. The check for an open call in the method handler looks as follows -

case DE_REQUEST_OPEN:
returncode =

action_open(values[0], entity_ids[0]);
break;

The action_open function can be seen in Appendix T. This function retrieves the entity token

of the system entity which is to be exploded. The value of this entity's ext_name attribute is then

retrieved. This name is used as a key to the cardinality-many link to a data-flow diagram first-

tier object. This enables each system object to have an indirect link to a single data-flow-

diagramming first-tier object. The data-flow diagramming tool is invoked using the PCTE callp

function which allows an asynchronous process to be called. When the user exits from the data­

flow diagramming tool control is returned to the context diagramming tool whose state will have

been preserved.

Page 99

5.9. Conclusions and Future Enhancements

In this section I will outline some of the conclusions that I came to when devloping the tool

using Eclipse , and in particular, the conclusions I came to with regard to the DE and GDL. I

will also outline the future enhancements envisaged for the tool.

5.9.1 GDL

I found GDL to be both easy to use and powerful. The syntax of GDL is concise and much

less messy than FDL. When I became familiar with the GDL syntax I found that it took very little

time to define diagrams.

One major benefit to using GDL is the fact that one can define diagram constraints. Using this

feature one can define which objects have links between them, the types of the links and how

many. As well as defining the links that may exist between diagram objects, it is also possible

to define the objects to be subordinate to other objects .i.e. one can define objects which own

certain other objects.

The major drawback with GDL is the fact that when GDL source files are compiled they form

static entities consisting of a number of tables to be used by the DE. Thus the usefulness of

GDL is determined, not by its own features, but rather by the ease of use of the DE which

operates on the GDL tables. It is thus impossible to see what a diagram would look like using

the GDL definitions without first developing a schema definition for the diagram and then

modifying the DEs FDL menus and state selectors. Thus, there is no facility for getting the look

and feel of the diagram correct, before actually hooking it into the rest of Eclipse. I feel that such

a prototyping facility would be an excellent addition to the Eclipse TBK. It could either take the

form of a library which the user could use to develop prototyping tools or a generic prototyping

tool could be developed which would act on the GDL tables, directly, without the need to create

database objects.

Page 100

I found that the DE was an extremely useful tool when used for very straightforward diagram

development. Beacause it is a generic tool, it is inherently restrictive. I found it frustrating to find

that when using the DE one is restricted to using only the three FDL frames declared in the DE's

FDL file even though any new frames would have no impact on the operation of the DE. The

scope for modifying this FDL file is very limited. Because the tool that was developed required

the use of part of the screen for prompting the user with classified database information, it would

have been nice to use completely new text frames, but this was forbidden. I envisaged, in my

original design, that the tool would have the control panel on one side of the screen while the

graphical area would be on the other side. Even such a seemingly minor change was not

possible without developing two tools, one for prompting from the classified database, and an

A5 version of the DE which would occupy half the screen and be used to develop the diagrams.

I found the linkage between the DDL, FDL and GDL files .required in order to use the DE, to be

very involved and intricate. The syntax used in the menus and state selectors of the DE’s FDL

file is not very intuitive, though luckily one only has to modify the file in a small number of

places. It is thus essential that any tool developer, wishing to use the DE to develop graphical

tools, should be fully aware of the following -

[1] The files are required by the DE.

[2] The database entities need to be declared in the DDL file and what attributes

are to be associated with these entities. These entities and attributes will be equivalent to the

ones declared in the GDL file.

[3] The values are to be stored in the modifiable menus and state selectors in the

DE’s FDL file, i.e. create the link between the Ul and the GDL declarations.

[4] The parameters are required in order to invoke the DE.

5.9.2. Design Editor

Page 101

The tool itself will be greatly enhanced in the next phase of the SPECS project. One feature

which will be added is a hypertext facility to allow the user to go from the original informal

specification to a matching section of the classified database and onto the rigorous specification

and back again. This will require a schema definition for the original informal specification and

the definition of links between the various objects. It was not possible to implement this

enhancement, in the current version, since I was constrained to use the control-panel metaphor

only. This meant that it was infeasible to display large amounts of text. It was also impossible

to select text from within any of the Ul fields. Such a feature would be necessary in order to

implement a hypertext-style facility. It is hoped that in future releases of Eclipse a text editing

tool will be provided to enable text selection and that the restriction on the number of frames

that can be declared in the DE’s FDL file will not be as restrictive as it currently is. If this is not

the case then it will be very difficult to display the required information.

Another enhancement which is enviaged is the translation from the rigorous specification to a

LOTOS formal specification. One of the major benefits of the DE is the fact that diagram objects

are stored as entities in the Eclipse database. The problem of mapping from the database ,

generated in the rigorisation process, to LOTOS is currently an active area of research within

DCU.

5.9.3. Future Enhancements

Page 102

Chapter 6.

Conclusions

6.1. Introduction

When I got the job of evaluating Eclipse I knew very little about software engineering

environments. It was very obvious, from the start, that this was a relatively new area of study,

but one in which widespread interest was growing due to the potentially large productivity gains

which could be gained by use of SEEs. From the start I adopted a set of goals which I hoped

would enable me to fully understand the capabilities and the weaknesses of Eclipse as a

platform for the development of integrated tool sets. The initial set of goals was as follows -

[1] ... To fully understand the problem space which Eclipse was trying to address.

[2] ... To fully understand the architecture of Eclipse. This was a pre-requisite

before I could embark on developing and integrating tools in Eclipse.

[3] ... To try to integrate different tools and toolsets into Eclipse, noting the various

good and bad points of the system.

[4] ... To try to develop a completely new tool in Eclipse, hopefully one which

required a graphical interface. As Eclipse is envisaged as a platform for developing full SEEs

I considered it necessary to develop a native tool for Eclipse. Eclipse also aims to provide

support for the development of graphical design methodologies. Thus by developing a graphical

tool I hoped to be in a position to comment on the functionality provided by Eclipse to the tool-

builder hoping to implement graphical design methodology tools.

In the rest of this chapter I will discuss the various areas of Eclipse/PCTE which I feel are of

importance. I will discuss the conclusions which I arrived at,i.e. the various good and bad points

and the paths which should taken or avoided if one is developing or integrating tools in

Eclipse/PCTE.

6.2. The Architecture of Eclipse/PCTE

Both PCTE and Eclipse are new developments. As such there are few people with in-depth

knowledge of these systems. Thus before I could embark on developing or integrating tools I

Page 104

had to become fully familiar with the architectures of both PCTE and Eclipse. This was a very

worthwhile experience and one which I would recommend to anyone intending to use

Eclipse/PCTE. The standard of the documentation for both Eclipse and PCTE is pretty dreadful

and a lot of experimentation was required in order to become familiar with the architectures. This

was one of the main motivating factors for the in-depth discussion of both architectures in

chapters 2 and 3.

The main features of the Eclipse architecture are its use of a database to hold all the data

relating to a project and the provision of a kernel of facilities which provide for all requirements

of a tool with respect to execution, inter-process communication, input-ouput and database

access. It was PCTE which provided this set of kernel facilities. The architecture of PCTE is very

clever in that it preserves nearly all the functionality of raw UNIX while replacing the rigid

hierarchical file-system of UNIX with a highly flexible object management system (OMS). This

architecture greatly reduces the need for intermediate files, signals and piping among co­

operating tools.

The major problem with PCTE , as it exists in its present form, is the fact the it is totally

entwined with UNIX and requires a modified UNIX kernel to be installed before it can be used.

This means that one is tied to a particular version of UNIX kernel and one cannot avail of the

greater functionality which may be provided by later versions of the kernel. This became evident

when version 4 of Sun OS became available, but could not be used since PCTE currently only

operates on a modified version of Sun OS 3,5. It is hoped that by mid 1990 a layered version

of PCTE will be available which will not require a modified kernel. This will also allow for the

portation of PCTE and hence Eclipse/PCTE to various operating systems since only the layer

which interface to the operating system will be effected by such portations.

The design of the Eclipse two-tier database is also very clever in that it encapsulates within the

one data-model both coarse-grained and very fine-grained data. If the tool developer Is familiar

with the design of the PCTE OMS then it is very logical and straightforward progression to use

the two-tiers of data-modelling provided by Eclipse.

Page 105

6.3. The Eclipse Two-Tier Database

The database is at the centre of Eclipse. The designers of Eclipse recognised that the concept

of an OMS needed to be extended because when dealing with advanced software engineering

tools the contents of objects, i.e. files, are highly structured. By extending database concepts

to the contents of objects Eclipse removes one the major problem areas within PCTE.

Eclipse provides data schema facilities in which the database designer can prepare a schematic

representation of data at both tiers using the Eclipse Data Definition Language (DDL). The

Eclipse DDL is very straightforward to use and is a logical extension of the DDL provided for

PCTE. The second tier schema definition, within the DDL source file, is expressed in IDLE. A

compiler is provided for compiling DDL sources. When compiled, one can include the defined

schema in ones working schema and create objects and links as defined in this working

schema.

One of the nicest features of Eclipse is its relatively small database interface (DBI) library of

functions. The same interface is used to provide uniform access to both tiers of data. The

functions interfaces are well designed with relatively few parameters.

The major problem I confronted when using the DBI was the lack of visibility into the database.

This meant that when one had created a database, there was no way of seeing the layout of

the database contents without writing a program to navigate and browse the database. This

problem will be addressed in future releases of Eclipse with the provision of a language called

EASEL which is an interpreted language for accessing various aspects of the Public Tools

Interface. Another, more powerful, tool called the Structure Editor (SE) will also be provided in

future releases. The SE will allow tool writers to construct tools for editing structured

representations of IDLE data structures. In these tools, end-users will be offered a textual

representations of the data that reflects the underlying database structure. By manipulating the

displayed text, users will be able to change existing structures and create new ones. The

provision of such tools will greatly increase the ease with which databases are built, modified

and browsed.

Page 106

I can envisage that speed could become a problem for tools using the Eclipse database. If a

fully integrated SEE supporting the whole software life-cycle was to be developed on Eclipse

then there would be a need for integrated compilers, translators, browsers, etc. For the case

where a compiler was developed the parser would have to build a parse tree within the Eclipse

database. In standard tool development a parse tree would be devleoped in memory, but in

Eclipse the parse tree would have to be modelled in an Eclipse schema and each node would

conform to a second tier object. Thus each node or link creation would require a function call

to the DBI which would be much slower that the equivalent pointer operation using UNIX , for

example. In a trial case I developed, using YACC and LEX to scan and parse a large CRL dump

file, I found that it took over an hour to parse the input file using DBI function calls. To make

Eclipse useful, for this form of tool, new techniques may have to be developed to speed up the

database building process.

6.4. The Eclipse User Interface

One of the requirements for an integrated toolset is a common look and feel for all tools. This

means that the Ul for all tools behave in a predictable fashion, e.g. exit button always performs

the same act for all tools. One area of commonality should be in the way tools are invoked. If

tools are invoked in the same way it has the effect of giving a toolset a more complete feel.

Eclipse adopts a ’control panel' house style which all Eclipse tools must conform to. Thus the

tool developer is restricted to using a limited number of fields, e.g. light, sign, menu, etc., when

developing a Ul. A tool developed using the Eclipse house style is immediately recognisable as

such and attains a degree of predicatibility in its behaviour in the user's mind.

The placement of windows and frames is specified using the Format Description Language

(FDL). This is high level langauge which is simple to use and permits the rapid development of

Uls. Unfortunately FDL does not fit nicely into the rest of the Eclipse system in that it is too

verbose and the syntax checking tool is next to useless at finding even the most obvious synatx

errors. Thus it is only at run-time that one finds out whether or not the FDL source defines the

Page 107

required Ul correctly. In its favour, it does provide a device independent interface for the

definition of window contents and layout and the ability to change the layout of the window

without needing to change the tool. Because Uls generally require a good deal of tinkering in

order to get them as required, I found that the separation of the tool from the user interface was

of great benefit in that the tool never needed to be recompiled when the layout of the Ul

changed.

The use of Built-ln-Functions (BIFs) within FDL provides a way of invoking tool-specific code from

FDL I found this to be very straighforward and it provided great flexibility because one could

change which functions were called from which field by just changing the FDL file, with no

requirement to recompile.

One of the major problems with the version of Eclipse on the Sun workstations is that it does

not conform to the X standard and instead uses Suntools. This has resulted in a certain degree

of reluctance among prospective users to develop tools on Eclipse. It is hoped that a release

of Eclipse will conform to the X standard by mid 1990.

6.5. The Design Editor

The Design Editor (DE) is a generic tool, that is table-driven and can be tailored to edit the

graphical representation of a particualr design method , e.g. MASCOT, JSD, etc. The tables

represent the syntax and semantics of the design method and are described in the Graph

Description Language (GDL).

GDL is extremely powerful alllowing both syntax and sematics of designs to be expressed. The

syntax is easy to use and because it is compiled, unlike FDL, it is possible to get the syntax

completely right before running the tool. As stated In section 5.9. it would be nice to be able

to see the layout of the diagrams which are described by the GDL without first having to

develop a DDL source file to store the diagram objects and then modify the DEs FDL file.

The DE is a very useful tool given the scope of what it tries to achieve. It provides a quick way

of developing graphical tools to implement design methodolgies. It would be much better if one

Page 108

had greater scope to modify the DEs FDL file and tailor the appearance of tool. The linkage

between the DDL, FDL, and GDL is to involved and the invocation of the DE, which requires

several parameters, could be cleaned up.

6.6. Final Conclusions

The Eclipse/PCTE system is still a very new development which is constantly being updated. At

the moment there is an unfinished look and feel to the system. Eclipse will need to be ported

onto the layered version of PCTE and the Ul will need to conform to the X standard before it

can hope to be accepted outside the confines of research projects. The quality of the

documentation is truly awful and It is be hard to see any commercial company using the TBK

to develop SEEs without a vast improvement. On the other hand Eclipse/PCTE has a very

sound design. The database, in particular, is excellently designed and when the Structure Editor

becomes generally available it will greatly increase the ease with which the databases can be

built, modified and browsed. Having used Eclipse for over a year, with all the frustrations which

accompany it, I still do not hate It and can see the benefits it could hold in the future when it

is in a more stable state.

Page 109

Appendices

Appendix A.

**

- File Name : c_sds.w

- Purpose : This DDL file describes an SDS
to model a C programming database

-- Written By : Sean Mac Roibeaird, Dublin City
University.

*

*

*

*

*

*

*

*

- Date Written : 23rd February 1989 *
 * * ** * * * * ** * * * * ** * * * * ** * * * * ** * * * * ** * * * * ** * * * * ** * * * * ** * * * * ** *

new_sds c_sds is

__***
Import needed definitions from other SDS’s *

. ^ *

import sys-file as file;
import sys-name as name;
import sys-sctx as sctx;
import env-user as user;

__***
Needed Definitions *

_***

variant
options
optimize
debug
f_time
f size

string;
string;
boolean := false;
boolean := false;
date := "0101000070";
integer := 0;

_***
Define Object Types *

* *

include_file
object_file
exefile
programs
c_source
cprogram

subtype of file;
subtype of file;
subtype of file;
subtype of file;
subtype of file;
subtype of file;

Define Link Types *

_***

progs

c_prog

c

o

h

exec

cc

end cc;

compiled_from

Id

end Id;

ine :

composition link
to programs;
composition link (name)
to c_program;
composition link (name)
to c_source;
composition link (name)
to object_file;
composition link (name)
to include file;
composition link (name)
to sctx;

reference link (name) to object_file
with

options;
optimize;
debug;

reference link to c_source;

reference link(name) to exe_file
with

options;

reference link (name)
to include file;

Define the completed Objects *

extend c_source
with
attribute

f_time;
f_size;

link cc;
inc;

end c source;

extend object_file
with
link compiledfrom;

Id;
end object_file;

extend user
with
link progs;

end user;

extend programs
with
link c_prog;

end programs;

extend c_program
with
link c;

exec;
h;
o;

end c_program;

end c_sds;

Page 113

Appendix B.
y***
* *

*
*

*

*

*
*
*
*

*

*
*

Program Name

Purpose

Written by

Date

c make.c

This is a small tool to implement
a make tool for C programs under
PCTE. It was developed to
demonstrate the OMS interface of
PCTE.

Sean Mac Roibeaird, Dublin City
University.

24th February 1989

*
*
*
*
*
*

*

•k
k
*
*
*

★
*

***/

* Include Files *
k i c k k k k k k i c k l t k k k k k k k k k k J

#include <sys/types.h>
#include <oms.h>
#include <objstat.h>
#include <linkstat.h>

main(argc.argv)
int argc;
char
s

**argv;

int i;
char link name[LINKSIZEj;
char link[LINKSIZE] ;
char path [64];
struct objstat obj_status;
attrval value;
short d^kind;
int size.numjinks;
struct linkstat current,list[20] ;
struct defid typid;
time_t moddate;

off_t size_area;
t imet date_area;

/* name of a link */

/* object status structure */

/* date of last modifications to C
source file */

/* areas of storage for attrval*/
/* */

{
printf ("Usage = c_make filename \n\n");
exit(-1);
}

if (getobjstat(argv[l],&obj_status) < 0) /* get the object status */
{

perrorC'objstat");
exit(-1);

>

value.vjnteger = &size_area;

/* get the time of the last compilation */

if (getattr(argv [1],
“f_size",
size,
value.vjnteger,
&d_kind) < 0)

{
perror("getattr");
exit(-1);

> /* has the file been modified since the last compile */
if (obj status.o_size > *value.v integer)

{*̂ **
* Update size attribute before recompilation *
* * * * * * ★ * ' * j

*value.v_integer = obj_status.o_size;
if (setattr (argv[1],

Nf_sizeM,
value.v_integer,
V_INT) < 0)

{
perror("setattr”);
exit(-1);

>
compiie_program (argv[1]);

exit (0);
}

if (argc < 2)

Page 115

* The source file has not been modified so check to see if
* the include files it uses have been.***y

/* Get a list of the links from the C source object */

if ((numJinks = Islinks (argv[1],
"inc",
(char *) 0,
&numjinks,
list)) < 0)

{
perror (''Islinks'1);
exit(-1);

}
if (num jinks > 0)

{y**
* Get the date of last compilation of the source file ***y

value.v_date = &date_area;
if (getattr (argv[1],“fjim e",

size,
value.
v_date,
&d_kind) < 0)

y***

{
perrorC'getattr11);
exit(-1);

y *

* Get the type-id of the C-source object which will be used
* to the get the names of the .inc links ***/

if (gettype (argv[1], &typid) < 0)
{

perror("gettype");
exit(-1);

}
/* Get the name of each link */

for (i =0;i < num jinks ;i++)
{
if (linkname (&typid,

&list[i],
1,
link) < 0)
{

perror("linkname");
exit(-1);

}
/* Form the full path to the inc lude jile object */

strcpy (link_name,argv[1]) ;
strcat(link_name,"/“);
strcat(link_name,link);

if (getobjstat (link_name,&obj_status) < 0)
{

perror (“objstat");
exit(-1);

>
/* Has the include file been updated since last compilation */

if (obj_status.o_ctime > * value, v date)
{

*value.v_date = obj_status.o_etime;
/* update the time of last compilation * /

if (setattr (argv[1],
“Mime",
value.v date,
V_DATE) < 0)
{

perror("setattr");
exit(-1);

}
compile_program(argv[1]) ;
exit(0);

>
}

}>

Page 117

y*************** ********************************** **********
* *

* Function
*

Input

Output

Purpose

Written by

* Date
*

compile_program

c_source - the program to be
compiled

None

This function invokes the UNIX C
compiler.

Sean Mac Roibeaird, Dublin City
University.

28th February 1989

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

***/
compile_program (c_source)
char *c source;
{

printf ("Recompiling %s\n",c_source);
if (starti C/bin/cc',“cc'',"-c',,c_source, (char *) 0) < 0)

{
perror("startr);
exit (-1);

}
}

Page 118

Exam ple Use of Eclipse DDL

The example will define a fine structure object called ’customer'. The data dictionary entry for

customer might look like the following -

customer = { customer_name + customer_address +
customer_credit_balance }

The Eclipse DDL required to create this simple object would be as follows -

Sds custom ersds

Import eclipse-fine_structure_object;

-- define a customer to be a subtype of fine_structure_object

customer < = fine_structure_object;

- define the layout of the contents of a customer object

customer = > >
[

ENTITY ::= UNIT | customer_details;

customer_details = > customer_name : String;
customer_road : String;
customer_area : String;
customer_city : String;
credit_balance : Integer;

];
In order to make the schema definition usable a number of steps have to be followed. Firstly,

the source file has to stored within PCTE volume store. The link to the schema definition is a

cardinality-many link ddl. Thus for the above schema definition a possible filename name would

be -

custom er.ddl.

The next step is to compile the source file using the ddl_complle command, e.g.

+ # ddl_compile custom er sds.

This creates a customer_sds.ii file and a customer.ii file. The d d ljn s ta ll command is used to

Appendix C.

Page 119

+ # dd ljnsta ll customer_sds.

This command creates a customer_sds.lsds file in the _/sdsdlr.sys directory. In order to include

the above schem a definition in the working schema it is necessary to append it to the standard

SD S’s used in eclipse using the setsch command, e.g.

+ # setsch customer_sds mml ul eclipse env.

install the schema definition as a usable schema, e.g.

Page 120

Appendix D.

M essage Class

Interaction Messages

Input Messages

System Messages

Message Type

Information,error,
warning, fatal.

Comment

Metric, diagnostic,
tracking, console,
security, system.

Description

Interaction messages provide details of the
status of an Eclipse interaction. Messages of
this type are generated by tools for user
information.

These messages allow the users to provide
feedback to builders.

System messages provide system status
information and are generated by tools for
tool builders rather users.

Classes Supported by the Eclipse Message System

Appendix E.

N O D E =
record

BROTHER-.NODEPTR;
case RULE:RULENRS of
LISTRULE:(

ELEMS:NODEPTR);
R378GEN,R379GEN,R380GEN,R381GEN,R382GEN,R383GEN1
R384GEN,R385GEN,R386GEN,R387GEN,R388GEN,R389GEN,
R390GEN,R391GEN,R392GEN,R393GEN,R394GEN,R395GEN,
R396GEN,R397GEN,R398GEN,R399GEN,R400GEN,R401GEN,
R402GEN,R405GEN,R406GEN,R407GEN,R408GEN,R409GEN,
R410GEN,R411GEN,R412GEN,R413GEN,R414GEN,R415GEN,
R416GEN.R417GEN.R418GEN.R419GEN,R420GEN,R421 GEN,
R422GEN,R423GEN,R424GEN,R425GEN,R426GEN,R427GEN1
R428GEN,R429GEN,R430GEN,R431GEN,R432GEN,R433GEN,
R434GEN,R435GEN,R436GEN,R437GEN,R438GEN,R439GEN,
R440GEN,R441GEN,R442GEN,R443GENIR444GEN,R445GEN,
R446GEN,R447GEN,R448GEN,R449GEN,R450GEN,R451GEN,
R452GEN,R453GEN,R454GEN,R455GEN,R456GEN,R457GEN,
R458GEN,R459GEN,R460GEN,R461GEN,R462GEN,R463GEN,
R464GEN,R465GEN1R466GEN,R467GEN,R468GEN,R469GEN,
R470GEN,R471GEN,R472GEN,R473GEN,R474GEN,R475GEN,
R476GEN,R477GEN,R478GEN,R479GEN,R480GEN,R481GEN,
R482GEN,R483GEN,R484GEN,R485GEN,R486GEN,R487GEN,
R488GEN,R489GEN,R490GEN,R491GEN,R492GEN,R493GEN,
R494GEN,R495GEN,R496GEN,R497GEN,R498GEN,R499GEN,
R500GEN,R501GEN,R502GEN,R503GEN,R504GEN,R505GEN1
R506GEN,R507GEN,R508GEN:

(POS:POSITION;
SONS:NODEPTR;
case NTSEL:NTNRS of
N199SpecificationT ext: (

A199152inputSorts:T 163SortListType;
A199153inputOperations:T1720perationListType);

N259SortName:(
A259154outputSort:T 158SortType);

N2600perationName:(
A260252sorts:T163SortListType;
A260218operations:T1720perationListType;
A260261 variables:T 196VariableListType;
A260217noOfArguments:T87INT;
A260170position:T 164PositionType;
A260263unique:T88BOOL;
A260228operation:T1670perationType);

N265ProcessName: (
A265155outputProcess:T 184ProcessType);

N288Expression:(
A288154outputSort:T 163SortListType);

N298ActualGates:(
A298299expectedGates:T 186GateListTy pe);

N313ParallelOperator:(
A313156outputGates:T 186GateListTy pe);

Definition of a Node Generated by GAG in PASCAL.

N320H¡deOperator:(
A320156outputGates:T 186GateListTy pe) ;

N335EquationSection:(
A335152inputSorts:T 163SortListType;
A335153inputOperations:T1720perationListType);

N350Equation:(
A350261 variables:T 196VariableListType) ;

N354Process:(
A354252sorts:T163SortListType);

N357Parameters:(
A357185gates:T 186GateListType;
A357156outputGates:T 186GateListType;
A357261 variables:T 196VariableListType;
A357187functionality:T 188FunctionalityType) ;

N367Local:(
A367152inputSorts:T 163SortL¡stType;
A367153inputOperations:T1720perationListType);

N368Locals:(
A368369allProcesses:T192ProcessListType);

N256BehaviourSymbol,N2570perationldentifier,
N258GateName,N266VariableL¡st,N269Variableltem,
N270Variables,N27lGateList,N272Gateltem,N275Gates
1N276GateSet,N283ExpressionList,N290Term,
N291Sortlndicator,N293Atom,N294ExitParameters,
N295ProcessCall,N296Behaviour,N297ExitParameter,
N302ActionPrefix,N303Action,N305ExperimentList,
N306Predicate,N307Experiment,N308Premiss,
N309Guard,N310Choice,N311 ChoiceOperator,
N312Parallel,N314Disable,N315DisableOperator,
N316Enable,N317EnableOperator,N319Hide,N321Par,
N322Sum,N323SumDomain,N324Let,N325LetEquationUst
,N327LetEquation,N328PExpression,N329TypeUnion,
N330PSpecification,N331ActReplacement,
N332Replacement,N333SortList,N3340perationUst,
N336SortPairs,N3370perationPairs,N338SortPair,
N3390perationPair,N340NewSort,N3410ldSortl
N342NewOperatlon,N3430ldOperation,N3440peration,
N3450perationNameList,N346Domain,N347Result,
N3480peratorName,N349Equat¡onOfSortL¡st,
N351EquationListTail,N352PremissList,
N353SimpleEquation,N358Block,N359Functionality,
N360ExitSortUst,N362DataType,N363UbraryUst,
N370Definition,N371ExternalLibrary,
N372Specification,N375DataTypeList:0);

TERMRULE:(
TERMSEL:TNRS;
TERM AT:TERMATTYPE) ;

LISTEND,EMPTYRULE:0

end;

Page 123

The Schema Defined for LOTTE

Title - lotte **
Purpose - To set up two-tier schema to store the

abstract syntax tree used by the final *
phase of the SSS program and the GSR *
program, **

Written By- Sean Mac Roibeaird, Dublin City *
University *

k
Date Started- 18th May 1989

★

Modifications - *
Initials Date Details *

*

„***

new_sds lotte is

- * Imports from other SDSs
_ _ k

Import eclipse-fine_structure_object as fso;
Import sys-object as object;
Import env-project as project;
Import eclipse-summary_key;
Import eclipse-summary_count;

Appendix F.

^ j k
- * Define the ’tree’ to be a subtype of a fine_structure_object

j k

tree < = fso;

^mk k
--* Define the layout of the Second tier
^ ^ k

tree = > >
[

ENTITY ::= UNIT | NODETYPE | AG_NODETYPE;

UNIT = > tree_type : Integer,
with_attrs : Integer;

NODETYPE ::= list_node | list_end | empty_node | ag_node
| term_node;

k
k
k
**

*

k

AG_NODETYPE ::= name_type | sort_name| process_name
I expression_details | parallel_operator
I hide_operator | parameter_details;

NODETYPE = > brother : NODETYPE;
rule : Integer;

list_end = > ;

empty_node = > ;

list_node = > elem : NODETYPE;

term_node = > termsel : Integer,
termat : Seq Of Integer;

ag_node = > sons : NODETYPE;
ntsel : Integer,
line : Integer,
column : Integer,
sort : sortjiam e,
process : process_name,
expr : Seq Of sort_name,
par_op : Seq Of name_type,
hide_op : Seq Of name_type,
params : Seq Of name type;

name_type = > name

sort_name = > name
type :
line
level :

process name = > name
gates :
arguments :
discr
sortjis t
noexit
line
valid

: Seq Of Integer;

: Seq Of Integer,
Seq Of Integer,

Integer,
Integer

: Seq Of Integer,
Seq Of nam etyp e ,

: Seq Of sort_name,
Integer,

Seq Of sort_name,
Integer,

Integer,
Boolean;

]; -- end of tree

Page 125

What follows in this section are some examples of the Eclipse DBI code written to enable the

LOTTE syntax tree data to be integrated into Eclipse. Before any data storage/retrieval can

occur one must logon onto the database as follows -

DBIJogon (WORKAREA,'"');

WORKAREA is a pathname identifying the location of an object of type workarea which will have

been previously created.

The actual object which will contain the data must then be created. From the schema shown

in Appendix F it can be seen that the fine-structure object will be of type ’tree’. As this is a first

tier object one can use the PCTE command ’crobj’ as follows -

crobj (LOTTE_ORIGIN,
ROOT_UNK,
NODEJYPE,
FLAGS);

The parameters used are as follows -

LOTTE_ORIGIN This is the pathname to the directory in which the ’tree’ object will

reside.

ROOT_LINK This is the name of the link from the LOTTE_ORIGIN directory to the

tree object created.

NODE_TYPE This is a string containing the name of the node type ,i.e. tree.

The crobj command can be replaced by the Eclipse interface function DBI_create_entity. The

use of crobj is easier, in this case since DBI_create_entity requires that one has navigated down

to the tree objects parent object before creating the tree object. The crobj command, on the

Appendix G.

Details of LOTTE integration into Eclipse

Page 126

The basic algorithm used to access the nodes of the LOTTE syntax tree is a pre-order walk

through the trees. Based on the rule value associated with the node , the program knows the

node type and thus calls the appropriate external C function to create the correct node entity

in the ’tree’ object. The simplest example of this occurs for the following node types

Empty Node

List End Node

List Node

This is because these nodes have no attributes associated with them. The C function used to

create these node types could be as follows -

other hand, accepts a pathname to the tree object, as a parameter.

create_noparm_node (rule , entity J y p e .attribute)
int rule; / * rule value for this node * /
DBI_ENTITY_TYPE_NAME entity_type; / * name of the entity type in * /

/ * the schem a.*/
DBI^ATTRIBUTE attribute; / * Name of the link to this * /

/ * entity type * /
{
DBI_ATTRIBUTE_VALUE avalué; / * Eclipse defined structure which * /

/ * stores the type & address of the*/
/ * data item stored in/retrieved * /
/* from the database * /

DBI_ENTITY token; / * The token of the node entity * /
/ * created. * /

/**
* Create the node entity - Returns the token associated with the
* created ,i.e. token
* y

DBI_create_entity (entity_type,
attribute,
&token);

y *

* Store the rule value associated with this node in the ’rule’
* attribute of the node (consult schema to see all the attributes of
* nodes). This will distinguish nodes when they are retrieved.************ ******* ***************** **********************************y

avalue.attr_type = DBI_INTEGER_SCALAR; / * ’rule’ is an integer * /
avalue.attr_value.vjnt = &rule;
DBI_attribute_becomes (token,

"rule",
avalué);

}

Page 127

Both terminal nodes and attributed grammar nodes have attributes associated with them.

Terminal node attributes are constant in type , but attributes associated with attributed-grammar

nodes vary depending on the value of a selector attribute.

When the GSR is invoked , the first thing it does is build its syntax tree from the data stored

in the database. This is almost a mirror image operation to the operation performed when

storing the data. The type of node created in the internal syntax tree is dependant on the rule

value associated with the equivalent node in the database. Thus a call which would retrieve the

rule would be as follows-

DBI_value_of_attribute (token,
attribute,
&buffer,
Aavalue)

rule = *avalue.attr_value.v_int;

The parameters used are as follows -

token The token of the node entity,

attribute The name of the attribute ,i.e. "rule".

&buffer The address of a block of memory used to perform the operation.

&avalue The address of an Eclipse-defined structure which contains the type and

address of the value retrieved.

Once the rule value is known , the GSR knows the node type and thus the attribute types , if

any , that should be read in from the database. Once the node type is known the GSR also

knows which links should be created in the syntax tree.

Page 128

Appendix H.

Exam ple CRL Source.

; algebraic of natural numbers

typel int) int)
(oper add (typel int int) int)

)
(axioml

(axiom (opapp add int (expl (id x int) (opapp zero int (expl))))
(id x int)

(condl))
(axiom (opapp add int (expl (id x int) (opapp succ int (expl (id y int)))))

(opapp succ int (expl (opapp add int (expl (id x Int) (id y int)))))
(condl)) ; only data part I

)
(ad d eel)
(synchl)
(setdecl)
(rendecl)
(objdecl)
(acteffl)
(pnamdecl)
(createfl)
(epsilon)

)

Appendix I.

The Original Data Structures Used In the CRL-C tool.

#define Tree_NULL 0

union hAnotType {
int i ;
char *s ;

} ;
struct hValue{

int name ;
int type ;
struct hValue *n e x t;
union hAnotType val ;

} ;
typedef struct hValue Value ;
typedef Value *pValue ;

struct hNode{
int name ;
struct hNode *next ;
struct hNode *first ;
struct hNode *back ;
pValue value ;
pValue anot ;

} ;
typedef struct hNode Node ;
typedef Node *pN ode ;

Appendix J

The definition of a Parse Tree Used In the CRL-C Tool.

Structure bell tree Is

ENTITY ::= UNIT | node | value | annotation;

node = >

value = >

name
next
first
back
vai
anot

name
type
next
val

annotation = >
int :
char str

Integer,
node,
node,
node,
value,
value;

Integer,
Integer,
value,
annotation;

Integer,
String;

End;

Page 131

Appendix K.

Structure Sds wp3 Is

Import From env
Entity project;

Import From eclipse
Structure IDLE idle_object
String summary_key,name;

The Schema Definition for the Classified Database.

classified < = idle_object;

project = > > spec (name) : classified;

classified = > >
[
ENTITY UNIT | OBJECTS | IPEPS;

OBJECTS ::= system | interaction_point | message | field |
env | function | event | miscellaneous ;

IPEPS ::= interaction_point | env | system ;

Type action_rule Is (SEQUENCE,
PARALLEL,

CHOICE,
ITERATION,
NONE);

Type misc_type Is (PERFORMANCE,
CONFIGURATION,
REF_CONFIG,
SYSR ESO U R C E,
SALES_RESOURCE,
SECURITY,
SERVICE_QUALITY,
DATA PROTECT,
ORGANISATION,
POLICY,

DISTRIBUTION,
OTHER);

Type field_type Is (INTEGER,
BOOLEAN,
STRING);

OBJECTS = >
name : String,
misc : Seq Of miscellaneous;

system = >
int : Seq Of interaction_point,
func : Seq Of function,
envs : Seq Of env;

interaction_point = >
initial : Integer,
max : Integer;

env = > ;

message = >
fields : Seq Of field,
origin : Seq Of IPEPS,
dest : Seq Of IPEPS;

function = >
inputs : Seq Of message,
outputs : Seq Of message,
descr : String,
funcs : Seq Of function,
events : Seq Of event;

event = >
rule : action_rule,
choice : String,
value : String,
details : String,
events : Seq Of event,
type : Integer;

field = >
optional
d a ta jy p e
value

miscellaneous = >
type
descr

Boolean,
field_type,

String;

misc_type,
String;

I;
End;

Page 133

Appendix L.

.PANE [630]

The only field to be displayed initially is the system name field

Extract from the FDL which generates the Ul for entering data into the Classified Database.

U) mise (_off)
+ inter_pt1 (_off)
+ inter_pt2 (_off)
+ inter_pt3 (_off)
+ inter_pt4 (_off)
+ fu n d iLoff)
+ func2 iLofi)
+ func3 ILoff)
+ envl Loff)
+ env2 Loff)
+ env3 Loff)
+ env4 Loff)

.TRIM (0,0) ¡System Update|
name: .SIGN [631] (2,1)20 ¡System Name|
store: .BUTTON [632] (1,115) I Store System Update |
exit: .BUTTON [633] (5,115) I Exit System Update |
mise: .BUTTON [634] (9,115) I Miscellaneous Data|
inter_pt1 : .SCALAR [635] (7,1)20 (7,30)20 ¡Interaction Points|
inter_pt2: .SCALAR [636] (8,1)20 (8,30)20 I I
inter_pt3: .SCALAR [637] (9,1)20 (9,30)20 I I
inter_pt4: .SCALAR [638] (10,1)20 (10,30)20 I I
fu n d : .SCALAR [639] (7,55)15 (7,80)20 I Functions I
func2: .SCALAR [640] (8,55)15 (8,80)20 I I
func3: .SCALAR [641] (9,55)15 (9,80)20 I I
envl: .SCALAR: [642] (12,55)15 (12,80)20 I Environments I
env2: .SCALAR [643] (13,55)15 (13,80)20 I I
env3: .SCALAR [644] (14,55)15 (14,80)20
env4: .SCALAR [645] (15,55)15 (15,80)20 I I
.end [630]

.SIGN [631]
S) ~[A-Za-z_0-9]*$
U) (‘WP3_create_entity &[A/V1/F1/Sys_Pane] ’.¡system^name’ ’system’ ’¡system’ ’2“)

+ mise L°n)
+ inter_pt1 L on)
+ inter_pt2 Lon)
+ inter_pt3 Lon)
+ inter_pt4 Lon)
+ fu n d L on)
+ func2 Lon)
+ func3 Lon)
+ envl L °n)
+ env2 L°n)
+ env3 Lon)
+ env4 Lon)

Page 134

E) 'Must start with an Alphabetic character and then contain only AlphaNumerics’)
.end

.BUTTON [632]
A) WP3_store_sys_data &[/W1/F1/Sys_Pane]
U) name 0

+ inter_pt1 0
+ Inter_pt2 0
+ inter_pt3 0
+ inter_pt4 0
+ fu n d 0
+ func2 0
+ func3 0
+ envl 0
+ env2 0
+ env3 0
+ env4 0
+ misc (_off)
+ in te rp t 1 (_off)
+ inter_pt2 (_off)
+ inter_pt3 (_off)
+ inter_pt4 (_off)
+ funcT (_off)
+ func2 (_off)
+ func3 (_off)
+ envl (_off)
+ env2 (_off)
+ env3 (_off)
+
.end

env4 (_off)

.BUTTON [633]
U) /W1/F1/Sys_Pane (_ofl) /W1/F1/Tool_Pane(_on)

+ name 0
+ Inter_pt1 0
+ inter_pt2 0
+ inter_pt3 0
+ inter_pt4 0
+ funcT 0
+ func2 0
+ func3 0
+ envl 0
+ env2 0
+ env3 0
+ env4 0
+ misc (_off)
+ inter_pt1 (_off)
+ Inter_pt2 (_off)
+ inter_pt3 (_off)
+ inter_pt4 (_off)
+ funcT (_off)
+ func2 (_off)
+ func3 (_off)
+ envl (_off)
+ env2 (_off)

Page 135

+ env3 (_off)
+ env4 (_off)
.end

.BUTTON [634]
U) /W1/F1/Sys_Pane (_off) AW1/F1/Misc_Pane (_on)

+ (‘WP3_get_misc_iterator‘)
+ (‘WP3_display_misc_data &[/W1/F1/Misc_Pane]')
.end
.SCALAR [635]

U) inter_pt2 (_do)
.end
.SCALAR [636]

U) inter_pt3 (_do)
.end
.SCALAR [637]

U) inter_pt4 (_do)
.end
.SCALAR [638]

U) fu n d (_do)
.end
.SCALAR [639]

U) func2 (_do)
.end
.SCALAR [640]

U) func3 (_do)
.end
.SCALAR [641]

U) envl (_do)
.end
.SCALAR [642]

U) env2 (_do)
.end
.SCALAR [643]

U) env3 (_do)
.end
.SCALAR [644]

U) env4 (_do)
.end

Page 136

Appendix M.

/**
*

Sample BIFs and functions developed to store sub-system data in the Classified Database.

Procedure name : WP3_create_entity

Purpose :

Return

Written By

Date

This BIF tries to create a second tier
entity

0 - if everything works
1 - if incomplete data

Sean Mac Roibeaird, Dublin City
University.

12th October 1989

**/
WP3_create_entlty (argc.argv)
int argc;
char *argv[];
{

AI_ITEM_TOKEN pane_token;
Al TEXT name;
DBI_ATTRIBUTE_VALUE avalue;
char search_string[LINKSIZE];
int pane_number;
EI_BOOL flag;
int result;

/ * * * * * * * * * * Convert the token argument to integer * * * * * * * * * * * /

pane_token = (AI_ITEM_TOKEN) atoi(argv[1]);

y *

* Get the Values in the Name Field
* y

CHECK_RESULT(get_field (pane_token,"name",&name,(int *)0,FALSE));

strcpy(search_string,name);
strcat(search_string,argv[2]);

Page 137

if((value_of_attribute (DBI_ENTITY_SCALAR,
local_root,
search string,
&avalue)) != E!_OK)

{
CHECK_RESULT (create_wp3_entity (argv[3],

argv[4],
name,
&entity_token));

}
else

{
entity_token = *avalue.attr_value.v_entity;
pane_number = atoi (argv[5]);
switch (pane_number)

{
case ENV:

break;
case SYS:

disp!ay_system (panejoken);
break;

case INT_POINT:
displayJntpoint (pane_token);

break;
case MESSAGE:

display_message(pane_token) ;
break;

case FIELD:
display_field (panejoken);
break;

case FUNCTION:
display ju n c tio n (p a n e jo k e n) ;
break;

case EVENT:
display_event(paneJoken);
break;

default:
break;

>
}

return (EI_OK);

* *

Procedure name : WP3_store_sys_data*
* Purpose : This BIF tries to store the system data
* into the two-tier database.*
* Return : 0 - if everything works
* 1 - if incomplete data*
* Written By : Sean Mac Roibeaird, Dublin City
* University.*
* Date : 16th October 1989*
**/

WP3_store_sys_data (argc.argv)
int argc;
char *argv[];
{

AI_ITEM_TOKEN panejoken;
AI_TEXT interaction_point[6];
AITEXT channel [4];
AI_TEXT func[6];
int i;
char inter_pt[10];
char funcs[10];
DBI_ENTITY in tjoken ;
DBI ENTITY funcjoken;
DBI_ATTRIBUTE_VALUE avalue;

/ * * * * * * * * * * Convert the token argument to integer * * * * * * * * * * * /

pane joken = (AIJTEM_TOKEN) atoi(argv[1]);

y *

* Retrieve the names of the Interaction Points**/
CHECK_RESULT (store_seq_attribute (4,

"inter_pt",
panejoken,
"interaction_point",
"!interactlon_point",
"int",
",!interaction_polnt^ name")

);
CHECK_RESULT (store_seq_attribute (3,

"func ",
panejoken,
"function",
"¡function",
"func",
", ¡function'' name")

);

Page 139

CHECK_RESULT (store_seq_attribute (4,
"énv ",
panejoken,
"env",
"!env",
"envs",
Menv^name")

):
return (EI_OK);

/**
**
★
*
*

*

*
*
*
*
*
it
ir

Procedure name

Purpose

Return

Written By

Date :

WP3_get_misc_iterator

This BIF gets the iterator for the ’misc’
attribute of the current entity,

0 - if everything works
1 - if incomplete data

Sean Mac Roibeaird, Dublin City
University,

20th October 1989

**
WP3_get_miscJterator(argc,argv)
int argc;
char *argv[];
{

DBI ATTRIBUTE VALUE avalue;

CHECK_RESULT(value_of_attribute(
DBI_ITERATOR_VALUE,
entityjoken,
"mise",
&avalue));

m isejterator = *avalue.attr_value.v_iterator;
return (EI_OK);

}

Page 140

y******** ****************************** ********* ***************************

* Procedure name : WP3_display_misc_data*
* Purpose : This BIF gets the token of the next ’misc’
* entity in the sequence and then displays
* its text.

* Return : 0 - if everything works
* 1 - if incomplete data*
* Written By : Sean Mac Roibeaird, Dublin City
* University.*
* Date : 20th October 1989*
**/

WP3_display_misc_data (argc, argv)
int argc;
char *argv{];
{

AI_ITEM_TOKEN pane token;
DBI_ATTRIBUTE_VALUE avalue;
D B IB U FFER buffer;
char space[256];
int ret;

/ * * * * * * * * * * Convert the token argument to integer * * * * * * * * * * * /

pane_token = (AI_ITEM_TOKEN) atoi(argv[1]);

buffer. bf_size = 256;
buffer.bf_pointer = space;
if ((ret = DBI_next (m iscjterator,

&buffer,
&avalue)) l= EI_OK)

misc_token = NO_MORE_MISCS;
else

{
misc_token = *(avalue.attr_value.v_entity);
display_dbi_entity (misc_token,

"descr",
pane_token,
"data11);

}
return (EI_OK);

Page 141

I

y**

Function name

Purpose

Return

Written By

Date :

create_wp3_entity

This function creates a second tier
and stores a string in its name attribute.

0 - if everything works
1 - if incomplete data

Sean Mac Roibeaird, Dublin City
University.

11th October 1989*
**/

create_wp3_entity(entity_type,attribute,name,e_token)
DBI_ENTITY_TYPE_NAME entity_type;
DBI_ATTRIBUTE attribute;
char *name;
D B IE N T IT Y *e_token;
{

D B l_ATTR IB UTE_VALU E avalue;
DBI_ENTITY token;

CHECK_RESULT (create_entity (
local_root,
entity_type,
attribute,
&token));

*e_token = token;

y**
* Store the name value

avalue.attr_type = DBI_STRING_SCALAR;
avalue.attr_value.v_str = name;
CHECK_RESULT (attribute_becomes (

token,
"name",
avalue));

return (EI_OK);
}

Page 142

y**

*

*
*
*
*
*
*
*
*
*
*
*
*

*
*

Function name

Purpose

Return :

Written By

Date :

store_seq_attribute

This function retrieves a sequence of
values from the user interface and stores
them in a sequence attribute in the
database.

0 - if everything works
1 - if incomplete data

Sean Mac Roibeaird, Dublin City
University.

11th October 1989

* y

store_seq_attribute(seq_size,
field_name,
pane_token,
entity_type_name,
attribute,
seq_attribute,
derived_attribute)

seq_size;int
A IT E X T
A IJT E M T O K E N
DBI_ENTITY_TYPE_NAME
DBI_ATTRIBUTE
char*
char*

{

field_name;
pane_token;

*/
*/
7

/ * # elements in sequence
/ * field name on Ul pane
/ * token of Ul pane

entity_type_name; /* the type of 2nd tier entity * /
attribute; / * the attribute for storage * /
seq_attribute; /* sequence attribute * /
derived attribute; / * derived attribute for entity * /

/ * name 7

A IT E X T field_value;
D B IE N T IT Y token;
DBI_ATTRIBUTE_VALUE avalue;
int i;
char search_string[LINKSIZE];
Int length;
char field [20];

y *

* Retrieve the values from screen
* y

strcpy (field,field_name);

Page 143

{
if (i < 10)

field[(strlen(field_name)) - 1] = (char)i+0x30;
else

{
field[(strlen(field_name)) - 1] = ’1’;

field [strlen(field_name)] = (char) (¡-10)+0x30;
field [(strlen(field_name)) + 1] = ’\0 ’;

>
CHECK_RESULT (get_field (pane_token,

field,
&field_value,
(int *)0,
FALSE));

if (field_value[0] = = ’\0')
strcpy (field_value,''null");

y *

* Does the Entity Exist ?
* y

strcpy(search_string,field_value);
strcat(search_string,derived_attribute);

if(value_of_attribute (
DBI_ENTITY_SCALAR,
localroot,
search_string,
&avalue) = = EI_OK)

token = *avalue.attr_value.v_entity;

y *

* Create a New Entity
* y

else
{
CHECK_RESULT (create_wp3_entity (

entity_type_name,
attribute,

fieldj/alue,
&token));

>y *

* Add to the tail of the sequence
* y

avalue.attr_type = DBI_ENTITY_SCALAR;
avalue.attr_value,v_entity = &token;
CHECK_RESULT (add_to_head (

entity_token,
seq_attribute,
avalue));

CHECK_RESULT (release_entity_token (token));
}

return (EI_OK);

for (i = 1; i < = seq_size; i+ +)

Page 144

y************************************
*

Procedure name : get_fie!d

* Purpose : This routine gets the value of a field
* given its container,and it FDL name.
*

* Return : 0 - if everything works
* 1 - if incomplete data*
* Written By : Sean Mac Roibeaird, Dublin City
* University.*
*

* Date : 18th A p rili 989

* y

get_field (container,fdlname,buffer,choicejd,choice)
AIJTEM_TOKEN container;
char *fdlname;
A IT E X T ‘ buffer;
A llC H O IC E ID *choice_id;
EI_BOOL choice;
{

AIJTEM TOKEN field token;
AI_CHOICE_ID id;

CHECK_RESULT (Al_get (container,
AI_C HI LD_B Y_l D,
fdlname,
&field_token,
0)

);
if (choice)

{
CHECK_RESULT (Al_get (field Joken,

AI_VALUE,
&id,
0)

);
*c h o ic e id = Id;

}
else

{
CHECK_RESULT (Al_get (fie ldjoken,

AI_VALUE,
buffer,
0)

);
}

return (EI_OK);

Page 145

The GDL file defining the Context Diagram shapes and semantics.

Method context_diagram

- Declare shapes to be used

- An External Entity is represented as a Box

Shape EXT_S Is
{

Box 0,0 : 90,90
}
-- A System is represented as a Rounded Box

Shape SYS_S Is
{

Rounded Box 0,0 ; 120,120 Bold
}
-- Three types Links are used

Unkstyle MESS_L Is Start Arrow

Linkstyle MESS_L Is End Arrow

Unkstyle MESS_L Is Start Arrow End Arrow

Appendix N.

-- Declare forward types to be used in type declarations

Forward message Is LINK

- Declare basic types

Type PROC_ENV Is NODE
(injinks: In Bag Of message;
o u tjin ks : Out Bag Of message)

Type external_entity Is PROC_ENV

Type system Is PROC_ENV

Type message Is LINK
(source_end : In PROC_ENV;
dest_end : Out PROC_ENV)

For external_entity Use
{

SYMBOL(EXT_S)
+ + Ext_name(STRING) : “attribute = ext_name”

}
For system Use
{

SYMBOL(SYS_S) : "open"
+ + SYS_NAME(STRING) : "attribute = sys name"

}
For message Use
{

SYMBOL(MESS_L)
+ + MESS_NAME(STRING) : "attribute = mess_name"

}

- Use declarations

- End of EXAMPLE GDL

The GDL file defining the Data-Flow Diagram shapes and semantics.

Method data_flow_diagram

Appendix O.

- Declare shapes to be used

-- Functions are represented by circles

Shape FUNC_S Is
{

Ellipse 0,0 : 100,100
}
-- External Entities are represented by boxes

Shape EXT_S Is
{

Box 0,0 : 100,90
}
-- Data stores are represented by parallel lines

SHAPE STORE_S Is
{

Line 0,0 : 100,0
+ + Line 0,20 : 100,20

}
Unkstyle DATA_FLOW Is Start Arrow

Unkstyle DATA_FLOW Is End Arrow

Unkstyle DATA_FLOW Is Start Arrow End Arrow

- Declare forward types to be used in type declarations

Forward data_flow Is UNK

-- Declare basic types

Type PROC_EXT_STORE Is NODE
(in jinks: In Bag Of data flow;
ou tjin ks : Out Bag Of data_flow)

Page 149

Type external Is PROC_EXT_STORE

Type function Is PROC_EXT_STORE

Type data_store Is PROC_EXT_STORE

Type d a ta jlo w Is LINK
(source_end : In PROC_EXT_STORE;
dest_end : Out PROC_EXT_STORE)

- Use declarations

For external Use
{

SYMBOL(EXT_S)
+ + EXT NAME(STRING) : "attribute = ext_name"

>

or function Use

SYMBOL(FUNC_S) : “open"
+ + FUNC_NAME(STRING) : “attribute = func_name''

or data_store Use

SYMBOL(STORE_S)
+ + STORE_NAME(STRING) : "attribute = store_name"

For d a ta jlo w Use

SYMBOL(DATA_FLOW)
+ + FLOW_NAME(STRING) : "attribute = flow_name"

>

- End of Data Flow Diagram GDL

Structure Sds context_diagram Is

Import From eclipse
Entity dir
String name;

Import From mrni
Structure IDLE diagram_object
String drawing_name,

check_status ;

drawing < = d iagram _object;
- drawing inherits fine structure of diagram_object

-- Declare the first tier link to the context diagram object

dir = > >
dgm(name) : drawing;

drawing = >
drawing_name,
check_status;

drawing = > >
[

- Declare the node types in the diagram

NODE :: =
external_entity j system;

Appendix P.

The DDL file for the Context Diagram.

external_entity = >
ext_name : String;

system = >
sys_name : String;

- Declare the link types In the diagram

LINK ::=
message;

message = >
mess_name : String;

] ;
End ; - Context Diagram

Structure Sds data_flow_diagram Is

Import From eclipse
Entity dir
String name;

Import From mmi
Structure IDLE diagram_object
String drawing_name,

check_status ;

dfd_diagram < = diagram _object;
- drawing inherits fine structure of diagram_object

Appendix Q.

The DDL file the Data-Flow Diagram.

- Declare the first tier link to a data flow diagram object,

dir = > >
dfd(name) : dfd_diagram;

dfd_diagram = >
draw ing jiam e,
check_status;

dfd_diagram = > >
[

-- Declare the node types in the diagram

NODE ::=
external | function | data_store;

external = >
ext_name : String;

function = >
func_name ; String;

data_store = >
store_name : String;

- Declare the link types in the diagram

LINK ::=
data jlow ;

data_flow = >
flow_name : String;

] ;
End ; -- Data Flow Diagram

.STATE [203] — The New Symbol State Selector
UPDATE)(‘DE_new_symbol ?[newsym]‘)
(1) Start Arrow

DATA)MESS_L.1
(2) End Arrow

DATA)MESS_L.2
(3) Both Arrows

DATA)MESS_L.3
.end [203]

.STATE [204] — The Current Symbol State Selector
UPDATE)(‘DE_current_symbol ?[currsym]‘)
(1) Start Arrow

DATA)MESS_L.1
(2)End Arrow

DATA)MESS_L.2
(3) Both Arrows

DATA)MESS_L.3
.end [204]

.MENU [212] — The Add Subordinate Menu
UPDATE)(‘DE_add_subordinate ?[addsub]‘)
(1)External Entity Name

DATA) +T/EXT_NAME:External Entity Name
(2)System Name

DATA)+T/SYS_NAME:System Name
(3)Message

DATA)+LVmessage:Message
(4)Message Name

DATA)+T/MESS_NAME:Message Name
(5)Line Annotation

DATA)+A/LINE:Line Annotation
(6) Box Annotation

DATA)+ A/BOX:Box Annotation
(7)Text Annotation

DATA)+A/TEXT:Text Annotation
.end [212]

.MENU [214] — The Add Primary Menu
UPDATE)(‘DE_add_primary ?[addmain]‘)
(1)External Entity

DATA) + N/externa_entity:External Entity
(2) System

DATA)+N/system:System
(3)Line Annotation

DATA)+A/LINE:Line Annotation
(4)Box Annotation

DATA)+A/BOX:Box Annotation
(5)Text Annotation

DATA)+A/TEXT:Text Annotation

Appendix R.

Menus and state selectors changed in the Context Diagram FDL file.

.end [214]

.MENU [213] — Current Object Operations M enu
(1)Add Waypoint

UPDATE) (‘DE_add_waypoint‘)
DATA)+W

(2) Delete Waypoint
UPDATE) (‘DE delete_waypoint‘)
DATA)-W

(3) Edit Text
UPDATE) ('DE_edit_text')
DATA)EDIT

(4)Stretch
UPDATE)(‘DE stretch')
DATA)STRETCH

(5) Delete
UPDATE)(‘DE delete1)
DATA) DELETE

(6)Open
UPDATE) (‘DE open1)
DATA)OPEN

.end [213]

y *

Appendix S.

Example Code used for prompting the user during the rigorisation process.

Function name : WP3_retrieve_system_fields

* Purpose : This function retrieves the field values
* of a system object.*
*

*

*

*

*

*

Return 0 - if everything works
1 - if incomplete data

Written By : Sean Mac Roibeaird, Dublin City
University.

* Date : 2nd December 1989
*

* y

WP3_retrieve_system_fields (argc.argv)
int argc;
char *argv[];
{

AI_ITEM_TOKEN pane_token;
DBI_ATTRIBUTE_VALUE avalue;
AI_TEXT system;
DBI_ENTITY token;
DBIJTERATOR iterator;
char iink_name[LINKSIZE];

/ * * * * * * * * * * Convert the token argument to integer * * * * * * * * * * * /

pane_token = (Ai_ITEM_TOKEN) atoi(argv[1]);

y *

* Get the Sytem Name Field
* y

CHECK_RESULT(get_fieid (pane_token,
"system",

&system,
(int *)0,
FALSE));

strcpy (system_name,system);
iocate_at_root (WORKAREA.&root);
strcpy (iink_name,system);
strcat (link_name,".spec");
locate_at_local_root (root,link_name);

Page 155

y *

* Get the Sub-Systems for this System

CHECK_RESULT(value_of_attribute(
DBI_ITERATOR_VALUE,
local_root,
"¡system",
Savalue));

iterator = *avalue.attr_value.v_iterator;

retrieve_fieid_names (iterator); /* lists the names of the systems */
DBI_release_iterator_token (iterator);
return (EI_OK);

y**
* Function name : WP3_retrieve_messages*
* Purpose : This function retrieves the list of
* messages in the classified specification.

* Return : 0 - if everything works
* 1 - if incomplete data*
* Written By : Sean Mac Roibeaird, Dublin City

University.

* Date : 5th December 1989*
•k i t ie-ki fki t i fki t iei fkir ir i fkiei t i f -kit-kie it-kit-kick-kick ickk-k-kick ir kick-k-kicitic-kit is-kick k k k k k k k k k k k k k k k k k k k j

WP3_retrieve_messages (argc.argv)
int argc;
char *argv[];
{

AI_ITEM_TOKEN pane_token;
AI_TEXT system;
char link_name[LINKSlZE];
DBIJTERATOR iterator;
DBI ATTRIBUTE VALUE avalue;

/ * * * * * * * * * * Convert the token argument to integer * * * * * * * * * * * /

pane_token = (Ai_ITEM_TOKEN) atoi(argv[1]);

Page 156

* Get the Sub-Sytem Name Field
* y

CHECK_RESULT(get_field (pane_token,
"system11,
&system,

(int *)0,
FALSE));

strcpy (link_name,system);
strcat (link_name,“.spec");
locate_at_root (WORKAREA,&root);
locate_at_local_root (root,link_name);

CHECK_RESULT(value_of_attribute (DBI_ITERATOR_VALUE,
local_root,
"¡message",
&avalue));

iterator = *avalue.attr_value.v_iterator;
retrieve_fieid_names (iterator);
return (Ei_OK);

y*** * * * * * * * * * * * * a *

y**
Function name : WP3_retrieve_message_fields

* Purpose : This function retrieves the list of
* messages in the classified specification.

* Return : 0 - if everything works
1 - if incomplete data

*

* Written By : Sean Mac Roibeaird, Dublin City
* University,
*

* Date : 5th December 1989
*

* y

WP3_retrieve_message_fields (argc, argv)
int argc;
char *argv[];
{

AI_ITEM_TOKEN panejoken;
AIJTEM_TOKEN mess_token;
DBIATTRIBUTEVALUE avalue;
AI_TEXT messages;
AI_TEXT system;
char search_string[LINKSI2E];
char iink_name[LINKSIZE];
DBI ENTITY token;
DBI_ENTITY fie id joken;
DBI ITERATOR iterator;

Page 157

p an e jo ke n = (AI_ITEM_TOKEN) atoi(argv[1]);
mess_token = (AI_ITEM_TOKEN) atoi(argv[2]);

y *

* Get the Sub-Sytem Name Field
* y

CHECK_RESULT(get_field (panejoken,
"system",
&system,

(int *)0,
FALSE));

y * * * * * * * * * * * * * * * * * * * * *

* Get the Message Name Field
* y

CHECK_RESULT(getJield (panejoken,
"messages",
&messages,

(int *)0,
FALSE));

CHECK_RESULT(setJieid (
m essjoken,
"message",
messages,
0 ,
FALSE));

strcpy (iink_name,system);
strcat (link_name,".spec");
iocate_at_root (WORKAREA.&root);
iocate_at_iocai_root (root, I i n k_n am e);
strcpy(search_string,messages);
strcat(search_string,". ¡message ~ name");

CHECK_RESULT(vaiue_of_attribute (DBI_ENTITY_SCALAR,
iocai_root,
search_string,
&avaiue));

token = *avaiue.attr_vaiue.v_entity;
entityJoken = token;
CHECK_RESULT(vaiue_of_attribute(

DBIJTERATOR_VALUE,
token,
"fields",
&avalue));

iterator = *avaiue.attr_value.vJterator;
retrieve Jieid_nam es(iterator);
DBi_reieaseJteratorJoken (iterator);

/ * * * * * * * * * * Convert the token argument to integer * * * * * * * * * * * /

Page 158

CHECK_RESULT(value_of_attribute(
DBIJTERATOR_VALUE,
token,
"origin",
&avalue));

iterator = *avalue.attr_value.v_iterator;
CHECK_RESULT(next_token (iterator,

&field_token));
DBI_reiease_iterator_token (iterator);
CHECK RESULT(vaiue_of_attribute(

DBI_STRING_SCALAR,
field_token,
"name",
&avaiue));

release_entity_token (field_token);
CHECK_RESULT(set_fieid (

mess_token,
“origin",
avaiue.attr_value.v_str,
0 ,
FALSE));

CHECK_RESULT(value_of attribute(
DBIJTERATOR_VALUE,
token,
"dest",
&avalue));

iterator = *avaiue.attr_value.v_iterator;
CHECK_RESULT(next_token (iterator,

&fieid_token));
DBI_reiease_iterator_token (iterator);
CHECK_RESULT(vaiue_of_attribute(

DBI_STRING_SCALAR,
field_token,
"name“,
&avaiue));

release_entity_token (field_token);
CHECK_RESULT(set_fieid (

mess_token,
"destination",
avalue.attr_vaiue.v_str,
0 ,
FALSE));

D Bl_release_ite rator_toke n (iterator);
return (Ei_OK);

Appendix T.

The function called from the method handler to Invoke the Data-Flow diagramming tool.

y**
*

* Function name : action_open
*

* Purpose : This function invokes the DFD tool.
*

* Return : 0 - If everything works
* 1 - if incomplete data*
* Written By : Sean Mac Roibeaird, Dublin City
* University.
*

* Date : 5th December 1989
*

* y

static int action_open (label_value, lab eljd)
char *label_value;
char *label_id;
{
int result;
int status;
int i,j;
struct dynp_ds context;
struct dynp_ds *dynp;
char *params[6];
char name[64];
char fso_object[64];
char temp[64];
DBI_ENTITY label_entity;
DBI_ATTRIBUTE VALUE avalue;
DBI_ENTITY "token;

/*
* This procedure is called when a system is opened .
*/

CHECK_RESULT(
entity_token_from_id(lab e ljd , &iabel_entity));

CHECK_RESULT(
value_of_attribute(

DBl_STRING_SCALAR,
label_entity,
"sys_name",
&avalue));

Page 160

if (strlen (avalue.attr_value.v_str) = = 0)
{
fprintf (stderr,"SYSTEM NEEDS A NAME \n");
fflush (stderr);
return (EI_OK);
}

else
{
i = 0;

* Use the system object name as a key to the DFD diagram
* PCTE object.
* y

strcpy (temp,avalue.attr_value.v_str);
strcpy (name,system_name) ;
strcat(name,“_");
j = strlen(name);
while (temp[i] != LF)

name [j+ +] = tem p [i+ +];
name[j] = ’\0 ’;
strcat (name,".dfd");
CHECK_RESULT (

value_of_attribute(
DBI_ENTITY_SCALAR1
database_root,

users/root. usr/. work",
¿avalue));

token = *avalue.attr_value.v_entity;
create_entity (token,

"dfd_diagram",
name,
&token);

strcpy (fso_object,"f=_/.users/root.usr/. work/");
strcat(fso_object, name) ;

/***
* Set up the dynp structure to locate HOME
* **********************y

context.dyjsig = 0;
context.dy_stdinput = (char *) 0;
context.dy_stdoutput = (char *) 0;
context.dy_typoutput = 0;
context.dy_stderror = (char *) 0;
context.dy_typerror = 0;
context.dy_refcurr = (char *)0;
dynp = &context;

* Set up the parameters to invoke the DFD tool’s process

params[0] = “ex.tool";
params[1] = V^/.users/root.usr/.work/rigorous.dbwork";
params[2] = fso_object;
p aram spj = “d=dfd_diagram";
params[4] = "s=A4";
params[5] = (char *)0;

callp ("_/eclipse.tools/ex.toor,
params,
environ,
dynp,
&status);

}
return (EI_OK);

Bibliography

[A idei]

[Alde2]

[Beer]

[Bolo]

[Boud]

[Bune]

[C artl]

[Cart 2]

[Chen]

[Dart]

[Gree]

[Hays]

[Huds]

[John]

[Lari]

[Luba]

[McLe]

[Nest]

[Notk]

A. Alderson, B. Bott, "Overview of the Eclipse Programme", Eclipse - An integrated
project support environment - F. Bott (editor).

A. Alderson, A. Elliott, "The Eclipse Tool Builder’s Kit and the HOOD Toolset”,
Software Engineering Environments - Research and Practice - K. Bennett (editor).

S. Beer, et al, "The Design Editor", Eclipse - an integrated project support
environment.

T. Bolognesi, E. Brinksma, "Introduction to the ISO Specification Language
LOTOS".

G. Boudier, et ai , "An Overview of PCTE and PCTE+“, Proceedings
of the Third ACM Symposium on Software Development Environments,
(Nov 1988).

P. Buneman, et al, "An implementation technique for database query languages“,
ACM transactions on Database Systems, (June 1982).

J. Carimeli, B. Passingham, "Eclipse Database Functional Specifications".

J. Carimeli, A. Alderson, "The Eclipse Two-Tier Database", Eclipse - An Integrated
Project Support Environment - F Bott (editor).

P.P. Chen, "The Entity-Relationship Model: towards a unified
view of data", ACM Transactions on Database Systems, (March 1976).

Susan A. Dart, et al, "Software Engineering Environments", IEEE Computer,
(Nov 1987).

M. Green, "Format Description Language - Functional Specification", Dec 1987.

B. Hayselden, et al, "Message Handling Facilities Functional Specification".

S.E. Hudson, King, "The Cactis Project: Database Support for Software
Environments", IEEE Transactions on Software Engineering, (June 1988).

D.B. Johnson, "Help Eclipse User Guide", March 1988

G. Larini, "Classified Specification of the Al’s node a’la DNL test case",
Copyright by the SPECS Consortium (P.CSELT.WP3.30) - July 1989.

M.D. Lubars, "The IDeA Design Environment", Proceedings of the
11th International Conference on Software Engineering,(May 1989).

W.B. McLean, S.M. Jefferson, "Eclipse Public Tools Interface Functional
Specification".

J. R.Nestor, et al, "IDL - Interface Description Language : Formal
Descrition 2nd Edition", Carnegie-Mellon University, Computer Science
Department.

David Notkin, "The Relationship Between Software Development
Environments and the Software Process", Proceedings of the ACM
SIGSOFT/SIGPLAN Software Engineering Symposium on Practical
Software Development Environments,(Nov 1988).

Page 164

[Ober] P.A. Oberndorf, "The Common Ada Programming Support Environment (APSE)
Interface Set (CAIS)", IEEE Transactions on Software Engineering
(June 1988).

[PCTE 8 5] "PCTE - A Basis for a Portable Common Tool Environment", Esprit
Technical Week (1985).

[PCTE 86] "PCTE Functional Specifications 1.4", Bull, GEC, ICL, Nixdorf,
Olivetti, Siemens, (Sept 1986).

[PCTE 88] "PCTE - The Essential Base for Computer Aided Software Engineering",
Brochure of the PCTE Interface Management Board (PIMB), (Nov 1988).

[P ene l] M.H. Penedo & W.E. Riddle, "Software Engineering
Environment Architectures", IEEE Transactions on Software
Engineering, (June 1988).

[Pene2] M.H. Penedo, et al, "Object Management Issues for Software
Engineering Environments - Workshop Report", Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering Symposium
on Practical Software Development Environments,
(Nov 1988).

[P o ttl] S. Potter, et al, "Interaction with Eclipse", Eclipse - An integrated
Support Environment" - F. Bott (editor).

[Pott2] S. Potter, et al, "Tool Builder’s Guide to the Eclipse User Interface".

[Reed] R. Reed, et al, "A Formal Technique Environment for Telecommunications
Software", Proceedings of SETSS ’89.

[R obsl] K. Robson, et al, "Design Editor Functional Specification" - July 1988.

[Robs2] K. Robson, "Graph Description Language - Functional Specification" - Sept 1988.

[Ship] D .W. Shipman, "The functional data model and the data language DAPLEX", ACM
Transactions on Database Systems, (March 1981).

[Sten] Vic Stenning, "On the Role of an Environment"

[Stone] Stoneman Document, US Department of Defense (1980), Requirements for Ada
Programming Support Environments.

[Stre] T. Strelich, "The Software Life Cycle Support Environment (SLCSE)
- A Computer Based Framework for Developing Software Systems",
Proceedings of the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development Environments, (Nov 1988).

[Tedd] M. Tedd, "PCTE+ - The Evolution of PCTE", Software Engineering
Environments - Research and Practice - K. Bennett (editor).

[Thom] I. Thomas , "The PCTE Initiative and the PACT Project", Esprit
Technical Week 1988.

Page 165

[Tull] C.J. Tully, "Prospects for Future Environments: Introduction
to Panel Session", Proceedings of the 9th International
Conference on Software Engineering.

Page 166

